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ABSTRACT

The Voyager Plasma Science experiment consists of four modulated grid
Faraday cups which measure positive ions and electrons in the
energy-per-charge range of 10-5950 volts. A formila for the full response
function of each of the cups is derived from the solution to the equations
of motion for a charged particle inside the cup. The current in each of
the energy-per-charge channels of the detector can he expressed as the
difference between two integrals over velocity space of the product of the
response function and the distribution function which describes the plasma.
The integrals are performed for two special cases when the distribution
function is a convected Maxwellian.

For the case when the sonic Mach number of the flow is large ("cold
plasma" approximation), we approximated the dependence of the distribution
function on the components of the flow perpendicular to the cup normal by a
Dirac delta function, permitting the integrals over those components to be
performed trivially. The remaining integral must be performed numerically.

For the more general case when the sonic Mach number is not large, we
approximated the analytic expressions for the response function by a
functional form which permits the integration over the components of
velocity transverse to the cup normal to be performed analytically. Once
again, the integral over the normal component of the velocity must be
performed numerically. We developed a special integration scheme which
greatly reduces the computer time required for the numerical computation of
the remaining integral.

The formula for the response function was tested by using the solar
wind as a test beam when the spacecraft was rotating during a cruise
maneuver. Analysis of the data taken during the maneuver using the "cold
plasma"™ approximation confirmedothe accuracy of our response function for
angles of incidence of up to 70~ for the main sensor cups and up to at
least 55 for the side sensor cup. By using data from all four cups
simulatneously, we are able %o determine the solar wind direction with a
precision of better than 0.5°.

We then present analysis of data taken in the vicinity of the
Jovian satellite Io. The interaction between Io and the Jovian
magnetosphere is a topic of considerable interest due to the fact that the
decametric radio emmision from Jupiter appears to be modulated by the
satellite. Unfortunately, the problem of determining the plasma parameters
near Io is extremely difficult due to the low Mach number of the flow, the
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large angle of the flow with respect to the cup look directions, and the
presence of several dif{eregg ioic specieg. Under the assumption that the
only ions present are 0 , 0 ', S, and SO, and that all of the ionic
species have the same thermal speed, we ogtain estimates of the plasma
parameters by fitting seven spectra taken in the vicinity of Io. We
interpret our results in terms of a model of the interaction between Io and
the Jovian ionosphere due to Neubauer (1980). The results indicate
qualitative agreement with the model that the flow is analogous to the
potential flow of an incompressible fluid around an infinitely long
cylinder.

Thesis Supervisor: Dr. Stanislaw Olbert

Title: Professor of Physics
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Chapter I

Introduction
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On 20 August 1977, a spacecraft named Voyager II was launched from the
Kennedy Space Center in Florida, bound for the outer solar system. Voyager I,
its sister ship, was launched two weeks later on September 5. Both spacecraft
were targeted for close encounters with Jupiter and Saturn. Voyager II will
also fly close to Uranus and Neptune.

One of the experiments carried by both of these spacecraft was a set of
four modulated grid Faraday cups called the Plasma Science Experiment (PLS).
The PLS experiment measures positive ions and electrons in the energy range of
10-5950 eV. It was designed and constructed at MIT, and includes several
novel features (Bridge et al). Three of its four cups are very shallow,
resulting in an extremely wide field of view. These same three cups are
arrayed about an axis of symmetry such that theif fields of view overlap.

This region of overlap includes the direction of the solar wind flow
throughout most of the mission. By analyzing positive ion data taken by all
" three of these cups simultaneously, it is possible to determine the direction
of the solar wind flow to better than one-half degree and its magnitude to
within a few km/sec.

The fourth cup is more conventional in design, and it looks in a
direction perpendicular to the symmetry axis of the main cluster. During the
interplanetary, or cruise, phase of the mission, this cup is used to measure
electrons. In addition, during the inbound pass of planetary encounters, this
cup looks in the direction of the corotating plasma, measuring both electrons
and positive ions.

The main sensor cups were designed in such a way that for a wide range of
sonic Mach numbers and flow directions, including all of the situations which

one expects to encounter during the cruise phases of the mission, almost all
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of the particles which enter the aperture and are not stopped by the modulator
voltage do reach the collector. During planetary encounters, however, the
facts that the Mach number 1s frequently low and that the flow is highly
oblique to the cups makes the "unity response" approximation not valid. In
order to analyze data taken at these times, a knowledge of the full response
function of the cups is required.

This thesis presents a derivation of the full response function based on
a calculation of the trajectories of charged particles inside the cups. The
current measured by the sensors is given by the integral over velocity space
of the product of the plasma distribution function and the cup response
function. A computer program which performs this integration numerically has
already ﬁeen written by V. Vasyliunas, one of the designers of the instrument.
Unfortunately, his algorithm is very slow. Not only is it impossible to use
it to perform any iterative fitting procedure to determine the macroscopic
plasma parameters, but it is even too slow to use at all for simulating the
high resolution (M-mode) energy-per-charge spectra. We have overcome this
difficulty by approximating the analytic expression for the response function
by a functional form which permits the integrations over the components of
velocity perpendicular to the cup normal to be performed analytically for the
case where the distribution function is a convected Maxwellian. This
derivation is the topic of Chapter 2.

In order to test the response function derived in Chapter 2, it is
neccessary to have an extremely narrow test beam. ©Since such a beam is very
difficult to make in the laboratory and the quiet solar wind has just these
properties, we have tested the response function by analyzing data taken by

Voyager 1 during a cruise maneuver. During the cruise maneuver, the



(11)

spacecraft performed a series of rotations which changed the orientation of
the spacecraft, causing the solar wind to enter the cups from a wide variety
of angles. The use of the data taken during the cruise maneuver to test our
cup response functions is the topic of Chapter 3.

On the outbound pass of its Jupiter encounter, Voyager I flew about
20,000 km above the south pole of the satellite Io. As the decametric radio
burst from Jupiter are known to he correlated with the phase angle of Io, the
interaction between Io and the magnetospheric plasma is a topic of
considerable interest. During the Io flyby, the sonic Mach number of the
plasma was low (about 2) and the flow direction was perpendicular to the main
sensor symmetry axis. This situation makes knowledge of the full response
function neccessary for the analysis of the data taken during this period.
This stretch of data was chosen for the first use of the full response
function in analyzing data.

The satellite Io appears to have a high electrical conductivity. Drell,
Foley and Ruderman (1965) have shown that any conductor which moves through a
magnetized plasma will be a source of Alfven waves. If the velocity of the
conductor with respect to the ambient medium does not change with time, there
will be a standing wave pattern in the rest frame of the conductor consisting
of a pair of Alfven "wings" which extend away from the conductor in the
direction of the Alfven characteristics. Neubauer (1980) has shown that the
plasma flow around each of these wing is analogous to the potential flow of an
incompressible fluid around an infinite cylinder.

The final two chapters of the thesis are concerned with Io's interaction
with the Jovian magnetospheric plasma. Chapter 4 contains a discussion and

critique of Neubauer's theory, while Chapter 5 consists of analysis of the
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data taken by Voyager I during the Io flyby. We conclude that the data is
consistent with the overall picture that the plasma flows around the Alfven

wing as if the wing were a long, cylindrical obstacle.
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Chapter 2

Derivation of the Response Function

of the

Voyager PLS Experiment
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2.1 Location and Orientation of the Instrument

The Voyager Plasma Science Experiment consists of four modulated grid
Faraday cups. A sketch of the instrument is shown in Figure 2.1l. Three of
the cups, called the A-cup, B-cup, and C-cup, comprise the main sensor.
These three cups have the same pentagonal shape and are arrayed with their
cup normals 20° from an axis of symmetry. The fourth cup, called the side
sensor or D-cup, has a circular aperture. The normal to the D-cup aperture
points in a direction 88° from the main sensor symmetry axis.

Figure 2.2 shows the location and orientation of the plasma instrument
on the spacecraft. The instrument is mounted on the science boom, a metal
support structure vwhich extends away from the main body of the spacecraft.
Also on the science boom are the cosmic ray, imaging, UV spectrometry, IR
spectrometry, photopolarimetry, and low energy charged particle
experiments.

The system of coordinates called spacecraft coordinates is defined as
follows: The spacecraft center of mass is taken as the origin. The

~

unit vector gsc points along the axis of the main antenna, with +z o,
pointing into the antenna. The unit vector §sc lies in the plane

containing the Z__ and the axis of symmetry of the science boom. It is

sc
perpendicular to the asc and makes an acute angle with the science boom.
The unit vector isc is defined so as to make a right-handed system (see
Fig. 2.2).

The outward pointing symmetry axis of the PLS main sensor is parallel
to -Esc. As this axis is also parallel to the axis of the main antenna, it

is pointed at the earth during most of the mission. Since the angular

separation between the earth and the sun as seen from the outer solar
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system is small, the solar wind flow direction is substantially into the
main sensor. The D-cup is oriented such that it looks into corotating flow
during the inbound pass of a planetary flyby. The relative orientations of
the cup apertures as viewed from along the main sensor symmetry axis is
shown in Fig. 2.3.

During the interplanetary, or cruise, phase of the mission, the main
sensor measures positive ions and the side sensor measures electrons.
During planetary encounters, the D-cup is also used to measure positive

ions.

2.2 Structure and Operation of the Main Sensor Cups

A vertical cross section of a main sensor cup is shown in Figure 2.k,
and a top view is-shovn in Figure 2,5. The collector of the cup has the
shape of home plate on a baseball field with the corners smoothed out. The
aperture is similar in shape, differing in that it is smaller and its
parallel sides are shorter with respect to its other sides. The aperture
area (Aap) is 102 cm°. Around the edge of the collector is a rim of metal.
The collector plane is considered to be the plane defined by the top of
this rim. The distance (h) from the aperture to this plane is 4.1 cm.

The cup has nine parallel grids. Each grid consists of a woven mesh
of two perpendicular sets of parallel wires. When measuring ions, the
suppressor grid is held at -95V relative %o the collector, and the same
positive voltage square wave is impressed on all three modulator grids.

The rest of the grids and the collector are grounded to the spacecraft.

When a square wave voltage is impressed on the modulator grids, the
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collector current is a square wave differing in phase by 1800, as shown in
Figure 2.6. The amplitude of this square wave is the information which is
telemetered back to Earth. During operation, a sequence of such square
waves is used. The frequency of the wave is 400hz, and the limiting
voltages are changed every 0.240 secs. The voltages are changed such that
the higher voltage of any one square wave is the lower voltage of the next.
In this way the voltage range of 10-5950 volts is divided into contiguous
channels. In the low resolution (L-)mode there are 16 channels; in the
high resolution (M-)mode there are 128 channels. Hereafter, we will label
the channels with a subscript k. Appendix A includes a table which lists
the threshold voltage ‘k’ the voltage width A¢k (¢k+1- ¢k), and the average
voltage $k ((¢k+1+ ¢k)/2) for each channel in each of the positive ion |
modes (L and M). A more thorough description of the instrument and its
operation is given in Bridge et al (1977).

. In order to define the threshold speeds vy e will use a coordinate
system called cup coordinates. We take as the origin the center of the
long side of the aperture (point O in Figure 2.5). The unit vector gcup is
perpendicular to the aperture plane and points into the cup, the unit
vector ﬁcup is defined by the vector cross product of gsg with Ecup’ and
the unit vector Fcup is defined to make a right-handed coordinate system.

Consider a parallel beam of positive monoenergetic ions incident on
the cup. The only particles to reach the collector will be those with a
z-component of velocity greater than Vi given by

v =(22"eq, /am )/

L ]
where Z 1is the charge state of the ion, e is the elementary charge, O ig the

2.1a

modulator voltage, A is the atomic weight and mp is the proton mass. It is
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convient to define the average proton speed Vk and the channel width Avk as
Ve = (vqtv)/2 2.1b
A 2.1c

The values of Gk and Avk for each channel are included in Appendix A.
In terms of the distribution function £(¥) which describes the plasma
environment of the spacecraft, the current in the k-th channel is given by

Equations 2.2a and 2.2b.

»* »*
LT Tea 2.2
-] L -] - -]
I*=A 7'e © fdv dv. fdv v £(¥)R(¥,v. ) 2.2b
k0 Xy ZZ *'k *
- —m vk

where Ao is the aperture area times the transparency at normal incidence and
R(;,vk) is the cup response function, to be derived hereinafter. The quantity
f(;) in the above equation is the distribution function of a single species;
if the plasma contains more than one species the current will be given by a
sum of terms like Equation 2.2b, one for each type of ion.

The quantity Ik can be thought of as a function of ;k' For the remainder
of this thesis, the quantity Ik(\-rk)/Mk will be referred to as the reduced
distribution function. This is because when the unity response approximation

is valid, Ik/Acbk is in fact proportional to the object which generally goes by

that name (see McNutt et al (1981)).

2.3 Response Function of the Main Sensor

Our problem is to determine the function R. A particle incident+on the

aperture will reach the collector unless it is stopped by the modulator
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voltage, it collides with a grid, or its trajectory is such that it misses the
collector and collides with the side of the cup. The first effect is taken
care of by the lower limit of the integration over v, the latter two effects
are included in R. R can therefore by written as a product of two terms and a
normalization constant,

R=TA/A, | 2.3
where T is the transparency of the grids and A is the "sensitive" area of the
collector. Note that R is normalized to unity at normal incidence. T and A
are functions of velocity and channel number, while A0 is a constant. We will

first consider the effect of collisions with the grids (transparency).
" 2.3a The Grid Transparency

The transparency of a single grid is defined as the probability of an
incident particle traversing the plane of the grid without colliding with the
wires. We model a grid as a planar structure consisting of two perpendicular
sets of parallel cylindrical wires. In the main sensor, the sets of wires of
all of the grids are parallel to the x- and y- axes in cup coordinates. The
transparency of the grid will be the product of the transparencies of each set
of wires considered separately.

Consider the wires which run in the x-direction. Since the transparency
of these wires does not depend upon Vs Ve only need to consider the
projection of the motion into the y-z plane. The probability of a particle
colliding with one of the wires is simply the ratio of the area of the wires

to the area of the gaps between the wires projected into a plane perpendicular

to the particle velocity vector (see Figure 2.7). Per unit length along the
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wire, this ratio is

d

—————— = ¢ sec Qa 2.4
L cos a

Probability of collision =

where d is the wire diameter, L is the grid spacing, c(=1/42) is their ratio,
and a is the angle between the particle velocity and the grid normal. The
probability of a particle not colliding with the grid, is

Probability of no collision = 1- (c sec a) 2.5
If ¥* is the velocity of the particle as it crosses the grid plane, we see

that the transparency of one grid is

v . v
t=l1-c(1+ (22 e (14 (D) E) 2.6
Z Z

Undef the assumption that the potential inside the cup depends only on>z,, ;*

depends solely upon the velocity of the particle before it enters the cup and

the voltage on the grid. The validity of this approximation will be discussed
in the next section. An expression relating ¥* with ; is now found from

energy conservation to be

v; = v, 2.7a
vk = v 2.Tb
y ¥y /

_ 2 1/2
v; = (vz - 2e¢/AmP) 2.7Tc

The transparency of all of the grids is the product of the transparencies of

the individual grids. It is given by

2 2
v v
=1 [1-c(1+ —E )2} {1c(1r ——L— )3 2.8
. 2ed . 2ed.
i v2_ i v2_ i
Z Am A Am
P P

where o5 is the voltage on the i-th grid
Each cup has three modulator grids, one suppressor grid, and five

grounded grids (see Fig. 2.4). The transparency is therefore given explicitly
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by
2 2 2
v v v
T={1-c(1+ —’2‘—)1/215[1-c(1+ —i——z———)1/2]3[1-c(1+ —-—-x—é-——)l/al x
v V. v
Z 2 k 2 s
vz(l- 2 ) vz(1+ 2 )
v v
Z z .
2.9
v2 V'2 v2
(1-e(1+ LH215 [1e(1s —L )23 e (10 —L )7
V2 2, 'k 2, Vs
vz(l— ] ) vz(l+ ) )
v v
z z
The subseript s refers to the suppressor grid; A\ is defined in a manner
analogous to the definition of Vi in Equation 2.1
(et 1/2
v =(2z e¢s/Amp) 2.10

where ¢s is the voltage on the suppressor grid,

Note that for normal incidence T=To=(l—c)18=0.65 and A0=66 cm?.
2.3b The Sensitive Area

The second factor in Equation 2.3 is the "sensitive area". This is
defined to be the overlap of the area of the collector with the area of the
image of the aperture in the plane of the collector.

Consider a beam of particles incident at an angle a to the cup normal.

In the collector plane, the beam will have the shape of the aperture, but its
position will be displaced because of the components of the particle velocity
transverse to the cup normal direction, as shown in Figure 2.8. First we will
compute the amount of the shift, and then we will discuss the functional
dependence of the sensitive area on the shift vector.

We define a two dimensional vector §, also shown in Figure 2.8, to be the

displacement of the aperture image from & perpendicular projection of the
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aperture into the plane of the collector. Figure 2.9 shows the projection
into the x-z plane of a possible trajectory of a positive ion as it moves from
the aperture to the collector of one of the main sensor cups. If the
particles were not deflected by the electrostatic fields inside the cup, the

shift would be given by

Vx
sx=.;; h 2.11a
v
§S=-Ln 2.11b
y v,

The effect of the fields is to bend the beam, thereby changing the amount of
the shift. To compute the amount of the shift, we will solve the equations of
motion for a charged particle moving in the electric field of one of the cups.

We will assume that the potential between the grids depends only upon z.
This neglects the fine structure of the fields close to grids as well as the
fringing fields near the edges of the grids.

The fine structure of the fields in the vicinity of the wires decays in a
distance comparable to the mesh size of the grid. Since this distance is much
less than the spacing between grids, the ripple in the fields near the wires
can safely be ignored.

The fringing fields are important only in a region around the edge of the
grids which has a width comparable to the grid spacing. Because of the cup
goemetry, any particle whose trajectory includes the region where the fringing
fields are important will miss the collector. As this will occur whether or
not the fringing fields are used in computing the trajectory, these fields can
be ignored.

The potential is theref;re well approximated by a linear function of

distance between any two neighboring grids. Figure 2.10a shows the potential
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Using energy conservation and the

fact that the fields are entirely in the z-direction the equation of motion is

easily solved.

= dx _
Vi T a " Vx
Vi T at z

with ¢(z) given by

#(z)= =25 o
¢(z)= 9

_ 1.905-z
)= =T
¢(z)=0

-2.286

o S5,

_ 3.089-z
#(z)= =385 %
¢(z)=0

Equations 2.12a and 2.12b can be solved by inspection.

dz _ (v2- 2z*§£(z))l/2

p

The equations of motion of the particle are

0<2<. 762
.T62<2<1.143
1.143<2<1.905
1.905<z<2,286
2.286<2<2.700
2,.700<2<3.089

3.089<z<k,.100

2.12a

2.12b

2.12¢

2.13a
2.13b
2.13¢c
2.13d
2.13e
2.13¢

2.13g

For a particle which

crosses the aperture plane at the origin of the cup coordinate system, the

result i
x=vxt

=v t
y y

The components of the shift vector are simply the values of x and y

S

2.14a

2.14p

evaluated for t equal to the transit time of the particle from the aperture to

the collector plane.

which can be rewritten as

t

fdat =

0

h

! TS
2 2z%ep (2

0 (vz - ! )

P

This can be evaluated with the aid of Equation 2.12¢c,

2.15
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Inserting the expressions for ¢{(z) from Equations 2.13a-2.13g and

performing the integrations we find

t=ta+tb+tc+td+te+tf+tg 2.16
2
[1-(1- —1‘2-)1/2]
t = (2-)(.762) 'z 2.1
a v, . (vi/vi) .17a
_(.381 1
b= (=) 2 ) 2.17b
k
(1- ==
v
Z
tc=ta 2.1Tc
— 0381
tg= 2.174
z
2
[+ $M2y
b = (2o)(b1k) s’ 2.1
e ‘v ’'‘* 2,2 1Te
b (V /v )
z S
2
[(1+ 2)1/2-1]
2 vz
= (& )
t, (vz)(.389, (v2/v2) 2.17f
VA s
_1.011
tg--j;——— 2.17g

Using Equations 2.1ka, 2.14b, 2.16, and 2.17a-2.1Tg the shift vector can

be written as

v
s = 8(-X)n 2.18a
X v

VA

h's
s = s(-L)n 2.18b
y v
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with S, the shift function, defined by

2 2
V, v
1-(1- 5/ [+ D2
v 1 1/2 v
§=. Th3(——F5—5——)+.093(——5—5-) " “+.392(—%"— )+.340  2.19
(v /v, 1-(v /v)) (vo/v
z k' z s z

We shall now very briefly consider the sensitive area as a function of
the shift wvector, which we will denote by A(§). Because of the shapes of the
aperture and the collector, this functional dependence is complicated. As
there are 16 separate regions where the dependence is different (see Figure
2.11), an analytic representation is cumbersome. A(Sx,Sy) is given in tabular
form in Table 1. A plot of the sensitive area as a function of Sy’ with Sx as

a parameter, is shown in Figure 2.15.

2.4 Structure and Operation of the Side Sensor

The geometry of the D-cup is quite different from that of the main sensor
cups. Figure 2.12 shows its cross section. Its aperture and collector are
circular, and it has a metal annulus called the guard ring which is located
1.4 cm above the collector. The outer edge of the guard ring is connected to
the side of the cup, while its inner diameter is smaller than the diameter of
the aperture. The radii of the aperture, guard ring, and collector are 5.64
cm, 5.13 cm, and 6.35 cm, respecti&ely. The distance from the collector to
the guard ring is 1.413 cm, and from the collector to the aperture is 6.000
cm. It has eight grids, two of which are suppressor grids and only one of
which is the modulator grid for the positive ion mode. The potential as a

function of position for a typical channel is shown in Figure 2.10b.



(25)

In addition.to measuring positive ions, the D-cup.-is also used to measure
electrons. A different modulator grid is used for the electron mode. The
potential as a function of position for a typical channel in the electron mode
is shown in Figure 2,10c. The voltage thresholds for the two electron modes

are included in appendix A.
2.ha The Grid Transparency

We will first consider the transparency function for the D-cup. The only
complication not found in the main sensor cups is caused by the fact that the
wires meshes in the different grids are not parallel to each other, bhut are
rotated relative to each other by a specific angle. Also, the Voyagér I and
Voyager II instruments are different from each other. The mesh orientations
for both spacecraft are given in Table 2.2.

We define cup coordinates for the b-cup a fashion analagous to that used
for main sensor cups; the z_ _-axis is parallel to the cup normal and points

cup

into the cup, xcup=zsc X zcup’ and ycup=zcup X xcup' The origin of the

coordinate system is defined to be the center of the aperture. The
transparency of any grid is still given by Equation 2.6 provided vy and vy are
interpreted as the components of velocity along the directions of the grid

wires. The grid orientation as given in Table 2.2 can then be used to rotate

from cup coordinates to "grid" coordinates. The resulting expression for the
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transparency of the D-cup is

6 V’2 v2
T= 1 [1-c(1+ =% cos®(g-a,)) P1 (1-c(1+ 3 sin®(g-a,)) /2]
R i 2 i
i=1 v v
z pA
-2 2 2 2
v cos (E-a ) v, sin (g-a )
[1-c(1+ = 112 (1e (14 -t = 12 2.20
v v
2, m 2 m
Vz(l' 50 v, (1- %)
v v
bA z
2 2 2 2
vocos (E-a ) vosin©(g-a )
[1-c(1- 12 28 )1/2][1—c(1- L 2S )1/2
v v
2 s 2 s
vz(l- 2) vz(l- 2)
v v
z 2

where the a's are the angles from Table 2.2 which describe the grid

orientation, and § and v, are defined by
2,.24\1/2

£=arctan(vy/vx)

vt=(v
2.21b

At normal incidence,_T=TO=(1—c)16=O.68 and A0=56.2 em?.

2.4 The Sensitive Area

We now proceed to the sensitive area calculation. Because of the guard
ring, the sensitive area is the mutual overlap of three circles of different
sizes, the centers of which lie on the same line. There are now two
independent shift vectors, one for the collector-guard ring shift and one for
the collector-aperture shift. Because of the circular symmetry, the sensitive
area does not depend upon the direction of the shift vector, only its
magnitude. We therefore assume, without loss of generality, that the velocity
vector of the incident beam lies in the x-z plane. By assumption, the

y-components of the shift vectors are zero. We will denote by Sac and Sgc the
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magnitude of the (x-directed) shifts between the aperture and collector and
between the guard and collector, respectively. It is also convenient to
define Sag as the relative shift between the aperture and the guard ring,

Sag=sac-sgc'

We will now derive an expression for the overlap area of two circles with
radii R, and Ry (RL>RS) whose centers are separated by a distance S, as shown
in Figures 2.13a, 2.13b and 2.13c. lLet the coordinates of the centers of the
circles be (0,0) and (s,0). The equations of the two circles are

x2+y2=R§ 2.22a
(x-8)24y2=RC | 2.22b

An important parameter, which we shall call X, is the x-coordinate of the
points where the two circles intersect (see Figure 2.13b). X can be
determined as a function of s, RL’ and Rs by subtracting Equation 2.22b from
2.22a and solving for x. The result is
2.’

