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Abstract

SUPERPARAMAGNETIC CONTRAST AGENTS FOR
MAGNETIC RESONANCE IMAGING

Tueng Shen

Submitted to the Harvard University-Massachusetts Institute of Technology
Division of Health Sciences and Technology

on April 29, 1994 in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Medical Engineering/Medical Physics

Abstract
Magnetic resonance imaging (MRI) is a non-invasive, sensitive diagnostic tool with

high spatial resolution that provides detailed anatomic information. However, the
diagnostic accuracy can be limited by the lack of inherent difference between normal and
pathologic tissues. Under these circumstances, it is necessary to administer MR contrast
agents which selectively alter the tissue characteristics by changing the magnetic
environment of the region of interest. Currently, the only MR contrast agent approved for
clinical use is gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA), a paramagnetic
agent which non-specifically enhances the longitudinal relaxation rate of protons in tissues.
However, Gd-DTPA requires high tissue concentrations to be detectable by MR, making it
less suitable for target-specific MRI.

Superparamagnetic iron oxides have much higher magnetic moments, and therefore
require a lower dose for similar contrast enhancement. A prototype of a superparamagnetic
monocrystalline iron oxide nanocompound (MION) has been synthesized and characterized
as a universal magnetic label for target-specific MR imaging. The physicochemical
properties of MION were characterized using high resolution transmission electron
microscopy (HRTEM), X-ray diffraction, column chromatography, spectrophotometry,
Mdssbauer spectroscopy, and relaxometry. MION fulfills the criteria for a targetable agent
with its small size (size of central iron oxide containing core 4.6 + 1.2 nm) allowing
passage through the capillary endothelium while still retaining superparamagnetic behavior.
Further studies of pharmacological properties and in vivo MR imaging in animal models
demonstrated that MION can be delivered to a variety of targets, including human receptor
systems, antigenic sites, and intracellular structures. This approach opens new avenues to
in vivo MR imaging in both medicine and research.

Thesis Advisors: Thomas J. Brady, M.D.
Ralph Weissleder, M.D., Ph.D.

Thesis Committee: William H. Orme-Johnson, Ph.D.
Robert S. Langer, Sc.D.
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Introduction

Chapter I

Introduction

The purpose of this chapter is to put this thesis research in the broader perspective of the

rapidly expanding field of nuclear magnetic resonance (NMR or MR) in medicine. Basic

principles of the NMR phenomenon are briefly reviewed in this chapter. Emphasis is

placed on the parameters most relevant to this thesis research. Several important building

blocks of MR imaging techniques such as radio frequency (RF) pulses and common

imaging pulse sequences are briefly described. Classification of MR contrast agents and

their relaxation mechanisms is then introduced to derive important prerequisites of useful

superparamagnetic contrast agents.

1.1 Historic Aspects of NMR

In 1939 Rabi and his co-workers conducted the following experiment: A beam of hydrogen

molecules was sent, first through an inhomogeneous magnetic field, and then through a

homogeneous one in which radio frequency electromagnetic energy was applied to the

molecules. At a sharply-defined frequency, this energy was absorbed by the molecular

beam. Consequently the beam underwent a small deflection. This was the first

observation of nuclear magnetic resonance (NMR), but it was performed under very high

vacuum (Rabi, Millman et al. 1939). It was not until 1946, that Purcell, Torrey and Pound

at Harvard University, and Bloch, Hansen and Packard at Stanford University,

simultaneously demonstrated the phenomenon of NMR in bulk materials, such as paraffin

wax and water, in the liquid state (Bloch, Hansen et al. 1946; Purcell, Torrey et al. 1946).

Both groups received the Nobel Prize in 1952 for this discovery. Shortly after Purcell and
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Bloch discovered the phenomenon of NMR in solids and liquids, it was found that the

precise resonance frequency of a nucleus depends upon the state of its chemical

environment (Knight 1949; Dickinson 1950; Lindstr6m 1950; Proctor and Yu 1950). In

1951, separate resonance lines were observed for chemically different protons (Arnold,

Dharmatti et al. 1951) in the same molecule. Since then, NMR has become increasingly

important in all branches of chemistry. For example, the combination of proton (1H) and

carbon-13 (13C) NMR spectroscopy provides an important probe which is widely exploited

by organic chemists for solving structural problems of organic molecules. The NMR

technique has also been applied to the studies of complex molecules with biological

significance, providing, for example, structural information on proteins and nucleic acids.

In 1971, the potential of NMR to discriminate between different tissues was recognized by

Damadian (Damadian 1971). In 1973, Lauterbur successfully produced the first MR image

from a conventional NMR spectrometer with addition of linear magnetic field gradients to

incorporate the spatial information of protons for magnetic resonance imaging (MRI;

Lauterbur 1973). The potential of such a technique for diagnostic medicine was

immediately realized. During the past two decades, facilitated by further improvements in

instrumentation (superconducting magnets and faster computers) and the employment of

imaging techniques (back-projection or two-dimensional Fourier image reconstruction

(Housefield and Ambrose 1973; Kumar, Welti et al. 1975)), MR imaging and spectroscopy

techniques have become available for non-invasive clinical studies of human anatomy and

metabolism. For example, in United States alone, the number of operational MR imaging

facilities increased from 3 in 1981 to more than 1500 in 1992. MR imaging techniques

have the advantage over other imaging techniques, such as Computed Tomography (CT),

:o provide high soft tissue contrast while not employing ionizing radiation (Fisher, Wall et

al. 1985). For these reasons, MRI has become a routine clinical tool for the diagnosis of

many pathological conditions and for evaluating metabolic functions.
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:1.2 Magnetic Resonance Imaging (MRI)

Fundamental principles

MRI makes uses of a unique physical property of nuclei with odd mass number which

have the property of spin (figure 1.1). The spin angular momentum can be expressed as in

equation 1.1:

h
]N - YN 2 I (.)

where -N is the magnetic moment of the nucleus, and YN is the magnetogyric ratio of the

nucleus, which is a unique constant for each type of nucleus (radians-sec-l-Gauss- 1), h is

Plank's constant, and I is the nuclear spin quantum number of the nucleus.

A N

.Dr CQiI'IU ql al Gi I111

Figure 1.1 Nuclei with odd mass number have the property of spin with

the spin angular momentum MN expressed as: MN = YN 2 

For example, protons (1H) have a nuclear spin quantum number =1/2, yN=2 .67 5 3 x 104

Iadians-sec-l-Gauss-1 (or 42.58 MHz-Tesla-1). Only the nuclei with spin can be detected

by NMR techniques. Table 1.1 summarizes some biologically relevant MR detectable
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isotopes, their nuclear spin quantum numbers and their magnetogyric ratios. In the

following discussion, the proton (1H) will be used as an example because it is the most

abundant nucleus in the body, most commonly used in MRI and therefore most relevant to

this thesis.

In the absence of a magnetic field, the magnetic moments of protons in the body are

oriented randomly. However, in the presence of a constant magnetic field, (Bo with

direction z), the nuclear spin states allowed (Em) are quantized (equation 1.2), and the

quantum number mI can only take up a set of discrete values from +I, (I- 1), ...-I.

E=_ h m Bm -Y 2 rm B 0 (1.2)

In the case of protons, with I = 1/2, ml can only take values of + 1/2 and -1/2. Therefore,

only two nuclear spin directions [Figure 1.2], representing two energy levels that the

protons occupy, are allowed. The lower energy level (m = +1/2) corresponds to the

situation that the nuclear moment aligns parallel to the steady field, and the higher energy

level (m = -1/2) represents the anti-parallel situation.

.At equilibrium, the protons are distributed over the two possible energy states according to

the Boltzmann distribution law:

N ,
2 e-AE / kT

N ,+2 (1.3)

where AE is the energy difference between the two levels, k is Boltzmann's constant, and T

is temperature in Kelvin. When an electromagnetic field perpendicular to the constant field

Bo is applied to a system with a frequency v satisfying equation 1.4, absorption of energy

occurs in the spin system and transitions take place between the two nuclear spin levels.
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h
AE = v h= ' 2 c Bo (1.4)

This frequency is defined as resonance frequency of the nucleus. In the case of protons

again, the resonance frequency at 1.5 Tesla (common clinical field strength) is 64 MHz.

E
t Bo

Bo = 0

m= -1/2

yBoh/2it

m= +1/2

Bo >0
Figure 1.2 A schematic representation of energy levels of a spin system

in the absence of the magnetic field (BO=O) and in the presence of a steady

field (B0>O). In the case of proton (1=1/2), there are only two allowed

nuclear spin directions in the presence of a magnetic field. The lower

energy level (m = +1/2) corresponds to the nuclear moment aligns parallel to

the steady field, and the higher energy level (m = -1/2) represents the anti-

parallel situation. A typical magnetic field strength of a clinical MR imaging

facility is 1.5 Tesla, corresponding to a resonance frequency of 64 MHz for

protons.
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Table 1.1 Common biologically relevant NMR-detectable isotopes

Elements

Hydrogen ( 1H)

Lithium (7 Li)

Carbon ( 13 C)

Nitrogen ( 15N)

Oxygen (170)

Fluorine ( 19 F)

Sodium (23 Na)

Magnesium (25Mg)

Phosphorus (3 1 p)

Sulphur (3 3 S)

Chlorine (3 5 C1)

Chlorine (3 7 C1)

Potassium (39 K)

Potassium (4 1K)

Calcium (4 3 Ca)

Nuclear Spin

Quantum number (I)

1/2

3/2

1/2

1/2

5/2

1/2

3/2

5/2

1/2

3/2

3/2

3/2

3/2

3/2

7/2

% Natural

Abundance

99.98

92.58

1.11

0.36

0.04

100.00

100.00

10.13

100.00

0.74

75.53

24.47

93.10

6.88

0.15

NMR Frequency

(MHz/Tesla)

42.57

16.55

10.71

4.31

5.77

40.05

11.26

2.61

17.23

3.27

4.17

3.47

1.99

1.09

2.86
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RF Pulses

The energy which causes the transition of protons between the nuclear spin states can be

applied in a package of radio frequency oscillations, called a radio frequency (RF) pulse.

Macroscopically, the vector sum of the magnetic dipole moments of the nuclear spin system

at equilibrium in the presence of Bo can be represented as M [Figure 1.3a]. Various types

of RF pulses have been used in MR imaging, and the following are most common ones:

An "excitation pulse" converts the equilibrium magnetization (M) into the transverse plane

(XY). It is therefore often called a 90° pulse (Figure 1.3b).

A pulse which converts M into -M is a 180° pulse, also called an inversion pulse (Figure

1.3c). This pulse is employed at the beginning of an inversion recovery sequence which is

commonly used to measure T1 relaxation times.

Another type of 180° pulse is employed to convert the precessing magnetization vectors of

the XY plane to their mirror-image position with respect to the pulse axis (Figure 1.3d). If

this pulse is applied at time after a 90° pulse, the magnetization vectors of the spins

precessing at different frequencies will start to precess in the opposite direction. Thus, at

time 2x, the magnetization vectors of the spins will refocus along the original magnetization

vector, generating an echo. This pulse is often referred to as a refocusing pulse, commonly

used in spin-echo experiments.
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r,,,,,,,,,,,,,,,,,,,Irlll" "
echo
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(d)

Figure 1.3 Radio Frequency Pulses: (a) the equilibrium magnetization

(M) (b) an "excitation pulse", or a 90° pulse converts M into the transverse

plane (XY) (c) an inversion pulse, or a 180° pulse, converts M into -M

which is employed at the beginning of an inversion recovery sequence to

measure T1 relaxation times (d) a refocusing pulse (another type of 180°

pulse) converts the precessing magnetization vectors of the XY plane to

their mirror-image position with respect to the pulse axis. This pulse is

often used generating an echo in spin-echo experiments.
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Spin-Lattice Relaxation (T1)

When a perturbation in the form of a RF pulse is applied, M [Figure 1.4.] tips towards the

xy plane while precessing around the steady external magnetic field Bo, When this

perturbation is terminated, the nuclear spin system will "relax" to the equilibrium by

dissipating the excess energy to its surroundings via thermal exchange. This process is

called spin-lattice relaxation and the equilibrium condition is reached by a first order

process characterized by a time constant, T1, the spin-lattice relaxation time. If a 180° RF

pulse is applied, the recovery of Mz can be described as in equation 1.5:

t

M z( t ) Mz( O ) [ - 2 e '] 1]()=M(O)1-Z r(1.5)

An inversion recovery pulse sequence (180 - c -90 °) is commonly used to measure the T 1

relaxation time: an inversion pulse (180°) is applied to convert Mz to -Mz, and the

magnetization is allowed to recover. At a delay time , a 90° pulse is employed. The

precession of the magnetic moment around Bo (flux of M) then induces an electric potential

in the radio frequency coil, which can be measured. The experiment is repeated at different

X values to follow the recovery process, as schematically represented in Figure 1.5.

Spin-Spin Relaxation (T2)

When this RF pulse is applied, the moments in the xy plane begin to lose their precessing

phase coherence, due to the natural processes that cause nuclei to exchange energy with

each other. As a result of this process, called spin-spin relaxation, the net Mxy

magnetization decays to zero exponentially with time (equation 1.6), characterized by the

time constant T2 which is often measured by a CPMG sequence as illustrated in figure 1.6.
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t
T

2

(1.6)

Z

m m m - mI

X

q-

Mz
… … _ M

Y (90 °)

Mxy

- (180°)

Figure 1.4 Relaxation process of the vector sum of the magnetic

moment of the spin system, M, after being tipped away from the direction

of the main magnetic field (Z), precesses about Z axis. Mz will relax back

to MO with a time constant characterized as T1 (Spin-lattice relaxation time)
T

which can be calculated from: M t ) = M ( ) [ -e ] Mxy on the

other hand, will diminish to zero at the time constant T2 (spin-spin

relaxation time) which can be calculated from: Mxr( t ) =M ,,( O ) e 2
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Mz(o)

0

-Mz(o)

Figure 1.5 Measurement of T1. The inversion recovery pulse sequence

is routinely used to measure T1 relaxation times. An inversion pulse (180°)

is applied to convert Mz to -Mz, and the magnetization is allowed to recover.

At the time ci , a 90° pulse is employed to detect a electric signal, which can

be converted to a magnetization. The recovery process is an exponential

function expressed in T1 and xi as: M ( t ) = Mz ( O) [ -2 e ]
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Mxy

0

Figure 1.6 Measurement of T2 (CPMG pulse sequence). The FID (Free

Induction Decay) following the 90° RF pulse and the spin echo generated by

a train of 180° refocusing pulses.

