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by
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MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

ABSTRACT

Although audio virtual reality systems have improved substantially in recent
years, they still do not adequately address the problem of simulating distance for virtual
sound sources. Systematic variations in intensity provide a powerful cue for simulating
changes in the relative distance of a sound source, but they fail to give the listener any
information about the absolute distance to the source unless there is a priori information
about its intensity. First order reflections provide one possible way to code absolute
distance information in a virtual audio display without any prior knowledge about the
intensity of the source. Two parameters of these reflections, the delay 'c between the
primary and reflected signals and the ratio m of the intensity of the reflected signal to the
intensity of the primary signal, can be manipulated to encode the absolute distance
information. Five experiments were performed to evaluate the upper limit on the amount
of information that variations in the parameters and m of a first order reflection can
provide to a listener. The first two experiments examined the information transmission
in each parameter when the other parameter was fixed. The second two experiments
measured the information transmission in each parameter when the other parameter was
randomly varied, and the last experiment measured the information transferred by both
parameters simultaneously. The results show a maximum average information transfer
of approximately 1.74 bits for both parameters, which would allow a listener to reliably
place a sound in one of three distance categories. The data also show large variations in
the performance of the different subjects which seem to be related to musical experience.
Although the information transfer measured for the reflection filters used was not as high
as expected, there is some indication that the results could be improved with
modifications to the values of m used for the stimuli. Further research is needed to
explore this possibility.

Thesis Supervisor: Nathaniel I. Durlach
Title: Senior Research Scientist
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1. Introduction

In recent years a great deal of work has been done to create realistic virtual audio

displays. These virtual audio displays focus on adding directionality to single-channel

sound sources by electronically processing the sound into two output channels (left and

right ear) which can be listened to with stereo headphones. The signal is processed with

head related transfer functions (HRTFs) that recreate the characteristics of the sounds

that reach the left and right eardrums when listening to a sound source in an anechoic

environment. Many of these virtual audio displays are also connected to some device

that measures head position and allows the listener to interact with the synthesized sound

source (i.e., the sound source seems to stay in the same position in the room as the

listener moves his head). A full description of these virtual audio displays can be found

in Wenzel (1991).

In general, these audio displays can manipulate only two parameters of the sound

source, azimuth and elevation. Peculiarly, these audio displays are often called "three-

dimensional", despite the fact that they are clearly only two-dimensional. Very little

work has been done to make these devices truly three-dimensional by adding realistic

distance cues to the directional cues.

There are many obvious uses for audio distance cues in a virtual environment.

Distance coding could be used to provide more complete spatial information in

navigational or weapon displays. It could also provide a method for systematically

prioritizing information in a multiple channel communications system or warning

system. Perhaps most importantly, it could greatly enhance the situational awareness and

sense of immersion associated with virtual environment systems. There is no question

that an effective technique for adding distance information to a virtual sound source

would benefit the ongoing effort to create better and more realistic virtual environments.

An overview of the audio cues believed to be relevant to distance perception in

the real world is located in the background section below. Unfortunately, these cues

either do not provide very accurate distance information or they rely heavily on a priori
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information about the source. All of the data available indicate that humans are simply

not very good at determining the absolute distance of an unfamiliar sound source.

In a case such as this one where human performance in the real world is not

particularly good, it may be possible to replace the real world information with a

modified version that provides considerably better performance in the virtual world.

Shinn-Cunningham (Shinn-Cunningham et al., 1994) has done considerable work in the

area of super-localization, which is an attempt to improve localization performance by

modifying the head related transfer functions which provide directional information in

the real world. In her experiment, the localization filters were remapped to provide

enhanced resolution directly in front of the listener at the cost of somewhat worse

resolution to the sides of the listener. The results show that subjects were able to adapt to

these modified cues after some exposure to the virtual environment as long as visual

information consistent with the location of the sound sources was provided.

The Shinn-Cunningham study demonstrates that subjects are able to effectively

use modified auditory spatial information after a period of adaptation, at least when the

information is based on the actual cues present in the real world. An important aspect of

the adaptation seems to be the correlation between the changes in the auditory

characteristics of a sound source and the visual position of the source. It is likely that

listeners in a virtual environment will learn to use modified auditory information to

perceive the location of an object as long as it systematically varies with the visual

location of the object during a period of adaptation, and appropriate

proprioceptive/kinesthetic information relating to head movements is provided. It is also

probable that the adaptation will progress more quickly if the auditory information is

based on some cue that is correlated with spatial location in real world environments.

There is some indication, for instance, that human adults are more likely to associate

higher sound intensity with a closer sound source than infants are (Litovsky and Clifton,

1992), implying that this association may be learned rather than inborn. A study by

Gardner (1968) shows that listeners tend to perceive a whispered voice as being closer

than its actual position, and a shouted voice as being farther than its actual position. This

also seems to be a learned behavior involving distance perception. Thus there is no

reason to believe that distance perception in a virtual audio environment cannot be
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improved by choosing an audio cue, varying it systematically with distance, and allowing

the subject to adapt to the cue by interacting with sound sources in a virtual world.

Of the possible distance cues to use for distance coding, one logical choice is

reflections. Reflections and reverberation have been shown to be an important element

of distance perception, and they can be implemented without drastically changing the

character of a sound. Furthermore, reflections in the real world provide absolute distance

information without a priori information about the loudness of the source (although some

familiarity with the room is required). And previous work examining the

discriminability of white noise with a reflection shows a reasonable ability to

discriminate changes in both the delay of the reflection and the strength of the reflection

(Yost and Hill, 1978). Thus reflections seem to be a reasonable choice for providing

systematic audio distance information.

The purpose of this thesis is the evaluation of first order reflections to determine

their suitability for distance coding in a virtual audio system. A distance coding scheme

using first order reflections might be an effective way for providing information about

the absolute distance of a sound source without any a priori information about the

intensity of that sound source. Furthermore, because reflections are present in almost

every real-world listening environment and humans are accustomed to listening to sounds

with reflections present, there is reason to believe such coding can be achieved without

making familiar types of sounds unrecognizable. A distance coding scheme using

reflections requires listeners to perform an identification task, where they must correctly

choose the distance associated with a particular reflection from a number of possible

distances. Thus, this research will focus on identification experiments involving first

order reflections. This differs significantly from previous work involving reflection and

broadband noise, often referred to as rippled noise (see background section), because the

listener must be able to remember the reflection characteristics at each distance over time

and not just compare two temporally proximate signals. In particular, the principles of

information theory are used to quantitatively measure the maximum amount of

information provided by changes in the parameters of a first order reflection. This

maximum information transfer represents a channel capacity for reflection information

and should establish an upper bound on the effectiveness of reflection-based distance
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coding in virtual audio displays. No attempt is made to define an optimal coding scheme

or deal with the problems of adaptation related to the implementation of distance coding.
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2. Background

This thesis builds on prior work in three four areas: audio distance cues, rippled

noise, information transmission in audio displays, and the decision model for

psychoacoustics. A brief overview of the relevant literature in each of these fields is

provided in this section.

2.1 Audio Distance Cues

The best overall summary of various audio distance cues is the review by

Coleman (1963). He lists a number of possible sources of distance cues, including the

well known correlation between the distance of a sound source and its apparent intensity.

Coleman covers only distance cues relevant to an anechoic listening environment. In

reverberant environments, another cue may be in effect: the ratio of the intensities of the

primary and reflected sounds (Mershon & King, 1975).

These distance cues can be separated into exocentric and egocentric categories.

Exocentric cues provide information only about the relative distances of two sounds.

Egocentric cues provide information about the absolute distance from the sound source to

the listener. Many of the most important distance cues, including intensity cues, are of

the exocentric variety, and they provide no absolute distance information unless the

listener is very familiar with the sound source a priori.

The intensity cue is a powerful exocentric cue, and it has a tendency to dominate

distance perception. This cue is based on the inverse first power law, which states that

the amplitude of a sound is inversely proportional to the distance from the source. This

law can be expressed as (Coleman, 1963):

"(1/ R) loss" in dB = 20 log,0(R/R 0 ) (2.1.1)

where R is the distance from the source to the listener and Ro is the distance from a

reference point to the listener. If this cue is truly dominant, than the just noticeable

change in distance should be related to the minimum audible change in intensity, which

is about 0.4 dB for broadband noise. This would correspond to approximately a 5%

change in distance, according to the inverse first power law. This hypothesis was
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examined by Strybel and Perrot (1984). Their findings were consistent with this

hypothesis for distances greater than 3m, but they found that at 3m or less a change in

distance much larger than 5% was necessary to provide accurate discrimination by the

subjects. It is not clear what combination of distance cues the subjects were using to

evaluate these near sound sources, but it is obvious that they are much less accurate than

judgments based on intensity alone.

The dominance of intensity cues in adults was shown by Litovsky and Clifton.

They compared the abilities of adults and six month old infants to determine whether a

sound stimulus was located 15cm or m away (Litovsky & Clifton, 1992). They found

that adults were far more likely to base their distance judgments on intensity than the

infants. This result indicates that the use of the intensity cue is based at least in part on

listening experience, and implies that it may be possible to learn to use an artificially

created distance cue as naturally as the well-known intensity cue after a period of

training.

Gardner performed a number of experiments involving the egocentric distance

perception of sources directly in front of the listener. He found that distance judgments

of human speech amplified through loudspeakers were based primarily on the amplitude

of the speech presentations and not on the distance to the speaker (Gardner, 1968). In

contrast, he found that the absolute distance judgments to actual human speakers were far

more accurate and tended to be based on the type of speech used. When the live talker

whispered, the subject tended to underestimate the distance. When the talker shouted,

the distance was overestimated. This phenomenon is most likely a result of the

expectations of the subjects that a talker would whisper only when close to the listener

and would shout only when far away. Low level and conversational level speech

generated relatively accurate distance judgments. These results indicate that his subjects

used a priori information about the intensity of human speech to estimate the distance of

the sound source based on the perceived attenuation of the speech. When the speech was

presented electronically at an abnormally loud or soft level, the distance judgments were

incorrect. When the speech originated from a human speaker, these judgments were far

more accurate. Clearly intensity provides a dominant cue for the determination of

relative distances, but it provides no absolute distance information unless the intensity of
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the source is known beforehand. Some other cue must be used to allow egocentric

distance perception.

Reflections, which occur in almost all realistic listening environments, offer one

possible egocentric cue. If the only reflecting surface involved is a floor there will be a

direct mapping between the distance of the source and the parameters of the reflection,

including the delay of the reflection, the relative intensity of the reflected signal, and the

angle of incidence of the reflection. In more complicated reverberant environments, the

characteristics of the reflections should still vary systematically with distance, but there

will be a large number of variables involved and they will vary in a very complex

manner with the location of the source and the listener. Still, there will be a mapping of

reflection characteristics to source distance that does not rely on source characteristics

and should provide a means of evaluating absolute distance if the listener is familiar with

the environment.

The effects of reflections on distance perception were studied by Mershon and

King (1975). They placed subjects in an anechoic chamber and in a reverberant tunnel

and asked them to listen to various sound sources. The distance estimates of the subjects

who listened to the sounds in a reverberant environment were much larger than those of

the subjects who listened in the anechoic chamber. These data are reinforced by later

experiments by Mershon and Bowers (1979) and Butler, Levy and Neff (1980). The

Mershon and Bowers study found a correlation between the actual and perceived

distances of a sound source when the listeners were both blindfolded and unfamiliar with

the reverberant environment. This implies that reflections provide some absolute

distance information even when there is little or no a priori information about the

detailed listening environment. The 1980 study showed that binaural recordings made in

a reverberant environment appeared to be up to three times as far from the listener as

those made in an anechoic environment. The importance of reflections in distance

perception was further verified in a study by McMurtry and Mershon (1985). This study

examined the effects of noise and of hearing protection on distance judgments. The

distance judgments made when the reflection components were masked out by noise or

hearing protection were considerably closer than those made with unmasked reflection
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components. It is clear from these results that the reflection cue is a very important

component of distance perception.

At least two studies have used virtual audio displays to examine the effects of

reflections on distance perception. D'Angelo and Ericson (1993) used several 3-D Audio

Display generators to compare distance %JND with no reflections, a single floor

reflection, left and right wall reflections, and floor and wall reflections. In each case, the

intensity of the signal was also adjusted for distance. They found %JND with no

reflections was 7o, and %JND with reflections was 6%. Thus, reflections provided a

very modest improvement in performance.

Brungart (1993) also performed a study examining the effects of reflections on

distance perception. He had untrained subjects identify the absolute distance of sound

sources (distance to the source in feet) with intensity distance cues and with and without

a floor reflection under three conditions- listening directly to loudspeakers, listening to

binaural recordings of loudspeakers, and listening to sound synthesized by a 3-D Audio

Display generator. In the direct loudspeaker presentation, he found a modest increase in

the perceived distance of sources when the floor reflection was added. In the other two

conditions, the addition of the reflection produced very minimal changes in perceived

distance.

Each of these studies combined overall intensity cues with reflection cues, and

clearly in such cases the overall intensity cues dominate. None of these studies,

however, have attempted to determine the amount of information provided by reflections

when no a priori information about the intensity of the transmitted signal is available.

This situation is frequently encountered in real word situations, and merits further

investigation. This thesis examines the amount of information transmitted by reflections

in order to determine their viability as an absolute distance cue in virtual audio systems.
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2.2 Rippled Noise

When a sinusoid is delayed by one half period and added back to itself, the

delayed signal will be exactly out of phase with the original signal and the sum of the

two signals will be zero. Similarly, if the sinusoid is delayed by a full period and added

to itself, the two signals will be exactly in phase and the resulting signal will be a

sinusoid with the same frequency and twice the amplitude of the original signal. These

are the two extreme frequency responses of a delay and add filter: if the delayed time is

anything between zero and one half or between one half and one full period, the

amplitude of the resulting sinusoid will lie somewhere between zero and twice the

amplitude of the original signal.

If the delay time is greater than the period of the sinusoid then we find that a

delay of any number of full periods result in a doubling of amplitude, and a delay of any

number of full periods plus one half period results in zero amplitude. Thus a delay of

ims would double sinusoids of 1000Hz, 2000Hz, 3000Hz, 4000Hz, etc., and would zero

sinusoids of 500Hz, 1500Hz, 2500Hz, 3500Hz, etc.

A broad band noise signal passed through such a filter with delay 'r will have

alternating, linearly spaced peaks and notches in its power spectrum starting with a peak

at OHz, followed by a notch at 1/2r, followed by a peak at 1/r, and extending infinitely

with peaks at n/ for all n and notches at 2n+1/ r for all n. When there is no attenuation

in the delayed signal, the power spectrum can be described as

IY(Co)22= 2 + 2 cos(co ) (2.2.1)

where Y(o) is the frequency spectrum of the filtered noise, co is the radian frequency, and

r is the delay time of the filter. If the delayed signal is also attenuated, then a more

complex equation will describe the power spectrum, but the alternating peaks and

notches will still occur in the same places.

Broadband noise that has been processed by a delay-and-add filter is often

referred to as ripple noise because of the ripples of the peaks and notches in the

frequency spectrum. Human listeners tend to associate rippled noise stimuli with pitches.

A number of experimenters (Bilsen, 1966; Yost, Hill, and Perez-Falcon, 1978) have
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shown that subjects asked to adjust the frequency of a periodic signal (square wave or

pulse train) until the pitch matches the pitch of the rippled noise will match to a

frequency of l/t Hz. These pitches produced by the rippled noise are frequently called

repetition pitches.

Several studies by Yost and Hill have explored the ability of listeners to

discriminate between two bursts of rippled noise with slightly different characteristics.

In one experiment (Yost, Hill, and Perez-Falcon, 1978), they asked observers to listen to

two 500 millisecond bursts of rippled noise created by passing white noise and random-

interval pulse trains through simple delay and add filters. One of the filters had delay t

ms, and the other had a slightly greater delay +A in ms. Neither filter attenuated the

delayed signal. They used a same-different forced-choice discrimination procedure to

determine the change in the delay of the filter At necessary to distinguish the test filter

from the original filter 75% of the time. They determined the Weber fraction for pitch

discrimination, defined as

A(1/t) At (2.2.2)
1/ tc+.r

which is the ratio of the just noticeable change in repetition pitch to the repetition pitch,

to be 3% for values of between 1.5ms and 5ms, and 5% for a of ms. This is about

ten times as great as the Weber ratio for pitch discrimination in square waves, which is

approximately 0.3% for frequencies above 400Hz. In the same paper, Yost predicted

that repetition pitch is determined by a dominant frequency region located approximately

at 4/t Hz.

