
Partitioning Non-strict Languages for Multi-threaded Code
Generation

by

Satyan R. Coorg

B.Tech, Computer Science and Engineering, Indian Institute of Technology, Madras

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of

the Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 1994

() Satyan R. Coorg 1994

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical Engineering and Computer Science

/knvI 1 qz

Certified by.

Professor of Electrical Engineering and Computer ScienceA11. n- Thesis Supervisor
I /' A

Accepted by.

v v

2

Partitioning Non-strict Languages for Multi-threaded Code
Generation

by

Satyan R. Coorg

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 1994

in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In a non-strict language, functions may return values before their arguments are available,
and data structures may be defined before all their components are defined. Compiling such
languages to conventional hardware is not straightforward; instructions do not have a fixed
compile time ordering. Such an ordering is necessary to execute programs efficiently on
current microprocessors. Partitioning is the process of compiling a non-strict program into
threads (i.e., a sequence of instructions). This process involves detecting data dependencies
at compile time and using these dependencies to "sequentialize" parts of the program.

Previous work on partitioning did not propagate dependence information across recursive
procedure boundaries. Using a representation known as Paths we are able to represent
dependence information of recursive functions. Also, we incorporate them into a known
partitioning algorithm. However, this algorithm fails to make use of all the information
contained in paths. To improve the performance of the partitioning algorithm, we design
a new algorithm directly based on paths. We prove the correctness of the new algorithm
with respect to the operational and denotational semantics of the language. Finally, we
suggest extensions to the algorithm to handle data-structures and to make use of context
information during partitioning.

Thesis Supervisor: Arvind

Title: Professor of Electrical Engineering and Computer Science

3

Acknowledgements

I am very grateful to my thesis advisor, Arvind, for his guidance, encouragement, and

patience. I also thank him for helping me to finish on time.

I thank all the members of the Computation Structures Group for their continuing help

and support. I thank Shail Aditya for carefully reading drafts of my thesis and helping me

present my ideas in an organized manner. I thank Boon Ang for the discussions we had on

partitioning. Yuli Zhou helped me get started on the abstract interpretation path by giving

pointers to the literature in the field.

I am very grateful to my parents for their love and affection. I also thank my friends

and relatives back in India for the interest they have shown in me and for their support.

5

To my friend,

K. G. Venkatasubramanian (1970-1993)

6

Contents

1 Introduction
1.1 Non-strictness in Fun(

1.1.1 Lazy Evaluatic
1.1.2 Lenience: Non.
1.1.3 The Problem

1.2 Id and its Compilatioi
1.3 Background

1.3.1 Strictness Ana
1.3.2 Dependence A
1.3.3 DD Partitionir

10
:tional Languages 11
)n 12

-strictness without Laziness 13
. 13n 14
. 17

lysis 17
nalysis 20ig 21

2 SP-TAC: Syntax and Semantics
2.1 Abstract syntax of the language
2.2 Notation.
2.3 Operational Semantics

2.3.1 Canonical Representation of Terms
2.3.2 Rewrite Rules of SP-TAC
2.3.3 Observable results

2.4 Denotational Semantics

3 Analyzing Recursion using Paths
3.1 Path Semantics.
3.2 Abstracting Paths.
3.3 Integrating Paths and DD
3.4 Summary

4 Partitioning: A New Approach
4.1 Partitioning as transformation

4.1.1 Correctness of a Partitioning
4.1.2 Summary

4.2 Partitioning: Preliminary Algorithms
4.2.1 Subpartitioning
4.2.2 Converting cyclic to acyclic blocks
4.2.3 Summary

4.3 Partitioning strict blocks
4.3.1
4.3.2
4.3.3

Dependence graph based Correctness
Safety of the Dependence graph Crit
Strict blocks: Correctness of the AB

28
29

29
31
31
32
33
34

36
36

45
50
54

55
55
59
60
61

61
63
66
66

s of a partitioning 68
erion 69
algorithm 70

7

..

..

4.3.4 Summary
4.4 Partitioning non-strict blocks

4.4.1 N-block based Correctness of a Partitioning
4.4.2 Correctness proof of the AB algorithm . . .
4.4.3 Summary

4.5 Appendix: Complexity of Partitioning

5 Extensions
5.1 Partitioning with Contexts
5.2 Data Structures .

5.2.1 Abstract Paths for Data-structures.
5.2.2 Partitioning with data-structures

5.3 Side Effects
5.4 Summary

6 Conclusion
6.1 Further Research.

6.1.1 Implementation.
6.1.2 Higher Order Functions
6.1.3 Recursive Data Types.
6.1.4 Subscript Analysis
6.1.5 Efficiency or Accuracy

8

............. . 73

. 73

. 80

. 84............. . .88

.89

92
92
97
98

99
102
103

104
104
104
105
105
105
106

..

..

List of Figures

1.1 Structure of an Id Compiler
1.2 Dependence and Separation Graphs
1.3 Dataflow Graph Operators
1.4 Iterated Partitioning

3.1 Different approaches to Partitioning
3.2 Structure of the Path Domain
3.3 Example of Paths used for DD

4.1 A Dependence Graph
4.2 B stage of algorithm AB
4.3 Proof of Prop(r) for A sets.
4.4 Proof of NP-hardness

9

15

21
22
27

37
38
52

62

68
86
89

..

....................................

..

.

.

.

.

.

.

.

.

.

.

.

Chapter 1

Introduction

Functional programming languages can be divided into two classes strict and non-strict. In

a non-strict language, functions may return values before their arguments are available, and

data structures may be defined before all their components are defined. Such languages give

greater expressive power to the programmer than a strict language. The programmer does

not need to worry about carrying dependencies across function boundaries; non-strictness

enable these dependencies to be satisfied at run time.

Compiling such languages to conventional hardware is not straightforward. Non-

strictness gives the programmer the ability to feed results of a function back into its ar-

guments. We cannot "wait" for all the arguments and then call the function - this would

cause a deadlock in the program. Thus, instructions in a non-strict language do not have a

fixed compile time ordering. The instructions may execute in any order satisfying the data

dependencies.

However, given that the most popular languages like C, Fortran are sequential (i.e.,

there is a definite ordering of instructions), processors which execute these languages effi-

ciently are highly tuned to exploit this ordering of instructions. Thus, such an ordering is

necessary to execute programs efficiently on current microprocessors. Partitioning is the

process of compiling a non-strict program into threads (i.e., a sequence of instructions).

This process involves detecting dependencies at compile time and using these dependencies

to "sequentialize" parts of the program.

In the rest of the chapter, we deal with the following issues. First we discuss non-

strictness and the need for a partitioning algorithm. Then, we give a brief overview of a

non-strict language Id [27] and its compilation process. We end the chapter by discussing

10

the state of the art algorithms for partitioning (and other related topics).

Chapter 2 defines the language framework employed in the thesis and provides opera-

tional and denotational semantics for this language. In Chapter 3 we introduce paths, a way

of representing dependence information and apply it to previous partitioning algorithms.

Chapter 4 is the main contribution of this thesis. It defines a new approach to partition-

ing, viewing it as a source to source transformation. We also present a new algorithm for

partitioning and prove its correctness using operational and denotational semantics. Chap-

ter 5 extends the basic partitioning algorithm in Chapter 4 in several directions. Chapter 6

concludes.

1.1 Non-strictness in Functional Languages

In this section, we focus on non-strictness in languages - the property that arguments are

passed unevaluated to procedures and data structures. We show how non-strictness allows

fuller use of recursion than is possible under strict evaluation. Example 1.1 illustrates

non-strictness in data-structures and example 1.2 illustrates non-strictness arising from the

conditional statement. These examples are taken from [35].

Example 1.1:
{a = mktuple 2 (2,b);
b = select (a)
in

a}

Example 1.2:
f(n)={p = eq? n 0;

a = if p then {in 3} else {in d};
b = if p then { in c} else { in 4};
c = a + 2;
d =b + 1;
e=c * d
in

e}

The above examples are given in terms of a recursive (letrec) block. There is no ordering

of the statements present in the block. mk_tuple and select operators make a "tuple" of

values and select any component of a tuple respectively.

In a strict evaluation, where all expressions are strict in the variables they contain, both

the examples produce a deadlock. In example 1.1, the tuple corresponding to the variable

11

a cannot be returned until b is defined. However, b cannot be defined until the tuple a is

defined - leading to a deadlock. A similar reasoning shows that example 1.2 also produces

a deadlock under strict evaluation. In strict languages like Scheme [32], the letrec is not

used to define such "circular" dependencies, but used to define recursive functions .

Now consider a non-strict evaluation of the examples. In example 1.1 the tuple a

is returned with its first component containing 2 and the second component undefined.

Selecting the first component of this tuple gives the value 2 which in turn makes the variable

b defined. Thus, the whole program returns the tuple (2, 2). Now, consider example 1.2.

Suppose that the value of the predicate is true. Then, a will get the value 3. This means

that c will get the value 5 and b in turn gets the value 5. The final value returned from the

block is 5*6 = 30. The case when the predicate evaluates to false is similar. The important

point to note is that the order of evaluation of variables will be different in that case - b will

get a value before a does. The examples can be easily modified to involve non-strictness of

functions (by abstracting the non-strict expressions into separate functions).

We now consider two ways of implementing this non-strictness: lazy evaluation and

lenient evaluation.

1.1.1 Lazy Evaluation

In the examples given to illustrate non-strictness, evaluation of some expressions needed

to be delayed until their evaluation was possible - strict evaluation would try to evaluate

them too early, leading to a deadlock. Lazy evaluation, the evaluation strategy followed by

languages like Haskell [17], delays expressions until the last possible moment, i.e., when the

execution cannot proceed without it. All the examples given produce correct answer under

lazy evaluation, since lazy evaluation will certainly introduce sufficient delays to insure that

the delayed expressions are executable. In fact, if there is any evaluation order which will

produce an answer from a program, lazy evaluation will also produce an answer to that

program [42].

Laziness grants an additional flexibility to the programmer: the ability to create and

manipulate infinite data structures. A well known example in literature is the sieve of

Eratosthenes for finding prime numbers [15]. The program works by defining an infinite list

of integers, and using this list to select out the primes. Even though the list is infinite, lazy

evaluation scheme actually builds the list long enough to return the nth prime - no more.

12

A strategy without laziness would build the infinite list and would fail to terminate.

1.1.2 Lenience: Non-strictness without Laziness

Lenient evaluation is defined in [35] to be an evaluation strategy which achieves non-

strictness but not necessarily laziness. For the implementation, this implies that expressions

must be delayed until their input data are available, but not necessarily any longer. For the

programmer, it means unrestricted use of letrec and flexibility in data dependencies, but not

consumer-directed control structure required for the finite use of infinite data structures.

It is shown in [35] that programs can be implemented more efficiently in the lenient strat-

egy than possible in the lazy strategy. In this thesis, we will be primarily concerned with

non-strictness arising from the lenient strategy. In other words, we will develop compilation

strategies to ensure that a program producing a correct answer using the lenient strategy

does not deadlock after it is compiled.

1.1.3 The Problem

Consider the following program written in Id [27], a non-strict language with a functional

core.

f(a,b)=(c = a + 1;
d = b * 2;
in

(c,d)}

Now, it is not safe in general to compile the above function into a single thread for

the reason that there could be a dynamic dependence between the two instructions outside

the function body. For example, the following context creates a dependence from the *

instruction to the + instruction. Non-strictness of the function f ensures correct results

even though a result is fed back to an argument.

{(x,y)=f(y,2)
in

y)

We can easily construct another context in which there is a dependence from the +

instruction to the * instruction. Thus, there is no fixed ordering which can be determined

by the two instructions.

13

Informally, the problem is to produces a set of threads given a program in Id. Each

thread is a subset of instructions of a procedure body, which satisfies: [37]

1. A compile-time instruction ordering can be determined for the thread which is valid

for all contexts in which the procedure is invoked.

2. Once the first instruction in a thread is executed, it is always possible to execute each

of the remaining instructions without pause, interruption, or execution of instructions

from other threads.

Threads of this form are required to implement a language on parallel multithreaded hard-

ware (e.g., Monsoon [30, 29], and *T [28, 3]). They also yield efficient implementations on

conventional architectures when combined with a suitable abstract machine such as TAM

[13]. In a later chapter, we formalize this notion of a thread and cast it into an operational

semantic framework.

1.2 Id and its Compilation

Our thesis is targeted toward producing a partitioning algorithm for use in a compiler for

the Id language. Id [27] is a functional language extended with I-structures [5] and M-

structures [8]. Like any other modern functional language, Id has the standard features

including higher order functions, algebraic data types, pattern matching and a Hindley-

Milner based type inference algorithm. In this thesis, we concentrate on a first order subset

of Id allowing I-structures as the only means of achieving side effects.

We now give an overview of an Id compiler being implemented in Id [46] so that the

reader can put the partitioning stage of the compiler in this perspective. The compiler

reads an Id source file and produces Multi-threaded machine code to run on conventional

microprocessors (Figure 1.1). In this process, it uses five intermediate representations AID,

KID, KID Graphs (KG), P-TAC, and Partitioned P-TAC.

AID is very close to Id in terms of its syntactic constructs. KID (for Kernel Id) is a

much smaller language: syntactic sugars in AID are removed, complex pattern matching

is replaced by simple multi-way branches, and expressions are flattened by introducing

temporary variables for each intermediate result. KG is a graph representation of KID.

P-TAC's main difference from KG is that data structure and closure handling are exposed

14

Id Source

Front

I A Yi,AlI
* Scope

..
Parsing

Analysis) O -Desugaring .

Translation

KID
· Variable Analysis
* Type Checking

I.....I....IfuIffI. I IIIIff .idiIIIF ifR

Translation

r

KG Optimizations

Translation

P -Tnals Optimizations

Back
End Partitionei

· i··············Multi-threaded···

Partitioning

Partitioning

P-TAC

Code Generation/Optimizationi
..- ...- .. .- ...-

L

Multi-threaded
Machine Code

Figure 1.1: Structure of an Id Compiler

15

End

...........IE ,......111 I 11i ifa

Middle
End

! !

.

I T T-- !

IIIII II f I ifIfIF F I IfIffIf f

I... M..........

...................,.............................

I

........ I.I.................

i

in terms of primitive operations on the heap. Partitioned P-TAC groups together nodes in

P-TAC which belong to the same partition.

The modules of the compiler are organized in the conventional arrangement of a front

end, middle end and a back end. A short description of the functions performed by each

module is given below: (we omit descriptions of translation modules, whose functionality is

obvious)

1. Parsing: This is modified version of Berkeley YACC to generate a LALR[1] parser

in Id.

2. Desugaring: This is a macro expansion phase in which multi-clause definitions and

functions, list and array comprehensions are replaced by simpler AID constructs.

3. Scope Analysis: This relates occurrences of variables to their definition.

4. Variable Analysis: Annotates each KID subtree with the set of variables that occur

free in it.

5. Type Checking: It processes type annotations, resolves overloading and infers types

for each subexpression in the KID tree.

6. Optimizations on KG: Performs constant propagation, common subexpression elim-

ination, fetch elimination and call substitution.

7. Optimizations on P-TAC: Same optimizations as in the KID stage are performed

on P-TAC graphs. A lot of redundancy is generated in the translation from KID to

P-TAC and these optimizations try to eliminate them.

8. Signals: Signals are added to the P-TAC graph to ensure proper sequencing of bar-

riers, and for use in reclaiming storage allocated for function calls.

9. Partitioning: This generates a set of threads (a sequence of P-TAC operations) given

the P-TAC graph of the program. Developing algorithms for this module is the goal

of the thesis. The algorithms presented in this thesis are yet to be implemented.

10. Code Generation/Optimization: This is the final stage of the compiler producing

executable machine code. The code is multi-threaded for two reasons: one, we would

like the code to run in parallel, two, to ensure that non-strictness of the language is

guaranteed by the implementation.

16

1.3 Background

In this section, we give a brief overview of some related work arising out of compiling lazy

languages like Haskell. We also discuss previous approaches to partitioning.

In lazy languages, an expression is evaluated only when it is required for an answer to be

produced by the program. This raises problems in generating efficient sequential code, as

the order of expression evaluation cannot be determined at compile time. A lot of research

has been done in the lazy language community to find good solutions to this problem. We

will discuss strictness analysis in this section, as it is particularly relevant to the ideas

presented in this thesis.

The seminal work in [35] defined the problem of partitioning and identified the pre-

cise reasons due to which this compilation step is required. This work was based on firm

theoretical foundation and used dependence analysis to identify potential and certain de-

pendencies in programs. The actual partitions were obtained by a graph coloring technique

which converted programs into threads while satisfying the detected dependencies. This is

a global approach; we need information about the whole program to apply this technique.

We call this approach the Dependence Analysis approach.

Another less theoretical, more pragmatic approach (called Demand and Dependence

(DD) partitioning) started in [21], progressed through [36, 16, 38] and culminated in [37].

The approach began as a local approach. That is, the initial algorithms worked as follows:

look at "small" regions in programs and see whether they can be sequentialized. This

"local" analysis was extended to propagate local information to the entire program in [37].

1.3.1 Strictness Analysis

As we have discussed earlier, lazy evaluation requires that argument expressions be passed

to procedures unevaluated, and that primitives like arithmetic operators must cause such

unevaluated expressions to be evaluated. Techniques which have emerged for lazy evalua-

tion are Turner's combinators [41], Henderson's force-delay transformation [15], and Graph

Reduction [45, 22, 31]. One thing common to these implementations is that they can pro-

duce more efficient code if they can evaluate an argument directly, instead of passing an

unevaluated expression. However, given the constraints of lazy evaluation, this is not safe

in general. Strictness Analysis determines when an argument can be safely evaluated (i.e.,

17

without causing a program to diverge).

Strictness analysis is based on the notion of a strict function:

Definition 1.1 A function f of n arguments is strict in its ith argument if

f(X1,... Xi-1, 1 Xi+l1 ..Xn) - 1

for all values of xl,..., xil and Xi+l1, , Xn.

As Mycroft points out [26], we can safely evaluate an argument to a function f which is

strict in that argument. If f terminates, the argument would have been evaluated, as the

argument is needed to produce a value for the result. If f does not terminate, nothing is

changed by evaluating the argument. The definition for strictness given above gets more

complicated when extended for data-structures and higher order functions.

Strictness analysis attempts to determine in which arguments, if any, the functions of

a program are strict. As strictness is a undecidable property, the analysis has to make ap-

proximations at compile time. Many approaches to strictness analysis have been developed

including abstract interpretation [26, 10], backwards analysis [19], and type inference [25].

A good overview of the field is given in [2].

We give a brief overview of the abstract interpretation approach and point out its ability

in dealing with recursive programs. In this approach, the idea is to execute the programs

with partial information about the inputs and deduce partial information about the outputs.

Instead of the inputs having the run time values, then can have two abstract values 1 or 0.

1 denotes any possible value and 0 denotes non-termination (i.e., the value is undefined).

For each function f we construct an abstract function f# which takes abstract values as its

inputs and returns abstract values as its outputs. For example, the abstract functions for

the + operator and the conditional (if) are given below:

+#(x#,y#) = x#Ay#

if#(x#,y#,z#) = x# A (y# V z#)

The operators A and V are similar to the usual and and or operators on boolean values.

The +# abstract function mirrors the fact that + needs both the arguments to return a

defined value; if one of the arguments is undefined, the result is undefined. The if operator

is more interesting. When is its result defined? Clearly, the predicate (x#) must be defined.

18

We know that one of the values y# or z# must be defined, but at compile time we do not

know which. Thus, the analysis makes a (conservative) approximation that if one of the

branches is defined, the result of the if is defined.

Using the above method, we can know whether a function f is strict in its i t h argument by

evaluating the expression f#(1,.. ., 1, O, 1,..., 1). Except the ith argument, the arguments

to f# are all 1. If this function returns O, we know that the function f is strict. If it

returns 1, the function may or may not be strict. However, a straightforward evaluation of

f#(1, ... , 1, 0, 1, . .. , 1), when f is recursive creates some problems. Consider the following

function and its abstraction:

f(x,y) = if((y== 0),x,f(x,y- 1))

f#(x#,y#) = if#((y#A1),x#,f(x#,y# A 1))

The abstract function can be simplified to:

f#(x#, y#) = y# A (x# V f#(x#, y#))

Suppose we want to determine whether f is strict in x. We should evaluate f#(0,1).

