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Abstract

A scheme has been developed for analyzing, by few-group nodal methods corrected by dis-
continuity factors, transients for which neutron space and energy distributions change signif-
icantly and for which a multigroup transport model is needed for accurate simulation. For
this scheme, spatially-homogenized, few-group cross sections and discontinuity factors for the
nodes are edited from static, fine-mesh, multigroup transport calculations for various condi-
tions expected during the transient; tables of the few-group parameters vs. the variables of the
transient are constructed, and the few-group, node-homogenized cross sections and disconti-
nuity factors needed as the transient progresses are found by interpolation. The interpolation
procedures are developed with the reference calculations performed using either Monte Carlo
or discrete ordinates transport methods. Because of statistical errors that limit the accuracy of
the interpolation tables when Monte Carlo is used, the deterministic discrete ordinates method
appears to provide the more accurate interpolated values. Application of the scheme to the
transient analysis of a simplified R-Z model of the proposed Advanced Neutron Source Reactor
shows the inacuracy of the point kinetics model and the need for space-dependent schemes for

the transient analysis of tightly coupled reactors.
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Chapter 1

Introduction

1.1 Background

In reactor physics calculations, the analysis of fast neutronic transients is essential in both the
design phase of any reactor and in calculations to support its operation [1]. Traditionally, this

analysis is performed using a fine-mesh, few-group, diffusion theory approximation.

Modern, systematically derived, few-group nodal methods incorporating discontinuity factors
as defined by Smith [2] (a variant of the heterogeneity factors earlier introduced by Koebke
[3]) have been very successful when applied to the analysis of light water reactors to correct

for transport and homogenization errors.

One reason for this success is the relatively short distance neutrons travel in slowing down
and diffusing in light water. Except for thin regions near interfaces, fission, absorption, and
scattering rates for the materials comprising a fuel assembly are highly insensitive to the flux
boundary conditions on the surface. As a consequence, except for nodes in the reflector next to
the core, homogenized, energy-group cross sections and discontinuity factors for an assembly,
based on a zero-net-current boundary conditions, yield very accurate nodal flux shapes and

k-effective values when used for full core calculations.

For tightly coupled reactors, such as high flux research reactors, neutron source reactors, and
reactors used for space flight — or more generally, reactors moderated by heavy water or
graphite that often contain highly absorbing regions interspaced with low absorbing regions,
the above scheme is no longer accurate. Attempts to overcome the difficulty by surrounding
the assembly of interest by regions simulating its actual environment in the reactor have not

been successful.



1.2 Objective

For the tightly coupled cores mentioned above, spectral shapes change dramatically with po-
sition and can be altered significantly by such perturbations as control rod motion or coolant
boiling. Accurate analysis requires at least two-dimensional, multigroup, transport calcula-

tions.

For static cases, these calculations are today quite doable, although rather expensive. However,
the cost for the hundereds of transient cases needed for a complete control design and safety

analysis seems prohibitive.

The first objective of this thesis, is to get around this difficulty by applying a few-group nodal
model corrected by discontinuity factors to the analysis of severe transients for which the point
kinetics approximation is inaccurate. For such a scheme spatially-homogenized, few-group cross
sections and discontinuity factors (which we shall refer to as “nodal parameters”) for the nodes
are edited from static higher order reference calculations (such as Monte Carlo or fine-mesh,
multigroup transport calculations) for various conditions expected during the transient; tables
of the few-group nodal parameters vs. the variables of the transient (control rod location,
coolant temperature and density, etc.) are constructed, and the few-group, node-homogenized
cross sections and discontinuity factors needed as the transient progresses are found by table

interpolations.

The second objective of the thesis arises from the fact that for the tightly coupled cores be-
ing considered, full core calculations appear to be required to determine the few-group nodal
parameters. This makes finding them very expensive. In this study, we are interested in devel-
oping methods for reducing that expense both when the reference calculations are performed
using Monte Carlo and when they are performed by multigroup, discrete ordinates transport

methods.

A final objective of the thesis is to perform neutronics calculations for some transient cases of
interest for the safe design of the Advanced Neutron Source reactor (ANS) being developed at
the Oak Ridge National Laboratory. A multigroup transport code is required for an accurate
analysis of this reactor. This fact, along with the poor accuracy of the point kinetics scheme for
the analysis of ANS transients (as shown by E. L. Redmond II [4] and M. E. Byers [1]) focuses
attention on developing a transient nodal method that is capable of accounting for multigroup

transport effects without requiring an unacceptably large expenditure of computing time.
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The Advanced Neutron Source (ANS) will have a peak thermal neutron flux of approximately

8.5 x 101° 2eyfrens T s being designed for condensed matter physics, material science, isotope
production, and fundamental physics research [5]. The reactor is in its conceptual design phase,
and a reference reactor design has been selected in order to examine safety and performance.
Modifications to this design continue to be made as research efforts show further improvements.
Figure (1-1) shows a model of the proposed core of this reactor. Several changes have been
made to this design during the past two years of this research; a complete description of the

Advanced Neutron Source reactor is given in Appendix A.

1.3 Nodal Methods

The first step in deriving a nodal method (common to all schemes) is to derive the nodal balance
equations by integrating the Boltzman transport equation over all directions of neutron travel,
over individual energy groups and over the volume of the node. To solve the resulting equations,
coupling relations that relate the volume-averaged flux and the face-averaged currents are
introduced. Fick’s law, with a finite difference scheme or any higher order approximation, are

used to obtain those relations [6].

Examination of the geometry of the Advanced Neutron Source (Appendix A) suggests that a
nodal model in cylindrical geometry is best suited for the analysis of this reactor. In the next
chapter, systematic derivation of a quadratic nodal model in cylindrical R-Z geometry

will be given.

It should be noted that although the specific reactor to be analyzed is the Advanced Neutron

Source, the method itself is applicable to any high flux density, tightly coupled core.

1.4 Thesis Organization

In Chapter 2 a systematic derivation of a quadratic nodal model in R-Z geometry will be
given. Features of the program ZAQ [1] that adopts this model will be discussed along with
some new features that are necessary for the present application and which were added to the

existing version of the code.

In Chapter 3, the use of Monte Carlo techniques embodied in the continuous energy Monte
Carlo code MCNP (7] to provide a reference calculation for different static cases of the ANS

will be discussed. Nodal parameters edited using this method will be presented.

11
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Figure 1-1: The Advanced Neutron Source reference offset split core with control
rods and reflector shutdown rods inserted. A D20 reflector completely surrounds

these assemblies. (Taken from reference [5]).
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In Chapter 4, we shift our attention to the use of multigroup discrete ordinates transport
methods and the TWODANT (8] code for editing the required few-group nodal parameters.

The use of those parameters in static calculations of the ANS will be studied.

In Chapter 5, results of several transient situations of interest to the design of the ANS (control
rod motion, temperature changes and reactor scram) will be analyzed making use of proposed

interpolation procedures.

Finally, Chapter 6 provides the thesis summary, conclusions, and recommendations for future
work, along with physical arguments supporting the applicability of the developed schemes to

other types of reactors.

13



Chapter 2

Nodal Methods in R-Z Geometry

The aim of this chapter is to sketch the derivation of nodal equations for R-Z geometry in
both static and transient cases. Most of the theory reported here has been laid out in theses
by E. Tanker [9] and M. E. Byers [1]. For a complete derivation, the reader is advised to refer
to those two references. This chapter is a summary of the derivation of reference [1]. Some

parts reported here are taken directly from that reference.

2.1 Static Calculations

The starting point is the few-group form of the extraneous-source-free neutron balance equation

for a reactor with stationary fuel, i.e.

X

Vo Ja(r) + Bugle)dy(x) = 79D v Bag () (r) + D Roq ()b (x) (21)
e g' g’

for ¢ = 1,2,...,G, G being the total number of neutron energy groups. The different terms

appearing in equation (2-1) are defined for a small volume element dV surrounding r; we have

e V.J,(r)dV is the total leakage rate out of dV for neutrons belonging to energy group g.

o Xy(r)de(r)dV is the total interaction rate within dV for neutrons in energy group g.

®  Xg2.gVEgi(r)pg(r)dV is the rate at which neutrons in dV are created in group g due
to fissions appearing in all energy groups.

o 3 Zgg(r)pg(r)dV is the rate at which neutrons in dV scatter from all energy groups
into group g¢.

The vector r specifies position, r = (r, z) in two-dimensional cylindrical geometry, and kegy is

the eigenvalue.

14



For the two-dimensional R-Z cylindrical geometry at hand, the reactor is modeled as a right
circular cylinder subdivided into nodes, the central one being a right circular cylinder and all
others being cylindrical shells; the nodes are bounded from above and below by planes normal
to the axis of the reactor. It is assumed that each node is characterized by a single set of

few-group constants.

k+1

node

(k)

l i+1
Figure 2-1: View of a single node in R-7Z geometry

Integrating equation (2-1) over the volume of a node and using the divergence theorem for the

leakage term yields the following nodal balance equation
2w Az i1 T (rign) = midb (r)] + 7(rBy = 7) [Toa(zn) = Toa(a)]
ik gtk - Xg Z vERE GV 4 Z sk g ik (2.2)

where with V5* as the volume of the node (7, k) extending radially from 7; to 7;4; and axially
from zj, to zgy1, VO* = [[i41 2xrdr [+ dz = 7(r, — 7F)Az,
[it dzdg,(r, z) - St 2mrdrJg,(r, 2)

Tor(r) = 2, B )

bl

sik _ Jt 2mrdr [O dag(r, 2) i
by = V:k and Eo;’g"' =

fr:"“ 27 rdr fzz:+l dz¥qg(r, 2)pg(r, 2)
;;’kvi,k
2.1.1 Nodal Equations in Finite Difference Form

Equation (2-2) thus far remains exact. The energy and space dependence, within each node

(7, k), have been integrated out formally.

The currents in this nodal balance equation may be expressed approximately in terms of the

fluxes by using Fick’s law:

15



Jg(r) = —Dyg(r)V4(r) (2.3)

Using the finite difference approximation to treat the gradient term in equation (2-3) and
applying it to the 4+ and — sides of the right face of node (7, k) (left face of node (i + 1, k)) in
the r-direction, and to the + and — sides of the top face of node (%, k) (bottom face of node

(i,k + 1)) in the z-direction yields:

. r-direction :
:;‘*‘l’k </_>g;+(1";+i) ' By 1(:»:1) q;;k
Tk(rena)t = —Dyk | — ot , (i) = D || (2.4)
2 2
. z-direction :
‘"2’°+1 _ $’§’ii'£it;i_x) $'é':i('ik+il) _ (z;’k
Il’k(zk+l)+ = _D;’kﬂ A_zk__{__f'z , ’ j;’zk(zk+1)— = ‘D;'k £ A_zzb' (25)
2

where ¢L*(r;11) and @i*(241) are the face-averaged fluxes, defined as average values of the

flux on the nodal face at 7;;; and 2z respectively

[24 dzgye(r, 2)

- - [t 2mrdrgg.(r, 2)
¢)§r(r) = Az 3 gz(z) = g

7’(72'2+1 - 7'12)

and where we have introduced discontinuity factors fl ™% in equations (2-4) and (2-5) to force
those expressions to reproduce any reference values of the face-averaged currents and volume-

averaged fluxes.

It is important to note that the discontinuity factors are marked to indicate the + and —
sides of the node, not the face, with which they are associated. Figure (2-2) shows the sign

convention between two adjacent nodes in the r-direction.

- + - node +

. — >

Tor(ro) T (ri) Tat (rua)

Figure 2-2 : Sign convention between two adjacent nodes
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Using the fact that the face-averaged-current is continuous, we can combine equations (2-4)
and equations (2-5) by eliminating the face-averaged-fluxes from each set to yield, for the r

and z directions respectively

=1,k B fiil"'*_ =i+1,k ;i,k _ f"vz"‘“v‘ =1,k+1
ik ¢g f;';_k.'i' g —_ g f;,kv'!- g
1 _ z
J;’r (Ti-i-l) = i+l k- ) Jg,z (Zk—{-l) - k1= A (26)
Ar‘i + fg’i A1'.,'+1 Az‘k + z - z_kk:tl
2D;'k f;'rh’+ 2D;+1"‘ 2D;’k f;'z "+ 2D;’ +1

Introducing these expressions for the currents into equation (2-2) yields the neutron balance
equation in a form that couples together the volume-averaged-fluxes in node (4, k) and its four

adjacent neighbours.