The peaks of the FID decay exponentially to zero with a time constant T2:

T
Mxy( t) =Mx(O ) e 2
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Image Contrast

The tissue contrast to noise ratio (CNR, equation 1.7) appearing on an MR image forms the

basis for medical diagnosis. The CNR can be altered by the choice of specific pulse

sequences and the associated timing parameters.

CNR = (SI - SI2) (1.7)
noise

SI1 and SI2 represent the signal intensities of two adjacent regions on an MR image. The

magnitude of the detected signal depends upon the spin density (number of protons

available), T1 and T2 characteristics of tissues, chemical shift, temperature, and flow

phenomena. Among these parameters, the relaxation characteristics are most influential to

the signal intensity. Therefore the tissue contrast of an MR image can be T1 or T2

weighted. In the spin-echo imaging sequence (the most common pulse sequence), for

example, the type of image weighting can be manipulated by the repetition time (TR) and

the echo time (TE). Figure 1.7 schematically illustrates the possibilities of generating

different contrast from two types of tissues with different relaxation characteristics. A 90°

excitation pulse is followed by a 180° refocusing pulse, generating an echo at TE. The

signal intensity of the image can be approximated by equation 1.8:

T T
R E(-7") (--)

SI =Mz(O)[I - e ' ] e 2 (1.8)

where SI is signal intensity on an MR image, TR is the repetition time, and TE is the echo

time in a pulse sequence. TR determines the extent of T1 relaxation. The initial 900

excitation pulse completely tips the longitudinal magnetization into the transverse plane, and

a time interval (TR) is allowed to elapse between excitations, during which time the spins

undergo T1 relaxation. A long TR (>> 5 T1) allows enough time to for a complete T1
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relaxation. Similarly, TE determines the extent of T2 relaxation. The longer the time

interval TE the greater the extent of T2 relaxation. Spin-echo images acquired with short

TR (TR - T1) and a short TE (TE < T2) are Tl-weighted. With shorter TR values, tissues

such as fat which have short T1 values appear bright , whereas tissues such as tumors and

edema, that have longer T1 values, and therefore take more time to relax towards

equilibrium, appear dark. The short TE value diminishes the importance of tissue T2

differences. On the other hand, images acquired with long TR and long TE (TE T 2) are

T2-weighted. Therefore, tissues with long T2, such as tumors, edema, and cysts, appear

bright, whereas tissues that have short T2, such as muscle and liver, appear dark.

In summary, the MR image contrast is a function of several parameters including T1 and T 2

relaxation times, proton density, chemical shift, temperature, magnetic susceptibility, and

motion. Image contrast between tissues with different physicochemical properties is

determined by the different image signal intensities each tissue produces in response to TR

and TE in the case of a spin echo pulse sequence. This in return is determined by Mz(0),

directly corresponding to the proton density, T1 and T2 relaxation times.

The T1 and T2 relaxation times are therefore crucial parameters in MR imaging

experiments. With conventional MR imaging techniques, however, the relaxation

characteristics of the normal and pathological conditions are often very small. This makes

the accurate diagnosis based on the contrast from the MR image difficult. For example,

due to the lack of inherent difference between tumor and normal tissues, up to 20% of

mrnetastases of the liver can escape detection (Gilbert and Kagan 1976). Therefore it is

important to increase the contrast between the normal tissue and pathological conditions on

an MR image to improve the diagnostic accuracy. Since the variation of relaxation

characteristics has a profound effect on the tissue contrast, the selective enhancement of

tissue contrast can be achieved by the administration of magnetopharmaceuticals, i.e. MR
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contrast agents, which change the local environment of protons and thereby change their

relaxation characteristics.

SI

T1 T2

long T1i
I -,

short T2

I I long T2

TR TE time

Figure 1.7 Synthesis of Image contrast from a spin echo pulse sequence

Schematic illustration of image contrast synthesis from two types of tissues

with different relaxation characteristics. A 90o excitation pulse is followed

by a 180' refocusing pulse, generating an echo at TE. TR determines the

extent of T relaxation and TE determines the extent of T relaxation.

Both T11 and T2 can determine the final signal intensity on an MR image. As

seen from the diagram, manipulating TR results n SI changes based on Tj

characteristics while varying TE brings changes in SI based on T2

characteristics. (M O)l ' ·

II
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:1.3 MR Contrast Agents

The purpose of magnetopharmaceuticals (MR contrast agents) is to selectively enhance the

image contrast of the region of interest (normal or pathological tissues). This can be done

by changing the magnetic environment of the protons, and thus the T1 and T2 relaxation

times, providing measurable difference between normal and pathologic conditions in vivo.

Differently from the conventional CT contrast agents (such as iodine-containing radiograph

contrast agents), the MR contrast agents are not directly "seen" in the MR image. It is their

indirect effects upon the relaxation mechanisms of surrounding protons which can be

visualized as changes in signal intensity on the MR image (Brasch and Bennett 1988).

1.3.1 Relaxivity

The efficiency by which MR agents enhance the proton relaxation rate is defined as

relaxivity:

Ri - AT (1.9)

where Ti represents T1 or T2, M is concentration of the MR contrast agent, and Ri is T1 or

T2 relaxivity. Relaxivities provide quantitative measurements of the effects of contrast

agents on T1 and T2 relaxation times. In a typical relaxivity plot of a conventional contrast

agent, inverse relaxation times are plotted against the concentration of contrast agents. The

slopes of these curves represent the relaxivity and are expressed in (mM-sec)- or

(mmol/L- sec)- 1.

Page -25-



Introduction

.1.3.2 Classification

Based on the magnitude of their R1 and R2, MR contrast agents can be classified as T1- or

T2-dominant (Bydder, Felix et al. 1990). The agents that increase the 1/T2 of proton to

approximately the same extent as l/T1, they are called T1 agents. The substances that

increase l/T 2 of proton to a much greater extent than /T1, are called T2 agents. Using

most conventional pulse sequences, T1 agents (predominantly TI-lowering agents) give

rise to increases in MR signal intensity, therefore they are also called "positive" contrast

agents. On the other hand, T2 agents largely increase l/T2 of tissue, hence lead to

decreases in signal intensity and classified as "negative" contrast agents. Paramagnetic

materials increase /T1 and l/T 2 approximately equally, whereas superparamagnetic agents

predominantly increase 1/T2. Table 1.2 summarize the effect of these two types of agents

on MR signal intensities for a given type of pulse sequence.

Paramagnetic agents include substances with one or more unpaired electrons, such as

molecular nitric oxide, nitrogen dioxide, oxygen, or metal ions which have incompletely

filled d orf orbitals (mostly transition metal ions). Most of the transition metal ions alone

are extremely toxic to the human body, therefore chelation of the these ions with molecules

such as diethylenetriamine-pentaacetic acid (DTPA) has been used to reduce their toxicity.

Currently, the only MR contrast agent which has been approved by the United States

Food and Drug Administration for clinical use is Gd-DTPA, representing the first

generation of MR contrast agents introduced in the 1980s. This paramagnetic complex

enhances predominantly the Ti relaxation rate of protons mainly through inner sphere

relaxation (Lauffer 1987). Gd-DTPA has demonstrated useful enhancement of the MR

image contrast of the central nervous system (Weinmann, Brasch et al. 1984; Hesselink,

Healey et al. 1988; Unger, MacDougall et al. 1989). A typical dosage required for
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effective contrast enhancement using this type of agents is approximately 10-4 M. This

concentration is lower than that of conventional iodinated radiographic contrast media for

which 10-2 M is an effective concentration, but higher than the effective concentration

needed for radiopharmaceuticals (< 10-7 M).

The proton relaxation mechanism in a paramagnetic environment has been described in

detail (Lauffer 1987). Briefly, there are three distinct types of interactions that contribute to

the proton relaxation enhancement. First, when a water molecule binds in the primary

coordination sphere of the metal ion and exchanges with the bulk solvent, the relaxation

mechanism is called inner sphere relaxation. Second, when the water molecule passes the

chelate due to translational diffusion, the relaxation mechanism is termed as outer sphere

relaxation. Finally, the paramagnetic complex, with a large magnetic moment compared to

protons, tumbles in solution at proper frequencies (characterized by a correlation time, c )

which stimulate nuclear relaxation, therefore enhances the T1 relaxation rate of the protons.

Research on superparamagnetic pharmaceuticals, representing a second class of MR

contrast agents, started in 1986. These agents are particles with a much higher magnetic

moment due to electron spin coupling in the crystal lattice, and they can significantly

enhance the proton T2 relaxation rate ("T2-agents"). Superparamagnetic agents include

different types of inorganic iron particles which contain iron in different valency states and

vary in their chemical composition, crystal structure, size and coating.

Superparamagnetic particulates, have a strong effect on the spin-spin (transverse) relaxation

process of the nearby protons. The relaxation mechanism of these agents is a complex

process which has been the topic of several papers, and remains an active area of research.

Different from paramagnetic chelates, the superparamagnetic particulates has much higher

magnetic moment and longer correlation time. The large magnetic moments of these
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particulates in a magnetic field generate local field inhomogeneities. It is thought that as the

protons diffuse through these field inhomogeneities, their larmor frequencies lose

coherence of phase, therefore, causing an increase in transverse relaxation rate of protons.

The high magnetic susceptibility, i.e. the ability to cause strong inhomogeities in the

magnetic field, is desirable for a MR contrast agent because it can significantly reduce the

dosage required for sufficient contrast enhancement, thereby reducing it toxicity.

Table 1.3 summarizes currently available MR contrast agents and their potential

applications(Brasch 1992).

Table 1.2 Classification of MR Contrast Agents

Paramagnetic

Effect on T1

Effect on T2

Effect on signal intensity

'1'

'

Superparamagnetic

14

??

MR pulse sequence T1 weighted sequences T 2 weighted sequences

Examples Gd-DTPA

DTPA= Diethylenetriaminepentaacetic acid

iron oxides
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1.4 Research Objectives

There is a need for the development of magnetopharmaceuticals for receptor, metabolic and

functional MR imaging which requires a magnetic label which can leave the vascular space,

which has a high magnetic susceptibility to enhance contrast at low tissue concentrations

and the ability to be attached readily to carrier molecules for site-specific target delivery.

Superparamegnetic contrast agents have a significantly higher magnetization and a much

lower dosage requirement in vivo. Unfortunately, currently available iron oxides are not

suited for targeting because their large size (0.2-1gtm) results in rapid extraction by

phagocytic cells in liver and spleen.

The overall goal of this thesis project was to synthesize, characterize and evaluate

biocompatible superparamagnetic compounds that can be used in vivo. To assure the

effectiveness of the label for various applications, there are several prerequisites: the

superparamagnetic label had to be biocompatible, non-toxic, with long blood half-life and

be able to escape the rapid recognition of the reticuloendothelial system. In addition, the

Label should be attachable to variety of carrier molecules and be detectable at low

concentrations in vivo. In order to meet these targets, the following research objectives

were developed:

1. Synthesizea variety of stable superparamagnetic label to determine the optimal

magnetic properties ( Chapter 3);

2. Characterize the physical and chemical properties of these agents with respect to

core structure and size, magnetic properties, chemical composition, stability, hydrodynamic

parameters, and relaxation enhancement to protons in aqueous environment (Chapter 4);

3. Determine the in vitro cellular interactions and pharmacological behaviors of

these agents in animal models (Chapter 5);

4. Determine the efficacy of the in vivo contrast enhancement and targetability to
the liver of both unlabeled and labeled agents by MR imaging (Chapter 6).
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Chapter II

Background

The basic principles of MR imaging, the importance of MR contrast agents and their

classifications have been discussed in the previous chapter. The intent of this chapter is to

use the basic physics of magnetism to identify parameters of evaluating magnetic materials.

These parameters will later be used as criteria for selecting MR contrast agents. Previous

methods of synthesis of iron oxide in industry will be summarized.

2.1 Magnetic Materials

The history of the development of magnetic materials is long. According to

Chinese history, a legendary ruler of an ancient kingdom made use of the compass to direct

his victorious battles against barbarian tribesmen before 2600 BC (1982). There is

evidence that lodestone was discovered in Asia Minor as a natural magnet in Magnesia

more than 3500 years ago.

Romans called the stone, which had the power to attract iron and other pieces of

ore, and also to induce a similar power of attraction in iron, "magnes lapis", which means

Magnesian stone, from which the words "Magnet" and "Magnetism" were derived. In the

12tlh century, William Gilbert in De Magnete established that the earth is a large magnet,

and raised magnetism to a field of exact experimental science (Hawkins and Allen 1991).
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2.1.1 Structures and Properties

All substances, whether solid, liquid or gas, display certain magnetic characteristics

at all temperatures: magnetism is one of the basic properties of materials. In order to

characterize the magnetic properties of materials more precisely, several parameters are

used, defined in the following:

When a material is placed in a magnetic field, B, it acquires a dipole moment. The

magnitude of this dipole moment, depends upon the nature of the material, the applied

magnetic field strength, and is proportional to its volume. Therefore, we define the dipole

moment per unit volume induced in the material as magnetization, M. The relation of M to

the applied magnetic field can be expressed as:

M=XB (2.1)

where X is defined as the magnetic susceptibility, the most important magnetic material

property. X depends on the temperature according to:

X C (2.2)
T+ 0

where C and 0 are both characteristic constants of each material. As the applied field

strength is increased for any particular material, the magnetization reaches a constant value,

defined as saturation magnetization, Ms, which is consequently also a material property.

The magnetic properties of an ion or atom are determined by the orientation and number of

its electron spins. For metal oxides (transition metal oxides in particular), the individual

electron spins are so strongly correlated in their motion that spin of an ion is better

characterized by one total spin (atomic spin) than the individual electron spins. The atomic

spins of neighboring ions may also be strongly correlated with each other to form a spin
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sub-lattice. Depending on the magnitude, the orientation and the number of spin

sublattices, the material possesses a characteristic internal magnetic field, as well as

characteristic responses to an applied magnetic field. Regarding the various kinds of

responses of materials to a magnetic field, we observe five basic categories:

1) ferromagnetic, 2) antiferromagnetic, 3) ferrimagnetic, 4) paramagnetic and 5)

diamagnetic. The five main classes of magnetic materials and the criteria by which they are

distinguished from each other are summarized in Table 2.1.

