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Abstract
Protein structure prediction is a grand challenge in' the fields of biology and computer
science. Being able to quickly determine the structure of a protein from its amino
acid sequence would be extremely useful to biologists interested in elucidating the
mechanisms of life and finding ways to cure disease. In spite of a wealth of knowl-
edge about proteins and their structure, the structure prediction problem has gone
unsolved in the nearly forty years since the first determination of a protein structure
by X-ray crystallography.

In this thesis, I discuss issues in the representation of protein structure and se-
quence for algorithms which perform structure prediction. There is a tradeoff between
the complexity of the representation and the accuracy to which we can determine the
empirical parameters of the prediction algorithms. I am concerned here with method-
ologies to help determine how to make these tradeoffs.

In the course of my exploration of several particular representation schemes, I
find that there is a very strong correlation between amino acid type and the degree
to which residues are exposed to the solvent that surrounds the protein. In addition
to confirming current models of protein folding, this results suggests that solvent
exposure should be an element of protein structure representation.

Thesis Supervisor: Patrick H. Winston
Title: Professor, Electrical Engineering and Computer Science

Thesis Supervisor: Tomas Lozano-Perez
Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

Overview

1.1 Why predict protein structures?

Proteins play a key role in innumerable biological processes, providing enzymatic

action, cell and extracellular structure, signalling mechanisms, and defense against

disease [Stryer, 1988]. Much research in the pharmaceutical industry is geared toward

understanding biological processes and designing new proteins or molecules that inter-

act with proteins. Because a protein's interactions with other molecules are governed

by its three-dimensional structure, a central problem in this research is determining

the three-dimensional structure of proteins.

Most known protein structures were determined by interpreting the X-ray diffrac-

tion patterns from protein crystals. Protein purification and crystallization is ex-

tremely difficult, and interpreting the X-ray diffraction patterns is not straightfor-

ward. Some small protein structures can be solved using nuclear magnetic resonance

techniques on proteins in solution, but this is not yet possible for most proteins. Cur-

rently we know the shape of hundreds of proteins, but there are some hundreds of

thousands of proteins of interest.

We do know the molecular formulae and covalent bonding structure of the proteins.

Proteins are composed of smaller molecules, called amino acids. The structure of an

amino acid is illustrated in Figure 1-1. The molecule is arranged in a tetrahedral

geometry around the central carbon, called the alpha carbon. Amino acids differ

15



D
H 0

//0
N-C -- C
H OH

H

Figure 1-1: A generic amino acid. The "R" represents a variable side-chain.

from each other in the side chain, represented by "R" in the figure. There are 20

different types of amino acids in proteins (Figure 1-2). The amino acids vary in

size, polarity (whether they are charged or not), hydrophobicity (whether they "fear

water"), and other chemical properties.

The amino acids are covalently bonded together (Figure 1-3) to form a long chain

of amino acid residues (Figure 1-4). Typically there are hundreds of amino acid

residues in a protein.

The backbone of the amino acid residue chain has three atoms (N-C-C) from

each residue, and therefore three bonds per residue. Two of these bonds allow fairly

free rotation (Figure 1-5). The protein can therefore potentially take on an enor-

mous number of different shapes, or conformations. There is additional conformation

freedom in most of the sidechains.

For the past 40 years, researchers have been inventing methods for predicting a

protein's three-dimensional structure from its amino acid sequence [Fasman, 1989].

Many people have analyzed the protein structures that are known, hoping to uncover

useful principles for the prediction problem.

So far, protein structure prediction methods have met with limited success and

it is clear that much more needs to be learned before we will be able to reliably

determine a protein's shape without the aid of the X-ray crystallographer.

This thesis investigates how to represent proteins on the computer. The repre-

sentation that we choose shapes the information that we gather and use in modeling

and predicting. For the various kinds of information that we might want to represent

about a protein, there are a number of questions we might ask. How redundant are

16
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Figure 1-2: The sidechains of the 20 types of amino acids found in proteins. Hydrogen
atoms are not shown. Dashed lines indicate backbone bonds. The N in the proline
(Pro) residue is the backbone nitrogen atom. For each amino acid residue, the three-
letter and one-letter code are given.
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the various types of information? How do we use the representations? How do we

combine different types of information? How do we choose which representation we

want'?

The rest of this chapter provides more background about the protein prediction

problem. and summarizes my approach and results.

1.2 Background

Amino acid sequences of proteins were determined years before any protein structures

were known. There was a lot of interest in the structures because it was known that

the shapes of proteins determine how they interact with other molecules and therefore

how they function in a cell.

The three-dimensional structure of individual amino acids and dipeptides (bonded

pairs of amino acids) had been determined by analyzing diffraction patterns of X-

rays through crystals. People expected that the amino acid residues in large protein

molecules would fit together in neat, regular, repeating patterns. In 1951, seven years

before the first protein structure was observed, two protein backbone conformations

were predicted based on the known structure of amino acids [Pauling and Corey,

1951]. The patterns were a helix shape and an extended "strand" shape that could

pack next to other strands in sheets.

The first protein structure, myoglobin, was determined by means of X-ray crys-

tallography [Kendrew and others, 1958]; see Figure 1-6, which was produced by the

Molscript program [Kraulis, 1991]. People were dismayed at the apparent spatial

disorder within each protein molecule. The protein shapes were a far cry from the

regular repetitive packing that had been imagined.

On the other hand, there were a few encouraging aspects of protein structure.

First of all, the predicted helix and strand structures did occur quite often in the

proteins. Figure 1-7 shows a diagram of the backbone of ribonuclease A, containing

both helices and sheets. The way the individual helices and strands packed together

was not planar or regular, and much of the protein molecule looped around in very
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Figure 1-6: The first observed protein structure. Myoglobin has 153 residues. Only
the non-hydrogen backbone atoms are shown. Black spheres represent oxygen atoms;
grey spheres represent carbons; white spheres represent nitrogens. Drawn by the
Molscript program.
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Figure 1-7: Structure of Ribonuclease A. The backbone of the protein is shown, with
alpha (helices) and strand (arrows) regions shown. Drawn by the Molscript program.

irregular shapes. The helices and strands themselves were often twisted, bent or

kinked.

In spite of the seeming irregularity of the protein structures, a given sequence of

amino acid residues always seemed to fold to the same complex structure. It was

shown that ribonuclease and other proteins could be denatured and refolded to their

native structure [Anfinsen et al., 1961]. This fact was tantalizing. It suggested that

there must be some way to model the forces at work on and in the protein, such

that one could predict the protein's three-dimensional structure from its amino acid

sequence.
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INPUT: sequence A C D I L E K L M Y ...

OUTPUT: secondary -h h h h - s s s s...
structure

Figure 1-8: The secondary-structure prediction problem. Secondary structure labels
are h" (helix), "s" (strand), and "-" (other).

1.2.1 Secondary structure prediction

The fascination with helices and strands, the local structure found throughout pro-

teins, has continued unabated. A hierarchy of protein structure description was de-

fined. The first level, primary structure, is defined as the sequence of amino acid

residues in the protein. Secondary structure is defined to be the local protein struc-

ture. for example. strands and helices. Tertiary structure is the conformation of one

protein: the three-dimensional positions of all the protein's atoms.

Much effort has been focussed on the prediction of secondary structure (Figure 1-

8). In this problem, the goal is to find the type of secondary structure in which each

residue in the protein occurs. The input is the amino acid sequence of the protein.

Early modelis of protein folding were based on the idea of secondary structure nu-

cleation followed by propagation in a zipper-like effect along the protein chain [Zimm

and Bragg, 19,59. Lifson and Roig, 1961]. These models were used to interpret

real folding data on polypeptides [Scheraga, 1978]. The Chou-Fasman model is a

good example of a prediction algorithm based on the nucleation-propagation folding

model [Chou and Fasman, 1978]. The basic idea was that short stretches of residues

in the protein might strongly favor one of the secondary structures, and act as nu-

cleation sites for those structures. The structures would then be extended along the

chain until they ran into other amino acid residues which were strongly disfavorable

to that type of structure. The extent to which an amino acid "favored" a particular

type of secondary structure was determined by counting the number of occurrences

of each amino acid in each type of secondary structure in a set of known-structure
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Figure 1-9: The secondary structure nucleation-propagation model heavily influenced
early protein structure prediction methods.

proteins.

Many different secondary-structure methods have been tried. Most of these ap-

proaches are statistically based, relying on numbers culled from the database of known

protein structures. Algorithms were developed based on information theory [Garnier

et al., 1978, Gibrat et al.. 1987], neural networksHolley89,Qian88,Stolorz91,Bohr88,

pattern-matching [Cohen et al., 1986], machine learning [King, 1988], and Markov

random fields [Collin Stultz and Smith, 1993]. Variations were tried in the definitions

of secondary structure, in the input sequence representations, and in the types of

additional information provided to the algorithm [Kneller et al., 1990, McGregor et

al., 1989, Levin et al., 1993. Niermann and Kirschner, 1990, Rost and Sander, 1993a].

People observed that there seemed to be an upper barrier to the accuracy with

which secondary structure could be predicted from sequence information (about 65%

residues correctly predicted for three secondary structure states: helix, strand, and

other). There are several possible explanations for this limit. There might not be

enough structure data yet to accurately determine the empirical parameters used

in the predictions [Rooman and Wodak, 1988]. There might be sufficient informa-

tion but the models themselves are faulty. Or it might be that secondary struc-
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Figure 1-10: The same local sequence folds to different secondary structures in dif-
ferent proteins, from Argos, 1987.

ture is not determined by secondary sequence alone. Clever computational exper-

iments were performed to try to distinguish between these possibilities. Exam-

ples were found of short amino acid sequences that had different secondary struc-

tures in different proteins (Figure 1-10) [Kabsch and Sander, 1984, Argos, 1987,

Sternberg and Islam, 1990]. Most of these results pointed toward the explanation

that secondary sequence information is not sufficient to uniquely determine secondary

structure. The conclusion was that tertiary structure interactions between amino acid

residues very far apart in sequence but close in space must be crucial in determining

secondary structure.

1.2.2 Tertiary structure prediction

Even if we discovered a way to determine secondary structure perfectly, or were told

the answer by an oracle, we would not be done. We want to know the overall structure

of the protein, not just the secondary structure.

One strategy is to start from the results of secondary structure prediction. Peo-

ple have worked on the problem of packing together strands and helices into a full

three-dimensional protein structure [Cohen et al., 1979, Cohen and Kuntz, 1987,

Hayes-Roth and others, 1986]. This approach has the potential for dealing with the

problem of ambiguous or inaccurate secondary-structure prediction, by following mul-

tiple hypotheses, or by providing feedback to the secondary-structure predictor from

the packing algorithm.

Another model of protein folding is strongly related to this approach of packing

secondary structure pieces. The notion of building up a protein structure step by
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unfolded secondary intermediate folded
protein structure conformation protein

formed

Figure 1-11: The pathway model of protein folding.

step was bolstered by the prevalent notion in the biochemical literature of folding

intermediates. Levinthal [Levinthal, 1968] phrased the following argument: the con-

formational space of a protein is too vast to be searched in a reasonable time by a

protein. A possible conclusion is that there must be some specific folding pathway,

with one or a few intermediate conformations that every folding protein visits (Fig-

ure 1-11). Experimentalists found ways to trap and characterize protein species (or

collections of conformations) that they described as intermediate conformations on

the folding pathway [Creighton, 1978, Bycroft et al., 1990, Matouschek et al., 1990,

Nail, 1986, Weissman and Kim, 1991]. The partially-packed protein structures in

the secondary-structure-packing prediction methods are reminiscent of this idea of

folding intermediates.

We probably understand enough about atoms and molecules to correctly model,

with quantum mechanics, the structure of a protein. To determine the structure, you

would solve the wave equation for the entire molecule and use a partition function

to find low-energy solutions for atomic positions. Unfortunately, for proteins this

calculation is not practical analytically, and prohibitively expensive computationally.

People have developed approximate energy functions for proteins that estimate

the molecule's potential energy as a function of position [Karplus and Petsko, 1990].

It has been postulated that the folded protein is at a global or local minimum of

these energy functions. The model incorporates interactions between atoms in the

molecule, and biases bond lengths and angles toward a few favored positions. These
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sequence Q R E T - - F N S I Q L E V - - N T ...

sequence 2 Q - D T P N H N S V - L D I M H R S ...

Figure 1-12: Two protein sequences are aligned to maximize the similarity between
aligned amino acid residues.

energy functions are used to help determine protein structures from X-ray diffraction

data. The energy function can be used to model the motion of a protein in time, but

the model is too complex to allow simulation of motion for the time that it would

take the protein to fold.

People tried to simplify the energy function and protein structure representation

in order to allow simulations which would model a long enough period of time to

simulate the folding of a protein [Levitt and Warshel, 1975, Godzik et al., 1992,

Hagler and Honig, 1978. Kuntz et al., 1976, Skolnick and Kolinski, 1990]. Instead

of modeling all the atoms in the molecule, amino acid residues (which have ten or

twenty atoms) are represented by one or two super-atoms. Forces between atoms are

replaced by mean forces between amino acid residues. The motion of the molecules

is restricted in various ways to simplify computation. For example, in some schemes

only movements on a lattice are allowed.

One problem with these simplifications is that it is difficult to determine whether

the model has been simplified to the point of losing important information. Simplified

protein dynamics is not currently a viable means of predicting protein structure.

Another approach is to align the protein sequence to the similar sequence of a

known-structure protein. if one exists (Figure 1-12). A model for the protein is then

built based on the known structure of the other protein. This approach is known as

homology modeling, and is currently the most successful protein structure prediction

method [Lee and Subbiah, 1991].

In the 1980s the 'hydrophobic collapse" theory of protein folding gained favor in

the field. According to this theory, a protein folds in two phases. In the first phase,

the unfolded protein chain collapses quickly to a fairly compact shape, called a molten

globule, and this phase is driven by the tendency for hydrophobic ("water-fearing")

amino acids to avoid water and clump together. The molten globule contains some
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Figure 1-13: The hydrophobic collapse model of protein folding proceeds in two stages.

secondary structure (strands and helices) and has roughly the fold of the final struc-

ture, but is larger. In the second phase of folding, fine tuning occurs as the protein

chain adjusts to optimize interactions between atoms. The result is a tightly packed

structure, characteristic of observed folded proteins. There is now much experimental

support for the hydrophobic collapse folding theory.

At this same time, people began looking for ways to judge the quality of a pro-

posed protein structure. These methods were strongly influenced by the hydrophobic

collapse folding model. A well-folded protein was modeled to have charged and po-

lar (partially charged) parts of the protein on the outside, and hydrophobic parts

on the inside (Figure 1-14). "Pseudopotential" functions were developed to incor-

porate this idea. These functions are similar to the simplified energy functions

used in protein folding simulations. Experiments were done showing that pseu-

dopotential functions could discriminate between correct and incorrect structures for

one sequence [Baumann et al., 1989, Chiche et al., 1990, Holm and Sander, 1992,

Vila et al., 1991].

This discrimination by means of a pseudopotential function between correctly

folded and misfolded proteins led naturally to an extension of homology modeling

in which sequences were compared directly to a set of candidate structures [Wodak

and Rooman, 1993, Blundell and Johnson, 1993, Fetrow and Bryant, 1993]. First the

sequence is aligned onto each candidate structure, then the pseudopotential is used to

determine which sequence-structure alignment is the correct one (Figure 1-15). This
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hydrophobic (water-hating)
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Figure 1-14: Sketch of a correctly folded protein.

approach is currently very popular. It is sometimes referred to as inverse folding:

instead of predicting structure from sequence, we have a pseudopotential function to

evaluate how likely the sequence is to have been "generated" by a structure. The

sequence-structure alignment is called threading because the sequence is threaded

onto (aligned with) each structure. Arguments have been made, based on the fraction

of new additions to the structure database which represent truly new folds, to the

effect that we have seen a large fraction of all protein structures, and therefore the

threading prediction method is likely to succeed in a large number of cases. The

structure database might also be expanded by constructing hypothetical structures

out of pieces of known structures.

Many threading pseudopotentials have been formulated. Pseudopotential func-

tions were originally based on the hydrophobic collapse folding model. A numerical

value was assigned to each amino acid type to represent its hydrophobicity; this num-

ber was based on chemical experiments with a single amino acid type, or on statistical

analyses of the known-structure database. In addition, each residue position in the

structure has a numerical degree of exposure to the solvent. The pseudopotential

functions compared the exposure of a residue's position to the residue's hydrophobic-

ity, and assigned a low energy to buried hydrophobic residues and exposed hydrophilic

residues.

Once the idea of a pseudopotential function for evaluating sequence-structure
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Figure 1-15: The threading method of tertiary structure prediction.

alignments was established, people experimented with incorporating other types of

information in the pseudopotentials. These included:

* A residue's propensity to be in each type of secondary structure type (for exam-

ple, does the residue "prefer" helix secondary structure over strand secondary

structure?). This harks back to the early focus on secondary structure predic-

tion.

* A residue's interaction with neighboring residues in the structure. Not only

sequence-local neighbors, but neighbors distant in sequence but close in space

could now be modeled. This was an exciting development, because it would

seem to provide a way around the limitation imposed by considering only local

sequence information in structure prediction.

Research on the inverse folding approach to structure prediction is actively being

pursued at present. It is too early to determine the success of this method.

1.3 My work

The focus of my work is the question, "What makes for a good representation of

protein sequence and structure for structure prediction algorithms?" In carrying out
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this research, I am particularly interested in distinguishing the underlying models of

protein folding that have influenced the structure prediction work. My approach is

to compare different possible components of a protein representation. I consider a

particular type of representation, in which each residue position in the database of

known structures is labeled with a set of attributes. These attributes might include,

for example, secondary structure type, solvent exposure, or amino acid. I use a

statistical technique called contingency table analysis that allows one to tease out the

relative importance of, and interaction between, the different types of information in

a representation of events. In my work, the events of interest are the residue positions

in the structure database. I discuss implications of this analysis for protein structure

prediction. I also consider the power of the protein representations in the contexts in

which they will be used, by comparing their performances in secondary and tertiary

structure prediction algorithms.

In the next sections, I highlight a few of the questions I investigated.

1.3.1 Hydrophobic collapse vs. structure nucleation and

propagation

My results show that a structure prediction algorithm based on the hydrophobic col-

lapse model of protein folding should perform better than one based on secondary

structure nucleation and propagation. In particular. I observe that amino acid type is

more strongly correlated with solvent exposure than with secondary structure. This

finding agrees with the currently popular hydrophobic collapse model of protein fold-

ing: that the first and strongest effect is the burial of hydrophobic residues in the

core of the structure. Thus, my results indicate that protein structure prediction

representations should include an effective model of hydrophobicity and solvent ex-

posure. For example, it might be useful to predict solvent exposure along the protein

chain instead of the commonly used secondary structure as the first step in a two-step

tertiary structure prediction method.

However, I do find that where it is possible to incorporate both exposure and
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secondary structure propensities, it is a good idea to do so; secondary structure

propensities do add useful information.

1.3.2 Modeling hydrophobic collapse

The hydrophobic effect has been modeled in various ways. What is really going

on physically is complicated. Polar solvent molecules around exposed hydrophobic

residues in the protein lose hydrogen-bonding partners. On the other hand, buried

polar residues may miss chances to make good hydrogen bonds. One model of the

hydrophobic effect creates a fictitious hydrophobic force, in which hydrophobic atoms

or residues attract one another. This pairwise interaction model is used by Casari and

Sippl, for example [Casari and Sippl, 1992]. An alternative approach (for example,

Bowie and colleagues [Bowie et al., 1991]) looks at each residue in isolation as a

singleton term in the pseudopotential and asks how hydrophobic it is and how much

water it sees. If the residue is buried and hydrophobic, or exposed and hydrophilic,

then the residue is happy. Which approach is better, pairwise attractive force or

singleton solvent exposure?

I compare the pairwise model to the singleton model of hydrophobic collapse. The

former examines the correlation between the hydrophobicities of neighboring amino

acids; the latter examines the correlation between an amino acid's hydrophobicity

and its solvent exposure. My analysis shows that looking at the association between

amino acid type and solvent exposure at a single site is more informative than looking

at the association between pairs of amino acids. The implication is that it is a good

idea to model the hydrophobic effect as a first-order correspondence between amino

acid hydrophobicity and solvent exposure, as opposed to as the second-order effect

which is the pairing of similar types of amino acids. This turns out to be a very useful

result for threading algorithms, because threading with first-order effects can be done

quickly, while threading with pairwise effects is computationally expensive [Lathrop,

1994].
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1.3.3 Pairwise interactions: great expectations

Many designers of pseudopotential functions assume that modeling of pairwise, triplet,

and even higher-order interactions between residue positions in protein structures is

necessary to distinguish misfolded proteins from correctly folded proteins. Threading

methods incorporating high-order residue interactions have been developed based on

this assumption.

Statistical arguments have been made about the relative importance of the higher-

order terms to the singleton terms, and it was shown that in theory the pairwise

terms should provide half again as much information as the singleton terms [Bryant

and Lawrence. 1993]. What happened in practice? While little has been published

comparing the performance of singleton to higher-order pseudopotentials, preliminary

results indicate that pairwise terms do not improve the threading results. Why would

this be? Perhaps the models are inadequate, or the pseudopotentials are incorrect in

somIe waV.

The analysis that I performed shed some light on the question of the importance

of pairwise interactions in threading.

First of all, my statistical analysis at first glance suggests that pairwise terms

should improve the threading results. They contain information not available in the

single-residue attributes. In fact, by one way of measuring, the pairwise terms should

contain half again as much information as the singleton terms.

However. a closer examination of the statistics shows the pairwise terms in the

pseudopotential scoring functions are plagued by severe problems with low sample

size. The pairwise terms do contain some additional useful information, but with low

sample sizes it is swamped by noise.

To compensate for the noise, there are several things that can be done. One

approach is to reduce the complexity of the data representation. I grouped the 20

amino acids into three groups based on their hydrophobicity. When I do this I have

adequate sample sizes, but the singleton terms are now far more important than the

pairwise terms. This could be due to the fact that the representation is too coarse, or

it might be a more accurate representation of the true relative importance of pairwise
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and singleton terms, or some combination of the two.

I also find that some information is accounted for by the preference of an amino

acid for its neighbor's solvent exposure. This effect is not modeled by current pseu-

dopotential functions that model pairwise interactions.

1.3.4 Amphipathicity

In looking at pairwise occurrences of amino acids, I discovered an unexpected cor-

relation between hydrophobicity types on opposite, non-contacting sides of buried

beta sheets. This might represent a sequence signal for beta strand conformation.

Regardless of the reason, this, along with the other results about the importance

of solvent exposure, suggested to me that I might try to incorporate some sort of

amphipathicity constraint in structure prediction algorithms. I found that providing

amphipathicity information to a neural net that predicts secondary structure improves

its performance by a small but significant amount.

1.4 Outline of thesis

Chapter 2 describes the protein representations I use in the thesis, and gives some

background on the analysis of contingency tables using loglinear models. The next

four chapters (3-6) apply contingency table analysis to single-residue properties,

paired residues, single residue in parallel and antiparallel beta sheets, and pairs of

residues in beta sheets. The next two chapters evaluate protein representations by

using them in programs that operate on proteins. In Chapter 7, I use various sequence

representations as input to a neural network that predicts secondary structure. In

Chapter 8, I use various structure representations in the threading program to align a

structure to a sequence. In Chapters 9 and 10, I describe work in progress and sum-

marize my conclusions. Appendix A describes some related work in protein statistics

and threading.
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Chapter 2

Background

In this chapter, discuss the protein representations employed in this thesis. Then I

introduce contingency table analysis, the statistical method that I use extensively in

Chapters 3 through 6, and which is closely related to the pseudopotential functions I

test; in Chapter 8.

2.1 Knowledge representation

In this section, I discuss the particular types of knowledge representation that I

consider for protein sequences and structures. I consider a residue to be the basic

unit of protein structure. I represent a protein as a string of residues. Each residue has

a set of attributes. In addition, the protein representation may include a list of pairs of

residues that are related in some way, and each residue pair may have attributes above

and beyond the individual residues' attributes. I refer to the attributes of a single

residue as "singleton" attributes; those of a residue pair are "pairwise" attributes.

Each attribute can take on one of a finite set of values. A given residue is catego-

rized by one and only one value for each of its attributes. Thus the attribute values

are complete and non-overlapping. On occasion I compare or use attributes that are

generalizations or specializations of each other. An attribute Al is a generalization
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of an attribute A 2 if for any two residues ri and rj,

(A2(ri) = A2(rj)) =' (Al(ri) = Ai(rj)),

where Aj(ri) is the value of attribute Al for residue ri (and so on). In other words,

if A2 classifies two residues as having the same attribute values, then Al must also.

2.1.1 Single residue attributes

The attributes of a residue that I investigate include solvent exposure, secondary

structure, and sequence.

Solvent exposure

Solvent exposure specifies the amount of a residue's surface area that is exposed to

the solvent on the outside of the protein. In this thesis, the possible solvent exposure

values are {buried, exposed).

The solvent exposure is computed by the DSSP program using geodesic sphere

integration [Kabsch and Sander, 1983]. Points on the surface of a sphere of radius

equal to the sum of the radii of an atom and a water molecule are considered exposed

if the water sphere centered there does not intersect with any other protein atom. The

total area of these points for a residue are computed by summing over a polyhedron

made of approximately equal triangles. The atomic radii are taken to be 1.40 for

0. 1.65 for N, 1.87 for Ct, 1.76 for the carbonyl C, 1.8 for all side-chain atoms, and

1.4 for a water molecule. The number reported by the DSSP program is the average

number of molecules in contact with each residue, which is estimated from the surface

area by dividing by 10 square Angstroms.

I compute relative solvent exposure by dividing the DSSP solvent exposure by the

maximum exposure for each residue, as recorded in Section B.3.

I apply a threshold of 20% to the relative solvent exposure to determine the buried

and exposed labels.
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Secondary structure

I use the DSSP definitions of secondary structure types alpha helix and beta

strand [Kabsch and Sander, 1983]. All other residues are labeled coil. In some

of the analysis, I further divide the beta strand category into parallel and antipar-

allel; this is a specialization of the {alpha, beta, coil} attribute.

The DSSP program finds alpha helix and beta strand by first determining the

locations of backbone hydrogen bonds. Hydrogen bonds are determined by placing

partial charges on the C (+.42e), O (-.42e), N (-.2e), and H (+.2e) atoms. The

electrostatic interaction energy is calculated as

1 1 N
E = f(.42e)(.2e)[ - - ]

rON rCH roH rCN

where f is a dimensional factor to translate from electron units to kcals, f = 332,

and E is in kcal/mol. e is the unit electron charge. The distance between atoms of

type i and j, r, is in angstroms. A hydrogen bond is said to exist if E is less than

the cutoff -0.5 kcal/mol.

DSSP defines a "bridge" as existing between two nonoverlapping stretches of three

residues each if there are two hydrogen bonds characteristic of beta structure (Fig-

ure 2-1). A "ladder" is a set of one or more consecutive bridges of identical type, and

a "sheet" is a set of one or more ladders connected by shared residues. A parallel

bridge aligns bridge residues in pairs as (i - 1,j - 1), (i,j), and (i + l,j + 1). An

antiparallel bridge aligns pairs (i - 1,j + 1), (i,j), and (i + 1,j - I).

Sequence

I use several representations for sequence. The simplest is the amino acid, which has

20 different values, one for each type of amino acid found in proteins. I also (following

Lifson and Sander [Lifson and Sander, 1980]) group the amino acids by hydrophobic-

ity, obtaining three classes hydrophobic, neutral, and polar. Lifson and Sander

use two other groupings that I employ in Chapter 6 on pairwise interactions in beta

sheets. These grouped representations are generalizations of the 20-valued amino acid
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Figure 2-1: Bridges between beta strands. (a) and (c) are antiparallel bridges; (b) is a
parallel bridge. A bridge exists between two nonoverlapping stretches of three residues
each of there are two hydrogen bonds characteristic of beta structure. Hydrogen
bonds are shown dashed; covalent bonds are shown as solid lines; the sidechains are
not represented in this diagram.
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type attribute.

In the threading chapter (Chapter 8), I consider a representation in which each

residue has an attribute representing its local sequence. This is a specialization of the

20-valued amino acid type attribute. For a local sequence window of 13, for example,

there are 2013 possible values of this attribute.

2.1.2 Attributes of residue pairs

I consider a number of different residue pair attributes.

Sidechain contact

I calculate whether or not the sidechains of the residues are in contact. There are

two values for this attribute: in-contact and not-in-contact.

Topological relationship

For pairs that occur in beta sheets, I consider the following types:

1. Beta pairs. My definition of a beta pair is the two central residues in a bridge

(for a definition of bridge, see Section 2.1.1). I sometimes further specialize the

beta pairs into parallel and antiparallel beta pairs.

2. Diagonal pairs. If (i,j) and (i + 2,j + 2) are both 3p pairs, then (i,j + 2) and

(i + 2, j) are diagonal pairs (denoted by 6p). If (i, j) and (i + 2, j - 2) are A,

then (i,j - 2) and (i + 2,j) are EA. I sometimes further specialize these into

parallel and antiparallel diagonal pairs.

:3. (i, i + 2) pairs. Residues i and i + 2 are in a beta strand.

2.2 Contingency table analysis

This section provides an overview of contingency table analysis. There are a number of

books on the subject; I have found the Wickens text to be particularly useful [Wickens,

1989]; Fienberg's text is also informative [Fienberg, 1977].
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2.2.1 Contingency tables

Contingency table analysis is used to analyze counts of objects or occurrences, where

each object has several attributes. It is well-suited for analyzing counts of residue

occurrences in a set of known-structure proteins.

My data describes residues or residue pairs in protein structures. Each residue

or pair has several attributes that describe its sequence and structure characteristics.

Each of these attributes (such as secondary structure) has several possible values

(such as alpha, beta, or coil), and each object has one and only one value for each

attribute. In the statistics literature, data composed of objects with such attributes

is called categorical data. If data objects have several attributes, the data is called

cross-classified categorical data. Tables of counts of cross-classified categorical data

are called contingency tables.

For example, to examine the relation between amino acid type, solvent exposure,

and secondary structure type, I tabulate, for each residue in a protein, the residue's

amino acid type, its exposure to solvent, and the type of secondary structure in which

it appears. Thus I generate a three-dimensional contingency table. Each dimension

of the table corresponds to one of the attributes.

2.2.2 Questions asked in contingency table analysis

Contingency table analysis can be used to answer questions about conditional in-

dependence and the strength of statistical relationships between variables. In this

thesis, the following questions exemplify the issues that can be addressed using this

statistical technique:

* Is amino acid type related to solvent exposure? In other words, are there

statistically significant preferences of some amino acid types for being buried or

exposed?

* Are solvent exposure and secondary structure jointly more predictive of amino

acid type than either alone?
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* Which is stronger: the correlation between amino acid type and solvent expo-

sure, or the correlation between amino acid type and secondary structure?

* Are there some pairs of amino acids that show a preference to occur in neigh-

boring positions in the protein structure? If so, is this preference dependent on

the structural attributes of the residue positions in the protein?

2.2.3 Models of data

In contingency table analysis, a model of the data is used to create a table of expected

counts. This expected count table is compared to the table of observed counts, and a

standard statistical test is used to determine whether there is a significant difference

between the expected and actual counts. The null hypothesis asserts that the model

explains the data; the statistical test can determine if this hypothesis is false. It

cannot prove that the model does fit the data, because it might be that there is not

enough data to make the determination.

A model can be compared not only to the observed data, but also to another

model. This is useful in determining relationships between various elements of the

model.

There are many possible models for the data in a contingency table. I use a type

of model called hierarchical loglinear models. These models are nice because they

can be used to frame the types of questions that I would like to ask about the data.

Hierarchical loglinear models are explained in more detail below, in Section 2.2.5.

There are many possible hierarchical loglinear models for a given contingency

table. It is important, therefore, to have specific questions in mind when performing

the analysis.

The meaning of the models and the relationships between the models must be

supplied by the person doing the analysis. The results of contingency table analysis

are often interpreted to support an assertion about causality. The statistical analysis

does not intrinsically say anything about which attribute "causes" which other, but

rather makes a simpler statement about the co-occurrence of events. Any meaning
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Color
red

green
total

Price
low high total
NLR NHR NR
NLG NHG NG
NL NH N

Table 2.1: Form of a two-dimensional contingency table.

must be imposed by the person interpreting the results.

2.2.4 A simple contingency table example

Suppose we want to analyze the attributes of different apples. We have a large barrel

of apples on which we will base our analysis. Each apple in the barrel has the following

attributes: color and price. Each attribute has a set of possible values, as follows.

* Color: red, green.

* Price: high, low.

To build a contingency table, we tip over the barrel and record the number of

apples for each possible combination of attributes. In this case there are four (low-

priced green, high-priced green, low-priced red, and high-priced red). We end up with

Table 2.1, which has one cell for each attribute combination.

The total number of apples with the various color and price attributes are written

in the margins of the table. The cell which is the margin of the margins contains the

total number of counts, N. Our model of independence generates a table of counts in

which the margin totals are the same as in the observed table, but the entries in the

table are computed from the marginal counts, or totals. This is because the margin

counts are what we use to determine the independent probabilities of color and price.

Testing for independence

How can we test the hypothesis that an apple's color is independent of an apple's

price? We estimate the probability that an apple is red from the observed frequency
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of occurrence of red apples:

P(R) = NR/N,

where N is the total number of apples and NR is the number of red apples. The

probability that an apple has a high price is estimated as

P(H) = NH/N,

where NH is the number of high-priced apples. If the color and price attributes are

independent, then we expect that

P(R and H) = P(R)P(H).

The expected number, E of high-priced red apples is E(R and H) =. P(R)P(H)N.

Similarly, we can compute the expected number of low-priced red apples, high-priced

green apples, and low-priced green apples.

To test for independence of color and price, we compare the expected numbers to

the observed numbers. If they're very different, then our model is probably wrong,

and color and price are related. If the expected and observed numbers are close to

each other, then it could be that color and price are independent, and the small

differences we see are due to noise in the data.

Statistics provides us with several standard tests to compare observed and ex-

pected numbers and determine whether they are "different." I use the likelihood

ratio test statistic, G2 , which is a measure of the difference between the observed

and expected counts. G2 is computed for each cell in the counts table, and then

summed over all cells. The formula is G2 = Z(O log(O/E)), where O is the observed

number of counts and E is the expected number of counts. It has been shown that

if you look at many contingency tables, each generated by a particular model, then

the distribution of G2 values that you observe is a x2 distribution. Therefore, we can

determine the probability that our model generated the observed data by comparing

the G2 value to a X2 distribution. If this probability is very small then we reject the
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Color
red

green
total

Price
low high total
395 520 915
518 406 924
913 926 1839

Table 2.2: Two-dimensional contingency table for a simple example.

null hypothesis that the data was generated by our model. If the probability is large,

then we don't know whether this is because our model fits the data well, or because

we don't have enough data to make the determination that the model is different.

Even if a model fits the data well, it could be that a simpler model would also fit well.

In order to compare the G2 value to a y2 distribution, we need to know the number

of degrees of freedom of our model. This number corresponds to the number of data

cells in the counts table, minus the number of free parameters in the model.

As an example of testing the fit of a model, assume that the apples occur with

counts as given in Table 2.2.

From the formulae given above, the expected counts are shown in Table 2.3. Note

that the margin totals (NL, NH, NR and NG) in the expected table match those in

the observed table. Also, the expected counts are not integers. The value of G2 for

this table is 30.6. There are three free parameters in the model (five parameters NL,

NH, NR, NG and N, minus the two constraints that the sums of the margin totals

must be N), and four count cells, which leaves one degree of freedom. A X2 test

with one degree of freedom shows that the probability that the observed counts were

generated by this model is extremely small, less than 0.0001. We conclude that apple

price and color are not independent.

If we had had one-tenth as many apples in each cell in the contingency table, then

the same analysis would have given us a G2 of 3.06, which is not nearly as significant

(P= 0.08). This observation illustrates the fact that the more counts you have, the

more likely you are to find a significant result. The data that I analyze in the thesis

has many total counts, and may violate some of the underlying assumptions of the

44

l - =



Price
Color low high total

red 454.3 458.7 915
green 460.7 465.3 924
total 913 926 1839

Table 2.3: Expected counts for a simple example.

Table 2.4: Observed values for three-way apple contingency table

statistical tests, and therefore it may be that apparent statistical significance doesn't

reflect real significance. One way to deal with this problem is to ask questions about

the relative size of the test statistic, as opposed to the absolute size. I will do this when

I compare a series or hierarchy of models to determine which variable combinations

are most influential.

Testing for conditional independence

A further exploration of our example will illustrate testing for conditional inde-

pendence. Our apples have another attribute, taste. Table 2.4 shows the three-

dimensional contingency table that includes the taste attribute. Table 2.2 can be

obtained from Table 2.4 by summing over the two possible values of the attribute

taste.

Now let's ask whether price is independent of color, but conditioned on taste. The

way to do this is to separate the sweet apples from the sour apples, and within each

taste group, build an table of expected counts for price vs. color. These expected

tables are built based on the assumption of independence of price and color within

each taste group, and are computed the same way we computed the expected counts
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Taste sweet sour
Price low high low high
Color
red 202 410 193 108
green 105 197 415 209



Table 2.5: Expected values for three-way apple contingency table.

for price and color before. The expected counts are given in Table 2.5. The margin

totals for taste, price, and color match those of the observed table. In addition, the

two-dimensional margin totals (taste vs. price) and (taste vs. color) are the same

as those in the observed table. G2 is 0.79; the probability that the observed data

was generated by this model is 0.67. Thus the model of conditional independence of

price and color, relative to taste, is a very good one for the data. An interpretation

could be that color influences price only indirectly through taste; all the important

information in the problem can be summarized in the interaction between taste and

the other variables.

This example points out important caveats about contingency table analysis.

First, the design of the experiment is very important. We must try to include all

the important variables (like taste) in our description of the data. Secondly, we

must be careful to set up our analysis to catch the important relationships between

the variables. With the three-dimensional contingency table, we can use models to

support either one of our hypotheses (dependence of price and color; conditional in-

dependence of price and color). For any independence test we'd like to perform, we

need to determine the appropriate context (conditioning variables) in which to do

it. The best approach is to condition upon the variables which show the strongest

degree of association with the variables in question [Wickens, 1989]. In our apple

example, a preliminary analysis (using G2 values) would tell us that the association

between price and color is much weaker than the association between price and taste

or between color and taste.
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Taste sweet sour
Price low high low high
Color
red 205.6 406.4 197.8 103.2
green 101.4 200.6 410.2 213.8



2.2.5 Loglinear models

The models I use to analyze my contingency table data are called loglinear models

because they can be represented as the sum of parameters which are related to loga-

rithms of frequencies. I use a subset of loglinear models called hierarchical loglinear

models because they are easy to build and they are powerful in representing hypothe-

ses about the data. With hierarchical loglinear models, I can pose questions about

conditional independence and about the relative importance or amount of association

between variables.

To cast our model of independence in loglinear style, we rewrite the expected

number of high-priced red apples,

E(R and H) = N N R NHNN'

as

log(PtRH) = A + AC(R) + AP(H).

[tRI is E(R and H). A = log(N) contains the information about the total number

of counts in the contingency table. ,XC(R) = log(NR/N) is the log of the frequency of

red apples in the table. The "C" in the subscript stands for color, and "R" stands

for red. AP(H) = log(NH/N) is defined similarly.

There are five parameters in the loglinear model of color-price independence: A,

AC(R), AC(G), AC(L,), and AC(H). They are further constrained by the requirement that

the margin totals sum to N. This leaves three free parameters.

An example of a loglinear model for a three-dimensional contingency table is

log(tijk) = + AA(i) + AB(j) + AC(k) + AAB(ij)-

lt ijk is the expected count in cell (ij, k) of the table. A indicates the table's first

dimension, B the second, and C the third. If there are nA values for the A attribute,

then there are nA AA parameters, one for each value. The last parameter in the

model, AAB(ij), is a function of the values i and j of attributes A and B; there
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are nAnB different parameters in the AAB set. Thus, in this model, every count is

estimated by a product of terms (exponentiating the above equation). One of these

terms is common to all cells in the table. Another, eAA(i) is the same for all counts

that have the ith value of parameter A. Another, eAB(i), is the same for all counts

that have the ith value of parameter A and the jth value of parameter B. And so on.

Thus the form of the model is closely related to the row structure of the table.

There is ambiguity in the model parameters because you could get the same

estimate by subtracting an amount from one parameter and adding that amount

to another. Therefore, it is common to impose the constraint that the sum of the

parameters in a set be 0; for example, i AA(i) = 0.

Hierarchical loglinear models require that all attributes in a high-order parameter

appear in every lower-order combination. For example, if you have AAB(ij) in your

model, then you must also have AA(i) and AB(j). A must appear in every model.

The As give us information about the sign and magnitude of the effects of the

attribute values in the model.

2.2.6 Margin counts

The next question is how to determine the A parameters of a loglinear model. The

optimal model is defined as the one whose parameter settings maximize the likelihood

of the data given the model. It turns out that the expected counts as computed by

the optimal model have the same margin totals as do the observed counts, for those

margins which correspond to parameters of the model. So, for example, if AA(i) is

a model parameter, then the margin totals corresponding to attribute A will be the

same in the expected count table as in the observed count table. If AAB(ij) is a

model parameter, then the two-dimensional margin computed by summing over all

attributes other than A and B will be maintained.

Often, loglinear models are discussed in terrms of the margins that they fix, which

correspond to their parameters. Thus [AB] represents the two-dimensional margin

corresponding to the parameter set AAB. The model described above for a three-

dimensional table can be referred to as [AB][C]. Only the higher-order margins are
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mentioned; because we know the model is hierarchical, all subsidiary margins ([A]

and [B], in this case) are assumed to also be present.

A margin can also be thought of as a combination of attributes, as a term in the

model, or as a parameter set.

2.2.7 Computing model parameters

For two-dimensional tables, it is straightforward to determine the expected counts,

as we saw in our apple example. For three-dimensional tables, the solution is not

always analytically determinable, but there exist fast iterative solutions. I used the

Splus statistics program to perform these calculations [Becker et al., 1988].

2.2.8 Examining conditional independence with loglinear

models

The hypothesis that attributes A and B are independent corresponds to model [A][B].

The hypothesis that attributes A and B are conditionally independent, conditioned

on attributes in the set S, corresponds to the model [AS][BS].

2.2.9 Comparing association strengths of variables

One type of question we can ask with contingency table analysis is, "Do variables A

and B interact more strongly than do variables A and C?" For example, in Chapter 3, I

ask, "Do amino acid type and solvent exposure correlate more strongly than do amino

acid type and secondary structure?" In fact, by building a hierarchy of loglinear

models. it is possible to assign relative importance to a set of variable interactions

(which correspond: to margins of the contingency table).

Unfortunately, the word "hierarchy" is used in two ways in this area. The models

themselves are hierarchical in the sense that higher-order margins are included only

when all related lower-order margins are also included. Here, though, I am discussing

a hierarchy of models, which is a series of models in which each model includes all of

the margins of its predecessor, and adds more.
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The relative importance of two models is judged as the relative size of the likeli-

hood test statistic G2. The model hierarchy approach is used by Bryant and Lawrence

in their study of pairwise interactions of amino acids [Bryant and Lawrence, 1993].

They use this method to compare the relative importance or contribution to their

pseudopotential of singleton and pairwise terms, concluding that singleton terms are

twice as important as pairwise terms.

To report the results of such an analysis, I show the information about each model

in a table or a diagram.

The models increase in complexity from top to bottom in the table. The more

complex ones model the data better, but require more parameters to do so. I provide

the following information about each model in the table:

* Model name.

* Terms added to previous model in hierarchy. The terms are expressed as mar-

gins. For example, [12] would be the two-dimensional table of marginal counts

of the first two variables. [A1E1D] would be the three-dimensional table of

marginal counts of variables Al (used later for amino acid type of the first

residue in a pair), E1 (the solvent exposure of the first residue in a pair), and D

(the direction, parallel or antiparallel, of the connection between beta residues).

* Significance test statistic. This statistic expresses the difference between the

expected counts for this model and the observed counts, summed over the whole

table. I use G2 for examining model hierarchies, because it has nice properties

of additivity for different orders of adding terms to models.

