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Abstract
The research summarized in this thesis consists essentially of two parts. In the first, we
generalize a coloring theorem of Baxter about triangulations of the plane (originally used
to prove combinatorially Brouwer's fixed point theorem in two dimensions) to arbitrary
dimensions and to oriented simplicial and cubical pseudomanifolds. We show that in a
certain sense no other generalizations may be found. Using our coloring theorems we
develop a purely combinatorial approach to cubical homology. (This part is joint work
with Richard Ehrenborg.)

In the second part, we investigate the properties of the Stanley ring of cubical com-
plexes, a cubical analogue of the Stanley-Reisner ring of simplicial complexes. We com-
pute its Hilbert-series in terms of the f-vector. We prove that by taking the initial ideal
of the defining relations, with respect to the reverse lexicographic order, we obtain the
defining relations of the Stanley-Reisner ring of the triangulation via "pulling the ver-
tices" of the cubical complex. We show that the Stanley ring of a cubical complex is
Cohen-Macaulay when the complex is shellable and its defining ideal is generated by ho-
mogeneous forms of degree two when the complex is also a subcomplex of the boundary
complex of a convex cubical polytope. We present a cubical analogue of balanced Cohen-
Macaulay simplicial complexes: the class of edge-orientable shellable cubical complexes.
Using Stanley's results about balanced Cohen-Macaulay simplicial complexes and the
degree two homogeneous generating system of the defining ideal, we obtain an infinite
set of examples for a conjecture of Eisenbud, Green and Harris. This conjecture says
that the h-vector of a polynomial ring in n variables modulo an ideal which has an n-
element homogeneous system of parameters of degree two, is the f-vector of a simplicial
complex.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Mathematics
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Folly is an endless maze,

Tangled roots perplex her ways.

How many have fallen there!

They stumble all night over bones of the dead,

And feel they know not what but care,

And wish to lead others, when they should be led.

(William Blake: Songs of Innocence)

Introduction

In this thesis we investigate the analogies and differences between certain combina-

torial, geometric and topological properties of cubical and simplicial complexes.

In the preliminary Chapter 1 we introduce the notion of abstract polyhedral complexes.

These complexes are families of finite sets, generalizing the concepts of abstract simplicial

and cubical complexes, and they are not necessarily representable as a complex of convex

polyhedra in some Euclidean space. Only simplicial complexes are always identifiable

with convex cell complexes, for cubical complexes we indicate the construction of a small

counterexample. We show a way to weaken the definition of geometric realizability to

require only having a coherent system of geometric realizations of the faces, such that all

cubical complexes will be "representable" in this weaker sense.
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We define subdivisions in an abstract way and show a "natural triangulation" of

polyhedral complexes. This triangulation will be the plausible generalization of the "tri-

angulation via pulling the vertices" of a convex polytope.

Using this triangulation we prove that the apparently topological notion of shellability

is in fact combinatorial, and does not depend on geometric representation.

In Chapter 2 we investigate generalizations of a coloring lemma by Baxter, which was

originally used to prove Brouwer's fixed-point theorem in the plane. Baxter's lemma in

dual form may be stated as follows. Given a triangulation of the sphere, and a coloring

of the vertices with 4 colors, we denote by Al the number of triangles whose vertices

are colored with 234 in clockwise order minus the number of triangles whose vertices are

colored with 234 in counterclockwise order. We define A 2, A 3, A4 similarly. Then we have

Al = -A 2 = A3 = -A4 .

We generalize this theorem to triangulated and cubically subdivided manifolds of arbi-

trary dimension in several ways. From our cubical results we obtain a way to construct

a cubical analogue of simplicial homology.

In Subsection 2.2.1 we apply techniques of algebraic topology to prove the generalized

Baxter's Theorem for triangulations of compact orientable manifolds. To each coloring

we associate a continuous function, and the result will essentially depend on the local

character of the degree of a continuous function between compact orientable manifolds.

In Subsection 2.2.2 we show a combinatorial lemma for colorings of orientable pseu-

domanifolds of which the boundariless version seems to be only a special case of the

generalized Baxter's Theorem, and which appeared as a corollary of a theorem on octa-

hedral colorings by Ky Fan in [12]. However, an easy observation shows that this lemma

implies not only the generalized Baxter's theorem directly, but a Master Theorem for

simplicial colorings: a complete system of linear identities for colorings with an arbitrary
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number of colors. The path-construction idea that we use in the proof of Lemma 4 was

first applied in Cohen's proof of Sperner's lemma in [7], and it occurs in [12] in a more

complicated situation, but we use it as the sole device to obtain an explicit bijection, in

a setting where no induction on dimension is needed.

In Subsection 2.2.3 we prove that the linear equations presented in Subsection 2.2.2

generate all linear relations among our generalized Ai numbers. Hence, in a certain

sense we have all generalizations of Baxter's theorem to triangulations colored with an

arbitrary number of colors.

In Subsection 2.2.4 we sketch how one can show the Master Theorem and the com-

pleteness of its equations, using simplicial homology. We also indicate the way to get a

similar complete theory in all cases when the coloring object has zero n-th homology. In

particular, Ky Fan's above mentioned octahedral result will follow as a corollary from

this theory.

In Subsection 2.2.5 we show reductions of Sperner's lemma to our generalized Baxter's

theorem and to Lemma 4. The first reduction sheds a light on the connection between

Baxter's result (which was used to give a combinatorial proof of Brouwer's fixed-point

theorem in the plane) and Sperner's lemma (which is often used for the same purpose

in arbitrary dimensions). It also shows that Sperner's lemma depends on some facts

of algebraic topology which imply Brouwer's fixed-point theorem directly. The second

reduction offers a combinatorial proof of Sperner's lemma that does not use induction on

dimension.

In Subsection 2.3.2 we prove the analogues of the results of Subsection 2.2.2 for

orientable cubical pseudomanifolds. Again, we manage to avoid induction on dimension,

but in order to do so, we need to make some geometric observations about the standard n-

cube which have no or only trivial simplicial analogues. These facts about the Hamming-

distance preserving functions that map along the edges of the standard n-cube, which

are interesting by their own merit, are explained in Subsection 2.3.1.
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In Subsection 2.3.3 we show that in the cubical case we also obtained all possible

linear relations in Subsection 2.3.2. This subsection ends the survey on generalizations

of Baxter's theorem.

In Section 2.4, we build up the theory of cubical homology. While doing so, we

refer to only one of the key lemmas about cubical colorings. Thus, analogously to the

simplicial case, all our cubical results will also have a homological proof. The cubical

case is more "combinatorial" in the sense that we can easily define a notion of homotopy

equivalence without abandoning the world of discrete cubical complexes. Thus we can

show the vanishing of the positive degree homology groups of the standard n-cube purely

combinatorially. The construction of cubical homology is in Subsection 2.4.1, the concept

of homotopy is developed in Subsection 2.4.2.

In Chapter 3 we investigate the properties of the Stanley ring of cubical complexes.

This ring is one of the possible cubical analogues of the Stanley-Reisner ring of simplicial

complexes. Ironically, while in the simplicial case commutative algebra was instrumen-

tal in obtaining combinatorial inequalities, this time combinatorics seems to give some

commutative algebraic insight.

In Section 3.1 we show how to reduce greatly the number of relations defining the

Stanley ring K[-]] for all cubical complexes, and we compute the Hilbert-series of K[E].

We observe that this Hilbert-series is identical with the Hilbert-series of the Stanley-

Reisner ring associated to the triangulation of the cubical complex via pulling the vertices.

In Section 3.2 we use the observed coincidence of Hilbert-series to establish a connec-

tion between the Stanley ring of a cubical complex and the Stanley-Reisner ring of its

triangulations via pulling the vertices: We show that the face ideal of the triangulation

via pulling the vertices is the initial ideal with respect to the reverse lexicographic order

of the face ideal of our cubical complex. This result is analogous Sturmfels' result on

initial ideals of toric ideals but the techniques involved in the proof are substantially

different. It would be a challenging task to find a common generalization of the two
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statements.

In Section 3.3 we take a closer look at shellable cubical complexes and their Stanley

ring. Using an idea of Hochster we establish the Cohen-Macaulay property of the rings.

At the combinatorial level, we prove that the edge-graph of shellable cubical complexes

is bipartite.

Section 3.4 contains the hardest theorem of this chapter. We show that in the case

of shellable subcomplexes of the boundary complex of a convex cubical polytope, the

Stanley-ring may be defined by homogeneous relations of degree two.

In Section 3.5 we introduce the notion of edge-orientable cubical complexes, which

turn out to be a cubical analogue of completely balanced simplicial complexes. Not only

their Stanley ring contains an explicitly constructible linear system of parameters, but

they also have a completely balanced triangulation.

Using almost all previous results of Chapter 3 we construct an infinite number of ex-

amples to a commutative algebraic conjecture of Eisenbud, Greene and Harris in Section

3.6. According to this conjecture the h-vector of a polynomial ring in n variables modulo

an ideal which has an n-element homogeneous system of parameters of degree two, is

the f-vector of a simplicial complex. Taking the face ideal of the boundary complex

of any edge-orientable convex cubical polytope, and factoring out by a linear system of

parameters we obtain an example to the conjecture. The fact the conjecture holds for our

examples is not trivial: it follows from Stanley's result about the h-vectors of completely

balanced Cohen-Macaulay simplicial complexes. Our examples are the first nontrivial

ones: the only example given by Eisenbud, Greene and Harris was any polynomial ring

with the ideal generated by the squares of the variables. Interestingly, from our results

we cannot know whether we have still examples or also some counter-examples if we drop

the condition of edge-orientability: this observation hints a concrete way to attack the

Eisenbud-Greene- Harris conjecture.
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Chapter 1

Preliminaries on polyhedral

complexes

1.1 Abstract polyhedral complexes and geometric

realizations

Definition 1 An (abstract) polyhedral complex C is a family of finite sets (called faces)

on a vertex set V satisfying the following conditions.

(i) We have {(v) C for every v V.

(ii) For every E C we have either to = 0 or there is an injective map q, : a - Rn for

some n = n(oa) such that ,((o) is the vertex set of the convex polytope conv(q,(o)),

and the faces contained in to are exactly the inverse images under d, of the vertex

sets of the faces of conv(q,(a)). We call q, a geometric realization of a.

(iii) If , r E C then a n r C C.

In particular, a polyhedral complex C is called simplicial or cubical respectively, if
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every face has a geometric realization as a simplex or as a cube respectively. We will

denote cubical complexes by the symbol and simplicial complexes by the symbol A.

For every face ro we call the dimension of the polytope associated to ur the dimension

of o. Maximal faces are called facets, their facets are subfacets. The one-dimensional

faces are also called edges and two vertices u,v V are called adjacent if {u, v} is an

edge. The dimension of the facets is the dimension of the polyhedral complex. We denote

the number of i-dimensional faces of a d-dimensional polyhedral complex by fi and call

(f-x, fo,..., fd) the f-vector of the polyhedral complex.

Given a set X C V we will denote by Cix the polyhedral complex {a E C : a C X}.

Definition 2 We call a map : V - Rn a geometric realization of the polyhedral

complex C in RW if for each a C C \ {0} the map qb1 is a geometric realization of the face

a, and for all a, r C C we have conv(q(o)) n conv(q(r)) = conv(q(ar n r)).

Remarks

1. Given a polyhedral complex C, a geometric realization 0q of a face r E C \ {0}

provides also a geometric realization of the subcomplex Cur.

2. For simplicial complexes we may replace condition (ii) in Definition 1 with the

requirement that the subset of every face has to be a face.

It is a well-known fact that every simplicial complex has a geometric realization.

(See for example [23, p. 110].) Abstract polyhedral complexes in general, however, may

have no geometric realization. (An example of such a polyhedral complex is the cubical

complex with three squares F1, F2, F3 incident in such a way that they form a M6bius

strip. The proof of the fact that this complex has no geometric realization is implicit

in the proof of Theorem 15.) When C has a geometric realization , then the system

{conv(O(or)): a- ; C \ {0}} U {0} is a polyhedral complex or convex complex, as defined

on p. 39 of [13], p. 126 of [3], or p. 60 of [17].
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Even though cubical complexes may have no geometric realization, their faces have a

coherent system of geometric realizations in the following sense.

Definition 3 Let C be a polyhedral complex and let us choose a geometric realization (q

for every oa C\{0 }. We call the system of geometric realizations a := (f : a C\ {0}

a weak geometric realization of C. We consider two weak geometric realizations 4 = {, :

a E C \ {0}} and 9 = {(, : o E C \ {0}} affinely equivalent or congruent respectively

if the polytope conv(b 0 (a)) is affinely equivalent resp. congruent to conv(,(o-)) for all

o E C \ {0}.

We call the weak geometric realization a = {, : oa C \ {0}} affinely coherent or

congruently coherent respectively if for every pair of nonempty faces r C ro the polytopes

co)nv(,(r)) and conv(,(r)) are affinely equivalent or congruent respectively.

The following proposition is a straightforward consequence of the definitions, and of

the fact that any two simplices of the same dimension are affinely equivalent.

Proposition 1 For every geometric realization of a polyhedral complex C the set

is a congruently coherent weak geometric realization.

Every weak geometric realization aI of a simplicial complex A is affinely coherent, and

any two weak geometric realizations of A are affine equivalent.

Definition 4 We call a weak geometric realization · principal if it may be written as

for some geometric realization .

14



Now we are in the position to define a standard congruently coherent weak geometric

realization for every cubical complex L.

Definition 5 The geometric standard n-cube is the convex polytope

[O0,1]n = {(x 1, X2 .,Xn) R 0 < Xi < 1}.

We define the (abstract) standard n-cube E n to be the vertex set of [O, 1]n together with the

inherited face-structure on the vertices. We call any 2n-element set with an isomorphic

face-structure an n-dimensional cube. We call a geometric realization 0q: " Rn

standard if we have k(V(l n)) = {0, 1}'n.

For any cubical complex Ol we call a weak geometric realization 4 = { C ] }

standard, if conv(b,(or)) is congruent to a standard cube for every , C O \ {0}.

Given the fact that the faces of standard cubes are standard cubes, up to congruence

equivalence there is one and only one standard weak geometric realization of a cubical

complex .

1.2 Geometric, abstract and natural subdivisions

Next we define polyhedral subdivisions of polyhedral complexes in both geometric and

abstract setting.

Definition 6 Let C be a polyhedral complex on the vertex set V and : V - n a

geometric realization of C. A polyhedral complex C' on the vertex set V' D V, together

with a map ': V' -+ R" is a geometric subdivision of (C, +) if ' has the following

properties.

(1) = k'1V holds.

15



(2) We have U conv($(a-))= U conv(q'(a-')).
-EC\{0} a-EC'\{0}

(3) For every nonempty face oa' C C' the polyhedron conv(q'(a')) is contained in

conv((a)) for some a- E C.

When C' is a simplicial complex then we call the subdivision (C', q') a geometric triangu-

lation of (C, b).

Remark Note that at the light of condition (3), we may replace condition (2) by

(2') U conv(o(a)) C U conv('(a')).
oEc\{0} oec'\{0}

Given a geometric subdivision (C', q') of a geometric realization (C, q) we may define

the carrier map S: C' > C by S(ac') being the smallest face a C C satisfying

conv(o'(a')) C conv((o)).

Then for every a E C the family of sets S-'(Cl,) is a full subcomplex of C'. Full

subcomplexes are defined as follows.

Definition 7 A subcomplex 2)' of a polyhedral complex D is full if every a E 2 having

all vertices in D' belongs to D'. Formally

Vv C a ({v} cE 9') ' a E D.

In fact, if '(v') belongs to conv(q(a-)) for every v' C a', then conv(q'(oa')) is contained

in conv(b(ao)), and so we have S(a') C a, i.e., a' C S-(ClI).

These observations motivate the following definition.

Definition 8 Let C be a polyhedral complex on the vertex set V and q4 = {q : Ca 

C \ {0}} a weak geometric realization of C. Let C' be another polyhedral complex on the

16



vertex set V' D V and ' = ibo,,: C e C' \ {0}} a weak geometric realization of C'. We

say that (C', V') together with the carrier map S: C' > C is a subdivision of (C, A), if

they satisfy the following.

(A) S- ({0}) =: {0} holds.

(B) For every v C V we have S({v}) = {v}.

(C) For every face oa C \ {0} the family of sets S-'(C[,) is a full subcomplex of C',

which has a geometric realization sa with the following properties.

(i) O), = °a holds for all a' E S-1(a).

(ii) We have k,(v') C conv(q,(S(v'))) for all vertex v' of S-1 (C ).

(iii) (S-'(C ),1b/) is a geometric subdivision of (Cla ,qs). (In particular, the ver-

tex set of S-(CK,) contains a.)

Lemma 1 Let (C', ') and S : C' C be a subdivision of (C, ~). Then S has the

following properties.

1. S is monotone.

2. For every r' E S-'(CJl) there is a ' E C' such that r' C ' and o = S(a'). As a

consequence, S is surjective.

3. For every oa' C C' we have r' n V C S(o').

Proof:

1. First we show that S has to be monotone. Assume we are given o',r' C' such

that ' C- r'. We may assume r' y$ 0, because otherwise we have a' = r' = 0 and

S(a') = S(r') = 0. Obviously, r-' E S-(CIs(,I)), and so a' e S-'(Cs(r,)), because

by definition the family of sets S-1(C¢s(,,)) has to be a subcomplex. Thus we have

S(a) C S(').
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1.5. Before going on with the proof of our lemma, let us observe that using the mono-

tonity of S we may generalize property (ii) of Definition 8 to the following.

(ii') conv(O,(r')) C conv(o.(S(o-'))) holds for all a' E S-'(Clt).

In fact, by (ii), every vertex v' of a face oa' C S-(C ) satisfies

,)(v') E conv(O,(S(v'))),

and so by the monotonity of S we have S(v') C S(u'), implying

4k(v') conv(o,(S(c')))

for all v' E a'. From this last equation, (ii') follows directly.

2. Let us fix now a face C \ {0}, and a face r' E S-(C.). Let 0, be the

geometric representation of S-1(CKl) described in Definition 8. Let Q be a fixed

relative interior point of conv(b,(r')). We claim that there is a ' E S-(Cl)

such that conv(b 0 (c')) contains both Q and a P E relint(conv(,(oi))). In fact,

if for a oa" S-(C¢s()), the set conv(O,(cr")) avoids Q, then there is an open

neighborhood U,, of Q in conv(o.(oi)) which is disjoint from conv(,.(a")). Let

P be a relative interior point of conv(d,(oi)) in the intersection of all such U,,-s.

By condition (iii), (S-'(CJ,),1O) is a geometric subdivision of (Cl,,d-), and so

condition (2) of Definition 6 guarantees the existence of a di' E S-(Cls(,)) such

that conv(4O,(')) contains P. By the choice of P we must have Q CE C(or'). But

then from the geometric representation ~b we observe r' C a'.

We claim that this di' satisfies S(ci') = (. In fact, by condition (ii') we have

conv(0 (i')) C conv(O.(S(o'))), and so the face conv(o,(S(o-'))) contains P E

relint(conv(,a(c))). Therefore S(oi') cannot be a proper face of cr.

18



3. Finally we show that o' n V C S(') holds for every a' E C'. Assume the contrary.

Then there is a vertex v E S(to') \ ' which belongs to V. We have already shown
that S is monotone, and so {v} C ' implies S({v}) C S(o'). But then we have
v S({v}), contradicting condition (B) of Definition 8.

QED

Corollary 1 When (C', V') and S : C' - C is a subdivision of (C, A) then the geometric

realizations fb in Definition 8 are uniquely determined by (C', C'), S and (C, A).

Proof: Let us fix a face o E C \ {0}, and a vertex v' of S-'(CIl). By Lemma 1, there is

a r' C' such that v' E r' and = S(r'). Thus, by condition (i) in Definition 8 we must
have p, (v') = b ,aw (v') = b', (v'). QED

Lemma 1 also allows us to compute the carrier map from its values on the singleton.
In order to give a formula we need the notion of polyhedral span.

Definition 9 For a set of vertices X C V in a polyhedral complex C we define the
polyhedral span Pspan(X) of X to be the smallest face containing the set X. (If there is
no such face then we leave Pspan(X) undefined.) In the special case when C is a cubical
complex we also call the polyhedral span of X the cubical span of X and denote it by

Cspan(X). For a pair of vertices {u, v} and a face r GE satisfying Cspan({u, v}) = r
we say that {u, v} is a diagonal of r.

Corollary 2 (Fundamental equation of the carrier map) When (C', ') and S:
C' - C is a subdivision of (C, A), then the carrier map S: C' - C is uniquely defined by
its values on the singletons: for every or E C' we have

S(o') = Pspan ( U S({v'})) . (.)
vt e/-
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Proof: Let us set := Pspan (U,, S(v')). By Lemma 1, the carrier map is monotone

and so we have S({v'}) C S(oa') for every v' E '. This implies S(o') D r. On the other

hand, by definition S-'(C1) is a full subcomplex of C' and so ' must belong to S-1(CT),

because all of its vertices belong there. Thus we also have S(o') C r. QED

Clearly, in the case when both b and ' are principal, induced by the geometric

realizations and O', (C', 0') is a geometric subdivision of (C, q), and S assigns to each

0a' C' \ {0} the smallest face a E C satisfying conv('(a')) C conv('(a)), then (C', A')

and S is a subdivision of (C, 4). In the next proposition we show a weak converse of this

statement.

Proposition 2 Let C, C', 4 and A' be as before, and assume that ' is principal, induced

by the geometric realization O'. Assume furthermore that for all a, r C C we have

conv(q'(ao)) n conv(q'(r)) = conv('(a n r)), (1.2)

and that (C', 4') together with a map S : C' ) C is a subdivision of (C, 4).

Then (C, 4) is principal, induced by a geometric representation q!, (C', b') is a geo-

metric subdivision of (C, 0), and for every a' C C' \ {0} the face S(a') C C is the smallest

face in the set {a E C : conv(q(ao)) D conv(q'(oa'))}.

Proof: Let us fix any a E C \ {0} and a v C a. By Lemma 1, there is a ' C S-(a) such

that v E oa'. For such a a' condition (i) of Definition 8 gives us

?/9(v) = q$,,(v) = 0>(v).

The second equality follows from the fact that ' is induced by '. On the other hand,

from condition (iii) we obtain

(v) ?l= +f(v).

20



The previous two equations imply

¢9(v) = '(v) for all v E V.

This equation together with (1.2) shows that is principal, induced by 'lv. In partic-

ular, we obtained that (1) in Definition 6 is satisfied by (C', 4') and (C, +).

Observe next that condition (ii) of Definition 8 applied to S(o') (where ' c C \ {0}

is an arbitrary nonempty face) gives us

conv(/'(ro')) C conv(q(S(o'))).

Hence condition (3) of Definition 6 is fulfilled.

In order to prove that (C', +') is a geometric subdivision of (C, +), it only remains

to show that condition (2') in the remark following Definition 6 is fulfilled. By (iii) in

Definition 8 we obtain

U conv((Tr)) C U conv(q$'(r')) C U conv(0q'(r'))
,rC(, T'ES- (C,) IEC'

for all or E C \ {0}. Taking the union of both sides over all nonempty faces EC C \ {0},

we obtain condition (2').

Finally, let us fix a o' E C' \ {0}. As noted above, we have

conv(+'(a')) C conv(O(S(o'))).

We only need to show that no proper face o C S(o') satisfies conv(O'(')) C conv((o-)).

Assume the contrary, and consider any P E relint(conv(0'(o')))). This point belongs to

conv(q(o)) and so condition (iii) of Definition 8 for a implies the existence of a r' E

S--'(Cl,) such that P G conv(0'(r')). But then from the geometric realization of C' we
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can observe r' D (r', and so we have o' C S-'(CJ) because S-'(CKl) is a subcomplex of

C". Thus we have S(a') C - C S(o'), a contradiction. QED

In the following we restrict ourselves to the special case when V = V'.

Proposition 3 Let C and C' be polyhedral complexes on the same vertex set V with weak

realizations a = : E C \ {0}} and I' = f{', : A' C' \ {0}}. If (C', V') together

with the carrier map S : C - C' is a subdivision of (C, P), then

b ', = S(o') ,, (1.3)

holds for every nonempty face ao' G C'. Moreover S(a') is the smallest face of C containing

0
'i

.

