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ABSTRACT

The Voyager Plasma Science experiment consists of four modulated grid
Faraday cups which measure positive ions and electrons in the
energy-per-charge range of 10-5950 volts. A formula for the full response
function of each of the cups is derived from the solution to the equations
of motion for a charged particle inside the cup. The current in each of
the energy-per-charge channels of the detector can be expressed as the
difference between two integrals over velocity space of the product of the
response function and the distribution function which describes the plasma.
The integrals are performed for two special cases when the distribution
function is a convected Maxwellian.

For the case when the sonic Mach number of the flow is large ("cold
plasma" approximation), we approximated the dependence of the distribution
function on the components of the flow perpendicular to the cup normal by a
Dirac delta function, permitting the integrals over those components to be
performed trivially. The remaining integral must be performed numerically.

For the more general case when the sonic Mach number is not large, we
approximated the analytic expressions for the response function by a
functional form which permits the integration over the components of
velocity transverse to the cup normal to be performed analytically. Once
again, the integral over the normal component of the velocity must be
performed numerically. We developed a special integration scheme which
greatly reduces the computer time required for the numerical computation of
the remaining integral.

The formula for the response function was tested by using the solar
wind as a test beam when the spacecraft was rotating during a cruise
maneuver. Analysis of the data taken during the maneuver using the "cold
plasma" approximation confirmed the accuracy of our response function for
angles of incidence of up to 7 0 for the main sensor cups and up to at
least 55 for the side sensor cup. By using data from all four cups
simulatneously, we are able to determine the solar wind direction with a
precision of better than 0.50.

We then present analysis of data taken in the vicinity of the
Jovian satellite Io. The interaction between Io and the Jovian
magnetosphere is a topic of considerable interest due to the fact that the
decametric radio emmision from Jupiter appears to be modulated by the
satellite. Unfortunately, the problem of determining the plasma parameters
near Io is extremely difficult due to the low Mach number of the flow, the
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large angle of the flow with respect to the cup look directions, and the
presence of several differeU ioPc specie . Under the assumption that the
only ions present are 0 , 0 , S , and SO and that all of the ionic
species have the same thermal speed, we otain estimates of the plasma
parameters by fitting seven spectra taken in the vicinity of Io. We
interpret our results in terms of a model of the interaction between Io and
the Jovian ionosphere due to Neubauer (1980). The results indicate
qualitative agreement with the model that the flow is analogous to the
potential flow of an incompressible fluid around an infinitely long
cylinder.

Thesis Supervisor: Dr. Stanislaw Olbert

Title: Professor of Physics
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On 20 August 1977, a spacecraft named Voyager II was launched from the

Kennedy Space Center in Florida, bound for the outer solar system. Voyager I,

its sister ship, was launched two weeks later on September 5. Both spacecraft

were targeted for close encounters with Jupiter and Saturn. Voyager II will

also fly close to Uranus and Neptune.

One of the experiments carried by both of these spacecraft was a set of

four modulated grid Faraday cups called the Plasma Science Experiment (PLS).

The PLS experiment measures positive ions and electrons in the energy range of

10-5950 eV. It was designed and constructed at MIT, and includes several

novel features (Bridge et al). Three of its four cups are very shallow,

resulting in an extremely wide field of view. These same three cups are

arrayed about an axis of symmetry such that their fields of view overlap.

This region of overlap includes the direction of the solar wind flow

throughout most of the mission. By analyzing positive ion data taken by all

three of these cups simultaneously, it is possible to determine the direction

of the solar wind flow to better than one-half degree and its magnitude to

within a few km/sec.

The fourth cup is more conventional in design, and it looks in a

direction perpendicular to the symmetry axis of the main cluster. During the

interplanetary, or cruise, phase of the mission, this cup is used to measure

electrons. In addition, during the inbound pass .of planetary encounters, this

cup looks in the direction of the corotating plasma, measuring both electrons

and positive ions.

The main sensor cups were designed in such a way that for a wide range of

sonic Mach numbers and flow directions, including all of the situations which

one expects to encounter during the cruise phases of the mission, almost all
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of the particles which enter the aperture and are not stopped by the modulator

voltage do reach the collector. During planetary encounters, however, the

facts that the Mach number is frequently low and that the flow is highly

oblique to the cups makes the "unity response" approximation not valid. In

order to analyze data taken at these times, a knowledge of the full response

function of the cups is required.

This thesis presents a derivation of the full response function based on

a calculation of the trajectories of charged particles inside the cups. The

current measured by the sensors is given by the integral over velocity space

of the product of the plasma distribution function and the cup response

function. A computer program which performs this integration numerically has

already been written by V. Vasyliunas, one of the designers of the instrument.

Unfortunately, his algorithm is very slow. Not only is it impossible to use

it to perform any iterative fitting procedure to determine the macroscopic

plasma parameters, but it is even too slow to use at all for simulating the

high resolution (M-mode) energy-per-charge spectra. We have overcome this

difficulty by approximating the analytic expression for the response function

by a functional form which permits the integrations over the components of

velocity perpendicular to the cup normal to be performed analytically for the

case where the distribution function is a convected Maxwellian. This

derivation is the topic of Chapter 2.

In order to test the response function derived in Chapter 2, it is

neccessary to have an extremely narrow test beam. Since such a beam is very

difficult to make in the laboratory and the quiet solar wind has just these

properties, we have tested the response function by analyzing data taken by

Voyager I during a cruise maneuver. During the cruise maneuver, the



spacecraft performed a series of rotations which changed the orientation of

the spacecraft, causing the solar wind to enter the cups from a wide variety

of angles. The use of the data taken during the cruise maneuver to test our

cup response functions is the topic of Chapter 3.

On the outbound pass of its Jupiter encounter, Voyager I flew about

20,000 km above the south pole of the satellite Io. As the decametric radio

burst from Jupiter are known to be correlated with the phase angle of Io, the

interaction between Io and the magnetospheric plasma is a topic of

considerable interest. During the Io flyby, the sonic Mach number of the

plasma was low (about 2) and the flow direction was perpendicular to the main

sensor symmetry axis. This situation makes knowledge of the full response

function neccessary for the analysis of the data taken during this period.

This stretch of data was chosen for the first use of the full response

function in analyzing data.

The satellite Io appears to have a high electrical conductivity. Drell,

Foley and Ruderman (1965) have shown that any conductor which moves through a

magnetized plasma will be a source of Alfven waves. If the velocity of the

conductor with respect to the ambient medium does not change with time, there

will be a standing wave pattern in the rest frame of the conductor consisting

of a pair of Alfven "wings" which extend away from the conductor in the

direction of the Alfven characteristics. Neubauer (1980) has shown that the

plasma flow around each of these wing is analogous to the potential flow of an

incompressible fluid around an infinite cylinder.

The final two chapters of the thesis are concerned with Io's interaction

with the Jovian magnetospheric plasma. Chapter 4 contains a discussion and

critique of Neubauer's theory, while Chapter 5 consists of analysis of the
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data taken by Voyager I during the Io flyby. We conclude that the data is

consistent with the overall picture that the plasma flows around the Alfven

wing as if the wing were a long, cylindrical obstacle.
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Chapter 2

Derivation of the Response Function

of the

Voyager PLS Experiment
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2.1 Location and Orientation of the Instrument

The Voyager Plasma Science Experiment consists of four modulated grid

Faraday cups. A sketch of the instrument is shown in Figure 2.1. Three of

the cups, called the A-cup, B-cup, and C-cup, comprise the main sensor.

These three cups have the same pentagonal shape and are arrayed with their

cup normals 200 from an axis of symmetry. The fourth cup, called the side

sensor or D-cup, has a circular aperture. The normal to the D-cup aperture

points in a direction 880 from the main sensor symmetry axis.

Figure 2.2 shows the location and orientation of the plasma instrument

on the spacecraft. The instrument is mounted on the science boom, a metal

support structure which extends away from the main body of the spacecraft.

Also on the science boom are the cosmic ray, imaging, UV spectrometry, IR

spectrometry, photopolarimetry, and low energy charged particle

experiments.

The system of coordinates called spacecraft coordinates is defined as

follows: The spacecraft center of mass is taken as the origin. The

unit vector zsc points along the axis of the main antenna, with +sc

pointing into the antenna. The unit vector ysc lies in the plane

containing the zsc and the axis of symmetry of the science boom. It is

perpendicular to the 2sc and makes an acute angle with the science boom.

The unit vector isc is defined so as to make a right-handed system (see

Fig. 2.2).

The outward pointing symmetry axis of the PLS main sensor is parallel

to -Z sc As this axis is also parallel to the axis of the main antenna, it

is pointed at the earth during most of the mission. Since the angular

separation between the earth and the sun as seen from the outer solar
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system is small, the solar wind flow direction is substantially into the

main sensor. The D-cup is oriented such that it looks into corotating flow

during the inbound pass of a planetary flyby. The relative orientations of

the cup apertures as viewed from along the main sensor symmetry axis is

shown in Fig. 2.3.

During the interplanetary, or cruise, phase of the mission, the main

sensor measures positive ions and the side sensor measures electrons.

During planetary encounters, the D-cup is also used to measure positive

ions.

2.2 Structure and Operation of the Main Sensor Cups

A vertical cross section of a main sensor cup is shown in Figure 2.4,

and a top view is shown in Figure 2.5. The collector of the cup has the

shape of home plate on a baseball field with the corners smoothed out. The

aperture is similar in shape, differing in that it is smaller and its

parallel sides are shorter with respect to its other sides. The aperture

2
area (A ) is 102 cm . Around the edge of the collector is a rim of metal.

ap

The collector plane is considered to be the plane defined by the top of

this rim. The distance (h) from the aperture to this plane is 4.1 cm.

The cup has nine parallel grids. Each grid consists of a woven mesh

of two perpendicular sets of parallel wires. When measuring ions, the

suppressor grid is held at -95V relative to the collector, and the same

positive voltage square wave is impressed on all three modulator grids.

The rest of the grids and the collector are grounded to the spacecraft.

When a square wave voltage is impressed on the modulator grids, the
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collector current is a square wave differing in phase by 1800, as shown in

Figure 2.6. The amplitude of this square wave is the information which is

telemetered back to Earth. During operation, a sequence of such square

waves is used. The frequency of the wave is 400hz, and the limiting

voltages are changed every 0.240 secs. The voltages are changed such that

the higher voltage of any one square wave is the lower voltage of the next.

In this way the voltage range of 10-5950 volts is divided into contiguous

channels. In the low resolution (L-)mode there are 16 channels; in the

high resolution (M-)mode there are 128 channels. Hereafter, we will label

the channels with a subscript k. Appendix A includes a table which lists

the threshold voltage #k, the voltage width Ak *k+1~ *k), and the average

voltage 'k ((*k+l+ * k)/2) for each channel in each of the positive ion

modes (L and M). A more thorough description of the instrument and its

operation is given in Bridge et al (1977).

In order to define the threshold speeds vk we will use a coordinate

system called cup coordinates. We take as the origin the center of the

long side of the aperture (point 0 in Figure 2.5). The unit vector 2 is
cup

perpendicular to the aperture plane and points into the cup, the unit

vector xCUp is defined by the vector cross product of z s with Z cup and

the unit vector gcup is defined to make a right-handed coordinate system.

Consider a parallel beam of positive monoenergetic ions incident on

the cup. The only particles to reach the collector will be those with a

z-component of velocity greater than vk given by

vk=(Zek/M) 1/2 2.la
*

where Z is the charge state of the ion, e is the elementary charge, * m is the

modulator voltage, A is the atomic weight and M is the proton mass. It is
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convient to define the average proton speed k and the channel width Avk as
rkk

Vk (vk+1+vk)/2 2.lb

Avk ~k+l~ k 2.1c

The values of 7k and Avk for each channel are included in Appendix A.

In terms of the distribution function f(v) which describes the plasma

environment of the spacecraft, the current in the k-th channel is given by

Equations 2.2a and 2.2b.

* *
Ik k k+l 2.2a

I*=A Z e I ldv dv fdv v f(v)R(v,vk) 2.2b
kC 0W y ZZ

where A0 is the aperture area times the transparency at normal incidence and

R(V,vk) is the cup response function, to be derived hereinafter. The quantity

f(v) in the above equation is the distribution function of a single species;

if the plasma contains more than one species the current will be given by a

sum of terms like Equation 2.2b, one for each type of ion.

The quantity Ik can be thought of as a function of vk. For the remainder

of this thesis, the quantity I k(vk)/Ak will be referred to as the reduced

distribution function. This is because when the unity response approximation

is valid, Ik/"k is in fact proportional to the object which generally goes by

that name (see McNutt et al (1981)).

2.3 Response Function of the Main Sensor

Our problem is to determine the function R. A particle incident'on the

aperture will reach the collector unless it is stopped by the modulator
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voltage, it collides with a grid, or its trajectory is such that it misses the

collector and collides with the side of the cup. The first effect is taken

care of by the lower limit of the integration over vz; the latter two effects

are included in R. R can therefore by written as a product of two terms and a

normalization constant,

R=TA/A0  2.3

where T is the transparency of the grids and A is the "sensitive" area of the

collector. Note that R is normalized to unity at normal incidence. T and A

are functions of velocity and channel number, while A0 is a constant. We will

first consider the effect of collisions with the grids (transparency).

2.3a The Grid Transparency

The transparency of a single grid is defined as the probability of an

incident particle traversing the plane of the grid without colliding with the

wires. We model a grid as a planar structure consisting of two perpendicular

sets of parallel cylindrical wires. In the main sensor, the sets of wires of

all of the grids are parallel to the x- and y- axes in cup coordinates. The

transparency of the grid will be the product of the transparencies of each set

of wires considered separately.