However, we need to know the value of f#(0, 1) before (as it occurs on the right hand

side of the function definition). Trying to do a straightforward evaluation would result in

the analyzer itself not terminating. To avoid this, the "circularity" is resolved by using fix

point iteration. To start out, we assume that the function is strict in all its arguments (i.e.,

f#(...) returns 0 for all inputs). We get,

f#(O, 1) = 1 A (0 V 0) = 1 A 0 =

It is easily verified that this is indeed the value of the function in its limit, i.e., f is strict

in x.

To check for termination of our fixed point iteration, we need to check for equality of

abstract functions obtained from successive iterations. If we assume a naive implementation

of the function as a table with 2n entires (n is the number of arguments to the function

which returns a single value), each iteration will take exponential time. A lot of work has

been done in choosing a "good" representation for the function so that fix point iteration

can be speeded up. A good example is the frontiers representation [11].

Finally, we note that strictness analysis has been extended to analyze higher-order

functions [10], data structures [43, 44], polymorphic functions [1, 20, 40, 6].

19

1.3.2 Dependence Analysis

In this section, we give a brief overview of the Dependence Analysis approach as presented

in [35]. The algorithm produces "suspendable" threads given a non-strict program as it

inputs. Threads are suspendable in the sense that if a value they need is unavailable, they

are suspended. They are resumed later when the value becomes available. Note that this

notion of a thread is different from the one given previously.

The algorithm performs an approximate dependence analysis to construct a dependence

graph of a block. The dependence graph reflects all possible dependencies in the graph.

Dependencies are of two types: certain, which we know at compile time and potential which

we do not. Using the dependence graph we can compute a separation graph which has edges

between two variables a and b if there is a potential dependence path from a to b and vice

versa. A potential dependence path is simply a path in the dependence graph with at least

one potential dependence edge. The partitions are obtained by a coloring of the separation

graph, which implies that variables which have to be separated are put in different threads.

An example of this approach is given below.

Figure 1.2 shows the dependence and separation graph of example 1.2. Solid edges

denote certain dependence and dashed edges denote potential dependence. We have already

seen that variables a and b cannot be put in the same thread (as the order in which they

get their values is not fixed at compile time). This constraint shows up in the separation

graph as an edge between the variables a and b. By a coloring of the separation graph we

can obtain the partitions {n, p, a, c, e} and {b, d}.

Problems: The algorithm has to put a potential dependence edge between any result of a

function and any of its inputs. This is due to the fact that there could be arbitrary feedback

of the results in the language. This gives rise to many potential dependence paths and many

separation constraints, producing small threads. Some heuristics were suggested in [35] to

overcome this limitation.

1. If a function is strict in an argument, the feedback edge is not added.

2. Potential edges are eliminated whenever they conflict with a certain dependence path

in the dependence graph.

3. Given a set of vertices in the graph which form a strict region, the strict region is

collapsed into a single vertex. A strict region is a set of vertices in the dependence

20

Figure 1.2: Dependence and Separation Graphs

graph where all dependencies in the region are strict and there is only one (output)

vertex which depends on these vertices.

The later partitioning algorithms expanded this notion of a strict region to produce better

partitions.

1.3.3 DD Partitioning

We only give a brief overview of the approach, the reader is encouraged to read [37] for more

details. The goal of this approach is to generate a set of threads from a given program.

The algorithms given are greedy, and seek to maximize the size of the threads as much

as possible. The algorithm works on programs represented as dataflow graphs which are

described below.

Dataflow Graphs: Programs to be partitioned are expressed in a structured dataflow

graph, an intermediate form into which Id is compiled [33]. A structured dataflow graph

consists of a collection of acyclic graphs describing basic blocks and interfaces. A basic block

corresponds to a group of operators with the same control dependence. For example, oper-

ators comprising the "then" arm of the conditional, excluding those in nested conditionals,

are a basic block. Basic Blocks: These are directed acyclic graphs with the vertices rep-

resenting operators, and the edges representing flow of values. Some of the operators used

to compile Id are shown in figure 1.3. These consist of the usual primitive operators (like

21

n

MP

a - --. b* "

C d

ee

+, -, etc.), operators for sending a value to a function and receiving a value returned from

a function. The send and receive operators perform the procedure linkage operations. For

data structures, there are operators to read (I-fetch, fetch) and operators to write (I-store,

store).

Figure 1.3: Dataflow Graph Operators

An edge in the graph indicates the flow of an operand; it also indicates a certain de-

pendence between two operands. A certain dependence is one that can be detected at

compile time. The dataflow graphs used in the algorithm have squiggly edges, indicating

a split-phase operation (i.e., one where the processor does not "wait" for the operation to

be completed (e.g. I-fetch)). The partitioning algorithm must "break" a thread at each

squiggly edge to implement the split-phase transaction.

There is one other kind of dependence namely, potential dependence. This is possible

dependence which cannot be completely determined at compile time. These dependencies

are represented using sets of labels called inlets and outlets. An inlet (outlet) is a name for a

potential incoming (outgoing) dependence. Note that we have introduced inlet annotations

in receive and i-fetch operators as we do not know (in general) which nodes these vertices

22

I se I store I i-store

1_ __. - - -j i t(-,Signar/(3gnr

Ireceive G

depend upon.

A vertex with no inlets does not have any (potential) dependence from any other ver-

tex. Though the dependencies of vertices with non-empty inlet/outlet annotations are not

known, the algorithm uses the inlets and outlets to find "equivalence" between various

vertices, and uses these equivalences to generate partitions.

Interfaces: Interfaces are mechanisms for a basic block "calling" another. Each basic block

with n input vertices and m output vertices is basically an n-argument, m-result function.

Communication between basic blocks is accomplished through send and receive vertices.

On the callers side, there is a send for each argument to be sent to the callee and a receive

for each result returned by the callee. The callee uses receives to obtain arguments from

the caller and sends to send the results back. For a function, there is a single place where

it is defined (the def place) and used in other basic blocks (the use sites). Thus, a function

typically has a single-def multiple-use interface. The algorithm treats the conditional as

a generalization of the procedure call: there are two defined functions (the "then" and

"else" basic blocks) and a single call (depending upon the value of the predicate). Thus, a

conditional is a single-use multiple-def interface.

Partitioning Basic Blocks

The algorithm uses demand/dependence sets to do partitioning. At each stage it seeks to

put nodes with the same demand (or dependence) sets in the same partition.

Definition 1.2 (Dependence Sets) A Dependence set of a node is a set of inlets on

which it depends [21]:

Dep(v)= U Inlet(u)
uEPred* (v)

where Inlet(u) is the set of inlet names that annotate u, and Pred*(v) is the set of nodes

from which there is a path to v.

Definition 1.3 (Demand Sets) A Demand set of a node is a set of outlets which depend

on it [38]:

Dem(v) = U Outlet(u)
ueSucc* (u)

where Outlet(u) is the set of outlet names that annotate u and Succ*(v) is the set of nodes

to which there is a path from v.

23

The Demand stage of the algorithm works as follows:

1. Compute the demand sets of each node. As basic blocks are acyclic this can be done

by a backward pass.

2. Partition the graph into (maximal) sets of nodes with the same demand sets.

The dependence stage of the algorithm is analogous.

The partitions obtained by one of the two stages can have two nodes connected by a

squiggly arc, violating the second condition for a thread. Thus, we need to subpartition the

partitions we have obtained. The (backward) subpartitioning algorithm works as follows:

1. For each node v in a thread, compute the maximum distance (Subpart(v)) (with

squiggly edges having weight 1 and other edges having weight 0) to the "leaves" of

the thread.

2. Form subpartitions of the thread putting nodes with identical Subpart() together.

An analogous forward subpartitioning algorithm can be defined. Observe that the subpar-

titioning algorithms cannot introduce a cycle in the thread, as subpartition numbers are

monotonically decreasing (or increasing) along a path.

A stage in the DD algorithm is to perform Demand (or Dependence) partitioning with

subpartitioning. The informal argument given in [37] to prove correctness of the algorithm

uses the fact that any static or dynamic path between two nodes in the same thread cannot

contain nodes in some other thread.

1. No static path can exist due to the fact that the dependence (or demand) sets are

monotonically increasing along the path.

2. Assume a dynamic path exists between two nodes in the same thread. Then, it must

be completed through one of the inlets (or outlets), implying a cycle.

Subpartitioning ensures that the second part of the condition for a thread is satisfied.

The partitioning algorithm for a basic block consists of iterated demand and dependence

partitioning (with subpartitioning) until the partitions of the basic block do not change.

An example of iterated partitioning is given in figure 1.4.

24

Global Partitioning

In this section, we give a very brief overview of the global analysis presented in [37]. The

idea is simple: given a block B calling a block B' we annotate the call site in B using the

inlets/outlets of B' and use the new inlets/outlets to partition B. We then propagate the

information about the new partitions of B to other blocks calling B. The inlet/outlets of

B' are a-renamed so that they do not conflict with the inlet/outlets of B. When a certain

dependence is detected between an input and an output, a squiggly edge is added to note

this dependence.

Information contained in inlets/outlets is characterized mathematically by a congruence

syndrome.

Definition 1.4 (Congruence Syndrome) The congruence syndrome of a collection of

sets of names C = S1,..., S, is a 2' x 2n matrix defined as follows:

Syn(C) : Pow({1,..., n) x Pow({1,..., n})

where Syn(C)(II, I2) = 1 iff

U Si = USi
iEI iEI2

'Two inlet sets are "eqvivalent" (in the sense that they produce same partitions if they

are propagated) if their congruence syndromes are equal. Note that an a-renaming of a

collection of inlets gives a set of inlets having the same congruence syndrome. A partial

order on congruence syndromes can be defined as follows:

synl C syn 2 = synl (I, I2) < syn 2(I, I 2)VI 1, I2

Consider a block B calls two blocks B' and B' arising in the case of a conditional, a

multiple-def single-use interface. In this case, the algorithm should propagate the lower

bound of congruence syndromes of the inlets/outlets. It is proved that this can be achieved

by taking a union of the inlets and outlets (making sure that the names do not clash).

It is pointed out in [37] that DD partitioning propagates information about non-strict

arguments too.

25

f(x,y,z)=
{a = if x then {b = y + z in b else {in 2}
in

a)

In the above example, y and z get the same outlet annotations (as they are used to-

gether). In a call-site f(el, e2, e3), the computation corresponding to e2 and e3 can be put in

the same thread. This information is not present in the strictness properties of the function

(it would just say that f is strict in x and not strict in y and z).

Recursion: Problems

Here, we outline one limitation of the global analysis, that is, its ability to handle recursion.

Recursion in a program shows up as a cycle in the call graph. Propagating information

around a complete cycle will permanently invalidate all site annotations on the cycle, pre-

venting further progress.

However, we could use fix point iteration (that is, continue propagating around the

cycle) until the site annotations have been revalidated. Unfortunately checking for fixed

point is difficult. Two wrong ways of checking for fixed point are:

1. Checking to see if the inlets/outlets at the send/receive nodes are equal. However,

we generate new labels each time we propagate to ensure safety. Thus, the label sets

grow ad infinitum and the fix point iteration will not terminate.

2. Checking to see if the partitions of all blocks in the cycle are same. This test is not

safe as the information contained in the inlets/outlets could still be changing even

though the partitions do not change after an iteration.

The only safe method of checking for fixed point is to check that the congruence syndromes

corresponding to the label sets have converged. Though this check is safe, it involves a lot

of computation (the sizes of the congruence syndromes are exponential). If we accept a rise

in the complexity of the algorithm, we can design a better partitioning algorithm as the

rest of the thesis shows.

26

yz

Figure 1.4: Iterated Partitioning

27

Dependence

z

Demand

Chapter 2

SP-TAC: Syntax and Semantics

In section 1.3.3 we introduced the structured dataflow graph intermediate form into which Id

can be compiled. However, we choose to work with another intermediate language (P-TAC

[4]) for the following reasons:

1. It is also an intermediate form used in a compiler for Id [46], and techniques for

compiling Id to P-TAC are well known.

2. Unlike dataflow graphs, there is a formal operational semantics given for P-TAC. We

use this to prove correctness of our algorithms.

3. Like dataflow graphs, P-TAC has minimal "clutter". Thus, we can work with a small,

yet powerful language without getting into the details of syntax of Id.

Observe that the DD analysis given in Chapter 1 is essentially an analysis on a first order

functional language. It models side-effects as new outputs and makes conservative decisions

when dealing with data-structures and higher order functions. Thus, to study issues related

to the DD algorithm and its problems with recursion we need not directly work with P-TAC

(which is a higher-order language with arbitrary data-structures). We start with a subset of

it (called Small P-TAC or SP-TAC), which is a first order, functional language with simple

data types. SP-TAC does not have structured data-types, but functions can return more

than one value. In a later chapter, we will add other features into the language. However,

it should be noted that even though we are not dealing with all the features, the techniques

that are developed for SP-TAC are valid for P-TAC too; we might have to make conservative

approximations when dealing with other features (similar to the approach taken by the DD

algorithm).

28

2.1 Abstract syntax of the language

The abstract syntax of the language is given below:

c E Con Constants, c ::= 1 2 1 true false l...

x, y E V Variables

p E Pf Primitive functions, p ::= + - Iand I...

f E Fv User defined functions

se E SE Simple exp, where se ::= c I x

e E Exp Expressions, where

e ::=se bp(sel, se2,., sen) [

f (sel, se2, ... , sen) I if se then b1 else b2

b E Bo Blocks, where b ::= {{st)* in (sel, se2,..., sen)}

st E St Statements, where st ::= (Yl, Y2, ... , Yn) = e

pr E Pr Programs, where P ::= {fi(xl, x2,..., Xn) = bi

We make the following assumptions.

1. All primitive operators return a single value as their result.

2. All nested lambda abstractions have been lifted to the top level [23].

3. All functions (user defined and primitive) are not curried. This ensures that the

syntax specifies a first order language.

4. All local and bound variables are a-renamed so that they are defined uniquely in the

program.

In the example programs given, we take the liberty of using primitive operators like +,-

in their infix form, instead of the prefix form specified in the abstract syntax.

2.2 Notation

Given a block b of SP-TAC, the (top level) variables bound in the block (BV(b)) is defined

as follows:

BV({{sti}* in (sei,...,sem)}) = UBV(sti)

29

BV((yi,..., Yn) = e) = {Y1, .. ,Yn)

Given an expression e of SP-TAC the free variables of e (denoted by FV(e)) is defined as

follows:

FV(c) = {}

FV(x) = {x}

FV({{sti}* in (sel,...,sem)}) = UFV(sti) U FV(sej) \UBV(st i)
i l I<jm i

FV(p(sel ,...,sen)) = U FV(sei)
1<i<n

FV(f(sel,..., sen)) = U FV(sei)
1<i<n

FV(if se then b1 else b2) = FV(se) U FV(b1) U FV(b2)

FV((yi,..., Yn) e) FV(e) \ {Y1 ., *XYn}

A substitution (p) is a mapping from variables to variables. We use Domain(p) to denote

the domain of So. Substitution on an expression is defined as follows:

~(C)

(P(x)

= c

= o(zx),x E Domain(p)

cp({{sti}* in (sel, ... , sem))

q (p(sel ,...,sen))

$(f(sel, . . ., sen))

c2(if se then bl else b2)

P((yl,..., Yn) = e)

= x, otherwise

= {{f(sti)}* in (p(sei), ... , p(sem))}

= p(¢p(se),..., cp(sen))

= f(cp(sel),.. ., qo(sen))

= if p(se) then (bl) else o(b2)

= (Y1, , Yn)= (#(e)

A substitution is denoted by [x 1 /yl, ... , Xn/Yn], where xi is substituted for yi (for 1 < i < n).

We sometimes use [op(x)/x] to denote the substitution op(x) for x for all variables x. op is

an operator which produces "substitution" variables for each x.

We use env = [x1 - vl,..., yl ~- vn] to denote an environment mapping variables

{x 1,...,xn} to values {vl,...,vn}. The domain of the environment (Domain(env)) is

{x, ... ,xn}. We will use [xi -+ vi] to denote an environment mapping xi to vi where i

ranges over some set determined by the context in which we use the environment.

30

If env and env' are two environments, we use env.env' to denote the environment env"

such that env"y = envjy] if y e Domain(env) else env"[y] = env'jy]. This is the way

environments are "linked" in a block structured language.

2.3 Operational Semantics

The operational semantics of SP-TAC is given in terms of an Abstract Reduction System

[24], which is a structure (A, -- +R) where A is a set of terms and -- R is a binary relation

on A. The operational semantics is directly distilled from the operational semantics of P-

TAC given in [4]. A contains all closed SP-TAC terms (terms without free variables), with

Program as start symbol, plus all terms that can appear during a program evaluation. The

term ground values refers to values of SP-TAC, i.e., terms which cannot be reduced any

further (integers and booleans). This system is derived from a set of rewrite rules. The

operational meaning of user defined functions is given by the user via the program Pr.

2.3.1 Canonical Representation of Terms

Consider the following terms:

1. {x = 8; z = { y = x; u = x + y in u in z}

2. {x = 8; z = x + x in z}

3. { in 8 + 8}

Though these terms are syntactically distinct from each other, they all behave the same

operationally. For example, the Id compiler would represent all these terms using the same

dataflow graph, i.e., 8 + 8. Therefore, in our reduction system, terms that have the same

graph, up to isomorphism, are equivalent. We give a canonicalization procedure for terms in

order to select a representative of terms which are equivalent. Reductions will be performed

only on canonical terms.

Definition 2.1 (Canonical terms) The canonical form of a term M is obtained as fol-

lo uws:

1. Flatten all blocks according to the following rule:

{Stl; t2; ... ; (l, * * , n) = {Stll; . in (y, y,,) }; ... } -- 4blk

31

{stl; t2; . ;((Stll); .. ; (l, . , Xn) = (((Yl),'', P(Yn));* .)

where p renames the variables in the inner block to new variables (to avoid name

clashes).

2. For each binding of the form (Yl,..., Yn) = (l,...,Xn) in M, where xi's and yi's

are distinct variables, replace each occurrence of yi in M by xi for each 1 i < n.

Remove the statement (yl,..., yn) = (x,..., x,n) from M.

3. For each binding of the form (Yl, .. , y,n) = (vl, ... , vn) in M, where vi's are ground

values, replace each occurrence of yi in M by vi for each 1 i < n. Remove the

statement (yl,..., Yn)= (vi,..., vn) from M.

Definition 2.2 (a-equivalence) Two closed terms M and N in canonical form are said

to be al-equivalent if each can be transformed into the other by a consistent renaming of

locations and bound variables.

Lemma 2.1 Each SP-TAC term has a unique canonical form up to a-renaming [4].

2.3.2 Rewrite Rules of SP-TAC

Intuitively, we define the evaluation of a program M as consiting of repeatedly rewriting

its subterms until no further rewriting is possible. Some rules have a precondition to be

satisfied. We apply the rewrite rules only to terms in canonical form. Also, we apply the

rewrite rules to the statements in the outermost block only. This prevents terms inside the

then and else blocks of an if statement from getting rewritten. A context Co is a term

with a hole in it, such that, when a suitable term is plugged in the hole, CD becomes a

proper term [7].

We now present the set of rewrite rules, RSP-TAC, for defining the ARS for SP-TAC.

In this section n and ii represent a variable and a numeral, respectively. We do not discuss

type errors in the rules, we assume that a primitive function is only applied to arguments

of appropriate types.

* 6 rules

m+ri -is m+n

eq? im i - s true

eq? ii -+s falseifin'iLi

32

* Conditional rules

if true then b1 else b2 -- +cond b1

if false then b1 else b2 -- cond b2

* Application rule

f(xl,..., x) = {{st}*in (se,,..., sem)} E Pr

f(Y .. ., Yn) ---- app {X' = Yi; ... , = yn; {st'}* in (se, ... , se')}

Note that we have to rename every variable in body of the function to new variables.

Discussion:

1. Non-strictness of the conditional statment arises from the fact that we do not require

that all the arguments to the conditional (containing FV(b1), FV(b 2)) should be

defined. The rewrite rule holds as soon as the predicate is evaluated.

2. Non-strictness of the function call arises from the fact that we do not insist that the

arguments to the function f be ground values. The rewrite rule applies even though

the arguments are variables.

2.3.3 Observable results

We now define the notion of an Answer of a term. This helps us to reason about equivalence

of blocks in SP-TAC and is useful to define correctness of our partitioning transformations

given in later chapters.