The atomic spin arrangements of various types of magnetic materials are

schematically represented in figure 2.1. In ferromagnetic materials, the atoms with

permanent dipole moments interact with each other to produce a parallel alignment in the

crystal lattice. This generates a large magnetic susceptibility, and therefore strong response

to the applied magnetic field. On the contrary, in antiferromagnetic materials, the dipole

moments interact with each other to produce an anti-parallel alignment in the crystal lattice,

resulting in a complete cancellation of the magnetic moment of the individual dipoles.

Therefore there is no response to a magnetic field from antiferromagnetic materials. Similar

to the antiferromagnetic alignment, ferrimagnetic materials have an anti-parallel atomic

dipole coupling in the crystal lattice. However, the magnitudes of the oppositely aligned

dipole moments are not equal, resulting a net magnetic moment when placed in a magnetic

field. Ferrimagnetic materials therefore have a smaller magnetic susceptibility than

ferromagnetic materials. In the case of paramagnetic materials, the dipoles in the crystal

lattice are randomly oriented and do not interact with each other. When placed in a

magnetic field, the magnetic moment of the material increase slowly in a linear fashion until

saturation magnetization is reached.
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Ferromag netic

Ferrimagnetic

Figure 2.1 Schematics

Antiferromagnetic

Paramagnetic

of spin arrangements in various magnetic

materials: In ferromagnetic materials, the atomic dipoles have a parallel

alignment in the crystal lattice. In antiferromagnetic materials, dipole

moments have an anti-parallel alignment, resulting a complete cancellation

of the magnetic moment of the individual dipoles. Ferrimagnetic materials

also have an anti-parallel atomic dipole coupling in the crystal lattice.

However, the magnitudes of the oppositely aligned dipole moments are not
equal. In the case of paramagnetic materials, the dipoles in the crystal lattice

are randomly oriented and do not interact with each other.
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Superparamagnetism:

In addition to the five main categories of magnetic materials we have discussed

previously, there is a special magnetic phenomenon which shares both properties of

paramagnetic and ferromagnetic materials. It is of particular importance to describe such

phenomenon because iron oxide particles, which were discussed in the previous chapter,

may exhibit superparamagnetic behavior:

Frenkel and Dorfman first predicted in 1930 that a particle of ferrimagnetic (or

ferromagnetic) material could consist of a single magnetic domain below a critical size. It

has been defined that a single domain particles will have a uniform magnetization at any

field strength. In 1949, Nel pointed out that if a single domain particle were small

enough, the thermal fluctuation could cause direction of its magnetization similar to that of

Brownian rotation.

Bean and Livingston, in 1959, observed that the magnetization behavior of single

domain particles (isotropic) in thermodynamic equilibrium at all fields is identical with that

of atomic paramagnetism but that they have an extremely large moment (Bean and

Livingston 1959). This large magnetic moment does not result from the individual atoms,

rather, it comes from thousands (depending upon the particle size) of atoms in the particle

which are ferromagnetically coupled by exchange forces. When a magnetic field is applied

to a suspension of small ferromagnetic particles, they are partially aligned by the field and

partially disordered by the thermal motion, thereby exhibiting an over-all paramagnetism.

These particles can be treated as macromolecules and a particle size can be also calculated

from their response to a magnetic field. This thermal equilibrium behavior was called

superparamagnetism, defined by the following two criteria:
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1). The magnetization curve must show no hysteresis because that is not a thermal

equilibrium property;

2)2. The magnetization curve for an isotropic sample must be temperature dependent to

the extent that curves taken under different temperature conditions would superimpose

when plotted against B/T after correction for the temperature dependence of the

spontaneous magnetization.

2.1.2 Ferrites

Ferrites are complex magnetic oxides that contains the ferric oxide (Fe203) as their

basic magnetic component. The focus of the following discussion will be on this type of

materials. Ferrites are important soft magnetic materials, and have been used in practical

applications for more than half a century. The work of Hilpert in 1909 is generally

accepted to be the first systematic study on the relationship between chemical and magnetic

properties of the various binary iron oxides having the general composition: MOFe203,

where M represents a divalent metal. Six years later, the crystal structure of mineral

magnetite was analyzed by Bragg and Nishikawa independently. Bragg discovered that

other mineral spinels, such as MgAl204 has the same crystal structure as magnetite.

Thereafter, active research extended the knowledge of ferrites to more quantitative

information on their curie temperatures and saturation magnetizations. The ferrites since

then have been used as material for the cores in inductors and transformers. Then the

discovery that polycrystalline ferrites have a rectangular hysteresis loop made it possible to

use ferrites as memory elements, composing some of the most important parts modern

microwave transmission and electronic computers.
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It was not until 1948, however, that Verwey and Heilmann provided the simple

relationship of the saturation magnetization of ferrites and their ion distribution over the

tetrahedral and octahedral sites of the spinel lattice (Verwey and Heilmann 1947).

Subsequently, Neel introduced the concept of partially compensated antiferromagetism

which is later defined as ferrimagnetism. Gorter and Schulkes proved this theory

experimentally by the magnetization versus temperature curve. Neutron diffraction

experiments by Shull, Wollan and Keohler on ferrite single crystals verified the

ferrimagnetic ordering of the spins in Fe304.

The crystallography of ferrites falls in a natural manner into three types: 1) the cubic

ferrites of the spinel type, 2) the cubic ferrites of the garnet type, and 3) the hexagonal

ferrites. The following discussion will focus on the ferrites of spinel structure since it is

the most relevant to this thesis research. The cubic ferrites are also called ferrospinels

because they crystallize in the same crystal structure as the mineral spinel and they derive

their general formula MFe20 4 from that (MgAL204) of spinel. In this formula, M

represents a divalent ion of metal. Besides the divalency, the ionic radius of the metal

should fall between 0.6-1.0 A. Mg, Fe, Co, Ni, Cu, Zn and Cd all satisfy these two

conditions and therefore form various single cubic ferrites. Magnetite which contains one

ferrous ion and two ferric ions in each formula unit is a typical ferrite. The crystal structure

of ferrites is based on a face-centered cubic lattice of the oxygen ion. Each unit cell

contains eight formula units. Therefore there are 32 02- anions, 16 Fe3 + cations and 8

M2+ cations in the unit cell, and the lattice constant is rather large, of the order of 8.5 A.

In each unit cell, there are 64 tetrahedral [A] sites and 32 octahedral [B] sites. These sites

are so named because they are surrounded by four or six oxygen ions at equal distance

respectively. In the mineral spinel the 16 trivalent cations occupy one-half of the [B] sites,

and the eight divalent cations occupy one-eight of the [A] sites. However, most ferrites

Page -38-



Background

crystallize in an inverse spinel structure, in which the eight divalent cations occupy [A] and

[lB] sites. Table 2.2 summarizes the magnetic properties of different spinels.

Extensive research on the physical properties, especially the magnetic properties, of ferrites

was carried out because of their importance as electronic materials (Smit and Wijn 1959).

The following graph (Figure 2.2) shows the saturation magnetization (Mz) versus

temperature of several different ferrites. Among the ferrites shown in the figure, magnetite

(Fe:304) has the highest saturation magnetization at body temperatures, and is therefore

most suitable for use as an MR contrast agent.

Table 2.2 Properties of Ferrites

ZnFe204

MnFe204

FeFe204

CoFe204

NiFe204

CuFe204

MgFe204

Ii.5Fe2.504

y-Fe203

Mn304

MW

241.1

230.6

231.6

234.6

234.4

239.2

200.0

207.1

159.7

Density

5.33

5.00

5.24

5.29

5.38

5.35

4.52

4.75

ao (A)

8.44

8.51

8.39

8.38

8.337

8.7

8.36

8.33

8.34

228.8 4.84 5.75

tm (cal) gm

Antiferromagnetic

5 4.55

4 4.1

3 3.94

2 2.3

1 1.3

0 1.1

2.5 2.6

2.5 2.3

- 1.85

Ms = Saturation magnetization per gram, emu/g.
Tc = Curie temperature
ao = Lattice parameters
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TN = 5K

560

510

496

300

160

140

330

218

Ms

M = SC5B

400

480

425

270

135

110

310

417

185

585

520

585

440

670

575
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C (gauss cm3lg)

Temperature (C)

Figure 2.2 Saturation magnetization of ferrites versus temperature

Crystalline magnetite was selected as core of the MR contrast agent because

of its preferred magnetic properties. Magnetite belongs to the cubic ferrites

which have the general formula MFe 20 4, and a spinel crystal structure.

Fe30 4 is the ferrite which has the highest saturation magnetization at body

temperature, and at low field strength (1.5T) among all ferrites
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2.2 Magnetic Iron Oxides

Magnetite is the metal ferrite with the highest magnetization at room temperature, and it is

therefore the most appropriate material for MR contrast agents. However, in the synthesis

of iron oxides, various types iron oxides can be formed, depending upon the conditions.

Although they all have similar physical appearances, their magnetic properties differ

dramatically.

2.2.1 Physical Properties of Iron Oxides

Various physical, chemical and magnetic properties of iron oxides are summarized in table

2. 3.

Table 2.3 Physical properties of iron oxides

Name: a-Fe203 y-Fe203 Fe304

Structure: b.c.c. inverse spinel inverse spinel

Physical appearance: brown brown Black

glB/f.u. 0 4 5

Ms (20°C) 4.0x10 + 2 G 4.8x10 + 2 G

magnetic category: antiferromagnetic ferrimagnetic ferrimagnetic

b.c.c. = body centered cubic
tIB = magneton

f.u. =formula unit
MS= Saturation magnetization (Gauss)

The material of choice for MR contrast agents among various possible metal oxides are

magnetite (Fe30 4) or maghemite (y-Fe20 3) because of their stability in aqueous solution

and their high saturation magnetization at low field at body temperature. To understand

mechanisms of formation and transformation of these iron oxides in aqueous solution is of
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great importance for development of superparamagnetic contrast agents for magnetic

resonance imaging. In the following discussion, reaction mechanisms which determine the

formation of various iron oxides from aqueous solutions will be addressed in detail.

2.2.2 Reaction Mechanisms

Attempts to synthesize magnetic iron oxide from aqueous solutions were reported as early

as in 1859 by Lefort (Lefort 1852; Lefort 1852). He reported the formation of black

magnetic precipitates (magnetite) in solutions by reacting ferric sulfate and ferrous sulfate

with boiling a NaOH solution (Equation 2.3). The black mixture formed was then boiled

for an hour, and the precipitate did not settle readily.

FeSO4 + Fe2(SO4)3 + NaOH -> Fe30 4 + H20 (2.3)

In 1900, Haber synthesized the same magnetite by reacting a solution of ammonia with a

solution of crystalline ferrous sulfate at boiling temperature in the presence of KNO3

(Equation 2.4). This method yielded larger magnetic particles which settled rapidly in

solution.

KNO 3

FeSO4 + NH40H - Fe304J + H20 (2.4)

Baudisch and Welo in 1920 reported another method which produced magnetite as a by-

product when reducing KNO3 with freshly precipitated ferrous hydroxide in the presence

of oxygen. The mixture was first greenish, then turned black with magnetic precipitates

forming rapidly and settling in the solution.
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From the syntheses described above, two methods of Fe30 4 synthesis can be

distinguished: Lefort's method formed magnetite from solution containing both ferrous

and ferric ions and in a ratio of 1:2 which is necessary to form Fe304, and no oxidation is

necessary during and after the precipitation. Haber's and Baudisch and Welo methods both

involved precipitation of magnetite in hydroxide solution containing only ferrous ions.

These two methods require oxidation of two thirds of ferrous ion to ferric ion during and

after precipitation. Experimental results showed that there was no structural difference

between the magnetites formed from the three methods, the only difference was the average

size of the crystal.

As the application of magnetite in industry increased, large scale production of such

materials became the focus of research in 1940s. More traditional process of magnetite

production used gas-solid reactions at high firing temperature (1000-2000 ° C). This

process mainly produces coarse scale, large quantities of magnetite, with relatively low

purity.

The discovery of possibilities of using magnetic materials, ferrites in particular, for

electronic computers pushed the research of synthesizing high quality magnetic materials to

chemical precipitation. A wealth of literature is available on the synthesis of ferrite fine

particles for recording media , and the detailed mechanism of formation of iron oxides was

established by Misawa in 1977 (Misawa, Hashimoto et al. 1973; Misawa, Hashimoto et al.

1973; Misawa, Hashimoto et al. 1974).

It was not until 1938, that Elmore first successfully prepared a colloidal suspension of

magnetite in water (Elmore 1938; Elmore 1938). The objective of such effort was to

synthesize a so called "magnetic liquid" to observe the domain structure of magnetic

materials. Elmore used Lefort's method to first precipitate small particles of magnetite,
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then re-suspended the precipitate in soap solution to form stable colloids of magnetite fine

particles.

The development of colloidal suspensions of magnetite as ferrofluids was first reported in

1965, and most of the developmental work was accomplished in the late 1960s by Kaiser

and Rosensweig. In their studies, various dispersed magnetite ferrofluids were prepared

and their properties were evaluated. Kaiser concluded that the particle size in the final

suspension depended upon the nature of the surfactant used. The stability of the final

ferrofluid depended upon both the interaction between the polar heads of the surfactant and

the surface of magnetite particles, and the interaction between the balance structure of the

surfactant and the solvent systems. Solvent systems such as aliphatic hydrocarbons

(kerosene), fluorocarbons, water, ethylene glycol, glycerol and esters were studied in

detail. There were significant effects on the magnetic properties of such fluids in various

solvent systems, and the length of the surfactant molecules played an important role as

well.

In the 1970s, magnetic microspheres of iron oxides were introduced to biological science

as a useful magnetic "labeling" for selective cell separation. In 1984, magnetite

rnicrocrystals were first discovered in bacteria. This brought the study of magnetic iron

oxides in living systems to the attention of the scientific community.

The reaction mechanisms of iron in aqueous environments are determined by

thermodynamic relationships, the oxidation rate of Fe(II) as well as by the structure and

composition of initial and intermediate iron species. The existence of electrostatic and steric

effects of anions such as Cl-, S0 4
2-, N03-, C0 3

2- have influence on the configurations of

intermediate complex cations and oxygen stacking, and therefore eventually affect the

crystal structure and magnetic properties of the end-product.
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Oxidation and deprotonation are two general pathways that many iron species in aqueous

solution will go through. There are three intermediate complex structures in solution which

are crucial in determining possible iron oxides formation and transformation. All three

complexes are Fe(II) and Fe(III) ions held together by ol- and oxo-bridges which can be

formed with the assistance of OH- groups in solution. The first two complexes which are

green during synthesis can be represented as [Fe(II)2 Fe(III)i Ox (OH)y] (7-2x-y)+ and

[Fe(II)i Fe(III) 1 Ox (OH)y] (5-2x-y)+ respectively. In the formation of green complexes, the

electrostatic and steric effects of coexisting anions such as Cl-, S0 4
2-, which have stronger

affinities to the iron species than C104-, may influence the configuration of these complex

cations and the oxygen stacking in the final crystals. Upon slow addition of OH-,

magnetite can be formed from these green complexes. If violent oxidation takes place, iron

oxyhydroxides are the final products.