Consider the wires which run in the x-direction. Since the transparency

of these wires does not depend upon v , we only need to consider the

projection of the motion into the y-z plane. The probability of a particle

colliding with one of the wires is simply the ratio of the area of the wires

to the area of the gaps between the wires projected into a plane perpendicular

to the particle velocity vector (see Figure 2.T). Per unit length along the
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wire, this ratio is

Probability of collision = d = c sec a 2.4L cos a

where d is the wire diameter, L is the grid spacing, c(=1 /42) is their ratio,

and a is the angle between the particle velocity and the grid normal. The

probability of a particle not colliding with the grid, is

Probability of no collision = 1- (c sec a) 2.5

If v* is the velocity of the particle as it crosses the grid plane, we see

that the transparency of one grid is

v* 21 2V21/

T=[l-,(1+ 2/l[-+( 27/) 2.6V*V
z z

Under the assumption that the potential inside the cup depends only on z,, v*

depends solely upon the velocity of the particle before it enters the cup and

the voltage on the grid. The validity of this approximation will be discussed

in the next section. An expression relating v* with v is now found from

energy conservation to be

V* = VY 2. Tax

v* = v 2.Tb
y y

V* = (v2 - 2e /Am )1/2 2.Tcz z p

The transparency of all of the grids is the product of the transparencies of

the individual grids. It is given by

2 2Vi v l'
T=H1-c(l+ )1/2I (1-c(l+ )1/2 2.8

i 2 2ei 2 2e*.
vz Am z Am

p p

where is the voltage on the i-th grid

Each cup has three modulator grids, one suppressor grid, and five

grounded grids (see Fig. 2.4). The transparency is therefore given explicitly



(20)

by

v2,2 2
T=[1-c(l+ -) 1/2]5[1-ce(,+ vx 2 1/213[1-c(,+ 2 y1/2 x

2 vs2
(1- ) (J+ ).

V V
z z

2.9
2 2 2
v )125lv y

[(-c(l+ )_/25 c( + 7 2_1/233[-C(l+ v 1/2

z 2 (-k 2 (1+ 5)vz(' 2 Tz (:.i
V
z z

The subscript s refers to the suppressor grid; vs is defined in a manner

analogous to the definition of vk in Equation 2.1

v =(2Z*e#8/Amp )1/2 2.10

where *s is the voltage on the suppressor grid.

Note that for normal incidence T=T 0=(-c)18=0.65 and AO=66 cm2.

2.3b The Sensitive Area

The second factor in Equation 2.3 is the "sensitive area". This is

defined to be the overlap of the area of the collector with the area of the

image of the aperture in the plane of the collector.

Consider a beam of particles incident at an angle a to the cup normal.

In the collector plane, the beam will have the shape of the aperture, but its

position will be displaced because of the components of the particle velocity

transverse to the cup normal direction, as shown in Figure 2.8. First we will

compute the amount of the shift., and then we will discuss the functional

dependence of the sensitive area on the shift vector.

We define a two dimensional vector , also shown in Figure 2.8, to be the

displacement of the aperture image from a perpendicular projection of the
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aperture into the plane of the collector. Figure 2.9 shows the projection

into the x-z plane of a possible trajectory of a positive ion as it moves from

the aperture to the collector of one of the main sensor cups. If the

particles were not deflected by the electrostatic fields inside the cup, the

shift would be given by

xv
S = -- h 2.11a

Z

S = - h 2.llb
y vz

The effect of the fields is to bend the beam, thereby changing the amount of

the shift. To compute the amount of the shift, we will solve the equations of

motion for a charged particle moving in the electric field of one of the cups.

We will assume that the potential between the grids depends only upon z.

This neglects the fine structure of the fields close to grids as well as the

fringing fields near the edges of the grids.

The fine structure of the fields in the vicinity of the wires decays in a

distance comparable to the mesh size of the grid. Since this distance is much

less than the spacing between grids, the ripple in the fields near the wires

can safely be ignored.

The fringing fields are important only in a region around the edge of the

grids which has a width comparable to the grid spacing. Because of the cup

goemetry, any particle whose trajectory includes the region where the fringing

fields are important will miss the collector. As.this will occur whether or

not the fringing fields are used in computing the trajectory, these fields can

be ignored.

The potential is therefore well approximated by a linear function of

distance between any two neighboring grids. Figure 2.10a shows the potential
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as a function of z for a typical channel. Using energy conservation and the

fact that the fields are entirely in the z-direction the equation of motion is

easily solved. The equations of motion of the particle are

V* dx = v 2.12a
x dt x

V*= = y v 2.12b
y dt y

v* = dz = (v2_ 2z*e(z))1/2 2.12c
z dt z Am

p

with *(z) given by

*(z)= *k O<z<.762 2.13a

*(z)= *k .762<z<1.143 2.13b

(Z)= 1.905-z 1.143<z<1.905 2.13c
.762 k

*(z)= 0 1.905<z<2.286 2.13d

*(z)= z-2.286  2.286<z<2.700 2.13e

(z)= 3.089-z # 2.700<z<3.089 2.13f

*(z)= 0 3.089<z<4.100 2.13g

Equations 2.12a and 2.12b can be solved by inspection. For a particle which

crosses the aperture plane at the origin of the cup coordinate system, the

result is

x=v t 2.14a

Y-v t 2.14b
y

The components of the shift vector are simply the values of x and y

evaluated for t equal to the transit time of the particle from the aperture to

the collector plane. This can be evaluated with the aid of Equation 2.12c,

which can be rewritten as

t h dz
fdt = I _( 2 2.15

z Am
p
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Inserting the expressions for $(z) from Equations 2.13a-2.13g and

performing the integrations we find

t=t +tb +t +t +t +t f+t 2.16

2
IV

-)1/21-2
V

t (.762 z 2.17a
a v z (v 2 2

z k

tb=(. v X )2.1Tb
z v

(1- -)
z

tc a 2.lTc

td 381 2.lTd

2

[(1+ )1/2

t = (2 )(.414) z 2.Te

e (z s

2

[(1+ s 1/2
2

tf (2 )(389) 2z 2.17f

z (v 2/v2

z
t =.1 2.17g

Using Equations 2.14a, 2.14b, 2.16, and 2.17a-2.17g the shift vector can

be written as

S = S( )h 2.18a
z

S y= S( I )h 2.18b
z
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with S, the shift function, defined by

:2 2
(1-( k)1/2] [ )(+ )1/2_1

2 1(+2
S=.743( 22 )+.093(_ 1 _ 1/2 +.392( 2Z )+.340 2.19

(v /v ) 1-(vv /V) (v /v )
kz k z S z

We shall now very briefly consider the sensitive area as a function of

the shift vector, which we will denote by A(S). Because of the shapes of the

aperture and the collector, this functional dependence is complicated. As

there are 16 separate regions where the dependence is different (see Figure

2.11), an analytic representation is cumbersome. A(S S y) is given in tabular

form in Table 1. A plot of the sensitive area as a function of S y with S as
y x

a parameter, is shown in Figure 2.15.

2.4 Structure and Operation of the Side Sensor

The geometry of the D-cup is quite different from that of the main sensor

cups. Figure 2.12 shows its cross section. Its aperture and collector are

circular, and it has a metal annulus called the guard ring which is located

1.4 cm above the collector. The outer edge of the guard ring is connected to

the side of the cup, while its inner diameter is smaller than the diameter of

the aperture. The radii of the aperture, guard ring, and collector are 5.64

cm, 5.13 cm, and 6.35 cm, respectively. The distance from the collector to

the guard ring is 1.413 cm, and from the collector to the aperture is 6.000

cm. It has eight grids, two of which are suppressor grids and only one of

which is the modulator grid for the positive ion mode. The potential as a

function of position for a typical channel is shown in Figure 2.10b.
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In addition to measuring positive ions, the D-cup-is also used to measure

electrons. A different modulator grid is used for the electron mode. The

potential as a function of position for a typical channel in the electron mode

is shown in Figure 2.10c. The voltage thresholds for the two electron modes

are included in appendix A.

2.4a The Grid Transparency

We will first consider the transparency function for the D-cup. The only

complication not found in the main sensor cups is caused by the fact that the

wires meshes in the different grids are not parallel to each other, but are

rotated relative to each other by a specific angle. Also, the Voyager I and

Voyager II instruments are different from each other. The mesh orientations

for both spacecraft are given in Table 2.2.

We define cup coordinates for the D-cup a fashion analagous to that used

for main sensor cups; the z cup-axis is parallel to the cup normal and points

into the cupq CUp =sc X ,cup and cup cup xcup. The origin of the

coordinate system is defined to be the center of the aperture. The

transparency of any grid is still given by Equation 2.6 provided vx and vy are

interpreted as the components of velocity along the directions of the grid

wires. The grid orientation as given in Table 2.2 can then be used to rotate

from cup coordinates to "grid" coordinates. The resulting expression for the
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transparency of the D-cup is

6 2 V2

T= _1-c(l+ - cos2( -a )) 1 [1-c(l+ sin (t-a))1 j x

z z

-2 2 2 2
v cos (t-a ) 1/2 tsin (t-aM 1/2Ii-c (i+ 2 )1/2Il-c (1+ 2 )J x 2020

2 2 v2

v (1- ) v (1- M)
2 2 2. 2

z z
2 Cos 2 (-a / sin (-as

1l- tl S F )1/2J Il-( 2t 2__V /
2 V ( - )2 [ -c(s

v (1- 8) v (1- S)
z v2 v2

z z

where the a's are the angles from Table 2.2 which describe the grid

orientation, and t and Vt are defined by

V =(V2+v2) 1 /2 2.21a
t x y

t=arctan(vy/v x) 2.21b

At normal incidence, T=TO=(1-c) 16=0.68 and AO=56.2 cm2.

2.4b The Sensitive Area

We now proceed to the sensitive area calculation. Because of the guard

ring, the sensitive area is the mutual overlap of three circles of different

sizes, the centers of which lie on the same line. There are now two

independent shift vectors, one for the collector-guard ring shift and one for

the collector-aperture shift. Because of the circular symmetry, the sensitive

area does not depend upon the direction of the shift vector, only its

magnitude. We therefore assume, without loss of generality, that the velocity

vector of the incident beam lies in the x-z plane. By assumption, the

y-components of the shift vectors are zero. We will denote by S and S the
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magnitude of the (x-directed) shifts between the aperture and collector and

between the guard and collector, respectively. It is also convenient to

define Sag as the relative shift between the aperture and the guard ring,

S =s -s.
ag ac ge

We will now derive an expression for the overlap area of two circles with

radii Rs and RL (RL>Rs) whose centers are separated by a distance S, as shown

in Figures 2.13a, 2.13b and 2.13c. Let the coordinates of the centers of the

circles be (0,0) and (s,0). The equations of the two circles are

X2+y2=2 2.22a

(x-s)2 +y 2=R2 2.22bs

An important parameter, which we shall call X, is the x-coordinate of the

points where the two circles intersect (see Figure 2.13b). X can be

determined as a function of s, RL, and Rs by subtracting Equation 2.22b from

2.22a and solving for x. The result is

2 -2+2

X= 2s 2.23

Note that X as defined by Equation 2.23 is real and well defined even when the

circles do not intersect. In this case X>RL and the corresponding value of y

which simultaneously satisfies Equations 2.22a and 2.22b is imaginary. We

shall find it convienient to define X by Equation 2.23 even when the

geometrical interpretation of it no longer holds.

Now consider the following three cases, as shown in Figures 2.13a, 2.13b,

and 2.13c.

Case I szRL-Rs

In this case the overlap area is obviously just the area of the smaller circle.

A=wR 2.24a
5
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Case II R1-Rs<s<RL+Rs

The overlap area is given by the following sum of two integrals.

XR
A= X [(x-s) 2-R2 1/ 2dx + jL I2-R I/dx 2.25

s-R5  X

This integral is elementary, yielding

A=R2 [2 + arcsin Q (1-Q1)1 /21+R2 [1 - arcsin Q2~.2Q5 Q2) 1/21 2.24b

2 2 2
RL=R2 s 

2.26a1 2sR
s

RQ2 2s 
2.26b

2 2sR L

Case III sRL+Rs

In this case the overlap area is zero.

A=0 2.24c

We shall denote by X and X the x-coordinates of the points of
ac g

intersection of the image of the aperture in the plane of the collector and

the collector and of the image of the guard in the plane of the collector and

the collector, respectively (see Figure 2.14). These can be evaluated with

Equation 2.23 by substituting the radius of the collector for RL, the radius

of the aperture(guard ring) for Rs, and S ac(S g) for s.

To determine the overlap area of the three circles, one must consider the

following two cases;

Case A: X >X
gc ac

This is the most frequently encoutered case, and it covers several apparently

different situations. These are all shown in Figures 2.14a-2.14c. For all of

these cases the sensitive area is given by

A=A +A g-A 2.2Ta

where Aag and Agc are the overlap areas of the aperture and the guard ring and
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of the guard ring and the collector, respectively, as given by Equations

2.24a-2.24c, and A is the area of the guard ring.

Case B: X =X
gc ac

For this case, shown in Figure 2.14d, the sensitive area is the overlap area

of the aperture and the collector.

A = Aac 2.2Tb

This completes the derivation of the cup response function.

2.5 The "Cold Plasma" Approximation

The problem of data reduction now formally reduces to inverting a set of

integral equations like Equations 2.2 to solve for the distribution function.

Unfortunately, this task is very difficult, and a unique solution may not

exist. The approach which we have adopted involves paramaterizing the

distribution function and then searching parameter space for the "best fit" to

the data.

From statistical mechanics we know that the distribution function which

describes a gas in thermodynamic equilibrium is the Maxwell-Boltzmann

distribution

-- N 0 2 2
f(v) 3/ 3 exp-(v-V) w 1 2.28

ir w

where N is the particle number density, V is the bulk flow velocity, and w is

the thermal speed. Although neither the solar wind nor the Jovian

magnetospheric plasma is in local thermodynamic equilibrium, there is some

empirical justification for using this form for the distribution function. It

can be shown that distributions with more than one peak are unstable, and in
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the vicinity of the peak one expects the distribution function to be bell

shaped. We shall therefore assume that the distribution functions can be

approximated by expressions like Equation 2.28.