Definition 2.3 (Answer of a term) Given an ARS (A, RSP-TAC) and M E Initial-

Terms of A, the answer produced by M (Ans(M)), is undefined if M does not have a

normal form. Otherwise, M reduces to a normal form N, and Ans(M) is

1. If N is of the form {in v}, then (proper-termination, v).

2. If N is of the form {stst;st2;... in v} then

(a) If v is either an integer or boolean or error, then (improper-termination, v).

(b) else (improper-termination, Nothing).

where proper-termination, improper-termination, and Nothing are reserved constants.

33

2.4 Denotational Semantics

In addition to operational semantics, we also make use of denotational semantics to derive

dependence information. Denotational semantics is a convenient framework to express fix

point iteration, which is used to deal with recursive functions. Though the proofs given

in the thesis make use of an equivalence between the two semantics, we do not attempt a

formal proof of this fact. The denotational semantics is based on the standard semantics

given in [9].

As functions in our language can have many arguments and return many results, we

need a model to capture multiple values. We use Dn to denote a domain formed by the

n-product D x D x ... x D with the usual ordering on the elements. The ordering is:

(u,, u) E (,, v) d i, 1 < i < n, u c v

The infix operator ; is used to select any

The semantic domains are:

Int

Bool

Val = Int + Bool

Fun = Un>l,m>l (Valn -- Valm)

D = Val + {error}

DT = Un>l Valn + {error}

Bve = V - D

Fenv = Fv -+ Fun

"component" of a value in Dn.

the standard flat domain of integers.

the standard flat domain of boolean values.

the domain of values.

the domain of first order functions.

the domain of denotable values.

tuples of values.

the domain of variable environments.

the domain of function environments.

The semantic functions are:

I£ : Con -X Val

£k : Pf -+ Fun
: SE -4 Bve -- D

£b : Bo -X Bve -* Fenv -+ DT

: Exp -+ Be -+ Fenv -+ DT

p : Prog -+ Fenv

34

In the semantic equations, we make use of a case operator (denoted by -+). The meaning
of x - y, z is that depending whether x is true or false either y or z is selected. The
semantic equations are:

'c [n]

£cjtrueD

£cjfalse]

&kI[+

£s[c] bve

£gjxD bye

£[seD bve f env

C[p(sel, e2, .. , sen)] bye fenv

8f (sel, se2,..., sen) bye fenv

£[if se then blelse b2]J bye fenv

£[b] bve f env

= n, integer n

= true

= false

= A(x, y).(Int?(x) and Int?(y)) - x + y, error

= £[c]

= bvex]

= £j[se bye

= £k[p (jsel] bye,..., £s[sen] bye)

= fenvl[f ([sel] bve, ... , £sjsen bye)

= (:s[sel be) (b bl bve fenv), (b b2 be fenv)

= Eb b bve fenv

£b[{{(Yil , . ., Yim) = ei)* in (sel, se2, . .. , sen)}ll bye fenv =

letrec newbve = [Yij - ([eji (newbve.bve) fenv) j]

in (£s[sel] newbve, ..., £s[sen newbve)

p fi (xl, x 2, ... , xn) = bi}*- = fenv whererec

fenv = [fi - (A(yi, Y2,..., Yn) b[bi] [xi ~- yi] fenv)]

35

Chapter 3

Analyzing Recursion using Paths

We have already seen (Chapter 1) that DD partitioning is not able to handle recursion

satisfactorily. We have also noted that strictness analysis has no such problems, it is able

to deal with recursion using fix point iteration. However, it is not as powerful as one would

want; there are functions where better partitions can be obtained using demand dependence.

In this chapter, we use Paths, as a way of representing dependence information. Paths

are very similar to the strictness sets defined in [18], and different from the Paths in [9], but

we continue to use the same terminology. We combine the strong points of both strictness

analysis and DD, i.e., ability to handle recursion as well as retain information about non-

strict arguments. One problem with DD is that it tries to derive dependence information

and do partitioning in a single framework. This gives rise to difficulties when dealing with

recursion. We separate the two parts: dependence information is computed and represented

using paths and this information is used in the partitioning algorithm. Our approach is

outlined in figure 3.1.

The rest of the chapter is organized as follows. First, we give a formal definition of path

semantics. We then "abstract" the path semantics to compute safe approximations to the

paths at compile time. Then, we use paths to generate dependence information (in the form

of inlets/outlets) for use in the DD algorithm. Finally, we provide examples on which even

the modified DD algorithm does not yield satisfactory partitions.

3.1 Path Semantics

Intuitively, a path of an expression is the set of free variables of that expression required

to produce a value for that expression. The path of an expression depends on the run-

36

nce
ion

DD

Our Approach

Figure 3.1: Different approaches to Partitioning

time values of variables themselves. For example, depending on the value of the predicate,

variables used in one of the arms of a conditional will not be required to produce a value for

that conditional. Thus, path semantics needs to use the standard semantics (the run-time

values of expressions) to produce paths for a program.

Let Path be the flat domain of paths, with I, representing non-termination of the

expression. Any two terminating paths are considered incomparable, and non-termination

is weaker than any form of termination. Path is defined by (see figure 3.2):

Path = Ip}U{[Zl, Z2, .. ., z]n > 0, Vi, 1 < i n, zi E V}

A variable x belongs to a path p (x E p) if p = p or x E p. This reflects the intuition that

an expression returning I can be made to depend on any variable without loss of safety.

To define paths in an environment, we need to define substitution by paths. Substitution

is accomplished by using the modified union operator ":" on paths. Note that ":" is both

commutative and associative (like the usual set union operator).

Vp, q E Path

p: Ip = Ip

Ip:P = Ip

p:q = pUq if p& p and q I p.

37

Figure 3.2: Structure of the Path Domain

We now give a "non-standard" semantics that gives information about expressions: not

only the values of the expressions but also the paths corresponding to expressions. For

clarity, we have omitted the "checking" for errors by primitive operators in this semantics.

The semantic domains are:

Val, D, the domains of values and denotable values (from standard semantics)

Path, the flat domain of paths

Pfun = Un>l,ml((D x Path)n -+ (D x Path)m), the path functions

DPT = Un,>l(D x Path) n, multiple value-path pairs

Penv = Fv -4 Pfun, the function environment

Pbve = V -4 (D x Path), variable environment

The semantic functions are:

£ : Con - Val, semantic function for constants

P : Exp -4 Pbve - Penv - DPT

'Pk: Pf - Pfun
7p : Prog - Penv

Pb: Bo - Pbve -4 Penv - DPT

Ps: SE -4 Pbve - (D x Path)

P Ik[+] = A((e xp), (Ye yp)). (Xe + Ye), (xp : yp)

psTc] pbve = (CcI[c],)

38

[] [zi] [z2] [zl,z2]

. Up

'PixDpbve = pbvex]

Pse]pbvepenv = Pjssepbve

Ps(sel, sen)j pbve penv = 'PkEpj(PsIsel1 pbve, ... , P, senj pbve)

PEf(sel,..., se,)] pbve penv = penvfD](Pssejl pbve, . . ., PsEsen] pbve)

Pj[b]pbvepenv = Pbybpbvepenv

P[if se then bl else b2] pbve penv =

let (e, xp) = P[se] pbve

((Yel, Ypl),. , (Yen, Ypn)) = Pb[blj pbve penv

((Zel, Zpl), . ., (Zen, Zpn)) = Pb[b2 pbve penv

in Xe -+ ((Yel, Xp : Ypl), ... (Yen, Xp : Ypn)), ((Zel, Xp : Zpl), .. ., (Zen, Xp : Zp))

Pb[{{(Yil, . .., Yim) = ei}* in {sel,...,sen}}]lpbve penv =

let newpbve = [yij - (P[ei (newpbve.pbve) penv) 4 j]
in (Psselj1 newpbve,..., Ps[sen] newpbve)

'Pp[{fi (x1,..., n) = bi}*] = penv, whererec

penv = [fi -+ (A((el, p), ... , (en, n)) Pbbi] [xi - (ei, Pi)] penv)]

Discussion:

1. The semantic function P, (for constants and variables) is straightforward. In case of a

constant, it returns the empty path, reflecting the fact that a constant does not have

to depend on any variable for its value. For variables, it returns the value present in

the environment.

2. For primitive functions, the paths returned reflect the strict behavior of primitive

functions. For the "+" function, a union of the variables of the first operand and

the second operand is returned modeling the fact that "+" requires both operands to

produce a value.

3. The semantic function for if returns one of two paths (depending upon the value of

the predicate), one corresponding to the variables needed when the then branch is

taken and the other corresponding to the variables needed when the else branch is

taken.

39

4. The semantic function P for expressions recurses appropriately when the expression

is either a primitive function or a user defined function.

5. The semantic function for blocks uses recursion in the environment to model recursion

in the block.

6. The semantic definition for the program uses recursion in the function environment to

model recursion among functions. The fix point analogue of this definition would start

with a function environment mapping all functions to the undefined function. Each

iteration would involve evaluating the function bodies using this environment, and

updating the function environment using values obtained. We continue the process

until fix point is reached.

7. It is easy to show that P satisfies the usual monotonicity property of semantic func-

tions. That is,

(pbve' C pbve) A (penv' C penv) == (Pfel] pbve' penv' C PTe] pbve penv)

This follows from the monotonicity of the : operator.

We now prove a theorem that our path semantics is consistent with the standard se-

mantics. Basically, we are saying that if the path semantics gives a path for the expression,

1. All the variables present in the path are needed to produce a value for the expression.

2. No other variable is needed to produce the value for the expression.

Before we proceed to state the theorem, we need the following definition of a projection

of an environment with respect to a path.

Definition 3.1 (Projection of environments) Given an environment bye mapping

variables to values, and a path p, the projection (Proj(bve,p,pbve)) of be with respect

to p and a path environment pbve is an environment bye' such that:

bve'[x] = bve[x], if (v, px) = pbve[x] and px C p

bve'[x] = I, otherwise.

This operation converts the environment be to another environment be' such that bye' C

bye, retaining values of variables whose paths are a subset of p.

40

Theorem 3.1 (Consistency of Path semantics) Let pr be a program with fenv =

£p[pr] and penv = Pp[pr]. Let e be an expression and bye be an environment mapping

variables to values. Let pbve be an environment mapping variables in Domain(bve) to

value-path pairs such that

1. pbvey]j = (bve[y],py).

2. If bvely] # 1, then py 0 I±p and Vx C py, bvex] J $1.

Then, £e] bve f env = (vl,..., v,) implies T'e]pbvepenv = ((vl, pl),..., (vn, pn)). Further,

for each i = 1... n,

1. (A) if vi 1 then pi I ±p and Vx E pi, bvejx] 1.

2. (B) (I[e Proj(bve, pi, pbve) fenv) i = vi.

Proof: Note that condition (B) is always satisfied if vi = I. This follows from the fact

that £ is monotonic, and Proj(bve,pi,pbve) E bye. Thus, we prove (B) only for the

case when vi I. The proof is by straightforward structural and fixpoint induction.

We enumerate the cases of e:

1. e = se. There are two cases:

(a) se = c: £ste bye = £cj. Psej pbve = ([c, 0). (A) is obviously true. (B)

follows from

£S[c Proj (bve, O, pbve) = £c[c]l

(b) se = x: £s[x bve = bve[x]. Ps,[x] pbve = pbvefx] = (bvejx], px) by definition

of pbve. (A) follows directly from the condition on pbve. To prove (B), note

that £j[x] Proj(bve, px, pbve) = Proj(bve, p, pbve)[x] = bvex] as pbvex]j =

(bvelx], p) and px C px.

2. e = p(sel, ... , se,). We prove this for the "+" primitive operator.

£[+ (sel, se2)] bye f env =

let sel = £,[sell] bye

sev2 = sjse2j bye

in sevl + seC2.

41

P[+(sei, se2)1 pbve penv

let (seel, sepl) = P[sel pbve

(see2, sep2) = Ps[se2l pbve

in (seei + see2, sep1 :sep2) ·

By structural induction, sevl = seel, sev2 = see2. Thus, sevl + sev2 = seel see2.

Let sevl + sev 2 f I. Then, sevl # I. Thus, sepl Ip and Vx E sepl, bve(x) I

(by structural induction). A similar property is true for variables x E sep2. Thus,

(A) is true for sepl : sep2.

To prove (B) define bve' = Proj (bve, sepl: sep2, pbve), bve' = Proj (bve, sepl, pbve)

and bve' = Proj(bve, sep2, pbve). As sepl C (sepl : sep2), the definition of Proj

implies that bve' C bye'. Similarly, bve' E bve'. By induction £s[sel] bve' = sevl

and £s se 2] bve' = sev2. By monotonicity of £ and the fact that both sevl and sev2

are not I, we have £s[sel bve' = £=sei] bve' = sevl. Similarly 8se 2I bve' = se2.

Thus, £I+(sel, se2) bve' = sevl + sev2, and (B) is satisfied.

3. e = if x then bl else b2. Let

xv = £s[xj bve

(Yvl, , Yvn) = £bibl] bve fenv

(Zvl,*, Zvn) = £bjb2] bvefenv

(Xe, p) = Ps[xl pbve

((Yel, Ypl),..., (Yen, Ypn)) = Pb[blD pbvepenv

((Zel,Zpl),..., (Zen, Zpn)) = Pb[b2] pbvepenv

By structural induction, Xv = Xe, Yvi = yei, Zvi = zei for all i C 1...n. If xv = I

both the standard and path semantics return I and the statements (A) and (B)

are satisfied.

Assume xv is true. Then, £[e] bve fenv = (Yvl, .. , yvn), and Pe]j pbve penv

= ((Yel, Ypl), , (Yen, Ypn)) = ((Yvl, Ypl), *. , (Yvn, Ypn))

The path semantics gives xp : Ypi as the path of the ith component. Using this, we

can prove that the (A) and (B) statements are satisfied. The proof is very similar

to the one given for the "+" operator.

The proof for the case when xv is false is similar.

42

4. e = {{(Yi,..., Yim) = ei}* in (sel,...,sen)}. We now have to use fix point in-

duction. The environments newbve and newpbve are limits of the chains newbve °,

newbve 1 ,... and newpbve°, newpbve l ,... where

newbve0 = [Yij - 1]

newpbve0 = [Yij (l,l)]

newbvek+1l = [yij - (ej (newbvek.bve) fenv) j]

newpbvek+1 = [Yij -4 (P[ej] (newpbvek.pbve) penv) . j]

We show by induction that the following properties are valid for newbvek, newpbvek

for k > 0.

(a) newpbvek.pbvely] = (newbvek.bvely], py).

(b) If newbvek.bve[y] I, then py Ip and Vx E py, newbvek.bvex] # 1.

By conditions on pbve and bye, the two properties are valid when k = 0.

Assume that the properties are true for k. We prove the properties for k + 1. By

structural induction, we have:

(Cei] newbvebvek.bve fenv) J. j = vj == (P[ei] newpbvek.pbve penv) 4. j = (vj, pj)

By definition, newbvek+1[yij] = vj and newpbvek+lyij = (vj,pj) and the first

property is satisfied.

We also have, if newbvek+l [yij] = vj I, then pj lp and Vx E pj,

newbvek.bvelx] I1. As the newbve sequence is monotonic (newbvek E

newbvek+l), newbvek.bve[x] : I implies newbvek+l.bvelx] I and the second

property is also satisfied.

By fixpoint induction, the properties are true for newbve and newpbve, the limits

of the chains. By structural induction the theorem is satisfied for (sel,..., se),

the outputs of the block.

5. e = fi(sel,..., se,). The proof uses fixed point induction. The function environ-

ments fenv and penv are limits of the chains f env0 , f envl,... and penv 0, penvl,

where

fenv 0 = A(Yl, Yn).(l,...,I)

penv = A((el,Pi),...,(en, Pn)) ((-l p), ,(,p))

43

fenvk+l = [fi t- (A(Yl,.-, Yn)'bbll [xi - Yi] fenvk)]

penv k+ l = [fi of (A((el,pl),..., (en, Pn)).Pbbl [i + (eiPi)] penvk)]

Let vi = s[sei] bye and (v', pi) = EsIsei] pbve. By structural induction,

(a) vi vi '.

(b) If vi ~ I then Pi Ip, and bveTy]j I for y E pi.

(c) Eslsei] Proj (bve, pi, pbve) = vi.

Consider the two expressions

[ff(x1, . xn)]j [xi vi]fenvk = (U1,..., U)

PI[fi(se, ... , se)j [xi - (vi, [xi])] penvk = ((u, ql),..., (u', q))

These are identical to the original expressions except that wherever the variable

xi (used in the path environment) occurs in a final path, it should be replace by

variables in Pi. Call the new environments bye' and pbve'. Note that they to satisfy

the conditions of the theorem. We prove the following properties for each k:

(a) Vj E 1...m}, uj = u.

(b) uj I implies qj Ip and Vx qj, bve'txl I .

(c) ([fl(xl, ... , xn)] Proj(bve',qj,pbve') fenvk) j = uj.

For k = O, uj = j = u -, and qj = p, and the properties are obviously satisfied.

Assume the properties are true for k. We prove the properties for k + 1. The two

expressions can be written as:

£bTbl] [xi - vi] fenvk = (U1,., Urn)

Pbbl [xi f-+ (vi, xi)penvk = ((uL,ql),.. ., (u',qm))

By structural and fixpoint induction these properties hold, as the environments

satisfy the conditions of the theorem.

Using these properties, it is simple to show that the properties are valid with respect

to the environments bve and pbve.

Using the theorem, we can prove the following corollary. Informally, the corollary states

that if the value of an expression in an environment (bve) is not I, then it is I in a "lesser"

environment (bye') if and only if some variable needed to produce a value is I in bye'.

44

Corollary 3.1.1 In theorem 3.1, let pbve[x] = (bve[x], [x]). Let (e bve fenv) ; j = vj ~

±, (e] pbve penv) ; j = (vj,pj). Let bve' be an environment such that bye' be. Let

(£[e] bye' f env) j = uj. Then,

uj = I 3x C pj, bve'jx] I.

Proof: Observe that pbve and bye satisfy conditions of theorem 3.1. Thus, pj $ Ip, and

Vx pj, bvelx] I. Also, £[e Proj(bve, pj,pbve) fenv = vj. Define pbve'jx] -

(bve'x], [x]). There are two cases:

1. ()uj = I. The proof is by contradiction. Assume there is no such x. Then,

it follows that Proj(bve,pj, pbve) E be' (by definition of Proj). Thus, by mono-

tonicity vj = £ e] Proj (bve, pj, pbve) f env

E £[e] bye' f env = uj.

Thus, vj E uj, a contradiction.

2. (<)uj 1 I. As bve' E be, we have uj = vj. Consider (P[e]j pbve' penv) j

(uj, p). By theorem 3.1, we have pj Ip. As P is monotonic, and pbve' I pbve,

we have p p. Thus, = p. By theorem 3.1us, Vx E p' bve'[x] Z I, thus

Vx E pj, bve'[x]j 1.

3.2 Abstracting Paths

In the previous section, we used the standard semantics (i.e., the "run-time" values of

expressions) to give paths for a program. As we cannot do this at compile time, we make

a conservative approximation by producing a set of paths for an expression. The intuition

behind this is that at run time one of the paths will be valid for the expression, but we do

not know which.

As Path is a domain (i.e. a set with structure), we use a Powerdomain construction

(instead of the usual Powerset construction) to model a set of paths. Unlike the powerset

construction there is no "right" powerdomain construction; one has to choose the powerdo-

main suited for his/her application. See [39] for an introduction to powerdomains. We use

the Egli-Milner (EM) Powerdomain construction to model sets of paths, as it is capable of

reasoning with sets containing Ip.

45

For a flat pointed complete partial order D, the discrete EM powerdomain of D, written

PEM(D), consists of nonempty subsets of D which are either finite, or contain bottom,

partially ordered as follows: VA, B e PEM (D), A EEM B iff

1. For every a E A, 3b B such that a CD b.

2. For every b B, 3a E A such that a ED b.

The bottom element of PEM(Path) is the set {Lp}.

We also need a powerdomain construction for multiple paths, where a set of multiple

paths of the form (Pl, P2 ... , pn) is formed by taking the cross-product of n elements of

PEM(Path). We will use the symbol PT to denote this powerdomain of multiple paths.