2s
Note that X as defined by Equation 2.23 is real and well defined even when the

R
X=

2.23
circles do not intersect. In this case X>RL and the corresponding value of y
which simltaneously satisfies Equations 2.22a and 2.22b is imaginary. We
shall find it convienient to define X by Equation 2.23 even when the
geometrical interpretation of it no longer holds.

Now consider the following three cases, as shown in Figures 2.13a, 2.13b,
and 2.13c. .

<

Case I s-RL-Rs

In this case the overlap area is obviously just the area of the smaller circle.

=wR2 2.2kg
s
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Case II Rl-RS<s<RL+Rs

The o#erlap area is given by the following sum of two integrals.

X R
A= 5 [(x-8)2-R%1Y24x + (P1x2r?1 Y24k 2.25

s-R X
s

This integral is elementary, yielding

2T 1/2y,.2% . 1/2
A=R"[3 + arcsin Q +Q,(1-Q;)"'“I+R°(3 - arcsin Q,~Q,(1-Q,)"'"] 2.24b
2.2 2
Q = i—_R_si 2 268.
1 2sR .
s
= ——— 2.26b
%= TaER]
2
Case III s—RL+Rs
In this case the overlap area is zero.

We shall denote by xac and Xgé the x-coordinates of the points of
intersection of the image of the aperture in the plane of the collector and
the collector and of the image of the guard in the plane of the collector and
the collector, respectively (see Figure 2.14). These can be evaluated with
Equation 2.23 by substituting the radius of the collector for R,, the radius
of the aperture(guard ring) for R, and Sac(sgc) for s.

To determine the overlap area of the three circles, one must consider the
following two cases;

Case A: X >X

gc “ac
This is the most frequently encoutered case, and it covers several apparently

different situations. These are all shown in Figures 2.l4a-2.1l4c. For all of

these cases the sensitive area 1is given by

A=A +A -A 2.27a
ag gc g
where Aag and Agc are the overlap areas of the aperture and the guard ring and
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of the guard ring and the collector, respectively, as given by Equations
2.24a-2.24kc, and Ag is the area of the guard ring.
<
Case B: X =X
ge ac
For this case, shown in Figure 2.14d, the sensitive area is the overlap area
of the aperture and the collector.
A= Aac 2.27b

This completes the derivation of the cup response function.

2.5 The "Cold Plasma" Approximation

The problem of data reduction now formally reduces to inverting a set of
'integral equations like Equations 2.2 to solve for the distribution function.
Unfortunately, this task is very difficult, and a unique solution may not
exist. The approach which we have adopted involves paramaterizing the
distribution function and then searching parameter space for the "best fit" to
the data.

From statistical mechanics we know that the distribution function which

describes a gas in thermodynamic equilibrium is the Maxwell-Boltzmann

distribution
£(¥) T—N° ' (32 D) 2.28
v)= exp{-(v- : .
w3 2w3

where Né is thé particle number density, V is the bulk flow velocity, and w is
the thermal speed. Although neither the solar wind nor the Jovian
magnetospheric plasma is in local thermodynamic equilibrium, there is some
empirical justification for using this form for the distribution function. It

can be shown that distributions with more than one peak are unstable, and in
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the vicinity of the peak one expects the distribution function to be bell
shaped. We shall therefore assume that the distribution functions can be
approximated by expressions like Equation 2.28.

We now must evaluate the integrals in Equation 2.2b. This cannot be done
analytically without further approximations. For the case of a "cold" plasma,
i.e. when |V|/w>>1, we can approximate the dependence of f(;) on the
components of velocity transverse to the cup normal by a product of two delta

functions

N
f(;); ;7% G(VX-VX) s(v&-vy) exp{-(vz-vz)a/we} 2.29

This permits the integrations over Ve and vy to be performed trivially. The

result is
Ny = 2,2
o e - -
Ik 7 i exp( (vz vz) Jw<) R(Vx,Vy,vz) dvz 2.30
k

For the D-cup, Equation 2.2b can be evaluated numerically using Equations
2.20, 2.21 ﬁnd 2.23-2.2T7. For the main sensor Table 2.1 must be used in
addition to Equation 2.9. The use of the lookup table can be eliminated by
fitting the area ovérlap with an easily evaluated function. This approach
will be particularly important for the '"hot plasma" approximation described
hereinafter.

The family of curves representing the sensitive area is shown in Figure

2.15, which shows A plotted as a function of Sy/h, with Sx/h as a parameter.
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These functions will be fit by the "trapezoidal approximation"

A=Ax(Sx/h)Ay(Sx/h,Sy/h)=Kx(Sx/h)£(Sx/h)Ay(Sx/h,Sy//h) 2.31

(Sx/h)+x;
- ermet———————— 1]
A= X £(s,/n) -X<8 /h<X 2.32a
r r ‘

Ax= 1 'xr<sx/h<xr 2.32b
(Sx/h)-x; '

Ax-'-' -—XF;——— E (—Sx/h) xr<sx/:h<xr 20320

Ax= 0 Otherwise 2.33d
(s. /n)+Y

d
A= 'TEZTE'_' Y&<Sy/h<Yd 2.33e
Ay= 1 -Yd<sy/h<Yd 2.33f

(s, /8)-¥,(5,)

A= FHERERC Yu(sx)<sy/h<Yu(Sx) 2.333
Ay= 0 Otherwise 2.33h
with
X,=1.10 ' 2.34a
x;=h.9h 2.34p
Y =-2.02 2.3ke
Y&=—3.62 2.3hka "
.T62 cos{1.018(sx/h)+.2h7}
= 1+0.25(5 /1) 2.3ke
¥!=2.50-0.125 (s, /n)-1]% 2.34f
E(Sx/h)= 1.257-0.063(Sx/h)-.126/{(Sx/h)2—5.1(sx/h)+6.612} 2.3hg

All of the quantities defined by Equations 2.34a-2.34f are dimensionless.
Yu and Yu' are plotted in Figure 2.16. Fiqure 2.17 shows the trapezoidal
approximation for A plotted versus Sy/ﬁ with Sx/h as a parameter, while Figure
2.18 shows A plotted versus Sx/h for Sy equal to 0. PFigure 2.19 shows a 3D

plot of A(3). The values of X., XL, ¥4, Y3, Y, and Y! vere chosen so as to
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match the volume of the solid of Fig. 2.19 as closely as possible with the
volume of the solid representing the true area overlap. Figure 2.20 shows a
3D plot of ﬁ(Sx/h,Sy/h) for which the "trapezoidal" approximation was used to
eveluate the sensitive area and Eq. 2.9 was used to compute the transparency.
Appendices B and C contains listings of Fortran programs which compute the
integrals in Equation 2.2b for the main sensor cups using the "trapezoidal"
approximation and for the D-cup, respectively.

The "cold plasma" approximation was used to test our theoretical response
function by analyzing data taken during a cruise maneuver, as described in the

next chapter.

2.6 The "Hot Plasma" Approximation for the Main Sensor

When the thermal speed of the plasma is comparable to the magnitude of
the bulk streaming velocity Equation 2.30 is no longer valid. This is the
case during Voyager 1's pass near the Io flux tube. To perform the integral
of Equation 2.2b in this case we have fit the previously derived expression
for the transparency, Equation 2.9, by an expression with a functional form
which permits the integrals over Ve and v& to be performed analytically. The

expression we have used is a sum of two Gaussians

2 2
2 2 vk v

T=T0 E f cicjexp(—ai(——a-)-aj(—%)) 2.35
i=l j=1 v, v,

2, 2 2,2
where ci, CJ’ ai, and aJ are functions of vz/vk and of vz/vs, and TO

transparency at normal incidence. The values of the c's and a's were

is the

determined from Equation 2.9 by the following procedure: We reduced the

number of independent parameters to 2 by requiring that cl+c2=1.0 and that the
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integral over Ve and vy of Eq. 2.2b give the correct answer for an infinitely
hot plasma, and then did a nonlinear least-squares fit to determine the best

values for the a's and c's.

Using a Maxwell-Boltzmann distribution (Equation 2.28) for f(;), the
"trapezoidal approximation” (Equations 2.31-2.34) for A, and Equation 2.35 for

T, Equation 2.2b becomes

T z%N o (v_-v )2
1= 2 O rav v exp(- —2-2—) «x
k 372 3 z Z 2
" w
k s 2 » ” 2.36
® @ Ve z! (vx-Vx) (v&-V&)
J fA I c.c.exp{-a.—& -a - - }dv_dv.
- o 1,3 i1 lv2 Jvi w2 w2 xy
It will be convient to perform the following change of variables
X = va/vz = Sx/h 2.37a
Y = Svy/vz = Sy/h 2.3Tb
After some algebra Equation 2.36 becomes
' Nyez*T R, = vz (vz-Vz)2 ® o :
I%= —————— ¢ dv_—, exp(- ) r sdxday A(X,Y¥) z C..G.. G 2.38
k w3/2w3 Vie z 82 w2 -~ - ’ i,] 171y
2
a.,w a.w
_ 2, i 2/,_J
CiJ'cicjexP{'[“x( 5 2)+uy( 5 2])} 2.39a
v +a, W v ta W
z 1 z J
_ 2
Gix~exp{-ai(x-ox) } 2.39b
2 .
G, = - - .
iy expl aJ(Y ay) } 2.39¢
o w22
R, = ——e— 2.39d
i S2w2
Sv u w
_ Z'X
ax- v2+a v2 2.398
z 1
szu W
ol 2.39¢
Vo4a W
z J
;=V/w 2.39g

with A(X,Y) defined by Equations 2.31-2.3k
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We are now ready to carry out the necessary integrations. We will

perform the integral over Y first. Regrouping terms in Equation 2.36 we find

Noz*eTvo © vz ® L
I#= —;575;5——.2 {fdvz(-EDij de(Ax(X)Gix(X) fdy Ay(x,r)cdy(r))]} 2.40a
1,d vk S -® -®
V‘z 2 o a.iw2 o ajwe
11C4C4°XP [(w uz) ux(v2+a.w2) uy(v +aJw2)]}
Z 1 Z

The Y-integration can be expressed in terms of elementary functions and the

Gaussian error function. The result is

@ /r ¢(Zﬁ)-@(zu) O(Zé)-Q(ZD)
Hy(X)= sdY Ay(X,Y)G,y= { - } 2.41a
J ® T, VAIA A
= % ™% a4
8(2)=2 er£(z) +(1/v/x)exp(-z%) 2.41b
Zd=a/aJ (Yd(x)-oj) 2.41c
Zé=/aJ (Yé(X)—oJ) 2.h14
zu=./aJ (Yu(X)—aJ) 2.k1e
Zy=/ay (Y(X)=g,) 2.h1t
Equation 2.36 now becomes
2
N, z¥*eT 2 2 @ v ®
0 OAO Z
I*= ————— $ I { fav_ [—D,, sax A (X)G. (X)H.(X)]} 2.42
RT3 A D PR St S

Since the integral over X is now very complicated, it cannot be done without

further approximations. If HJ(X) is a slowly varying function of its
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argument, we can use the saddle point method to write the integral over X as

-idx AX(X)Gix(X)HJ(X) = HJ(Xi)g(Xi)didx AX(X)Gix(X) 2.43a

71 X] Ay (X)G, y (X)dX
X.= — 2.43p

i ®
1A ()G (X)X

-l

Again, all the integrals can be expressed in terms of elementary functions and

the Gaussian error function. The results are

® /v o(2!. )+e(Z! . )-0(2Z_.)-0(2Z,.)
F = fA(X)G 4 (X)ax= (—— L rd i, 2.Lkg
- 2/a, AR A
1 r r
Zriqai(xr-ai) 2.441b
Zpg=ay(Xi-0 ) 2.4k
zli=/ai(xl-ai) 2.4ka
Zii=/°i(xi'°i) 2.hke
X;=-X =-1.10 2.hhe
i:— ;:-h.9h Z.hhg
2
® 1 w(z,)+e(2r)-v(2!)-v(2 )+ ==2'-Z_)e(ovay)
[1X|A (X6, (Kax= ——2—FL = L Jx L7 1, 2.n
bt 201 Z;.-Zr
!(Z)=(ci/ai Z-(1/2) /= erf(Z)+ai/ui exp(-Zz) 2,hbhi

We now sumarize the results of this section by rewriting Eq. 2.2 in terms

of the functions defined by Eqs. 2.19 and 2.39-2.44 as

3
z%*eT A N 2 2 o v-D,
= —0 00 5 3 orgy —23 g (X, )F) 2,45

Waws  i=1 j=1 2 Sel(aiuj) J

The integral over v, in Eq. 2.45 must be performed numerically. To

devise an efficient scheme for calculating Ik for many adjacent channels, we
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shall rewrite Eqs. 2.2a and 2.2b as

dv, Qv ,vk) +/  adv, (Q(vz,vk)-Q(vz,vk+1) 2.46
vk+1

k+1

I =

-
Pf< <:

vhere Q denotes the integrand of Eq. 2.45. The contribution from the second
integral on the right side of Eq. 2.46 is called the feedthrough current. The
dependence of Q upon Vi is implicit in its dependence on the a's and c¢'s.
Since the a's and c¢'s are slowly varying functions of Vi for v,<<Vy, We can
expand the second integrand in Eq. 2.46 in a Taylor series in the a's and ¢'s.
Qv v )=Qlv, vy, )=, ey 505580 58,5)+(3Q7 3¢ ) (eg (v, vy ) e (v yvy 0 0%
(3Q/3e5) (cy(v, vy )=ey(v, svy  )+(3Q/0a) ) (ag (v, sy )-ay (v, uvy 0 )+ 2047
(aQ/aa2)(a2(vz,vk)—a2(vz,vk+l)
This enables us to use compute one value of Q(vz) and use it in the numerical
integration of several channels, greatly reducing the amount of computer time
required to simulate an M-mode. Appendix D contains the listing of a Fortran
program which utilizes this technique to simulate an M-mode spectrum. We
expect that this program can similate the response of the main sensor cups to

a convected Maxwellian of any temperature or flow direction to within about T%.
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2.7 The "Hot Plasma" Approximation for the D-Cup

Except for a small effect due to the alignment of the grids, the D-cup
response is azimuthally symmetric about its z-axis. Therefore, the response
can only depend upon v§+v§ and cannot depend upon A and v& individually. We
have fit the the full response function by a function of the form

2 2
. 3 vx+v
R(v,vk,vs)=iflciexp{—ai—~§—x1 2.48

Z

where once again the ai's and ci's are functions of vi/@k and GS. Using a
Maxwellian for the distribution function and Equation 2.48 for R in Equation

2.2b we obtain

2
I*—g cw; dv_v_exp{ Sri-_v.z._)_} X
k j=1 1 1r3/2w3 . zz w2
2 2 2 2 2.49
© (v.=v.) a.v ® (v.=v.) a,v.
Jexp{- £ X _ = x}dv Jexp{- - ‘y}dv
- w2 v2 X_, w2 v2 y
z z
The integration over the transverse components of the velocity are easily
done, yielding
#*o » -
3 AT Nzt v v, vV, 5 8l x+v§)_
I§= e 53 exp{~( ) = 5o} 2.50
i=1 /T W Vi (1+aiw /vz) w agv v,

As in the case of the main sensor cups, the integration over v, must be done
numerically.
This completes the discussion of the response function of the Voyager PLS

experiment,
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Chapter 3

Experimental Test of the Response Function
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3.1 The Cruise Maneuver

Before the formulas derived in the preceding chapter can be used with
confidence to analyze da;a, they should be tested. Attempts to measure the
response of the cups as a function of angle were made prior to launch.

This was done by placing the instrument in an evacuated chamber in the path
of a beam of charged particles. Data were then taken with the instrument
in different orintations.

Unfortunately, it was not possible to test the cup response function
to the desired accuracy. Tests were performed with both a proton beam and
an electron beam. Since the quantity which is measured is an integral over
velocity space of the produét of the response function and the distribution
function (Eqs. 2.2a,b), it is desirable to have a beam with a small thermal
velocity dispersion. The proton beam had too great a velocity dispersion
for the desired measurement. The electron beam, although sufficiently
narrow, caused the emission of a large number of secondary electrons which
contaminated the data. In particular, the response at large angles of
incidence was different from what was expected. !

The quiet solar wind, on the other hand, has ideal properties for use
as a test beam. At 1 AU, the magnitude of its bulk streaming velocity is
typically eight times its thermal speed, and this ratio increases with
distance from the sun. In order to test the response function, however,
the direction of the test beam must be varied. Since the direction of the
solar wind is steady to within a few degrees, this requirement can only be
met by rotating the spacecraft.

On 14 September 1978, Voyager I, then L.l AU from the sun, executed a

series of rotations called a cruise maneuver. Data from this particular
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maneuver were selected for analysis because during it the solar wind was
quiet and the Mach number of the flow was high (~20). The maneuver
consisted of ten rotations about the spacecraft z-axis(rolls), ten
rotations about the spacecraft y-axis(yaws), and ten more rolls. Each
rotation took about 33 minutes. Since the symmetry axis of the main sensor
is aligned with the spacecraft z-axis, only the yaws are useful for the
purpose of determining the cup response because the angle of the solar wind
to the cup normals does not change appreciably during the rolls.

During the cruise maneuver the PLS experiment was taking one M-mode
measurement every 96 seconds. Due to telemetry rate constraints, the data
from all 128 channels of each spectrum was not sent back to Earth. On
alternate spectra, the data from channels 1-72 and 57-128 were transmitted.
During the maneuver the solar wind speed was about 380 km/sec, so the peaks
in the spectra were never in a channel higher than about 68. Thus, only
the spectra containing channels 1-T2 could be used for analysis when the
beam was oblique to one or more of the cups. |

Due to a coincidence, the period between PLS M-mode spectra and the
rotation period of the spacecraft during the maneuver were almost
commensurate, resulting in the spacecraft having almost the same
orientation at the times of corresponding spectra taken in different
rotations. Since an odd number (21) of M-mode spectra were taken during
each rotation, an upper-half spectrum was taken with the spacecraft in the
same orientation as a lower-half spectrum from the previous rotation. We-°
therefore did not lose any angular coverage due to the fact that only T2 of
the 128 channels were available from each spectum.

The angular coverage of the cruise maneuver is shown in Figure 3.0,

which is a polar plot of a unit vector which points radially away from the
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sun. This vector, the nominal solar wind direction, is plotted in cup
coordinates at the times of the start of the M-modes for each of the four
cups. The polar angle 6 and the azimuth angle ¢ of a vector ; are defined
by Equations 3.la and 3.1b
6=cos-1(Vz//(V§+V§+V§)) 3.la
p=tan™ (V_/V,) 3.1b
vhere Vx, V&, and Vz are the cartesian components of 6- The numbered
points in Fig. 3.1 correspond to the spectra which were analyzed as

described hereinafter.
3.2 Analysis of Data Taken During the Cruise Maneuver

To test the response function we adopted the following strategy. We
analyzed data from all of the orientations for which there werelsignals in
at least three of the four cups. We then did.a similtaneous fit to these
data using the "cold" plasma approximetion described in Section 2.5. The
derived macroscopic plasma parameters were then compared with each other.
We also fit an additional spectrum taken when the plasma flow direction was
almost aligned with the main sensor symmetry axis. In this case we expect
the "unity" response approximation to be valid. Since we have confidence
in the parameters we derive at these times we can estimate how much the
solar wind is changing between the times of the other measurements and see
if the parameters derived from the other measurements stay reasonably
steady. If they are, this fgct and the goodness of the fits indicates how
well we understand the response function. In addition, comparison of the
parameters derived from the fits of the solar wind using the "unity"

response approximation, where appropriate, with parameters derived from
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fits to these same spectra using the "cold beam" approximation indicate the
systematic error, if any, which the former approximation introduces.

Nine spectra taken during the cruise maneuver were analyzed. The
numerical integrations in Equation 2.30 were done using Simpson's rule.

For a term with velocity threshold Vs Ve chose a step size of
Avk/10. Since the integrand is formally undefined at v, Vo the proper
limiting value of zero was used.

The spectra consist of a background and one or two peaks. The main
peak, due to protons, was fitted. In each cup, about twelve channels
around the peak were included. The fits have five parameters; the three
components of bulk velocity in spacecraft coordinates, the density, and the
thermal speed. The velocity was then rotated into cup coordinates and the
currents were computed.

The criterion used to define the "best" fit was.the minimization of

x2, defined by
2_ 2 2
X —i(Di-Ai) /(.0kD, ) 3.2

where each of the Di's is the measured current divided by the channel
voltage width and the Ai's are the similated reduced distribution
functions. The solution to the extremum problem was found using a gradient
search algorithm similar to that described in Bevington (1969). The
derivatives with respect to the velocity components and thermal speed were
computed numerically, while the derivative with respect to the density was

computed analytically.

The results of the analysis of the cruise maneuver are shown in Table
3.1 and Figures 3.2-3.10. Figure 3.2 corresponds to point 1 in Fig. 3.1,

Fig. 3.3 to point 2, etc. Figures 3.2-3.10 are plots of reduced
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distribution function versus velocity for the nine spectra used. The data
are represented by the "staircase" while the fit is represented by the
smooth curve, Table 3.1 lists the time, the wind velocity in RTN
coordinates, the density, and the thermal speed derived from the fits for
each of the spectra. (RTN coordinates are a sun centered orthogonal
system. r points radially away from the sun; £ lies in a plane parallel to
the ecliptic and points in a positive sense when viewed from the North, and
n completes a right-handed system.)

The variation in these parameters is about what one expects to find in
a quiet solar wind, and the fits are quite good. The fits correctly
reproduce the relative heights, positions, and shapes of the spectra in the
oblique cups. |

The question of choosing the proper criterion for determining the -
"best fit" deserves more discussion. If one chooses to minimize the square
of the difference between the data and the fitting function, there remains
the problem of choosing the proper statistical weights. This choice mst
be made by analyzing the sources of error in the measurement. In our case,
there are two main sources of error; electrical noise and digitization
error. Since the logarithm of the currents is digitized, this error is a
fixed percentage of the signal. This accounts for the weight factor of
1/0.0hD§ in Eq. 3.2. The electrical noise is a more difficuit problem. We
expect thermal fluctuations in the amplifiers to be seen as fluctuations in
the current. The rms power in these current fluctuations should be about
the same in all of the channels. Since the reduced distribution function
is the current divided by the channel width and the channel width increases
with increasing channel number, this component of the noise should be most

pronounced in the low channels.
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An example of spectra which we expect to be entirely noise are the
D—cup spectrum in Fig. 3.4 and the lower channels in the main sensor cups
in the same figure. The predominately smooth trace is due to the signal
being less than the minimum that can be digitized with our coding scheme;
the fluctuations are noise. The predominant smoothness of the curve,

especially the lower channels in the B-cup, indicate that the true thermal
noise is below the threshold of the detector. We conclude that the noise
which we see has another origin. Other sources of noise, such as cosmic
rays or interference with other instruments on the spacecraft, are more
difficult to estimate. I have accounted for them in my selection of which
channels to include in the fits. Unless specifically mentioned, all of the
graphs of the results of fits to spectra include all of the data in a
particular spectrum and the simmlations for all of the channels used in
determining the best fit, and no others.

The question of estimating the uncertainty in the macroscopic plasma
parameters derived from the previously described fitting procedure deserves
discussion. The formal uncertainty in the fit parameters is contained in
the so-called error matrix. The properties of this matrix are described in
Bevington (1969). The uncertainties which I quote throughout the remainder
of this chapter are defined by

oize;, x/n, 3.3

where o, is the formal uncertainty in the determination of the i-th

i
parameter, eiJ is the error matrix, and ne is the number of degrees of
freedom (number of data points/number of parameters). In the case of
linear parameters and Gaussian statistics, ¢ is simply the standard

deviation one would expect to find in the value of the i-th parameter if

the same experiment were done many times.
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If the uncertainty in the individual data points can be accuratel&
estimated, o? is simply equal to €44° Unfortunately, the values of x2 we
obtained in the fits of the cruise maneuver were sufficiently large to
convince us that we had underestimated the uncertainty in the measurement.
The factors which multiply €4 in Eq. 3.3 are an attempt to compensate for
this underestimate.

In addition to random errors estimated by o, there is alweys the
possibility of some systematic error. There are many possible causes for
systematic errors. They can be related to the detector, such as
uncertainty in the values of the threshold voltages, or they can be
related to the plasma itself, such as the presence of suprathermal tails to
the distribution functions or thermal anisotropy. In general, systematic

errors are more difficult to estimate than random errors.