2.1.2 Quadratic Polynomial Expansion

In the finite difference approximation the face-averaged currents are related to the volume-
averaged fluxes on either side of a node-face by assuming that the transverse-integrated, intra-
nodal flux shapes are piecewise flat. A more accurate characterization should relieve the
discontinuity factors from the need to correct for large node sizes. To that end, we assume
the transverse-integrated fluxes to have a quadratic form — the simplest of such expansions
— with constrains on the coefficients of the expansion such that the average of the quadratic
equals the volume-averaged flux, and the values of the quadratic at the node faces equal the
values of the transverse-integrated flux at those faces (two constraints). Thus we assume that

. r-direction : ¢k (r) =

2 2 2 _ .2 ;
Tiv1 =7 ok T gk (riz1 —7)(r = i) [‘k Tk | ok ]
L gk (1) + 5 B (ri1) - 3 - (r) - 2 (s 2.7
7,,12+1 _ 7'2‘2 ¢g (T )+ 7'1'2+1 — 7'1'2 d)g (T1+1) (ri+1 — 7'1')2 ¢g (T ) ¢g + ¢g (7' +1) ( )
o z-direction: ¢, (z) =
L B () + G (2k1) — alikar =2 %) [—i (1) - 28, + & 1)}
Zhpr = 2k 0 Zpp1 — oz 9T (k41 — 2k) 9% g gz 7Y

(2.8)

In a procedure similar to that applied to the finite difference equations, coupling relations are
developed by applying Fick’s law on both sides of an interface. At the same time, discontinuity
factors are introduced to correct for the residual errors associated with limiting the represen-
tation of ¢ (r) and ¢ (z) to a quadratic plynomial and, more importantly, to correct for

homogenization and diffusion approximation errors.

17



The expansions of the currents at the nodal faces that result from the use of the quadratic
approximations (2-7) and (2-8) corrected by the discontinuity factors are

) r-direction : JE (r;) =

i—1,k,+ fi—-l,k,+ =i-1,k =i,k

A SR rebann] g0 SR ki an [sedan] o
[ eD;‘l"‘ fik ["i—1+%AT{—1 Jgr(Tz—1)+ f}}:’,_ ¢g ¢g GD;—I,k N Jgr("';-%-l)

Hgr
Ar; ri+iArn
L pLALET Sl
} GD'g”‘ {1 + [rrf—%Ari] }:i

i—1,k,+
Ari_y f}f.gr 1 ri1+ L’ Ari
6D;_1’k ik ric1+3Arig

Hgr
(2.9)
o z-direction: J},(z) =
4,k—1,+ ihk—1,+ _ - -
Az, FRTUE FIt ciko1 =ik =
-t B g () + B D5 - B - SaTian)
6D9‘ fHaz ngz 6D 2.10
i (2.10)
2AZ;¢_1 ngz + Azk
6D;'k—l f;},;';_ GD;"‘

We note that the subscript “H” is added in the discontinuity factors ratios of equations (2-9)
and (2-10) to distinguish them from those of the finite difference ones of equation (2-6).

2.1.3 Boundary Conditions

For completeness, we note that additional equations need to be developed for the nodes at the

boundaries. The most general boundary condition applied on the exterior of a reactor is
an - J,(boundary) = B¢, (boundary) (2.11)

where a and 3 are free variables chosen to force the desired condition. For example, the three

most commonly used values of & and 3 are:

e a=0, =1 for zero flux
ea=1, =0 for zero net current
sea=2, =1 for zero returning current

The way nodes at the boundaries are treated is by first obtaining the difference equations for
that specific node using either the coupling equations of the finite difference scheme or those
of the quadratic expansion (i.e. similar to equations (2-4) or their quadratic counterpart).
Secondly, values of the face-averaged fluxes are eliminated using equation (2-11) with the
appropriate values of a and 8 to match the required condition. Finally, discontinuity factors
are introduced to correct the resulting expressions. Equations for the finite difference scheme

can be found in reference [1], and those for the quadratic scheme in reference [9].
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2.2 Transient Calculations

We start with the time-dependent group diffusion eqaution and the associated precursors equa-

tions for a source-free reactor with stationary fuel, i.e.

%(M) =V - Dy(r,t)Vy(r,t) + Z Xpg(1 — ﬂ)VEfg'(r’ t)¢g'(r’ t)

v
9 g

— ZAggr(r,t)¢g:(r,t) + ing)\ici(r,t) (2.12)

and %Ci(l‘, t) = B; Z vDg(r,t)dg(r,t) — Aici(r, t) (2.13)

g

where, again, g,¢' = 1,2,...,G and 7 = 1,2, ...,I, G being the total number of neutron energy
groups and I being the total number of delayed neutron precursor groups; Aggr = Xyg16ggr — Lggr,
with §,4 the Kronecker delta. The different terms appearing in equations (2-12) and (2-13)

have the following physical significance:

. gz(q—si(vr—tl) is the rate of change per unit volume at location r of the number of neutrons
g
belonging to energy-group g at time &.
¢ —V.D,(r,t)Vdy(r,t) is the net leakage rate per unit volume at location r of neutrons

belonging to energy-group g at time ¢.

o Xy(r,t)py(r,t)is the total neutron reaction rate per unit volume at location r of neutrons
belonging to energy-group g at time t.

o Xpg(l—B) Y vEsg(r,t)pg(r,t) is the production rate per unit volume at location r of
prompt neutrons in energy-group g at time ¢ due to fission in all energy-groups.

o 3, Tagg(r,t)pgi(r,t)is the production rate per unit volume at location r due to scattering
of neutrons from all energy-groups ¢’ to energy group g at time t.

® > XigAici(r,t) is the production rate of neutrons belonging to energy-group g at time ¢
per unit volume at location r resulting from the decay of delayed emitters.

o  Zci(r,t) is the time rate of change per unit volume at location r of delayed emitters of
type 7 at time ¢.

o B2 vEsg(r,t)dg(r,t) is the production rate per unit volume at location r of delayed
emitters of type ¢ at time ¢

e Aci(r,t) is the rate of decay per unit volume at r of delayed emitters of type ¢ at time t.

In a similar manner as in sections (2-1-1) and (2-1-2) equations (2-12) and (2-13) can be cast
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into a nodal scheme. Details are given in reference [1]. The resulting equations written in a

matrix form are:

_,,d® d
™= = {[Mp] + [D] = [Be] + [E:]} & + Z Aici (2.14)
%“fi = [Md)® — Nic; (2.15)

where ® is a G element super vector, each element of which is an N-element column vector,
N being the total number of nodes in the reactor; [v™!] is a G x G diagonal super matrix, the
diagonal elements of which are N x N diagonal matrices of the inverse group speeds; [D] is
a (G X G block diagonal super matrix, the diagonal elements of which are five striped N x NV
diagonal matrices of the diffusion operator; [¥;] is a G X G diagonal super matrix of the total
cross section for each node, each element of which is an N x N diagonal matrix; [Z,] is a
G x G super matrix of ¢’ to g scattering cross section for each node, each element of which is
an N x N diagonal matrix; [M,] is a G x G super matrix of the prompt production of neutrons
the gg' element of which is a NV x N diagonal matrix with elements xi;;‘(l - ﬁ)uEif’:,; c; is an
N x G element vectors of the volume averaged precursor concentrations for group ¢ multiplied
by the delayed neutron spectrum, and [My] isa G X G super matrix representing the delayed

neutron production, the NV x N matrix element corresponding to the gg’ position is wEguyhE
P g XdgPV & 5q

2.3 The ZAQ Program

ZAQ [1] is a standard FORTRAN 77 code originally written at M.I.T. by M. E. Byers. It

embodies the theory outlined in the previous two sections.

2.3.1 ZAQ Features

ZAQ solves the static problem in the finite difference form in the usual two step method of
outer iterations to update the fission source and eigenvalue and inner iterations to solve for
the flux vector. The basic method employed to solve for the eigenvalue is an extension of
the power method. Chebychev Two-Parameter Extrapolation [10] is used to accelerate the

outer iterations while the Cyclic Chebychev Semi-Iterative method [11] is applied to the inner

iterations.

For the solution to the quadratic problem, ZAQ uses a non-linear iteration scheme. This is

accomplished by generating the coupling coefficients at each iteration using the most recent
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discontinuity factors ratios. The finite difference nodal balance eqaution is then solved for the
fluxes. When the fluxes in the fueled nodes converge to within 1%, the currents are updated
by first using the most recent fluxes and discontinuity factors ratios to evaluate the currents
at each node interface by means of equations (2-4) and (2-5). Those values along with the
fluxes are then introduced in equations (2-9) and (2-10) to solve for the new currents — in
the original ZAQ all the quadratic expressions discontinuity factors ratios (i.e. the ones with
subscript “H”) are set to unity. The “new” quadratic currents and the most recent fluxes are
then used as reference values to determine new discontinuity factors through equations (2-4)

and (2-5) for a new outer iteration. The process continues until convergence is reached.

For transient calculation, ZAQ applies an extension of the improved quasi-static method [12]

in which the flux factorization
&(r, E,t) = S(r, E,t)T(t) (2.16)

is applied in solving the time-dependent few-group diffusion equation. First, ZAQ integrates
equations (2-14) and (2-15) by applying the “theta method” to difference the time derivatives
and then solve the resultant algebraic equations; with [L] = —[D] + [&,] — [E,] and [M] =
(M,] + [My] we have:

[v™] [?L"_—_‘?i“f_] = 0; {[Mp] + [L]}" @ + (1 - 67) {[M}] + [L]}"" &

At,
0,3 N + (1= 6,) 3 A (2.17)
ct — C’]'_l
R T O IMAET 4 (1 05)[Ma]* T - Bphic] — (1= Gp) AT (2.18)

In a straight forward manner, equation (2-18) is solved for ¢ in terms of the fluxes and
precursor concentrations at t,—; and the fluxes at ¢, and then substituted into (2-17) which
is then solved for ®" iteratively as described in the previous section. Once the fluxes ®™ are
found, they are used in (2-18) to solve for ¢™t1.

Making use of the fact that the spatial shape of the neutron population varies much more
slowly than does the magnitude of that population, we introduce the flux fatorization (2-
16). Then using the adjoint shape as a weight function, and knowing the change in the nodal
parameters with time, point kinetics parameters are computed and the amplitude function, 7'(¢)

of equation (2-16), is found by solving the point kinetics equations until the shape function
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S(r, E,t) changes significantly.

The time-integration for the time-dependent problem can be summarized in three steps:
e Step 1: The point kinetics parameters and the amplitude are computed at the beginning of
a time step. The transient nodal eqautions are solved, giving new fluxes and nodal precursors

concentrations at the end of the time step. The point kinetics parameters are again determined.

e Step 2: Using the theta method of integration and a time increment that is much smaller
than that of step 1, the point kinetics equations are advanced across the same time step. During
this integration, the reactivity is varied linearly in time, while the end of time step values of
the neutron lifetimes and effective delayed neutrons fractions are used across the entire step.

From this calculation, the new amplitude and effective precursors concentrations are found.

o Step §: Correction is then made to the fluxes and nodal precursors concentrations. The
fluxes are divided by the magnitude from step 1, and then multiplied by the amplitude from
step 2 to produce the corrected fluxes. A similar procedure is used to scale the precursors

concentrations.

ZAQ also implements a simplified thermal hydraulics feedback model. This model assumes
that all changes in the macroscopic cross sections for feedback effects are quadratic functions
of the fuel, moderator, and coolant temperatures. The model was originally developed for the

HTGR. Details are found in reference [1].

2.3.2 Some New Features

Several new features needed to be added to the existing version of ZAQ to accomodate certain
requirements relevant to the problem at hand. These will become clear in the next three

chapters. The list of these features is as follows:

e The quadratic discontinuity factors of equations (2-9) and (2-10) needed to be introduced

into the code. ZAQ originally assumed the values to be unity throughout the transient.

o ZAQ now accepts these discontinuity factors ratios, or those of equations (2-4) and (2-5),

as input. Changing either (or both) sets during the course of a transient is an option.

¢  General albedo boundary conditions (Equation (2-11)) were also added. The original

version of ZAQ accepted only boundary conditions of the forms given in section (2-1-3).

e Changes in the cross sections in the original ZAQ were linear. Quadratic changes in the
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cross sections and either set of discontinuity factors ratios with time has now been provided.
The quadratics are formulated from lists of cross sections and discontinuity factors ratios vs.

transient variables by table look-up.

e  Finally, with advise from Oak Ridge National Laboratory, a separate subroutine was
added to sense a scram signal during the course of a transient. This signal is either a certain

percentage change in flux initial, steady state value or a specified period or both.
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Chapter 3

The Use of Monte Carlo
Techniques to Calculate Few-Group

Nodal Parameters

In this chapter, we will be investigating the use of Monte Carlo techniques to edit the required
node-homogenized few-group cross sections and discontinuity factors ratios at different times
during a transient. Arranging those edits in tables, we shall also try to find ways of interpolation
between them. However, first we shall give a theoretical background of the Monte Carlo method
and the code MCNP that adopts this method. The first two sections of this chapter are based

entirly on references [7] and [13]; some paragraphs are taken directly from them.

3.1 Theoretical Background

Monte Carlo methods, unlike deterministic methods, do not solve an explicit equation such as
the neutron transport equation, but rather obtain answers by simulating individual particles
and recording some aspects (tallies) of their behavior. The average behavior of particles in the
physical system is then inferred (using the central limit theorem) from the average behavior of

the simulated particles.