Using the operator which produces an element of domain D given an element of the

domain Dn , we can define an "overloaded" which operates on a set of elements of Dn and

returns a set of elements of D, each of which is the ith component of each element of Dn (i

is the second operand to).

We use the following semantic domains:

Path,

PTS

PEM (Path),

Pfun

Aenv

Abve

the domain of paths

Un= (PT(Pathn))

Domain of sets of multiple paths

the powerdomain of Path

Un=l Um=l(PT(Path n) -+ PT(Pathm)),

the abstract function space mapping sets of paths to sets of paths

= Fv -+ Pfun,

the function environment

Bv --+ (PEM(Path)), the bound variable environment

The semantic functions are:

A: Exp - Abve - Aenv - PTS

A,: SE -+ Abve - PEM(Path)

Ak : Pf -+ Pfun
Ab : Bo -4 Abve --+ Aenv - PTS

Ap: Pr - Aenv

46

The semantic equations are given below.

Ak[+]

AAsc] abve

AAsI[x abve

AI[se] abve aenv

A4[b] abve aenv

A[p(sel, se 2, ... , sen)] abve aenv

A[f(sel, se2, ... , sen)] abve aenv

= As.{x: yl(x, y) E s}

= {}
= abvelx]

= A,[Ese] abve

= Ab[b] abve aenv

= Akb] (AsIsell abve x... x As[senD abve)

= aenv[f (As[sell abve x ... x As[sen] abve)

A[if se then b else b abve aenv =

let x E Ase] abve

(Y1, ... , Yn) E Ab[bl] abve aenv

(Z1, ... , Zn) E Ab[b2]j abve aenv

in {(x: Y l,..., x: y), (x : zl,..., x :Zn)}.

Ab[{{(Yil, Yim) = ei}* in (sel, se 2, .. ., sen)}] abve aenv =

letrec newabve = [Yij -4 (A [ei] (newabve.abve) aenv) 4. j]
in Unewabve'(As[sel] newabve' x ... x A[sen] newabve') where

newabve' = [Yij -+ {Pij}], such that Pij E newabveTyij and

Pij E (A-ei] newabve' aenv) 4 j

4p[{fi(l, 2, . .., Xn) = bi}] = aenv whererec
aenv = [fi -+ (As. U{Ab[bi] [xi - {yi}]aenvl(yl, ... , Yn) E s})]

Discussion: We discuss only those semantic equations which are different from the ones
given in the path semantics.

1. The semantic function for if returns two sets, one corresponding to the variables
needed when the then branch is taken and the other corresponding to when the else
branch is taken.

2. The semantic function for blocks is a little more complicated. First, it uses a recur-
sively defined environment construction (i.e., newabve) to mimic the behavior of the

47

recursively defined block (as in the path semantics). However, as we represent envi-

ronments as functions between variables to values, we lose correlations between the

paths of some variables (in particular, we might lose information when dealing with

functions returning more than one value). The newabve' construction eliminates such

"noise" by additional tests. Consider the following example.

{(a,b) = f(...)
in

(a,b))

Let the paths for f(...) be {(pi, qi), (P2, q2)}. Then, the environment will contain the

mappings [(a ({pl, p2), (b - {ql, q2})] If we use the environment directly to return

the paths of the entire block we would form all the four combinations {(pi, qj), (1, q2),

(p2, ql), (2, q2)}, of which only two are "valid". We can eliminate the extra paths (like

(p1, q2)) by making an additional check using the paths for f.

Theorem 3.2 (Effectiveness) A4ppr]j is computable for any finite program pr.

Proof: The theorem follows from finite domains and monotonicity of union (U) and product

(x) operators. Proved for a similar language in [9]. 0

Complexity: The number of possible paths through a n argument function is 2n + 1. This

follows from the fact that a path of a function f(x, x2, ... , xn) can either be a subset of

{x1 ,x 2, ... ,xn}) or ,p. Thus, path analysis can be done in 0(2 n) time. As path analysis

subsumes strictness analysis, this is the best we can do. Strictness analysis is Deterministic

Exponential Time Complete [18].

Theorem 3.3 (Safety) Let penv and aenv be computed for a program pr. For any expres-

sion e, path environment pbve (mapping FV(e) to value-path pairs) construct abve[x] =

{Px} where pbve[x] = (v,, p,x). If ((vl,pi), ... , (vn,pn)) = P[e]pbvepenv, then

(Pi,.. ., Pn) E Aej abve aenv

Proof: The proof is similar to the proof of consistency of path semantics. It uses structural

and fixed point induction. As the proof is very similar to the one in [9], we omit the

proof here. o

48

Our partitioning algorithm given later makes use of the paths of an expression; we use

paths to characterize dependence behavior of the expression. To obtain paths of an ex-

pression with respect to a program, we take the meaning of the expression in a variable

environment where every free variable of the expression is bound to itself. This gives infor-

mation about which of the free variables are needed to produce a value for that expression.

Definition 3.2 (Paths of an expression) For an expression e, its path (denoted by

P(e)) with respect to a program pr is Ale] [xi -+ {[xi]}] (Appr]), where xi C FV(e).

We overload the definition of G and extend it to work on a set of paths. A variable x P

if 3p E P such that x E p.

Example 3.1:
f(x,y)={a = x + y

in
a}

P(f(x, y)) = {[x, y]}

Example 3.2:
f(x,y,z)={a= if x then { in y} else { in z}
in

a)

P(f(x, y, z)) = {[x, y], [x, z]}

The paths shown for the examples above follow directly from the definitions for + and

if operators. We are able to represent information more concisely than naive strictness

representation [26], which would have represented example 3.2 by a table of size 8(= 23).

The frontiers representation [11] does better. However, paths carry more information than

contained in traditional strictness analysis. Specifically, they contain information about

correlations between non-strict input variables, which is not present in strictness analysis.

Example 3.3:
fact(n) =

{p = eq? n O;

r = if p then

{ in }
else

{tl = n - 1;

t2 = fact(tl);

t3 = t2 * n

in

t3}

49

in
r)

P(fact(n)) = {[n], I p}

For the fact example, we show

point iteration.

the method of computing paths for the function by fix

Var Pathso Paths

P [n] [n]

ti [n] [n]

t2 1p [n], p

t3 Ip [n],

r [n], pI [n], p

For example 1.2, the paths are P(n) = {[n], Ip}. This makes it clear that only free

variables of the expression are used to compute paths for it. The complexity of the function

body (with its cyclic dependencies) is not reflected in the path. Paths represent only the

external behavior of a function.

3.3 Integrating Paths and DD

We have seen that the inter block propagation part of the DD algorithm makes two changes

to the "calling" block:

1. A squiggly edge is introduced between a send and a receive if we can detect that the

output (receive) is strict on the input (send).

2. It annotates sends and receives using inlet/outlet annotations present in the "called"

block.

Using paths, we are able to derive this information directly:

1. We can detect that an output is strict in an input if the input is present in all the

paths of the output.

2. We label (outlets of) each send with names of paths in which the corresponding input

is present.

50

Our method of propagating inlets to receives is weaker than the method used by the DD

algorithm. We are unable to represent correlations between two outputs, which show up as

identical inlet sets in the DD algorithm. To achieve safe annotations, we use the following

procedure: for outputs whose dependence information is completely determined at compile

time (i.e., the paths set for the output consists of exactly one path) we omit any the inlet

annotations. For each of the other outputs we introduce new labels. The introduction

of new labels forces these outputs to be put in separate partitions, thus generating safe

partitions.

We could modify the propagation algorithm to capture at least some correlation between

outputs. As we provide a better partitioning algorithm (compared to DD) which takes care

of such cases, we do not specify the modifications here. One obvious way to utilize the path

information as well as retaining the "good" behavior of DD is to utilize the path information

to annotate sends and receives only at recursive procedure calls.

The formal method of labeling a call-site is given in the following theorem. As we

provide a better partitioning algorithm with a proof of correctness based on operational

and denotational semantics in the next chapter, we do not supply a proof for the theorem.

Theorem 3.4 (Annotating Call Sites) Let f be an n-argument m-result function block

and

P(f(x,x 2, ... , Xn)) = P = {(Pll, ..-,Pm), .. (Pri,... ,Prm)).

Then f can be safely approximated by a program graph

.fg = ({ili2,..., in, 01, 02, .. ., Om, E(fg)) where,

inlet(ij) = ,V1< j < n

outlet(ok) = q, < k< m

E(fg) = {(ij, ok) Vp (Pf k), xj E p)

Let {all,, aim,..., arm} be new outlet annotations.

aks E outlet(ij) if (ij, ok) E(fg)and

Ps = (Psl,. .. psm) P and xj Psk

Let {11,..., m be new inlet annotations.

inlet(ok) = X if (Pf k) = 1

= {lk}, otherwise.

51

Consider the following example (mentioned in chapter 1).

f(x,y,z)=
{a = if x then {b = y + z in b else { in 2}
in

a}

P(f(x, y, z)) = {[x, y, z], [x]}

We see from the example above that a dependence edge is added in the program graph

Figure 3.3: Example of Paths used for DD

between the first argument and the result. As this argument is present in all the paths

of the result, we can conclude that the result is strict in the first argument, and it follows

that the addition of the dependence edge is correct. The outlet annotations on the other

two arguments sends reflect that fact that the arguments are always used "together", (i.e.

if one of them is needed for the result so is the other). This annotation enables the two

argument sends to be put in the same thread, even though the function is not strict in

either of them. Thus, we are able to make use of the additional information present in

paths which is not present in strictness analysis. Using strictness analysis we could have

concluded that the dependence edge could be added, but we would not be able to produce

the partition mentioned above.

In spite of the theorem, we still may not get good partitions. This may be due to several

reasons:

1. The inlet and outlet representation of functions is very brittle. That is, information

is lost while being propagated across function boundaries. Consider:

52

E--T a -- b -' c

EL- d

Call Site before using
Path information

C a l l 1 - al

Incorporating Paths

Example 3.4:
f(x,y) =

{p = eq? x 0;
q= y + 1;
r =y - 1;
a = g(p,q,r)

in
a)

g(p,q,r)
{a= if p then { in q else { in r}
in

a}

The DD algorithm does not put the inlets for receiving values of x and y in the same

partition. However, the algorithm succeeds in putting x and y in the same partition

if g is expanded out in the body of f.

2. Path analysis is expensive to compute - and the algorithm is using only a part of the

information to do the partitioning. We probably could do better if the algorithm was

directly based on the paths. Consider:

Example 3.5:
f(x,y) =
{p = eq? y 0;
(xl,x2) = if p then { in (x,l)} else { in (1,x)}
in

(xi,x2)}

g(a,b,c) =

{(ai,a2) = f(a,c);

rl = ai + a2;

r2 = ri + b

in

r2}

Using path analysis it is possible to detect that gp(a, b, c) = {[a, b, c]}, implying that

a, b, c can be put in the same partition. If we use theorem 3.4 to introduce path

information of f in g, the DD algorithm will not succeed in producing this partition

(it will produce the partitions b, c}, {a}).

3. The DD algorithm is inherently limited in representing some kinds of dependence

information. Consider:

53

Example 3.6:
f(a,b,c,d,p,q) =

{tl = a + b;
t2 = b + c;
t3 = d + 1;

t4 = d - 1;

t5 = g(p,tl,t2);

t6 = g(q,t3,t4);
t7 = tS + t6
in

t7}

g(p,q,r) =

{a = if p then { in q} else { in r}

in
a}

Even if we expand the calls to g in the function f, the DD algorithm fails to detect

the dependence of t7 on b, and does not put b and d in the same partition. Using the

paths of the variables (given in the table below) we detect that the output t7 is strict

in both b and d.

Var Paths

ti [a,b]

t2 [b, c]

t3 [d]

t4 [d]

t5 [p, a, b], [p, b, c]

t6 [, d]

t7 [p, a, b, d], [p,b, c, d]

3.4 Summary

In this chapter, we have introduced Paths, a way of representing dependence information.

This representation is able to capture correlations between non-strict input variables of

a function. Paths are computed by abstraction of a non-standard semantics. We have

extended the DD algorithm to make use of the information contained in paths when deal-

ing with recursive functions. Finally, we have seen that there is much more information

contained in paths than the information exploited by the DD algorithm.

54

Chapter 4

Partitioning: A New Approach

Previous work on partitioning [37] used a definition of partitioning based on "control", i.e.,

partitioning was defined as the process of compiling a non-strict program into "threads".

Here, we take a different approach. We define partitioning as a transformation from a source

block to a destination block. Thus, we view partitioning as a compiler optimization. The

advantage of using this definition is that we can give a formal proof of the correctness of

our algorithm based on operational and denotational semantics. Our proof techniques are

similar to the ones used in [4] to prove correctness of compiler optimizations.

The rest of the chapter is organized as follows. First, we give a formal definition of the

partitioning transformation. Next, we give some preliminary algorithms which are required

to define the partitioning algorithm. Then, we provide a new partitioning algorithm for

strict blocks and prove its correctness. We extend the algorithm to partition blocks which

use non-strictness. In the appendix we study the complexity of the problem: optimal

partitioning (producing a partitioning with minimum number of partitions) turns out to be

NP-hard.

4.1 Partitioning as transformation

In this section we give the operational meaning to the term partitioning. The goal is to

capture the intuition behind the execution of threads by block transformation. The threads

should display the following behavior:

1. All the instructions in the thread can execute once the first instruction is able to

execute.

55

2. Values computed in an executing thread are not "visible" to other threads before the

thread completes.

In addition, we should be able to produce a compile time ordering of the instructions in a

thread.

We now define the partitions formally:

Definition 4.1 (Partitions) A partitioning of a block b is a partitioning of a subset of

FV(b) U BV(b). A variable not present in any partition is assumed to be present in a

partition containing only that variable.

Given a block and a partitioning of it, we aim to produce another block which contains

threads, each thread satisfying the requirements given above.

First, we need to transform the given block (b) to another block (b') to introduce explicit

receive statements for free variables of the block and values returned by functions. Note

that we will not introduce send statements; we assume that such statements are already

present in the block b. We also convert a partitioning of b to a partitioning of b'.

Given a block b, we convert it to a block b' as follows:

1. R (for "receives") is a set of variables defined as follows: a variable x G R if and only

if either

(a) x FV(b), or

(b) There is a statement (...,x,...) = e in b, such that e is not a (strict) primitive

operator.

Let R = {x 1 ,..., x}. Let {..., x'} be a set of "new" variables (variables not in

FV(b) U BV(b)). There are n statements in b' of the form x = xi, for 1 i n.

2. Define a substitution so = [x1/x,., x'/xn]. For every statement st E b, there is a

statement st' = (p(st) in b'.

3. If b returns (sel,...,sen) then b' returns ((sel),..., W(sen)).

Given a partitioning Q of b we obtain a partitioning Q' = WI(Q) of b'.

56

Example 4.1:
b=
{a = x + y;
b=y+
in

(a,b)}

with partitions {a,x} and {b,y}. Then, after introducing new (receive) variables c and

d we get,

b' =

{c = x;
d =y;
a = c + d;
b=d+ i
in

(a,b)}

with partitions {a,c} and {b,d}.

Observe that the transformation given above enforces the partitions to have the property

that variables returned by non-strict expressions are not put in any partition. Only receives

of values from these expressions can be put in the same partition.

To facilitate our partitioning transformation, we introduce a family of strict identity

operators S,, 1 < n < oc with the following property:

Sn takes n arguments and returns n results. If one of the arguments is undefined, all of the

results are undefined. When all of the arguments are defined, Sn has the same effect as n

identity functions on the arguments (i.e., S= returns the arguments as its results). Formally,

Sn is described by the rewrite rule:

Sn(Vl,..., Vn) "} (V,.. .Vn)

where each vi is a ground value. An Sn statement performs a synchronization depending

on its input values.

We define the meaning of a partitioning using S statements to enforce the behavior

of a thread. As our partitioning algorithm works in stages there may be S statements in

the block introduced by the "older" stages in the algorithm. However, the meaning of a

partition is defined in terms of the original block - the block without any S statements.

XWe can incorporate the deletion of the S statements (to restore the original block) in

the partitioning transformation itself. For the sake of simplicity, we omit that from the

transformation. The formal transformation is given below:

57

Definition 4.2 (Semantics of Partitioning) Given a block b = {{st}* in (se, ... , set)}

and a partitioning Q, the partitioned block bQ is defined as follows:

1. For each variable y (FV(b) U BV(b)) define a unique (new) variable via a mapping

New as follows.

New(y)= y, if y E FV(b),

New(y)= y, if y BV(b).

Let 4 be the substitution [New(y)/y].

2. For each qi E Q:

(a) Let {yl,..., ym} = qi .

(b) Let stil,. .. , stir be statements in b corresponding to qi.

(c) Let FV(qi) = {xl,.. ., Xn} = (Ul<j<r FV(stij)) \ (Ul<j<r BV(stij)).

(d) Define new "local" variables {xi,..., x} corresponding to {x,...,xn}. Also,

define a substitution q = [xil/xl, .. ,n/X].

(e) There are statements sto,. . ., t(r+) in bQ where,

stio '-- (Xl, ... Xi) = S(New(xl),..., New(xn))

stj ::= cp(stij), for 1 < j < r

Sti(r+l) ::= (New(yl),..., New(ym)) = Sn(yl,..., m).

3. For a statement (,..., yn) = e not corresponding to any partition, there are two

statements in bQ:

(Y,.. .,yn) =+O(e) and

(New(y1),..., New(y)) = (yl,..., yn).

4. bQ returns ((se1),..., (set)).

We say that the partitioning Q induces the partitioned block bQ.

Discussion:

1. The first step in the transformation is to define a new variable for each variable bound

in the block. The threads communicate only through these new variables.

2. Each thread consists of three sets of statements:

58

(a) An S statement which waits for all the free variables of the block and copies

these values into local variables.

(b) Statements which compute the variables defined in the thread.

(c) An S statement which waits for all the variables computed in the thread to be

defined. Then, the computed variables are copied into the "new" variables.

3. For a statement not corresponding to any partition, we introduce a statement which

copies the values computed into the new variables.

Note that we have not ensured that the instructions in a partition have a compile time

ordering. However, as our algorithms work only on acyclic blocks, we can produce a compile

time ordering by a topological sort of the instructions in the partitions. Observe that if we

rewrite every S expression in the partitioned block replacing new variables (introduced in

the transformation) by the original variables, we obtain the original block.

For example 4.1, the transformation is given below.

Example 4.2:
bQ =

{ (xl,d) = S2(x,d);

c = xi;
a = c + d;
(c,a) = S2(c,a);

y _y2= S1 (y);
d y 2.
b = d + 1;

(d,b) = S2 (d,b)

in
(a,b)}

4.1.1 Correctness of a Partitioning

In this section, we define the notion of correctness used to prove our algorithms. It is similar

to the definition of a (partially) correct transformation in [4]. First, we formally define the

term deadlock.

Definition 4.3 (Deadlock) Given a term M and a program Pr, we say that M leads to

a deadlock if

1. M has a normal form N, and

59

2. N is of the form < improper-termination, _>.

The formal definition of a "correct" partitioning is given below. We are essentially

saying that if no user defined context can "distinguish" between a partitioned block and

the original block, then the partitioned block is correct.

Definition 4.4 (Semantic Correctness of Partitioning) Given an block b and its par-

titioned version bQ, we say that bQ is correct if for all user definable contexts Co,

if Ans(C[b]) =<proper-termination, v> then Ans(C[bQ]) =<proper-termination, v>.

A partitioning Q is correct partitioning of b if it transforms b into a correct block bQ.

In many places, we have mentioned that we are trying to avoid "cycles" in the dataflow

graph to obtain correct partitions. That is, incorrect partitioning can at most cause deadlock

and cannot affect the computation in any other manner (like changing the value of the

answer, for example). In the next theorem, we formalize this intuition by showing that the

notion of deadlock and correctness of a partition are closely related. Informally, it states

that an incorrect partitioning can only affect the answer by causing a deadlock (in some

context).

Theorem 4.1 (Deadlock and correctness) Given a block b and its partitioned version

bQ, bQ is incorrect if 3CO such that Ans(C[b]) =<proper-termination,v> and

Ans(C[bQ]) =< improper-termination, >.

Proof: The "if" part of the theorem follows from the definition of correctness. We now

prove the "only if" part.