We now must evaluate the integrals in Equation 2.2b. This cannot be done

analytically without further approximations. For the case of a "cold" plasma,

i.e. when IVI/w>>l, we can approximate the dependence of f('V) on the

components of velocity transverse to the cup normal by a product of two delta

functions

N 2
f(V)= 6(v -V ) 6(vy-v ) exp{-(vz-z) 2v 2} 2.29

This permits the integrations over v and vy to be performed trivially. The

result is

N0
I = exp(-(v z 2/ 2) R(V XV ,9 vz) dvz 2.30

vk
For the D-cup, Equation 2.2b can be evaluated numerically using Equations

2.20, 2.21 and 2.23-2.27. For the main sensor Table 2.1 must be-used in

addition to Equation 2.9. The use of the lookup table can be eliminated by

fitting the area overlap with an easily evaluated function. This approach

will be particularly important for the "hot plasma" approximation described

hereinafter.

The family of curves representing the sensitive area is shown in Figure

2.15, which shows A plotted as a function of S y/h, with S /h as a parameter.
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These functions will be fit by the "trapezoidal approximation"

A=A (S /h)A (S /h,S /h)=A, (S /h)C(S /h)A (S /hSy//h)

A= x r (s /h) -X'<S /h<X
x X'-X x r x rr r

1

(S /h)-X'
x r (S/)
r r

0

-X r< x/h<Xr

Xr<S /h<X'
rx r

Otherwise

2.31

2.32a

2.32b

2.32c

2.33d

1

(S /h)-Y (S )

0u Sx

0

YA<Sy/h<Yd

-Yd<S y/h<Yd

Otexrws /h<Y'(S)

Otherwise

X r=1.10

X' =4. 94
r

y d=-2.02

Y'=-3.62d

.762 cos{1.018(S /h)+.247} 2.34eu" 1+0.25(Sx /h)* .4

Y'=2.50-0.125 [(S/h)-1.2 2.34f

t(s /h)= 1.257-O.o63(S /h)-.126,{(s /h)2 -5.1(S /h)+6.612) 2.34gx x x

All of the quantities defined by Equations 2.34a-2.34f are dimensionless.

Yu and Yu' are plotted in Figure 2.16. Fiqure 2.17 shows the trapezoidal

approximation for A plotted versus S y/h with S /h as a parameter, while Figure

2.18 shows A plotted versus S /h for S equal to 0. Figure 2.19 shows a 3D

plot of A(S). The values of X , X1' 9d' A' , and Y' were chosen so as tor r VYA YUu

A

x
A

A =

A

y
A =

y
A =

y

with

2.33e

2.33f

2.33g

2.33h

2.34a

2.34b

2.34c

2.34d

(S y/h)+'Yd

d d
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match the volume of the solid of Fig. 2.19 as closely as possible with the

volume of the solid representing the true area overlap. Figure 2.20 shows a

3D plot of R(S /h,S /h) for which the "trapezoidal" approximation was used to

eveluate the sensitive area and Eq. 2.9 was used to compute the transparency.

Appendices B and C contains listings of Fortran programs which compute the

integrals in Equation 2.2b for the main sensor cups using the "trapezoidal"

approximation and for the D-cup, respectively.

The "cold plasma" approximation was used to test our theoretical response

function by analyzing data taken during a cruise maneuver, as described in the

next chapter.

2.6 The "Hot Plasma" Approximation for the Main Sensor

When the thermal speed of the plasma is comparable to the magnitude of

the bulk streaming velocity Equation 2.30 is no longer valid. This is the

case during Voyager I's pass near the Io flux tube. To perform the integral

of Equation 2.2b in this case we have fit the previously derived expression

for the transparency, Equation 2.9, by an expression with a functional form

which permits the integrals over v and v to be performed analytically. The
x y

expression we have used is a sum of two Gaussians

2 2 v 2

T=-TO .E ZC excp(-a.( -)-a ( Y)) 2.350.i~ cjicex i 3 2 J v2
i=1 j= vz

2 2 2 2where c , cj, ai, and aj are functions of vZ /k and of v 2/v, and T0 is the

transparency at normal incidence. The values of the c's and a's were

determined from Equation 2.9 by the following procedure: We reduced the

number of independent parameters to 2 by requiring that c +c 2=1.0 and that the
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integral over v and y of Eq. 2.2b give the correct answer for an infinitely

hot plasma, and then did a nonlinear least-squares fit to determine the best

values for the a's and c's.

Using a Maxwell-Boltzmann distribution (Equation 2.28) for f( o), the

"trapezoidal approximation" (Equations 2.31-2.34) for A, and Equation 2.35 for

T, Equation 2.2b becomes

T z*eN * (v -V )2

I=o 3 dvvexp(- 2 -

k 2 2 2.36
- - v2 (v -V ) (v-V )

; IA Z c c exp{-a-2i -a-- - 2 }dv dvy
-- -- ij v v w 

z z
It wiU be convient to perform the following change of variables

X = Svx/vz = Sx/h 2.3Ta

Y = Svy/v =S Sy/h 2.3Tb

After some algebra Equation 2.36 becomes

N ez*T R a v3  (v -V ) 2

3 0 z2 Z Z )0 fjdXdY A(X,Y) z C G G 2.38k- 1323v 2 exp(- Vw2  ij jix jy 3

2 2
2aiw a w

C. =c c exp{-Ij( 2 2)-i- 1+ 2 a 2) 2.39a
v2+a w yv+a w

G =exp{-a (X-a )2} 2.39b

G3y=exp{-a (Y-a )2  2.39c

a.w2 +v2
2 z 

2.39d

Sv x w

X= 2.39e
V2+a w2

Sz I
Z = -- 2.39f

V +a w2
zJ

2.39g

with A(X,Y) defined by Equations 2.31-2.34
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We are now ready to carry out the necessary integrations. We will

perform the integral over Y first. Regrouping terms in Equation 2.36 we find

N 0z*eT0 A0

I*= / .E {dvz s2 i dX(A (X)Gi(X) dY AY(X,Y)Gj,(Y))]} 2.40a

2 2
v z 2 2( a w 2 w2

D ij=c C expf-[(- - z +11 2 2 )+1y2 2)]} 2.40b
w v +a w v +a w

The Y-integration can be expressed in terms of elementary functions and the

Gaussian error function. The result is

- /, *(Z')- (Z/) T(Z )-9(ZD)
H f(X)= fdY Ay(X,Y)G 4 = - { - } 2.41a

-a 2/a Z'-Z Z -Z
J u d

*(Z)=Z erf(Z) +(l//w)exp(-Z 2) 2.41b

Zd=/ ( d MX) aj) 2.41c

ZA=7/0 (Yu(X)--) 2.41d

Zu=a (u(X)--V ) 2.41e

Z'=/Q (Y'(X)-a )2.41fu u J
Equation 2.36 now becomes

Noz*eTOA0  2 2 w. 2 O

x 2z X Z {fdv[- zD LdX AX(X)G.X(X)H (X)JI)24k W3/2 3 i~ jz _aZS 2  ii Ai

Since the integral over X is now very complicated, it cannot be done without

further approximations. If H (X) is a slowly varying function of its
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argument, we can use the saddle point method to write the integral over X as

fdX AX(X)GiX(X)Hj (X) H (R )E((X) dX AX(X)GiX(X) 2.43a

I XI AX(X)GiX(X)dX
2.43b

1 a

JAX(X)GiX (X)dX
-M

Again, all the integrals can be expressed in terms of elementary functions and

the Gaussian error function. The results are

CO / (Z )+(z' )-,(Zri )-(z )
F = IAX(X)G (X)dX= - } 2.44a

S-- 2/a Z'-Z
1 r r

Zri V41 (r-ai) 2.44b

Z =/ (X'-a ) 2.44c

Z li =S t X -a )2.44d

ZI =/a (Xa2.44e

X =-X =-l.10 2.44f

X =-X'=-4.94 2.44g
1r

a 1 y(Z1 )+(Z')- )- )+ Z'-Z aaG)
;IXIA (X)G i(X)dX= - /T_ r r 2.44h

- 2a Z'-Zr

T(Z)=(a /a Z-(1/2))/lw erf(Z)+a / a exp(- 2) 2.44

We now sumarize the results of this section by rewriting Eq. 2.2 in terms

of the functions defined by Eqs. 2.19 and 2.39-2.44 as

z*eTOAONO 2 2 a v D
I*= I X ffdv H (X )F 1 2.454/ww3 z 2

The integral over vz in Eq. 2.45 must be performed numerically. To

devise an efficient scheme for calculating Ik for many adjacent channels, we
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shall rewrite Eqs. 2.2a and 2.2b as

vk+l O

Ik = I dvz Q z' k) + I dvz (Q(vz vk)-Q(vz'vk+l) 2.46

vk+l

where Q denotes the integrand of Eq. 2.45. The contribution from the second

integral on the right side of Eq. 2.46 is called the feedthrough current. The

dependence of Q upon vk is implicit in its dependence on the a's and c's.

Since the a's and c's are slowly varying functions of vk for vz<v k, we can

expand the second integrand in Eq. 2.46 in a Taylor series in the a's and c's.

Q(V k z' k+l ) ' z9 c2,al,a2)+(Q/acl)(c(vvz'k)-clvz'v+l+

(aQ/ac2 )(c2 (V zvk)-c2 (vz vk+)+(aQ/aal)(al(vzgvk)-al(vzvk+l)+ 2.47

(BQ/3a2)(a 2(vz' k-a2(vz' k+1)

This enables us to use compute one value of Q(vz) and use it in the numerical

integration of several channels, greatly reducing the amount of computer time

required to simulate an M-mode. Appendix D contains the listing of a Fortran

program which utilizes this technique to simulate an M-mode spectrum. We

expect that this program can simulate the response of the main sensor cups to

a convected Maxwellian of any temperature or flow direction to within about 7%.
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2.7 The "Hot Plasma" Approximation for the D-Cup

Except for a small effect due to the alignment of the grids, the D-cup

response is azimuthally symmetric about its z-axis. Therefore, the response

can only depend upon v +v2 and cannot depend upon v and vy individually. We

have fit the the full response function by a function of the form

3 v2 2

R(v,vk'v s . c exp{-ai 2 1} 2.48
i=l v

z
where once again the a 's and c 's are functions of v2 /0 and *s. Using a

Maxwellian for the distribution function and Equation 2.48 for R in Equation

2.2b we obtain

3 AoToNoz*e (v z -V Z) 2

Ik 1 1i 3/2 W3 z v z w2 }

2 2 2 22.9
Ce (v -V) ajv x o (vy-Vy) a v
lexp{- x 2  

- v1 x exp{- w 2 - ydv
- w 2v _mW2 vZz z

The integration over the transverse components of the velocity are easily

done, yielding

3 AoToNoz*e vzdvz v -V a (V2+V2 )
=Z C. 0 (e vv exp-( ) - } 2.50

k i /w k (l+a w2/v ) V aw+v

As in the case of the main sensor cups, the integration over vz must be done

numerically.

This completes the discussion of the response function of the Voyager PLS

experiment.
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Chapter 3

Experimental Test of the Response Function
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3.1 The Cruise Maneuver

Before the formulas derived in the preceding chapter can be used with

confidence to analyze data, they should be tested. Attempts to measure the

response of the cups as a function of angle were made prior to launch.

This was done by placing the instrument in an evacuated chamber in the path

of a beam of charged particles. Data were then taken with the instrument

in different orintations.

Unfortunately, it was not possible to test the cup response function

to the desired accuracy. Tests were performed with both a proton beam and

an electron beam. Since the quantity which is measured is an integral over

velocity space of the product of the response function and the distribution

function (Eqs. 2.2a,b), it is desirable to have a beam with a small thermal

velocity dispersion. The proton beam had too great a velocity dispersion

for the desired measurement. The electron beam, although sufficiently

narrow, caused the emission of a large number of secondary electrons which

contaminated the data. In particular, the response at large angles of

incidence was different from what was expected.

The quiet solar wind, on the other hand, has ideal properties for use

as a test beam. At 1 AU, the magnitude of its bulk streaming velocity is

typically eight times its thermal speed, and this ratio increases with

distance from the sun. In order to test the response function, however,

the direction of the test beam must be varied. Since the direction of the

solar wind is steady to within a few degrees, this requirement can only be

met by rotating the spacecraft.

On 14 September 1978, Voyager I, then 4.1 AU from the sun, executed a

series of rotations called a cruise maneuver. Data from this particular
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maneuver were selected for analysis because during it the solar wind was

quiet and the Mach number of the flow was high (-.20). The maneuver

consisted of ten rotations about the spacecraft z-axis(rolls), ten

rotations about the spacecraft y-axis(yaws), and ten more rolls. Each

rotation took about 33 minutes. Since the symmetry axis of the main sensor

is aligned with the spacecraft z-axis, only the yaws are useful for the

purpose of determining the cup response because the angle of the solar wind

to the cup normals does not change appreciably during the rolls.

During the cruise maneuver the PLS experiment was taking one M-mode

measurement every 96 seconds. Due to telemetry rate constraints, the data

from all 128 channels of each spectrum was not sent back to Earth. On

alternate spectra, the data from channels 1-72 and 57-128 were transmitted.

During the maneuver the solar wind speed was about 380 km/sec, so the peaks

in the spectra were never in a channel higher than about 68. Thus, only

the spectra containing channels 1-72 could be used for analysis when the

beam was oblique to one or more of the cups.