When a mixture of Fe(II) 1-Fe(III) 2 solution (pH = 1.0) is neutralized, a dark red

intermediate complex (the third one) is formed. Magnetite can be formed in aqueous

solution by precipitation reaction and dehydration of dark red complex cation [Fe(II)l

Fe(III) 2 Ox (OH)2(3-x)]m2m+ as shown in the following reaction:

[Fe(II)1 Fe(III) 2 Ox (OH)2(3-x)]m2m+ + 2mOH- - mFe 3 0 4 + (4-x) mH20

(2.5)

Upon further addition of OH- to the solution of dark red complex, a pH plateau appears at

about 7.2 and fine black particles rapidly precipitate. The dark red complex has a

configuration similar to that of Fe3 0 4 since it is easily converted to Fe3 0 4 in aqueous

solution .

There are possibilities for other iron products to be formed during the synthesis of

magnetite in aqueous solution depending on the specific reaction conditions. Possible
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products include y- and a- iron oxides and ca-, 3-, y-, and 6- iron oxyhydroxides

(FeOOH). Because, for our purpose, we would like to eliminate any possible formation of

iron products other than magnetite, the following considerations are important:

When Fe(III) exists in solution in excess amount, the reaction to form a-Fe 20 3 becomes

favorable. As noted previously, (a-Fe20 3 is a diamagnetic material which does not fit in

the requirement for MR contrast agents. It is not yet very clear what controls the formation

of y-Fe20 3 in aqueous solution. It has been reported that the existence of NO3 is an

important factor for the formation of y-Fe203 .

Baudisch and Welo discovered that magnetite powder can be further oxidized upon heating

('220 C) y-Fe2 03. y-Fe203 (also represented as (Fe)(Fe5/3-1/3)O04 where - indicates a

vacancy in the crystal lattice) has similar crystal structures as magnetite, yet only contain

ferric ion in the crystal lattice. y-Fe20 3 is relatively stable in air, and has a smaller density

as compared to magnetite. When y-Fe20O3 was further heated to 550 C, a non-magnetic

iron oxide oa-Fe20 3 was formed. oa-Fe203 has a different crystal structure than magnetite,

with ferric ion completely coupled to each other in the crystal lattice which gives a zero net

magnetic moment.
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Fe2+IFe 3 +

Figure 2.3 Reaction mechanism in aqueous solution

The x-axis indicates various initial Fe2 +/Fe3 + ratios, and the y-axis

represent the pH conditions during the synthesis. Possible intermediate

complexes and final composition of the products are shown in the

corresponding positions on the diagram. The shaded box indicates the

formation of magnetite from the solution, and other possible products such

as different types of iron oxyhydroxides are also shown. The solid lines are

slow oxidation pathways, and dashed lines represent rapid oxidation

conditions.
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Thus far, most of the effort has been focused on the synthesis of magnetic particles in the

micrometer size range for the practical reasons mentioned previously. It is a challenging

problem, however, to synthesize smaller (nm size) stable particulates from the known

methods to fulfill the requirement of MR contrast agents. From the available literature, it

can be concluded that parameters such as reaction temperature, initial concentrations of

ferric and ferrous ions and oxidation rates have significant effect on the magnetic properties

and physical size of the final product. It is also unknown how the use of various polymeric

stabilizing agents effects the formation of magnetite. These aspects of synthesis will be

investigated in chapter 3.
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Chapter III

Synthesis

Although the reaction mechanisms of iron oxides have been investigated previously, the

research efforts were mainly focused on their industrial applications as semiconductor

materials and commercial permanent magnets. For the development of MR contrast agents,

it is therefore necessary to examine in detail the synthesis of nanometer size magnetic iron

oxide particle (referred to as monocrystalline iron oxide nanocompound, MION) in the

presence of polymers. This chapter will present results from series of experiments which

were used to optimize the MION synthesis. In addition, experiments were carried out to

evaluate: 1) crystal structure of the core, 2) crystalline size distribution, 3) colloidal

solution stability, 4) conjugation to carrier molecules.

3.0 An ideal Biocompatible Iron Oxide

To further improve the sensitivity and specificity of MR imaging, the development of

rnagnetopharmaceuticals for receptor, metabolic and functional diagnosis is desirable. This

requires a magnetic label with a high magnetic susceptibility and small size to be detectable

at low tissue concentrations, to be able to leave the vascular space, and to be readily

attachable to carrier molecules for site specific target delivery. A model of such a

compound is depicted in figure 3.1. It consists of a superparamagnetic core of several

nanometers, surrounded by anchored surface polymers, which can subsequently be

attached to a variety of target-specific carrier molecules.
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Figure 3.1 MION: An ideal picture

Schematic representation of monocrystalline iron oxide nanocompound

(MION). MION consist of a magnetically responsive core in nanometer

range, solubilized with anchored surface polymers. It is hypothesized that

MION can be readily reacted with a large variety of antigen-specific

monoclonal antibodies, Fab fragments, or receptor-specific carbohydrates

and lectins. As a result, labeled MION will have the potential to be directed

to specific organs, tissues, cells, receptors, and antigens in vivo while

exhibiting magnetic behavior detectable by MR imaging at nanomolar

concentrations.

To approach the characteristics of such compound, the iron oxide synthesis methods

described in the literature (Chapter 2) had to be optimized for the production of compounds

with a particle size on the order of several nanometers. A variety of iron oxides were

synthesized from common starting materials: Iron (II) chloride tetrahydrate (FeC12-4H20)

and iron (III) chloride hexahydrate (FeC13-6H2 0) (Sigma Chemical Co., St Louis, MO.)

were used as initial reagents. Dextran (Sigma Chemical Co., St Louis, MO.) was used as a

stabilizing agent during the one-step synthesis. The solution was titrated with 2N NaOH

until pH = 9. The resulting suspension was subjected to several cycles of centrifugation

(13,000 RPM x 45 min, RT600B; Sorvall Instruments) to remove large iron oxide

aggregates. A Sephadex CL-4B gel chromatography column (6x50 cm, Pharmacia LKB

Biotechnology, Piscataway, NJ) was used to further purify the colloidal solution following
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centrifugation. A sodium citrate buffer (0.1M, pH=8.4) was used as elutent. Samples

were collected in 10 ml fractions which were then subjected to spectrophotometry

'(DMS 100, Varian Instrument Group, Sugar land, TX) at 430 nm for measurement of iron

concentration. The appropriate fractions of the elution volume were collected, and re-

concentrated using a stirred ultrafiltration cell with a YM100 (molecular weight cut off 100

kd) filter (AMICON Model 8050, W.R. Grace & Co., Danvers, MA). Samples were

lyophilized (Virtis Company, Inc., Gardiner, NY) and later redissolved in an isotonic Tris

buffer. Figure 3.2 shows the synthesis and purification procedures of stable iron oxide

colloidal suspensions schematically.
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Figure 3.2 Schematic of iron oxide synthesis
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3.1 Core Structure

The purpose of this set of experiments was to determine an optimal initial ratio of Fe2 + to

Fe3+ ions (the main parameter to influence the core structure) to form magnetic iron oxides

upon oxidation in aqueous solution. Magnetite (Fe3 04) and maghemite (Y-Fe203) both

have an inverse spinel structure. This characteristic structure determines the magnetic

properties of the MION core. The magnetic properties depend upon the ratio of metal ions

(i.e. Fe2 +/Fe3 + ) in the crystal structure.

The hypothesis was that different initial ratios of Fe2 + to Fe3 + ions in the reaction mixture

would result in different ratios in the produced crystals, thus affecting the magnetic

properties. A series of experiments was designed and carried out for the above purpose.

Figure 3.3 indicates schematically the experimental set-up of this series of experiments.

Iron (II) chloride tetrahydrate (FeC12-4H20) and iron (III) chloride hexahydrate

(FeC13 -6H2 0) (Sigma Chemical Co., St Louis, MO.) were used as initial reagents,

dissolved in double distilled water at room temperature under constant stirring for 30

minutes. Solutions with various initial ratios of Fe2 + to Fe3 + ions were prepared. 2N

sodium hydroxide solution (Sigma Chemical Co., St Louis, MO.) was used for the titration

of the iron salts solution to complete the oxidation process. No stabilizing agents were

used in this set of experiments to avoid possible interference in the X-ray diffraction

analysis, and other parameters were kept constant. Following the oxidation, the solutions

underwent centrifugation and the precipitates were washed with water three times. The

reaction products were then tested for their magnetic properties with a horse-shoe magnet.

The response to the magnet was used as a preliminary indication of their magnetic

properties. If this test was positive, samples were freeze dried and X-ray powder

diffraction and magnetic properties analyses were performed. Table 3.1 summarizes the

reaction conditions and the experimental observations of this set of experiments.
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Figure 3.3 Schematic representation of the experimental set-up of the

ratio experiments. Solutions with various initial ratios of Fe2+ to Fe3 + ions

were prepared. 2N sodium hydroxide solution was used for the titration of

the iron salts solution to complete the oxidation process while other

experimental parameters were kept constant. Following the oxidation, the

reaction products were tested by a horse-shoe magnet as a preliminary

indication of their magnetic properties. The solutions then underwent

centrifugation, and precipitates were freeze dried for X-ray powder

diffraction analyses.
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X-ray powder diffraction was used to determine the crystal core structure of the MION

preparations. A more detailed description of this technique will be given in chapter 4.

Figure 3.4 shows X-ray diffraction spectra obtained from two batches synthesized with

different initial iron ion ratios. "A" demonstrates a good correlation between the

experimental data and the available literature values. However, "B" shows two major

mismatch diffraction peaks as compared with the diffraction spectrum of magnetite

indicating the presence of impurities. As a preliminary indication, the initial ratio of 0:1

solution yielded a non-magnetic end product (no response to the magnet). X-ray analysis

further confirmed the structural difference between these samples. In summary, the initial

ratio of ferric to ferrous ions should be less than or equal to 2.
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Table 3.1 Ratio Experiments

Fe2+/Fe3 SQUID X-ray Observations
+ Ratio Analyses diffraction

Diamagnetic

paramagnetic

ferromagnetic

super-

paramagnetic

super-

paramagnetic

Non-

magnetite

Non-

magnetite

Magnetite

Red complex formed at low pH (<2). Upon

further titration, brown precipitates formed at

room temperature. No response to the magnet.

Red complex formed at the beginning of the

titration process. Precipitate showed no visible

response to the magnet.

Green complex formed at low pH (3), black

precipitate formed upon heating at high pH

(>9). Clearly visible response to the magnet.

Magnetite green complex formed upon slow titration and

heating (80 ° C), black precipitate formed.

Precipitate showed visible response to the

magnet.

Magnetite Green complex formed at low pH (=2).

Precipitate formed upon heating (80° C)

showed visible response to the magnet.

Excess Fe2 +in supernatant after centrifugation.
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Figure 3.4 X-ray diffraction spectra obtained from two batches of iron

oxides synthesized with different initial iron ion ratios. Note the mismatch

of diffraction intensities of sample B compared to the literature values for

Fe304 at 2 Theta of 32 and 46 degrees.
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3.2 Core Size

To ensure adequate distribution of MION in vivo as a MR contrast agent, its size needs to

be controlled carefully. The small size of an agent offers several advantages: first, it

allows passage of these agents through the vasculature, a prerequisite for targeting; second,

it minimizes the chance of recognition by the body's defense system (RES in particular);

third, it reduces the toxicity and the chances of inducing immune responses when used in

vivo while still retaining the magnetic properties needed for contrast enhancement.

The core size can be influenced by the synthesis temperature, and by the kind and

concentration of the stabilizing agents used during synthesis. The initial reaction

temperature has a significant effect on the crystalline size distribution formed from the

oxidation process. Figure 3.5 indicates schematically the general approach for this set of

experiments, designed to examine the temperature effect on particle size. Initial solutions

of iron ions were prepared at different temperatures, then titrated by NaOH (2N) solution

of the same temperature. The end product from each batch then underwent primary size

analysis by light microscopy, filtering, membrane filtration and transmission electron

microscopy.

Figure 3.6 shows scanning electron micrographs of freeze-dried MION

preparations, synthesized at two different initial reaction temperatures. A was synthesized

at 25° C, and B was synthesized at 4° C. The average particle size is much smaller at the

lower initial temperature, and the particle size distribution was also narrower according to

particle size analysis. The particle size of MION was analyzed with a high resolution

transmission electron microscopy (HRTEM). A detailed description of this technique will

be given in chapter 4. Figure 3.7 represents the particle size distribution of the two

preparations shown in Figure 3.6. Diameters of 600 individual crystals from the
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micrographs were used to calculate average particle size and distribution. Consistent with

the TEM findings, the sample synthesized at 4 C has a narrower distribution and smaller

average size than that of 25° C. Figure 3.8 demonstrates that the initial reaction temperature

is an important parameter to control the average particle size in the final product (Figure

3.8a). As the initial temperature increases, the average particle size increases accordingly.

In general, the increase in temperature will increase the rate of iron complex aggregation,

leading to larger particle size in the final product. Note also at the lowest temperature, there

is an increase in average particle size due to the high viscosity and poor mixing process

near the freezing point. To synthesize nanometer scale magnetite particles, a temperature of

4" C is preferred.
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Figure 3.5 Core size optimization experiment set-up

Solutions of iron ions were prepared at different initial temperatures.

Oxidation was completed by titration with NaOH (2N). The end product

from each batch then underwent primary size analysis by light microscopy,

filtration and TEM.
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A

B

Figure 3.6 Scanning electron micrographs of freeze-dried MION

preparations synthesized at two different initial reaction temperatures. A

was synthesized at 25 °C, and B was synthesized at 4 C. The average

particle size is much smaller at lower initial temperature, and the particle size

distribution was also narrower according to particle size analysis.
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Figure 3.7 Particle size distribution of two preparations from Figure 3.6.

Particle size of MION was analyzed with high resolution transmission

electron microscopy (HRTEM). Diameters of 600 individual crystals from

the micrographs were used to calculate average care particle size and

distribution. Consistent with the TEM findings, the sample synthesized at

4° C has a narrower distribution and smaller average size than that of 25° C.