Let CU be a context which makes bQ incorrect. Then, we have Ans(C[b]) =<proper-

termination,v> for some v. There are two possibilities for Ans(C[bQ]): either it is

<proper-termination,v'> for some v' v or <improper-termination,_ >. We show that

the first case is not possible. If C[bQ] terminates properly, we know that all the S

statements in bQ have been rewritten. But, the block resulting by rewriting all the S

statements is the original block b and hence, it cannot produce a different value. El

4.1.2 Summary

In this section, we have formally defined the meaning of a partitioning by treating it as a

block to block transformation. We have defined the notion of correctness of a partitioning

and shown that it is closely related to whether the block after partitioning deadlocks.

60

4.2 Partitioning: Preliminary Algorithms

In this section, we give two algorithms which are needed for partitioning. The first algorithm

is an algorithm to do subpartitioning. This is similar to the subpartitioning algorithm used

by the DD algorithm. The second algorithm converts a block with cyclic dependencies to

a block which is acyclic. This is required as our partitioning algorithms work only with

acyclic blocks. The following definition formalize the notion of an acyclic block.

Definition 4.5 (Dependence graph) A dependence graph of a block b is the directed

graph Gdb = (Vdb, Edb) where

Vdb = FV(b) U BV(b), and

(x, yi) E Edb if there is a statement (Yl,...,Yi,...,Yn) = e and x E (P(e) i). If e is

neither a simple expression nor a primitive operator then (x, yi) is assigned the weight 1.

We call b an acyclic block if Gdb does not contain any cycles.

The dependence graph represents the various (certain and potential) dependencies in the

block. The way we detect dependencies is by looking at the paths for the expression; there

is a dependency if a variable is present in one of the paths. For convenience, we say there

is a path from x to y in b, when we mean that there is path from x to y in the dependence

graph of b. Variables x and y are connected to each other in b iff there is a path from x to

y in b or from y to x in b. Instead of using squiggly edges to break threads across function

calls like DD does, we use weighted edges instead.

For example 1.2, the dependence graph is given below.

4.2.1 Subpartitioning

As we cannot (in general) execute non-strict expressions in a single thread, we need a

method to safely subpartition the partitions obtained. The subpartitioning algorithm is:

Algorithm S

Given a partitioning Q, for each q in Q do:

Subpartition q into ql,. . ., q, such that every Vi, 1 < i < n, 3c, Vx E qi, depth(x) = c in Gdb-

That is, all variables which are "equally deep" in the (weighted) graph are put in the same

partition.

Subpartitioning ensures that the following properties are satisfied.

61

Figure 4.1: A Dependence Graph

1. The partitions themselves should not introduce a "cycle" in the block. This could

happen in the following scenario: there are two instructions in a thread T1 such that

one depends on another through an instruction in a different thread T2. As we require

that a thread should completely execute before returning any value, this will result in

a deadlock.

2. Subpartitioning "breaks" the thread at every call to a non-strict operator or a function

call. This is in accordance with the choice we have made. If (say) we choose to

execute (strict) function calls in the same thread, we could change the weights in the

dependence graph to give the desired result.

We prove the following lemma about subpartitioning.

Lemma 4.2 (Safe Subpartitioning) Let q be a partition in a partitioning Q of b. Let

ql,q2 be subpartitions of q such that FV(ql) C FV(q). If Q is a correct partitioning, so is

Q'= (Q \ {q) U{ql, q2}

Proof: We need to show that if all the statements in the block bQ induced by Q execute

(i.e., get rewritten), so do all of the statements in the block bQ, induced by Q'. The only

difference between bQ and bQ, is that the statements corresponding to the partition q

62

e

I

are replaced by those corresponding to the partitions q and q2.

Observe that the statements in the partition will execute only if the first S statement

in the partition executes. This implies that variables in FV(q) are all bound to a value

when the partition corresponding to q starts executing. As, FV(ql) C FV(q), the first

S statement in q partition can execute, allowing the rest of the statements in the ql

partition to be executed.

Finally, note that the q2 partition can execute, as FV(q 2) C (FV(q) U q).

The proof of correctness of subpartitioning is given separately. The proof uses the

properties of the partitioning algorithm given later. The informal reason why we cannot

use the lemma to prove correctness is that the lemma expects a correct partitioning to

start with. This property will not (in general) be true of the partitions we provide to the

subpartitioning algorithm. The subpartitioning algorithm makes these possibly incorrect

partitions correct.

4.2.2 Converting cyclic to acyclic blocks

We convert a cyclic block to an acyclic block such that the partitions of the acyclic block

can be converted back to partitions of the original block. Our reasons for choosing an

indirect approach are these: first, we would like the partitions themselves not to contain

internal cycles. This enables us to give a compile time ordering by a topological sort of the

instructions. Second, our algorithm to do partitioning is similar to DD in the sense that we

propagate labels through a block. Having cycles in the block raises difficult questions on

how to propagate labels around a cycle and when to stop propagating labels. We eliminate

these problems by working on an acyclic block.

To convert a block with cycles to an acyclic block, we use the standard technique of

removing a set of vertices from the dependence graph. The DD algorithm works similarly:

it "breaks" basic blocks at every function call or conditional statement. This is equivalent

to removing a set of vertices from the dependence graph to make it acyclic. However, DD

is conservative in its approach in the sense that it removes all vertices which could give

rise to cycles in the block, whereas we look for cycles in the graph and remove only those

vertices which are part of a cycle. In this manner, we are able to generate a "bigger"

acyclic block and analyze blocks at a bigger granularity, which should enable us to generate

better partitions. In some sense, our scheme "taxes" the programmer only when he/she

63

uses non-strictness to feed results back to arguments.

There is a price in going through acyclic blocks: we essentially "move" the cycles inside

the block to cycles outside the block (completed through input and output variables). This

leads to the possibility of generating many more cycles (other than the cycles present in the

original graph) by arbitrary feedback between outputs and inputs. Thus, our partitioning

algorithm is more conservative than it should be.

Definition 4.6 (Feedback set) A feedback vertex set of a directed graph G is a subset

(S) of vertices of G such that the graph G' obtained by removing vertices in S (and their

incident edges) is acyclic. A minimal feedback vertex set is a feedback vertex set such that

no proper subset of it is a feedback vertex set.

Note: Though computing the minimum feedback vertex set is NP-hard [14], computing a

minimal set can be accomplished by Depth First Search [12].

The algorithm to convert a block with cycles to an acyclic block is given below.

Algorithm C

Given an arbitrary block b = {st* in (sel,se 2 , ... ,sen), we partition it as follows:

1. Gdb is the dependence graph of b.

2. S = {Y, . . ., m} = A minimal feedback vertex set of Gdb.

3. S' = {z, ... , m} = A set of new variables such that

Vi, zi (FV(b) U BV(b)). Define the substitution -= [z1/y,... ,zm/Y].

4. b' is the block formed by:

(a) For every statement st E b there is a statement st' = cp(st) in b'.

(b) b' = {st* in (sel,..., sen, Y1,... Ym)}.

5. Let {ql, q2, . . ., qk} be a partitioning of the acyclic block b'. Then the partitions of b

are {qi} where q = q \ {Z1 ,..., Zm} for 1 < i < k.

Consider example 1.2. For that block, (refer to Fig 4.1) a possible minimal feedback vertex

set is {a, b}. Then, b' (with new variables g and h) is:

64

Example 4.3:
f(n)=

{p = eq? n O;
a = if p then {in 3} else {in d};
b = if p then {in c} else {in 4};
c = g + 2;
d = h + 1;
e=c * d

in

(e,a,b)}

If (say) we obtain the partitions {p, n}, {g, c}, {h, d}, {e}, {a}, {b} for the block b', then

algorithm C generates {p, n}, {c}, {d}, {e}, {a}, {b} for the block b.

We now give the correctness proof for algorithm C.

Theorem 4.3 (Correctness of algorithm C) If the partitioning of the block b' in algo-

rithm C is correct, then the partitioning of the block b is correct.

Proof: Let Q = {ql,..., q,n} be a correct partitioning of b'. First, we show that input

variables can be safely put in a separate partition by themselves. If qi contains one of

the new variables (say zj) introduced by the algorithm, then it can be split into two

partitions qil = q \ {zj} and qi2 = {Zj}. The safety of the new partitions is guaranteed

by lemma 4.2 as FV(qi2) = {zj} and zj C FV(qi), as zj is an input variable. Proceeding

in this manner, we generate the correct partitioning Q' = {q ,..., q , {Zl}, ... , {zm}}.

Let C be a context for b. Without loss of generality, we can assume that the context is

of the form:

(al, a2, a,., a) = b;

The context is equivalent to a context C' for b' of the form:

(al, a2,.. ,an, Zl,...,Zm) = b';

This is due to the fact that replacing "uses" of zi's by yi's and eliminating the z variables

yields the block b.

By correctness of Q', we can replace b' by b,, the partitioned version of b'. Now,

eliminating the z variables again gives the context C with the partitioned version of b,

thus the partitioning is correct. l

65

Note: The proof of the theorem does not depend on the fact that the variables {Yl, ... , ym}

form a (minimal) feedback vertex set. Also, algorithm C has to "drop" n variables among

{Y1l, .. , Ymi, Z 1 ..., Zm} from the partitions. The version given in the algorithm removes

the variables {zl,..., Zm}. We could employ a heuristic here which removes {Yl, ... , Ym} if

doing so leads to bigger partitions. For the example given, a better partitioning of b would

be the partitions {p, n}, {a, c}, {b, d}, {e}, which can be obtained by using the heuristic.

4.2.3 Summary

In this section, we introduced two preliminary algorithms required for partitioning. One of

them is the algorithm to do subpartitoning, which ensures that non-strict expressions are

put in separate threads. We have to be careful that we do not introduce new cycles while

we are doing subpartitioning. Though we prove this fact later, informally it is achieved by

splitting the partition into subpartitions of equal "depth" in the dependence graph.

The second algorithm converts blocks with cyclic dependencies to an acyclic block. We

can now deal with only such blocks, considerably simplifying the partitioning algorithms

given later. This algorithm works by finding a minimal feedback vertex set of the dependence

graph of a block and "removing" variables corresponding to these vertices from the block.

4.3 Partitioning strict blocks

In this section, we consider only acyclic blocks which are formed by strict primitive opera-

tors. We give an algorithm which partitions such blocks.

Algorithm AB

Given an acyclic block b {{st}* in (sel,, ,se,)}:

1. Let Gdb be the dependence graph of b.

2. Define Var = FV(b) U BV(b). For each y E Var, find two sets of labels A(y) and

B(y) as follows:

(a) (Backward pass)

For output sej, A(sej) = {j} (for 1 < j < m).

For any other variable y, A(y) = U(y,x)eGdb A(x).

66

(b) (Forward pass)

If x BV(b), B(x) = A(z).

For any other variable y, B(y) = N(x,Y)eGdb B(x).

3. Do the following until the partitions do not change.

(a) All variables with same A's are grouped in the same partition. Given a partition

q, force B(y)yeq = nzeqB(z). Propagate changes to B's in a forward pass.

(b) All variables with same B's are grouped in the same partition. Given a partition

q force A(y)yeq = UzeqA(z). Propagate changes to A's in a backward pass.

The A sets computed by the algorithm are exactly the same as demand sets of the DD

algorithm. That is, the A set of a variable represents the set of outputs which depend upon

the variable. Thus, the A stage of the partitioning algorithm (when variables with same A's

are put in the same partition) is the same as the demand stage in the DD algorithm. The B

sets of a variable x are those outputs which can be made to depend on x without affecting

the input-output behavior. What can we put in B(x)? Clearly, if x is an input variable,

we can put the outputs in A(x). These dependencies already exist in the block. Also, we

cannot include any other output in the B(x) set; it would make that output depend on x,

introducing a dependency in the block which did not exist previously. If x is not an input

variable, then it has a set of parents {Yl,..., yn} in Gdb (that is, (yi, x) C E(Gdb)). Any

variable which is present in B(yi) for 1 < i < n can be put in B(x) because adding this

dependency is still safe.

Note that we have not used subpartitioning in the algorithm given. This is to be expected

as algorithm S has an effect only on blocks containing non-strict operators. An example of

the B stage of the algorithm is given in figure 4.2. The algorithm is shown operating on

the dependence graph. For clarity, we have used characters (a,b,...) instead of numbers

to denote outputs. For a vertex in the dependence graph, the characters at the lower left

corner specify its A set and the ones at the upper right corner specify its B set. Note that

we have obtained better partitions than the iterated DD partitioning given in chapter 1.

Our strategy for proving correctness for the AB algorithm is this: first, we define a new

correctness criterion for partitioning strict blocks. This criterion operates on the structure

of dependencies in the block, rather than on operational semantics. Then, we show that this

criterion is sufficient to ensure the correctness with respect to the semantic criterion. Finally,

67

Figure 4.2: B stage of algorithm AB

we prove the correctness of algorithm AB using the dependence graph based correctness

criterion.

4.3.1 Dependence graph based Correctness of a partitioning

Informally, we are trying to ensure the following: the input-output behavior of a block must

not be altered by partitioning; however, we are free to make any internal changes to the

block. For strict blocks, input-output behavior is characterized by the various dependencies

that exist between input and outputs, which show up as connections in the dependence

graph. Thus, our correctness criterion states that the input-output connectivity should be

unchanged by the partitioning algorithm. Formally,

Definition 4.7 (Dependence graph correctness) Given an acyclic block b and its par-

titioned version bQ, we say that bQ is correct of b if the following conditions hold:

1. (acyclic) The dependence graph of bQ is acyclic.

2. (connectivity) Let {xl1,..., xn) = FV(b) = FV(bQ), and l,..., Ym be outputs of the

blocks. Then, xi is connected to yj in bQ iff xi is connected to yj in b.

68

A partitioning Q =q {l,.. ., qr of block b is correct if it generates a correct partitioned

version bQ of b.

4.3.2 Safety of the Dependence graph Criterion

Here, we prove that the correctness criterion based on the dependence graph is sufficient to

guarantee the correctness criterion for blocks consisting of strict primitive operators. We

need the following lemma which relates a characteristic of the dependence graph (i.e., it

possessing a cycle) to a property of the term (i.e., the term leading to deadlock).

Lemma 4.4 (Characterizing deadlocks) A term M of SP-TAC leads to deadlock iff the

dependence graph of M contains a cycle.

Proof: 1. (=) Observe that for primitive operators, a precondition for any rewrite rule

to be applicable is that the arguments of the primitive operators must all be val-

ues. If we assume that any statement in a cycle of M gets rewritten, we derive a

contradiction that the variable in the statement must have already been a value.

2. (=) Assume that the normal form of M is the term N, which is a deadlock. From

the rewrite rules, we can conclude that M contains a cycle iff N does. As N is

a deadlock, N is of the form {stl; st2;...in _). Consider the dependence graph of

N. Every vertex in this graph should have an edge pointing to it, or a rewrite rule

would be applicable and N would not be in normal form. This proves that the

dependence graph of N contains a cycle, as an acyclic graph always has at least

one vertex which does not have any incoming edges. Thus, the dependence graph

of M contains a cycle.

rTheorem 4.5 (Sufficiency of dependence graph criterion) Let b be a block and bQ

its partitioned version. If bQ is correct with respect to the dependence graph criterion, the

bQ is correct with respect to the semantic criterion.

Proof: We prove the theorem by contradiction. Assume that bQ is not correct with respect

to the semantic criterion. That is, 3C, Ans(C[b]) Ans(C[bQ]). Due to the property of

partitioning (theorem 4.1), this can only happen if C[b] leads to a proper termination

and C[bQ] leads to a deadlock. By lemma 4.4, the dependence graph of C[b] must contain

69

be acyclic and the dependence graph of C[bQ] must contain a cycle (say CY). We derive

a contradiction in all the possible cases.

1. CY consists of vertices only from C: Thus, C[b] contains CY too, a contradiction.

2. CY consists of vertices only from bQ: Contradicts the acyclic condition of the

dependence graph criterion.

3. CY consists of vertices from bQ and C: Let CY = CY 1, CY2, ... , CY,, where each

CYI is a set of consecutive vertices in CY and each CYi is contained entirely within

bQ or C. Let CYk be one set contained entirely within bQ. Note that CYk forms

a path in bQ from an input vertex to an output vertex. Thus, by the connectivity

condition, there is a path CYk in b between the same input and output vertices

present in CYk. We can now construct a cycle CY' in C[b] using CYk instead of

CYk (for such k), a contradiction.

4.3.3 Strict blocks: Correctness of the AB algorithm

The following properties are true of A and B sets computed for strict blocks:

Lemma 4.6 For a variable x, A(x) C B(x).

Proof: The proof is by induction on the structure of the block b.

Basis: For input variables, the lemma is trivially satisfied.

Induction: For any other variable y, B(y) = n(x,y)eGdbB(x). We show that if an output

(numbered j) is in A(y) then, j e B(y). By the definition of A sets, j A(x) for any

x such that (, y) C Gdb. By induction hypothesis, A(x) C B(x) for all such x. Thus,

j B(x) for such x, implying that j E B(y). o

Theorem 4.7 (Subset Relations in Strict Blocks) If there is a directed path from a

variable x to a variable y in a block b, then

1. A(y) C A(x).

2. B(y) C B(x) .

Proof: An easy induction on the length of the path. c

70

The following theorem relates labels and the connectivity condition. It says that two

variable can be put in the same partition if they can "tolerate" each other. By "tolerate"

we mean that the outputs dependent on one variable (the A set) should be present in the

B set of the other variable (and vice-versa).

Theorem 4.8 (Necessary and sufficient conditions for connectivity) Let b be a

block such that A and B sets are computed for every variable in b. Let q C (FV(b) UBV(b))

and Q = {q} a partitioning of b. Then, Q satisfies the connectivity condition if and only if

Vyi, Yj E q

(A(yi) C B(yi)).

Proof: For a variable y let I(y) denote the set of inputs (i.e. the free variables of b)

connected to y in b. We make the following observations:

1. There is a path from an input x to an output z in the partitioned block bQ if and

only if there exist yi and yj in the same partition, such that there is a path from x

to yi in b and from yj to z in b. If yi = yj, we obtain paths originally in b.

2. An output Zr is connected to y in b if and only if r E A(y).

3. An output Zr is connected to every input in I(y) if and only if r C B(y).

The first property follows from the partitioning transformation. The properties of A

and B sets follow by an easy induction on the computation of A and B sets.

We now proceed to prove the theorem.

1. (==) Assume that one of the conditions is not satisfied. Then

]r C A(yi),r B(yj)

We claim that the output Zr is not connected in b to at least one of the inputs

(say xl) in I(yj) (by observation 3). Thus, after partitioning we introduce a path

between xl and Zr in bQ, and hence bQ is not correct.

2. (a) Assume that the partition is not correct. That is, there is an input x con-

nected to Zr in bQ but not in b. By observation 1, there are yi, yj q such that x

is connected to y and yj is connected to Zr. Therefore, r A(yj). As there is no

path from x to Zr in b, r 4 B(yi) (by observation 3). Thus A(yj) g B(yi).

El

71

Corollary 4.8.1 If a partition q satisfies the conditions of theorem 4.8, then the A sets (and

hence, B sets) of input variables of b are unchanged in bQ the partitioned block induced by

Q= {q}.

Proof: This follows directly from observation 2 in the proof of theorem 4.8 which says

that the A sets of the input variables capture all possible input-output connections in a

block, which are unchanged by theorem 4.8. El

In spite of the fact that the condition of theorem 4.8 is necessary and sufficient, we do

not use it in partitioning because the condition is not transitive: if we conclude i,j can

be put in the same partition and j, k can be put in the same partition, it does not follow

that i, j, k can all be together in a partition. Thus, we need to use some sort of graph

coloring technique to obtain partitions. We formalize this in the appendix, by proving that

obtaining optimal partitions is NP-hard, i.e., we cannot do better than coloring if we use

the necessary and sufficient condition.

We now give the correctness proof of the algorithm AB. Basically, the fact that we

can safely put variables with the same A's (or B's) together in the same partition follows

directly from the connectivity theorem above. However, we need to prove additional facts

to show that the entire algorithm (working in stages) is correct.

Theorem 4.9 (Correctness of AB on strict blocks) Algorithm AB correctly parti-

tions a block b.

Proof: First, note that the two conditions (A and B) are enough to guarantee that condi-

tions of theorem 4.8 are satisfied (follows from lemma 4.6).

We can think of the algorithm working in stages: generating partitions, applying the

partitions obtained to get the partitioned block, and repeated partitioning of this block.