3.3 Discussion and Conclusions

An examination of Table 3.1 shows that the formal errors in the
density and thermal speed are about 3%. In addition, the magnitude of the
bulk flow velocity is determined with a precision of less than one percent,
and the direction is determined to within 10 arcseconds. We expect that
the systematic errors in the determination of these quantities is
considerably larger.

The quality of the fits, even at large angles of incidence, gives us
great confidence in the accuracy of the response function. For example,
compare Figures 3.1, 3.la, 3.1b, and 3.5. (The following numbering scheme
is used; the spectrum in Figure 3.n was taken when the orientation of the

spacecraft was such that the nominal solar wind direction corresponded to
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the points marked with the number n in Figure 3.0.) In the spectrum of
Fig. 3.1, the angles of the solar wind velocity to the A-, B-, and C-cup
normals were 350, 700, and 550, respectively. Note that, although the flow
is highly oblique, the fit successfully fits the relative heights,
locations, and shapes of the peaks.

In Figure 3.la, the results of simulating the low energy channels in
the B-cup, which were not used in the fit, are shown. The simulation shows
that the currents in these channels are not all noise, but include a real
signal.

Figure 3.1b shows a simulation of what a hypothetical cup with unity
response would see in the conditions of Fig. 3.l1l. Notice that only the
location of the peaks remains the same, as all of the peaks are the same
height and shape if all of the incident particles reach the collector.

For the case of the B-cup, the effect of the response function is to
reduce the height of the peak by a factor of about 5, to broaden it, and to
make it skewed. All of these effects can be easily understood
qualitatively. The reduction of the height of the peak is caused by the
effects of both the sensitive area and the grid transparency. The
broadening and skewness of the peak are both caused by the "feedthrough'
effect; the contribution to the signal by modulation of particles with
vz>vk+1' This effect tends to widen the left side of the peak; there are
very few particles which satisfy the above condition on the right side of
the peak!

The actual reduction in the size of the signal is much more than the
factor of five mentioned in the preceding paragraph. Consider the spectrum
shown in Fig. 3.5, taken when the solar wind was flowing down the main

sensor symmetry axis. Although the heights of the peaks is about the same
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as those in the simmlation of Fig. 3.1lb, one must remember that the
quantity which is actually measured is the current, not the reduced
distribution function. Since the current is equal to the reduced
distribution function times the channel voltage width, and the channel
widths increase with increasing channel number, the ratio of the current in
the peak channel in the B-cup of Fig. 3.5 to the same quantity for the
spectrum of Fig. 3.1 is about 25. Our response is thus good even when only
a few percent of the particles in the beam reach the colector. The
accuracy of our expression for the response function over such a wide range
of angies and signal strengths is important since in the Io flux tube flyby
the flow is highly oblique to the cups.

The sensitivity of the array of four detectors to the direction of the
flow is dramatically shown in Figs. 3.8 and 3.8a. The fit for Fig. 3.8a
was done assuming that the flow velocity in spacecraft coordinates was the
same for all fqur cups. This neglects effects due to the fact that the
spacecraft was spinning while the measurements were being taken. We did
another fit to the same data in which we compensated for the change in the
spacecraft orientation between the times of the measurements of the channel
with the largest current in each cup. The result is shown in Fig. 3.8.
This is clearly a much better fit to the data. The angle that the
spacecraft rotated through between the time of the measurement of channel
24 (A-cup peak) and channel 46 (C, D-cup peaks) was only about 0.9°.

Since the two spectra shown in Figs. 3.5 and 3.6 were taken when the
solar wind velocity was almost parallel to the main sensor symmetry axis,
we also fit these with the assumption of unity response. A comparison of
the results of these fits with the results of the‘fits of the corresponding

spectra using the full response function is included in Table 3.1l. The
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quality of the fit, as measured by x2, was significantly better for the
fits which used the full response function. The x- and y- components of
the velocity in spacecraft coordinates agreed to within statisical error,
while the z~components of the full response fit exceeded the z-components
of unity response fits by about 1%. In addition, the unity response
results overestimated the thermal speeds by 7% and underestimated the
density by 5%. All of these discrepencies are easily understood. The
density difference is caused by the fact that when the flow velocity makes
an angle of about 20° to the cup normal, the grid transparency is already
slightly less than it is for normal incidence. The other two effects are
both caused by the "feedthrough" contribution. The effect of feedthrough
is to widen the peak on the low energy side, resulting in a lower estimate
of the normal component of the velocity and a higher estimate of the
thermal spéed.

We must conclude, however, that the unity response approximation is
quite good at small angles of incidence, as expected. Uncertainty in the
gain of the amplifiers probably introduces a larger error into the density
determination than the effect due to the response. Since the response by
its nature widens and introduces a certain amount of skewness into the
peaks, its effect on the determination of the thermal anisotropy and the
heat flux should be considered.

In summary, we have shown that the analytic formulas describing the
response function derived in Chapter 2 accurately describe the response of
the cups for angles up to T0° for the main sensor cups and 55° for the
D-cup. The expressions also correctly predict the complete absence of a
signal for angles of incidence >80° for the main sensor cups and >65° for

the D-cup.



(L9)

Chapter k4

The Theory of the Interaction

Between Io and the Jovian Magnetosphere
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4,1 Introduction

In Chapter 5 we will present analysis of Voyager I data taken in the
vicinity of the satellite Io, shortly after the spacecraft's closest
approach to Jupiter. In the present chapter, a description of the plasms
environment at Io and a theory of the Io-magnetosphere interaction will be
presented. The model plasma parameters which we use in this discussion are
the result of a combination of a large number of ground based and in situ
measurements. In particular, on its inbound pass the symmetry axis of
Voyager 1's PLS experiment was pointed in the direction of the corotating
flow when the spacecraft flew ﬁast Io's orbit, enabling it to make
measurements which could be analyzed using the unity response
approximation.

Io itself is a large satellite, only slightly smaller than the Moon.
Its physical properties are summarized in Table 4,1, Orbiting Jupiter at a
distance of U424 thousand kilometers (5.9 RJ), Io is deep within the
magnetosphere, which extends to 50-100 RJ. Since the Jovian magnetic field
is very strong at Io's orbit (~.02 gauss) and Jupiter’s ionosphere is
highly conducting, we expect the plasma to rigidly corotate with the
planet. Voyager I observed this on its inbound pass (Bagedal and
Sullivan (1981)). Because Io's orbital period of 42.8 hours is longer than
Jupiter's rotation period of 10 hours, the bulk velocity of the plasma in
Io's vicinity is greater than Io's orbital velocity by ~58 km/sec.

One of the great discoveries made by Voyager I was the volcanoes on
Jo. Io is the most volcanically active body known, and its volcanoes are

believed to be the ultimate source of not only the neutral cloud around To
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(which has been observed from Earth) and the plasma torus which surrounds
Jupiter at the radius of Io's orbit, but also most of the plasma in the
entire Jovian magnetosphere. Voyager I inbound observed two distinct
regions in the torus; the inner or cold torus and the outer, hot torus. 1In
the cold torus, where individual peaks in the spectra were resolved,
several different ion species, primarily different ionization states of
oxygen and sulfur, were observed. The chemical complexity was also present
in the hot torus, although the merging of the peaks in the spectra made the
analysis more difficult and the results somewhat ambiguous.

To estimate the magnitude of the relevent time and distance scales in
the vicinity of Io, we have used the model plasma torus of Johnson and
Strobel, consisting of the following species: 0+, 0++, S+, S++, S+++, and
electrons. The values of many characteristic plasma parameters for this
model torus is given in Table 4.2. A magnetic field strength of .019
Gauss, the value measured by the Voyager I magnetometer experiment (Acuna
et al (1981)), was used to estimate the gyroradii and Larmor frequencies.
Examination of Table 4.2 indicates that the characteristic time for the
plasma to flow past Io (30 sec) is long compared with the Ion gyroperiod
(0.5 sec), and short compared with all of the collision times. In
addition, the Debye length (65 cm) is very small compared with the radius
of Jo (1820 km). We therefore expect that the ideal MHD approximation,

described hereinafter, is valid and that collisional effects are

negligible.
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4,2 The Equations Which Describe the Plasma at Io

In section 4.3, we shall present a review and critique of a theory of
the Io-magnetosphere interaction which is based on the ideal MHD equations.
In the present section we review the derivation of the those equations for
the purpose of examining the approximations required for their validity and
Justifying their use for the purpose of describing the interaction between
Io and the Jovian magnetospheric plasms.

We take as our starting point the set of fluid equations which are
obtained by taking moments of the kinetic (Boltzmann) equation and summing
over the different ionic species. The Boltzmann equation is valid whenever
the statistical correlation between the phase space position of two
particles can be neglected. This approximation is quite good for the
conditions which exist in the Jovian ionosphere, as it is for almost all
space plasmas.

The fundamental equations are those of conservation of mass, momentum,
and energy, and the Maxwell equations, supplemented by the equation of
state, equations for the anisotropic structure of the pressure tensosr, the
generalized Ohm's law, and an equation for the heat flux.

The equation of mass conservation is

ap _ 3
%t a_xi("vi) b1

where p is the mass density and Vi is the i-th component of the bulk
velocity of the plasma as a whole. For the remainder of this chapter, we
shall use the Einstein summation convention, i.e. all repeated indices are

summed over.
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The equation of momentum conservation is

s
3 i 3
)

—a‘t—( DVi + -;-é- B - E(P + PVin - Tki) + £ h-2

ik i

where Pik is the pressure tensor, 8 is the local gravitational field, and
T.. and Si are the Maxwell stress tensor and the Poynting vector,

ik
respectively, defined by

1 1 2 2

Tix = TriBsBy + By - 5 8, (B + B7)) 4.2a
- c > x ad

si = H(E }3)i 4.2b

If the equations are written in a non-inertiasl frame of reference, E should
include the D'Alembertain forces. If the frame of reference is rotating,
the the coriolus force should be included by adding a term -28xV to Eq.
4.2, where 3 is the angular velocity of the reference frame.
The equation of energy conservation is
-:—1_,-(9\12 *oep * eEM) = -:——(Vk(ov2 + eT) + PV, +5 +a ) + pg, V k.3
X, JJ k k k

where €n is the thermal energy per unit volume, Q is the heat flux vector,

and €aM is the electromagnetic energy density, defined by

ey = 1%(E‘g + B°) h.3a

Maxwell's equations are Gauss's law
v eE=1km bk

where N is the electric charge density; the Faraday induction law

> .
vxE+'E—=O h.s
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Ampere's law

* laE_lurj 4.6

VeB=0 b7
The equation of state relates &n to p and p, 8T=€T(p,p), where p, the
scalar pressure, is one-third of the trace of Pik' For a gas of
non-relativistic particles with no internal degrees of freedom or

long-range interactions the equation of state is

eT=%p 4.8

For any plasma which can be accurately described by the Boltzmann eqnafion,
the contribution of long-range forces to the internal energy is small and
can be neglected. Therefore, a plasma consisting only of electrons and
protons, particles which have no internal degrees of freedom, is accurately
described by Eq. 4.8. For a plasma of partially ionized heavy ions, the
condition of no internal degrees of freedom is violated if the thermal
kinetic energy of the ions or electrons is comparable to the excitation
energies. In the hot plasma torus, we do not expect Eq. 4.8 to apply,
since the thermal kinetic energy of the plasma is compérable to the
excitation energy of the ions.

For a plasma in which the negative ions are electrons, the generalized
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Ohm's law is formally given by (see Rossi and Olbert (1970), pp 347-350)

i
= - xk(J v, + IV, - nvivk) + g, +
. k.9
P e™n *> 3
e e,ik ex vV &5 e _ B, &F
+ m, Bxk o \E + c > B)i e{(J W) x (Gt)coll

where n, is the number density of electronms, m, is the electron mass, and
Pe,ik is the partial pressure tensor for the electron component of the
plasma, and (GJIGt)coll is the time rate of change of current density due
to collisions.

Unfortunately, this set of equations is not closed; there are more
unknowns than equations. This situation is usually remedied by making some
additioﬁal assumption regarding qy and Pik and neglecting some of the terms
in the generalized Ohm's law. One commonly made set of assumptions is that
q;=0, P, 1is isotropic (Pik=pﬁik), and E=-VxB/c.

In the vicinity of Io, we expect Pik to be gyrotropic; that is, Pik
will have cylindrical symmetry about the local direction of B. This
condition must be satisfied whenever the ion gyroradius is small compared

to the length scale of gradients of any of the macroscopic plasma

parameters. In this case, the pressure tensor can be written as

B; By

P
B2

ik = P-Laik + (p‘l - pL) 4,10

where p, and p, are called the parallel pressure and the perpendicular
pressure, respectively. The equations can then be closed by introducing an
equation for the heat flux, appropriate approximations in the generalized
Ohm's law and supplementary equations, if neccessary, and an equatioq

relating the parallel and perpendicular pressures. The effect of the
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pressure anisotropy in the resulting equations can be expressed in terms
proportional to PP - Since these terms are usually small corrections,
they do not qualitatively effect the solutions. Wé shall therefore neglect
them and assume a scalar pressure.

The equations as they now stand are very difficult to solve, and they
describe an incredible richness of phenomena which are not of primary
importance in understanding the interaction between Io and the Jovian
magnetospheric plasma. In particular, we shall be concerned only with
changes on time scales long compared to the proton gyroperiod. The
characteristic time for the flow of the plasma past Io is of the order of
RIo/v’ or about 30 sec, while the ion gyroperiods are of the order of 0.5
sec. This enables us to make many further approximations which will
greatly simplify the equations.

We start making ocur appréximations with the generalized Ohm's law.
For the coﬁditions which we expect to encounter in the flux tube,
dimensional analysis (Rossi and Olbert) shows that all of the terms are

neglgible compared to the term proportional to ?xﬁ. We therefore can write

x B 4,11

(o]

n

|
o<+

Using Eq. 4.11 and the conservation of mass equation (Eq. 4.1), we can

rewrite Paraday's law as

4,12

This is called the MHD "frozen-in" law, because it is equivalent to

the statement that the magnetic flux linked by any closed curve which moves
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along with the plasma does not change with time; hence the field is
"frozen-in" to the plasma.
Maxwell's displacement current can be omitted from Ampere's law,

yielding
R ¥ 413

Turning now to the equation of momentum conservation, we can safely
neglect § and the terms in the Maxwell stress tensor which contain E.
While the gravititional term is important in the overall dynamics of the
Jovian magnetosphere, it can safely be neglected for a treatment of the
interaction with Io. Incorporating these approximations, assuming a scalar
pressure, and using the equation of conservation of mass (Eq. 4.1) and some

vector identities, we rewrite Eq. 4.2 as

(3-+¥7-V)V=-%VP+I;1-;{(§-v)ﬁ-—é—vBa} k.14

Using Eq. 4.11 and assuming an ideal gas equation of state and

a scalar pressure, the energy equation takes the particularly simple form

(Go+7 M GalE) - -5 ved b.15
Noting that ln(P/05/3) is proportional to the specific entropy of an ideal
gas, we interpret this equation saying that if we move along with the gas,
the time rate of change of the specific entropy is determined by the
divergence of the heat flux. For the case of a gas with a different
equation of state, the functional form of the entropy density will be

5/3),

different from 1ln(p/p but it will still be expressible as a function
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->
of p and p. If we further assume that V°q=0, the energy equation becomes

C%; +V * Ie(p,p) =0 4.16

where the functional form of f(p,P) depends upon the equation of state of
the gas.

Since only the gradient of the pressure enters into the momentum
equation, and not the pressure itself, Eq. 4.16 can be used to eliminate p

in favor of p in Eq. U.14. The result is

3 e o\ . 2 1 e V2 1 o2
(e *+ Ve O¥ = < %1 o) + m{(ﬁ nE - 5 %) .17
vhere Cgs the local 'sound' speed, is defined by

2 _ ,3
cs B (Eg)f

4.,17a
Equations 4.1, 4.7, 4.12, 4.17 and 4.17a are now a closed set of

equations which, with the proper boundary’conditions, uniquely determine p,

§, and B. E can then be determined Eq. 4.11, n from Gauss's law (Eq. L.l),

and J from Ampere's law (eq. 4.13). These equations, with the ideal gas

equation of state, are sometimes called the ideal MHD equations. While

mich simpler than the kinetic equations or the set of moment equations,

they are still nonlinear and, therefore, difficult to solve. In fact, they

are considerably more complicated than the equations which describe a

perfect nonconducting fluid. In the next section we shall apply these

equations to the problem of the flow around Io.
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4.3 The Io-Magnetosphere Interaction

Since the discovery that the decametric radio bursts from Jupiter are
correlated with the phase of Io, the interaction of Io with the surrounding
plasma has been a subject of much theoretical interest. Unlike the Earth's
Moon, whose only interaction with the solar wind is to cast a geometrical
shadow, To interacts very strongly with the plasma in which it is embedded.
It is believed that this interaction is caused by the high electrical
conductivity of Io or its ionosphere.

According to the MHD "frozen-in" law, an observer who is moving along
with a plasma sees no electric field. Assuming a uniform background flow,
an observer moving along with Io would see an electric field given by
ﬁé-(§X§)/c, where V is the velocity of the background flow with respect to
Io. But since Io is a good electrical conductor, the electric field in its
rest frame must vanish. If we model Io as perfectly conducting sphere, we
conclude that there must be a layer charge on its surface to shield out the
external electric field. But since the magnetic flux tube linking Io is
"frozen" to the satellite, there is effectively a cylindrical obstacle that
the plasma must flow around which extends all the way to Jupiter.

In an early discussion of this phenomenon, Goldreich (1969)
hypothesized that the Io flux tube would carry field aligned currents (see
Figure 4.1). These currents would flow toward Io on one side of the flux
tube, cross the magneﬁic field by flowing through Io or its ionosphere, and
flow away from Io on the other side of the flux tube. This current loop

would then be closed in Jupiter's ionosphere. The magnitude of the
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currents in this model is determined by the electrical conductivity of Io
and that of the Jovian ionosphere.

This early model has been superseded by a theory first proposed to
explain the anomolously large amount of drag on the Echo weather satellites
by Drell (1965) and later extended and applied to Io by Neubauer (1980).

We will now discuss this theory in detail and, in the next chapter, use it
to interpret in situ measurements taken by Voyager I.

Drell (1965) realized that the effect of a conductor moving through a
magnetized plasma is to generate hydromagnetic waves., If the velocity of
the conductor is greater than the fast mode phase velocity in the direction
of the motion, a bow shock will form. If the velocity of the conductor is
slower thah the fast mode phase velocity, the result willvbe a standing
system of Alfven waves (see Figure 4.2), consisting of two wings, one along
each of the two Alfven characteristics (described hereinafter) which pass
through the conductor. In this case one would also expect to find a
disturbance associated with the MHD slow mode. The generation of these
waves is analogous to +the emission of Cerenkov radiation by a particle in
a medium which is moving faster than the speed of light in that medium.

The current associated with the Alfven wings is determined primarily
by the wave impedence of the plasma as long as the height-integrated
conductivity of the conductor is much smaller than the speed of light
squared divided by the Alfven speed. Thus, for Io, the magnitude of the
current, which can be calculated using the linearized MHD equations, is
independent of the conductivity of the Jovian ionosphere.

It is generally believed that Goldreich's model would be wvalid if the

Alfven speed were sufficiently large that the Alfven wave, after reflection
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from the Jovian ionosphere, were to again encounter Io. Since estimates
show that the round trip trével time of the Alfven wave from Io to Jupiter
and back to the latitude of Io's orbit is sufficiently long for Io to move
a distance greater than its its own diameter, the Goldreich model does not
apply Neubauer (1980).

Neubauer (1980) noted that there is an exact analytical solution to
the MHD equations which describes a finite amplitude standing Alfven wave.
Our presentation follows Neubauer.

It has long been known that there exists an exact solution of the
ideal MHD equations which corresponds to a finite amplitude Alfven wave.
To find this solution, we consider the special case where the density does
not change with time and the density and the magnitude of the magnetic
field have the same value everywhere in space; that is

ap _

dp _

s 0 k.19
l .
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This solution is also valid without the previous assumptions about the
relation between the density and the pressure (see Eq. 4.17) if we

independently require the pressure to have the same value everywhere in
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space (¥p = 0). Eqs. 4.12 and 4.17 can now be written as

i
A ,» . >3 _ +*. >
st (Ve 0V, = (V,° OV ka2

) +> -+ »% >
(?1-.‘ +V * V)V = (vA V)VA 4,22

%
where VA is the Alfven velocity, defined by

s B

By adding or subtracting Egqs. 4.18 and 4.19, they can be written elegantly

in the canonical form

s (@D 0T - =0 b2l
e+ (@ -D -0+ =0 h.25

»
In Eqs. 4.24 and 4.25 we see that d;/dt=VZ=V+VA is the equation which
- #*
defines a characteristic along which the Reimann invariant VAéV-VA stays
constant, while d;/dt=§z defines a charactersitic along which the Riemann

invariant §+ stays constant. (A characteristic is a line along which small

A
>

amplitude wave packets propagate.) If VA is not only constant along the

characteristic defined by Eq. 4.24, but also has the same value on all such

characteristics, then Eq. 4.24 and 4.25 imply

9 > N > -
(ﬁ. + v, VIB=0 4,26
9 >+ _
Gx+V,° ¥ =0 4,27

This is the finite amplitude Alfven wave. If we further require a
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stationary solution, we find

(GZ * VB =0 4,28
(\7Z * VW =0 4.29
s ﬁ >

VA =7 rs + V = const k.30

+
v and ﬁ, and hence ﬁ, are all constant along lines in the direction of §A'
If we think of B (v) as consisting of the sum of a background field and a

(possibly finite) perturbation field, &8 (&V), according to Eq. 4.30 we

have
+ 8
W= - ey 43

The realization that Eq. 4.28-4.31 can be used to describe the interaction
between Io and the magnetosphere is due to Neubauer (1980).

We shall now examine this solution in detail. It is important to note
that since the characteristics are directional, that is, information can
propagate along them in only one direction, this solution can only describe
one of the Alfven wings. We can try to construct a solution describing
both wings by dividing space into two semi-infinite half spaces, with Io
lying in the surface which divides them. In one of the half spaces, we
will use the above solution, while.in the other, its analog, with VX taken
to have the same value throughout the entire region. Unfortunately, the
solutions which we require for our physical model of the Alfven wing,
described herinafter, cannot be patched together at a boundary surface in
such a way as to keep both the tangential component of E and the normal

>
component of B continuous, except in the special case where ﬁo and ﬁs are
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perpendicular to each other. This implies that the nature of the
interaction directly upstream of Io is not described by this solution.
Furthermore, the assumption that ?Z has the same value everywhere in a
large region of space cannot be true when the "background" magnetic field
is the dipole field of a planet. We therefore conclude that this solution
can accurately describe the fields only in a region near the Alfven wing,
close enough to Io so that the gradients in the background magnetic field
can be neglected, yet sufficiently far from the satellite that the effect
of the other wing is small. We will discuss other limitations of this
model after we have developed it more fully.

We now continue our developement of this special solution. The
following important result relating the component of the current density
along VX to the charge density can be obtained by using Eq. 4.24, the MHD

"frozen-in" law, and Gauss's law:

n= (¥ « NP h.32

Since charge density and current density transform like a fdur-vector under
Lorentz transformation, this implies that in a frame of reference moving
with velocity 6; with respect to the frame in which the pattern is
stationary the charge density vanishes.

It is convenient to write down the solution in a coordinate system in
which one of the axes points along qz. We shall call this direction z. We
will further assume that ; lies in the x-z plane. Once E(x,Y) is known for
-all values of x and y, all of the other quantities are determined. Bx and

*
By are computed by taking the cross product of ﬁA with Eq. b4.11, and Bz can
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be computed from Eq. 4.23. The results are

cEy
B =- W+I 4.33a
A
cEx
B = 4.33b
Yoo
A
a2 o2 2
B, = /(Bo - B, - By) 4.33¢
V is then found from Eq. 4.31.
& -8)
Jx and Jy are computed using Ampere's law.
c aBz
Jx = F;—B-f- 4.35a
c aBz
Jy i T o L.35b

We will ndﬁ model Io as a perfectly conducting sphere moving through a
plasma which, in the absence of the sphere would be at rest and contain a
uniform and constant background magnetic field. We will use a frame of
reference which is at rest with respect to Io, and take the center of Io as
the origin. We define the z-axis to point along €+, and we seek a solution
which is valid for z>0. An example of an appropriate set of boundary
conditions is the speéification of E(x,y) everywhere in the z=0 plane.
Unfortunately, our physical model only gives us information about E far

from the sphere and in the Alfven wing.
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Far from the sphere and the Alfven wing, we require that the velocity

and the magnetic field be given by

Vo(cos(;) fi + sin(¢) i3) =V, il + Vo" 3

o x3 ,'I'-3T
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>

4,36

"
(o7]

where [ is the angle beween the background flow and the fl—axis, VOI'and vo;

are the components of v parallel and perpendicular to ﬁ, and fl— and 23-

~ b
are related to z by the definition of VA:
vVig=v £ + ( %o +V )% 4,38
A% X verery) o’ X3 *

The electric field far from the sphere is found from Eq. 4.1l to be

> ~ A
E=x2 EO-YEO h‘039

with Eo defined by

E =-2120 . . ko

Since the sphere is assumed to be a perfect conductor, the electric
field in its rest frame must vanish. But, since all quantities are
constant along 2z, we conclude that the electric field must vanish in a
‘semi-infinite cylinder of radius RIo’ and that a polarization chafge mist
be present on the surface of the cylinder on which the lines of the
electric field in the moving plasma can terminate.