* Degrees of freedom. This number is reported as the number of unconstrained

degrees of freedom in the model. Each constrained degree of freedom corre-

sponds to a parameter in the model. The total number of degrees of freedom

inherent in the contingency table is related to the number of cells (and there-

fore to the complexity of the protein representation). A larger number indicates

more counts, and higher representational complexity. To model the observed
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counts exactly, all the degrees of freedom are "used" by the model, and so the

number reported here is 0. Less complicated models leave more degrees of free-

dom unconstrained. We expect that models that use more degrees of freedom

can better fit the observed data, and take this into account when performing

significance tests. The number of degrees of freedom of a table is computed

keeping in mind that the tables often have symmetries. For example, there is

no special meaning to which of the two members of a residue pair is the "first"

residue.

* Change in significance test statistic, AG2 . This is measured from the previous

model to the current model, and gives us an idea of how much better the current

model is at modeling the data than the previous model.

* Percent change in significance test statistic. The total change in G2 is taken

from the first model reported in the table to the last model in the table. Then

AG2 for the current model is divided by the total change to obtain the percent

change in G2 .

Because it is possible to add terms in different orders, we must be careful that

adding term A first wouldn't lead us to a different conclusion than adding term B first.

Sometimes the order of adding terms is restricted by the requirement that all low-

order combinations of terms be added before (or at the same time) that higher-order

terms containing them are added. But other times either term can be added first. In

this thesis, where there is the possibility of adding either term first, I sometimes try

both approaches to make sure that the conclusions I reach are not dependent upon

the order of adding terms. In this case, I report two different tables, with different

orders of adding terms. In general, as stated above, it is a good idea to add the most

influential term first. If some attributes are fixed by design, those might be added

first. On the other hand, a particular hierarchy of models might correspond in a

natural way to an interpretation that we're interested in investigating. An example

of this last situation can be found in Section 4.3.2, where I build a model hierarchy

to correspond to the different terms in a pseudopotential function.
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In Chapter 3, I examine a three-dimensional contingency table. For this table, it

is easy to display all the models, from the complete independence model to the exact

model of the data, in a diagram. There are six different ways to order adding the

terms in the hierarchy, and so a diagram is more concise than a set of six tables, each

of which can only express a single path through the hierarchy.

2.2.10 Examples of questions

In this section, I'll list some examples of questions I address using contingency anal-

ysis, along with a brief description of how I answer them.

* Is amino acid type correlated with solvent exposure? To answer this question,

I can look at a two-way contingency table of counts categorized by amino acid

type and solvent exposure. I can also look at higher-dimensional contingency

tables which include this information as two of the residue attributes. (This

is convenient when I want to ask other questions involving more attributes of

the same data set, and possibly compare the results to those I get in answer

to this question.) In particular, I look at the difference in G2 when I add

the margin [AE] (the two-dimensional marginal counts corresponding to amino

acid type and solvent exposure) to a reference model. The reference model

represents independence of the attributes, and so contains only the separate

marginal counts [A] and [E], but not [AE]. If AG2 passes a significance test then

I conclude that there is correlation of amino acid type and solvent exposure.

* Do amino acid type and solvent exposure correlate more strongly than do amino

acid type and secondary structure? This question is addressed in Chapter 3. To

answer it, I analyze the three-way contingency table of amino acid type, solvent

exposure, and secondary structure at single residue positions in the protein

structures. I want to compare the AG2 values for adding the pairwise margins

[AE] (amino acid type and solvent exposure) and [AS] (amino acid type and

secondary structure) to a reference model in which all variables are considered

to be independent ([A][S][E] are the margins in the independent model).
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* Does the correlation between amino acid type and solvent exposure contain in-

formation that is also contained in the correlation between amino acid type and

secondary structure? It might be possible, for example, that the preferences

shown by amino acids for particular types of secondary structure could be com-

pletely explained by their solvent exposure preferences. This would be useful

to know in designing a knowledge representation because we wouldn't have to

represent amino acid preferences for secondary structure at all. To address this

question, I consider adding the margins [AE] and [AS] serially, in both possible

orders, to the reference model. I look at the resulting AG2 values for both

model series.

* How much of the apparent pairwise association between amino acids is due to

the exposure preference of each amino acid? This question is addressed in Sec-

tion 6.3.6. It is an interesting question because it suggests that a singleton term

(association between amino acid and environment) might explain a large por-

tion of a pairwise term (association between two amino acids). To answer this

question, I look at two margins, or terms. One is [A1A2], which corresponds

to the association between amino acid types. The other is [E1 E2], which cor-

responds to the association between exposure types. From a reference model,

I add margin [A1A2] and get a change in likelihood ratio test statistic AGA.

From the same reference model, I add margin [E1E2] and get AGE. Compar-

ing AG A and AGEE gives me some idea of the relative importance, although

it is also important to consider the number of degrees of freedom corresponding

to each. I also ask what happens when I add first [A1A2] and then [E1E2] in

a chain of three models, starting from the reference model. I compare that to

adding the margins in the reverse order.
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Chapter 3

Single-Residue Statistics

3.1 Introduction

In this chapter I use contingency table analysis to examine the relationship between

amino acid type and the structural parameters associated with the position of a

residue in protein's structure. These parameters are the residue's exposure to solvent

and secondary structure type. I am particularly interested in the relative importance

of solvent exposure and secondary structure. I show that solvent exposure is more

strongly correlated with amino acid class and with secondary structure than is amino

acid class with secondary structure. This is true regardless of whether amino acids

are grouped into three classes by hydrophobicity class, or left as 20 separate types.

3.2 Method

3.2.1 Data

I analyzed the 252 proteins listed in Section B.2.2. This is a subset of the set of

proteins compiled by Hobohm and colleagues in their effort to identify protein se-

quences that have low sequence homology [Hobohm et al., 1992]. I chose all proteins

in the list for which Kabsch and Sander's DSSP secondary structure files exist. To

determine the residue attributes, I used the publicly available DSSP files of Kabsch
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Table 3.1: Amino acid classification into three hydrophobicity classes.

and Sander [Kabsch and Sander, 1983].

3.2.2 Residue attributes

Each residue has three attributes: amino acid type, solvent exposure, and secondary

structure.

I considered two different versions of the attribute amino acid type, A. I built two

contingency tables, one for each attribute definition. In the first definition, each of

the 20 amino acid types was its own class. In the second definition, the amino acids

were grouped into three classes by their hydrophobicity as shown in Table 3.1.

Relative solvent exposure, E, was computed for each residue by dividing DSSP's

"ACC" accessibility number by the maximum accessibility for that residue type (see

Section B.3). Residues with less than 20% relative solvent exposure were considered

buried; the others exposed.

I used the DSSP secondary structure assignments to determine the secondary

structure attribute, S, of each residue (alpha = "H"; beta = "E"; coil = anything

else) [Kabsch and Sander, 1983].

3.2.3 Contingency table analysis

A contingency table analysis using loglinear models was performed to determine the

interactions between amino acid type or hydrophobicity class, solvent accessibility,

and secondary structure. This approach looks at the difference between observed and

expected counts (as measured by the likelihood test or Pearson statistic G2, which

has a X2 distribution) across models to determine how much of the error is accounted
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for by which combinations of variables.

Each pair of models analyzed differs by the inclusion or exclusion of one marginal

term. Each marginal term corresponds to a set of variables; the absence of a term

in a model indicates an assumption of independence among those variables. Thus,

loglinear analysis tests for the presence and strength of conditional dependence among

a model's variables, as well as the power of each of the variables and combinations

thereof to explain the observed data.

Two three-way contingency tables were built, one with all 20 amino acids classi-

fied separately, and another with the amino acids grouped into three classes. Thus

each residue was assigned to cell (i, j, k) in the contingency table, where i E A=

{hydrophobic, neutral, polar} or {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}; j E

E = {buried, exposed}; and k E S = {alpha, beta, coil}. As described in Section 2.2.9,

I then built all possible loglinear models containing all one-factor effects, and deter-

mined the likelihood ratio test statistic for each nested pair.

3.3 Results and Discussion

Table 3.2 shows the contingency tables. There are 53,037 total residues. Marginal

totals for each amino acid or amino acid group appear down the side. The three-

way table is presented in two dimensions, and so the two-dimensional margins totals

for solvent exposure and secondary structure are shown at the bottom of the tables.

Marginal totals for secondary structure and solvent exposure are given in the caption.

The residues are approximately evenly distributed between buried and exposed. 30%

of the residues are alpha; 21% are beta; 49% are coil.

In the grouped amino acid table, counts range from 930 (exposed beta hydropho-

bic) to 7008 (exposed coil polar). In the full 20 x 3 x 2 table, the counts range from

40 (Met beta exposed) to 1864 (Gly coil exposed).

3.3.1 Loglinear models
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Alpha Beta Coil
Buried Exposed Buried Exposed Buried Exposed Total

H 4,640 1,156 4,727 930 3,967 2,381 17,801
N 2,514 1,726 2,098 950 4,062 6,582 15,790
P 1,569 4,044 1,079 1,580 2,024 7,008 17,304
Total 8,723 6,926 7,904 3,460 10,053 15.971 53,037

G 404 171 528 110 1,213 1,864 4,290
P ] 45 163 123 100 740 1,223 2,494

D 224 575 172 170 462 1,536 3,139
E 283 1,027 156 329 228 1,155 3,178

A 1,243 644 587 110 896 1,036 4,516
N 211 327 163 143 457 1,165 2,466

Q 236 481 140 181 196 664 1,898

S 341 408 389 241 607 1,390 3,376
T 381 340 471 389 606 1,069 3,256
K 160 895 119 406 154 1,370 3,104
R 301 587 164 279 271 773 2,375

H 154 152 165 72 256 345 1,144

V 801 199 1,206 231 728 469 3,634
I 747 166 888 130 552 323 2,806
M 365 99 240 40 230 168 1,142

C 152 41 238 48 304 191 974

L 1,420 311 944 167 957 516 4,315
F 563 114 565 108 543 259 2,152

Y 385 172 468 162 432 361 1,980
W 207 54 178 44 221 94 798

Total 8,723 6,926 7,904 3,460 10,053 15,971 53,037

Table 3.2: Three-way
solvent exposure, and

contingency table of observed counts for amino acid group,
secondary structure. H: hydrophobic; N: Neutral; P:Polar.

Total counts for the secondary structure attribute are alpha 15,649; beta 11,364; coil
26,024. Total counts for the solvent exposure attribute are buried 26,680; exposed
26,357.
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Table 3.3: Loglinear models built from the contingency tables whose dimensions
are amino acid (grouped by hydrophobicity or ungrouped), solvent accessibility, and
secondary structure. The variables are (1) amino acid (A), (2) solvent exposure (E),
and (3) secondary structure (S). G2 is the likelihood ratio test statistic, and df is the
number of degrees of freedom. The marginal terms in each model are indicated.
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Grouped Ungrouped
Model G2 df G2 df marginal terms
[A] 19,745 15 23,998 100 A

[E] 19,756 16 33,664 118 E

[S] 13,495 15 27,404 117 S
[A][E] 19,743 14 23,996 99 A E
[A][S] 13,483 13 17,736 98 A S

[E] [S] 13,493 14 27,402 116 E S

[A][E][S] 13,481 12 17,734 97 A E S

[A][ES] 10,133 10 14,386 95 A E S ES

[AE][S] 5,040 10 7,974 78 A E S AS

[E][AS] 10,756 8 12,228 59 A E S AE

[AE][AS] 2,315 6 2,468 40 A E S AE AS
[AE] [ES] 1,692 8 4,626 76 A E S AE ES

[AS] [ES] 7,408 6 8,880 57 A E S AS ES

[AE] [AS] [ES] 157 4 306 38 A E S AE AS ES

[AES] 00 0 0 A E S AE AS ES AES



Table 3.3 describes the models built from the contingency tables. For each model, the

likelihood ratio test statistic G2, the number of degrees of freedom, and the marginal

terms of the model are shown.

Model [A][E[S] fits all three one-dimensional margins. In other words, the total

numbers of each category for A, E, and S are the same in the observed and predicted

tables; for example, Zj,k E[A][E][S](i, j, k) = Zj,k N(i,j, k) = Mi, where E(i,j, k) is

the expected value in cell (i,j, k), and N(i,j, k) is the corresponding observed count.

This model corresponds to the assumption of independence between the variables.

The expected values for [A][E][S] are:

MIMJ M iMjMk
E[A[El[S(i. , k) = M Mk N =NNN N2

where Mi is the marginal total for the i'th category of the first variable, A, and so

on.

Model [A][ES] maintains the one-dimensional margins [A], [E], and [S], and also

the two-dimensional margin [ES]. Including the two-dimensional margin means that

y E[A[ES](ij, k) = E N(i, j, k).
i i

The difference between models [A][E][S] and [A][ES] is that the latter does not assume

that margins [E] and [S] are independent. Thus by comparing these models we test

the independence of variables E and S. The difference likelihood ratio test statistics,

AG2, for two models, one a generalization of the other, is distributed as x2, with Adf

degrees of freedom, and thus we can test the null hypothesis that the two models are

equivalent.

3.3.2 Model hierarchies

Figures 3-1 and. 3-2 show the model hierarchies. The path marked with heavy arrows

shows the model sequence which explains the most variance the most quickly. The

order is different in the two cases; for the grouped amino acids, the order is (1) [AE]
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Model G2 df added AG2 %oAG2 Adf
[A][E][S] 13,481 12

[AE] [S] 5,040 10 [AE] 8,441 62.6 2

[AE] [ES] 1,692 8 [ES] 3,348 24.8 2

[AE] [ES][AS] 157 4 [AS] 1,535 11.4 4

[AES] 0 0 [AES] 157 1.2 4

Total 13,481 100.0 12

Table 3.4: Singleton model hierarchy for grouped amino acids.

(AG 2 = 8,441, Adf = 2), (2) [E]] (AG2 = 3,348, Adf = 2), (3) [AS] (AG 2 = 1,535,

Adf = 4). On the other hand, when the 20 amino acids are considered separately,

the order is (1) [AE] (AG 2 = 9.760, Adf = 19), (2) [AS] (AG 2 = 5,506, Adf = 38),

(3) [ES] (AG2 = 2,162, Adf = 2). In both cases, the most variance is explained by

the [AE] term, the association between amino acid and solvent accessibility. In each

hierarchy, each model explains significantly more observed data than the one before

it; in other words, all variable interactions are significant. Even the no-three-factor

model, [AE][AS][ES], is significantly different from the full [AES] model; thus, there

exist nonnegligeable three-way effects between A, E, and S.

Model hierarchy for 3-class amino acid representation

Table 3.4 shows more details about the model sequence which explains G2 the most

quickly, for grouped data. Only 11.4% of the total change in G2 is due to the pairwise

association between amino acid type (hydrophobicity class) and secondary structure.

It is instructive to examine the model parameters for these models. These are

shown in Table 3.5. The constraint that parameters in a set sum to 0 is easy to

see. The exact values of the lower-order parameters depend slightly on which higher-

order parameters are included in the model. The A parameter can be thought of

as representing (approximately) the log of the average cell count. To determine the

expected count, this average cell count is modified by the higher-order parameters.

The one-dimensional A parameters correspond in a natural way to the overall

ratios of each attribute value. For example, the data set is 30% alpha, 21% beta, and
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Figure 3-1: Nested model hierarchy for the three-way contingency table whose cate-
gories are amino acid class (variable 1), solvent exposure (variable 2), and secondary
structure (variable 3). Each box represents a model. The model name and likelihood
ratio statistic, G2, are listed in the box. Arrows are drawn between models related by
the addition of marginal terms. The arrows are annotated with the difference in G2
and (in italics) the added marginal terms. Heavy arrows indicate the nested hierarchy
'which explains the most variance the earliest.
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?nI;
I .. vv

I [AESI

Figure 3-2: As previous figure, except for 20 amino acid types instead of three classes.
Degrees of freedom of each model are shown at the bottom of the box.
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Table 3.5: Model parameters for singleton model sequence, grouped amino acids. The
three components to the A vector are H, N. and P. Those of the AE vector are buried
and exposed. Those of the As vector are alpha, beta, and coil. The two-dimensional
parameters are displayed with the first subscript indicating the attribute that indexes
the rows and the second subscript indicating the attribute that indexes the columns.

49% coil. The average percentage would be 33.3%. There are slightly fewer alpha

residues than expected at random, so the AS(A) parameter, -0.06, is slightly negative.

There are far more coil residues than expected at random, so the As(c) parameter,

0.45, is positive. In fact, 33% xe ° 45 = 52%, which is approximately the composition

of coil in the data set. Because the residues are approximately evenly split between

buried and exposed, the AE vector values are close to 0.0.

From the two-dimensional parameter values, we can see the interaction of at-

tributes. For example, hydrophobic residues prefer to be buried (\.4E(H,buried) = 0.54).

Buried coil residues are disfavored (ES(buried,coil) = -0.30).

Similar information about the relationship of specific attribute values can be de-

termined by looking at the ratio of the expected values of two models ill the hierarchy.

This is done in Table 3.6. Tables are collapsed only when all the values for the indi-

vidual cells are equal.

From the [AE][S]/[A][E][S] table, we can see the effect of adding the [AE] term.

Buried hydrophobes and exposed polars are favorable and can now be modeled.

In the [AE][ES]/[AE][S] table, in which the [ES] margin is added, it is apparent

that alpha and beta prefer to be buried, while coil prefers to be exposed. In the
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Model A AA AE As AAE AAS AES
[A][E][S] 7.93 0.01 0.01 -0.06

0.01 -0.01 -0.38

-0.02 0.45
[AE] [S] 7.48 -0.05 0.01 -0.06 0.54 -0.54

0.10 -0.01 -0.38 -0.04 0.04
-0.05 0.45 -0.50 0.50

[AE][ES] 7.80 -0.05 0.10 -0.03 0.54 -0.54 0.02 0.31 -0.33
0.10 -0.10 -0.43 -0.04 0.04 -0.02 -0.31 0.33

-0.05 0.46 -0.50 -.50
[AE][AS][ES] 7.79 0.02 0.09 -0.03 0.50 -0.50 -0.00 0.25 -0.25 0.04 0.25 -0.30

0.03 -0.09 -0.43 0.00 -0.00 -0.15 -0.12 0.27 -0.04 -0.25 0.30
-0.05 0.46 -0.50 0.50 0.15 -0.13 -0.02



E
A buried exposed
H 1.49 0.50
N 0.96 1.00
P 0.54 1.50

(a)

E
S buried exposed
alpha 1.10 0.89
beta 1.40 0.61
coil 0.77 1.20

(b)

E buried exposed
S alpha beta coil alpha beta coil
A
H 1.03 1.21 0.81 1.09 1.53 0.85
N 0.85 0.79 1.30 0.75 0.84 1.14
P 1.18 0.80 0.99 1.15 0.93 0.95

(c)

E buried exposed
S alpha beta coil alpha beta coil
A
H 1.03 0.99 0.98 0.90 1.04 1.04
N 1.05 1.03 0.96 0.94 0.93 1.03
P 0.87 0.97 1.16 1.06 1.02 0.96

(d)

Table 3.6: Ratios of expected values in model hierarchy. (a) [AE][S]/[A][E][S]. (b)
[AE] [ES]/[AE] [S]. (c) [AE] [AS] [ES]/[AE] [ES]. (d) [AES]/[AE][AS][ES].
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Model G2 df added AG2 %AG 2 Adf

[A] [E[S] 17,734 97
[AE][S] 7,974 78 [AE] 9,760 55.0 19

[AE][AS] 2,468 40 [AS] 5,506 31.0 38
[AE] [ES] [AS] 306 38 [ES] 2,162 12.2 2

[AES] 0 0 [AES] 306 1.7 38

Total 17,734 100.0 97

Table 3.7: Singleton model hierarchy, all 20 amino acid types.

[AE][AS][AE]/[AE][ES] table, we have added the [AS] margin. Adding the interaction

between hydrophobicity class and secondary structure class allows the representation

of favoring polar residues in alpha structure, hydrophobic residues in beta structure,

and neutral residues in coil structure. These preferences are those over and above

those which can be represented indirectly by combining the effects of the [AE] and

[ES] model terms. Finally, the three-way term [AES], when compared to the full

two-way term model, allows the expression of a preference for buried polars in coil

structure, and the disfavoring of buried polars in alpha structure as well as exposed

hydrophobes and neutrals in alpha structure, and neutrals in exposed beta structure.

Hierarchy for 20-class amino acid representation

Table 3.7 shows the best model sequence for the amino acid representation in

which all 20 amino acids are represented separately. The [AS] margin explains a

much larger percentage of G2. Note, however, that the [AS] margin has 38 degrees of

freedom, while the [ES] margin has 2; the larger number of parameters should allow a

better fit. Specializing the exposure representation might increase the relative amount

of G2 due to the [ES] margin.

3.3.3 Nonspecific vs. specific amino acid representation

Lifson and Sander compared the nonspecific (3-class) with the specific (20-class)

amino acid representations in looking at pairs of residues in beta strands [Lifson

and Sander, 1980]. I do something similar in this section. I compute expected counts
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for the specific representation based on the nonspecific representation. I then compare

these nonspecific expected counts to the observed counts. Alternatively, I examine

one particular margin by computing expected counts from the ratio of two nonspecific

models whose difference is that margin. I then compare these expected counts to the

expected counts of a specific model with the same margin.

To compute the expected specific counts based on the nonspecific counts,

E E[HESj
[AES] - E[H][E][S]

E[AES is the expected count for a cell in the specific count table. E[HES] is the

observed count for a cell in the nonspecific count table, where the specific amino acid

A belongs to hydrophobicity class H. E[H][E][S] is the expected count for a cell in the

nonspecific table, based on a model of independence. E[A][E][s] is a similar expected

count, but for the specific amino acid representation.

In general, to examine a particular margin, I use

E[Hc] E[A],E[Ac] - E[Hs]

where A indicates the specific amino acid representation, H indicates the nonspecific

amino acid representation, c indicates the more complex model (the one with the

margin of interest), and s indicates the simpler or reference model (the one without

the margin of interest).

I use the model hierarchy of Table 3.7, adding one margin at a time and looking

at AG2 and the ratio of specific counts to those predicted by the nonspecific model.

Amino acid and solvent exposure

I start with the association of amino acid and solvent exposure, which I have shown

is the strongest pairwise association among the three attributes I have examined. I

compute the expected counts using the formula described above, where the reference

models are [H][E][S] and [A][E][S], and the complex models are [HE][S] and [AE][S].

I find a X2 value of 680.4 for 95 degrees of freedom, which is statistically significant.
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Table 3.8: Ratios of specific to nonspecific expected counts for margin [AE]. The
amino acids (AA) are grouped by class (H: hydrophobic; N: neutral; P: polar). Within
each class, the amino acids are ordered by their ratios.

The ratios of predicted counts, E[AE][s]/E[AE][S], are shown in Table 3.8. Each ratio

describes the difference between the count that would be predicted based on the

nonspecific model [HE][S], and the count actually predicted by the specific model

[AE][S]. A number larger than 1.0 indicates that the nonspecific model underpredicts

that cell. Thus, for example, Tyr (Y) is more exposed than the average hydrophobic

residue. Ala (A) is more buried than the average neutral residue. The table is ordered

so that the residues which tend more toward being buried within their hydrophobicity

class appear at the top of their section.
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Class AA buried exposed
H I 1.04 0.88

F 1.04 0.89
L 1.03 0.92
W 1.01 0.96
V 1.00 0.99
M 0.98 1.07
C 0.95 1.15
Y 0.87 1.40

N A 1.25 0.77
G 1.03 0.97
T 0.93 1.07
P 0.84 1.15
S 0.82 1.17

P R 1.15 0.95
N 1.25 0.91
Q 1.12 0.96
D 1.01 1.00

E 0.78 1.08
H 0.67 1.98
K 0.52 1.18



Amino acid and secondary structure

I next add the margin [AS], to look at how the association between amino acid and

secondary structure is different for the specific amino acid representation than for the

nonspecific amino acid representation. I leave the margin [AE], as it is the strongest

effect and I want to look at [AS] without confusion from the [AE] effects. The expected

counts are computed as

=, E(HE][HS] E[AE[S].
[AE][AS] E[HE][S]

The resulting model has a y 2 of 1446.1, for 74 degrees of freedom, which is statistically

significant. Table 3.9 shows the ratios of expected counts.

Within each hydrophobicity class, some residues favor alpha or beta or coil more

than the average residue in that class. This is indicated in the table.

Solvent exposure and secondary structure

Adding the margin [ES] results in no significant change between the specific and

nonspecific models. This is what we would expect, because the margin does not

include the amino acid representation.

Three-way effect

Adding the margin [AES] gives us a model with a X2 of 84.4, with 34 degrees of

freedom, which is significant. The results are shown in Table 3.10. These are effects

that occur after all second-order interactions have been accounted for. Some of the

cells which are interesting include:

* Prefer exposed: Gly (G) coil, Trp (W) beta, His (H) alpha, Pro (P) alpha, Pro

(P) beta, and Arg (R) beta.

* Prefer buried: Gly (G) alpha, Gly (G) beta, Trp (W) coil, Ala (A) beta, and

Met (M) beta.

68



Table 3.9: Ratios of specific to nonspecific expected counts for margin [AS]. The amino
acids (AA) are grouped by class (H: hydrophobic; N: neutral; P: polar). Within each
class, the amino acids are ordered by which type of secondary structure they prefer,
relative to the rest of the hydrophobicity class.
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Class AA alpha beta coil Interpretation
H M 1.25 0.77 0.98 alpha-favoring hydrophobe
H L 1.23 0.81 0.96 alpha-favoring hydrophobe

H V 0.85 1.24 0.92 beta-favoring hydrophobe
H I 1.00 1.14 0.87 beta-favoring hydrophobe
H C 0.61 0.92 1.43 coil-favoring hydrophobe
H Y 0.86 1.00 1.12 coil-favoring hydrophobe
H W 1.00 0.88 1.11 coil-favoring hydrophobe
H F 0.97 0.98 1.05 coil-favoring hydrophobe
N A 1.77 0.91 0.72 alpha-favoring neutral

N T 0.94 1.55 0.87 beta-favoring neutral
N S 0.94 1.10 1.00 beta-favoring neutral

N P 0.52 0.53 1.33 coil-favoring neutral
N G 0.57 0.87 1.21 coil-favoring neutral
P E 1.27 0.99 0.83 alpha-favoring polar

P Q 1.16 1.10 0.87 alpha-favoring polar
P R 1.15 1.21 0.84 beta-favoring polar
P K 1.05 1.10 0.94 beta-favoring polar

P H 0.82 0.65 1.47 coil-favoring polar
P N 0.67 0.81 1.26 coil-favoring polar
P D 0.78 0.71 1.22 coil-favoring polar



Table 3.10: Ratios of specific to nonspecific expected counts for margin [AES].
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AA alpha beta coil
buried exposed buried exposed buried exposed

V 1.01 0.97 1.00 0.98 0.99 1.02
I 1.00 1.00 1.02 0.88 0.97 1.06
M 1.00 1.01 1.03 0.84 0.96 1.07

C 1.00 1.01 1.00 0.99 1.01 0.98

L 1.00 0.99 0.99 1.04 1.00 1.01

F 1.00 0.96 0.98 1.16 1.03 0.96
Y 0.98 1.09 0.97 1.10 1.07 0.92
W 0.97 1.12 0.94 1.35 1.09 0.84
G 1.11 0.80 1.13 0.63 0.94 1.05
P 0.85 1.19 0.84 1.32 1.10 0.94
A 0.95 1.07 1.08 0.69 0.98 1.03
S 0.92 1.10 1.02 0.98 1.03 0.98
T 1.00 1.01 0.86 1.26 1.12 0.94
D 0.93 1.04 1.14 0.89 0.94 1.01
E 1.03 0.97 1.00 0.99 1.04 1.01
N 1.06 0.99 1.03 0.99 0.90 1.02
Q 1.10 0.96 1.00 1.01 0.94 1.01

K 1.07 0.95 1.00 0.99 0.97 1.03
R 1.12 0.96 0.83 1.14 1.05 0.98
H 0.86 1.29 1.04 0.90 1.09 0.92



3.4 Conclusions

3.4.1 Solvent exposure is of primary importance

The association of amino acid with solvent exposure by hydrophobicity is a stronger

effect than the association of amino acid with secondary structure. This has a number

of implications for structure prediction algorithms.

One of the hopes for secondary structure prediction has been that it might serve as

a stepping-stone to tertiary structure determination. These results suggest that, given

a choice, it might make sense to use solvent exposure rather than alpha/beta/coil as

an intermediate representation in tertiary structure predictions.

The results also confirm that it is a good idea to use solvent accessibility preference

in prediction methods. Currently most inverse folding or threading tertiary structure

prediction methods do use solvent accessibility in their pseudopotential functions.

However there are some, notably those that focus on pairwise potentials, that do not

explicitly take solvent accessibility into account.

3.4.2 Grouping residues by hydrophobicity class

There are a number of reasons to generalize the representation of amino acid type.

Here I reduced the attribute size from 20 values to three values, grouping the amino

acids by their hydrophobicity. This technique might be useful as a means toward

reducing the complexity of a knowledge representation for proteins, particularly if

there were a number of other attributes. In addition. it is useful to see how the

grouping affects the statistical results.

Not surprisingly, hydrophobicity class is much more strongly correlated with sol-

vent exposure than with secondary structure.

I looked at the association between attributes that were due to the specific rep-

resentation of amino acids (all 20 amino acids in their own class), over and above

that due to the nonspecific representation (three groups). The association between

amino acid type and secondary structure in particular is improved by the specific
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representation.

3.4.3 Attribute preferences

By looking at the ratios of the expected values from related models or at the model

parameters, it is possible to determine the preferences and relationships between the

different attributes. Thus I have numerical values for the preferences of the various

amino acid types for being buried or exposed, or in a given type of secondary structure.

This information can be determined in the context of other attribute relationships.

The preferences can be used in a variety of ways in prediction algorithms.
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Chapter 4

Paired-Residue Statistics

4.1 Introduction

In Chapter 3, I analyzed the attributes amino acid type, secondary structure, and

solvent exposure of residues in proteins. In this chapter, I use contingency table

analysis to ask questions about pairs of residues. The questions include the following:

* What effects do solvent exposure and secondary structure have on amino acid

pairing?

* Is there specific residue pairing over and above pairing of amino acids by hy-

drophobicity class?

* What is the relative importance of paired-residue and single-residue attribute

associations? Single-residue associations are those between attributes of a sin-

gle residue. Paired-residue associations are those between attributes of two

residues. This question is relevant to the design of pseudopotential functions

for threading methods of predicting protein structure.

* How does sample size affect the results?

* How can we improve the efficacy of pairwise terms in threading pseudopoten-

tials?
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I analyze counts for all pairs of residues in each of a set of proteins, taking into

consideration the secondary structure, solvent exposure and hydrophobicity of each

residue, as well as whether the side chains are in contact.

4.2 Methods

In this section, I describe the data used and the residue attributes for the contingency

table.

4.2.1 Data

I used two different data sets. The first is listed in Appendix section B.2.4; this is a

set of 49 nonhomologous and monomeric proteins.

The second data set has 248 proteins. These are the 252 listed in Appendix

section B.2.2 (and used in Chapter 3), with a few changes due to the unavailability

of some of the PDB files. The following four proteins on the list were not used: lgrd,

Ilig, lmrm, and lpde. In addition the following eight substitutions were made (due

to the unavailability of old PDB files): 2aai for laai, 2bop for lbop, 2cas for Icas,

3cox for cox 2cpl for lcpl, 2sas for sas, 3sdh for lsdh, and 2tmd for 2tmd.

I used the smaller set first, and then the larger set, to look at the effect of sample

size.

Structure files from the Protein Data Bank [Bernstein et al., 1977, Abola et al.,

1987] were used to compute sidechain contact. Secondary structure and solvent ex-

posure information was obtained from the DSSP files of Kabsch and Sander [Kabsch

and Sander, 1983].

4.2.2 Representational attributes

I used three singleton attributes (amino acid type, solvent exposure, and secondary

structure type) and one pairwise attribute (residue contact). The contingency table

contains counts of residue pairs. Each pair has seven attributes: two sets of singleton
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Table 4.1: Amino acid classification into three hydrophobicity classes.

attributes plus one pairwise attribute. For analysis, I split the contingency table into

two separate six-dimensional marginal count tables, one for residue pairs in contact

and the other for residue pairs which are not in contact.

The non-contacting side chains function as a control group; I expected analysis of

these to show random association between pairs.

Amino acid type

As in chapter 3, 1 built separate contingency tables for each of two representations of

the amino acid type. The attributes are Al for the first residue in the pair and A2 for

the second residue. In the first representation. each of the 20 amino acid types was

its own class. n the second representation, the amino acids were grouped into three

classes by their hydrophobicity as shown in Table 4.1.

Solvent exposure

I computed relative exposure for each residue, El and E2, by dividing the "ACC"

accessibility number (as defined by Kabsch and Sander) by the maximum accessibility

for that residue type (see Section B.3). Residues with less than 20% relative exposure

were considered buried; the others exposed.

Secondary structure

I used Kabsch and Sander's secondary structure assignments to determine the sec-

ondary structure attribute of each residue (alpha = "H"; beta = "E"; coil = anything

else) [Kabsch and Sander, 1983]. I call these attributes S for the first residue and

S2 for the second residue.
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Class Residues
Hydrophobic VLIFYWMC
Neutral TSAGP
Polar KRDNHEQ



Side-chain contact

The closest distance between two residues was computed by examining all their non-

hydrogen atoms. Backbone atoms (except the alpha carbon) were also excluded from

this computation). Atoms were deemed to be in contact if the closest distance from

one to the other was less than the sum of their expanded radii plus 0.1 Angstrom.

Radii for the atoms are listed in section B.4.

4.3 Results and Discussion

I first present an analysis of the non-contacting pairs in the set of proteins. Then I

present the results for the contacting pairs, and perform analyses to try to answer

the questions I set forth in the introduction.

There were 1,833,584 non-contacting pairs and 15,582 contacting pairs in the

smaller data set of 49 proteins.

There were 250,174 contacting pairs, and 15,979,682 noncontacting pairs in the

larger data set of 248 proteins.

4.3.1 Non-contacting pairs

This analysis was done as a control to test for the presence of apparent association

between amino acid residues which are not in contact in the protein. I expected to

see no correlation between attributes of pairs that were not in contact. Therefore,

the degree of apparent correlation should give me an idea of the amount of "noise"

in the tables. This is a more reliable baseline than relying solely on the statistical

significance tests. Each amino acid in the pair is classified according to its amino acid

type, secondary structure, and solvent accessibility. I first discuss the two-dimensional

margin tables, and then perform contingency table analysis on the full six-dimensional

table.
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hydrophobic
neutral
polar
alpha
beta
coil

Exposure
buried exposed

4,085,263 1,263.441
2,758,821 2,632,682
1,536,064 3,703,411
2,821,091 2,062,943
2,298,876 941,275
3,260,181 4,595,316

Secondary Structure
alpha beta coil

1,814,539 1,609,681 1,924,484
1,323,221 867,314 3,200,968
1,746,274 763,156 2,730,045

Table 4.2: Non-contacting pair marginal counts: singleton terms. All three two-
dimensional tables show significant nonrandom association ([AE]: G2 = 2,455,692
with 2 degrees of freedom, [AS]: G2 = 790,047 with 4 degrees of freedom, [ES]:
G2 = 894. 805 with 2 degrees of freedom).

hydrophobic
neutral
polar
alpha
beta
coil

Exposure
buried exposed

1.46 0.50
0.98 1.00
0.56 1.50

1.10 0.89
1.35 0.61
0.79 1.23

Secondary Structure
alpha beta coil

1.10 1.48 0.73
0.80 0.79 1.21
1.10 0.72 1.06

Table 4.3: Non-contacting pair observed to expected: singleton terms. Expected
counts were generated by the model of independence between attributes.

Two-dimensional tables of margins

The six-dimensional contingency table can be bewildering. I will start by looking at

more comprehensible pieces of it. In this section I'll describe the nine two-dimensional

tables of marginal totals. Three of the tables are about singleton attributes; three

describe paired residues' same attribute; and three describe paired residues' different

attributes.

:Table 4.2 shows the three two-dimensional margin count tables that correspond

to the singleton terms (association of a residue's amino acid type with its own sec-

ondary structure and solvent exposure). As we know from the previous chapter, these

attributes are related. And in fact, all of these tables show significant non-random

association (see the caption to Table 4.2).

Table 4.3 shows the ratios of observed to predicted values for the three single-

ton margins. These should correspond roughly to the singleton ratios computed in
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[A 1 A 2] H N P H N P

H 1,777,104 1,805,531 1,766,069 0.99 1.00 1.01
N 1,805,531 1,842,512 1,743,460 1.00 1.01 0.99
P 1,766,069 1,743,460 1,729,946 1.01 0.99 1.01

[E1E2] buried exposed buried exposed
buried 4,465,212 3,914,936 1.02 0.98
exposed 3,914,936 3,684,598 0.98 1.02

[S1S2] alpha beta coil alpha beta coil
alpha 1,888,282 747,618 2,248,134 1.26 0.75 0.94
beta 747,618 855,348 1,637,185 0.75 1.30 1.03
coil 2,248,134 1,637,185 3,970,178 0.94 1.03 1.03

Table 4.4: Non-contacting pair marginal counts: partner's same attribute. [S1S2]
shows a strong dependency between secondary structure types of non-contacting
residues. ([AIA 2]: G2 = 1,329 with 4 degrees of freedom, [E1E2]: G2 = 4,993
with 1 degree of freedom, [S1S2]: G2 = 306,659 with 2 degrees of freedom).

Chapter 3 (Table 3.6), and they do.

Three of the marginal count tables summarize the association between a residue's

attribute and the same attribute of the residue's partner (Table 4.4). For example,

one table, [A1A2] describes the co-occurrence of amino acid types of the two paired

residues. I expected that these attributes would be independent.

While all the tables show significant nonrandom association by the G2 test, this

association is orders of magnitude higher for the association between secondary struc-

tures than for the association between amino acid types or between solvent accessibil-

ities. Because I am expecting that there should be no significant association between

amino acid type or solvent exposure of non-contacting residues, I interpret this data

as giving a significance baseline for the G2 values: G2 = 1329 with four degrees of

freedom is not significant in this application; G2 = 306, 659 with two degrees of free-

dom is. There is a very high number of counts, and this results in an unexpectedly

large G2 value for all tables.

Why is there signficant association between secondary structure types of non-

contacting residues? There is a clear tendency for alpha to associate with alpha, and

beta with beta. Alpha and beta prefer not to be associated. The answer is that

there are many proteins which have alpha structure or beta structure but not both,
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[A1E2] buried2 exposed2 buried2 exposed2
hydrophobicl 2,788,861 2,559,843 0.99 1.01
neutrall 2,828,106 2,563,397 1.00 1.00
polarl 2,763,181 2,476,294 1.01 0.99

[Al S2] alpha2 beta2 coil2 alpha2 beta2 coil2
hydrophobicl 1,637,813 1,073,760 2,637,131 1.00 0.99 1.00
neutrall 1,613,664 1,117,063 2,660,776 0.98 1.02 1.00
polar1 1,632,557 1,049,328 2,557,590 1.02 0.99 0.99

[SlE 2] buried2 exposed2 buried2 exposed2
alpha2 2,605,812 2,278,222 1.02 0.98
beta2 1,650,175 1,589,976 0.97 1.03
coil2 4,124,161 3,731,336 1.00 1.00

Table 4.5: Non-contacting pair marginal counts and ratios of observed to expected
counts: partner's different attribute. ([AiE2]: G2 = 379 with 2 degrees of freedom,
[AiS 2]: G2 = 2,298 with 4 degrees of freedom, [SiE 2j: G2 = 4,611 with 2 degrees of
freedom).

Al E1 S 1 A 2 E2 S2

Al 2,455,692 790,047 1,329 379 2,298
El 894,805 4,993 4,611
S1 1306,659

Table 4.6: Summary of G2 values for the nine two-dimensional tables.

or perhaps predominantly one type of secondary structure. In these proteins, there

will be no pairs, regardless of sidechain contact, which are alpha/beta combinations.

The remaining three two-dimensional marginal count tables describe association

between a residue's attribute and a different attribute of the residue's partner in a

non-contacting pair. Using the G2 significance values determined from Table 4.5,

these counts do not show significant association between different attributes of the

partner.

The G2 values for the nine tables are summarized in Table 4.6. Whether or not

association exists is indicated more reliably by the relative sizes of the G2 values, not

their absolute values.
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Model Added terms G2 df AG 2 % /G 2 Adf

M [Al][A 2] [El] [E2] [[S 2] 8,137,425 313

A [AlE][E 2 A2] 3,226,037 309 4911388 61.8 4

B [E1 Sl ][E 2S 2] 1,436,426 305 1789611 22.5 4

C [A1S1][A2S2] 500,139 297 936287 11.8 8
D [S1S2] 193,481 293 306658 3.9 4

E [ElE 2] 189,082 289 4399 0.1 4

F [A1A 2] 187,347 288 1735 0.0 1
total 7950078 100.0 25

Table 4.7: A hierarchy of models testing pairwise independence of non-contacting
residue pairs. At each step, the two-dimensional margin resulting in the largest AG2

was added.

Full six-dimensional contingency table analysis

An analysis using the full six-dimensional contingency table of non-contacting pairs

confirms the observations made from the two-dimensional margin tables.

The nomenclature of the models is as follows. Margins are represented in the

model names by enclosing their attribute names in brackets. "[A1ElSl]" in the model

name indicates that margin [AiE1 Sl] and all its subsidiary margins ([A1E1], [A1S1],

[ElSj], [Al], [El], and [Si]) are in the model. I refer to the independence model,

[Al][A2][El][E2][Sl][S2], as M. Some models are named relative to M; in other words,

I call them "M+[.]", where the additional margins are listed after the plus sign.

Table 4.7 shows a series of models of the six-dimensional contingency table. These

models are hierarchical: they were chosen by adding, from one to another in the

series, the two-dimensional margin that explains the most difference between the

expected and observed data. Only the six margins corresponding to singleton and

same-attribute correlations were considered. By comparing each model to the previ-

ous one, we get an idea of the strength of association between the two variables in

the added margin in the context of the associations already made. For each model, I

report the likelihood ratio test statistic G2, the number of degrees of freedom ("df"),

the change AG2 from one model to the next, the percent change %/5G2 over the

whole series, and the change Adf in degrees of freedom.

The singleton terms ([AE], [ES], and [AS] for a single residue) have the greatest
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effect. The interactions between residues are significant according to the likelihood

ratio statistical test, but (with the exception of [S1S2]) explain four orders of magni-

tude less of the variance than same-residue terms. Thus I consider the inter-residue

interactions to be negligible, except for [S1S2]. Clearly, there is some correlation

between the secondary structures of non-contacting residues.

To explain the nonrandom association between secondary structures of non-con-

tacting residues, consider the ratios between the observed [S1S2] marginal counts and

the expected countsshown in Table 4.4. Note that expected counts for coil are about

the same as the observed counts. However, these ratios clearly show that there are

fewer alpha-beta pairs and more alpha-alpha and beta-beta pairs than expected in

the database. This is just what we'd expect given that some proteins are all-alpha or

all-beta.

The model [AiA2E1E2S1][A2A2E1E2S 1] corresponds to the expected values used

in some pseudopotentials to compute the pairwise preferences. The only residue

attributes that it assumes are independent are the amino acid types for the two

residues (and higher-order margins involving both Al and A2). The G2 statistic for

the expected table of counts computed from model [A1A2E1E2S1][A2A2E1E2S 1] is

4844, with 144 degrees of freedom. Compared to the observed table of counts, this is

statistically significant, though it is four orders of magnitude less than the G2 model

M (one-dimensional margins). I do not expect any correlation for residues which are

not in contact. That there exists apparent numerical significance should act as a

caution in interpreting the numbers for pairwise correlation of contacting residues!

4.3.2 Contacting pairs; residues grouped into three classes

I now turn to the analysis of pairs of residues that are in contact in the three-

dimensional protein structures.

Pairwise dependencies among residue attributes

In this section, I look at pairwise dependencies among residue attributes. This cor-

responds to the analysis of the nine two-dimensional tables of marginal totals that
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Model G2 df GM-G2 dfM-df
M 238,712 313 0 0

Environment
M+[S 1S2] 166,387 309 72,324 4
M+[EiE 2] 205,607 312 33,105 1
M+[E1 S1][E 2S 2] 212,521 309 26,191 4
M+[ElS 2][E2S,] 228,113 309 10,599 4

Singleton
M+[AE 1 ][A 2E 2] 165,004 309 73,708 4
M+[A 1S1][A 2S 2] 210,931 305 27,781 8

Pseudo-singleton
M+[AlE 2 ][A 2E 1] 217,457 309 21,255 4
M+[AlS 2][A 2S1] 225,349 305 13,363 8

Pairwise
M+[AlA 2] 228,071 309 10,641 4

Table 4.8: Models of pairwise dependence for amino acids grouped by hydrophobicity.
For each model, the G2 and df numbers are compared with those of the independence
model M.