In Monte Carlo, the individual probabilistic events that comprise a process are simulated
sequentially, and the probability distributions governing these events are statistically sampled
to describe the total phenomenon. The statistical sampling process is based on the selection

of random numbers.
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Because of the statistical nature of Monte Carlo, finding a way of estimating its expected
accuracy is necessary. To do that we assume that ; is the value of a certain variable of interest
obtained by running one case history in the problem. We are interested in the “expected” or
“mean” value < ¢ > of the variable £, thus we estimate the expected value as the average {y

over N case histories in the sample. That is, we determine

- 1
v = ﬁz&'

=1
We expect £y to approach < ¢ > as the number of case histories increases, and we would like
to have some estimate of how close £y is to < £ > for a given value of N. The centeral-limit

theorem provides such an estimate. It states that, as N becomes very large, the probability

that |y~ < € > | will be less than a number € as N — oo is given by

_ 1/2 s(ev/N)/o 2
P{ltn—< &> | <€} — (z) /0 exp (—%) dt, (3.1)

™

where 02 =< £2 > —[< £ >)? is the variance of the variable £, o is the standard deviation, and

where < £2 > is the expected value of

N-—co

1 N
2_ 18 2
<& >= lim N izgl &

Since [5° exp(—t?/2)dt = \/7 /2, we see that (provided < £ > and < £2 > exist) the probablity

that |éx— < & > | will be less than € becomes unity for fixed € as N — oo.

The right-hand side of equation (3-1) is a measure of the confidence level of the error estimate.
Thus the Monte Carlo results are said to produce an estimate of < £ > with a particular
confidence that the error is te.

3.2 MCNP Code Features

MCNP is a general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled
neutron/photon Monte Carlo transport code. It uses nuclear data libraries mainly from the
valuated Nuclear Data File (ENDF) for the neutron energy regime from 10~ MeV to 20
MeV.

The code was developed by group X-6 at Los Alamos National Laboratory where it is still being

updated. Reference [7] gives detailed information about the code features and capabilities.
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3.2.1 Criticality Calculations

The code is capable of calculating k.ss eigenvalues for fissile systems. In such calculation,
finding k.¢s consists of estimating the mean number of fission neutrons produced in one gen-
eration per fission neutron started. A generation is the life of a neutron from birth in fission to
death by escape, parasitic capture, or absorption leading to fission. Processes such as (n,2n)
and (n, 3n) are considered internal to the generation and do not act as termination. The effect
of the delayed neutrons is included by using the total 7 along with a spectrum function that

includes both prompt and delayed neutrons.

For MCNP to perform a criticality calculation, a source file must be specified. This file con-
tains the nominal source size for each cycle and the sites of neutrons in the fissile material
regions that would costitute the first cycle. Fission sites for the later cycles come from those

points generated by their previous cycles.

3.2.2 MCNP Tallies

MCNP can generate various tallies related to particle current and particle flux. Two concepts

are important in understanding how MCNP calculates those parameters:

1. Particle Weight : Particle weight, W, is a number carried along with each MCNP
particle that represents that particle’s relative contribution to the final tallies. Its magnitude
is determined so as to ensure that whenever MCNP deviates from an exact simulation of the
physical problem (this can occur whenever one or more of the variance reduction techniques
are used), the expected physical results are nonetheless preserved in the sense of statistical

average, and therefore in the limit of large MCNP particle numbers.

2. Particle Tracks : A track refers to each component of a source particle during its history.
As an example, when a particle starts out from a source, a particle track is created. If the
track for any reason is split at a spliting surface, a second track is created and there are now
two tracks from the original source particle, each with half the single track weight. If one of
the tracks undergoes an (n,2n) reaction, one more track is started for a total of three. The

process continues until another case history is started.

With those two concepts in mind, we now list a number of tallies that are calculated by MCNP
and which are relevant to our problem, namely, (A) the surface and volume flux tallies, (B)

surface current tally, and (C) tally multipliers.
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A. Flux Tallies : The MCNP flux tallies are estimates of [ dE@(r, E), where the range of
integration can be controlled by MCNP input. The surface flux tally (SFT) and cell flux tally
(CFT) for a given particle are calculated using track length estimates, 77, which are discussed
below. The units of the flux tallies are the same as the units of the source. A steady-state
flux solution can be obtained by having a source with units of particles per unit time and

integrating over all time.

o Cell Fluz : The definition of particle flux is ¢(r, E,t) = v(E)N(r, E,t), where v is particle
velocity and IV is the particle density = particle weight / cell volume. Thus the time integrated
flux is

CFT = / 8(x, E,t)dt = / Wodt/V = WT,/V.

Because of the the track length term T; in the numerator, this tally is known as the track
length estimate of the flux. It is generally quite reliable because there are many tracks in a

cell (compared to the number of collisions), leading to many contributions to this tally.

o Surface Fluz : The surface flux may be thought of as the limiting case of the cell flux when
the cell becomes infinitely thin. Thus SFT would be

SFT = lim WIL/V = (W5/|cos6])/(48) = W/ (Al))

As the cell thickness § approaches zero, the volume approaches Aé and the track length ap-
proaches &/|p|, where g = cos @, @ is the angle between the surface normal and the particle

trajectory.

B. Surface Current Tally : The surface current tally (SCT) estimates the number of

particles crossing a surface, it is defined as the quantity

SCT = / dA / dy f dEJ(r, B, 1)
A " E

where the scalar current is related to the flux as J(r, E,p) = pd(r, E) = (uW)/(A4|y]), and

the range of integration over area, energy, and angle can be controlled by MCNP input.

C. Tally Multipliers : MOCNP also tallies quantities of the form C [ ¢(r, E)R(r, E)dE,
where R(r, E)is any operator of additive or multiplicative response functions from the
MCNP cross sections libraries or specially designated quantities, and C'is an arbitrary

scaling constant.
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3.3 MCNP Studies of the ANS

In this section we apply the MCNP techniques of the previous section and the ZAQ R-Z
quadratic nodal model of Chapter 2 to investigate the accuracy of using static Mont Carlo
results in order to obtain two-group, homogenized nodal cross sections and discontinuity factors

ratios that are to be used for the nodal analysis of the ANS.

3.3.1 Initial Studies

Since the main advantage of nodal methods over the traditional fine-mesh finite difference meth-
ods is the use of large node sizes, examination of the ANS geometry (Appendix A) suggests
that some of the nodes (especially those near the center of the reactor) should be physically
heterogeneous. Thus, the central nodes should contain both control rods and moderator, and
nodes in the fueled regions should contain fuel plates and coolant channels. Accordingly, we
would like to edit, from MCNP, reaction rates, fluxes and face-averaged currents (that are to

be used to infer the required nodal parameters) for these heterogeneous subregions.

Unfortunately, the current version of MCNP edits only by composition, and if every fuel plate
and water channel making up a node has to be edited individually, getting good statistics

becomes very expensive.

To avoid this problem, we have homogenized the materials making up the nodes so that each
node contains a single composition for which we can edit the desired quantities along with

estimates of the errors in these quantities.

The definition of a material for MCNP is a set of different isotopes along with their relative
concentrations. Accordingly, the initial homogenization procedure for any node with /V differ-
ent regions, each containing one of M different homogeneous material compositions (M < V)
gives for the concentration nf*™ of isotope ¢ making up the homogenized material of the whole

node the expression
M
Zm:l ,n:nVnm
1 - N
En:] Vn

where V™ is the total volume of all the subregions that contain material m; n[* is the concen-

n}.zom —
tration of isotope 7 in that material, and the denominator is the total volume of the node.

It is important to recognize that such homogenization circumvents spatial self-shielding in both
the fuel regions and in the central hole. However, we believe that valied conclusions regarding

the accuracy of computed discontinuity factors can still be drawn from the homogenized model.
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Figure (3-1) shows an axial cut through the (dotted) center line of the model of the ANS which
results when this homogenization procedure is imposed on the more detailed model of figure
(A-1). In this figure, Hafnium rods in the central hole control region (shaded grey) have been
homogenized with the D20 moderator-coolant. Highly enriched fuel plates (shaded black) are

also homogenized radially and represented as twelve different homogeneous zones axially .

Initial studies with this model, carried out to determine the number of case histories required to
provide acceptably accurate values of nodal parameters, showed that statistics were extremely

poor far out in the reflector.

To avoid this problem without having to compile an unacceptable large number of case histo-
ries, albedo conditions at radial and axial locations in the reflector material nearer the edge
of the core were edited. Thus, the R-Z Monte Carlo calculations were performed for a larger
reactor than that to which the nodal code was applied. Figure (3-2) shows the mesh layout
for the 65 cm X 167.5 cm subregion to which albedo boundary conditions were applied. The
figure shows the dimensions of the nodes for which nodal parameters are edited. Comparison
of this figure with those of Appendix A shows the regions for which the initial homogenization

was made.

With these simplifications, a million case histories run for the R-Z model of the ANS, yielded
statistical uncertainties in eigenvalue of a few tenths of a percent, and uncertainties in nodal
average two-group fluxes of a few percent. Unfortunately, the errors estimated for the two-
group, face-averaged currents, from which the albedo boundary conditions are computed were
close to 10%. However, with approximately eight days required for 108 case histories on a 50

MHz IBM-486, pushing the statistics much further soon becomes impractical.

3.3.2 Nodal Parameter Edits

Two-group homogenized nodal cross sections and discontinuity factors ratios for the R-Z nodal

code ZAQ are edited from MCNP Monte Carlo resuls as follows:

» Direct Edits: MCNP can tally the total, absorption, fission, and nu-fission interaction rates
through the tally multipliers edits of section (3-2-2). With these values and the node-averaged

fluxes known at each node (i,k), B, nik

tg > Sag> 2}’5 and z/Ej;s are determined by

sk _ @~ type interaction rate in node (i, k)
“9 " yolume — integrated node (i, k) fluz
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Figure 3-1 : An axial cut through the (dotted) center line of the model of the ANS

with the homogenization procedure implemented. This is the final ANS model for
MCNP studies.
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Figure 3-2 : Dimensions of the subregion around the ANS core for which albedo
boundary conditions are applied, and the dimensios of the nodes for which nodal

parameters are edited.
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e Balance Edits : Unfortunately MCNP does not edit scattering events, therefore, to be
able to calculate two-group scattering matrices for the nodes comprising the reactor, we have
to determine the homogenized group-one-to-two scattering cross sections ng for the nodes
by a neutron balance argument. In so doing, the (small) upscattering cross sections, 23 is
neglected (This seems justified since the thermal cutoff energy is 1 eV). Equation (2-2) written
for g = 2 expresses neutron balance and can be used to determine the 2§’§ . Values of Ei’; can
equally well be determined from Equation (2-2) written for ¢ = 1. Because of statistical errors
(particularly in the current terms) and failure to account for (n,2n) and upscattering events,

the two values of E’J do not agree. This difficulty will be discussed further in sections (3-3-3)
and (3-4).

Edits for the discontinuity factors ratios are made using equations (2-4) and (2-5) for the finite
difference model, or equations (2-9) and (2-10) for the quadratic model. In those expressions,

the diffusion coefficients D;}k values for the nodes were arbitrarily set equal to

Di,k 1

g - 32;',;
Finally, edits of the face-averaged fluxes and face-averaged currents for the outer most surfaces
of the subregion in Figure (3-2) were used to calculate the albedo boundary conditions (flux-

to-current ratios) at the surface of the reactor.

3.3.3 Numerical Results for the ANS Model

To determine whether the above procedure is acceptably accurate, full-core criticality calcu-
lations were performed (each run consisted of 100 cycles, each cycle containing 10,000 source
neutrons) for the central control rod of the ANS in three different locations: that shown in
figure (3-1) (which we shall call “rod inserted”), 5.45 cm withdrawn, and 10.9 cm withdrawn

(the top of the first node above the core midplane).

For these runs, the values of Ei’f edited using the balance condition for the thermal group
equations were used. It is thought that since the relative statistical errors in group-two param-
eters are smaller than those in group-one for most of the nodes comprising the reactor, values

edited from group-two equations will be more accurate.

Because of the way they are defined, the discontinuity factors were expected to force the nodal
model to match exactly results edited from the reference Monte Carlo calculation. Table (3-1)
shows that this did not happen.
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Table 3-1 : Monte Carlo vs. “Exact” Nodal results

Location Rods Inserted Withdrawn Half-Withdrawn
k-eff
Monte Carlo 1.0498 + 0.09% 1.0725 + 0.09% 1.0600 + 0.10%
k-eff
"Exact" Nodal 1.0476 1.0711 1.0583
% Difference 0.21 0.13 0.16

The first line of the table gives the values of k.;y for the three rod positions. Statistical
errors are ~ 0.1%. The second line shows results from the corresponding nodal calculations
carried out with the two-group nodal parameters edited from the MCNP results for the finite
difference model. The differences are outside statistical error. Conceivably this discrepancy
could be caused by the neglect of (n,2n) and upscattering in the ZAQ calculations. But
these are small effects in the ANS, and it is more likely that the error arises from statistical

uncertainties in the currents across the faces of the nodes.