In order to enable us to determine the fields in the vicinity of the
cylinder, we must make several further assumptions. First, we assume that
the electric charge density vanishes everywhere except at infinity and on
the surface of the cylindrical Alfven wing. This, along with our previous

assumption that there is no time variation, implies that the electric field
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is the gradient of a potential which satisfies Laplace's equation. The
boundary conditions are that the potential vanish at the surface of the
Alfven wing, and that the electric field far from the wing is that given
Eq. 4.39. The electric field which satisfies Laplace's equation and thes

boundary conditions is

2xy 2
E = R E
X (x2 + y2)2 c O
2
R
c 2 2
E =1(] = ————————e - B
v ( 2 +y2)2 (x= -¥")) E|

The velocity and the magnetic field, from Eq. 4.33 and 4.34, are

R2
. 2 2
By = By sin 8 (1 - —5——5 (" - 3))
(x= + ¥°)
. xy 2
B =B sin 8, (——==—__R%)
Yy o] A (x2 + y2)2 c
B = /(B° - B> - B2)
z o x y
B_ sin 0, Ri (x2 - y2)
vx = vox - ( 7/(Lnp) ) (x2 . y2)2 )
0
v -- (Bo sin A)( oxy )
Yy (4rp) (x2 + y2)2
. B,
vz. = voz = V(&wp)

by

e

4, hla

4, 41p

4 42a

L, h2v

b . h2e

b 43g

4, 43p

L. 43e

wvhere we have introduced the Alfven angle eA, defined as the angle between

the the Alfven characteristic ¥ and the background magnetic field B. This

A
velocity field is very similar to the potential flow of an incompressible
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fluid around an infinite cylinder. The streamlines for this flow are shown
in Fig. 4.3.
The surface charge density o and the surface current density f, from

Gauss's law and Eq. 4.32, are

Q
|

= (2v°lB° sin ¢)/c 4. Uk

cV_ B sin ¢

2 +2 +
(Vo + YA + 2VOVA sin )

where ¢ is the polar angle in the x-y plane. Eq. 4.41-4,45 constitute the
complete solution for the fields in the vicinity of Io and its Alfven wing.
Far enough from the wing for GE and 56 to be considered small

perturbations, Eqs. 4.42c and 4.43c can be rewritten as

B =3B (1 + sin(e,) tan(9,)) R -—%52—:-"72)5) 4 hoe!
Z (o} A A Cc (x +y )
2
B R© sin(e,) 2 2
- oc A X -y '
Vz = Voz - TThe7) ) tan(ea) (I;Ef::piyg) 4.43¢

We can aiso treat the case where the conductivity of Io is large, but
finite. 1In this case, we simply assume that the electric field inside the
wing is uniform and y-directed. The electric field outside the wing is
still the linear superposition of a uniform field and the field of a line
dipole, but the dipole moment is reduced. The fields are still given by
Eqs. L.U1-4.43 if R, is interpreted as the "effective radius" of the Alfven
wing. Yor the case where the currents across B fl;w through Io's

ionosphere, rather than through the satellite itself, the same equations

are still valid, only now the "effective radius" is greater than RIo'
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We shdll now examine the validlty of the approximations used in
deriving Eq. 4.41-4.45 in more detail. If we relax the restrictive

assumptions of Eqs. 4.18-4.20, we find that Eqs. 4.24 and 4.25 become

2
3 >+ = 2 VB 3% 9 o >
(E+VA V)VA"“s v(1n °)'BTp+VA(R+VA'V)(1n p) + g b.L6
Ead e 0 = ? Wan o) - B s e ¥ e Win )+ g bk
st Vs T Iy T T o) m gt Vgt Yy s i) v e T

The errors committed by making those restrictive assumptions can be
estimated by dimensional analysis. We will estimate the order of magnitude
of each of the terms which we neglected and compare it to the terms which
we have included in the subsequent derivation. In the following equations,
the left side is the term whose magnitude we wish to estimate, while the
right side is its expected size, in terms of characteristic length, time,
and velocity scales of the problem.

To estimate the error in the position and properties of the Alfven

wing itself, we consider first Eq. 4.47. For the first term we have

- » » *®
A SRASRN -
ot T wRJ 3RJ

The time in the denominator of the right side of Eq. 4.48 is of the order
of one half of the rotation period of Jupiter. We expect changes on this
time scale because of the fact that the dipole axis of Jupiter is tilted
with respect to the rotation axis. We obtain the term on the far right of
Eq. 4.48 by noticing that the corotation velocity is simply the

circumference of Io's orbit divided by Jupiter's rotation period. In this
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estimate we have neglected the angular velocity of Io compared to the
angular velocity of Jupiter.

The second term on the left side of Eq. 4.46 is of order

*
v 2

R - A
(V" V)VA¢ X 4. b9

The length L in the denominator can be taken to be the distance of the
point in question from Io.

In the same spirit, for the first term on the right side of Eq. 4.46

we have
2 5"3
cg (1n p) =—§E 4.50

The characteristic lengﬁh for change in 1ln p is very different in different
directions. We know from Voyager measurements and theoretical arguments
(Bagenal and Sullivan (1981)) that the characteristic length for changes
along i near Io is about 1 RJ. In the direction of corotating flow, the
characteristic length is on the order of the radius of Io's orbit, about 6
RJ. Radially in towards Jupiter, the gradients are very steep, with a
characteristic length of the order of 0.2 RJ. In our estimate of the size
of this term we have used the shortest of these three distances.

Assuming the magnetic field of Jupiter to be a dipole field, the
size of the second term on the right side of Eq. 4.46 is
*2

|v32| a —6B° Va

B8xp  Bwe (6R) * 2R

k.51
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Using the same arguments, the next two terms are seen to be

*
V.V
* 3 A
VA fa-{(ln p) ‘ﬁ? 4,52
»
v, (F7 ¢ ¥){1n p) /e b
a Yy " VMR el ey .53
Finally, the gravitational acceleration is primarily due to the
centrifugal force, which is of the order of
RJ

The solution derived herinbefore will be valid only when the term
(VZ'V)VE is large compared with all of the others. Comparison of Egs.

Lk 48-4.54 shows that this is true as long as L<<l R.; that is, much closer
than 1 RJ to Io.

We cannot use Eq. 4.47 to study the region of validity of our soluion
perpendicular to GX because the term which determines our solution contains
spatial derivatives only along GX' We therefore must use Eq. 4.46. Each
term in that equation will be of the same order as the corresponding term
in Eq. b.46, with two exceptions. Since we are now concerned with errors
made when we integrate along a path pérpendicular to VX, the second term on
the left side of Eg. 4.46 is of the order of

VV*
AR UMER- 4.55
Similarly, the term proportional to (GZ'V)ln p vanishes, We conclude

*
that our solution is valid for L<<(2V/VA) R; « 0.3 Ry, or within a few Io
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radii of the Alfven wing. These results define what we meant by "near the

Alfven wing" and "close enough to Io" in the discussion which followed Eq.

L.31.
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Chapter 5

Analysis of Plasma Data

Taken in the Vicintiy of Io

By Voyager I
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5.1 The Io Flyby

On 5 March 1979, Voyager I flew through the Jovian system. Its orbit
is shown in Figures 5.1, 5.2 and 5.3. Figure 5.1 shows the projection of
the spacecraft trajectory into the Jovian equatorial plane, in addition to
the orientation of the main sensor symmetry axis and the D-cup normal. As
can be seen from these figures, the D-cup was looking into the co-rotating
plasma throughout the inbound pass. As the spacecraft approached perijove,
the corotating flow swung around towards the main sensors, almost coming
down the symmetry axis at closest approach. As the spacecraft receded from
Jupiter, the flow direction shifted away from the all of the cups. The
closest approach to Io occufed on the outbound pass at SCET 1510.

Figures 5.2 and 5.3 are closeups of the Io flyby. Both are in
To-centered coordinates; Fig. 5.2 is also a projection of the orbit into
Jupiter's equitatorial plane, while 5.3 plots the distance from the origin
of that projection against the height above the plane.

The Io flyby occured on the spacecraft's outbound pass, when Voyager I
flew about 20 thousand kilometers due south of the satellite. Though the
orbit was planned to fly directly through the flux tube, analysis of the
magnetic field data (Acuna et al (1981)) showed that the spacecraft missed
the Alfven wing, passing several thousand kilometers upstream of it.
Subsequent examination of the plasma data (Belcher (1981)) revealed a
signature which was interpreted as being due to the velocity perturbation
assocated with the flow arqund the wing. The approximate position of the

Alfven wing in the plane of the spacecraft orbit is shown in Fig. 5.2.
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During the Io flyby, the flow direction of a strictly corotating
plasma would have been almost perpendicular to the main sensor symmetry
axis. Table 5.1 lists the angle between the flow direction of a strictly
corotating plasma, corrected for spacecraft aberation, and the normals to
each of the PLS cups for each of the useful spectra taken during the flyby.
One lower half M-mode spectrum was taken every 192 seconds during the
flyby, and there are no useful data in the upper half spectra. The L-modes
taken during this time cannot be analyzed because the signal in the A-cup
is saturated; that is, the digitized currents were equal to the maximum

value for several channels, indicating that the true currents were higher.

5.2 Analysis of the Data

We have analyzed eight spectra taken in the vicinity of Io. Using the
same nonlinear least squares fitting technique described in Chaptér 3, we
have attempted to determine the macroscopic parameters of the plasma at the
times of each of these spectra. The velocity determinations were then
compared with the predictions of the theory outlined in the previous
chapter. We shall first describe the determination of the plasma
parameters.

Figures 5.4-5.11 show the reduced distribution function plotted as a
function of equivalent proton velocity in each cup for each of the eight
spectra. The spectra were taken at SCET (spacecraft event time) lh2h,
1451, 1ksh, 1457, 1500, 150k, 1507, and 1510, rerspectively. As in the

spectrum plots of Figs 3.3+-3.11l, the staircases are the data and the smooth
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curves are the "best" fits. All of the spectra are smooth and almost
featureless, with a single, broad peak. Furthermore, in each spectrum the
peak in the A-cup is in a higher channel than the peaks in the B- and C-
cups. The D-cup spectra contain mostly noise, and were not included in the
fits.

To determine macroscopic plasmg parameters from these spectra is a
difficult proposition. Since the flow is so very oblique to all of the
cups, the results depend critically upon the cup response function at large
angles. In addition, the plasma contains many different kinds of ioms,
vhich are probably not in thermal equilibrium. In order to get any results
gt all, we have had to make some assumptions about the chemical composition
and the distribution functions of the various ionic species. These
assumptions are:

1. The plasma consists of 4 species, with A/Z* of 8, 16, 32, and 6k,

2. The species all have the same bulk velocity.

3. The distribution function which describes each of the species is a
convected Maxwellian.

4, The species all have the same thermal speed.

As discussed in the previous chapter, measurements made by Voyager 1
iabound (Bagenal and Sullivan (1981)) lead us to expect the plasma to

consist of various ionization states of Oxygen and Sulfur. The values of

+
2

*
A/z for o™, of, st

, 87, s¥, and S0} are 8, 16, 10 2/3, 16, 32, and 6k,
respectively. We have not included S+++ in our fit in the interest of
reducing the number of parameters, and because, since the spectra are so
featureless, we do not expect to be able to differentiate between the

*
contribution due to a species with A/Z of 10 2/3 and its neighbors with
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A/Z* of 8 and 16. The justification for the inclusion of the species with
A/Z* of 64 is that we expect that the distribution functions will have
suprathermal tails, and we hope to be able to account for this in a rough
manner by including a very heavy species. In fact, it is impossible to fit
the higher channels without it. In some of the fits, the inclusion of the
heavy species resulted in driving one of the other densities negative; in
these cases we fit the spectra without the heavy species, omitting some of
the higher channels. In all of these cases, the derived bulk velocity was
almost uneffected by this change.

The assumption of a common bulk velocity is the least likely to be
violated of the four which we have made. The component of the bulk
velocity perpendicular to the magnetic field is determined by the ideal MHD
generalized Ohm's law (Eq. 4.11). Solving this equation for V, we find
Ex3

B2

-3
V=c¢

5.1

This is the same as the equation for the Ex B drift velocity of a single
particle moving in crossed electric and magnetic fields (see Rossi and
Olbert, chapter 2). This is ﬁo coincidence; the bulk velocity can be
thought of as the average velocity of a large number of particles gyrating
around the magnetic field with the same E x B drift velocity. Since the
latter velocity is independent of the mass or charge of the particle, all
species must have the same value of ﬁL. Although the different species may
stream along E at different speeds when the magnetic field lines are open,
in closed line topology we expect ﬁ{will be zero. This is in fact what we

found from our analysis of these spectra.
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The assumption that the distribution functions are Maxwellian has
already been discussed in Chapter 1. Since the self-Maxwellization time
for the various species are comparable to or greater than the residence
time in the torus (see Table 4.1), we must consider the Maxwellian form as
no more than a convient way to parameterize the distribution function. As
long as the true distribution functions do not have multiple peaks, which
is indicated against by the smoothness of the spectra, a Maxwellian must be
a reasonably good approximation to the true distribution function around
the maximm. Therefore, our Justification for this assumption is that it
is a reasonable representation of the true distribution function which
enables us to perform the two of the velocity space integrals of Eq. 2.2b
analytically. \

Unfortunately, the fact that the bulk velocity is so oblique to the
cup normals implies that most of the signal comes from particles not near

the peak of the distribution function. The simulations indicate that the
largest contribution comes from particles about one thermal speed away from
the peak. We must conclude that our approximation of Maxwellian
distributions is a possible source of error. As mentioned above, the
inclusion of a species with a mass to charge ratio of 64 is an attempt to
compensate for the presence of suprathermal tails.

The assumption of a common thermal speed for all of the species, like
the assumption of the Maxwellian shape for the distribution functions, was
motivated partly by physical arguments and partly for computational
convience. Since the time scales for equipartition of energy between the
various ion species are comparable to or longer than the residence time in

the torus (see table 4.l1), there is no reason to expect that the different
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ion species shﬁre a common temperature. We did try to fit the spectra with
the assumption of a common temperature for the various species; that we
were unable to do so convinced us that the different species do not have
the same temperature. Furthermore, there are many physical processes, such
as various wave-particle interactions or "pick-up", the process by which
the newly-made ions are accelerated up to corotational speed, which tend to
produce equal thermal speeds.

Since we really have no way of knowing a priori what the relationship
between the thermal speeds of the various species is, it would be nice to
be able to vary them independently. Unfortunately, the lack of detall in
the spectra makes this impossible. Furthermore, the extra computer time
involved in computing the derivatives with respect to each individﬁal
thermal speed for the gradient search makes this approach impractical. We
must make some assumption which relates the various thermal speeds; the
assumption that they are all the same; in addition to being physically
plausible, has the advantage that it enables us to greatly reduce the
computer time required to fit each spectrum by taking advantage of an
approximate symmetry of the response function.

The quantity which we use in our fits is the "reduced distribution
function"”, defined as the current in a given channel divided by the voltage

width of that channel. This quantity can be expressed as

e 2" 4 2,2 V2
¢, TR wr exp{—(Vz B vz) v} Rof;’ By s ’s) Ivz=?k 3.2

where R(vz/w,A¢k,¢s) contains the effect of the response function. It is

important to note that to the extent that the dependence of the response
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function on the channel width and the suppressor voltage can be ignored,
the expression on the right side of Eg. 5.2 depends only on Vz/w and vz/w;
never on v, . This fact enables us to calculate the value of the "reduced
distribution function” in channel k for a species with mass A and charge
state Z* from the value of the "reduced distribution function" in channel

*
k' for a species of mass A' and charge state Z ' from the formula

I, (v.,) * Ik(;r' )
k _ (& 2 /A k

if the average proton speeds characterizing channels k and k' are related

by
A’ Z*
V., = /(=) v 5.4
k A 7 k

This approximation was used in calculating the "best fits" to the
spectra shown in Figs. 5.4-5.11. The procedure we followed to simulate a
spectrum is as foilows: for a given bulk velocity and thermsl speed we
first computed the reduced distribution function in all 128 channels for a
species with A=64 and Z*=l. We then used Eqs. 5.3 and 5.4 to compute the
contribution due to the other species. Since, for a given channel k with
average proton §peed Vi the value of Vit required by Eq. 5.4 is probably
not equal to the average proton speed of any other channel, but rather lies
between two channels, we used linear interpolation between the adjacent
channels to compute Ik,(vk,)/A¢k, for use in Eq. 5.3. For several test
cases, the approximate values of the "reduced distribution function"

calculated in this way were compared with the values obtained from
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calculations done without taking advantage of the scaling law just
described. The error introduced never exceeded 6%, and frequently was less
than 1%.

The parameters derived from the fits of the spectra of Figs. 5.4-5.11
are given in Table 5.2. In all of these spectra, the geometry is such that
the flow is almost perpendicular to the symmetry axis of the main sensor.
The A-cup look direction is closest to the flow. We expect the
determination of the velocity to be more reliable than the determination of
the densities, although the errors in these gquantities are correlated. The
information about the flow direction is primarily contained in the relative
heights of the signals in the three cups; the further the flow direction
moves away from the axis of symmetry, the lafger the difference between the
A-cup signal and the B and C cup signals becomes. The information about
the densities is primarily contained in the absolute height of the peaks.
If the true flow is closer to the main sensor symmetry gxis than the fit
indicates, the density will be overestimated, since a larger density is
required to produce the same signal in a given cup when the flow is more
oblique. Conversely, if the true flow direction is further away from the
main sensor symmetry axis than the fit indicates, the density will be
underestimated.

There were several spectra taken after the spectrum of 1510 ( Fig.
5.11) which we were unable to fit because the difference between the signal
in the A-cup and the signals in the B- and C- cups were too large. At
about this same time, the magnetometer team noticed a field disturbance
which did not fit the model described in Chapter 4 (Acuna et al (1981)).

Our difficulty in fitting these spectra might be caused by a change in the
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plasma distribution function which is related to this magnetic field

disturbance.

5.3 The Flow Around the Alfven Wing

The velocities derived from the fits to the spectra of SCET 1451
through 1510 were compared with the theory which has been derived in
Chapter 4. To do this, we did a five parameter nonlinear least squares
fit, described hereinafter.

Equations 4.43a, 4.43b, and 4.43c’' describe the velocity at every
point in space as a function of the background flow velocity VO, the
magnitude of the magnetic line dipole moment u (BO'Rc sin eA) of the Alfven
wing, and the Alfven Mach angle éA' The only difficulty is that the
orientation of the coordinate system of Egqs. 4.43 also depends upon three
of these five parameters. This is because the z-axis of the coordinates of
Egs. 4.43 points along the Alfven characteristic VZ.

To overcome this difficulty, we devised the following fitting
procedure. First we define one set of coordinates, called magnetic
coordinates, as follows. The center of Io is taken to be the origin of the
coordinate system. The unit vector -imag points in the direction of the
extrapolated background mﬁgnetic field at the location of the spacecraft at
SCET 1500, as qgoted in Acuna et al (1981). The unit vector ﬁmag lies in
the plane containing Emag and the direction of strictly corotating flow,

making an acute angle with the flow direction, and §mag is defined so as to
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form a right-handed coordinate system. (The unit vector gmag was defined
to be antiparallel to the bhackground magnetic field direction because §
points predominently south near the Jovian equatorial plane. In this way,
Emag makes an acute angle with Jupiter's angular velocity vector. Compared
with a cylindrical coordinate system whose polar axis is Jupiter's spin
axis, amag points in the same general.direction as acyl’ &mag points in the
same general general direction as $cyl’ and ?mag points radially in toward
Jupiter.)

To compare the theory with experiment, still another set of
coordinates is required. We call this set Alfven coordinates. The origin

of these coordinates is also the center of Io. The vector -z points

Alfven
+ A
along §A (note: this is antiparallel to Z as defined for Equations

~ . +
4,32-4.45), The unit vector XA1fven llgs in the plane determined by VA and

<>

VO, so as to be perpendicular to % and make an acute angle with Vo.

Alfven
The unit vector §Alfven is defined so as to complete a right-handed system.
The rotation matrix for the transformation from magnetic coordinates to

’
Alfven coordinates is completely determined by the specification of Vo and

e It is given explicitly by

A.
-+ >
AAlfven =R Amag 543
where
(cos 8, cosa cos @, sina -sine, )
R = (sin o cos a 0 ) 5.5a

(sin 6, sina sin 8, sina cos 6, )
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and

. vo. ?mag 5.5b
sin a = .
PSR Y 2.1)2
{(Vo ymag) + (vo xmag) }

We are now prepared to outline the fitting procedure. First, the
spacecraft position at the time of each of the seven spectra is computed in
magnetic coordinates. Then, a first guess for the five paramters is made
and used to compute the spacecraft positions in Alfven coordinates. The
theoretical velocity at each of the seven spacecraft positions is then
computed using Eqs. 4.43 and compared with the measured velocity obtained
from the fits to the spectra. The "best fit" values of the five paramefers
are then found using a gradient search algorithm. These "best fit"
parameters are given in Table 5.3, while the measured components of the
flow velocity at each of the points are compared with the theoretical
velues in Figure 5.12.

Since it is important to compare our results with the magnetic field
measurements, we shall now sumarize the results of the analysis of the
magnetic field data (Acuna et al (1981)). Acuna fit the magnetic field to
Neubauer's theory in the following manner. First, they assumed that the
background flow was strictly corotational, i.e. they set a equal to zero.
Then they assumed a value éf eA. This defined their coordinate system.

In order to compare their measurements with the theory it was
neccessary to separate the perturbation magnetic field from the
(non-uniform) background field. The resulting values of 8B were then

compared with values predicted by Eqs. L.h2.
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At this point they introduced three more free parameters into their
model. According to Eqs. 4.42, once the orientation of the Alfven
coordinate system has been determined, the only free parameter remaining is
the dipole strength. In order to obtain a better fit, the location of the
dipole and its direction were varied so as to minimize an appropriately
defined x2. This process was then repeated with different assumed wvalues
for 8,. The "best" value of 6, was chosen by the requirements that the
dipole location be close to the origin and that the angle between the
dipole direction and the X-direction be small. Their procedure was
essentially a five parameter nonlinear least squares fit employing a grid
search over the values of eA and a gradient search through the space
spanned by the other four parameters.

Their analysis resulted in the following estimates for the values of
the parameters which are of interest to us: Alfven Mach number 0.15,
Alfven speed 400 km/sec, and "effective radius" of Alfven wing 1.1 RIo'

In addition to the analysis using the plasma data alone, we also
tested Eq. 4.31. We assumed that the plasma velocity and the magnetic
field perturbation are related by

+> »> »>
V=V + 6B 5.6

(o]

tnl ><

o

We then performed a linear regression to determine the "best" values for'Vo
and VA' The results are tabulated in Table 5.3. The value of the Alfven
speed is large, about 600 km/sec, while the background velocity has a large
component radially in toward Jupiter. Figure S.14 is a plot, similar to Fig.

5.13, of the projections of §B and &V (as determined from the linear
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‘regression) into the plane perpendicular gmag' As can be seen from this

figure, there is a strong anticorrelation between 6§ and 5?, as expected.
5.4 Discussion and Conclusions

We shall now examine the derived plasma parameters for the eight spectra
which we fit (Table 5.3). Figure 5.13 shows, superimposed on the spacecraft
trajectory, the projection of the bulk velocity vector into a plane
perpendicular to the background magnetic field for each of the seven spectra
taken in the vicinity of Io. As the spacecraft passed the flux tube, the
radial component of the velocity varied smoothly, decreasing from -I km/sec at
1451 to -23 km/sec at 1457, then increasing again to 10 km/sec at 1507 before
finally decreasing again to O in 1510, This is the trend one would expect for
the flow around the Alfven wing; as Voyager approached the wing from the
direction of Jupiter, it first saw the plasma flowing toward the planet as it
passed through streamliines which passed around the side of the flux tube
toward Jupiter. As Voyager continued its outbound journey, it passed through
streamlines which passed the flux tube on the side away from the planet, hence
the outward flow. As Voyager left the flux tube behind, it entered a region
where the flow was undisturbed. We conclude that the flow observed by Voyager
qualitatively agrees with what we would expect to see if our model is correct.