Page -61-

=, 



Synthesis

IU '

E
C

- 3
40 10 3-
E
..
'{

._

4) 101
10°

10,

0 10 20 30 40 50 60 70 80 90 100

Initial Reaction Temperature (C)

Figure 3.8 The initial reaction temperature is an important parameter to

control the average particle size in the final product. As the initial

temperature increases, the average particle size increases accordingly. Note

also at the lowest temperature, there is an increase in average particle size

due to the high viscosity and poor mixing process at the near freezing point.
For production of nanometer scale magnetite particles, temperature of 40 C

is preferred.
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3.3 Stability

.3.3.1 Polymeric Stabilizing Agents

The effect of Dextran as a stabilizing agent on the iron oxide crystals was examined.

Polymeric stabilizing agents play an important role in increasing the stability of the iron

oxide colloidal solution (decrease aggregation), and to provide a means to conjugate them

to carrier molecules or, in some cases, to serve as targeting molecules themselves.

Iron oxides were synthesized from solutions with initial Dextran concentrations ranging

from 0 to 25 percent. Figure 3.9 shows the effect of Dextran concentration on formation of

colloidal solution. At low initial Dextran concentration, nearly all iron oxide particles

formed during oxidation precipitated from the solution. On the other hand, as the initial

Dextran concentration increased to 20%, all iron oxide crystals were stabilized in colloidal

form by the dextran polymers. The Dextran solution decreases the mobility of iron

complexes and therefore inhibits their aggregation. A Dextran concentration of 15% was

therefore chosen in the initial reaction solution. This concentration maximized the

formation of colloidal iron oxides, and also minimized the high viscosity and poor mixing

caused by high concentration of dextran polymers.
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Figure 3.9 The effect of polymeric stabilizing agents on formation of

colloidal solution. In this graph, the percentage of precipitate at the end of

the synthesis is plotted as a function of initial Dextran concentration (w/v).

3.3.2 Effect of Surface Coating on Magnetic Properties

Various polysaccharides were specifically chosen to alter the biodistribution of the iron

oxide particles via in vivo targeting of sugar receptor systems on hepatocytes. These iron

oxide compounds were synthesized as described previously (chapter 3.2.1), but instead of

clextran the following polysaccharides were used: chitosan (ICN Biochemicals, Inc.,

Cleveland, Ohio), mannan (Sigma Chemical Co., St. Louis, MO), arabinogalactan (Aldrich
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Chemical Company, Inc. Milwaukee, Wis), and fucoidan (Sigma Chemical Co., St. Louis,

M)o).

The following table summarizes the relaxation rates of MION samples with different

]polysaccharide surface coatings. The relaxation rates obtained for the different compounds

vary little, compared to the various caused by varying the size of the particle core (Table

3.2). This observation indicates that the surface coating has little effect on magnetic

properties of the superparamagnetic core and can thus be used for coupling to a variety of

carier molecules.

Table 3.2 Effects of surface coatings on relaxivity

Compound R1 R2 R2/R1

(mmol/L sec -1) (mmol/L sec -1)

MION-Dextran 9.4 * 1.5 3.2 2.1

MION-Dextran 11.0** 2.4 4.5 1.9

MION-Mannan 1.9 3.4 1.8

MION-Chitosan 1.4 2.2 1.7

MION-Fucoidan 0.8 1.8 2.3

MION-Arabinogalactan 1.7 3.2 1.9

* MW 9,400 dextran, ** MW 11,000 dextran
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3.3.3 Stability of MION

'The stability of MION preparations was examined under various storage conditions. The

relaxivity value was used as an indicator of changes in stability. These experiments

provide valuable information on future shelf-life stability of MION when used clinically.

Samples were subjected to thermal manipulations, and their relaxivities were measured

under each condition. Table 3.4 summarizes the percentage relaxivity changes

corresponding to the change in thermal conditions.

Table 3.3 Thermal stability evaluation

Storage Conditions % change in R2*

4° C for 24 hours (control)

-10 C for 24 hours

-84° C for 24 hours

freeze dried (redissolved)

heated for 30 minutes

-1.30%

- 4.70%

0.50%

4.50%

* < 5% is not statistically significant

It is evident that there is little change in the relaxivity following various forms of storage.

Iyophilization resulted in the smallest change in R2 relaxation rates. The lyophilized

MION can be easily redissolved in physiological buffer. This is especially useful because

lyophilization is most convenient storage condition for future clinical application.

In summary, the optimized synthesis of MION is as follows:

FeC13-6H20 (10 g) and FeC12-4H 20 (3.9 g) were dissolved in water at 4 °C as the initial

reagents, and Dextran (150 g) (Sigma Chemical Co., St Louis, MO.) was used as a
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stabilizing agent during the one-step synthesis. The solution was titrated with 2N NaOH

until pH = 9, when a dark complex formed. Dextran (Sigma Chemical Co., St Louis,

MC).) was used as a stabilizing agent during the one-step synthesis. The solution was

titrated with 2N NaOH until pH = 9. The resulting suspension was subjected to several

cycles of centrifugation (13,000 RPM x 45 min, RT600B; Sorvall Instruments) to remove

large iron oxide aggregates. A Sephadex CL-4B gel chromatography column (6x50 cm,

Pharmacia LKB Biotechnology, Piscataway, NJ) was used to further purify the colloidal

solution following centrifugation. A sodium citrate buffer (0.1M, pH=8.4) was used as

elutent. Samples were collected in 10 ml fractions which were then subjected to

spectrophotometry (DMS 100, Varian Instrument Group, Sugar land, TX) at 430 nm, the

wavelength at which previous experiments had shown optimum absorbence of polymeric

iron compounds. The appropriate fractions of the elution volume were collected, and re-

concentrated using a stirred ultrafiltration cell with YM100 filter (AMICON Model 8050,

W.R. Grace & Co., Danvers, MA). The concentrated sample was then dialyzed against

Trisaminomethane (Tris) buffer (0.025 M, pH=7.2) to complete the preparation for clinical

evaluation. Samples were lyophilized (Virtis Company, Inc., Gardiner, NY) and later

redissolved in isotonic Tris buffer.
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3.4 Conjugation to Carrier Molecules

Having optimized the synthesis of the MION core, the next important step was to establish

conjugation of the magnetic label to a variety of carrier molecules to achieve in vivo

targeting. In some cases, the surface coating of MION itself can serve as target specific

molecules such as in the case for some same containing sugars described previously.

Furtherre, there are two approaches in conjugating MION to a variety of carrier molecules.

One is to establish covalent binding between the surface coating and the carrier molecules.

The other is to achieve noncovalent electrostatic conjugation of MION and the carrier

molecules.

As an example of conjugation of carrier molecules to the MION surface, MION was

attached to indium-111 -labeled human polyclonal Immunoglobulin (IgG). IgG can be used

to target sites of acute inflammation. Indium-111 was attached to human polyclonal IgG

(modified for intravenous use (Cutter Biological, Berkeley, CA)) via DTPA by the

carboxy-carbonic anhydrate method in order to confirm the attachment of the protein to

MION. The DTPA-coupled IgG was diluted to 8.8 mg/ml (protein/0.9% NaCl). Before

column fractionation, IgG-DTPA was labeled with sterile, pyrogen free In-111-C13

(10mCi/ml; Amersham, Arlington Heights, Ill) with citrate transchelation. Approximately

1.5 Ci of In-1l-Cl was combined with 150 AtL of sterile 0.1 mol/L sodium citrate

(pH=5.4) to which 100 utl of DTPA-coupled IgG of 8.8 mg/ml was added. The solution

was incubated at room temperature for 15 minutes. Radiochemical purity was then

determined by chromatography (10 ml Sephadex G25 column; Pharmacia, Piscataway,

NJ). Radioactivity was counted with a gamma counter (Wallac OY, Turku, Finland).

The conjugation of MION to In- ill-labeled IgG was achieved by reacting 0.3 mg of IgG

with MION containing lmg of iron in a buffered solution of NaCl and NaPO4 (0.145 M).
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'The mixture was then sonicated in an ice bath (Branson 450 sonifier; Branson Ultrasonics,

Danbury, Conn). With this non-covalent method, the amino acid groups (predominantly

histidine, serine and tryptophan) of IgG interact electrostatically with the hydroxyl groups

on the surface of MION to form a stabilized conjugate in the colloidal solution. The

resulting samples were evaluated with column chromatography and relaxation time

measurements. Figure 3.10 shows the results of column chromatography of MION-In-

111 -IgG complex, confirming the attachment of MION to IgG.
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Figure 3.10 Attachment of IgG to MION. Anion exchange column

chromatography of the non-covalently bound MION-Inlll_-IgG complex.

The first In1 11 peak corresponds to Inlll-IgG which has not attached to

MION. The second In 11 peak corresponds to MION-In1 1-IgG complex.

Absorbance of the elution fractions at 430 nm was used to determine the

iron content of the product. Note that the iron peak determined by

colorimetry overlaps with the In 11 -IgG-MION peak obtained from gamma

counting.
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The second example for conjugating MION to carrier molecules was Asialofetuin (ASF).

A model to study receptor specificity of a MR contrast agent is the system of

asialoglycoprotein (ASG) receptors, localized on the hepatocytes. ASF is a plasma protein

with high affinity to the ASG receptor. The attachment of MION to ASF can be

accomplished by a periodate oxidation method which oxidize the surface coating (dextran in

this case) of MION followed by attachment of specific molecules to the oxidized dextran

(DI)utton, Tokuyasu et al. 1979). MION-ASF was synthesized by reacting 0.3 mg of ASF

(Sigma Chemical Company, St. Louis, MO) with 1 mg of MION with a periodate method.

This complex was prepared for in vivo evaluation by MR imaging in a later chapter.
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3.5 Summary

The factors which affect MION core structure, size and stability in colloidal solution have

been systematically investigated in this chapter. To summarize:

* Initial ratio of Fe(II) to Fe (III) is important to control the final chemical

composition of the precipitate. According to the reaction mechanism, the initial ratio of

Fe(III) to Fe(II) should be less than or equal to 2.

* Initial reaction temperature is important for control of the average particle size

precipitated from the solution. For production of nanometer range magnetite particles,

initial temperature was optimized at 40 C.

* Stabilizing agents, Dextran for example, are important to control the stability of

the colloidal solution. The initial concentration of Dextran was optimized to be >15 %.

* Other polysaccharides and proteins were successfully conjugated to MION for

target specific delivery. Changes in surface coating showed little influence on the magnetic

properties of MION.
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Chapter IV

Physicochemical Characterization

Having established the optimized synthesis for monocrystalline iron oxide nanocompound

described in the previous chapter, a detailed physicochemical characterization of MION was

carried out. Various techniques were used to evaluate the physicochemical properties of

these agents. Figure 4.1 summarizes the characterization techniques used in this chapter.

These include transmission electron microscopy (TEM) for core size estimation, X-ray

powder diffraction for structural analysis, spectrophotometry for chemical composition

analysis, laser light scattering (LLS) for the hydrodynamic radii measurement of MION,

and superconducting quantum interference magnetometer and Mdssbauer spectroscopy for

magnetic property measurements. The relaxivities of MION in aqueous phantoms were

also evaluated by NMR. Finally, a computer generated model of MION was created based

on the obtained physicochemical parameters. In the following section, results from the

above categories will be presented. For the characterization of some aspects of MION,

more than one technique was used to eliminate any ambiguity, or to obtain supplemental

information.
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I Characterization I

4.1 4.2

Crystal
Structure

X-ray
Diffraction

Electron
- niffrnftinn

Particle Size

- HRTEM

- LLS

HP C

4.3
Magnetic
Properties

SQUID

Mossbauer

4.4

Chemical
Composition

Spectrophotometry

NMR

Figure 4.1 Organization of physicochemical characterization techniques.

4.1 Crystal Structure

X-ray powder diffraction was used to determine the crystal core structure of MION. In this

technique, a lyophilized sample powder is exposed to an X ray at various angles. The

symmetries and intensities of the reflections (Bragg reflections) from the sample are

recorded and graphed as a function of the beam angle (2 theta). In our experiment, an X-

ray diffractometer (REGAKU 300, Japan) was operated with a source wavelength of 1.54

A. The diffraction spectrum was obtained by continuously scanning angles from 20 to

1]00° at 0.02 ° resolution. The total scanning time was 4 minutes per sample.

Figure 4.2 represents a typical X-ray diffraction spectrum obtained from a powdered

MION. The diffraction intensity is plotted as a function of diffraction angle. The vertical

lines represent literature values of Fe304 published by the National Bureau of Standards

(JCPDs, Washington, D.C., 1967). There is a good correlation between the experimental
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data and literature values (> 94% agreement), both with respect to the diffraction angle and

the relative intensity of the peaks, indicating the magnetite crystal structure of MION cores.

If impurities would be present, other peaks would arise, or the relative intensities of the

peaks would not match (as shown in Figure 3.4 b).

Electron diffraction experiments were performed on a high resolution transmission electron

microscope (HRTEM) to confirm the X-ray diffraction data. A selected-area electron

diffraction pattern of a MION core was obtained from HRTEM at an operating voltage of

200 KV as shown in figure 4.3. The camera length was calibrated using a gold standard,

and the lattice spacings were then calculated from the diffraction patterns. The calculated

lattice spacings were compared to the results from X-ray diffraction experiments, and are

shown in Table 4.1. The diffraction patterns show that the MION core consists of a single

crystal, and confirmed by the good agreement between these two sets of experiments.

Table 4.1 Lattice spacings in MION crystal

X-ray. Data EDPodata
(A) (A)
4.85 4.82
2.97 2.97
2.53 2.56
2.10 2.12
1.72 1.74
1.62 1.62
1.49 1.51
1.33 1.34
1.28 1.28
1.21 1.21
1.12 1.12

Page -74-



Physicochemical Characterization
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Figure 4.2 X-ray powder diffraction spectrum of MION

Both the symmetries and intensities of the diffraction spectrum confirmed

the well ordered crystal structure. Despite of the similarities of the

diffraction angles and intensities in the spectrum of MION sample, they are

not identical to the published standards for magnetite, because of the surface

bound dextran of MION. Note the difference between this spectrum and

Figure 3.4A which was obtained without surface-bound dextran coating.
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e- Diffraction Inverse Spinel
A B

Figure 4.3 A is the diffraction pattern obtained from selected-area

electron diffraction of a single crystal MION core. The operating voltage

was 200 KV (JEOL-200 HRTEM, MIT). Camera length was calibrated

using a gold standard, and lattice spacings were then calculated from the

radii of the diffraction patterns (Table 4.1). The pattern is consistent with

the model of magnetite. B shows the ideal packing of atoms in a unit cell of

inverse: spinel containing 8[XY204]. The red spheres are oxygen atoms,

white spheres representing tetrahedral sites, and octahedral sites. The

magnetite crystal structure is an inverse spinel structure, where

M(II)=Fe(II), and Y(III)=Fe(III) (Verwey and Heilmann 1947).