Another, more detailed, measure of how well nodal parameters can be obtained is the relative
error in nodal group fluxes. Tables (3-2), (3-3) and (3-4) show the percent differences from
the Monte Carlo results for these “exact” flux calculations for the rod-in, rod-out, and rod
half-out problems. Fluxes for both the Monte Carlo and nodal results are normalized to one
source neutron. Except for some nodes at the top of the core where the fluxes are low (and
hence percentage errors are large), the nodal and Monte Carlo results agree quite well. There
appears to be a slight axial tilt in all three cases, although it is quite small in the rod half-
out case (Table (3-4)). None of these results suggests that the failure to edit the (n,2n) and

upscattering cross sections for the nodal model causes unacceptable errors.

For the intermadiate case of the control rod withdrawn 5.45 cm, average cross sections and
discontinuity factors ratios were computed by linear interpolation from the rod-in and rod-out
cases for all the nodes except the one containing the partially withdrawn control rod. For this
node a weighted average of the cross sections and discontinuity factors was computed, using
a scheme suggested by J. C. Gehin [14]. These interpolated two-group parameters were input
to the R-Z nodal code ZAQ, and the resultant critical eigenvalue and nodal flux shape were

compared with these edited from the rod half-out reference MCNP calculation.

When this interpolation is carried out, the result of the approximate ZAQ calculation is a ks
value differing by 0.19% from the 1.0600 refernce of Table (3-1). With the “exact” ZAQ value
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Table 3-2 : Percent differences in group (1) and (2) node-averaged fluxes for rod

fully inserted in node (reference Monte Carlo vs. reference nodal)

Group 1
-9.569 -2.000 -2.421 -1.751 -1.691 -1.904 -2.848
-1.567 -1.325 -1.546 ~-1.361 -1.356 -1.499 -1.674
-0.561 -1.096 -1.103 -1.218 -1.387 -1.474 -1.577
-0.630 -1.067 -0.887 -1.234 -1.387 -1.467 -1.515
-0.897 -1.391 -1.476 -1.527 -1.565 -1.575 -1.666
-1.023 -1.436 -1.430 -1.534 -1.570 -1.617 -1.682
-1.264 -1.386 -1.292 -1.468 ~1.545 -1.570 -1.628
-1.124 -1.396 -1.422 -1.509 -1.543 -1.549 -1.533
-0.391 -1.101 -1.377 -1.431 -1.454 -1.435 ~1.435
-0.281 ~0.354 -0.688 -0.878 -0.989 -1.040 -1.227
0.053 0.042 -0.060 ~0.199 ~0.351 ~-0.495 -0.553
0.544 0.562 0.492 0.370 0.215 0.083 0.145
1.114 1.332 1.080 0.894 0.733 0.620 0.541
1.482 1.734 1.426 1.215 1.038 0.891 0.690
1.525 1.638 1.455 1.312 1.172 1.116 0.858
1.330 1.478 1.339 1.264 1.231 1.068 0.994
1.200 1.374 1.301 1.242 1.269 1.276 1.211
0.909 1.133 1.815 1.436 1.385 1.273 1.124
Group 2
-1.776 ~-1.449 ~1.439 -1.402 -1.392 -1.385 -1.389
-1.370 -1.359 -1.374 -1.369 -1.370 -1.381 -1.378
-1.210 -1.246 -1.289 -1.328 -1.366 ~-1.375 -1.372
-1.141 -1.186 -1.290 -1.350 -1.375 -1.377 -1.363
-1.268 -1.360 -1.407 -1.417 -1.395 -1.370 -1.346
~1.333 -1.407 ~-1.409 ~1.412 -1.379 -1.340 -1.303
-1.340 -1.374 -1.352 -1.358 -1.322 -1.271 -1.233
~-1.264 -1.330 -1.282 -1.281 -1.226 -1.168 -1.118
-0.823 -1.090 -1.008 -1.075 -1.037 -0.979 -0.945
-0.242 -0.531 -0.566 -0.661 -0.689 -0.680 -0.671
0.107 -0.099 -0.166 -0.241 -0.321 -0.364 -0.388
0.531 0.292 0.209 0.119 -0.001 -0.090 -0.134
1.003 0.713 0.563 0.442 0.287 0.161 0.097
1.308 0.981 0.823 0.685 0.510 0.366 0.290
1.335 1.103 0.964 0.834 0.672 0.534 0.453
1.204 1.163 1.039 0.921 0.781 0.660 0.600
1.137 1.113 1.046 0.945 0.829 0.734 0.677
1.096 1.086 1.043 0.955 0.853 0.764 0.711
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Table 3-3 : Percent differences in group (1) and (2) node-averaged fluxes for rod

removed from node (reference Monte Carlo vs. reference nodal)

Group 1
9.805 ~1.038 -1.399 -1.812 -1.884 -2.168 -2.288
-1.312 -2.003 -1.984 -1.941 -1.937 -2.007 -2.279
-2.176 -1.988 ~-1.877 -1.907 -1.957 -2.004 -2.266
-3.496 -1.936 -1.696 -1.829 -1.886 -1.976 -2.174
-2.565 -1.860 -1.771 -1.817 -1.841 -1.881 -1.936
-1.646 -1.609 -1.530 ~-1.656 -1.688 -1.731 -1.745
-1.049 -1.359 -1.345 -1.440 -1.501 -1.532 -1.529
-1.415 -1.114 -1.976 -1.196 -1.306 -1.341 -1.460
-0.784 -0.851 -0.939 -1.052 -1.119 -1.141 -1.342
-0.286 -0.275 -0.473 -0.615 -0.706 -0.752 -0.941
0.200 0.187 0.111 -0.010 -0.139 -0.166 -0.241
0.681 0.748 0.659 0.524 0.389 0.335 0.026
1.141 1.401 1.129 0.936 0.776 0.623 0.580
1.283 1.539 1.259 1.096 0.920 0.732 0.724
1.102 1.023 1.039 0.995 0.912 0.773 0.595
0.994 0.961 0.991 0.969 0.859 0.633 0.978
1.024 1.009 0.922 0.960 0.911 0.250 -0.210
2.163 1.496 0.983 1.043 0.804 0.014 -0.563
Group 2
-1.966 -1.731 -1.745 -1.743 -1.719 -1.690 -1.674
-1.801 -1.811 -1.784 -1.758 -1.715 -1.683 ~1.658
-1.867 -1.844 -1.790 -1.744 -1.698 -1.657 -1.623
-2.102 -1.866 -1.729 -1.684 -1.638 -1.586 -1.553
-1.900 -1.783 -1.642 -1.611 -1.556 -1.500 -1.460
~-1.564 ~1.564 -1.495 -1.484 -1.440 -1.387 -1.347
~-1.255 -1.318 -1.310 -1.317 -1.284 -1.239 -1.206
-1.009 -1.071 -1.075 -1.108 -1.099 -1.069 -1.044
-0.758 -0.835 -0.774 -0.854 -0.860 -0.843 -0.831
-0.330 -0.405 -0.390 -0.476 -0.520 -0.539 -0.547
0.164 0.028 -0.020 -0.101 -0.189 -0.249 -0.287
0.607 0.395 0.310 0.209 0.083 -0.012 -0.073
0.991 0.728 0.588 0.464 0.310 0.187 0.123
1.127 0.878 0.741 0.625 0.467 0.342 0.269
1.010 0.842 0.769 0.689 0.562 0.449 0.387
0.896 0.858 0.794 0.720 0.621 0.529 0.478
0.898 0.856 0.800 0.731 0.647 0.560 0.525
0.946 0.882 0.800 0.731 0.649 0.581 0.542
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Table 8-4 : Percent differences in group (1) and (2) node-averaged fluxes for rod

half removed from node (reference Monte Carlo vs. reference nodal)

Group 1
-7.520 -1.375 -1.290 -1.061 -1.022 -0.985 -1.579
-1.274 -1.163 -0.894 -0.993 -1.099 -1.261 -1.532
-0.697 -0.954 -0.925 -0.963 -0.990 -1.078 -1.057
-0.713 -0.822 -0.754 -0.881 -0.903 -0.989 -1.025
-1.131 -0.824 -0.743 ~0.854 -0.898 -0.941 -1.046
-1.038 -0.769 -0.655 ~0.809 -0.852 -0.910 -1.088
-0.453 -0.648 -0.622 -0.714 -0.755 -0.825 ~-0.868
-0.152 -0.453 -0.394 -0.562 -0.636 -0.710 -0.766
-0.114 -0.240 -0.220 ~0.410 -0.526 -0.585 -0.660
-0.031 0.050 -0.185 -0.320 -0.408 -0.514 -0.595
-0.100 -0.039 -0.168 -0.239 -0.321 -0.371 -0.332
~-0.064 -0.017 -0.103 -0.158 -0.225 -0.319 -0.352
0.078 0.128 0.016 -0.040 -0.103 -0.223 -0.357
0.312 0.630 0.269 0.100 ~-0.043 -0.190 -0.463
-0.012 -0.052 0.012 -0.011 -0.087 -0.230 -0.238
0.004 -0.104 -0.154 -0.139 -0.118 -0.333 -0.764
-0.207 0.061 0.211 0.003 ~-0.042 -0.095 ~-0.046
-0.312 0.301 1.165 0.285 0.053 -0.381 3.495
Group 2
-1.130 -0.962 -0.934 -0.907 -0.889 -0.870 -0.864
-0.957 -0.946 -0.911 -0.901 -0.883 -0.869 -0.853
-0.896 -0.913 -0.898 -0.879 -0.868 -0.848 -0.831
-0.833 -0.847 -0.847 -0.840 -0.828 -0.814 -0.799
-0.858 -0.809 -0.791 -0.802 -0.789 -0.774 -0.762
-0.775 -0.741 -0.728 -0.747 -0.740 ~-0.730 -0.712
-0.578 -0.620 -0.650 -0.670 -0.672 -0.667 -0.656
-0.379 -0.450 -0.524 -0.570 -0.591 -0.595 -0.591
-0.205 -0.284 -0.379 -0.455 -0.492 -0.509 -0.514
-0.076 -0.212 -0.285 -0.349 -0.392 -0.417 -0.431
-0.092 -0.192 -0.237 -0.277 ~-0.316 -0.344 -0.360
-0.051 -0.142 -0.177 -0.212 -0.254 ~-0.290 -0.309
0.060 -0.053 -0.106 -0.146 -0.200 -0.237 ~0.257
0.168 0.054 -0.040 ~-0.097 -0.158 -0.202 -0.224
0.000 -0.055 -0.070 -0.097 -0.137 -0.174 -0.194
-0.050 -0.076 -0.094 -0.105 -0.128 -0.157 -0.174
-0.059 -0.037 -0.048 -0.078 -0.116 -0.139 -0.151
-0.042 ~0.009 -0.007 -0.059 -0.101 -0.129 -0.138
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differing from the reference by 0.16% for this case (and by 0.21% for the rods inserted case),
conclusions about the accuracy of the interpolation procedure are obscured. Moreover, the
use of those interpolated nodal parameters to analyze the rod half-out case leads to a different
source of error. A statistical error in the reference cases for a given node will yield incorrect
homogenized cross sections and discontinuity factors for that node, and thence will lead to
incorrect interpolated values. Moreover, even if the interpolated result for a given node is
correct, it may differ from the Monte Carlo reference for the rod-half-out case because of a

statistical uncertainty in that reference calculation.

Table (3-5) shows errors in the group fluxes between the interpolated nodal and Monte Carlo
results. Most of the flux errors are close to those of Tables (3-2), (3-3) and (3-4). However,
there is an anomolous error (-12.361%) in the fast flux at the outmost radial node next to the
bottom axial plane of nodes, and there is a huge error (~ 60%) in the group-2 (thermal) flux in

the node containing the half-removed rod. (Its nearest neighbors are also affected significantly).

Since the errors were thought to be due to statistical fluctuations and an inadequate method for
finding the homogenized cross sections and discontinuity factors for the partially rodded node,
more elaborate interpolation procedures were used to estimate the two-group parameters for
the control rod in its intermediate position. For all nodes except the one containing the partially
removed rod and its axial neighbors, the homogenized two-group cross sections, discontinuity
factors ratios and albedoes edited from the two bounding Monte Carlo calculations were first
smoothed by a least squares polynomial fit before interpolated values for the intermediate case
were found. In addition, the discontinuity factor ratios for the two outermost radial nodal
rings were given unity values. To determine two-group parameters for the node containing
the partially removed control rod and the two axial neighbors of that node, a sequence of
200,000 case history Monte Carlo problems (for the entire reactor) were run with the control
rod in four additional intermediate locations. The two-group cross sections and discontinuity
factors ratios edited from these results for the three nodes in question were fit to quadratic
polynomials. Figure (3-3) shows the results for discontinuity factors ratios at the interfaces
of the central node as a function of rod position. Values of the two-group parameters for the

control rod at its intermediate location were then interpolated from these curves.