Unfortunately, the maximm inward flow is mich greater than the maximum
outward flow, and there seems to be a systematic inflow of plasma towards
Jupiter. In addition, there is a correlation between the derived densities
and the amount of inflow. The larger the speed of the inflow, the larger the

densities. Since we really do not expect there to be such large density
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fluctuations, and there is no theoretical reason for this correlation, we
shall attempt to explain this effect in terms of a systematic error in our
fitting procedure.

As mentioned hereinbefore, an error in the determination of the velocity
which changes the angle between the velocity vector and the main sensor
symmetry axis will be associated with a corresponding error in the density
determination. This can be caused by a violation of any of the assumptions
described in the preceding section. If this is the case, we expect that the
density changes are artifacts of the fitting procedure, and that the change in
the radial component of the velocity is less than the result of the fit. We
expect that the overall trend is real, however. Since a negative radial
component of plasma velocity corresponés to the flow moving further away from
the main sensor symmetry axis, and the more oblique the flow is the less
accurate we expect our approximation to be, we expect that this effect can
cause an overestimate of the average radial inflow and a corresponding -
overestimate of the density. Such a systematic error would also have the
effect of reducing the large value of VA which was determined from the linear
regression with the megnetic field data so as to bring this estimate of VA
into agreement with the value determined by Acuna et al.

The thermal speeds‘derived from the fits are all between 30 and 36
km/sec. This is consistent with there being no change in the thermal speed of
the plasma throughout the flyby.

The north-south component of all of the velocity vectors is consistent
with zero. This is what we expect, considering that the E rield points almost

directly due south, and we do not expect to see any flow along B.
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The azimuthal component of the bulk velocity decreases as Voyager
approached the Alfven wing, and then increased again as the spacecraft left
the wing. Again, this is just the trend one would expect to see in the flow
as it passes around the wing.

We will now procede to examine the paramaters describing the Alfven wing
which we determined from the non-linear least squares fit to the theory that
was expounded in Chapter 4. We first consider @, which measures the angle
between the background flow and rigid corotation. The derived value of 180 is
mich larger than the expected value of 0. The systematic error described in
the preceding paragraph would account for this discrepancy.

The value of our determination of Vo .z » the component of the bulk

mag
flow along the direction of the background magnetic field, is O. This is
exactly what we expect for a system with closed magnetic field lines. Because
the B- and C- cup look directions are symmetric with respect to ﬁ, our
measurements are very sensitive to small deviations of this component of
velécity. We are therefore very confident that this result is not affected by
any systematic error of any kind.

Our derived value of the magnitude of the component of the background
flow perpendicular to B is 63 km/sec. This is slightly greater than the
expected value of 57 km/sec. We consider these values to be consistent to
within experimental uncertainties.

Our value of the Alfven velocity is 250 km/sec. It should be emphasized
that the only magnetic field data used in this determination was the direction
of the background field. The values of the Alfven velocity from the mass
density measurements and the measured field strength range from 160-250

km/sec. While the same systematic error' would tend to increase the latter of
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to be made. These are: only species with A/Z* of 8, 16, 32, and 6k are
present, all of the species have the same streaming velocity, the distribution
function of each of the ionic species can be approximated by a convected
Maxwellian, and all of the species have the same thermal speed. The velocity
determination from seven of these spectra were then used to determine the
parameters of a model of the Io-magnetosphere interaction based on the work of
Neubauer (1980). Although the quantitative agreement with the theory was not
outstanding, the results confirm the overall picture of the plasma flow
pattern being analogous to incompressible flow around a cylin&er.

The discrepencies between the theory and the observations are probably
caused by the violation of one or more of the aforementioned assumptions. We
have argued that a systematic error whose primary effect is to cause us to
overestimate the angle between the direction of the flow and the main sensor
symmetry axis could account for all of the discrepencies. In particular, the
assumptions that all of the ion species have the same thermal speed and that
the distribution functions can be approximated by convected Maxwellians are
certainly violated to some extent and this might be the cause of the
systematic error.

An additional complication which we have not discussed before is that the
spacecraft potential with respect to the ambient plasma is probably not zero.
In a quasi-steady state situation, the net electric current flowing into the
spacecraft must be vanish. There are three main contributions to this
current; positive ions, electrons, and photoelectrons caused by the sﬁn. In
the solar wind, the spacecraft tends to be positively charged, since if the
spacecraft were neutral the current due to the photoelectrons would dominate

that due to the plasma electrons, the contribution due to the positive ions
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being negligible due to their much lower velocities. In the high densities of
the Io plasma torus, the situation is reversed; the plasma electron current
would overwhelm the photoelectron current, resulting in the spacecraft
becoming negatively charged. Analysis of the electron data taken by Voyager I
near Io indicate that this is in fact the case (Ed Sittler, private
communication).

Unfortunately, the effect of the spacecraft potential is diffiecult to
compensate for. Its effect is largest in the lower channels; in channels for
which °k >> ¢sc the effect is entirely negligible. This effect should be
taken into account in future work.

All of these difficulties notwithstanding, we expect that the methods of
analyzing the plasma data which we have developed in this thesis can be
profitably applied to other spectra, not only those taken at Jupiter, but

those from the Saturnian system as well.
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Tables



Sx 0.0
Sy
-16.3 .019
-14.3 .15
-12.3 .40
-10.3 .70
-8.3 1.00
$.3 1.00
-4.3 1.00
-2.3 1.00
-0.3 1.00
1.7 1.00
3.7 .88
5.7 .58
T.T .28
9.7 .076
11.7 .0
Grid
Spacecraft
Voyager 1

Voyager Il

2.0

.15
40
.70
1.00
1.00
1.00
1.00
1.00
1.00

55
27
+OT
.0
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Table 2.1

Main Sensor Sensitive Area (Normalized)

.0
.0
.019
.063
.108
.108
.108
.108
.108
<075
.030
.0
.0
.0
.0

.0
.0
.0008
.0065
.0123
.0123
.0123
.0123
.0123
.0079
.0022
.0
.0
.0
.0

4.0 6.0 8.0 10.0 12.0 14,0 16.0 18.0 20.0
.019 .019 .019 .019 .019 .013 .O .0
.15 .15 .15 .13 .085 .034 .006
A0 b0 .363 .305 .225 L.12T7 .062
J0 W67 .60 .50  .383 ,248 .1hk
1.00 .93 .82 .69 .53 370 .227
1.00 .93 .82 .69 .53 .370 .227
1,00 .93 .82 .69 .53 .370 .227
1.00 .93 .82 .67 .51 .36T .227
1.00 .91 .75 .60 .45 ,328 .212
.90  JTT .62 k9 363 .25T7 .161
J1 .59 46 347 243 156 .084
49 .39 .285 .213 .109 .0L9 013
5 .252 .205 .138 .069 .023 .002 .O
6 .076 .068 .037 .0072 .0 .0 .0
.0 .0 .0 .0 .0 .0 .0
Table 2.2
Relative Angles of the Grids in the D-cup
(!l (12 03 Gh (!5 a6 GM
o° 62° s50°  s55°  u4o®°  u° 68°
0° 62° 80° 55°  a4°  ¢o° 68°
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Table 3.1
Plasma Parameters From Cruise Maneuver on 14 September 1978

Time Number Vx Vy Vz VR VT VN No W
2345 1 305. -8. 225. 378.%1.0 18.2%1.2 -23.8+%1.4 .284%,008 19.8%.5
2313 2 221. -8. 297. 370.%0.4 11.8%0.8 -19.1%0.9 .300%,007 16.5%.3
2315 3 118. -5. 353. 372.%0.3 9.1%0.8 -12.9%1.0 .204%,009 17.2%.2
2316 L 11.4 -6.4 370. 370.%0.2 10.0%0.8 -16.2%0.8 .293%,009 16.4%.2
2316 ka 10.9 -6.5 368. 368.*0.3 9.5%1.1 -16.0%1.1 .276%.011 17.T+.3
2243 5 17.8 6.6 370. 37T1.t0.2 T.0%0.9 -14,1%0.9 .237+.008 17.0%.3
2243 5a 17.5 -T.0 369. 369.t0.3 6.5t1.1 -1h.3%1.2 .258+.010 18.3%.3
2211 6 -81.5 -7.8 363. 372.t0.4k 8.1+1.0 -15.3%1.0 .30L4+.012 15.9%.3
2212 7 -184., -4.7 323. 371.%0.7 10.8%0.9 -13.8%1.0 .291%.009 16.4%.3
2248 8 -276. -2.1 248, 371.$1.0 13.8%0.6 -13.9+1.0 .258%,006 1k.3f.k
2216 9 ~341. -1.6 161. 377.*1.3 9.0%0.7 - 9.8%1.3 .278%,007 18.1%.6
Table 4.1

The Physical Properties of Io
Mass 8.9 x 102 kg (k.5 x 107 Mg)
Radius 1820 km
Volume 2.53 x 10%0 xm3
Distance from Jupiter b2k x 10° km (5.9 RJ)
Orbital Speed 17.3 km/sec

1.54 x 105 sec
6 x 1027 AMU/sec

Orbital Period
)
Rate of Mass Injection into Torus

(42hrs, 48mins, 38sec)

* From Hill et al (1983)
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Table 4.2

Parameters of Model Plasma

Electron number density
Electron temperature

S+ density

S++ number density
S+++ number density

O+ number density

O++ number density

Ion thermal speed

Mass density

Magnetic field strength
Alfven velocity

Bulk speed of corotating plasma

Alfven Mach number
Electron plasma frequency
Electron gyrofrequency
Ion gyrofrequency
Electron gyroradius

Skin depth

1900 cm™3

S eV
165 cm™
450 cm
65 cm-3
600 cm
20 em™3
30 km/sec (80 eV)
3.2 x 10h AMU/cm3
2.1 x 1072
260 km/sec
T4.1 km/sec (inertial frame)
56.8 km/sec (Io rest frame)
0.22

2.4 v 10
3.6 v 10° sec
12.6 sec™ (07)
4,2k m

20 km

3
3

3

(5.3 x 10720

gauss

6 -1

sec
-1

glc

m
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Table 4.2 continued

Debye length 65 cm
Interparticle distance 8 x 1072 cm
Number of electrons in Debye sphere 2.3 x 109
Ion gyroradius 3 km (0+ with w=30 km/sec)
Centrifugal acceleration 33 cm/sec (Io rest frame)
Magnetic energy density 1.6 x 10—5 ergs/cm3
Thermal energy density 6.3 x 107 ergs/cm3
B 5.2 x 1072
Self-Maxwellization times 65 sec (electrons)
24 days (07)
47 days (0°F)
340 days (s)
8 days (S++)
12 days (5 )
Thermal relaxation times 50 hrs (ion-electron)
, 1-50 days (ion-ion)
Plasma residence time in torus * 30 days
Period of Io 43 hours
Rotation period of Jupiter 10 hours
Plasma time of flight past Io 30 sec

Estimated from mass injection rate of Table 4.1, assuming that the torus

has a radius of 1 RJ.
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Table 5.1
Angles Between Cup Normals
and the Flow Direction of a Strictly Corotating Plasma
During Io Flyby on 5 March 1979

SCET 0, 0y o oy
1422 57° 86° 89° 163°
1451 64° 93° 96° - 169°
1454 64° 93° 96° 169°
1457 65° 9u° 97° 169°
1500 66° 95° 98° 170°
1504 67, 95° 98° 171°
1507 67° 96° 99° 171°
1510 68° 96° 99° 171°
Table 5.2

Plasma Parameters Derived From Spectra Taken Near Io

Difference from Corotation

SCET AVr AV¢ AVz nO++ n0+ nS+ p v VA
1422 - 4.9 b5 - 2.9 593 226 801 3.9 31_ 210
1451 - 4,2 1.2 = 0.7 T02 104 875 4,1 35 200
145k -13.7 =-2.9 -1.,b 104k 289 1356 6.5 36 160
1457 -22.7 - 6.2 - 0.5 1088 602 1233 6.7 36 160
1500 =164 - T.T -0.7 886 338 T06 4.2 36 200
1504 b1 -5 -3.3 538 228 500 2.8 33 250
1507 9.7 10.0 -~ T.1 45T 253 500 2.7 33 250
1510 - 5.0 9.5 =~ 5.6 621 338 682 3.7 32 210
All speeds are in km/sec
n in em™>

I

p in 10 AMU/cm3
Velocity differences in Jupiter equatorial cylindrical polar coordinates

Table 5.3
Results of Linear Regression to Test Equation 4.31
-> ~ » ~ ".A
Vo xmag v ymag \' zmag VA

60 km/sec 13 km/sec -2 km/sec 600 km/sec
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Figure Captions
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Figure 2.1 The PIS Experiment. The figure consists of a sketch of

instrument, showing the positions of the four cups.

Figure 2.2 The Voyager Spacecraft. The figure consists of a drawing of the
spacecraft, showing the location of all of the scientific instruments and the

orientatién of the axes of the spacecraft coordinate system.

Figure 2.3 The PLS Experiment Aperture Positions. The figure shows the
position of the four cups as viewed from along the main sensor symmetry axis,

and the directions of the coordinate axes of the cup coordinate system.

Figure 2.4 Main Sensor Cross-section. The figure shows a cross-section of
one of the cups in the main cluster, including the positions of the grids and

the collector.

Figure 2.5 Main sensor Aperture and Collector Areas. The figure shows the

shape and size of the aperture and the collector of a main sensor cup.

Figure 2.6 Modulator Voltage and Collector Current Versus Time. The figure
shows the voltage waveform which is impressed on the modulator grid and the
resulting collector current waveform for a hypothetical positive ion

measurement.
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Figure 2.7 Geometry for Grid Transparency Calculation. The figure shows a
beam of particles incident on a grid of parallel, cylindrical wires. o is the
angle between the beam direction and the normal to the plane of the grid, L is
the distance between the centers of two adjacent wires, and d is the wire
diameter. The wires run in the §-direction, and the Z-direction is normal to
the grid plane, with +2 making an acute angle with the direction of the

incident bean.

Figure 2,8 Definition of the Shift Vector. The figure shows the outline of
the collector of one of the main sensor cups, with the image of the aperture
in the collector superposed on it. An incident monoenergetic beam of
particles will have the shape of the aperture as it travels through the cup.
The shift vector 3 is the vector which lies in the collector plane and points
from the point directly underneath the center of the long side of the aperture

to the corresponding point on the image of the aperture in the incident beam.

Figure 2.9 Particle Trajectory in a Main Sensor Cup. The figure shows the
projection into the x-z plane {cup coordinates) of the path of a particle
through one of the main sensor cups. The locations of the nine grids are
shown, along with identifying numbers which correspond to the grid numbers in
Figure 2.4. The x-component of the shift vector is shown as the difference
between the x-coordinate of the particle as it crosses the plane of the

aperture grid and the x-coordinate of the particle when it reaches the

collector.
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Figure 2.10 Potential Versus Distance From Aperture. The figure shows the
electrostatic potential inside the cup plotted against z (cup coordinates) in
the approximation that the potential depends only on z. Three cases are

shown; &) the main sensor, ©b) the side sensor in positive ion mode, and c¢)

the side sensor in the electron mode.

Figure 2.11 The Sensitive Area of a Main Sensor Cup. The figure shows the
16 distinct regions in which there is a different functional dependence of the

sensitive area on the shift vector.

Figure 2.12 Side Sensor Cross-Section. The figure consists of a
cross-section of the D-cup, showing the locations of the eight grids and the

collector. Compare with Figure 2.bL.

Figure 2.13 Common Area of Two Circles. The figure shows the common area of
two circles of different radius as a function of the distance between their
centers. It also defines the parameter X. If the line connecting the centers
of the two circles is taken to be the x axis, with the center of the larger
circle at x=0, then X is the x coordinate of the points of intersection of the

two circles.
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Fiéure 2.14 Sensitive Area of the D-cup. The Décup sensitive area is the
common area of three circles of different radii all of whose centers lie on
the same line. The figure shows four different cases for which different
combinations of arcs from the three circles determine the boundary of the
common area. The formila for the common area for the cases shown in a,b, and
¢ is given by Equation 2.27a, while the formula for the case shown in 4 is
given by Equation 2.27Tb. The relative positions of the points XAC and XGC

determine which formula is to be used.

Figure 2,15 Main Sensor Sensitive Area Versus Sy/h. The figure shows a
family of curves which represent the main sensor sensitive area as a function
of the ratio of the y-component of the shift vector di?ided by the height of

the cup, with the x-component of the shift vector as a parameter.

Figure 2,16 Yu and Y& Versus Sx/h. The figure shows a graph of two of the
functions required for the trapezoidal approximation to the sensitive area of

the main sensor cups.

Figure 2.17 Main Sensor Sensitive Area Versus Sy/h (Trapezoidal
Approximation). The figure shows a family of curves which represent the main
sensor sensitive area as a function of the ratio of the y-component of the
shift vector divided by the height of the cup, with the x-component of the

shift vector as a parameter, in the trapezoidal approximation. Compare with

Figure 2.15.
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Figure 2.18 Main Sensor Sensitive Area Versus |Sx|/h (Trapezoidal

Approximation). The plot is valid for Sy equal to zero.

.Figure 2.19 3-D Plot of the Sensitive Area Versus X and Y in the Trapezoidal

Approximation.

Figure 2.20 3-D Plot of the Full Response Function. The figure shows the
full response function plotted versus X and Y, utilizing the trapezoidal

approximation (defined by Equations 2.3, 2.9, and 2.31-2.3h4).

Figure 3.0 The Cruise Maneuver. The figure consists of four lines, each of
which has several dots on it. Each line represents a polar plot of the cup
coordinates of a hypothetical purely radial solar wind during the cruise
maneuver. The dots correspond to the times of the M-mode spectra. Each dot
which corresponds to the time of a spectrum which was analyzed is numbered.
The spectrum taken when the spacecraft was in the orientation corresponding to
point 1 is plotted in Figure 3.1; that corresponding to point 2 is Figure 3.2;
etc. The orientation of the spacecraft was the same for the spectra shown in

Figures 3.4 and 3.5.

Figure 3.1 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 1. The staircases are the data, while the smooth curve is the fit.
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Figure 3.1la Reduced Distribution Function Versus Velocity for Cruise
Maneuver Spectrum 1. The staircases are the data, while the smooth curve is
the fit. The lower channels in the B-cup were not used in determining the
plasma parameters; they are included to illustrate that the currents in these

channels is not only noise, but actually includes some signal.

Figure 3.1b Reduced Distribution Function Versus Velocity for Cruise
Maneuver Spectrum l. The staircases are the data, while the smooth curve is
a simlation done assuming "unity" response using the plasma parameters
determined from the fit which is plotted in Figure 3.1. Note how the
locations of the peaks in the simulation are correct, but their heights and

shapes are wrong.

Figure 3.2 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 2. The staircases are the data, while the smooth curve is the fit.

Figure 3.3 Reduced Distribution Function Versus Velocity for Cruise Maneuver
Spectrum 3. The staircases are the data, while the smooth curve is the

fit.

Figure 3.4 Reduced Distribution Function Versus Velocity for Cruise Maneuver
Spectrum 4. The staircases are the data, while the smooth curve is the fit.
This fit was done using the full response function. The data are the same as

were fit using the "unity response" approximation for Figure 3.ha.
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Figure 3.&& Reduced Distribution Function Versus Velocity for Cruise
Maneuver Spectrum 4. The staircases are the data, while the smooth curve is
the fit. This fit was done using the "unity" response approximation. The

data are the same as were fit using the full response function for Figure 3.L.

Figure 3.5 Reduced Distribution Function Versus Velocity for Cruise Manéuver
Spectrum S. The staircases are the data, while the smooth curve is the fit.
This fit was done using the full response function. The data are the same as
were fit using the "unity response" approximation for Figure 3.5a. The

orientation of the spacecraft was the same as for Spectrum L.

Figure 3.5a Reduced Distribution Function Versus Velocity for Cruise
Maneuver Spectrum l. The staircases are the data, while the smooth curve is
the fit. This fit was done using the "unity response" approximation. The
data are the same as were fit using the full response function for Figure 3.5.

The orienation of the spacecraft was the same as for Spectrum k.

Figure 3.6 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 6. The staircases are the data, while the smooth curve is the fit.

Figure 3.7 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 7. The staircases are the data, while the smooth curve is the fit.
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Figure 3.8 Reduced Distribution Function Versus Velocity for Cruise Maneuver
Spectrum 8. The staircases are the data, while the smooth curve is the fit.
The change in the orienation of the spacecraft between the times of the peaks

in the various cups was corrected for.

Figure 3.8a Reduced Distribution Function Versus Velocity for Cruise
Maneuver Spectrum 8. The staircases are the data, while the smooth curve is
the fit. The change in the orientation of the spacecraft between the time of

the peaks in the different cups was not compensated for. Compare Figure 3.8.

Figure 3.9 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 9. The staircases are the data, while the smooth curve is the fit.

Figure 4.1 The Goldreich Picture of the Interaction between Io and the
Jovian Magnetosphere, Field aligned currents flow in the fluxtube which links
Io. The current system is closed in the Jovian ionosphere. A similar system

for the southern hemisphere is not shown.

Figure 4.2 1Io's Alfven Wings. Two views are shown of the Alfven wing and
associated current system. Figure 4.2a shows the Alfven wings as seen looking
along the flow direction of the corotating plasma. Figure 4.2b shows the
Alfven wings as viewed by an observér located along on the line which connects
Jupiter and Io. In model shown here, due to Drell, it is not neccessary %o
close the current system in the Jovian magnetosphere, so the currents are

determined by the Alfven wave impedence of the plasma.
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Figure 4.3 The Streamlines of Potential Flow Around an Infinite Cylinder.

Figure 5.1 The Voyager I Jupiter Encounter. The figure shows the projection
of the spacecraft trajectory into the Jovian Equatorial plane, along with the
directions of the main sensor symmetry axis and the D-cup -z axis. Note how
the D-cup points into the corotating flow on the inbound pass, while none of

the cups points into the flow on the outbound pass.

Figure 5.2 The Voyager I Io Flyby. The figure shows the trajectory in an
Io-centered coordinate system, projected into Jupiter's equatorial plane. The
y-axis points toward Jupiter, the x-axis points in the direétion of the
corotating flow, and the z-axis completes a right-handed system. The axes are
labeled in units of Io radii. The circle with its center at the origin is Ioj;
the c¢ircle with its center displaced from the origin is the probable position

of the Io Alfven wing in the plane of the spacecraft orbit.

Figure 5.3 The Voyager I Io Flyby. The coordinate system used to describe
the position of the spacecraft this figure is that defined in the caption for

Figure 5.2, The figure shows z plotted against /(x2 + y2).

Figure 5.4 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1422, The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.
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Figure 5.5 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1L451. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.6 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1454, The staircases are the data; the smooth curves are the
fits. The dropouts in the spectrs are caused by interference with another

instrument on the spacecraft.

Figure 5.7 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1457. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.8 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1500. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.9 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1504. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.
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Figure 5.10 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1507. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.11 Reduced Distribution Function Versus Velocity for the spectrum
taken at SCET 1510. The staircases are the data; the smooth curves are the
fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.12 Flow Velocity Versus Time. The figure shows the flow velocities
determined from the fits to the spectra of Figs. 5.5-5.11. The smooth curves
are the velocities determined from a "best fit" to the model of Neubauer. The

quantities V., V, and V, are the components of ¥ along %, ?mag’ and 2

2 3 mag mag

respectively.

Figure 5.13 Plasma Bulk Velocity at Different Positions in the Vicinity of
Jo. The figure shows the projection of the bulk velocity of the plasma into a
plane perpendicular to the background magnetic field direction. The points at
which the vectors representing the velocities intersect the line which
represents the spacecraft orbit corresponds to the position of the spacecraft

at the time the velocity measurement was made.
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Figure 5.1k 8V and 6B near Io. The figure shows the projection of the
deviation from uniform flow &V and the deviation from a dipole field 63 into a
plane perpendicular to the background magnetic field. The points of
intersection of the vectors 8V and 6B with the spacecraft trajectory are the

positions of the spacecraft at the time of the measurements.
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Figures
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®able of nominal censtants Sor MIS.
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™e delta values are =he full width.

K.mxde.

STLATCR - TERESECQLD

>

LT 2N < 0N e RV, B S JOVIEN a

p e

RL:AUB'JOtomqmm»uut;‘

-

X = 1.036532

VOLTAGZ

- 10.0000

,1'2.1980
18,4754

16.8383

19.28638
21.8249
28,4551
27.1836
30.0110

3849803

391300
42.3951
85.7737
49.2884

£2.9256

PEAX

VOLTAGE

12.1%80
15,4764
16.8383
19.28638
1.8243
24,4561
27.1838
30.0110
32.3420.