We show that after a stage:

1. Partitions are correct: We first show correctness for the A stage. The problem is

that theorem 4.8 guarantees correctness for forming a single partition, whereas the

A stage could form several partitions simultaneously. However, we can easily see

that the change affects only the B labels, and the partitions formed are still valid.

During the B stage the following could happen: after propagating changes to the

A sets, we discover that some of the B sets have changed (as the B sets depend on

72

the A sets). This could make the partitions we have formed "invalid". However,

we know that (corollary 4.8.1) for any input the B set remain unchanged. Thus,

by the computation of B sets, the B set of any other variable is also unchanged.

Acyclicity is ensured by the A and B stages themselves. We show this for the A

stage. Assume there is a cycle formed by partitions ql,..., qn. Let A(q) stand for

the A set of all variables in q. As there is a path between a variable in ql to a

variable in q2, A(ql) D A(q 2). Extending this argument to successive partitions in

the cycle we have A(ql) D A(q 2)... D A(qn) D A(ql), implies that all the A's for

these partitions must be same and the algorithm would have combined ql,..., qn

into a single partition. A similar argument can be made for the B stage.

2. New labels reflect the changes in block: easy.

3. Partitions are extended (i.e. the old partitions are not broken up.): This follows

from the fact that if two variables are put in the same partition, their A and B sets

will be identical, ensuring that they will be present in the same partition at every

subsequent stage.

Using these observations, the correctness of the entire algorithm follows by an easy

induction on the number of stages. El

4.3.4 Summary

[In this section, we have dealt only with strict blocks. First, we presented an algorithm to

partition them. The algorithm uses A sets (which are similar to demand sets of the DD

algorithm) and B sets which are computed from A sets. We have proved the correctness of

the algorithm by studying the structure of the dependence graph and the effects partitioning

produces on the structure of the graph. We also have shown that preserving the structure

of the dependence graph is sufficient to ensure semantic correctness of the partitioning

transformation.

4.4 Partitioning non-strict blocks

In this section, we extend the partitioning algorithm defined for strict blocks to work on

non-strict blocks. The idea is to use the paths of an expression to know the dependence

information of expressions which may not be strict. We know that at run-time one of the

73

paths will be valid for the expression. Thus, we can view the execution of a non-strict block

as follows: first, make a choice at each non-strict expression regarding the path which is

valid at run-time. Then, the execution of the non-strict block works exactly like a strict

block, which we know how to partition. The algorithm for non-strict blocks works by

considering all possible choices of the non-strict statements to (conceptually) generate all

the strict blocks which could result due to the execution of the non-strict block.

The algorithm is again based on A and B sets. The only difference is that the outputs

are tagged by the strict block which they arise from. The tags are computed as follows.

Let there be n non-strict operators or functions in the block. For each 1 < i < n, let mi

represent the number of paths of the non-strict operator. Then, the total number of strict

blocks that can result during the execution of the non-strict block is ml x ... x mr. Each

strict block can be uniquely identified with the set of choices made at the paths in each

non-strict expression. That is, the tag is a set {(i, ji)} for 1 < i < n and ji is some number

between 1 and mi corresponding to the jth path. The formal definition of labels (i.e., tagged

outputs) is given below:

Definition 4.8 (Labels) A label is of the form (m, n, {(i, ji)(1 < i < n)}) for integers m,

n, i, ji s.

We now give the algorithm to compute the A and B sets and use them to do partitioning.

As the input block is acyclic, we can define an ordering on the variables of the block such

that variables occurring at some position in the ordering depend only on variables occurring

in lesser positions in the ordering. Like the AB algorithm for strict blocks, the algorithm for

non-strict blocks works by doing a series of backward and forward passes on this ordering.

First, we give the formal definition of the variable ordering and of Before, the set of

variables before a given variable in the ordering.

Definition 4.9 (Ordering of variables) Given an acyclic block b, let Gdb be its depen-

dence graph. Then, the canonical ordering of variables is a sequence (Ord) of variables such

that

(x, y) E Gdb == Ord(x) < Ord(y).

For a variable yj defined in a statement (yl, ... , ym) = e of b,

Before(yj)= {xlOrd(x) < Ord(y)}

74

The ordering can be computed by a topological sort of the dependence graph Gdb.

The partitioning algorithm is given below:

Algorithm AB

Given an acyclic block b:

1. Each statement of b which is not a primitive operator is annotated with a unique

number from 1 ... n where n is the number of such statements. Also, the numbering

respects the topological ordering of the block. For each such statement (...) =i e let

Pi = P(e) = {Pil,.-.,Pik).

2. Let L(i,r) stand for all labels (nl, n2, 1) such that (i, r) 1.

3. Define Var = FV(b) U BV(b) U {u}, where u is a new variable. Make u the first

variable in the ordering of variables.

4. For each y E Var, find two sets of labels A(y) and B(y) as follows:

(a) (Backward pass)

If b = {st* in (sel,...,sem)}, then Vj, A(sej) = {(j,n, {(i,li)1 < i < n})ll <

li < IPiI}

For a statement y = e, where e is a primitive operator,

a C A(y) ==z Vx FV(e),a c A(x)

For any other statement (Yi, . . ., Yt) =i e such that P(e) = {Pil,..., Pik}, a label

o = (j, n, 1) A(x)) if and only if there are r, s such that

a C A(ys) and x E (pir s) and x Before(ys) and (i, r) E 1.

(b) (Forward pass)

If x BV(b), then B(x) = A(x).

For a statement y = e, where e is a primitive operator

B(y)= n B(x)
XEFV(e)

For any other statement (yl,..., Yt) =i e such that P(e) = {pl,... Pik},

a E B(y,) if and only if there is an r such that

a = (j, n, I) and (i, r) E I and Vx E ((Pir, s) n Before(y,))ca e B(x). That is,

B(y.) = U ((n B(x)) n L(i,))
1<r<k E((pir4s)nBefore(ys))

75

5. As in the AB algorithm for strict blocks, do alternate A and B stages (with subpar-

titioning) to produce partitions.

Discussion: The variable u in the algorithm stands for the undefined variable i.e., the value

of u is always I. The propagation of labels through primitive operators is done in exactly

the same manner as in strict blocks. For a non-strict statement (Yl,..., Yt) =i e with paths

{Pil, ... , Pk} the propagation is done as follows:

1. Assume we have a label E Ys for some 1 < s < t. Let a contain a choice of the

form (i, r). That is, is present in the strict block where this statement "makes"

the rth choice among the paths. So, we should propagate this label to all variables

x E (Pir s). If (Pir .) = p we can safely propagate it to any variable. But, we

propagate it to only variables before it, ensuring that labels do not propagate in a

circular manner.

2. Computing the B sets is done by a forward pass. We have mentioned that the B set

of a variable y, stands for outputs which can safely be made to depend on s,. The

computation is very similar to the computation of B sets from a primitive operator.

The only difference is that we consider each choice of the expression (i.e., which path

it takes) and combine the B sets for all the choices. The condition that variable x

should be before y, is required to take care of the case when the path is Ip.

The following example illustrates the AB algorithm.

Example 4.4:
f(x,y)=

{p = eq? y O;
a =1 if p then { in x} else { in 3};
b = a+ 1

in
b}

The paths set of the non-strict statement in the block is P1 = {[p, x], [p]}. In this

example, we do not need the undefined variable u as none of the paths are Ip. There is

only one output (b) and only one non-strict statement. Thus, the labels we propagate in

this block are of the form (1, 1,) where is a singleton set consisting of either (1, 1) or (1, 2)

depending on whether the label corresponds to the path [p, x] or [p]. As b is an output, it

gets all possible labels, that is, A(b) = {(1, 1, {(1, 1)}), (1, 1, {(2, 2)})}. Call these labels a

and 3. The backward propagation of the labels is given in the following table.

76

Var Backward Propagation Stage

Initial b a p

x Oc a

Y a,

a a, ao a,

b aO,/ a, a,13 a,3

The point to note is that A(x) only has the label . The label P does not "reach" x as

B corresponds to a different path (namely [p]). However, both the labels reach p as it is

present in both the paths of the non-strict operator. It turns out that the B sets produced

are exactly equal to the A sets, and thus they do not add further information. The A

stage of the algorithm produces (before subpartitioning) the partitioning {x}, {y, p, a, b}.

Subpartitioning (due to the if statement) will produce {x}, {y, p}, {a, b}.

From the algorithm to compute A and B sets, we have the following property of A and

B sets.

Lemma 4.10 For a variable x, A(x) C B(x).

Proof: The proof is by induction on the structure of b.

Basis: For input variables, the result is true.

Induction: For variables computed by primitive operators, the result is true (by the proof

of lemma 4.6). Consider any other variable Ys computed in a statement (yl, ..., Yt) = ei.

Let Pi = {Pil,Pi2, .. .,Pik}. We show that if c E A(ys) then a E B(y,). Let a = (j, n, 1)

such that (i,r) E 1. From the computation of A sets we have, Vx E ((Pir, s) n

Before(y,)), o E A(x). By induction hypothesis, a E B(x) for such x. By computation

of B sets, we have a E B(ys). °]

We have a theorem which is similar to theorem 4.7 for the A and B sets computed

here. This follows directly from the theorem corresponding to strict operators as we are

considering only paths in the dependence graph formed through primitive operators.

Theorem 4.11 (Subset Relations for Non-strict Blocks) If there is a (directed) path

of weight 0 from a variable x to a variable y in the dependence graph of b , then

1. A(y) C A(x).

77

2. B(y) C B(x).

We now prove the correctness of the AB algorithm working on non-strict blocks. We

"simulate" non-strictness by using a family of non strict operators Nji taking ji values as

arguments and returning i values.

The meaning of the statement

(xl,...,xi) = Nji(y,Y12 2, ... , Yli, . .., yji)

is that it could be rewritten to any one of the j statements

{(Xl, .-- ,xi) = (Ykl,Yk2, .,Yki), 1 k < j}..

We transform a block with non-strictness to a block containing only strict operators and

these N-operators. We prove that the transformation preserves the meaning of the block

(in a denotational sense). First we give a method to transform a non-strict expression. The

idea is based on using strict operators to compute values corresponding to all the paths

of the expression and using a single N-operator to choose any one of the values computed.

This reflects the uncertainty at compile time; we do not know which one of the paths will

be valid at run time.

Definition 4.10 (N-block equivalence) Let pr be a program fenv = £ppr and aenv =

Appr. For a block b, an equivalent N-block bN is defined as follows.

1. A statement st ::= y = e of b where e is a simple expression or primitive operator is

present unchanged in bN.

2. An expression e in any other statement (Yl,..., Ym) = e is replace by the a block bNe

defined as follows.

(a) Let u be a new variable which represents I. Let P(e) = {(pil,...,pim)) for

1 < i < n.

(b) For each i, j such that 1 < i n and 1 j < m, there is a statement defined by:

i. Pij I p: Let Pij = [Zl,., Zk]. There is a statement

Xij = opij(l, ... ,zk)

where opij is a (strict) operator such that

opij(v,..., Vk) = , if one of {Vl,..., Vk) is 1.

opij(vl,., Vk) = E[e] [zl -+ vi] fenv, otherwise.

78

ii. ij = p: let {z l, ... , Zk} = Before(yj). There is a statement

xij = Strict(zl,...,Zk, u).

The Strict statement "waits" for all its arguments and returns an (arbitrary)

constant value as the output.

(c) We have a single N-statement:

(Yl,...,Ym) = Nnm(Xll ·... ,Xim,...,Xni, ·.. ,nm)

(d) bNe returns (yl,.. ., ym).

Using the definition given above, we can convert a block b into a block bN containing

only N-statements and strict operators. For example 4.4 the block bN is:

Example 4.5:
f(x,y)=

{p = eq? y O;
al = op(p,x);
a2 = op2 (x);
a = N2 1(al,a2);
b = a+x

in
b}

The primitive operators op1 and oP2 compute the following functions:

op1 (p, x) = x, when both p and x are defined, otherwise undefined.

o2(p) = 3, if p is defined, otherwise undefined.

The block bN models the non-strictness of b using strict primitive operators to compute

values, and N-statements to choose among them. It is easily seen that a partitioning of the

block bN can be converted to a partitioning of the block b (all the variables in b are also

present in bN).

We now prove that the transformation is "correct" in the sense that all computations

that can possibly happen at run time are modeled by the N-statement. Formally,

Theorem 4.12 (Correctness of N-block transformation) Let e be an expression and

bNe be the corresponding block modeling it. Then, for all bye, there is a choice of the

N-statement in bNe such that,

£e]D bve f env = E[bye] bye f env

where bYe is the block obtained by rewriting the N-statement with the appropriate choice.

79

Proof: In the proof, we actually produce a choice i such that the values of the two expres-

sions are identical.

Let E[e] bye fenv = (vi,..., v,). Define pbve[x] = (bve[x], [x]), and abve[x] = {[x]).

By theorem 3.1 we have, P[e]pbve penv = ((vl,pl),..., (vm,, n)) for some Pli,..., Pm.

By theorem 3.3 we have (l,..., pm) E A[ed abve aenv = P(e). Let i be the number of

this path in P(e). The choice we employ to make the theorem true is i. That is, we show

that the variables xzl, ... , xim have values (vl,..., vm). Consider the jth component vj.

By construction of bNe there is a statement xij = ... in bNe. We separate two cases:

1. pj = lp. By theorem 3.1 vj = I. By construction of bN,, the statement in

bNe computing xij is of the form xij = Strict(...). As we have included u, the

undefined variable as one of the arguments for the Strict operator, the value of the

whole expression is I, i.e., xij = l.

2. pj I p. There are two cases:

(a) vj I. Let pj = [Zl,..., z]. By theorem 3.1 bve[zl] I for I E 1...m.

Thus, by the definition of oPij and condition (B) of theorem 3.1, we have

[opij(bve[zl], . . ., bve[zm]) bve fenv

= [e] [zi - bveTzi]] fenv

= £[ej Proj (bve, pj, pbve) fenv = j

(b) vj = I. By corollary 3.1.1, one of {zi,...,Zm} should be I. As opij is strict

on its inputs, the value of xij is 1.

From the above theorem it is clear that the block bN formed by introducing N-statements

can simulate any computation of the block b. Thus, to show that a partitioning is correct

for the block b we only need to deal with bN.

The proof of correctness of the AB algorithm given here is similar to the one given for

correctness on strict blocks in the sense that we take a two staged approach. We define a

new correctness criterion (using the block with N-statements) and prove that it is sufficient

to ensure semantic correctness.

4.4.1 N-block based Correctness of a Partitioning

Definition 4.11 (N-block based correctness) Let Q be a partitioning of a block b. Let

80

bN be the corresponding N-block of b, and bN1, bN, ... , bNk be all possible strict blocks which

are rewritten versions of bN. Then Q is a correct partitioning if Q is a correct partitioning

of each bN~, 1 i k.

Here, we have formulated correctness of a partitioning of a non-strict block by observing

that the potential dependencies get "resolved" at execution time into certain dependencies

(i.e., we can regard the non-strict block as a block with strict operators). If we show that

the partitioning is correct for all possible "resolutions" of potential dependencies in the

block, we can prove that the partitioning is correct for the original non-strict block.

We now prove that the correctness criterion given above is enough to ensure that the

semantic criterion (using Ans) is satisfied. First we need to prove the following lemmas.

Informally, the first lemma states that the "final" environment of the block can be affected

by partitioning in only one way: values of some variables may become I, but the other

variables are left unchanged. The second lemma states that choices made in N-blocks are

not affected by the partitioning transformation.

Lemma 4.13 Let b be a block and bQ its partitioned version. Let be be the external

environment and newbve, newbveQ be the internal environments computed for the blocks

using bve. Then Vx E BV(b), newbveQ[x] E newbvex].

Proof: The proof is by fixpoint induction. As usual, newbve and newbveQ are limits of

the chains newbve °, newbvel,... and newbveS, newbve',.... For brevity, we shall not

repeat the initial environments and the computation of successive environments here.

Refer to the proof of theorem 3.1 for a similar set of equations. There are three "flavors"

of variables in bQ:

1. The original variables (denoted by x).

2. The "new" variables (denoted by x).

3. The local variables (denoted by xa, for partition i).

We prove the following properties for the environment sequences. For all x, i, k:

1. newbve kxI J E newbve kx.

2. newbve xi] E newbve [x][.

3. newbve[x] C newbvek[x].

81

Basis: The properties are obviously satisfied for k = 0 when all environments return .

Induction: Assuming the properties for k. We prove the properties for k + 1. Observe

that x is computed by one of the two statements:

(...,,...) = Sn(... X ,...)

(...,x, ...) = (...,x, . ..)

in bQ. In both cases (as they do not change the value of x), we have, newbvek+lx] Ec

newbvekI[x]. But, as newbve E newbvel + 1 (by monotonicity of the chains), the first

property is satisfied. The proof for the second property is similar.

Consider a statement x = ei of bQ belonging to a partition corresponding to opi. By

definition of partition, there is a statement x = e in b such that ei = [xi/x]e. Thus,

newbvek+l VX

= £[ei [xi - newbveQ[xi]] fenv

El £[ei] [xi + newbve[x]] fenv

E £ei] [x i - newbveQ Ix]] fenv

E_ £[ei] [xi - newbvek[x]] fenv

= £e] [x -+ newbvek[x]] fenv

= newbve+l[x]I

By induction, all the properties are true for the limits of the environment chains newbve

and newbveQ. The theorem follows from the first and third property.]

Lemma 4.14 Given a block b and an environment bve, let NC be the set of choices made

at the N-statements of bN (the N-block corresponding to b) in the environment bye. Then,

given a partitioning Q and partitioned block bQ,

l£bQ] bve f env = £[b'Q] bve fenv

where bQ is the block formed by rewriting bNQ (the partitioned version of bN) using the

same set of choices NC.

Proof: Let bvel be the internal environment of block b computed during the evaluation

and bve2 be the internal environment of block bQ. By lemma 4.13 we have Vx BV(b),

bve2[x] E bvelx]j.

Consider an expression e which is transformed into a block bNe. Let eQ = [x/x]e be the

82

corresponding expression in bQ and bNeQ the block into which eQ is transformed.

By the property of the choices, we know that: £[,e] bve1 fenv = £[bJe] bye1 fenv

(Vl,..., vn). Let pbve be a value-path environment such that pbvel[x] = (bvel x], [x]).

We have to show that (ul1,..., u,) = £[[x/z]e] bve2 fenv = £[[x/x]beQ] bve2 fenv.

Let the ith choice be made at the N-statement of bNe, i.e., vj is the value computed by

the statement xij = eij.

Consider the jth component uj. We show that the value of xij (in the block bNeQ) is the

same as uj. By monotonicity (bve2 E bvel), uj C vj. We consider the following cases:

1. pj = . Thus, by theorem 3.1 vj = I. By monotonicity uj = i. Then,

£[[x/x]eij] bve2 fenv

C £eij]J bve1 fenv

= v = j.

2. pj :A I. Thus, there is a statement of the form xj = opij (l,..., Zm) for zl E pj in

bNe and a statement xij = opij (zl, ... , m) in bNeQ. There are two cases:

(a) vj 4 uj = . By corollary 3.1.1 there is a variable I such that bve2W[zj = I.

As opij is strict and has z as one of its arguments, the value of xij = I.

(b) vj = uj _ I. By corollary 3.1.1 for all I E 1...m, bve2 [zJ 0 . As bve2 C

bvel, bve2[zJ = bvejl[l]. Thus,

OPij (Zi, . . Zm)

= [[x/x]e] [a - bve2[J]] fenv, by definition

= £te] [zl - bve2[j]] fenv, by renaming

-=- S[e [zl -+ bvelzl]] fenv,

= Vj = Uj.

The theorems proved in this so far used denotational semantics. However, as the se-

mantic criterion is formulated in terms of an operational semantics, we have to "switch" to

operational semantics. We are justified in making this "switch" provided the following two

statements are correct.

1. The two semantics are equivalent in some sense (that is, they produce the same an-

swers).

83

2. Contexts in the operational semantics are equivalent to environments in denotational

semantics. We can study the behavior of a block in a context by studying its behavior

of the block in an equivalent environment.

Dealing with the two statements and formalizing them is beyond the scope of this thesis.

Theorem 4.15 (Sufficiency of the N-block criterion) A partitioning Q of a block b

is correct with respect to the semantic criterion if it is correct with respect to the N-block

criterion.