A later study by Yost and Hill (1978) tested discriminability of two other

variations in rippled noise. The first was the change in the attenuation of the delayed

signal necessary to correctly discriminate between two rippled noise stimuli. In this

experiment, the subject listened to two signals, one with the delayed signal attenuated by

A dB and one with the delayed signal attenuated by slightly greater (A+ AA dB)

attenuation. The discrimination threshold was defined as the amount of additional

attenuation AA required for the subject to correctly discriminate 70% of the trials under

the same-different forced-choice paradigm. This was found as a function of the
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attenuation A and the results are shown in Figure 1. The threshold values increase

significantly as the baseline attenuation A is increased, and the thresholds are much

higher for the smallest value of , 0.66 ms, than for the other two delay values tested.

Figure 1: Discrimination of Attenuation in Delayed Signal
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Figure 1: This chart (from Yost & Hill, 1977) plots the amount of additional attenuation AA (vertical axis) in the
reflected signal required to discriminate a stimulus with 70% accuracy from a signal with attenuation A (horizontal
axis) in the reflected signal. The results are shown for the three values of t shown in the legend. A signal with X of
I ms and 7 dB of attenuation in the delayed signal, for instance, has a threshold attenuation of approximately 2 dB.
This means that it can be can be discriminated with 70% accuracy from a signal with 9 dB or more of attenuation in
the delayed signal, but not one with 8 dB of attenuation in the delayed signal.

Yost and Hill also measured the pitch strength of rippled noise under various

conditions. The pitch stength of a rippled noise sample is the maximum amount of

attenuation A in the delayed signal that still allows a listener to discriminate (70%

correct) between a signal with delay X and signal with delay 1. l. His results show that

pitch is strongest (A 10% change in could still be discriminated with 23dB of

attenuation in the delayed signal) around 'r = 2ms and that it monotonically decreases in

strength as t increases above or decreases below 2ms. The results also show that pitch

16
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strength approaches zero (discrimination of a 10% change in was not possible even

with no attenuation in the delayed signal) for t <.5ms and t >20ms. Another interesting

feature of Yost and Hill's data is the wide variability in performance among the eight

subjects used in the study who were not systematically trained. The thresholds for those

subjects ranged over approximately 10dB. Interestingly, the best performers in the study

were two subjects with extensive musical training.

17



2.3 Information Transmission

The measurement of information transmission is a convenient way to

quantitatively evaluate the amount of information provided by a message, signal, or other

communication that is based on the principles of Information Theory. Information

Theory was first developed by Shannon in 1949, and has since been expanded into an

important branch of communication theory.

The quantitative theory of information is based on an assumed probabilistic

distribution of possible outcomes. Of these outcomes, the amount of information

provided by each is determined by the unexpectedness of the outcome. If we know for

certain that the sun will rise every day, and someone tells us that the sun will rise

tomorrow, that does not provide any information at all- there was no uncertainty of the

outcome before the communication. If someone tells us there will be a total eclipse

tomorrow, that message will provide much more information, since we do not in general

expect an eclipse to occur.

Information theory places a quantitative value on information, defined as the

negative of the log of the probability of a given outcome. In general, the logarithm is

base 2 and the resulting value is measured in bits of information. Another important

measure is the average information of a distribution of outcomes. The average

information of a distribution, or entropy, is defined as:

H = -1 p(x) log p(x) (2.3.1)
x

where each value of x is a possible outcome and p(x) is the probability of outcome x. A

fair coin, for instance, has two possible outcomes, each with probability 0.5, so the

entropy of this distribution is -.51log.5 + -.51log.5 = 1 bit of entropy. It turns out that the

average information is greatest for uniform distributions. If the coin were weighted, and

landed tails up with probability .6, the entropy would be -.61og.6 + -.41og.4, or .97 bits.

One useful property of entropy is that the number of bits of entropy is equivalent

to the average number of yes and no questions (or binary digits) necessary to determine
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the outcome. It may be necessary to pool a number of outcomes together to approach

this limit in practice, but it is interesting that such a simple calculation can quickly

determine a limit on the most efficient possible coding system for a distribution of

outcomes.

One interesting use for information theory is measuring the amount of

information transferred by a signal or communication. Essentially, the information

transfer is the difference between the uncertainty of the outcome before the signal is

received and the uncertainty of the outcome after the signal is received. If the outcome is

known for certain when the signal is received, the a posteori uncertainty is zero, so the

information transfer is equal to the entropy of the input. For instance, if you look at a

coin after you flip it, you are sure of the outcome, so the entire entropy of the trial (1 bit)

is transferred as information. In general, complete transfer does not occur, and it is

necessary to find the entropy of the outcome X given the communication received Y, and

subtract that from the entropy of the input. Therefore information transfer T is:

T(X;Y) = -E p(x)log p(x)- p(xly)log p(xly) (2.3.2)
x x

Where X is the input distribution and p(xly) is the probability that input x occurred when

output y is known.

The experiments for this thesis were designed to measure information transfer in

an identification experiment. This is done by setting up a confusion matrix, with the N

actual stimuli presented along the i axis and the N possible responses along the j axis. In

this case the information transfer T can be measured directly:

T = . pilog Pi i=l...N; j=1...N; (2.3.3)
i,J PiPj

'Where pi is the marginal probability of input i, pj is the marginal probability of output j,

and pij is the probability of the joint event ij. A comprehensive analysis of the

information transfer in identification experiments can be found in Garner and Hake
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(1952). Appendix A provides an analysis of the bias of the maximum likelihood

estimator of information transmission.

A number of experiments have been performed to measure the amount of

information transmitted in stimuli of various types. Pollack (1952), for instance,

measured the amount of information transferred when a listener was asked to identify the

frequency of a tone with a randomized amplitude. The frequencies of the tones were

equally spaced on a logarithmic scale from 100 Hz to 8000 Hz. Pollack found that the

information transfer increased rapidly as the number of tones increased from two to four.

The information transfer for more than four tones, however, leveled off at approximately

2.3 bits. This implies that a listener cannot reliably identify more than approximately

five different tones, and that the use of more than five tones as stimuli does not

significantly increase the amount of information provided. Another Pollack study (1953)

found that extending the range of frequencies did not add much information, but that the

presentation of a reference tone before each trial could moderately increase information

transfer.

The apparent limit on the number of different stimuli with variations in a single

parameter that can be reliably identified is not limited to the frequency of tones. Miller

(1956) lists a large number of different types of stimuli that exhibit the same property.

Independent of the range of stimuli or number of stimuli used, the maximum information

transfer was found to be 2.3 bits for the loudness of a tone, 1.9 bits for the saltiness of a

solution, 3.25 for the position of a pointer in a linear interval, and 2.2 bits for the size of

a square. A number of other types of unidimensional identification experiments are

listed, but all have a maximum information transfer between 1.6 bits and 3.9 bits. Miller

equates this maximum information transfer with the channel capacity for a human

observing unidimensional changes in a stimulus. He found the mean channel capacity

for a one dimensional identification experiment to be 2.6 bits, with a standard deviation

of 0.6 bits. This is equivalent to reliable identification of approximately 6.5 different

stimuli. Miller refers to the tendency for a wide variety of stimuli to have a maximum

information transfer of about 2.6 bits as the "seven plus or minus two" effect.

The 1953 study by Pollack also showed that information transfer could be

substantially increased by adding another dimension to the identification experiment. In
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this case he asked the listeners to identify the sound level and the frequency of the tone,

and he was able to increase the information transfer to 2.9 bits from 1.8 bits for

frequency alone and 1.7 bits for sound level alone. Pollack and Ficks (1953) found that

the median performers in their subject pool increased from 2.1-2.3 bits of information

transfer in unidimensional experiments to 5.3-7.2 bits for six or eight dimensional

experiments. His findings suggest that additional information is transferred when

dimensions are added to the stimulus, but that the total information transfer is less than

the sum of the unidimensional information transfers.
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2.4 The Decision Model

The preliminary theory of intensity perception developed by Durlach and Braida

(1969) uses a model based on internal noise that can be adapted to many different types

of identification experiments. For this model, N different stimuli are used, each with the

parameter under investigation varied so the value of that parameter in Si is less than that

of S2 and the stimuli are ranked in this order up to the stimulus with the largest value of

the parameter, labeled SN. The subject is required to identify each stimulus with one of

N different numerical responses, labeled Ri through RN. The model assumes that there is

a unidiminsional continuum X (representing the decision axis), and that each stimulus

presentation generates a particular value of X. Furthermore, it is assumed that the subject

uses N+1 "criteria" (labeled Ci where -oo = Co < Ci < ... < CN-1 < CN=oo) to identify each

stimulus, so that he gives response Rm if and only if Cm- < X < Cm. The conditional

probability distribution of X given stimulus Si (p(XISi)) is assumed to be gaussian with

mean (Si) and a standard deviation c that is independent of S.

Thus each different stimulus will generate a value of X with a normal probability

distribution, and the expected value of X is determined by the stimulus but the variance

of the distribution is independent of the stimulus. The values of the criteria may be

independent of the location of these expected values, but the minimum error probability

is achieved if each criterion is placed halfway between the expected values of X

associated with two adjacent stimuli (i.e. Ci = ((Si)+ p(Si+l))/2). The spacing between

the expected values of X generated by two stimuli is normalized by dividing by to

allow its interpretation using the unit normal gaussian distribution. The resulting value,

d', is called the sensitivity index for the two stimuli, and is defined for stimuli Si and Sj as

d'(Si, Sj) = ((Si)- g(Sj))/G. (2.4.1)

The sensitivity determines how well the subjects are able to distinguish between the two

stimuli. The sensitivities are additive (d'(Si, Sk)= d'(Si, Sj)+ d'(Sj, Sk)) and are

independent of the criteria.
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Another interesting property of d' is the sensitivity edge effect (Braida and

Durlach, 1972). This is the tendency for resolution to increase (d' is larger) at the edges

of the range of stimuli used in the experiment. This is believed to be a result of the use

of the extremes in the stimulus range as "perceptual anchors".

The decision model gives us another way to look at the data in the confusion

matrices of an identification experiment. It has the advantage of examining the

performance of the subjects for each stimulus presented. In contrast, the information

transfer measure gives us only a single quantitative measure of performance for the entire

matrix. One drawback is that the model was designed for intensity experiments and may

not be completely applicable to experiments involving reflection delay and reflection

strength (although it has been successfully applied to a number of dimensions other than

intensity, including sound source azimuth). It may also be difficult to generate an

accurate estimate of the parameters of the models with as few trials as are necessary for

estimating information transfer. Nevertheless, these models can give some insight into

the perceptual resolution of differences in first order reflections.
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3. Theoretical Development

This research addresses the feasibility of using reflection based algorithms to

provide distance coding in a virtual audio display. The study focuses on the simplest

possible reverberant environment, a single floor reflection. Figure one shows typical

sound paths in two such single-reflection environments. Two things are apparent in this

illustration that are generally true for floor reflections on a flat surface. First, the ratio of

distance traveled by the primary signal to distance traveled by the reflected signal

approaches one as the distance goes to infinity. Since sound intensity is inversely

proportional to distance traveled, this implies that the ratio of intensities of the primary

and reflected signals approaches unity as the distance approaches infinity. Second, the

intensity of the reflected signal is always less than that of the primary signal, and the

ratio of the intensity of the reflection to the intensity of the primary signal increases with

source distance.

Figure 1: Single floor reflections, near and far sources

A. Very Near Source

B. More Distant Source

All systems of this nature can be characterized by a single echo or comb filter

equation:
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SA,m, =A(1 + me-j ). (3.1)

In this equation, A is the overall amplitude of the signal, m is the ratio of the amplitudes

of the reflected and primary signals, is the time delay between the primary and

reflected signals, and o is the angular frequency in radians per second. If the sound

source and the listener are assumed to be the same height h off the ground, and the

distance D between them is much larger than h, then it is possible to approximate 'T as a

function of D and h, i.e.

-2 h 2 D2 DV=C- -+ 4 -- (3.2)

where V is the velocity of sound. When D>>h, as is usually the case, this can be reduced

further to

2h2

VD =(3.3)
VD

In general, the amplitude ratio m will tend to increase with increased distance, but if we

fix m at one for simplicity, we get a filter with the following frequency response:

(oh2ISAD(C0)I =4A 2 cos2 ( () (3.4)
phase[SA.',D((o)] = 1h (3.5)

It is likely that echo coding could provide an easily implemented way to generate

distance information in a virtual audio display. Furthermore, reflections are so common

in real-world listening environments that such cues might be quite natural sounding and
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probably would not interfere too greatly with the ability to recognize familiar sounds.

The question that has not been addressed in previous studies is whether or not such

coding will provide a genuine benefit to the listener. How well can humans identify

different reflection filters? This thesis will attempt to answer that question.
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4. Experimental Setup

This research is based on a set of psychoacoustic experiments to determine the

amount of information provided by changes in the different parameters of the simple

comb filter described in the previous section. The experiments involve the manipulation

of three parameters: the overall intensity A, the relative intensity of the reflection m, and

the time delay of the filter t. The overall intensity A was randomized in order to prevent

the listener from determining the strength of the reflection from the overall amplitude of

the signal.

A total of five experiments were performed: two preliminary experiments to

identify r' with In fixed and m with fixed; two experiments to identify t with m roved

(i.e. randomly varied) and m with roved; and one experiment to identify tr and m

simultaneously. The preliminary experiments were used to help train the subjects and

give some insight into the general range of expected results. The other experiments

provided more useful data about the amount of information transmitted in first order

reflections. The exact particulars of each of the experiments and the results of those

experiments are described in the sections that follow. This section is devoted to

describing the hardware and software setup used to generate the stimuli used in the

experiment and collect the responses from the subject.

A Gateway 2000 4SX-33V computer controlled all of the experiments. This PC

was equipped with a Digital Audio Laboratories CardD DA/AD board, which was used

1.to generate the sound stimuli. The CardD has two 16bit digital to analog converters that

operate at sampling rates from 32KHz to 48KHz. All of these experiments used the

48KHz sample rate.

From the D/A board, the signal was sent to an Auditory Localization Cue

Synthesizer (ALCS) for reflection processing. The ALCS is a special purpose digital

signal processor that was originally designed to generate virtual audio environments by

processing sound with head related transfer functions that were updated by the subjects

head motions (McKinley & Ericson, 1988). The synthesizer has two audio input

channels and a stereo headphone output channel. The input signals are sampled at a
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40KHz rate and passed to the digital signal processing (DSP) board, which consists of 4

TMS-320C25 DSP microprocessors. Two of the processors are dedicated to the left ear

output, and two are dedicated to the right ear. For each ear, the input signals are

processed in two stages. The first stage adds directional information by convolving the

signal with a finite impulse response filter representing the head related transfer function

of a particular direction relative to the listener. The second stage adds reflection

information. The signal is then converted back to analog at a 40KHz sample rate,

amplified, and sent to a standard 0.25 inch stereo headphone jack.

The ALCS communicates with the PC through a standard RS-232

communications port. This port is monitored by a fifth TMS-320C25 that controls all

I/O functions and synchronizes the operations of the four signal processing

microprocessors.

For these experiments, the first stage was disabled by replacing the normal head

related transfer function FIR with an impulse, causing a passthrough in that stage. The

second stage was used to generate reflections of varying delays and amplitudes and to

control the overall attenuation of the signal. For each trial, three parameters were sent to

the ALCS by the PC. The first was an overall amplitude scaling factor from 0-31. The

input signal was multiplied by this factor and then divided by 32 to provide a range of

overall amplitude scaling factor from 0 to 0.96875 in increments of 0.03125. A similar

scaling factor from 0-31 was used to adjust the amplitude of the reflection, which was

extracted from a delay line in the processor with a delay in samples (25 ,us resolution)

requested by the PC.

The subjects were trained initially with AKG K240DF headphones. The final

training and data collection were done with Etymotic Research ER-2 headphones. These

headphones provide a nearly flat frequency response at the eardrum of the subject from

100Hz to 10KHz (as measured by the manufacturer with a Zwislocki coupler). They use

foam eartips that are inserted into the ear canal, so they also provide between 32dB and

42dB of attenuation of environmental noise.