Proof: Take any nonempty face o' E C' and let s(,l) be a geometric representation of

S- 1 (Cls(,)), satisfying the conditions of Definition 8. Lemma 1 and V = V' implies

a' C S(a'). By condition (i) we have

= OS(,') 

Condition (iii), together with condition (1) of Definition 6 gives us

Os(".) = bs(,)ls(u,)

Thus both ¢., and bs(,,I) agree with ,bs(,,) on or'. This gives us (1.3).

Finally equation (1.1) and condition (B) of Definition 8 give us

S(a') = Pspan (U S({v'})) = Pspan (U {v'}) 

QED
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In particular, for geometric subdivisions of polyhedral complexes with geometric re-

alizations we obtain the following.

Proposition 4 Let C and C' be polyhedral complexes on the same vertex set V. Assume

that 0q and /' are geometric realizations of C and C' and S: C - C' is a carrier map

such that (C', O') and S are a subdivision of (C, q). Then = ', and for every o' E C',

S(u') is the smallest face of C containing '.

Proof: Condition (1) of Definition 6 implies q' = •. The second claim is implied by the

third statement in Proposition 2. QED

By Proposition 3, in the case when V = V' we do not need to give the carrier

map (because there is only one way to define it) and the geometric realizations of the

faces of the subdivided complex determine the geometric realizations of the faces of the

subdividing complex. Hence the question arises: is there a notion of subdivision which

is independent of the geometric realizations? The answer is yes, we can define natural

subdivisions.

Definition 10 Let C and C' be polyhedral complexes on the same vertex set V. For every

a' E C' let S(a-') be the smallest face of C containing the set a'. We say that C' is a natural

subdivision of C, if the following hold.

1. Every -' E C' is contained in some a Ce C.

2. For every weak geometric representation = {q , : C C \ {0}} the set

T := { cls(,) l, : a-' C C' \ {0}} is a weak geometric realization of C', and (C', 4'),

together with S, a subdivision of (C, 4).

When C' is a simplicial complex, then we say that C' is a natural triangulation of C.

23



Of course this definition is only interesting, if we have an example of such subdivisions.

Fortunately, there exist an important class of natural triangulations: the triangulations

via pulling the vertices.

Definition 11 Let C be a polyhedral complex on the vertex set V and < a linear order

on V. Let us denote the smallest vertex of a face E C \ {0} by <(o). We define the

natural triangulation of C via pulling the vertices in order < to be the family of all sets

{v1, .. .,vk} such that k C N, v1 > ... > vk, and for i = 1,..., k we have

vi = 5<(Pspan({vl,...,vi}))

Remark In [27], Stanley gives an apparently different definition for triangulations of

convex polytopes via pulling the vertices. He considers all full flags 0 C ... C ad of

faces of a d-dimensional polytope satisfying <(mo) F oi-l for i = 1,2,...,d, and then

claims that the sets {<(o0),..., 8<(ad)} are the maximal faces of a triangulation of the

polytope.

Definition 11 can be shown to be equivalent to Stanley's for the face complex of a

convex polytope. For the record, we sketch the proof.

First, it is easy to check that every set {vl,..., vk} satisfying the conditions of Defini-

tion 11 may be extended to a (d+ l)-element set of vertices satisfying the same conditions.

This can be done by induction on dimension: when k < d + 1 then there is a "jump in

dimension" in the chain Pspan({vl}) C ... C Pspan({vl,..., vk}), i.e., there is an i such

that

dim Pspan({vl,..., vi}) - dim Pspan({vl,..., vi-l}) > 2

holds. Then there is a face o- strictly between Pspan({vi,. .. , vi_}) and

Pspan({vl,...,vj}). Applying the induction hypothesis to a we get an u such that the

set {vl,...,vi_l,u} satisfies the conditions of Definition 11. By our construction, we
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have u > vi and so it is easy to verify that {vl,. . . , vk, u} also satisfies the conditions of

Definition 11. Iterating this argument we may obtain a (d + l)-element set of vertices

containing vl,... , vk} and belonging to A<(C).

Observe next that the way we defined A<(C), we really obtain a simplicial complex,

i.e., A<(C) is closed under taking subsets and it contains the singletons contained in V.

Thus we only need to show that the sets {S<(o0),...,6<(Od)}, where o C .. C ad is

a full flag satisfying <(oi) oi_ for i = 1, 2,..., d, are exactly the (d + )-element

faces of A<(C). It is easy to check that these sets in fact belong to A<(C), and that

conversely, every {vo,...,vd} C A<(C) comes from a flag 0O C ... C d satisfying

8<(o^) ¢ oil for i 1,2,...,d. In fact, assuming v0o > . > vd, the flag defined by

ri := Pspan({v,..., vi}) for i = 1, 2,..., d will have the required properties.

We have chosen to use the formulation of Definition 11 because it makes transparent

the fact that the restriction of A<(C) to a face is just the triangulation of C1, via

pulling the vertices with respect to the order induced by < on . Hence the fact that

A<(C) is a natural triangulation of C becomes a straight consequence of [27, Lemma 1.1].

1.3 Shellable polyhedral complexes

In the definition of shellable polyhedral complexes we will need the notions of ball and

sphere.

Definition 12 Let (C, q) be a geometrically represented polyhedral complex. Assume that

the family of sets {conv(0(o)): E C} consists of the boundary faces of a convex polytope

'P. A collection {F1, F2,..., Fk} of facets of C is called an (n - 1)-dimensional ball or
k

(n- l)-dimensional sphere respectively, if the set U conv(O(Fi)) is homeomorphic to an

(n - l)-dimensional ball or sphere respectively.
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Apparently, the notion of ball or sphere depends on the geometric representation b.

In reality, this is not the case, because of the following lemma.

Lemma 2 Let C be identifiable with the collection of vertex sets of faces of the boundary

of an n-dimensional convex polytope. Let and b' be two geometric representations of

C. Then there is a homeomorphism iq between the polytopes conv(O(V)) and conv(q'(V))

such that for every C C we have

yq(convq(o)) = convq'(o).

(V denotes the vertex set of C.)

Proof: Let us fix a linear order < on V. It is easy to see that the geometric realizations

q and ' are also geometric realizations of the natural triangulation A<(C). (Note that

triangulations via pulling the vertices were first defined on geometrically represented

polytopes.) It is sufficient to define a homeomorphism : conv(qb(V)) conv(q'(V))

such that

r(convq(o')) = convoq'(a')

be satisfied for every ' A<(C). We can define such an v as follows. For any face

' C A<(C) and any point Q C conv(q(ao')), we can write Q uniquely as the convex

combination of the vertices of conv(q(or')), i.e. we have

Q = E a,, (v')

where the coefficients a,l are nonnegative and their sum is 1. Let us set now

77(Q) := E a,, . '(v').
vEod
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It is easy to verify that the 77 above is well-defined and has the required properties.

QED

Now we are in the position to define shellable polyhedral complexes.

Definition 13 A polyhedral complex C is pure if all facets of C have the same dimension.

We define shellable polyhedral complexes as follows.

1. The empty set is a ((-1)-dimensional) shellable polyhedral complex.

2. A point is a (O-dimensional) shellable complex.

3. A d-dimensional pure complex C is shellable if its facets can be listed in a linear order

Fo, Fl,..., F, such that for each k C {1, 2,..., n} the subcomplex CIFk n (CIF, U

·.. U CIFk_) is a pure complex of dimension (d - 1) such that its mazimal dimen-

sional faces form a d - 1 dimensional ball or sphere.
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Chapter 2

Generalizations of Baxter's theorem

and cubical homology

2.1 Baxter's theorem and its dual

Consider a 3-regular planar graph. Arbitrarily assign one of 4 colors to each of its regions.

Let A1 be the number of vertices surrounded by regions of colors 234 in clockwise order,

minus the number of vertices surrounded by regions of colors 234 in counterclockwise

order. Define A2, A3, A 4 similarly. In [2] Baxter proves the following result:

Theorem 1

A1 = -A 2 = A3 = -A 4.

In this chapter we generalize this theorem to triangulated and cubically subdivided

manifolds of arbitrary dimension in several ways. From our cubical results we obtain a

way to construct a cubical analogue of simplicial homology.

For this purpose, consider the dual statement: given a triangulation of the sphere,

and a coloring of the vertices with 4 colors, we denote by A1 the number of triangles

whose vertices are colored with 234 in clockwise order minus the number of triangles
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whose vertices are colored with 234 in counterclockwise order. We define A 2,A 3, A4

similarly. The dual of Baxter's theorem gives the same identity for the Ai-s as before.

This statement may be generalized in an obvious way to colorings of triangulations of n-

dimensional orientable (pseudo-)manifolds with n+2 colors, which we call the generalized

Baxter's Theorem.

2.2 Simplicial generalizations

2.2.1 Simplicial polytopes and compact orientable manifolds

We begin by proving our generalization of Baxter's theorem in a special case, to give

the flavor of how the topological construction works. Observe that the surface of a

(n + 1)-dimensional convex simplicial polytope may be viewed as triangulation of Sn.

Theorem 2 (Generalized Baxter's theorem for simplicial polytopes)

Color arbitrarily the vertices of a given (n + 1)-dimensional convex simplicial polytope P

with n + 2 colors. Let Ai be the number of facets with vertices colored with {1, 2,..., n +

2} \ {i}, where we count a facet with multiplicity 1 or -1 when the sign of the multiplicity

is the sign of the orientation of the vertices of the facet listed in increasing order of colors.

Then we have

Al = -A 2 = A3 = .' = (-l)n+l . An+2-

Proof: The proof will use some facts from algebraic topology. (See e.g. [8, Chapter

VIII, Section 4].) Let M and N be two n-dimensional manifolds, which are compact and

orientable. Furthermore let N be a connected manifold. For any continuous function

f: M ) N, one can define the degree deg(f). Moreover, for any q C N, one can define

the local degree degq(f). In the event when f is locally a homeomorphism around a small

enough neighbourhood of each point of the fiber f-l(q), the local degree degq(f) may be
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viewed as "number of points in the fiber f-l(q), counted with multiplicities", where the

multiplicity is 1 if the function f at that point in the fiber preserves orientation, and -1

otherwise. Finally, the local degree degq(f) is equal to the degree deg(f).

A coloring of the vertices of a polytope P is a function

s : vert(P) t vert(An+l),

where vert(P) denotes the vertex set of P and An+l is the standard (n + 1)-simplex with

vertices el, ... , e+2. We can extend to a continuous map

f : P t tnA+la

from the surface of P to the surface of An+' as follows. Every p C P can be writ-

ten uniquely as the barycentric combination of the vertices of the smallest face (say

conv({vl,... ,vk})) containing p:

k k

p = Eai' vi where all ai > 0 and Eai = 1.
i=l i=l

Now define f(p) by
k

f(p) :- E ai (vi).
i=l

Clearly f is a continuous function between two homeomorphic images of Sn. Observe

that the sphere $n is an oriented n-dimensional manifold, which is both compact and

connected.

Consider a point q in the interior of the facet conv({el,... , en+2} \ {ej}), and let us

compute the local degree degqj(f). The fiber f-l(qi) is a finite set, and there is exactly

one element of f-l(qi) in each facet of P that has vertices of colors {1,2,...,n + 2} \

{i}. Hence the local degree degq,,(f) is equal to the number of facets in P with colors
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{1,... ,n + 2} \ {i}, counting multiplicities. The multiplicity is 1 if the orientation of

the facet containing the element in the fiber f-l(qi) has its vertices colored in the same

orientation as conv({el,..., en+2} \ {ei}), and the multiplicity is -1 otherwise. Hence we

have

degq, (f) = Ai (-1)n-i,

because the orientation of conv({el,... , en+2} \ {ei}) in An+l is (-l)n - i . Therefore we

obtain

(-l) " - i . Ai = degq,(f) = deg(f) for i = 1,2,..., n + 2,

and this implies the theorem. QED

Theorem 3 (Generalized Baxter's theorem for compact orientable manifolds)

Let M be a compact oriented n-dimensional manifold. Let r be a finite triangulation (i.e.

ordered simplicial atlas) of M. Assign arbitrarily the colors 1,..., n + 2 to the vertices of

r. Let Ai be the number of facets of r with vertices colored with {1,..., n 2} \ {i}, where

we count a facet with multiplicity 1 or -1 when the sign of the multiplicity is the sign of

the orientation of the vertices of the facet listed in increasing order of colors. Then we

have

Al = -A 2 = As = = (-) n+ l A+2.

In the previous proof the fact that our triangulated manifold is the surface of a con-

vex simplicial polytope was only used when we extended the coloring of the vertices

to a continuous function between the manifold and An+l. Hence, in order to ob-

tain the desired generalization, the only thing we have to do is to extend the coloring

: vert(r) - vert(An+) to a continuous function f: M -, A n +l .

It is a well-known fact that any map between the vertices of two simplicial spaces that

takes faces into faces can be extended uniquely to a simplicial (and hence continuous)
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map between the same two spaces. (See, e.g., [8, Chapter V, Proposition 7.11].) In our

case the triangulation of M defines a simplicial space, and the simplex An + l is trivially

a simplicial space. The rest of the proof goes through exactly as in the case of convex

polytopes.

Note that the results of this subsection hold evidently for colored triangulations of

disjoint unions of compact orientable n-dimensional manifolds.

2.2.2 Orientable simplicial pseudomanifolds

Let us recall the most important definitions.

Definition 14 An n-dimensional simplicial pseudomanifold is a simplicial complex A

satisfying the following conditions:

(i) every facet of A is n-dimensional,

(ii) every subfacet is contained in at most two facets,

(iii) if F and F' are facets of A then there is a sequence of facets F F1, F 2, . ., F

F' such that Fi and Fi+l have a subfacet in common.

We call the subcomplex generated by the subfacets contained in exactly one facet the

boundary of A, and we denote it by A. If 9A = 0, then we call A a simplicial

pseudomanifold without boundary. For a boundary subfacet a we denote the unique

facet containing it by Q(eo).

We will define orientation on ordered faces.

Definition 15 An ordered face is a list (ul, . .. uk+l), where {U ,..., uk+l} is a k-face.

We denote the set of ordered k-faces by Ordk(A). If A is a simplicial pseudomanifold and

oa = {Ul, ... ,un is a boundary subfacet, then we denote by Q(ul,..., u,+l) the ordered

facet (u, ... , un+l) where u,+l is the only element of Q(eo) \ .
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Now we are able to define orientable simplicial pseudomanifolds.

Definition 16 Let A an n-dimensional simplicial pseudomanifold. We call A orientable

when there exists a map : Ordn(A) - Z such that the following hold:

(i) For every facet F = {Vl,... Vn+,l} we have

(vi,v27 * , Vn,+ ) = 1.

(ii) For every permutation r E Sn+l and every facet {v1,..., v,+l } we have

E(v1, ... , Vn+l) = sign(7r) · (v,(1), V,7r(2), .. ., Vr(n+1))

where sign(7r) is -1 for odd and 1 for even permutations.

(iii) For every non-boundary subfacet {vl,..., v,} f, OA and the two facets

{v1 , v 2 ,. , v,, vn, +1} and {V1,... Vn, Vt+l} containing it, we have

E(V1,...,Vn, V+l) = -(V 1,*.., v , Vn+ l)

We call e an orientation of A.

It is an easy consequence of Definition 16 and of condition (iii) of Definition 14 that

an orientable simplicial pseudomanifold has exactly two orientations which differ only by

a constant factor of -1.

In the following we will investigate the number of those facets and subfacets of a

simplicial pseudomanifold, which are colored in a prescribed way.

Definition 17 Let I = (il,... , i,+) be an ordered (n + 1)-tuple of n + 1 distinct colors,

and let A be an n-dimensional oriented simplicial pseudomanifold. We will say that an
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ordered facet (v1,..., v,+l) of A is I-colored when the color of vt is it fort = 1,2,..., n +

1. We denote the fact that (V1,... , vn+) is I-colored by (V1,... , v,+ ) Vn I We define

AI := E (VlVn+l)-
(vl -.,vn+ )-HI

Similarly, for J = (jl,...,jn) we call an ordered boundary subfacet (ul,..., .un,) J-

colored when the color of ut is jt for t = 1,2,..., n. Again, we denote the fact that

(u1,..., u) is J-colored by (u1,..., ,) - J. We define

BJ = E 6(Q(Ul, Un))-
(U1I,...Un)H)J

In the following we will investigate the relations between the numbers AI and BJ for

an arbitrarily given coloring. Note that an analogous situation to that of Theorem 3

may be included in this setting, as the special case when A is an n-dimensional oriented

pseudomanifold without boundary, and A is colored with the color set {1, 2,... ,n + 2}.

Then the numbers BJ will all be zero, and the color set will have n + 2 different (n + 1)-

subsets, each of which can be written in the form {1, 2,..., n + 2} \ {i}. The number

A(1,2,...,i-l,i+l,...,n+2) will be the analogue of the number Ai in the generalized Baxter's

theorem. We will pay special attention to colorings of oriented simplicial pseudomanifolds

without boundary. For these pseudomanifolds all the B-s are zero, thus we restrict our

attention to the relations among the AI-s.

The following equalities are straightforward consequences of condition (ii) of Defini-

tion 16.

Lemma 3 We have

A(i(, ).,i,,(n+~)) = sign(7r) A(il,..,in+l) (2.1)
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for all permutations r C Sn+l, and

B(j(~)...d,(~)) -sign(r) (2.2)

for all permutations r C Sn.

The simplest nontrivial situation where nonzero A-s and BJ-s might arise is when

we color with n + 1 colors. The following lemma deals with this case.

Lemma 4 (Fundamental coloring lemma for orientable simplicial pseudoman-

ifolds) Let A be an oriented n-dimensional simplicial pseudomanifold. Color the ver-

tices of A arbitrarily with the color set {1,2,... , n + 1}. Let us fix two permutations

a = (a,..., a,n+l) and / = ( ,...,f3n+l) of {1,2,...,n + 1}. Then we have

sign(a)- A = sign(3)- B(,3 ..... ). (2.3)

In particular, when A is a simplicial pseudomanifold without boundary, then

A, =O (2.4)

holds.

Proof: By Lemma 3, the equation does not change if we replace a or by other permu-

tations. Thus, without loss of generality we may assume a = ,l = id, that is, ai = pi = i

for all i = 1,..., n + 1.

We construct a graph G = (V, E) associated to A and its coloring. The vertex set is

defined by

V := (u 1,.. .,u,+1) E Ordn(A) : color(ui) = i for i = 1, 2,...,n).
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Note that the color of u,+l is arbitrary, and so V is the disjoint union of

V1 = {(u1, .. ,un+) C V: color(un+l) = n + 1},

and

V2 = (Ul, ... Un+l) C V color(un+l) 5d n + 1}.

Furthermore, we can split both V1 and V2 into the disjoint union of smaller sets. We have

Vi= V' Vi" (i = 1,2)

where

and

We define the edge set of G as a disjoint union E := E1 U E2 where

E1 := {((Ul, . ., Un, ), (Ul,..., Un, t)) : ~4 t},

and

E2 := {((Ul , .. , Ui-l,, Ui+l .. .,Un, t), (Ul, . . Ui-, t, Ui+l . .., n, )) : S t, 1 < i < n}.

Observe that the -values on adjacent vertices of G have opposite signs. In fact, for

edges in El resp. E2, this follows from condition (iii) resp. (ii) of Definition 16. Observe

furthermore that every vertex is adjacent to at most one other vertex in El. In fact, for

every u = (ul ,...,un+l) V, there is at most one facet different from {Ul,. .. un+}

that contains the subfacet {ul,... , un}. The vertex u has no neighbor in E1 if and only
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if {ul,..., u,} belongs to the boundary, i.e. iff u E V" U V2". Note at last that E 2 is a

matching on the set V2. In fact, if u = (ul,...,un+l) C V2 then there is exactly one way

to exchange ul with the unique ui having the same color.

Therefore the degree of a vertex in E1 or E2, depending on the fact, to which subset

of V it belongs, can be found in the following table.

Degree in V' Vl' V2' I V

El 1 0 1 0

E2 0 0 1 1

Since every vertex in the graph G has degree at most 2, the graph G is a disjoint union

of singletons, paths and cycles. The singletons are the elements of the set Vl". The cycles

lie inside the set V2. The two sets V1' and V2" contain the the endpoints of all the paths,

and the internal nodes of all the paths lie in Vl".

Observe that a path that connects two vertices x, y V1' will have odd length. Hence

we know that (x) -(y). Similarly, a path that connects two vertices in V2" will also

have odd length and thus the two endpoints of the path have opposite signs. But a path

that connects a vertex in V with a vertex in V2" will have even length. The two end

points of such a path will have the same sign. We conclude that

E (X) = E (x).
E VI x E V2

The (1,..., n + l)-colored ordered facets are represented in the graph G by the vertices

in V1. Hence

A(,...,n+l) = E (z).
xEVi
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Similarly the (1,..., n)-colored boundary faces are represented by the vertices in V1'"U V",

and thus

B(,...,n) - E 6().e(c).
yEVrbWV2it

By combining the three above equations we get

A(l,... ,n+l) = E 6()+ E(X)
X EV[ xe Va"

E(x) + E 6(x)
-EV,2 xV,.

- B(,...,n)-

Observe that the paths and the singletons in the graph G describe a bijection between

the signed set of (1,... , n + 1)-colored facets and the signed set of (1,... ,n)-colored

subfacets. Hence the proof is bijective. QED

From this lemma we obtain the strongest possible master theorem in a surprisingly

straightforward way.

Theorem 4 (Master theorem for colored triangulations)

Let A be an oriented n-dimensional simplicial pseudomanifold and m > n + 1. Color

the vertices of A arbitrarily with the color set {1, 2,. ... , m}. Let {C1 , C2,. . ., Cn+1} be a

partition of the colors {1,..., m} into n + 1 blocks. Then we have

il EC1,...,i+l ECn+l
E

Ji El.--Jn ECn
(2.5)
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In particular, for n-dimensional oriented simplicial pseudomanifolds without boundary

we have

=oA(il in+l) 0 O' (2.6)
il ECl,...,in+ ECn+1

Proof: Construct a function A: {1,...,m} - {1,...,n + 1} by setting A(i) = j if

i E Cj. A coloring of the vertices of A can be viewed as a function : vert(A) >

{1,..., m}. Hence, the composition A o b is also a coloring of A, but with n + 1 colors.

Apply Lemma 4 with a = S = (1,2,... ,n) to this coloring. We obtain AA +l 

BAo , n). Obviously, A(1,. +l) is equal to the left hand side, and B'(1..n is equal to

the right hand side of (2.5). QED

Examples

1. When m = n + 2, then a partition of the color set {1, 2,..., n + 2} into n + 1 blocks

consists of n singletons and a block of size 2. If we assume that the only 2-element

block is {i, i + 1}, then in the case of a simplicial pseudomanifold without boundary,

equation (2.6) gives us

A(i,,2 ...,i-l,i+l,...,n+l) + A(i+j,1,2,...,i,i+2,...,n+1) - 0

which is equivalent to Ai - -Ai+l in the formulation of Theorem 3.

2. Consider the coloring of an (n + )-dimensional convex simplicial polytope P with

n + 2 colors. Let us divide P with hyperplanes spanned by vertices of P into

(n + l)-dimensional simplices. This way we obtain an (n + l)-dimensional oriented

simplicial pseudomanifold A, for which 0A consists of the facets of OP. Lemma 4

gives us yet another proof of the generalized Baxter's theorem for convex polytopes.

Note that this time the numbers Bj,,...,jn+l will agree up to sign with the numbers
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Ai of Theorem 2.

Observe that in the proofs of this subsection we never used the connectedness property

of simplicial pseudomanifolds (condition (iii) in Definition 14). Hence the results hold

also for disjoint unions of n-dimensional orientable pseudomanifolds, or even for those

unions of n-dimensional orientable pseudomanifolds in which any two pseudomanifolds

intersect in less than (n - 1)-dimensional faces.

2.2.3 The linear space of conditions on AI-s and BJ-s

In this subsection we show that Theorem 4 exhausts all linear relations among the num-

bers A(i, ...,in+) and B(j,....n).

Let us introduce for notational convenience symbols A(il,...,in+l) resp. B(jl,...,jn) for all

vectors (il,. .. in+l) resp. (jl,.. . jn) with entries in {1, 2,..., m}, agreeing immediately

that A(il,...,in+l) = 0 resp. B(j,...,J) = 0 whenever (il,. .. ,i,+ 1 ) resp. (jl,...,j,) has

repeated entries.

Then we can define

Ac, .cn+l = E A(il .. ,in+l),
i C1 ,...,i.+l ECn+l

and

Bcl,...,c = B(j, ...jn)
Jl EC1 .. ,jn ECn

for arbitrary n + 1-tuples of sets C1, . . ., C,+1.