Due to a coincidence, the period between PLS M-mode spectra and the

rotation period of the spacecraft during the maneuver were almost

commensurate, resulting in the spacecraft having almost the same

orientation at the times of corresponding spectra taken in different

rotations. Since an odd number (21) of M-mode spectra were taken during

each rotation, an upper-half spectrum was taken with the spacecraft in the

same orientation as a lower-half spectrum from the previous rotation. Weo

therefore did not lose any angular coverage due to the fact that only 72 of

the 128 channels were available from each spectum.

The angular coverage of the cruise maneuver is shown in Figure 3.0,

which is a polar plot of a unit vector which points radially away from the
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sun. This vector, the nominal solar wind direction, is plotted in cup

coordinates at the times of the start of the M-modes for each of the four

-.

cups. The polar angle 0 and the azimuth angle $ of a vector V are defined

by Equations 3.la and 3.lb

O=cos- (v //e(V2+V2+V2)) 3.1a
z x y z

*=tan (V /V ) 3.lb
y x

where V,, Vy, and Vz are the cartesian components of V. The numbered

points in Fig. 3.1 correspond to the spectra which were analyzed as

described hereinafter.

3.2 Analysis of Data Taken During the Cruise Maneuver

To test the response function we adopted the following strategy. We

analyzed data from all of the orientations for which there were signals in

at least three of the four cups. We then did a simultaneous fit to these

data using the "cold" plasma approximation described in Section 2.5. The

derived macroscopic plasma parameters were then compared with each other.

We also fit an additional spectrum taken when the plasma flow direction was

almost aligned with the main sensor symmetry axis. In this case we expect

the "unity" response approximation to be valid. Since we have confidence

in the parameters we derive at these times we can estimate how much the

solar wind is changing between the times of the other measurements and see

if the parameters derived from the other measurements stay reasonably

steady. If they are, this fact and the goodness of the fits indicates how

well we understand the response function. In addition, comparison of the

parameters derived from the fits of the solar wind using the "unity"

response approximation, where appropriate, with parameters derived from
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fits to these same spectra using the "cold beam" approximation indicate the

systematic error, if any, which the former approximation introduces.

Nine spectra taken during the cruise maneuver were analyzed. The

numerical integrations in Equation 2.30 were done using Simpson's rule.

For a term with velocity threshold vk, we chose a step size of

Avk/10. Since the integrand is formally undefined at vz k, the proper

limiting value of zero was used.

The spectra consist of a background and one or two peaks. The main

peak, due to protons, was fitted. In each cup, about twelve channels

around the peak were included. The fits have five parameters; the three

components of bulk velocity in spacecraft coordinates, the density, and the

thermal speed. The velocity was then rotated into cup coordinates and the

currents were computed.

The criterion used to define the "best" fit was the minimization of

X , defined by

X 2=Z(D.-A) 2/(.o4D )2 3.2

where each of the D i's is the measured current divided by the channel

voltage width and the A. 's are the simulated reduced distribution

functions. The solution to the extremum problem was found using a gradient

search algorithm similar to that described in Bevington (1969). The

derivatives with respect to the velocity components and thermal speed were

computed numerically, while the derivative with respect to the density was

computed analytically.

The results of the analysis of the cruise maneuver are shown in Table

3.1 and Figures 3.2-3.10. Figure 3.2 corresponds to point 1 in Fig. 3.1,

Fig. 3.3 to point 2, etc. Figures 3.2-3.10 are plots of reduced
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distribution function versus velocity for the nine spectra used. The data

are represented by the "staircase" while the fit is represented by the

smooth curve. Table 3.1 lists the time, the wind velocity in RTN

coordinates, the density, and the thermal speed derived from the fits for

each of the spectra. (RTN coordinates are a sun centered orthogonal

system. r points radially away from the sun; £ lies in a plane parallel to

the ecliptic and points in a positive sense when viewed from the North, and

n completes a right-handed system.)

The variation in these parameters is about what one expects to find in

a quiet solar wind, and the fits are quite good. The fits correctly

reproduce the relative heights, positions, and shapes of the spectra in the

oblique cups.

The question of choosing the proper criterion for determining the

"best fit" deserves more discussion. If one chooses to minimize the square

of the difference between the data and the fitting function, there remains

the problem of choosing the proper statistical weights. This choice must

be made by analyzing the sources of error in the measurement. In our case,

there are two main sources of error; electrical noise and digitization

error. Since the logarithm of the currents is digitized, this error is a

fixed percentage of the signal. This accounts for the weight factor of

1/Q.04D2 in Eq. 3.2. The electrical noise is a more difficult problem. We

expect thermal fluctuations in the amplifiers to be seen as fluctuations in

the current. The rms power in these current fluctuations should be about

the same in all of the channels. Since the reduced distribution function

is the current divided by the channel width and the channel width increases

with increasing channel number, this component of the noise should be most

pronounced in the low channels.
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An example of spectra which we expect to be entirely noise are the

D-cup spectrum in Fig. 3.4 and the lower channels in the main sensor cups

in the same figure. The predominately smooth trace is due to the signal

being less than the minimum that can be digitized with our coding scheme;

the fluctuations are noise. The predominant smoothness of the curve,

especially the lower channels in the B-cup, indicate that the true thermal

noise is below the threshold of the detector. We conclude that the noise

which we see has another origin. Other sources of noise, such as cosmic

rays or interference with other instruments on the spacecraft, are more

difficult to estimate. I have accounted for them in nqr selection of which

channels to include in the fits. Unless specifically mentioned, all of the

graphs of the results of fits to spectra include all of the data in a

particular spectrum and the simulations for all of the channels used in

determining the best fit, and no others.

The question of estimating the uncertainty in the macroscopic plasma

parameters derived from the previously described fitting procedure deserves

discussion. The formal uncertainty in the fit parameters is contained in

the so-called error matrix. The properties of this matrix are described in

Bevington (1969). The uncertainties which I quote throughout the remainder

of this chapter are defined by

2 2
"i =ii X /nf 3.3

where a. is the formal uncertainty in the determination of the i-th

parameter, c is the error matrix, and nf is the number of degrees of

freedom (number of data points/number of parameters). In the case of

linear parameters and Gaussian statistics, a is simply the standard

deviation one would expect to find in the value of the i-th parameter if

the same experiment were done many times.
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If the uncertainty in the individual data points can be accurately

2 2
estimated, a2 is simply equal to e. Unfortunately, the values of x we

obtained in the fits of the cruise maneuver were sufficiently large to

convince us that we had underestimated the uncertainty in the measurement.

The factors which multiply c in Eq. 3.3 are an attempt to compensate for

this underestimate.

In addition to random errors estimated by a, there is always the

possibility of some systematic error. There are many possible causes for

systematic errors. They can be related to the detector, such as

uncertainty in the values of the threshold voltages, or they can be

related to the plasma itself, such as the presence of suprathermal tails to

the distribution functions or thermal anisotropy. In general, systematic

errors are more difficult to estimate than random errors.

3.3 Discussion and Conclusions

An examination of Table 3.1 shows that the formal errors in the

density and thermal speed are about 3%. In addition, the magnitude of the

bulk flow velocity is determined with a precision of less than one percent,

and the direction is determined to within 10 arcseconds. We expect that

the systematic errors in the determination of these quantities is

considerably larger.

The quality of the fits, even at large angles of incidence, gives us

great confidence in the accuracy of the response function. For example,

compare Figures 3.1, 3.la, 3.lb, and 3.5. (The following numbering scheme

is used; the spectrum in Figure 3.n was taken when the orientation of the

spacecraft was such that the nominal solar wind direction corresponded to
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the points marked with the number n in Figure 3.0.) In the spectrum of

Fig. 3.1, the angles of the solar wind velocity to the A-, B-, and C-cup

normals were 350, 700, and 55 , respectively. Note that, although the flow

is highly oblique, the fit successfully fits the relative heights,

locations, and shapes of the peaks.

In Figure 3.la, the results of simulating the low energy channels in

the B-cup, which were not used in the fit, are shown. The simulation shows

that the currents in these channels are not all noise, but include a real

signal.

Figure 3.lb shows a simulation of what a hypothetical cup with unity

response would see in the conditions of Fig. 3.1. Notice that only the

location of the peaks remains the same, as all of the peaks are the same

height and shape if all of the incident particles reach the collector.

For the case of the B-cup, the effect of the response function is to

reduce the height of the peak by a factor of about 5, to broaden it, and to

make it skewed. All of these effects can be easily understood

qualitatively. The reduction of the height of the peak is caused by the

effects of both the sensitive area and the grid transparency. The

broadening and skewness of the peak are both caused by the "feedthrough"

effect; the contribution to the signal by modulation of particles with

vz >vk+l. This effect tends to widen the left side of the peak; there are

very few particles which satisfy the above condition on the right side of

the peak!

The actual reduction in the size of the signal is much more than the

factor of five mentioned in the preceding paragraph. Consider the spectrum

shown in Fig. 3.5, taken when the solar wind was flowing down the main

sensor symmetry axis. Although the heights of the peaks is about the same



(47)

as those in the simulation of Fig. 3.lb, one must remember that the

quantity which is actually measured is the current, not the reduced

distribution function. Since the current is equal to the reduced

distribution function times the channel voltage width, and the channel

widths increase with increasing channel number, the ratio of the current in

the peak channel in the B-cup of Fig. 3.5 to the same quantity for the

spectrum of Fig. 3.1 is about 25. Our response is thus good even when only

a few percent of the particles in the beam reach the colector. The

accuracy of our expression for the response function over such a wide range

of angles and signal strengths is important since in the Io flux tube flyby

the flow is highly oblique to the cups.

The sensitivity of the array of four detectors to the direction of the

flow is dramatically shown in Figs. 3.8 and 3.8a. The fit for Fig. 3.8a

was done assuming that the flow velocity in spacecraft coordinates was the

same for all four cups. This neglects effects due to the fact that the

spacecraft was spinning while the measurements were being taken. We did

another fit to the same data in which we compensated for the change in the

spacecraft orientation between the times of the measurements of the channel

with the largest current in each cup. The result is shown in Fig. 3.8.

This is clearly a much better fit to the data. The angle that the

spacecraft rotated through between the time of the measurement of channel

24 (A-cup peak) and channel 46 (C, D-cup peaks) was only about 0.90.

Since the two spectra shown in Figs. 3.5 and 3.6 were taken when the

solar wind velocity was almost parallel to the main sensor symmetry axis,

we also fit these with the assumption of unity response. A comparison of

the results of these fits with the results of the 'fits of the corresponding

spectra using the full response function is included in Table 3.1. The
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quality of the fit, as measured by X2 , was significantly better for the

fits which used the full response function. The x- and y- components of

the velocity in spacecraft coordinates agreed to within statisical error,

while the z-components of the full response fit exceeded the z-components

of unity response fits by about 1%. In addition, the unity response

results overestimated the thermal speeds by 7% and underestimated the

density by 5%. All of these discrepencies are easily understood. The

density difference is caused by the fact that when the flow velocity makes

an angle of about 200 to the cup normal, the grid transparency is already

slightly less than it is for normal incidence. The other two effects are

both caused by the "feedthrough" contribution. The effect of feedthrough

is to widen the peak on the low energy side, resulting in a lower estimate

of the normal component of the velocity and a higher estimate of the

thermal speed.

We must conclude, however, that the unity response approximation is

quite good at small angles of incidence, as expected. Uncertainty in the

gain of the amplifiers probably introduces a larger error into the density

determination than the effect due to the response. Since the response by

its nature widens and introduces a certain amount of skewness into the

peaks, its effect on the determination of the thermal anisotropy and the

heat flux should be considered.

In summary, we have shown that the analytic formulas describing the

response function derived in Chapter 2 accurately describe the response of

the cups for angles up to 700 for the main sensor cups and 550 for the

D-cup. The expressions also correctly predict the complete absence of a

signal for angles of incidence >800 for the main sensor cups and >650 for

the D-cup.
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Chapter 4

The Theory of the Interaction

Between Io and the Jovian Magnetosphere
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4.1 Introduction

In Chapter 5 we will present analysis of Voyager I data taken in the

vicinity of the satellite Io, shortly after the spacecraft's closest

approach to Jupiter. In the present chapter, a description of the plasma

environment at Io and a theory of the Io-magnetosphere interaction will be

presented. The model plasma parameters which we use in this discussion are

the result of a combination of a large number of ground based and in situ

measurements. In particular, on its inbound pass the symmetry axis of

Voyager I's PLS experiment was pointed in the direction of the corotating

flow when the spacecraft flew past Io's orbit, enabling it to make

measurements which could be analyzed using the unity response

approximation.

Io itself is a large satellite, only slightly smaller than the Moon.

Its physical properties are sumarized in Table 4.1. Orbiting Jupiter at a

distance of 424 thousand kilometers (5.9 R9), Io is deep within the

magnetosphere, which extends to 50-100 Ri. Since the Jovian magnetic field

is very strong at Io's orbit (~.02 gauss) and Jupiter's ionosphere is

highly conducting, we expect the plasma to rigidly corotate with the

planet. Voyager I observed this on its inbound pass (Bagenal and

Sullivan (1981)). Because Io's orbital period of 42.8 hours is longer than

Jupiter's rotation period of 10 hours, the bulk velocity of the plasma in

Io's vicinity is greater than Io's orbital velocity by -.58 km/sec.

One of the great discoveries made by Voyager I was the volcanoes on

Io. Io is the most volcanically active body known, and its volcanoes are

believed to be the ultimate source of not only the neutral cloud around Io
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(which has been observed from Earth) and the plasma torus which surrounds

Jupiter at the radius of Io's orbit, but also most of the plasma in the

entire Jovian magnetosphere. Voyager I inbound observed two distinct

regions in the torus; the inner or cold torus and the outer, hot torus. In

the cold torus, where individual peaks in the spectra were resolved,

several different ion species, primarily different ionization states of

oxygen and sulfur, were observed. The chemical complexity was also present

in the hot torus, although the merging of the peaks in the spectra made the

analysis more difficult and the results somewhat ambiguous.