I performed for the non-contacting pairs in Section 4.3.1. Here, however, I will do

a similar analysis using loglinear models built on the full contingency table. The

idea is to have the independence model as a reference, and then to add to it two-

dimensional margins corresponding to each pairwise dependency. This way we can see

the apparent interaction of each pair of attributes in the absence of other higher-order

interactions.

The models built for contacting pairs are listed in table 4.8. For each model, I

give the likelihood ratio test statistic G2, and the number of degrees of freedom in

the model. In addition, the difference in G2 between each model and the first model,

M, is given. The meaning of the comparison between each model and M is listed in

the right-hand column. The models are grouped according to the types of interaction

that they add to the pairwise independence model (M).

By looking at G- G2, and taking into consideration the difference in the number

of degrees of freedom between each model and model M, we can get a glimpse of the

strength of the association between residue attributes in the pair. As with the non-
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Table 4.9: Names of models corresponding to pseudopotential functions.

Model G2 df AG2 % AG2 Adf
BASE 104,509 284
SING 11,703 264 92,806 88.8 20
PSING 3,728 144 7,975 7.6 120
FULL 0 0 3,728 3.6 144
total 104,509 100.0 284

Table 4.10: Models related to the threading score functions. Computed by grouping
amino acids into three groups (hydrophobic, neutral, polar).

contacting pairs, there is strong association between attributes of a single residue.

There is also strong association between secondary structure types, reflecting the

tendency for many proteins to contain predominantly helix or strand. In contacting

pairs, there also appears to be significant dependency between the environments of

the residues. There is also significant interaction between amino acid type of one

residue and the environment of the other residue. And finally, there is some significant

pairwise interaction between the amino acid types themselves.

Some of the pairwise dependence between variables might also be explained by

other interactions. Given my interest in threading pseudopotentials, I built hierar-

chies of models to correspond to the parts of a typical pseudopotential and analyzed

the incremental reduction in G2 at each stage in order to determine the relative

importance of each part.

Model hierarchy corresponding to pseudopotentials

In this section I describe a model hierarchy built to correspond to the singleton

and pairwise terms in a pseudopotential function. Table 4.9 lists the names of the

models, and their marginal components. Table 4.10 contains a model series built from

the six-way contingency table, in which amino acid type is one of three groups.
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Name Model
BASE [Al] [A2] [EiE 2 S 1 S2]

SING [ElE 2SlS 2] [AEl S1] [A2E 2S 2]
PSING [A1EiE 2S1S2][A2E1E 2 S1S2]
FULL [A 1 A2E 1 E 2 S1S2]



Model BASE is the base case. It includes all interactions between structure envi-

ronment attributes (secondary structure and solvent exposure) for the two contacting

residues. It assumes that amino acid type is independent, both between residues, and

from the environment.

The next model in the hierarchy is SING. This model incorporates the singleton

margins [A1E1Sl], [A2E2S2], and all subsets of these. These correspond to the single-

ton terms in a pseudopotential. The ratio of expected counts from model SING to

those from model BASE is closely related to the ratio of observed singleton counts to

singleton counts predicted by the assumption of random association. This last ratio

is the one used to define the pseudopotentials. These singleton terms account for

88.8% of the G2 statistic.

Next is model PSING. At this stage we are adding five-dimensional margins

[AiE 1E 2S1S2], [A2E1E2 SIS2] and margins corresponding to all subsets thereof, most

notably [AiE2S 2] and [A2E1 S1]. These represent the interactions of an amino acid type

with the environment of the residue with which it is in contact. Thus adding these

terms corresponds to pseudopotential terms representing the association of amino

acid type and partner's secondary structure and solvent exposure. These terms ac-

count for 7.6% of the G2 statistic, for this case of grouping amino acids into three

types.

Most pseudopotentials that consider information about residue pairs do not take

into account the association of an amino acid with its neighbor's structure type. On

the other hand, Ouzonis and colleagues consider the neighbor's secondary structure,

but not the amino acid type [Ouzounis et al., 1993].

Finally, the full model corresponds to the observed data. Comparing this model

to the previous model. the added terms are those corresponding to pairwise interac-

tions of the amino acid types. Only 3.6% of the G2 statistic is explained by these

interactions. The pairwise potential function used in several threading methods is

computed by taking the ratio of the observed counts (full model) to those predicted

by model PSING, although researchers generally don't group the amino acids.
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Model G2 df G2M-G2 dfM-df
M 304,998 14,355 0 0

Environment
M+[SS 2] 232,673 14,351 72,325 4
M+[E 1 E 2] 271,893 14,354 33,105 1
M+[ES][E 2S 2] 278,806 14,,351 26,192 4
M+[E1 S 2][E2S1 ] 294,399 14351 10,599 4

Singleton
M+[A 1 E][A 2E 2] 217,419 14,317 87,580 38
M+[A1 S1][A 2S 2] 254,655 14,279 50,343 76

Pseudo-singleton
M+[AiE 2][A 2E1 ] 280,085 14,317 24,913 38
M+[AlS 2][A 2 Sl] 284,866 14,279 20,133 76

Pairwise
M+[AlA 2] 283,969 13,994 21,029 361

Table 4.11: Models of pairwise dependence for 20 amino acid types. All nine two-
dimensional margins are added to the independence model M.

4.3.3 Contacting residues; all twenty amino acids

Now I turn to the case where the amino acid attribute of each residue has 20 categories.

Pairwise dependencies between residue attributes

Table 4.11 shows models of pairwise dependence between residue attributes. Again

we see significant pairwise relationships between all nine pairs of attributes.

Model hierarchy corresponding to pseudopotentials

In this section I build a model hierarchy identical to that built in the previous section,

but for all 20 amino acids separated into their own classes.

The singleton terms explain 75.8% of the G2 statistic; amino acid type and part-

ner's environment explain 8.6%; and pairwise amino acid type terms explain 15.7%.

I compared this model hierarchy to one generated by a different, smaller data

set of 49 proteins. The results are shown in Table 4.13. For the smaller data set,

the pairwise terms appear to account for about half of the information as measured

85



Model G2 df AG2 % G2 Adf
BASE 170,795 14,326
SING 41,353 14,136 129,442 75.8 190
PSING 26,737 12,996 14,616 8.6 1140
FULL 0 0 26,737 15.7 12,996
total 170,795 100.0 14,326

Table 4.12: Models related to the threading score function. Computed with 20 amino
acid types.

by AG2 . This is consistent with the results of Bryant and Lawrence [Bryant and

Lawrence, 1993]. Bryant and Lawrence use 161 proteins in their loglinear analysis.

They classify the residues by their amino acid type (20 classes) and the distance

between the side-chains (six classes). They find that singleton terms account for

about two-thirds of the apparent specificity in pairwise residue interactions, with

pairwise terms accounting for the remaining one-third. They do not directly consider

structural parameters such as solvent exposure and secondary structure, but they do

consider the distance between residues in a pair.

The relative importance of the pairwise appears much larger in the smaller data

set. This might shed light on one problem with estimates of the relative importance

of pairwise and singleton terms: it is important to use enough data, and/or a simple

enough structure representation.

There are indications in the inverse folding approach to protein structure pre-

diction that single-residue terms are doing most of the work in identifying correct

matches between sequence and structure. Interestingly, much work has been put into

developing threading algorithms that can handle pairwise and higher interactions.

It is possible that the inability of pairwise interactions to improve threading results

might reflect the overriding singleton effect of hydrophobic collapse. Hydrophobic

collapse, in which local sequence hydrophobicity is the major player, is the driving

force for defining the overall fold of the protein. Interactions between specific residues

would then be responsible for fixing the configuration, but not making gross changes

in topology.
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248 proteins
3 groups 20 groups 20 groups

padded
SING 88.8 75.8 72.7
PSING 7.6 8.6 12.6
FULL 3.6 15.7 14.7

49 proteins
3 groups 20 groups 20 groups

padded
SING 89.5 58.0 49.8
PSING 7.8 9.2 22.8
FULL 2.6 32.8 27.4

Table 4.13: %AG2 relative to the BASE model for two protein sets.

On the other hand, it could be that other aspects of the threading methods are

responsible for the failure to take advantage of structure-determining pairwise inter-

actions. Either the structure representation or the pseudopotential functions could

be at fault. Myv results indicate that low sample size could be part of the problem.

'To ameliorate low sample size problems, it is common practice to pad the observed

counts i some way. One option is to add a constant offset to each cell (see also

Section 8.1.3). I did this to my table of counts and built the same hierarchy of

models; the results are summarized in Table 4.13. For the smaller protein set, there

is a dramatic increase in the importance of the terms relating amino acid type to the

neighbor's environment.

4.4 Conclusions

Only 15.7% of the nonrandom association of pairs (assuming a complete description

of the pair environment) is explained by correlation between amino acids. Clearly

singleton terms are much more important than pairwise terms. This explains the

failure of many threading pseudo-potential functions to show much improvement when

pairwise terms are added to the singleton terms.
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8.6% of the nonrandom association of pairs can be explained by association of

amino acid type with the other residue's environment. In a sense this is a "pseudo-

singleton" term; the environments of the partners are constant in threading, a function

of the structural model. This suggests that some improvement in performance might

be obtained by expanding the singleton environment description to incorporate the

environments of neighboring positions. An optimal solution to the threading problem

could be found with dynamic programming, because we're dealing with singleton

terms only.

Sample size is a problem when looking at pairwise data, especially with a repre-

sentation of a complexity that I use (20 amino acid types, three secondary structure

types, and two solvent exposure types). The more proteins that are used in deriving

the counts, the better.

From the non-contacting pairs results, it appears that statistical tests about associ-

ation between residue attributes must be taken with a grain of salt; using information

about the relative sizes of measures of fit is a more meaningful approach.
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Chapter 5

Distinguishing Parallel from

Antiparallel

5.1 Summary

In 1979 Lifson and Sander wrote [Lifson and Sander, 1979],

"As more protein structure data become available, further distinctions of

secondary structure elements according to the type of tertiary contacts

should be made. For example, one can distinguish different hydrogen-

bonding positions in beta-sheets, solvent-exposed and interior faces of

sheets or helices. segments in tertiary contact with sheets compared with

those in contact with helices. Such distinctions are likely to lead to more

clearcut statistical preferences, and also serve as as starting point for

predicting tertiary structure."

In this chapter I consider a finer classification than alpha/beta/coil by dividing the

beta, class into parallel and antiparallel. I have evidence that this division results in a

more useful representation: Lifson and Sander found that the amino acid compositions

of parallel and antiparallel beta sheets were quite different [Lifson and Sander, 1979].

This observation led to the suggestion that parallel and antiparallel conformations be

distinguished in structure prediction methods. Here, I begin by updating the Lifson
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and Sander analysis for a larger set of proteins. I find qualitatively similar results,

including a difference between the amino acid composition of parallel and antiparallel

beta sheets.

However, I then ask whether this difference in composition might be due to a

difference in solvent exposure of parallel and antiparallel beta sheets. I observe that

the compositions of buried beta strands is different than that of exposed beta strands.

The difference between parallel and antiparallel structure remains strong when looking

only at buried structure; in particular, the beta-branched residues Val and Ile show

some preference for parallel over antiparallel beta structure. There are also differences

between buried and exposed parallel beta strands, and between buried and exposed

antiparallel beta strands.

Looking at frequencies of occurrence and their ratios does not tell us the relative

importance of strand direction and solvent exposure, nor the degree to which they

are dependent. To answer these questions, and to handle the effects of different total

counts of parallel, antiparallel, exposed, and buried residues, I turn to contingency

table analysis using loglinear models. I consider a coarser classification of amino acid,

into three groups. Such a classification guarantees enough counts for statistical sig-

nificance analysis, and allows finer divisions of other local structure descriptors. I

find that the partitioning of hydrophobic residues to the interior is the most domi-

nant effect. Moreover, the tendency for parallel sheets to be buried explains much

more variance than the partitioning of residue types between different parallel and

antiparallel beta sheet structure.

To support this work, I have written a computer program that computes beta

pair counts and statistics for any set of proteins. This program is potentially useful

for structure prediction algorithms employing empirically-derived parameters, partic-

ularly for cross-validation of these methods.
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Figure 5-1: Schematic diagram of topological relationships in parallel strands. Lines
are draw connecting C, atoms. Circles represent side chains. Dashed lines represent
hydrogen bonds. Residues i and j are beta pairs (); residues i and j + 2 are diagonal
pairs (); residues i and i + 2 are -structure.

5.2 Methods

5.2.1 Protein data

I used the Kabsch and Sander DSSP files for secondary structure and solvent acces-

sibility information [Kabsch and Sander, 1983].

In the sections reviewing the Lifson and Sander results, 102 proteins from the

Brookhaven database were used, as listed in Appendix B (subunits are indicated

where appropriate as the last letter of the name). These are the proteins used by Jones

and colleagues in their work on threading [Jones et al., 1992], and are nonhomologous

and well-refined.

In the contingency table analysis section, I used proteins from the pdbselect list

distributed by EMBL [Hobohm et al., 1992]. There are 252 proteins in this list for

which DSSP and PDB files are available.

5.2.2 Definition of secondary structure, and topological re-

lationships.

Secondary structure is as defined by Kabsch and Sander, for their DSSP program

[Kabsch and Sander, 1983].

I am particularly interested in three same-sheet topological relationships between

core element positions, illustrated in figure 5-1.

1. Beta pairs. My definition of a beta pair is the two central residues in a bridge (for

91



a definition of bridge, see Section 2.1.1). I refer to this structure throughout this

thesis as d-structure. Antiparallel beta pairs are designated by /A, and parallel

beta pairs by 3p. A beta pair is similar to what Lifson and Sander [Lifson and

Sander, 1980] refer to as a "residue contact." For comparison, their three-part

definition of two residues on adjacent beta strands that are in contact is:

* The alpha carbons must be less than 7 angstroms apart.

* The Ca-Cb vectors must not be more than 90 degrees different; this ensures

that the side chains are on the same side of the sheet.

* The hydrogen bond donors and acceptors must be either both pointing at

each other or both pointing away from each other; this requirement selects

for the canonical beta-structure hydrogen bonding pattern.

2. Diagonal pairs (-structure).

If (i,j) and (i + 2,j + 2) are both p pairs, then (i,j + 2) and (i + 2,j) are

diagonal pairs (denoted by p). If (i,j) and (i + 2,j - 2) are OA, then (i,j - 2)

and (i + 2,j) are A

3. i, i + 2 pairs (y-structure). Residues i and i + 2 are in a beta strand.

5.2.3 Counting and statistics.

Following Lifson and Sander [Lifson and Sander, 1979], I count pair members rather

than residues in deriving the single residue frequencies. Thus residues on the edge

of a sheet (participating in only one beta pair) are counted once, and residues in the

interior of a sheet (participating in two beta pairs) are counted twice.

For each of the three topological relationships of interest, I count Nij, the number

of occurrences of each pair of residues i, j. I do not distinguish here between the two

residues in a pair, and so the counts are symmetric (Nij = Nji).

Counts may be filtered in several ways.

* Strand pair direction. Beta pairs and diagonal pairs are either antiparallel or

parallel. This is not relevant for i, i + 2 pairs, as they are on the same strand.
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* Surface accessibility, as defined by the DSSP program [Kabsch and Sander,

1983], may be used to consider only residues whose surface accessibility is more

or less than a given threshold (30% of maximum accessibility in this chapter).

I use the superscript buried to indicate a count or frequency using only buried

residues. For example, /buried denotes antiparallel buried beta pair structure.

* Sheet position. Beta-sheet positions are either "edge" (participating in only

one beta pair) or "interior" (participating in two beta pairs). /ledge and interior

correspond to edge and interior structure.

* Contact. Residue pairs are either in contact or not (for definition of contact,

see below). touching represents beta pairs in contact.

I count N/, the number of beta pairs composed of residues of type i and type j.

Nj and N. are similarly defined. The total number of beta pair contacts made by

residues of type i is

N = Ale + ENS
3.

The total number of beta pair contacts is

NP = A N?.

Lifson and Sander compute the conformational preference of a given amino acid

residue as a ratio of its frequency in a beta structure to its global frequency. From

the beta pair contact counts, I compute conformational preference of residue type i

for a structure, say antiparallel sheet ,/A, as

fPA
Ci ObaC/ = fglobal '

where fglobal is the ratio of the number of occurrences of residue type i in the database

to the total number of residues in the database. Note that Lifson and Sander use a

frequency computed by Feldman [Feldman, 1976] for the global frequency, whereas I

compute global frequency directly from my test set of proteins.
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Lifson and Sander use the conformational preferences to define classes of amino

acids based on their beta sheet propensities. A residue i is defined as a "sheet makers"

if Ci > 1.5. Sheet breakers have Ci < 1/1.5.

5.2.4 Contingency table analysis

A contingency table analysis using loglinear models was performed to determine the

relative importance of amino acid group, strand direction, and solvent accessibility.

This approach looks at the difference in error (as measured by the likelihood test

statistic G2, which has a X2 distribution) between nested models, to determine how

much of the error is accounted for by which terms. Each pair of models differs by

the inclusion or exclusion of one marginal term. Each marginal term corresponds

to a set of variables; the absence of a term in a model indicates an assumption of

independence among those variables. Thus loglinear analysis tests for the presence

and the strength of conditional dependence among variables in the model, as well as

the power of each of the variables and combinations thereof to explain the observed

data.

5.3 Results and Discussion

5.3.1 Amino acid compositions of parallel and antiparallel

beta structure

The total number of residues, beta residue, and beta pairs is shown in table 5.1.

Beta residues make up 3967/19789 = 20% of the residues in the data set. The

Kabsch and Sander definition of beta residue is fairly stringent compared to other

definitions. There are more singly (sheet-edge) paired residues than doubly paired

residues. There are some beta residues that are not beta-paired; these are residues in

the middle of strands that are part of the strand but not paired. Most of them are

beta bulges.

I repeated the Lifson and Sander work, using a different (and larger) set of proteins
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Table 5.1: Summary of beta pair counts.

and a different definition of beta strand. My results are qualitatively similar to theirs.

Table 5.2 lists the counts and frequencies (count for an amino acid divided by the

total number of counts) for all residues, and those found in parallel, antiparallel, and

any beta structure. I find, as do Lifson and Sander, that Val. Ile and Leu dominate

beta structure, particularly in parallel sheets. I find approximately twice as many

antiparallel beta pairs as parallel ones; Lifson and Sander found a ratio of three to

one.

The frequencies that differ from those found by Lifson and Sander by more than

one percentage point are listed in Table 5.3. I find Ile and Leu more frequently in

parallel sheet structures than do Lifson and Sander; this is probably due to my more

stringent definition of beta sheet structure. I tend to leave out some of the residues

at the periphery of the Lifson and Sander sheets. This also explains the apparent

decrease in occurrence of Ala, Ser. and Thr in antiparallel sheets.

Can we make sense of the observed frequencies of occurrence'? Chothia and Janin

[Chothia and Janin, 1982] ascribe the prevalence of Val, Ile and Leu in /3 structure to

the fact that their branched side chains are capable of forming a "smooth, well-packed

surface on the /4 sheets." Finkelstein and Nakamura [Finkelstein and Nakamura, 1993]

suggest that aromatic residues are required in antiparallel beta sheets to occupy in-

trinsic cavities that cannot be filled by aliphatic residues. This may explain why

Tyr and Trp have greater frequencies in antiparallel structure, while their parallel

frequencies are similar to their global frequencies. Phe has higher frequency in an-
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Total residues in training set: 19789
Beta residues in training set: 3967
Beta pairs in training set: 2580
Doubly beta-paired beta residues: 1349
Singly beta-paired beta residues: 2462
Non beta-paired beta residues: 156
Parallel beta pairs: 802
Antipar. beta pairs: 1724
Parallel diagonal beta pairs: 752
Anitipar. diagonal beta pairs: 1783



Counts and Frequencies of beta-paired residues
Whole dbase

Ni fi
1674
895

1211

1172
1772
876
702

1316
1126
1345
774
458

1418

1032

377
377

1594

754
667
249

0.085
0.045
0.061
0.059
0.090
0.044
0.035
0.067
0.057
0.068
0.039
0.023
0.072
0.052
0.019
0.019
0.081
0.038
0.034
0.013

19789 1.000

Parallel
NPP f 3 P

81

12

33

40
112

34
19

69
87
52

38

26

328

256
43

22

194

82
54
22

0.050
0.007
0.021
0.025
0.070
0.021
0.012
0.043
0.054
0.032
0.024
0.016
0.204
0.160
0.027
0.014
0.121
0.051
0.034
0.014

1604 1.000

Antiparallel
NA f/iA

172

52

86

123

210
90

112

216

264
185

133

84
437
276

71

106

321

212
222

76

0.050
0.015
0.025
0.036
0.061
0.026
0.032
0.063
0.077
0.054
0.039
0.024
0.127
0.080
0.021
0.031
0.093
0.061
0.064
0.022

3448 1.000

Both
N? fs

253
64

119

163

322
124

131

285
351

237
171

110

765

532
114

128

515
294
276
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0.050
0.013
0.024
0.032
0.064
0.025
0.026
0.056
0.069
0.047
0.034
0.022
0.151
0.105
0.023
0.025
0.102
0.058
0.055
0.019

5052 1.000

Table 5.2: Beta paired residue counts and frequencies.
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A

N
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S

T
K

R
H

V
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M

C

L

F
Y
W

Total



Residue here LS79 diff
Antiparallel Ala 6.1 7.6 -1.5

Ser 6.3 7.8 -1.5
Thr 7.7 8.8 -1.1
Phe 6.1 4.3 1.8

Parallel Gly 5.0 7.2 -2.2
Ala 7.0 8.4 -1.4
Ser 4.3 6.3 -2.0
Thr 5.4 4.0 1.4
Ile 16.0 12.0 4.0

Leu 12.1 10.1 2.0

All-beta Ala 6.4 7.8 -1.4
Ser 5.6 7.4 -1.8
Ile 10.5 8.3 2.2

Phe 5.8 4.4 1.4

Table 5.3: Residues whose f as computed here and by Lifson and Sander differ by
more than one percentage point. Frequencies are given in percent.

tiparallel than parallel structure, and the parallel frequency is higher than the global

frequency. Pro is rare in beta sheet structure; the backbone conformation it imposes is

not consistent with beta sheet. Charged and polar amino acids appear somewhat less

frequently than on average, except that Thr appears quite frequently in antiparallel

structure, which may be partly due to the fact that it is branched at the beta carbon

like Val and Ile, and therefore may help shape the beta sheet. Gly and Ala occur less

often in beta sheet than in other structures. Both are small, and the hydrophobicity

of their side chains are dominated by the hydrophilicity of the backbones.

Table 5.4 shows conformational preferences for the amino acids, for the class, and

compares them to those determined by other researchers [Lifson and Sander, 1979,

Chou and Fasmnan, 1974, Garnier et al., 1978, Levitt, 1978].

Comparing my results (column 1) with those of Lifson and Sander (column 3),

we see that there is agreement as to which residues prefer beta conformation and

which do not. In addition, the ordering of amino acids is similar, and exact within

the following groups: P < D < ENG < K < AQSRH < MTLCF < WY < IV.

[f I separate the conformational preferences of 3p and A (Table 5.5), I find a sim-

ilar qualitative agreement with the following notable exceptions: Lifson and Sander
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AA 1 2 3 4 5 6

G 0.59 0.64 0.61 0.75 0.66 0.92
P 0.28 0.30 0.40 0.55 0.84 0.64
D 0.38 0.63 0.48 0.54 0.64 0.72
E 0.54 0.74 0.61 0.37 0.61 0.75
A 0.71 0.68 0.92 0.83 0.79 0.90
N 0.55 0.69 0.60 0.89 0.66 0.76
Q 0.73 0.76 0.95 1.10 1.13 0.80
S 0.85 0.78 0.82 0.75 0.84 0.95
T 1.22 0.92 1.12 1.19 1.14 1.21
K 0.69 1.13 0.70 0.74 0.72 0.77
R 0.87 1.12 0.93 0.93 1.04 0.99
H 0.94 0.87 0.93 0.87 0.78 1.08
V 2.11 1.51 1.81 1.70 1.97 1.49

I 2.02 1.39 1.81 1.60 1.95 1.45
M 1.18 1.00 1.19 1.05 1.26 0.97
C 1.33 1.06 1.16 1.19 1.55 0.74
L 1.27 0.96 1.30 1.30 1.26 1.02
F 1.53 1.23 1.25 1.38 1.30 1.32

Y 1.62 1.47 1.53 1.47 1.49 1.25

W 1.54 1.33 1.54 1.37 0.90 1.14

Table 5.4: Conformational preferences for all-beta as computed here and in four
references. Column 1: computed here. Column 2: computed here; buried residues
only. Column 3: Lifson and Sander, 1979. Column 4: Chou and Fasman, 1974.
Column 5: Garnier et al., 1978. Column 6: Levitt, 1978.
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Beta Conformation Preferences
Parallel Antiparallel Par./Anti. All beta

AA here LS79 here LS79 here LS79 here LS79
G 0.60 0.79 0.59 0.56 1.01 1.41 0.59 0.61
P 0.17 0.35 0.33 0.42 0.50 0.83 0.28 0.40
D 0.34 0.50 0.41 0.47 0.82 1.08 0.38 0.48
E 0.42 0.59 0.60 0.62 0.70 0.96 0.54 0.61
A 0.78 1.00 0.68 0.90 1.15 1.11 0.71 0.92
N 0.48 0.54 0.59 0.62 0.81 0.88 0.55 0.60
Q 0.33 0.28 0.92 1.18 0.36 0.24 0.73 0.95
S 0.65 0.70 0.94 0.87 0.69 0.80 0.85 0.82
T 0.95 0.59 1.35 1.30 0.71 0.45 1.22 1.12
K 0.48 0.59 0.79 0.74 0.60 0.79 0.69 0.70
R 0.61 0.68 0.99 1.02 0.61 0.67 0.87 0.93
H 0.70 0.38 1.05 1.12 0.67 0.34 0.94 0.93
V 2.85 2.63 1.77 1.53 1.61 1.72 2.11 1.81
I 3.06 2.60 1.53 1.54 1.99 1.69 2.02 1.81

M 1.41 1.49 1.08 1.09 1.30 1.37 1.18 1.19
C 0.72 0.91 1.61 1.24 0.45 0.73 1.33 1.16
L 1.50 1.42 1.16 1.26 1.30 1.13 1.27 1.30
F 1.34 1.30 1.61 1.23 0.83 1.06 1.53 1.25
Y 1.00 1.08 1.91 1.68 I 0.52 0.74 1.62 1.53
W 1.09 0.89 1.75 1.75 0.62 0.51 1.54 1.54

Table 5.5: Conformational preferences for parallel and antiparallel sheet as computed
here and in Lifson and Sander 79 (LS79). Also shown are the conformational prefer-
ence ratio P/A. and the conformational preferences for all beta sheet residues.
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class LS 79 here
A+P+ VIMLFY VIMLFYW
A+P- QTRHCWV THC
A-P- GPDEANSK GPDEANQSKR
SM A W>Y>V>I Y>V>W>C>L
SM P V>I>M I>V>L
SB A P<D<G<E<N P<D<NG<E
SB P Q<P<H<D<E<T<K P<Q<D<E<KN<G<R<S

Table 5.6: Conformational classification of residues. A+P+: favorable in both PA

and p (preference > 1.0 in both); A+P-: favorable in 3A but unfavorable in p ;
A-P-: unfavorable in both 3 A and p ; SM A: Best sheet makers in A (preference
> 1.5 in both A and p ); SM P: best sheet makers in 3p ; SB A: worst sheet breakers

in A (preference < 1/1.5); SB P: worst sheet breakers in p .

calculate the conformational preference of Trp to be unfavorable at 0.89 in p; I cal-

culate a favorable 1.09. Lifson and Sander calculate the conformational preference of

Gin to be 1.18 in A; I calculate 0.92.

Finally, Lifson and Sander consider the "conformational classification" of beta

sheet residues, which are based on the conformational preferences. This classifica-

tion can be useful in structure prediction algorithms; the Chou-Fasman algorithm

uses similar classes for nucleation and termination of secondary structures [Chou and

Fasman, 1978]. Classes include: favorable in both p and fA, favorable in A but un-

favorable in /p, unfavorable in both, best sheet "makers," and worst sheet "breakers."

My results (Table 5.6) show minor differences in this conformational classification.

For example, I find Trp to be favorable in both 3 A and p, whereas Lifson and Sander

find Trp favorable in A but not in p. I find Phe to be a good 3A sheet maker, but

Lifson and Sander do not.

In summary, I show general agreement with the results of Lifson and Sander. I find

that the orderings which they cite within their conformational classification are not

reliable; changing the protein set (results not shown) can result in markedly different

orderings. In the protein sets of both Lifson and Sander, and Jones, I consistently find

the following residue classifications (for class definition see the caption for Table 5.6).

Val, Ile, Met, Leu, Phe and Tyr are favorable in both A and Op. Thr, His and Cys

are favorable in PA but not in 3p. Tyr and Val are antiparallel sheet makers. Ile and
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Table 5.7: Comparison of frequencies (in per cent) for all residues and buried residues.

Val are parallel sheet makers. Pro, Asp, Asn, and Gly are antiparallel sheet breakers,

and Gln, Pro, Asp and Glu are parallel sheet breakers.

5.3.2 Solvent exposure

Lifson and Sander found a great difference between the amino acid compositions of DA

and 3 p. To illustrate this difference, they calculated the ratio of p to 3A propensities,

and found that Val, Ile, Gly, and Met prefer flp to 3A, while Gln, Thr, His. Arg, Cys

and Trp prefer A to P. Note that Val and Ile (P-preferring) are hydrophobic and

branched at the beta carbon. Some of the residues which prefer /3A to 3p are polar;

all have a hydrogen-bond donor or acceptor.

However. 3p structure is almost always buried: 3A structure is often amphiphilic.

How much of the difference between A and 3 P propensities found by Lifson and

Sander is due to the fact that 3A structure is often partly on the protein surface? I

repeated the analysis for buried residues only. My results are shown in Tables 5.7
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AA All Buried Difference Classification
L 8.1 13.5 +5.4 hydrophobic

I 5.2 10.4 +5.2 hydrophobic
V 7.2 13.1 +4.9 hydrophobic
A 9.0 12.6 +3.6 neutral
F 3.8 6.0 +2.2 hydrophobic
G 8.5 10.6 +2.1 neutral
C 1.9 3.7 +1.8 hydrophobic
M 1.9 3.0 +1.1 hydrophobic

W 1.3 1.5 +0.2 hydrophobic
H 2.3 1.7 -0.6 polar
Y 3.4 2.6 -0.8 hydrophobic
T 5.7 4.9 -0.8 neutral
S 6.7 5.7 -1.0 neutral
P 4.5 2.6 -1.9 neutral
N 4.4 2.2 -2.2 polar
Q 3.5 1.2 -2.3 polar
R 3.9 0.7 -3.2 polar
D 6.1 2.2 -3.9 polar
E 5.9 1.2 -4.7 polar
K 6.8 0.4 -6.4 polar



Res. Globally Parallel Antiparallel All beta
G 599 0.106 72 0.063 120 0.071 192 0.068
P 144 0.026 8 0.007 14 0.008 22 0.008
D 123 0.022 11 0.010 28 0.017 39 0.014

E 70 0.012 13 0.011 13 0.008 26 0.009

A 713 0.126 92 0.081 150 0.089 242 0.086
N 125 0.022 18 0.016 25 0.015 43 0.015
Q 68 0.012 3 0.003 23 0.014 26 0.009

S 324 0.057 43 0.038 84 0.050 127 0.045
T 276 0.049 48 0.042 79 0.047 127 0.045
K 23 0.004 6 0.005 7 0.004 13 0.005

R 41 0.007 5 0.004 18 0.011 23 0.008
H 96 0.017 13 0.011 29 0.017 42 0.015

V 739 0.131 269 0.236 289 0.171 558 0.197
I 584 0.104 219 0.192 188 0.111 407 0.144

M 170 0.030 40 0.035 45 0.027 85 0.030
C 209 0.037 20 0.018 91 0.054 111 0.039
L 763 0.135 152 0.133 217 0.128 369 0.130
F :341 0.060 67 0.059 143 0.085 210 0.074
Y 147 0.026 27 0.024 81 0.048 108 0.038

W 87 0.015 13 0.011 45 0.027 58 0.021
Total 5642 1.000 1139 1.000 1689 1.000 2828 1.000

Table 5.8: Counts (Nbied) and frequencies (fbUried) of buried residues.

(global frequencies) 5.8 (beta frequencies) and 5.9 (conformational preferences).

Table 5.7 examines the difference between the global frequencies of all and buried

residues. The classification labelings are those of on Heijne and Blomberg [von

Heijne and Blomberg, 1978]. In general, as we would expect, the hydrophobic residues

increase in frequency when considering only buried residues, while the polar residues

decrease in frequency. 1139/1604 = 69% of parallel beta-pair partners are buried, as

opposed to only 1689/3448 = 47% of antiparallel beta-pair partners. Parallel sheets

occur most often buried in the hydrophobic core of proteins. Thus I expect a larger

change in antiparallel frequencies when considering only buried residues; in both cases

I expect to see an increase in hydrophobic residues.

Compare the buried counts and frequencies in Table 5.8 to those in Table 5.2. I do

in fact see a larger change in antiparallel frequencies than in parallel frequencies (as a

larger fraction of antiparallel residues are not buried). The standard deviation of the
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Table 5.9: Conformational preferences for all beta residues and buried beta residues.

frequency differences across all 20 amino acids from all to buried is 1.5% for parallel

and 2.5% for antiparallel. When I consider only buried beta pairs, the compositions

of parallel and antiparallel sheets are somewhat more similar: the standard deviation

of the frequency differences from parallel to antiparallel is 2.91% for all beta pairs

and 2.67% for buried beta pairs. We also see that both antiparallel and parallel

hydrophobic residue frequencies increase when only buried residues are considered,

except for Cys and Met in parallel sheets, which show a slight decrease in frequency.

The relative frequencies of the amino acids remain the same for the most part in

buried beta structure. The four most common beta residues, Val, Ile, Leu and Ala,

increase in frequency as we move to buried sheet structure, both for /3p (from 56% to

65%) and A (from 36% to 50%). Charged and polar residues, particularly Lys, Arg

and Glu, decrease in frequency.

The conformational preferences for buried beta residues are listed as column 2 in
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All beta pairs Buried beta pairs
Res. Par. Anti. Both Par./Anti. Par. Anti. Both Par./Anti.

G 0.60 0.59 0.59 1.01 0.60 0.67 0.64 0.89
P 0.17 0.33 0.28 0.50 0.28 0.32 0.30 0.85
D 0.34 0.41 0.38 0.82 0.44 0.76 0.63 0.58
E 0.42 0.60 0.54 0.70 0.92 0.62 0.74 1.48
A 0.78 0.68 0.71 1.15 0.64 0.70 0.68 0.91
N 0.48 0.59 0.55 0.81 0.71 0.67 0.69 1.07
Q 0.33 0.92 0.73 0.36 0.22 1.13 0.76 0.19
S 0.65 0.94 0.85 0.69 0.66 0.87 0.78 0.76
T 0.95 1.35 1.22 0.71 0.86 0.96 0.92 0.90
K 0.48 0.79 0.69 0.60 1.29 1.02 1.13 1.27
R 0.61 0.99 0.87 0.61 0.60 1.47 1.12 0.41
H 0.70 1.05 0.94 0.67 0.67 1.01 0.87 0.66
V 2.85 1.77 2.11 1.61 1.80 1.31 1.51 1.38
I 3.06 1.53 2.02 1.99 1.86 1.08 1.39 1.73

NI 1.41 1.08 1.18 1.30 1.17 0.88 1.00 1.32
C' 0.72 1.61 1.33 0.45 0.47 1.45 1.06 0.33
L 1.50 1.16 1.27 1.30 0.99 0.95 0.96 1 .04
F 1.34 1.61 1.53 0.83 0.97 1.40 1.23 0.69
Y 1.00 1.91 1.62 0.52 0.91 1.84 1.47 0.49

W 1.09 1.75 1.54 0.62 0.74 1.73 1.33 0.43



Table 5.10: Residues which switch beta propensity going from all beta pairs to buried
beta pairs only

Table 5.11: Sheet makers in Lifson and Sander 1979; as computed here; and as
computed here for buried beta pairs only.

Table 5.4. The residues which switch beta propensity (favorable to unfavorable or

vice versa) going from all residues to buried residues only are shown in table 5.10.

Lys and Arg don't prefer beta conformation in general; nor do they like to be buried,

but if they have to be buried, then they would just as soon be in beta conformation.

Thr and Leu are found more often in beta conformation in general, but when buried

they don't prefer beta.

One interesting result of looking at only buried residues is the reduction in the

number of sheet makers; see table 5.11.

Just considering the preference for parallel over antiparallel, or vice versa, I find

that in completely buried structures, some residues remain parallel-preferring (VIM),

antiparallel-preferring (DQSRHCFYW), or neutral (GAN); a couple with very low

counts switch preference from antiparallel to parallel (EK); a couple switch from

antiparallel to neutral (PT); and L switches from parallel-preferring to neutral.

While some of the apparent beta-structure propensities found by Lifson and

Sander were artifacts due to the hydrophobic-favoring tendency of parallel sheets,

some of the propensities remain the same, and most are qualitatively similar. The

preference for Ile and Val in parallel sheets observed by Lifson and Sander is plainly

seen here. It is likely that these beta-carbon-branched hydrophobic side chains are
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Switch Residues
Residue all buried
Thr 1.22 0.92
Leu 1.27 0.96
Lys 0.69 1.13
Arg 0.87 1.12

Sheet Makers
antiparallel parallel all-beta

LS 79 W YV I V I M VIYW
here Y V W F I IV V I Y W F
here, buried only Y W I V V



Counts and Frequencies, Sheet Edge and Interior

Table 5.12: Counts and frequencies for sheet interior and exterior.

important in structurally maintaining the sheet. The difference between /3A and p

conformational preferences is due to the stricter conformational requirements of par-

allel sheets.

5.3.3 Position in sheet

I asked whether the amino acid composition of the edges of beta sheets is different

than that of the interior of the beta sheets. I considered sheet interior residues only.

Results are shown in Table 5.12. Going from exterior to interior, there is a general

decrease in the frequencies of polar and neutral residues, and an increase in the

frequencies of the hydrophobic residues.
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AA edge beta interior beta Whole dbase AA type
_ Nedge fiedge Nin t fRnt fi

P 65 0.03 0 0.00 0.05 neutral
D 81 0.03 20 0.01 0.06 polar
W 39 0.02 31 0.02 0.01 hydrophobic
H 61 0.02 26 0.02 0.02 polar
N 75 0.03 26 0.02 0.04 polar
Q 81 0.03 27 0.02 0.04 polar
E 109 0.04 29 0.02 0.06 polar
M 42 0.02 37 0.03 0.02 hydrophobic
C 62 0.03 36 0.03 0.02 hydrophobic
R 96 0.04 38 0.03 0.04 polar
K 148 0.06 46 0.03 0.07 polar
G 147 0.06 56 0.04 0.08 neutral
F 125 0.05 87 0.06 0.04 hydrophobic
T 201 0.08 77 0.06 0.06 neutral
Y 100 0.04 93 0.07 0.03 hydrophobic
A 139 0.06 96 0.07 0.09 neutral
I 202 0.08 166 0.12 0.05 hydrophobic
L 219 0.09 157 0.12 0.08 hydrophobic
V 297 0.12 241 0.18 0.07 hydrophobic

Class Exterior Interior Whole database Class
0 1086 0.44 848 0.63 0.33 hydrophobic
1 725 0.29 289 0.21 0.34 neutral
2 651 0.26 212 0.16 0.33 polar



Three-Class Conformational Preferences
Class Par. Anti. All beta Par./Anti.
hydrophobic 1.91 1.53 1.65 1.25
neutral 0.66 0.77 0.74 0.85
polar 0.46 0.71 0.63 0.64

Table 5.13: Class definitions, counts, frequencies, and conformation preferences (fre-
quency in beta divided by global frequency) for residues grouped into three classes.

I find that 977/1349 = 72% of interior residues are buried, and 945/2462 = 38%

of exterior residues are buried.

5.3.4 Grouping residues into classes

When residues are grouped into three broad classes (hydrophobic, neutral, polar), the

results are what I expect (hydrophobic residues prefer /p to A and to non-f; neutral

and polar residues prefer /3A to p and non-3 to 3). Results are shown in Table 5.13

for all residues and for buried beta residues. Note that hydrophobic residues prefer

parallel to antiparallel. while neutral and polar residues prefer antiparallel to parallel.

This is partly due to the fact that parallel structure prefers to be buried.

5.3.5 Contingency Table Analysis

The contingency table, created using the pdbselect protein set, is shown in table 5.14.

Counts range from 112 (parallel exposed) to 4629 (antiparallel buried).

The loglinear models are shown in figure 5.15. G2 and X2 are measures of the

model error. G2 is the likelihood ratio test statistic. The letters used to indicate

marginal terms are:

1. A: Amino acid group (of 3)

106

Three-Class Beta Pair Counts and Frequencies
All residues Parallel Antiparallel Both

Class Residues Ni fi Np fP NiA fOA Nf f
hyd. VLIFYWMC 6468 0.32 1001 0.624 1721 0.499 2722 0.539
neu. TSAGP 6783 0.343 361 0.225 914 0.265 1275 0.252
pol. KRDNHEQ 6538 0.330 242 0.151 813 0.236 1055 0.209



Table 5.14: Three-way contingency table of counts for strand
group, and solvent exposure.

direction, amino acid

Model G2 df marginal terms
[A] 9569 9 A

[A] [D] 5592 8 A D

[AD! 5441 6 A D AD

[A] [E] [D] 2343 7 A E D

[AE] [D] 621 5 A E D AE

[AD][E] 2192 5 A E D AD
[A E] [AD] 470 3 A E D AE AD

[A][ED] 1786 6 A E D ED

[AE][ED] 64 4 A E D AE ED

[AD][ED] 1635 4 A E D AD ED
[AE][AD][ED] 21 2 A E D AE AD ED

[AED] 0 0 A E D AE AD ED AED

Table 5.15: Loglinear models, likelihood ratio test statistic (G2 ), Pearson test statistic
(X2), degrees of freedom (df), and marginal terms (A-amino acid type, of three groups,
E-solvent exposure, D-direction).

2. E: Solvent accessibility (buried or exposed)

3. D: Strand direction (parallel, antiparallel)

Thus, [AE] indicates the margin which is obtained by summing over variable D, strand

direction. If adding the [AE] margin to a model reduces the error, I can assume that

variables A and E are not independent.

i now consider a nested hierarchy of models, where each model considered contains

the previous ones as special cases. I determine the difference in G2 between a model

and its immediate predecessors. A large AG2 indicates the invalidity of the assump-

tion of independence represented by the term which distinguishes the models. With

a three-dimensional contingency table, it is possible to consider all possible nested

hierarchies of models; the various hierarchies differ in the order in which two-factor
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Three-Way Three-Class Contingency Table
Antiparallel Parallel

Buried Exposed Buried Exposed
Hydrophobic 4629 1138 2234 156
Neutral 2093 1014 755 112
Polar 1164 1603 410 274



1

Figure 5-2: Nested model hierarchy. Each box represents a model. The model name
and likelihood ratio statistic, G2 , are listed in the box. Arrows are drawn between
models related by the addition of marginal terms. The arrows are annotated with the
difference in G2 and (in italics) the added marginal terms. Heavy arrows indicate the
nested hierarchy which explains the most variance the earliest. Variables are A-amino
acid type, E-solvent exposure, D-strand direction.
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terms are added.

Figure 5-2 shows the models and the relationships between them. Consider the

hierarchies between the no-two-factor (independence) model, [A][E][S], and the no-

three-factor model, [AE][AD][AS]. The total difference in error is AG2 = 2343- 21 =

2322. Adding margin [AE] (two degrees of freedom) to a model accounts for between

70% and 74% of the variance, depending on the choice of hierarchy. Adding margin

[ED] (one degree of freedom) accounts for between 19% and 24% of the variance. And

adding margin [AD] (two degrees of freedom) accounts for between 2% and 7% of the

variance. Clearly, regardless of the order in which the models are examined, the [AE]

margin is most effective at reducing the error, followed by the [ED] margin and then

the [AD] margin.