Proof: Let bQ be the partitioned version of b. Let Co be any context for b. We show

that Ans(C[b]) = Ans(C[bQ]). By theorem 4.12 there a set of choices (NC) such that

Ans(C[b]) = Ans(C[bN]). By lemma 4.14 for the same set of choices Ans(C[bQ]) =

Ans(C[bN Q]), where bQ is the partitioned version of bY using the partition Q. As b is

a strict block obtained by rewriting bN, we have (by the N-block criterion) Ans(C[b']) =

Ans(C[b~'Q]), and the result follows. E

4.4.2 Correctness proof of the AB algorithm

Theorem 4.16 (Correctness of AB on non-strict blocks) Algorithm AB correctly

partitions a block with non-strict operators.

Proof: Let b be a block and bN be the corresponding N-block. Let BN be the set of all

strict blocks obtained by rewriting bN, the N-block corresponding to b. Let AS(x) denote

the A set of a variable x produced by the block b E BN (BS(x) is defined similarly).

The following properties are used in the proof. For all variables x, y,

A(x) = A(y) Vs, As(x)= A(y)

B(x) = B(y) E Vs, BS(x) = BS(y)

We prove the two properties by induction on the number of N statements in the block.

Basis: For a block with no N statements, i.e. a strict block, there is only one strict block

which can be obtained by rewriting bN, i.e. bN itself. Thus, the A sets are same for b

and for the strict block (the B sets are identical too). The theorem is trivially satisfied.

Induction: Assume that the lemma is true for all blocks with less than n N-statements.

Let b be a block with n such statements and bN be the corresponding N-block. Let BN

84

be the set of strict blocks obtained by rewriting bN. Let a statement (labeled n) be one

of the N-statements such that it is the "last" in the block. That is, there is no other

N-statement which uses the values produced by n. As bN is acyclic such a statement

always exists. Let the statement n have k "choices". Then, BN can be partitioned into

k sets of blocks BN 1,..., BNk such that the blocks in BN', 1 < r < k correspond to

the rth "choice" being made at the rewriting of the N-statement.

Let bl, . .. , bk be the blocks obtained by one rewriting of bN at the specified N-statement.

Let A r and B r stand for the A and B sets of variables of block br . Applying the induction

hypothesis to the blocks bl,..., bk we get (for r E 1...k), Vx, y:

A(x) = A(y) => Vbr E BNr, Ars(x) = ArS(y)

B(x) = B(y) =- Vbrs E BNr,Br(x) = Brs(y)

Thus, we only have to prove:

A(x) = A(y) Vr, Ar(x) = Ar(y)

B(x) = B(y) - r, Br (x) = Br (y)

To prove this, we make use of the following property (Prop(r)):

Vj,((j,n, 1) D A (n, r) E) 4==> ((j, n - 1, 1 \ {(n, r)}) Dr)

where the set D can stand for A(x) for some variable x and Dr can stand for Ar(x) (or

the corresponding B sets).

The property is invariant under set union and intersection. That is, if D1, Dr and D2, Dr

satisfy the property for some r, then so do (D1UD2), (DrUDr) and (DlD 2), (D FnD2).

We now prove the property is true for A sets. That is,

Vj, ((j,n,) E A(x) A (n, r) E) == ((j, n - 1,1\ {(n, r)}) Ar(x))

Note that a label denotes the set of "choices" made at the N-statements to "reach" a

variable from the output. Let a denote (j, n, 1) and P denote (j, n - 1,1' {(n, r)}). We

consider two cases (refer to figure 4.3):

1. reaches A(x) without using any of the edges corresponding to the non-strict

operator n. Then, this path will be present in br too, proving E Ar(x). The

proof of the converse is similar.

85

2. Assume a "uses" one of the k choices to reach x. The only choice it can use is the

r th choice, as (n, r) E 1. As this choice is "wired" in br, 3 E Ar(x). Again, the

proof of the converse is similar.

rb

r

*-.

(j,n,l 1) (j,n-,l' \ [(n,r)})

Figure 4.3: Proof of Prop(r) for A sets

The proof of Prop(r) for B sets is by induction on the structure of the dependence

graph.

Basis: For input variables, the B sets are the same as A sets and thus Prop(r) is satisfied.

Induction: Assume we are computing B sets at some statement. There are two cases.

1. We are at a primitive operator using an expression e. Here, B(y) = lxeFV(e) B(x)

and Br(y) = rlxEFV(e) Br(x). By induction hypothesis, Prop(r) is true for each x.

The result follows by invariance over intersection.

86

5:

(j, n, 1) (jn-1,1'\ [(nr)])

b:

2. We are at a non-strict operator. There are two cases:

(a) We are not at the statement labeled n. Let the statement be labeled n'.

For a variable y, the B set is of the form B(y) = Ur(nB(x) n L(n,r,)). The

computation of Br(y) is identical; only B(x) is replaced by Br(y) etc. It is easy

to verify that Prop(r) is true for the L sets too. Thus, the fact that B(y), B r (y)

satisfy the property follows from the invariance over U and n operators.

(b) We are at the statement labeled n. Then the computation of B(y) and B r(y)

sets can be written as follows:

B(y) = (T1 n L(n,1)) U ... U (Tk n L(,k))

Br(y) = Tr

The T's in the above equations stand for intersection of B sets of some vari-

ables (and hence satisfy Prop(r), by induction hypothesis and invariance over

intersection). The equation for Br(x) reflects the fact that the rt h choice is

"hard-wired" in the computation of Br(x). We show that Prop(r) is valid for

B(x).

Vj, ((j,n, 1) E B(x) A (n,r) E I) >- ((j,n - 1,1\ {(n, r)}) E Br(x))

i. (=:>): (j, n, l) E (Tin L(,i)), for some i: The only possibility is i = r as only

L(n,,) contains such labels. Thus, (j, n, I) E (Tr n L(nr)) - (j, n, 1) E Tr

==- (j,n - 1,1\ {(n,r)}) E Trr. Thus, (j, n - 1,1\ {(n,r)}) E Bk(x).

ii. (<=): (j, n - 1,1') E Trr implies (j, n - 1,' U {(n, r)}) E Tr. Thus, (j, n -

1,1'U {(n, r)}) E (Tr n L(n,r)). Thus, (j, n - 1,1' U {(n, r)}) E B(y).

Using Prop(r) for A sets, we prove that 3r, (Ar(x) : Ar(y)) (A(x) yA A(y)). Assume

3r, (Ar(x) 7 Ar(y)). Then, without loss of generality,

3(j, n - 1, 1') E Ar(z) such that (j, n - 1, 1') ' Ar(y)

Thus, (j, n-i, I'U{(n, r)}) E A(x) and (j, n-l, 'U{(n, r)}) ' A(y). Thus A(x) 4 A(y).

The proof for B sets is similar.

So far we have proved the following properties relating the A and B sets computed

for b to those computed for a strict block.

A(x) = A(y) ==' Vs, AS(x) = AS(y)

87

B(x) = B(y) = Vs, B(x) = Bs(y)

Now, we show that the partitioned block bQ is acyclic. This implies that each partitioned

strict block is acyclic, as they contain a subset of the edges of the dependence graph.

Thus, the correctness criterion for strict blocks is satisfied, and by the N-block criterion,

the correctness for non-strict block b is established.

We show (proof by contradiction) that subpartitioning ensures that the partitioned

block bQ is acyclic. Assume that we have formed partitions using the A stage of the AB

algorithm. Let ql,..., qn form a cycle in bQ. There are two cases:

1. The paths in the dependence graph of b between every two successive partitions in

the cycle are of weight 0. Thus, the paths are all strict. By theorem 4.11 we have,

A(q1) A(q2) ... D A(qn) D A(ql). Thus, the A sets are all equal and they would

have been put in the same partition.

2. One of the paths is of weight > 1. Let x, y q such that there is a path (in the

dependence graph of b) from x to some variable in q2 and there is a path from

some variable in q to y. Thus, if z is the variable in q2 which is connected to x,

depth(z) > depth(x) as the depths increase monotonically along any path. As the

depths of all variables in q are equal for each i, we can associate that depth with qi.

Thus depth(x) < depth(q2) < ... < depth(q,) < y. At least one of the inequalities

must be strictly <, as there is a path of weight > 1. Thus depth(x) < depth(y), a

contradiction.

4.4.3 Summary

In this section, we have extended the AB algorithm to work on non-strict blocks. The key

idea is to observe that eventually (i.e., at run time) the non-strict block "resolves" itself to

a strict block. The set of all possible strict block it can resolve to can be determined by

paths of the non-strict expressions in the block. The AB algorithm conceptually runs the

strict block version on each of the strict blocks generated.

The correctness proof consists of two parts. One is that paths accurately describe the

set of all strict blocks and the second is to show that we have extended the AB algorithm

88

correctly, i.e., its behavior is consistent with the algorithm running on each individual strict

block.

4.5 Appendix: Complexity of Partitioning

Theorem 4.17 (Partitioning is hard) Optimal partitioning is NP-hard.

structure of the block-graph

a double helix

Figure 4.4: Proof of NP-hardness

Proof: We reduce the NP-hard problem of finding optimal (minimum number of) clique

partitions of an undirected graph [14] to partitioning. Given an undirected graph G =

(V, E) with n > 4 vertices, we construct a dependence graph (which can be easily

converted into a block with strict operators) as follows:

Gdb = (Vb, Eb) where,

Vb =X1, - -, n) U

{X11,.. ., Xln, ... Xn 1,... X nn} U

{Y1,.,yn}U

89

{Y11, ... Yln .- Yn l ... , Ynn U

{Z 1, .. , Zn}

Eb = {(zi, Yij),l < i,nj< nj i U{(xi, zi),(xii, zi), < i < n}[J

{(Xi, Ykj), (ii, Ykj), 1 < i,j, k < n, such that

(k 7 j,j = i, (k,j) C E)V(J 7 i,k o j)}

We also have additional edges forming "double-helix" between each of the following pairs

of vertex sets ({Xl,..., Xn},{Yl,...,Yn}), ({Xll,...,Xnn},{Y11,...,Ynn}), ({Xi 3j1l <_

i,j < n, i ji,{yijl < i,j < n,i j}). The property of a "double-helix" is that

it forces each variable in it to be in different partitions. We make the following obser-

vations:

1. xi, Xjj cannot be put in the same partition. This follows from the fact that 3yk

A(xi) and Yk A(xjj). Thus, k B(xjj), as B(xjj) = A(xjj). Similarly x and

X j k, Xii and Xjk cannot be put in the same partition.

2. For any output y, A(y) = {y) and B(y) = {y}. This follows from the double-helix

construction, forcing each output to be in a separate partition. Also, any other

variable w cannot be put in the same partition as any output y, as IA(w) > 1 and

IB(y)I = 1.

3. xi, zj cannot be put in the same partition, as 3yk E A(xi) and k B(zj) (follows

from the fact that Yk is connected only to xi's not xii's). Similarly xii, zj cannot be

put in the same partition. Zi, Xjk cannot be put in the same partition as IA(zi) > 3

and IA(xjk)l = 2 = IB(xjk)l.

From the observations mentioned above, it is clear that the only non trivial (having

more than one variable) partitions can be formed by putting sets of z's together in

the same partition. Also, note that including some zi's in the same partitions does

not change the A and B sets of other zi's (follows from the fact that there is no path

from any zi to zj). Thus, any clique partitioning of the graph G, = (Vi, Es), where

Vz = {Z1 ,...,z} and Ez = {(zi,zj)(A(zi) C B(zj))A(A(zj) C B(zi))} generates a

partitioning of the dependence graph constructed and vice-versa. We now show that the

graph G, is isomorphic to G, with the isomorphism i X zi:

A(zi) = {yil,..., Yin}. But, Yik B(zj) for k j (as Yik xi and Yik E Xii).

Thus, A(zi) C B(zj) iff Yij E B(zj). A similar statement is true for zj.

90

Thus, (zi, zj) E EZ iff (yji C B(zi)) A(Yij c B(zj)) iff (i, j) E E.

This completes the reduction, and the NP-hardness follows. [

Note: In the construction given, we have used primitive operators having an arbitrary

number of inputs. If we restrict all primitive operators to have two inputs, then we can

simulate the construction by using a "tree" of such two input operators.

91

Chapter 5

Extensions

In the previous chapter we have given a partitioning algorithm to partition first order,

functional programs with simple data types. The algorithm can be improved in several

ways:

1. The algorithm partitions for a worst case scenario; that is, it assumes that a block

can be called in an arbitrary context. We can probably produce better partitions by

using the information present at the places where it is called.

2. The algorithm does not handle data-structures. That is, dependence information is

not propagated through data-structures. Also, it does not partition programs with

side-effects in it.

3. The algorithm does not handle higher order functions.

In this chapter, we attempt to provide (partial) solutions to the first two problems.

5.1 Partitioning with Contexts

In this section we will try to partition a program in its entirety, so that we may be able

to produce better partitions. The intuition behind this section is simple: a function or a

block is rarely used in all possible contexts, it is probably only used in a small fraction of

them. Thus, by considering only those contexts in which a block is used, we might partition

better. If no context in which the function is called makes use of the non-strict behavior

of the function, we should be able to compile the function in a strict manner. In some

sense, this is also "fair" to the writer of the program; there is a performance penalty only

92

if he uses the non-strictness of a function. However, we point out that this is the "ideal"

case which we want to achieve, but we might not be able to realize this due to the various

approximations we have to make at compile time.

The following example illustrates our algorithm to make use of context information.

Example 5.1:
f(x,y)=

{ a= x + 1;by * 2
in

(a,b))
g(z)=

{ (r,s) = f(z,z)
in

(r,s)}

Suppose we know that the function f is called only in the function g, we can conclude

that the operators + and * can be put in the same partition, as the inputs of both operators

come from the same "value" (i.e., z of function g). This argument can be formalized in

the partitioning algorithm: as we know the path information about function f, and the

inputs to it in function g, we obtain a partition where r and s are in the same partition.

That is, there is a statement (rl, sil) = S(r, s) in the partitioned version of g. Moving this

statement "inward" (i.e., into f), we introduce a statement (al, bl) = S(a, b) in f (which

:now returns (al, bl)). The partitioning algorithm working on the new definition of f will

succeed in obtaining the desired partitions. The rest of the section gives the algorithm to

;propagate context information.

Definition 5.1 (P-Contexts) Let b be a block with input variables X - {xl,..., n} and

output variables Y = {y, ... , yn}. A partitioning context (or simply, p-context) is a pair

of sets (PCs, PCr) (the "send" and "receive" sets), such that PC1 partitions the set X and

PC2 partitions the set Y.

Informally, each partition in a p-context denotes the inputs (or outputs) which can be put in

the same partition. For the example given above, the p-context of f is ({{x}, {y}}, {{a, b}}).

We now prove that propagating context information "inside" is "safe".

Theorem 5.1 (Correctness of context propagation) Let bl be a block used only in

another block b2. Let there be statement of the form (x,...,xn) = S(x,...,x) in b2,

where {x1, ... , xn} C FV(bl). Then, the transformation of the block b into b, where

93

1. There is a statement (yi,...,yn) = S(xl,..., xn) added to b.

2. Each occurrence of xi in bl is replaced by yi, for 1 < i < n.

is correct.

Proof: The notion of correctness used in this proof is similar to the one used for par-

titioning. Let b be the block which uses b instead of b. We have to prove that

VC, Ans(C[b 2]) = Ans(C[b]), where C is any user defined context. Due to the property

of adding the S statement (which is similar to the partitioning transformation), we need

to prove that if C[b2] terminates properly, so does C[b']. There are two cases:

1. If C is such that the additional S statement in b gets rewritten, then the blocks

b2 and b are identical. Thus, they yield identical answers in such a context C.

2. Assume that the S statement in b is not rewritten. Thus, C[b'] is a deadlock. By

the behavior of the S statement, one of {xl,..., Xn} must undefined. As they all

depend on the same S statement (in b2) for a value, the S statement in b2 must

not have been rewritten. Thus, C[b2] is also a deadlock.

Note: A similar theorem can be proved about the "outputs" of the block bl.

Using the theorem, we can determine a p-context for each block based on the context

information (for blocks that are used only once). However, in a program, it is very un-

usual that a block (or a function) is used only in one context; in general, it will be used

in multiple contexts. If we need to partition the block so that it is safe to call the block

in all the contexts, we need to be able to find a safe approximation to all the p-contexts.

The following definition gives a method of comparing information in contexts and comput-

ing approximations of them. Basically, a p-context approximates another p-context if the

partitions in the p-context "refines" the partitions of the other p-context.

Definition 5.2 A p-context PC2 = (PC28 , PC2r) approximates another p-context PC1 =

(PC1s, PClr) (i.e. PC2 PC1) iff

Vpc2s G PC 2s, 3pCls E PCls such that pc2s C pcls and

Vpc2r E PC 2r, 3pc1l E PC 1, such that pc2r C pclr.

Using the definition above, we can compute the greatest lower bound (gb, denoted by

the symbol 1I) as follows:

94

If PC1 = (PC1s, PCi,) and PC2 = (PC2s, PC2r) are two p-contexts

then PC3 = (PC3 ,, PC3,) = PC H PC2 where

PC3s E PC3s iff (pc3s Z) A (3pcls E PCs, pc 2s e PC2 s, pc3s = (pcls nPC2s)).

PC3, is computed in a similar manner.

It is straightforward to show that PC3 is indeed the greatest lower bound.

Theorem 5.2 (Approximating multiple contexts) Let bl,...,bn be blocks using a

block b. Let PC1, PC2 ,..., PC, be the p-contexts of b in bl,..., bn. Then transforming

the block (introducing S statements) according to the p-context PC = H1<i<n PCi is cor-

rect.

Proof: Observe that the proof of theorem 5.1 holds even if we use an approximation to the

p-context defined in the outer block (i.e., instead of a single S statement we introduce

several "smaller" ones). Thus, the p-context PC is safe with respect to all the blocks

bl,..., b, as it is a lower bound on the p-contexts PCi,..., PC,. The correctness of

the transformation follows easily from this property. EO

So far, we have not dealt with the case when the context information we are propagating

affects the context itself. This can happen in the case of recursive functions. In such cases,

the context information to be propagated can be obtained by fix point iteration. We give

an example to outline our approach.

Example 5.2:
f (x,y) =
{p = eq? y O;

r = if p then

{ in 1}
else

{tl = y - 1;
t2 = x;

t3 = f(t2,tl);

in
t3}

in
r}

Note that the two arguments to f cannot be included in the same partition (in general),

as a context such as a = f(a, 0) will deadlock. However, for this example, assume that we

can conclude from the contexts calling f that the two arguments can be put in the same

partition. Thus, we can introduce a statement (x, yl) = S(x, y) in f. Using this, we can

95

conclude that the "send" p-context of the recursive call to f is {{tl, t2}}. The glb of the

two p-contexts (the outer and the recursive) yields the same p-context as the result. That

is, we have reached a fixed point, and the partitioning of f using this p-context is correct.

We now specify the algorithm to do fix point iteration.

Algorithm R

Given a recursive function f:

1. Let pc be the gib of the p-contexts calling f.

2. Do until the p-context pc does not change.

(a) Partition the body of f (using algorithm C and algorithm AB).

(b) Let pcl, pc2 ,..., pcn be the p-contexts of the recursive calls to f. Let

pc =pc H(II PCi)
l<i<n

Note: The algorithm generates a decreasing chain of p-contexts. As the longest chain can

at most be of length m + n (m = no. of arguments, n = no. of results), the algorithm

terminates after at most m + n steps.

Theorem 5.3 Algorithm R correctly propagates context information to a recursive func-

tion.

Proof: Let pco, pcl,..., pCn,....be the p-contexts generated by algorithm R. We prove that,

after i stages, the context information propagated is correct for all calls to f that are at

most i deep in the recursion.

Basis: If there is no recursive call to f, pco is the correct context (according to theo-

rem 5.2).

Induction: Assume that the hypothesis is true for i. Consider a recursive call to f which

i + 1 deep in the recursion. The contexts in which this call occurs are obtained by:

1. Using the p-context (pci) at the ith level (which is correct, by induction hypothesis).

2. Partitioning the body of f (which is correct as we are using algorithms C and AB).

Thus, pci+l is correct for any call which is < i deep, as pci+l pci. It is also correct

for a recursive call at depth i + 1 as any such context pc pci+l. This proves the

hypothesis, and the theorem follows. o

96

Note: We mention here that mutual recursion can be handled in a similar manner; we use

simultaneous fixed point iteration to generate the p-contexts.