A program written in Borland C++ was used to run the experiment. It allows

easy manipulation of parameters through a window interface and allows a well-trained
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subject to perform the experiment with minimal supervision. When running the

experiment, the subject is presented with a stimulus and asked to identify that stimulus

through a numerical response on the keyboard. A training option is also provided that

allows the subject to choose which stimulus he wants to hear. During the experiment, a

log is kept of the important parameters and subject response for each trial presented, and

a separate log is kept of the confusion matrices produced in each run. The control

program has an option that allows the examination of the overall performance and

information transfer of a given subject. Figure 2 shows the configuration of the

experimental setup.

Figure 2: Experimental Setup

SUBJECT

A total of four subjects participated in the study. Three were graduate students

and one was an undergraduate student. One of four subjects was female. All four

reported normal hearing. Three of them had recent pure tone audiograms demonstrating

normal hearing, and the fourth was quickly screened for threshold problems at 100Hz,

250Hz, 1KHz, 2KHz, and 4KHz, and was normal in each frequency range. Only one of

the four subjects had any prior experience in localization experiments.
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5. Experiment Design

Data were collected from a total of five regular experiments, plus two

supplementary experiments. The design of each experiment is described in this section.

The actual results of each experiment are shown and discussed in the Results chapter.

The confusion matrices for each experiment are shown in Appendix F.

5.1 Preliminary Experiments

The first two experiments were designed to measure the information present in

either the delay t with the reflection strength m fixed or in the reflection strength m with

the delay T fixed.

Stimulus

The stimulus used in these experiments was a 521 millisecond burst of white

gaussian noise. The waveform was created using ISPUD, a signal processing package

developed at MIT, and stored on the hard drive of the control PC. The effective

bandwidth of the noise was limited by the low-pass antialiasing filters of the ALCS

system, which have a cutoff frequency of 10KHz. The exact same waveform was used in

every trial, so for these experiments the stimulus was effectively frozen.

Overall Amplitude

The overall amplitude of the stimulus was controlled by the ALCS. The control

computer generated a random number from 8 to 31 and this number was divided by 32 to

determine the overall attenuation of the signal before it was passed through the delay-

and-add filter. Thus the voltage level of the output was effectively multiplied by a

scaling factor ranging from 0.25 (12 dB of attenuation) to 0.96875 (0.28 dB of

attenuation). Under this linearly roving paradigm, the decibel attenuation of the stimulus

tends to be smaller on average than it would be if the attenuation were roved on a decibel

scale. Note that the first two steps on the scale are separated by only 0.28 dB, but the last

two steps are separated by 1 dB. The baseline amplitude was adjusted with the volume

control on the ALCS to place the loudest stimuli at a loud but comfortable listening level.
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5.1.1 Experiment 1: Identify t with m fixed

Identified Parameter

In the first experiment the subjects listened to trials with the reflection strength m

fixed and they were asked to identify the associated delay r. Ten different values of tr

were used, ranging from 0 ms to 9 ms in 1 ms intervals. The delay values associated

with each stimulus are shown below in Table 1, along with the repetition pitch (1/r),

associated with rippled noise with that delay value (See background section).

Table 1: Experiment 1 Stimuli

Stimulus Number

0

1

2

3

4

5

6

7

8

9

Delay c

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

7 ms

8 ms

9 ms

Repetition Pitch

1000 Hz

500 Hz

333 Hz

250 Hz

200 Hz

167 Hz

143 Hz

125 Hz

111 Hz

Training

The subjects were initially trained with a special option in the software that

allowed the subjects to choose one of the ten response numbers in Table 1. The signal

was then presented with the selected delay and the fixed value of m, but with the

amplitude varied according to the linear randomization described above.

When the subjects had trained until they felt they could comfortably identify the

ten delay filters, they were asked to perform a number of short training blocks, each

containing 200 trials (20 for each possible delay value). The information transfer of each
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of these blocks was computed to give a rough estimate of the subject's proficiency, and

when the subject performance stopped improving and stabilized within 0.2 bits for

several blocks in a row, the data collection began.

Experiment

The actual experiment consisted of 5 blocks of trials per subject. Each block

consisted of 200 trials, with 20 for each of the 10 possible delay values. The values of 

for the trials in each block were chosen randomly without replacement. Thus there were

a total of 1000 trials in the experiment for each subject, with 100 for each of the ten

values of t, or a total of 10 for each box in the 10 by 10 confusion matrix.

The experiment was performed for two fixed values of m. In the first condition,

reflection strength m was fixed at 0.97 (0.28 dB attenuation from primary signal). In the

second condition, the reflection strength m was fixed at 0.50 (6.0 dB attenuation). In

both cases the subject was given the correct stimulus number after each trial, and after

each block of trials they were shown their confusion matrix and the associated

information transfer.

5.1.2 Experiment 2: Identify m with t fixed

Identified Parameter

In the second experiment the subjects listened to trials with the reflection delay t

fixed and were asked to identify the reflection strength m. Eight different values of m

were used, ranging from 0% reflection strength to 87.5% reflection strength (ratio of

reflection amplitude to primary amplitude). The reflection strength m relative to the

primary signal is shown as an amplitude ratio in percent and as a power ratio in decibels

for each of the eight stimuli in Table 2.
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Table 2: Experiment 2 Stimuli

Stimulus Number Amplitude Ratio of m Power Ratio of m

0 0.0%

1 12.5% -18.1 dB

2 25.0% -12.0 dB

3 37.5% -8.5 dB

4 50.0% -6.0 dB

5 62.5% -4.1 dB

6 75.0% -2.5 dB

7 87.5% -1.2 dB

Training

The training for this experiment was essentially the same as that for the first

experiment. The subjects were first allowed to choose the reflection strength of the filter

and then were played a stimulus with that reflection strength, and with the fixed value of

t and the overall amplitude randomized. They were then asked to perform 160 trial

blocks until their performance stabilized (information transfer stopped increasing and

two trials were within a 0.2 bit range), before the formal experiment was performed.

Experiment

The actual experiment consisted of 5 blocks of trials per subject. Each block

consisted of 160 trials, with 20 for each of the 8 possible values of m. As in the first

experiment, the values of m for the trials in each block were chosen randomly without

replacement. Thus there were a total of 800 trials in the experiment for each subject,

with 100 for each of the eight values of m, or a total of 12.5 for each box in the 8 by 8

confusion matrix.

Two values of tr were used for this experiment. In the first condition, the

reflection delay 'c was fixed at 5 ms (repetition pitch 1/ = 200 Hz). In the second

condition, the reflection delay r was fixed at 9 ms (repetition pitch l/ = 111 Hz). As in
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Experiment 1, the subjects were given feedback about the correct stimulus for each trial

and the confusion matrix and information transfer for each block of trials.

5.2 Single Parameter Experiments

The third and fourth experiments measured the information transfer in either the

delay or the reflection strength m when the other parameter was roved.

Stimulus

The stimuli used in the second experiment were not frozen. Instead, the white

gaussian noise sample was randomly selected from ten different noise waveforms created

from the same statistical distribution with the ISPUD program. The waveforms were all

exactly one second in length. As in the first experiment, the bandwidth was limited to

10KHz by the anti-aliasing filters in the ALCS.

Overall Amplitude

As in the first two experiments, the overall amplitude was varied. In the third and

fourth experiments, however, the amplitude was varied in only ten steps, rather than 23,

and the steps were spaced logarithmically at approximately 2 dB intervals, rather than the

linear spacing used in the first experiment. The actual attenuation voltage multipliers and

decibel attenuation levels of the ten steps are shown in Table 3. The base overall level

was the same as the first and second experiments. It was selected with the volume

control of the ALCS to place the loudest stimuli at a level that was somewhat loud yet

still comfortable for the subjects.
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Table 3: Randomized Amplitude Steps

Amplitude Step

1

2

3

4

5

6

7

8

9

10

Voltage Multiplier

0.13

0.16

0.19

0.25

0.31

0.41

0.50

0.63

0.78

0.97

Decibel Attenuation

18.0 dB

16.1 dB

14.5 dB

12.0 dB

10.1 dB

7.8 dB

6.0 dB

4.1 dB

2.1 dB

0.3 dB

Identified Parameters

In the third and fourth experiments, the reflection delay t and the voltage ratio of

the reflection signal to the primary signal m were placed on logarithmic scales, in

contrast to the linear scales used in the first experiment. This was done in an attempt to

make the steps between the different stimulus types perceptually equal, since the Yost

work. on rippled noise indicated that JND's for reflection strength and for delay tended to

follow Weber's law. Furthermore, the maximum information transfer of 0.90 bits

measured in Experiment 2 indicated that a reduction in the number of stimuli from 8 (3

bits of input information) to 6 (2.6 bits of input information) would not limit the

information transmission in the experiment, so the number of steps used for m was

reduced to six.

The ten values of r used for the stimuli were spaced equally logarithmically from

0.5 ms to 15 ms. The ten steps, along with the stimulus number used to identify that step

when the subject: was identifying r (Experiment 3) and the repetition pitch associated

with the delay (1/c), are shown in Table 4.
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Table 4: Experiment 3-5 Stimulus Delay Values

Stimulus Number

0

1

2

3

4

5

6

7

8

9

Delay t

0.50 ms

0.73 ms

1.07 ms

1.55 ms

2.27 ms

3.31 ms

4.82 ms

7.04 ms

10.28 ms

15.00 ms

Repetition Pitch

2000 Hz

1370 Hz

939 Hz

644 Hz

441 Hz

302 Hz

207 Hz

142 Hz

97 Hz

67 Hz

Similarly, the six values of m used for the stimuli were chosen to be

approximately equally spaced on a logarithmic scale at intervals of approximately 3 dB.

The actual voltage ratios and decibel attenuations for the six values of m are shown in

Table 5.

Table 5: Experiments 3-5 Stimulus Reflection Depth

Stimulus Number Amplitude Ratio of m Decibel Attenuation of m

0 18.8% 14.5 dB

1 25.0% 12.0 dB

2 34.4% 9.3 dB

3 50.0% 6.0 dB

4 78.1% 2.1 dB

5 96.9% 0.3 dB
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For each trial in each experiment the software randomly selected 1 of the 10

samples of noise, 1 of the 10 amplitude steps, 1 of the 10 delay values, and 1 of the 6

reflection strength values, with all 4 parameters independent. In Experiment 3, the

subject was asked to choose one of the delay steps from 0 to 9, and in Experiment 4 the

subject was asked to choose one of the reflection strength steps from 0 to 5.

5.2.1 Experiment 3: Identify X with m roved

Training

The training for Experiment 3 was similar to that for the first two experiments.

The subjects first used a training mode where they could select the delay stimulus value

(0-9, see Table 4) and the amplitude, noise sample, and reflection strength were

determined randomly. When they were comfortable with the stimuli, they performed a

number of 200 trial blocks until their information transfer stabilized before beginning the

experiment.

Experiment

As in the first experiment, five blocks of two hundred trials were collected for

each of the four subjects. Each block had twenty trials for each of the ten values of t

listed in Table 4, and the trials in each block were chosen randomly without replacement.

In each trial the noise sample was randomly determined, the overall amplitude level was

randomly chosen from the steps shown in Table 3, and the reflection strength m was

randomly chosen from the values shown in Table 5. After each trial the subjects were

shown the correct stimulus number, and after every block they were shown their

confusion matrix and information transfer.

5.2.2 Experiment 4: Identify m with t roved

Training

The training for Experiment 4 was nearly identical to the training for Experiment

3. The training mode used by the subjects allowed them to choose the reflection strength

in (0-5, see Table 5), while the delay , the amplitude, and the noise sample were

randomly determined. This training continued until the subjects felt they were familiar

37



with the six stimuli. Then they performed a number of 120 trial blocks. When the

information transfer in the blocks stabilized, the experiment was started.

Experiment

Five blocks of trials, each 120 trials in length, were collected for each of the four

subjects. Each block had 20 trials for each of the 6 values of reflection strength listed in

Table 5, and the trials in each block were chosen randomly without replacement. In each

trial the noise sample was randomly determined, the overall amplitude level was

randomly chosen from the steps shown in Table 3, and the reflection delay was

randomly chosen from the values shown in Table 4. The subjects were given the correct

stimulus number after each trial, and were shown their confusion matrix and information

transfer after each 120 trial block.

5.3 Supplemental Experiments 1 and 2

There are a number of significant differences between the stimuli used in

Experiments 1 and 2 and the stimuli used in Experiments 3-5. In the first two

experiments, the amplitude, the delay , and the reflection strength m were all varied on a

linear scale, while in the last three experiments, these parameters were varied on a

logarithmic scale. In addition, the actual noise waveform used in the first two

experiments was frozen, rather than randomly picked from ten samples, and the length of

the noise waveform was approximately half as long as the noise samples used in the later

experiments (521 ms vs. 1000 ms). The effects of these changes on identification

performance are not easily predictable, so two short studies were designed to directly

compare the results from the first two experiments to those of the last three experiments.

5.3.1 Identify t, m fixed

The first supplementary study repeated the first condition of the first experiment,

where the subject was asked to identify the delay X with the reflection strength m fixed at

0.9675. This experiment differed from the first experiment by using the longer,

randomized stimuli from experiments 3-5 (See section 5.2), and by using the

logarithmically varied overall amplitude level shown in Table 3. The ten values of delay
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t that the subject was required to identify are the logartihmically spaced values in Table

4. In all other ways (feedback, trial block size, number of trials, training, etc.) the

experiment was identical to the first condition of Experiment 1.

5.3.2 Identify m, t fixed

The second supplementary study repeated the first condition of the second

experiment, where the subject was asked to identify the reflection strength m with the

delay r fixed at 5 ms. As in the first supplementary experiment, the longer, randomized

stimuli of experiments 3-5 were used, and their overall amplitude was varied

logarithmically by randomly selecting one of the ten steps shown in Table 3. The eight

linearly spaced values of m used in the first experiment (see Table 2) were replaced with

six logarithmically' spaced values of m used in experiments four and five (shown in Table

5). The training, block size, number of trials, and feedback were all the same as in

Experiment 2.

5.4 Two Parameter Identification Experiment

The fifth experiment essentially combined the two identification tasks involved in

experiments three and four into a single, two parameter identification experiment. For

each trial, the subjects were required to identify both the reflection strength m and the

delay r of the stimulus. The much larger number of possible responses (60 versus 10 or

6 for experiments three and four) required a much larger number of trials and a different

system for calculating information transfer.

:5.4.1 Stimulus

The stimuli used for the experiment were the same as those used in the third and

fourth experiments.. The noise sample was chosen randomly from the ten 1000 ms files

used for Experiments 3 and 4. The overall amplitude was varied randomly among the

ten steps listed in Table 3. Every trial was presented with one of the six logarithmically

spaced values of reflection strength m in Table 5 and one of the ten logarithmically

spaced values of delay r listed in Table 4.
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5.4.2 Training

The training for Experiment 5 was somewhat different from the training for the

other experiments because of the very large number of possible stimuli. The training was

simplified by the use of the same stimulus values as in Experiments 3 and 4, so the

subjects only needed to learn to identify both of the parameters simultaneously and they

did not have to learn any new stimuli. A training mode allowed the subjects to select

both reflection strength and delay from the six and ten possible values, so only the

amplitude was randomized in the resulting presentation. When the subjects were

comfortable with their ability to identify both parameters simultaneously, several training

runs of one hundred trials each were run in order to allow the subjects to become

accustomed to the two parameter identification. Unfortunately, there was no way to

simply evaluate performance for such a small number of trials in the 60 by 60 confusion

matrix so there was no way to tell if subject performance had stabilized before beginning

the experiment. The inability to verify that sufficient training had occurred may have

caused the information transfers measured in the experiment to be underestimates.

5.4.3 Experiment

In this experiment it was impossible to present enough trials to use the maximum

likelihood estimate of information transfer, which requires five trials per box of the

confusion matrix or 18,000 trials in this experiment. Due to time constraints, each

subject participated in only 2,400 trials, or 0.667 per box of the confusion matrix.