Thus (2.5) may be written as

Ac, ...,cn+l = Bcl,...,¢,, (2.7)

for all partitions of the set {1, 2,..., m} into n + 1 blocks C1,..., C+.
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Lemma 5 The system of equations (2.5) is equivalent to the following:

m
A(i,i2 .... ,n,i) B(i ....,in) (2.8)

i=l

for all n-element subsets {il,... ,in C {1, 2,..., m}.

In the boundariless case, the equations (2.6) are equivalent to

m

A(ii,..2in,i) = (2.9)
i=l

for all n-element subsets {il,... ,i,} C {1, 2,..., m}.

Proof: We show the statement for oriented simplicial pseudomanifolds in general; the

reasoning is essentially the same in the boundariless case. Clearly, the equations of (2.8)

are special case of (2.7), with C1 = {il}, C2 = i2 }, ... , Cn = {in} and

Cn+l = {1,2,...,m} \ {il,.. ., i,}. Thus we only have to show that (2.8) implies (2.7).

It is an easy consequence of (2.2) that Ac, ...,cn+l = 0 whenever two Ci - s are equal.

Hence we may write

n+l m m

Acl,...,c+l= E Ac1,...,Cnji = E E A(=l Sinti)
j=l- i=l (i-in)C Cn i=l

o if jn+l

On the other hand by the definition of Bc, C...,C we have

Bcl,...,, = = E B(j,,..Jn)
ji C1 in E Cn ~(jl ...,jn)C x.. x Cn

Therefore (2.7) is the sum of equations of the form (2.8). QED

Definition 18 Let V be an m-dimensional vector space with basis el,..., em. Given a

coloring : vert(A) - {1, 2,..., m} of an orientable n-dimensional simplicial pseudo-
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manifold A, we define the weight vector of the coloring as the following skew-symmetric

tensor

wo := E A(i,... ,i+) ei A A .. e A ein+ + Z B(jlj) * ejl A ... A ej,
il <<in+l Jl < ... <in

which lies in Ext+ l (V) ¢ Ext,(V). We denote the Z-module resp. vector space generated

by all weight vectors by M resp. W. Moreover, the submodule resp. subspace generated by

the weight vectors of colorings of oriented n-dimensional simplicial pseudomanifolds with-

out boundary will be denoted by M o resp. Wo. (Observe that Mo and Wo are contained

in Extn+l(V).)

Note that conditions (2.2), (2.1), and our convention about A( , ...,in+l) resp. B(j, ...,jn)

being zero in case of repeated indices allows us to think of A(i1 ,...,in+) as the coefficient of

ei A ... A ei,+ , and of B(jl ...,jn) as the coefficient of ej A ... A ejn, for arbitrary (il,. ., i+l)

and (ji,... j,).
A linear condition on the AI-s and BJ-s may be transcribed as

(v* I w+) = 0

for all vectors w+ and a fixed v* C (Extn+l(V) d Ext,n(V))* = (Extn+l(V))* (Ext(v))*.

When we restrict ourselves to pseudomanifolds without boundary, we may take v* to be

an element of (Extn+l(V))*.

It is a well-known fact that the dual space (Extk(V))* is isomorphic to Extk(V*),

where we define the value of u* A ... A u C Extk(V*) on vl A ... A vk Extk(V) to be

the determinant of the matrix ((u I vj))i,j=l. Using this isomorphism for k = n,n + 1,

and introducing the dual basis e E V* defined as usual by (e I ej) := 8,j, we can write
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the equations (2.8) in the following equivalent form:

(e* A... Ae A(e +e+-.+e* +1) w) =O(· ii · Z. 1 S 2 +'' em I ) = (2.10)

for all {il,...,in} C {1,2,...,m} and all weight vectors w,. Similarly, the equa-

tions (2.9) are equivalent to all conditions of the form

(eii*. Ae A(e; +-e 2- + *-+em) w) = 0. (2.11)

Lemma 6 The vectors e A ... A e, A (e* + e + .. + e* + 1) span an (')-dimensional

subspace of Extn+l(V*) D EXtn(V*). Furthermore, the dimension of the subspace of

Extn+l(V*) generated by the vectors e A... A e A (e;* + e + ... -+ e) is (n-1).'Zl Z. * 

Proof: Note that the linear span of the vectors e A .. A e.* A (e + e

is exactly the image of the linear map

Extn(V*)

u * A A u*

Extn+l(V*) G( Extn(V*)

i 3 u*A A (e + *- + em e 1)-· 1 U n

This map is injective, for its projection onto Extn(V*) is the identity. This shows the

first statement of the lemma. On the other hand, the linear span of the vectors e A... A

e A (eL +* + ... + e) is equal to to the image of the linear map

Extn(V*)

u* A ... A u*

' Extn+l(V*)

u* A ... A u A (e; + ... + e).

If we take now another basis f,... , fm of V* with f = e + ... + e*, then the image of

the above linear map will be the linear span of

(fi, A ... f* A f : il,...,in} C {1, 2, ... , m- 1}}
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which is clearly (mn-)-dimensional.

Corollary 3 We have dim W < (m ), and dim Wo < (m-1).

Proof: Let

X=span{e A..Ae A (e + e + e* + 1) : {il,.,in} C 1,2,...,m}}

Thus X is a subspace of Extn+l(V*) D Extn,(*). Define the orthogonal space X by

X = {v E Extn+l (v) E Extn(v) : Vv* E X, (v* I v) = }.

By (2.10) we have that W C X'. Hence

dim W < dim X 

= dim(Extn+l(V) f Extn(V)) - dimX

(n + ) n

n + 
Similarly, let

Xo = span{e A 

and define the orthogonal space XO C Extn+l (V). By (2.11) we know that Wo C XoL.

Thus

dim Wo < dim Xol

= dim Extn+l(V) - dim Xo
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n+ ( n )

QED

Definition 19 Let {il,.. .,in+2} be an arbitrary n + 2 element subset of {1,.. . ,m}.

Color the vertices of the standard n + 1 simplex An+ l with the colors {il,... in+2 } Con-

sider this coloring as a coloring of the n-dimensional simplicial pseudomanifold without

boundary OAn+1, and denote the weight vector of this coloring by P(il,...,in,2). Let us call

these weight vectors P(il,...,in+2) elementary weight vectors of the first kind.

Let {jl,. .. ,jn+l} be an arbitrary n + 1 element subset of {1,. .. ,m}. Consider the

coloring of a standard n-simplex with the colors {jl,..., j,+l}. Let us denote the weight

vector of this coloring by q(j,...,jn+) We call the weight vectors q(j,...,jn+l) elementary

weight vectors of the second kind.

Obviously p(i1,...,,n+2) is a linear combination of skew tensors of the form e A ... A ei,_ 1 A

ei,+l A · .A ein+ 2, where s C {1, 2,..., n+2}. The coefficient of each of the above-mentioned

skew tensors is ±1. Similarly, q(j1,...,jn+l) is the linear combination of ej, A ... A ejnl and

skew tensors of the form ej, A .. A ej,_ A e+ A ... A ejn+,, where t C {1, 2,..., n + 1}.

The coefficients of these tensors are also ±1. Observe that elementary weight vectors of

the first kind belong to oriented simplicial pseudomanifolds without boundary.

Lemma 7 The set Mo :={P(i1,...,in+,m) : {il, ... in+l C {1,2,..., m- 1}} is a Z-basis

of Mo, and the set M := Mo U {q(jl,j2,...,jn,m) : {jl,-.., jn C {1,2,..., m - 1}} is a

Z-basis of M.

Proof: First we show that Mo is a Z-basis of Mo. Consider the antilexicographic order
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on the basis {ei, A ... A ein,+ : i < .i2 < i+ 1 } of Ext,+(V). That is, we set

def
eil A ... A < e+ < ej A ... A ej+

when

in+l = jn+l, in = jn ., .is+l = js+l and i < ji for some s E {1, .. ,n + 1}.

With respect to this order, the smallest term of p(il,...,in+2) for ii < i2 < ''' < in+2 is

eij A ... A ei,+,. Hence the antilexicographically first terms of the elements of Mo are

pairwise different, and so Mo is an independent set. Thus we have only to show that

Mo also generates the Z-module M. Assume by way of contradiction that there is a

r C M which is not a Z-linear combination of elements from M. We can take r to be a

counterexample that has the largest possible antilexicographically first term. Then the

first term of r cannot be a multiple of ei, A ... A ein A ein,+ with i < ... < in+l < m - 1,

because then we can subtract a multiple of P(il,...,i+l,mn) and get a counterexample with

larger antilexicographically first term. Hence we can suppose that

r= A(il in,m) el A ... A ein A em.

The vector r is the linear combination of weight vectors, so the equations (2.11) hold for

r, giving

A(il ,.,in,m) = 0

for all {il,..., i,} C {1,2,... ,m - 1} and so r = 0, a contradiction.

The proof of the fact that M is a generating system of the Z-module M is analogous

to the above reasoning. We introduce the same antilexicographic order on the basis

{ ei A ... A ein,+ : i < i2 < ... < in+1} of Extn+l(V) as before. Again we look for

a counterexample r M that has a largest possible antilexicographically first term in

Extn+l(V). (Note that r does not have to be an element of Extn+(V), but it has a
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uniquely defined Ext,+l(V)-component). As before, we can show that the Ext,+l(V)-

component of r is of the form

A(i,...,in,m) el A ... A e A em.
{i .....in}C{1,2,...,m-1}

But then, subtracting

A(il .. inm) 'q(il ...,inm)
{il ,...,in}C{1,2..,m-1}

from r, we obtain a C M which is not generated by M, and has zero Extn+l(V)-

component. From the equations (2.10), which hold by linearity for all elements of M,

we obtain = 0, a contradiction.

Finally, in order to show the independence of the elements of M, observe that the

antilexicographically first term of the Ext,+l(V)-component of q(il,...,in,m) is eil A ... A

ein A em, and so the antilexicographically first terms of Ext,n+l(V)-components of M are

pairwise different. QED

Corollary 4 Mo is a vector space basis of Wo, M is a vector space basis of W. Therefore

we have

dim Wo = m

and

dimW = (n+)+( ) +l)

The previous lemmas add up to the proof of the fact that Theorem 4 and the sign-

relations expressed in Lemma 3 imply all linear relations between the AI-s and Bj-s in

the general case as well as in the boundariless case.
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Theorem 5 The vector space of linear equations of the AI-s and Bj-s is spanned by

the equations (2.5), (2.1) and (2.2). Similarly, for oriented simplicial pseudomanifolds

without boundary, all linear relations among the AI-s are implied by the equations (2.6)

and (2.1).

Proof: By Corollary 3 the linear conditions of Theorem 4 allow Wo to be at most (+)

dimensional, and W to be at most )-dimensional. On the other hand, Corollary 4

guarantees that Wo has dimension (-+) and WV has dimension (nil)' Therefore there

cannot be any additional linear conditions on the AI-s and Bj-s, resp. AI-s in either case.

QED

As noted at the end of the last subsection, the weight vectors of colorings of disjoint

unions of n-dimensional orientable simplicial pseudomanifolds also belong to M. For

such a disjoint union, the weight vector of the coloring is equal to the sum of the weight

vectors of the restrictions of the coloring to the connected components. On the other

hand, reversing the orientation on a component multiplies the weight vector belonging

to that component by -1. From these elementary facts we can deduce that M is not

simply the Z-linear span of the weight vectors, but it is equal as a set to the set of weight

vectors of colorings, when we allow disconnectedness. It is also true that the set of weight

vectors of colorings of (connected) n-dimensional orientable pseudomanifolds is equal to

M. We leave the proof to the reader.

2.2.4 Simplicial homology

The results of Subsection 2.2.2 and 2.2.3 can be more easily proved using simplicial

homology. In this subsection we outline how to do this, and how to get coloring theorems

when we color with the vertices of a simplicial complex. A good reference about simplicial

homology is [21]. Here is a reminder about the definitions.
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Definition 20 Let A be an arbitrary simplicial complex. We define Sk(A) to be the free

Z-module generated by the basis {a : E Ak}. We represent Sk(A) as the factor of the

free Z-module generated by the ordered k-faces, and the following relations:

[(Vr(1), ... Vr(k+l))] = sign(r) [(vl, ... , Vk+l)]

for every r E S. (The symbol [(Vir(),..., v,r(k+l))] stands for the class represented by

the ordered face (v 1 ,...,vk+l).) We turn S.(A) into a chain complex by defining the

boundary map

k+l
a0([(Vl,, Vk+l )] )= Z(-1)i- * [(Vl, ... v-, vi+l * *..., Vk+l)].

i=l

We call the homology groups Hn(S.(A)) the (absolute) simplicial homology groups of A.

We define the cochain complex S(A) to be the dual complex S.(A), consisting of

the dual Z-modules Sk(A) = Hom(Sk(A), Z), and connected by the coboundary map 5k,

which is the adjoint of 0 k+l. The cohomology groups of S(A) are the (absolute) simplicial

cohomology groups of A.

A simplicial map : A - A' is a map

: vert(A) - vert(A')

which takes faces into faces. We define the chain map induced by to be the linear map

satisfying

k()([(v . ,Vk+)]) [((v1), . .,q$(vk+l))] if b(Vi),. . ., (vk+l) are distinct,
0 otherwise.

Next let us recall the definition of relative simplicial homology.
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Definition 21 Given a subcomplex A of A, we define the relative complex of Z-modules

S.(A, A) by

S.(A, :=S.(A)/S(),

where we embed S,(A) into S,(A) using the chain map induced by the inclusion A - A.

We call the homology groups Hn(S.(A, A)) the relative simplicial homology groups

of the pair (A, A). We introduce the cochain complex S(A, A) in perfect analogy to

the absolute case. We call the cohomology groups of S(A, A) the relative simplicial

cohomology groups of the pair (A, A).

When a simplicial map : A LA' takes the subcomplex A of A into the subcomplex

A' of A', then we say that b is a simplicial map from the pair (A, A) to the pair (A', A').

In this case we can consider S.(qS) as a chain map S.() : S.(A, A) ) S.(A', A').

Introducing the convention that S.(0) be the zero complex, we obtain the absolute

simplicial homology and cohomology as the special case of the relative analogues with

A=0.
When we reformulate our results in the language of simplicial homology, the notion

of mapping cone will be indispensable.

Definition 22 If f : K. ) L. is a chain map of Z-modules, we define the mapping

cone of f to be the complez C(f). defined by

C(f)n := n Kn-1,

and

aC(f)(y, X) := (Ly + f(x), -aK(z))

The mapping cone of id: K, - K, is called the cone of K,.
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We will be interested only in the special case when f is an inclusion map. In this case

we have the following lemma. (See eg. [16, page 46, Proposition 1.7.5].)

Lemma 8 If f: K. - L. is injective, then we have

Hk(C(f))- H(L./K.)

for all k.

Definition 23 Let A' be a subcomplex of the simplicial complex A. We denote by

C.(A, A') the mapping cone of S.(p), where p is the inclusion map p: A' - A.

As a special case of Lemma 8 we obtain the following equality for all pairs of simplicial

complexes (A, A').

Hk(C.(A, A')) - Hk(S.(A, A')) (2.12)

for all k.

The following lemma shows that a simplicial map between pairs of complexes induces

a chain map between the mapping cones.

Lemma 9 Let f .K. - L. and f' : K - L' be chain maps. Assume furthermore

that we are given chain maps g: K. > K' and h: L. - L., such that the diagram of

chain complexes

K. f L.

gl jh

K-.' -L'

is commutative. Then the pair (g, h) induces a chain map

C(f). C(f').
(y, x) - (h(y),g(x))
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The proof is straightforward substitution into the definitions.

Corollary 5 Let A be a subcomplex of A and A' a subcomplex of A'. Assume that the

simplicial map #): , - A' takes the pair (A, A) into the pair (A', A'). Then (more

precisely the pair (S.(+), S.( l))) induces a chain map

C.(¢): c.(z, A) c.(, L').

In analogy with the cochain complex S'(A, A) we also introduce the dual complex

of C.(A, A).

Definition 24 We define C'(A, A) to be the dual complex of C.(A, A), consisting of

the Z-modules Ck(zA, ) = Hom(Ck(A, A),Z), and connected by the coboundary map

85 = Hom(ak+l, Z).

We can easily compute the coboundary map of C'(A, A) from the coboundary map

of C(A) and C'(A), as the following lemma shows.

Lemma 10 Given a chain map f: K. > L., the dual of the mapping cone C(f). is

isomorphic to the mapping cone C(f*) of the dual map f*: Hom(K., Z) - Hom(L., Z).

Using the isomorphism Hom(Lk Kkl, Z) Hom(Lk,Z)¢ Hom(Kk_l, Z) we can describe

the action of the coboundary map by

S(y*,x*) = (L(y*), f*(y*) - K(x*)) (2.13)

for all y* Hom(Lk,Z) and x* E Hom(Kk_l,Z) . Moreover, when f is injective and

K., L. are complexes of free modules, then Im (Sc(f.)) is generated by the elements of the

form 6((y*, 0)).
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Proof: It is straightforward substitution into the definitions. The isomorphism,

Hom(Lk Kk-, Z) - Hom(Lk,Z) if Hom(Kk_l,Z),

gives us the result that the dual of a mapping cone is isomorphic to the mapping cone

of the dual map. To see the formula for the coboundary map, observe that we have

(8(y*, X*) I ( ,X)) = ((y*, x*) I (y, x)) = ((y*, x*) (a L + f(X), aK(X)))

(y* aLy + f())+ (* aK(X)) = (L(*) y) + (f (y*) ) + (8K(x*) I x)

= ((SL(y*),f*(y*) - K(X*)) I (y,x)).

Assume now that f is injective. It is sufficient to show that for all x* Hom(Kk_, ,Z)

there is a y* C Hom(Lk,Z) such that we have

8(y*, ) = S(0, x*).

By (2.13) this equation is equivalent to

(SL(y*), f*(y*)) = (0, -SK(x*)).

This holds iff we have y* o akL+i = 0 and y* o fk =-x* o K. When we consider Kk as

a submodule of Lk, these two relations prescribe the value of y* on the submodules Kk

and Im (kL+l) . The prescription is consistent in the sense that both formulas require

the same value for y* on Kk n Im (kL+j) . Hence a map y : Kk + Im (*L+l) Z may

be defined, in accordance with the requirements for y*. The submodule Kk + Im (kL+l)

of Lk is free, and so a direct summand of Lk. Therefore y may be extended to a map

y* : Lk - Z which satisfies our requirements. QED
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We establish an important equivalence for the orientability of simplicial pseudoman-

ifolds.

Lemma 11 For an n-dimensional simplicial pseudomanifold A, the following are equiv-

alent.

(i) A is orientable,

(ii) H(S.(A, aA)) Z.

(iii) H,(C.(A, aZ9)) Z.

Proof: By (2.12) it is sufficient to verify the equivalence of (i) and (ii). Observe that since

S(A) = 0, we have Sn(A, 0A) = Sn(A). An element of Sn(A) is a linear combination

;, a(o). [oa] of facets. Here each facet ur is represented as an equivalence class of ordered

facets. Using the sign rules of this factorization, we can extend the definition of a(o)-s

to ordered facets (vl,... vn+l). The rules for change of sign will be identical to condition

(ii) of Definition 16. Now it is easy to verify that

a (E a(o,) I)o = 

is equivalent to condition (iii) of Definition 16. Using condition (iii) of Definition 14

we can convince ourselves that the value of a on an arbitrarily fixed ordered facet

(v,..., v,+l) determines a completely. Therefore we have Hn(S.(A, A)) = Z or

H,(S.(A, OA)) = 0 for all n-dimensional simplicial pseudomanifolds. The n-th relative

simplicial homology group of (A, 0A) is non zero, if and only if there is a nonzero func-

tion a satisfying conditions (ii) and (iii) of Definition 16. This is equivalent to having an

orientation , and all functions a of the above kind will be linear multiples of e. QED
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Remark The usual definition of orientability of simplicial pseudomanifolds is condition

(ii) in the above lemma. See for example [26].

From now on we shall assume that A is an oriented n-dimensional simplicial pseudo-

manifold.

Lemma 12 The generator of Hn(C.(A, 0A)) may be represented by the vector

WA:= E [o - E E(( r)). [
oEAn rE(8A)n-1

Proof: Note first that by condition (iii) of Definition 16, e(oa) [o] is the always the same

vector, regardless of the order in which we list the vertices of a. The same holds for

E(,2(r)) [r]. Thus wa is well defined.

Again we have Sn(OA) = 0, and so Hn(C.(A,,9A)) is equal to Ker(dC'(A'al)). It is

obviously true in general for mapping cones of embeddings f : K. > L. that we have

Ker(ac ( ) ' ) =- {(y, -Ly) E Ln · Kn_ 1 : Ly C Kn_ 1}.

Thus an element of Ker(<(A°A)) is of the form y - S(A)y, where y is a linear com-

bination of facets such that OS'(A)y is a linear combination of boundary subfacets. We

have seen in the proof of Lemma 11 that the set of such y-s is equal to the set of linear

multiples of TEAn e(a) []. On the other hand, straightforward substitution into the

definitions shows

DS(A) ( e(a). [a]) E( £(0(T)) [].
o.EAn rE(a)n-1

QED
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Now we can consider a coloring of an orientable pseudomanifold with n + 1 colors

as a simplicial map q$: A > An from the pseudomanifold to the standard n-simplex.

This map takes the pair (A, A) into the pair (An, An). Then Hn(C.(An, An))

Hn(S.(An, An)) = 0 implies

Hn(C(q))( E(7) []- e(Q()) I[T]) = o
EAn 7E(aa)n-1

which is Lemma 4.

When we use m colors, we can think of the coloring as a simplicial map : A ->

Sum-1. This map sends the pair (A, 0A) into the pair (Am-, Am-i). It is well-known

that the chain complex S.(A m-1) can be embedded into the exterior algebra Ext(V),

where V is again an m-dimensional vector space with basis {e, : v E vert(A-1)}. Thus

C'(Am-', Am-1) = Sn(Am-1)¢Sn_ 1 (Am-l ) can be embedded into Extn(V) Extn_1 (V).

The weight vector of the coloring is the image of

Cn() (WA) = Cn(q) (E (0) [ - e(Q(T)) [7
vanC E(~) · ] 7>E(a)-1

under this embedding. Hence we can think of the weight vectors as elements of

Cn(Am-1, Am-), or, in the boundariless case, as elements of Cn(Am-1,0) = S,(Am--).

By abuse of notation we will write w = Cn(O)(wA), resp. w, E S(Am-l) in the

boundariless case. The fact that wa belongs to Ker(OC(A8&A)), implies

w = Cn,() (WA) E Ker (c.('m- 1 Am')),

or, in the boundariless case

Wa = Sn,() (wA) E Ker (as'(Am-)).
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The elementary weight vectors P(i,....in,+2) correspond to the vectors d(([i,... , in+2]), 0)-

The elementary weight vectors q(j -. j.+±) correspond to the vectors 0((0, [jl,..., j,+l])).

Thus the elementary weight vectors generate Im( C; lam )) in the general case, and

the elementary weight vectors of the first kind generate Im (ainAml 1)) in the boundariless

case. Thus in both general and boundariless cases, M resp. Mo is contained in the

kernel of the respective An, and the elementary weight vectors generate the image of the

respective a,+l. Therefore the fact that the Z-module M is generated by the elementary

weight vectors follows from the trivial equality Hn(C.(Am-i, Am-l)) = 0. Similarly the

fact that the Z-module Mo is generated by the elementary weight vectors of the first

kind is an immediate consequence of Hn(S.(Am-l)) = 0. Note that the vanishing of

Hn(S.(Am-i)) is a geometric property of the standard (m - 1)-simplex, but we could

replace A m -1 by any other simplicial complex in Hn(C.(A-, Am-l)) = O.

Partitioning the colors {1,2,..., m} into n + 1 blocks is equivalent to defining a

simplicial map A : A -1 - A m, which maps the pair (A-i, Am- l) into the pair

(An,Zn). This induces a cochain map C'(A) : C(An,A n) - C'(Am-,Am-l ) in

the general case, and a cochain map S'(A): S(An) ) S'(A m - l ) in the boundariless

case. In particular, by Hn(C'(An, An)) = 0 and Hn(S'(An)) = 0, the maps n-l :

Cn-l(An, An) _-- Cn(An,Tn) and fin-1 : Sn-l(An) - Sn(An) are surjective, and so

we get

Im(Cn(A)) c Im(sn-)

in Cn(Am-, Am-l) in the general case, and

Im(Sn(A)) C Im(sn- 1)

in Sn(Am - l ) in the boundariless case.
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Theorem 4 follows from the orthogonality relation

Im(n-1 )- = Ker(qn). (2.14)

which holds in both C'(A-i, Am-) and S(Am-). Using (2.13), the equations (2.8)

may be translated into

(n-1 (([jil, i 2 ,...,ijn],0)) C(q)(wA)) = 0.