Page -76-



Physicochemical Characterization

4.2 Particle Size

4.2.1 Electron Microscopy (EM) Analysis

The magnetic iron oxide cores of MION are electron dense and visible directly under a

transmission electron microscope (TEM). Therefore high resolution TEM (HRTEM) can

be used for particle size analysis of the MION core. Scanning electron microscopy (SEM)

was used for the morphologic analysis of solid MION.

MION specimen for HRTEM and SEM were prepared by direct fixation of freeze dried

MION powder or diluted solutions of MION on mixed cellulose ester (MCE) filters,

followed by low temperature plasma etching, and carbon coating in a high vacuum coating

unit. This preparation produced an intact carbon film which was sufficiently clear for

analysis. HRTEM micrographs were taken with a JEOL 200 CX (point to point 2.6 A) and

ABT EM-002B (point to point 2.0 A). Diameters of 600 individual crystals from the

micrographs were used to calculate average particle size of MION preparation.

Figure 4.4 represents a typical HRTEM micrograph of MION. The electron dense cores

show a characteristic hexagonal shape produced by the 2-D projection of the cubic crystal

structure. The average particle size was 4.6 ±1.2 nm in diameter. No particle aggregates

were present, and electron diffraction patterns confirmed that each core was a single crystal

of magnetite.
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S

Figure 4.4 A high resolution electron micrograph of a MION

preparation. MION consists of an electron-dense crystalline core and

surface bound dextran (not visible by electron microscopy). The cores

appear to have a hexagonal shape by electron microscopy and typically

measure 4.6 1.2 nm in diameter. The shape of crystals showed good

correlation with the theoretical representation (Figure 4.3b). No particle

aggregates were present, which makes this compound a unique label for

targeting purposes.
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4.2.2 Hydrodynamic Radii by LLS

The hydrodynamic radii of a colloidal solution can be measured by light scattering

techniques, i.e. photon correlation spectroscopy (PCS). The size analysis of colloidal

particles by PCS has been described in detail by Douglas et al. (Douglas, Illum et al.

:1984). PCS theory is based on Brownian motion of particles dispersed in a liquid.

Smaller particles move more quickly than larger ones, therefore the frequency at which the

particles move is correlated to their sizes. In a typical light scattering experiment, the

particles in the liquid are illuminated by a laser source, and the scattered light is analyzed

using a photon correlator.

Laser light scattering (LLS) was performed to determine the overall size distribution of

MION in aqueous media. In this case, photon correlation spectroscopy with multiple-angle

scattering was used (Coulter Electronics, Inc., Model N4MD, Hialeah, FL). Figure 4.5

shows schematically the set-up of LLS experiments. A 4mW helium-neon 632nm laser

was used as the light source. Scattering patterns at multiple angles were observed for each

measurement. This technique allows instant determination of the particle size distribution

in aqueous media.

Figure 4.6 shows the result of a typical LLS measurement of MION in aqueous solution.

There is a unimodal distribution of colloidal MION, and the mean hydrodynamic diameter

was determined to be 15 + 3 nm. This diameter is larger than that determined by TEM.

The Brownian motion of the particles is a function of its hydrodynamic diameter. In the

case of MION, the hydrodynamic diameter is that of the iron oxide core plus the thickness

of the polymer coating, i.e. surface bound dextran.
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Data Analysis

Figure 4.5 Schematics of laser light scattering equipment: a laser beam is

directed to a sample chamber. A photon detector is set to collect the scattered

light from the sample at multi angles from the laser source. Signals are then

send to the autocorrelator and processed by computer. The frequency of the

changes in the scattering signal are related to the brownian motion and hence

to the hydrodynamic size of the particles.
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Figure 4.6 A typical LLS measurement of MION in aqueous solution.

There was a unimodal distribution of colloidal MION, and the

hydrodynamic diameter was determined to be 15 ± 3 nm.
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4.3 Magnetic Properties of the Core

As discussed, the crystal structure, spin coupling conditions and size of a particle stand in

close relation to the magnetic properties of a material. These magnetic properties manifest

themselves in several ways. On a macroscopic scale there is the bulk response of a material

to an external magnetic field, while on a microscopic scale there are the internal interactions

of individual spins within the crystal lattice.

In the following studies, the bulk responses of solid MION samples were measured using a

Superconducting Quantum Interference Device (SQUID) magnetometer. Mssbauer

spectroscopy was then used to evaluate the interactions of Fe spins in the crystal lattice.

Finally the relaxivities of MION were studied by NMR spectroscopy.

4.3.1 Superconducting Quantum Interference Device (SQUID)

Measurements to determine the bulk magnetic susceptibility of MION samples were

performed with a superconducting quantum interference device (SQUID). In this

technique, samples are cycled between two coils which are located within a magnet. The

magnetic moment of the sample can be calculated from the induced electrical current

detected by the coils. Typical of superparamagnetic compounds is that the induced

magnetization increases exponentially with increasing field strength, that there is no

remnant magnetization at Bo = 0 T (no hysteresis), and that the induced magnetization

increases with decreasing temperatures. In this experiments, the induced magnetization of

MION was evaluated with a SHE SQUID magnetometer (SHE Corp. San Diego, CA

figure 4.7). The MION samples were dried by lyophilization (Virtis Company, Inc.,
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Gardiner, NY) prior to the experiment. A 0.08 cubic millimeter Teflon sample container,

which holds 3 milligrams of MION powder, was used in the measurements.

The magnetization curve of MION obtained at fixed temperature of 310 K is shown in

figure 4.9a, with external magnetic fields ranging from 0 to 50 KGauss (Tesla). The

induced magnetization at 15 KGauss (field strength most commonly used for clinical

imaging) is 68 emu per gram of iron. When the external field was removed (0 KGauss)

there was no remnant magnetization. In addition, the temperature dependence of the

induced magnetization was also evaluated at low field strength (Figure 4.9b). The field-

cooled magnetization of MION at constant external magnetic field of 0.05 KG (Figure b)

showed an abrupt increase of the magnetization as the temperature was decreased to 4 K.

The critical temperature Tc is taken at the maximum dMIdT : Tc= 6 + 0.1 K. At

temperatures below Tc, the magnetization saturates to a constant value. This behavior is

expected for superparamagnetic substances.
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Control
unit

/

I 

Output Unit

Figure 4.7 Schematic representation of a typical Superconducting

Quantum Interference Device (SQUID) for sensing external magnetic fields.

The principal components are identified on the figure. The SQUID sensor

and its associated input circuitry are operated at cryogenic temperatures. As

illustrated in the figure, the necessary cryogenic environment is provided by

immersing the SQUID and input circuitry directly in liquid helium which

boils at 4.2 K under normal atmospheric pressure. A low thermal

conductivity rf transmission line connects the SQUID sensor to the room

temperature electronics, which consists of an rf head located at the helium

drawer and a separate control unit where the output signal is obtained.
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Figure 4.8 Induced magnetization. The induced magnetization of MION

(electromagnetic units [EMU]/g Fe) is plotted against the applied field

strength (kG). A. There is an initial steep increase of magnetization at low

field strengths. At 1.5 T the induced magnetization is 63.8 emu/g Fe (293

K). At higher field strengths induced magnetization increases to a lesser

degree. Typical for all superparamagnetic iron oxides is the absence of

sample magnetization when the field is removed (i.e. 0 T). B. The

temperature dependence of the induced magnetization was further evaluated

at a fixed field strength of 5 x 10-3 Tesla. There was an abrupt increase of

the magnetization at a temperature of 4 K.
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4.3.2 Mossbauer Spectroscopy

M6ssbauer spectroscopy was performed to determine the relaxation of individual spins

within MION crystals. This method thus differs from the SQUID measurements which

determine the magnetization of the bulk sample. Missbauer spectroscopy is also capable of

providing size estimates of crystals. Gamma-ray photons with frequencies of the order of

1019 Hz and wavelengths of approximately 100 pm were used. The gamma-ray source is

driven electromagnetically to and fro at a known speed, therefore the resonance matching

the gamma-ray with the nuclear energy levels of the samples is achieved by Doppler shift.

The shifts of resonance position and the splitting of resonance peaks are then recorded.

Figure 4.10 schematically illustrates the set up of M6ssbauer spectroscopy experiments.

In our experiment, M6ssbauer spectroscopy was performed on a conventional constant

acceleration zero-field variable temperature system (Lake Shore Cryotronic model DRC-

70C). The spectrometer was equipped with "Supervaritemp" cryogenic dewars (Janis

Research Corp.) and a temperature controller capable of maintaining sample temperatures in

the range 1.6< T < 300 K within 0.1K. The energy source used was a 57Co in Rh matrix

maintained at room temperature. Standard peripheral electronics, pumping stations were

used during data acquisition. The processing software on a Digital VAX740-VMS system

was used for detailed M6ssbauer spectral fitting and analysis.

The most important parameter that governs the magnetic behavior of small magnetically

ordered particles of a given volume is their anisotropy energy constant K. The rate at

which the saturation magnetization is reached with increasing applied magnetic field is

sensitive to the value of K; superparamagnetic relaxation phenomena associated with

thermal excitation of the magnetization vector between equivalent easy axes of
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magnetization also depend on K. The superparamagnetic relaxation time has an exponential

dependence on the anisotropy constant K according to the following equation:

KV
kBT

Isup= e
(4.1)

where to is a temperature independent constant of the order of 10-9 sec, V is the volume of

the particle. kB is Boltzmann's constant and T is the temperature.

The characteristic of superparamagnetic relaxation phenomena in the Mbssbauer spectra is

their gradual change from paramagnetically to magnetically split spectra (Figure 4.11) with

decreasing temperature. For tsup << TL, paramagnetic spectra are obtained while for Xsup >>

'IL magnetically split spectra are observed. Here, TL is the Larmor precession time of the

iron nuclear spin in the internal magnetic field of the material.

Mijssbauer spectroscopy was carried out on a freeze dried MION sample. The saturation

internal magnetic field observed in the Missbauer spectra of Figure 4.11 at low temperature

was 505 KOe, which corresponds to a Larmor precession time L = 2.5x10-8 sec for the

57 Fe nuclear spin. The blocking temperature, TB, at which equal intensities of

paramagnetic and magnetically split component spectra were observed, was determined to

be about 100 K. Electron microscopy indicated particle sizes 4.6 nm in diameter. The

value of the anisotropy energy could therefore be determined by equating csup with TL.

k BVT B in 
K- 2v Woo

(4.2)

This yields an anisotropy energy K = 0.8 x 106 ergs/cm 3, which is comparable to that

determined by Morup et al. (Morup and Topsoe 1976) for 60 A magnetite particles to be
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1.3 x 106 ergs/cm 3 (Haneda and Morrish 1977; Haneda and Morrish 1977; Haneda and

Morrish 1977).

Source
Y

Sample

r 

1: ::: ::: :~~~~~~~~~~~~~~~~~~~~~~...::
E, . .::;;:

Move

Figure 4.9 Schematics of Mdssbauer Experiment

The source is fixed to a diaphragm which can be moved electromagnetically

to and fro at a known speed, and the Doppler shift is used to achieve

resonance matching of the y-ray frequency with the nuclear energy levels of

the sample.
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Figure 4.10 M6ssbauer spectra of MION-37 at various temperatures.

The solid lines are fits to the data. At intermediate temperatures, a

distribution of internal hyperfine fields was observed due to spin

fluctuations. The spectra were strongly affected by superparamagnetic

relaxation above 100 K. At 295 K, the magnetic splitting had

collapsed completely.
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4.3.3 NMR Relaxation Studies

The effect of the MION preparations on the T1 and T2 relaxation times of protons was

measured with an IBM/Bruker PC minispec (Bruker Instruments, Canada) operating at a

)0.47 Tesla field strength and at 37 °C. As described in chapter 2, the relaxivities are a good

measure of the efficiency of MR contrast agents. Before each measurement was made, the

spectrometer was tuned and calibrated. The pulse length for each experiment was not

measured directly, rather a potentiometer with an arbitrary scale was used to adjust the

pulse lengths while observing the FID on an oscilloscope. T1 was measured from eight

data points generated by an inversion-recovery pulse sequence. T2 was measured from ten

data points generated by a Carr-Purcell-Meiboom-Gill pulse sequence with a X of 1 msec.

10 echoes were collected for each cycle through the measurements. T2 measurements were

fit using a non-linear least square method assuming mono-exponential decay. Each

measurement was repeated 3 times and individual results were averaged thereby yielding

statistically meaningful measurements. Inverse relaxation times were then plotted against

the iron concentration (Figure 4.12). The slope of these curves represents the relaxivity

and is expressed in (mM-sec)-l or (mmol/L-sec)-1.

Relaxivity Plot of MION

3O

0
(A 20

E

. 10

a-

r* 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Cx (pmol/mL)

Figure 4.11 A Typical relaxivity plot of MION
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4.4 Chemical Composition

It has been reported that the amount of surface bound dextran of MION alters the agents

biodistribution and its ability to interact with plasma proteins (Bogdanov, Papisov et al.

1992). Therefore it is important to determine and control the amount of dextran that binds

to the surface.

Spectrophotometry was used to determine the iron and dextran content of highly purified

MION. A DMS 100 spectrophotometer (Varian Instrument Group, Sugar land, TX) was

used to measure both iron and dextran concentrations (phenol/sulfuric acid method)

(I)ubois, Gilles et al. 1956). In this study, measurements were made at 410nm and 485

nm to determine the concentrations of iron and dextran respectively in MION samples.

Each sample for spectrophotometry study was prepared as follows: 25 gtl phenol reagent

(80% by weight) was added to 1 ml of sample solution in a test tube, followed by rapid

addition of 2.5 ml sulfuric acid (reagent grade 95.5%). The mixture was then allowed to

cool to room temperature prior to each measurement. The dextran-phenol complex showed

an absorption maximum at 485 nm. A series of standard Dextran T10 samples

(concentration range: 10-200 gtg/ml) were prepared to generate a calibration curve at 485

nm. The same procedures were repeated for diluted MION samples. The concentration of

dextran in each MION sample was then calculated from the calibration curve (Appendix B).