Although this was not enough trials for the direct maximum likelihood estimator, it was

enough to make a rough estimate of the information transfer using a method developed

by Houtsma (1983). This method of data processing is described in Appendix B. The

trials were presented in 24 blocks of 100 trials each. In the earlier experiments, the

stimuli in each block were chosen without replacement in order to control the number of

presentations of each stimulus in the experiment. The large number of possible stimulus

combinations in this experiment would have required at least 3600 trials in a block to

have an equal number of presentations for each stimulus using this no-replacement

strategy. Therefore, in every trial of Experiment 5 both the reflection strength m (chosen
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from the six possibilities in Table 5) and the delay t (chosen from the ten possibilities in

Table 4) were picked randomly with replacement. The impact of this change in trial

selection strategy was believed to be small, and is discussed in detail in Appendix C.

After each trial the subjects were shown the correct stimulus numbers of the delay and

the reflection strength, and after each 100 trial block they were shown two confusion

matrices representing reflection strength and delay.
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6. Results

This chapter summarizes the results of all the experiments. All of the one

dimensional data was analyzed to measure information transfer and interstimulus

sensitivity. The values of information transfer were calculated from the confusion

matrices in each experiment using the maximum likelihood estimator, and were adjusted

for the bias of that estimator as discussed in Appendix A. The second analysis was based

on the Decision Model developed by Durlach and Braida (1969). Each of the confusion

matrices was processed to determine the maximum likelihood estimates of the

interstimulus sensitivity values (d'(Si,Si+l)) and of the criterion values (Co...CM) with the

assumption that c was constant. The total sensitivity A' (d'(Smax,Smin)) and response bias

D for each subject in each experiment were derived from these estimates. The response

biases are of only marginal interest. They are shown in Appendix D. The total

sensitivities are more interesting. They were used in conjunction with Braida and

Durlach's model (1972) to predict the information transfer for each subject in each

experiment based on the Decision Model. These predicted information transfers, which

were compared to the empirically measured information transfers, assume equal

interstimulus sensitivities and no response bias.

Table 1 summarizes the conditions in each of the 9 unidimensional analyses.

This includes the two supplementary experiments and the m and 't projections derived

from the data in Experiment 5. The projections are the confusion matrices obtained by

summing all of the trials in the two dimensional experiment with the same stimulus and

response values for one parameter and ignoring the other parameter. Table 2 gives the

empirically determined information transfer, the empirically determined total sensitivity,

and the predicted information transfer based on the total sensitivity in each of these 9 one

dimensional cases. The next two pages show the interstimulus sensitivity data for each

subject in each experiment. The results of the two dimensional experiment, along with

some of the results already shown in Table 2 (included for comparison purposes), are

shown in Table 4.
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Table 2: Values of IT and A'

Experiment Subject IT A' IT'

Experiment 1 Condition 1 DB 1.35 7.4 1.3
AS 2.61 13.9 2.0
JK 1.84 9.0 1.6
CG 0.98 9.1 1.6

Experiment 1 Condition 2 DB 1.31 5.7 0.7
AS 2.77 13.8 2.0
JK 1.81 11.0 1.8
CG 1.02 6.8 1.3

Experiment 2 Condition 1 DB 0.75 3.8 0.7
AS 0.90 4.7 0.8
JK 0.75 3.8 0.7
CG 0.44 2.5 0.3

Experiment 2 Condition 2 DB 0.77 2.7 0.4
AS 0.88 4.7 0.8
JK 0.48 3.1 0.5
CG 0.43 3.2 0.5

Experiment 3 DB 0.94 4.9 0.9
AS 1.76 10.4 1.6
JK 0.98 4.9 0.9
CG 0.58 3.3 0.6

Experiment 4 DB 0.22 2.1 0.3
AS 0.55 3.4 0.6
JK 0.40 2.9 0.4
CG 0.27 2.5 0.3

Experiment 5, l Projection DB 0.80 4.3 0.8
AS 2.09 12.2 1.8
JK 1.25 6.1 0.7
CG 0.43 2.6 0.3

Experiment 5, m Projection DB 0.15 2.2 0.3
AS 0.55 3.6 0.6
JK 0.31 1.9 0.2
CG 0.08 1.2 0.1

Supplemental Experiment 1 DB 1.47 8.7 1.6
AS 2.60 25.3 2.6

Supplemental Experiment 2 DB 0.54 3.2 0.5
AS 0.84 4.5 0.8

Table 2 shows a comparison between the information transfer (IT), the total sensitivity (A'), and the information
transfer calculated from the total sensitivity (ITA') using the data from Braida and Durlach (1972) for each subject
in each experiment.
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Figure 1: Sensitivity in Experiment 1, Condition 1

Figure 4: Sensitivities in Experiment 1 and Supplementary
Experiment 1

Figure 5: Sensitivity for X in Experiment 5
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Figure 3: Sensitivity in Experiment 3
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These figures show the sensitivity values for
the identification experiments. The data
from Supplemental Experiment 1 are
superimposed on the data from Experiment 1,
Condition I to allow an easy comparison of
the sensitivity data on the linear and
logarithmic t scales for subjects DB and AS.

Figure 2: Sensitivity in Experiment , Condition 2



Figure 6: Sensitivity in Experiment 2, Condition 1

Figure 8: Sensitivities in Experiment 2 and Supplementary
Experiment 2

Figure 10: Sensitivity for m in Experiment 5
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Figure 9: Sensitivity in Experiment 4
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Table 4: Comparison of Information Transfer

Subject Experiment 3 Experiment 4 Sum r-project m-project Sum Experiment 5

DB 0.94 0.22 1.16 0.80 0.15 0.95 1.28

AS 1.76 0.55 2.31 2.09 0.55 2.64 3.09

JK 0.98 0.40 1.38 1.25 0.31 1.56 2.07

CG 0.58 0.27 0.85 0.43 0.08 0.51 0.52

Average 1.07 0.36 1.43 1.14 0.27 1.42 1.74

The predicted reliability of the data from these experiments should be discussed.

Overall, the information transmissions in the t identification experiments are believed to

be quite reliable. 'This is evidenced by the relative stability in these measurements when

small changes in the stimuli occurred (Conditions 1 and 2 of Experiment 1, Supplemental

Experiments 1 and 2, and the brief experiment described in Appendix C). The

information transmissions in the m identification experiments are probably not as

reliable. These values are stable for the two conditions of Experiment 2 (Except for JK),

but in the other experiments the information transfer was relatively poor and the

information transfers do not seem to be very stable. The m projection confusion matrix

in Experiment 5 has an exceptionally large number of trials per box in the matrix

(approximately 75), so the m-projection information transfers from Experiment 5 are

probably relatively accurate. Time constraints did not allow a thorough examination of

the statistical significance of these results, but statistical analyses should be a priority in

any future extension of this work.
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7. Discussion

A. Wide variation of performance among subjects:

One of the most striking features of the data is the wide variation in the

performance of the different subjects. In the experiments where the delay was

identified the proficiency of the four subjects was clearly differentiated. Subject AS was

always best, both in information transfer and in total sensitivity. The overall

performance of JK and DB was comparable in both areas, and subject CG was

consistently poor in information transfer. The sensitivities for subject CG, however, are

not as bad in comparison to the other subjects as his information transfer, and in the first

experiment, where the delay was varied on a linear scale, he showed extremely high

sensitivity for the lowest stimulus values. Yost and Hill (1978) also found wide

variations in subject performance, but they were not quite as dramatic as these. Musical

experience seems to be the dominant factor in determining the performance of the four

subjects. Subject AS is an avid musician who plays both the piano and the electric bass

and, most importantly, has perfect pitch. He is able to instantly identify musical notes,

and he was able to associate the repetition pitch of the different delay values with

standard musical pitches. When asked to describe the stimuli in the experiment, he was

able to tell the experimenter the musical notes associated with each of delay values. It

was clear that perfect pitch gave subject AS a considerable advantage over the other

subjects in identifying the delay.

Subject JK, who was second best in the c-identification experiments, was a piano

player who had received some formal training in identifying musical intervals. She said

she memorized the sound of one of the delay values and made her judgments based on

the interval between the sound and this perceptual anchor. Subject DB played the

clarinet in the past but had never received any formal training in pitch identification. His

identification ability for was somewhat worse than subject JK's. Subject CG's

performance was consistently lower than that of the other subjects. He was not a

musician but claimed to be an avid listener of music and something of an audiophile.
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Subject performance in the m-identification tasks seemed to be much less

hierarchical than in the identification experiments. Although AS was always the best

performer, his information transfer was in some cases only 0.11 bits higher than the

second best subject. The other subjects were somewhat mixed. Subject DB was the

worst performer in Experiment 4, and subject JK was very poor in the second condition

of Experiment 2. The changes in m-identification ability for the different experiments

exhibited by subjects DB and JK are somewhat puzzling. Subject DB performed much

worse with the logarithmically spaced reflection strengths, while JK was inexplicably

poor when t was fixed at 9 ms. In general, however, it is clear that the ability to identify

parameter changes in reflections varies greatly across the population of listeners with

normal hearing, and that it improves with musical training.

B: Predictions of Information Transferfrom Total Sensitivity

Table 2 shows the total sensitivities measured for each subject in each

experiment, as well as the information transfers measured in each case and the

information transfers predicted from the total sensitivity from the graph in Braida and

Durlach (1972). This graph plots the information transfer as a function of total

sensitivity based on the decision model with ideally located criteria. The predicted and

actual information transfers are quite similar in nearly every case. There are some

notable exceptions, however. In some cases the prediction disagrees with the measured

information transfer by a wide margin. This is the case for AS and CG in Experiment 1,

Condition 1, for AS and DB in Experiment 1, Condition 2, for DB in Experiment 2,

Condition 2, and for JK in the t projection of Experiment 5. These discrepancies do not

seem to be correlated with response bias, and their cause is not clear from these data.

C: Comparison of Results to Existing Literature:

When compared to the information transfers measured in previous experiments

involving unidimensional audio displays, the information transfers obtained for m and 

are quite disappointing. Miller (1956) cites data by Pollack that indicates that the

maximum information transfer achieved in the identification of tone frequency is
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approximately 2.5 bits independent of the range of stimuli and number of stimuli used.

He also cites data by Garner showing the maximum information transfer for variations in

amplitude is approximately 2.3 bits. The average of 1.72 bits of information transfer

measured for with m fixed is on the low end of the range of values found in most

unidimensional identification experiments. The even lower values measured for m

identification (0.73 bits average for fixed at 5 ms was the highest in any m

identification experiment) are very low in relation to other unidimensional experiments.

The m data indicate that channel capacity is either much lower for reflection strength

than for other audio parameters or that capacity was not reached in this experiment due to

the selection of stimuli used. The issue is discussed further below.

D: Difference in performance in Experiments 1 and 2 and 3-5:

There are a number of differences between the stimuli used in Experiments 1 and

2 and those used in Experiments 3-5. The noise waveforms were frozen in the first two

experiments, and randomly selected in the last three. The stimulus durations were

different. The scale used to rove the overall amplitude was linear in Experiments 1-2 and

logarithmic in Experiments 3-5. And, perhaps most importantly, values of the identified

parameter used in the stimuli were linearly spaced in the first two experiments and

logarithmically spaced in the last three experiments. The data from Yost and Hill (1978)

show that the discrimination of repetition pitch seems to obey Weber's law. Thus

perceptually equally spaced values of q: in the stimuli (which should generate a relatively

constant value of d' in an identification experiment) would be spaced logarithmically.

The Yost and Hill data also imply that reflection strength discrimination is logarithmic,

at least for lower values of m with q: of 1 ms or 2 ms. In the linear scale used in

Experiments 1 and 2, the logarithmic spacing of the lower-numbered stimuli (the

logarithmic spacing can be viewed as the ratio of the values of the parameter in adjacent

stimuli) is greater than the logarithmic spacing of the higher-numbered stimuli. This

should cause the interstimulus sensitivity d' to be greater for the lower-numbered stimuli

and smaller for the higher numbered stimuli in Experiments 1 and 2 relative to the

sensitivities for those stimuli in Experiments 3-5. The sensitivity data for the
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supplemental experiments, which were designed to explore the differences in

performance caused by the changes in the stimulus spacing, do not show much difference

in the interstimulus sensitivity for the two scales.

In the first supplementary experiment, the information transmission performance

of the subjects improved slightly over their performance in the first experiment. The

sensitivity was nearly identical for subject DB, but subject AS showed a very large

improvement in resolution with the logarithmic scale. It is unfortunate that CG could not

be used in this experiment. The data from Experiments 1 and 3 indicate that he has a

much greater resolution for small values of t with the linear scale, a phenomenon not

seen in the data of any other subject. The reasons for this anomaly are not known.

In the second supplementary experiment, the information transfer of each subject

degraded, although the reduction was much greater for subject DB. The sensitivity data

show that the resolution for subject AS was increased, but his total sensitivity was not

quite as good in the six step log scale as in the eight step linear scale. Subject DB

showed no improvement in resolution with the logarithmic scale. The sensitivity data do

not show why DB's information transfer was so low for the logarithmic scale.

Overall, it appears that the modified stimuli and responses used in Experiments 3-

5 slightly increased information transfer in the delay identification tasks, but decreased it

in the reflection strength identification task. The reduction in reflection strength

identification seems to vary in magnitude by subject, and it appears that subject DB was

most adversely affected.

E: Comparison of Results for 'c and m:

The information transfer and total sensitivity for identification were

considerably higher than those for m identification. It is obvious that it was much easier

to identify X than it was to identify m in these experiments. This is not an unreasonable

result, however, considering the discrimination data for rippled noise by Yost and Hill

(1978). These data (which are shown in Figure 1 in the background section) indicate that

the total range of m used would span no more than 4 or 5 JNDs (just noticeable

differences) when r was fixed at 0.66 ms and no more than 6 or 7 JNDs when t- was
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fixed at ms or 2ms. In contrast, the Weber ratio of about 5% for X would indicate that

the range of delays used in the logarithmic scale spans more than 50 JNDs with m fixed

at 1. This would explain the overall poor performance in reflection strength

identification relative to delay identification.

The shapes of the sensitivity curves for m and are also radically different.

Braida and Durlach (1972) found that interstimulus sensitivity tends to increase in the

vicinity the extreme values of the stimulus range, a phenomenon referred to as the

"resolution edge effect" The effect is believed to be a result of the subject using the

extreme values of the stimuli as "perceptual anchors". (The details of a model based on

perceptual anchors are found in Braida and Durlach (1972)). This effect is found in the

data for X identification in almost every experiment. The values of d' for the subjects

tend to increase around Stimulus 0 in the first two experiments (especially for CG and

AS). Although the results of Supplementary Experiment 1 did not indicate such a trend,

it definitely seems that the linear delay scale used in the first two experiments provides

greater sensitivity around Stimulus 0 than the logarithmic delay scale used in later

experiments. The values of d' tend to increase around Stimulus 9 in all of the

experiments. These effects could be caused by differences in the underlying sensitivity

for changes in , but the data by Yost and Hill (1978) indicate that pitch strength, which

is closely related to delay sensitivity, is greatest for =2 ms, which is not on the edge of

either stimulus scale. Therefore this increase in sensitivity appears to be consistent with

the resolution edge effect.

A more unexpected result is the very strong decrease in interstimulus sensitivity

at the extreme values of m in the stimulus range. The Yost and Hill data indicate that

sensitivity for reflection strength should decrease for the smallest values of m. Although

the Yost and Hill data do not show the discriminability of m at values of m higher than

0.7, the general trend in the data indicates that discriminability for higher values of m

(and therefore the sensitivity) should be relatively good. Yet every experiment shows a

general downward concavity in the d' data for m. This is an extremely strange

phenomenon that is not documented in the literature, and none of the data in this

experiment indicate a cause for this behavior. A thorough study examining the
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underlying JNDs for m at various values of , particularly in the vicinity of m=l, may

help to explain this behavior in the sensitivities for m.

F: Interaction between m and z:

Each subject's information transfer was much lower in Experiments 3-4, where

the background parameter was roved, than in Experiments 1-2, where the background

parameter was fixed. The two supplemental experiments show that some of the decrease

in m identification ability may have been caused by the changes in stimuli between those

experiments, but the degradation in performance is much higher than the results of the

supplementary experiments would predict. It is very likely that this decrease in

performance is caused by interaction between m and . This interaction between m and X

indicates that they are integral parameters, rather than separable parameters (Durlach,

Tan, et al., 1989).