In other words, amino acid group and solvent exposure are not independent ([AE]

margin), and this effect is much greater than that for amino acid group and strand

direction ([AD] margin). Moreover, we clearly see that there is a strong correlation

between solvent accessibility and strand direction, and that this effect is stronger than

that of association between strand direction and amino acid group!

All of the model predictions have statistically significant differences from the ob-

served data and from their neighbors in the hierarchy. Thus all combinations of cat-

egories contain information, including the three-way interaction of amino acid group,

strand direction, and solvent accessibility, above and beyond that contained in the

individual pairings.

The analysis is more understandable if I compare the observed to the expected

counts for each model. Table 5.16 shows the ratio of observed to expected counts for

the four models in the model hierarchy {[A][E][D], [AE][D], [AE][ED], [AE][AD],[AE]},

as well as the likelihood ratio statistics and degrees of freedom. This is the sequence

which reduces the variance the most quickly; the sequence is marked with heavy

arrows in figure 5--2.

Model [A][E][D], which assumes independence among the three category classes,

overpredicts exposed hydrophobics and buried polars, and underpredicts buried hy-

drophobics and exposed polars.
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Model Hierarchy

Table 5.16: A hierarchy of models presented in decreasing order of AG2. "df" is
degrees of freedom. Also shown are the ratios of observed counts to expected counts
(as predicted by the models).

Model [AE][D] removes the independence assumption for amino acid class and

solvent accessibility, by including the [AE] pairwise term. Clearly, the tendency for

a given exposure category to overpredict for one amino acid class and underpredict

for another has disappeared. However, this model now overpredicts parallel exposed,

and underpredicts antiparallel exposed. This is because we are still assuming that

the model should be the same for parallel and antiparallel beta pairs.

Including terms to represent the dependency between the amino acid class and

the solvent exposure yields model [AE][ED]. This allows us to account for the fact

that parallel sheets prefer to be buried. This model predicts all the antiparallel

counts well, but doesn't do well on parallel exposed (neutral overpredicted and polar

underpredicted), and overpredicts parallel buried (neutral and polar). [AE][AD][ED],

with all three pairwise terms, also does fine on the antiparallel prediction, but still

doesn't have the parallel counts quite right.

What happens when we don't consider solvent exposure at all? Notice that model

[AD] is significantly better than model [A][D] (G 2 = 151, with 2 degrees of freedom

difference; P = 0.0). With this pair of models, I am testing whether amino acid group
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Observed/Expected Ratios
Antiparallel Parallel

Model G2 df AG2 Adf Bur. Exp. Bur. Exp.
[A] [E] [D] 2343 7 Hyd. 1.05 0.68 1.50 0.27

Neu. 0.97 1.24 1.04 0.40
Polar. 0.62 2.25 0.65 1.14

[AE][D] 621 5 1722 2 Hyd. 0.90 1.18 1.29 0.48

Neu. 0.98 1.21 1.05 0.39
Pol. 0.99 1.14 1.03 0.58

[AE][ED] 64 4 557 1 Hyd. 0.97 1.01 1.08 0.96
Neu. 1.05 1.03 0.88 0.79
Pol. 1.06 0.98 0.86 1.16

[AE][AD][ED] 21 2 43 2 Hyd. 0.99 1.03 1.01 0.84

Neu. 0.99 1.01 1.02 0.90
Pol. 1.04 0.97 0.91 1.18



is independent of strand direction, and I find that it is not. Thus, separating parallel

from antiparallel structure in the secondary structure representation may be justified,

particularly in the case where solvent exposure is not considered or predicted. On

the other hand, in an application like threading, the parallel/antiparallel distinction

has relatively little information compared to the buried/exposed distinction.

Another point is that the contingency table groups amino acids into three broad

classes. Much of the variance is explained by the amino acid group without having

to consider the individual amino acid type.

5.4 Implications

5.4.1 Protein folding and structure

My results show that the difference in amino acid composition between parallel and

antiparallel sheets is partly due to the fact that parallel sheets are more buried.

In addition, I find that there is a stronger requirement in parallel sheets for beta-

branched residues, and a stronger requirement in antiparallel sheets for large hy-

drophobic residues (Phe and Tyr). Moreover, I find that the segregation of hydropho-

bic residues to the inside of the protein is more important in folding than choosing

whether a strand is parallel or antiparallel.

5.4.2 Secondary structure prediction

Finding a way to incorporate solvent exposure may improve the accuracy of beta sheet

prediction. Predicting solvent exposure may be a productive first step in secondary

structure prediction. This approach has not been explored much to date.

Where secondary structure predictions are to be used in further tertiary structure

predictions, it may make sense to predict solvent exposure instead of, or along with,

predicting alpha/beta/coil classifications. The inside/outside distinction is a natural

classification for several reasons. Some researchers claim that atomic solvation can

distinguish correctly folded from misfolded proteins [Baumann et al., 1989, Chiche
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et al., 1990. Holm and Sander, 1992, Vila et al., 1991]. Some of the inverse folding

methods consider solvent exposure as part of the structure description [Jones et al.,

1992, White et al., 1994, Lathrop et al., , Luthy et al., 1992, Johnson et al., 1993].

There exist prediction algorithms for the interior/exterior classification [Benner et al.,

1994].

5.4.3 Tertiary structure prediction

Given the protein sequence and the locations of beta strands, knowing or predict-

ing solvent exposure should help predict whether strand connections are parallel or

antiparallel.

There is generally a tradeoff, due to the limited sample size of known protein

strutures. between how fine the structure representation categories can be, and the

accuracy of predictions based on empirical observations. My results suggest that in

threading methods for tertiary structure prediction, if one is presented with a choice

between representing strand direction or solvent exposure, the latter should be used.
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Chapter 6

Pairwise Interactions in Beta

Sheets

6.1 Introduction

In this chapter I examine residue pairs that occur in specific topological relationships

to each other. This is a specialization of the residue pairs representation. This

specialization of the residue pair representation might prove useful in determining

protein structure. The topological relationships are defined by the hydrogen bonding

patterns in beta sheets.

Lifson and Sander in their 1980 statistical analysis of interactions between side

chains in beta sheets, found that there was significant "recognition" between side

chains [Lifson and Sander, 1980]. In this chapter, I repeat and extend their analysis.

In looking at the occurrence of amino acids pairs in beta sheets, I find the following:

* The observed counts make intuitive sense. Hydrophobes pair with hydrophobes;

neutrals and polars with themselves and each other; and opposite charges at-

tract.

* There is specific pairwise recognition of beta, (i, i + 2), and diagonal pairs in

beta sheets.

* There is nonspecific pairwise recognition of beta, (i, i + 2), and diagonal pairs
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Table 6.1: Amino acid classification into three hydrophobicity classes.

in beta sheets.

* Some of the Lifson/Sander pairwise recognition can be explained by solvent

exposure (polar atoms congregate to surface, and therefore appear as pairs

more often). Considering solvent exposure reduces the observed association of

residues significantly.

* Considering strand direction (parallel or antiparallel) has much less of an effect

on amino acid pairing than does solvent exposure.

* (i,j + 1) pairings in buried beta structure show unexpected nonrandomness.

6.2 Method

The counts are defined in Section 5.2.3. The frequency of residue type i in a given

topological relationship (say, d for beta pairs) is f = N/PIN. The frequency of pairs

of type i and j is fij = 2Nij/N. The likelihood ratio between the observed and

expected pair frequencies is
2N N

Rij = NN

I counted beta pairs (as defined by the DSSP program) in the 252 proteins listed

in Section B.2.2. The amino acid groupings are those used by Lifson and Sander in

analyzing nonspecific beta pair data, as shown in Table 6.1.

A residue is considered to be buried if its DSSP accessibility is less than 20% of its

maximum accessibility, and it is exposed if its DSSP accessibility is greater than 20%

of its maximum accessibility. The maximum accessibilities are listed in section B.3.
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Hydrophobic VLIFYWMC
Neutral TSAGP
Polar KRDNHEQ



For each beta pair, I determine the amino acid group and exposure of each residue,

and whether the strands are parallel or antiparallel.

I consider a five-dimensional contingency table, shown in Table 6.15. The dimen-

sions are the amino acid tep and solvent exposure of each residue, and the strand

direction.

6.2.1 Significance testing

X2 analysis to test for a significant difference between observed and expected pairwise

frequency distributions is performed as described by Lifson and Sander [Lifson and

Sander, 1980]. The expected number of (i, j) pairs. based on the hypothesis of random

pairing, is Eij = fifjN/2. The observed number of (i,j) pairs is

6.3 Results and Discussion

6.3.1 Counts and preferences

Table 6.2 contains beta-pair counts and frequency ratios for parallel, antiparallel, and

both together., for amino acids grouped into the classes hydrophobic, neutral and

polar. Cells were tested individually for significant differences between observed and

expected (by random pairing) counts, and each of the three tables was tested as a

whole table for difference from an expected table generated based on random pairing.

The frequency ratios of observed to expected counts indicate whether a pairing is

favored (> 1.0) or disfavored (< 1.0). The tendencies for pairing preferences are the

same for both parallel and antiparallel, though the observed/expected ratios are more

extreme for the parallel beta pairs. In general, the following pairs are favored: HH,

NN, PP, NP, where H is hydrophobic, N is neutral, and P is polar. On the other

hand, HP is disfavored. NP shows no significant difference from random association.

This is basically what we would expect in terms of pairings.

Tables 6.3, 6.4, and 6.5 contain the beta pair counts and frequency ratios for

parallel, antiparallel and all-beta, for the amino acids separated into all 20 types.
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H N P
Parallel Observed Counts H 686 213 104

N 213 122 66

P 104 66 84

Observed/Expected H 1.13 0.88 0.68
N 1.26 1.07

P 2.16

Antiparallel Observed counts H 1312 516 440
N 516 346 283
P 440 283 346

Observed/Expected H 1.14 0.89 0.81
N 1.18 1.04
P 1.36

Both Observed Counts H 2008 732 548
N 732 468 351
P 548 351 432

Observed/Expected H 1.15 0.89 0.77
N 1.20 1.05
P 1.50

Table 6.2: Beta pair counts and preferences for parallel, antiparallel, and all-beta, for
amino acids grouped into three classes. Protein set: Rost and Sander. Cells that are
significantly different than expected by random association are underlined (P< .05)
and in bold face (P< .001). Significances of tables: Parallel, X2 = 89.1; Antiparallel,
X2 = 91.9; Both, X2 = 174.4. Each of these is significant at P= 0 for 3 degrees of
freedom.
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Parallel Beta Pair Likelihood Ratios
G P ) E A N Q S T K R H V I M C L F Y W

G
P
D
E

A

N

Q
S

T
K

R
H

V
I

M

C
L

F
Y
W

0.4 1.1 0.9 1.9 1.4 0.9 1.2 1.2 1.4 0.7 0.5 0.0 0.8 0.7 0.9 1.4 1.0 1.6 1.5 1.8
0.0 0.0 0.0 0.0 0.0 0.0 3.0 2.2 0.0 0.0 0.0 1.0 0.8 8.2 0.0 1.0 0.0 1.8 0.0

0.0 1.0 1.1 3.5 0.0 3.3 1.9 1.0 0.0 5.5 0.5 0.5 1.2 1.9 0.9 1.1 0.0 0.0
0.0 0.3 0.9 1.2 1.5 0.4 7.1 5.5 1.4 0.4 0.7 0.9 1.5 0.2 1.3 1.9 1.2

0.9 0.7 0.9 1.2 1.0 0.9 0.0 0.5 1.0 1.1 1.1 1.7 1.1 1.1 0.9 1.4
2.2 2.9 0.6 2.7 2.8 1.3 1.7 0.8 0.2 2.2 0.0 0.2 1.0 2.2 0.0

3.9 0.8 0.6 0.0 1.7 2.3 1.1 0.4 0.0 0.0 0.6 0.7 4.0 2.0
2.0 2.0 2.6 0.0 0.9 0.9 0.2 1.2 1.0 0.6 0.6 0.8 0.8

1.5 1.1 2.6 2.8 0.6 0.9 1.8 1.5 0.6 0.2 0.3 0.0
0.0 2.2 2.9 0.2 0.7 0.0 0.0 0.7 1.3 0.6 1.2

0.0 2.0 0.3 0.6 0.0 2.1 1.2 1.2 1.8 3.5

5.3 0.2 0.8 0.0 0.0 1.0 0.0 0.0 2.3
1.5 1.1 1.0 0.9 1.1 1.2 0.7 0.7

1.4 0.8 0.8 1.2 0.8 1.5 1.3
0.0 0.0 1.1 0.0 1.5 1.5

0.0 0.7 2.4 0.0 2.4
1.3 1.3 0.8 0.6

0.9 0.3 1.3
1.0 0.0

0.0

Table 6.3: Counts NJP and frequencies fP of parallel beta pairs. Protein set: Rost
and Sander. 2 = 339.0 with 190 degrees of freedom; P < 10- 9. Cells that are
significant are underlined (P< .05) or in bold face (P< .001).
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Parallel Beta Pair Counts
G P D E A N Q S T K R H V I M C L F Y W

G 2 1 2 5 10 2 2 5 8 2 1 0 14 11 2 2 12 8 5 3

P 1 0 0 0 0 0 0 2 2 0 0 0 3 2 3 0 2 0 1 0

D 2 0 0 1 3 3 0 5 4 1 0 3 3 3 1 1 4 2 0 0

E 5 0 1 0 1 1 1 3 1 9 5 1 3 5 1 1 1 3 3 1

A 10 0 3 1 8 2 2 6 7 3 0 1 22 21 3 3 17 7 4 3

N 2 0 3 1 2 2 2 1 6 3 1 1 6 1 2 0 1 2 3 0

Q 2 0 0 1 2 2 2 1 1 0 1 1 6 2 0 0 2 1 4 1
S 5 2 5 3 6 1 1 6 8 5 0 1 12 2 2 1 5 2 2 1

T 8 2 4 1 7 6 1 8 8 3 5 4 10 13 4 2 7 1 1 0

K 2 0 1 9 3 3 0 5 3 0 2 2 2 5 0 0 4 3 1 1
R 1 0 0 5 0 1 1 0 5 2 0 1 2 3 0 1 5 2 2 2
H 0 0 3 1 1 1 1 1 4 2 1 2 1 3 0 0 3 0 0 1

V 14 3 3 3 22 6 6 12 10 2 2 1 86 52 7 4 43 19 7 4

I 11 2 3 5 21 1 2 2 13 5 3 3 52 58 5 3 39 11 13 6

M 2 3 1 1 3 2 0 2 4 0 0 0 7 5 0 0 5 0 2 1

C 2 0 I 1 3 0 0 1 2 0 1 0 4 3 0 0 2 3 0 1
L 12 2 4 1 17 1 2 5 7 4 5 3 43 39 5 2 32 14 6 2

F 8 0 2 :3 7 2 1 2 1 3 2 0 19 11 0 3- 14 4 1 2

Y 5 1 0 3 4 3 4 2 1 1 2 0 7 13 2 0 6 1 2 0

W 3 0 0 1 3 0 1 1 0 1 2 1 4 6 1 1 2 2 0 0

--

---------



Antiparallel Beta Pair Counts
G P D E A N Q S T K R H V I M C L F Y W

G 10 2 11 4 13 6 1 19 13 7 5 9 33 17 4 6 14 13 17 9

P 2 0 1 3 1 3 3 3 4 3 4 1 9 4 5 4 8 4 7 1

D 11 1 4 3 6 5 5 9 12 11 7 5 9 8 4 3 9 5 5 3

E 4 3 3 6 6 3 3 9 12 35 19 9 15 9 3 2 11 6 4 0
A 13 1 6 6 18 4 6 10 24 12 3 6 33 26 7 7 23 23 12 8

N 6 3 5 3 4 6 3 13 14 7 1 4 8 4 3 6 6 8 11 2

Q 1 3 5 3 6 3 12 9 16 11 7 1 10 12 1 3 11 12 11 2

S 19 3 9 9 10 13 9 28 34 15 7 7 30 14 7 4 18 11 17 3

T 13 4 12 12 24 14 16 34 44 30 18 8 33 21 7 6 17 13 18 3

K 7 3 11 35 12 7 11 15 30 8 3 2 25 23 8 9 15 9 18 7

R 5 4 7 19 3 1 7 7 18 3 2 7 22 14 4 2 10 9 8 5

H 9 1 5 9 6 4 1 7 8 2 7 6 10 9 1 4 7 4 10 1

V 33 9 9 15 33 8 10 30 33 25 22 10 80 65 9 10 66 45 31 7
I 17 4 8 9 26 4 12 14 21 23 14 9 65 22 5 15 50 21 21 10

M 4 5 4 3 7 3 1 7 7 8 4 1 9 5 4 3 16 8 9 7

C 6 4 3 2 7 6 3 4 6 9 2 4 10 15 3 26 8 14 8 5
L 14 8 9 11 23 6 11 18 17 15 10 7 66 50 16 8 62 32 22 16

F 13 4 5 6 23 8 12 11 13 9 9 4 45 21 8 14 32 28 18 3

Y 17 7 5 4 12 11 11 17 18 18 8 10 31 21 9 8 22 18 18 10

W 9 1 3 0 8 2 2 3 3 7 5 1 7 10 7 5 16 3 10 4

Antiparallel Beta Pair Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

G 1.0 0.6 1.9 0.5 1.1 1.1 0.2 1.5 0.8 0.6 0.7 1.7 1.3 1.0 0.7 0.9 0.7 1.0 1.3 1.8
P 0.0 0.5 1.2 0.3 1.6 1.4 0.7 0.7 0.7 1.6 0.6 1.0 0.7 2.8 1.8 1.2 0.9 1.6 0.6
D 1.1 0.7 0.9 1.5 1.3 1.2 1.2 1.5 1.6 1.6 0.6 0.8 1.2 0.7 0.8 0.6 0.7 1.0
E 1.0 0.7 0.7 0.6 0.9 1.0 3.8 3.3 2.2 0.8 0.7 0.7 0.4 0.7 0.6 0.4 0.0
A 1.3 0.6 0.8 0.7 1.2 0.8 0.3 1.0 1.1 1.3 1.1 0.9 1.0 1.5 0.8 1.4
N 2.0 0.8 1.9 1.5 1.0 0.2 1.4 0.6 0.4 1.0 1.6 0.5 1.1 1.5 0.7

Q 2.8 1.1 1.5 1.4 1.4 0.3 0.6 1.0 0.3 0.7 0.8 1.4 1.3 0.6
S 1.8 1.6 1.0 0.7 1.1 0.9 0.6 1.0 0.5 0.7 0.6 1.0 0.5
T 1.6 1.5 1.5 0.9 0.8 0.7 0.8 0.5 0.5 0.6 0.8 0.4
K 0.5 0.3 0.3 0.8 1.1 1.2 1.1 0.6 0.5 1.1 1.1
R 0.4 1.8 1.1 1.1 1.0 0.4 0.7 0.9 0.8 1.3
H 2.2 0.7 1.0 0.4 1.1 0.7 0.6 1.5 0.4
V 1.2 1.4 0.6 0.6 1.3 1.3 0.9 0.5
I 0.7 0.5 1.3 1.4 0.9 0.9 1.1

M 1.4 0.8 1.5 1.1 1.3 2.6
C 5.5 0.6 1.5 0.9 1.5
L 1.6 1.2 0.9 1.6
F 1.5 1.0 0.4
Y 1.1 1.5
W 1.6

Table 6.4: Counts and frequencies of antiparallel beta pairs. Protein set: Rost and
Sander. X2 = 545.9 with 190 degrees of freedom. Cells that are significant are
underlined (P< .05) and in bold face (P< .001).
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All Beta Pair Counts
G P I) E A N Q S T K R H V I M C L F Y W

G 12 3 13 9 23 8 3 24 21 9 6 9 47 28 6 9 26 21 23 12

P 3 0 1 3 1 3 3 5 6 3 4 1 12 6 8 4 10 4 8 1

D 13 1 4 4 9 8 5 14 16 12 7 8 12 11 5 4 13 7 5 3

E 9 3 4 6 7 4 4 12 13 44 24 10 18 14 4 3 12 9 9 1
A 23 1 9 7 26 6 9 16 31 15 3 7 55 47 10 10 40 30 16 11

N 8 3 8 4 6 8 5 14 20 10 2 5 14 5 5 6 7 10 15 2

Q 3 3 5 4 9 5 16 10 17 11 8 2 16 14 1 3 13 13 15 3

S 24 5 14 12 16 14 10 34 42 20 8 8 42 16 9 5 23 14 19 4
T 21 6 16 13 31 20 17 42 52 33 23 12 43 34 11 8 24 14 19 3
K 9 3 12 44 15 10 11 20 33 8 5 4 28 28 8 9 19 12 19 8

R 6 4 7 24 3 2 8 8 23 5 2 8 24 17 4 3 15 11 10 7

H 9 1 8 10 7 5 2 8 12 4 8 8 11 12 1 4 10 4 10 2

V 47 12 12 18 55 14 16 42 43 28 24 11 166 118 17 14 109 64 38 11
I 28 6 11 14 47 5 14 16 34 28 17 12 118 82 10 18 89 32 34 16

M 6 8 5 4 10 5 1 9 11 8 4 1 17 10 4 3 21 8 11 8

C 9 4 4 3 10 6 3 5 8 9 3 4 14 18 3 26 10 17 8 6

L 26 10 13 12 40 7 13 23 24 19 15 10 109 89 21 10 94 47 28 18
F 21 4 7 9 30 10 13 14 14 12 11 4 64 32 8 17 47 32 20 5

Y 23 8 5 9 16 15 15 19 19 19 10 10 38 34 11 8 28 20 20 10

W 12 1 3 1 11 2 3 4 3 8 7 2 11 16 8 6 18 5 10 4

All Beta Pair Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

G 0.8 0.7 1.6 0.8 1.2 1.0 0.3 1.4 0.9 0.6 0.6 1.3 1.1 0.9 0.8 1.0 0.8 1.1 1.3 1.8
P 0.0 0.4 1.0 0.2 1.4 1.3 1.1 1.0 0.7 1.5 0.5 1.0 0.7 3.7 1.7 1.1 0.8 1.7 0.5
D 1.0 0.7 0.9 2.0 1.1 1.6 1.4 1.5 1.4 2.3 0.5 0.7 1.2 0.9 0.8 0.7 0.6 0.9
E 0.8 0.6 0.7 0.7 1.0 0.9 4.2 3.7 2.2 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.2
A 1.2 0.6 0.9 0.8 1.2 0.8 0.3 0.9 1.1 1.2 1.1 1.0 1.1 1.3 0.8 1.4
N 2.0 1.1 1.6 1.8 1.3 0.4 1.4 0.6 0.3 1.3 1.4 0.4 1.1 1.7 0.6
Q 3.4 1.1 1.4 1.3 1.5 0.5 0.7 0.8 0.2 0.6 0.7 1.3 1.6 0.8
S 1.8 1.7 1.2 0.8 1.1 0.9 0.5 1.1 0.5 0.7 0.7 1.0 0.5
T 1.6 1.5 1.7 1.2 0.7 0.8 1.0 0.7 0.5 0.5 0.8 0.3
K 0.5 0.5 0.6 0.7 0.9 1.1 1.1 0.6 0.6 1.1 1.2
R 0.3 1.9 0.9 0.9 0.8 0.6 0.8 1.0 1.0 1.7
H 2.7 0.6 0.9 0.3 1.1 0.7 0.5 1.3 0.7
V 1.4 1.3 0.8 0.6 1.2 1.2 0.8 0.6
1 1.3 0.6 1.0 1.4 0.8 1.0 1.2

M 1.0 0.7 1.3 0.9 1.3 2.4
C 5.6 0.6 1.6 0.9 1.6
L 1.5 1.2 0.8 1.3
F 1.4 1.0 0.6
Y 1.1 1.4
W 1.4

Table 6.5: Counts and frequencies of all beta pairs. Protein set: Rost and Sander.
Overall chi2 = 721.5 with 190 degrees of freedom. Underlined likelihood ratios are
significant at P< .05; bold face P< .001.
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Table 6.6 contains counts and frequency ratios for (i, i + 2) beta pairs. Table 6.7

is the same, but for grouped amino acids.

Tables 6.8, 6.9, and 6.10 contain counts and frequency ratios for diagonal pairs.

Table 6.11 is the same, but for grouped amino acids.
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i, i+2 Counts
G P D E A N Q S T K R H V I M C L F Y W

G 20 9 5 11 30 10 12 13 25 11 12 8 41 39 13 8 38 22 23 9

P 9 0 0 1 8 2 2 5 11 6 7 2 17 10 5 3 9 10 5 4

D 5 0 6 7 6 3 8 9 13 7 9 7 30 13 2 4 10 7 5 7

E 11 1 7 12 16 3 6 15 15 10 5 11 29 25 3 5 18 15 4 7

A 30 8 6 16 30 8 5 17 18 20 11 11 52 39 10 8 40 20 21 7
N 10 2 3 3 8 4 4 9 14 7 2 6 28 14 3 5 14 12 6 4

Q 12 2 8 6 5 4 2 9 24 6 5 5 17 12 4 3 18 10 11 1
S 13 5 9 15 17 9 9 44 48 13 12 9 40 25 7 9 30 25 19 7

T 25 11 13 15 18 14 24 48 66 24 9 8 61 29 8 7 35 15 28 3
K 11 6 7 10 20 7 6 13 24 16 11 6 40 27 10 7 33 15 23 5

R 12 7 9 5 11 2 5 12 9 11 10 3 17 24 4 7 20 10 18 5

H 8 2 7 11 11 6 5 9 8 6 3 8 17 8 2 2 14 7 4 2

V 41 17 30 29 52 28 17 40 61 40 17 17 120 84 12 16 84 56 30 14
I 39 10 13 25 39 14 12 25 29 27 24 8 84 48 17 13 59 33 20 10
M 13 5 2 3 10 3 4 7 8 10 4 2 12 17 8 6 14 14 8 1

C 8 3 4 5 8 5 3 9 7 7 7 2 16 13 6 0 24 4 15 1
L 38 9 10 18 40 14 18 30 35 33 20 14 84 59 14 24 -82 36 30 18
F 22 10 7 15 20 12 10 25 15 15 10 7 56 33 14 4 36 32 18 8

Y 23 5 i 4 21 6 11 19 28 23 18 4 30 20 8 15 30 18 8 3
W 9 4 7 7 7 4 1 7 3 5 5 2 14 10 1 1 18 8 3 2

i, i + 2 Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

G 0.9 1.3 0.5 0.9 1.3 1.1 1.2 0.6 0.9 0.6 1.0 1.0 0.9 1.2 1.5 0.9 1.0 1.0 1.3 1.3
P 0.0 0.0 0.2 1.1 0.7 0.6 0.7 1.3 1.1 1.8 0.7 1.1 1.0 1.7 1.1 0.8 1.4 0.9 1.8

D 1.5 1.2 0.6 0.7 1.9 0.9 1.1 0.9 1.7 1.9 1.4 0.9 0.5 1.0 0.6 0.7 0.6 2.3
E 1.5 1.2 0.5 1.0 1.1 0.9 0.9 0.7 2.2 1.0 1.3 0.6 0.9 0.8 1.1 0.4 1.7
A 1.3 0.8 0.5 0.8 0.6 1.1 0.9 1.3 1.0 1.1 1.1 0.9 1.0 0.9 1.1 1.0
N 1.0 0.9 0.9 1.2 0.9 0.4 1.6 1.3 1.0 0.8 1.3 0.9 1.3 0.8 1.3

Q 0.5 0.9 1.9 0.7 0.9 1.3 0.8 0.8 1.0 0.8 1.1 1.0 1.4 0.3
S 2.0 1.7 0.7 1.0 1.1 0.8 0.8 0.8 1.0 0.8 1.1 1.1 1.0
T 1.9 1.1 0.6 0.8 1.0 0.7 0.7 0.6 0.7 0.5 1.2 0.3
K 1.1 1.1 0.9 1.0 1.0 1.4 1.0 1.1 0.8 1.6 0.9
R 1.5 0.6 0.6 1.3 0.8 1.4 1.0 0.8 1.8 1.3
H 2.5 0.9 0.6 0.6 0.6 1.0 0.8 0.6 0.7
V 1.1 1.2 0.6 0.8 1.0 1.1 0.8 0.9
I 1.0 1.2 1.0 1.0 1.0 0.7 0.9

M 2.1 1.6 0.9 1.5 1.1 0.3
C 0.0 1.6 0.4 2.1 0.4

L 1.3 0.9 1.0 1.5
F 1.4 1.0 1.1
Y 0.5 0.5
W 0.9

Table 6.6: Counts and frequencies of (i, i + 2) pairs
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Table 6.7: (i, i + 2) counts for residues grouped by hydrophobicity. Protein set: Rost
and Sander. Underlined cell is significant; P= 0.0026. Total X2 = 16.63; this is
significant. P< 10-4 .
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Observed Counts H 1596 801 667

N 801 528 349

P 667 :349 320
Observed/Expected H 1.03 0.95 0.99

N 1.07 1.00
P 1.01



Parallel Diagonal Counts
G P D E A N Q S T K R H V I M C L F Y W

G 4 1 2 5 7 2 2 3 3 1 2 2 11 14 0 3 12 3 0 1P 0 0 0 0 0 01 1 0 0 0 4 5 0 0 0 0 0 0
D 0 0 3 1 0 2 0 4 0 2 8 3 0 0 1 2 0 1
E 0 4 0 0 2 7 2 2 2 6 4 1 0 1 0 2 2
A 2 3 1 6 2 2 3 3 25 20 5 1 12 8 6 1N 1 0 1 3 1 2 0 7 5 2 0 0 2 2 0Q 0 0 1 0 0 1 4 1 0 0 4 1 1 0
S 1 5 4 2 0 5 5 2 0 10 3 4 1
T 4 4 1 2 16 9 1 l 15 3 1 1
K 1 0 0 11 7 1 0 8 0 2 0R 1 0 9 2 1 0 3 1 4 1
H 0 2 1 1 0 1 2 3 0
V 35 49 9 7 42 14 8 2
I 20 7 4 34 10 8 3
M 1 0 2 3 0 0
C 0 2 1 0 0
L 11 10 5 3

F 2 5 1
Y 1 1
W 0

Parallel Diagonal Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

G 1.8 1.5 1.3 2.3 1.1 1.1 2.3 0.9 0.7 0.4 1.0 1.7 0.7 1.1 0.0 2.9 1.2 0.8 0.0 1.0
P 0.0 0.0 0.0 0.0 0.0 0.0 2.2 1.5 0.0 0.0 0.0 1.6 2.7 0.0 0.0 0.0 0.0 0.0 0.0
D 0.0 0.0 1.3 1.6 0.0 1.8 0.0 4.2 0.0 4.7 1.3 0.7 0.0 0.0 0.3 1.4 0.0 2.9
E 0.0 1.3 0.0 0.0 1.3 3.1 1.5 2.1 3.4 0.7 0.7 1.0 0.0 0.2 0.0 1.4 4.2
A 0.4 1.2 0.8 1.3 0.3 0.5 1.1 1.8 1.0 1.1 1.8 0.7 0.8 1.4 1.4 0.7
N 2.8 0.0 0.8 1.6 0.9 2.6 0.0 1.0 1.0 2.5 0.0 0.0 1.2 1.7 0.0
Q 0.0 0.0 1.1 0.0 0.0 4.3 1.2 0.4 0.0 0.0 2.0 1.3 1.7 0.0
S 0.9 1.5 2.1 1.5 0.0 0.4 0.6 1.4 0.0 1.4 1.1 1.9 1.4
T 1.7 1.5 0.5 1.6 0.9 0.7 0.5 0.9 1.4 0.7 0.3 1.0
K 1.3 0.0 0.0 1.1 0.9 0.8 0.0 1.3 0.0 1.1 0.0
R 2.5 0.0 1.3 0.4 1.2 0.0 0.7 0.6 3.2 2.4
H 0.0 0.4 0.3 1.8 0.0 0.4 1.9 3.8 0.0
V 1.1 1.0 1.2 1.8 1.1 0.9 0.7 0.5
I 1.1 1.2 1.4 1.2 0.9 1.0 1.1
M 2.2 0.0 0.4 1.7 0.0 0.0
C 0.0 0.8 1.1 0.0 0.0
L 0.9 1.1 0.7 1.3
F 1.1 1.9 1.1
Y 1.0 1.5
W 0.0

Table 6.8: Parallel diagonal pairs
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Antiparallel Diagonal Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

0.4 0.9 0.5 0.9 1.2 1.2 2.1 1.0 0.8 1.6 2.0 0.7 0.8 0.7 1.0 0.8 0.8 1.3 1.4 0.7
3.9 2.0 1.4 0.7 1.0 3.1 0.7 1.2 2.5 0.0 0.0 1.0 0.9 1.0 0.8 0.7 1.1 0.0 0.0

1.0 1.8 1.1 3.1 0.4 0.9 1.6 1.0 1.2 0.9 1.2 0.8 1.0 0.4 0.5 0.4 1.1 1.0
0.5 0.7 1.5 0.0 0.7 1.0 2.4 2.0 1.7 0.7 0.9 0.7 0.9 0.8 1.1 1.3 0.4

1.3 0.8 0.9 1.4 0.7 0.5 0.5 1.2 1.1 1.3 1.7 0.4 0.8 1.1 1.3 0.8
0.0 1.2 1.6 1.6 1.3 1.9 0.5 0.7 0.5 0.0 0.9 0.8 0.4 1.0 0.5

1.3 1.6 1.6 0.8 1.0 1.1 0.6 0.7 0.4 1.0 0.9 0.6 0.9 1.7
2.6 1.2 1.1 1.4 1.1 0.7 0.5 1.2 0.4 0.8 0.6 0.3 0.5

2.4 0.8 0.8 1.3 1.0 0.9 0.8 1.0 0.6 0.5 0.5 0.3
0.8 0.9 1.0 0.9 1.1 0.5 0.8 0.9 0.7 1.1 1.3

0.4 1.7 0.9 0.7 1.9 1.5 0.8 0.4 1.3 0.6
0.9 1.3 0.9 0.0 1.2 0.7 0.9 0.9 0.0

1.1 1.1 1.3 1.5 1.1 1.0 0.9 1.0
1.7 0.6 0.8 1.0 1.5 0.8 0.8

3.2 1.3 0.6 0.9 1.2 0.0
1.4 1.6 0.8 1.0 0.4

1.6 1.5 1.0 1.3
1.3 1.1 1.5

1.3 2.6
3.3

Table 6.9: Antiparallel diagonal pairs
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Antiparallel Diagonal Counts
G P D E A N Q S T K R H V I M C L F Y W

G 2 2 2 5 14 5 11 12 11 13 14 3 20 9 4 4 14 15 15 3P 1 2 2 21 4 2 45 0 0 63 1 1 3 3 0 0
D 1 5 6 6 1 5 10 4 4 2 14 5 2 1 4 2 6 2

E 1 5 4 0 6 9 13 9 5 11 8 2 3 9 8 9 1

A 10 4 6 22 12 5 5 7 35 23 9 3 17 17 18 4

N 0 3 9 10 5 6 1 8 3 0 2 6 2 5 1

Q 2 12 13 4 4 3 8 6 1 3 9 4 6 4

S 22 22 13 13 7 24 10 7 3 19 9 4 3

T 24 10 8 9 36 19 5 8 15 8 9 2

K 3 6 4 19 14 2 4 14 8 11 5

R 1 6 16 7 6 6 10 4 11 2

H 1 16 6 0 3 6 5 5 0

V 34 42 14 20 52 31 27 11
I 18 4 6 26 27 14 5

M 3 3 5 5 6 0

C 2 16 5 6 1

L 26 34 20 10
F 10 16 8

Y 9 13

W 3

G
P
D
E
A

N

Q
S

T
K
R
H

V
I

M

C
L

F
y
W

--



Parallel Diagonal Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

0.9 1.1 0.7 1.2 1.2 1.2 2.1 1.0 0.8 1.3 1.8 0.9 0.8 0.9 0.7 1.1 1.0 1.1 1.1 0.8
3.4 1.6 1.2 0.5 0.8 3.0 0.9 1.3 2.2 0.0 0.0 1.2 1.5 0.8 0.8 0.5 0.9 0.0 0.0

0.8 1.4 1.1 2.7 0.4 1.0 1.3 1.7 1.0 1.6 1.2 0.7 0.7 0.4 0.4 0.6 1.0 1.3
0.4 0.8 1.1 0.0 0.9 1.5 2.3 2.1 2.0 0.7 0.8 0.8 0.8 0.6 0.9 1.3 1.0

1.0 0.9 0.8 1.3 0.6 0.5 0.7 1.3 1.1 1.2 1.7 0.5 0.8 1.2 1.3 0.7
0.8 1.1 1.5 1.6 1.2 2.0 0.4 0.8 0.7 0.7 0.7 0.5 0.6 1.1 0.4

1.4 1.6 1.7 0.8 1.0 1.5 0.6 0.6 0.3 1.0 1.0 0.7 1.1 1.7
2.5 1.3 1.3 1.4 1.0 0.6 0.5 1.3 0.4 0.9 0.7 0.5 0.7

2.3 0.9 0.7 1.4 1.0 0.8 0.7 1.1 0.8 0.5 0.5 0.4
0.9 0.8 0.8 0.9 1.0 0.6 0.8 1.0 0.6 1.1 1.2

0.7 1.6 0.9 0.5 1.7 1.4 0.7 0.5 1.6 0.9
0.8 1.0 0.6 0.4 1.1 0.6 1.0 1.3 0.0

1.1 1.2 1.2 1.4 1.1 1.0 0.8 0.8
1.5 0.9 0.8 1.1 1.2 0.8 0.8

2.9 1.1 0.6 1.1 0.9 0.0
1.4 1.4 0.8 0.9 0.4

1.3 1.4 0.9 1.3
1.3 1.3 1.5

1.4 2.6
3.1

Table 6.10: All diagonal pairs
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Parallel Diagonal Counts
G P D E A N Q S T K R H V I M C L F Y W

G 6 3 4 10 21 7 13 15 14 14 16 5 31 23 4 7 26 18 15 4

P 1 2 2 2 1 4 3 5 5 0 0 10 8 1 1 3 3 0 0
D 1 5 9 7 1 7 10 8 4 4 22 8 2 1 5 4 6 3
E 1 9 4 0 8 16 15 11 7 17 12 3 3 10 8 11 3

A 12 7 7 28 14 7 8 10 60 43 14 4 29 25 24 5

N 1 3 10 13 6 8 1 15 8 2 2 6 4 7 1

Q 2 12 14 4 4 4 12 7 1 3 13 5 7 4
S 23 27 17 15 7 29 15 9 3 29 12 8 4

T 28 14 9 11 52 28 6 9 30 11 10 3

K 4 6 4 30 21 3 4 22 8 13 5

R 2 6 25 9 7 6 13 5 15 3
H 1 18 7 1 :3 7 7 8 0

V 69 91 23 27 94 45 35 13
I 38 11 10 60 37 22 8

M 4 3 7 8 6 0

C 2 18 6 6 1

L 37 44 25 13
F 12 21 9

Y 10 14
W 3

G
P
D

E
A
N

Q
S

T
K
R
H

V
I

M
C
L

F
Y
W
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Table 6.11:
all-beta, for

Diagonal pairs: counts and preferences
amino acids grouped into three classes.

for parallel, antiparallel, and
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Parallel Observed Counts H 300 208 120
N 40 64
P 20

Observed/Expected H 1.0 1.0 0.9

N 1.0 1.2

P 1.2
Antiparallel Observed counts H 532 408 335

N 162 239

P 104
Observed/Expected H 1.2 0.8 0.8

N 1.2 1.1

P 1.2
Both Observed Counts H 832 616 455

N 202 303

P 124
Observed/Expected H 1.1 0.9 0.8

N 1.2 1.2

P 1.2



Charged pairs

In beta pairs and diagonal pairs, positively charged residues (Lys, Arg, sometimes His)

associate very strongly, and for the most part significantly, with negatively charged

residues (Asp, Glu). This is also true of the contacting pairs computed in chapter 4,

in which secondary structure was not a filter. In (i, i + 2) pairs, however, there is no

significant pairing; Lys shows a slight tendency not to associate with Asp and Glu,

and (Arg, Glu) pairs are also disfavored.

Pairs of positively charged residues do not show the strong anti-association one

might expect. They generally show negative association, and sometimes positive

association. Most occurrences of beta, (i, i+2), and diagonal pairs are not significant.

(His, His) pairs, however, are significantly favored. Looking at the general pairs, (His,

His) pairs and (Arg, Arg) pairs are favored, while (His, Arg) and (His, Lys) pairs are

disfavored. Thus we do not see a clear effect of charge repulsion here. This is perhaps

partly due to His not always being charged, and Arg and Lys having long, flexible

sidechains with the charges at the end, which allows the same-sign charges to avoid

each other.

Pairs of negatively charged residues are slightly disfavored in beta pairs, and

slightly favored in (i, i + 2) pairs. In diagonal pairs, (Asp, Asp) and (Glu, Glu) pairs

are disfavored, but (Asp, Glu) pairs are favored. None of these are significant.

Asn and Gin

Asn and Gln are polar and capable of being both hydrogen bond donors and acceptors.

I expected that they would associate well with each other, and with charged residues,

as well as with the polar Ser and Thr. In beta pairs, Asn and Gln do show strong

significant self-association. This is not the case for (i, i+2) pairs, where the association

is slightly (though not significantly) disfavorable. In all contacting pairs, the self-

association is favorable. There is not strong association one way or the other between

Asn or Gln and the charged residues. The association that does exist changes sign in

the various topological relationships examined.
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Ser and Thr

In beta pairs, (ii + 2) pairs, and diagonal, Ser and Thr show very strong self-

association, as well as strong (Ser, Thr) association. Thr prefers association with

polar residues, and disfavors hydrophobic residues as beta pair partners. In beta

pairs, here is significant association for (Thr, Asn) and (Thr, Arg). In beta pairs,

there is significant avoidance in the pairs (Thr, Val), (Thr, Leu), (Thr, Phe), and

(Thr, Trp). Ser also tends to favor polar and disfavor hydrophobic beta pair part-

ners, though not with the fervor of Thr.

Cys

(Cys, Cys) pairs are the most strongly favored in the table of all contacting pairs.

(Cys, Cys) pairs occur in antiparallel beta pairs and antiparallel diagonal pairs. They

do not occur in parallel beta pairs, (i, i + 2) pairs, or parallel diagonal pairs. This is

probably due to the fact that the geometry of these topological pairs is not conducive

to forming the disulfide bond that favors the (Cys, Cys) pairs in other conformations.

This is the most striking example of differences in pairwise preference as a function

of the particular pair topology, and provides a strong argument for distinguishing

between different types of pairs in the protein structure representation.

6.3.2 Significant specific "recognition" of beta pairs

The x2 level of confidence for rejecting the null hypothesis of random pairing between

3-strands is 100% for 3 A (X2= 180.28 with 78 degrees of freedom) and 100% for p

(y2= 92.87 with 21 degrees of freedom). Thus I agree with Lifson and Sander's result

that there is statistically significant recognition.

6.3.3 Significant nonspecific recognition

The Lifson and Sander 1980 model does not consider the environment. The contin-

gency table is therefore collapsed to two dimensions as shown in Table 6.12. Also

shown are the counts predicted by the model which assumes random association of
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Counts
VLIFYWCM GASTP KRHDENQ

VLIFYWCM 5890 2202 1734
GASTP 2202 1820 1355

KRHDENQ 1734 1355 2098

Expected counts, independence model
VLIFYWCM GASTP KRHDENQ

NVLIFYWCM 4735 2591 2500
GASTP 2591 1418 1368

KRHDENQ 2500 1368 1320

Observed/expected counts
VLIFYWCM GASTP KRHDENQ

VLIFYWCM 1.24 0.85 0.69
GASTP 0.85 1.28 0.99

KRHDENQ 0.69 0.99 1.59

G2 = 2obs x In (obs/exp)
VLIFYWCM GASTP KRHDENQ

VLIFYWCM 2571 -717 -1268
GASTP -717 909 -26

KRHDENQ -1268 -26 1946

Table 6.12: Two-dimensional contingency table showing beta pair counts; expected
counts based on a model of independent random association of pairs; likelihood ratio,
observed to expected counts; G2

amino acid type. The observed data shows a significant non-random association of

amino acid class, with G2 = 1404 and 4 degrees of freedom (or accounting for symme-

try, G2 of 1202 and 3 degrees of freedom). The ratio of observed to expected counts

shows that amino acids prefer to form beta pairs with amino acids of the same class.