The iron concentration of each sample was measured at 410nm using the HCl/peroxide

method.

Two preparations of MION (37 and 46) with similar core size (approximately 5 nm) were

examined. These two preparations were synthesized with different initial Dextran

concentrations. Assuming that the magnetic core of the MION has an inverse spinel
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structure, and a 5 nm core contains approximately 2400 iron atoms. The iron percentage

(by weight) was then calculated. This result was then compared with elemental analysis

performed by Galbraith Laboratories, Inc. (Knoxville, TN). The following table

summarizes the results:

Table 4.2 Chemical composition of two MION preparations

MION-37 MION-46
(core size of 5 nm) (core size of 5 nm)

[Iron] 1.85 gtmol/ml 0.944 gtmol/ml
(0.103 mg/ml) (0.053 mg/ml)

[I)extran] 0.008 tmol/ml 0.0118 gtmol/ml
(80 g/ml) (118 tg/ml)

iron/dextran ratio =230 =80

number of dextran 10 =30
per MION core

iron% (calculated) 46.7% 27%

iron% 48% 17%
(elemental analysis)

Based on the available experimental data, a molecular model of MION was generated using

a computer aided Chemistry program (CAChe, Tektronix, Inc.) to visualize the MION with

surface bound dextran. This program allows construction of crystal structure and

polymeric molecules and it performs calculations of energy minimization for a given

secondary structure. Figure 4.13 shows the result of the MION model.

Page -92-



Physicochemical Characterization

Figure 4.12 Molecular model of a monocrystalline iron oxide

nanocompound. Electron microscopy and electron diffraction studies

indicate that the inner core of MION consists of an inverse spinel packing of

oxygen atoms (red), and divalent and trivalent iron (green). Assuming a

mean diameter of 4.6 nm, the average core would contain 2064 iron atoms.

Each core contains a mean of 25 surface bound dextran molecules resulting

in a schematic representation as shown in this figure (only 15 dextran

molecules are depicted to show the central iron oxide core).
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4.5 Summary

][In this chapter, we have evaluated the physicochemical properties of MION as a universal

label for targetable MR imaging. MION is chemically well defined, highly pure, stable

colloidal solution of dextran and magnetite single crystals with a molecular weight less than

'300 kD. This compound is thus different from polydisperse iron oxide aggregates

previously used for MR imaging. The magnetic properties of MION are typical of

superparamagnetic compounds at room temperature.

The results indicate the feasibility of the synthesis of a well characterized iron oxide

solution in which individual crystals are in the nanometer size range and still exhibit high

magnetic susceptibility. MION has a magnetite central core with an average diameter of 4.6

± 1.2 nm, and an average hydrodynamic radius of 20 + 5 nm. The relaxivities of MION

change dramatically with the central core structure, however, variation of surface polymeric

coating has little effect on the relaxivities.

The amount of surface-bound dextran content can be varied with a given core size, and

their opsonization properties will be evaluated in the following chapter.

Page -94-



Biological interactions

Chapter V

Biological Interactions

The characterization of the physicochemical properties of MION with various techniques

has been described in the previous chapter. The results from these studies indicate that

MION has potent magnetic properties for use as a MR contrast agent.

In this chapter, experiments were performed to evaluate the interactions of MION with

various biological components. First, the cellular response to these agents was evaluated in

a model system of rat hepatocyte culture. Second, the interactions of MION with various

blood components were studied by ultracentrifugation. Finally, the blood half-life of

MION with various surface coatings was studied in rats.

5.1 Cellular Toxicity

Hepatocyte culture was chosen as a model system for the evaluation of toxicity of MION.

Upon the administration of MION, the response of cellular physiology can be monitored by

the albumin secretion rate, one of the most sensitive indicators of cellular functions of

hepatocytes.

5.1.1 Preparation of Hepatocyte Culture

Hepatocytes were isolated from 2-month-old female Lewis rats by a modified procedure of

Seglen (Seglen 1976). Briefly, the animals were anesthetized with ether, the liver,

weighing approximately 8 grams, was perfused with 300 ml of calcium free Krebs Ringer
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bicarbonate buffer, containing 5.5 mM glucose and 20 mM HEPES, pH 7.4, at a rate of

50 ml/min. The purfusate was maintained at 37° C and equilibrated with 95% 02 and 5%

CO2. The liver was subsequently perfused with a 0.05% collagenase (Type IV, Sigma, St.

Louis, Mo.) solution containing 5 mM Ca2+ for 10 minutes in a recirculating circuit. The

resulting cell suspension was filtered through two nylon meshes with grid size of 250 and

62 gtm. The cell pellet was collected by centrifugation at 50g for 5 minutes. Cells were

further purified by a modified procedure of Kreamer et al (Kreamer, Staecker et al. 1986).

The cell pellet was re-suspended to 50 ml, and 12.5 ml of cell suspension was added to

10.8 ml of Percoll and 1.2 ml of 10 x concentrated Dulbecco's modified Eagle medium

(DMEM, 4.5 g/liter glucose). The mixture was centrifuged at 500 g for 5 min, and the cell

pellet was washed with DMEM.

Type I collagen was prepared from rat tail tendon by a modified procedure of Elsdale and

Bard (Elsdale and Bard 1972). Four tendons were dissected from each rat tail and stirred

into 200 ml of 3% acetic acid overnight at 4 °C. The solution was filtered through four

layers of cheesecloth and centrifuged at 12,000 g for 2 hours. The supernatant was

precipitated with 40 ml of 30% NaCl. and the pellet was collected by centrifugation at 4000

g for 30 min. After two rinsing with 5% NaCl and 0.6% acetic acid, the pellet was

dissolved in 50 ml of 0.6% acetic acid. The solution was dialyzed against 5 x 500 ml of 1

imM HC1 and sterilized by evaporating 0.15 ml of chloroform through the solution. A 5-ml

aliquot was lyophilized and weighed to determine the concentration.

Hepatocytes were cultured on gelled rat tail tendon collagen. Plates were prepared by

distributing 1 ml of collagen gel solution evenly over a 60 mm tissue culture dish one hour

prior use. Two million viable cells were seeded in 4 ml of complete medium, consisting of

IDMEM, supplemented with 10% fetal bovine serum, 0.5 U/ml insulin, 0.007 ptg/ml

glucagon, 0.02 gtg/ml epidermal growth factor, 7.5 g/ml hydrocortison, 200 U/ml
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penicillin, and 200 [tg/ml streptomycin. The second layer of collagen gel was spread over

the cells after one day of incubation with 5% C02. Thirty minutes were allowed for

gelation and attachment before the medium was for gelation and attachment before the

medium was replaced. The culture medium was changed daily. The in vitro hepatocyte

culture was provided by the department of surgical research at Massachusetts General

hospital.

5.1.2 Enzyme-linked Immunosorbent Assay (ELISA)

The collected media samples were analyzed for the rat albumin content by enzyme-linked

immunosorbent assay (ELISA). Chromatographically purified albumin was purchased

from Cappel (Cochranville, Pennsylvania). Antibodies to albumin were purchased from

Cappel. The 96-well plates (NUNC-Immuno plate, Maxisorp, Newbury Park, California)

were coated with 100 tl of 50 glg/ml rat albumin in 25 mM carbonate buffer, pH 9.6,

overnight at 4 C. The wells were washed four times with PBS plus 0.5% (v/v) Tween 20

(PBS-Tween). Fifty microliters of sample was mixed with an equal volume of antibody

(800 ng/ml in PBS-Tween) before it was transferred to the wells. After overnight

incubation at 4 C, the wells were washed four times with PBS-Tween and were developed

with 100 l of 25 mM citrate and 50 mM phosphate, pH 5, plus 0.4 mg/ml o-

phenylenediamine and 0,012% (v/v) hydrogen peroxide at room temperature. The reaction

was stopped with 50 gtl of 8 N sulfuric acid after seven minutes of incubation. The

presence of bound antibodies was detected by conversion of o-phenylenediamine by

conjugated peroxidase. The absorbance was measured at 490 nm with the Dynatech

]MR600 microplate reader (Chantilly, Virginia). Positive controls included known

concentrations of purified rat albumin, transferrin, and fibrinogen added to culture medium,

and negative controls included the culture medium and PBS-Tween. Concentrations of

standards were calibrated by their absorbance at 280 nm, using 0.6 as extinction coefficient
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for 1 mg/ml solution of albumin. Concentrations of samples were determined from a

standard curve generated for each ELISA plate. Absolute rates of secretion were calculated

from the concentration by multiplying the total volume of the medium (plus the volume of

the collagen gel only on the day when it was introduced to the culture) and dividing by the

e lapsed time. Results for each sample, and replicate cultures agreed within 10% of each

other (Dunn, Yarmush et al. 1989; Dunn, Tomkins et al. 1991; Dunn, Tomkins et al.

1991).

5.1.3 MION Incubation:

Two groups of hepatocyte dishes were incubated with MION and MION-ASF respectively.

Two dishes in each group were used as controls, the rest was incubated with 100 and 200

ktmol/dish concentrations of MION. These concentrations are 105 times that of required

clinical dosage. The cells were viable for two weeks during which the culture medium was

changed daily. The albumin secretion rates were evaluated by analyzing the amount of

albumin by ELISA techniques described above.

Results from the study are shown in Figure 5.1, depicting the albumin secretion rate of

hepatocytes in the cell culture versus the time (in days) after incubation with MION and

MION-ASF. The gradual increase in albumin secretion rate is typical for newly isolated rat

hepatocytes in a double sandwiched gel, indicating the recovery of cell function after

isolation (Dunn, Tomkins et al. 1991). Even at the high MION concentrations (105 times

clinical dosage) used, the effect of MION on the albumin secretion rate of the hepatocytes is

statistically insignificant. Similar results were obtained with MION-ASF.

Based upon this experiment, it is expected that MION can be used at the clinical dosage

without any measurable toxic effects to the liver.
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Figure 5.1 The albumin secretion rate of hepatocytes in the cell culture as

a function of time (in days) after incubation with MION and MION-ASF.

The gradual increase in albumin secretion rate is typical for newly isolated

rat hepatocytes in a double sandwiched gel, indicating the recovery of cell

function after isolation. Even at the high MION concentrations (105 times

clinical dosage) used, the effect of MION on the albumin secretion rate of

the hepatocytes is statistically insignificant.

Page -99-



Biological interactions

5.2 Interaction with Blood Components

The in vivo behavior of a "foreign" object is influenced by its association with blood

components. Association with blood components makes such objects more easily

recognizable, resulting the enhanced removal from circulation. The purpose of the

experiment was to determine to what extent MION binds to blood components after

intravenous administration.

][n this set of experiments MION with a radio labeled (111In) core (MION-In) was used.

The procedure of the experiment is shown in Figure 5.2. 11 1In core-labeled MION

(approximately 100-200 ng) was incubated for two hours with 1 ml of fresh drawn citrated

whole rat blood. Following the withdrawal of blood, 111In core-labeled MION was

injected intravenously into the rat. After two hours 1 ml of the rat blood was drawn from

the in vivo circulation. Ficoll-metrizoate density gradients were used to fractionate the

whole blood (both from in vitro and in vivo experiments) into plasma, leukocyte and

erythrocyte fractions. The radioactivities of these fractions were counted using a high

efficiency gamma counter (Hewlett Packard Auto-Gamma Scintillation Spectrometer,

Hewlett Packard Instruments, Chicago, IL).

Figure 5.3 shows the radioactivity of each blood component obtained from in vitro

incubation and in vivo circulation. After incubation of MION with whole blood, 96.5-98%

of MION was found in the plasma fraction, while the cell-associated MION (1.7-2.8%)

was found predominantly in the erythrocyte fraction. Similar results were obtained from

the blood sample when MION was injected intravenously, although it has to be recognized

that the radioactivity in the rat blood decreased over the course of the experiment, due to the

removal of some of the MION-In from the circulation. During the two hours incubation,

no significant amount of MION was associated with the leukocyte and erythrocyte
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fractions, suggesting that MION did not bind to the leukocyte and erythrocyte significantly

during the course of a typical patient examination in the clinical setting.
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Figure 5.2 Experimental set-up for evaluating the interactions of MION

with blood components: 11 1In core-labeled MION (approximately 100-200

ng) was incubated for two hours with 1 ml of fresh drawn citrated whole rat

blood. Simultaneously, 11 IJn core-labeled MION was injected

intravenously in a rat. 1 ml of the whole rat blood was drawn after two

hours in vivo circulation. Ficoll-metrizoate density gradients were used to

fractionate the whole blood into plasma, leukocyte and erythrocyte

fractions. The radioactivities of these fractions were counted using a high

efficiency gamma counter.
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Figure 5.3 Percentage radioactivity of MION associated with different

components of whole rat blood. After incubation of MION with whole

blood, 96.5-98% of MION were found in plasma fraction, where cell-

associated MION (1.7-2.8%) were found predominantly in erythrocyte

fraction. Similar results were obtained from the blood sample when MION

was injected intravenously.

5.3 Blood half-lives of MION

]Blood half-life is an important biological property, and it can be used to evaluate the

targetability of MR contrast agents. If the blood half-lives of the contrast agents are short,
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the chances of delivering the agents to the target sites are small. Therefore, a efficiently

long blood half-lives are desirable. Blood half-lives of MION with various surface

coatings were measured in Sprague-Dawley rats (n = 5 per compound). The anesthesia

was induced by Katamine, xylasine and Acepromocine (check spelling) at dosages of 50,

5, 2.5 mg/kg body weight respectively, and was maintained with half of the induction dose

every 45 minutes for six hours. A 19-Gage catheter was inserted to the right femoral artery

for the blood sampling and one to the right femoral vein for intravenous administration of

contrast agents. Blood samples were drawn before the administration of contrast agents (as

controls) and at multiple time points after the intravenous injection. The relaxation times of

the blood samples were measured and averaged over 5 animals tested for each preparation.

T'2 varies linearly with the MION concentration in the blood sample, so that the

concentration of MION in the blood at each point in time could be calculated from its T2

relaxation time. Thus, the percentage of initial concentration in the rat blood was plotted as

a function of time. Figure 5.4 shows a typical exponential decay of unlabeled MION, from

which its blood half-life was calculated. Intravenously injected unlabeled MION has a

blood half-life of 45 + 5 minutes in rats. Table 5.1 summarizes the blood half-lives of

MION coated with different polysaccharide surfaces. The unlabeled MION (Dextran

coated) has the longest blood half-life among the various polysaccharide-coated MION

preparations. This is expected because the polysaccharide-coatings were specifically

selected to target the golactose receptors on the liver cells, whereas unlabeled MION was

designed to be "invisible" to the immune system and the phagocytic macrophages in liver

and spleen, and non-specific to the receptor system mentioned above.
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Figure 5.4 A typical blood half-life plot of an unlabeled MION in rats.