Table (3-6) shows the resulting differences from the reference Monte Carlo for the fast and
thermal nodal fluxes. The difference in k.s¢ between the two-group nodal and reference Monte

Carlo results is 0.22%, the statistical error in the reference being 0.16%.
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Table 3-5 : Percent errors in group (1) and (2) node-averaged fluxes for rod half

removed from node (reference Monte Carlo vs. interpolated nodal)

Group 1

-4.726 2.757 -1.269 -3.537 -0.360 -5.745 -7.164

-4.890 -0.631 0.224 1.554 1.632 2.379  -4.800
-1.507 -0.365 0.549  -0.222 0.767 -0.010 -3.812
-2.715 -0.557 -0.501 -0.159 -0.294 -3.098 -3.691
-1.367 -0.992 -1.411 -1.121 -0.557 -1.724 1.765
0.072 -0.759 -0.789 -0.614 -0.692 -0.622 0.121
-1.298 -1.104 -1.433 -0.882 -0.727 -0.127 1.450
-0.162 -0.578 -0.733 -0.901 -1.145 -0.772 0.653
2.113 -2.359 -1.959 -0.788 -0.725 -1.894 -2.127
-2.293 -1.861 -1.211 -0.810 -0.404 0.047 -1.722
-0.727 -0.960 -0.749 -0.661 0.223 1.742 1.287
-0.357 -0.478  -0.397 0.200 0.558 -0.753  -1.912
1.185 0.637 0.251 0.829 0.495 0.492 2.080
1.892 2.060 0.570 0.184 -0.813 -1.636 -0.099
1.051 1.117 0.585 -0.016 -0.712 -2.603 -0.633
0.243 1.035 1.007 -0.517 0.455 1.167 -6.306
-0.025 0.269 1.216 -0.303 -4.306 -9.840 -12.361
3.947 3.894 -0.720 -6.301  -4.101  -8.712 1.084
Group 2
-1.476 0.664 -1.524 -2.694 -1.904 -1.346 -1.361
-0.819 -0.794 -1.022 -2.120 -2.007 -2.004 -1.188
-0.092 -1.367 -0.705 -1.873 -1.754 -1.890 -1.290
-1.691 0.446 -1.461 -1.848 -1.708 -1.530 -0.877
0.300 0.232 -0.356 -1.067 -1.500 -0.518 -0.386
4.783 1.607 0.379 -0.247  -0.641 0.091 0.253
6.719 1.018 -0.261 -0.380 -0.207 -0.537 0.199
25.116 -0.402 -0.295 -0.600 -0.586  -0.145 0.326
59.559 -3.908 -0.662 -1.345 -1.113 -0.623 -0.582
-4.678 -3.304 -1.088 -1.506 -1.526 -0.628 -0.322
0.001 -0.924 -0.372 -0.511 -0.702 -0.780 -0.379
0.329 -0.976 -0.621 -0.906 -0.341 -0.366 -0.503
2.674  -0.537 0.232  -0.790 -0.270 0.222 0.188
3.199 1.791 0.628 0.217 0.034 0.453 0.124
2.032 -0.001 0.676 0.535 0.068 0.318 0.128
-1.245 -0.541 0.274 0.156 0.885 0.645 0.415
-0.332 0.133 0.903 1.467 0.658 0.844 1.438
-1.791 1.261 1.714 1.229 0.772 0.671 0.770
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Figure 3-3 : Discontinuity factor ratios vs. axial position of control rod
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Table 3-6 : Percent errors in group (1) and (2) node-averaged fluxes for rod half

removed from node : Reference Monte Carlo vs. nodal. Smoothing techniques used

tc determine nodal parameters

Group 1
-4.781 2.696 -1.332 -3.660 -1.414 -4.243 -4.295
-4.942 -0.685 0.170 1.489 1.518 2.327 -2.353
-1.562 -0.422 0.495 -0.279 0.707 -0.061 -2.416
-2.778 -0.617 -0.554 -0.219 -0.362 -3.168 -1.733
-1.448 -1.068 -1.480 -1.197 -0.641 -1.814 1.674
-0.030 -0.862 -0.885 -0.718 -0.803 -0.735 0.005
-1.431 -1.244 -1.572 -1.024 -0.872 -0.272 1.302
-0.303 -0.752 -0.936 -1.088 -1.322 -0.937 0.488
2.036 -2.495 -2.207 -1.004 -0.913 ~2.066 -2.289
-2.206 -1.778 -1.224 ~0.858 -0.467 -0.025 -1.802
-0.566 -0.791 -0.616 -0.565 0.291 1.789 1.318
-0.171 -0.288 -0.218 0.364 0.700 -0.626 -1.802
1.390 0.844 0.452 1.023 0.682 0.667 2.248
2.112 2.283 0.783 0.392 -0.609 -1.440 0.095
1.274 1.346 0.810 0.203 -0.494 -2.396 -0.392
0.462 1.264 1.232 -0.297 0.677 1.418 -3.640
0.199 0.494 1.445 -0.080 -1.083 -2.364 -3.529
4.184 2.127 -0.497 -1.092 -3.876 -3.357 1.787
Group 2
-1.555 0.583 -1.610 -2.787 -2.013 -1.442 -1.452
-0.893 -0.866 -1.100 -2.203 -2.089 -2.088 -1.263
-0.160 -1.436 -0.777 -1.951 -1.834 -1.972 -1.362
-1.760 0.377 -0.538 -1.925 -1.792 -1.618 -0.967
0.200 0.142 -0.444 -1.155 -1.593 -0.610 -0.477
1.534 1.454 0.263 -0.349 -0.743 -0.012 0.155
2.087 0.665 -0.424 -0.501 -0.321 ~-0.635 0.104
2.648 -1.474 -0.580 -0.734 -0.696 ~-0.245 0.240
3.703 -1.164 -1.104 -1.458 -1.204 -0.698 -0.651
~1.311 -0.978 -1.099 -1.528 -1.553 -0.654 -0.347
0.812 -0.746 -0.296 -0.459 ~0.668 -0.756 -0.363
0.652 -0.823 -0.508 -0.806 -0.266 -0.302 -0.450
2.910 -0.374 0.382 -0.656 -0.158 0.313 0.272
3.422 1.971 0.793 0.371 0.169 0.571 0.231
2.249 0.189 0.861 0.703 0.220 0.455 0.250
-1.044 ~-0.247 0.460 0.333 1.051 0.792 0.546
-0.127 0.332 1.097 1.650 0.820 0.988 1.547
-1.597 1.456 1.897 1.412 0.933 0.815 0.894
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Clearly, the smoothing techniques have improved significantly the accurace of the nodal results.
The differences in fluxes from the reference Monte Carlo results are now comparable to those
due to statistics and the neglect of (n-2n) and upscattered neutrons in the two-group model
(Tables (3-2), (3-3) and (3-4)). The need to run a sequence of reference Monte Carlo cases
for the control rod at a number of intermediate locations adds to the expense of determining
the few-group parameters. However, with the discontinuity factor ratios for the thermal group
changing from ~ 0.3 to ~ 1.5 at the top surface of the partially rodded node as the rod is
withdrawn and from ~ 1.0 to ~ 0.2 (see Figure (3-3)) at the bottom surface, it is unlikely that
any simple prescription for determining values based on only rod-in and rod-out conditions
can be found. With a difference of ~ 2.1% between the rod-in and rod-out k.zs values, an
accurate curve of the two-group parameters for the rod at intermediate points is expected to
be very important for transient analysis. Hence, the cost of the extra Monte Carlo problems

probably has to be accepted - at least for control rod tip in this very sensitive region.

3.4 Discussion and Conclusions

One of the puzzling results of this investigation is the fact that when homogenized, two-group
cross sections and discontinuity factors ratios are generated by MCNP, and then used in the
nodal code, the MCNP results are not reproduced. In theory, and in all previous experience,
approximations corrected by discontinuity factors reproduce the reference results to within

round-off errors.

As was discussed in section (3-3-2), it is recognized that -apart from neglecting the (n-2n)
and upscattering events in our analysis - balance itself is subject to statistical error because of
statistical errors in the nodal reaction and leakage rates. Evidence supporting this conclusion
is obtained when the removal cross section from the fast-to-thermal group X¥,; is computed
by neutron balance. When the group fluxes, leakages, fission sources and absorption rates are
known, ¥,; can be computed from either the fast or the thermal group alone. However, when

we do this using MCNP output, the two results differ by several percent.

To confirm that the two values of ¥5; are due to lack of exact balance in MCNP, a method of
computing ¥,; was devised that (for nodes containing fissile material) does guarantee exact
balance for each node and each energy group and which should then yield nodal results which
match those edited from MCNP. The procedure is to assume that the group leakage, fission and

absorption rates edited by MCNP for each node are correct. Then group “leakage coefficients”
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a;"‘, are defined by

. s =ik
Group — g net leakage rate from node (i,k) = V”ka;’kqﬁ;

=tk . . ; .
where @, is the volume-averaged flux of group-g neutrons in node (4, k), V** being the volume
of the node. Then (neglecting (n,2n) and upscattering events to simplify the algebra), the two-

group balance equations become
ik ik ik ik =1,k 1 ik =i,k ik Shk
[al + 207+ 2}1 + E;I] b, = 3 [uzflqsl +vEY ¢, (3.2)

i, i, ik] 0k ik Sk
[O‘zk + Ea; + 2]‘2] ¢y = 22;c€?51 (3:3)

where A is the eigenvalue determined by MCNP. These two homogeneous equations will have
a non-trivial solution only if the determinant of the coefficients vanishes. The desired removal

cross section E;’lk, is found by imposing this requirement.

For regions containing no fuel, the vanishing of the determinant of the coefficients in (3-2) and
(3-3) leads to

B3 = - [ob* + 23] (34)
which implies that balance is guaranteed only in the fast group. If (3-3) (with E}'g = 0) is
solved for E;’f, there is no reason to expect the result to agree with (3-4). Nevertheless, for
two simple test problems, finding the E;’f by requiring the determinant of the coefficients of
(3-2) and (3-4) to vanish produced nodal results agreeing very closely with the Monte Carlo

reference.

The problem analyzed was one-dimensional as shown in Figure (3-4). It simulates a one-
dimensional radial cut at the axial midplane of the upper fuel element out to 45 cm (see Figure
(3-2)). With zero net current boundary conditions imposed on all surfaces, an MCNP analysis

of the reactor leads to an eigenvalue 1.60280.

If the two-group cross sections and fluxes are edited for the node, if Equation (3-3) alone is
used to determine X, if discontinuity factors are found for the node faces and the resultant
nodal equations are solved, the eigenvalue is found to be 1.6002, and when the volume-averaged

fluxes are compared with the MCNP reference, the errors shown in table (3-7) result.

If, on the other hand, Equations (3-2) and (3-3) are solved with ¥ as an eigenvalue and @,,
q@;, assumed unknown, the nodal equations yield a core eigenvalue of 1.60288 and all fluxes

agree with reference values to within round-off error.
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-
45 cm
Figure 3-4 : Geometry of the one-dimensional ANS test problem

Table 3-7 : Percent errors in nodal fluxes resulting from lack of local neutron

balance

Node Control Rod D20 Fuel D20 D20
Group 1 -0.713 -0.645 ~-0.100 -0.835 -0.985
Group 2 -0.075 -0.379 -0.178 -0.431 -0.308

To see whether this unjustified agreement was due to the imposition of zero-net-current bound-
ary conditions, the radial boundary of the reactor was extended by adding 75 cm of D20, im-
posing a zero returning current boundary condition at the 120 cm point. A reference MCNP
calculation was run for this reactor, and albedo boundary conditions at 45 cm (see Figure(3-4))
were edited. Values of 2;{“ for the various nodes were again found using Equations (3-2) and
(3-3) and a nodal calculation employing these values was run. Again the eigenvalues and all

reaction rates matched reference Monte Carlo values within round-off error.

It is important to recognize that finding a theoretically exact procedure for calculating nodal
parameters that replicate the Monte Carlo results would in no way improve the accuracy of the
nodal calculations themselves. The perfectly matched Monte Carlo results would still involve

statistical errors.

The numerical results presented inthis chapter do not permit firm conclusions about the ac-
curacy of using Monte Carlo techniques for editing nodal parameters. Statistical fluctuations
in the Monte Carlo results prevent a precise evaluation of the accuracy of nodal results based
on interpolated parameters. It appears necessary to reduce statistical uncertainties in face-
averaged net currents edited from the Monte Carlo results to very low values. The computation

costs of doing so are likely to be unacceptable.

Because of this limitation, attention is shifted in the next chapter to the use of discrete or-

dinates transport mathods as a means of calculating nodal cross sections and discontinuity

factors ratios.
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Chapter 4

The Use of Discrete Ordinates
Transport Methods to Calculate

Few-Group Nodal Parameters

In this chapter we investigate the use of discrete ordinates transport methods and the TWO-
DANT code for editing the required few-group nodal parameters. First we give a theoretical
background about the method. In the next two sections, we follow, formally, the treatment

given in references [13] and [15].