(hydrophobe with hydrophobe, neutral with neutral, and polar with neutral). Polar

and hydrophobic residues show a clear preference not to be beta paired. The likeli-

hood ratio statistic G2 for the individual entries are also shown in Table 6.12; all of

these are significantly different from 0, for one degree of freedom.

6.3.4 Solvent exposure

Table 6.13 shows counts and frequencies for beta pairs whose residues are both buried.
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Buried Beta Pair Counts
G P D E A N Q S T K R H V I M C L F Y W

G 7 3 8 5 15 6 2 11 19 7 8 8 49 15 9 9 29 15 13 8

P 1 1 3 0 4 3 4 3 6 4 1 7 4 4 3 4 3 4 1
D 1 2 8 5 5 12 13 7 10 7 7 13 3 0 10 3 3 0

E 2 8 6 6 6 14 32 16 6 14 16 1 0 6 8 8 2

A 8 5 5 17 32 18 5 3 56 45 4 7 36 21 17 4
N 2 4 8 13 11 4 3 14 5 3 4 5 7 9 4

Q 2 10 15 6 9 1 11 8 3 2 10 11 13 3

S 18 34 17 9 6 38 18 5 4 21 13 13 3

T 17 17 17 16 33 28 8 4 23 9 16 3

K 6 3 4 20 20 2 6 16 9 19 5
R 1 5 20 17 4 2 13 9 10 4

H 1 14 12 0 4 10 0 5 3
V 85 97 19 14 91 53 28 10

I 35 11 15 73 31 26 8
M 1 4 13 7 9 3
C 6 11 11 8 8

L 33 34 32 12
F 15 14 6

Y 11 7
W 2

Buried Beta Pair Likelihood Ratios
G P D E A N Q S T K R H V I M C L F Y W

G 1.1 0.9 1.3 0.6 0.9 1.0 0.3 0.8 1.1 0.6 0.9 1.5 1.3 0.6 1.6 1.4 1.1 1.0 0.9 1.6
P 2.5 0.7 1.5 0.0 2.5 1.8 1.1 0.7 2.0 1.8 0.7 0.7 0.6 2.8 1.9 0.6 0.8 1.1 0.8
D 0.7 0.5 1.1 1.7 1.6 1.8 1.6 1.3 2.5 2.7 0.4 1.0 1.1 0.0 0.8 0.4 0.5 0.0
E 0.8 0.8 1.5 1.4 0.7 1.2 4.2 2.9 1.7 0.6 0.9 0.3 0.0 0.4 0.8 0.9 0.6
A 0.8 0.6 0.6 0.9 1.4 1.2 0.5 0.4 1.1 1.3 0.6 0.9 1.1 1.1 1.0 0.6
N 1.3 1.2 1.1 1.5 1.9 1.0 1.1 0.7 0.4 1.1 1.3 0.4 1.0 1.3 1.7

Q 1.2 1.4 1.6 1.0 2.0 0.4 0.6 0.6 1.0 0.6 0.7 1.4 1.8 1.2
S 2.2 1.7 1.3 0.9 1.0 0.9 0.6 0.8 0.6 0.7 0.8 0.8 0.5
T 1.4 1.0 1.4 2.1 0.6 0.8 1.0 0.4 0.6 0.4 0.8 0.4
K 1.1 0.4 0.8 0.6 0.8 0.4 1.0 0.7 0.7 1.5 1.1
R 0.3 1.3 0.8 0.9 1.0 0.5 0.7 0.9 1.1 1.2
H 0.8 0.8 1.0 0.0 1.4 0.9 0.0 0.8 1.4
V 1.5 1.2 1.1 0.7 1.2 1.2 0.7 0.7
I 1.2 0.9 1.1 1.3 1.0 0.9 0.8

M 0.8 1.4 1.1 1.1 1.4 1.4
C 3.7 0.8 1.5 1.1 3.2
L 1.3 1.1 1.1 1.2
F 1.8 0.9 1.1
Y 1.5 1.3
W 2.1

Table 6.13: Counts (top) and frequencies (bottom) for buried beta pairs.
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Likelihood Ratios

Table 6.14: R for three classes.

Table 6.14 shows R for three classes. Residues that are buried seem to show

a more definite recognition between classes, but this may also be partly due to the

reduced number of counts. A X2 analysis is pending.

6.3.5 Five-dimensional contingency table

Table 6.15 shows the five-dimensional contingency table generated from all beta pairs

in the set of proteins. The counts range from 3 (parallel, exposed hydrophobe

next to exposed neutral) to 3074 (antiparallel, buried hydrophobe next to buried

hydrophobe).

The attributes of each pair are defined as follows:

* Al, A2: the amino acid type (grouped into three hydrophobicity classes) of the

two members of the beta pair.

* El, E2: the solvent exposure of each of the two members of the beta pair.

* D: the strand direction of the beta pair.

6.3.6 Nonrandom association of exposure

Table 6.16 summarizes the counts by reporting the three-dimensional marginal totals

obtained by summing over amino acid type. The table shows that the environment

(factor) variables are not independent of one another. Numbers in parentheses show

expected counts assuming random pairing according to the two-dimensional table

margin totals. A model of the five-dimensional contingency table incorporating the

two-factor term corresponding to the exposures of each residue reduces the G2 statistic
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All beta pairs Buried beta pairs
hydrophobic 1.1 1.0 0.9 1.1 0.9 0.8

neutral 1.0 1.1 0.7 1.5
polar 1.2 1.3

.



Buried Exposed
Hyd Neu Pol Hyd Neu Pol

Antipar. Buried Hyd 3074 1295 916 484 180 349
Neu 1295 856 694 133 262 225
Pol 916 694 858 72 63 298

Exposed Hyd 484 133 72 204 116 129

Neu 180 262 63 116 182 211

Pol 349 225 298 129 211 390
Parallel Buried Hyd 1436 420 162 102 29 85

Neu 420 162 93 26 40 45

Pol 162 93 78 8 11 58

Exposed Hyd 102 26 8 4 3 13

Neu 29 40 11 3 16 13

Pol 85 45 58 13 13 60

Table 6.15: Five-dimensional contingency table.

by 1339 over the single-term model, with a change of one degree of freedom, which is

highly significant. This observation, along with the knowledge that each amino acid

shows a preference for either buried or exposed positions, suggests that some of Lifson

and Sander's correlation between amino acids is likely to be due to the nonrandom

association of exposure environment.

Loglinear models can be created for the full five-dimensional contingency table to

illustrate this point. I examined two model hierarchies; they add terms in different

orders. Starting with all single margins, and adding two-way exposure, then direction

paired terms, I have the models shown in Table 6.17. Another possible order of models

is shown in Table 6.18; here I start with all single margins, then add the two-way

exposure/direction margins [E1D][E2D], then the two-way exposure margin [E1E2],

then the three-way term [ElE2D].

Note that while the order of adding terms here does make a difference in the

amount that the goodness of fit statistic is increased from one model to the next, the

largest effect is due to the two-way term [E1E2].

Exposure preference accounts for 1/3 to 1/2 of the variance

I ask how the solvent exposure might affect the pairwise recognition results. By

separating the buried and exposed counts, how much of the association in the Lifson
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Antiparallel Beta Pairs
Buried Exposed Total

Buried 10,598 2,066 12,664
9, 768 2,896 12,664

Exposed 2,066 1,688 3,754
2,896 858 3,754

Total 12,664 3,754 16,418

Parallel Beta Pairs
Buried Exposed Total

Buried 3,026 404 3,430
2,962 468

Exposed 404 138 542
468 74

Total 3430 542 3972

All Beta Pairs
Buried Exposed Total

Buried 13,624 2,470
Exposed 2,470 1,826

Table 6.16: [E1E2D] margin totals.

Added margins G2 df AG2 A(df) interpretation
[A1][A 2][E1][E2][D] 5940 64 single margins maintained
[E1E2] 4601 63 1339 1 two-way exposure
[E1 D],[E 2D] 4319 61 282 2 two-way exposure/direction

,[E 1E2D] 4301 60 18 1 three-way exp/dir

Table 6.17: Model hierarchy for the environment variable interactions

Added margins G2 df AG2 A(df) margins maintained
[A1][A2][E1][E2][D] 5940 64 single margins maintained
[E1D],[E 2D] 5586 62 354 2 two-way exp/dir
[E1E 2] 4319 61 1267 1 two-way exp
[EiE 2D] 4301 60 18 1 three-way exp/dir

Table 6.18: Model hierarchy for the environment variable interactions; alternate or-
dering
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Added margins G2 df AG 2 A(df) interpretation
[Al][A 2][E1 ][E 2][D] 5940 64 single margins
[EiE 2D] 4301 60 1639 4 full environment
[A1E][A 2 E2 ] 2235 56 2066 4 residue's own exposure
[AIE 2][A 2E 1] 2149 52 86 4 other residue's exposure
[A1 D][A2D] 1704 48 445 4 direction
[A1 E1E 2][A 2E 1E 2] 1687 44 17 4 3-way exposure
[A1 E1 E2D][A 2EiE 2D] 1403 32 284 12 full-way environment

Table 6.19: Model hierarchy comparing exposure and strand direction. Each model
in the hierarchy is described by the maximal margins added.

Added margins G2 df AG 2 (df) interpretation
[A1][A 2][Ei][E 2][D] 5940 64 single margins
[E1 E2 D] 4301 60 1639 4 full environment
[A1D][A 2D] 3681 56 620 4 direction
[A1 E1 ][A2E2] 1772 52 1909 4 residue's own exposure
[A1E2][A 2E1] 1704 48 68 4 other residue's exposure

[AiE 1E 2 j[A 2E 1E 2 j 1687 44 17 4 3-way exposure

[A1 E1 E2 D][A 2E1 E2 D] 1403 32 284 12 full-way environment

Table 6.20: Adding terms in a different order.

and Sander model can I explain? For this analysis, I assume that the exposure and

direction variables are the independent variables, and start with a model that includes

all their margins, model [A1][A2][E1E2D].

Results are shown in Table 6.19. The main result is that the residue's own exposure

accounts for much (one-third to one-half) of the variance in model [Al][A2][E1E2D].

Model [A1E1E2D][A2E1E 2D] treats each environment table separately. Accounting

for symmetry, the model has G2 of 701 with 9 degrees of freedom. This is to be

compared with the Lifson and Sander model, which does not take environment into

account, and has a G2 of 1202 with 3 degrees of freedom. Both models show significant

nonrandom association, but model [A1EE 2D][A2E1E2D] shows less.

In Table 6.20, I check to see whether the contribution of terms to the G2 statistic is

affected by the order in which they are added to the models. Clearly, regardless of the

order in which terms are added, the residue's own exposure is the largest contributor

to the non-randomness in the models.

134



Counts
Hyd. Neu. Pol.

Hydrophobic 1066 466 292
Neutral 466 176 85
Polar 292 85 38

Observed/Expected
Hyd. Neu. Pol.

Hydrophobic 0.95 1.04 1.14
Neutral 0.99 0.84
Polar 0.65

Table 6.21: Counts and likelihood ratios for i,j + 1 pairs, with amino acids grouped
by hydrophobicity class. Statistically significant cells (P< 0.05) are underlined in the
likelihood ratio table.

6.3.7 Unexpected correlation in buried (i, j + 1) pairs

I considered buried (i,j + 1) pairs, expecting this to be a baseline with no correlation,

because the side chains are not in contact on opposite sides of the sheet and on

different beta strands. However, I found significant correlation.

For amino acids grouped into three hydrophobicity classes, X2 = 18.58 with three

degrees of freedom, and P= 3.3 x 10 - 4 . Table 6.21 shows counts and likelihood ratios,

with significant cells (P< 0.05) underlined. The two significant cells in the table are

polar-polar and polar-hydrophobic. Polar residues disfavor polar residues in this

relationship (opposite sides of a buried beta sheet). Polar residues favor hydrophobic

residues. This suggests a residual amphipathicity in sheets that are buried.

Does this change with a more stringent definition of buried? Perhaps we're ac-

tually still looking at amphipathic sheets because of a definition that allows some

exposed residues to masquerade as buried residues. Table 6.22 shows counts and

likelihood ratios for a more stringent definition of buried: relative exposure must be

less than 5%, rather than the 20% used in Table 6.21. There are 1243 total pairs,

as opposed to 2123 at the 20% level. Only the polar-polar cell is significant at the

0.05 level (X2 = 5.44; P= 0.02). The overall table has X2 = 8.6 with three degrees of

freedom, which is significant at the 0.05 level, P= .035. It appears that polar residues

tend to appear less than expected in the (i,j + 1) relationship in very buried beta
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Counts
Hyd. Neu. Pol.

Hydrophobic 660 287 125
Neutral 287 122 41

Polar 125 41 8

Observed/Expected
Hyd. Neu. Pol.

Hydrophobic 0.97 1.01 1.14
Neutral 1.02 0.89
Polar 0.45

Table 6.22: Counts and likelihood ratios for i,j + 1 pairs, with amino acids grouped
by hydrophobicity class. Statistically significant cells are underlined in the likelihood
ratio table.

sheets.

I grouped the amino acids into eight groups: positively charged (KRH), negatively

charged (DE), aromatic (FYW), hbond donors (ST), hbond donors and acceptors

(NQ), hydrophobic (VLI), small (GAP), and sulfur-containing (CM). With the amino

acids grouped into these eight groups, X2 = 68.8 with 28 degrees of freedom, and P=

2.7 x 10-5 . Table 6.23 shows counts and likelihood ratios, with significant cells in bold

face. The significantly disfavored opposite-sheet-side pairs are (1) negatively charged

with negatively charged, (2) aromatic with aromatic, (3) hydrogen bond donor with

hydrogen bond donor/acceptor, and (4) sulfur-containing with hydrophobic. The

significantly favored opposite-sheet-side pairs are (1) hydrogen bond donor/acceptor

with aromatic, (2) hydrogen bond donor with aromatic, and (3) sulfur-containing

with sulfur-containing.

For the 20 by 20 table, x2 = 229.6 with 190 degrees of freedom, and P= 0.026.

Table 6.24 shows counts and likelihood ratios, with significant cells (P< 0.05) un-

derlined. For all the significant cells, the co-occurence of those amino acid pairs on

opposite sides of the sheet is greater than would be expected by random association.

These pairs are GG, CG, FD, IE, RN, YQ, FS, FT, VV, MM, YC.

There are several possible explanations for this nonrandom association. One is

that the environments are somehow different on the two sides of the secondary struc-
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Counts
KRH DE FYW NQ ST VLI GAP CM

KRH 6 4 26 10 12 80 24 10

DE 4 0 24 1 10 57 18 8

FYW 26 24 46 27 59 157 60 33
NQ 10 1 27 2 5 53 16 7

STi 12 10 59 5 28 138 40 20

VLI 80 57 157 53 138 534 167 44
GAP 24 18 60 16 40 167 68 22

CM 10 8 33 7 20 44 22 18

Observed/Expected
KRH DE FYW NQ ST VLI GAP CM

KRH 0.60 0.57 1.04 1.43 0.66 1.12 1.00 1.06
DE 0.00 1.35 0.20 0.78 1.13 1.05 1.20
FYW 0.73 1.53 1.30 0.88 0.99 1.40
NQ 0.41 0.39 1.06 0.95 1.06
ST 0.85 1.07 0.92 1.17
VLI 1.05 0.97 0.65
GAP 1.17 0.97
CM 2.03

Table 6.23: Counts and likelihood ratios for i,j + 1 pairs, with amino acids grouped
into eight classes. Statistically significant cells are underlined in the likelihood ratio
table.
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Counts
G P D E A N Q S T K R H V I M C L F Y W

G 16 1 5 2 12 2 3 7 8 2 1 3 30 21 5 9 21 13 8 1

P 1 0 0 0 3 2 0 2 4 1 1 1 3 4 1 0 4 2 0 0

D 5 0 0 0 4 0 1 2 4 0 0 1 9 5 1 1 9 9 4 1

E 2 0 0 0 7 0 0 1 3 2 0 1 5 16 4 2 13 6 2 2

A 12 3 4 7 20 7 2 8 11 7 8 0 40 24 3 4 20 16 13 7

N 2 2 0 0 7 0 0 3 1 1 4 3 9 10 4 1 7 9 4 1

Q 3 0 1 0 2 0 2 0 1 0 1 1 9 7 1 1 11 5 6 2

S 7 2 2 1 8 3 0 6 8 2 1 1 21 16 5 4 19 18 9 3

T 8 4 4 3 11 1 1 8 6 2 3 3 29 26 7 4 27 21 5 3

K 2 1 0 2 7 1 0 2 2 0 1 0 11 5 2 3 9 5 5 0

R 1 1 0 0 8 4 1 1 3 1 0 2 12 8 1 1 10 4 2 3

H 3 1 1 1 0 3 1 1 3 0 2 0 14 7 2 1 4 5 1 1

V 30 3 9 5 40 9 9 21 29 11 12 14 102 68 12 7 58 25 17 9

I 21 4 5 16 24 10 7 16 26 5 8 7 68 46 6 5 45 20 23 12

M 5 1 1 4 3 4 1 5 7 2 1 2 12 6 6 4 5 8 5 3

C 9 0 1 2 4 1 1 4 4 3 1 1 7 5 4 4 9 2 12 3

L 21 4 9 13 20 7 11 19 27 9 10 4 58 45 5 9 44 20 18 13

F 13 2 9 6 16 9 5 18 21 5 4 5 25 20 8 2 20 12 7 2

Y 8 0 4 2 13 4 6 9 5 5 2 1 17 23 5 12 18 7 8 3

W 1 0 1 2 7 1 2 3 3 0 3 1 9 12 3 3 13 2 3 2

Observed/Expected
G P D E A N Q S T K R H V I M C L F Y W

G 1.6 0.6 1.6 0.5 1.0 0.5 1.0 0.9 0.8 0.6 0.3 1.0 1.1 1.0 1.0 2.0 1.0 1.1 0.9 0.3
P 0.0 0.0 0.0 1.4 3.0 0.0 1.5 2.3 1.8 1.6 2.0 0.6 1.1 1.2 0.0 1.1 1.0 0.0 0.0
D 0.0 0.0 1.0 0.0 1.0 0.8 1.2 0.0 0.0 1.0 1.0 0.7 0.6 0.7 1.3 2.3 1.4 0.8
E 0.0 1.5 0.0 0.0 0.3 0.8 1.6 0.0 0.9 0.5 1.9 2.1 1.2 1.6 1.3 0.6 1.3
A 1.3 1.4 0.5 0.8 0.9 1.7 1.7 0.0 1.1 0.9 0.5 0.7 0.8 1.1 1.2 1.4
N 0.0 0.0 1.0 0.3 0.8 2.8 2.6 0.8 1.2 2.0 0.6 0.8 1.9 1.2 0.6
Q 2.1 0.0 0.3 0.0 0.9 1.1 1.0 1.1 0.7 0.7 1.7 1.3 2.2 1.6
S i 1.0 1.0 0.8 0.4 0.4 0.9 0.9 1.3 1.1 1.1 1.9 1.3 0.9
T 0.6 0.6 0.8 1.0 1.0 1.2 1.4 0.9 1.2 1.7 0.6 0.7
K 0.0 0.8 0.0 1.2 0.7 1.2 2.0 1.3 1.2 1.7 0.0
R 0.0 1.9 1.2 1.0 0.6 0.6 1.3 0.9 0.6 2.0
H 0.0 1.7 1.1 1.4 0.8 0.6 1.4 0.4 0.8

V 1.3 1.1 0.9 0.6 1.0 0.7 0.7 0.8
I 1.0 0.6 0.5 1.0 0.8 1.2 1.3
M 2.5 1.8 0.5 1.3 1.2 1.5
C 2.0 1.0 0.4 3.0 1.6
L 1.0 0.8 1.0 1.5
F | 0.8 0.7 0.4
Y 1.0 0.8
Wi 1.2

Table 6.24: Counts and likelihood ratios for i, j + 1 pairs. Statistically significant
cells (P< 0.05)are underlined in the likelihood ratio table.
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ture element, in a way that is not being picked out just with secondary structure

and DSSP solvent exposure. Different environments would imply different "single-

ton" amino acid preferences, and the resultant segregation would lead to an observed

pairwise effect, if the environments were not carefully separated in the counting.

Another explanation is that local sequence composition is a strong factor in de-

termining local secondary structure. The (i, j + 1) interaction is a combination of an

(i, i + 1) effect and a (i,j) effect. As we've seen earlier in this chapter, (i,j) pairs

show self-association between hydrophobicity category. Moreover, buried beta (i, i+1)

pairs, even though they are not in contact, show anti-association of hydrophobicity

type.

6.4 Conclusions

This work explores the idea of incorporating knowledge about the topological rela-

tionship between core element positions in protein structural models for threading

algorithms. Other work has used information about the distance between pairs, and

the secondary structure of a single residue position.

The side chains of amino acid residues in proteins interact in complex ways with

their spatial neighbors. Each side chain is in contact with several others. Many

pseudo-energy functions that evaluate the quality of a sequence/structure match sum

pairwise numbers for each residue pair without regard to the environment of a residue.

These results show, however, that the frequencies of pairs of amino acid residues in a

very specific topological relation within the protein can vary significantly depending

on the local protein topology and environment.

My results also show the importance of considering the environment in compil-

ing statistics for use in prediction algorithms. For example, I've shown that the

parallel/antiparallel frequency counts are greatly affected by solvent exposure. In

general, care should be taken to be sure that the environments are similar for the

categories being examined. For example, when I take solvent exposure out of the pic-

ture, and consider only buried residues, it is clear that the hydrophobic residues that
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are branched at the beta carbon dominate all other residues in their beta-structure

preference. In addition, it is important to properly separate the contributions of var-

ious environmental factors to the pseudopotential; threading algorithms in particular

enable this to be done in a rational way because the protein models contain all the

necessary environmental information.

The Nr'touching and fr,touching results suggests that using frequencies derived for

topologically related residues may be valid regardless of whether the residues are in

contact. Topological relation may be as important as physical adjacency. Moreover,

residues that are topological neighbors may jointly influence the structure even though

they are not in contact: consider two small residues, or the antiparallel conformation

where every other pair is quite distant from each other.

It might be useful to use only statistically significant pairwise interactions in

evaluation functions, to avoid the problem of low sample size.

The overriding result here is that the interaction of solvent exposure and amino

acid hydrophobicity are key. Strand direction has a significant but much smaller

effect.
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Chapter 7

Secondary Structure Prediction

7.1 Introduction

In the previous chapters I have shown that solvent exposure and hydrophobicity are

of primary importance in protein structure. I have also shown that some buried struc-

tural elements are amphipathic. Clearly, patterns of hydrophobicity are important in

determining the protein's fold.

I turn now to the question of how the patterns of hydrophobicity might be used

in protein structure prediction. In this chapter I show that hydrophobicity patterns

in a protein sequence can be exploited to improve secondary structure prediction.

The hydrophobic patterns are computed as two numbers indicating the amphipathic

strength of a stretch of residues along the sequence. These two numbers are used

to augment the inputs to a neural network that predicts secondary structure. The

addition of this hydrophobicity pattern information provides a small but significant

improvement in the performance of the neural network.

This chapter includes several other items of interest. I describe the methodol-

ogy for determining the significance of performance improvement in a cross-validated

study. The neural network weights are examined and displayed. Finally, I explore in

some detail the characteristics of a representation of hydrophobicity patterns.
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7.2 Related Work

There are many different secondary structure prediction algorithms. Some take ad-

vantage of hydrophobicity patterns. Some use neural networks. There are also several

ways that hydrophobicity patterns have been represented.

In this section, I discuss other work using hydrophobicity patterns in secondary

structure predictions. I then summarize related work in neural networks for pre-

dicting secondary structure. I conclude the section by discussing representations of

hydrophobicity patterns.

7.2.1 Hydrophobicity patterns in other secondary structure

prediction methods

The most commonly used secondary structure predictions methods are the Chou-

Fasman for globular proteins [Chou and Fasman, 1978], and the helical wheel for

finding trans-membrane helices [Schiffer and Edmundson, 1967]. There are many

other approaches, some of which I discuss here.

The Chou-Fasman secondary structure prediction considers secondary structure

propensity, but does not look for patterns of hydrophobicity [Chou and Fasman, 1978].

(Secondary structure propensity is the likelihood ratio P(SA)/P(S)P(A), where S is

the secondary structure, A is the amino acid, and P(S), P(A) and P(SA) are the prob-

abilities of occurrence of S A, and A and S jointly, respectively.) The method looks

for strong secondary-structure forming groups of residues and grows the strands and

helices outward from these nucleii, based only on the secondary structure propensity

of each amino acid.

The GOR method [Garnier et al., 1978] also does not use hydrophobicity patterns.

The method considers a window of residues and predicts the secondary structure of

the central window, based on the first-order contribution of each residue type at each

position relative to the central position. The GOR method is very closely related

to the single-layer neural network approach with bit representation that I use as a

control. The weights in the learned network (see Figure 7-12) correspond to the GOR
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parameters computed for each residue in the window.

The helical wheel approach looks for changes in hydrophobicity with a period

equal to that expected for alpha helices, 3.6 residues [Schiffer and Edmundson, 1967];

this has been implemented in a computer program [Kyte and Doolittle, 1982]. This

has been most often used for finding transmembrane helices.

Eisenberg and colleagues defined the hydrophobic moment to indicate the de-

gree of alternation of hydrophobic and hydrophilic residues at a given frequency

in a protein sequence. They used the moment along with average hydrophobicity

to distinguish between types of alpha helices (globular, membrane, and membrane-

surface-seeking) [Eisenberg et al., 1982. Eisenberg et al., 1984a]. Beta-strand and

other helical structures were also analyzed [Eisenberg et al., 1984b]. The hydropho-

bic moment was used with some variations by Finer-Moore and Stroud in a secondary

structure prediction for the acetylcholine receptor [Finer-Moore and Stroud, 1984].

Neural nets with hidden units have the representational power to exploit hy-

drophobicity patterns without being given any explicit information other than the

amino acid sequence. However, there is evidence, discussed in section 7.2.2, that neu-

ral nets do not utilize these patterns to their advantage. Kneller and colleagues pro-

vided neural networks with explicit information about hydrophobic moments [Kneller

et al., 1990].

Lim's complex prediction rules make explicit use of patterns of amphiphilic-

ity [Lim, 1974]. The rules include amphipathicity in strands and helices. There

exist computer implementations of his approach [Lenstra, 1977, Nishikawa, 1983].

The rules were built by hand, and the effect of their interactions is not clear.

While not confined exclusively to secondary structure prediction, Taylor's template-

based methods can be used for such applications, and they easily accommodate the

expression of hydrophobicity patterns [Taylor, 1989]. Again, the patterns tend to be

built by hand. This approach remains relatively unproved for secondary structure

prediction.

The pattern-matching approach to secondary structure prediction of Cohen and

colleagues also has the power to represent hydrophobicity patterns [Cohen et al.,
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1983]. One of the patterns they use looks for a hydrophilic side on a helix.

Ross King's work on inductive learning to find patterns useful to predict secondary

structure included the automatic discovery of patterns which represent amphipathic-

ity of secondary structures [King, 1988].

7.2.2 Neural Nets for Predicting Secondary Structure

Neural networks have been used by several groups to predict secondary structure [Pres-

nell and Cohen, 1993, Stolorz et al., 1991]. The networks appear to perform as well

as any other secondary structure prediction method. I find them particularly use-

ful for this work because it is straightforward to manipulate the type of information

presented to the network.

In the late 1980's there were several applications of neural nets to secondary struc-

ture prediction [Qian and Sejnowski, 1988, Holley and Karplus, 1989]. In each case,

the inputs were encoded using a bit representation, one input per type of amino acid.

A local window in the sequence was coded in this way as input to the network. The

output was three units, representing alpha, beta and coil (other) structure. Qian and

Sejnowski tried various representations, using physico-chemical parameters, includ-

ing the Garnier propensities [Qian and Sejnowski, 1988]. But none of these improved

performance over the 21-bit representation.

Maclin and Shavlik used a neural network to improve the performance of the Chou-

Fasman secondary structure prediction algorithm [Maclin and Shavlik, 1991]. They

translated a finite state automaton implementing the Chou-Fasman algorithm into

starting weights for a neural network. The net was then trained and the final result

was a better prediction than either Chou-Fasman or other neural net approaches.

Rost and Sander combined information from aligned sequences to obtain improved

secondary structure prediction [Rost and Sander, 1993a].

Neural networks have been used in other closely related ways. McGregor and col-

leagues trained a neural network to predict beta turns [McGregor et al.. 1989]. Several

groups have used neural networks to predict protein family or folding class [Dubchak

et al., , Metfessel and others, 1993, Ferran and Ferrara, 1992] or restricted predic-

144



tions to proteins within a given class [Kneller et al., 1990, Rost and Sander, 1993b].

However, Rost and Sander found that separating secondary structure prediction into

a class-prediction stage followed by a structure prediction stage gave no added ad-

vantage [Rost and Sander, 1993b].

Several of the neural network results are particularly relevant to my work.

Hidden units

Qian and Sejnowski found that a network with no hidden units performed as well as a

network with up to 40 hidden units [Qian and Sejnowski, 1988]. This has implications

about the usefulness of explicitly providing to the network information about patterns

of hydrophobicity.

There are some problems that can only be solved with a neural network that

has hidden units. One example is the parity problem, which requires a 0 output

if an even number of input units are equal to 1 (the rest are 0), and a 1 output

otherwise. Amphipathicity patterns, like parity, can only be represented by a network

with hidden units. Successfully dealing with amphipathicity successfully requires

recognizing patterns of hydrophobicity, regardless of how they're shifted along the

input window. For example, we might want an output node to be on whenever either

BEBEB and EBEBE (where E is exposed and B is buried) were inputs, but not when

EEEEE is the input.

Even a network with hidden units can have trouble finding higher-order solutions

like the one required for parity or recognizing offset hydrophobicity patterns as be-

longing to the same class. Neural networks are notorious for preferring lower-order

solutions that are easier to find in the learning process. Therefore, while the topology

of the Qian and Sejnowski neural network may have been capable of representing

a solution that made use of the hidden units to advantage, it appears that such a

solution was not found. In this chapter, I provide the network with additional inputs

to represent hydrophobicity patterns, thus turning a high-order problem into a linear

recognition problem. I show that this improves network performance.
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Hydrophobic moments

In work very similar to that described in this chapter. Kneller and colleagues added

two units representing hydrophobic moment to the input stage of a neural net-

work [Kneller et al., 1990]. They found a small improvement in the performance

of the neural network. However, their results are inconclusive for several reasons: (1)

they report the improvement as being 1%; however, they have rounded to the nearest

per cent in reporting the results; (2) they do not perform cross-validation but instead

have a single test set; and (3) they do not show statistical significance. Moreover,

their definition of hydrophobic moment is slightly different than mine: I take the

maximum over several shifted subwindows that cover the residue in question.

7.2.3 Periodic features in sequences

Fourier transforms have been used to analyze periodic protein sequence features such

as the distributions of charged and apolar residues in coiled-coil proteins [McLach-

lan and Karn, 1983]. Eisenberg and colleagues used Fourier transforms to examine

hydrophobicity patterns in protein sequences.

The Eisenberg group defines the hydrophobic moment, given the 3D structure, as

N

11 s = ~ Hnsn,
n=1

where H, is the numerical hydrophobicity of the nth residue and s, is a unit vector

in the direction from the nucleus of the a carbon toward the geometric center of the

side chain. If the sequence and not the structure is known, the hydrophobic moment

is the magnitude of the Fourier transform of the hydrophobicity pattern along the

protein sequence. The moment is computed as

N

t(5)= E H,,nei
n=1

where 6 = 27r/m (m is the number of residues per turn).

Finer-Moore and Stroud [Finer-Moore and Stroud, 1984] modify the definition
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by subtracting from Hn the average hydrophobicity for the n residues, H. This has

the effect of removing the origin peak at frequency 0 from the Fourier spectrum.

In addition, they scaled the moment by the mean value of moments computed for

the same amino acids randomly arranged in the window. From examination of two

dimensional plots of moment as a function of sequence and frequency, the authors

made secondary structure predictions for an acetylcholine receptor.

Cornette and colleagues used the hydrophobic moment to optimize the hydropho-

bicity scale based on its ability to distinguish alpha helical structure in proteins [Cor-

nette et al., 1987]. They do this by maximizing the "amphipathic index," the fraction

of the total Fourier spectrum area that is under the peak corresponding to the alpha

helix frequency. The amphipathic index (AI) is defined as

f10 P(w)dw
AI[P(w)] = 25 10 )d

18j frs°° P(w)dw

P(w) is the power spectrum, or square of the hydrophic moment, and is defined as

N 2

P(w) (H H) ein
n=1

7.3 A representation for hydrophobicity patterns

What representation of patterns in hydrophobicity along the protein sequence would

be useful for a neural network approach? I wanted numbers that describe the degree

to which a local region of sequence shows an alternating hydrophobic-hydrophilic

pattern, with a period equal to the period of the secondary structure of interest (2

for beta and 3.6 for alpha).
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7.3.1 I, and I: maximum hydrophobic moments

I chose a representation based on the hydrophobic moment, which has the desired

properties. It is directly related to the Fourier transform and determines the degree

to which the alpha or beta frequency is present in the hydrophobicity signal. I use the

hydrophobic moment in which the hydrophobicity is defined relative to the sequence

window's average hydrophobicity [Finer-Moore and Stroud, 1984]. In addition, I

compute the "per-residue" hydrophobic moment, dividing by the window length:

2 j-D 
,tt(wj, L) = L E (hk- ha)eikw

k= j+D

where L is the length of the window; D is the half width of the window, D = (L- 1)/2;

hk is the hydrophobicity index of the k'th residue in the window; ha is the average

hydrophobicity number in the window; j is the position of the window's central residue

in the protein sequence.

For hydrophobicity numbers, I use Ponnuswamy's hydrophobicity scale [Pon-

nuswamy et al., 1980]. I chose a window size, L, of 5 for beta and 9 for alpha

structure.

Because a residue can be near the end of a piece of secondary structure, I computed

the hydrophobic moment /z over a set of five different overlapping windows containing

the residue of interest. This scheme is shown in Figure 7-1. The 13-residue window

shown at the top of the diagram represents the local sequence window. The secondary

structure prediction will be made for the residue at the center of this window. There

are five different subwindows over which /ut is computed, and five different subwindows

over which ,u is computed. In each case, the maximum over these five windows is

taken as the overall hydrophobic moment for input to the neural network. These two

values are the beta moment

I = maxje{-2...,+2} (j 
,r+2 /~2,5,
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13-residue window
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beta-sheet
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Figure 7-1: Subwindows for hydrophobicity patterns. A 13-residue window on the
amino acid sequence is examined. To compute Ip, the hydrophobic moment y is
computed in the five different subwindows shown in the diagram. The maximum
value in these five subwindows is taken as I. I is computed similarly.
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Table 7.1: I and I, for 55 proteins.

and the alpha moment

Ia = maxje{r-2...,r+2} (36, j,5),

where r is the index of the central residue in the 13-residue window.

7.3.2 Characterization of I, and I:

Before feeding these numbers to the neural networks, I characterized I and I for

a number of known-structure proteins. I worked with a set of 55 single-domain,

monomeric proteins, as defined in the Appendix section B.2.4. This set of proteins

avoids the complexities that might be introduced by multimeric and multidomain

proteins.

I, and I computed for this set of proteins is shown in Figure 7-2. There is

extensive overlap between secondary structure classes. However, it can be seen from

the scatter plots that compared to beta residues, alpha residues tend to have higher

Ia and lower I,. The histograms of the difference between the moments are also

slightly biased. The average values of I - I, are -1.34 for alpha residues, 0.87 for

beta residues, and an intermediate -0.04 for coil residues (Table 7.1). This ordering

is just what we'd expect: I is on average higher than I, for beta structures, and

lower for alpha structures. From the figure, it can be seen that I and I alone are

not sufficient to discriminate between secondary structures, but they do provide some

information that might be useful in a neural network.
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IO ave. I, ave. I- I, ave.
beta 2.60 1.73 0.87
alpha 1.53 2.87 -1.34
coil 1.68 1.72 -0.04
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Figure 7-2: Plots of alpha and beta moments for a set of 56 proteins. The left hand
column contains scatter plots of the alpha moment against the beta moment. The
right hand column shows histograms of the difference between the beta moment and
alpha moment. The residues are separated into alpha (top), beta (middle), and coil
structure (bottom).
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Table 7.2: Decision rule performance based on alpha and beta moments. 0 is the
hydrophobic moment threshold. The numbers in the table indicate how many residues
of each type of secondary structure are predicted by the decision rules to have alpha
or beta structure.

7.3.3 Decision rule based on I, and 13

One way to examine the predictive power of I, and I is to use each in a decision

rule for predicting secondary structure, then examine the performance of this rule on

the known-structure proteins. A decision rule for beta structure is "If I > 0, then

predict beta." 0 is an arbitrary threshold. Similarly, an alpha moment decision rule

is '"If I > 0, then predict alpha." Table 7.2 shows the operation of these rules on

the 6-protein database.

The performance of a decision rule can be characterized by a four-element table de-

scribing the number of true positives (TN), false positives (FP), true negatives (TN),
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Structure of residues chosen by the
beta rule alpha rule

0 beta alpha coil beta alpha coil
1 2340 3488 4296 2340 3488 4296
2 1334 1484 2025 1330 2656 2492

3 965 920 1239 790 1975 1419

4 731 573 795 437 1387 765

5 558 385 532 218 927 387
6 427 253 351 120 586 199

7 311 156 233 58 381 93

8 249 96 148 27 222 47

9 178 65 108 12 110 23

10 133 35 74 4 57 10

11 102 26 50 0 29 4

12 65 16 32 0 9 2

13 37 11 13 0 3 0

14 21 7 5 0 0 0

15 17 4 1 0 0 0

16 9 1 0

17 5 1 0

18 4 1 0

19 1 0 0

20 1 0 0

21 0 0 0



correct
Beta Not beta

predicted Beta TP FP
Not beta FN TN

Table 7.3: Definition of true and false positives and negatives.

and false negatives (FN). This is shown for the case of beta structure in Figure 7.3.

Each decision rule can be described in terms of its sensitivity and specificity.

Sensitivity is defined as the fraction of all beta residues that are picked up by the rule

(TP/(TP+FN)). Specificity is defined as the fraction of all residues labeled beta by

the rule which are in fact beta residues (TP/(TP+FP)). Figures 7-4 and 7-3 plot the

sensitivity vs. specificity for the alpha and beta moments.

Another way to summarize the predicted vs. correct tables of counts for a decision

rule, as a function of decision threshold, is to draw a receiver-operator characteristic

(ROC) curve. Figure 7-5 plots the ROC curves for the alpha and beta moments.

Along the vertical axis is the hit rate, the chances of getting an above-threshold mo-

ment given the residue does in fact have that secondary structure (TP/(TP+FN));

this is the same as sensitivity. Along the horizontal axis is the false positive rate,

the chances of getting an above-threshold moment for the wrong secondary structure

(FP/(FP+TN)). Each point in the plot corresponds to a particular value of the deci-

sion threshold. The y = x line is what would be achieved by randomly guessing "yes."

More conservative rules, those with lower thresholds and which say "yes" less often,

occur toward the lower left of the curves. Both alpha and beta moment decision rules

are better than random, and the alpha rule appears to be more discriminating than

the beta rule.

7.4 Method

In order to find out whether certain types of information increase the secondary

structure prediction accuracy of a neural network, I set up several experiments. In
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Figure 7-3: Beta moment sensitivity vs. specificity
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Alpha moment sensitivity vs. specificity

0.0 0.2 0.4 0.6 0.8

sensitivity

Figure 7-4: Alpha moment sensitivity vs. specificity
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Alpha moment and beta moment ROC curves
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Figure 7-5: Alpha and beta moment receiver-operating curves.
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each experiment the information provided to the network is different. I then can

compare the performance of two experiments to determine whether added information

improves performance.

7.4.1 Neural network

A neural network can be thought of as a paramatrized nonlinear function that maps an

input vector to an output vector. A network is "trained" by adjusting the parameters,

or "weights," to minimize the difference between the observed and desired outputs.

In this chapter use neural networks to determine roughly how much information

relevant to structure is available in various representations of protein sequence.

I used neural networks with a single layer of weights (no hidden units). The

network computes the following function of its input vector x:

y = f(Wx),

where x is an input vector of length M, y is an output vector of length N, W is an

N by M weight matrix, and f is a nonlinear "squashing function" that operates on

each member of its input vector, indexed by j, as

1

fj(Uj) =(u) = 1 + e-UJ

The squashing function is sketched in Figure 7-6. It has the property that it takes

numbers from the range [-oo, +oo] and outputs numbers between 0 and 1.

When a neural network is used as a classification method, the predicted class is

taken to be the class corresponding to the output unit that has maximum value:

C = maxj{yj}.

Adding weight layers to the neural network gives the network more representational

power. Networks with more layers are in principle capable of computing arbitrarily

complex continuous functions, such as parity and amphipathicity from sequence.
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1.0 f

u

Figure 7-6: Sketch of the neural network node function.

The neural network training algorithm adjusts the weight matrix W to minimize

the error over a set of n training examples (k, dk), where Xk is the input vector and dk

is the desired or target output vector. For classification problems, each output node

represents one class. The target output vector then has a 1 at the node corresponding

to the correct class and 0 at each other node. The error measures the difference

between the desired and predicted outputs, and is defined as

n
E = E (yk - dk)2

k=l

where Yk = f(Wxk) is the output of the neural network.

To minimize the error, the derivative of E is computed with respect to each weight

wji in the weight matrix W. The weights are adjusted to reduce E:

wj(t) = wji(t - 1)- (SE/Swji),

where t indexes the iteration, and 7 is the learning rate. In addition, a "momentum"

term is used that remembers the value of the previous weight update and adds a term

proportional to it each time. The weight update is performed after each presentation

of a training example to the network. The weights are initialized to small random

numbers.

I used the Aspirin/MIGRAINES software, Release V6.0, for neural network train-
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ing [Leighton, 1993].

The backpropagation training algorithm was used, with learning rate 0.001 and

inertia 0.2. The nets were trained for 2,000,000 time steps, where a time step is one

presentation of an example followed by a weight update. The weights were recorded

every 100,000 time steps to allow determination of whether the nets were still learning.

As each neural network was built, the weights were saved before training began,

and at 20 different time points during training.

The order of presentation of data to the network can affect the training. The

training data were interspersed within cross-validation groups so that no two examples

presented to the network in a row came from the same protein.

7.4.2 Data

I used the 130 proteins of known structure chosen by Rost and Sander [Rost and

Sander, 1993b] for their neural network prediction work, and divided them into ten

sets (Table 7.4) for cross-validation. Each experiment was run ten times, one for each

cross-validation set. For each run, the 13 proteins in the cross-validation set were

held out for testing, and the remaining 117 proteins were used as the training set.

The total number of examples was distributed among the secondary structure

types as follows:

coil 11424 47%

alpha 7975 32%

beta 5114 21%

total 24513 100%

7.4.3 Output representation

I trained neural networks to predict three categories of secondary structure: helix,

beta strand, and coil, as defined by Kabsch and Sander in their DSSP program.

Residues Kabsch and Sander labeled H (a-helix), G (3,10-helix), or I (r-helix) were
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Table 7.4: Proteins used in the neural network secondary structure experiment,
grouped by cross-validation set. Each protein is referred to by its four-character
Brookhaven Protein Data Bank name. If the protein is one subunit in the data file,
the subunit character is appended to the protein name. For example, ltgsi is the

protein 1TGS, subunit I. For each group, the number and percent composition of
alpha, beta, and coil residues is shown.
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Group Proteins Alpha Beta Coil Total
1 256ba 3rnt ilap letu lbbpa 3tima lpaz 962 622 1337 2921

2glsa 3cla lprcc 4rhvl lil8a 6dfr 33% 21% 46%
2 9apib 2stv 2orll 2gbp 2ccya lwsya lppt 747 366 823 1936

2ilb 2cyp lak3a shl 51yz lfxia 39% 19% 43%_
3 7cata 2utga 1r092 3hmgb crn lacx lsOl 879 422 1208 2509

llrd3 lfkf 3blm 4tsla 3pgm hip 35% 17% 48%
4 6cpa 2aat 7rsa 51dh lfc2c lbds 6tmne 805 393 1330 2528

9pap 2gn5 3cln lprch 4rhv3 9insb 32% 16% 53%

5 3ebx lazu 2tgpi lovoa 2gcr lcd4 lwsyb 381 599 962 1942

lrbp 3icb 5cytr 2alp 2sns lmcpl 20% 31% 50%_
6 4fxn lcbh 9wgaa 2mhu 2hmza lcsei 8adh 792 502 1026 2320

3sdha 21tna 2fnr 4bp2 2tsca 2phh 34% 22% 44%_

7 6hir 6cpp 8abp 2rspa 21h4 lfdlh lbmvl 864 571 1064 2499

2tmvp 2pcy lgpla 4cms lprcl 4rhv4 35% 23% 43%o

8 1158 5er2e 3b5c ltgsi 2paba lgdlo lcdta 947 686 1236 2869

4xiaa lrhd 7icd leca 9apia 2sodo 33% 24% 43%

9 2mev4 3gapa lcc5 2wrpr lmrt 5hvpa 6cts 539 278 780 1597
3ait 4sgbi 21tnb 2fxb 2cab lubq 34% 17% 49%

10 ipyp 3hmga 4cpv 6acn 4rxn 21hb lfdx 1059 675 1658 3392

lbmv2 ltnfa 4pfk 4grl 4cpai lprcm 31% 20% 49%



defined to be helix ("alpha"); residues labeled E were defined to be strand ("beta"),

and all other residues were defined as "coil."