G.' Projections from Experiment 5 versus Experiments 3-4.

Table 3 summarizes the results pertinent to the information transfer in the two

dimensional experiment. The m and r projections were generated by summing together

all the trials in Experiment 5 with the same stimulus and response value in one parameter

while ignoring the other parameter. These data can be used to compare subject

performance in identifying m when was also identified to the performance in

identifying m when : was randomly varied but not identified. In these data, none of the

subjects improved at identifying reflection strength m when they also had to identify the

delay r. The information transfers in both cases appear quite low the estimates may be

noisy, but to the extent that this trend is significant, it shows that the process of

identifying t interferes slightly with and degrades m identification performance. The

data for identifying r with m roved or identified are mixed among the subjects. Subjects

AS and JK improved when both parameters were identified, and subjects CG and DB

degraded when both parameters were identified. The average of the sum of the

information transfers in Experiments 3 and 4 is very close to the average of the sum of

the information transfers in the m and r projections of Experiment 5. Overall, it appears
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that the information transfers obtained in the m and projections of Experiment 5 are

roughly comparable to those obtained in Experiments 3 and 4. In other words, the as

long as the secondary parameter is roved, the additional burden of having to identify the

second parameter has little effect on performance.

H: Two Dimensional Information Transfer:

In the first four experiments, the calculation of information transfer was relatively

straightforward. It could be calculated directly from the confusion matrices with the

maximum likelihood estimator and then adjusted for bias using a simple correction

equation, as described in Appendix A. Unfortunately the bias correction equation does

not work if there are fewer than five trials per box in the confusion matrix, a condition

that would have required 18,000 trials in Experiment 5. Therefore an alternative method

of estimating the information transfer in the two dimensional experiment was necessary.

One method of estimating information transfer for a small number of trials is based on

the matching of the subject data with information transmission curves generated by a

computer simulation of the experiment. The method, which was developed by Houtsma

(1983), is described fully in Appendix B. This method estimates information transfer

indirectly, and is certainly not as accurate as a direct measure based on a very large

number of trials would be, but it does measure the information transfer without making

any assumptions about the interaction of the two stimulus parameters. The two

dimensional information transfer estimates in Experiment 5, calculated with Houtsma's

method, are shown in Table 4 along with the data from Experiments 3 and 4 and the

information transfers from the m and t projections in Experiment 5.

The information transfers found in Experiment 5 using Houstma's method are

believed to have some discrepancies that are discussed in the Appendix B describing the

data processing for that experiment. In summary, it is believed that DB's information is

accurate, JK and AS's are overestimates, and CG's is an underestimate. This would

indicate that the information transfer in the two dimensional experiment was slightly

higher than the sum of the information transfers of the two projection matrices associated

with the two dimensions. This can be accounted for in part by a tendency for the
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subjects' m and identification performance to be positively correlated within the

individual trials. The Yost and Hill (1978) data indicate that both reflection strength

discrimination and delay discrimination are maximized when t is approximately 2 ms.

This would cause relatively good performance for both parameters in trials with certain

delay values. An analysis of the effects of such a correlation on information transfer is

provided in Appendix D.
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8. Concluding Remarks

The goal of the thesis was to evaluate the possibility of using delay-and-add

filters with two adjustable parameters, the length of the delay and the ratio of the

amplitude of the delayed signal to the primary signal m, to provide absolute audio

distance cues in a virtual environment. The results show that such filters can transmit, on

average, a maximum of approximately 1.7 bits of information. This is sufficient to allow

a well-trained listener to reliably place a broadband sound into one of three distance

categories (close, medium, and far, perhaps). Also, this information can be obtained

without destroying the character of the signal and without a priori information about the

intensity of the sound source. Although the information transfer that is achievable with

reflection based distance coding seems to be limited, and the usefulness of such coding is

restricted to broadband stimuli, it still provides an improvement over the nonexistent

absolute distance cues in current virtual audio displays.

The strange downward concavity in the interstimulus sensitivities for m may

provide a clue for significantly increasing information transfer in the two dimensional

case. If, by changing the interstimulus spacing of the m values, the sensitivity at the

edges of the stimulus range could be increased to make it equal to the sensitivity in the

center of the stimulus range, or even to increase it above the sensitivity in the center of

the stimulus range as would be expected from the resolution edge effect, a considerable

increase in information transfer could be realized. The question is whether or not this

downward concavity can be reduced by increasing the stimulus intervals at the edges of

the range without substantially decreasing sensitivity in the center of the stimulus range.

The downward concavity in the d' data for m is puzzling, and a priority of any further

extension of this work should be a closer examination of this behavior.

It should be noted that the average information transfer with two dimensional

changes in the reflection characteristics was no higher than the changes in delay only

with a fixed value of m. If two parameter stimuli are used for distance coding, the range

of reflection strengths should be to carefully chosen to ensure that reflection strength

values that substantially degrade discrimination in X are not used. If the distance coding
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is attempted with variations in one dimension only (), it may be possible to increase the

information transfer by carefully choosing the value of m associated with each stimulus.

It is probably possible to obtain more information transfer with two dimensional

variations in the stimulus than with one dimensional variations in the stimulus, but the

range of values used for m and r must be carefully chosen.

A number of suggestions for further research on this subject can be made based

on these results. The first issue that needs further exploration is the underlying

discriminability of the reflection strength, particularly for values of m close to 1. The

JNDs for m should be measured for a wide range of values of m and . The results of

such a study might explain the strange downward concavity of the sensitivity data for m.

Once these JNDs are determined, it should be possible to choose an appropriate stimulus

spacing for m and measure the resulting information transfers for the m variable with C

fixed or roved. If this information transfer for m increases substantially, then the two

dimensional information transfer with the new reflection strength stimulus spacing can be

measured and compared to the results achieved for identifying r with m fixed. Another

possible topic for further research would be the careful selection of the m values

associated with each stimulus in the one dimensional c identification experiment in order

to maximize the information transfer. A number of questions still remain unanswered,

and more work is required in order to obtain a thorough understanding of the issues

involved in the identification of first order reflections.

Although the results of these experiments are not exceptionally encouraging, they

do show that reflection based coding can provide some egocentric audio distance

information. It is also likely that different stimulus values for reflection strength and

delay values could be found that would provide better sensitivity and information transfer

than were achieved in this experiment. However, further research is required to

determine how much improvement can be obtained in this manner.
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9. Appendix A: Bias in Information Transfer Estimates

In Experiments 1-4, the information transfer was calculated from the confusion

matrix using the maximum likelihood estimator of information transfer, which is directly

based on the maximum likelihood estimator of entropy. This maximum likelihood

estimator was also used for determining the information transfer of each simulation curve

after 32,400 trials in Experiment 5. These maximum likelihood estimators are biased,

however, so the data were adjusted using the estimates of the bias developed by Miller

(1954). A brief discussion of the equations used to calculate the adjusted estimates of

information transfer in the experiments follows. Recall that the entropy H of a

distribution is:

H = -I p(x) log p(x) (A. 1)
x

where each value of x is a possible outcome and p(x) is the probability of outcome x.

Thus the maximum likelihood estimator of the entropy for a distribution where each

value of i represents one of k possible outcomes is:

H =- 1i log 2 i (A.2)
i=l n n

where each ni is the number of observations of outcome i and n is the total number of

trials. Miller (1954) shows that this is a biased estimator of the entropy. Thus the

expected values of H and H are not equal. In fact:

H-E[H]= E -i Llog 2 i . (A.3)
i=, n np(i)
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The term on the right has a chi-square distribution, and some mathematical

manipulations, combined with the elimination of second order terms, yield an easily

evaluated estimate of the bias of the maximum likelihood estimator of entropy:

H -E[H]= °g2e (k- 1) (A.4)
2n

Thus the maximum likelihood estimator Hunderestimates the entropy H, and a

correction term based on the number of possible outcomes and the number of trials must

be added to H to get an unbiased estimate of the entropy. The information transfer T

also has a biased maximum likelihood estimator. Recall that it is defined by the

following equation:

T = p, log P i=l...r; j=l...c; (A.5)
ij PiPj

Where pi is the marginal probability of input i, pj is the marginal probability of output j,

and pij is the probability of the joint event ij. The values r and c are related to the number

,of rows and columns in the resulting confusion matrix. The maximum likelihood

estimator of information transfer is:

T= log (A.6)
ijn nini

where n is the total number of trials, ni is the number of trials observed with outcome i,

nj is the number of trials observed with outcome j, and nij is the number of trials

observed with the joint outcome ij.

The bias in the maximum likelihood estimator of information transfer can be

derived from the bias of the maximum likelihood estimator of the entropy. It can be

shown that:
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T= H(x)+ H(y)- H(x, y).

consequently, the bias of the information transfer estimate is:

T - E[T]- g2 (r - 1)(c - 1).
2n

(A.8)

Therefore the maximum likelihood estimate of information transfer is an overestimate

and a correction factor based on the number of possible stimuli r, the number of possible

responses c, and the number of trials n must be subtracted from the maximum likelihood

estimate to generate an unbiased estimate of information transfer.

This correction factor was used for the information transfer data shown for each

of the experiments. Table 10 shows the values of r, c and n in each of these experiments,

and the correction factor that was subtracted from the maximum likelihood estimate of

information transfer in each case.

Table 5: Bias Correction Factors

Experiment Number r c n Correction Factor

1 10 10 1000 0.0584

2 8 8 800 0.0442

3 10 10 1000 0.0584

4 6 6 600 0.0300

5 60 60 32400 0.0775

60

^1 AX
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10. Appendix B: Data Processing in the Two Dimensional

Experiment

Because of the large number of boxes in the confusion matrix of the two

dimensional experiment, it is not possible to accurately measure the information transfer

in this experiment with the maximum likelihood estimator used in the first four

experiments (see Appendix A). That estimator cannot be accurately corrected for bias

with fewer than five trials per box in the confusion matrix. In this experiment, that

would have required 18,000 trials, or 18 times the data of any of the other conditions.

There was not enough time to collect that quantity of data, so an alternative method for

finding an unbiased estimate of information transfer, originally developed by Houtsma

(1983), was used.

This method uses a computer simulation of an identification experiment to

approximate the behavior of information transmission for small numbers of actual trials

compared to the size of the confusion matrix. The simulation parameters can be

modified until the simulated experiment closely matches the actual data collected for

small numbers of trials. The information transfer can then be determined by continuing

the simulated experiment for a large number of trials and calculating the information

transfer of the simulation with the maximum likelihood estimate.

The simulated experiment generated a confusion matrix where the stimulus in

each trial was a randomly chosen integer N from 0 to 59, and the response was equal to

N plus another random integer from -S to S that represented the error in identification.

The parameter S could be varied between 0 and 59, with 0 representing perfect

performance and 59 representing completely random performance. If the sum of the

stimulus N and the randomly generated error was greater than 59 or less than 0, another

random error between -S and S was chosen until a valid response between 0 and 59 was

generated.

The simulation was run for each value of S from 0 to 59. In each case, the

information transfer in the simulation was calculated with the maximum likelihood
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estimator after every 100 trials for the first 2400 trials, and after every 1000 trials for the

next 30,000 trials. Thus a total of 32,400 trials were simulated for each value of S.

Figure 13 shows the results from the simulated experiment for selected values of

the error parameter S. Note that the curve for S=0 increases as trials are added and the

diagonal of the matrix fills, but that in all other cases the curve decreases rapidly for

small number of trials and then asymptotically approaches a horizontal line as the

number of trials increases. Also note that information transfer in the simulation

approaches its limiting value more rapidly for lower values of S. This occurs because,

for small S values, only a small number of the boxes in the confusion matrices close to

the diagonal will have non-zero values, so the effective size of the confusion matrix is

smaller and it fills more rapidly. Also note that the information transfers of adjacent

values of S are more closely spaced as S increases.

Figure 13: Simulated Information Transfer Curves
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Figure 13: This graph shows the information transfer at various points in the simulated experiment. The horizontal
axis shows the number of trials completed, and the vertical axis shows the information transfer in bits of
information. The different curves represent different values of the error parameter S, from 0 to 50, as shown in the
legend.
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In order to determine the information transfer for each subject, the data was used

to calculate the cumulative information transfer after each 100 trial block, and the

resulting data points were compared to each of the curves generated by the simulation.

Because of the instability of the information transfer in the early trials, only the last 12

one hundred trial increments were used for the curve fitting. The simulation and the

actual data were compared for twelve points representing 1300 total trials, 1400 total

trials, etc., up to 2400 total trials.

The simulation curve with the smallest root mean square error when compared to

the subject data at these 12 points was determined to be the closest match to the subject

data, and the error parameter S of that curve was used to decide which simulution curves

would be used to interpolate the information transfer of the subject. The mean error and

the mean magnitude of error for the three curves with error parameters S-1, S, and S+1

were used to interpolate the information transfer of the subject. If the mean value of the

curve fell above the curve with error parameter S, the mean error of curves S and S-1

were used to linearly interpolate the information transfer of the subject data. Otherwise

the curves S and S+1 were used for the interpolation. In each case, the information

transfers for the simulation curves with error parameter S and S+1 or S-1 with 32,400

trials (9 per box in the confusion matrix) were used for the interpolation. The

information transfers of the two closest curves were interpolated by multiplying the

difference between the 32,400 point information of both curves by the ratio of the mean

distance between the curve for error parameter S and the subject data divided by the

mean distance between the curves with error parameters S S+1 (or S-1), and then adding

this value to the information transfer for the curve for parameter S. For subject AS, -for

example, the data curve was above the simulation curve of S=3 (the closest RMS value),

so the information transfer was interpolated by finding the difference in information

transfer for S=2 and S=3 (.47 bits), multiplying it by the ratio of the mean difference

between the data and S=3 (.031576) and the mean difference between S=3 and S=2

(0.43512), yielding 0.47 x .031576 / 0.43512 = .0341 bits, which is added to the

information for the S=3 curve (3.132), giving an interpolated information transfer of 3.17

bits. This was then corrected for bias in the 32,400 simulated trial experiment (See
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Appendix A), so .078 bits were subtracted, giving an adjusted information transfer value

of 3.09 bits.

The following graphs show the curves of the actual subject data, the simulation

curve with the smallest RMS error for each subject, and the two simulation curves

immediately above and below the minimum RMS error curve. Each graph is

accompanied by a table that shows the mean error, mean magnitude of error, root mean

square error, and information transfer for 32,400 trials for each of the three closest

simulation curves, as well as the interpolated information transfer of the subject after

correction for bias. In the first three graphs, the position of the data curve relative to the

simulation curves is very obvious and the information transfer estimates are probably

relatively accurate. Subject DB's data seems to almost perfectly fit the model, but the

data curves for subjects AS and JK seem to have a slightly more negative slope than

closest simulation curve, so it is likely that the information transfer values determined for

those subjects are overestimates. The simulation curves surrounding subject CG's curves

are quite noisy after 2400 trials, so more trials are probably necessary to get a really good

estimate of his information transfer. Also, his data curve has a more positive slope than

the surrounding simulation curves, so his information transfer of 0.52 bits is almost

certainly an underestimate. Although these estimates are clearly not perfect, they do

provide a way of estimating the information transfer of the 60 by 60 matrix without

ignoring any possible interactions between the two stimulus dimensions.

64



Figure 14: Subject DB; Experiment 5 Information Transmission
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Figure 14.: This graph shows the cumulative information transmission from 1300 to 2400 trials for subject DB and
*for the three simulation curves with error parameter S=12 (Min RMS error), S=l1, and S=13. The horizontal axis
shows the number of trials, and the vertical axis shows information transmission in bits.

Table 10: Interpolation Statistics- Subject DB

Error Mean Mean Magnitude Root Mean Information
Parameter Error Error Square Error Transfer (32,400

trials)

12 0.055676 0.055676 0.056477 1.403745
11 0.112606 0.112606 0.113887 1.513605
13 -0.065967 0.065967 0.066848 1.301950

arable 10: This table shows the statistics used to interpolate information transmission for Subject DB. The error
parameter is the value of S used for the simulation; The mean error is the average difference between the
simulation curve and the actual data for the 12 points from 1300 trials to 2400 trials; the mean magnitude error is
the average magnitude of error for the 12 points; and the RMS error is the root mean square error for the 12
points. Tile information transfer is the value for the simulated experiment with 32,400 trials (not corrected for
bias).