The fraction of initial concentration of MION in the blood is plotted as a

function of time. The decay follows an exponential function from which the

blood half-life was calculated.

Table 5.1 Blood half-lives of MION samples

MION-surface coating Blood half-lives (minutes)

MION (unlabeled) 45 + 5

MION-Mannan 25 + 5

MION-Chitosan 5 ± 3

MION-Fucoidan 15 + 5

MION-Arabinogalactan 10 ± 3
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Chapter VI

In vivo MR Imaging

In the previous chapters, physicochemical properties (especially the relaxivities) of MION

samples were evaluated in aqueous solution. In this chapter, the feasibility of MION as

receptor or immuno- specific contrast agents in vivo was studied by MR imaging. This is

the ultimate test in the development of MR contrast agents. These experiments can provide

evidence of the applicability of MION agents in future clinical diagnosis.

6.1 Conventional MR Imaging

6.1.1 Animal Preparation

Sprague-Dawley rats (500-700 g body-weight, Charles River Laboratories, Wilmington,

MA; ) were used as the animal model for in vivo experiments. The anesthesia was induced

by Katamine, xylasine and Acepromocine (check spelling) at 50, 5, 2.5 mg/kg dosage

respectively, and was maintained with half of the induction dose every 45 minutes. A 19-

Gage catheter was inserted to the right vein for intravenous administration of contrast

agents.

6.1.2 Imaging Experiment

Pulse sequences used in the MR imaging experiments were optimized on a 1.5 T Signa

(GE, Milwaukee, WI) system, where MR imaging was performed. Animals were placed

supine in a standard GE knee coil. Spin echo (SE) images were obtained at SE 2000/30
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(TR/TE) as control images before administration of the contrast agents. One hour after

intravenous injection of unlabeled MION or other polysaccharides coated MION

preparations (10 gmol/kg body-weight), a series of coronal images was acquired using the

same imaging techniques. Signal changes in the liver were recorded with an automatic

region-of-interest program implemented on the imaging system. Figure 6.1 shows typical

MR images obtained before and after (pre and post) the administration of unlabeled MION.

Note the decrease in signal intensity of the liver region.

The contrast enhancement by polysaccharides coated MION were compared to unlabeled

MION and saline injections with respect to their ability to reduce liver signal intensity.

Following intravenous administration of 10 gtmol/kg body-weight of various contrast

agents, liver signal intensities decreased noticeably. The following table summarizes the

relative changes in liver signal intensity from SE 2000/30 images.

Table 6.1

Relative signal intensity change

Compound Liver SI change (%)

MION (unlabeled) -14

MION-Mannan -27

MION-Chitosan -20

MION-Fucoidan -15

MION-Arabinogalactan -37
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Live

Figure 6.1 Coronal MR images (SE 2000/30) of a rat obtained before
and after administration of unlabeled MION (pre and post). The injection
dosage was 10 mol/kg body-weight. Note the localization of the agent in
the liver region shown as general reduction of signal intensity of the liver.
This is a typical example of contrast enhancement by MION as a T2 agent,
also regarded as a negative agent.
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6.2 Fast in vivo MR Imaging of MION and MION-ASF

Fast imaging techniques (i.e., images acquired in a few seconds or less) can be useful in

reducing number of artifacts associated with many types of physiologic motion such as

respiratory and cardiac motion. In addition, fast MR techniques have the potential for

imaging dynamic processes. Echo planar imaging (EPI) is significantly different from

standard MR imaging methods in which one phase-encoding step is applied after each rf

excitation. With 2DFT methods, only one projection is acquired with each TR interval, so

that the image acquisition time is relatively lengthy (Kantor, 1990). In contrast, the EPI

method acquires all projections needed to create an image after a single RF excitation. This

is accomplished by rapidly oscillating the frequency-encoding gradient during the envelope

of a spin-echo signal. First, as in a 2DFT SE sequence, a spin echo is produced by

application of a 900 and 1800 RF pulse, with the echo peaking at the echo time. However,

rather than applying a single phase-encoding gradient and a constant frequency-encoding

gradient, the frequency-encoding gradient is rapidly oscillated during the build-up and

decay of the spin-echo. A series of gradient echoes are thereby produced, each of which is

separately phase-encoded by application of a very brief phase-encoding gradient pulse.

Because all of the data are acquired after a single RF pulse, the TR is nearly infinite. As a

result, the images are free from T 1 weighting and can be strongly T2 weighted, with the

degree of T2 weighting dependent on the value of TE. Therefore T2 contrast agents

'(MION) are particularly well suited for use with EPI.

The pharmacokinetics of MION and MION-asialofetuin were assessed in vivo using echo

planar imaging. With an acquisition time of 40 msec, multiple coronal images can be

obtained displaying organs of interest (liver, spleen, kidneys, muscle, brain).

Measurements of liver signal intensities were obtained, and plotted as a function of time

after administration of MION and MION-ASF. Because MION and MION-ASF have
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identical magnetic core properties and relaxivities, it can be concluded that more MION-

ASF was directed to the liver than the unlabeled MION. The MR signal intensity decay rate

caused by MION-ASF indicates the rapid uptake of the agent by the liver. In the case of

unlabeled MION, on the other hand, the MR signal intensity decays rapidly immediately

after intravenous administration, and then decreases gradually over the sampling period of

30 minutes. These findings are further evidence for the directability of the modified

MION.
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Figure 6.2 Liver signal intensity decreased significantly after

administration of equal dosage (10 tmol Fe/kg) of MION and MION-ASF.

Because MION and MION-ASF have identical magnetic core properties and

relaxivities, it can be concluded that more MION-ASF was directed to the

liver than the unlabeled MION.
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Chapter VII

Discussion and Future Directions

The work presented in this thesis is the development of a new class of MR contrast agents

for receptor- and immuno-specific imaging. The results have shown the importance and

feasibility of synthesizing chemically well defined superparamagnetic compounds that can

be used as universal labels in MR contrast agents. Furthermore, the targeting of such a

magnetic label to selected tissues by attaching specific carrier molecules has been

successfully demonstrated.

Paramagnetic ions, (e.g. Gd, Mn) can be used as T1 labels for target specific MR imaging

if the ions are chelated via DTPA. Gd-DTPA is thus far the only FDA approved MR

contrast agent for use in clinical practice. Gd has a high toxicity when detached from

DTPA although in order to achieve measurable contrast enhancement in MR imaging, a

high dosage is required. Commercially available iron oxide based contrast agents have

previously been suggested for MR imaging, but those aggregates too large in size to be

used as a universal label, since target specific delivery requires a well defined label with a

size small enough to pass through the capillary endothelium. The smaller the size of the

label, and the better shielded from recognition, the higher its probability of successful

delivery to the targets. In order to retain a high magnetic susceptibility at this small size

(nm range), a well defined chemical composition and crystal structure are required.

Through a systematic investigation of the factors which affect core structure, size and

:stability of iron oxide particles synthesized in aqueous solution, monocrystalline iron oxide

nanocompound (MION) was designed and optimized as a universal label for target specific

MR imaging. The reaction conditions including the initial ratio of Fe(II) and Fe (III) and
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reaction temperature were optimized to ensure the formation of magnetite for the MION

core with an average size in the nanometer range. The stability of a colloidal solution of

MION was optimized by using Dextran polymers in the initial reaction mixture. In

addition, Other polysaccharides and proteins were successfully conjugated to MION by

covalent and non-covalent attachments for target specific delivery. Changes in surface

coating showed little influence on the magnetic properties of MION.

X-ray powder diffraction analyses indicated that MION consists of a central magnetite-like

core. Electron diffraction patterns obtained from HRTEM investigation confirmed that each

MION central core was a single crystal. Colorimetric analysis for glucose revealed that

there were approximately 20-30 dextran molecules attached to the surface of a 5 nm MION

core. The dextran rod-like molecules are non-flexible, increasing the overall size from 5

nm to 20 nm in aqueous solution. This concept was used for antibody binding without

chemical alterations of the conjugates. Preferable MION preparations for targeting

purposes however, were shown to have maximum number of dextran molecules per iron

oxide core to shield it from strong interaction with plasma proteins.

Monocrystalline iron oxide studied exhibited a strong induced magnetization at clinical field

strengths (68 emu/g Fe at 1.5 T). The individual spins within the iron oxide crystals

followed the superparamagnetic theory with hyperfine splitting of 505 KOe. The induced

magnetization is a direct result of the structure of the iron oxide core and the its size. The

current results and those of a previous study seem to indicate that the size and chemical

structure of the iron core is the major determinant for the magnetic effect of the stabilized

iron oxide complex. Surface modification has little or no effect on the relaxivities of MION

preparations (Shen, Weissleder et al. 1991).
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In order to be approved for clinical application, MION has to be shown safe in use.

Therefore, the first steps have been taken is evaluate the biological interactions of MION

with a variety of biological systems. The response of in vitro hepatocytes to the incubation

with high concentrations of MION did not show statistically significant changes in the

normal cell functions. To minimize the recognition of MION by the immune-system, the

Dextran content of MION was optimized. This also improved the stability of MION

colloidal solution. The MION can be lyophilized when need to be stored for longer period

of time, and can be easily redissolved in a physiological buffer. This make the future

storage and preparation in a clinical environment convenient. By changing the surface

polymeric coatings of MION, the blood half-lives and in vivo destination could be altered.

In vivo MR imaging experiments have shown that the use of MION at a dosage more than

1000 or 106 times (taking iron particles and atoms as a unit respectively) lower than that of

iodinated radiographic contrast agents, can result in a factor of four decrease in the signal

intensity of the liver. In addition, iron is a non-foreign element to the human body: one 10

p.mol/kg dosage is equivalent to a few days of iron intake for an average person.

In summary, prototypic monocrystalline iron oxide compounds have been characterized by

physicochemical methods. Although several preparations have been used, the results

indicate that the magnetic core is solely responsible for the efficiency of MR contrast

enhancement of the targeted complexes, irrespective of surface attachments. Surface

attached macromolecules on the other hand have been shown to be largely responsible for

the biological properties of the compounds.

The research field for MR contrast agents is rapidly expanding. A 1990 survey found that

48 companies and 86 other organizations are active in this area of research. There exists a

"wide variety of potential magnetic labels and even greater range of potential applications of

MR contrast agents. However industry and funding agencies have shown substantial
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interest, the resources available are limited. It is therefore necessary to direct these

resources to the research on the most promising and flexible agents. Gd-DTPA has already

gained approval by the US FDA and has started to show its efficacy in clinical practice.

However, its toxicity at required dosage and clustered conjugation to carrier molecules limit

its applicability. MION has now been well characterized physically and has shown to be a

flexible, targetable and effective magnetic label, making it one of the most promising

contrast agents to be developed as a universal label.

Based upon the results of this thesis research, the road is now open to the investigation of

the conjugation to a large variety of carrier molecules and their efficacies of in vivo

targetabilities. Immuno-specific and receptor-specific targeting of liver as well as pancreas,

for example will have important clinical applications. In addition, MION can be used as an

effective indicator to assess a variety of organ functions and physiological parameters (such

as blood flow, perfusion, deoxygenation, etc.). It is not difficult to see that together with

more sophisticated imaging software and rapidly improving imaging hardware, MION can

be used to evaluated quantitatively as well as qualitatively the physiological functions and

pathophysiological conditions.

As a result of this thesis research, it is now possible to synthesize magnetic labels with a

well defined size and structure, which could greatly facilitate further research on the

mechanism of relaxation of T2 agents. For example, particles of any size and any magnetic

moment can now be synthesized by careful control of the reaction temperature and

substitution of Fe (II) by other divalent metal ions. Experimental data acquired from a

range of such particles can provide useful insight for the development and verification of

relaxation theory of protons.
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Finally, the scaled-up production of MION with reliable and uniform properties is an

important next step in the development of MION towards clinical applications.

Targeting of MION via specific carrier molecules is becoming and will remain an exciting

research field where many results from these research will increase the efficiency and

accuracy of clinical diagnosis, providing the possible early detection of diseases. This in

turn will allow more effective treatment and improve the quality of life of patients.
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Appendix

Appendix (Facilities)

The SQUID magnetometer and Mbssbauer Central Facility at MIT has operated since the

mid-1980's as an interdisciplinary shared research resource center for microscopic

magnetic characterization of materials.

The Missbauer spectroscopy laboratory consist of two conventional constant acceleration

spectrometers equipped with Janis Research Corp. "Supervaritemp" cryogenic dewars.

One is a zero-field variable temperature system with a Lake Shore Cryotronic model DRC-

70C temperature controller capable of maintaining sample temperatures of range 1.6< T <

300 K with in 0.1K. The other, in addition to temperature variation with a TRI-Research

T-2000 temperature controller with 1.6 < T < 400 K, is also equipped with a Nb3Sn

superconducting magnet by American Magnetic Corp. capable of producing a longitudinal

(i.e. parallel to the direction of the g-ray) magnetic field of Ho < 8 T. Standard peripheral

electronics, pumping stations, data acquisition and processing systems are also available.

Elaborate software for detailed Mossbauer spectral fitting and analysis has been developed

and operates on a Digital VAX740-VMS system.

'The SQUID magnetometer is by SHE Corporation with temperature and field variation of

1.6 < T < 400 K and Ho < 5 T. It has a magnetic moment sensitivity down to 10-6 emu.

It is computer interfaced with a Hewlett-Packard 86B computer system equipped with two

HP-9121 disk drives. Data acquisition may be performed under manual and computer

control. The latter mode of operation allows lengthy data acquisition to be done

automatically under continuous operation.
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Appendix

The MGH-NMR Center is comprised of clinical, research, education and administration

areas. The research area contains a whole body echo planar imager (General Electric and

Advanced NMR systems, Woburn), a 2.0 T small magnet laboratory, a 4.7 T laboratory

(CSI, General Electric Corp., Fremont, Ca), a 6.o T (Oxford Instrument Ltd., Osney

Mead, UK) and a 9.4 T laboratory (Bruker 9.4 T MSL system). There are also multiple

0.4.7 T tabletop PC20 Minispec NMR instruments (IBM, Danburg, CT), biochemistry,

chemistry, immunology, surgery and computer laboratories within the facility.
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