The output representation was a 3-vector, one output node corresponding to each

secondary structure category. The secondary structure representation used was

alpha [1.0, 0.0, 0.0]

beta [0.0, 1.0, 0.0]

coil [0.0, 0.0, 1.0]

7.4.4 Input representation

The number of inputs to the networks depended on the input representation used.

The network inputs represented a 13-residue window on the sequence.

Amino acid encoding

Three different input representations were used for amino acid residues: the bit rep-

resentation, secondary structure propensities, and hydrophobicity. Hydrophobicity

was used both alone and with the secondary structure propensities.

* The bit representation of an amino acid is a 21-vector. All the components

are 0 except for the one corresponding to the amino acid. The 21st element

corresponds to the situation where the sequence window is off the edge of the

protein.

· The secondary structure propensities are those defined by Levitt [Levitt, 1978]

(Pa for alpha helix, Pb for beta strand, and Pt for turn).

* For hydrophobicity, I used Ponnuswamy's hydrophobicity index [Ponnuswamy

et al., 1980].

As a control, four random properties were used corresponding to the secondary

structure propensities and hydrophobicity. Each random property was generated us-

ing a uniform probability distribution over the interval spanned by the corresponding

residue property. For example, the random "Pa" property was generated with a
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uniform distribution on [0.52, 1.47]; 0.52 is the minimum Pa value and 1.47 is the

maximum Pa value.

The residue property scales (secondary structure propensities, hydrophobicity in-

dex, and random scales) are shown in Table 7.5.

Hydrophobic moments

In addition to the amino acid encoding, two other units were used to encode I~ and

IO, as described in Section 7.3.1 and Figure 7-1).

Input representations for the ten experiments

The input encodings for the ten experiments are shown in table 7.6. The total number

of inputs and the total number of weights is also shown for each experiment. There

is one weight connecting each input with each output node, and there are three

additional nodes connecting the always-1 offset or bias node to the output nodes.

7.4.5 Network performance

Percent correct

To measure the performance of a trained neural network, I computed the fraction of

predictions which were correct, both overall and for each of the secondary structure

types individually. This number is reported as a percentage.

Cross-correlation coefficient

I computed the cross-correlation coefficient,

=Cc (TCTPTN - FPiFN,
V(TP, + FPi)(TPi + FNi)(TNi + FPi)(TN, + FN)

where i represents the type of secondary structure; TP is the number of true positives

(correct predictions of that secondary structure); TN is the number of true negatives

(correctly predicting a different structure); FP is the number of false positives (incor-
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RPa RPb RPt RH
I 0.97

W 0.99
F 1.07
L 1.30

V 0.91
Y 0.72
M 1.47
C 1.11

H 1.22

A 1.29

0.50
X 1.00

:P 0.52

K 1.23

R 0.96
N 0.90
r 0.82
G 0.56

B 0.97
S 0.82

D 1.04

Q 1.27

Z 1.35

E 1.44

1.45

1.14
1.32

1.02
1.49
1.25

0.97
0.74
1.08
0.90
0.50
1.00

0.64
0.77
0.99
0.76
1.21

0.92
0.74
0.95
0.72
0.80
0.77
0.75

0.51
0.75
0.58
0.59
0.47
1.05

0.39
0.80
0.69
0.78
1.00

1.00

1.91

0.96
0.88
1.28
1.03
1.64

1.35

1.33
1.41

0.97
0.99
1.00

1.81

1.71

1.35
1.14
1.13
1.11

1.00
0.77
0.26
0.02
0.00
0.00

-0.09
-0.41
-0.42
-0.77
-0.77
-0.80
-0.91
-0.97
-1.04
-1.10
-1.12
-1.14

1.05
0.82
0.71
1.29
1.38
1.20
0.75
1.34
1.37
1.40
0.54
1.33
0.61
1.34
1.36
0.97
1.36
1.19
0.96
1.37
0.95
0.65
0.83
0.56

1.18
1.48
1.06
0.71
0.68
1.42
1.04
0.66
1.37
1.25
1.07
1.08
1.00
1.07
0.93
1.09
1.14
0.75
0.94
1.05
0.80
1.09
0.78
1.28

1.36
1.61

1.59
0.97
0.85
0.72
1.08
0.75
0.66
0.95
1.10
1.47
0.72
1.15

1.38

0.69
1.43

1.21

0.60
0.83
0.50
0.83
0.82
1.56

-0.48
-0.06
0.97

-0.73
1.18

0.54
-0.80
1.46
0.11

-0.17
-0.49
0.20

-0.01

1.36

-0.89
-0.02
0.05
1.34

-0.42
0.57

-0.82
-0.95
-0.78
0.25

Table 7.5: Residue encoding for the neural network. Pa, Pb, and Pt are from Levitt;
the hydrophobicity scale is that of Ponnuswamy (H). In
are shown: RPa -- random "Pa"; RPb - random "Pb";
random "hydrophobocity". X: any residue. B: Asn (N)
Glu (E).

addition, the random scales
RPt - random "Pt"; RH -

) or Asp (D). Z: Gin (Q) or
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Input representation Experiment
Residue encoding # inputs 1 2 3 4 5 6 7 8 9 10

B BA P PA H HA RP RPA RH RHA
Bit 273 X X
Pa, Pb, Pt 39 X X
Hydrophobicity 13 X X X X
a and moments 2 X X X

Rand. "Pa, Pb, Pt" 39 X X
Rand. "hydrophobicity" 13 X X X X
Rand. a, 3 moments 2 X X

Total inputs 273 275 52 54 13 15 52 54 13 15
Total weights 822 828 159 165 42 48 159 165 42 48

Table 7.6: Neural network experiments, showing the input representation for each
experiment. Each row corresponds to an element of the representation. Columns cor-
responding to each experiment are marked with an X at the representation elements
used for that experiment.

rectly predicting that structure); and FN is the number of false negatives (incorrectly

predicting a different structure). Values range between -1 (completely wrong) and 1

(complete right), with 0 corresponding to the performance that would be obtained

by guessing at random. The cross-correlation coefficient gives a good indication of

the prediction performance for each of the type of secondary structure. For example,

the fraction of correct predictions for coil reports only the ratio of true positives and

true negatives (TP + TN) to the total number of predictions. If coil is overpredicted,

then this number can be quite high. On the other hand, the correlation coefficient

also takes into account the false positives and false negatives, and therefore is more

informative.

ROC curves

ROC curves were computed for alpha, beta and coil structure as described in sec-

tion 7.3.3. These summarize the predicted vs. correct tables of counts for a decision

rule made by thresholding the corresponding output unit of the neural network. Vary-

ing the threshold generates the curve of hit rate vs. false positive rate.
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7.4.6 Significance tests

I used statistical tests to determine the signficance of observed increases in prediction

performance, and to ask whether the neural networks had finished training.

Improved prediction performance

My analysis of the neural network results involved comparing two of the experiments

and asking whether one showed significantly better prediction than the other. If so,

I concluded that the input representation for the experiment that performed better

contained more information relevant to the prediction problem.

I used a t test to determine the significance of the difference in prediction per-

formance of two experiments. For each cross-validation group in each experiment,

I computed the average prediction performance on the train and test sets over the

last five time points at which the network weights were recorded. The difference in

this prediction performance is di for the i'th cross-validation group. Call the average

difference across all cross-validation groups d. I examined the null hypothesis that the

distribution of the di values is centered at 0. This would be interpreted as meaning

there is no difference in prediction performance between the experiments. Assuming

that the di values are normally distributed, we can use the t distribution to check the

null hypothesis.

The reference distribution against which the observed d may be viewed is a scaled

t distribution centered at 0. Because there are n = 10 cross-validation groups, or

di values. the t distribution has n - 1 = 9 degrees of freedom. The distribution has

a scale factor of d/x/Y, where Sd is the standard deviation of di. The value of to

associated with the null hypothesis is

d
to= ,

which can be referred to a t table with n degrees of freedom.
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Training

To test whether the training of a network has completed. I look at the training perfor-

mance within each cross-validation group. I compute the average training performace

over time points 11 through 15 and time points 16 through 20. I then compare these

averages to determine the difference in performance, and decide that learning is com-

pleted if the distribution of differences has a mean not significantly different from

0.

7.5 Results

In this section, I describe the prediction performance of the trained networks, the

changes in performance with the various input representations, and the issue of com-

pletion of learning.

7.5.1 Performance

Appendix C shows the predicted vs. correct counts for each experiment. Table 7.7

summarizes the accuracy of each neural network after training.

The train and test results are quite similar, indicating that there are sufficient data

in the training set to adequately represent the information necessary for performing

prediction on the test set. The largest discrepencies between the train and test sets

occur for the experiments with the most free parameters (weights) in the neural

network. This is not surprising, as the larger number of free parameters allows a

greater memorization" of the training data. On the other hand, an increased number

of parameters is also correlated with better results, suggesting that the larger input

representations contain more information.

7.5.2 Amphipathicity

Adding the hydrophobicity information improves the results by a small but signifi-

cant amount. Table 7.8 shows the change in average results when two inputs units
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Experiment Train Test
ave. s.d. ave. s.d. a p coil CC, CC3 CCc

1 B 62.62 0.27 61.81 2.04 58.77 35.08 76.29 38.87 33.41 40.98
2 BA 64.56 0.57 62.41 2.51 61.19 35.75 75.84 41.88 33.86 41.30
3 P 59.49 1.20 59.16 2.81 52.22 32.78 76.49 33.45 30.96 37.42
4 PA 61.05 1.08 60.21 3.22 56.55 34.88 74.98 37.09 32.41 38.43
5 H 51.31 0.27 51.20 2.23 21.20 25.67 84.07 9.34 22.97 24.29
6 HA 54.55 0.59 54.65 2.07 40.81 29.50 76.12 23.19 25.59 29.04
7 RP 48.23 2.11 47.60 4.81 35.00 6.08 74.82 13.68 4.83 12.22
8 RPA 48.66 1.53 48.31 3.90 40.17 3.74 73.09 15.52 4.69 13.34
9 RH 48.00 0.34 48.01 3.26 23.05 0.00 87.18 14.74 0.00 7.27

10 RHA 47.90 0.42 47.66 3.13 22.81 0.02 86.20 13.41 -0.03 6.63

Table 7.7: Summary of neural network results. Numbers in table are percent correct
predictions, at the end of 2 x 106 training iterations. Names of experiments are as
follows: B - bit encoding; P - secondary structure propensities and hydrophobicity;
H - hydrophobicity alone; A - alpha and beta hydrophobic moments: R - random.
For the training and test sets, the average and standard deviation of performance
are given in percentage points, averaged across all ten cross-validation groups. In
addition, average alpha, beta and coil predictions are presented in percentage points
for the test set, as well as the average test set cross-correlation coefficients.

representing the alpha and beta hydrophobic moments are added to the network. For

nonrandom inputs (experiments 1-6), there is a significant improvement in perfor-

mance (P < 0.01). Table 7.8 also shows the average difference across cross-validation

groups, the standard deviation, and the value of to. The random input representation

actually shows a significant decrease in performance in the training set with the ad-

dition of the two amphipathicity nodes. This may be due to the destabilizing effect

of the hydrophobic moment inputs on the random-input networks (see Section 7.5.4

on learning curves).

The improvement in performance is smallest for the best-performing input repre-

sentation.

The importance of doing the significance test on the performance improvement

within cross-validation groups can be seen. Looking at the difference in averages is

not sufficient. given the large standard deviations of the test set performances.
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Experiments d Sd to P
1,2 train 0.84 0.22 12.38 <0.001

test 0.83 0.68 3.85 0.004
3,4 train 1.64 0.53 9.88 <0.001

test 1.36 0.83 5.14 <0.001
5,6 train 3.12 0.35 28.32 <0.001

test 3.21 1.80 5.64 <0.001
7,8 train 0.37 1.66 0.70 0.50

test 0.58 2.50 0.74 0.48
9,10 train -0.38 0.20 -6.04 <0.001

test -0.25 0.87 -0.90 0.39

Table 7.8: Improvement in results with I, and I.

Experiments d Sd to P
9,5 train 3.31 0.25 41.79 <0.001

test 3.23 2.12 4.81 0.001

5,3 train 8.17 0.45 57.15 <0.001
test 8.02 2.95 8.61 <0.001

3,1 train 4.13 0.38 34.45 <0.001
test 2.66 1.49 5.63 <0.001

4,2 train 3.33 0.67 15.75 <0.001
test 2.13 1.48 4.55 0.001

Table 7.9: Comparison of other experiment pairs

7.5.3 Amino acid encoding

Table 7.9 shows comparisons between several other pairs of experiments.

Representing amino acids by their hydrophobicity alone is a clear improvement

over a random scale (experiments 9 and 5). Adding secondary structure propensities

to the hydrophobicity improves the results significantly (experiments 5 and 3). The

number of input nodes representing each amino acid goes from one to four when the

secondary structure propensities are added.

The 21-bit residue representation, which is the one most often used in work by

other researchers, performs better than the four-input propensity representation. The

difference in performance seen in going from 4-input to 21-input representation (for a
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total of 221 more inputs across the 13-residue input window) can be examined both

for the experiment pair (3,1) (no hydrophobic moments) and for the experiment pair

(4,2) (with hydrophobic moments). These numbers are 4.13%/2.66% (P < 0.001) for

experiments (3,1) and 3.33%/2.13% (P < 0.001) for experiments (4,2).

7.5.4 Learning Curves

The network weights were saved every 100,000 time steps during training to ensure

that the network had finished training.

Figure 7-7 shows the average (over cross-validation groups) prediction performance

as a function time for each experiment, on the training (dashed) and test (solid) sets.

Appendix C shows the learning curves over time for all cross-validation groups in

the 10 experiments. Interestingly, adding the two hydrophobic moment inputs seems

to create more erratic learning curves in some of the networks (for example, compare

the curves for experiments 1 and 2). This effect would be reduced by lowering the

learning rate qr. Also of interest is that adding three random scales to a single random

scale results in much more erratic learning (compare curves for experiments 7 and 9).

I[ compared the performance average over time steps 11 through 15 with that over

time steps 16 through 20 to determine whether learning was complete. The results

are shown in Table 7.10. Only those networks that used the bit input representation

showed significant positive change over these time periods. As the bit representa-

tion networks are the best performers, and my results would not be changed by an

improvement in their performance, I did not continue the training.

7.5.5 ROC curves

ROC curves were drawn for a couple of representative networks. The best-performing

experiment, experiment 2, is represented in Figure 7-8 by its first cross-validation

neural network.

For contrast, I show the ROC curves for the random-representation neural network

of experiment 8 in Figure 7-9.
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Figure 7-7: Neural net performance during training. Dashed lines
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the ten cross-validation groups.
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Figure 7-8: ROC curves from experiment 2, cross-validation group 1. The curves are
labeled "a" for alpha, "b" for beta and "c" for coil.
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Figure 7-9: ROC curves from experiment 2, cross-validation group 1. The curves are
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Table 7.10: Learning completion tests. d is the average difference (over the cross-
validation training sets) of the mean training performance for time 11 through 15 and
that of time 16 through 20. .sd is the corresponding standard deviation; P indicates
the significance of the difference.
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Figure 7-10: Hinton diagram for
magnitude is 1.53

cv group 1 of experiment PO-PO. The largest weight

7.5.6 Weights

I examined the weights from several of the networks using a variation of the diagrams

developed by inton [Rumelhart et al., 1986]. These are shown in Figures 7-10

through 7-14.

Weight diagrams

Each circle in a weight diagram represents the value of a single weight. The area

of the circle is proportional to the magnitude of the weight. Black circles indicate

weights less than zero and white circles indicate positive weights.

Each weight, diagram has three parts corresponding to the three outputs alpha,
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Experiment d sd to P
1 B 0.073 0.080 2.89 0.02
2 BA 0.184 0.363 1.60 0.14
:3 P 0.040 0.632 0.20 0.84
4 PA -0.071 0.623 -0.36 0.73
5 H -0.004 0.052 -0.27 0.80
6 HA 0.167 0.680 0.78 0.46
7 RP -0.05 0.840 -0.21 0.84
8 RPA -0.249 0.870 -0.90 0.39
9 RH -0.001 0.031 -0.05 0.96
10 RHA -0.120 0.162 -2.35 0.04



beta and coil. All the weights going from an input unit to the alpha output node

are displayed in the left third of the diagram. The circle on the top left, labeled "1,"

represents the weight going from the constant unit, the input which is always 1, and

which allows a constant offset to be added to each input vector.

If the neural network had inputs representing the alpha and beta moments, the

weights from these inputs to the outputs are shown on the top right. The alpha

moment weight (labeled "a") is shown to the left of the beta moment weight (labeled

"b").

Each row below the constant unit circle corresponds to one element of the input

representation for an amino acid. The precise meaning of the row depends on the

input representation chosen. For the bit representation, each row corresponds to

a particular amino acid (or the off-the-end indicator). Alternatively, the row might

correspond to a secondary structure propensity, hydrophobicity, or a randomly-chosen

scale.

Each column corresponds to one position in the 13-residue window. The leftmost

column corresponds to the N-terminal end of the window, and the rightmost column

corresponds to the C-terminal end.

Comparing the sizes of weights for different inputs can be misleading when the

inputs have different ranges. For example, the beta moments range from 0 to over 20,

whereas the secondary structure preferences range from 0.39 to 1.81. Multiplying the

beta moment weight by the beta moment, then, usually results in a number of larger

magnitude than most of the products of secondary structure preference and weight.

The beta moment contribution is larger than might appear by a direct comparison

of the circle sizes. The best way to use the circle sizes is to compare the sizes within

rows. and between rows with similar ranges of input weights (such as any two bit

representations, or any two secondary structure preferences). Hydrophobicity has a

range which is about three times that of the secondary structure preferences.

Note as well, that the sizes of the circles are not calibrated from one figure to the

next. The caption of each figure gives the magnitude of the largest weight.
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Figure 7-11: Hinton diagram for cv group 1 of experiment PO-PO-SS. The largest
weight magnitude is 1.19

Constant offset weights

The constant offset weights reflect the overall secondary structure composition of

the training set. The network is biased toward predicting coil (high, positive weight

from the constant offset unit to the coil output), because about 47% of the training

examples are coil, as opposed to 32% alpha and 21% beta.

Alpha and beta moment weights

The alpha and beta moment weights show that the moments contribute to the network

in the way we would expect. For alpha secondary structures, the alpha moment is

positively weighted and the beta moment is negatively weighted. The weights are

reversed for beta secondary structure. And for coil, both moments have negative

weights. The alpha and beta moment weights are not directly comparable because

the range, and average value, of the beta moment is greater than that of the alpha

moment.

Patterns of weights

The circles along a given row in the diagram, corresponding to the weights on one

part of the input representation along the 13-residue window, generally take on one of

a set of patterns. Often the magnitude of the weights is at a maximum near the center

of the window, indicating that more of the information contributing to a secondary

structure assignment comes from the residue itself, and less comes from neighbors
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according to how distant they are.

Hydrophobicity

Figure 7-10 shows the weights for the experiment in which amino acids are represented

only by their hydrophobicity index. In addition, the two hydrophobic moments are

used as inputs. The alpha weights are small and varied, and show some asymmetry.

The beta weight pattern is a central string of five hydrophobic residues surrounded

by hydrophilic residues. The indices vary monotonically from strongly hydrophobic

at the center to hydrophilic at the window edge. The coil weights are the reverse:

there is a preference for hydrophilic residues at the center that diminishes toward the

ends. There is a hydrophobic preference at the N-terminus.

The same patterns are observed in the weights from the hydrophobicity index

inputs when the input representation is expanded to include property preferences,

as shown in Figure 7-11. The alpha hydrophobicity weights in this network are

asymmetric and include both positive and negative weights. The beta weights have

the same pattern of hydrophobic residues preferred in the center, and hydrophilic at

the outside of the window. The coil hydrophobicity weights prefer hydrophilic in the

center, and hydrophobic toward the N-terminal end of the window.

Property preferences

The weights on links from the Pa, Pb, and Pt inputs to the output are shown in

Figure 7-11. These show a clear favoring of Pa for alpha, Pb for beta, and Pt for coil.

Amino acid preferences

In Figures 7-12 and 7-13 we can see the weights for the bit representation.

For alpha secondary structure, the residues A, L, M, F, W and I have positive

weights. The residues C, G, N, P, S, T, and V have negative weights. Moreover,

the charged residues show an asymmetry. Negatively charged D and E have positive

weights toward the N-terminus and negative weights toward the C-terminus. Pos-

itively charged H, K, Q, and R have the opposite pattern. This is a result of the
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maximum weight absolute value of 1.97.
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Figure 7-13: Hinton-like diagram for BI-PO. The largest weight magnitude is 1.92.
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Figure 7-14: Hinton diagram for cv group 1 of experiment RA-RH-RS. The area of
the largest circle represents the maximum absolute weight value of 6.37.

well-known tendency for negative residues to cap the positive N-terminal end of a

helix. and for positive residues to cap the negative C-terminal end of a helix.

The beta weights show that T has positive weights across the window, while E

and A have negative weights across the window. Other beta-favoring or -disfavoring

residues have a weight pattern that is negative in the center and positive at the edges,

or vice versa. This is due to the shorter length of beta strands relative to alpha

helices. Residues which have positive weights in the center and negative on the edges

include C. F, I, L, M, V and W. Residues which have negative weights in the center

and positive on the edges include G. N, P. S, and the placeholder -. Interestingly,

there are several charged residues which have an asymmetric pattern like that seen

in the alpha weights, although in the beta weights the pattern is reversed. Here,

the negatively charged D residue is preferred at the C-terminal end of the window,

instead of the N-terminal end. And the positively charged residues K, Q, and R are

preferred at the N-terminal end and disfavored at the C-terminal end. Why would

this be? It is possible that the geometry of the strand provides for a strand capping

mechanism that works differently than helix capping. Perhaps the preferences are a

result of alternating alpha/beta structure, where the helix caps are picked up by the

13-residue beta window.
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Random controls

The weights on a network trained on randomly-chosen structure preference and hy-

drophobicity scales are shown in Figure 7-14. The dominant weights are the constant

offset weights. Compare these weights to the constant offset weights in Figure 7-11.

The moment weights, on inputs computed from the random hydrophobicity scale, are

very small. The other weights are also small. It appears that the random "Pb" scale

has captured something related to hydrophobicity or the real Pb scale.

7.6 Conclusion

Previously, I showed that hydrophobicity patterns provide information about the

protein structure. However, this observation does not directly imply that hydropho-

bicity patterns will improve a given protein structure prediction that takes advantage

of various other sources of information, such as aligned sequence data or secondary

structure propensities. In this chapter, I demonstrated that it is possible to use this

information to improve secondary structure prediction.
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Chapter 8

Threading

In this chapter I investigate aspects of the pseudopotential functions used in ter-

tiary structure predictions performed with the threading algorithm. The threading

method is a way of optimally (with respect to some pseudopotential, or score, func-

tion) aligning a protein sequence to a protein structure. Once this alignment has

been performed. a structure model can be generated for the sequence based on the

alignment.

There are several reasons to look at the components of threading score functions.

One reason is to find ways of improving the score functions for structure prediction.

What structure representation is best'? What sequence representation should be used?

The score functions I look at are computed from examples of known protein structures.

How do we deal with problems of low sample size?

Another reason to examine the components of threading score functions is to ex-

amine which factors are most important in determining the protein fold. Is secondary

structure or solvent exposure preference more important? The statistical analysis

performed in the preceding chapters suggests that the solvent exposure preference of

the different amino acid types is the dominant effect in folding; is this borne out in

threading experiments?

lThe method that I use in this chapter is to test various scoring functions by per-

forming self-threading in which a protein's own sequence is threaded onto its struc-

ture. The experiments confirm the statistical analysis showing that solvent exposure
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A structure element
is the position occupied
by one amino acid in
the protein structure.

A sequence element
is one amino acid residue

/ in the protein sequence.

LHVQITDRQAANYSNAIQPGMYHDCTKGQTFSPR

N-terminus C-terminus

sequence

N
structure

Figure 8-1: A protein structure and sequence. The elements of the protein structure
are the positions occupied by amino acid residues. The elements of the protein se-
quence are the amino acid residue identities along the protein chain. The N-terminus
and C-terminus are marked in the diagram; on the structure they are represented as
"N" and "C", respectively.

is more predictive than secondary structure. I address the issue of subdividing struc-

ture categories and give solutions to problems of low sample size and lack of statistical

significance.

8.1 Introduction

In this section I discuss the threading algorithm, the computation of threading scores,

sample size problems and possible fixes, structure representations, and the incorpo-

ration of local sequence information.

8.1.1 Threading algorithm

The threading algorithm finds an optimal sequence-structure alignment relative to

a score function. In this section I define alignments and explain how score func-

tions are computed. I discuss the particular restrictions I make on the alignment

between a protein sequence and a protein structure. Finally, I describe the dynamic

programming algorithm for computing the optimal alignment.

Alignments

182
, .. , ~,.....



The goal in threading is to find a sequence/structure alignment to optimize a score

or pseudopotential function. Figure 8-1 is a sketch of a protein structure and protein

sequence. The elements of the sequence are the specific amino acids that compose it.

For example. His occurs as the second sequence element in the figure. The elements

of the structure are the positions in the structure which are occupied by amino acids.

A structure element may be described by the three-dimensional coordinates of its

backbone atoms. An alignment is a correspondence between the sequence and struc-

ture, such that each sequence element is matched to zero or one structure elements,

and each structure element is matched to zero or one sequence elements. In addition,

the alignments must preserve the linear order from N-terminus to C-terminus along

the protein backbone of the sequence and structure. Figure 8-2 contains a sketch of

a sequence-structure alignment.

\Ve can define an alignment by a correspondence function C, such that C(i,j) = 1

if sequence element i and structure element j are aligned, and C(i,j) = 0 if sequence

element i and structure element j are not aligned (see Figure 8-2(c)). As stated

above, we require a maximum of one match per sequence and structure element: if

C(ij) = 1. then C(i,j') = 0 for all j' $ j, and C(i',j) = 0 for all i' Z i. Moreover,

we require that order be preserved: if C(il,jl) = 1, C(i2 ,j 2 ) = 1, and i2 > i, then

J2 Ji.

Score functions

There are many types of score functions, and a given score function may be composed

of multiple components. A "singleton" score term gives a score for the alignment of a

sequence element and a structure element, and represents the preference of that amino

acid for that structure type. A "pairwise" term gives a score for the simultaneous

placement of two amino acids in a specified pair of structure positions. The structure

positions in the pair are chosen because they are close enough together that the

amino acid residues filling those positions would interact with each other. This is

a way of modeling interactions between positions far apart in sequence, but close

together in the protein structure. For a pairwise score function, the structure model
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sequence
alignment
structure

(a)

alignment insertion
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sequence
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(c) E C(i,j) = 0
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Figure 8-2: Sketch of an alignment. (a) A sequence is aligned to a structure. A linear
set of boxes represents elements of the sequence and structure. The alignment is shown
as lines connecting pairs of aligned elements. (b) Same as (a), except the sequence and
structure are broken so that aligned elements occur in a vertical relationship to each
other. Alignment gaps and insertions are clearer to see in this representation. (c) A
representation of the alignment correspondence function C. Filled boxes (C(i,j) = 1)
indicate that elements i and j are aligned.
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must include a list of all structure position pairs to be considered. It is also possible

to have tertiary and even higher-order terms in the score function. I will discuss the

threading algorithm in terms of singleton scores only, to make the presentation easier

to follow.

The score function has two parts, one that defines the value of a match between

a sequence element and a structure element, and the other that defines the score

for a gap or insertion in the sequence or structure. An alignment insertion in the

sequence corresponds to an alignment gap in the structure, and vice versa. A sequence

alignment insertion is a set of adjacent sequence elements which are not matched to

any elements in the structure.

The total score for an alignment is the sum over all aligned element pairs of the

match score, plus the insertion score over all insertions in either sequence or structure.

I use an insertion score that is a straight sum of individual insertion Scores for each

element. Define the match score between sequence element i and structure element

j as M(i,j), the score for inserting unmatched sequence element i as IA(i), and the

score for inserting unmatched structure element j as Is(j). Then the total alignment

score is

S(C) = C(i, j)M(i,j) + (1 - QA(i))IA(i) + Z(1 - Qs(j))Is(i).
(i) is an indicator function telling whether sequence element i has been aligned to

QA(i) is an indicator function telling whether sequence element i has been aligned to

any structure element (1 means yes and 0 means no), and Qs(j) is the corresponding

indicator function for structure element j. QA can be computed as QA(i) = j C(i, j);

Qs similarly.

Structure models

In this chapter I will use a specialized structure model in which I assume that the

helices and strands in the structure should be aligned to the sequence with no gaps

or insertions occurring internally to the secondary structure object. In addition, I

allow sequence insertions of any length to occur in between the secondary structure
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objects; I do not explicitly model this non-helix, non-strand part of the structure.

The secondary structure objects correspond to the core of the protein, the set of

residues that tend to be conserved, both structurally and in terms of their amino acid

type, within a family of similar structures. The sequence insertions in between the

secondary structure objects correspond to the loops which connect the parts of the

protein core, and which have been found to be of variable length and composition in a

structural family. Finally, I require that every secondary structure object be aligned,

in its entirety, to a piece of the sequence. This model of protein structures is used in

threading by various researchers [Lathrop et al., ].

We can modify the above definitions to incorporate this model of protein struc-

tures. Instead of indexing structure elements by j, I will now index secondary struc-

ture objects by j. The alignment correspondence function C(i,j) then indicates

whether or not secondary structure object j is aligned to the sequence starting at

sequence element i. The new match score M(i,j) is the sum of the individual match

scores for aligning each element of the secondary structure object j with consecu-

tive sequence elements starting at position i. Because all structure objects must be

matched, there is no insertion score Is.

Computing the optimal alignment

The goal of threading is to find the alignment C that optimizes the score function

F. This can be done efficiently, for singleton score functions, using dynamic pro-

gramming; this approach is described by Needleman and Wunsch [Needleman and

Wunsch, 1970]. For a good overview of computational alignment algorithms, see

Myers' paper [Myers, 1991]. I will describe the alignment algorithm in this section.

In the alignment algorithm an array, which I will call D, is used to keep track

of the scores of optimal partial alignments. An optimal partial alignment Cm, is

an optimal alignment of the subsequence from positions 1 to m with the secondary

structure objects 1 to n, where m and n range from 1 to their maximum values (the

sequence length and total number of secondary structure objects, respectively). The

nature of the singleton score functions that I use makes it computationally simple to
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compute the optimal partial alignment C,, given the optimal partial alignments Cij

for i < m and j <: n.

D(i, 1), the score for placing the first structure object at sequence position i, is

the sum of the score for the sequence insertion preceding the object. plus the match

score for placing the object:

D(i, 1) = M(i, 1) + G(1,i-1),

where M(i,j) is the match score for placing secondary structure object j starting at

sequence position i, and G(il. i2) is the score for placing an insertion from sequence

position i through i2.

To compute D(i,j) for 2 < j < N, where N is the total number of structure

objects, we add the match score M(i,j) to the best score over all possible sequence

insertion lengths (including 0) for placing the previous element:

D(i, j) = M(i,j) +inmaxk [D(i-Ij_- k, -1) + G(i - k, i- 1), for O < k < j_-.

Here, Ij is the length of (number of structure positions in) the jth structure object,

and j is the sum of the lengths of all structure objects less than or equal to j:

£Cj En= 0 In.

This computation can be sped up by keeping track of the best position of structure

object j - 1 for previous sequence elements, and updating this position with a single

call to the gap score function G. This saves computing G for all possible gap lengths

at each sequence position.

Once the array D has been computed, the optimal alignment can be found in a

trace-back procedure. First we place the last secondary structure object, by finding

the sequence position i t which maximizes the expression

E(N. M) = D(i, N) + G(i + IN, M),
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where M is the length of the sequence and N is the length of the Nth structure object.

This operation takes into account the gap score for the part of the unmatched part

of the sequence on the C-terminal side of the last structure object. The optimal

placement of structure object N will be at sequence position i t. The trace-back

proceeds by finding the sequence element to optimize E(j - 1, iP t - Ij-1) to place

object j - 1 at an optimal sequence position no higher than i t - j-1, where iP t is

the optimal sequence position of object j.

8.1.2 Pseudopotentials for threading

The sequence-structure match scores used in threading are usually based on the ratio

of observed to expected frequencies of occurrence, that are an estimate of the like-

lihood ratio. The counts are of amino acids in given structure environments, or of

pairs or triplets of amino acids, again possibly in specified environments. Likelihood

ratios, and the ratio of observed to expected counts, have cropped up several times in

this thesis. The early work on amino acid preferences for secondary structure types

used likelihood ratios, and I used these values as a representation of sequence in the

secondary structure prediction chapter. I reported likelihood ratios in the earlier

chapters on statistics of amino acid occurrences in protein structures.

The likelihood ratio for two events A and S is the ratio of their joint probability

to the product of their individual probabilities (which would be their joint probability

were they independent events):

L_ P(AS)
P(A)P(S)'

For example, we can think of P(AS) as the probability of occurrence of an amino

acid A in structure S, P(A) as the probability of occurrence of amino acid A, and

P(S) as the probability of occurrence of structure category S. When the likelihood

ratio differs from 1.0, it indicates that the events are not independent.

These probabilities are estimated by counting the observed frequencies of oc-

currence in the sample set of known protein structures. For a given amino acid
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A and a structure category S, I represent the number of counts as NAS. The

number of occurrences of amino acid A is NA = ,s NAs. The number of occur-

rences of structure category S is Ns = a Nas. The total number of counts is

NT = E Es Nas = Ea Na = Es Ns. Then I estimate the likelihood ratio as the frac-

tion of observed occurrences of amino acid A in structure S, divided by the expected

fraction, assuming independence of amino acid type and structure category:

L _ (NASI/NT)
(NAINT)(NsIVT)
NASNT
NANs

The score for an entire sequence-structure alignment can be computed as the

product of the likelihood ratios for each aligned pair of elements. Computationally it

is easier to take the logarithm of the likelihood ratios, and sum them. Moreover, the

log of likelihood ratios can be related to energies.

8.1.3 Sample size problems

One problem with reporting and using likelihood ratios is that the information about

the total number of counts is lost. Low sample size can be a real problem. In earlier

chapters, I performed X2 tests to determine the significance of a deviation of likelihood

ratios from 1.0, the value corresponding to independence of the events measured. I

found. for example, that most of the deviations from 1.0 in likelihood ratios measuring

pairwise amino acid interactions were not significant.

WVith an increasing complexity of representation, and a correspondingly smaller

nlumber of counts per sequence or structure category, some noise may be introduced

that is amplified in the likelihood ratio computation. This noise can be reduced in a

number of ways. The basic idea is to keep likelihood ratios closer to 1.0 when there

is little data to support more variance. We wouldd like to ensure that the scores that
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contribute the most to the overall pseudopotential function have been generated by

statistically significant deviations from the expected occurrences of amino acids in

given structure environments.

Adding k to numerator and denominator of L.

The simplest way to pad the likelihood ratios is to add a constant to the numerator

and denominator, as follows:

k + NASNT
Lk =

k + NANs

The effect of adding a constant offset to the numerator and denominator is to move

L toward 1.0. Moreover, larger values of observed counts are less affected than are

smaller values of observed counts. Thus, the more data there is, and therefore the

more sure we are about our likelihood ratio, the less it is affected by the padding.

Figure 8-3 plots the logarithm of the padded likelihood ratio as a function of k, for

three different values of NASNT and NANS. As k increases, log(Lk) approaches 0.0.

For higher numbers of counts, the approach to 0.0 is slower.

Add counts based on independent frequencies.

In this padding paradigm, counts are added to each cell of the table of counts based

on the singleton occurrence frequencies of amino acids and structure categories. If

the total number of added counts is Np, then these are distributed according to the

singleton frequencies NA/NT and Ns/NT. The number of counts added to each cell

is

NP = NA Ns
AS - NT NP

Then the new, padded, cell count is

NS = NAS + NAS.
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Padded likelihood ratios.

0 200 400 600 800

k

Figure 8-3: Effect of padding the likelihood ratio.
k. (a) NAsNT = 10,000 and NANs = 1000. (b)
(c) iJASNVT = 100 and NANS = 10.

log(Lk) is plotted as a function of

NASNT = 1000 and NANs = 100.
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The likelihood ratio is
NANsNp + NASNT

NANSNP + NANSNT.

Comparing LIF to Lk above, we see that where k was added to the numerator and

denominator to derive Lk, we are adding NANSNP/NT to numerator and denominator.

The amount added is dependent on the expected frequency of occurrence of the joint

category AS; higher expected frequencies results in greater padding. The philosophy

behind this approach, then, is to avoid missing significant interactions that occur

between categories with low independent counts.

Add a constant offset to each cell count.

Another possibility is to add a constant offset to each cell in the table of counts; the

cell count is now NAS + k. Let Cs be the number of different structure (S) categories,

and let CA be the number of different sequence (A) categories. Then the total number

of counts is now NT = NT + kCACS. The likelihood ratio is

k2CACS + k(CACSNAS + NT) + NASNT
k2CACs + k(NACA + NsCs) + NANs

Thus, to both numerator and denominator is added a constant (k2 CACs) plus a

variable term. The numerator's variable term depends on NAS, and the denominator's

variable term depends on NA and Ns.

8.1.4 Structure representations

A structure representation is a set of mutually exclusive categories describing posi-

tions or groups of positions in the model structure. For example, the set {alpha,

beta, coil} is such a set for singleton positions. For two-element position groups, a

complete set would be {alpha/alpha, alpha/beta, alpha/coil, beta/alpha, beta/beta,

beta/coil, coil/alpha, coil/beta, coil/coil}, where the first label describes the first

residue position, and the second label describes the other residue position.
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8.1.5 Incorporating local sequence information

The singleton score functions described above evaluate the preference of one amino

acid in the sequence for one structure category. It might be useful to have the match

score look at a local piece of sequence around the amino acid residue that is aligned

with the structure position. In this case, we are altering the sequence representation.

A sequence element, against which a structure element is matched, is now a window

of amino acid residues in the sequence instead of a single amino acid residue. There

are arguments for and against this approach. On the against side, one might think

that the that the complete structure representation we are matching to should provide

similar information. Unlike many secondary structure prediction methods, in which

the secondary structure of a central residue in a local sequence residue is predicted

in isolation. threading makes use of local information along the sequence in finding

the best alignment of the entire sequence to the entire structure description. On the

other hand, there are some reasons that the local sequence information might help.

Consider, for example, the fact that the negatively charged residues tend to occur

at the N-termini of helices, while positively charged residues tend to occur at the C-

termini of helices. The singleton score function described so far, based on the (alpha,

beta, coil) structure representation, is not capable of representing this tendency; N-

and C-termini of secondary structure objects are not distinguished in the structure

models. One solution might be to use local sequence information. In this case, for

example, a negatively-charged amino acid residue occuring toward the N-terminus of

the central amino acid in the window would support the hypothesis that the central

amino acid occurs in a helix object.

This approach is similar to the neural network and GOR (Garnier-Osguthorpe-

Robson) methods for predicting secondary structure [Garnier et al., 1978, Gibrat

et al., 1987]. Both use a local sequence window. The approach is most similar to

the GOR method; this method uses log likelihood ratios to measure the information

each amino acid in the sequence window provides toward determining the secondary

structure of the central residue. The log likelihood ratios are summed to determine

an overall information value for the sequence window. In this chapter, I use sequence
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window information in the match function in the same way.

8.2 Method

8.2.1 Data

55 proteins from the Brookhaven database of protein structures were used and are

listed in Appendix Section B.2.4, in Tables B.1 and B.2. This list of proteins is a

subset of one generated by my colleagues at Boston University [Nambudripad et al.,

1, with 57 proteins. Only non-homologous, monomeric, single-domain proteins solved

to high resolution by X-ray crystallography were included. Smaller proteins with very

little secondary structure were excluded. The proteins were selected from Release 66

of the Brookhaven protein databank. The list consists of proteins ranging in size from

74 to 405 residues. I eliminate two additional proteins from the list, Inar and lifc.

lnar does not have an HSSP file in the Sander and Schneider database, while the

secondary structure for lifc is mislabeled in the Kabsch and Sander DSSP file.

Homology derived secondary structures files were obtained for each of the 55

proteins from the Schneider and Sander HSSP database [Sander and Schneider, 1991],

by ftp from the European Molecular Biology Laboratory. These files contain lists of

similar sequences aligned to the sequence for which there is a known structure.

8.2.2 Threading code

I wrote code in Lisp and C to implement the dynamic programming threading algo-

rithm for singleton pseudopotentials, to compute the score functions, and to display

the results of threading.

8.2.3 Structure representations

I tried various structure representations. Figure 8-4 shows the structure representa-

tions that I used. For example, the representation Exp-SS-coil contains five categories:

alpha buried, alpha exposed, beta buried, beta exposed, and coil. When "coil" is part
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Structure representation hierarchy

coil Exp SS

Exp-coil
Exp-SS

Exp-SS-coil

Figure 8-4: Structure representations. Each box shows one representation, and in-
cludes a list of the structure categories used in that representation. The lines indicate
the hierarchy of representations; upper boxes are connected by a line to boxes con-
taining representations that are a refinement obtained by splitting categories.

of a structure representation, that indicates that an insertion score is assigned to each

sequence element placed in the gaps between secondary structure objects. When coil

is not part of a structure representation, there is no score assigned to parts of the

sequence that fall between secondary structure objects. The remaining structure

categories are assigned to residue positions within the structure objects.

I used the Kabsch and Sander definitions of secondary structure to determine the

secondary structure objects. Any helix ("H" label in the Kabsch and Sander system)

or strand ("E" label) consisting of two or more residues became a secondary structure

object. The structure category "alpha" refers to residues in a helix object and the

structure category "beta" is given to residues in a strand object. The structure

category "exposed" applies to residues with relative solvent exposure (as measured by

Kabsch and Sander) of greater than 0.29; "buried" applies to all other residues. "Beta

parallel" residues are any beta strand residues involved in a parallel strand-strand
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ladder. "Beta antiparallel" residues are all other beta strand residues. Note that if a

residue is involved in both a parallel and antiparallel ladder, it is classified as parallel.

This is based on the assumption that the more restrictive sequence requirements for

parallel sheets will take priority.

8.2.4 Amino acid counts

The score functions were created from counts of the number of occurrences of amino

acid residues in the different structure categories. For the purpose of creating the

score functions, the amino acids were classified as follows:

* Any residue labeled "H", "G", or "I" in the Kabsch and Sander scheme was

considered helix.

* Any residue labeled "E" or "B" was considered beta.

* All other residues were considered coil.

The exposure definitions were the same: relative exposures above .29 indicated an

exposed residue; exposures below were buried.

The aligned sequence data compiled by Sander and Schneider was used to augment

the data set. For any residue position, there is a set of aligned residues, one from

each of the aligned sequences. At every position, each different amino acid type

was considered as a separate count. For example, if a position contained the residues

IIILIHLVVVYI, and if it were in the "beta buried" structure category, then the counts

in the following cells of the table of counts would each be incremented by 1: (I, beta

buried), (L, beta buried), (H, beta buried), (V, beta-buried), (Y, beta buried).