Information Transmission: 1.28 Bits
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Figure 15: Subject AS; Experiment 5 Information Transmission
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Figure 15: This graph shows the cumulative information transmission from 1300 to 2400 trials for subject AS and
for the three simulation curves with error parameter S=3 (Min RMS error), S=2, and S=4. The horizontal axis
shows the number of trials, and the vertical axis shows information transmission in bits.

Table 11: Interpolation Statistics- Subject AS

Error Mean Mean Magnitude Root Mean Information

Parameter Error Error Square Error Transfer (32,400
trials)

3 -0.031576 0.036294 0.045284 3.131790
2 0.403566 0.403566 0.405351 3.606067
4 -0.311272 0.311272 0.311630 2.778457

Table 11: This table shows the statistics used to interpolate information transmission for Subject AS. The error
parameter is the value of S used for the simulation; The mean error is the average difference between the
simulation curve and the actual data for the 12 points from 1300 trials to 2400 trials; the mean magnitude error is
the average magnitude of error for the 12 points; and the RMS error is the root mean square error for the 12
points. The information transfer is the value for the simulated experiment with 32,400 trials (not corrected for
bias).

Information Transmission: 3.09 Bits
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Figure 16: Subject JK; Experiment 5 Information Transmission
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Figure 16.' This graph shows the cumulative information transmission from 1300 to 2400 trials for subject JK and
for the three simulation curves with error parameter S=7 (Min RMS error), S=6, and S=8. The horizontal axis
shows the number of trials, and the vertical axis shows information transmission in bits.

Table 12: Interpolation Statistics- Subject JK

Error Mean Mean Magnitude Root Mean Information

Parameter Error Error Square Error Transfer (32,400
trials)

7 -0.061611 0.061611 0.069098 2.080919

6 0.121733 0.121733 0.126727 2.272476
8 -0.152558 0.152558 0.153361 1.905569

7Table 12: This table shows the statistics used to interpolate information transmission for Subject JK. The error
parameter is the value of S used for the simulation; The mean error is the average difference between the
simulation curve and the actual data for the 12 points from 1300 trials to 2400 trials; the mean magnitude error is
the average magnitude of error for the 12 points; and the RMS error is the root mean square error for the 12
points. The information transfer is the value for the simulated experiment with 32,400 trials (not corrected for
bias).

Information Transmission: 2.07 Bits
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Figure 17: Subject CG; Experiment 5 Information Transmission
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Figure 17: This graph shows the cumulative information transmission from 1300 to 2400 trials for subject CG and
for the three simulation curves with error parameter S=23 (Min RMS error), S=24, and S=25. The horizontal axis
shows the number of trials, and the vertical axis shows information transmission in bits.

Table 13: Interpolation Statistics- Subject CG

Error Mean Mean Magnitude Root Mean Information

Parameter Error Error Square Error Transfer (32,400
trials)

24 -0.009319 0.047056 0.052428 0.607550
23 0.048948 0.049311 0.071534 0.652733
25 0.021590 0.039493 0.058034 0.567736

Table 13: This table shows the statistics used to interpolate information transmission for Subject CG. The error
parameter is the value of S used for the simulation; The mean error is the average difference between the
simulation curve and the actual data for the 12 points from 1300 trials to 2400 trials; the mean magnitude error is
the average magnitude of error for the 12 points; and the RMS error is the root mean square error for the 12
points. The information transfer is the value for the simulated experiment with 32,400 trials (not corrected for
bias).

Information Transmission: 0.52 Bits
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11. Appendix C: Comparison of Trial Selection With and Without

Replacement

In the first four experiments all of the data was collected in five blocks, and the

identified parameter in each of these blocks each value of the identified parameter was

randomly selected without replacement so that each stimulus occurred twenty times in

each block. In the fifth experiment, the large number of blocks prevented a no

replacement strategy for trial selection, so the data were collected in 100 trial blocks and

the stimuli were randomly selected with replacement. In theory, it should be possible for

the subjects to do slightly better in the no replacement experiments if they are able to

keep track of the frequency of appearance of each stimulus. It was believed that this

effect would be small for the number of occurrences for each stimulus (twenty) and the

number of stimuli (six to ten) involved.

In order to verify that this effect was in fact small, subject DB repeated

experiment three with a different trial selection strategy. The data were still collected in

five 200 trial blocks, but in each block the stimuli were randomly selected with

replacement. The resulting information transfer was 0.96 bits (adjusted for bias), which

was nearly identical to the original information transfer from experiment four of 0.94

'bits. Although this is only a single data sample, it does indicate that there is not a large

difference in performance for subjects in the two trial selection strategies.
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12. Appendix D: Information Transfer and Correctness

Correlation Within Trials

The information transfer results in Experiment 5 which were determined using

Houtsma's method are somewhat higher than those from the other two methods. If the

information transfers for AS and JK are assumed to be slight overestimates, and the

information transfer for CG is assumed to be an underestimate (this is indicated by the

slopes of their data relative to the simulation curves), the information transfer in the two

dimensional experiment (calculated using Houtsma's method) appears to be slightly

higher than the sum of the two projection matrices from Experiment 5 for all of the

subjects.

It was hypothesized that such an increase in the two dimensional information

transfer could result if the subject performance in identifying m and q' tended to be good

(a small difference between the response number and the stimulus number) during the

same trials. Such a correlation between correctness in the two dimensions could be a

result of inattention, if the subjects became fatigued during some of the trials and they

performed poorly in both dimensions during those trials. It could also be caused by the

actual stimulus values used in certain trials. In this experiment, the data by Houstma and

Yost (1978) indicate that discrimination of delay with attenuation in the reflection

(referred to as pitch strength) and discrimination between different attenuations in the

reflection at a given value of t (shown in Figure of the background section) both tend

to be best at values of 'c around 2 ms, and to degrade as q decreases in both cases and as :

increases in the c discrimination case. Furthermore, a large attenuation in the reflected

signal tends to make both discrimination between attenuations in the reflected signal and

the discrimination of delay more difficult. Thus it is likely that identification was easiest

for both dimensions in trials when certain combinations of delay and reflection strength

occurred in the stimulus.

The correlation between correctness (the magnitude of the difference between the

stimulus number and response number) in m and r for individual trials in Experiment 5

was verified by examining all of the trials by the 4 subjects. The average error
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(magnitude difference between stimulus and response) in m was plotted for each of the

10 possible errors in r. In other words, all of the trials in which the subject gave an exact

response for qc were examined, and the average magnitude of error in m for those trials

was computed. This was repeated for all of the trials where the subject response for 

was one different from the actual stimulus, and for all trials where the subject response

was two different, and so on. Figure 18 shows the resulting graph. Magnitudes of error

in greater than 5 are not plotted because only a very small number of trials had

responses in that range. The graph clearly shows a correlation between the magnitude of

error in the response for m and the magnitude of error in the response for . The same

procedure was performed to plot the average magnitude of error in the response for 

versus the magnitude error in the response for m. These results are shown in Figure 19,

and they show a reduction in the average error of the response for t at the error for the

response for m increases from 0 to 1, but a clear increase in the error in the delay

response as the error in the reflection strength response increases beyond 1. This

correlation between identification performance and m identification performance

occurred in the data for all four subjects.

Figure 18: Average Magnitude Error in m vs. Error in t
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Figure 19: Average Magnitude Error in 'r vs. Error in m
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Once the correlation between the errors in the two dimensions within individual

trials was established, it was necessary to determine what the impact of such a correlation

would be on the information transmission of a two dimensional experiment. A number

of simulated experiments were executed to determine how correlated errors interfere with

information transmission. In each experiment, 32,400 trials were executed in a two

dimensional experiment with 6 response categories in one dimension and 10 response

categories in the other dimension. This parallels the conditions in Experiment 5. Also,

in each trial the subjects were equally likely to perform poorly or well in the

identification task for each parameter. One experiment was run where the performance

in each dimension was independent (two random variables were determined in for each

trial, one to choose whether there would be good or bad performance in each dimension),

one experiment was run where good performance was positively correlated (one random

variable established whether performance in both dimensions would be good or bad), and

one experiment was run where good performance was negatively correlated (one random

variable determined whether performance would be good in the 6 category dimension

and bad in the 10 category dimension, or bad in the 6 category dimension and good in the
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10 category dimension). These three experiments were run with two different definitions

of good and bad performance. The first time good performance was defined as no error

in the responses for a particular dimension and bad performance was defined as a totally

random response for a particular dimension. The second time good performance was an

error randomly chosen from +1, 0, and -1 (errors were always chosen repeatedly until a

valid response number was achieved), and bad performance was an error equally

distributed between -5 and 5 for the 10 category dimension and -3 and 3 for the 6

category dimension. The resulting information transfers (uncorrected for bias) are shown

in Table 14. These information transfers are the average of two runs for each

experiment. In all experimental runs the results fell within 0.02 bits of the average value

shown in the table, so the results are fairly repeatable. The results clearly show that a

positive or negative correlation between identification performance for the two

dimensions within the individual trials results in a larger information transfer than when

the correctness of the two parameters is independent.

'Table 14: Information Transfer and Correctness Correlation

Good Performance Error Range ±O +1

]Bad Performance Error Range (10/6) +9/+5 +5/+3

UJncorrelated 1.64 1.05

Positive Correlation 2.08 1.17

Negative Correlation 2.09 1.19

At first it seems odd that the information transfer increases when the correctness

in the two dimensions is negatively correlated. The reason for this increase is the

additional knowledge about r which is gained by knowing that the response for m is

incorrect. For instance, in the first experiment where good performance was perfect and

poor performance was random, any value of m other than the actual value was always

paired with a perfect response for , and any incorrect response for tr was always paired

with an exactly correct response for m. This will increase the information transfer

significantly.
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13. Appendix E: Response Biases

This appendix shows the response biases of the subjects in each of the

experiments. The biases are calculated from the maximum likelihood estimates of the

criteria Co...Cm. These maximum likelihood estimates are made by the same program

that finds the values of the sensitivity d'. The biases are the difference between the actual

criterion separating two responses and the minimum error location of that criterion,

which would be halfway between the adjacent means Cg(Si) and g(Si+l). In the 0-1

interval, a negative value indicates a bias in favor of response 1, and a positive value

indicates a bias in favor of response 0. A strong tendency to choose (or not choose) a

particular response is indicated by the slope of the line across a stimulus. If the line from

the 1-2 interval to the 2-3 interval goes from a positive to a negative value (as it does in

this case for subject CG in Experiment 1), this indicates that the subject is biased in favor

of Stimulus 1 over Stimulus 2 more than he is biased in favor of Stimulus 2 over

Stimulus 3. In other words, the lower cutoff criterion for Response 2 (C2) is pushed to

the right on the X axis (assuming that the X axis increases from left to right), and the

upper cutoff criterion for Response 2 (C3) is pushed to the left on the X axis. This

decreases the range of values of the internal variable X that result in Response 2, thereby

causing a general bias against response 2. Similarly, a strong positive slope indicates a

bias in favor of a particular response.
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Figure 21: Criterion Biases in Experiment 1, Condition 2

Figure 22: Criterion Biases in Supplementary Experiment 1

Figure 24: Criterion Biases for r in Experiment 5

oOz '
i -1
C
0

- -2
U

-3

-4

5AI

89g~~~~D

-J K
__*_CG

Response Interval

.o

.o

U

* DB

-a AS

- JK
-COG

Response Intervol

Figure 23: Criterion Biases in Experiment 3
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These figures show the response biases
for each subject in each of the 5 -
identification experiments. A positive
bias favors the response on the left of
the interval (the lower numbered
response), and a negative bias favors
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Figure 26: Criterion Biases in Experiment 2, Condition 2

Figure 29: Criterion Biases in Supplemental Experiment 2

Figure 28: Criterion Biases for m in Experiment 5
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Figure 27: Criterion Biases in Experiment 4
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These figures show the response biases for
each subject in each of the 5 m-
identification experiments. A positive bias
favors the response on the left of the
interval (the lower numbered response),
and a negative bias favors the response on
the right of the interval (the higher
numbered response). Note that the ordinate
scale is different than the ordinate scale
used in the c identification experiments.

Figure 25: Criterion Biases in Experiment 2, Condition 1
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14. Appendix F: Confusion Matrices

This appendix contains the confusion matrices for Experiments 1-5 and for

Supplemental Experiments 1 and 2. Note that the matrices shown for Experiment 5 are

actually projections of the two-dimensional confusion matrix, created by summing

together all trials with the same stimulus and response values in one parameter and

ignoring the other parameter. Each confusion matrix is accompanied by a graph showing

a three dimensional representation of that confusion matrix, and by the information

transfer value associated with that confusion matrix. The information transfers were

calculated using the maximum likelihood estimator and are adjusted for bias, as

described in Appendix A.
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Table 15: Subject DB; Identify t, m=.97

S t i m u I u s

0 1 2 3 4 5 6 7 8 9

44 19 4 1 - - -1

40 66 31 11 2 3 - - -

7 10 42 6 3 1 1

2 5 12 48 6 2 2

1 - 7 21 47 11 6 1 3

5 - 3 6 26 49 11 6 3 1

- - 1 5 10 23 56 17 4 2

- - - - 4 6 12 45 12 2

e 8 -
9 1

2 1 3 7 24 52 10

1 2 5 7 26 84
Table 15.' This table shows the confusion matrix for subject DB in the first condition of Experiment 1,
where the subject is asked to identify the delay t with m fixed at 0.97. The vertical columns show the
actual value of t presented in ms, and the horizontal rows show the response given by the subject.

Figure 30: Subject DB; Identify t, m=.97
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Figure 30: This shows a three dimensional representation of the confusion matrix for subject DB in the first
condition of Experiment 1, where the subject is asked to identify the delay C with m fixed at 0. 97. The bottom right
axis shows the actual value of X presented in ins, and the bottom left axis shows the response given by the subject.

Information Transfer: 1.35 bits
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Table 16: Subject AS; Identify , m=.97

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

94 - 2 6

- 72 21 - - -

1 19 65 3 1 3 -

1 5 10 92 2 5

- 1 2 1 67 8

4 2 2 3 25 81

- --1 - - 95 1 - -

. - 98 - 1

5

1

-- 100 -

1 - 99
T;ble 16.: This table shows the confusion matrix for subject AS in the first condition of Expel
where the subject is asked to identify the delay with m fixed at 0.97. The vertical columns .
actual value of t presented in ms, and the horizontal rows show the response given by the subject.

Figure 31: Subject AS; Identify z, m=.97
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Figure 31. This shows a three dimensional representation of the confusion matrix for subject AS in the first
condition of Experiment 1, where the subject is asked to identify the delay t with m fixed at 0.97. The bottom right
axis shows the actual value of r presented in ms, and the bottom left axis shows the response given by the subject.

Information Transfer: 2.61 bits
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Table 17: Subject JK; Identify t, m=.97

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

63 2 4 1 - - - - - -

4 83 23 1

19 13 47 5 3 - - - -

1 1 12 62 14 3 3 - 1

6 1 9 8 67 15 5 5 3 1

1 - - 10 5 71 5 5 - -

1 - 11 6 8 81 6 4 1

1 - 2 2 3 2 6 67 21 1

2 2
1

17 71 6

- - 91
Table 17: This table shows the confusion matrix for subject JK in the first condition of Experiment 1,
where the subject is asked to identify the delay X with m fixed at 0.97. The vertical columns show the
actual value of t presented in ms, and the horizontal rows show the response given by the subject.

Figure 32: Subject JK; Identify x, m=.97

Responses

eloy (ms)

9

Figure 32: This shows a three dimensional representation of the confusion matrix for subject JK in the first
condition of Experiment 1, where the subject is asked to identify the delay X with m fixed at 0.97. The bottom right
axis shows the actual value of -r presented in ms, and the bottom left axis shows the response given by the subject.