To estimate the magnitude of the relevent time and distance scales in

the vicinity of Io, we have used the model plasma torus of Johnson and

Strobel, consisting of the following species: 0+, 0++ S+ ++ +++, and

electrons. The values of many characteristic plasma parameters for this

model torus is given in Table 4.2. A magnetic field strength of .019

Gauss, the value measured by the Voyager I magnetometer experiment (Acuna

et al (1981)), was used to estimate the gyroradii and Larmor frequencies.

Examination of Table 4.2 indicates that the characteristic time for the

plasma to flow past Io (30 sec) is long compared with the Ion gyroperiod

(0.5 sec), and short compared with all of the collision times. In

addition, the Debye length (65 cm) is very small compared with the radius

of Io (1820 km). We therefore expect that the ideal MHD approximation,

described hereinafter, is valid and that collisional effects are

negligible.
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4.2 The Equations Which Describe the Plasma at Io

In section 4.3, we shall present a review and critique of a theory of

the Io-magnetosphere interaction which is based on the ideal MHD equations.

In the present section we review the derivation of the those equations for

the purpose of examining the approximations required for their validity and

Justifying their use for the purpose of describing the interaction between

Io and the Jovian magnetospheric plasma.

We take as our starting point the set of fluid equations which are

obtained by taking moments of the kinetic (Boltzmann) equation and summing

over the different ionic species. The Boltzmann equation is valid whenever

the statistical correlation between the phase space position of two

particles can be neglected. This approximation is quite good for the

conditions which exist in the Jovian ionosphere, as it is for almost all

space plasmas.

The fundamental equations are those of conservation of mass, momentum,

and energy, and the Maxwell equations, supplemented by the equation of

state, equations for the anisotropic structure of the pressure tensosr, the

generalized Ohm's law, and an equation for the heat flux.

The equation of mass conservation is

S - --(pV.) 4.1at ax. i

where p is the mass density and V is the i-th component of the bulk

velocity of the plasma as a whole. For the remainder of this chapter, we

shall use the Einstein summation convention, i.e. all repeated indices are

summed over.
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The equation of momentum conservation is

S.
v( V + - =-3 (Pk + V .V - Tk) + g 4.2

a c 2 xkk i k ki i

where Pik is the pressure tensor, g is the local gravitational field, and

T and S are the Maxwell stress tensor and the Poynting vector,

respectively, defined by

Tk = ( Bk + EEk 6 (E + B2)) 4.2a

= ( x B) 4.2b

If the equations are written in a non-inertial frame of reference, g should

include the D'Alembertain forces. If the frame of reference is rotating,

the the coriolus force should be included by adding a term -20x to Eq.

4.2, where '5 is the angular velocity of the reference frame.

The equation of energy conservation is

.(V2 + T + C)= - (V(pV + eT + P + S + q + ppk k 4atT E xk k T j j k kq )+Pg '

where ET is the thermal energy per unit volume, qk is the heat flux vector,

and eEM is the electromagnetic energy density, defined by

= (E2 + B2 ) 143a

Maxwell's equations are Gauss's law

V*E = i41r1 I4.4

where n is the electric charge density; the Faraday induction law

V x E + - = 0 4.5c at
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Ampere's law

+. 1 3E 46V x B - - = - J 4.6
c at c

and the divergence-free condition on B.

V * B = 0 4.7

The equation of state relates CT to p and P, eT'cT(pP), where p, the

scalar pressure, is one-third of the trace of Pi. For a gas of

non-relativistic particles with no internal degrees of freedom or

long-range interactions the equation of state is

C 14.8
T 2

For any plasma which can be accurately described by the Boltzmann equation,

the contribution of long-range forces to the internal energy is small and

can be neglected. Therefore, a plasma consisting only of electrons and

protons, particles which have no internal degrees of freedom, is accurately

described by Eq. 4.8. For a plasma of partially ionized heavy ions, the

condition of no internal degrees of freedom is violated if the thermal

kinetic energy of the ions or electrons is comparable to the excitation

energies. In the hot plasma torus, we do not expect Eq. 4.8 to apply,

since the thermal kinetic energy of the plasma is comparable to the

excitation energy of the ions.

For a plasma in which the negative ions are electrons, the generalized
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Ohm's law is formally given by (see Rossi and Olbert (1970), pp 347-350)

aJ.
= - (Jk V + JiV - IV.Vk) + rg. +2t axk k i i k ni~k k ri+4.

23P e n + +m+

+( " *k+ " + x * -2*-0 - -,0) X B (Jm ax m e C me C i at coll

where ne is the number density of electrons, me is the electron mass, and

Pe,ik is the partial pressure tensor for the electron component of the

plasma, and (J/6t) Coll is the time rate of change of current density due

to collisions.

Unfortunately, this set of equations is not closed; there are more

unknowns than equations. This situation is usually remedied by making some

additional assumption regarding q and Pik and neglecting some of the terms

in the generalized Ohm's law. One commonly made set of assumptions is that

qi=0, Pik is isotropic (P ik=pik ), and E=-Ix/c.

In the vicinity of Io, we expect P to be gyrotropic; that is, P ik

will have cylindrical symmetry about the local direction of i. This

condition must be satisfied whenever the ion gyroradius is small compared

to the length scale of gradients of any of the macroscopic plasma

parameters. In this case, the pressure tensor can be written as

B.Bk

Pik = ®ik + (P-, - p1) B.12
1 1 B

where p, and p, are called the parallel pressure and the perpendicular

pressure, respectively. The equations can then be closed by introducing an

equation for the heat flux, appropriate approximations in the generalized

Ohm's law and supplementary equations, if neccessary, and an equation

relating the parallel and perpendicular pressures. The effect of the
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pressure anisotropy in the resulting equations can be expressed in terms

proportional to pg-pg. Since these terms are usually small corrections,

they do not qualitatively effect the solutions. We shall therefore neglect

them and assume a scalar pressure.

The equations as they now stand are very difficult to solve, and they

describe an incredible richness of phenomena which are not of primary

importance in understanding the interaction between Io and the Jovian

magnetospheric plasma. In particular, we shall be concerned only with

changes on time scales long compared to the proton gyroperiod. The

characteristic time for the flow of the plasma past Io is of the order of

RIo/V, or about 30 sec, while the ion gyroperiods are of the order of 0.5

sec. This enables us to make many further approximations which will

greatly simplify the equations.

We start making our approximations with the generalized Ohm' s law.

For the conditions which we expect to encounter in the flux tube,

dimensional analysis (Rossi and Olbert) shows that all of the terms are

neglgible compared to the term proportional to VxB. We therefore can write

40 V.
E = -- x B 4.11

Using Eq. 4.11 and the conservation of mass equation (Eq. 4.1), we can

rewrite Faraday's law as

(v ) = B 1 )4.12
at P p

This is called the MHD "frozen-in" law, because it is equivalent to

the statement that the magnetic flux linked by any closed curve which moves
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along with the plasma does not change with time; hence the field is

"frozen-in" to the plasma.

Maxwell's displacement current can be omitted from Ampere's law,

yielding

V x B =- J 4.13C

Turning now to the equation of momentum conservation, we can safely

neglect S and the terms in the Maxwell stress tensor which contain

While the gravititional term is important in the overall dynamics of the

Jovian magnetosphere, it can safely be neglected for a treatment of the

interaction with Io. Incorporating these approximations, assuming a scalar

pressure, and using the equation of conservation of mass (Eq. 4.1) and some

vector identities, we rewrite Eq. 4.2 as

(L + e = -1 p + 2 v) - vB214a t P v)r- VP

Using Eq. 4.11 and assuming an ideal gas equation of state and

a scalar pressure, the energy equation takes the particularly simple form

a+ e V)(ln( ) = - e q 4.15
at 5/3

Noting that ln(p/P 53) is proportional to the specific entropy of an ideal

gas, we interpret this equation saying that if we move along with the gas,

the time rate of change of the specific entropy is determined by the

divergence of the heat flux. For the case of a gas with a different

equation of state, the functional form of the entropy density will be

different from ln(p/P5 /3 ), but it will still be expressible as a function
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of p and p. If we further assume that V*q=O, the energy equation becomes

(a + V * V)f(p,p) = 0 4.16

where the functional form of f(p,P) depends upon the equation of state of

the gas.

Since only the gradient of the pressure enters into the momentum

equation, and not the pressure itself, Eq. 4.16 can be used to eliminate p

in favor of p in Eq. 4.14. The result is

( * 2C = V(ln * B VB2
at V V)V VA,- 24.17

where cs, the local 'sound' speed, is defined by

c = (22) 4.17a

Equations 4.1, 4.T, 4.12, 4.17 and 4 .1Ta are now a closed set of

equations which, with the proper boundary conditions, uniquely determine p,

41 4.1 01

V, and B. E can then be determined Eq. 4.11, i from Gauss's law (Eq. 4.4),

and J from Ampere's law (eq. 4.13). These equations, with the ideal gas

equation of state, are sometimes called the ideal MHD equations. While

much simpler than the kinetic equations or the set of moment equations,

they are still nonlinear and, therefore, difficult to solve. In fact, they

are considerably more complicated than the equations which describe a

perfect nonconducting fluid. In the next section we shall apply these

equations to the problem of the flow around Io.
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4.3 The Io-Magnetosphere Interaction

Since the discovery that the decametric radio bursts from Jupiter are

correlated with the phase of Io, the interaction of Io with the surrounding

plasma has been a subject of much theoretical interest. Unlike the Earth's

Moon, whose only interaction with the solar wind is to cast a geometrical

shadow, Io interacts very strongly with the plasma in which it is embedded.

It is believed that this interaction is caused by the high electrical

conductivity of Io or its ionosphere.

According to the MHD "frozen-in" law, an observer who is moving along

with a plasma sees no electric field. Assuming a uniform background flow,

an observer moving along with Io would see an electric field given by

F4=-(bx1)c, where V is the velocity of the background flow with respect to

Io. But since Io is a good electrical conductor, the electric field in its

rest frame must vanish. If we model Io as perfectly conducting sphere, we

conclude that there must be a layer charge on its surface to shield out the

external electric field. But since the magnetic flux tube linking Io is

"frozen" to the satellite, there is effectively a cylindrical obstacle that

the plasma must flow around which extends all the way to Jupiter.

In an early discussion of this phenomenon, Goldreich (1969)

hypothesized that the Io flux tube would carry field aligned currents (see

Figure 4.1). These currents would flow toward Io on one side of the flux

tube, cross the magnetic field by flowing through Io or its ionosphere, and

flow away from Io on the other side of the flux tube. This current loop

would then be closed in Jupiter's ionosphere. The magnitude of the
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currents in this model is determined by the electrical conductivity of Io

and that of the Jovian ionosphere.

This early model has been superseded by a theory first proposed to

explain the anomolously large amount of drag on the Echo weather satellites

by Drell (1965) and later extended and applied to Io by Neubauer (1980).

We will now discuss this theory in detail and, in the next chapter, use it

to interpret in situ measurements taken by Voyager I.

Drell (1965) realized that the effect of a conductor moving through a

magnetized plasma is to generate bydromagnetic waves. If the velocity of

the conductor is greater than the fast mode phase velocity in the direction

of the motion, a bow shock will form. If the velocity of the conductor is

slower than the fast mode phase velocity, the result will be a standing

system of Alfven waves (see Figure 4.2), consisting of two wings, one along

each of the two Alfven characteristics (described hereinafter) which pass

through the conductor. In this case one would also expect to find a

disturbance associated with the MHD slow mode. The generation of these

waves is analogous to the emission of Cerenkov radiation by a particle in

a medium which is moving faster than the speed of light in that medium.

The current associated with the Alfven wings is determined primarily

by the wave impedence of the plasma as long as the height-integrated

conductivity of the conductor is much smaller than the speed of light

squared divided by the Alfven speed. Thus, for Io, the magnitude of the

current, which can be calculated using the linearized MHD equations, is

independent of the conductivity of the Jovian ionosphere.

It is generally believed that Goldreich's model would be valid if the

Alfven speed were sufficiently large that the Alfven wave, after reflection
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from the Jovian ionosphere, were to again encounter Io. Since estimates

show that the round trip travel time of the Alfven wave from Io to Jupiter

and back to the latitude of Io's orbit is sufficiently long for Io to move

a distance greater than its its own diameter, the Goldreich model does not

apply Neubauer (1980).

Neubauer (1980) noted that there is an exact analytical solution to

the MHD equations which describes a finite amplitude standing Alfven wave.

Our presentation follows Neubauer.

It has long been known that there exists an exact solution of the

ideal MHD equations which corresponds to a finite amplitude Alfven wave.

To find this solution, we consider the special case where the density does

not change with time and the density and the magnitude of the magnetic

field have the same value everywhere in space; that is

- = 0 4.18

apax- = 4.19

3B 2
B = 0 4.20

This solution is also valid without the previous assumptions about the

relation between the density and the pressure (see Eq. 4.17) if we

independently require the pressure to have the same value everywhere in
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space (Vp = 0). Eqs. 4.12 and 4.17 can now be written as

31
t + (V VVA A v)V 4.21

a*
where VA is the Alfven velocity, defined by

SBV 4.23
A /( 4 Tp)

By adding or subtracting Eqs. 4.18 and 4.19, they can be written elegantly

in the canonical form

(-+ (V + V)(V.-V) =0 4.24at VA VA V

(-L + (I - 1) , v)(1 + f) =0 4.25at A 'A+

In Eqs. 4.24 and 4.25 we see that d;/dt=l=I+I* is the equation whichA A

defines a characteristic along which the Reimann invariant 1-=--1 staysA A

constant, while dx/dt=V defines a charactersitic along which the Riemann

invariant VA stays constant. (A characteristic is a line along which small

amplitude wave packets propagate.) If VA is not only constant along the

characteristic defined by Eq. 4.24, but also has the same value on all such

characteristics, then Eq. 4.24 and 4.25 imply

( + V+ V )B = 0 4.26

( + = 0 v) = 4.27at A

This is the finite amplitude Alfven wave. If we further require a
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stationary solution, we find

(V A v)B = 0 4.28A

(V - v)V = 0 4.29
4..2

B 1
V = 7w ff + V = const 4.30

and E, and hence E, are all constant along lines in the direction of

If we think of B ( ) as consisting of the sum of a background field and a

(possibly finite) perturbation field, 6B (8V), according to Eq. 4.30 we

have

6B43
6V = I4 - f 7 4.31

The realization that Eq. 4.28-4.31 can be used to describe the interaction

between Io and the magnetosphere is due to Neubauer (1980).