8.2.5 Scores for threading; padding

Scores were computed as described in Section 8.1.2. In some experiments, padding by

adding a constant offset to both numerator and denominator of the likelihood ratio

was used.
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8.2.6 Incorporating local sequence information

Log likelihood ratios LAS were determined for the joint occurrence in the set of known-

structure proteins of an amino acid A in residue i +n and secondary structure category

S at residue i, where n is 0 or a small positive or negative integer between -K and

+K. Various values of K were tried. The log likelihood ratios were added to obtain

the match score. The score of the central residue was emphasized by weighting it by

an amount W. The overall match score is therefore

+K
M(i,j, K, W) = (W - 1)log(LAS) + E log(LS).

n=-K

Various values of local window size parameter K and central residue weight W were

tried. Both SS--coil and Exp-SS-coil structure representations were used.

8.3 Results and Discussion

8.3.1 Counts

Table 8.1 shows the counts for the Exp-SS-coil structure representation. There are

39.683 total counts. Trp (W) is the amino acid with the fewest occurrences (472); Ala

(A) is the amino acid with the most occurrences (3075). Strand exposed structure is

the most rare, with 3200 counts. The other three helix and strand all have counts of

about 6300. There are 17,432 coil counts.

8.3.2 Likelihood ratios

Table 8.2 gives the likelihood ratios for the Exp-SS-coil structure representation,

computed from the count data in table 8.1. For example, Phe (F) shows a preference

for buried structure, a preference against exposed, and avoids coil. Ala (A) shows a

preference for alpha structure, and a preference to avoid beta and coil structures.

8.3.3 Comparison of singleton pseudopotential components
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AA Abur AExp BBur BExp Coil Total
A 642 557 458 198 1220 3075
C 174 107 182 78 840 1381

D 218 495 187 175 1190 2265

E 312 631 213 236 1002 2394
F 368 116 433 82 497 1496

G 268 283 268 122 1326 2267

H 151 176 161 99 484 1071

I 524 161 624 140 638 2087
K 267 609 218 283 1175 2552

L 696 274 630 156 888 2644
M 296 115 248 63 337 1059

N 223 418 197 187 1198 2223
P 139 225 133 113 851 1461

Q 270 470 198 201 803 1942

R 210 410 213 201 823 1857

S 345 506 405 259 1436 2951

T 352 395 405 277 1163 2592
V 562 225 739 194 841 2561

W 107 52 108 34 171 472

Y 256 115 311 102 549 1333

Tot. 6380 6340 6331 3200 17,432 39,683

Table 8.1: Counts for Exp-SS-coil structure
alpha buried. AExp: alpha exposed. BBur:
not alpha or beta.

representation. AA: amino acid. ABur:
beta buried. BExp: beta exposed. Coil:
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Table 8.2: Likelihood ratios for Exp-SS-coil structure representation. AA: amino
acid. ABur: alpha buried. AExp: alpha exposed. BBur: beta buried. BExp: beta
exposed. Coil: not alpha or beta. Ave.: column averages. S.d.: column standard
deviations.
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AA ABur AExp BBur BExp Coil
A 1.30 1.13 0.93 0.80 0.90
C 0.78 0.48 0.83 0.70 1.38
D 0.60 1.37 0.52 0.96 1.20
E 0.81 1.65 0.56 1.22 0.95
F 1.53 0.49 1.81 0.68 0.76
G 0.74 0.78 0.74 0.67 1.33
H 0.88 1.03 0.94 1.15 1.03
I 1.56 0.48 1.87 0.83 0.70

K 0.65 1.49 0.54 1.38 1.05
L 1.64 0.65 1.49 0.73 0.76
M 1.74 0.68 1.47 0.74 0.72
N 0.62 1.18 0.56 1.04 1.23
P 0.59 0.96 0.57 0.96 1.33
Q 0.86 1.51 0.64 1.28 0.94
R 0.70 1.38 0.72 1.34 1.01
S 0.73 1.07 0.86 1.09 1.11
T 0.84 0.95 0.98 1.33 1.02
V 1.36 0.55 1.81 0.94 0.75
W' 1.41 0.69 1.43 0.89 0.82
Y 1.19 0.54 1.46 0.95 0.94

Ave. 1.03 0.95 1.04 0.98 0.98
S.d. 1.71 1.67 2.06 1.03 1.17



laak

150 residues

ubiquitin conjugating enzyme

Figure 8-5: Diagram of protein 1AAK, drawn by the program Molscript.
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Scoring function: SS-coil

17 IT 1Th T 1vT'-w T 17 W - Tr r T ... D 7r171 ,"A 17rr 

1 helix 
I i

2 strand

3 strand

4 strand

5 strand

6 helix

7 helix

8 helix

9 helix

Figure 8-6: Threading of laak with SS-coil pseudopotential. The top line of symbols
shows the Kabsch and Sander secondary structure: a circle is helix, zig zag lines
are strands, Ts represent turns. Each secondary structure object in the structure is
shown on a separate line. For each, a trace of the match score of the element to the
sequence starting at position i is shown, as a function of i, for all legal values of i for
that secondary structure object. A solid vertical bar shows the optimal threading; a
dashed vertical bar shows the correct threading.

I illustrate the results of the threading program on the protein 1AAK. which is pic-

tured in Figure 8-5; this sketch was drawn by the program Molscript [Kraulis, 1991].

Figures 8-6, 8-7, and 8-8 show the results of running the threading code on protein

1AAK for three different pseudopotentials: SS-coil, Exp-coil, and Exp-SS-coil.

The top line of symbols in each figure shows the secondary structure of the protein

as assigned by Kabsch and Sander using the DSSP program. A circle represents a

helical residue, a diagonal line represents a strand, and a T represents a turn.

There is one plot for each secondary structure object below the secondary structure

labeling line. Each plot, or trace. shows the match score M(i,j) for object j along the

sequence i (i increases from left to right in the diagram). The plots are scaled to fit

the display area, but the relative magnitudes are preserved between structure objects.
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Because all the structure objects must be placed, each score trace starts no further to

the left than that object can be placed and still fit the preceding objects. Similarly,

the score trace ends on the right to leave enough room to fit all the remaining structure

objects.

A solid vertical line marks the optimal position of the object, as computed by the

threading algorithm. This usually occurs at a local minimum of the score function,

as we'd expect. A dashed vertical line marks the correct position of the object. The

dashed line does not appear in the diagram when the two are superimposed. At the

top of each optimal vertical line there is a vertical box which shows the length of the

object. For structure representations which include the exposed/buried distinction,

this box is coded so that white represents exposed residues, and black represents

buried residues.

Figure 8-6 shows the 1AAK threading for the SS-coil structure representation,

which is composed of the three categories alpha, beta, and coil. The first structure ob-

ject in 1AAK is a helix, and therefore the first plot shows M(i, O) = Ki+L(O)-I F(Ak, a),

where F(A, S) is the (log-likelihood-ratio) score for matching amino acid A to struc-

ture category S, L(0) is the length of the first object (6), and Ak is the kth amino

acid in the sequence. Note the broad peaks and valleys in the score as the sequence

objects scan the sequence. This is not surprising because the structure category along

the entire structure object is the same and we are in effect taking a running average

of the a or d score in a subwindow along the sequence. If two of the secondary struc-

ture objects were of the same type (alpha or beta) and length, their traces would be

exactly the same, though starting and ending at different sequence positions.

For this protein, the SS-coil score manages to place most of the objects in approx-

imately the right positions.

The score traces in Figure 8-7 (the Exp-coil structure representation) stand in

sharp contrast to those of Figure 8-6: they have a much higher frequency; this reflects

the changing pattern of structure categories along each structure object. The beta

strand objects have patterns of alternating exposure which are reflected in the score

trace. The slower period of the characteristic amphipathic frequency of the helices is
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Scoring function: Exp-coil
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1 helix .

2 strand

3 strand

4 strand

5 s t rand

6 helix

7 helix

8 helix

9 helix

Figure 8-7: Threading of laak with Exp-coil pseudopotential.

also apparent in the helix score traces.

The Exp-SS-coil score function is qualitatively very similar to that of Exp-coil.

Both Exp-coil and Exp-SS-coil place eight of the nine objects correctly.

Table 8.3 shows the results for threading on the set of 55 proteins. There are

680 secondary structure objects. The table shows the percentage of objects correctly

placed, either exactly, or within two or four sequence elements. Distinguishing be-

tween alpha and beta (SS-coil, 20.3%) does not improve the results much over the

simpler coil/not-coil representation (Coil, 17.6%). Distinguishing between buried and

exposed (Exp-coil, 43.5%) is a much better structure representation than one based

on secondary structure type. This is a striking confirmation of the predictions of the

statistical analysis described in previous chapters. A structure representation that

incorporates both solvent exposure and secondary structure (Exp-SS-coil, 49.4%) per-

forms somewhat better than using solvent exposure alone. Again, this confirms the

statistical analysis results.

In Table 8.4, I show results for other structure representations; in particular,
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Scoring function: SS-exp-coil
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Figure 8-8: Threading of laak with Exp-SS-coil pseudopotential.

Table 8.3: Results for singleton experiments. Numbers in table are percentages of
secondary structure objects exactly placed (0), placed within two sequence elements
of the correct placement (+2), and placed within four sequence elements of the cor-
rect placement (4). Results are shown for all secondary structure objects, and for
alpha and beta objects separately. NC is the number of categories in the structure
representation.
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Expmt. NC All Alpha Beta
0 +2 ±4 0 ±2 ±4 0 +2 ±4

Coil 2 17.6 51.2 60.3 15.1 51.6 64.5 19.5 50.9 57.4
SS-coil 3 20.3 52.4 63.2 17.6 52.3 65.2 22.2 52.4 61.8
Exp-coil 3 43.5 59.9 72.6 54.1 64.2 81.0 36.2 56.9 66.8
Exp-SS-coil 5 50.1 68.7 79.7 59.9 70.6 84.9 43.4 67.3 76.1
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Table 8.4: Further results for singleton experiments.

I compare the results with and without the use of insertion scores for the regions

of sequence that are not matched to secondary structure objects. Using a score

function in these loop regions gives moderate improvement in performance, although

this improvement is not great for the most successful Exp-SS structure representation.

8.3.4 Incorporating sequence window information

Table 8.5 shows the percent of correctly placed secondary structure objects for various

combinations of the window length parameter K and the central residue weight W.

A sequence window size of 3 residues (K = 1), with a center multiplier W of 5,

produced the best results, two percentage points higher than the base case with no

local sequence information. The full results for this best case are shown in Table 8.7,

in comparison to the results without local sequence information.

When I use the structure representation Exp-SS-coil, I do not find improvement

in the threading results in the combinations of K and W that I tried (Table 8.6).

The alpha and beta results are shown for the best K, W combination in Table 8.7. I

have not found a way to exploit any additional information the local sequence might

provide over and above that available in the Exp-SS-coil structure representation and

single-residue likelihood ratios.
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Expmt. NC All Alpha - Beta
0 ±t2 ±4 0 ±2 ±4 0 ±2 ±4

Coil 2 17.6 51.2 60.3 15.1 51.6 64.5 19.5 50.9 57.4
SS 2 9.0 25.0 35.4 4.7 18.6 32.6 12.0 29.4 37.4
SS-coil 3 20.3 52.4 63.2 17.6 52.3 65.2 22.2 52.4 61.8
Exp 2 37.1 52.5 64.6 47.3 55.9 60.3 29.9 50.1 60.6
Exp-coil 3 43.5 59.9 72.6 54.1 64.2 81.0 36.2 56.9 66.8
Exp-SS 4 48.2 64.9 75.1 58.1 67.4 81.0 41.4 63.1 71.1
Exp-SS-coil 5 50.1 68.7 79.7 59.9 70.6 84.9 43.4 67.3 76.1



Table 8.5: Results for incorporating local sequence information in SS-coil represen-
tation. Numbers in table are percent correctly placed secondary structure objects,
out of a total of 680. K is the window length parameter and W is the weight on the
central residue's score.

Table 8.6: Results for incorporating local sequence information in Exp-SS-coil repre-
sentation. Numbers in table are percent correctly placed secondary structure objects,
out of a total of 680. K is the window length parameter and W is the weight on the
central residue's score.

Table 8.7: Results for local sequence window experiments. Best result and results
without local sequence information are shown for both SS-coil and Exp-SS-coil struc-
ture representations. Numbers in table are percentages. "SR": structure representa-
tion. "NC": number of count categories. "K": sequence window parameter. "W":
multiplier on central residue.
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K
W 0 1 2 3 6

1 20.3 17.5 13.8

2 17.1

5 22.4 21.5 21.4 20.0
10 21.5 21.3 20.9 21.9
15 21.0

50 20.7
100 20.6

1000 20.4

K
W 0 1 2 3 6

1 50.1 43.8 41.9 37.8
5 49.4 49.0

10 49.4 48.5 48.5
20 50.7 49.3 50.1
50 50.4 50.0 50.0 49.7

SR NC K W All Alpha Beta
l 0 ±2 ±4 0 ±2 ±44 0 ±2 ±4

SS-coil 3 0 1 20.3 52.4 63.2 17.6 52.3 65.2 22.2 52.4 61.8
SS-coil 3 1 5 22.4 52.6 63.2 19.7 52.7 66.3 24.2 52.6 61.1
Exp-SS-coil 5 0 1 50.1 68.7 79.7 59.9 70.6 84.9 43.4 67.3 76.1
Exp-SS-coil 5 1 20 50.7 69.7 80.4 59.9 71.7 85.3 44.4 68.3 77.1



8.3.5 Splitting the beta structure representation into par-

allel and antiparallel

I expected that; breaking up the beta structure categories into parallel and antiparallel

would improve the threading results because the likelihood ratios for the two types

are quite different for some residues (Table 8.9). The amino acid preferences for

and against parallel structure appear to be stronger than those of antiparallel, alpha,

or coil structure. His and Thr even change preference, favoring antiparallel and

disfavoring parallel structure.

However, I did not find consistent prediction improvement; in fact, the split struc-

ture representation, Split-SS-coil, performed slightly worse than the two-category Coil

representation! When compared to SS, the structure representation with no coil, the

Split-SS representation did slightly better (9.7% as opposed to 9.0%), particularly on

placing beta strands.

It seemed likely that the problem was the relatively low number of samples, par-

ticularly in the case of the parallel structure, and the therefore possibly misleadingly

high magnitudes of the corresponding scores. The standard deviation for the par-

allel strand likelihood ratios is much higher than that of the other structure types

(Table 8.9). A high standard deviation within a structure category could be an indica-

tion either that the structure representation is good at discriminating between amino

acids, or that there is a low sample size. Therefore, this seemed like an ideal case

in which to apply the low-sample-size solutions of padding. The results for various

values of the padding constant k are shown in Table 8.10. There is an improvement

as k increases, up to an optimal value for k at around 108, which is about 10 times the

average value of the denominator of the likelihood ratio (1.6 x 107 for NT = 39, 683).

The results for the Coil and SS-coil representations are shown for comparison. With

padding, I am able to obtain, with the split beta representation, threading results

slightly better than those for the unpadded SS-coil representation.

This result suggests that low sample size is a relevant problem, and that padding

may help to alleviate it. So far I have been dealing only with singleton structure rep-
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Alpha Par Ant Coil
1220

840
1190

1002

497
1326

484
638

1175

888
337

1198

851

803

823

1436

1163

841

171

549
12,720 1655 7461 17,432 39,268

Table 8.8: Counts for Split-SS.

208

A

C

D

E
F
G

H

I

K
L

M

N

P

Q
R
S

T
V
W
Y

Tot.

AA Total
1199
281

713

943

484
551

327
685
876

970
411

641

364
740
620
851

747
787
159

371

120

42
53
60

107

53

36
191

69

183

62

53

33

34

56

102

101

208
32

60

513
203
289
368
391

318
215
538
405
569
238

313

203

348

338

537
552

680

105

338

3052
1366
2245
2373
1479
2248
1062
2052
2525
2610
1048

2205
1451

1925

1837
2926
2563
2516

467
1318



Table 8.9: Likelihood ratios for Split-SS, along with averages and standard deviations
within each structure category.

209

AA Alpha Par Ant Coil
A 1.21 0.93 0.88 0.90
C 0.64 0.73 0.78 1.39
D 0.98 0.56 0.68 1.19
E 1.23 0.60 0.82 0.95
F 1.01 1.72 1.39 0.76
G 0.76 0.56 0.74 1.33
H 0.95 0.80 1.07 1.03
I 1.03 2.21 1.38 0.70

K 1.07 0.65 0.84 1.05
L 1.15 1.66 1.15 0.77
M 1.21 1.40 1.20 0.72
N 0.90 0.57 0.75 1.22
P 0.77 0.54 0.74 1.32
Q 1.19 0.42 0.95 0.94
R 1.04 0.72 0.97 1.01
S 0.90 0.83 0.97 1.11
T 0.90 0.94 1.13 1.02
V 0.97 1.96 1.42 0.75
W 1.05 1.63 1.18 0.82
Y 0.87 1.08 1.35 0.94

Ave. 0.99 1.03 1.02 1.00
s.d. 0.71 2.35 1.06 0.93



Table 8.10: Improvement of threading performance by padding the singleton scores
for the Split-SS representation. Numbers in table are percentages. The results for
the Coil, SS-coil, SS, and Split-SS representations are shown for comparison.

resentations: structure representations with more categories, such as those modeling

pairwise interactions between residues, are likely to suffer much more from the low

sample size problem.

8.4 Conclusions

I draw the following conclusions from the self-threading experiments:

* Solvent exposure preference is more useful than secondary structure preference

for structure prediction.

· Secondary structure may add information above and beyond the solvent expo-

sure preference, at least for a crude exposed/buried solvent exposure model.

* The coil / not-coil distinction is more useful than the alpha / beta distinction

for structure representation.

* Modeling loop regions in the structure prediction is helpful.

* Incorporating sequence information improves prediction when the secondary

structure representation is used; however, I have not found it to be helpful in

improving prediction beyond that obtainable by using solvent exposure.
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k All Alpha Beta
0 ±2 ±4 0 ±2 ±4 0 ±2 ±4

0 17.1 46.9 57.8 14.7 48.4 62.4 18.7 45.9 54.6
106 18.1 49.4 60.3 15.1 49.8 64.2 20.2 49.1 57.6
107 20.7 54.6 65.0 17.9 55.9 69.2 22.7 53.6 62.1
108 21.9 53.5 63.3 20.1 53.4 65.5 23.2 53.6 61.7
109 21.0 52.2 62.2 20.4 51.6 63.1 21.4 52.6 61.6
(Coil) 17.6 51.2 60.3 15.1 51.6 64.5 19.5 50.9 57.4
(SS-coil) 20.3 52.4 63.2 17.6 52.3 65.2 22.2 52.4 61.8
(SS) 9.0 25.0 35.4 4.7 18.6 32.6 12.0 29.4 37.4
(Split-SS) 9.7 27.2 37.6 4.3 18.3 32.3 13.5 33.4 41.4



* Unless problems of low sample size are resolved, splitting the beta strand cate-

gory into parallel and antiparallel does not improve results.

* Low sample size can be ameliorated by padding the likelihood ratios used as

matching scores.
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Chapter 9

Work in Progress

9.1 Computer representations of proteins

There are many further areas for exploration.

9.1.1 Automation

It might be possible to automate the statistical analyses, so that model exploration

relevant to the choice of protein representation features can be done on the computer.

There exist heuristics for choosing appropriate model hierarchies that could provide

a starting point [Goodman, 1971].

I have chaperoned the analysis of a given protein representation through the statis-

tics and test application programs. It would be neat to automate this process. A

protein representation evaluator would be given the protein representation (or a set

of protein representations to be compared) as input, and would have access to the

database of known structures. and possibly other information about proteins (Fig-

ure 9-1). Statistical and application tests would be run, and a report would be

generated. The report might include recommendations on which elements of the

representation were most important, and avenues to try next in improving the repre-

sentation.

At the next level of automation, I imagine a protein representation generator (Fig-
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PR evaluator

known
structures

protein
representation

report

Figure 9-1: Automatic evaluation of protein representations (PRs).

ure 9-2). This program would incorporate the protein representation evaluator as a

component. There would also be a component that would modify a given representa-

tion in ways suggested by the evaluator's report. These modifications would include

the operations I tried by hand in the threading chapter: generalizing, specializing,

and adding or dropping new attributes. In addition, there would be one component

of the system that would intelligently explore the database of known structures with

a goal of creating entirely new, and potentially useful, attributes. This component

would also have access to other relevant information about proteins.

9.1.2 Statistical analysis

I want to extend the statistical analysis to other types of topological pairs, and explore

ways of reducing the complexity of the protein representation while maintaining the

important features.

The results of the statistical analysis I have done in this thesis should be fed back

into further analyses of protein structures. Interesting questions have been raised

which deserve being pursued by looking, for example, at the geometry of pairs of

residues.

It would be useful to mathematically extend the contingency table theory to al-

low table cells to be joined if they behave similarly, thus producing more statistical

significance (and therefore generalization power) while allowing important single cells
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PR generator 
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known
structures
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score

I 1

PR evaluator

PR score

PR modifier

generalize
specialize

Figure 9-2: Automatic generation of protein representations (PRs).

to remain as they are.

9.1.3 Threading

In the threading work, I have looked only at single-residue properties. Threading

should be done on residue-pair properties as well as on the properties particular

topological relationships in beta sheets and other structures.

9.1.4 Other representations

There are many representations, both entirely new approaches and variations on the

ones that I have tried, that could be explored.

For example, other definitions and representations of local structure exist. One

such representation is a local window along the amino acid chain, with atomic posi-

tions stated for all the atoms in the backbone of the protein. This window can be

seen as a building block for the protein.

Unger et al. (1989) clustered segments of length six from a database of proteins,

and used representative segments from each cluster as their representation of sec-
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ondary structure. They found that they could build proteins using these blocks with

some degree of accuracy. They have not yet tried predicting the secondary structure

from primary sequence, but the technique looks promising. Some of the represen-

tative segments corresponded to traditional secondary structure elements such as

helices, but others were new, and potentially useful.

Ideas for sequence and structure representations should come from analyses of

similar structure, such as that by Flores and colleagues [Flores et al., 1993].

9.2 Solvent exposure

A recurring theme in this thesis is that solvent exposure is important. How can we

use that fact? I find that there are some buried beta sheets that are amphipathic.

Could this be a requirement for folding? Can we use this information in predicting

protein structure?

In this section, I give several examples of buried amphipathic proteins, then talk

about how amphipathicity might be incorporated into the threading algorithm.

9.2.1 Buried polar beta sheet faces

I show here several buried amphipathic sheets.

Rhodanase (lrhd)

Rhodanase (lrhd) is a transferase enzyme 293 residues long. It contains a buried

parallel beta sheet with one face that is clearly polar; in particular, one buried string

of beta pair partners is NDTYK.

Figure 9-3 shows the structure of rhodanase. The figure was drawn by the program

Molscript [Kraulis, 1991]. There are two subdomains. I will focus on the sheet in the

top subdomain, of which three strands are shown in this picture (the edge strands,

having only two residues, were not displayed using the arrow notation). The sheet is

completely surrounded by alpha helices.

Figure 9-4 is a diagram of the layout of the sheet. There are five strands, each of
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Figure 9-3: Molscript drawing of rhodanase, lrhd.
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Figure 9-4: One sheet of rhodanase, lrhd. See text for description of symbols
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which runs vertically in the diagram. Each octagon corresponds to a residue, and is

labeled with the residue number (top left), the amino acid type (top right), and the

solvent exposure (bottom left). In the middle of the octagon is a two-dimensional

projection, down the Ca-C O vector, of the bonds connecting the non-hydrogen atoms

in the residue's side-chain. The thickness of the octagon perimeter is monotonically

related to the residue's relative exposure (fraction of maximum exposure for that

amino acid type). Solid lines show beta-pair sidechain contact; thicker lines indicate

more contact area. Dashed lines represent hydrogen bonds; the arrow points from

the donor toward the acceptor. A dot at the tail or head of the hydrogen-bond arrow

indicates that the hydrogen bond originates or terminates at a side-chain atom; if

there is no dot, then the hydrogen bond is at the backbone. The important thing to

note is that the bottom row of residues (NDTYK) is polar and buried.

Figure 9-5 is a stereogram of one face of the sheet, showing the line of buried

hydrophilic residues.

Elastase (3est)

Elastase (structure 3est) is a digestive enzyme with sequence similarity to trypsin

and chymotrypsin. The sequence identity is higher for residues in the interior of the

enzyme. All three proteins have similar three-dimensional structures, and a serine-

histidine-aspartate catalytic triad (residues 102, 57 and 195 in elastase, which occur

in loops). The catalytic mechanism involves enabling a tetrahedral transition state

and the formation of a covalent acyl-enzyme intermediate.

The three-dimensional structure of elastase includes two antiparallel beta barrels,

or orthogonally packed beta sheet pairs, packed against each other (Figure 9-6). The

barrels define two subdomains of the protein; the interface between these subdomains

is crossed three times by the backbone, although two of these crossings are near the

two ends of the protein.

Figure 9-7 diagrams the outer face of one of the barrels. This face contains many

polar residues. Some of the polar residues are exposed to solvent, as indicated by the

DSSP-computed accessibility numbers in the figure. However, some of the residues
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4kkt'y

Figure 9-5: Stereogram of one face of lrhd sheet. The line of buried hydrophilic
residues is at the bottom.
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3est

Figure 9-6: Structure of elastase.
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are quite buried, notably 30Q (accessibility 6), 45T (accessibility 0), 32S (accessibility

0), 34Q (accessibility 11), 40H (accessibility 17), 53H (accessibility 0), 51H (acces-

sibility 4). These residues are situated at the interface between the two structural

subdomains.

Porin

Porin is a 16-stranded antiparallel beta barrel membrane channel protein [Kreusch

ct al.. 1994]. Porin is inside out with respect to most beta barrels. Its outer surface

sees the hydrophobic environment of the lipid bilayer. Through the center of the

molecule runs an aqueous pore. The alternating hydrophobic character of the strands

is very clear. as shown for a couple of strands in the excerpt from an HSSP file in

figure 9-8. Note the smattering of glycines which help reduce the strand twist for the

long strands.

9.3 Amphipathic Models for Threading

How can we include the amphipathicity constraint in the core domain threading

method? In this section I describe some preliminary work I did on incorporating

amphipathicity in the definition of the structure model for threading. The results on

a few proteins seem promising, but more work is needed to determine whether this

approach might bear fruit. I describe here the preliminary results I obtained.

Each residue in the model structure is labeled buried or exposed. The singleton

term in the score function is computed for each residue by looking up the score for

that amino acid in the environment defined by the exposure (buried or exposed) and

secondary structure (alpha or beta). There are various ways to determine the solvent

exposure of a model position. A threshold is applied to this exposure number to

determine whether the site is buried or exposed.

To encourage amphipathicity in the secondary structure elements, I tried two

approaches. The first was to manually search in exposure label space to find labels

which gave good threadings. In fact, I quickly found optimal threadings for the two
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3est C DOWN 2/15/94 12:37
Solid lines: contact area (multiplyg heavy atom radii by 1.0: add 0.7.)
Dashed lines: hydrogen bonds (by HPLUS): circle indicates sidechain

Figure 9-7: 3est, one side of sheet.
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pdbno AA exposure aligned seqs.

40 Y 33

41 I 60

42 R 35

43 F 87

44 G 0

45 F 88

46 K 86

47 G 20

48 E 85

49 T 57

55 L 40

56 T 13

57 G 7

58 Y 46

59 G 18

60 R 58

61 W 67

62 E 16

63 A 0

64 E 23

65 F 75

66 A 30

YYYYYYYYYY

IIVVVAAAMM

RRRRRRRRRR

FLFFFLLLLI

GGGGGGGGGG

FFFIIFFFFF

KKKKKKKKKK

GGGGGGGGGG

EEEEEEEEEE

TTTTTTTTTT

*

*

*

LLLLLLLLLL

TTTTTTTTTT *

GGGGGGGGGG

YYYYYFFYYY *

GGGGGGGGGG

RRRRRQQQQQ *

WWWWWWWWWW

EEEEEEEEEE *

AAASSYYYYY

EEEEEEENQQ *

FFFFFFFFII

AAASSKKQQQ *

Figure 9-8: Excerpt from the Porin hssp file. Those positions marked with an asterisk
correspond to residues whose side chains point inward toward the pore.
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strand exposure pattern

1I L I T l I I i I1 helix exposure pattern

Figure 9-9: Amphipathic exposure patterns for strands and helices. Black squares
represent buried residues, and white squares represent exposed residues.

proteins I worked with.

The second approach was less biased: I used separate thresholds for buried and

exposed residues, and allow an intermediate range in which the amphipathicity con-

straint takes hold. Any positions with exposure less than threshold b are labeled

buried. Any positions with exposure greater than threshold 0e are labeled exposed.

Any positions with intermediate values of exposure are labeled with an amphipathic

pattern. The pattern is constrained by the labeled residues (if any) on either end. If

there is still ambiguity in how to place the amphipathic pattern over residues, then

I choose the labeling that maximizes a function that evaluates how well the pattern

fits the exposure values in the unlabeled window. This compatibility function has the

form
r

F = A(i) Ln(i),
i=l

where I is the leftmost residue index in the unlabelled window; r is the rightmost

residue index in the unlabelled window; A(i) is the solvent accessibility of the i'th

residue; n indexes the offsets of the amphipathic pattern, and Ln(i) is a function

indicating for offset n whether the i'th residue is buried or exposed. For an A(i) in

which higher values represent greater exposure. L takes the value 1 for exposed and

-1 for buried residues in the pattern.

The amphipathic pattern for beta strands is strictly alternating buried and ex-

posed residues. The amphipathic pattern for alpha helices corresponds to a helix of

period 3.6 residues.
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9.3.1 Perfect Self-Threading on trypsin inhibitor (tie) and

pseudoazurin (2paz)

As a first test of the potential for incorporation of an amphipathic constraint in

structure models for threading, I selected two proteins that contain beta structure,

pseudo-azurin (2paz) and trypsin inhibitor (tie). The proteins are illustrated in

figures 9-10 and 9-11. For each protein, I manually changed the exposure labels and

with very little effort, was able to achieve perfect self-threading. In order to do this, I

looked at scans, across the whole sequence, of the threading score for each secondary

structure element. I also examined the DSSP solvent accessibility numbers. The

resulting patterns were more amphipathic.

The optimized labels for 2paz also did better on the homologous sequences than

did the original labels.

9.3.2 Threading Sequence-Homologous Proteins

The fact that I was able to get much-improved exact self-threading by only chang-

ing the exposure values was an encouraging sign. I next proceeded to see whether

similar sequences would show improved threading. In fact, I find that a model incor-

porating the amphipathic constraint performs better on a set of sequences similar to

pseudoazurin (structure 2paz) than a model whose exposure labels were determined

based on a single threshold. The number of correctly placed segments went from

71/181 (39%) to 106/181 (59%).

'The full model for 2paz contains nine strands and two helices. However, inspection

of the aligned helices in the HSSP file shows that most aligned sequences are missing

those two helices. Therefore, I created a reduced model containing only the nine beta

strands. Some of the aligned sequences do not align to all nine strands.

The original exposure labelings in the model were obtained by thresholding the

relative accessibility (obtained by dividing the DSSP accessibility by the maximum

accessibility for that amino acid type) at 0.29. The amphipathic exposure labels were

obtained by requiring that all of each secondary structure be strictly amphipathic.

225



2paz

Figure 9-10: Structure of pseudoazurin.
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ltie

Figure 9-11: Structure of pseudoazurin.
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Orig. Amphi. Optimal

2paz 9

azup_alcfa 9

azup_vibal 9

azup_metex 9

amcy_parde 7

plasanasq 8

plas_anava 8

plas_orysa 8

plas_sceob 8

plas_lacsa 8

plas_entpr 8

plas_ulvar 8

plas_samni 8

plaschlfu 8

plas_horvu 9

plas_petcr 8

plas_merpe 8

plas_phavu 8

plas_soltu 8

plas_vicfa 8

plasspiol 9

plasdauca 8

466 111 679
111 1 1 112
589 789 789
466 011 466
001 000 000
111 111 111
466 333 555
233 222 456
677 356 444
688 588 788
366 333 588
477 223 578
255 588 688
577 377 577
222 000 345
788 578 778
255 333 688
255 333 888
233 333 588
477 344 588
111 111 566
455 578 778

total exactly right 71 59 106

Figure 9-12: In the results shown in the figure, three numbers are reported for each
threading of a sequence against the nine-stranded structure model. The first number
represents the number of secondary structure segments placed exactly correctly; the
second is the number of segments placed within ± 2 of the correct placing, and the
third is the number of segments within + 4 of the correct placing.
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The optimal exposure labels were obtained by manually changing exposure labels

on some positions to enhance the amphipathicity of the model elements. The opti-

mal model places more segments exactly correct than does the original model, and

more often places all segments approximatly correctly (within 4 residues). The strict

amphipathic constraint fares the worst.

How would an unbiased assignment rule do? A two-threshold rule (0, 90) performs

worse than the others (64), but with a score function incorporating information from

homologous sequences, it does better (83) and gets all of the segments correctly placed

within 4 residues for most (11) of the sequences. This is compared to the model run

with the same score function, but based on a sequence-independent ("geometric")

accessibility, which gets 71 segments correctly placed, and places segments within 4

residues on only 5 of the sequences.

9.3.3 Two-Threshold Rules for Labeling Model Residue Ex-

posures

We compared the single-threshold rule to a two-threshold rule on a set of 46 proteins.

To compute accessibilities, all sidechains were replaced by Alanine residues (with CB

radius 2.1), and the DSSP program was run to compute accessibility with a water

radius of 2.4 Angstroms. The default exposure labeling was obtained by using a

threshold of .2!3 on relative accessibility. Scores were computed using a set of aligned

sequences, leaving out the protein of interest. Dynamic programming was performed

to align the model with the sequence using singleton scores only, including gap scores.

The default model placed 48% of the segments correctly, 72% within 2, and 81% within

4.

A two-threshold model with thresholds of .2 and .4 on the relative exposure per-

formed slightly better, with 49% of the segments placed exactly correctly, 73% within

2, and 82% within 4.

Pascarella and Argos [Pascarella and Argos, 1991] report that only 38% of beta

strands show a hydrophobic moment peak in the beta frequency range, and only 9%

229



are conserved across aligned sequences.

I use aligned sequences to enhance the amphipathicity signal in proteins.

The hydrophobic moment of a window of residues at a given frequency w is com-

puted as in Cornette et al. [Cornette et al., 1987]:

2

[(W) = 2 (hk - ha)eikw
L k=O

L is the length of the window; hk is the hydrophobicity of the k'th residue in the

window; ha is the average hydrophobicity in the window. The amphipathic index for

a given frequency range is computed (following Cornette) as

AI(Wl, 2 )= 1 -w=179

I used the PRIFT hydrophobicity scale computed by Cornette et al.

The amphipathicity index, AI, was computed for 10° intervals of the 180° range,

for window sizes corresponding to beta (5, 7) and alpha (11, 13, 15) conformation.

For each window size, the location of the peak AI was recorded. Following [Pascarella

and Argos, 1991], I expect beta conformation to have a peak between 150° and 180° ,

and alpha conformation to have a peak betweeen 80° and 110°.

For each protein, the AI peaks were computed in two ways. First, a single sequence

was used to find the peaks. Then, the peaks were computed using aligned sequences

as follows: in each aligned position, the most hydrophilic amino acid was chosen. This

is similar to the approach used by Thornton et al., who take the most hydrophilic

amino acid after discarding the most hydrophilic amino acid (to make room for error

in the sequence alignment). The justification for this is based on the fact that interior

residues tend to be conserved and hydrophobic, while exterior sites generally show a

lot of variation and can accommodate both hydrophilic and hydrophobic amino acids.

Moreover, given that a protein is only marginally stable, it is likely that while the

hydrophobicity patterns may not be apparent from looking at a single sequence, the

pattern of substitutions across an aligned set may show the hydrophobicity pattern.

For proteins containing exposed beta sheet, using aligned sequences gives a clear
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improvement in finding amphipathic beta strands. Figures 9-13 through 9-15 shows

this improvement for pseudoazurin sequences. Each row in the figure represents one

position in the protein. The dssp sequence number, amino acid, and secondary struc-

ture (using the Kabsch and Sander DSSP notation) are listed first. The next 5

columns show the results for a hydrophobicity analysis for the single protein sequence

of 2paz. The first two of these columns correspond to the expected beta lengths,

and the last three are the expected alpha lengths. In a cell, a + is marked if the

hydrophobic moment peak for the window centered on that residue occurs in a region

corresponding to that column's secondary structure, and the residue does indeed have

that secondary structure. A - is marked if the residue does not have that secondary

structure, and the hydrophobic moment peak indicates that there is secondary struc-

ture. Thus, a + or - in a column labeled 5 or 7 indicates a hydrophobic peak in the

range 150° - 180°; + indicates that the residue is in beta conformation and - indicates

that the residue is not in beta conformation. Many of the - labels occur at residues

flanking beta structure, which indicates that the hydrophobic pattern extends beyond

the region labeled beta by the DSSP program.

There are no windows of length 7 that contain all beta residues. There are 8

windows of length 5 that contain all beta residues, centered at residues 16, 17, 32, 33,

74, 75, 89, and 90. All 8 windows have a hydrophobicity moment in the 170 °- 180°

range, using the aligned sequence data. Using only the 2paz sequence, only one of

the 8 windows has a hydrophobicity moment in the beta range, at 150° - 160° .

There are several windows of length 11 and greater at the C-terminal end of 2paz

which contain all alpha residues, and the amphipathicity of these is found both by

the single-sequence and the multiple-sequence methods.
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Residue
No. AA SS

8 L E
9 N E

10 K E
11 G E
12 A T
13 E T
14 G E
15 A E

16 M E
17 V E
18 F E
19 E E
20 P S
21 A S
22 Y E
23 I E
24 K E
25 A E
26 N
27 P T
28 G T
29 D
30 T E
31 V E

32 T E
33 F E
34 I E
35 P E
36 V S
37 D S

38 K T
39 G T
40 H
41 N

42 V
43 E E

2paz sequence
Beta Alpha
5 7 11 13 15

+

Aligned sequences
Beta Alpha
5 7 11 13 15

+ +
+ +
++

+

+
+ +
+ +
+ +
+ +

+ +
+ +
+ +
++

+ +

+++ +
+ +
+ +

aligned sequences
LLL L L LKL LLLLL

NNN L L LLL LLLLL

KKS G G GGG GGGGG

GGG A SGGGAA SSGAG

AKP N SDDEDN DGDSG

EDG KKGSDDDDSGDDDDDDD

GGG GGGGGGGGGGGGGGGGG

AAM LLVAGSASAVGESSGSA

MMMMLLLLLLLLLLLLLLLLL

VVVKVVVVVAAAVVVAVAAAV

FFFYFFFFFFFFFFFFFFFFF

EEDEEEEEEVVIEESVVIVLS

PPPTPPPPPPPPPPPPPPPPP

AAAPAANASNSSSNSNSGNGS

YSLEKKDTTNKNSDSNENSDS

ILVLLLFVFIIFVFFFFFFFF

KKRHTTTTSTSSTSTSSSESS

AVLVIIVIVVVVIVVVVVVVV

NAKKKKKKAGAPKKAPPSSAA

PPPVPPSASAASAAASSAASK

GGGGGGGGGGGGGGGGGGGGG

DDDDDDEDEEEEEEEEEEDEE

TTSTTTTSKSAKTTKKKKTEG

VVIVVVIVIIIIVIIIIIIII

TTKTEETTVEETTTTTVTVVS

FFFWFFFWFFFFWFFFFFFFF

IILILLKTKIVKVKKKKKKKK

PPPNNNNNNNNNNNNNNNNNN

VTTRNNNNNNNNNNNNNNNNN

DDDEKKAAAAAAAAAAAAAAA

KKKavvggggggggggggggg

GGGpppppppppppppppppp
HHHHHHHHHHHHHHHHHHHHH

NNNNNNNNNNNNNNNNNNNNN
VVVVVVVIVIIVIVIVVVVVI

EEEHVVVVVVVVVVVVVVVVV

Figure 9-13: 2paz amphipathicity, part 1 of 3. + indicates correct label; - indicates
false positive. "No.": dssp number. "AA": amino acid. "SS": secondary structure.
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Residue
No. AA SS

44 S E
45 I
46 A T
47 D T
48 M S
49 I S

50 P
51 E T
52 G T
53 A
54 E

55 K
56 F
57 K B
58 S

59 K
60 I T
61 N T

62 E
63 N
64 Y E
65 V E

66 L E
67 T E
68 V
69 T
70 Q S

71 P
72 G E
73 A E
74 Y E
75 L E
76 V E
77 K E
78 C
79 T T

2paz sequence
Beta Alpha
5 7 11 13 15

+~~ +

+
+

+

Aligned sequences
Beta Alpha
5 7 11 13 15

+

+
+ +
+ +
+ +

++
+ +
+ +
+ +
+ +
+ +

aligned sequences
STTFFFFFFFFFFFFFFFFFF

IIIVDDDDDDDDDDDDDDDDD

KKKAAAEEEEEEEEEEEEEEE

DGGGTADDDDDDDDDDDDDDD

MMMVLLAAEAAEEAEEEEEEE

IIALNNVVIVVVVVVIIIIIV

PPPGPPPPPPPPPPPPPPPPP

EDDEAASAAAASSSASAASSA

GGGAKKGGGGGGGGGGGGGGG

AAAASSVVVVVVAVVVVVVVV

EEDLAADNDDDDNDNDDDDDD

KAYKDDVAAAASAVAAAAAAV

FFVG11SDSDDAESESVSAAS

KKKpkkkakaakakkkkkkkk

SSTmSSnnnnnnntnnnnnnd

KKTKLLAAASSAAAGAAAAAG

IIVKSSPPPKKPPPAPPAPPA

NNGEHHGGGGGGGGGGGGGGG

EEQQKKEEEQEEEEEEEEEEE

NNEAQQTSTTTTSTTTTTTTS

YYAYLLFYYVVYYFYYYYYYF

VKVSLLSTAVVSSSEAVSSKT

LVVLMMVAVRRVAVVVVVVVV

TTKTSSTKTKKTKTTTTTKTT

VFFFPPLFLLLLFLLLLLLLL

TTDTGGTDTTSTDTTTDSDTT

QAKEqqVTETTETVEETEAEE
PPEAaaPAKPPSAPKKKKKKK

GGGGGGGGGGGGGGGGGGGGG

AVVTDETETTVTTTTSTTTTT

YYYYYYYYYYYYYYYYYYYYY

LGGDSTGGSGGKGGKSSTKKK

VVFYFFFYFVVFYFFFFFFFF

KKKHYYYFYYYYFYYYYYYYY

CCCCCCCCCCCCCCCCCCCCC

TTATEEEEADESEEESSASSE

Figure 9-14: 2paz amphipathicity, part 2 of 3. + indicates correct label; - indicates
false positive. "No.": dssp number. "AA": amino acid. "SS": secondary structure.
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Residue
No. AA SS
80 P T
81 H T

82 Y G
83 A G
84 M G
85 G T
86 M

87 I E
88 A E

89 L E
90 I E
91 A E
92 V E
93 G S
94 D S

95 S S

96 P
97 A T
98 N T
99 L H

100 D H

101 Q H

102 I H

103 V H

104 S H

105 A S

106 K

107 K

108 P
109 K H

110 I H

111 V H

112 Q H

113 E H

114 R H
115 L H

2paz sequence
Beta Alpha
5 7 11 13 15

+ +
+

+

+ +
+ +

+ + ++++
+- + +-
+- + +.

Aligned sequences
Beta Alpha
5 7 11 13 15

+

+ +
+ +

++ +

±

++

+ +

+ +
+- +

aligned sequences
PPPPPPPPPPPPPPPPPP
HHHHHHHHHHHHHHHHHHHHH

YYYPRRAQQSAQQAAQQQQQA
AGMFGGGGGGGGGGGGGGGGG

MMMMAAAAAAAAAAAAAAAAA

GGGRGGGGGGGGGGGGGGGGG

MMM MMMMMMMMMMMMMMMMM

IVV VVVVVKKVKVKVVVVVK

AGA GGGGGMMGGGGGGGGGG

LVL KKKKKTTKTKEKKKQKE

IVV IIVVVIIVIVVVVVVVV

AEV TTTITTTTTTTTTTTTT

VVV VVVVVVVVVVVVVVVVV

GGG AAN N N NNNNNNN

DDD SG

SAK

PPR

AAD

NNN

LLL

DEE

QAA

IVA

VKK

SGS

AAV

KKQ

KNH

PPN

KKK

IKL

VAT

QQQ

EEK

RRR

LLL

Figure 9-15: 2paz amphipathicity, part 3 of 3. + indicates correct label; - indicates
false positive. "No.": dssp number. "AA": amino acid. "SS": secondary structure.
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Chapter 10

Conclusions

Knowledge representation for protein structures

There are many ways to represent protein structure. I've looked at a number of these

representations in the context of developing methods for predicting protein structure.