4.1 Theoretical Background

Starting with the steady-state, source-free Boltzman neutron transport equation for the direc-

tional flux density ¥(r, 2, E), i.e.
Q- V(r, R, E) + Sy(r, E)y(r, 2, E)
- /dE’/dﬂ’ ((E)vS4(r, E') + S,(r, - Q, E' — E)} ¢(r, @, E') (4.1)

where for a small volume element dV around r, small solid angle d? around the direction €2,

and a small energy interval dE around E, the various terms appearing in equation (4-1) are

defined as

. Q-Viy(r,Q, E)dVIQdE is the leakage rate out of dV of neutrons in the range dQdE.
. Zi(r, E)¢(r, N, E)dVdQdE is the rate at which neutrons in dQdF are removed (by ab-

sorption and scattering) from dV.
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. X(E)dQdE{[dE' [dQVvE((r, E')¢(r, ¥, E')}dV is the rate at which neutrons in the
range d{}dE appear in dV due to fission at all energies.
’ JdE' [dV{Z,(r,Q - Q,E' — E)dQdE}(r,Q, E')}dV is the rate at which neutrons

appear in dQdEdV due to scattering from all energies and directions.

Several methods exist for solving the transport equation, the most efficient and widely used of
them is the discrete ordinates approximation. The method attempts only to find ¥(r, Q, E) for
a discrete number of directions 024(d = 1,2, ..., D), where 3 = €, Q14+ 2024+ e3834, with ey,
e, and ez are three unit vectors representing the different directions in any three-dimensional
geometry. Thus the unknown function ¥(r, 2, F) is represented by the D functions ¢(r, g4, F),
and it is assumed that the left-hand side of equation (4-1) may be replaced (for the case of
two-dimensional R-Z geometry) by

Bt 2 (e, 920, ) + e (e, 0 B) + bz, 2 ) (+2)

On the right-hand side of (4-1), the scattering kernel X,(r,Q' . 2, E’ — FE) is represented
by a finite Legendre polynomial expansion of order L and the directional flux ¥(r, 24, E) is

expanded in the corresponding spherical harmonics components, i.e.

L
(0, - E' - E)=) (21+1)Z4(r, E' - E)R(Q' - )
=0

L 1 .
1!7(1‘, 24, E) = Z Z "xl’lm(r, E)Ylm(n)
=0 m=-1
The coefficients *(r, E), defined as ¢[*(r, E) = [dQY™(2)¢(r, Qa, E), Y™ being the com-
plex conjugate of ¥;™, are replaced by sums Ele wa¥;™ () ¢(r, Ry, E), where wy(d = 1,2, ..., D)
is a set of weighting constants chosen such that the sums match the integrals as closely as possi-

ble. The final result of these manipulations is to replace the right-hand side of equation (4-1) by

oo D L l
/0 dE{x(B)wEs(x, B') 3 wap(r, 2 EY + S Y Sy(r, B — E)

d'=1 =0 m=-1
D —
{ D wa Y™ (Qa)p(r, Qar, E’)} Y™ (924)} (4.3)
d'=1
The discrete ordinates equations (4-2) and (4-3), with a particular choice of wg, couple the
directional flux density in a given direction £2; to those in all other chosen directions. Those

equations can be solved iteratively.
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4.2 TWODANT Code Features

TWODANT [8] is a two-dimensional discrete ordinates code developed at the Los Alamos Na-
tional Laboratory. It solves the multigroup form of eqautions (4-2) and (4-3) that is obtained
by integrating those equations over an energy interval AE, with the integral in eqaution (4-3)
replaced by a sum over all energy intervals. The spatial variables, on the other hand, are

discretized using finite difference schemes.

In solving those equations numerically, TWODANT uses an iterative procedure. This proce-
dure involves two levels of iterations refered to as inner and outer iterations. Acceleration of

these iterations is accomplished by using the diffusion synthetic acceleration method [16].

4.2.1 Tteration Strategy

The iterative procedure in TWODANT begins with the calculation of a diffusion coefficient
D, (r) for each space point v, Dp(r) = 1/3[Z4n(r) — B41,nn(r)] where Xyn(r) is the macroscopic
total cross section at position r for fine energy-group n, and X,; ,n(r) is the P-1 anisotropic

self-scattering cross section — if it is being simulated.

Using these diffusion coefficients, a standard diffusion calculation is performed to calculate
diffusion fluxes for each energy group. Those fluxes are then used to calculate a new fission
source distribution F(r), which is then used to generate new diffusion fluxes. The process
continues until both F(r) and the pointwise fluxes are converged. Each such recalculation of

F(r) is called a diffusion sub-outer iteration.

Next, using the diffusion-converged F(r) and the first energy-group diffusion scalar fluxes to
fix the within-group scattering sources, a single discrete ordinates transport sweep through
the spatial mesh is made for the first energy group. The resulting angular fluxes are used to
calculate an effective diffusion coefficient, f)(r), at each mesh point which are then used in a
diffusion sweep of the group to determine the group scalar flux, ¢(r). This whole process is

called an inner iteration.

When the inner iterations for the first group are completed, the group scalar fluxes and flux
moments are used to calculate the scattering source for the next group. One or more inner
iterations are performed for the next group and the process is repeated until all energy groups
are completed. The group fluxes, resulting from those iterations are used to calculate a new

fission source distribution, F(r). Following this, a series of diffusion sub-outer iterations is
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performed. Each completion of the diffusion sub-outer iteration process based on the current
set of diffusion coefficients defines an outer iteration. These continue until convergence is

reached.

4.2.2 TWODANT Output and Nodal Parameter Edits

As noted in the previous chapter, surface-averaged currents and node-averaged fluxes are
needed for the determination of few-group, node-homogenized cross sections and discontinuity

factor ratios. These quantities can be extracted from TWODANT output.

The converged multigroup directional fluxes will be written as ¢5:§, where p and ¢ are indices
for fine-meshes (i, k are used for coarse-meshes). ¥2'4 with r = (rp, z,) is used for ¢(r, g, E,)
of equations (4-2) and (4-3); n signifies the fine energy-group, and d is one of the chosen di-

rections. With these converged ¥2'J, the nodal parameters are calculated in three steps:

1. Multigroup Fine-Mesh Fluxes and Currents : The multigroup scalar fluxes, ¢4, for
each fine-mesh (p, ¢) and the currents at each fine-mesh boundary — Ji(r,, 1), for example,
2

is the current at the right boundary of fine-mesh (p, ¢) — are calculated through
D
gRe =) wapi]
d=1

P+i, +3,
Tirpy1) = O wapahg = Y walpal vl

Ha>0 #a<0
The currents for the remaining surfaces of the mesh-box (p, g) (i.e., left, bottom and top sur-

faces) are calculated in a similar manner.

2. Multigroup Node-Averaged Fluxes, Cross Sections and Surface-Averaged Cur-
rents : As a second step, fluxes and cross sections are averaged over each coarse-mesh (or
equivalently “node”) (%, k) through flux-volume weighted sums. Thus, with V2 the volume of
the (p,q) fine-mesh box, and V* the volume of the (%, k) node,

=ik Dpciqck PRIV ik

2pCiqCk BRAPRIV P
B Vik

For the currents, if A%(r_, 1) is the surface area of the right face of fine-mesh box (p, ¢) and
2
Ak(r, 11 )is the coincedent area of the right face of node (i, k), then for each p and i such that

Tppl = Tipl, We have

!Note that this corresponds to the area A¥(riy1) in chapter 2.
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JE(r 1) = Lagzoonn TR ) A1)
n Ak(’"i+%)

3. Multigroup to Few-Group Collapsing : Finally, multigroup (index n) fluxes, cross

sections and currents are collapsed to their few-group (index g) counterparts through

=i,k =1,k - =k
$g =D 6n »  Jp(rin) =D IR,
nCg nCg
n =i,k ik =1,k
Ei,k _ Ean 2211 n d Ei’k _ Ean Zn’Cg’ E:m,’gbn’
ag =1,k an g9’ — =i,k
¢g ¢g’

where the symbol 3 -, indicates a sum over all ultrafine groups n having energy interval AE,

lying in the larger energy interval AE,.

With those parameters known, radial and axial discontinuity factor ratios are calculated using
equations (2-4) and (2-5) for the finite difference scheme, or their quadratic counterparts,
equations (2-9) and (2-10).

4.3 TWODANT Studies of the ANS

Eight-group cross sections were provided by Oak Ridge National Laboratory for the differ-
ent materials comprising the ANS reactor. These cross sections were collapsed from ultrafine
energy-group libraries for the isotopes comprising each material in the reactor. The spectrum
used as the weighting function in this collapsing process was found by running a series of one-
dimensional problems that simulate radial cuts at different axial positions in the upper and

lower fuel elements. Table (4-1) shows the energy structure of those eight groups.

Table 4-1 : Energy structure of the eight groups
Group Upper Energy (eV) Lower Energy (eV)

1 2.0000E+07 9.0000E+05
2 9.0000E+05 1.0000E+05
3 1.0000E+05 1.0000E+02
4 1.0000E+02 3.0000E+00
5 3.0000E+00 6.2500E-01
6 6.2500E-01 2.7000E-01
7 2.7000E-01 1.0000E-02
8 1.0000E-02 1.0000E-05
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4.3.1 Initial Studies

Since the discrete ordinates method is a deterministic method for which neutron balance is
obeyed for each energy group in each node, “exact” discontinuity factors and homogenized
group cross sections should be found which force results of the two-group nodal calculation to
match eigenvalue and two-group, node-averaged fluxes edited from the multigroup transport

calculation to within round-off error.

Initial studies were carried out to test this point and hence to validate the nodal parameter

edits described in the previous section.

A full-core calculation (8 energy-groups, S-8, P-1 approximation, and a variable mesh spacing
to account for heterogeneous details) was run for the central rods tips positioned at the core
mid-plane. The corresponding nodal calculation of the eigenvalue (using the nodal parameters
edited as described above) agreed to within round-off. The fluxes agreed to within 0.07% for
nodes in the outer reflector region where the values were a factor of 10'° lower than those in

the core and to within round-off in the interior region of the reactor.

4.3.2 Interpolation Procedures

As a second step in this investigation, tests were conducted to examine the behavior of nodal
parameters as the transient progresses (control rod motion for example) and to verify the
quadratic shapes of their changes (at least for the node where the tip of the rod is moving) as

suggested by the Monte Carlo studies.

To do so, six TWODANT criticality problems were run with the same parameters mentioned
earlier — two of these runs modeled the full reactor core subject to zero-returning-current at
the outer boundaries of the reactor. The two runs corresponded to the tips of the central
control rods located at the core mid-plane (see figure (3-1)) and to the central rods removed
10.9 cm (the size of the first node above the core mid-plane). The additional four runs were

for the rods tips at four intermediate positions.

For those additional runs, only subregions of radius 65 cm and height 167.4 cm shown in fig-

ure (3-1) subject to zero-returning-current boundary conditions were used. (zero-net-current

boundary conditions produced almost identical results).

Homogenized two-group cross sections and discontinuity factor ratios for the node in question

were edited from the results. As can be seen in Figure (4-1) for the thermal absorption cross
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section (given here for illustration), the values are fit very well by a quadratic function of
control rod position (the curve connects linearly the corresponding values of 3., calculated by
a least square quadratic). The fit for other cross sections and discontinuity factor ratios are

comparably accurate.

0.020 A

0.010 1

Thermal Absorption Cross Section (1/cm)

0.000 y T v T Y T T T v T
0 2 4 6 8 10

Distance Control Rod is Withdrawn (cm)

Figure 4-1 : Homogenized thermal absorption cross section vs. control rod posi-

tion : Reference value (0); quadratic interpolation

For the rest of the nodes comprising the reactor, changes, if any, in their nodal parameters

were fit well by linear functions of control rod position.

Thus, if edits of the nodal parameters are obtained for the rod tip at three different conditions
(node fully rodded (r), unrodded (u) and partially rodded (¢ = to), where ¢t is the fraction of
the rod removed from the node), interpolation curves can be formulated to predict the values
of the cross sections and discontinuity factor ratios for all the nodes in the reactor at any

intermediate position experienced during a transient.

The procedure, then, is to interpolate linearly the nodal parameters for all the nodes except
the one containing the tip of the moving rod and its nearest neighbours. Thus, if X|; is the

value of any nodal parameter (a cross section or a discontinuity factor ratio) at the time of the
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transient where the control rod tip is at position ¢ inside the node,

Sl = (1= )8, + ¢S, (4.4)

However, for the node containing the moving rod tip and its nearest neighbours, nodal param-

eters are approximated by a quadratic, for example,

A R e = A

This quadratic approximation is much more accurate than the conventional linear fit, equation

(4-4), and than the flux-weighted linear fit suggested by Gehin [14]:

(1-8)¢l|-
(1 - t)¢l7' + t¢|u

télu

Ble = A= Dél, + 14l

Il + 2y (4.6)

where ¢|, and ¢|, are the node-averaged fluxes corresponding to the rodded and unrodded
cases respectively. Figure (4-2) illustrates the accuracy of those two schemes in fitting the

cross section data at hand.