We shall now examine this solution in detail. It is important to note

that since the characteristics are directional, that is, information can

propagate along them in only one direction, this solution can only describe

one of the Alfven wings. We can try to construct a solution describing

both wings by dividing space into two semi-infinite half spaces, with Io

lying in the surface which divides them. In one of the half spaces, we

will use the above solution, while in the other, its analog, with r takenA

to have the same value throughout the entire region. Unfortunately, the

solutions which we require for our physical model of the Alfven wing,

described herinafter, cannot be patched together at a boundary surface in

such a way as to keep both the tangential component of E and the normal

component of B continuous, except in the special case where V and B are
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perpendicular to each other. This implies that the nature of the

interaction directly upstream of Io is not described by this solution.

Furthermore, the assumption that VA has the same value everywhere in a

large region of space cannot be true when the "background" magnetic field

is the dipole field of a planet. We therefore conclude that this solution

can accurately describe the fields only in a region near the Alfven wing,

close enough to Io so that the gradients in the background magnetic field

can be neglected, yet sufficiently far from the satellite that the effect

of the other wing is small. We will discuss other limitations of this

model after we have developed it more fully.

We now continue our developement of this special solution. The

following important result relating the component of the current density

along to the charge density can be obtained by using Eq. 4.24, the MHD

"frozen-in" law, and Gauss's law:

S=(j+ - 1)/C2 4
A

Since charge density and current density transform like a four-vector under

Lorentz transformation, this implies that in a frame of reference moving

with velocity VA with respect to the frame in which the pattern is

stationary the charge density vanishes.

It is convenient to write down the solution in a coordinate system in

which one of the axes points along VA. We shall call this direction z. We

will further assume that V lies in the x-z plane. Once E(x,y) is known for

all values of x and y, all of the other quantities are determined. B and

B are computed by taking the cross product of VA with Eq. 4.11, and Bz can
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be computed from Eq. 4.23. The results are

cE
B =- 4.33a

IAI

cE
B - 4.33b

y I+

B =V(B - B )2 2 4.33cz x y

V is then found from Eq. 4.31.

V =V - 0 4.34
o /'(4wp)

J and J are computed using Ampere's law.

3B
J - z 4.35ax VT By

8B
C Z 4.35b

We will now model Io as a perfectly conducting sphere moving through a

plasma which, in the absence of the sphere would be at rest and contain a

uniform and constant background magnetic field. We will use a frame of

reference which is at rest with respect to Io, and take the center of Io as

the origin. We define the z-axis to point along VA, and we seek a solution

which is valid for z>O. An example of an appropriate set of boundary

conditions is the specification of P(x,y) everywhere in the z=O plane.

Unfortunately, our physical model only gives us information about far

from the sphere and in the Alfven wing.
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Far from the sphere and the Alfven wing, we require that the velocity

and the magnetic field be given by

=V0(cos() X^1 + sin(C x3 + V q34.36

B =B x 34.37o 3

where C is the angle beween the background flow and the X1-axis, V and V

are the components of V parallel and perpendicular to B, and x1- and x3-

are related to z by the definition of VA:

+ + B
V z =V +( V 4.38

The electric field far from the sphere is found from Eq. 4.11 to be

E = x2 E0 = y E 0  4.39

with E defined by

V B
E = 01 0 4.40o c

Since the sphere is assumed to be a perfect conductor, the electric

field in its rest frame must vanish. But, since all quantities are

constant along z, we conclude that the electric field must vanish in a

semi-infinite cylinder of radius R I, and that a polarization charge must

be present on the surface of the cylinder on which the lines of the

electric field in the moving plasma can terminate.

In order to enable us to determine the fields in the vicinity of the

cylinder, we must make several further assumptions. First, we assume that

the electric charge density vanishes everywhere except at infinity and on

the surface of the cylindrical Alfven wing. This, along with our previous

assumption that there is no time variation, implies that the electric field
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is the gradient of a potential which satisfies Laplace's equation. The

boundary conditions are that the potential vanish at the surface of the

Alfven wing, and that the electric field far from the wing is that given by

Eq. 4.39. The electric field which satisfies Laplace's equation and these

boundary conditions is

E = 2 R2 E 4.41a
X (x2 + y2)2 c o

R 2

E =(1 - c x2 _-y2 )) E  4.41b
y (x2 + y2 0

The velocity and the magnetic field, from Eq. 4.33 and 4.34, are

R 2
B = -B sine (1A - +c 2 y) ) 4.42ax o A (x2+ 22

B = B sin A 2xy 12) 24.42b
y o eA (x2 + c

B =- /(B - B - B2) 4.42cz 0 x y

B sine A 2 (x2 y 2 )
Vx =Vox P)A c 2 + y2 )2  4.43a

B sin e
Vy = (0 A 2 2xy 2) 4.43b

(x +y )

B
V = V - Z4.3
z oz /(4vp)

where we have introduced the Alfven angle eA, defined as the angle between

the the Alfven characteristic V and the background magnetic field i. This

velocity field is very similar to the potential flow of an incompressible
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fluid around an infinite cylinder. The streamlines for this flow are shown

in Fig. 4.3.

The surface charge density a and the surface current density K, from

Gauss's law and Eq. 4.32-, are

as = (2V B sin *)/c 4.44

cVe B sin *
K = 01.0 4.45

z (V + V + 2 V sin )o A o A

where * is the polar angle in the x-y plane. Eq. 4.41-4.45 constitute the

complete solution for the fields in the vicinity of Io and its Alfven wing.

Far enough from the wing for 8B and SV to be considered small

perturbations, Eqs. 4.42c and 4.43c can be rewritten as

2 2
B = B (1 + sin(OA) tan(OA)) R 2) 4.42c'
z o A ARC (x2 + y 2)2

B R2 sin( A) 2 2
V = - (o A ) tan(e ) ( 4y ). 43c'
z oz /(4ip) a (2 + y2)2

We can also treat the case where the conductivity of Io is large, but

finite. In this case, we simply assume that the electric field inside the

wing is uniform and y-directed. The electric field outside the wing is

still the linear superposition of a uniform field and the field of a line

dipole, but the dipole moment is reduced. The fields are still given by

Eqs. 4.41-4.43 if R is interpreted as the "effective radius" of the Alfven

wing. For the case where the currents across B flow through Io's

ionosphere, rather than through the satellite itself, the same equations

are still valid, only now the "effective radius" is greater than R I.
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We shall now examine the validlty of the approximations used in

deriving Eq. 4.41-4.45 in more detail. If we relax the restrictive

assumptions of Eqs. 4.18-4.20, we find that Eqs. 4.24 and 4.25 become

8 + - 2 VB 2
(a + V * )V = -C V(ln p) - + V)(ln p) + 4.46at A A p) Va + V A 0

( - 2 + - ) + 4.t7( + V * V)V = -C V(ln P) - + a + V)(ln p) + 4.47at A A s 8irp V~t A

The errors committed by making those restrictive assumptions can be

estimated by dimensional analysis. We will estimate the order of magnitude

of each of the terms which we neglected and compare it to the terms which

we have included in the subsequent derivation. In the following equations,

the left side is the term whose magnitude we wish to estimate, while the

right side is its expected size, in terms of characteristic length, time,

and velocity scales of the problem.

To estimate the error in the position and properties of the Alfven

wing itself, we consider first Eq. 4.47. For the first term we have

- * * *

avA A A A 4.148at T rR~ 3R~

The time in the denominator of the right side of Eq. 4.48 is of the order

of one half of the rotation period of Jupiter. We expect changes on this

time scale because of the fact that the dipole axis of Jupiter is tilted

with respect to the rotation axis. We obtain the term on the far right of

Eq. 4.48 by noticing that the corotation velocity is simply the

circumference of Io's orbit divided by Jupiter's rotation period. In this
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estimate we have neglected the angular velocity of Io compared to the

angular velocity of Jupiter.

The second term on the left side of Eq. 4.46 is of order

V*
2

*V)V;= A 4.49

The length L in the denominator can be taken to be the distance of the

point in question from Io.

In the same spirit, for the first term on the right side of Eq. 4.46

we have

2 5c2
cs V(ln p) c - s- 4.50

The characteristic length for change in ln p is very different in different

directions. We know from Voyager measurements and theoretical arguments

(Bagenal and Sullivan (1981)) that the characteristic length for changes

along B near Io is about 1 Ri. In the direction of corotating flow, the

characteristic length is on the order of the radius of Io's orbit, about 6

Rj. Radially in towards Jupiter, the gradients are very steep, with a

characteristic length of the order of 0.2 Ri. In our estimate of the size

of this term we have used the shortest of these three distances.

Assuming the magnetic field of Jupiter to be a dipole field, the

size of the second term on the right side of Eq. 4.46 is

2 -B 2  V 2

BW T 2 RB cc A -4 .5 181P ~ J6P(RP 2
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Using the same arguments, the next two terms are seen to be

*
V AV* 3 A

V -(ln p) 4.52A at 3Rj

V*2

V ( V V)(ln p) V- 4.53VA 'A R

Finally, the gravitational acceleration is primarily due to the

centrifugal force, which is of the order of

9 V2  4.54

The solution derived herinbefore will be valid only when the term

(r.v)V- is large compared with all of the others. Comparison of Eqs.A A

4.48-4-.54 shows that this is true as long as L<<l Rj; that is, much closer

than 1 R to Io.

We cannot use Eq. 4.47 to study the region of validity of our soluion

perpendicular to V because the term which determines our solution contains

spatial derivatives only along VA. We therefore must use Eq. 4.46. Each

term in that equation will be of the same order as the corresponding term

in Eq. 4.46, with two exceptions. Since we are now concerned with errors

made when we integrate along a path perpendicular to f, the second term on
A'

the left side of Eq. 4.46 is of the order of

(- - v a 4.55

Similarly, the term proportional to (V 'V)ln p vanishes. We conclude

that our solution is valid for L<<(2V/VA) R = 0.3 Rj, or within a few Io
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radii of the Alfven wing. These results define what we meant by "near the

Alfven wing" and "close enough to Io" in the discussion which followed Eq.

4.31.
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Chapter 5

Analysis of Plasma Data

Taken in the Vicintiy of Io

By Voyager I
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5.1 The Io Flyby

On 5 March 1979, Voyager I flew through the Jovian system. Its orbit

is shown in Figures 5.1, 5.2 and 5.3. Figure 5.1 shows the projection of

the spacecraft trajectory into the Jovian equatorial plane, in addition to

the orientation of the main sensor symmetry axis and the D-cup normal. As

can be seen from these figures, the D-cup was looking into the co-rotating

plasma throughout the inbound pass. As the spacecraft approached perijove,

the corotating flow swung around towards the main sensors, almost coming

down the symmetry axis at closest approach. As the spacecraft receded from

Jupiter, the flow direction shifted away from the all of the cups. The

closest approach to Io occured on the outbound pass at SCET 1510.

Figures 5.2 and 5.3 are closeups of the Io flyby. Both are in

Io-centered coordinates; Fig. 5.2 is also a projection of the orbit into

Jupiter's equitatorial plane, while 5.3 plots the distance from the origin

of that projection against the height above the plane.

The Io flyby occured on the spacecraft's outbound pass, when Voyager I

flew about 20 thousand kilometers due south of the satellite. Though the

orbit was planned to fly directly through the flux tube, analysis of the

magnetic field data (Acuna et al (1981)) showed that the spacecraft missed

the Alfven wing, passing several thousand kilometers upstream of it.

Subsequent examination of the plasma data (Belcher (1981)) revealed a

signature which was interpreted as being due to the velocity perturbation

assocated with the flow around the wing. The approximate position of the

Alfven wing in the plane of the spacecraft orbit is shown in Fig. 5.2.
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During the Io flyby, the flow direction of a strictly corotating

plasma would have been almost perpendicular to the main sensor symmetry

axis. Table 5.1 lists the angle between the flow direction of a strictly

corotating plasma, corrected for spacecraft aberation, and the normals to

each of the PLS cups for each of the useful spectra taken during the flyby.

One lower half M-mode spectrum was taken every 192 seconds during the

flyby, and there are no useful data in the upper half spectra. The L-modes

taken during this time cannot be analyzed because the signal in the A-cup

is saturated; that is, the digitized currents were equal to the maximum

value for several channels, indicating that the true currents were higher.

5.2 Analysis of the Data

We have analyzed eight spectra taken in the vicinity of Io. Using the

same nonlinear least squares fitting technique described in Chapter 3, we

have attempted to determine the macroscopic parameters of the plasma at the

times of each of these spectra. The velocity determinations were then

compared with the predictions of the theory outlined in the previous

chapter. We shall first describe the determination of the plasma

parameters.

Figures 5.4-5.11 show the reduced distribution function plotted as a

function of equivalent proton velocity in each cup for each of the eight

spectra. The spectra were taken at SCET (spacecraft event time) 1424,

1451, 1454, 1457, 1500, 1504, 1507, and 1510, rerspectively. As in the

spectrum plots of Figs 3.3L.3.11, the staircases are the data and the smooth
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curves are the "best" fits. All of the spectra are smooth and almost

featureless, with a single, broad peak. Furthermore, in each spectrum the

peak in the A-cup is in a higher channel than the peaks in the B- and C-

cups. The D-cup spectra contain mostly noise, and were not included in the

fits.