By Lemma 10 the vectors En-1 (([jl,i 2,.. . jin]*, 0)) generate Im(6n -1 ) in

C'(Am-l, Am-). Therefore the orthogonality relation (2.14) implies the first statement

of Lemma 5.

In the boundariless case the equations (2.9) correspond to

K8n([i(l,i2, ***in].) Sn(q$) (O E (o) [l) ) = 0.

Clearly, the vectors 6n-l([il,i 2,..., i,]*) generate Im(8n- 1) in S'(A m-l ) and so we have

the the statement of Lemma 5 for pseudomanifolds without boundary.

Given the fact that M resp. Mo may be identified with Ker(8,) in C,(Am-, A m - l )

resp. S.(Am-1), and that under this identification X resp. Xo becomes Im(8 n - 1) in

C'(Am-I, Am-l ) resp. S(Am-1), the orthogonality relation (2.14) also implies Theo-

rem 5.

Observe that in the general case we did not use any specific property of A m- , and

that in the boundariless case the only fact we needed to know about Am-1 is that

Hn(S.(Am-i)) = 0. If we now replace the standard simplex with any other simplicial

complex A, we can restate the analogues of Theorem 4 and Theorem 5 for colorings

of orientable n-dimensional pseudomanifolds (with boundary) with colors from A. If

58



we want the analogues of the boundariless versions to hold, we have only to require

1tT(S.(A)) = . (We define colorings to be simplicial maps into A.) Thus we have a

complete theory in these cases. In particular, we obtain the analogues of Theorem 4 and

Theorem 5 for octahedral colorings. (Note that an octahedron has zero n-th simplicial

homology group.) The octahedral analogue of Theorem 4 contains [12, Theorem 1] as a

special case.

2.2.5 A proof of Sperner's lemma

As an application of our results we present a proof of Sperner's lemma.

Lemma 13 (Sperner's lemma) Assume we are given a triangulation r of the simple

"Am-l = conv({el,e2,. .. ,e,}) and a coloring of vert(r) with colors 1,2,...,m such

that the color of a vertex lying on the face conv({e,ei2,,..., ei}) is chosen from the set

{il, *, ik}.

Let T+ be the number of facets of color {1, 2,..., m} in positive order and T- be the

number of the facets of color {1, 2,.. ., m} in negative order. (Here we consider the order

e,...,em to be positive.) Then we have

T+-T- = 1.

This implies that the number of facets of r where the vertices are colored with all m colors

is odd. In particular, there is at least one facet of r that has all m colors.

Proof: The standard simplex A - l is a facet of the octahedron

0 := conv({±ei : i = 1,2,...,m}).
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For a subset I of {1,2,... ,m}, define the following notation.

e+(I) e= : i C I}

e-(I) = {-ei i I}.

Also denote the complement of I, that is, {1,..., m} \ I by I.

It is easy to check that the triangulation of the facet conv({e, e,... , em}) extends

uniquely to a triangulation a of the boundary of the octahedron. Let the vertex set of

the triangulation be the set vert(r) U {-el,... ,-em}. Let the facets of oa be of the

form

e-(I)U F,

where I C {1,...,m}, and F is a maximal face of r in conv(e+(l)). Note that in the

event when I = 0, the facets described above are the facets of r. At the other extreme,

when I = {1,..., ,m} there is only one facet, namely conv({-el,..., -em}).

Extend the coloring of the vertices of r to a coloring of the vertices of the triangulation

a, by coloring the vertex -ei with color i + 1 for i = 1,..., m - 1, and coloring -em with

color 1.

Assume that a facet G of a has its vertices colored with the colors {1,...,m}. We

know that vert(G) := e-(I) U vert(F), for some I C {1,... ,m} and some maximal face

F of r in conv(e+(I)). Thus the colors of the vertex set e-(I) are distinct, and the same

holds for the set vert(F). Moreover, the colors of e-(I) and vert(F) are disjoint. By

the condition of the lemma, the set of colors of the vertices of F is I. In our coloring

of {-el,...,-em}, the set of colors of e-(I) is J = {i + 1 (mod m) : i I}. Unless

I = 0 or I= {1,..., m} we have that

In J 0.

60



But this contradicts the fact that the colors of the vertices of F and the colors of e-(I)

are disjoint. Thus we conclude that if a facet G of the triangulation or has all colors, then

either G is a facet of r or G is equal to conv({-el,..., -em}).

Recall that 00 is homeomorphic to sm-l, and that we have a triangulation of

5'o, where the vertices are colored with m different colors. At this point we have two

options to finish the proof. The first one is to apply Theorem 3 with n m - 1. We

observe that in the coloring of or we do not use the color m + 1, and thus we have that

AL1 .. = Am = for this coloring. By the theorem, we then have A,m+ = 0, i.e., in this

triangulation ro there is an equal number of positively and negatively oriented facets that

are colored with {1, 2,..., m}. Since the coloring of the facet conv({-el, -e 2 ,...,-em})

has negative orientation, we conclude that

0 = Am+ T - T- -1.

We now have a proof of Sperner's lemma that relies on the equivalence of degree and

local degree of a continuous function.

The other way to finish the proof is to apply the boundariless version of Lemma 4,

with n = m - 1. Again we find that in the triangulation there is an equal number

of positively and negatively oriented facets colored with {1,2,...,m}. From here the

reasoning goes exactly the same way as in the previous ending. Together with the proof

of' Lemma 4 we have a purely combinatorial proof of Sperner's lemma that does not use

induction on dimension. QED

Remark As it is shown in [7], we can also prove Sperner's lemma by induction on

dimension, applying Lemma 4 directly to the triangulation r.
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2.3 Cubical generalizations

2.3.1 Preliminaries about the standard n-cube

In this subsection we recall some notations and facts about the standard n-cube, which

was defined in Definition 5. We also recall some technical lemmas that will be necessary

in the proof of the cubical analogues of our results about coloring simplicial pseudomani-

folds. Readers familiar with the topic are encouraged to go ahead to the next subsection

and come back to read the lemmas only when they are cited.

In the geometric representation we will denote the vector (0,... , 0, 1,0,... , 0), where

1 is at the i-th place, by ei, and the vector (0,..., 0) by 0.

Definition 25 We define the Hamming distance d(.,.) on {0, 1}" by

d(x,y) := I{i : xi / Yi}|.

It is straightforward that vert(Or-n) is a finite metric space with d, and that edge-

preserving maps preserve the Hamming distance.

We can encode all nonempty faces of -" with vectors (Ul, U2,. . . Un,) {0, 1, *}n in

the following way. We set ui = 0 or 1 respectively if the i-th coordinate of every element

of the face is 0 or 1 respectively. Otherwise we set ui = *. This bijection is described for

example in [20].

Lemma 14 Let : vert(Lin) - vert(LOm) be an injective map. If takes edges into

edges then the set 0(Ln) is a n-face of o m.

P:roof: Without loss of generality we shall assume that +(O) = 0 = (0,...,0). Since b

is edge preserving we have that (ei) = f, where f is a unit vector. (Not necessarily

the ith unit vector.) Moreover since is injective, fi,..., f, are distinct. We show now

by induction on d(O, x) that if x = ei, + ... + eik then (x) = fi + + + fi,. Since x is
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adjacent to x - e, we know that +(x) is adjacent to (x - e). Thus +(x) is adjacent

to O(x) - fij for all index j. Since d is injective, we conclude that +(x) = fil +... + fi,

and the induction step is proven.

It follows that the image of Ln is a n-face of El. QED

It is known that the group B, of symmetries of the standard n-cube form a Coxeter

group. We can define B,n as the set of those bijections of rOn that take faces into faces. In

fact, by Lemma 14, it is sufficient to require that the bijections take edges into edges. ,Bn

has 2" n! elements, and it is generated by an n-element set {S1, S2,... Sn,} of reflections,

called simple reflections. We define the sign of 7r to be

sign(7r) := (-1) '( w),

where l(w) is the length of the shortest word w = sils 2 ... si that represents r. This

sign function behaves similarly to the sign function of the symmetric group: it is a

group-homomorphism from B, to {-1, 1}, and the sign of any reflection is -1. For more

detailed information, see [15].

We will use the following elementary observations about the symmetries of the cube.

Lemma 15 Every r C Bn, is uniquely determined, provided we know either one of the

following:

* its restriction to a facet, or

* its value on n + 1 vertices that span an n-simplex in the geometric realization.

Proof: Assume first we know the value of 7r on a facet. Without loss of generality we

may suppose that this facet is (*, *, ... , *, 0), and that the restriction of 7r to this facet is

the identity. Let us now take any x C (*, *,... , ,1). The map 7r takes edges into edges,
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and so

{r((, X2, ... , In-1, 1)), ((xi, X2, * *Xn-1o °))}

= (7((xi, X2 . . . Xn_, 1)), (Xl, X2,*, v n-1, 0)}

is an edge. But the only vector that is adjacent to (1,x2, .. ,Xl,0), and is not in

the image of (*, *,... , *, 0) under r, is x itself. Hence we must have r(x) = x, and r is

uniquely determined.

In the second case the lemma follows from the fact that r corresponds to an affine

transformation of R" in the geometric representation. QED

Lemma 16 Let ' {O0, 1}" - {0, 1}n be a map of the standard n-cube such that

(i) d(b(x), 4(y)) < d(x, y) for all x, y C {0, 1}", and

(ii) d(x, 4,(x)) < for all x E {0, 1}n.

Then either 4 E B, or there is a facet F and a vector e C {+ei, -ei}i=l,...,n such that

e F and (x) = x + e for all x F.

Proof: Clearly, if · is a bijection then we have 4 E B.n

Hence we may assume that there is a vertex x that does not belong to Imp. Without

loss of generality we may assume x = O. By (ii), (0) is adjacent but not equal to 0,

w.l.o.g. we may assume that 4(O) = e. We claim that in this case ~((, *,..., *, 0)) =

(*,)f*, 1 * , 1).

We show by induction on d(O,x) that for every x (*, *,... , ,0) we have

4(x) = x + e (2.15)
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This is true for x = 0. Assume (2.15) holds for all x E (*,*,...,*,0) at Hamming

distance at most k- 1 from 0. Let us take an x C (*, *, ... , *, 0) with d(O, x) = k. Then

x may be written in the form

x = ei + ei2 + + eik

where 1 < i < i2 < '-. < i < - 1. By (i), (x) must be adjacent to the -image of

the neighbouring vertices, in particular, to the vertices 4(x - e) for j = 1,2,..., k. By

our induction hypothesis, we have

(x- e) = x - ei, + en

for j = 1,2,...,k. Moreover, according to (ii), 4(x) must also be adjacent to x. The

only vector fulfilling these conditions is x + en, therefore we have

,(x) = x + en

as stated. QED

In the following lemma we describe exactly the bijective -s. Recall that the symme-

tries r C B, preserve the Hamming distance.

Lemma 17 Assume r E Bn satisfies d(x,-7(x)) < 1 for all x C {0, 1}n. Then either

?r = id, or a reflection in the hyperplane xi = 1 defined by the formula

(x)k = { 1 - for k = i

X Sk otherwise

for some fixed i, or a 90° rotation around the affine space xi = xj = 2, defined by the
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formula

1-x j for k= i

Ir(xX) = Xi for k = j

Xk otherwise

for some fized i,j.

Proof: Assume first that for some x C {O, l}n we have 7r(x) = x. Without loss of

generality we may suppose x = O. By the distance-preserving property of 7r we have

d(r(el), 0O) = d(7(el),r(O)) = d(el,O),

and so 7r(el) = ei for some i E {1,2,...,n}. By the assumption of the lemma about 7r,

we must also have

1 > d(el, r(el)) = d(el, e) = 2 -. ,i,

and so i = 1. We can show r(ej) = ej similarly for j = 2,...,n. Hence 7r agrees with

the identity on 0, el, e2 ,..., en and so 7r = id by Lemma 15. Therefore from now on we

may assume that 7r does not fix any vertex, or in other words

d(x, 7r(x)) = 1 (2.16)

for all x C {0, 1} .

Assume next that 7r(r(x)) = x for some vertex x. By (2.16), x and r(x) are different

and adjacent. Without loss of generality we may suppose that we have 7r(0) = el and

ir(el) = 0. Let us take any e with i > 2. By the edge-preserving property of r and by

our assumption about r(O) we have

1 = d(O, ei) = d(7r(O), 7r(ei)) = d(el, 7r(ei)).
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Considering also the fact that 7r(ei) $ r(el) = 0 it follows that

r(ei) = el + ek

for some k > 2. On the other hand, from d(ei, 7r(ei)) = 1 it follows that ek = e. Therefore

in this case we have that

7r(ei) = e + el

for all i > 2. We refer again to Lemma 15 to conclude that r is of the first type.

From now on we may assume that 7r(7r(x)) f x for every vertex x. Without loss of

generality we may assume that 7r(O) = el and 7r-(O) = e2. Let us take an e with i > 3.

From

1 = d(O, e) = d(ir(0), r(ei) = d(el, r(ei))

and from r(ei) # r(e 2) = 0 we infer that

7r(ei) = el + ek

for some k $4 1. Again by d(ei, 7r(ei)) = 1 we have ek = e, and so

7r(ei) = e + el

holds for all i > 3. Let us calculate r(el). From d(el,7r(el)) = 1 and from 7r(el) y

7r(e2) = 0 it follows that 7r(el) is also of the form 7r(el) = el + ej for some j 4 1. Given

the fact that r(el) must be different from all 7r(ei) = e + el for i > 3, we have

r(el) = el + e2.

By Lemma 15, 7r is of the second type. QED
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2.3.2 Orientable cubical pseudomanifolds

In this subsection we show results analogous to the statements in Subsection 2.2.2.

The definition of cubical pseudomanifolds is analogous to the definition of their sim-

plicial counterparts.

Definition 26 An n-dimensional cubical pseudomanifold is a cubical complex O satis-

fying the following conditions:

(i) every facet is an n-cube of O,

(ii) every subfacet is contained in at most two facets,

('iii) if F and F' are facets of O then there is a sequence of facets F = F1 , F2 ,..., Fm

F' such that Fi and Fi +l have a subfacet in common.

We call the subcomplex generated by the subfacets contained in exactly one facet the

boundary of O , and we denote it by a I. If O: = 0, then we call [ a cubical pseudoman-

ifold without boundary. For a boundary subfacet (o we denote the unique facet containing

it by Q((a).

Next we define ordered faces. Note that in the simplicial case we could think of the

ordering of an n-dimensional face (o as a bijection between the vertices of the standard

simplex An and the vertices of o. The cubical analogue will run as follows.

Definition 27 Let EC be an n-dimensional face of a cubical complex El. We define a

cubical order on the face a to be a bijection f: vert( El ) , a between the faces of the

standard cube On = [0, ]n and the vertices of oa that takes faces into faces. We will call

the pair (f, a-) a (cubically) ordered face. We denote the set of ordered n-dimensional

faces of El by Ordn(EO).

Usually we will refer to the ordered face (f, a-) as f. There cannot be any confusion

because a is the image-set of f.
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The symmetries r E B, of the standard n-cube act faithfully and transitively on the

cubical orders of an n-dimensional face a- by assigning f o 7r to f. Hence the number of

cubical orders on a face is 2" · n!. Note that we have Ord,( ] n) = 3,.

Analogously to the simplicial case, we define the 9-operation on ordered boundary

subfacets.

Definition 28 Let g be an ordered boundary subfacet of the n-dimensional cubical pseu-

domanifold 0, where Im(g) = r. For every vertex v E r there is a unique vertex

2!(r,v) CE (r) \ r such that {v,fS(r,v)} is an edge of C. We define (g) to be the

following cubical order on the facet P(r).

(g)()1, n {g(x,... Xn-1) when , = 
Q(r ,g(Xi,..., , n-1)) when ,, = 1

Let us denote by k the the embedding Lk : k ) Dok + l that takes (Xl,...,Xk) into

(xl, ..., x k, 0). We will drop the index of whenever there is no risk of confusion. Observe

that we have

fQ(g) o n-1= g

for all g C Ord,_l(0a[).

Definition 29 Let Ol be an n-dimensional cubical pseudomanifold. We call orientable

when there exists a map e: Ordn(O ) - Z such that the following hold:

(i) For every ordered facet f Ordn( L ) we have

e(f) = 1.

(ii) For every ordered facet f E Ord,([ ), and every r C S,

e(f o 7r) = sign() .e(f)
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holds, where sign is the sign function defined on Bn.

(iii) Given a non-boundary subfacet r and the two facets , o' containing it, and given

f, f' cubical orders on oa, o' respectively such that f = f ', we have

e(f) = -e(f').

We call e an orientation of O.

We may think of the colorings of a simplicial pseudomanifold as a simplicial map

from the pseudomanifold to a standard simplex. Simplicial maps are those maps between

the vertex sets of two simplicial complexes which take faces into faces of same or less

dimension. It turns out that in the cubical case we can allow a broader class of functions.

Definition 30 Let Li and [' be cubical complexes. A cubical map qS: C: - LO' is a map

: vert(FO) - vert(OEl')

subject to the following conditions.

(i) for every o E , (ao) is contained in some r C W'.

(ii) takes adjacent vertices into adjacent vertices or the same vertex.

Note that every cubical order f: oik , O is an injective cubical map. It is useful

to notice that the converse is true as well.

Lemma 18 Let f: ok -, O be an injective cubical map. Then f is an ordered face.

Proof: By condition (i) of Definition 30, Im(f) is contained in some face a. By Lemma 14

Im(f) is a face of oa. QED

Now we can define "cubical colorings" in an analogous way to the simplicial case.
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Definition 31 Let O be an n-dimensional cubical pseudomanifold. We define a cubical

coloring of O with an m-cube to be a cubical map from the cubical pseudomanifold l

to the standard m-cube m.

The following two lemmas are necessary to prove the cubical analogue of the Funda-

mental Lemma for colored triangulations. The first-time reader might want to jump to

the definition of the cubical analogue of the AI and B parameters and return to these

lemmas when quoted.

Lemma 19 Let ): do -E*n E n- 1 be an arbitrary cubical coloring of the surface of the

standard n-cube. Consider the set of ordered facets S = { fE Ordn,_ (E n) o f = id}.

These ordered facets correspond to facets that are colored with all colors. Then

E(f) = ,
fES

and the set S contains at most 4 elements.

Proof: Let us first note two properties about the set S. If f,g S such that Im(f) =

Imra(g), then f = g. If f, g E S such that the two facets Im(f) and Im(g) are neighbouring

facets, then f = rog, where r C Ba is a reflection that leaves Im(f)flIm(g) fixed. Observe

that in this case (f) = -(g).

When S is empty there is nothing to prove. Hence, without loss of generality we may

assume that the facet (*, *,... , *, 0) is one of those colored with all colors, and that this

facet keeps the orientation. That is, o = id.

Observe next that for an arbitrary cubical coloring of the surface of an n-cube, there

cannot be three ordered facets f,g, h S meeting in one vertex. In fact, when we

assume the contrary, without loss of generality we may suppose that Im(f) = (0, *,..., *),

Im(g) = (*, 0, *,. . .,*), and Im(h) = (*, *, 0, *,...,*). Let x = (el). Observe that x is

adjacent to 0 in on -- . We have that (el) = = 0(g(x)). Since g is a bijection between
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[]n-1 and the facet (* 0, *,..., ,*), we get el = g(x). Similarly we have el = h(x). Since

a is adjacent to 0, f(x) is also adjacent to 0. Hence f(x) = e for some i > 2. Now

5(el) = = q(f(x)) = (ei). If i > 3, then we reach a contradiction, since is a

bijection between 1'n-1 and (*,0,*,..., *). Similarly, if i = 2, we reach a contradiction

by the fact that is a bijection between n
" -1 and (*,*,0, *,..., *).

Therefore, besides the ordered facet , there can be at most three other ordered facets

in S. If there is only one other such ordered facet f, and if Im(f) is a neighbouring facet of

(*, *,..., 0), then our statement is an easy consequence of condition (iii) of Definition 29.

Assume next that besides t C S, there are f,g S such that Im(f) and Im(g) are

neighbouring facets to (*,...,*,0). We may suppose that Im(f) = (*,...,*,0,*) and

Im(g) = (,*,...,*,1,*), since Im(f) and Im(g) are not adjacent. In this case we can

easily deduce from 0 o = id that

f((xl,,Xn-1))) = (71.,Xn-207-,0,1)

9((X 1,. ... _n-1)) = (Xl, , n-2 1 1 ,1,1-Xn-1).

Consider h C Ordn 1l(O Ln) defined by

h((xl, .,Xnl)) = (Xl , ..,Xn2-2, - X,-1, 1).

TWe claim that h S.

0(h((xl.,,Xn,_-2,0))) = (( 1,... Xn-2, 1,))

= (g9((1,.., n-2, 0)))

= (X1,. , _ 7 -20).

Similarly, we find that (h((z1,...,xn_ 2,1))) = (X1,...,xn_ 2,1), and thus the claim is
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proved. Observe now that (t) = -(f) = -(g) = e(h), and we obtain the statement of

our lemma.

Assume now that there is no f C S such that Im(f) is a neighbouring facet of

(*,...,*, 0). Construct a map 4: {0, 1}" - 1 - {0, 1}n" - by

P((Xl,... , n-1_)) = ((Xl,..-,_i, 1n- )) .

The map 4 satisfies the conditions of Lemma 16. Thus either we have E Bn-1l, or there

is a facet F of OFn -
l and a vector e C {+ei, -ei}i=l,...,n- such that e I F and 4(x) = x+e

for all x C F. Let us consider the second case first. Define f C Ordn_l(09n) by

f((X1 ,Xn-1)) _ { (xl,..., i-lO, xi+,. . ., Xn_, Xi) if e = ei

(xl,... ,Zi-l,l , .i i . ., n-l, - i) if e =-ei

It is easy to check that f E S, and that Im(f) is a neighbouring facet of (*,...,*, 0).

Vie have already excluded this case, so we may assume C Bn-1. Lemma 17 gives a full

description of all possible . Let us check the three different possibilities.

The map cannot be a reflection. In fact, if t switches the i-th coordinate, then

f S and Im(f) is a neighbouring facet of (*,...,*,0), where f((xl,... Xn-,))

(Z1 *vXi-1 X 0, xi+ v * * *n-1 Xi)

If = id or is a rotation, then it is easy to see that there exist f C S such that

Irn(f) = (*,..., *,1). Since sign(G) = 1, it follows that e(f) = -e(t). This finishes the

last possible case, and thus the proof is complete. QED

Lemma 20 Given a cubical map ]: C1n - On such that 4, is not a bijection, let
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T = f Ordn(O") : b o fo t,- 1 = - 1}. Then

E £(f) = 0,
fET

and T contains at most 4 elements.

Proof: If T is empty, there is nothing to prove. We can assume that o = , since

there exists a f' G T, and we can consider the lemma with the map = ', o f'. Since f' is

a bijection, there is a one to one correspondence between T, and T,. Moreover y o 1 = L.

Consider the projection p: o" -n] "-1 defined by

p((Xl,.., Xn)) = (Xl*...., Xn-1).

Obviously p is a cubical map and p o = id.

Observe that there is a bijection between Ordn( z f) and Ord,(_l(( n)) that preserves

signs. Given f Ordn(On) we have that f o C E Ordn_ 1(a(O)). Also given g 

Ordn_l(( R n)), Lemma 15 gives us a unique f E Ord,( n) such that f o = g. Moreover

it is easy to check that e(f) = e(g).

Apply Lemma 19 to the cubical map p o b: o " n - n-1 (Observe that we can view

p o b as a cubical map from 0( n").) Let S = {g C Ordn_l(0 n) : p o og = id}

Consider the map P: T ) S, defined by P(f) = f o . The map P is well defined

since f o E Ord- ( n) and p o o f O = p O l = id. If we can prove that P is bijective,

then the conclusion of the lemma follows.

For every g G S there is a unique f E Ordn( l") such that f o t = g. Hence P is at

least injective. In order to prove the surjectivity of P, we only have to show that this f

is always an element of T when g E S.