So, the strategy for taking into account context-information is this: Given the call graph

of a program, we descend from the root to the leaves, resolving the contexts in a cycle in

the call graph using fix point iteration.

Finally, we point out a drawback of our representation as of context information as

p-contexts. Though we get the benefit of fast convergence in fixed point iteration, we are

losing correlation information between input (or output) variables. That is, even though

two input variables may not be put in the same partition in a context, there might be

enough correlation in the values of the variables to enable bigger partitions of the block.

One solution would be to propagate the A and B sets themselves into a block (from the

surrounding block). However, the method to handle recursion in that case is not very

obvious. This is an area of future research.

5.2 Data Structures

In this section, we give a brief overview of extensions to the basic algorithm which can be

used to model data-structures. Our extensions have a limitation that they cannot handle

data structures lists, trees etc., which could have an arbitrary number of components asso-

ciated with them. The following example shows one program which we can analyze using

the algorithm.

Example 5.3:
f(x,y) =

{a = x + i;
b = y - 1;

c = mk_tuple2 (a,b)
in

c}
g(a,b,c) =
{t = f(a,a);
ti = select 1(t);
t2 = select2(t);

in
(ti,t2)}

The mktuplen primitive operator takes n values as its arguments and returns an

n-tuple containing those values. There is another operator select i which selects the ith

component of a tuple. In the example shown, we should be able to deduce that tl and t2

97

can be computed in the same thread. This can be achieved by deducing that tl and t2

depend on the same value z. Thus, we should "track" dependencies through the mk_tuple

and select operators.

First, we extend the abstract path semantics to give useful information about tuples.

Then, we provide methods of using this information in the partitioning algorithm.

5.2.1 Abstract Paths for Data-structures

Recall that a path of an expression is the set of free variables of the expression needed to

produce a value for the expression. A simple extension to expressions which return data-

structures is to include in the path of the expression, the path of each of its "components".

Obviously, this leads to problems when dealing with data-structures like lists, where the

value of an expression can have an unbounded number of components. Thus, we have to

restrict the analysis to work on programs having tuples of some maximum "depth". We

treat data structures like lists and trees by desugaring them using side-effects and using the

results of the next section to make conservative approximations.

The idea is the following: a value is now a tuple - one standing for the top level value,

and the other standing for the "components" of the value. A path (p') in this framework

is of the form p' = (p, ((1,p),..., (n,p'))), where p is a path as defined in chapter 3. Here

p corresponds to the path of the top level value, and pi corresponds to the path of the i t
h

component of the value. For simple data types like integers, p' will be of the form (p, ())

reflecting the fact that such values do not have any components associated with them. The

new abstraction equations which are different from the path equations for simple data types

are given below:

Ak[+] = As.{(x: y, ())I((x,xs), (y, ys)) E s}

Akjmktuplen] = As{(,((1,x1),...,(n,x)))l(x *...)

Ak[selecti = As.{((i, (b, bs)) E as) - (a : b, bs), (p, ())I(a, as) E s}

Asc] abve = {((,))}

Aif se then b1 else b2] abve aenv =

let (x, xs) As[se] abve

((yl, ysl),..., (yn, ySn)) E Ab[bl] abve aenv

((Z1, ZS1),..., (Zn, ZSn)) E Abb2] abve aenv

98

in {((x : yl, ys 1), ,(x y** , YSn)), ((x : z1, zs)), (x Z, ZSn))).

Discussion:

1. The equation for + is similar to the equation for + in the path semantics without

tuples. Along with the path for the value, it returns the "empty" component set. The

rule for constants is similar.

2. The mktuplen operator returns an empty path as a top level value reflecting the

non-strict behavior of the tuple. None of its components need to be defined for the

tuple to be defined. It also returns a component set containing the various components

of the tuple.

3. The equation for select returns the i th component if it is defined (i.e., there is an

element of the form (i, b') in the component set). Otherwise, it returns Ip. The top

level path also includes the top level path of the argument; a tuple needs to be defined

for selecting a component out of it.

4. The rule for if chooses the appropriate components (depending on the value of the

predicate), along with the top level values of the result.

5.2.2 Partitioning with data-structures

First, we need to produce paths for an expression of a program which capture the behavior

of the expressions. This is similar to the method used for simple data types. The path of

an expression e with respect to a program pr (P(e)) is A[ed [x -p {7}] A4p~r]. We use x

to denote the path ([x], ((1, x.),..., (n, .-))), for some n where x.i is defined similarly.

As our data structures have finite width (n is finite at each "level") and finite depth, this

representation is finite. Using this notation the paths for a few expressions are given below:

P(mk_tuple 2(x,y)) = {(, ((1,X), (2,)))}

P(+(x,y)) = {([x, y],))

P(selectl(a)) = {([a,a.l], ((1,a.l.l),..., (n,a.l.n)))}

Note that the paths for expressions that do not use the data-structure operations will be

identical to the paths defined in earlier chapters.

99

Given a block b we transform it to another block b' containing only top level paths,

making sure that all variables present in b are present in b'. Then, we can apply the AB

algorithm to partition block b', and convert these partitions to a partitioning of b. The

intuition behind this transformation is that when we put a variable in a partition, we

"wait" for only the top level value of that variable. Thus, we can partition using only top

level paths of variables. One thing the transformation should do is to identify all variables

which are being returned as part of a data structure. In the transformed block b' these will

be explicitly returned by b'. The transformation algorithm is defined below:

Algorithm D

Given a block b:

1. Transform b to a block bp such that every variable (except those variables defined by

an N-statement) is associated with a single path. This is very similar to the N-block

transformation (definition 4.10).

2. Each x = p' (a path statement) in b is replaced in b' by the statements generated by

the following (recursive) procedure.

Statements(x,) = {(x =)

Statements(x, ([p],((1,p'),..., (n,pt)))) = {(x = p)} Statements(x.i,pi)
1<i<n

3. (Determine "reachable" variables) If bN returns (tl,..., tm) then R = {tl, ... ,tn}

Apply the following rules to determine all reachable variables:

(a) If x E R then x.a E R.

(b) If x.&. E R and x.a = y is a statement in b', then y./ E R.

(c) If there is a statement (Yl, ... , Yn) = {(X1 1, ... , Xln), . ..,(Xml ... xmn)} in b'

and yi E R, then for all 1 < j < m, xji E R.

Replace variables by [x] for each x E b'. b' returns (tl,...,t, rl,..., rk) where

R= {rl, , rk}.-

4. Partition b' using algorithms AB and C.

The various steps of algorithm D are explained below:

100

1. The first part replaces statements like x = {Pl,...,pn} with n variables computing

each path individually and an N-statement selecting a single value out of n values.

This easily generalizes to a statement computing multiple values.

2. The second step brings all paths to the top level by creating new variables which stand

for "components".

3. The third part traces through data structures and N-statements to find out which

variables are actually being returned by the block (through some data structure).

Consider example 5.3. The block path statements in the block b' are (assuming that tuples

have at most 2 components):

t = [
t.1 = a

t.2 = a

tl = [t,t.1]

tl.1 = t.1.1

tl.2 = t.1.2

t2 = [t,t.2]

t2.1 = t.2.1

t2.2 = t.2.2

Observe that algorithm AB will now put tl and t2 in the same thread, as their dependence

on a has been made explicit via the variables t.1 and t.2.

Consider the following example:

g(a,b) =
{t = a + b;
t2 = mk_tuple2(a,b);

in
(tl,t2)}

In this example, it is not safe to put a and b in the same thread as they are returned

using the tuple t2. This shows up in algorithm D as follows. Block b' is:

tl = [a+b]

101

t2

t2.1

t2.2

=

=- a

=b

Now, as t2 is reachable, so are t2.1 and t2.2. This implies that a and b are also reachable.

Hence, block b' returns (tl, t2, a, b) ensuring that a and b are put in different threads.

5.3 Side Effects

We do not attempt to propagate dependence information through side effects. However,

we give path equations which are still "safe" in the presence of side effects - though they

do not provide additional information. The modifications are very similar to the way DD

handles side affects by being conservative about dependence information it computes in the

presence of side effects. The approximations are achieved by using T. This stands for an

"over-defined" variable, such that the B set of T (B(T)) is empty always.

In the new set of equations, the meaning of an expression is a pair consisting of the

usual set of paths and a set of "stores" - which is the paths of all variables stored anywhere

in the expression. The relevant semantic equations are given below:

Ak[Iallocn] = ({(0, {(i, T)11 < i < n)}, {}))

Ab[{I{(Yil, ,Yim) = ei}* {storek(uj, wj)}* in (se, se2,..., sen)}] abve aenv =

letrec newabve = [yij X ((ARleid (newabve.abve) aenv) . 1) $ j]

Sri = (A4[ei] (newabve.abve) aenv) $ 2

newabve' = [Yij F-- {pij}], such that pij E newabve[yij and

pij E ((A[eiD newabve' aenv) 1) 4 j
(uj, usj) = newabve'Tujj

(vj, vsj) = newabve'vj

srj = (uj : v3, vsj)

in (A,sel] newabve' x ... x AAssenD newabve'), (Ui Sri Uj{srj})

The equation for I_alloc returns an empty path for the top level path and a component

set where every component is T. This models the fact that we do not know (in general) at

compile time what values could be stored in the tuple. The equation for a block "collects"

102

all the stores in the block as well as the stores in the subexpressions and returns these stores

along with the paths for the block.

We have remarked before that we can handle data structures like lists etc. using side

effects. This is easily achieved by replacing a cons operator (which allocates a list element)

into an I_alloc operator and a sequence of stores. This is similar to the way a cons is

handled in the operational semantics of P-TAC [4].

To deal with operators like head and tail which select one of the two components

present in a list element, we use the following equation

Ak head] = As.{(a : T, {(1, T), (2, T)})(a, as) E s}

As we have not retained information about the various components of a list, we conserva-

tively return T.

The partitioning algorithm needs to be modified slightly; In addition to the propagation

of backward propagation of labels to compute A sets, we also do the following: each "store"

in the block is associated a new label, and is propagated to each variable in the path

corresponding to the store. Essentially, we are dealing with stores by considering them as

additional "outputs" of the block. The labels generated by these "stores" have exactly the

same structure and behavior as labels generated by outputs.

5.4 Summary

In this chapter, we have extended the basic algorithm in three directions:

1. Make use of context information during partitioning: Intuitively, we propagate infor-

mation into function bodies about arguments or results which can be put together.

For recursive functions, we have to iterate before we can get a safe approximation to

the contexts in which the function can be called.

2. Handling simple data structures: This extension captures dependence through data

structures in paths and uses them to do partitioning.

3. Handling side effects: This is just to ensure safety in presence of side effects, it does

not generate new dependence information.

103

Chapter 6

Conclusion

In this thesis, we have presented a partitioning algorithm for a first order non-strict lan-

guage. Our algorithm improves the previous algorithms in several directions: we can handle

recursion, produce better partitions, and partially handle data structures. Our algorithm

uses paths to summarize dependence information and uses it to do partitioning. One other

advantage of our algorithms is that label sets do not grow with the problem size (assuming

that the number of arguments to a function is bounded by a constant). This is in contrast

with previous algorithms, where the label sets grew with the problem size.

Our proof technique to prove correctness of these algorithms is based on a two-stage

approach. We formulate correctness criteria based on the structure of the program, which

yields to effective and efficient algorithms. We also prove these criteria are valid with respect

to the operational and denotational semantics of the language.

6.1 Further Research

There remain many interesting avenues to explore in this field.

6.1.1 Implementation

We have only presented algorithms in our thesis. The next step would be to implement the

algorithms and compare them with previous partitioning algorithms. This will shed light

on the relative costs of implementing various features of a non-strict language.

104

6.1.2 Higher Order Functions

Our analysis makes conservative approximations when encountered with a higher order

functions. An analysis which handles higher order functions efficiently would greatly benefit

programs which uses such functions.

6.1.3 Recursive Data Types

In strictness analysis, there have been various suggestions on how to deal with data struc-

tures like lists, trees etc. These work by approximating the information represented - or in

technical terms, compressing the abstract domain safely. Consider the following functions

defined on lists (written in Id).

def nil? nil = true I
nil? _ = false;

def length nil = 0

length (x:xs) = 1 + length xs;

def sum nil = 0
sum (x:xs) = x + sum xs;

Strictness analysis on lists yields the following information about a function which uses

lists.

1. The function is not strict in the list.

2. The function is strict in the top-level value of the list. An example of such a function

is nil?.

3. The function is strict in all the tails of the list. For example, the function length

which returns the length of a list evaluates all the "tails" of the list.

4. The function is strict in all the heads and tails of the list. The function sum which

sums up all the elements present in a list exhibits this property.

it is open whether such information can be use effectively in our partitioning algorithms.

6.1.4 Subscript Analysis

Our partitioning algorithm can be extended to give safe partitions on programs using arrays

by treating them as we treat side effect operations. However, we conjecture that much better

results can be obtained by using subscript analysis to capture information about how an

array is computed and how it is used.

105

6.1.5 Efficiency or Accuracy

In this thesis, we have tried to retain as much dependence information as possible. It might

turn out that it is too expensive (at compile time) to retain all that information. It would

then be worthwhile to trade off the accuracy of our algorithms to gain more efficiency.

106

Bibliography

[1] S. Abramsky. Strictness Analysis and Polymorphic Invariance. In Programs as Data
Objects, LNCS 217. 1985.

[2] S. Abramsky and C. L. Hankin (eds). Abstract Interpretation of Declarative Languages.
Ellis-Horwood, 1987.

[3] B. S. Ang, Arvind, and Derek Chiou. StarT the Next Generation: Integrating Global
Caches and Dataflow Architecture. CSG Memo, Laboratory for Computer Science,
MIT, Cambridge, MA. Feb 1994.

[4] Z. Ariola and Arvind, P-TAC: A parallel intermediate language. In FPCA '89, pages
230-242, ACM, Sep 1989.

[5] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel
computing. In Graph Reduction, vol 279 of LNCS, pages 336-369, Springer-Verlag, Oct
1986.

[6] G. Baraki. A note on Abstract Interpretation of Polymorphic Functions. In FPCA '91
(LNCS 513), pages 367-378. 1991.

[7] H. Barendregt. The Lambda Calculus: Its Sytax and Semantics. North-Holland, Ams-
terdam, 1984.

[8] P. S. Barth, R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict,
functional language with state. In FPCA '91, vol 523 of LNCS, pages 538-568, Springer-
Verlag, Aug 1991.

[9] A. Bloss. Path Analysis and the Optimization of Non-strict Functional Languages. PhD
Thesis, Department of Computer Science, Yale University, May 1989.

[10] G. L. Burn, C. L. Hankin, and S. Abramsky. Strictness Analysis for Higher-order
Functions. Science of Computer Programming, 7, 1986.

[11] C. Clack and S. L. Peyton Jones. Strictness Analysis - a practical approach. In FPCA
'85, LNCS 201. Springer-Verlag. Sep 1985.

[12] T. H. Cormen, C. E. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press.
Cambridge, MA. 1990.

[13] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain
parallelism with minimal hardware support: A compiler-controlled thread abstract
machine. In 4th ASPLOS, pages 164-175. ACM, Apr 1991.

107

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, 1979.

[15] P. Henderson. Functional Programming: Application and Implementation. Prentice-
hall, Englewood Cliffs NJ, 1980.

[16] J. E. Hoch, D. M. Davenport, V. G. Grafe, and K. M. Steele, Compile-time partitioning
of a non-strict language into sequential threads, In Proc. 3rd Symp. on Par. and Dist.
Processing, IEEE, Dec 1991.

[17] P. Hudak and P. Wadler (eds). Report on the programming language Haskell, a non-
strict purely functional language (Version 1.0). Technical Report YALEU/DCS/RR777,
Yale University Department of Computer Science, New Haven, CT, Apr 1990.

[18] P. Hudak and J. Young. Higher-order strictness analysis for the untyped lambda calcu-
lus. In 12th ACM Symposium on Principles of Programming Languages, pages 97-109,
Jan 1986.

[19] R. J. M. Hughes. Backwards analysis of functional programs. Research Report
CSC/87/R3, University of Glasgow, Mar 1987.

[20] R. J. M. Hughes. Abstract Interpretation of First-Order Polymorphic Functions. Pro-
ceedings of the 1988 Glasgow Workshop on Functional Programming, Research Report
89/R4, University of Glasgow, 1989.

[21] R. A. Ianucci. Parallel Machines: Parallel Machine Languages. Kluwer Academic Pub-
lishers, Boston, 1990.

[22] T. Johnsson. Efficient compilation of lazy evaluation. ACM SIGPLAN Notices,
19(6):58-69, Jun 1984.

[23] T. Johnsson. Lambda Lifting. In FPCA '85, LNCS 201, pages 119-159, Berlin, October
1986. Springer-Verlag.

[24] J. Klop. Term Rewriting Systems. Course Notes, Summer course organized by Corrado
Boehm, Ustica, Italy, Sep 1985.

[25] T. Kuo and P. Mishra. Strictness Analysis: A New Perspective based on Type Inference.
FPCA '89, pages 260-272. 1989.

[26] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value.
In International Symposium on Programming (LNCS 83), pages 269-281, Berlin, Apr
1980. Springer-Verlag.

[27] R. S. Nikhil. Id version 90.0 reference manual. CSG Memo 284-1, MIT LCS, Cambridge
MA, Sep 1990.

[28] R. S. Nikhil, G. M. Papadpoulos, and Arvind. *T: A multithreaded massively parallel
architecture. In Proc. 19th Ann. Int. Symp. on Comp. Arch. IEEE, May 1992.

[29] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit token store architecture.
In Proc. 17th Ann. Int. Symp. on Comp. Arch., pages 82-91. IEEE, 1990.

108

[30] G. M. Papadopoulos and K. R. Traub. Multithreading: A revisionist view of dataflow
architectures. In Proc. 18th An.. Int. Symp. on Comp. Arch., pages 342-351. IEEE,
May 1991.

[31] S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. In Journal of Functional Programming, 2 (2):127-202,
Apr 1992.

[32] J. Rees and W. Clinger. Revised3 report on the algorithmic languages scheme. Tech.
Report. MIT-AI Lab, Cambridge, MA, 1986.

[33] K. R. Traub. A compiler for the MIT tagged-token dataflow architecture. TR-370, MIT
LCS, Cambridge, MA, Aug 1986.

[34] K. R. Traub. Compilation as Partitioning: A new approach to compiling non-strict
functional languages. In FPCA '89, pages 75-88, ACM, Sep 1989.

[35] K. R. Traub. Implementation of Non-strict Functional Programming Languages. MIT
Press, Cambridge MA, 1991.

[36] K. R. Traub. Multi-thread code generation for dataflow architectures from non-strict
programs. In FPCA '91, volume 523 of LNCS, pages 73-101, Springer-Verlag, Aug
1991.

[37] K. R. Traub, D. E. Culler, and K. E. Schauser. Global Analysis for Partitioning Non-
Strict Programs into Sequential Threads. In Proceedings of ACM-LFP, San Francisco,
Jun 1992.

[38] K. E. Schauser, D. E. Culler, and T. von Eicken. Compiler-controlled multithreading for
lenient parallel languages. In FPCA '91, volume 523 of LNCS, pages 73-101, Springer-
Verlag, Aug 1991.

[39] D. A. Schmidt. Denotational Semantics - A methodology for Language Development.
Allyn and Bacon, Inc., Boston, MA, 1986.

[40] Julian Seward. Polymorphic Strictness Analysis using Frontiers. In FPCA '93.

[41] D. A. Turner. A new implementation technique for applicative languages. Software -
Practice and Experience, 9:31-49. 1979.

[42] J. Vuillemin. Correct and optimal implementation of recursion in a simple programming
language. Journal of Computer and System Sciences, 9(3):332-354, Dec 1974.

[43] P. Wadler. Strictness analysis on Non-Flat Domains by Abstract Interpretation. In [2].

[44] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In FPCA '87, LNCS
247, pages 386-407, Berlin, Sep 1987. Springer-Verlag.

[45] C. P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus. PhD thesis, Ox-
ford University, 1971.

[46] Y. Zhou. An Id Compiler in Id. Internal Memo. Computation Structures Group, MIT-
LCS. Cambridge, MA. Sep 1992.

109