To determine macroscopic plasma parameters from these spectra is a

difficult proposition. Since the flow is so very oblique to all of the

cups, the results depend critically upon the cup response function at large

angles. In addition, the plasma contains many different kinds of ions,

which are probably not in thermal equilibrium. In order to get any results

at all, we have had to make some assumptions about the chemical composition

and the distribution functions of the various ionic species. These

assumptions are:

1. The plasma consists of 4 species, with A/Z of 8, 16, 32, and 64.

2. The species all have the same bulk velocity.

3. The distribution function which describes each of the species is a

convected Maxwellian.

4. The species all have the same thermal speed.

As discussed in the previous chapter, measurements made by Voyager I

inbound (Bagenal and Sullivan (1981)) lead us to expect the plasma to

consist of various ionization states of Oxygen and Sulfur. The values of

A/Z for 0 ++, 0+ +++ ++ S , and SO are 8, 16, 10 2/3, 16, 32, and 64,2

respectively. We have not included S+++ in our fit in the interest of

reducing the number of parameters, and because, since the spectra are so

featureless, we do not expect to be able to differentiate between the

contribution due to a species with A/Z of 10 2/3 and its neighbors with
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A/Z of 8 and 16. The justification for the inclusion of the species with

A/Z of 64 is that we expect that the distribution functions will have

suprathermal tails, and we hope to be able to account for this in a rough

manner by including a very heavy species. In fact, it is impossible to fit

the higher channels without it. In some of the fits, the inclusion of the

heavy species resulted in driving one of the other densities negative; in

these cases we fit the spectra without the heavy species, omitting some of

the higher channels. In all of these cases, the derived bulk velocity was

almost uneffected by this change.

The assumption of a common bulk velocity is the least likely to be

violated of the four which we have made. The component of the bulk

velocity perpendicular to the magnetic field is determined by the ideal MHD

generalized Ohm's law (Eq. 4.11). Solving this equation for V, we find

*0 4.

= 2 5.1
B2

This is the same as the equation for the x I drift velocity of a single

particle moving in crossed electric and magnetic fields (see Rossi and

Olbert, chapter 2). This is no coincidence; the bulk velocity can be

thought of as the average velocity of a large number of particles gyrating

around the magnetic field with the same E x B drift velocity. Since the

latter velocity is independent of the mass or charge of the particle, all

species must have the same value of V .. Although the different species may

stream along t at different speeds when the magnetic field lines are open,

in closed line topology we expect j,will be zero. This is in fact what we

found from our analysis of these spectra.
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The assumption that the distribution functions are Maxwellian has

already been discussed in Chapter 1. Since the self-Maxwellization time

for the various species are comparable to or greater than the residence

time in the torus (see Table 4.1), we must consider the Maxwellian form as

no more than a convient way to parameterize the distribution function. As

long as the true distribution functions do not have multiple peaks, which

is indicated against by the smoothness of the spectra, a Maxwellian must be

a reasonably good approximation to the true distribution function around

the maximum. Therefore, our justification for this assumption is that it

is a reasonable representation of the true distribution function which

enables us to perform the two of the velocity space integrals of Eq. 2.2b

analytically.

Unfortunately, the fact that the bulk velocity is so oblique to the

cup normals implies that most of the signal comes from particles not near

the peak of the distribution function. The simulations indicate that the

largest contribution comes from particles about one thermal speed away from

the peak. We must conclude that our approximation of Maxwellian

distributions is a possible source of error. As mentioned above, the

inclusion of a species with a mass to charge ratio of 64 is an attempt to

compensate for the presence of suprathermal tails.

The assumption of a common thermal speed for all of the species, like

the assumption of the Maxwellian shape for the distribution functions, was

motivated partly by physical arguments and partly for computational

convience. Since the time scales for equipartition of energy between the

various ion species are comparable to or longer than the residence time in

the torus (see table 4.1), there is no reason to expect that the different
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ion species share a common temperature. We did try to fit the spectra with

the assumption of a common temperature for the various species; that we

were unable to do so convinced us that the different species do not have

the same temperature. Furthermore, there are many physical processes, such

as various wave-particle interactions or "pick-up", the process by which

the newly-made ions are accelerated up to corotational speed, which tend to

produce equal thermal speeds.

Since we really have no way of knowing a priori what the relationship

between the thermal speeds of the various species is, it would be nice to

be able to vary them independently. Unfortunately, the lack of detail in

the spectra makes this impossible. Furthermore, the extra computer time

involved in computing the derivatives with respect to each individual

thermal speed for the gradient search makes this approach impractical. We

must make some assumption which relates the various thermal speeds; the

assumption that they are all the same, in addition to being physically

plausible, has the advantage that it enables us to greatly reduce the

computer time required to fit each spectrum by taking advantage of an

approximate symmetry of the response function.

The quantity which we use in our fits is the "reduced distribution

function", defined as the current in a given channel divided by the voltage

width of that channel. This quantity can be expressed as

I *2 v

M k - exp{-(V - V 2} R(-1, Ak 5.2
k A I~i z zV V -

where R(vZ/ws,*kss) contains the effect of the response function. It is

important to note that to the extent that the dependence of the response
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function on the channel width and the suppressor voltage can be ignored,

the expression on the right side of Eq. 5.2 depends only on V z/w and vz w,

never on vk. This fact enables us to calculate the value of the "reduced

distribution function" in channel k for a species with mass A and charge
*

state Z from the value of the "reduced distribution function" in channel

*
k' for a species of mass A' and charge state Z ' from the formula

Ik'( k') Z ' 2 A 5.3
ak k A3k

if the average proton speeds characterizing channels k and k' are related

by

*

k' A' Z k 5.4vk,(A Z I'k

This approximation was used in calculating the "best fits" to the

spectra shown in Figs. 5.4-5.11. The procedure we followed to simulate a

spectrum is as follows: for a given bulk velocity and thermal speed we

first computed the reduced distribution function in all 128 channels for a

species with A=64 and Z =1. We then used Eqs. 5.3 and 5.4 to compute the

contribution due to the other species. Since, for a given channel k with

average proton speed vk the value of vk, required by Eq. 5.4 is probably

not equal to the average proton speed of any other channel, but rather lies

between two channels, we used linear interpolation between the adjacent

channels to compute I k'(vkI)/Afk for use in Eq. 5.3. For several test

cases, the approximate values of the "reduced distribution function"

calculated in this way were compared with the values obtained from
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calculations done without taking advantage of the scaling law just

described. The error introduced never exceeded 6%, and frequently was less

than 1%.

The parameters derived from the fits of the spectra of Figs. 5.4-5.11

are given in Table 5.2. In all of these spectra, the geometry is such that

the flow is almost perpendicular to the symmetry axis of the main sensor.

The A-cup look direction is closest to the flow. We expect the

determination of the velocity to be more reliable than the determination of

the densities, although the errors in these quantities are correlated. The

information about the flow direction is primarily contained in the relative

heights of the signals in the three cups; the further the flow direction

moves away from the axis of symmetry, the larger the difference between the

A-cup signal and the B and C cup signals becomes. The information about

the densities is primarily contained in the absolute height of the peaks.

If the true flow is closer to the main sensor symmetry axis than the fit

indicates, the density will be overestimated, since a larger density is

required to produce the same signal in a given cup when the flow is more

oblique. Conversely, if the true flow direction is further away from the

main sensor symmetry axis than the fit indicates, the density will be

underestimated.

There were several spectra taken after the spectrum of 1510 ( Fig.

5.11) which we were unable to fit because the difference between the signal

in the A-cup and the signals in the B- and C- cups were too l.%rge. At

about this same time, the magnetometer team noticed a field disturbance

which did not fit the model described in Chapter 4 (Acuna et al (1981)).

Our difficulty in fitting these spectra might be caused by a change in the
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plasma distribution function which is related to this magnetic field

disturbance.

5.3 The Flow Around the Alfven Wing

The velocities derived from the fits to the spectra of SCET 1451

through 1510 were compared with the theory which has been derived in

Chapter 4. To do this, we did a five parameter nonlinear least squares

fit, described hereinafter.

Equations 4 .43a, 4.43b, and 4.43c' describe the velocity at every

point in space as a function of the background flow velocity 0, the

magnitude of the magnetic line dipole moment U (B0 Rc sin eA) of the Alfven

wing, and the Alfven Mach angle eA. The only difficulty is that the

orientation of the coordinate system of Eqs. 4.43 also depends upon three

of these five parameters. This is because the z-axis of the coordinates of

Eqs. 4.43 points along the Alfven characteristic V.
A

To overcome this difficulty, we devised the following fitting

procedure. First we define one set of coordinates, called magnetic

coordinates, as follows. The center of Io is taken to be the origin of the

coordinate system. The unit vector -zmag points in the direction of the

extrapolated background magnetic field at the location of the spacecraft at

SCET 1500, as quoted in Acuna et al (1981). The unit vector xmag lies in

the plane containing zmag and the direction of strictly corotating flow,

making an acute angle with the flow direction, and y is defined so as tomag
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form a right-handed coordinate system. (The unit vector 2 was defined

to be antiparallel to the background magnetic field direction because B

points predominently south near the Jovian equatorial plane. In this way,

2 makes an acute angle with Jupiter's angular velocity vector. Compared

with a cylindrical coordinate system whose polar axis is Jupiter's spin

axis, 2 points in the same general direction as Icyl' mag points in the

same general general direction as $cyl, and y9 points radially in toward

Jupiter.)

To compare the theory with experiment, still another set of

coordinates is required. We call this set Alfven coordinates. The origin

of these coordinates is also the center of Io. The vector -zAlfven points

along VA (note: this is antiparallel to 2 as defined for Equations

4.32-4.45). The unit vector ^ lies in the plane determined by + andxAlfvenA

V0, so as to be perpendicular to zAlfven and make an acute angle with .

The unit vector y is defined so as to complete a right-handed system.

The rotation matrix for the transformation from magnetic coordinates to

Alfven coordinates is completely determined by the specification of V0 and

A. It is given explicitly by

A ~ A 5.5
Alfven mag

where

(cos OA cos a cos 6A sin a -sine A

R (sin cos a 0 ) 5.5a

(sin A sin a sin 6A sin a cos 6A
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and

sin a = y mag 5.5b

0( - a ) 2 + (1 - x ma) 2 1/2

We are now prepared to outline the fitting procedure. First, the

spacecraft position at the time of each of the seven spectra is computed in

magnetic coordinates. Then, a first guess for the five paramters is made

and used to compute the spacecraft positions in Alfven coordinates. The

theoretical velocity at each of the seven spacecraft positions is then

computed using Eqs. 4.43 and compared with the measured velocity obtained

from the fits to the spectra. The "best fit" values of the five parameters

are then found using a gradient search algorithm. These "best fit"

parameters are given in Table 5.3, while the measured components of the

flow velocity at each of the points are compared with the theoretical

values in Figure 5.12.

Since it is important to compare our results with the magnetic field

measurements, we shall now sumarize the results of the analysis of the

magnetic field data (Acuna et al (1981)). Acuna fit the magnetic field to

Neubauer's theory in the following manner. First, they assumed that the

background flow was strictly corotational, i.e. they set a equal to zero.

Then they assumed a value of eA. This defined their coordinate system.

In order to compare their measurements with the theory it was

neccessary to separate the perturbation magnetic field from the

(non-uniform) background field. The resulting values of 61 were then

compared with values predicted by Eqs. 4.42.
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At this point they introduced three more free parameters into their

model. According to Eqs. 4.42, once the orientation of the Alfven

coordinate system has been determined, the only free parameter remaining is

the dipole strength. In order to obtain a better fit, the location of the

dipole and its direction were varied so as to minimize an appropriately

defined X 2 This process was then repeated with different assumed values

for eA. The "best" value of 0A was chosen by the requirements that the

dipole location be close to the origin and that the angle between the

dipole direction and the 2i-direction be small. Their procedure was

essentially a five parameter nonlinear least squares fit employing a grid

search over the values of 0A and a gradient search through the space

spanned by the other four parameters.

Their analysis resulted in the following estimates for the values of

the parameters which are of interest to us: Alfven Mach number 0.15,

Alfven speed 400 km/sec, and "effective radius" of Alfven wing 1.1 R I.

In addition to the analysis using the plasma data alone, we also

tested Eq. 4.31. We assumed that the plasma velocity and the magnetic

field perturbation are related by

VA+ + A 5
V = V 0+ --- 6B 5.6

o B
0

We then performed a linear regression to determine the "best" values for 14

and V . The results are tabulated in Table 5.3. The value of the Alfven

speed is large, about 600 km/sec, while the background velocity has a large

component radially in toward Jupiter. Figure 5.14 is a plot, similar to Fig.

5.13, of the projections of 8B and 6V (as determined from the linear
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regression) into the plane perpendicular 2 . As can be seen from this

figure, there is a strong anticorrelation between 6B and 6V, as expected.

5.4 Discussion and Conclusions

We shall now examine the derived plasma parameters for the eight spectra

which we fit (Table 5.3). Figure 5.13 shows, superimposed on the spacecraft

trajectory, the projection of the bulk velocity vector into a plane

perpendicular to the background magnetic field for each of the seven spectra

taken in the vicinity of Io. As the spacecraft passed the flux tube, the

radial component of the velocity varied smoothly, decreasing from -4 km/sec at

1451 to -23 km/sec at 145T, then increasing again to 10 km/sec at 150T before

finally decreasing again to 0 in 1510. This is the trend one would expect for

the flow around the Alfven wing; as Voyager approached the wing from the

direction of Jupiter, it first saw the plasma flowing toward the planet as it

passed through streamlines which passed around the side of the flux tube

toward Jupiter. As Voyager continued its outbound journey, it passed through

streamlines which passed the flux tube on the side away from the planet, hence

the outward flow. As Voyager left the flux tube behind, it entered a region

where the flow was undisturbed. We conclude that the flow observed by Voyager

qualitatively agrees with what we would expect to see if our model is correct.