I've considered secondary structure representations (alpha, beta, coil), representing

pairwise information, local sequence information surrounding a particular residue,

amino acid hydrophobicity and patterns of hydrophobicity along a sequence. These

representations have various levels of complexity. For example, the category of beta

strand secondary structure could be split into parallel and antiparallel strand. I've

considered residue pairs be defined in a number of ways, based on side-chain contact

or topological relationships within secondary structure pieces. There have been many

representations of structure and sequence proposed that I have not touched on.

The knowledge representation that we choose shapes the information that we

gather and use in modeling and predicting. For the various kinds of information

that; we might want to represent about a protein, there are a number of questions

we might ask. How redundant are the various types of information? How do we use

the representations? How do we combine different types of information? How do we

choose which representation we want?

I want to use the knowledge representations that I've been studying in protein

structure prediction. In particular, I'd like to make use of the knowledge representa-
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tions in looking at the set of known protein structures, and through the lens of these

representations gather information about the properties of proteins that could then

be used in predicting structure of other proteins.

The problem of insufficient sample size

One problem that I run into is that using a complex, fine-grained knowledge repre-

sentation inhibits my ability to make conclusions about protein properties. This hap-

pens because there isn't enough data for me to be able to make conclusive statements

about every category in my representation. These complex protein representations

can result in inferior protein structure prediction methods.

So what is there to do about the low sample size problem?

One approach is to use all the data that we have, and to use it in ways that are as

clever as possible. In addition to using as many known-structure proteins as we can,

for example, we might also try to use information from aligned sequences. This is an

approach that a number of people have taken. I use it in this thesis in determining

scores for threading functions.

Another approach is to incorporate a notion of uncertainty into the use of empirical

data. The data about which we are less certain should have less influence on the

prediction. In the thesis I have discussed ways of padding the data to improve the

prediction results.

Even using all the data that we have, and accounting for the certainty with which

we know it, we are still likely to run up against problems with sample size for complex

knowledge representations. At this point, we can try to reduce the complexity of the

knowledge representation. And this is where the work I've done in the thesis becomes

interesting.

Making hard choices in knowledge representation

So the problem is to explore the space of possible representations of protein structure

and sequence in order to find one which is not too complex but which still suits our

purposes in enabling good structure prediction. If we are going to choose a simple,
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compact representation in which we keep only elements which are the most important

to the problem at hand, we need to have ways of deciding which elements to keep

and which to throw out. It might not be enough to find all the important factors,

because some of these might be redundant with each other. It is also important to

keep in mind the way we use the knowledge representation. A representation might

be very useful with one prediction algorithm but perform poorly with another.

In this thesis, I present methodologies for evaluating structure and sequence rep-

resentations. First, I use contingency table analysis to determine what information is

important in representing structures, and how it is related. In addition, this statistical

analysis gives me some idea of the relative importance of different components of the

protein representation. However, this statistical analysis is performed without regard

to the particular algorithms in which the representations are to be used. Therefore.

I also use another approach, which is to incorporate the knowledge representations

in structure prediction algorithms, and to compare them by seeing how well they

perform in the predictions.

The methodologies that I use are not limited to the particular knowledge repre-

sentations or structure prediction methods that I've used. There are many ways to

represent local secondary structure, for instance, other than by the (alpha, beta, coil)

distinction.

Solvent exposure is important

In my experiments I discovered that the most important factor (of the ones I exam-

ined) in structure prediction is the exposure to solvent of a residue in a protein. The

types of amino acids that occur on the outside of proteins are very different than the

ones that occur most often on the inside of the proteins. While this is a generally

known fact, I showed that this effect is much more powerful than, say, the preference

of amino acids for a particular type of local secondary structure. This suggests that in

the course of developing a knowledge representation for protein structure, it's likely

to be a good idea to skimp on the secondary structure in favor of a good solvent

exposure representation, given the choice. In the thesis, I show that effects related to
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solvent exposure can even be useful in predicting secondary structure.

The importance of amino acid hydrophobicity and solvent exposure in determining

the structure of proteins is not all that surprising in light of current models of how

a protein folds. The hydrophobic collapse model of folding holds that the driving

force in protein folding is the segregation of hydrophobic residues to the inside of the

protein, and hydrophilic residues to the outside. This fact is used by many researchers

in the field of protein structure prediction. For example, many pseudopotentials for

threading contain terms related to the solvent exposure of the residues.

On the other hand, there are many approaches which do not consider solvent

exposure. It might be worth looking at these and asking whether it is possible to use

the same algorithms on a representation that includes solvent exposure.
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Appendix A

Related Work

A.1 Counting atom and residue occurrences in
protein structures

A.1.1 Single-residue statistics
There are many studies of single-residue statistics in the literature; I include only a
few relevant examples here.

There exist several studies of the amino acid composition of secondary structure.
Amino acid composition of secondary structure: Chou and Fasman looked at 4,741

residues in 29 proteins [Chou and Fasman, 1978], and used the observed secondary
structure preferences to classify the residues for their rule-based secondary structure
predictor.

Levitt tabulated the frequencies of amino acids in alpha helix, beta strand, and
reverse turn [Levitt, 1978].

Lifson and Sander counted the occurrences of each type of amino acid in par-
allel and antiparallel beta sheet. They found that the compositions of parallel and
antiparallel sheets were different from each other.

The Garnier Osguthorpe Robson method involves using an information theoretic
approach to extract information about the amino acids which occur in a window
around a given type of secondary structure [Garnier et al., 1978, Gibrat et al., 1987].
The frequencies of occurrence have also been tabulated by amino acid property [Kelley
and Holladay, 1L987].

Wertz and Scheraga looked at the preferences of amino acid residues for the inside
or outside of the protein [Wertz and Scheraga, 1978].

Patrick Argos and Jaume Palau [Argos and Palau, 1982] divided beta structure
into categories according to the position of the residue in the strand relative to the N-
and C-termini. For each position, they examined the amino acid composition. They
found considerable asymmetry in the properties of residues at different positions along
the strand. Ala and Gly prefer to occur in the middle of long strands; Cys is preferred
in the middle of (any length) strands.

Others have found that dividing into finer classifications was useful. Wilmot and
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Thornton [Wilmot and Thornton. 1988] analyzed beta turns by classifying them into 3
categories (I, II, and nonspecific) and deriving separate Chou-Fasman-like preferences
for each class. They found that this improved secondary structure prediction (using
a Chou-Fasman-like algorithm). McGregor, Flores and Sternberg [McGregor et al.,
1989] used neural networks to predict these same turn classes, and found better turn
prediction but worse assignment of predicted turns to their correct class.

Cid and colleagues found that different amino acids have different apparent hy-
drophobicity as they occur in proteins of different structural classes [Cid et al., 1992].

A.1.2 Pair interactions
Von Heijne and Blomberg [von Heijne and Blomberg, 1978] counted pairs of residues
in specific topological relationships in beta sheets. They grouped residues into three
classes: hydrophobic, neutral, and polar. They considered three kinds of pairs: in-
terstrand neighbors (i,j), intrastrand (i, i + 1) and intrastrand (i, i + 2) neighbors.
They further divided sheet residues into internal (surrounded on four sides by sheet
residues) and peripheral. A X2 analysis was used to compare the observed distribu-
tion with that expected for random pairing. My results on three-class recognition are
qualitatively similar. However, I find more recognition for the (i, i + 2) neighbors,
and less for the (i,j) neighbors, except for the polar-polar pairs. They claim that the
distribution of (i, i + 2) pairs does not differ significantly from a random one.

Lifson and Sander analyzed the pairwise occurrence of residues in proteins, in
a specific topological relationship in the beta sheet [Lifson and Sander, 1980]. The
residues are in close proximity and therefore are in a position to have energetic in-
teractions which can contribute to the overall stability of the molecule. Lifson and
Sander counted the number of occurrences of each pair, and compared the counts
to those expected based on the assumption of random pairing. They found signif-
icant "recognition", or non-randomness, using a X2 test. They reported the likeli-
hood ratio of observed to expected counts, along with the variance (computed as
1/ expected counts).

Lifson and Sander performed this analysis separately for parallel and antiparallel
beta strand arrangements. They also found that there was significant "specific recog-
nition" over and above "nonspecific recognition" (in which the 20 amino acids are
grouped into three classes: polar, neutral, and hydrophobic).

There have also been analyses of interactions at a finer level of detail than the
whole side chain. Warme and Morgan [Warme and Morgan, 1978a] surveyed inter-
actions between side-chains and 15 types of side-chain atoms in 21 proteins. They
found 35 residue-atom pairs that exhibit frequencies of interaction that differ by at at
least 50% from the expected values. They also tabulated residue-residue interactions,
where each interaction is defined as a contacting atom pair (so one pair of residues
could contribute more than one count).

Warme and Morgan [Warme and Morgan, 1978b] also surveyed atomic interactions
in 21 proteins. They divided the atoms into 19 types and tabulated the atomic
contacts (those whose centers were within a distance of each other that is no more
than 1 angstrom plus the sum of their van der Waals' radii). By comparing observed to
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expected counts, they pulled out favorable and unfavorable interactions (for example,
"sulfur atoms are attracted to other sulfur atoms and avoid negatively charged oxygen
atoms.").

Narayana and Argos [Narayana and Argos, 1984], like Warme and Morgan, ex-
amined the preferential association of amino acid side groups with specific side chain
atoms in 44 protein structures. They used these numbers as potentials to detect
structural homology in proteins with little sequence homology. They claim that the
statistics show that side chains have a bias toward contact with other side chain atoms
on their N-terminal side, which they say has implications for folding.

A number of other analyses of pairwise interactions are described below in the
section on threading pseudopotentials.

A.2 Threading
In this section I summarize some of the related work on threading. Threading is
the alignment of a sequence to a structure. A number of researchers have used this
approach to the inverse folding problem in recent years. Several reviews have been
published about inverse folding [Wodak and Rooman, 1993, Blundell and Johnson,
1993, Fetrow and Bryant, 1993]. Each group uses their own structure representation,
pseudopotential generation, protein set, threading algorithm, and tests of the method.
Of particular interest here are the structure representations, and I will describe those
in more detail below.

The algorithms for threading can be straight dynamic programming provided
the structure representation includes single-residue terms only [Luthy et al., 1992].
When pairwise and higher terms are incorporated, heuristic algorithms are generally
used [Godzik and Skolnick, 1992, Jones et al., 1992]. Lathrop has developed a fast
optimal algorithm that can handle higher-order terms [Lathrop and Smith, 1994].

A.2.1 Single-residue potential functions
In their profile method, Luthy et al [Luthy et al., 1992, Luthy et al., 1991, Luthy et
al., 1994] have single-residue potentials that consider solvent exposure, polar atoms,
and secondary structure. They define 18 singleton structure environments. There are
three secondary structure categories (alpha, beta, other). There are six categories
related to the environment's polarity, which consider both the area of the sidechain
buried and the fraction of surrounding atoms which are polar. The score is a straight-
forward log likelihood ratio score. Dynamic programming is used, with gap penalties,
to align a sequence to a linear structure description.

A.2.2 Pseudo-singleton potential functions
Ouzonis and colleagues consider a set of structure representations of different com-
plexities [Ouzounis et al., 1993]. All of them involve the interaction of a residue
position with its environment. The environment types are as follows:
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* Two types. Inside and outside of the protein

* Five types. Contact can be made with a helix, strand, turn, coil, or solvent.

* 29 types. This includes the secondary structure state of both contacting part-
ners and a rough idea of the topological relationship of the two residues (for
example, same strand, adjacent strand, or adjacent in sequence).

Each score is weighted by the amount of contact between the residue and its neighbor
in the original protein.

I termed this type of threading potential pseudo-singleton in Chapter 4. It involves
the association between a residue's amino acid type and the neighbors' structure
type. Optimal threading using this potential can be done using the fast dynamic
programming algorithm.

A.2.3 Pairwise potential functions
Miyazawa and Jernigan computed contact potentials based on the number of occur-
rences of nearby pairs of residues in proteins [Miyazawa and Jernigan, 1985].

Sippl also derives pairwise potentials, but separates pairs according to the dis-
tance between residues [Sippl, 1990, Sippl and Weitckus, 1992, Casari and Sippl,
1992]. Separation of pairs into classes determined by sequence separation is also con-
sidered [Hendlich et al., 1990]. Jones uses a similar technique, but adds a singleton
solvation potential to express the preference of each amino acid type for the inside or
outside of the protein [Jones et al., 1992].

Overington and Blundell have 64 structure categories to describe each residue
position in their structure representation, and they further record these values for
pairs of amino acids [Johnson et al., 1993, Overington et al., 1992]. This is a product of
two solvent accessibility terms, eight hydrogen-bonding ability categories (themselves
the cross-product of three binary categories), and four secondary structure categories.

Lathrop, Smith and colleagues use singleton and pairwise potentials [Lathrop et
al., ]. Each residue is classified according to its solvent exposure (various numbers of
classes have been tried) and its secondary structure (alpha, beta, or coil). Pairs are
determined by the distance between beta carbons.

Godzik and Skolnick have pairwise potentials, as well as some triplet terms [Godzik
and Skolnick, 1992]. They have two structure categories, buried and exposed, in
their singleton terms. They also consider all pairwise and 90 statistically significant
tertiary interactions between residues that are neighbors in the protein structure.
These higher-order interactions are not divided into further structural categories; a
pair or triplet is defined only by proximity of the sidechains.

Bryant and Lawrence [Bryant and Lawrence, 1993] used loglinear models to an-
alyze pairwise counts in proteins. They used the fitted parameters of the loglinear
models as potentials for threading. In their paired-residue structure representation,
they do not distinguish between solvent exposures or secondary structures of the
residues, but they do have separate categories for different pair distances. They con-
sidered the peptide bond as an additional residue type, and distinguished among a
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set of distances between side chains. They weighted the counts so that the overall
contribution to the contingency table from any two proteins was the same.

Crippen investigated various sequence representations, obtained by grouping the
20 amino acid types in various ways, in deriving contact potentials [Crippen, 1991].
His goal was to reduce the representational complexity to make up for the small
sample size available to estimate the potentials. He also separated contacting residue
pairs based on their sequence separation.
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Appendix B

Data Sets

B.1 DSSP and HSSP data bases
The DSSP and HSSP files are available by public ftp from the European Molecular
Biology Laboratory. To retrieve them, ftp to ftp-heidelberg.de, and log on as anony-
mous. The files are located in the directory pub/databases/proteinextras/dssp and
pub/databases/proteinextras/hssp.

DSSP files contain information about each residue's secondary structure and sol-
vent exposure. HSSP files contain alignments of similar sequences.

B.2 Protein sets

B.2.1 Jones 1992 data set

These proteins are nonhomologous and well-refined.

2fb41

lbp2

4cpv

lfd2

1hoe

4mdha

lrhd

2tmne

2fb4h

2ca2

1 cr

lfxl
lilb

2mhr
2rhe

4tnc

351c

7cata

2cro

3fxc

3icb

2ovo

2rnt

ltnfa

256ba

1cc5

lcsee

4fxn

3icd

2paba

7rsa

lubq

2aat

lccr

lcsei

3gapa

1101

9pap

4rxn

lutg

labp

2ccya

lctf

2gbp

21bp

lpaz
2sga

9wgaa

Sacn

lcd4

lcy3

lgcr

61dh

lpcy

4sgbi

2wrpr

8adh

2cdv

2cyp

lgdlo

lhl
lpfka

lsn3

lwsya

3adk

3cla

3dfr

3grs

llrd3

3pgk

2sns

lwsyb

8atca

2cna

4dfra

3hhba

21tna

3pgm
2sodo

4xiaa

8atcb

4cpai

ldhfa

lhip

11zl
lphh
2ssi

lypia

2azaa

5cpa

leca

2hlaa

imba

Spti

2stv

3blm

2cpp

2er7e

2hlab

lmbd

4ptp

ltgsi

B.2.2 Pdb_select.aug_1993
I used a subset of 252 proteins from the pdbselect.aug_1993 proteins from EMBL
for which hssp files exist [Hobohm, Scharf, Schneider, and Sander, "Selection of rep-
resentative protein data sets," Protein Science 1:409-417, 1992]. The proteins used
were

1021 laaf laaib laaj

larb lasoa latna latx

laak laapa labg

lavha layh lbaa

labh labk

lbbha lbbl

lada lads lapo laps

lbbo lbbpa lbbtl lbbt2
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lccr lcd8 lcdta lcid lclm lcmba lcox lcpca lcpcl lcpl lcsei lctaa ld66a

ldfna ldhr ldpi ldri leaf lech leco lend lepj lerp letu lezm lfas

lfbaa ifcla lfc2c lfdd lfha lfiab lfnr lfxia lgky lglag lgly lgmfa lgox

lgpla lgpb lgpr lgps lgrca lgrda igsgp lgsta lhc6 lhddc lhfi lhgeb lhiga

lhila ihlha lhsba lhsda lifa lisua lizbb 11ap lig lpe lltsa l1tsc lltsd

11z3 Imamh lmbd lmdc lmina lminb Imli lmona lmrm lmrt lms2a lmup lnipb

lnrca lnxb lofv lomf lomp lovaa lovb lpafa lpba lpbxa lpcda lpda lpdc
lpde lpfka lpgd lphg lphh lphs lphy lplc lppba lppfe lppl lppn lppt
lprcc lprcm lpte lpyab ipyp lr094 lrla2 lrlee lrbp lrcb lrea lrhd lrnd
lrpra lrvea lsOl lsas lsdha lsgt lshaa lsnc lspa ltabi lten ltfg ltgsi
itho itie ltlk ltmd ltnfa ltpt ltrb ltroa lttbl lula lutg lvaab lvsga

lwsya lwsyb 256ba 2aaa 2achb 2at2c 2avia 2azaa 2bds 2bpal 2bpa2 2bpa3 2cbh

2ccya 2cdv 2cmd 2crd 2cro 2cts 2cyp 2dnja 2gbl 2glsa 2had 2hhrc 2hipa

2hvp 2ila 21bp 21tna 21tnb 2madl 2mevl 2mev4 2mhr 2mhu 2msba 2pf2 2pia

2plvl 2plv3 2pmga 2por 2ren 2rn2 2scpa 2sga 2sici 2sn3 2snv 2stv 2tbva
2tmvp 2ztaa 3adk 3b5c 3cbh 3cd4a 3chy 3cla 3dfr 3gapa 3gbp 3grs 3i18

3pgk 3rubs 3sc2a 3sc2b 3sgbi 3sodo 3tgl 451c 4blma 4bp2 4cpai 4enl 4fgf

4fxn 4gcr 4gpdl 4icd 4rcrh 4rxn 4sbva 4sgbi 4tgf 4tms 4tsla 5fbpa Shir

5nn9 5p21 7apib 7tima 7xia 7znf 8abp 8acn 8adh 8atca 8atcb 8cata 8ilb

9rnt 9rubb 9wgaa lixa lfbfa lctf lbds lcbh 2tgf

B.2.3 Rost and Sander data set
Rost and Sander cite a set of proteins, listed below. These proteins have no more
than 25%o sequence identity, and have resolution less than or equal to 2.5 Angstroms.
Protein lsdh is no longer in the database, so I have replaced it by 3sdh, though I
have had to use the lsdh HSSP file, because there is not one available for 3sdh. Some
proteins have nmultiple positions cited for some atoms. I take the first of these positions
as the atomic position. I ignore any reported acetyl groups at the N-terminus of the
proteins. and the OXT atoms at the C-terminus.

256ba 9apib 7cata 6cpa 3ebx 4fxn 6hir 1158 2mev4 lpyp 3rnt
2stv 2utga 2aat lazu lcbh 6cpp 5er2e 3gapa 3hmga l1ap 2orll
lr092 7rsa 2tgpi 9wgaa 8abp 3b5c lcc5 4cpv letu 2gbp 3hmgb

51dh lovoa 2mhu 2rspa ltgsi 2wrpr 6acn lbbpa 2ccya lcrn
lfc2c 2gcr 2hmza 21h4 2paba lmrt 4rxn 3tima lwsya lacx lbds

lcd4 lcsei lfdlh lgdlo Shvpa 21hb Ipaz lppt lsOl 6tmne lwsyb

8adh lbmvl lcdta 6cts lfdx 2glsa 2ilb llrd3 9pap lrbp 3sdha

2tmvp 4xiaa 3ait lbmv2 3cla 2cyp lfkf 2gn5 3icb 21tna 2pcy

lrhd 4sgbi ltnfa lprcc lak3a 3blm 3cln Scytr 2fnr lgpla 7icd

21tnb 4pfk 4rhvl lshl 4tsla lprch 2alp 4bp2 4cms leca 2fxb

4gri lil8a 51yz 3pgm 4rhv3 2sns 2tsca lprcl 9apia 2cab 4cpai

6dfr lfxia lhip 9insb lmcpl 2phh 4rhv4 2sodb lubq lprcm
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B.2.4 Set of 55 nonhomologous, monomeric proteins
The 55 proteins listed in Tables B.1 and B.2 are a subset of the 57-protein list gen-
erated by Nambudripad and colleagues at Boston University [Nambudripad et al.,
1. Only non-homologous, monomeric, single-domain proteins solved to high resolu-
tion by X-ray crystallography were included. Smaller proteins with very little sec-
ondary structure were excluded. The proteins were selected from Release 66 of the
Brookhaven protein databank. The list consists of proteins ranging in size from 74
to 405 residues. I eliminate two additional proteins from the list, lnar and lifc. nar
does not have an HSSP file in the Sander and Schneider database. The secondary
structure for lifc is mislabeled in the Kabsch and Sander DSSP file.

B.3 Maximum solvent accessibilities
A = 124

C = 94

D = 154

E = 187

F = 221

G = 89

H = 201

I = 193
K = 214

L = 199

M = 216

N = 161

P = 149
q = 192

R = 244

S = 113

T = 151

V = 169

W = 264

Y = 237

B.4 Atomic Radii
C 1.8

H 0.8

0 1.6
N 1.6

S 1.9

F 0.65
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Protein PDB code Length
ubiquitin conjugating enzyme 1AAK 150
gl utaredoxin 1ABA 87
apolipophorin III 1AEP 153
alpha-lactalbumin 1ALC 122
pokeweed antiviral protein 1APA 261
endochitinase 1BAA 243
granulocyte colony-stimulating factor 1BGC 158
phospholipase 1BP2 123
glucanohydrolase IBYH 214
phosphoribosylglycinamide formyltransferase 1CDE 210
cystatin 1CEW 108
dilhydropteridine reductase 1DHR 236
endonuclease V 1END 137
phosphocarrier III 1F3G 150
alpha-amylase inhibitor 1HOE 74
lectin 1LEC 243
lysin 1LIS 131
methionine aminopeptidase 1MAT 263
myoglobin 1MBD 153
ribosomal protein S5 (prokaryotic) 1PKP 145
plastocyanin 1PLC 99
interleukin 4 1RCB 129
recoverin IREC 185
subtilisin iS01 275
erythrina trypsin inhibitor 1TIE 166
ubiquitin 1UBQ 76
FK-506 binding protein 1YAT 113
actinidin (sulfhydryl proteinase) 2ACT 218
carbonic anhydrase II 2CA2 256
cyclophilin A 2CPL 164
cytochrome P450CAM 2CPP 405
cytochrome C peroxidase 2CYP 293
haloalkane dehalogenase 2HAD 310
histidine-containing phosphocarrier protein 2HPR 87
lysozyme 2LZM 164
macromomycin 2MCM 112
myohemerythrin 2MHR 118
staphylococcal nuclease 2SNS 141
cytochrome C551 351C 82
adenylate kinase 3ADK 194

Table B.1: Proteins used in threading experiments.
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Table B.2: Proteins used in threading experiments, continued.
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Protein PDB code Length
signal transduction protein CHE*Y 3CHY 128
native elastase 3EST 240
flavodoxin 3FXN 138
basic fibroblast growth factor 4FGF 124
pepsin 4PEP 326
triacylglycerol acylhydrolase 4TGL 265
carboxypeptidase A 5CPA 307
calcium-binding parvalbumin B 5CPV 108
cytochrome C 5CYT 103
ferredoxin 5FD1 106
thermolysin 5TMN 318
ribonuclease A 7RSA 124
dihydrofolate reductase 8DFR 186
antitrypsin 9API 376
ribonuclease T1 9RNT 104



Appendix C

Neural Network Results

The tables in this appendix show the prediction performance on train and test sets of
the neural networks in each experiment and cross-validation group. Each individual
three by three table shows predicted structure down the side and target (correct)
structure across the top. Also shown, to the right of the small table, is the percent
correct overall. Finally, the cross-correlation coefficients are shown for alpha, beta
and coil structures.

The tables are followed by ten figures that show the learning curves for each of
the ten neural network experiments. In each graph, the solid lines are the test results
and the dashed lines are the test results.
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Experiment 1: B

Train
Counts

a p -
4137 1066 1524

507 1653 624
2436 1773 7939

4353 1203 1659
446 1627 586

2497 1918 8356

4427 1217 1652
557 1853 735

2177 1622 7829

4395 1162 1687
672 1952 769

2169 1607 7638

4762 1226 1729
459 1541 601

2444 1748 8132

4386 1103 1646
564 1793 719

2310 1716 8033

4282 1094 1556
525 1685 656

2370 1764 8148

4231 1092 1539
531 1628 638

2340 1708 8011

4462 1176 1651
570 1859 703

2475 1801 8290

4298 1149 1659
449 1546 559

2237 1744 7548

Train
% corr.

Ca

0.6 /

a
0.6 3

0.6 3

0.6 /

0.6 3

a0.6 /Ci0.6 ,B

a. 

0.6 3

Ca

Test
Counts

/
592 171 186

69 211 84
311 240 1067

483 113 119
41 108 35

232 145 669

548 73 230
75 154 97

268 195 881

468 86 224
128 176 179
220 131 927

228 177 187
12 168 29

147 254 746

421 137 150
71 181 73

300 184 803

451 119 178
84 217 69

340 235 817

587 176 244
44 227 69

319 283 923

327 81 128
47 92 55

171 105 597

626 207 291
90 255 118

352 213 1249

Test Test
% corr. CC

0.43
0.6 0.34

0.45

0.45
0.6 0.33

0.47

0.43
0.6 0.31

0.38

0.40
0.6 0.28

0.41

0.31
0.6 0.37

0.37

0.35
0.6 0.33

0.41

0.35
0.6 0.36

0.37

0.39
0.6 0.37

0.38

0.40
0.6 0.29

0.43

0.6

0.37
0.35
0.43

Results on Experiment 1.

250

Group

ac
1 /

a
2 /3

c

a
3 3

a
4 /

ac
5 /

a
6 3

a
7 /3

a
8 /

a
9 /

a
10 /3



Experiment 2: BA

Train
Counts

a -
3338 457 836
1131 2443 1233
2611 1592 8018

4792 1295 1802
236 1326 417

2268 2127 8382

4903 1281 1981
532 2025 862

1726 1386 7373

4587 941 1650
708 2356 1019

1941 1424 7425

5116 1344 1799
166 1026 288.

2383 2145 8375

4238 856 1318
532 1822 656

2490 1934 8424

4848 1142 1922
514 1926 823

1815 1475 7615

4462 1009 1619
564 1866 796

2076 1553 7773

4669 1042 1624
509 1910 696

2329 1884 8324

4713 1271 1740
196 1119 332

2075 2049 7694

Train
% corr.

63.7

64.0

64.8

65.2

64.1

Test
Counts

a
/3

a
/

a

/

a
/

a
/

65.0

65.2

64.9

64.8

63.8

a

/3

a
/3

a
13

a
/3

492 77 126
138 309 149
342 236 1062

518 114 128
21 88 22

217 164 673

593 69 265
62 181 113

236 172 830

486 83 227
127 200 205
203 110 898

247 200 179
3 97 21

137 302 762

415 94 119
56 185 71

321 223 836

501 140 196
99 234 94

275 197 774

635 159 239
47 1269 99

268 258 898

348 86 118
38 85 57

159 107 605

667 239 325
46 177 51

355 259 1282

Test Test
% corr. CC

0.45
63.6 0.38

0.43

0.48
65.8 0.33

0.47

0.46
63.6 0.37

0.38

0.42
62.4 0.31

0.42

0.34
56.8 0.28

0.36

0.41
61.9 0.36

0.40

0.37
60.1 0.35

0.40

0.45
62.7 0.39

0.40

0.44
64.8 0.28

0.45

0.37
62.5 0.33

0.42

Results on Experiment 2.
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Group

1 d

a
2 /3

3 p3

4 13

5 /

6 p

a
7 /3

8 3

9 d

10 3



Experiment 3: P

Train
Counts

ca 3
1742 294 481
1937 2538 1663
3401 1660 7943

3961 1412 1795
328 1159 382

3007 2177 8424

4355 1534 2176
539 1582 661

2267 1576 7379

3707 1060 1628
1047 2128 1138
2482 1533 7328

4403 1634 1917
169 708 205

3093 2173 8340

2746 720 891
688 1485 574

3826 2407 8933

4933 1773 2848
430 1390 626

1814 1380 6886

4171 1296 1936
568 1514 678

2363 1618 7574

3532 1050 1382
602 1539 607

3373 2247 8655

4524 1730 2254
211 832 264

2249 1877 7248

Train
% corr.

56.4

59.8

60.3

59.7

59.4

59.1

59.8

61.1

ce0a
/3

a

0
a

0a

0/3a/3a

a

/3

59.7

a
/3

59.5

Test
Counts

a /
275 57 61
274 352 182
423 213 1094

450 131 115
26 75 21

280 160 687

559 80 279
75 152 80

257 190 849

402 59 202
173 198 191
241 136 937

217 212 185
2 66 12

168 321 765

307 79 78
46 173 59

439 250 889

530 191 303
78 191 64

267 189 697

551 204 292
56 221 73

343 261 871

267 69 86
34 86 43

244 123 651

641 291 384
42 150 59

385 234 1215

Test Test
% corr. CC

0.31
58.7 0.34

0.42

0.39
62.3 0.28

0.44

0.40
61.9 0.33

0.36

0.36
60.5 0.29

0.39

0.26
53.8 0.23

0.31

0.34
59.0 0.36

0.36

0.29
56.5 0.32

0.34

0.31
57.2 0.34

0.33

0.37
62.6 0.31

0.40

0.30
59.0 0.28

0.38

Results on Experiment 3.
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Group

a

1 d

a

2 d

a

3 /

a

4 /

a

5 3

a
6 3

a

7 /

a

8 /

a

9 3

a 
10 /3



Experiment 4: PA

Train
Counts

a /3-
2226 258 500
1761 2625 1742
3093 1609 7845

1928 519 894
139 597 243
999 920 3700-

4596 1488 2244
479 1648 697

2086 1556 7275

4139 955 1716
948 2383 1315

2149 1383 7063

4966 1746 2293
125 733 194

2574 2036 7975

2694 484 616
656 1588 589

3910 2540 9193

5012 1562 2749
443 1598 755

1722 1383 6856

4356 1283 2023
536 1612 744

2210 1533 7421

4128 1025 1590
622 1853 812

2757 1958 8242

4663 1546 2208
223 1059 365

2098 1834 7193

Train
% corr.

58.6

62.6

Test
Counts

a
/

a
/

61.3

61.6

60.4

60.5

61.0

61.6

61.9

a
/3

cea

a

a

a/3at

a
61.0 d

a a _
349 59 85
230 368 173
393 195 1079

481 127 125
20 84 21

255 155 677

597 67 277
50 162 99

244 193 832

449 73 215
157 197 213
210 123 902

245 226 205
0 61 17

142 312 740

309 38 64
54 191 59

429 273 903

541 184 283
89 208 85

245 179 696

606 190 278
49 243 90

295 253 868

310 79 112
31 98 53

204 101 615

631 297 417
63 154 68

374 224 1173

Test Test
% corr. CC

0.36
61.3 0.39

0.44

0.43
63.9 0.32

0.45

0.45
63.1 0.36

0.36

0.39
61.0 0.29

0.40

0.30
53.7 0.21

0.32

0.40
60.5 0.39

0.36

0.32
57.6 0.32

0.36

0.38
59.8 0.36

0.36

0.40
63.8 0.35

0.42

0.27
57.6 0.26

0.36

Results on Experiment 4.
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Group

(e

1 /3

cY

2 /

a

01

3 /

a
4 p

a
5 /

a
6 3

a
7 /

aCk

8 /

a
9 /

a
10 /



Experiment 5: H

Train
Counts

ca ,

1427 885 957
736 1123 588

4917 2484 8542

1647 1107 1171
607 1050 467

5042 2591 8963

1558 963 1036
898 1369 733

4705 2360 8447

1511 971 1074
991 1410 748

4734 2340 8272

2018 1332 1428
552 914 393

5095 2269 8641

1541 951 1074

835 1258 660
4884 2403 8664

1314 848 938
847 1225 630

5016 2470 8792

1446 870 974
788 1175 594

4868 2383 8620

1444 902 989
903 1357 687

5160 2577 8968

1866 1240 1322
555 960 409

4563 2239 8035

Train
% corr.

51.2

51.5

51.5

50.8

51.1

51.5

51.3

51.8

51.2

51.3

Test
Counts

a
/3
e

aj3

a

a

a/3

a/3

a/3

a

0

C/a

/3

aB

/3

aB

/3

a B -

185 138 116
100 179 58
687 305 1163

151 88 61
57 75 36

548 203 726

162 76 147

111 110 72
618 236 989

202 85 144
119 128 117
495 180 1069

74 101 85
17 111 32

296 387 845

154 119 107
92 136 57

546 247 862

200 107 114
107 165 70
568 299 880

174 145 104
89 165 82

687 376 1050

112 55 61
62 77 47

371 146 672

318 213 294
103 152 78
647 310 1286

Test Test
% corr. CC

0.08
52.1 0.28

0.28

0.10
48.9 0.20

0.25

0.06
50.0 0.20

0.19

0.14
55.1 0.22

0.26

0.08
52.9 0.25

0.23

0.06
49.7 0.24

0.25

0.12
49.6 0.24

0.24

0.07
48.4 0.22

0.22

0.13
53.7 0.23

0.27

0.09
51.6 0.21

0.24

Results on Experiment 5.
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Group

a
1 3

a(Y
2 3

a
3 ,

acu

4 /

ac
5 3

a
6 B

Cv

7 B

a
8 3

a
9 j

a
10 /



Experiment 6: HA

Test
Counts

Test Test
% corr. CC

a -
1453 359 596
1640 2202 1638
3987 1931 7853

3414 1499 2201
417 866 401

3465 2383 7999

3537 1434 2207
629 1440 799

2995 1818 7210

3105 1130 1912
1090 1928 1275
3041 1663 6907

3228 1320 1691
234 647 266

4203 2548 8505

2092 685 938
755 1328 688

4413 2599 8772

3433 1296 2265
756 1433 840

2988 1814 7255

3098 1263 1957
722 1364 773

3282 1801 7458

2738 1036 1466
750 1435 737

4019 2365 8441

3520 1520 2108
311 735 325

3153 2184 7333

53.1

oc

54.2

55.2

54.1

54.7

54.7

54.9

54.9

54.9

54.7

a
/3

a

a

a

a

/3

a

a
/3

a /
188 60 84
229 303 173
555 259 1080

338 119 126
31 68 32

387 179 665

402 79 285
79 140 88

410 203 835

399 104 256
132 165 178
285 124 896

145 149 109
3 59 22

239 391 831

242 73 96
85 146 58

465 283 872

405 173 216
112 201 105
358 197 743

422 164 213
79 224 102

449 298 921

243 73 123
38 79 40

264 126 617

499 271 467
79 117 58

490 287 1133

0.18
53.6 0.30

0.31

0.26
55.1 0.23

0.31

0.24
54.6 0.29

0.23

0.29
57.5 0.26

0.34

0.21
53.1 0.18

0.26

0.24
54.3 0.26

0.29

53.7
0.23
0.27
0.31

0.26
54.6 0.30

0.29

0.28
58.6 0.29

0.33

0.15
51.4 0.19

0.24

Results on Experiment 6.
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Group Train
Counts

Train
% corr.

a
1 3

a
2 /

a
3 d

a
4 d

acv

5 d

a
6 /

a
7 d

a!

8 /

Ce

9 /

10 /
10 13



Experiment 7: RP

Train
Counts

a P/

91526317 3695

1075 388 950
1172 1449 2238
5049 2911 7413

3123 1419 2298
54 229 279

3984 3044 7639

3597 1514 2638
329 637 751

3310 2570 6705

1725 576 930
0 11 18

5940 3928 9514

5493 2836 5770
17 72 81

1667 1635 4509

4091 1894 3479
48 160 196

2963 2374 6513

1874 751 1135
38 113 142

5595 3972 9367

3742 1676 2973
4 37 47

3238 2726 6746

Train
% corr.

46.6

a
/343.9

49.8

49.6

49.7

/3

a

a
/

a
// 48.5

45.6

49.6

49.4

49.7

a

a
/3

a
/3r
ct

Test
Counts

a d

88
857 529 1237

87 44 106
125 79 118
544 243 599

380 100 235
11 19 22

500 303 951

402 130 400
28 49 115

386 214 815

62 101 78
0 2 3

325 496 881

62 35 53
2 6 15

728 461 958

654 350 598
2 4 5

219 217 461

533 290 472
2 18 20

415 378 744

191 50 69
0 7 12

354 221 699

569 283 572

5 5 11

494 387 1075

Test Test
% corr. CC

0.11
46.4 0.10

0.09

-.02
39.3 0.07

0.03

0.23
53.6 0.08

0.19

0.18
49.9 0.08

0.12

0.06
48.5 0.01

0.13

0.04
44.2 0.01

0.03

0.17
44.6 0.02

0.14

0.16
45.1 0.06

0.12

0.29
56.0 0.06

0.24

0.16
48.5 0.01

0.14

Results on Experiment 7.
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47
750

5

Group

a
1 3

a
2 p

a
3 13

a

4 3

a
5 3

a
6 3

7 /3

a
8 3

9 /

10 /3

6475

191 90 35 7

I

760 257 1 349 i

4297 9978
I

572 845 80 93

25 58 71



Experiment 8: RHA

Train
Counts

a / -
260 64 126
464 643 706

6356 3785 9255

3736 1690 3043
24 81 100o

3536 2977 7458

3023 1339 2171
68 221 269

4070 3132 7776

3707 1584 2756
302 592 742

3227 2545 6596

1888 643 1062
1 7 14

5776 3865 9386

746 235 321
26 51 66

6488 4326 10011

5621 2950 6009
19 57 66

1537 1536 4285

4326 2069 3906
39 117 140

2737 2242 6142

1770 704 1081
35 102 132

5702 4030 9431

3976 1795 3308
8 46 53

3000 2598 6405

Train
% corr.

46.9

49.8

49.9

a

a

/3

a

/3

49.4

49.8

48.5

a

a

/3

a

/3

a

/3

a

/3

a/3

45.1

48.7

49.2

49.2

Test
Counts

a -

55 10 10

63 74 77
854 538 1250

395 145 279

3 9 5

358 212 539

370 89 226
10 15 21

511 318 961

415 136 412
23 49 108

378 208 810

66 108 87
0 0 1

321 491 874

61 32 47
1 6 15

730 464 964

668 368 620
2 6 4

205 197 440

570 335 547
2 13 14

378 338 675

182 47 64
0 6 11

363 225 705

608 303 647
6 5 11

454 367 1000

Test Test
% corr. CC

0.14
47.0 0.09

0.10

0.16
48.5 0.08

0.15

0.24
53.4 0.06

0.18

0.18
50.2 0.09

0.12

0.05
48.3 -.02

0.12

0.05
44.4 0.01

0.03

0.16
44.4 0.05

0.14

0.13
43.8 0.05

0.11

0.28
55.7 0.05

0.24

0.15
47.4 0.01

0.13

Results on Experiment 8.
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Group

a
1 3

a
2 /3

a
3 /

a
4 /3

a
5 B

6 3

a
7 ,3

a
8 3

(x

9 3

10 /3



Experiment 9: RH

Train
Counts

/ -
1164 289 910

0 0 0

5916 4203 9177

1643 417 1275

0 O 0

5653 4331 9326

1610 504 1313

0 0 0

5551 4188 8903

1961 585 1570

0 0 0

5275 4136 8524

1836 466 1435
0 0 0

5829 4049 9027

1681 449 1348

0 0 0

5579 4163 9050

1503 384 1165

0 0 0

5674 4159 9195

1538 423 1227

0 0 0

5564 4005 8961

1490 391 1160

0 0 0

6017 4445 9484

1920 522 1532

0 0 0

5064 3917 8234

Train
% corr.

47.7

48.4

47.6

47.5

48.0

48.2

48.5

48.3

/3

a

a

a

a
/3

a
/

a
/

a

0
a
/3

47.7

a
/47.9

Test
Counts

a -
194

0
778

0

585

84
0

1253

187 55 181

569 311 642

225 14 133

0 0 0

666 408 1075

210 55 238

0 0 0

606 338 1092

96 61 111
0 0 0

291 538 851

186 53 125

0 0 0

606 449 901

165 44 118

0 0 0

710 527 946

185 37 108
0 0 0

765 649 1128

146 26 85
0 0 0

399 252 695

229 112 275

0 0 0

839 563 1383

Test Test
% corr. CC

0.21

49.4 0.00
0.13

0.06
42.6 0.00

-.01

0.22
51.6 0.00

0.10

0.10
51.3 0.00

0.05

0.16
48.6 0.00

0.06

0.15
46.9 0.00

0.09

0.13

44.3 0.00
0.05

0.18
45.7 0.00

0.08

0.21
52.5 0.00

0.14

0.06
47.4 0.00

0.04

Results on Experiment 9.

258

Group

a
1 /

a
2 ,B

a
3 /

a
4 /

a
5 3

a
6 /

a
7 /

a
8 /

a
9 /

a
10 /

37 1



Experiment 10: RHA

Train
Counts

__ -

458 100 309
0 0 1

6622 4392 9777

1879 552 1515
0 0 0

5417 4196 9086

1871 664 1578
13 0 24

5277 4028 8614

2373 795 1992
13 4 20

4850 3922 8082

1316 312 961
0 0 0

6349 4203 9501

1381 346 1040
0 0 0

5879 4266 9358

2442 827 2131
4 0 1

4731 3716 8228

2088 669 1791
0 0 0

5014 3759 8397

1001 231 692
0 0 0

6506 4605 9952

1837 479 1414

0 0 0

5147 3960 8352

Train
% corr.

Test
Counts

a
/347.3

48.4

47.5

47.4

47.8

48.2

48.3

48.3

47.6

48.1

a
/3

3

a0

/3a0

a0

/3

a

a0

a
/3

a
/3

70 11 20

0 0 0
902 611 1317

213 61 202
0 0 0

543 305 621

270 24 179

0 1 3

621 397 1026

264 75 295
2 0 0

550 318 1035

68 29 65
0 0 0

319 570 897

151 45 99
0 0 0

641 457 927

264 110 234
0 0 0

611 461 830

234 75 154
0 0 0

716 611 1082

101 18 58

0 0 0
444 260 722

215 100 272

0 0 0
853 575 1386

Test Test
% corr. CC

0.15
47.3 0.00

0.10

0.07
42.9 0.00

-. 00

0.22
51.4 0.01

0.09

0.12
51.2 -.01

0.07

0.17
49.5 0.00

0.06

0.14
46.5 0.00

0.08

0.10
43.6 0.00

0.04

0.16
45.8 0.00

0.09

0.17
51.3 0.00

0.11

0.05
47.1 0.00

0.02

Results on Experiment 10.

259

Group

(V

1 /3

a
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Experiment 1 (B)
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Experiment 2 (BA)
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Experiment 3 (P) rate = 0.001; momentum = 0.2.
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Experiment 4 (PA) rate = 0.001; momentum = 0.2.

0 5 10 15 20

Time x 100,000

Learning Curves for neural network experiment 4.

263

o

to

c

II

a,-
cn

a,
G)

o

or

0



Experiment 5 (H)
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Experiment 6 (HA)
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Experiment 7 (RP)
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Experiment 8 (RPA) rate = 0.001; momentum = 0.2.
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Experiment 9 (RH) rate = 0.001; momentum = 0.2.
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Learning Curves for neural network experiment 9.
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Experiment 10 (RHA)
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