A somewhat more approximate quadratic fit can be found from just two reference calculations

by averaging equations (4-4) and (4-6), i.e.

_ [l + (1 = )¢l + il

lt — ¢|u + t¢]u + (1 — t)¢|r
2{(1 - t)d’lr + t¢|u}

2{(1 - t)¢l|- + tglu}

12, (4.7)

](1—t)2|,.+[

This latter approximation, which is illustrated in Figure (4-3), thus permits the determination
of homogenized nodal cross sections and discontinuity factor ratios of all the nodes for a
partially inserted control rod from only two reference calculations corresponding to rod in and

out situations.

To test the accuracy of the two schemes suggested above, the interpolated ZAQ parameters for
the rod half withdrawn from the node were computed for both schemes and the two, full-core

ZAQ static problems were run.

In comparison with a TWODANT reference criticality calculation for the rod at the same
intermediate position, agreement was 0.015% in eigenvalue and an average of 0.03% in interior
fluxes for the least square quadratic fit procedure (the maximum error in interior fluxes being
1.1%). For the linear averaging procedure agreement was 0.038% in eigenvalue and an average

of 0.05% in interior fluxes (the maximum being 1.8%).
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Figure 4-2 : Homogenized thermal absorption cross section vs. control rod posi-

tion : Reference value (0); linear interpolation (——); Gehin’s formula (- - - -)
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Figure 4-3 : Homogenized thermal absorption cross section vs. control rod posi-

tion : Reference value (0); average of linear and Gehin’s formula (

)
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4.4 Discussion and Conclusions

It has been established in the previous section that intermediate edits can be obtained by
running only reference criticality calculations for small subregions of the reactor — subject
to either zero-net-current or zero-returning current boundary condition — with the nodes for

which quadratic fits are required lying in the centers of those subregions.

One concern that arises for such runs is that the zero net current or incoming current boundary
conditions may not provide accurate results if the node in which the control rod is moving is
near the upper or lower boundaries of the subregion. Also if a subregion is used that contéins
one of those nodes in its center, some parts of either the upper or lower fuel elements may
not be present. The fear is that, as a consequence, spectral shapes may be affected leading to

inaccurate nodal parameter edits.

In trying to resolve these problems, it was found that a solution to the first might be to treat
the subregion as an extraneous source problem subject to zero-returning-current, with the
extaneous source present on the boundary of the subregion. The magnitude and shape of this
source are determined by running two full-core problems, one with the control rod inserted as
in figure (3-1) and the other with it fully withdrawn from the core, and to find the source for

intermediate rod positions by linear interpolation.

Although initial tests to validate this scheme were very encouraging, further studies led us to
abandon the approach, primarily because of the extremely slow convergence rate of the fixed

source problems.

Instead, tests were performed to investigate the validity of the second approach mentioned
above. Edits were obtained for a node 9.5 cm in radius, 11.6 cm high positioned 60 cm above

the core mid-plane (i.e. the case where the control rod is close to fully withdrawn).

The edits were obtained for three different cases, the first being a full-core criticality calculation,
the second includes only a subregion extending 65 cm radially and 108.675 cm above the core
mid-plane (i.e. it contained only the upper fuel pelement) with zero-returning-current imposed
on the outer surfaces of the subregion. The third problem modeled the same subregion but

with a zero-current boundary condition.

Table (4-1) shows the values of the homogenized two-group fluxes along with the total and

absorption cross sections obtained using these three schemes.
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Table (4-2) : Values of homogenized two-group cross sections and fluxes for zero

returning current and zero net current boundary conditions

Group 1 Flux Sigma_t Sigma_a
Full Core .49160E-01 3.91102E-01 2.03162E-02
Zero Returning Current .47925E-01 3.90961E-01 2.02041E-02
Zero Current .89020E-01 3.91180E-01 2.03794E-02
Group 2 Flux Sigma_t Sigma_a
Full Core .38465E-01 4.82185E-01 4.42992E-02
Zero Returning Current .23275E-01 4.81912E-01 4.41296E-02
Zero Current .78489E-01 4.82329E-01 4.43868E-02

While the two-group flux values edited from the transport problems for the subregion are quite
different from each other and from those edited from the reference full-core problem, the cross
section values agree quite well with the reference results for both the the zero-net-current and

zero-returning-current cases. The discontinuity factor ratios for the node behave in a similar

manner.
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Chapter 5

Numerical Studies : Space-Time

Analysis of the ANS Reactor

Having developed a procedure to construct tables of nodal parameters for different discrete
stages that bracket a given transient and interpolation schemes to calculate the node homoge-
nized cross sections and discontinuity factors from those tables as continuous functions of the
transients time variable, we now proceed to apply the method to the analysis of ANS control

rod withdrawal transients.

5.1 ANS Transient Analysis Model

The ANS model used to edit (from static calculations) the nodal parameters needed when
one of the central control rods is removed, is a homogenized model similar to the one used in
the static analysis of chapter 4. The nodes making up the reactor were homogenized using a

procedure similar to the one mentioned in chapter 3 for the Monte Carlo studies.

For the two-dimensional model at hand, the removal of one of the three central control rods
was simulated by reducing by one third the Hafnium control material density in the nodes
from which the rod is being removed and introducing this amount in the nodes into which the

rod is being moved.

Starting with the rods located at the core midplane and ending with one of the rods fully
withdrawn (a distance of 60 cm that spans 7 nodes axially), two full core static runs (8-groups,
P-0 and S-4) were made for the two limiting conditions. (The eigenvalues were 1.10287 and

1.10599 respectively.) Two tables of the node-homogenized cross sections and discontinuity
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factor ratios were edited for all the nodes in the reactor, and a linear interpolation scheme
between the two tables was used to calculate the nodal parameters values at any intermediate
position for all the nodes except the ones in which the rod was moving. Figures (5-1-a) and

(5-1-b) show schematics of those two cases.

As seen in the previous two chapters, a quadratic interpolation scheme is needed to depict
the changes in the nodal parameters of those nodes. To be able to formulate the required
quadratics, two sets of additional runs were made. (Only subregions with zero-net current
boundary conditions were used in these runs.) The first set consisted of six runs each modeling
the reactor in the state where the tip of the moving rod is at one of the six axial interfaces
between the seven nodes making up the distance between the core mid plane to the fully
withdrawn rod position. The second set consisted of seven runs each with the tip of the rod

Jocated at the middle of one of the seven nodes.

Finally, to simulate a reactor scram introduced by fully inserting all three central control rods
plus a set of eight, 75 cm long, “shutdown” rods located at a 34 cm radial distance from the
core centerline and i)arked 80 cm above the core midplane under normal operating conditions,
an extra full core run was made for the shutdown case that is shown in figure (5-1-c). (The

eigenvalue was 0.81530.)

5.2 ANS Rod Withdrawal Transients

Four cases of rod withdrawal transients were studied to span different time scales. These cases
are: Case # 1: Slow Transients (the case of a control rod servo runaway accident), Case # 2 :
Moderately Fast Transients, Case # 3 : Fast Transients, and Case # 4 : Very Fast Transients
(the case of a control rod ejection accident). It is important to note that temperature feedback
effects were not simulated in any one of these case. Instead, the required tables were constructed

with the reactor nodes at an average temperature.

5.2.1 Case # 1 : Slow Transients

The first transient considered modeled the removal of the rod from its initial position to the

fully withdrawn case in 10 seconds, utilizing a time step increment of 0.15 sec.

Figures (5-2) and (5-3) show the changes in reactor power and reactivity respectively as the

transient progresses up to 15 seconds without scram. The figures also show the predictions of
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the point kinetics model in analyzing the transient. In this figure, PK (initial) is the point
kinetics model using the initial flux shape at the beginning of the transient to calculate the
point kinetics parameters at each step, the initial adjoint shape is used as the weighting func-

tion, whereas PK (final) used, instead, the final flux and adjoint shapes.

Figure (5-4) is a magnification of the reactor power curves for the first seconds of the transient
up to the time the scram signal is reached. (A scram is initiated when the flux measured in
the detectors located in the H20 pool increases 15% over its nominal steady state value at full
power.) The effect on reactor power level of inserting the rods in a step fasion (justified since
the rods are inserted with a 6g acceleration so that the rods reach their fully inserted position

in 0.116 seconds) is depicted in Figure (5-5) for the three models used.

As can be seen from these figures that “PK (initial)” underestimates the amount of reactivity
inserted in the reactor due to the rod removal and hence underestimates the changes in the
reactor power. However, the difference from the space-time “Reference” predictions is quite
small. PK (final) performs in an opposite fashion with much larger differences in the predic-

tions compared to the reference case.
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Figure 5-4 : Reactor power vs. time up to the time scram is actuated, Case # 1
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Figure 5-5 : Reactor power vs. time, shutdown behavior, Case # 1

5.2.2 Case # 2 : Moderately Fast Transients

The second transient studied is a representative of the transients that span a time interval of

few seconds. Here the rod is removed the full 60 cm distance in 1 second utilizing a time step
of 0.015 sec.

Figures (5-6), (5-7) and (5-8) are analogues to (5-2), (5-4) and (5-5) respectively. The figures
show similar trends and the same conclusions regarding the accuracy of PK (initial) and PK
(final) can still be made. The most important one of these conclusions is the acceptable

accuracy of the point kinetics model utilizing the initial shapes, “PK (initial)”.
5.2.3 Case # 3 : Fast Transients

The third transient (representative of a calss of transients having time scales in the order of a
few tenths of a second) using a time step of 0.00375 sec, modeled the rod withdrawal in 0.25
seconds. Shutdown was not simulated in this case since the scale of the transient is comparable

to that of the time required for the control rods to move to their shutdown positions and hence
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changing the cross sections and discontinuity factors ratios in a step fashion to model the scram

becomes inaccurate. Figure (5-9) shows the changes in the reactor power for the space-time
and point kinetics (initial) models.

Fiogures (5-4), (5-7) and (5-9) show that the point kinetics model predictions deviate more

(relative to the scale of each transient) from those of the space-time model as the transient
becomes faster.

5.2.4 Case # 4 : Very Fast Transients

The last transient considered is representative of the class of the very fast transients that span

a time interval of few hunderedth of a second (the range of an explosive control rod ejection
accident).

Figure (5-10) shows the change in the reactor power up to the time the scram signal is reached

for the rod removal in 0.03 seconds using a time step of 0.00045 sec. The figure again shows

the deviation of the point kinetics predictions from those of the space-time model.
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5.3 Analysis and Conclusions

A better measure of how well the point kinetics model performs in the safety analysis of the
Advance Neutron Source Reactor is to get an indication of how high the flux tilts in the fueled
regions. A way to get such an estimate is to meaure, as a function of time, the change in
the ratio of the group-2 flux in the fueled regions to that measured in the detector (this ratio
ramains constant in the point kinetics model since the flux shape does not change as the

transient progresses).

Table (5-1) shows, for all the nodes in the upper fuel element, the % difference of this ratio
to that of the point kinetics model for case # 4 at certain selected times up to the time of

shutdown. In this table the nodes are numbered in an increasing order from bottom to top.

Table 5-1 : % difference of the ratio of group-2 flux in the nodes of the upper

element to that measured in the detectors and that of the point kinetics model

Time (sec) 1 2 3 4 5 6
0.0000 0.00 0.00 0.00 0.00 0.00 0.00
0.0022 0.99 0.94 0.78 0.66 0.57 0.48
0.0049 2.70 2.77 2.52 2.32 2.19 2.05
0.0095 4.35 5.31 5.06 4.79 4.60 4.42
0.0140 4.79 6.45 6.96 6.70 6.44 6.22
0.0194 4.71 6.84 8.00 8.60 8.55 8.26
0.0225 4.52 6.79 8.14 9.06 9.54 9.32
0.0306 3.97 6.33 7.84 9.02 9.96 10.83
0.0360 3.62 5.97 7.49 8.67 9.61 10.438
0.0401 3.39 5.74 7.25 8.43 9.37 10.23

As can be seen the ratio incrases monotonically up to 0.0306 sec then starts decreasing with
a peak of 10.8% which indicates a radial tilt that cannot be predicted by the point kinetics.

(this difference had a maximum of 4.1% in case # 3 and was < 1.2% in cases # 1 & 2).