From f o t = g we have o f o = 10 og. Since p o og = id, we know that

(b og)((x,...,xn-_)) = (x,..., xn- 1,z) where z may depend upon x,...,x,,_l. We
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claim that z is constant. If not, then we have (,bog)(x) = (xi,..., x,_1, 0) and (bog)(y) 

(y, .. ., Yn-1, 1) for some x, y E {0, l}n. Since b og is a cubical map, it does not increase

Hamming distance. Thus

d(x, y) + 1 = d((xl,..., n-l 0), (y... Yn-1, 1))

- d(( o g)(x), ( o g)(y))

< d(x, y),

and this contradiction proves the claim.

Next we show that z is always equal to 0. Assume the opposite, that is, z = 1

for some g C S. Consider first the case when Im(g) is equal to the facet (*,...*,0)

or a neighbouring facet of (*,...,*,0). Then there are some values x,y such that

g((x1, ., n-1)) = (Y1, ..,. Yn-1, 0). Hence,

-= (b o g)((Xl, ,Xn-1))

= ,0((yl,..,yn-10))

= (yl, · · · , n-1,0),

where the last equality follows from b o t = . But this is a contradiction, since the last

coordinate of the first vector is different from the last coordinate of the last vector in

these equalities.

Thus we are left with the case when Im(g) is the opposite face of (*,..., *, 0), that

is, Im(g) = (*,...,*, 1). Define o : nn [O
n by

= (X1,. . Xn-1)

= g((xl, · · ·, n-1)).
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Now o /o0 = 0o O = id, and this contradicts the assumption that 'b is not bijective.

Thus we have proven that z is always equal to 0. So 0b o g = and we conclude that

, o f o = o g = , and so f E T. Hence P: T - S is bijective. Thus ITI = ISI < 4

and

E (f) = e(P(f)) = E E(g) = 0.
fET fET gES

QED

In the following we will investigate the linear relations between coloring parameters,

which are defined in analogy to the numbers AI and B of the simplicial case.

Definition 32 Let f C Ordn( m ) be an ordered n-face of a standard m cube, [] an n-

dimensional oriented cubical pseudomanifold, and : >m " a cubical coloring. We

say that an ordered facet f of El is f-colored when o f = f holds. We define

Af := Z £().
of =f

Similarly, for an ordered boundary (n- 1)-face g C Ordn,_ ( m) of the standard m-cube,

we say that an ordered boundary subfacet g of [ is g-colored when o g = g holds. We

define

B9 := E e(S())-
.0o=9

Observe that f C Ordn( l) satisfies o f = f if and only if the facet F := Im(f)

satisfies ImdlF = Im(f) and f = q|F-1. This allows us to write

Af = E Et = F-m)X
4(F)=Im(f)
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where F ranges over the facets of Ol. Similarly we can write

Bg = E 6(qf20IG)),
O(G)=Img

where G ranges over the boundary subfacets of O.

As in the simplicial case, condition (ii) of Definition 29 implies the following sign

relations.

Lemma 21 We have

Af, = sign(7r) Af (2.17)

for all r E B,, and

Bgor = sign(r) Bg (2.18)

for all r E Bn-i.

Lemma 22 (Fundamental coloring lemma for cubical pseudomanifolds) Let []

be an orientable n-dimensional cubical pseudomanifold. Color the vertices of O arbitrarily

with the vertices of the standard n-cube F, i.e., define a cubical map q$: - [O]. Then

we have

Ah = BhoL

for every ordered n-face h C Ordn,(ln). In particular, when l is an ordered cubical

pseudomanifold without boundary, then we have

Ah = O.

Proof: Our reasoning will be analogous to the proof of Lemma 4. Construct a graph
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G = (V, E) associated to O and its coloring 4. The vertex set will be

V:={f Ord,(o) : of o= hot}.

We can write V as the disjoint union of

V:={f V: o f =h},

and

V2 :={f E V: o f h}.

Split V1 and V2 into the disjoint union of smaller sets. We have

Vi = Vi'W Vi" (i = 1,2)

where

V' = {f C V : f o Ord,-_l(a[)},

and

V" = {f V : f o E Ordn-l(O )}.

We define the edge set of G as a disjoint union E := E U E2 where

E1 := ((fi,f2): fi O t= f2 o t, fi 5 f2},

and

E2 := (fl, f2): Im(fi) = Im(f2), fi y# f2}.

Consider the subgraph of G consisting of the edges in El. We claim that this subgraph

is a matching on the vertices VI' W V2 , and has the vertices V" W V2" as singletons. Since

78



the vertices Vi" are on the boundary, they cannot be adjacent to any other vertex through

an edge in El. Thus for the moment we can restrict our attention to the vertices V1' W V2
1.

Since f o = f2 o and q o fi o = h o , the intersection of Im(fi) and Im(f 2 ) is the

subfacet Im( o fi o ). Hence given fl there is exactly one way to choose f2, because

of condition (ii) of Definition 26. Thus the claim holds. Moreover, by condition (iii) of

Definition 29, the signs of adjacent vertices in this subgraph are opposite.

It is clear that the edges in E2 only connects vertices in V2. Consider the subgraph

that consists of vertices in V2 and the edges in E2. Since two different vertices fi, f2 C V2

are adjacent if Im(fi) = Im(f 2 ), this graph consists of vertex-disjoint cliques. Each clique

is a complete graph and corresponds to a facet of [] that is not completely colored. Apply

Lemma 20 with ' i= h- o . Since the set T in the lemma has cardinality less than or

equal to four, and since the cardinality is even, we have that each clique is isomorphic to

either K2 or K4. (Recall that K, is the complete graph on n vertices.) Thus the possible

degrees in this subgraph are 1 and 3.

We can now present the results about the different degrees in the following table.

Degree in V1' V1" V2' 1/2"

E 1 1 0 1 0

E2 0 0 1 or 3 1 or 3

In order to make a bijection argument we will consider a subgraph G = (V, E) of

the graph G. For each clique in E2 that is isomorphic to K4, select two edges that are

vertex-disjoint, such that vertices connected with these two edges have opposite sign. By

Lemma 20 it is possible to make such a choice. The set T in the lemma contains as many

positively oriented ordered facets as negatively oriented ones. Let E 2 be a subset of E2

consisting of these selected edges and the cliques isomorphic to K2. Each vertex in V2

has degree exactly 1 in E2 . Thus the table looks like
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Degree in V, V[ V' V2 

El 1 0 1 0

E2 0 0 1 1

Let G be the subgraph of G consisting of the edges E = E E 2. Observe that two

adjacent vertices, fi and f2, which are adjacent in the graph G have different signs. That

is, (fli) -c(f2)-

The rest of the proof is now the same as the end of the proof of Lemma 4. The

graph G consists of singletons, paths and cycles. A path in G that connects two vertices

fL,f2 V1' will have odd length. Hence we know that (fi) = -(f2). The same is true

of a path that connects two vertices in V2". A path that connects a vertex in V' with a

vertex in V2" will have even length, and hence the two end points of such a path will have

the same sign. We conclude that

E (f) = E (f).
fEV f e v,' f e V2'

The h-colored ordered facets are represented in the graph G by the vertices in V1.

Hence

Ah= E (f)= E E(f).
4of=h fEV1

Similarly the h o l-colored boundary faces are represented by the vertices in Vl"' V2", and

thus

Bhot = E e(a(g))
bog=hot-E E(f)
qofoL=hot

- E 6(f),
f eVI" lv2,
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where in the first sum we are summing over an ordered boundary subfacet g, and in the

second sum an ordered facet f, such that f o t is an ordered boundary subfacet.

By combining the three above equations we get

Ah = E (f) + E 6(f)
f EV f evI"

E (f)+ E e(f)
f ev2' f eV,"

Bho, ·

Observe that the paths and the singletons in the graph G describe a bijection between

the signed set of h-colored facets of [ and the signed set of h o t-colored subfacets of 1.

Hence the proof is bijective. QED

Observe that Lemma 19 follows from the above lemma, by considering 9o] as an

orientable (n - 1.)-dimensional cubical pseudomanifold. In fact, we could have proven

Lemma 19, Lemma 20, and Lemma 22 at the same time by using induction on dimension,

without referring to Lemma 16.

Theorem 6 (Master theorem for cubical colorings)

Lret [O be an orientable n-dimensional cubical pseudomanifold, and ): O m m be

a cubical coloring of it with colors of the standard m-cube. Let A : ]m > O' be any

cubical map. Then we have

Af - Bg. (2.19)

f C Ordn( Om) g C Ordn_l(Om)

Aof=id Aog = 

In, particular, for n-dimensional oriented cubical pseudomanifolds without boundary we
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have

a, A= 0. (2.20)

f C Ord,(Om)

A of = id

Proof: We apply Lemma 22 to the coloring A o El: - E o n, and the ordered n-face

id Ordn(O En). We obtain AAoO = B °'o . As in the simplicial case, AAid is equal to theid id
left hand side, and B °XO is equal to the right hand side of (2.19). QED

2.3.3 The vector space of Af-s and Bg-s

In this subsection we show that in general, in analogy to the simplicial results of Sub-

section 2.2.3, there cannot be more linear relations among the numbers Af and Bg than

those implied by Theorem 6.

For this purpose we need to define a cubical analogue of the exterior power of a vector

space.

Definition 33 Let Cube(m, k) stand for a vector space with basis

{e, : E OEl},

i.e., Cube(m, k) has a basis indexed with the k-faces of the standard m-cube. We represent

the faces of E" with vectors (uj,.... um) {0, 1, *}m in the usual way. Given a k-face

C = (u 1 ,. . ,um) of lO we define the standard embedding L, of o by

l, : (1, X2, , k) (UlU2,, 1., . .,X2, .. Xk ,..., Um)

where the coordinates X1, 2, . , x are substituted into the * signs from left to the right

in this order. Given a cubical order f on a k-face o, there is a unique 7r C Bk such that
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f = L, o r. We introduce the notational convention

ef := sign(r) e,.

Now we can define the weight vector of a coloring as in the simplicial case.

Definition 34 Given a coloring q): o [] " of an n-dimensional cubical pseu-

domanifold, we define the weight vector of the coloring as the following element of

Cube(m, n) D Cube(m, n - 1).

w:= E At,, e, + E B e.
o'E n 'rE E]7_

n n-I

We denote the Z-module resp. vector space generated by all weight vectors by M resp. W.

Moreover, as in the simplicial case, we denote the submodule resp. subspace generated by

the weight vectors of colorings of oriented cubical pseudomanifolds without boundary by

Mito resp. Wo. (Note that both Mo and Wo are subsets of Cube(m, n).)

Again, as in the simplicial case, the equations (2.17) and (2.18) allow us to think of

Af resp. Bg as the "coefficient of ef resp. eg in w,".

Introducing A., := A, and B := B,, we may write the equations (2.19) in the follow-

ing form.

E sign(A o ,) A. = sign(A o LT) B,. (2.21)

E C- °n E n-1

A(C) = {o, l}n A(r)= (*,,, , I 0)
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Similarly, the equations (2.20) are equivalent to

sign(A o ) A, = 0. (2.22)

n

A(o) = {o, 1}

Among the equations (2.21) and (2.22) there is an important type of special case.

Definition 35 Let r = (ul,...,Um) be an (n - 1)-face of nEm. Assume that the * signs

in (l,..,Urm) are uil, Ui,,... , uin,. Define the cubical map A, : 1 m ) F- n' as follows.

A1((X1,X2 .... Ixm)) (xi" x,2 . . Xin- 1 0) when x r r
(xi,xi, ... ,xin 1) when x r

We verify that A, is a cubical map. If both x and y are adjacent vertices, and if they

belong or don't belong to r at the same time, then the last coordinate of their A, image

will agree, so A,(x) and A,(y) will be adjacent or equal. If x and y are adjacent, and say

x C , y ¢ r, then there is an i ¢ {il, i 2,. . . ,ini} such that xi y$ yi. Thus we must have

(i,, xi X,.. ., xi,_) -= (Yil, Yi2 ... , yin-), and so A,(x) and A,(y) are adjacent.

Let us now evaluate (2.21) and (2.22) for A = A,. First we have to find those n-faces

o of Em- for which A,(a) = {0, 1}n. It is easy to check that this holds iff A,(O) contains

(*,...,*, 0), which holds iff o D r. Thus the right hand side of both equations will be

E sign(A, o ,) A

O:n the other hand, for an (n - 1)-face r' of Em, we have A(,(r') = (*, *,... , 0) iff r = r'.

Therefore we obtain

E sign(A, o t) A, = B, (2.23)
sD.-
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in the general case, and

E sign(X, o ,) A, = 0 (2.24)

for oriented cubical pseudomanifolds without boundary.

Note next that the maps A,, where It is an (n + 1)-dimensional face of E-m, may be

considered as a coloring of the surface of the standard (n + 1)-cube. The weight vector p,.

of this coloring is a cubical analogue of the notion of elementary weight vector of the first

kind defined in the simplicial case. Similarly, the maps t,, where v is an n-dimensional

face of m , may be considered as a coloring of a standard n-cube. The weight vector

q, of this coloring is the cubical analogue of an elementary weight vector of the second

kind.

Theorem 7 Let Mo be the set of those elementary weight vectors p,A of the first kind for

which the code (1 ,... , u) of the (n + 1)-face Iu has no O-s between the last two * sign.

Let M be the union of Mo with the set of those elementary weight vectors q, of the second

kind, for which the code (vl,...,Vm) of the n-face v has only 1-s after the last * sign.

Then Mo is a Z-basis of Mo, and M is a Z-basis of M. Moreover, the equations (2.23)

together with (2.17) and (2.18) span the vector space of all linear relations among the

Af-s and Bg-s, and the analogous statements hold for the equations (2.24) and (2.17)

when we restrict ourselves to oriented n-dimensional cubical pseudomanifolds without

boundary.

Proof: In analogy to the simplicial case, we prove the theorem first for the boundariless

case. We introduce an antilexicographic order on the vectors e, C Cube(m, n) as follows.

Let us write or in the form (ul,...,un) {0,1, *}. We set 0 < * < 1, and define

(u 1'.., ,um) < (u',., . ,u') iff for the largest i satisfying ui £ uI we have ui < u.

With this order, the antilexicographically first term of a p, can be obtained by re-

placing the last * of = (,..., u) by a 0. If we restrict ourselves to the p,-s which

have no 0 between the last two *-s, then we get every (ul,..., urn) that contains a 0 after
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the last * exactly once as the antilexicographically first term of some p,. (To get this pt

we have to replace the first 0 after the last * by *.) Hence our chosen p,-s are linearly

independent.

Assume now that there is a r C Mo that is not a z-linear combination of our p,-s. Let

us take such a counterexample r with the largest possible antilexicographically first term.

The antilexicographically first term of r must be of the form (ul, u2,..., uk, *, 1 1,..., 1)

for some k > n - 1, because if there is a 0 after the last *, then we can subtract a

multiple of one of our p,-s such that all terms of the difference will be antilexicograph-

ically larger. Also, by the definition of our antilexicographic order, all antilexicographi-

cally larger terms must be of the form (u, . . . U, U±, 1,1,..., 1), where u+ 1 C {*, 1}

because u+1 > *. We claim that only the face represented by the antilexicographi-

cally first term of r contains the (n - 1)-face r := (u,... ., , O, 1, 1, ... 1). In fact, if

u+l = 1, then (u:t,..,Uk, U l,1, ,...,1) r, and if u+l = * then the only way
(l4, ... ,I U+1, 1,1 .. .,1) can contain r is to have ul = u'1 ... , k = 

The vector r is in the linear span of weight vectors, and the coefficients of its terms

must satisfy the equations (2.23). Applying (2.24) with r it follows that the antilexico-

graphically smallest term of r is 0, a contradiction.

Therefore our p,-s are a Z-basis for Mo and a vector space basis of W. Note that, in

proving this, we used only the equations (2.24), and implicitly (2.18). Hence the kernel

defined by these linear relations is not larger than Wo, and so these linear relations span

the vector space of all linear relations.

The proof of the fact that M generates M runs in analogy to the boundariless case.

'We introduce the same antilexicographic order on the basis e, C Cube(m, n) as be-

fore. Again we assume the existence of a counterexample r M that has a largest

possible antilexicographically first term in Cube(m, n). (In analogy with the simpli-

cial case, it may happen that we have r Cube(m, n), but r has a uniquely defined

Cube(m, n)-component.) As before, we can show that the antilexicographically first
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term of the Cube(m, n)-component of this r is the multiple of e~, where v is of the form

(ul, u2,..., uk, *, 1, 1, .., 1) for some k > n - 1. Subtracting an appropriate multiple of

q[, we obtain a counterexample with larger antilexicographically smallest term, a contra-

diction. The only way out is to assume that the Cube(m, n)-component of r is 0, but

then equations (2.23) guarantee that the Cube(m,n - 1)-component of r is zero as well.

This shows that M generates M. On the other hand, the antilexicographically first terms

of the elements of M are pairwise different, and so M is a Z-basis. Therefore M is also

a vector space basis of w¢. In our reasoning we have used only equations (2.23), (2.18)

and (2.17). Hence these equations generate the space of all linear relations. QED

Remark The fact that the equations (2.17), (2.18), and (2.23) generate all linear

relations among the Af-s and Bg-s also may be shown directly, in analogy to Lemma 5.

Remark In both cases (simplicial and cubical) our theorems and lemmas remain

valid if we define the orientation E to map into Z. Thus the A(il,i2,...,i,+l)-s and Af-

s, resp. the B(j,j ,.....j) and Bg, lie in Zp, and we obtain mod p congruences from our

coloring theorems. We get an interesting degeneration in the case of p = 2: here we

may consider every manifold "orientable" by defining a function that assigns 1 to every

ordered facet. Hence the mod 2 analogues of our coloring theorems hold even for non-

orientable pseudomanifolds. In the cubical case we can reproduce this way the cubical

results published in [11].

2.4 Cubical homology

2.4.1 Cubical homology groups and chain maps

If there were an appropriate cubical analogue of simplicial homology, we could instantly

generalize the results of Subsection 2.2.4 to the cubical case. In this subsection we show
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that one can define such a homology. It is sufficient to build the theory of absolute

cubical homology, because then we may obtain relative homology and mapping cones

using exclusively the methods of homological algebra.

In the definition of the cubical homology groups we will embed the groups Bk into

each other in the following way. Recall that Lk denotes the embedding Lk: k , [ k+l

that takes (x1,..., k) into (z 1,..., k, 0). This induces an embedding k Bk > Bk+1

defined by

3k(r)((z1 , * *, Xk+1)) := (((x1,..., k)), Xk+1).

Obviously, k(Bk) is the stabilizer of the facet (*, *,..., *, 0) in Bk+1. We will often use

the following straightforward identities that hold for all r C Bk. We have

sign(3k(7r)) = sign(7r) (2.25)

and

Jk(lr) o k = k o -r. (2.26)

Definition 36 Given a cubical complex 0, let Sk( ) stand for the free Z-module gen-

erated by the basis { : C k}. We represent Sk(F) as the module generated by

{f: f E Ordk(EO)} modulo the relations

[f o r] = sign(r) [f]

for all 7r Bk. The symbol [f] stands for the equivalence class represented by the ordered

face f.

We define the boundary map k : Sk(2 z) > Sk-1( ) as follows. We choose a system
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of representatives 7r1,.. .,7r2k for the set of left cosets [Bk :k-1(Bk-1)]. We set

2k

ak([f]) = sign(iri) [f o ri o Lk-l]. (2.27)
i=l

We call the homology groups Hk(C,.( ] )) the cubical homology groups of C].

When we show that a is well defined and that it is a boundary map, we will use some

elementary group-theoretical facts, stated in the following lemma.

Lemma 23 Let G be a group, H a subgroup of finite index in G, and gl,..., gk a system

of representatives for the set of left cosets [G : H]. Then the following statements hold.

1. For all g C G the set {g 1gl,.... . , gk} is a system of representatives.

2. If g belongs to the normalizer NG(H) of H in G, which is defined as

NG(H) := g G: g H g- = H},

then the set {gl .... ,gk . g} is a system of representatives. Moreover, if g , H

then the action gi · H g · g H of g on the left cosets is fixed-point free.

Proof: Because of the finiteness of [G : H], it is sufficient to show in both cases that

the listed elements belong to pairwise different left cosets. In the first case, we have

g gi H = g gj H iffgi .H = gj H, which holds iff i = j. In the second case

gi g H = gj g · H is equivalent to gi · g · H g- = gj g H g-1, and so we reach the

same conclusion by g · H · g-1 = H. Finally if gi g · H = gi · H then we have H = g H

and g G H. QED

Lemma 24 The map a is a well-defined boundary map.
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Proof: Note first, that the definition of a does not depend on the choice of the coset

representatives rl,. .. , r2k. In fact, by (2.25) and (2.26) we have

sign(r o 3(7))' [f o 7r o 3(y) o )] = sign(7r) sign(j3(y)) [f o o o y] = sign(7r)- [f o o ]

for every 7r E Bk and y Bk-1. Hence, if 7r and r' belong to the same left coset, i.e.,

7r' = r o 3(Bk-1) for some C 3(Bk-1), then they contribute the same term to 0([f]).

Next we show that does not depend on the choice of the representative f for [f]

either. By Lemma 23, if rl,... ,r2k are left coset representatives then (7rorl),..., (7ror2k,)

are also left coset representatives. Thus we have

2k 2k

y sign(7ri) [(f o 7r) o 7ri o ,] = sign(7r) · sign(7r o 7ri) [f o (r o 7ri) o ]

i=1 i=1
2k

= sign(7r) · . sign(7ri ) [f o ri o l].
i=l

Therefore the definition of 0([f]) gives the same result for f and f o r, for all r E Bk.

Hence 0 is well-defined.

Finally we show that a is a boundary map. Let rl,.. ., 7r2k be a system of representa-

tives for [Bk: (Bk-1)] and 7' ,... , 7r2k 2 be a system of representatives for [Bk-1: (Bk-2)].

Then for all f C Ordk( [] ) we have

02(If]) = ( sign(ri). [f o 7ri 0 l]

2k 2k-2

= sign( ri). sign( 7r) [fo 7ri o o T o L]
i=l j=l
2k 2k-2

Z= S Esign(7ri o (7r')). [f o rio 3(r) o t2].
i=1 j=l

Here the elements 7ri o3(7r}) form a system of representatives for [Bk: 32(Bk_2)]. Similarlyv .I jILI Ir3 l7l II)ID~lr~r C V U
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to the case of 8(f), we can show that if we replace 7ri o (7r}) with any other system of

representatives for [Bk: J2 (Bk-2)], the result remains the same. Thus we have

4k(k-1) sign(). [f 2]

a ([f]) = E sign(i ) * [f °
i=1

where r"', r',... 7,r(k-1) is any system of representatives for [Bk: 2(Bk-2)].

Consider r C Bk defined by

r(x,.. . Xk) := (1,., Xk-2, Xk, Xk-1)-

Geometrically, r can be represented as the reflection in the hyperplane Xk = k-1l, and

so we have r2 = 1 and sign(r) = -1. Observe that r o t k-l o Lk-2 = k-1 o0 k-2. Moreover

r commutes with all elements in 32(Bk_2 ), thus we have

r O 32(Bk-2) 7- = 32(Bk_2)-

Hence r is in the normalizer, and thus by Lemma 23, (r"' o r),... (,r&k(k ) 0 T) is also a

system of left coset representatives. Therefore

4k(k-1) 4k(k-1)

:"([f]) E sign(7o) [f o ' ° ] = sign(7r") [f o 'o 2] = _02(if])
i=l i=l

holds, implying &2 ([f]) = 0. QED

Remarks

1. We only have to modify the end of the last proof, if we also want it to work in

the case of chain-complexes with coefficient-field of characteristic 2. By Lemma 23,

r X 22(Bk- 2) induces a fixed point free permutation of the left cosets [Bk: 22 (Bk-2)].
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Thus we can choose a system of representatives such that 7ri' o r will be equal to

.7 n .7 %a ir' with j i i for each i. For this j we also have Or = x" because r is an
involution. Hence we can arrange these coset representatives into pairs {i7r', 7r'},

with 7r o 2 == o t2 and sign(7r') =-sign(7r). The terms sign('r') [f o i' o 2]

and sign(7r,'). [f o ro L2] cancel for each pair {7r', 7r~'}, and so we have 02 ([f) = 0.

2. Consider the system of representatives .7r.o,. r ., 7, r for

[.k J(Bk-)], defined as follows,

r(x,, . Xk) := (X1, . .. ,Xi-l,Xk, Xi, Xi+l,...,Xkl), and

W7r(xl, . . Xk) (Xi,. . .,x k, Xi, Xi+1, ,Xk-l)

for i = 1,2,...,k.