Information Transfer: 1.84 bits
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Table 18: Subject CG; Identify ;, m=.97

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

95 1 - 1 - - 1 - - 2
- 84 3 ---
1 11 35 4 3 1 2 1 -

1 2 28 26 5 6 4 3 4 4

1 1 17 16 23 9 14 10 13 8

- 1 11 21 27 46 21 19 20 22

- - 6 23 26 24 41 28 34 32

- -- 7 15 13 16 36 15 20

- 2 1 1 4 12 7

1 1 5
Table 8.' This table shows the confusion matrix for subject CG in the first condition of Experiment 1,
where the subject is asked to identify the delay T with m fixed at 0.97. The vertical columns show the
actual value of T presented in ms, and the horizontal rows show the response given by the subject.

Figure 33: Subject CG; Identify t, m=.97

Responses

)elay (ms)

9

Figure 33.' This shows a three dimensional representation of the confusion matrix for subject CG in the first
condition of Experiment 1, where the subject is asked to identify the delay t with m fixed at 0.97. The bottom right
axis shows the actual value of T presented in ms, and the bottom left axis shows the response given by the subject.
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Table 19: Subject DB; Identify , m=.5

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

36 18 4 1 - - - 1 - 1

19 55 25 10 4 1 - 1 - -

16 13 47 19 7 1 - - - -

12 9 14 42 18 7 2 1 - 1

5 4 6 18 54 17 8 2 3

9 - 3 8 12 56 9 1 1 1

3 - - 2 13 68 13 10 2

- 1 - 1 2 2 7 49 14 2

- - 1 1 1 3 6 29 51 23

9 - - - - - - - 3 21 70
Table 19: This table shows the confitsion matrix for subject DB in the second condition of Experiment 1,
where the subject is asked to identify the delay t with m fixed at 0.5. The vertical columns show the actual
value of X presented in ms, and the horizontal rows show the response given by the subject.

Figure 34: Subject DB; Identify , m=.5

Responses

Deloy (ms)

9

Figure 34: This shows a three dimensional representation of the confusion matrix for subject DB in the second
condition of Experiment 1, where the subject is asked to identify the delay C with mn fixed at 0.5. The bottom right
axis shows the actual value of : presented in ms, and the bottom left axis shows the response given by the subject.
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Table 20: Subject AS; Identify t, m=.5

S t i m u I u s

1 -2 3 4 5 6 7 8 9
99 1 1 1 1 2-84 18 - - -

- 14 69 1 3 - - - - -

- 1 5 88 - - 8

- - 1 1 81 3 - - 3 -

1 - 6 - 14 95 - 1 - -

- - - 8 - - 91 -

.- - - - - - - 99

1

1

1 97

- 100
Table 20.' This table shows the confusion matrix for subject AS in the second condition of Experiment 1,
where the subject is asked to identify the delay t with mfixed at 0.5. The vertical columns show the actual
value of presented in ms, and the horizontal rows show the response given by the subject

Figure 35: Subject AS; Identify t, m=.5

Response

Delay :ms)

9

Figure 35. This shows a three dimensional representation of the confusion matrix Jbr subject AS in the second
condition of Experiment I, where the subject is asked to identify the delay with m fixed at 0.5. The bottom right
axis shows the actual value of - presented in ms, and the bottom left axis shows the response given by the subject.
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Table 21: Subject JK; Identify x, m=.5

S t i m u I U S

0 1 2 3 4 5 6 7 8 9
92 16 

2 75 9 - 1 - - - - 1
1 5 65 6 2 2 - 2

- 1 17 70 2 4 3 1

- 1 4 8 66 10 3 4 5

-- 4 10 10 54 2 4 2

- - - 5 10 13 74 27 7 2

1 2 1 - 6 14 8 52 18 1

1 3 3 8 10 65 10

9 2 -----2 - 3 86
Table 21: This table shows the confusion matrix for subject JK in the second condition of Experiment 1,
where the subject is asked to identify the delay X with mfixed at 0.5. The vertical columns show the actual
value of t presented in ms, and the horizontal rows show the response given by the subject

Figure 36: Subject JK; Identify , m=.5

Responses

)elay (ms)

Figure 36: This shows a three dimensional representation of the confusion matrix for subject JK in the second
condition of Experiment 1, where the subject is asked to identify the delay X with m fixed at 0.5. The bottom right
axis shows the actual value of t presented in ms, and the bottom left axis shows the response given by the subject.
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Table 22: Subject CG; Identify A, m=.5

S t i m u I u s

0 1 2 3 4 5 6 7 8 9

92 2 - - ..- 2

3 82 7 3 1 - 1 - - -

- 14 38 10 3 4 6 5 6 2

1 1 21 30 15 9 10 6 2 3

3 1 18 17 39 20 15 13 9 5

1 - 10 20 20 35 18 17 5 7

- - 5 17 12 21 29 22 13 11

- - 1 3 7 8 12 23 19 21

3 3 7 10 37 26

- - 2 4 9 23
Table 22.' This table shows the confusion matrix for subject CG in the second condition of Experiment I,
where the subject is asked to identify the delay z with mfixed at 0.5. The vertical columns show the actual
value oft presented in ms, and the horizontal rows show the response given by the subject

Figure 37: Subject CG; Identify A, m=.5

Diay (ms)

9

Figure 37. This shows a three dimensional representation of the confiusion matrix for subject JK in the second
condition of Experiment 1, where tile subject is asked to identify the delay z with m fixed at 0.5. The bottom right
axis shows the actual value of t presented in ms, and the bottom left axis shows the response given by the subject.
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Table 23: Subject DB; Identify m, t=5 ms

S t i

1

31

m u I u s

2 3 4 5 6 7

23 4 2

47 41 38 22 4 1

12 15 25 13 4 2 2 1

6 10 11 25 10 6 1 1

- 3 1 15 14 13 6 7

- - 2 15 37 32 30 27

- - - 6 23 39 45 41

6 7 16 23

Table 23: This table shows the confusion matrix for subject DB in the first condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay tr fixed at 5 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 38: Subject DB; Identify m, c=5 ms

Response

timulus m

7

Figure 38: This shows a three dimensional representation of the confusion matrix for subject DB in the first
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay fixed at 5 ms.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 24: Subject AS; Identify m, t=5 ms

S t i
0

m u I u s
1 2 3 4 5 6 7

55 49 35 7 1

25 28 21 9 1

19 19 22 19 2 1 - -

-4 17 33 27 6 1 1

- - 4 20 27 22 10 7

- - 1 9 21 25 29 21

' - - 2 14 30 28 26

7 1 - - 1 7 16 32 45
Table 24: This table shows the confusion matrix for subject AS in the first condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay t fixed at 5 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 39: Subject AS; Identify m, t=5 ms

Responses

imulus m

Figure 39.' This shows a three dimensional representation of the confusion matrix for subject AS in the first
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay fixed at 5 Its.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 25: Subject JK; Identify m, t=5 ms

S t i
0

m u I u s
1 2 3 4 5 6 7

30 25 15 16 5

32 25 31 10 6

32 34 37 32 9 4 1

6 15 14 23 28 5 3 5

- 1 3 14 16 17 11 9

- - - 3 23 44 37 28

6 - - - 2 13 19 34 33

7 - - - - - 11 14 25
Table 25.' This table shows the confusion matrix for subject JK in the first condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay fixed at 5 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 40: Subject JK; Identify m, t=5 ms

Response

timulus m

7

Figure 40.: This shows a three dimensional representation of the confusion matrix for subject JK in the first
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay t fixed at 5 ms.
The bottorn right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 26: Subject CG; Identify m, t=5 ms

m u I U S

1 2 3 4 5 6 7

R

e
S

0
1

2

P 3
0 4

n 5

s 6

e 7
Table 26.: 
where the s

l 11 18 16 3

32 22 19 12 4 1 - 1

] 29 29 25 22 12 4 3

8 17 13 21 14 9 7 4

9 8 13 22 27 17 1 1 12

9 6 11 14 25 34 29 28

1

1
This table shows the confusion matrix 
'ubject is asked to identify the reflectio,

3 4 14 30 41 40

2 4 5 9 15
for subject CG in the first condition of Experiment 2,
n strength m with delay r fixed at 5 ms. The vertical

columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 41: Subject CG; Identify m, =5 ms

Responses

imulus m

7

Figure 41: This shows a three dimensional representation of the confusion matrix for subject CG in the first
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay t fixed at 5 ms.
The bottom right axis shows the stimulus number presented (see Table 2 for mn value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.

Information Transfer: 0.44 bits

89

S t i
0



Table 27: Subject DB; Identify m, =9 ms

S t i
0

m u I U S

1 2 3 4 5 6 7

41 43 26 13 2

42 36 24 12

14 16 27 17 2 - 1

2 5 -10 17 10 3 2 1

- - 9 15 26 14 19 9

1 - 1 16 32 29 23 28

2 9 18 28 29 29

e 7 - -1 1 10 26 26 33

Table 27: This table shows the confusion matrix for subject DB in the second condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay c fixed at 9 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 42: Subject DB; Identify m, 4=9 ms

Response

timulus m

7

Figure 42: This shows a three dimensional representation of the confusion matrix for subject DB in the second
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay c fixed at 5 ms.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 28: Subject AS; Identify m, =9 ms

S t i m u I u s
1 2 3 4 5 6 7

92 57 18 3 1 - 1

6 31 24 9 1

- 11 28 22 8 2 2

2 1 23 22 13 7 8 3

- - 4 19 26 15 13 17

- - 2 12 29 26 30 22

1 11 15 29 21 16

2 8

Table 28: This table shows the confusion matrix for subject AS in the se
where the subject is asked to identify the reflection strength m with delc
columns show the stimulus number presented (see Table 2 for m valme
number), and the horizontal rows show the response given by the subject.

20 26 41

cond condition of Experiment 2,
zy c fixed at 9 ms. The vertical
e associated with each stimulus

Figure 43: Subject AS; Identify m, =9 ms

Responses

timulus m

Figure 43.' This shows a three dimensional representation of the confusion matrix for subject AS in the second
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay 'r fixed at 5 ims.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 29: Subject JK; Identify m, t=9 ms

S t i m U I U S

1 2 3 4 5 6 7

I42 30 8 6

35 41 17 12 3 2 1 1

16 22 33 24 15 10 7 9

3 4 17 20 26 14 21 14

1 2 7 14 18 15 14 18

1 1 10 12 11 19 16 14

2 6 6 16 24 20 17

2 6 11 16 21 27

Table 29: This table shows the confusion matrix for subject JK in the second condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay X fixed at 9 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 44: Subject JK; Identify m, r=9 ms

Response

timulus m

7

Figure 44: This shows a three dimensional representation of the confusion matrix for subject JK in the second
condition of Experiment 2, where the subject is asked to identify the reflection strength m with delay c fixed at 5 ms.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 30: Subject CG; Identify m, t=9 ms

S t i m u
0 1 2 3 4

I U S

5 6

24 16 6 

42 32 19 8 3 3 - 6

1 15 25 28 18 7 9 3 3

9 11 19 26 22 11 6 7

5 8 19 23 24 20 26 17

5 6 17 21 32 25 24

2 3 8 20 19 30 24

e 7 - - - - 3 6 10 19
Table 30: This table shows the confusion matrix for subject CG in the second condition of Experiment 2,
where the subject is asked to identify the reflection strength m with delay z fixed at 9 ms. The vertical
columns show the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the horizontal rows show the response given by the subject.

Figure 45: Subject CG; Identify m, c=9 ms

45

Responses

7

Stimulus m

7

Figure 45.' This shows a three dimensional representation of the confusion matrix for subject CG in the second
condition of'Experiment 2, where the subject is asked to identify the reflection strength m with delay X fixed at 5 ns.
The bottom right axis shows the stimulus number presented (see Table 2 for m value associated with each stimulus
number), and the bottom left axis shows the response given by the subject.
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Table 31: Subject DB; Identify t, m roved

S t i m u I u s

0 1 2 3 4 5 6 7 8 9
37 27 27 16 10 3 1 2 1 1

32 40 29 25 13 12 5 7 1

8 10 16 11 9 4 4 1 -

5 11 13 28 11 2 3 2 2

4 6 5 9 37 15 9 2 2 2

3 2 7 5 8 42 10 6 1

1 1 1 5 6 17 52 25 4 1

1 - 2 - 2 1 7 38 4 3

6 2

3 1

1 3 4 9 13 63 9

1

Table 31.] This table shows the confusion matrix for subject DB in the thirc
is asked to identify the delay T with m roved. The vertical columns show
Table 4) presented, and the horizontal rows show the response given by the

4 22 84
I experiment, where the subject
the stimulus number of (see
subject.

Figure 46: Subject DB; Identify x, m roved

Responses

)elay

9

Figure 46: This shows a three dimensional representation of the confusion matrix for subject DB in the third
experiment, where the subject is asked to identify the delay C with m roved. The bottom right axis shows the
stimulus number of X (see Table 4) presented, and the bottom left axis shows the response given by the subject.
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Table 32: Subject AS; Identify x, m roved

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

62 13 4 3 3 - 1 1 2 1

3 49 15 15 - - - 1 - 1

7 9 50 18 5 1 - 2

16 17 15 48 25 6 2 2 6 1

4 3 10 8 48 - 1 -

1 - - 1 5 77 3 4 1

1 1 - 2 5 5 92 - 3

- - 2 3 2 8 - 85 3 1

1 3 1 1 1 1 3 85

9 5 5 3 1 7 2 - 1 - 96
Table 32.' This table shows the confusion matrix for subject AS in the third experiment, where the subject
is asked to identify the delay T with m roved. The vertical columns show the stimulus number of T (see
Table 4) presented, and the horizontal rows show the response given by the subject.

Figure 47: Subject AS; Identify T, m roved

Responses

Delay

8 '
9

Figure 47: This shows a three dimensional representation of the confusion matrix for subject AS in the third
experiment, where the subject is asked to identify the delay X[ with m roved. The bottom right axis shows the
stimulus number of t (see Table 4) presented, and the bottom left axis shows the response given by the subject.
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Table 33: Subject JK; Identify t, m roved

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

I30 26 15 12 6 2 2 0 0 1

22 28 22 11 11 1 1 3 2 0

14 14 26 11 10 3 0 2 0 0

8 14 14 30 15 9 2 1 0 0

6 1 7 14 23 8 5 2 1 0

1 1 1 5 13 51 15 5 0 0

2 3 1 7 9 15 60 13 6 1

3 4 8 4 2 5 7 50 4 4

I 9 7 3 4 5 3 7 20 84 6

5 2 3 2 6 3 1 4 3
Table 33: This table shows the confusion matrix for subject JK in the third experiment,
is asked to identify the delay 'r with m roved. The vertical columns show the stimulus
Table 4) presented, and the horizontal rows show the response given by the subject.

Figure 48: Subject JK; Identify A, m roved

Responses

where the
number of

Delay

b 
9

Figure 48: This shows a three dimensional representation of the confusion matrix for subject JK in the third
experiment, where the subject is asked to identify the delay z with m roved. The bottom right axis shows the
stimulus number of c (see Table 4) presented, and the bottom left axis shows the response given by the subject.
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Table 34: Subject CG; Identify t, m roved

S t i m u I u s

0 1 2 3 4 5 6 7 8 9

16 5 3 1 - - - - - -

22 26 15 9 4 5 2 2 1 3

19 24 40 20 19 10 12 3 1 2

14 16 14 37 14 7 7 8 1 4

10 10 15 13 36 24 13 2 7 2

8 8 9 13 15 30 18 10 6 1

4 7 3 5 7 17 27 20 8 12

6 4 1 2 4 5 15 31 16 15

8 - - - 1 2 5 19 48 24

9 1 - - - - 1 5 12 37
Table .34. This table shows the confusion matrix for subject CG in the third experiment, where the subject
is asked to identify the delay r with m roved. The vertical columns show the stimulus number of t (see
Table 4) presented, and the horizontal rows show the response given by the subject.

Figure 49: Subject CG; Identify t, m roved

Responses

Delay

8 '
9

Figure 49.: This shows a three dimensional representation of the confusion matrix for subject CG in the third
experiment, where the subject is asked to identify the delay T with m roved. The bottom right axis shows the
stimulus number of t (see Table 4) presented, and the bottom left axis shows the response given by the subject.
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Table 35: Subject DB; Identify m, c roved

S t i m u I u s

0 1 2 3 4 5

51 42 27 15 8 3

9 3 3 3 2

12 17 13 13 4 5

17 17 28 27 26 16

8

3

13

8

20

9

22

20

23

37

37

39

e
Table 35.' This table shows the confusion matrix for subject DB in the fourth experiment, where the subject
is asked to identify the reflection strength m with delay roved. The vertical columns show the stimulus
number presented (see Table 5 for m value associated with each stimulus number), and the horizontal
rows show the response given by the subject.