Another way to judge the accuracy of the point kinetics scheme is to measure the amount of
energy deposited in the heighest powered node at the time when the scram signal is reached
as measured by both the space-time kinetics and the point kinetics models. For case # 4 the

% error in the ratio had a value of 4.1% .
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The above two results and those shown in figures (5-4), (5-7) and (5-9) suggest that the point
kinetics model gives acceptable predictions in the safety analysis of slow transients. However,
as the time scale of the transients gets smaller, it appears that a space-time kinetics model
may be needed for the safety analysis of the ANS reactor. In all cases, however, a space-time

kinetics model should be used if accurate predictions of kinetic behavior vs. time are required.
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Chapter 6

Summary, Conclusions and

Recommendations for Future Work

In this thesis, a scheme has been developed for analyzing, by few-group nodal methods corrected
by discontinuity factors, transients for which neutron space and energy distributions change
significantly and for which a multigroup transport model is needed for accurate simulation.
For this scheme, spatially-homogenized, few-group cross sections and discontinuity factors for
the nodes were edited from static, fine-mesh, multigroup transport calculations for various
conditions expected during the transient; tables of the few-group parameters vs. the variables
of the transient were constructed, and the few-group, node-homogenized cross sections and

discontinuity factors needed as the transient progresses were found by interpolation.

Application has been made to the proposed Advanced Neutron Source Reactor for which
interpolation procedures were developed when the reference calculations were performed using

both Monte Carlo and discrete ordinates transport methods.

6.1 Conclusions

The results presented in chapter 3 indicate that Monte Carlo codes can be used to determine
homogenized, two-group cross sections and discontinuity factors for a range of static reactor
conditions, and, if the Monte Carlo edited data for individual nodes are smoothed, acceptably
accurate nodal parameters for intermediate states can be determined by interpolation so that
the static characteristics of the reactor for the intermediate situation can be determined. The

expectation is that, with the two-group nodal cross sections and discontinuity factor ratios
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parameteraized as functions of control rod location or coolant density, the two-group nodal
code could be used to predict transient behavior with acceptable accuracy. However, the
Monte Carlo calculations required to determine the nodal parameters are extremely expensive.
In addition, even with 106 case histories per run, the edited nodal parameters are subject to
statistical fluctuations and require smoothing before they produce acceptably accurate nodal

fluxes.

For deterministic models, homogenized nodal cross sections and discontinuity factors that
cause the nodal model to match, exactly, the reference results can always be found. And from
the results of chapter 4, the discrete ordinates method appears to provide the more accurate

interpolated values of the nodal parameters.

Finally, the results of chapter 5, for the Advanced Neutron Source transients studied, suggests
the need for such schemes for the safe analysis of tightly coupled cores where the point kinetics

model produces inaccurate predictions.

It is important to note that, although all the results presented in this thesis are specific to
the Advanced Neutron Source Reactor, the scheme itself is applicable to any tightly coupled
reactor. This is because all reactor transients are physically continuous (step changes are only
approximations to very fast transients). Thus, it is natural to expect the nodal parameters to
change in a smooth manner, and as a consequence, interpolation curves can always be found
and approximated by high order polynomials. The question that remains is how to find such

polynomials in the least expensive way.

6.2 Recommendations for Future Work

The Monte Carlo method has one distinct advantage over the discrete ordinates transport
methods. This advantage arises from the fact that systems of complicated geometrical shapes
and topological surfaces can be accurately modeled using Monte Carlo. However, ststistical
uncertainties associated with the Monte Carlo edited parameters and the lack of a theoretically
valid scheme for editing group scattering cross sections remain as significant problems that
obsecure any firm conclusions regarding the accuracy of using Monte Carlo techniques to edit
homogenized, few-group nodal cross sections and discontinuity factors. Further studies need

to be carried out to resolve those problems.

One way to attack the first problem without running an unacceptably large number of case
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histories is to use some of the variance reduction schemes devised for reducing the statistical
uncertainties in the Monte Carlo tallied quantities and hence increasing the accuracy of the
edited nodal parameters. However, great care must be taken when using those schemes so that

the statistical properties of the case histories are not distorted.

For a solution to the second problem mentioned above, attempts should be made to try to tally
directly the group scattering interaction rates. A way to do this within the continuous-energy

regime of MCNP has to be worked out.

Finally, as seen from the results of tha ANS transients analyzed in chapter 5, a space-time
kinetics analysis appears necessary for the safe design of tightly coupled reactors and for the
calculations to support their operation. However, the schemes developed in this thesis for such

analysis have yet to be verified.

It is not hard to test the accuracy of a static few-group nodal model based on parameters
interoplated from a few, multigroup, transport computations. One simply uses the transport
code to analyze the case in question and compare with the nodal results. However, without a
time-dependent transport code, doing the analogous validation for a transient problem is not

as straightforward.

One way to test the accuracy of the few-group nodal scheme in the middle of a transient is to

edit, for each node n, “instantaneous time constants”

1 06, 1 9

wg = ;fw a.nd w; = L

T ot

for each energy-group g and precursor-group ¢ using the node-average group fluxes ¢, and
precursor concentrations ¢* (and their time derivatives from the nodal calculation at the time
in question). If the time derivatives in the nodal equations are replaced by the wy and w;, the

pseudo-static equations that result should yield exactly k.ss = 1.

A good test of whether the nodal transient calculation would agree with a transport transient
calculation (if one were possible) is to see if the wy and w; inserted in the time-dependent
transport equations (thereby reducing them to static equations) will also yield k.sr = 1. (A
way to account for the fact that the number of regions and number of groups in the transport

calculation will in general differ from those of the nodal calculation will have to be worked

out).
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Appendix A

The ANS Reactor Characteristics

In this appendix, we give a description of the reference ANS reactor characteristics. It should
be noted that several of the design parameters and geometric details mentioned here are being
changed or modified during the present conceptual design period. This appendix is a summary
of the ANS description given in reference [5]. Most of the paragraphs are taken directly from

that reference.

The reference ANS reactor consists of two fuel elements containing hundreds of thin involute
fuel plates with highly-enriched uranium silicide (U3S%;) fuel meat. As shown in figures (A-
1) and (A-2), the elements are radially and axially offset. Radial offset allows the same low
coolant inlet temperature for each element. Axial offset, on the other hand, creates greater
neutron leakage, which increases the volume in the reflector having a high thermal neutron
flux. It also increases the available worth of the control rods in the central hole region and

provides additional space next to the fuel for irradiation targets.

The entire reactor and core pressure boundary tube (CPBT) sit in a large, low-pressure and
low-temperature tank of heavy water. The D20 reflector is contained in a large 3.5-mm-
diameter Al-6061 vessel surrounded by H20 as illustrated in figure (A-1). The light water
pool provides biological shielding and accessibility and reduces the amount of D20 required

to maintain the desired core reactivity.

The characteristics of the reference reactor are presented in Table (A-1). The reactor operates
for 14 days at a power of 350 MW-fission to achieve a peak thermal neutron flux of about
8.5 x 1019 newlrens in the reflector at the end of cycle (EOC). In Table (A-1), we define MW-

fission (MWTf) as the total power (heat rate) deposited in the reactor and reflector tank.
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MW-core (MWc) is the power deposited in the fuel plates and coolant channels (MW-core is
assumed to be 0.95x MW-fission).

The fuel plates are highly enriched (93% U-235) UsSi2/Al, 0.762-mm-thick, and clad with 0.25-
mm-thick Al-6061. The U-235 loading varies continuously, axially and radially, throughout the
fuel to reduce the local power peaking. Burnable boron poison is provided in the end caps of
the fuel to reduce the excess reactivity at the beginning of cycle and to help flatten the power
distribution. The plates are cooled with D20 flowing up 1.27-mm-wide coolant channels. The
upper element has 432 involute fuel plates containing a total of 9.36 kg U-235; the lower element
has 252 plates with 5.65 kg U-235.

Heavy water flowing through a coolant bypass annulus between the outer side plates and the

CPBT cools the side plates and CPBT.

A shim/regulating/safety control rod system is located in the central hole, and a safety control
rod system is located in the reflector just outside the CPBT. Approximately 20% Ak/k excess
reactivity is required at the beginning of cycle (BOC) to maintain a reactor power of 350 MWf{
for 14 days. About 11% of the core excess reactivity at the beginning of cycle is shimmed
with 13.4 g of burnable boron poison. The remaining excess reactivity at BOC is controlled

by three hafnium rods in the central hole.

The high power densities require as flat a power distribution as possible. The power shape is
flattened by burnable boron poison and by grading the fuel, radially and axially, placing higher

U-235 content near the center of the fuel zone and lower U-235 content in the core periphery.

Figure (A-1) shows the reactor core, conrol rods, core pressure boundary tube, D20 reflector,

Al-6061 tank, and the H20 biological shield.

Figure (A-2) is a close-up view of the reactor core and control rods. Each fuel element has
80 cells through which 5 materials are distributed, each with a different U-235 loading. The

different materials are used to represent the axial and radial U-235 grading.

Figure (A-3) is a horizontal view of the reactor central hole along the core midplane. The

figure shows the upper and lower fuel shells with the three central rods inserted.

Figure (A-4) is an expanded wiew of the upper and lower fuel regions showing the material
numbers used in each fuel region. Material 1 has the highest U-235 density while material 5
has the lowest U-235 density.
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Figure A-2 : The Advanced Neutron Source reference split core. The reactor

dimensions within the pressure boundary tube are shown
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Table A-1 : Design characteristics of the ANS reference offset split core model
(Taken from Reference (5])

Core Dimensions

Fuel element height (mm) 474

with Al end tips 494
Upper fuel element

Inner diameter (mm) 350

Outer diameter (mm) 482

Radial thickness (mm) 66
Lower fuel element

Inner diameter (mm) 204

Outer diameter (mm) ‘ 336

Radial thickness (mm) 66
Core volume (litres) 67.42
Core total height (mm) 1038
Volume of fuel meat (litres) 20.23
Axial distance between active fuel elements (mm) 50
Coolant bypass annulus width (mm) 5
Al-6061 core pressure boundary tubethickness (mm) 12.5
Al-6061 central support pipe thickness (mm) 7.0
Fuel plate surface area in core (m"2) 53.0
Central hole diameter (mm) 190

Fuel

Material U3Ssiz2/Al
Uranium enrichment (weight % U-235) 93
Maximum volume fraction (U in fuel meat) 0.45
Maximum fuel density (kg U/L fuel meat) 2.25
Fuel plate thickness (mm) 1.27
Coolant channel width (mm) 1.27
Fuel meat thickness (mm) 0.76
Cladding and side plate material Al-6061
Cladding thickness (mm) 0.254
A1-6061 plate tip length (mm) 10.0
Number of fuel plates

Upper element ‘ 432

Lower element 252
Side plate thickness (mm) 7.0
Fuel span between side plates (mm)

Upper element 78.4

" Lower element 87.4
Coolant volume fraction in core 0.50
Cladding volume fraction in core 0.20
Physics Characteristics

Reactor power (MW-fission) 350.0
Cycle length (days at full power) 14.0
Core average power density (MWf/L) 5.19

Peak reflector thermal neutron flux (neutrons/(m"2.sec))
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Table A-1 : Continued

Beginning-of-cycle 7.95 x 10719

End-of-cycle 8.57 x 10719
Fast neutron contamination at thermal flux (neutrons/(m"2.sec))

peak location at BOC 7.95 x 10717
Core fissile loading at BOC (kg U-235) 15.01
Fuel burnup (kg U-235) 6.07

average (fission/m”3 meat) 6.3 x 10726

peak (fission/m”3 meat) 1.0 x 10727
Core burnable poison loading (kg B10) at BOC 0.0134
Core burnable poison loading (kg B10) at EOC 0.0002
Maximum k excess (% dk/k) 24.2
=fficiency factor at EOC (1/(m"2.sec.MWf)) 2.45 x 10717
Axial distance of thermal flux peak
relative to core midplane

at BOC (m) -0.15

at EOC (m) 0.07
Radial distance of thermal flux peak

at BOC (m) 0.38

at EOC (m) 0.38
Fast-to-thermal flux ratio at flux peak at EOC

at location of peak thermal flux 0.01

Thermal Hydraulics Conditions

Reflector tank temperature (C) 27.0
Coolant inlet pressure (MPa) 3.7
Core outlet pressure (MPa) 2.0
Core pressure drop (MPa) 1.7
Available flow area (m"2)

in upper element coolant channels 0.0431

in lower element coolant channels 0.0280

in coolant bypass annulus 0.0079

in control rod channel 0.0250
Coolant flow rate (kg/sec)

in upper element coolant channels 1196

in lower element coolant channels 770

in coolant bypass annulus 236

in control rod channel 274
Coolant velocity (m/sec)

in core channels 27.4

in coolant bypass annulus 27.4

in control rod channel 10.0
Coolant bulk inlet temperature (C) 49
Coolant bulk outlet temperature (C) 83
Average surface heat flux (MWc/m"2) 6.27
Average heat transfer area per plate

upper element (m"2) 0.0743

lower element (m"2) 0.0828
Energy conversion factor (%)

(MW-core/MW-fission) 95.0
Average power density in fuel meat (MWc/L) 16.44
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Figure A-3 : A horizontal view of the ANS core. The figure shows the central

hole, control rods, and upper and lower fuel shells
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Figure A-4 : An expanded view of the upper and lower fuel regions showing the
material numbers used in each region. Material (1) has the heighest U-235 density
while material (5) has the lowest U-235 density
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