We can obtain the representatives 7r° by reflecting one after the other in the follow-

ing hyperplanes: k Xk-l,zk-1 = Xk-2,... ,i+ = xi. Hence 7ro is the product

of k - i reflections, and we have sign(7r°) = (-l)k -i. Similarly, we can obtain 7r.

from 7r° by reflecting in the hyperplane xi Thus we have sign(7) = (-l)k-i+.

Introducing

ai := 7r 0 Lk -1,

bi := 7iro ° k-1

for i = 1, 2,... ., k, we obtain the following formula,

k

O([f]): = (-1) k- i. ([f o ai] - [f o bi]). (2.28)
i=1

Here ai is the embedding of k- 1 into the facet (*,*, ... ,*,0,*,...,*) of k,

where 0 stands at the ith place, and bi is the embedding of F k- 1 into the facet
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(*, *, ... *, 1, *,... , *), where 1 stands at the ith place. The continuous analogue

of this definition can be found in [24] and [18].

It is worthwhile noticing that each left coset from [Bk : (Bk-1)] is equal to the set

of cubical orders on a facet of ] k.

3. One can define simplicial homology similarly to the way we defined cubical homol-

ogy, using a system of representatives for [S, : Si-1], where we embed S_l into S,

as the stabilizer of a point. It is easy to show that this definition agrees with the

usual one.

In the exact same way as in the simplicial case, we can define the cochain complex

S'( l) and the cubical cohomology groups Hk(S'( O )).

Our next step is to define chain maps induced by cubical maps.

Definition 37 Let q5: l -) ' be a cubical map. We define the chain map S,()

induced by as follows. For every f Ordk( ) we set

Sk()([f]) =( [ o f] if o f is injective

0 otherwise.

We eztend the definition by linearity to all elements of Sk( L ).

The map r o f is injective iff the restriction of b to Im(f) is injective, and in this

event o f is a ordered face of l'. Thus S,() is well defined. Similarly a simple

injectivity-check shows that for cubical maps q$: O - 2' and b: 1' - O" we have

S.(+ o b) = S,(q) o S,().

'We only have to check that S,() is really a chain map.
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The definition of chain map suggests extending the usage of the symbol [f] to the

case when f is not an ordered face, but only a (non-injective) cubical map C k * [.

I)efinition 38 For a cubical map f : k -, we define

[f] :=0

whenever f is not injective.

If we can show that the definition of 0 is consistent with the extended definition of

[f], then we can reformulate the definition of S.(+) by setting

Sk()([f]) := [ o fl

for all cubical maps f: Ok > O. From this definition it is straightforward that S.(b)

is a chain map.

Thus we only have to show the following lemma.

Lemma 25 Given a system of representatives 7r1 ,..., 7r2k for [Bk (Bk-1)], the defining

equation (2.27) specializes to an identity of the form 0 = 0 when we substitute a cubical

map f: Ok C L which is not an ordered face.

Proof: We have to show that

2k

E sign(7ri) [If o rio Lk1] = 0 (2.29)
i=1

whenever f : ok _--_4 is not an ordered face. Note that the right hand side gives the

same result irrespective of the choice of left coset representatives.

Condition (ii) of Definition 30 guarantees that Im(f) is contained in some face of [3.

VAT.l.o.g. we can assume that is equal to this face, i.e., we can restrict ourselves to
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the case of cubical maps f : Ok -- m for some fixed m C N. The equation (2.29) is

trivially true when none of the maps f o ri o k-1: ok-1 ' -m is an ordered (k - 1)

face.

Assume therefore, that for some r C m l"
1, at least one of the maps f o7ri o is a cubical

order on r. It is sufficient to show that the sum of those terms in (2.29) corresponding

to a cubical order on r is 0. The same proof will work for any other (k - 1)-face of rim.

W.l.o.g. we may assume r = (*,...,*0,...,0), where k - 1 stars are followed by

mn - k + 1 zeros. Also we may assume that f o 7rl o , is a cubical order on r, that 7rl = id,

and that f maps (x1,...,xkl,0) into (l,...,kl,0,0O,...,0). We show that in this

situation we may assume m < k. This is obviously true when Im(f) = r, hence we may

suppose that some x = (xl,.. ., k_l, 1) satisfies f(x) ' r. From the Hamming distance

preserving property of f, and from f((xl,... , k_-1, 0)) = (xl, .zk-, xk0, ... , 0), we infer

that f(x) = (zx,..., k-l,O0,.. ., 0)+ej for somej > k. Now for any other y E (*,...,*, 1)

with f(y) ¢ r, we must have f(y) = (yl,... ,yk-, 0,..., 0)+ej with the same j as before,

since d(x, y) > d(f(x), f(y)). Thus Im(f) is contained in the k-cube r U (r + ej).

Therefore we may assume that f is a map from lk to lk, and r = (*,... , *, 0). Our

statement then becomes -after an eventual change of coset representatives- a reformula-

tion of Lemma 20. QED

Hence we have a cubical analogue of simplicial homology, and every result of Sub-

section 2.2.4 can be repeated in the cubical setting. The only thing that remains to be

shown, in order to have the boundariless version of our theorem, is that Hn(S.( E m)) = 0.

This will follow from the fact that in the cubical case we can define homotopy equivalence

of cubical maps such that homotopic cubical maps induce chain-homotopic chain maps.

This result will be the subject of the next subsection.
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2.4.2 Homotopy equivalence of cubical maps

Definition 39 Given two cubical complexes Li and ' we define their direct product

E] x El' on the vertex set vert(O ) xvert(Ol') to be the family offaces {oa x : C EI, T C l '}.

Given the cubical map : - ' and another cubical map : ) fr we define

the direct product of the maps b and 40 by the formula

x ((uv)) :=Mu), (v)),

for all u E vert( c) and v C vert(n ).

It is easy to check that the direct product of cubical maps is a cubical map. In

particular, the direct product of an ordered k-face of Ol and an ordered -face of O' is an

ordered k + -face of x .

Before we give our definition of homotopy equivalence, note that a graph consisting

of a path is a one-dimensional cubical complex, and a natural analogue of a continuous

path in a topological space.

Definition 40 Two cubical maps , 4': ·O [- FL' are homotopic when there is a path

I = v. .. .vn and cubical map A: O x I - O' such that for every v E vert( ) we have

(v) =-: (v, vo) and + (v) = (v, v,). If we can take I to be a path of length one, i.e., a

standard 1-cube, then we call and 4' elementarily homotopic maps.

Obviously the above notion of homotopy is an equivalence relation, and it is the

transitive closure of the elementary homotopy relation.

In this finite setting it is relatively easy to prove that homotopic maps induce chain

homotopic chain maps.

Lemma 26 If the cubical maps , ': O - Li' are homotopic, then the induced chain

maps S.,(q), S.(4) :S.(O ) - S.([O') are chain homotopic.
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P'roof: By transitivity, we may restrict ourselves to the case when d and ?, are elemen-

tarily homotopic. On the other hand, by the compatibility of the composition of cubical

maps with the operation S.(j, we may assume that LU' = x {0, 1}, = id, (v) = (v, 0)

and ,(v)= (v, 1).

The direct product f x id of f C Ordk(•) and the identity map id of {0, 1} is an

ordered (k + 1)-face of x {0, 1}. For any 7r E Bk, we have

(f o r) x id = (f x id) o (r x id),

where r and r x id have the same sign. Thus we can define

sk: Sk(L ) - Sk+1( x {0,1})

[f] ,-> [fxid].

Now, using (2.28) we obtain

(·s + o = s (i__al-1)k-i *([f o ai]-[f o bi]) + O([f x id])
k

= Z(-l)k - i ([(f o ai) x id] - [(f o bi) x id])
i=1

k+l
+ (-1_)k+ l- i · ([(f X id) o a,] - [(f x id) o bi]).

i=1

As a straightforward consequence of the definition of ai and bi we have (f o a) x id =

(f x id) o ai and (f o b) x id = (f x id) o bi for i = 1, 2,..., ,k. (We add the coordinate

fair id as the last coordinate). After the cancellations we obtain

(s o 0 + 0 o s)([f]) = [(f x id) o ak+] - [(f x id) o bk+l] = S.(O)([f])- S.()([f]).

Therefore we have s o + o s = S.() - S.(1,b). QED
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As a consequence we find that homotopy-equivalent cubical complexes have isomor-

phic homology and homotopy groups. In particular, l m is homotopy-equivalent to 0 °

consisting of only one point. Therefore the positive degree homology groups of a standard

cube vanish.

Let us mention finally that we have the following cubical analogue of Mayer-Vietoris

sequences for cubical complexes.

Theorem 8 Let Cl' and l" be subcomplexes of a cubical complex L. Then there exists

an exact sequence of chain complexes

- s.(Li'n ")-- S.,(o')e .(")-- S.(o'ulO") ,o

inducing a long exact sequence of homology groups

.. H(S.( i'n ")) - Hk(S.(o l')) Hk(S.(o")) - Hk(S.( L' U ")) ,

-+ Hkl(S.(l' n o")) --
The proof is straightforward.
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Chapter 3

On the Stanley ring of cubical

complexes

3.1 Elementary properties of the Stanley ring

R. Stanley suggested investigating the following ring associated to cubical complexes.

Definition 41 Let O be a cubical complex, K a field. Associate a variable x, to each

vertex v V. The Stanley ring K[O ] of the complex over the field K is the factor ring

K[x· v C V] /I(O where the ideal I( ) is generated by the following elements.

(i) x, 1 · xz2 . . X for all v,.. . ,Vk V such that {v1 ,. . . ,Vk} is not contained in any

face of I.

(ii) XU x, - x, , for all u, u', v, v' e V such that {u, v} and {u', v'} are diagonals of

the same face Cspan({u, v}) = Cspan({u', v'}) C O.

We denote the ideal generated by the elements of type (i), (ii) by I,( w ), I2( ) respectively.

We call I( ) the face ideal of the cubical complex 0.
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In this section we will show that condition (i) can be weakened to requiring the

product of at most three variables to be in I(g]), whenever the set of their indices is

not contained in any face. In Section 3.4 we will prove that for some important classes

of cubical complexes (like boundary complexes of convex cubical polytopes), it is even

sufficient to set the product of pairs to be zero in K([]) when they are not diagonals

of a face. In doing so, the following equivalence relation defined on multisets of vertices

will be instrumental. (Entries between brackets "L" and "J" are to be read as a list of

elements of a multiset.)

Definition 42 We call the multisets of vertices Lul, U 2 ,.. , Uk] and [v1, v2 , . .., v1] equiv-

alent, if k = I and Lv1, 2,..., k] can be obtained from [ul,U 2,..., Uk] by repeated ap-

plication of the following operation. If Cspan({ul, u2}) ezists, replace L[u,U 2, U3, U.. Uk]

with 1 ,uuluj, where [u, u'J is any diagonal of Cspan({ul, u 2}).

The operation of replacing a diagonal with another one is reversible, and so the

relation defined above is in fact an equivalence relation. Clearly, if a face r C contains

ul, . ., Uk} then the same holds for all equivalent multisets Lvl,... ,vk. Hence we can

say that a face r contains or does not contain a given equivalence class of multisets.

IIn particular, Cspan([ul,u 2 ,...,ukJ) is simultaneously defined or not defined for all

multisets of an equivalence class, and its value is constant on an equivalence class, on

which it is defined. The definitions yield immediately the following connections between

the equivalence classes of multisets and monomials.

Lemma 27 The monomials of K[x: v C V] have the following properties.

1. We have x,, ... uk I1( C]) if and only if Cspan( [ul,..., Uk) does not eist.

2. The differences xz - x,, where u and v are equivalent multisets of vertices, form a

generating system of the K-vectorspace I2( ] ). Consequently, monomials of degree
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k indexed by equivalent multisets of vertices represent the same element modulo

I2( ).

The following theorem is the key to understanding the role of the equivalence of

multisets of vertices.

I'heorem 9 Monomials not belonging to I( i ) and associated to multisets from different

equivalence classes are linearly independent modulo I( O ).

Proof: Assume that we have a linear combination of monomials E_ A_, xzv I(O) with

coefficients A,, C K such that all the multisets v = Lvl,...,vlj occurring in this sum

belong to different equivalence classes, and for all occurring v = Lvl,...,vlJ the face

Cspan( [vl,... ,vl]) exists. Let us fix one xU = zl ... Xuk and show that we must have

A = 0. By x_, 1 ( ) the face Cspan( Lul, . . ., UkJ) must exist. Observe that the factor

of K[ ] by the ideal (z, : v Cspan([ul,...,uk])) is the Stanley ring of the complex

] bspan(uL,..,ukj), and we have xU I( ° bspan(Lu,,...,,kj)). Observe furthermore that

if two multisubsets of V( E bspan(Luu,...,ukj)) are not equivalent in then they are not

equivalent in ° bspan(Lu ... ,ukJ) either. Thus without loss of generality we may assume

that ] = ] bspan(LU, ...uk), i.e., [O is a standard n-cube On' for some n G N.

For a standard n-cube [n we have I(E[n) = 0, and so I(E") = I2(Ln). Let us fix

a standard geometric representation q$ of "n. Then the vectors {(v): v C V(On)}

are the characteristic vectors of the subsets of {1, 2,..., n}. Let us denote by Set(v) the

subset of {1, 2, ... , n} with characteristic vector b(v). A subset X of V( O]n) is a face iff.

{Set(v) : v C X} is an interval of the boolean algebra P({1, 2,..., n}). Hence we have

Cspan({u, v}) = Cspan({u', v'}) if and only if for the corresponding subsets

Set(u) n Set(v) = Set(u') n Set(v') and Set(u) U Set(v) = Set(u') U Set(v') (3.1)

holds.
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We define a K-linear map from the K-vectorspace K[x, : v E V("n)] to the K-

vectorspace with basis Nn+l as follows. We associate to each monomial x, = , ... xv,

the vector ac(x) = (a0, a,...,a,), where a is I and for i > 1, ai is the number of j-s

such that i E Set(vj). (We count repeated vertices with their multiplicity.)

If two multisets v = Lvl,...,vlj and v' = Lv;,...,v' are equivalent then a(x,) is

equal to a_(xv). In fact, when we replace two sets Set(u), Set(v) in a multiset of subsets

of {1, 2,... ,n} with the sets Set(u'), Set(v') such that (3.1) is satisfied then neither the

cardinality of the multiset of sets nor the number of sets in the multiset containing a given

element i C {1,2,..., n} does change. Hence the kernel of a contains I(O n) = 2(O"n) by

the second statement of Lemma 27.

Therefore in order to prove Au = 0 we only need to show that for a multiset v

LVi,... , vj not equivalent to u we have a(x) $ a(xu).

Let v = Lv1,..., vi] be an arbitrary multiset of vertices. Replacing any pair of vertices

(vi, vj) with the pair

(Set-'(Set(vi) n Set(vj)), Set-l(Set(vi) U Set(vj))),

we obtain an equivalent multiset of vertices. Using this operation repeatedly, we can

reach an equivalent multiset v' = [Lv,...,vfJ such that Set(v;) C ... C Set(v') holds.

(We can prove this by induction on 1.) Now the statement follows from the obvious fact

that in the event when Set(v;) C ... C Set(v') holds, we must have

Set(vj) = i E 1, 2,..., n : a < - i}.

Therefore a assigns different vectors to different equivalence classes of multisets of ver-

tices. QED
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Corollary 6 We have xz, ... Xk I( ) if and only if Cspan(Lul,...,ukj) does not

exist.

Corollary 7 Two monomials x ... Xuk ~' I(g z) and x,, ... x, f I( ) represent the

same class modulo I( 0 ) if and only if k = and the multisets Lul,..., ukJ and v1,.. ., vk,

are equivalent.

Part of the proof of Theorem 9 may be used to show the following lemma.

Lemma 28 Let O be an arbitrary cubical complex and k > 2. Then any monomial

xU,, z,2 ... u such that Cspan({ul,...,Uk}) exists, is equivalent modulo 2([) to a

monomial x 1 ·. x, 2 ... xk such that

Cspan({vl, v2}) = Cspan({ul,...,uk}) = Cspan({vl,..., vk})

holds.

Proof: Without loss of generality we may assume El = Cspan({ul,...,uk}), i.e., that

El is a standard n-cube "n. Let us fix again a geometric realization q5 and denote by

Set(v) the subset of {1,2,...,n} with characteristic vector +(v). We have shown in

the proof of Theorem 9 that [ul,...,uk is equivalent to a multiset [vl,...,vk] such

that Set(vi) C ... (_ Set(vk) holds. This [Lv,... ,vkJ will have the required properties.

QED

Using Lemma 28 we can show the following

Theorem 10 Let be an arbitrary cubical complex. Let I~([ ) be the ideal of K[xV

v V] generated by all monomials x, ... xk such that k < 3 and {vl,... ,vk} is not

contained in any face of O. Then we have

I(o) = I(M) + I2(E)
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Proof: By definition, I([ ) is contained in Ij([ ). Hence it is sufficient to show that if

{v 1,..., Vk} is not contained in any face of O then x,1 ' 'zk is congruent modulo I2([ )

to a monomial from I(l). We prove this statement by induction on k. For k = 2,3

we have xz,- ... k C I([]). Assume we know the statement for k and we are given

v1 ,v 2, ... ,vk+ such that {v1, . , vk+l} is not contained in any face of R. If {vl,..., v}

is not contained in any face, then we have x, ... ,,k C I( L), by induction hypothesis

we get x,1 .. xz,k C I([), and so z,v .. , x,k · z k+1 C I([). Hence we may assume that

Cspan({v l,..., vk}) exists. By Lemma 28, the monomial xz, ... Xk is congruent modulo

I2( :) to a monomial x,, * x, such that we have

Cspan({vV 2}) = Cspan({vL, ... ,Vk}).

But then Cspan({v ,v ,vk+l}) does not exist and we get

xV) x'1 * Xv1+CI (O)C

This implies

X.V1 ...* * XvVk+l C I( L))

and so a, -. Xk ·v xk+1 is congruent modulo 2( i) to an element of I( O). QED

Theorem 9 and its corollaries also allow us to compute the Hilbert-series of the

Stanley-ring of a cubical complex. Recall, that the Hilbert-series of a finitely generated

N-graded K-algebra A is usually defined as

00

(A, t) = E dimK(A,)- t-,
n=O
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where A, is the vectorspace generated by the homogeneous elements of degree n, and the

operator dimK stands for taking the vectorspace dimension. (For details, see e.g. [26, p.

33].)

Theorem 11 Let O be a d-dimensional cubical complex and let fi be the number of i-

dimensional faces of l. Then the Hilbert-series -(K[ [ ], t) of the graded algebra K[ ] is

given by
d oo

'7-(K[[],t) = 1 + f (k - 1)i . tk. (3.2)
i=O k=l1

Proof: K[ D] may be written as a direct sum of K-vectorspaces as follows.

00

K[L] = ( 1(z, ... u: Cspan(ul,...,kj) = >). (3.3)
aE ek=O

(Note that this sum includes the vectorspace generated by the empty product 1 for = 0

and k = 0.) It is a consequence of Theorem 9 and its corollaries that for an i-dimensional

face or 6 O and a positive integer k the dimension of (u .. u,, : Cspan( ul,..., uUk) =

I', is equal to the number of multisets X1,...,Xk] of subsets of {1, 2,..., i} such that

we have

0 = X C X 2, C ... C Xk = {1,2,..., i}.

(For i = 0 we write 0 instead of {1, 2,..., i}.) The number of such multisets is 1 for i = 0,

otherwise it is equal to the number of functions f: {1, 2,.. ., i) (1, 2,..., k - 1}. (A

bijection is defined by setting f-(j) := Xj \ Xj_l for j = 1,2,..., i when (X,...,Xk)

is given and setting Xj := UL=1f-l(l) when f is given.) Thus we have

dim ((xz,, ... , x Cspan(Lul,..., uk]) = )) = (k- ),

and so the theorem follows. QED
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Introducing

1
o0(t) := E tk = and ,(t):= k t k for r > 1

k>O k>O

we may rewrite (3.2) into the following form.

d

7H(K[LE],t) = 1 + fi t 4i(t). (3.4)
i=1

Let D denote the derivation operator of the polynomial ring [t] defined by D: t - 1.

Then we have t D(4r(t)) = r+l(t). It is well-known that D satisfies the following

operator identity. We have

n

(t. D)n = S(n, k) . tk Dk
k=O

where the letters S(n, k) denote the Stirling numbers of the second kind. (See e.g. [22,

p. 218, Section 6.6, formula (34)].) Using this formula for D allows for us to obtain

(Ii(t) = S(i,j) tj . j = S(i,j) . .
3=0 30 (1 - t)i+l

This formula holds even for i = 0 if we assume S(0, 0) = 1. Thus (3.4) is equivalent to

d i

7-(K[[],t) = 1 + Efi t I S(ij)t ' - j (35)
i=O j=o( - (3.5)

We may transform (3.5) into an even more familiar form, using the following notation.

Definition 43 Let l be a d-dimensional cubical complex and let us denote by fi the num-

ber of i-dimensional faces of . We define the triangulation f-vector (fa, fA, ... fd)

of D as follows. We set
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fd1, afi f S(i,j) j! when j > O

1 when j = -1

where the numbers S(i, j) are the Stirling numbers of the second kind and we assume

S'(O, 0) = 1.

Using the triangulation f-vector, (3.5) may be written into the following equivalent

form.

ZE i L .(1 -t)d i
71(K[zI],t) .= (l -t)d (3.6)

The expression "triangulation f-vector" is justified by the fact that it is equal to the

f-vector of any triangulation via pulling the vertices.

Lemma 29 Let [] be a d-dimensional cubical complex, and (a 1, f, I ... , f ) its trian-

gulation f-vector. Let < be an arbitrary linear order on the vertex set V, and A<( ) the

triangulation via pulling the vertices in order <. Then f is the number of j-dimensional

faces of A<(0).

Proof: The restriction of the triangulation A<([ ]) to a face E is the triangulation

via pulling the vertices of L j in the order < . Thus we only need to show the following

identity for every triangulation A<(n) via pulling the vertices of every standard cube

o]n and every n - N.

I{u' C A<([n): dim(a') = j, Cspan(a') = V(O n)} = S(n,j) n! (3.7)

In order to show (3.7) it is sufficient to prove the original statement of the lemma in

that special case when O is a standard n-cube for some n. In fact, every nonempty face
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of a standard n-cube is a standard k-cube for some k < n and we may apply the M6bius

inversion formula to the partially ordered set of the faces of the standard n-cube.

Thus we are left with the task of proving our lemma for standard cubes.

Remember that by [27, Lemma 1.1], the combinatorial type of A<(]n ' ) remains the

same, no matter which geometric representation of [I we choose. Let us fix a stan-

dard geometric representation , and for every vertex v let Set(v) denote the subset of

{1, .. ., n} with characteristic vector +(v). Let us define u <, v whenever Set(u) C Set(v)

holds. Clearly < is a partial order on qOn. Using [27, Theorem 2.3] we may show that

the standard n-cube is compressed. Thus by [27, Corollary 2.7] the f-vector of A<(2)

does not depend on the choice of the order <. Hence we may assume that < is a linear

extension of the partial order <. Then for any set of vertices {u1,..., ur} we have

< (Cspan({ul,. .. , u,})) = Set-1(Set(ul) n.. n Set(u,)).

Thus a set {vl,...,vk} satisfying vl > ... > vk is a face of A<(i] n) if and only if for

every j we have

Set(vj) = Set(vl) n ... n Set(vj),

which is equivalent to

Set(vl) D ... D Set(vk).

Therefore the number of j-faces of A<( in) is equal to the number of (j + 1) element

increasing chains in the Boolean algebra of subsets of {1, 2,...,n}. There is a bijection

between the set of chains {So C ... C Sj : Sj C {1, 2,..., n}}, and the triples of the form

(X, Y, r/) where X and Y are subsets of {1, 2,..., n} satisfying X C Y and IY \ X I > j,

and : Y \ X J- {i1,... ,j} is a surjective function. This bijection is defined as follows.