-35.9803

39. 1300

42,3951

4547797

43.2884
§2.9256
S6.556¢

AVERAGE
SZPEZD

3g.0847
5045381
S4.76456
58.8288

62.7640
66.557°

-

70.3217
74,0422
77.6828
81.28¢8
84,8573
88.8033
91.3447
95,4725
98.95463
102.522

AVERAGZE
VOLTAGE

11.099Q
13.3372
1548574
18.062$
20.5333

23.140%5 -

25.81¢93
28.53%73
31.4765

38.3612

37.38332
40.762%
44.0874

47.3349

PROTCNS

51.1070
54.81C8

- ma
Dd—«- -y

SPEZD

8.S74637

g.324640
4, 13652
3.9913¢4
2.37869
3.78322
3.713¢68
3.802%3
3.61877
3.58%509
2.55%¢%%

3. 53087

3.32u78

3.52381
3.52728

DELTA
VOLTAGE

2.19795

2TT84s

2.361932
2.5%48u6
2.353815S

2483172

2.72751
2.82742
2.33100
2.03836
3.14967
3.263Q3
3.384656
2.50883
3.637138
3.77042
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~ Table of nominal constants for MJs. Page 2 of 11
The del=a wvalues are ths full width.
M mode. X = 1.038833
MCDULATCR THPESHOLD PEAK AVERAGE DELT
STE? VOLTAGE VOLTAGE VOLTAGE VOLTAGE
17 56.5940 60.6045 $8.65Q2 J.90854
18 60.60453 64.6562 62.63048 6.05171
19 64,6562 68.8564 66.7553 4.20013
20 68.385454 73.2104 71.0334 4.35402
<24 732104 777239 75.4867% . L 8.5135%0
22 777239 82.4027 80.0623 4.6788%
23 82.58027 87.2529 84.8278 8.85023
.24 87.2529 92.2809 89.7669 Sa027932
25 92.2809 97,4930 94.8869 5.21210
25 97,4930 102.895 100.194 5.40303
27 102.296 108,497 105.6838 S.6Q309%7
28 108,497 114,303 111. 400 S.80614
29 114,303 1202322 117.313 §.01881
. 30 120,322 126.581 1231442 623932
31 128.561 133.029 129.795 6.46788
32 133.0238 139.734 136.381 8.70432
PROTCNS
MCCULATOR AVERAGE DELT
STE? s$Pe=D SPEED
17 106.053 3.5347%
18 109.594 3,.543387
19 143.147 J.56032
20 116.716 2.57796
21 120.304 3. 53839
22 123.974 3.68215¢Q
23 127.5438 J.6e718
24 1314209 3.67931
25 130,300 3.70569
25 135.622 . 3.73830
27 142.378 3.77203
28 146.16¢9 3.8Q989
22 149.998 3.84853
30 153.867 J.88<%21
31 1€7.778 323175
22 154,731 3.97613
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Table of nominal constanes for 4JS.

The delta values are the full width.

¥ mode., K = 1.036533

FRAULATOR  THRESHOLD

LYyt

33
34
35
36
37 -
38
39
30
31
42
43
44

VOLTAGE

©139.734

166,684
153.889
161,358

169.101.

177.127
185,447
194,072
203.013
212.282

"221.890

231.850
242,174
252.877
263.972
275,474

PzaK
VQLTAGZE

1486.684
153.889
161.358
169.101

L 177.127

185.447
194,072
203,013
212.282
221.890

02314850

262.174
252.877
263.972
275.474
287.396

AVERAGE
SPEED

163.731
169.777
173.872
178.018
182.218

PROTONS

186.4¢8

190.776
19s5.141
199.366
204,051
208.599
213.211
217.889
222.634
227.443
232.335

AVERNGE
VOLTAGZ

143,209
150.287
157.624
165. 220
173.1174
181.287
189.76Q
198.543

207.648 .

277.086
226.87Q
237.012
287.82%
258.425
259.723
281.435

DELT
SPEED

4,.022:2%
4,070230
4.12004
4,17149
4.22468
4,27357
4.33817
4,3543u8
U,45434
4, 51635
4.,57¢47
g.04409
g,7142%

4.77977

4.84991
8.92197

Paga 3 of 11

DELT:
VQLTAGZ

6.95042
7.20835
7.46898
7.74253
8.02821

T 8.3202¢

8.62503
8.94Q09%8
9.25830
9.80791
9.95396
1043247
10.7029
11.6G23890
175015
11.9229
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Table of nominal constants for MJS.

page 4 of 11
The delta values 4re the full width.
M mode. K = 1.036633
MODULATOR THRESHOLD PEAX AVERAGE DELTA
STEP VOLTAGE VOLTAGE VOLTAGE VQOLTAGE
49 287.396 299.7556 293.576 12.3596
50 299.756 312.568 306.162 12.8123
. 51 312.568 325.850 319.209 13.2817
52 325.850 339.5618 332.734 13.7681
53 339.618 353.891 346.755 1442727
54 353.891 368.687 361.289 14,7954
55 368.687 384,024 3764355 15.3374
56 384,024 399.923 391.973 15.8992
57 399.923 816.405 408,164 16.4817
58 416,405 433,490 424,948 17.0854
59 433,490 451.202 442,346 17.7114
60 451.202 469.562 460.382 18. 3601
61 u69.562 488,594 479.078 19.0327
62 488,594 508.324 498,459 19.7300
63 508.324 528.777 518.551 20,4526
64 §528.777 549,979 539.378 21.2019
PROTONS
MOQULATOR AVERAGE DELTA
STEP SPEED SPEED
439 237.294 4,99552
50 242,327 5.07096
51 247,437 5.14831
52 252.624. 5.2273%
53 257.3892 5.30808
>4 263.241 5.39071
33 263.674 5. 47504
38 274.193 5.56147
57 279.798 S.54981
53 285,493 5, 73984
59 291.279 5.83177
60 297,158 5492602
61 303.132 6.02197
62 303.203 6.12201
63 315.373 6. 21999
64 321.644 6.32227
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Table of nominal constants for MJS. page 6 of 11
The delta values are the full width.

M mode. K = 1.036633

MODULATOR THRESHCLD PEAK AVERAGE DELTA
STEP VOLTAGE VOLTAGE VOLTAGE VOLTAGE
81 1016.92 .1056.00 1036. U486 39.0840
‘82 1056.00° 10968.52 1076.26 4Q0.5156
83 1096.52 1138.52 1117.52 - 41.9998
84 1138.52 1182.06 1160.29 43.5383
35 1182.06 1227.19 .1204.62 45.1333
86 1227.19 1273.98 1250.58 Ls.7866
87 1273.98 1322.48 1298.23 48.500%5
88 1322.48 1372.7¢ 1347.62 50.2773
89 1372.76 1824.88 1398.82 52.1191
90 1424.388 1478.90 1451.89 54.0283
91 1478490 1534.91 1506491 56.0076
g2 1834.91 1332.97 1563.94 58,0531
93 183%2.97 1653. 186 1623.086 . 8Q.1860
94 1€53.16 1715.55 1684, 35 62.3909
95 1713.55 178Q0.22 1747.89 6L4.6763
L) 1708622 13+7.27 1813.75 67.0437
PROTONS
MODULATOR AVERAGE DELTA

STEP SPEED SPEED

81 tus.3¢3 2.40751

82 454,349 8. 55270

83 462.975 8.700563

84 471,732 3.8%5173

85 480,681 9.30055%9

g6 483,784 f.182117

87 435.927 9,32218

88 808.510 9,48468

89 517.978 3.55058

90 £27.713 3.819684

91 8537.519 3.99184

22 S547.E9R 10.1671

93 557.955 104 3459

94 268 .3291 10.5273

29 £79.012 10.7134

96 £g9.824 10.9029%



Table of nominal c¢constants for MJS.

(172) .

The delta values are the full widths.

M mode.

MODULATOR THRESHOLD

STEP

65
66
67
68
69.
70
M
72
73
74
75
76
77
78
79
80

MODULATOR
STEP

65
86
67
68
69
70
71
72
73
74
WS
76
77
78
79
80

K= 1.036633

VOLTAGE

549,979
571.958
594,741
618.360

642,843

668.224
694,534
721.808

750.081

779.390
809.772
841.268
873.917
907.762
9u42.848
§79.218

PEAK
VQOLTAGE

571.958

594,741

618.360
642.843
6568.224
694.534

721.808

750.081
779.390
809.772
841.268
873.917
907.76¢
942.848
979.218
1016.92

AVERAGE
SPEED

© 328.018

334.498
Ju1.085
3s7.782

- 354.590

3JE1.513
358.5%¢
375.70Q¢
382.988
390.390
397.918
k0S5, 574
413,361
821.282
823,338
437.533

PROTCONS

AVERAGE
VOLTAGE

560.968
583.349

6064550

630.601
655.533

" 681.379

708.171

735.944 -

764,735
794.581
825.3520
857.393
894.849Q
925.305
961.033
998.0869

DELTA
SPEED

6. 42646
6.53276
6.64139
6.75213
6.86498

6.,98037 .

7.03766
7217438
7.33985
T.464832
74591585
7.720813
7.85297
7.98780
8. 124936
8.26465

page 5 of 11

DELTA
VOLTAGE

21.3785
22.7837
23.8184
24,4836
25.3804
26.3103
27.2739
28.2732
29.3088
30.382%6
31,4956
32.6492
35.0852
36.37Q4
37.7026
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Table of nominal constants for MJS.

page 7 of 11

The delta values are the full widths.

M maode. X = 1.036633

MODULATOR .THRESHOLD PEAK AVERAGE DELTA
STEP VOLTAGE VOLTAGZE VOLTAGE VOLTAGE
97 1847427 1916.77 1882.02 63.5017
.98 1916.77 .1988.82 19582.79 72.0476
- 99 1988.82 2063.51 2026. 16 748.8870
100 206351 2140.93 2162.22 77.4229
*101 2140.93 2221.19 2181.06 80.2590
102 222119 2304,.39 2262.79 8§3.1992
103 2304,.39 2390.63 2347,.51 86,2471
104 2350.63 2480.04 2435,34 89,4065
108 2480.04 2572.72 2526.38 92.45816
106 . 2572472 2668, 80 2620.74 96.0763
107 2668.80 2768.40 2718. 60 99.5964
108 2768440 2871.54 2820.02 103.245
109 2871.64 2978.87 292%.15 107.027
1190 2978.67 3089.61 3034, 14 110.948
111 3089.581 3204,.83 3147.12 115.012
112 3208483 3323.85 J264.24 119.22%
PROTCONS
MODULATOR AVERAGZE DELTA

STEP SPEED SPEED

97 f00.819 11.0948

98 612.011 11.2910

99 6<3.402 11.4307

100 ARIUL,995 11./A342

101 645,732 11.9013

102 £83,799 12.11248

103 671.020 12.3278

104 §83.457 12.54867

105 §36.115 12.7697

106 708.998 12.9971

107 722.111 13.2285%

108 735.457 13,4441

109 743,042 13.7044

110 762.868 13.9489

111 776.941 14.1979

112 791.268 14.494513
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Table of nominal constants for MJS. page 8 of 11
The delta values are the full w;‘.dths.

. M mode. X = 1.036533

MODULATOR THRESHOLD PEAK AVERAGE DELTA

STE? VOLTAGZE VOLTAGE VOLTAGE VOLTAGE
113 3323.85 34487.44 3385.65 123.593
114 3447, 44 3575.56 3511. 50 128.120

<115 3575.586 3708.38 3641.97 132.813
116 3708.38 3846.06 3777.22 137.879
117 3846,06 - 3988.78 3917, 42 142.722
118 3988.78 4136.73 8062.75 147.948
119 4136.73 4290.09. 4213. 41 153.367
120 4290.09 4449.08 4369. 59 158.988
121 4449,08 4613.89 4531.49° 164.812
122 . 4613.89 4784,.74 4699, 32 170.848
123 4784.74 4961.85 4873.29 177. 105
124 49614 85 S1us,.44 SQ0S3.64 183.594
125 $145. 44 §335.76 $240.60 190. 329
126 8335.76 5533.05 S434,.41 197.293
127 $¢33.09% 5737.57 8635.31 204,529
148 §737.57 5949.59 5843, 58 212,012

PROTONS
MODULATCR AVERAGE DELTA

STEP SPEED SPEED

113 805.847 14,7099

114 82C.688 14.9730

115 835.79% 15.2410

1186 851.173 15.5133

117 866,825 15,7917

118 882.759 160743

119 898.977 16,3628

120 915.487 16.A565

121 932.293 16.9553

122 949,400 17.2594

123 966.814 17.5895:

124 984,542 17 .8882

125 1002.59 13.2066

126 1020.96 18.5342

127 1039.66 18.3675%

128 1058.70- 19.20€9
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Table of nominal constants for MJS. page 2 of 11
The delta values are the full width.
E, mode. X = 1.074608
MODULATCOR THRESHOLD PEAX AVERAGE DELTA
STEP VOLTAGE VOLTAGE VOLTAGE VOLTAGE
1 10.0000 14.4765 12.2382 4.47647
.2 14,4765 19.2869 . 16.8817 . 4481044
3 19.2889 24,4563 21.8718 516934
4 24,4563 . 30.0113 27.2337 5.55501
5 30.01113 35,9807 32.9960 5.936347
6 35.9807 42.3956 + 39.1881 6e 41483
7 42,3956 49,2890 45,8423 6.89343
8 49.2830 56,6967 §2.9928 7.40773
"9 56.6967 64.6571 60.6769 7.96040
10 64,6571 73.2114 68.9343 - & 554 31
11 73.2114 82,4040 77.8077 9.192%4
12 82.404Q 92.2823 87.3431 9.87837
13 92.2823 102.898 "§7.5900 10.6154
14 102.898 1144305 108.601 11. 4074
15 114.30S 126.564 120.434 12.2584
16 126.5684 139.737 133.150 13.1730
ELECTRONS
MODULATOR AVERAGE DELTA
STEP SPEED SPEED
1 2067.48 281,335
2 2432.31 3484319
» 2770.76 328.585
: 3093.29 316.292
5 3405. 69 308.703
: 3712.22 30U, 302
- 4015.85 302,344
8 84317.81 302.157
] 4620.50 303.822
o 4925, 25 305. 891
11 5232.89 309. 383
12 5544, 48 313.787
13 5860.87 318. 995
” 6182.44 324,944
1s §511.10 331.582
6846.33 338.874
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Table of nominal constants for MJS.

The delta values wre the full widths. '

Lbbde-

MODULATOR THRESHOLD

STEP

-t
OQOWOVWONOW E W -

-
—h

Y
[

[N N i §
(oS V¥ ~ 3¢ W]

MODULATCR
STEP

O O O U bW b

VOLTAGE

10.04000
30.0113
S5€.6968
92.2825

203,018
287.405
399.937
550,001
750.114
1016497
1372.83
1847.37
24680.19
3324.906
Leug9.38

PEAK
VOLTAGE

30.0113

- 56.69648

92.2825
139.737
203.018
287,405
399.937
§50.001

750. 114

1016.97
1372.83
1847.37
2480.19
3324,06
4u49.38
$950.02

AVERAGE
SPEED

£9.3357
90.0802
113.668
148.385
J180.531
216.070

255.889

3004895
352.069
410.501
877.421
554.227
642.519
744,134
861.131
996.092

PROTON

AVERAGE
VOLTAGE

20.0056
4343541
74.4897
116.010
171.377
245,212

343.671
874,969

650,058 "
883.542
1194.90
1610.10
2163.78

29€2.12

3886.72
5199.70

DELTA
SPEED

32.07623
28.4129
28.7616
30.6730
33.6197
37.4585
42.1787

S4.5151
£€2.3493
71.4897
82.1219
9u.462¢
108.7€7
125.323
144.493

page 10 of 11

DELTA
VOLTAGE

-20.0113

26,6855
35.5857
47,8543
63,2818
84,3870
112.532
150.064
200.113
265.855
355.858
474,544
632.815
843.872
1125. 32
1500. §4.
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mable of nominal constants for MJS. page 11 o: 11

The delta values are the full widths.

2

MODULATOR THRESHCLD PEAK AVERAGE DELTA
STEP VOLTAGE VOLTAGE VOLTAGE VOLTAGE
1 10.0000 30,0113 20.00%5 20,0113
2 3n.0118 56.6968 83,3541 26,6855
.3 8h.6968 . 92,2825 74,4837 35.548%87
4 92.282% 139,737 116,010 47,4543
5 139.737 203,01R8 174,377 63.2814
6 203,018 2R7,405 205,212 84,3870
v, 287,405 399,937 383,671 112.532
8 399.337 880,001 874,969 180,064
9 550,001 750.114 650.0%5A4 200,113
10 750.114 1016, 97 883,542 2656.8S5
" 10146,97 .1372.82 1194,99 385,858
12 1372.813 187,37 1610, 10 474,584
13 1847,3”7 2u80.19 "21613.78 6§32.815
14 2480, 19 3324,96 2902.12 883,872
15 3324.06 4149, 38 '3886.72 1125.32
16 449,38 350,02 §199.70 1500.64
ELZCTRONS
MODULATCR AVERAGE ,DELTA

STE? SPEED SPEED

1 2564.0R 1374.%3

2 3860.12 1217.55

4 6§358.5A3 1314,40

5 7736.11 1880,67

6 9253.03 1605.17

7 1096543 1807.44

8 12893.9 2049.76

9 15064,.9 2336.08

10 1759¢.8 2671.79

11 204858, 4 3063.48

2 23749,.7 3519.09

13 27533.2 8047.91

14 . 31887.56 846A0, 86

15 36993.2 §370.59

16 82684.5 6191.81

E. Mode. K = 1.333522
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Appendix B
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R R R R R

IR R I

SUBROUTINE CUPINT(DN,U,W,NSTEP,CUR)

IMPLICIT REAL*8(A-H,0-1)

REAC*8 U(3),VZSUP/134.9/,R0/100./ ECHRGE/1.6E-19/
REAL*S P1/3.14152654/
REAL*S AMVZ(1¢8)/
46.06, 50.50, 54.73, 58.79, 62.72, 66.56, 70.
77.63. 81.23 84.80, 88.35. 91.89, 95.41. 98.
105.99, 109.52, 113.07, 116.64, 120.23, 123.83, 127.
134.81, 138.53, 142.28, 146.07. 149.90, 153.77. 157.
165.62, 169.66, 173.76., 177.90, 182.09, 186.34, 190.
199.43, 203.91, 208.46, 213.07, 217.74, 222.48, 227.
237.13. 242.16, 247.27, 252.45. 257.71. 263.06. 268.
279.60. 285.29, 291.08. 296.95., 302.92, 308.99, 315.
327.79. 334.26. 340.84., 347.54. 354.34. 361.26. 368.
382.71) 390.11, 397.63., 405.28, 413.06, 420.98. 429.
445.54. 454.02. 462.64, 471.41, 480.33, 489.41, 498.
517.60. 527.32, 537.22. 547.29. 557.54. 567.97. 578.
600.37. 611.55. 622.93. 634.52., 646.30. 658.30. 670.
695.58. 708.46, 721.56. 734.89. 748.47. 762.28. 776.
805.22, 820.05, 835.14, 850.51, 866.15, 882.07, 898.
931.56. 948.65. 966.05. 983.76.1001.80,1020.10.1038.
REAL*S AMDVZ(]ZS)/ ‘
4.57, 4.32, 4.13, 3.99, 3.88, 3.79, 3.
3.62, 3.58. 3.56, 3.54. 3.53, 3.52. 3.
3.53, 3.54., 3.56. 3.58, 3.59. 3.62. 3.
3.70,  3.74. 3.77. 3.81, 3.84. 3.89, 3.
4.02, 4.07, 4.11, 4.17, 4.22. 4.28, &,
4.45. 4.51. 4.58, 4.64. 4.70. 4.78. 4.
4.99, 5.06. 5.15, 5.22, 5.31. 5.38, 5.
5.65, 5.73, 5.83, 5.92, 6.02. 6.11., 6.
.42, 6.53. 6.63, 6.75. 6.86. 6.97, 7.
7.33, 7.46, 7.59. 7.71, 7.85. 7.98., 8.
g.41, 8.54, 8.70, 8.84, 9.00, 9.15, 9.
9.65, 9.81, 9.98, 10.16, 10.34. 10.52., 10.
11.09, 11.28, 11.48, 11.69, 11.89, 12.10. 12.
12.76, 12.99. 13.22. 13.45. 13.89, 13.94, 14.
14.70, 14.96. 15.23, 15.50, 15.78. 156.06, 16.
16.94. 17.24. 17.56, 17.87., 18.20. 18.50. 18.
CUR=C.D0
VZT=AMVZ(NSTEP)-AMOVZ(NSTEP)/2.00

VZ=VZT

Xl=EVZ-U(3))/W
IF

1 .GT. 3.00) RETURN
DVZ=AMDOVZ(NSTEP)/10.00

N=0

CONTINUE

N=N+1

NN=MQO(N, 2)

VZ=VZ+0VZ

=(VZ-U(3))/W
LT

IF EXl
IF(X1

-5.00) GO TQ 10
.GT. 3.D0) GO TC 100

PI=(VZT/NZ)**2
P2=(VZSUP/VZ)**2

X=0CABS(U(1)/VZ)
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00320
00330
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Y=U(2)/VZ
CALL TRANSPEX,Y,Pl,PZ,T
CALL AREAOV(X.Y.P1,P2 R
IFgNN .EQ. 1§CUR=CUR+R*T*DEXPE-Xl**Zg*VZ*Z.DO
IF(NN .EQ. 0)CUR=CUR+R*T*DEXP(-X1**2)*VZ
GO TO 10
CONTINUE
CUR=CUR*RO*ECHRGE*DN/(W*DSQRT(PI))*1.E20*0VZ*2.00/3.00
CUR=CUR+R*T*DEXP(-X1¥*2)*yZ
CUR=CUR*RO*ECHRGE*DN/(W*DSQRT(PI))*1.E20*DVZ
RETURN
END
SUBROUTINE TRANSP(X,Y,P1,P2,T)
IMPLICIT REAL*8(A-H.0-Z)
C=1/42.00
X2=X**2
Y2=Y**2
T=((1.00-C*DSQRT(1.D0+X2))* El .D0-C*DSQRT(1.D0+Y2)))**5
T=T*((1.00-C*0SQRT(1.D0+X2/(1.00-P1
*___(1.D0-C*DSQRT(1.00+Y2/(1.00-P1))))**3
T=T*(1.D0-C*DSQRT(1.D0+X2/(1.D0+P2
*  (1.D0-C*DSQRT(1.D0+Y2/(1.D0+P2)
RETURN
END
SUBROUTINE AREAOV(X,Y,P1,P2,R)
IMPLICIT REAL*8 (A-H,0-7)
REAL*S A/.33800/,8/.19700/,C/.09300/,D/.37200/
SHIFT=A+B*2*(DSQRTE1.DO+P2;-1.DO)/P2+C/DSQRT(l.DO-Pl)+
1.00-P1))/P1
X1=SHIFT*X
Y1=SHIFT*Y -
IF (X1 .GT. 4.94D0) GO TO 100
R=(4.94D0-X1)/3.8400
IF (X1 .LT. 1.1D0) R=1.00
IF (Y1 .LT. -2.0200) GO TO 10
Y3=YU(X1)
Y4=YUP(X1§
IF (Y1-Y3) 1,1,2
RETURN
IF (Y1 .GT. Y4) GO TO 100
R=R*(Y4-Y1)/(Y4-Y3)
RETURN
IF (Y1 .LT. -3.6300) GO TO 100
R=R*(3.6300+Y1)/1.6100
RETURN
R=0.D0
RETURN
END
FUNCTION YU(X)
IMPLICIT REAL*8 (A-H,0-Z)
A=.76200
B=1.01800
C=.24700

- D=.25D0

YU=A*DCOS(8*X+C)/(1.00+D*X)
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RETURN

END

FUNCTION YUP(X)

IMPLICIT REAL*8 (A-H,0-7)
A=2.500

B=0.12500
YUP=A-B*(X-1.D0)**2
RETURN

END
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SUBRQUTINE DCPINT(DN,U,W,NSTEP,CUR)

IMPLICIT REAL*8 (A-H,0-Z)