Figure 50: Subject DB; Identify m, c roved

Responses

imulus m

Figure 50: This shows a three dimensional representation of the confusion matrix for subject DB in Experiment 4,
where the subject is asked to identify the reflection strength m with delay c roved. The bottom right axis shows the
stimulus number presented (see Table 5for m value associated with each stimulus number), and the bottom left axis
shows the response given by the subject.
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Table 36: Subject AS; Identify m, t roved

S t i m u I u s

0 1 2 3 4 5

56 40 24 4

20 23 18 10 1 1

r16 20 24 18 6 6

6 12 21 26 21 12

2 5 13 39

3

40

32

37

44

e
Table 36.' This table shows the confusion matrix for subject AS in the fourth experiment, where the subject
is asked to identify the reflection strength m with delay X roved. The vertical columns show the stimulus
number presented (see Table 5 for m value associated with each stimulus number), and the horizontal
rows show the response given by the subject.

Figure 51: Subject AS; Identify m, ' roved

Responses

imulus m

5

Figure 51: This shows a three dimensional representation of the confusion matrix for subject AS in Experiment 4,
where the subject is asked to identify the reflection strength m with delay roved. The bottom right axis shows the
stimulus number presented (see Table 5for m value associated with each stimulus number), and the bottom left axis
shows the response given by the subject.
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Table 37: Subject JK; Identify m, t roved

0

S t i

1

m u I

2 3

U S

4 5

25 25 13 6 3

42 32 22 8 2 2

15 18 19 15 9 7

14 14 22 25 10 10

4 11 18

6

34

12

37

39

27

54

e

Table 37: This table shows the confusion matrix for subject JK in the fourth experiment, where the subject
is asked to identify the reflection strength m with delay roved. The vertical columns show the stimulus
number presented (see Table 5 for m value associated with each stimulus number), and the horizontal
rows show the response given by the subject.

Figure 52: Subject JK; Identify m, t roved

Responses

imulus m

5

Figure 52.' This shows a three dimensional representation of the confusion matrix for subject JK in Experiment 4,
where the subject is asked to identify the reflection strength m with delay X roved. The bottom right axis shows the
stimulus number presented (see Table 5for m value associated with each stimulus number), and the bottom left axis
shows the response given by the subject.
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Table 38: Subject CG; Identify m, z roved

S t i

0

m u I u s

1 3 4 52

13 9 3 2 - 1

30 22 18 4 3 3

25 20 28 11 8 6

17 28 29 33 21 12

15 19 19 40 54 39

2 3 10 14 39

e
Table 38. This table shows the confusion matrix for subject CG in the fourth experiment, where the subject
is asked to identify the reflection strength m with delay X roved. The vertical columns show the stimulus
number presented (see Table 5 for m value associated with each stimulus number), and the horizontal
rows show the response given by the subject.

Figure 53: Subject CG; Identify m, t roved

Responses

mulus m

5

Figure 53: This shows a three dimensional representation of the confusion matrix for subject CG in Experiment 4,
where the subject is asked to identify the reflection strength m with delay t roved. The bottom right axis shows the
stimulus number presented (see Table 5for m value associated with each stimulus number), and the bottom left axis
shows the response given by the subject.
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Table 39: Subject DB; Results for t, Identify m and c

m u I U S

0 1 2 3 4 5 6 7 8 9

125 111 97 80 49 22 21 15 11 7

14 26 18 11 11 4 2 0 4 2

29 39 37 26 14 8 8 3 5

18 26 30 76 23 21 9 2 1

14 10 34 34 97 49 27 9 4 4

9 9 12 14 27 86 25 19 8

11 3 7 11 28 56 110 59 8 4

3 2 3 2 3 13 21 99 22 4

1 6

- 2
shows the confusion 

- 1 4 15 36 143 55

- 1 1 2 6 37 117
matrix of subject DB for in the fifth experiment, where the

subject is asked to identify the delay and the reflection strength m roved. The vertical columns show the
stimulus number of X (see Table 4) presented, and the horizontal rows show the response given by the
subject.

Figure 54: Subject DB; Results for z, Identify m and -c

Responses

)elay

O
9

Figure 54.: This shows a three dimensional representation of the confusion matrix of subject DB for in the fifth
experiment, where the subject is asked to identify the delay I and the reflection strength m. The bottom right axis
shows the stimulus number of (see Table 4) presented, and the bottom left axis shows the response given by the
subject.
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Table 40: Subject DB; Results for m, Identify m and- X

S t i

1

m u I

2 3

u s

4 5

270 189 130 92 68 60

56 76 65 41 39 21

36 59 82 64 43 27

37 41 51 72 75 72

l~~~4 28

23

46

29

77

46

91

81

74

97

e

Table 40.' This table shows the confusion matrix of subject DB for parameter m in the fifth experiment,
where the subject is asked to identify the reflection strength m and the delay . The vertical columns show
the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
horizontal rows show the response given by the subject.

Figure 55: Subject DB; Results for m, Identify m and t

Response

imulus m

5

Figure 55: This shows a three dimensional representation of the confusion matrix of subject DB for parameter m in
Experiment 5, where the subject is asked to identify the reflection strength m and the delay . The bottom right axis
shows the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
bottom left axis shows the response given by the subject.
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Table 41: Subject AS; Results for t, Identify m and c

S t i m u I u s

0 1 2 3 4 5 6 7 8 9

205 42 15 17 3 - - 1

17 127 52 23 1 - 1 - - 3

7 26 104 40 8 2 - 1 3 1

7 24 42 110 18 - 1 1 1 1

1 2 11 45 174 5 2 - 1 1

- 3 5 9 6 207 2 5 -

1 1 3 7 6 3 231 2 4 1

- 1 - 4 4 4 - 227 1 -

5 2 8 1 4 218 4

9 9 12 10 7 5 3 - 1 9 219
Table 41: This table shows the confusion matrix of subject AS for z in the fifth experiment, where the
subject is asked to identify the delay z and the reflection strength m roved. The vertical columns show the
stimulus number of t (see Table 4) presented, and the horizontal rows show the response given by the
subject.

Figure 56: Subject AS; Results for x, Identify m and X

Responses

9

Figure 56. This shows a three dimensional representation of the confusion matrix of subject AS for t in the fifth
experiment, where the subject is asked to identify the delay t and the reflection strength m. The bottom right axis
shows the stimulus number of t (see Table 4) presented, and the bottom left axis shows the response given by the
subject.

Information Transfer: 2.09 bits

104

R

e

s
p
o
n

0

1

2

3

4

5

6

s 7

e 8



Table 42: Subject AS; Results for m, Identify m and X

0

S t i

1

m u I

2 3

U S

4 5

279 228 105 38 10 7

47 64 58 29 4 4

27 70 102 83 44 24

13 35 83 156 114 89

2

1

11

0

17

7

90

35

131

131

102

160

Table 42.: This table shows the confusion matrix of subject AS for parameter
where the subject is asked to identify the reflection strength m and the delay .
the stimulus number presented (see Table 5) for m value associated with each
horizontal rows show the response given by the subject.

Figure 57: Subject AS; Results for m, Identify m and X

Responses

m in the fifth experiment,
The vertical columns show
stimulus number), and the

imulus m

5

Figure 57: This shows a three dimensional representation of the confusion matrix of subject AS for parameter m in
Experiment 5., where the subject is asked to identify the reflection strength m and the delay t. The bottom right axis
shows the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
bottom left axis shows the response given by the subject.
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Table 43: Subject JK; Results for t, Identify m and t

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

62 61 32 11 7 2 2 3 5 1

52 61 47 19 10 1 2 1 - 1

77 64 95 27 16 4 4 10 3 4

15 26 49 90 30 8 3 2 1

7 10 15 33 85 28 9 3 3

8 1 10 36 70 191 32 5 2

7 4 5 7 16 27 165 26 2 2

4 3 7 3 3 1 18 148 25 7

8 7 1 1 4 2 1 10

9 3 1 6 1 - 1 2
Table 43. This table shows the confiusion matrix of subject JK for X in t

31 172 31

- 33 157
the fifth experiment, where the

subject is asked to identify the delay X and the reflection strength m roved. The vertical columns show the
stimulus number of t (see Table 4) presented, and the horizontal rows show the response given by the
subject.

Figure 58: Subject JK; Results for t, Identify m and c

Responses

9

Figure 58: This shows a three dimensional representation of the confusion matrix of subject JK for t in the fifth
experiment, where the subject is asked to identify the delay t and the reflection strength m. The bottom right axis
shows the stimulus number of t (see Table 4) presented, and the bottom left axis shows the response given by the
subject.
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Table 44: Subject JK; Results for m, Identify m and t

S t i m u I u s

0 1 2 3 4 5

1 138 82 48 18 8 3

122 129 106 42 30 11

80 74 83 61 34 23

36 40 86 67 54 41

1 22 38 83 112 122 119

8 15 44 73 154 194

e
Table 44.: This table shows the confusion matrix of subject JK for parameter m in the fifth experiment,
where the subject is asked to identify the reflection strength m and the delay r. The vertical columns show
the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
horizontal rows show the response given by the subject.

Figure 59: Subject JK; Results for m, Identify m and X

Responses

mulus m

Figure 59.' This shows a three dimensional representation of the
Experiment 5, where the subject is asked to identify the reflection
shows the stimulus number presented (see Table 5) for m value
bottom left axis shows the response given by the subject.

confusion matrix of subject JKfor parameter m in
strength m and the delay t. The bottom right axis
associated with each stimulus number), and the
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Table 45: Subject CG; Results for t, Identify m and X

S t i m u I u s

0 1 2 3 4 5 6 7 8 9

38 33 19 10 6 1 2 2 1 2

38 39 31 19 6 11 3 2 3 1

42 34 36 27 22 15 4 8 10 4

26 27 24 58 33 14 15 10 7 10

38 34 41 47 76 52 36 28 11 12

40 36 41 43 61 88 43 37 19 14

14 21 16 19 33 46 74 41 29 13

9 4 7 4 10 27 40 64 40 33

3 1 2 4 1 5

the confusion matrix
2 1

of subject CG for 'X

15 47 103 66

3 12 47 51
in the fifth experiment, where the

subject is asked to identify the delay and the reflection strength m roved. The vertical columns show the
stimulus number of X (see Table 4) presented, and the horizontal rows show the response given by the
subject.

Figure 60: Subject CG; Results for A, Identify m and X

Responses

)elay

9

Figure 60: This shows a three dimensional representation of the confusion matrix of subject CG for t in the fifth
experiment, where the subject is asked to identify the delay t and the reflection strength m. The bottom right axis
shows the stimulus number of t (see Table 4) presented, and the bottom left axis shows the response given by the
subject.
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Table 46: Subject CG; Results for m, Identify m and X

S t i m u I u s

0 1 2 3 4 5

i 26 16 14 5 4 3

78 79 69 48 19 25

145 132 141 129 98 78

97 108 125 123 96 103

34

11

55

16

53

16

88

27

112

47

109

71

e
Table 46. This table shows the confusion matrix of subject CG for parameter m in the fifth experiment,
where the subject is asked to identify the reflection strength m and the delay . The vertical columns show
the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
horizontal rows show the response given by the subject.

Figure 61: Subject CG; Results for m, Identify m and z

Responses

imulus m

5

Figure 61. Th;is shows a three dimensional representation of the confusion matrix of subject CGfor parameter m in
Experiment 5, where the subject is asked to identify the reflection strength m and the delay z. The bottom right axis
shows the stimulus number presented (see Table 5) for m value associated with each stimulus number), and the
bottom left axis shows the response given by the subject.
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Table 47: Subject DB; Identify t, m=.97

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

32 7 6 2 1 - - -

36 57 19 13 7 1 - - - -

14 23 48 18 3 3

18 12 18 53 16 2

- 1 6 8 68 19 10 4 2 1

- 3 5 5 54 15 6 3 1

- - - 1 - 11 55 17 2 -

- - - - - 3 6 38 5 1

7 14 33 66 11

-- 2 22 86
Table 47: This table shows the confusion matrix for subject DB in Supplemental Experiment 1, which
compares Experiment 1 and Experiment 3. The subject is asked to identify the delay with m fixed at
0.97. The vertical columns show the actual value of presented in ms, and the horizontal rows show the
response given by the subject.

Figure 62: Subject DB; Identify 'r, m=.97

Response

)elay (ms)

0
9

Figure 62: This shows a three dimensional representation of the confusion matrix for subject DB in Supplemental
Experiment 1, which compares Experiment I with Experiment 3. The subject is asked to identify the delay with m
fixed at 0.97. The bottom right axis shows the actual value of X presented in ms, and the bottom left axis shows the
response given by the subject.

Information Transfer: 1.47 bits

110

0

R 1

e 2
S

P
0

n

S

3

4
5

6
7

e 8 |

9

9



Table 48: Subject AS; Identify t, m=.97

S t i m u I U S

0 1 2 3 4 5 6 7 8 9

95 7 - -

3 81 17 7

8 76 10 -

2 3 7 82 2

- 1 - 1 98 2

.- - - - 93

- - - - - 5 100 1

....- -.- - 97

......- --2 100 1

9 99
Table 48.' This table shows the confusion matrix for subject AS in Supplemental Experiment 3, which
compares Experiment and Experiment 3. The subject is asked to identify the delay with m fixed at
0. 97. The vertical columns show the actual value oft presented in mns, and the horizontal rows show the
response given by the subject.

Figure 63: Subject AS; Identify t, m=.97

Responses

Delay (mrns)

0
9

Figure 63. This shows a three dimensional representation of the confusion matrix for subject AS in Supplemental
Experiment 1, which compares Experiment I with Experiment 3. The subject is asked to identify the delay 'C with m
fixed at 0.97. The bottom right axis shows the actual value of t presented in ms, and the bottom left axis shows the
response given by the subject.
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Table 49: Subject DB; Identify m, = 5 ms

0

S t i

1

m u I

2 3

U S

4 5

47 42 23 8

22 37 28 8 5 4

24 12 22 12 6 2[ 24 12 22 12 6 2

5 6 13 22 10 6

1 2 14 36 56 51

1 1 14 23 37

e

Table 49: This table shows the confusion matrix for subject DB in Supplemental Experiment 2, which was
designed to compare Experiment 2 with Experiment 4. The subject is asked to identify the reflection
strength m with delay X fixed at 5 ms. The vertical columns show the stimulus number presented (see
Table 5 for m value associated with each stimulus number), and the horizontal rows show the response
given by the subject.

Figure 64: Subject DB; Identify m, = 5 ms

Responses

imulus m

5

Figure 64: This shows a three dimensional representation of the confusion matrix for subject DB in Supplemental
Experiment 2, which was designed to compare Experiment 2 with Experiment 4. The subject is asked to identify the
reflection strength m with delay r fixed at S5ms. The bottom right axis shows the stimulus number presented (see
Table 5 for m value associated with each stimulus number), and the bottom left axis shows the response given by
the subject.
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Table 50: Subject AS; Identify m, t = 5 ms

0

S t i

1

m u I

2 3

U S

4 5

73 48 11 -

22 30 39 6 2

4 16 25 16 2 1

1 5 19 44 17 13

- 1 6 22 46 42

12 33 44

e
Table 50.: This table shows the confusion matrix for subject AS in Supplemental Experiment 2, which was
designed to compare Experiment 2 with Experiment 4. The subject is asked to identify the reflection
strength m with delay t fixed at 5 ms. The vertical columns show the stimulus number presented (see
Table 5 for m value associated with each stimulus number), and the horizontal rows show the response
given by the subject.

Figure 65: Subject AS; Identify m, X = 5 ms

Responses

imulus m

5

Figure 65: This shows a three dimensional representation of the confusion matrix for subject AS in Supplemental
Experiment 2, which was designed to compare Experiment 2 with Experiment 4. The subject is asked to identify the
reflection strength mn with delay t fixed at 5ms. The bottom right axis shows the stimulus number presented (see
Table 5for m value associated with each stimulus number), and the bottomn left axis shows the response given by
the subject.
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