We set X :=So, Y::= Sj, and f-l(i) :=Si \ Si_1 for i = 1, 2,...,j. For a given i > j

the number of pairs (X, Y) satisfying X C Y C {1, 2,... , n} and Y \ X I = i is f(E"n).
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F'or a fixed pair (X, Y) satisfying X C Y C {1, 2,..., n} and IY \ XI = i the number of

surjective maps from Y \ X to {1,... ,j} is S(i,j) j!. Therefore we have

n
fj(A<(l n)) = f,( O n) .S(i,j) .j!

i=j

and this is exactly what we wanted to prove. QED

Remark The defining equations of Definition 43 may summarized in the following poly-

nomial equation for a (d - 1) dimensional cubical complex O.

d-1 d-1 (.8)

E i xi = E fA . (3.8)
i=o j=0

Let us recall now the definition of the Stanley-Reisner ring of a simplicial complez

A. (See e.g. [26].)

Definition 44 Given a simplicial complez A with vertex set V, we define the Stanley-

Reisner ring K[A] of A to be the factor ring K[xv V c V] /I(A)' where the ideal I(A)

is generated by the set {x 1 .. xk : k C N,{vl,...,vk} F A}. We call I(A) the face

ideal of A.

Comparing (3.6) and Lemma 29 with [26, 1.4 Theorem] we may notice that every

cubical complex [O and any triangulation via pulling the vertices A<( [ ) of [ satisfy the

following identity.

7-(K[[3], t)= H(K[A<()], t). (3.9)

In words, the Hilbert function of the Stanley ring of a cubical complex is equal to the

Hilbert function of the Stanley-Reisner ring of any of its triangulations via pulling the

vertices.
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3.2 Initial ideals and triangulations

In this section we investigate the connection between the Stanley-Reisner ring of a tri-

angulation of a cubical complex [] via pulling the vertices, and the Stanley ring of this

cubical complex. Note that both rings are the factors of the same polynomial ring

h[x, : v V]. We will apply the equality of Hilbert-series (3.9) to express the connec-

tion between the face ideal of a triangulation A<(0) and the face ideal of 0, using the

following notions of Gr6bner basis theory.

Definition 45 Consider an arbitrary polynomial ring K[X] over a field K. A monomial

order on the set of monomials of K[X] is a linear order < on the semigroup of monomials

such that if ml, m2 and n are monomials, and n $ 1 holds then

ml > m2 implies n ml1 > n .m 2.

Given a monomial order <, for every polynomial p E K[X] we define the initial term

init<(p) of p to be the largest term with respect to the term order <. Given an ideal I

of K[X] we denote by init<(I) the ideal generated by the initial terms of elements of I.

A generating system {pl,...,pk} of I is called a Gr6bner basis with respect to the term

order <, if init<(I) is generated by the set {init<(pl),... ,init<(pk)}.

In particular, we will use reverse lexicographic term orders, which are defined as

follows.

Definition 46 Let K[X] be a polynomial ring and < a linear order on the set of variables

X. We define the reverse lexicographic order <rlex induced by < as follows. Given two

monomials m and n, we write both of them in the form m = x... xk,n k = ... Xk 

where x1 > ... > k. We set m <rlex n iffdeg(m) < deg(n) holds or we have deg(m) =

deg(n) and ai > bi for the last index i with ai $ bi.
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Using the above definitions, the main theorem of this section may be stated in the

following way.

Theorem 12 Let Li be a cubical complex on the vertex set V and < any linear order on

the vertices. Then we have the following identity.

init<r1ex(I( [ )) = I(A<( ))

In words, the initial ideal of the face ideal of O with respect to the reverse lexicographic

order induced by < is the face ideal of the triangulation of [L via pulling the vertices with

respect to the order <.

Let us consider first the special case when the cubical complex [O is a standard n-cube

[]n. Let us fix a standard geometric realization : V( ]n) -) RWn, and let Set(v) be again

the subset of {1,.. , n} with characteristic vector +(v). Let us denote again by u < v

when the relation Set(u) C Set(v) holds. We will show that the Stanley ring K[ Lon] with

respect to the partial ordered set ({z, : v E V}, <,) is an algebra with straightening law

over the field K. Let us recall the definition of algebras with straightening law from [5,

p. 38].

Definition 47 Let A be a B-algebra and II C A a finite subset with partial order <.

A is a graded algebra with straightening law (on II, over B) if the following conditions

hold.

(Hto) A = Ei>o Ai is a graded B-algebra, such that Ao = B, II consists of elements of

positive degree and generates A as a B-algebra.

(HI1) The products 1 ... , m C N, ~i II, such that ~1 < ... < Em are linearly indepen-

dent. They are called standard monomials.
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(H2) (Straightening law) For all incomparable , v E II the product . v has a represen-

tation

· v = a, . , a, E B, a $ O, standard monomial

satisfying the following condition: every t contains a factor E H such that <

,, C < v. (It is of course allowed that . v = 0 the sum E a, y being empty.)

Lemma 30 K[[En] is an algebra with straightening law on ({x : v E V}, <), over K.

EProof: Axiom (Ho) is obviously satisfied. Consider next the product xu x, where

u, v E V(On). Let us denote Set-1(Set(u)n Set(v)) by u' and Set-1(Set(u)U Set(v)) by v'.

Then we have x, X, = x, ,xv and x, <¢ x, x,. Hence the straightening law (H2) holds.

Finally, standard monomials are of the form x-... ,uk with Set(ul) C ... C Set(uk),

and so they are linearly independent by the proof of Theorem 9. QED

Recall, that an algebra A with straightening law over K on II may be represented

as the factor of a polynomial ring K[x C II] modulo the ideal In generated by the

elements x x -- E a, · x, representing the straightening relations. (Cf. [5, Proposition
/1

(4.2)].)

Brian Taylor has provided me with the proof of the following lemma.([30].)

Lemma 31 Let K be a field and A be a graded algebra with straightening law over K
on , represented as K[x : II] /In where In is the ideal generated by the represen-

tatives of straightening relations. Let < be any extension of the partial order on II to a

linear order. Then the straightening relations form a Grabner basis of In with respect to
the reverse lexicographic order induced by the order <.

Proof: Assume by way of contradiction that there is a polynomial p In such thet

init<lex (P) is is not in the ideal generated by the initial terms of the representatives
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of the straightening relations. If p is a linear combination of standard monomials then

p E In and the fact that the standard monomials are linearly independent modulo III

imply p = 0, a contradiction. Let m be the largest monomial with respect to the <rlex

order which is not standard and appears with a nonzero coefficient in p. Then m is of

the form m = a n -x 2x, where a C K, n is a monomial, and /L and v are incomparable

in the partial order of II. Thus we have a straightening relation represented the form

*x Xv -, a,, xu C In. Here every monomial x, contains a factor xc which is less than

or #p in the partial order of II, and so also in the order <. Thus we have

init<rlex(xe.x - a . :x_) = X6 ..

Hence m init<rlex(p), otherwise init<rlex(p) would be the multiple of of init< 1ex ( f

x; a,- a x>). Thus for

P':=p-a.n .( x ,-E a, z)

we have p' IIIn, init<rlex(p') = init<rlex(p), and with respect to <rlex, the largest
nonstandard monomial of p' is smaller than than m. Every term order satisfies the

descending chain condition, and every polynomial has finitely many terms, so iterating

the above reasoning finitely many times yields a polynomial q InII with init< lex(q) =

init <rlex (P) which is the linear combination of standard monomials. Therefore we have

reached a contradiction. QED

Corollary 8 Let be a standard geometric representation of the standard n-cube On

and < the partial order on V( O n) induced by . Let < be any linear extension of <,,

and let init< lex be the reverse lexicographic order on K[x, : v C V( On)] induced by <.
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Then the set

{xu, -xu. : Cspan({u,v}) = Cspan({u',v'})}

is a Grobner basis with respect to the term order init< lex

Corollary 9 The ideal init< lex(III) is the linear span of all those monomials which are

not standard.

Lemma 32 Consider K[ n] as an algebra with straightening law on the poset

({vx : v V( E]n)}, <0) over K. ( is a standard geometric realization of On). Let <

be any linear extension of the partial order <,. Then a monomial xv, ... xvk is standard

ijr and only if the set {V1 ,..., Vk} is a face of the triangulation A<( On)

Proof: Without loss of generality we may assume vl > .- > vk. The proof of Lemma

29 implies that {v1,..., vk)} is a face of A<(1") if and only if for every j we have

Set(vl) D - D Set(vk),

But this hold if and only if x,, ... xv, is a standard monomial. QED

Lemma 32 and Corollary 9 imply the following special case of Theorem 12.

Proposition 5 Let O" be a standard n-cube with a fixed standard geometric representa-

tion , and < be a linear extension of <,. Then we have

init<rlex(I( o )) = I(A<( o )).

Example Consider the standard 3-cube 103 with a standard geometric representation q.

By abuse of notation we will identify the vertices with their image under 5. Let < be
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the following order of the vertices.

(10,0,0) < (1,1,0) < (1,0,1) < (0,1,1,) < (1,0,0) < (0,1,0) < (0,1,1) < (1,1,1).

Consider the reverse lexicographic order on K[x, : v C V( 03)] induced by this order of

V(D3). Then

X(,1,0 ) X(1,0,1) X(0,1,1) - X(0,0,0o) X(1,1,1) X(1,1,1) E I( [2),

and

init<rlex (x(1,, 0) X(1,0,1) X(0,1,1) - X(0,0,0) X(1,1,1) X ,o),1)) = X(1,1,0) X(1,0,1) X(0,1 ,1)

imply

X(1,1,0) ' X(1,0,1) X(0,1,1) E init<rlex(I ( O ) )

It; is easy to check that this term does not belong to the ideal generated by the initial

terms of the set {xU, .*, - xUl z,, : Cspan({u, v) = Cspan({u', v'})}.

Thus Corollary 8 cannot be generalized to an arbitrary order of vertices. On the other

hand, Proposition 5 may be generalized to Theorem 12.

Proof of Theorem 12: Inspired by Lemma 32, let us call a monomial xz, ... ,k and

the underlying multiset [V1,..., vkJ standard if the set {vl,..., vk} is a face of A<( ).

First we show by induction on k that every non-standard monomial xz, ... Vk be-

longs to the ideal init< lex (I()). Without loss of generality we may assume that we

have v _> ... > Vk. If Cspan({vl,.. ., Vk}) does not exist then by definition xz, ... xz

belongs to I(o), and so we have xz,, ... k C init< 1 (I(g)). Hence we may assume
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that Cspan({vl,..., Vk}) exists. Assume next that

Vk $ 8<(Cspan({vl,... ,vk}))

holds. By Lemma 28 the monomial xv ... x k

x, ... Xuk satisfying

is congruent modulo I( [] ) to a monomial

Cspan({ul , u2}) = Cspan({vl,..., vk) = Cspan({ul,..., uk}).

Replacing, if necessary, Lu1, u2J with another

we may assume that

diagonal of the face Cspan({ul,. .. , Uk} ) ,

Uk = <(Cspan({ul,..., uk})) = 8<(Cspan({vl,..., vk}))

and thus

init<rlex(X 1 · · · Xvk - Xul ... xuk) = X1 ... Xvk

holds. This last equality and x,, ... Xzk - l ... X,, E I( O) imply

Xl *..* Xk C init <rlex I( O ).

Therefore we may assume

Vk = S<(Cspan({vi,.. ., Vk})).

But then x, ... XVk is non-standard iff x,,v ... Xk_ is non-standard, hence by induc-

tion hypothesis we have x, ... kl C init< rlex (I(G)) and so a fortiori xv ... xk C

init <rlex ( )
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Up to now we have shown the following inclusion.

I(/<( o )) C init<lex(I( O )).

Hence in order to finish the proof it is sufficient to show that the Hilbert-series of the

factor algebras modulo the above two ideals are the same, i.e.,

7(K(A<([)),t) = (K[Xv V V] /init< 1 (I(O))' ) (3.10)

holds. It is well-known in the theory of Grobner bases that for every polynomial ring

k [X], every ideal I of this polynomial ring, and every term order - the Hilbert-series of

[X] /I is equal to the Hilbert-series of K[X] /init< (I), thus we have

init<rlex (()) = (K[l,t).

Therefore (3.10) is equivalent to (3.9) and we are done. QED

Remark B. Sturmfels proves in [29] an analogous result to our Theorem 12 for initial

ideals of toric ideals. His proof is however completely different.

3.3 Shellable cubical complexes

In this section we take a closer look at shellable cubical complexes. We have seen in

section 1.3 that the question whether a collection of facets of a cube is a ball or sphere

is purely combinatorial, not depending on the geometric realization. Thus our first goal

is to give a description of such collections.

As in [20], we encode the nonempty faces of EJn with vectors (ul,u 2,...,un) e

{0, 1, *}n in the following way. Consider a standard geometric realization : n n ) - Rn.
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For a nonempty face a E Dn and i E {1,2,. .. , n} set ui = 0 or 1 respectively if the i-th

coordinate of every element of q(o-) is 0 or 1 respectively. Otherwise we set ui = *. Using

this coding, the facets of -n~ will correspond to the vectors (Ul,..., u,) for which exactly

one of the ui-s is not a *-sign.

Definition 48 Let A? resp. A stand for the facet (ul,u 2 ,...,un) with ui = 0 resp.

u = 1 and uj = * for j y$ i. Let {F1,...,Fk} be a collection of facets of ( n). Let r

be the number of i-s such that exactly one of A? and Al belong to {F1,..., Fk}, and let s

be the number of i-s such that both A[ and Al belong to {F1,..., Fk}. We call (r, s) the

type of {F1,..., Fk}.

Note that when the type of {F1,...,Fk} is (r,s) then there are exactly n - r - s

coordinates i such that neither A° nor Al belong to {F1,..., Fk}.

The following lemma, originally due to Ron Adin [1], gives a full description of those

collections of facets {F1,..., Fk} which are an (n - l)-dimensional ball or sphere.

Lemma 33 The collection of facets {F1,...,Fk} of the boundary of an n-cube is an

(n - 1.)-sphere if and only if it has type (0, n) and it is an (n - 1)-ball if and only if its

type (r, s) satisfies r > 0.

Proof: We show first by induction on n + r + s that a collection of facets of type (r, s)

with r > 0 is an (n - l)-dimensional ball. Suppose first that we have r > 1. Without

loss of generality we may assume that F1 = A ° , and Al does not belong to {F1 ,..., Fk}.

Then {F2 ,..., Fk} as type (r - 1,s) and so, by induction hypothesis, it is an (n - 1)-

dimensional ball. On the other hand, {F2 n F1,..., Fk F1 } is a collection of (n - 1)-

dimensional faces of F1 of type (r - 1, s). By induction hypothesis, {F2 n F1,..., Fk n F1 }

is an (n - 2) dimensional ball. Finally, an (n - 1)-cube is homeomorphic to an (n - 1)-

ball and so {F1} is an (n - l)-dimensional ball. Now the fact that {F1,..., Fk} is an

(n - l)-dimensional ball follows from the following observation:
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Let Y1 and Y2 be topological subspaces of a topological space X such that the following

hold.

(i) Y and Y2 are homeomorphic to an (n - )-dimensional ball.

(ii) Y n Y2 is homeomorphic to an (n - 2)-dimensional ball.

Then Y1 U Y2 is homeomorphic to an (n - 1)-dimensional ball.

The proof of this observation is straightforward, and left to the reader.

Suppose next that we have s > 0. Then without loss of generality we may assume

TF = A and F2 ::= A. The collection {F3,...,Fk} has type (r,s - 1) and so it is

an (n- 1)-dimensional ball by induction hypothesis. The collection of (n - 2)-faces

{F3 n F1 ,...,Fk n F1} has type (r, s - 1) in F1 and so it is an (n - 2)-ball by induction

hypothesis. Similarly, {F3 n F2 ,... ,Fk n F2} is an (n - 2)-ball in F2 . Finally, {F1 }

and {F2}. Thus {F,..., Fk} is an (n - 1)-ball because of the following straightforward

observation:

Let Y1, Y2 and Y3 be topological subspaces of a topological space X such that the fol-

lowing hold.

(i') Y1, Y2 and Y3 are homeomorphic to an (n - l)-dimensional ball.

(ii') Y1 n Y3 and Y2 n Y3 are homeomorphic to an (n - 2)-dimensional ball.

(iii') We have Y1 n Y2 = 0.

Then Y U Y2 U Y3 is homeomorphic to an (n - l)-dimensional ball.

Hence we are left with the only case when (r, s) = (1, 0). Then {F1 } is an (n - 1)-ball.

Note next that {F,...,Fk} has type (O, n) if and only if it is the collection of all

facets of the n-cube. The surface of an n-cube is an (n - 1) dimensional sphere and so

{ F1,..., Fk} must be a sphere.
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k

It only remains to be shown that for all other types (r, s), the set U conv(d(Fi)) is
i=1

not homeomorphic to an (n - 1)-ball or an (n - 1)-sphere. (The map q$ is a standard

geometric realization of the n-cube.) The types not listed above are of the form (0, s)

with 0 < s < n. Let us fix such a type. Consider all those coordinates i for which neither

A° nor Al belong to {F,..., Fk}. Without loss of generality we may assume that these

coordinates are i = 1, 2,... ,n - s. Consider the continuous map b: RIn X [0, 1] R n-

defined by

((1 2, , _ n-s,, n,_-s+1 ... , Xn) t) (t . X, t X2,.., t ,,n-s _n-s+l , , ,n).

k
This map retracts U conv(q(Fi)) to a collection of all facets of an s-cube, i.e. an (s - 1)-

i:=1

dimensional sphere. Now our lemma follows from the fact that an (s - 1)-sphere with

s < n is not homotopy equivalent to an (n - 1)-ball or an (n - 1) sphere, because its

homology groups are different. QED

By abuse of notation we will say that the attachment of [ lk to O U.. U UEl in

a shelling F1, F2,... has type (r, s) if set of facets of ° k n ( ° L U.. U o k1 ) considered

as a collection of facets of k1, has type (r, s).

Shellable complexes are of great importance because of the following theorem, which

is a consequence of the proof of [14, Theorem 20].

Theorem 13 If LO is a shellable cubical complez, then the Stanley-ring K[ O[] is a Cohen-

Mracaulay ring.

Usually in commutative algebra, the Cohen-Macaulay property is first defined for

local rings, and then an arbitrary commutative ring is called Cohen-Macaulay, if every

localization of it by a prime ideal is Cohen-Macaulay. In the case of graded rings asso-

ciated to combinatorial structures the following (equivalent) definitions are more often
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used in the literature. (See [26, §5].)

Definition 49 Let A be and N-graded K-algebra. The Krull-dimension of A is the length

of the longest chain of prime ideals in A. A sequence 01,...,O, of homogeneous el-

ements of positive degree is called a regular sequence if Oi+1 is a non-zero-divisor in

./( ,. ,Oi)' where 0 < i < r. The depth of A is the length of the longest regular

sequence in A. The graded algebra A is Cohen-Macaulay if the depth of A is equal to the

Krull-dimension of A.

The Cohen-Macaulay property turned out to be extremely useful in the study of the

Stanley-Reisner ring of simplicial complexes. We will use some properties of Cohen-

Macaulay graded algebras over infinite fields in Section 3.6.

In the study of the Stanley-ring of shellable cubical complexes we will need the fol-

lowing elementary lemma.

Lemma 34 The edge-graph of a shellable cubical complex of dimension at least 2 is

bipartite.

Proof: We use induction on the number of facets. Let Fl,...,Fk be a shelling of 7.

By induction hypothesis, the complex El U ... U ° [k_l has a bipartite edge-graph.

Clearly [ ]k has a bipartite edge-graph: when we represent it's vertices, as vertices of

the standard d-cube [0, 1 ]d, an appropriate coloring with 2 colors is to color the vertices

according with the parity of the sum of their coordinates. It is easy to check that the

edge-graph of El k f1 ( El U ... U U ] ) is a connected graph. Thus the induction step

follows from the following lemma. QED

Lemma 35 Let G1 resp. G2 be bipartite graphs on vertex set V resp. V2 and edge set

E:,, resp. E2. Assume that we have

E1 n ((vi n 2) x (i n v 2 ))= En ((v n 2) x ( n 2)),
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i..e., both graphs have the same restriction to V1 n V2, and that the restriction of G1 to

I/ n V2 is connected. Then the graph with vertex set V U V2 and edge set E1 U E2 is

bipartite.

Proof: The proof is straightforward, it depends on the fact that -up to permutation of

colors-there is only one way to color a connected bipartite graph with 2 colors. QED

3.4 A homogeneous generating system of degree 2

for I([2)

Theorem 10 inspires the following question. Let I'([]) be the ideal generated by the

monomials x,, x, such that the pair {u, v} C V is not contained in any face. When do

we have I(I) ))= + I2( 0 )? For such complexes I( i ) is generated by homogeneous

forms of degree 2.

Definition 50 We call a cubical complex well behaved when it satisfies I( ) = I'( 0 ) +

'I,( o).

The following lemma is a straightforward consequence of Theorem 10 and the the

trivial fact I'(0 ) C I(0 L).

Lemma 36 A cubical complex is well behaved iff for every triple [ul,u 2, u3J either

{ul, U2, u3 } is contained in a face of O or there is a Lvi, v 2, v3J equivalent to Lu1, u2, u3 j

such that {vl, v2} is not contained in any face of .

We will use the statement of the lemma as an equivalent definition of well behaved

cubical complexes.
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D F

Figure 3-1: Not well behaved cubical complex

Example Figure 3-1 represents a not well behaved cubical complex. The facets of the

complex are ABED, BCEF and ACDF.

It is easy to verify that for the triple [A, C, EJ and any equivalent triple any two

elements of the triple are contained in a face, but there is no face containing all three of

them.

Conjecture 1 Every shellable cubical complex is well behaved.

The following lemmas are statements about the properties of an eventual minimal

counterexample to Conjecture 1. (Minimality will always mean minimality of the number

of facets.) At the end we will not get a proof of the conjecture, but the properties to

be shown will allow us to exclude all shellable subcomplexes of a boundary complex of a

convex cubical polytope from the class of shellable not well behaved cubical complexes.

Clearly, a counterexample to the conjecture is a shellable cubical complex Ol containing

a triple Lul, u2, u3J such that Cspan({ul, u2, u3}) does not exist, but for every equivalent

triple Lvl, v2, v3J, the every pair {vi, vj} is contained in some face of l.
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Definition 51 Let O be a not well behaved shellable cubical complex. We call the triple

LU1, u2, U3J a counter-evidence if any two of U1, U2 and us3 is contained in some face of

[, but no face contains the set {U1 , u2, u3 }, and the same holds for all equivalent triples

in El.

Note that if a triple belongs to a shellable subcomplex A', and it is a counter-evidence

in E[ then it is also a counter-evidence in W'. This observation is used and explained in

the proof of the following lemma.

Lemma 37 Let LO be a minimal not well behaved shellable cubical complex and

F1, F2 ,..., Fk a shelling of 0]. Then every counter-evidence Lul, U2, U3] has exactly one

element outside Fk, and two elements in Fk.

Proof: Clearly ul, u2, u3J cannot be a counter-evidence, if all three ui-s lie in Fk. Thus

at least one of them must lay outside Fk. If at least two of ul, u 2 , u3 are not in Fk,

then any face containing at least two of them is also contained in l l U ... U E] k- . In

particular, we must have {ul, u2 , u3} C F1 U... U Fk_. By minimality, Lu, 2 , 3 ] is not a

counter-evidence in the shellable complex Lil U ... U .k-'. Thus there is an equivalent

l[71, V2 , V3J such that {v1 , V2 , v 3 } is contained in some face of 1 U U ... U k- . But then

the same holds in O and so [U1 ,U 2, u3 is not a counter-evidence. Hence the only way

for Lu1 , u2 , u 3 ] to be a counter-evidence is to contain exactly one element outside F.

QED

Corollary 10 Let Ol be a minimal not well behaved shellable cubical complex and

F, F2,..., Fk a shelling of O and L[u1,U2, U3 a counter-evidence such that ul',u2 Fk

and us3 Fk Then for every u C Cspan({ul,u2 }), the face Cspan({u3,u}) has exactly

half of its vertices in Fk.
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Proof: Clearly, we can replace the diagonal [u1, u2J by another diagonal of the face

Cspan({u1,u 2}) such that u = u holds, and so Cspan({u 3,u}) exists, and we may

assume u = u. By U3 Fk, at most half of Cspan({u 3,u}) belongs to Fk. If less

then half is contained in Fk then the diagonal LU1,U3J may be replaced by a diagonal

Lut,7uJ' such that both u and u are outside Fk. Thus the triple [u',u 2,u'j (which is

equivalent to Lul, 2, U3J will be a counter-evidence not satisfying the criterion of Lemma

37. QED

Lemma 38 Let [ be a minimal not well behaved shellable cubical complex and

Ek, F2,..., Fk a shelling of l. Assume that there is a pair H, H' of subfacets which are

opposite facets of t( []k) and both belong to U U _ k-' Let [ui,u 2, u3J be a

counter-evidence such that u 1, u2 C Fk, u3 Fk. Then there is a face of El containing

Cspan({ul,u2}) r H and u3.