0
REAL*8 U(3), VZSUP/134, 9/,ECHRGE/1.6E-19/,P1/3.141592654/,RC/6.35/, DD

RG/S. 1308/ RA/5.6438/,

RCG2/13.99739136/,RCA2/8. 47002156/ ,RAG2/5.5273698/,R0/82.7/

REAL*8 AMVZ(128)/

46.06, 50.50, 54.73, 58.79, 62.72, 66.
77.63, 81.23, 84.80, 88.35. 91.89, 95
105.99, 109.52, 113.07, 116.64, 120.23, 123.
134.81, 138.53, 142.28, 146.07, 149.90, 153.
165.62, 169.66, 173.76, 177.90, 182.09, 186.
199.43, 203.91, 208.46, 213.07, 217.74, 222.
237.13, 262.16, 247.27. 252.45. 257.71, 263.
279.60, 285.29, 291.08, 296.95. 302.92, 308.
327.79, 334.26, 340.84, 347.54. 354.34. 361
382.71, 390.11, 397.63, 405.28. 413.06. 420.
445.54, 454.02, 462.64, 471.41, 480.33, 489.
517.60, 527.32, 537.22, 547.29, 557.54. 567.
600.37, 611.55, 622.93, 634.52, 646.30. 658.
695.58, 708.46. 721.56, 734.89. 748.47. 762.
805.22, 820.05, 835.14, 850.51, 866.15, 882.
931.56, 948.65, 966.05, 983.76,1001.80,1020.
REAL*S AMDVZ(128)/ ‘
4.57, '4.32, 4.13, 3.99, 3.88, 3
3.62, 3.58, 3.56, 3.54. 3.53. 3
3.53, 3.54, 3.56, 3.58, 3.59. 3
3.70, 3.74, 3.77, 3.81, 3.84. 3
4.02, 4.07. 4.11., 4.17. 4.22. &
4.45. 4.51, 4.58. 4.64. 4.70. &
4.99. 5.06, 5.15, 5.22. 5.31. 5
5.65, ©5.73. 5.83, 5.92. 6.02, 6
6.42. 6.53, 6.63, 6.75. 6.8, 6
7.33,. 7.46, 7.59. 7.71, 7.85. 7
8.41, 8.54, 8.70, 8.84, 9.00, 9
9.65, 9.81, 9.98, 10.16, 10.34, 10
11.09, 11.28, 11.48, 11.69, 11.89, 12
12.76, 12.99, 13.22, 13.45, 13.69, 13
14.70, 14.96, 15.23. 15.50, 15.78. 16
16.94, 17.24, 17.56, 17.87, 18.20, 18
CUR=0.00 |
IF(U(1) .EQ. 0.DO .AND. U(2) .EQ. 0.D0) GO TO 1
PHI=DATANZ(U(2),U(1))
GO TO 2
PHI=0.D0

VT2=U(1)Y**2+U(2)**2
VZT=AMVZ(NSTEP)-AMDVZ(NSTEP)/2.00
VZ=VZT

X1=(VZ-U(3))/W

IF (X1 .GT. 3.D0) RETURN
DV6=AMDVZ(NSTEP)/ID.DO
N=

CONTINUE

N=N+1

NN=MQOD(N, 2)

VZ=VZ+DVZ

0D 00010

D 00020

00030

D 00040

DD 00030

0D 00060

56, 70.31, 74.00,00 00070
.41, 98.93, 102.46,00 00080
83, 127.47, 131.12,D0D0 00090
77, 157.67, 161.62,0D 00100
34, 190.65, 195.01,0D 00110
48, 227.29, 232.18,00 00120
06, 268.49, 274.00,0D 00130
99, 315.15, 321.42,0D 00140
.26, 368.29, 375.44,0D 00150
98, 429.03, 437.22,00 00160
41, 498.64, 508.04,00 00170
97, 578.58, 589.38,00 00180
30, 670.51, 682.94,00 00190
28, 776.34, 790.65,00 00200
07, 898.27, 914.77,00 00210
10,1038.80,1057.90/00 00220
DD 00230

.79, 3.72, 3.66,DD 00240
.32, 3.52, 3.53,DD 00250
.62, 3.65, 3.67,00 00260
.89, 3.93, 3.97,DD 00270
.28, 4.33, 4.40,00 00280
.78, 4.85, 4.92,DD 00290
.38, 5.47, 5.56,0D 00300
211, 6.22, 6.32,DD 00310
.97, 7.10, 7.21,0DD 00320
.98, 8.12, 8.25,0D 00330
.15, 9.32, 9.47,00 00340
.52, 10.70, 10.89,0D 00350
.10, 12.32, 12.53,DD 00360
.94, 14.18, 14.44,0D 00370
.06, 16.35, 16.64,00 00380
.50, 18.80, 19.10/00 00390
0D 00400

00 00410

00 00420

0D 00430

D0 00440

0D 00450

0D 00460

0D 00470

00 00480

0D 00490

0D 00500

0D 00510

0D 00520

DD 00530

DD 00540

0D 00550



100

150

200
250

500

—..i
H

X % % X X X X X X X X %X X %X %

X1=(VZ-U(3))/W
IF (X1 .LT.

-5.00) GO TO 10

IF (X1 .GT. 3.D0)GO TO 500

P1=(VZIT/VZ)**2
P2=(VZSUP/VZ)**2
PSI=VT2/VZ**2

CALL TRNSPD(PSI,PHI,P1,P2,T)
CALL SHIFT(PSI,P1,P2,0CA,DCG,DAG)

IF (OCA .EQ. 0.D0) GO TO 150

XCG=(RCG2+DCG**2
XCA=( RCA2+DCA**2

)

/
/

E

2.00*0CG
2.D0*DCA

IF (XCA-XCG) 100,200,200

CALL CLAROVERCGZ,RC,RG,DCG,Al)
RAGZ,RA,RG,DAG,A2)

CALL CLARQV
R=A1+A2-R0
GO TO 250
R=R0

GO TO 250

CALL CLAROV(RCAZ,RC,RA,DCA,R)

CONTINUE

IF(NN .EQ. 0

GO TO 10

CONTINUE

CUR=CUR*ECHRGE*DN/(W*DSQRT(PI))*1.0020*0VZ*2.D00/3.D0

RETURN
END

3

IF(NN .EQ. 1)CUR=CUR+R*T*DEXP
CUR=CUR+R*T*DEXP

E
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=X1**2)*VZ*2.00
=X1**2)*VZ

SUBROUTINE TRNSPD(PSI PHI,P1,P2,T)
IMPLICIT REAL*8 (A-H, 0- Z)

REAL*8 C/.02381D0/, Al/0. 00/,A2/1.0821D0/,A3/.872700/,

A4/ .959900/,A5/.698100/,A6/.0698D0/ AM/l 186800/, AS/0.D0/
.00+PSI*DCOS
.D0+PSI*OSIN
.DO+PSI*DCAS
.D0+PSI*DSIN
.D0+PSI*DCOS
.D0+PSI*DSIN
.D0+PSI*DCOS
.D0+PSI*OSIN
.D0+PSI*DCOS
.D0+PSI*DSIN
.00+PSI*DCOS
.00+PSI*DSIN
.00+PSI*DCOS
.00+PSI*DSIN
.00+PSI*DCOS
.00+PSI*DSIN

1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.80-C*DSQRT
1.D0-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*DSQRT
1.00-C*0SQRT
RETURN
END

Bt et e pd pd pod fod ph b pod fed pd b ped e

PHI-A1)**2
PHI-AL)**2
PHI-A2)**2
PHI-AZ)**2
PHI-A3)**2
PHI-A3)**2
PHI-A4)**2
PHI-A4)**2
PHI-AS)**2
PHI=AS)**2
PHI-AG )**2
PHI-AG)**2

* % % % X X X X X X X

PHI-AM
PHI-AS
PHI-AS

**2/
**2/
**2/

SUBROUTINE CLARCV(R2,RL,RS,D A)
IMPLICIT REAL*8 (A-H,0- Z)
REAL*8 P1/3.14159265400/
IF (D-RL+RS) 1,1,2
1 A=PI*RS**2

RETURN

1.00-P1
1.00+P2

PHI-AM%**Z/%l.DO-Pl
1.00+P2
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2 IF(D-RL-RS) 3,4,4
3 QS=§R2-D**2§/EZ.DO*D*RS
QL=(R2+D*>2)/(2.00*D*RL
A=RS**2*(PI/2.DO+DARSIN(QS)+QS*DSQRT(1.DO-QS**2§)+
+ RL**2*(PI/2.D0-DARSIN(QL)-QL*DSQRT(1.D00-QL**2)
RETURN
4 A=0.00
RETURN
END
SUBROUTINE SHIFT(PSI,P1,P2,DCA,DCG,DAG)
IMPLICIT REAL*8(A-H,0-Z)
$=.49500+.72000*(1.D0-DSQRT(1.00-P1))/P1+
+ .29000*(DSQRT(1.00+P2)-1.D0)/P2
B=S/(.166D0+.139D0*(DSQRT(1.D0+P2)-1.00)/P2)
DCA=DSQRT(PSI)*6.00*S
0CG=DCA/B
DAG=DCA-DCG
RETURN
END

0D
00

00
0D
0D
0D
0D
0D
0D
0D
00
00
0D

0D
0D
0D
oo

01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
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SUBROUTINE ABCCUR(DN,W,U1,A,Z NCHN,DISTF)
IMPLICIT REAL*S (A-H,0-7)
REAL*8 CM(100),VZSC2,SCPOT/=12.500/
COMMON/CM/CM, N13
INTEGER*4 NCHN(2) ,NSTEP(129)/22,16,10,6,41*4,84%2/ NFIRST
INTEGER*4 NTAIL(2)
INTEGER MFIRST(128)/3,6,10,13,17,20,23,26,29,

, 32,35,38,39,41,42,44,45,46,48,49,50,52,53,54,55,56,58,59,60,61,
. 63.64.65.66.67.68.70.71.72.73.74.75.76.77.78,80,81,82.83 .84, 85,
. 86.87.88.89.90.92.93.94,95,96,97.98.99,100,101,102,103,104,105,
© 106,107,108.109,110,111,112,113,115,49%0/
REAL*4 AMAL,AMAZ.AMCI AMSFT,ABCS
REAL*4 AAAVZ AAVZ,AVZ.AAADVZ ,AADVZ,ADVZ,DVOLT
REAL*S U(3),ZX(4,2),ZY(4,2,2),U1(3),AA(2),SS(2),CCE )
REAL*8 A1(2},XBAR(2),A2(2).8(2,2),0(2,2),AC(2) ,CRR(129)/129%0.00/
REAL*8 X(4)/-4.94D0,-1.1000,1.1000,4.9400/,

. Y(4,2)/-3.6300,-2.02D0,2.0200,3.6300,

. -3.6300,-2.0200,2.0200,3.6300/
REAL*8 R/100./,T/.65/,ECHRGE/1.6D-19/,SQRTP1/1.772453851/
REAL*S P1/3.141592654/ PRESET/Z7FFFFFFF/, DISTF§128) _CUR1(241,5,2)
COMMON/ TRNPAR/ AMAL(100,129) ,AMA2(100,129), AMC1( 100, 129),

. AMSFT(100,129)
COMMON/ABCSET/ABCS(241,4,2)
COMMON/VZ/AAAVZ(22,5) ,AAVZ{4,40) ,AVZ(2,84) ,AAADVZ(22,5),

. AADVZ(4,40),ADVZ(2.84),DVOLT({128) ,NFIRST(129)
DO 1 I=1,128
IF(I .GE. 80)MFIRST(I)=I+36

1 DISTF(1)=0.00

THE FOLLOWING LINE IS FOR NON-ZERQ SPACECRAFT POTENTIAL
VZSC2=2.D0*Z*ECHRGE*SCPOT/(A*1.67D-27*1.D6*W**2)

C8N5T=R*E*Z*§CHRGE*1.0DZO/SQRTPI*DN
NCHAN1=NCHN
NCHANZ=NCHNEZ;
NCHAN3=NCHN(2)+1

NTAILEI%=NFIRST§NCHAN1%
NTAIL(2)=MFIRST(NCHANZ)-1

CALL SETCUR(W,U1,A,Z NTAIL,1,CURI)
NTAILEI%=MFIRST(NCHAN1)
NTAIL(2)=99+NFIRST(NCHAN2)~NSTEP(NCHANZ2)
CALL SETCUR(W,Ul,A,Z,NTAIL,2,CUR])

NORMALIZE VELOCITY

00 3 I=1,3
3 U(D)=UI(I)/W

INTEGRATE ACROSS CURRENT CHANNEL

0C 2700 NCHAN=NCHAN1,NCHAN3
CURENT=0.00

NS=NSTEP(NCHAN)

00 2600 JJ=1,NS

G=0.00

DIS00010
DIS00020
0Is00030
01500040
0IS00050
0100060
01s00070
0IS00080
0IS00090
0IS00100
DIS00110
DIS00120
DIS00130
DIS00140
DIS00150
DIS00160
DIS00170
DIS00180
0IS00190
0IS00200
0IS00210
0IS00220
01500230
DIS00240
DIS00250
0IS00260
01500270
DIS00280
01500290
0IS00300
0IS00310
01500320
DIS00330
01500340
DIS00350
01500360
DIS00370
01500380
0IS003¢0
DIS00400
DIS00410
0IS00420
0IS00430
DIS00440
DIS00450
01500460
DIS00470
DIS00480
0IS00490
0IS00500
DIS00510
01500520
DIS00530
DIS00540
DIS00S30
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SELECT VALUE OF VZ,DVZ

IF%NCHAN .GE. 6 .AND. NCHAN .LE. 45)G0 TO 10
IF(NCHAN .GE. 46)G0 TQ 20
VZ=DBLE( AAAVZ(JJ,NCHAN ) ) *DSQRT(Z/A) /W
DVZ=DBLE(AAADVZ(JJ,NCHAN) ) *DSQRT(Z/A)
GO TO 100
10 VZ=DBLE(AAVZ(.J,NCHAN=5))*DSQRT(Z/A)/W
DVZ=DBLE(AADVZ(JJ,NCHAN=5))*DSQRT(Z/A)
GO TO 100
20 VZ=0BLE(AVZ(JC ,NCHAN=45))*DSQRT(Z/A)/W
DVZ=DBLE(ADVZ(JJ,NCHAN=-45))*DSQRT(Z/A)
100 CONTINUE
THE FOLLOWING LINE CORRECTS FOR NON-ZERC SPACECRAFT POTENTIAL
VZ2=VZ**2+VZSC2
IF(VZ2 .LT. 0.D0)GO TO 2600
X1=(DSQRT(VZ2)=U(3))**2

X1=EVZ-U(3))**2
IF (X1 .GT. 1€.D0) GO TO 2600

ASSIGN VALUES OF RESPONSE PARAMETERS

S=DBLE(AMSFT(JJ,NCHAN))
CC(1)=DBLE(AMC1{JJ,NCHAN))
Cc(2)=1.000-CC(1)

AC =DBLE§AMA1EJJ,NCHAN g
AC(2)=DBLE(AMAZ(JJ .NCHAN
AA =§Ac 1)+VZ**2)/5%*2
AAC2)=(ACL2)+VZ**2)/5**2
55(1 =s*vz*u513/gvz*vz+Acg
$5(29=5*VZ*U( 1)/ (VZ*VZ+AC

COMPUTE CURRENTS
00 2020 L=1,4

ZX%L,l; =0SQRT(
2020 ZX(L,2 ? RT({
X

PO PO PO

)

Pl Vo Ve VS

¥+ |0

Le
)
O

T ¥ L e O NS P

e A A [ N R I =~ N I [ I ]

DN S N

Py~ O < N0

PO ' (I W ~— WD

ow e D ~e

.
/ (DSQR

[F (DABS(XB
2021 A2(1)=1.00D0
GO TQ 2023
2022 A2(1)=1.25700-0.063D0*DABS(XBAR(1))-
- 0.12600*0SQRT(XBAR(1)**2-5.1000*DABS(XBAR(1))+6.612D0)
2023 CONTINUE
IF (DABS(XBAR(2))-1.1D0) 2026,2026,2027

.p.t—-ivo‘ampr—ovt—-mo
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P
(
1
P
(4,
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p
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L hnlr= v < M = (NS
i A N <+
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DIS00560
DIS00570
01500580
DIS00590
01500600
0IS00610
DIS00620
01500630
DIS00640
DIS00650
DIS00660
DISC0670
DISC0680
DISC0690
DIS00700
DIS00710
DIS00720
DIS00730
01500740
0IS00750
DIS00760
0IS00770
01500780
DIS00790
0IS00800
DIS00810
01S00820
01300830
01500840
0IS00850
DIS00860
0IsS00870
DIS00880
0IsS00890
DIS009C0
DIS00910
DIS00920
0ISC0930
0IS00940
0IS00950
01500960
DIS00970
DIS00980
DIS00990
0IS010C0
DISC1010
DIS01020
DISC1030
DIS01040
DISQ1050
DIS01060
DIS01070
0IS01080
0ISQ1090
CISO1100



c

e Ner Xap! [qp]

2026 A2(2)=1.000

GO TO 2028
2027 A2(2)=1.257D0-0.06300*DABS(XBAR(2))-

2028 CONTINUE

2050
2051

2450
2500

2
2600

2700
9000

17

Y
Y
Y
Y

3,1
3,2
4

<

b

|

SS(1
SS(2

-

D(1,d)=CC(1)

76200*0C0S
.762D0*DCQS
1)=2.500-0. 12500*
4.2)=2.500-0.12500*
WRITE(6,*)XBAR(1),Y(3,1),Y

=$*YZ*
=S*VZ*

=D$QRT
=DSQRT
=0SQRT
=DSQRT

VW\_/

GO 70 2051

0(I.J)=0.
CONTINUE

5

2
2

/
/

|

3

3

><"\><

X(1
(
1,
(3

(

c(
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1.018D0*XBAR(1
1.018D0*XBAR(2

§
€XBAR§l§-

)

XBAR( 2
4,1)

2}
e

i

L,
L.
L,

VZ*VZ+AC
VZ*VZ+AC
*(Y

!

)*

%

AA
AA

-

1))+
1))
L
2))

, 1,J))=PHI(ZY(3
,J))=PHI(ZY(2,I,J
2*AC(1)/(VZ**2+AC
=50.000) GO 70 2
J)*DEXP(D(I1,d))/

*(Y

5
(

OO -

+

+.24700
1.000
1.000

.24700)/

/

%

**2
**2

3
f

G=(VZ/S)**2*D(I,J)*AL1(I)*A2(I)*B(I,J)/4+G

CONTINUE
CONTINUE

CUR=VZ*DEXP(-X1)*G*DVZ
CURENT=CURENT+CUR
WRITE(6,2) JJ,CUR,CURENT,VZ
FORMAT(' JJ,CUR,CURENT,VZ="',14,,3016.7)

CONTINUE

CRR(NCHAN)=CURENT
g(CRR(I),I=NCHAN1,NCHAN3)

CONTINUE
WRITEg
FORMAT

6,9000
5016.6

CALCULATE CONTRIBUTION FROM "TAIL"

00 3000 NCHAN=NCHAN1,NCHANZ
DISTF(NCHAN)=CRR(NCHAN)-CRR(NCHAN+1)
IF(NCHAN .NE. N13)GO TO 17

CM( 1)=CRR(NCHAN
IF(NCHAN .LE. 4
NF=NFIRST(NCHAN
IF(NCHAN .LE. 4

|

CM(1)=DISTF(NCHAN)
GO TO 2775

NF1=NFIRST(NCHAN+1)-1

AN

I
)
2

0.126D0*DSQRT( XBAR(2)**2-5.10D0*DABS( XBAR(2))+6.61200)

1.000+.25D0*XBAR
1.000+.25D0*XBAR

1
2

(25)

PHI ZX(4,1)) PHI(ZX(3 1))-PHI(ZX(2,1)))/
PHI(ZX(4,2))- PHI(ZX(3,2))-PHI(ZX(2,2)))/

)=
+AC(J))

0IS01110
0IS01120
01501130
0IS01140
DIS01150
DIS01160
DIS01170
DIS01180
DISQ01190
01501200
DIS01210
DIS01220
DIS01230
DIs01240
DIS01250
DIS01260
DIS01270
01501280
DIS01290
DIS01300
0IS01310
0IS01320
DIS01330
DIS01340
DIS01350
DIS01360
DIS01370
DIS01380
DIS01390
DIS01400
DIS01410
DIs01420
DIS01430
DIS01440 -
DIS01450
DIS01460

-0IS01470

0101480
01501480
DIS01500
0Is0l1sic
DIS01520
0IS01530
01501540
0IS01550
0IS01560
0IS01570
DIS01580
DIS01590
01501600
DIS01610
0Is01620
DIS01630
DIS01640
0IsS01650
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2725

2775

2750

2900
3000
5000

5001
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N=NSTEP(NCHAN)+1

00 2725 I=NF,6NF1

IF CURI§I,1,1§ .EQ. PRESET) GO TQ 3000
IF(CUR1(I,1,1) .EQ. O.DO; GO TO 2725
DISTF(NCHAN)=DISTF(NCHAN)+CURI(I,1,1)+

+ CURI(I,2,1 *DBLEgAMSFT(N,NCHAN)-ABCS(I,l, )+
+ CUR1(I,3,1)*DBLE(AMAI(N,NCHAN)-ABCS(I,2,1))+
+ CURI(I, 4,1 *DBLEgAMAZ N,NCHAN)-ABCS(I,3,1))+
+ CURI(I,S5,1)*DBLE(AMCI(N,NCHAN)-ABCS(I,4,1
WRITE(6,9001)I,NCHAN, DISTF(NCHAN

FORMAT(' I,N CHAN DISTF(NCHAN) '14,2016.7)

N=N+1

CONTINUE

N1=N

N2=NSTEP(NCHAN+1)+1

TF(NCHAN .EQ. N13)CM(2)=DISTF(NCHAN)

GO TO 2750

%ONTINUE

=1

N1=NSTEP(NCHAN)+1

N2=NSTEP(NCHAN+1)+1

DO 2900 LL=N1,100

M=1

IF(I .GE. MFIRST(NCHAN))M=2

TF(CURL 1,1,M§ .EQ. 0.00)G0 TO 2900

IF(CURI(I,1.,M) .EQ. PRESET)GO TO 3000

DISTF(NCHAN)=OISTF(NCHAN)+
CURI(T,2,M)=DBLECAMSFT(LL NCHAN) ~AMSFT(N2 NCHAN+1))+
CURI(I.3.M)*DBLECAMAL(LL,NCHAN)~AMAT (N2 ,NCHAN+1))+
CURI(I.4.M)*DBLE( AMAZ LL,NCHAN; AMA2(NZ . NCHAN+1§
CURI(I,5,MY*DBLECAMCI( LL,NCHAN)=AMCI(N2 NCHAN+1

IFENCHAN "EQ. "N13)CM( I-NF1+2)=DISTF(NCHAN)

%FINEHAN "EQ. N13 .AND. NCHAN .LE. 4)CM(I+1)=DISTF(NCHAN)
+

N2=NZ+1

CONTINUE

CONTINUE

CONTINUE

DO 5001 NCHAN=1,128

DISTF(NCHAN)=DISTF(NCHAN)*CONST/DBLE(DVOLT(NCHAN))

RETURN

END

FUNCTION FUN(SIGMA,ALPHA%

IMPLICIT REAL*8 (A-H,0-Z

REAL*8 SQRTPI/1.772453851/

¥=SIGMA*DSQRT(ALPHA)

FUN1=2.0D0*SQRTPI*X*DERF(X)

IF (DABS(X) .GT. 10.000) GO TO 1

FUN1=FUN1+2.0DO*DEXP(~X*X)

FUN=FUN1

RETURN

END

FUNCTION PHI(Z)

IMPLICIT REAL*8 (A-H,0-Z)

SQRTPI=1.772453851

01501660
DIS01670
DIS01680
0IS01690
0IS01700
DIS01710
DIS01720
01S01730
DIS01740
DIS01750
DIS01760
DIS01770
DIS01780
DISQ01790
DIS01800
DIsS01810
DIS01820
DIS01830
DIS01840
01501850
DIS01860
DISC1870
DIS01880
DIS01890
DIS01900
DISO1910
DIS01920
DIS01930
DIS01940
DIS01950
DIS01960
DISC1970
DIS01980
DIS013990
01502000
DIS02010
01502020
01502030
01502040
DIS02050
0IS02060
01502070
DIS02080
DIS02090
£IS02100
DIS02110
DIS02120
0IS02130
0IS02140
DIS02150
DIS02160
01502170
01s02180
DIS02190
DIS02200
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IF (DABS(Z) .GT. 10.00) GO TO 1
PHI=Z*OERF(Z)+DEXP(-Z*1)/SQRTPI
RETURN

PHI=Z*DERF(Z)

RETURN

END

FUNCTION PSI(Z,SIGMA,ALPHA)

IMPLICIT REAL*8 (A-H.0-Z)
SQRTPI=1.772453851
PSI=SQRTPI*DERF(Z)*( -.500+SIGMA*DSQRT (ALPHA)*Z)
IF (DABS(Z) .GT. 10.00) RETURN
PSI=PSI+SIGMA*DSQRT (ALPHA)*0EXP(-Z*2)
EEBURN