Proof: If Cspan({ul,u2}) n H = 0 then we have Cspan({ul,u2 }) C H' [z U

· U k1_, meaning that already [i] U ... U ]kL_, was a counterexample. Similar

contradiction with minimality arises when we assume Cspan({ul, u2}) n H' = 0. Thus we

may suppose u1 , H and u2 E H, and we may renumber all equivalent triples vl, v2, v3J

such that v3 Fk, vl C H' and v2 E H holds. Let u be the projection of u1 onto H.

Then we have Cspan({u, u2}) = Cspan({u, U2})n H. If the set {u', U2, u3} is contained

in a face, then we are done. Otherwise, given the fact that the cubical span of any two

of , IU2 and us3 is contained in Ih, U .-. U []k1_, a well behaved shellable cubical

complex, we obtain that the triple [u, U2, U3J is equivalent to a triple Lz1,Z2, Z3J such

that there is no face of I-1 U ... U -] k_ ' containing {zl,z 2}. Consider a sequence of

replacing diagonals, which demonstrates the equivalence of [u, U2, U3j and [z, 2, z3 .

Assume that ul, u2, u3J was chosen from its equivalence class such that this derivation

of equivalence is the shortest possible.
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If the first step is replacing the triple [uk, U 2 , U3J with [w1, w 2 , U3] where {w1, w2}

is a diagonal Cspan({u, u2}) then we get a contradiction with the minimality of the

derivation. In fact, let w1 be the projection of w' onto H'. It is easy to check that

{w, w2} is a diagonal of Cspan({ul,u 2}) and so [w1,w2 , u3] is equivalent to [ul, u 2, u3 ]

and there is a shorter derivation of equivalence between [wI, 2~, , u3 and LZl, Z2 , Z3]. We

also get a contradiction when we assume that our first step was to replace [u ,u2 , 3 ]

with 'LU,w 2 , w 3 ] where {w2,w3 } is a diagonal of Cspan({u 2 ,u 3}). In this case, the very

same replacement can be performed on u1, u2 , u3] and we obtain the equivalent triple

l1, w2 , w3], from which we have a shorter derivation.

Hence we are left with the case when the first step of the derivation involves replacing

u1, u 2, u3] with [w, u2, w 3] where {w',w 3} is a diagonal of Cspan({u , 3}) such that

w E H and w3 Fk. Let ql be the projection of u2 onto H' and let us introduce the

notations q := uz, q2 := u'. Then the triple Lql 2, 3, is equivalent to Lu1, U2, U3], and

Lq, w 3, ]Wa is equivalent to [ql, q2, U3]. From this second equivalence we obtain that also

L[l, w[, W3] is equivalent to [ql, q2, UJ3 ], hence taking Lql,,W, w ], instead of [U1, U2, U3]

makes the first step again unnecessary.

Therefore we may assume that at least two of ul,u 2 and U3 are not contained in

a common face. This pair cannot be {u,u 2 } C Fk and it cannot be {u2 ,u 3} because

then [L 1 , u2 ,U 3 ] is not a counterexample. Finally, if {ui, U2} is not contained in any face,

then we obtain a contradiction after we have replaced [uL, U2, U3J by the triple [ql, q2,q, U3

defined as above. QED

Proposition 6 Assume that for the shelling F1,..., Fk of l, the attachment of [] L to
k-1
U l Ii has type (r, 0). Then [] can not be a minimal not well behaved shellable complez.

i=l

Proof: Assume the contrary. When the type is (r, 0) then Fk \ (F1 U ... U Fk_l) is

not empty: there is at least one vertex which was added when we added Fk. Let
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[U1,U2,U 3 be a counterexample with u,u 2 E Fk, u3 F. If Cspan({ul,u 2}) con-

tains a newly added vertex, then -after replacing eventually ul and u2 with another

diagonal of Cspan({ul,u 2})- we may assume u2 E Fk \ (F1 U ... U Fk-1). But then

{u2,u 3} is not contained in any face of l0, and we get a contradiction. Thus we must

have Cspan({ul,u 2}) C F1 U - U Fk-1. In this case, however, any face containing at

least two of u1 ,u2 and U3 is contained in [] U -.. U [,__ and so [ul,u 2,u 3J is a

counter-evidence in this smaller complex already. QED

Lemma 39 Assume Fl,...,Fk is a shelling of a minimal not well behaved complex

l, and LU1,U 2 , U3 is a counter-evidence. Assume H and H' are opposite facets of

0( k), such that they both belong to [] U ... U kl. Then there is no edge

{v,w} C Cspan({ul,u2 }) that would satisfy v H,w H' and Cspan({u3,v,w}) ex-

ists.

Proof: Assume the contrary. Since {v, w} is an edge, either {u3 , v} or {u3 , w} is a diag-

onal of Cspan({u3, v, w}). W.l.o.g. we may assume that {u3,v} is a diagonal. We also

may assume that the triple Lu, u2, u3J was chosen in such a way that u = v holds. (If

not, we can replace the pair Lul,u2j with another pair containing v C Cspan({u, u2}).)

Let u be the vertex diagonally opposite to w in Cspan({u 3 , v, w}). Then ul,u 2,u 3J is

equivalent to Lw,u 2 ,u]J and here we have {W,U 2} C H' C El U . U IF, contra-

dicting the assumption about the minimality of 0. QED

Proposition 7 If [] has a shelling F1,..., Fk such that the attachment of [ ° to
k-1
LI i ij has type (r, s) with s > 2, then [E is not a minimal not well behaved shellable
i=l
complex.
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PIroof: Assume the contrary. Let H, H~ and H2, H be pairs of subfacets which

are opposite in Fk and the all belong to []k n( ( .1 k_) Assume further-

more that [U1i, u 2, u3 is a counterexample satisfying ul, u 2 Fk, u3 Fk. Then

Cspan({u1,u 2} Nr Hi and Cspan({ul,u 2} n H' is non-empty by the minimality of .

EBy Lemma 38, Cspan({ul,u 2}) n H is contained in a face with u3. But then we can find

v,w Cspan({ul,u 2}) n Hi such that {v,w} is an edge and we have v H 2,w H,
contradicting Lemma 39. QED

Lemma 40 Let be a minimal not well behaved shellable complez. Let H and H' be

opposite facets of ( R kk) such that H also belongs to ( , U ... U O k_ ) but H' does

not. Assume, there is a counter-evidence [ui, 2, u 3J, such that u, u2 C Fk, us 3 Fk, and

Cspan({ul,U2}) ( H $ 0 hold. Then for any u Cspan({ul,u 2}) n H' we have

Cspan({u 3 , u}) Fk C H'.

Proof: Note first that Cspan({ul,u 2 }) n H' 0 otherwise [Lu,u 2,u3J would also be
a counter-evidence in ( U ... U _ ). W.l.o.g. we may assume u = ul and so

u,: E H. By Corollary 10 the face Cspan({u 3,ui}) has exactly half of its vertices in
Fj. In particular, U3 is connected by an edge to a unique vertex v Fk and we have

Cspan({u 3 , u 1 }) ,'k = Cspan({u 1,v}). Thus we only need to show v H'. If not, then

we can replace the diagonal [U3, UlJ with a diagonal Lug, v] and obtain an equivalent triple

Lv', IU 2 , UJ with v, uz2 H, contradicting the assumption of minimality of . QED

Proposition 8 Let be shellable d-dimensional minimal not well behaved cubical com-

plex, with shelling F1, F2, ... , Fk. Then the type of the attachment of l k to i~ U ... U
-ikl can not be (r,d- r).
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Proof: Assume the contrary. By Proposition 6 and Proposition 7 we may assume that

the type of the attachment of Elk to [LI~ U ... U [ ;k_, is (d - 1, 1). Thus, taking

a standard geometric realization q of Ik , we may assume that exactly the following

facets of []; belong to U ... U lkl: A A ,..., AOA and A.

Let Lu,u 2,u3J be a counter-evidence such that u1, u 2 C Fk, u3 V Fk, and

dim Cspan({ul,u 2}) is maximal under these conditions. Then, similarly to Corollary

10, we can show that for every u E Cspan({u1,u 2}) the face Cspan({u 3,u}) exists and

has exactly half of its vertices in Cspan({u 1 ,u 2 }). By minimality of 0, for any i 

{1, 2,..., d - 1} the vertices ul and u2 cannot be both contained in A, otherwise the

triple [LU1, 2, u3j is already a counter-evidence in [L] U ... U []Rk1l Similarly, the

last coordinate of ul and u2 can not agree. These considerations show that the vertices

u,v Fk defined by (u):= (1,1,...,1,0) and b(v):=(l,1,...,1,1) both belong to

Cspan({u, u 2}). We claim that Cspan({u 3, u}) and Cspan({u 3, v}) are edges. In fact,

as noted above, half of Cspan({u 3, u}) is contained in Cspan({ul, u2}). It is sufficient to

show therefore that; Cspan({u 3, u}) n Cspan({ul,u 2}) is zero dimensional. If not, then

it contains a vertex u' for which (u') differs from (u) from exactly one coordinate, say

the j-th one. When j = d then we get a contradiction by Lemma 39, when j < d - 1

we get a contradiction by Lemma 40. Hence {U3, u} is an edge and similarly {u3, v} is

an edge. But then us3, u and v form a triangle in the edge-graph of LI, which cannot be

bipartite therefore, contradicting Lemma 34. QED

Propositions 6, 7 and 8 imply the following theorem.

Theorem 14 Every shellable cubical complex of dimension 2 is well behaved.

Proof: Take a minimal counterexample with shelling Fl,...,Fk. By Lemma 33,

the possible types of attachments of I1k to L~ U .. U lk_1 are the following:

(1, 0), (2, 0), (1,1) and (0,2). The types (1,0) and (2,0) are excluded by Proposition
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6, type (0,2) is forbidden by Proposition 7, and finally type (1, 1) is disallowed by Propo-

sition 8. QED

Finally, we prove the main theorem of this section.

Theorem 15 Let [] be a (d - 1)-dimensional shellable subcomplex of the boundary com-

plex of a d-dimensional convex cubical polytope P. Then c: is well behaved.

Proof: Let [] be a minimal counterexample and F1,F 2 ,...,Fk a shelling of L2. By

Proposition 6 and Proposition 7 we may assume that the type of attachment of El s to

[O U ... U _- is (r, 1). Here, by Theorem 14 we have dim( ) = d- 1 > 2 and so, 1

is not one less than the dimension of LI. Hence, by Lemma 33, we must have r > 0. Let

H/r and H2 be the only pair of opposite facets of 0( : k) such that they both belong to

C] U ... U ° I1

Let us take a counter-evidence Lul,u2, u31 such that u1,u 2 E Fk, u3 ¢ Fk hold, and

the dimension of Cspan({ul,u 2}) be maximal under these conditions. Let us denote

Cspan({ul,u 2}) by r3 . By Lemma 38, the faces ri : Cspan({u 3 } U (r3 n Hi)) exist for

i = 1,2. As in the proof of Theorem 14, the maximality of dim Cspan({ul,u 2}) implies

that exactly half of the vertices of r1 or r2 belong to r3 . Thus we have

r I= 1 f n H3 = r3 H n I = = 3 H21 = r2 n 3 = 1 1
2 2 2

and so 1r, r2 and r3 have the same dimension. Let us denote this dimension by S.

Let S be the affine hull of X3 and r3 . It is a (+ 1) dimensional plane, and it intersects

the polytope P in a ( + 1)-dimensional polytope P'. Clearly, S contains both 1r and

n2 , because half of these faces is a (S - 1)-face of r3 (and so belongs to S) and the affine

span of U3 and ri n n 3 contains ri. (i = 1, 2.)
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Consider the "pyramid" Q := conv(x3,r 3 ). We may assume that relint(Q) C int (P)

otherwise Q is contained in a face of 8(P), and so there is a face of 8(P) containing

rl, 2 and r3 . It is easy to convince ourselves, however, that no cube can contain three

equidimensional faces with the intersection properties of r1, r2 and r3: if half of the

vertices of rl and r2 intersect r3 in opposite halves of r3 then rl n r2 would be empty, and

we need x3 C r1 fl r2 . The affine hull of Q is S.

W.l.o.g. we may assume that ul is diagonally opposite to us3 in r. (If not, we may

replace Lul, u2] by another diagonal of r3.) Let u be the vertex of r1 \ 3 which is

connected to ul by an edge. (In other words let u3 be the vertex diagonally opposite to

u 3 in the face T \ T 3 .) Let u be the vertex diagonally opposite to ul in r3 n 1l. Then u'

is diagonally opposite to u3 in rl and so u, u2, u3J is equivalent to Lul, u2 , u3J and so

there is a face containing u' and u2. In particular, the line segment connecting u' and u2

belongs to 0(P) and thus it cannot have any common point with relint(Q). Consider now

the supporting hyperplanes of the facets of Q in S. These are dimensional hyperplanes

and they are either the affine hull of a ( - 1)-face of r3 and u 3 , or the affine hull of T3 .

For each such hyperplane, let us call the half-space of S determined by the hyperplane

which contains Q, the positive half of the hyperplane. We claim that for every supporting

hyperplane K of a facet of Q which contains u', u2 and U3, the vertex u3 is in the strict

positive half of K. In fact, K when intersects T3 in a (- 1)-face of T3 and so it intersects

r nr 3 in a ( - 2)-face. K n 71 contains this (S - 2)-face and u 3 and so K n 71 contains a

(6- 1)-face of ri. Thus K nr1 is this (- 1)-face, because otherwise K contains the whole

affine hull of rl which does not contain u2. The ( - 1)-face K n rT of r contains uL and

so it cannot contain u3 which is diagonally opposite to u C K. The only hyperplanes of

facets of Q through u2 which don't contain u3 or u are aff (r3) and aff (2). The vertex

u3 cannot be in he strict positive half of both of them, because otherwise the line segment

connecting u with u2 would contain a point of relint(Q) close to u2. Therefore either

u EC aff ( 3 ) or Uc C aff (r 2) must hold.
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If u' belongs to 3 then, considering the fact that u which is diagonally opposite to

u3 in rl1 also belongs to r3, we get r1 C r3, a contradiction. Therefore u3 must belong to

aff ( 2) and so r n r2 contains the ( - 1)-face Cspan({u 2 , u}), and so r1 n 2 must also

be ( - 1)-dimensional. We claim that in this case u2 is connected to us3 by an edge. In

fact by what was said above, the line segment connecting u and u2 intersects relint(r 2 )

and so u and u2 are diagonally opposite in r2, and us3 is connected to u2 by an edge.

Therefore u, u2 and us3 form a triangle, contradicting Lemma 34. QED

Corollary 11 The boundary complex of a convex cubical polytope is well behaved.

Proof: As a special case of the results shown in [4], the boundary complex of a convex

cubical polytope is shellable. We may apply therefore Theorem 15. QED

3.5 Edge-orientable cubical complexes

Definition 52 We call two edges {u, v} and {u', v'} of a cubical complex parallel if there

is a facet F C [] and a subfacet H C F and such that {u, v} n H = I{u', v'} n H I =1.

We can turn the edge-graph of [ into a directed graph by defining a function

r:V xV {-1,0,1},

satisfying the following properties

(i) r(u, v) = -r(v, u) holds for all u y/ v,

(ii) 7r(u,v) = 0 if and only if {u, v} is not an edge of E].

(We say when, r(u, v) = 1 that "the edge points from u towards v".)
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We call 7r an orientation of the edge-graph of I or edge-orientation on ] if it satisfies

the following condition: given two parallel edges {u, v} and {u', v'}, a facet F containing

these edges and a subfacet H C F such that u, v} n H = u, {u', v') n H = u' we have

7r(u, v) = 7r(u', v')

We call l edge-orientable, if its edge-graph has an orientation r.

In plain English, edge-orientability means that we can direct the edges of Ol such

that "parallel edges point in the same direction." As a consequence of Jordan's theorem,

the boundary complex of a 3-dimensional cubical polytope is edge-orientable. In higher

dimensions edge-orientability means that every (d - 2) dimensional manifold connecting

midpoints of parallel edges is orientably embedded into the surface of the polytope.

The following lemma shows the existence of a labeling for a shellable and edge-

orientable complex l which will have important applications.

Lemma 41 Let l be a shellable and edge-orientable complex of dimension at least 2 and

7r an orientation of the edge-graph of 02. Then there is a labeling

0: V 7

such that for every edge {u, v} we have

9(v) - 9(u) = r(u, v). (3.11)

Proof: The proof is analogous to the proof of Lemma 34. Assume 1O is a counterexample

with a minimal number of facets. Let F1, F2 ,..., Fk be a shelling of F]. The complex

Cl U .* U ] -1 is shellable, and the restriction of provides an edge-orientation on it.

Hence, by the minimality of O, there is a labeling ' on it which satisfies equation (3.11)
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for every pair of vertices of ° U .. U __k- . On the other hand it is easy to see that

there is a labeling " on the cube 'k: we can take a standard geometric realization

4¢: [] - [0, 1 ]m(D), such that the only vertex with no incoming edges in l k goes into

(,0,0, ... .,0), and the only vertex with no outgoing edges in O k goes into (1, 1,... , 1).

Then we can set "(v) to be the sum of the coordinates of (v) for every v Fk. It is

easy to check that this labeling will also satisfy (3.11) for every pair of vertices of Fk 

Clearly, if a labeling 8 satisfies (3.11) in a complex then the same holds for + c where

c is an arbitrary constant. Thus we may assume that we have a vo C Fk n (F1 U .. U Fk-l)

such that '(vo) = "(vo) holds. But then, as we have observed in the proof of Lemma

34, the edge-graph of the complex L-k n ( U ... u I k_ ) is connected. It is easy

to see that if 9' and " are labelings satisfying (3.11) in a directed graph G, which has a

connected graph as underlying undirected graph, then their difference is constant. Thus,

by '(vo) = "(vo), the restriction of ' to li;k n ([] U .. U li;k_) is equal to the

restriction of 9" to LI - n ( U tO J U k _l ) . Therefore we can define

(v) := { #'(v) when v E F U .. U Fk_-

9"(v) when v C Fk

and obtain a labeling for O that satisfies (3.11), contradicting our assumption. QED

Lemma 42 Let O be a shellable, edge-orientable cubical complex, and r be an edge-

orientation of O. Then the transitive closure <, of the relation

def
u <, v whenever r(u,v) = 1

is a partial order on the vertex set V of lO.
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Proof: We only need to show that there is no sequence of vertices Vl,v 2,...,vk such

that

7(v 1,v 2 ) = 7r(V2 , 3 ) = = (vk-,vk) = r(v,vi) 1

would hold. If we had such a sequence then for a labeling satisfying (3.11) we would

have (vi+l) = (vi) + 1 for i = 1,2,..., k - 1, and (vk) + 1 = (vl). But this would

imply

O(v1 ) = (v) + k,

a contradiction. QED

Definition 53 Let O] a shellable, edge-orientable cubical complex and 7r an edge-orient-

ation of 0]. We call the partial order described in Lemma 42 the partial order induced

by 7r and we denote it by <,.

We define the triangulation A,(F ) of [ induced by 7r as follows.

1. We set V(A,(O)) := V(O).

2. A set {V1,. . .,V Vk} V ) is a face of A,( ) if and only if Cspan({vl, v 2,. . ., Vk})

exists and {V1 , 2,.. ., Vk} is a chain in the partially ordered set (V, <,).

Lemma 43 Given a shellable and edge-orientable cubical complex O and an edge-orient-

ation r of , the simplicial complex A,( 0 ) is a natural triangulation of OI. In fact we

have AL( ) = A<( i ) for any linear extension < of the partial order <,.

Proof: Take an arbitrary subset {vl,...,vk} of the vertex set V. W.l.o.g. we may

assume vl > - . > k.

If Cspan({v l ,....,vk}) does not exist then {vl,...,vk} does not belong to any of

A,(o),A<(R). Thus we may assume that Cspan({vl,...,vk}) exist, and w.l.o.g. we

may even assume that there is no vertex outside Cspan({vi,..., vk}), i.e., LO is a standard
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-cube Ln for some n. Then rO has a unique vertex u such that u has no incoming edges

in O n. Take the standard geometric realization of O1n which satisfies +(u) = (0,..., 0).

Let Set(v) denote again the subset of {1, 2,... , n} with characteristic vector +(v). Then

v <,r v' is equivalent to Set(v) C Set(v'), and {vl,...,vk} is a face of A,(0) iff

Set(vi) D ... D Set(vk )

holds. As it is shown in the proof of Lemma 29, the same relation is equivalent to

{Vl,..., vk} E A<(]). QED

Recall that a d-dimensional pure simplicial complex A is completely balanced if the

vertex set of A may be colored with d + 1 colors such that no two vertices of the same

color belong to a common face.

Lemma 44 Let Li be a d-dimensional shellable edge-orientable complex and r an edge-

orientation of O1. Then A ( ) is a completely balanced simplicial complex.

Proof: As shown in Lemma 41, there is a labeling of the vertices of i 0 satisfying

(3.11). Color the vertex v with the modulo (d + 1) equivalence class of (v). We claim

that A(L,-7r) becomes a completely balanced complex, with this coloring. In fact, let

us take a a face {v, v2,..., vk} E A(L, r). By the definition of the triangulation, there

is a face E containing {v 1,v 2,..., vk}, and w.l.o.g. we may assume that we have

vl <, v <r ... < ' < Vk It is an easy consequence of (3.11) that then we have

9(v1) < (v 2) < ... < (k).

The values of on r are dim r + 1 < d + 1 consecutive integers, hence no two of the

above (vi)-s can be congruent modulo (d + 1), and so A( , 7r) is a balanced complex.

QED
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3.6 The Eisenbud-Green-Harris conjecture

Using the Stanley ring of the boundary complex El of an edge-orientable convex cubical

polytope we may construct an interesting example to a conjecture of D. Eisenbud, M.

Green and J. Harris. Before stating the conjecture, let us recall the definition of the h-

vector of a graded algebra. It is a well known fact that the Hilbert-series of a Noetherian

N-graded algebra A may be written in the following form.

2I h t'7t(A,t)= =l( (3.12)

where d = E ei is the Krull-dimension of A, i.e. the maximum length of an increasing

chain of prime ideals. (See, e.g. [28].)

Definition 54 We call the vector (ho,..., hi) in (3.12) the h-vector of the graded

ANoetherian algebra A.

In particular, for a simplicial complex A or a cubical complex O we define the h-vector

of the simplicial or cubical complex to be the h-vector of their Stanley rings.

Now we may formulate the Eisenbud-Green-Harris conjecture as follows. (See [9,

Conjecture (Vm)].)

Conjecture 2 Let I be an ideal of a polynomial ring of the polynomial ring K[zx,. . . , ,]

which contains a regular sequence of length r in degree 2. Then the h vector of the graded

algebra K[xi,..., ,] /I is the f-vector of some simplicial complex.

Example Let O be the boundary complex of a (d + l)-dimensional convex cubical poly-

tope, and assume that is edge-orientable with an edge-orientation 7r. Assume fur-

thermore that K is an infinite field. Then the Stanley ring K(g E) is a d-dimensional

Cohen-Macaulay ring, and it contains a linear system of parameters 11,..., d. We claim
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that the polynomial ring K[x, : v C Vj /(ll,... ,d) and the natural image of the face

ideal I( O ) in this ring provides an example for Conjecture 2.

In fact, by Theorem 15 the face ideal I( O ) is generated by homogeneous elements of

degree 2, and so the same holds for the image I( L )of I( O ) in K[x : v V] /(1 ,.. id)'

Thus I(O)contains a maximal regular system of parameters in degree 2. The factor of

K[x, V E V] /( ... Id) by I(O)is Artinian, isomorphic to K[I]/( 1 ,..., d) and

its h vector is the h-vector of the cubical complex ]. By Lemma 29 this h-vector is the

also the h-vector of any triangulation via pulling the vertices A<(0L) of . By Lemma

43 whenever we take a linear extension < of the partial order <,, the simplicial complex

A<() is equal to the simplicial complex A,(0i). Thus we are left to show that the h-

vector of A1,( 0 ) is the f-vector of some other simplicial complex. But by Lemma 44 the

simplicial complex A,(0 ) is completely balanced and being a triangulation of a sphere,

it is a Cohen-Macaulay simplicial complex by [26, Corollary 4.4]. Therefore its h-vector

is the f-vector of another simplicial complex by [25, 4.5 Corollary].
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