N

DIS02210
01502220
01502230
01502240
0IS02250
01502260
0IS02270
01502280
01502290
DIS02300
DIS02310
0Is02320
01S02330
0IS02340
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. SUBRQUTINE SETCUR(W,Ul,A,Z,NTAIL,M,CURL) CURC0Q10
: CUR00020

C  THIS PROGRAM COMPUTES THE CURRENTS IN THE TAIL AND THE DERIVATIVES CUR00030
C OF THOSE CURRENTS WITH RESPECT TO THE PARAMETERS CURQ0040
C WHICH DESCRIBE THE RESPONSE FUNCTION CURG0050
C CUR0QO60
IMPLICIT REAL*8 (A-H,0-Z) CUR00070
INTEGER NTAIL(2),M CURQ0080
REAL*8 U(3),ZX(4,2),2Y(4,2,2),U1(3),AA(2),55(2),CC(2) CUR00090
REAL*8 SCPOT/-12.500/,ECHRGE/1.60-19/ CUR00100
REAL*8 A1(2),XBAR(2),A2(2),B(2,2),0(2,2),AC(2),PRESET/Z7FFFFFFF/ CUR00110
REAL*S X§4)/-4.94D0,-l.lODO,l.lODO,4.94DO/,CUR1(Z41,5,2) CUR00120
REAL*8 Y(4,2)/-3.6300,-2.0200,2.0200,3.6300, CUR00130

,  -3.6300,-2.0200,2.0200,3.6300/ CUR00140
REAL*8 PI/3.14159265400/,DCUR(4)/0.00,.0500,.00100,.0100/ CURD0150
REAL*¢ ABCS,TVZ,TOVZ CUR00160
COMMON /ABCSET/ABCS(241,4,2) CUR00170
COMMON /TAIL/TVZ(241),TDVZ(241) CUR00180

C THE FOLLOWING LINE IS FOR NON-ZERO SPACECRAFT POTENTIAL CUR00190
VZ5C2=2.D0*Z*ECHRGE*SCPOT/(A*1.67D-27*1.D6*W**2) CUR0Q200

C CUR00210
C CUR00220
C  NORMALIZE THE VELOCITY CUR00230
C CUR00240
00 1 I=1,3 CURC0250

1 U(1)=U1(I)/W CUR00260
2000 CONTINUE CUR00270
NTI=NTAIL(1 CUR00280
NT2=NTAIL(2 CURCO290

DO 3700 JJ=NT1,NT2 CUR00300

C CUR00310
C  CHOOSE VZ AND DVZ | CUR00320
C CUR00330
VZ=0BLE(TVZ(JJ))*DSQRT(Z/A)/W CURD0340
VZ2=VZ**2+VZSC2 CUR00350
IF(VZ2 .LT. o.oo% GO TO 3630 CURD0360Q
DVZ=DBLE(TDVZ(JJ))*DSQRT(Z/A) CURC0370

C  THE FOLLOWING LINE IS FOR NON-ZERO SPACECRAFT CHARGE CUR0Q380
X1=(DSQRT(VZ2)-U(3)) CUR00390

C CURD0400
C X1=(VZ-U(3)) CUR00410
IF (X1 .LT. -4.00) GO TO 3690 CUR00420

IF (X1 .GT. 4.00) GO TG 3800 CUR00430
X1=X1**2 CUR00440

C CUR00450
C  THIS LOOP COMPUTES THE DERIVATIVES CUR00460
c CUR00470
DO 3600 Kk=1,4 CUR00480
G=0.D0 CUR00490
S=DBLE(ABCS(JJ,1,M)) CUR00500
CC(13=DBLE(ABCSEJJ,4,M)) CUR0D510

Ac§1 =0BLE(ABCS JJ,Z,M%% CUR00520
AC(2)=DBLE(ABCS(JJ,3 .M CURD0530

IF(KK .EQ. 2§S=S+DCUR(2) CUR00540

IF(KK .EQ. 3)AC(1)=AC(1)+DCUR(3) CUR00S50
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K .EQ. 4)AC(2)“AC(Z)+DCUR(4)

=1.000-CC(1)

=§AC§ §+vz**2;/s**z
2)+VI**2)/S**2

=S*VZ*U51)/£VZ*VZ+AC

=S*VZ*U(1)/{VI*VZ+AC

stz (235
3 *£§§t§:§§

wwn P
L 2>

ZX%L,li DSQRTgAA

[ o L ]

- Nre
0> |
Lol I - B AN e K o
(AN Ean W v - =N O
LI S 0 LN S~ 2 N

0

IF (DABS(XBAR
3021 A2(1)=1.000
GO TO 3023
3022 A2(1)=1.257D0-0.063D0*DABS(XBAR(1))-
- 0.126D0*DSQRT(XBAR(1)**2-5.1000*DABS(XBAR(1))+6.61200)
3023 CONTINUE
IF (DABS(XBAR(2))-1.1D0) 3026,3026,3027
3026 A2(2)=1.000
GO TO 3028
3027 A2(2)=1.257D0-0.06300*DABS(XBAR(2))-
- 0.126D0*DSQRT(XBAR(2)**2~5.1000*DABS(XBAR(2))+6.61200)
3028 CONTINUE

-

O NI
TN N e N )

Y(3, lg 76200*DCOS§1 OlSDO*XBARg13+.247DO;/£1.0DO+.25DO*XBAR
Y(3,2)=.762D0*DCOS(1.018D0*XBAR(2)+.24700)/(1.000+.25D00*XBAR
Y 4,1; =2.5D0-0. 12500*§XBAR§1) 1. 000;**2
Y(4,2)=2.5D00-0.12500*(XBAR(2)~1.000)**2
SSé1)=S*VZ*UE2§/EVZ*VZ+AC 1)
SS(2)=S*VZ*U(2)/ VZ*VZ+AC 2)
DO 3030 L=1,4
ZY L,l,l% =DSQRT(AA lg; gY(L,l) SS 1;3
ZY(L,2,1)=DSQRT AA 1 L,2)=55(1
ZY(L,1,2)=0SQRT(AA(2))* g L,1)=S$ 2;3
8 e s
/Al(%%;gZHIgZ§(l , 1))+PHI(ZX(4,1))=PHI(ZX(3,1))-PHI(ZX(2,1)))/
1
A1(2)=§PHI(ZX(1 2) +PHI(ZX(4,2))=PHI(ZX(3,2))-PHI(ZX(2,2)))/
/ (IX(4,2)-71%(3,2))
B 15
=1,
B(I,J)=£PHI(ZY(4,I,J)) PHI(ZY(3,1,d)))/(ZY(4,1,d)-ZY(3,1,J))~
- (PHI(ZY(1,I,d))- PHIEZY(Z I, J))% (zY(1,1,99-2v(2,1,3))
D(I,J)=-U(1)**2*AC(I)/(VZ**2+AC(I))-U(2)**2*AC(J)/(VZ**2+AC(J))
IF (D(I,J) .LT. -50.D00) GO TO 3050
D(1,J)=CC(I)*CC(J)*DEXP(D(I,J))/DSQRT(AA(I)*AA(J))
GO 0 3051

CURCOS60
CURQO570
CUR0O580
CURGO590
CURO0600
CURQ0610
CURCO620
CUR00630
CURD0640
CURCO650
CURCO660
CUR00670
CUR0O680
CUROO690
CURG0700
CURQO710
CURD0O720
CURQQ730
CURQ0740
CURQQ750
CURQO760
CURQG770
CURQ0780
CURQO790
CURCO8Q0
CURQ0810
CURQ0820
CURO0830
CURQ0O840
CURCO850
CURD0O860
CURCO870
CUROO880
CURGQOZ90
CURO0S00
CURQOO910
CURQ0S20
CURQ0930
CURQCQO940
CURGO950
CURQQ960
CURCO970
CURC0O980
CUR00990
CURO1000
CURO1010
CURQ1020
CURO1030
CURQ1040
CURQC1050
CURQ1060
CURC1070
CURO1080
CUR01090
CURO1100



3050
3051

C
C

3440
3450
3500

C

C

¢

3550
3600
3690
3700
3800

3850
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0(I,J)=0.00
CONTINUE
Gl=(g§/3)**2*0(1,J)*Al(I)*AZ(I)*B(I,J)/4

=G+
COMPUTE DERIVATIVE WITH RESPECT TO C ANALYTICALLY

IF (KK .NE. 1) GO TO 3440

IF (I+J .EQ. 2)GD=G1*2.0D0/CC(1)
IF (I+J .EQ. 3)GD=G1*(CC(2)-CC(1
IF (I+J .EQ. 4)GD=GD-G1*2.000/CC
CONTINUE

CONTINUE

CONTINUE

COMPUTE DERIVATIVES NUMERICALLY

CURI(JJ,KK,M;=VZ*DEXP(-X1)*G*DVZ
IF(KK .NE. 1)CUR1(JJ,KK,M)=
= ((CUR1(JJ,KK,M)-CURI(JJ,1,M))/DCURCKK))
CONTINUE
CURL(JJ,5,M)=VZ*DEXP(~X1)*GD*DVZ
CONTINUE
GO TO 3700
CONTINUE
CUR1(JJ, 1,M)=0.D0
CONTINUE
RETURN
CONTINUE
00 3850 L=JJ,200
CUR1(L,1,M)=PRESET
CONTINUE -
RETURN
END

))/(CC(2)*CC(1))+GD
(2)

CURD1110
CURG1120
CURO1130
CURO1140
CURD1150
CURO1160
CURC1170
CUR01180
CURQ1190
CURO1200
CURD1210
CUR01220
CURC1230
CURO1240
CURD1250
CURO1260
CUR01270
CUR01280
CURG1290
CURQ1300
CURG1310
CURC1320
CURQ1330
CURQ1340

- CURO1350

CURO1360
CUR01370
CURO1380
CURO1390
CUR01400
CURQ1410
CURQ1420
CURQ1430
CURQ1440



(195)

SUBROUTINE PREP

INTEGER NSTP(5)/20,14,8,4,2/

REAL*4 VOLT(228),CW(227),RATI0/1.036633/

REAL*4 DVZ(2,129),VZT(228)

REAL*4 AAAVZ,AAVZ,AVZ,TVZ,AAADVZ,AADVZ,ADVZ,TOVZ,DVOLT
COMMON /VZ/AAAVZ(22,5),AAVZ(4,40),AVZ(2,84),AAADVZ(22,5),
,  AADVZ(4,40),A0VZ(2,84),DVOLT(128),NFIRST(129)

COMMON /TAIL/TVZ(241),TDVZ(241)

GENERATE TABLE OF THRESHOLD SPEEDS AND CHANNEL WIDTHS

DO 1 K=1,228
1 VOLT(K)=RATIO**(K-1)*60.-50.
D0 2 K=1,227
IFEK .LE. 128)DVOLT(K)=VOLT(K+1)-VOLT(K)
2 CW(K)=ALOG(VOLT(K+1)/VOLT(K))*.5
VZT(1)=43.76871
DO 3 K=1,227
3 VZT(K+1)=VZT(K)*EXP(CW(K))

GENERATE TABLE OF SPEEDS FOR INTEGRATION OF FIRST 5 CHANNELS

DO 4 NCHAN=1,5

NFIRST(NCHAN =1

AAAVZ(Z,NCHAN%=1.02*VZT(NCHAN)

AAAVZ( 1. NCHAN =(VZT(NCHAN)+AAAVZ(2,NCHAN)%/Z.
DVZ(1.NCHAN)=AAAVZ (2 ,NCHAN)=AAAVZ(1,NCHAN
NSTEP=NSTP(NCHAN)

DVZ(2,NCHAN)=(VZT(6)~AAAVZ(2 NCHAN))/FLOAT(NSTEP)
AAADVZ%l,NCHAN;=DVZ(1,NCHAN)*4./3.

AAADVZ( 2 .NCHAN)=(0VZ( 1,NCHAN)+DVZ(2 ,NCHAN))/3.

DO 4 N=1.NSTEP
AAADVZ§N+2,NCHAN)=DVZ(2,NCHAN)*2./3.

IFEMOD N2} .EQ. 1)AAADVZ(N+2,NCHAN)=DVZ(2 NCHAN)*4./3.
TF(N .EQ. NSTEP;AAADVZ%N+2,NCHAN§=DVZ§2,NCHAN3/3.
4 AAAVZ(N+2 NCHAN)=AAAVZ(N+1NCHAN)+DVZ (2 NCHAN

GENERATE TABLE OF INTEGRATION VELOCITIES FOR CHANNELS 6-45

DO 5 NCHAN=6,45
DVZ(1,NCHAN)=( VZT(NCHAN+1)=VZT(NCHAN))/4
AADVZ(1,NCHAN=5)=DVZ( 1 ,NCHAN)*4. /3.
AADVZ(2 ,NCHAN=-5)=DVZ(1,NCHAN)*2./3.
AADVZ(3,NCHAN-5;=DVZ 1,NCHAN)*4./3.
AADVZ (4 ,NCHAN-5)=DVZ(1,NCHAN)/3.
DO 5 NSTEP=1,4

5 AAVZ(NSTEP ,NCHAN-5)=VZT(NCHAN)+FLOAT(NSTEP )*DVZ( 1,NCHAN)

GENERATE TABLE OF INTEGRATION VELOCITIES FOR CHANNELS 46-128

00 6 NCHAN=46,129

DVZ(1 ,NCHAN)={ VZT(NCHAN+1)=-VZT(NCHAN))/2.
ADVZ&l,NCHAN-45g=DVZE1,NCHAN)*4./3.

ADVZ(2 ,NCHAN-45)=DVZ( 1 ,NCHAN)/3.

D0 6 NSTEP=1,2

OO0

OO0

OO0

OO0

PREOQO10
PRE0CQ20
PRE000O30
PREDCO40
PRE00OOSO
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PREQO140
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PREDO160
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PREQO190
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PRE0O210
PREQQ220
PRECQ230
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PREQO260
PREQO270
PRE00280
PRE0O290
PREOO300
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PREDQ320
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PREQ0O340
PREQO350
PREQO360
PREQO370
PRECO380
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PREOO400
PREQ0O410
PREQQ420
PREQ0430
PREQ0440
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PREOO460
PREC0470
PRE00480
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PREQOS00
PREQOS10
PREQOS20
PREQG530
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SUBROUTINE DATARD

THIS SUBROUTINE READS DATA FOR ANALYSIS. DATA SELECTION
INFORMATION IS READ FROM UNIT 8. THE CONTROL VARIABLES ARE:
ITYM TIME OF SPECTRUM TO BE ANALYZED

cC NOISE CURRENT
CN STATISTICAL UNCERTAINTY DUE TO NOISE
NP 1=FIT VELOCITY,4=KEEP VELOCITY FIXED

LCHAN ARRAY INDICATING WHICH CHANNELS ARE TQ BE FIT
THE DATA ARE READ FROM UNIT 2. THE FIRST SPECTRUM OF MODE
TYPE ITLMOD TAKEN LATER THAN THE TIME SPECIFIED BY ITYM IS
CHOSEN FOR ANALYSIS. THE CHANNELS INDICATED BY T IN LCHAN ARE
READ INTO DRAY. THE STATISTICAL WEIGHT FOR EACH DATA POQINT IS
THEN COMPUTED AND STORED IN WRAY

INTEGER*4 NCHN(2),NFIRST
INTEGER*4 NINT ,NPTS, NPARM NP, ITLMOD,JTLMCD

FXR00010
FXR00020
FXR00030
FXR00Q40
FXRO00SO
FXR0O0060Q
FXR000Q70
FXR00080
FXR00090
FXR0Q100
FXR00110
FXR00120
FXROO130
FXR00140
FXR00150
FXR00160
FXR0Q170

INTEGER NSY/31536000/,NSD/86400/ ,NSH/3600/ ,NSM/60/,JTYM(6),ITYM(6)FXR00180

REAL*4 CURRNT(512)

REAL*4 SHIFT(100),A1(100),A2(100),C1(100)

REAL*4 AMA1 AMA2 AMCI,AMSFT,ABCS

REAL*4 AS,BS,C,CN,CC

REAL*4 AAAVZ.AAVZ.AVZ,TVZ,AAADVZ,AADVZ,ADVZ,TOVZ,DVOLT
REAL*8 DRAY,WRAY,PARM

LOGICAL*1 LCHAN,LT

COMMON/ LCHAN/LCHAN( 128,4),CN, CC

COMMON ™ /ABCSET/ABCS(241,4,2)

COMMON /VZ/AAAVZ(22,5),AAVZ(4,40) AVZ(2,84) AAADVZ(22,5),
,  AADVZ(4,40),ADVZ(2,84),DVOLT(128) NFIRST(129)
COMMON/CEIT/NPTS  NPARM,PARM(10),DRAY(512) ,WRAY(512),NP
COMMON/AS/AS(72,4),BS(72,4%,C(4),NINT(72,4)
COMMON/TRNPAR/AMAL( 100,129),AMA2(100,129),AMC1(100,129),
,  AMSFT(100,129) _

LOGICAL*1 LARRY

REAL*8 ARRY(512),ARRY1(512,6)

C 1)=16
c 2;
c(3)=2.
c(4)=1.
c 4)=18.
READ Ea,*g NPTS,NPARM, NP
READ (8.*) (PARM(I),I=1,10)
READ (8.*) ITYM,ITLMOD
T=(ITYM(1 ~1979)*NSY+ITYM(2)*NSD+ITYM( 3)*NSH+ITYM( 4 ) *NSM+ITYM(5)
READ (8,*) CN,CC

READ (8, 300) [CHAN
300 FORMAT (64Ll)
1 READ (2,350) JTYM,JTLMOD
350 FORMAT('O',GIS,' JTLMOD=",14)
IF%JTLMOD .EQ. 1)NET=64
IF(JTLMOD .EQ. 2;NET=512
T1=(JTYM(1)=1979)*NSY+JTYM(2)*NSD+JTYM( 3 ) *NSH+JTYM(4)*NSM+JTYM(5)
READ(2,400) (CURRNT(I),I=1,NET)
400 FORMAT(1X,4E12.3)
IF (T1-T) 1,2,2
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TF(JTLMOD-ITLMOD) 1,3,1 FXRO0560
CONTINUE FXR00570
WRITE(35)(CURRNT(I),I=1,NET) FXRO0580
N=0 ' FXR00590
DO 20 NCP=1,4 FXRO0600
DO 10 NCHAN=1,128 FXRO0610
TF(.NOT. LCHAN(NCHAN,NCP)) GO TO 10 FXR00620
N=N+1 FXR00630
IF (ITLMOD .EQ. 1) NI=NCHAN+16%(NCP-1) FXR00640
IF (ITLMOD .EQ. 2) NI=NCHAN+128%(NCP-1) FXR0O0650
DRAY%N;=CURRNT§N1 FXRO0660
WRAY (N)=DSQRT({ 4. D-2*DRAY(N))**2+(DBLE(CN)/DBLE(DVOLT(NCHAN)))**2)FXR00670
CONTINUE FXR00680
CONTINUE FXR0O0630
READ(1,*)ABCS FXR00700
DO 30 I=1,128 FXRO0710
READ(15 SHIFTEJ;,J=1,60) FXR00720
READ(25)(SHIFT(J).J=61,100) FXRO0730
READ(16)(A1(J),J=1,60) FXRO0740
READ(26)(AL(J).J=61,100) FXR00750
READ(17)(A2(J).J=1,60) FXRO0760
READ(27)(A2(J9.J=61,100) FXRO0770
READEl8) C1(c9.d=1,60) FXR00780
READ(28)(C1(<Y,J=61,100) FXR00790
DG 29 J=1,100 FXRO0800
AMSFT(J, 1)=SHIFT(J) FXR00810
AMAL(J, 1)=AL(J FXR00820
AMA2(J ) 19=A2(J FXR00830
AMCI(J.19=C1(J FXR00840
CONTINUE FXR00850
CONTINUE FXRO0860
READE30,9IOO)NINT FXR00870
READ(30,91019AS FXRO0880
READ(30,3101%8S FXRO0890
FORMATEZOI4) FXR00900
FORMAT(5016.7) FXR0O0910
LARRY=. TRUE. FXR00920
RETURN FXR00930
END FXRO0940
SUBROUTINE SIMCOM(PARM,LARRY,ARRY ARRY1) FXRO0950
LOGICAL*1 LCHAN, LARRY FXRO0960
INTEGER*4 NCHN(2) .NPTS,NPARM,NP NINT FXR00970
THE FOLLOWING STATEMENT IS A MODIFICATION FXR0O0980
REAL*4 VO(3)/41.2,28.95,3.5/,08(3)/-25.8,33.0,37.2/ FXR00990
, FXR01000

REAL*4 AS,BS,C,CN,CC FXR01010
REAL*4 AAAVZ AAVZ .AVZ,TVZ,AAADVZ ,AAOVZ ,ADVZ,TOVZ,DVOLT FXR01020
REAL*8 ON/1.D0/.A/64.00/,2/1.00/.DIST(128),PARM(10) FXRO1030
REAL*S F(71,4),WSP,VSC(3g,VCP(3),ARRYl(SlZ,G),ARRY(SlZ) FXRO1040
COMMON/LCHAR/LCHAN( 128,45 [CN, CC FXR01050
COMMON/VZ/AAAVZ(22.5) ,AAVZ(4.40) ,AVZ(2,84) ,AAADVZ(22,5), FXRO1060
T UAADVZ(4,40),ADVZ(2.84),DVOLT(128) ,NFIRST(129) FXRO1070
COMMON/AS/AS(72,4),85(72,4),C(4) NINT(72,4) FXR01080
WSP=PARM(4) FXRO1090
VSC(1)=PARM(1) FXRO1100
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VSC§2%=PARM 2)
VSC(3)=PARM(3)

HE FOLLOWING TWO STATEMENTS ARE A MODIFICATION
D0 9991 MP=1,3
VSC(MP)=DBLE(VO(MP))+PARM(3)*DBLE{DB(MP))

NP=0

DO 300 NCP=1,3

CALL VSCCP(VSC,NCP,VCP)

NCHN( 1)=1

NCHN(2)=127

WRITE(6,9000)DN,WSP,VCP A, Z

FORMAT(5D16.7)

CALL ABCCUR(DN,WSP,VCP,A,Z NCHN,DIST)

WRITE(6,9000)(DIST(NN) NN=1,71)

00 100 J=1,4

D0 100 NCHAN=1,71

NI=NINT(NCHAN,J)

N2=N1+1

F(NCHAN,J)=(DBLE(AS(NCHAN,J)%*DIST(N1)+
DBLE(BS(NCHAN,J) J*DIST(N2))*0BLE(C(J))

100 CONTINUE :

130
130
150
300

+
-+

+

1
2
3
4

*

0O 150 NCHAN=1,71
IF(.NOT. LCHAN(NCHAN,6NCP))GO TO 150
NP=NP+1

ARRY(NP)=PARM(5)**2*F(NCHAN, 1)+PARM(6)**2*F(NCHAN,2)+

PARM%7)**2*F(NCHAN,3)+PARM(8)**2*F(NCHAN,4)+
DBLE(CC)/DVOLT(NCHAN)
ARRY (NP )=PARM(S)*F(NCHAN, 1)+PARM(6)*F(NCHAN,2)+

PARM( 7)*F(NCHAN, 3)+PARM(8)*F(NCHAN, 4)+DBLE(CC)/DVOLT(NCHAN)

IF(.NOT. LARRY)GO TO 150

DO 130 NSP=1,4
ARRYl(NP,NSP)=F€NCHAN,NSP§*2.DO*PARM(NSP+4)
ARRY1(NP NSP)=F(NCHAN,NSP

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE VSCCP(VSC,NCP, VCP)

REAL*8 TM(9.4),VJE(3),VSC(3),TJESC(9),VCP(3),T(9),V(3)
DATA TM/0.5.0.8137977,0.2961981, ~-0.8660254,0.4698463,0.1710101,

0.,-0.3420201,0.9396926,

0.5,-0.8137977,-0.2961981, 0.8660254,0.4698463,0.1710101,

0.,-0.3420201,0.9396926,

-1.,0..0., 0.,-0.9396926,-0.3420201, 0.,-0.3420201,0.9396926,

-0.6819984,-0.02552388,~-0.7309082,

0.7313537,-0.02380140,-0.6815829, 0.,-0.9993908,0.03489950/

CALL DVTRNS(VCP,TM(1,NCP),VSC)
RETURN

END

SUBROUTINE DVTRNS (VP,T,V)

C VP = TV+VO

R
= )

WV
VP(2 T(2)*v(1)+

1
+TE4%*V 2)+T(7)*V(3)
T(S)*V§2)+T(8% §3)
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VP(3) = T(3)*V(1)+T(6)*V(2)+T(9)*V(3) _ FXR01660
RETURN FXR01670
END FXR0O1680