Unfortunately, the maximum inward flow is much greater than the maximum

outward flow, and there seems to be a systematic inflow of plasma towards

Jupiter. In addition, there is a correlation between the derived densities

and the amount of inflow. The larger the speed of the inflow, the larger the

densities. Since we really do not expect there to be such large density
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fluctuations, and there is no theoretical reason for this correlation, we

shall attempt to explain this effect in terms of a systematic error in our

fitting procedure.

As mentioned hereinbefore, an error in the determination of the velocity

which changes the angle between the velocity vector and the main sensor

symmetry axis will be associated with a corresponding error in the density

determination. This can be caused by a violation of any of the assumptions

described in the preceding section. If this is the case, we expect that the

density changes are artifacts of the fitting procedure, and that the change in

the radial component of the velocity is less than the result of the fit. We

expect that the overall trend is real, however. Since a negative radial

component of plasma velocity corresponds to the flow moving further away from

the main sensor symmetry axis, and the more oblique the flow is the less

accurate we expect our approximation to be, we expect that this effect can

cause an overestimate of the average radial inflow and a corresponding -

overestimate of the density. Such a systematic error would also have the

effect of reducing the large value of VA which was determined from the linear

regression with the magnetic field data so as to bring this estimate of VA

into agreement with the value determined by Acuna et al.

The thermal speeds derived from the fits are all between 30 and 36

km/sec. This is consistent with there being no change in the thermal speed of

the plasma throughout the flyby.

The north-south component of all of the velocity vectors is consistent

with zero. This is what we expect, considering that the i field points almost

directly due south, and we do not expect to see any flow along E.
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The azimuthal component of the bulk velocity decreases as Voyager

approached the Alfven wing, and then increased again as the spacecraft left

the wing. Again, this is just the trend one would expect to see in the flow

as it passes around the wing.

We will now procede to examine the paramaters describing the Alfven wing

which we determined from the non-linear least squares fit to the theory that

was expounded in Chapter 4. We first consider a, which measures the angle

between the background flow and rigid corotation. The derived value of 180 is

much larger than the expected value of 0. The systematic error described in

the preceding paragraph would account for this discrepancy.

The value of our determination of V0 * z ,mag the component of the bulk

flow along the direction of the background magnetic field, is 0. This is

exactly what we expect for a system with closed magnetic field lines. Because

the B- and C- cup look directions are symmetric with respect to 3, our

measurements are very sensitive to small deviations of this component of

velocity. We are therefore very confident that this result is not affected by

any systematic error of any kind.

Our derived value of the magnitude of the component of the background

flow perpendicular to t is 63 km/sec. This is slightly greater than the

expected value of 57 km/sec. We consider these values to be consistent to

within experimental uncertainties.

Our value of the Alfven velocity is 250 km/sec. It should be emphasized

that the only magnetic field data used in this determination was the direction

of the background field. The values of the Alfven velocity from the mass

density measurements and the measured field strength range from 160-250

km/sec. While the same systematic error' would tend to increase the latter of
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to be made. These are: only species with A/Z of 8, 16, 32, and 64 are

present, all of the species have the same streaming velocity, the distribution

function of each of the ionic species can be approximated by a convected

Maxwellian, and all of the species have the same thermal speed. The velocity

determination from seven of these spectra were then used to determine the

parameters of a model of the Io-inagnetosphere interaction based on the work of

Neubauer (1980). Although the quantitative agreement with the theory was not

outstanding, the results confirm the overall picture of the plasma flow

pattern being analogous to incompressible flow around a cylinder.

The discrepencies between the theory and the observations are probably

caused by the violation of one or more of the aforementioned assumptions. We

have argued that a systematic error whose primary effect is to cause us to

overestimate the angle between the direction of the flow and the main sensor

symmetry axis could account for all of the discrepencies. In particular, the

assumptions that all of the ion species have the same thermal speed and that

the distribution functions can be approximated by convected Maxwellians are

certainly violated to some extent and this might be the cause of the

systematic error.

An additional complication which we have not discussed before is that the

spacecraft potential with respect to the ambient plasma is probably not zero.

In a quasi-steady state situation, the net electric current flowing into the

spacecraft must be vanish. There are three main contributions to this

current; positive ions, electrons, and photoelectrons caused by the sun. In

the solar wind, the spacecraft tends to be positively charged, since if the

spacecraft were neutral the current due to the photoelectrons would dominate

that due to the plasma electrons, the contribution due to the positive ions
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being negligible due to their much lower velocities. In the high densities of

the Io plasma torus, the situation is reversed; the plasma electron current

would overwhelm the photoelectron current, resulting in the spacecraft

becoming negatively charged. Analysis of the electron data taken by Voyager I

near Io indicate that this is in fact the case (Ed Sittler, private

communication).

Unfortunately, the effect of the spacecraft potential is difficult to

compensate for. Its effect is largest in the lower channels; in channels for

which k sc the effect is entirely negligible. This effect should be

taken into account in future work.

All of these difficulties notwithstanding, we expect that the methods of

analyzing the plasma data which we have developed in this thesis can be

profitably applied to other spectra, not only those taken at Jupiter, but

those from the Saturnian system as well.
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Table 2.1

Main Sensor Sensitive Area (Normalized)

S 0.0 2.0 4.0 6.o 8.0 10.0 12.0 14.o 16.0 18.0 20.0
x

.019 .019 .019 .019

.15 .15 .15 .15

.40 .40 .40 .40

.70 .70 .70 .67

1.00 1.00 1.00 .93

1.00 1.00 1.00 .93

1.00 1.00 1.00 .93

1.00 1.00 1.00 .93

1.00 1.00 1.00 .91

1.00 1.00 .90 .77

.88 .80 .71 .59

.58 .55 .49 .39

.28 .275 .252 .205

.076 .076 .076 .068

.0 .0 .0 .0

Grid

Spacecraft

Voyager I

Voyager II

.019

.15

.363

.60

.82

.82

.82

.82

.75

.62

.46

.285

.138

.037

.0

.019 .013 .0 .0

.13 .085 .034 .006

.305 .225 .127 062

.50 .383 .248 .144

.69 .53 .370 .227

.69 .53 .370 .227

.69 .53 .370 .227

.67 .51 .367 .227

.60 .45 .328 .212

.49 .363 .257 .161

.347 .243 .156 .084

.213 .109 .049 .013

.069 .023 .002 .0

.0072 .0 .0 .0

.0 .0 .0 .0

.0

.0

.019

.063

.108

.108

. 108

.108

. 108

.075

.030

.0

.0

.0

.0

.0

.0

.0008

.oo65

.0123

.0123

.0123

.0123

.0123

.0079

.0022

.0

.0

.0

.0

Table 2.2

Relative Angles of the Grids in the D-cup

a a2 a3 a4 a5 06 aM S

00 620 500 550 400 40 680 00

00 620 800 550 240 00 680 100

S
y

-16.3

-14.3

-12.3

-10.3

-8.3

-6.3

-4.3

-2.3

-0.3

1.7

3.7

5.7

7.7

9.7

11.7
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Table 3.1
Plasma Parameters From Cruise Maneuver on 14 September 1978

Time Number V V

305. -8.

221. -8.

118. -5.

11.4 -6.4

10.9 -6.5

17.8 -6.6

17.5 -7.0

-81.5 -7.8

-184. -4.7

-276. -2.1

-341. -1.6

378. ±1.0

370.±0.4

372. ±03

370.±0.2

368.±0.3

371.±0.2

369. ±0.3

372.±0.4

371.±0.7

371.±1.0

377.±1.3

VTT
18.2±1.2

11.8 ±0.8

9.1±0.8

10.0±0.8

9.5±1.1

7.0±0.9

6.5±1.1
8.1±1.0

10.8±0.9

13.8±0.6

9.0 0.7

VN
-23.8±1.4

-19.1±0.9

-12.9±1.0

-16.2±0.8

-16. o±i.1

-14.1±0.9

-14.3±1.2

-15.3±1.0

-13.8±1.0

-13.9±1.0

- 9.8±1.3

N
0

.284±.008

.300±.007

.294 ±.009

.293±.009

.276 ±.011

.237±.008

.258±.010

.304±.012

.291±.009

.258±.006

.278±.007

w

19.8±.5

16. 5 ±.3

17.2±.2

16.4±.2

17.7±.3

17.0±.3

18.3±.3

15.9±.3

16.4±.3

14.3±.4

18.1±.6

Table 4.1

The Physical Properties of Io

Mass

Radius

Volume

Distance from Jupiter

Orbital Speed

Orbital Period

Rate of Mass Injection into Torus

8.9 x 1022 kg

1820 km

2.53 x 1010 km3

4.24 x 105 km

17.3 km/sec

1.54 x 105 see

6 x lo29 AMU/sec

(4.5 x 10-8 )

(5.9 Rj)

(42hrs, 48mins, 38sec)

* From Hill et al (1983)

2345

2313

2315

2316

2316

2243

2243

2211

2212

2248

2216

1

2

3

4

4a

5

5a

6

7

8

9

Vz VR

225.

297.

353.

370.

368.

370.

369.

363.

323.

248.

161.
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Electron number density

Electron temperature

S + density

S++ number density

S+ H number density

0+ number density

0 number density

Ion thermal speed

Mass density

Magnetic field strength

Alfven velocity

Bulk speed of corotating plasma

Alfven Mach number

Electron plasma frequency

Electron gyrofrequency

Ion gyrofrequency

Electron gyroradius

Skin depth

Table 4.2

neters of Model Plasma

1900 cm~3

5 eV

165 cm-3
-3450 cm-

65 cm-3

6oo cm 3

20 cm~3

30 km/sec (80 eV)

3.2 x 10 AMU/cm3  (5.3 x 10-20 g/cm3

2.1 x 102 gauss

260 km/sec

74.1 km/sec (inertial frame)

56.8 km/sec (Io rest frame)

0.22
16 -1

2.4 v 10 sec
5 -13.6 v 10 sec

12.6 secJ1 (0+)

4.24 m

20 km
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Table 4.2 continued

Debye length

Interparticle distance

Number of electrons in Debye sphere

Ion gyroradius

Centrifugal acceleration

Magnetic energy density

Thermal energy density

B

Self-Maxwellization times

Thermal relaxation times

Plasma residence time in torus

Period of Io

Rotation period of Jupiter

Plasma time of flight past Io

*

65 cm
8 X 10-2 am

2.3 x 109

3 km (0+ with w=30 km/sec)

33 cm/sec (Io rest frame)

1.6 x l0-5 ergs/cm3

6.3 x 107 ergs/cm3

5.2 x 10~ 2

65 see (electrons)

24 days (0+)

47 days (0++

340 days (s)

8 days (S )
12 days (S )
50 hrs (ion-electron)

1-50 days (ion-ion)

30 days

43 hours

10 hours

30 see

Estimated from mass injection rate of Table 4.1, assuming that the torus

has a radius of 1 Rj.
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Table 5.1

Angles Between Cup Normals

and the Flow Direction of a Strictly Corotating Plasma

During Io Flyby on 5 March 1979
SCET 0 B 0 D
1422 570 860 890 1630

1451 640 930 960 1690

1454 640 930 960 1690

1457 650 940 970 1690

1500 660 950 980 1700

1504 670 950 980 1710

1507 670 960 990 1710

1510 680 960 990 1710

Table 5.2

Plasma Parameters Derived From Spectra Taken Near Io

Difference from Corotation

SCET AVr AV z nO++ n0+ n + p w VA
1422 - 4.9 4.5 - 2.9 593 226 801 3.9 31 210

1451 - 4.2 1.2 - 0.7 702 104 875 4.1 35 200

1454 -13.T - 2.9 - 1.4 1044 289 1356 6.5 36 160

1457 -22.7 - 6.2 - 0.5 1088 602 1233 6.7 36 160

1500 -16.4 - 7.7 - 0.7 886 338 706 4.2 36 200

1504 4.1 - 5.4 - 3.3 538 228 500 2.8 33 250

1507 9.7 10.0 - 7.1 457 253 500 2.7 33 250

1510 - 5.0 9.5 - 5.6 621 338 682 3.7 32 210

All speeds are in km/sec

n in cm

p in 10 AMU/cm3

Velocity differences in Jupiter equatorial cylindrical polar coordinates

Table 5.3

Results of Linear Regression to Test Equation 4.31

V0 ke mag km/,eYmag - / 60mag A
60 km/sec, 13 km/sec -2 km./sec 600 km./sec
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Figure Captions
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Figure 2.1 The PIS Experiment. The figure consists of a sketch of

instrument, showing the positions of the four cups.

Figure 2.2 The Voyager Spacecraft. The figure consists of a drawing of the

spacecraft, showing the location of all of the scientific instruments and the

orientation of the axes of the spacecraft coordinate system.

Figure 2.3 The PLS Experiment Aperture Positions. The figure shows the

position of the four cups as viewed from along the main sensor symmetry axis,

and the directions of the coordinate axes of the cup coordinate system.

Figure 2.4 Main Sensor Cross-section. The figure shows a cross-section of

one of the cups in the main cluster, including the positions of the grids and

the collector.

Figure 2.5 Main sensor Aperture and Collector Areas. The figure shows the

shape and size of the aperture and the collector of a main sensor cup.

Figure 2.6 Modulator Voltage and Collector Current Versus Time. The figure

shows the voltage waveform which is impressed on the modulator grid and the

resulting collector current waveform for a hypothetical positive ion

measurement.



(102)

Figure 2.7 Geometry for Grid Transparency Calculation. The figure shows a

beam of particles incident on a grid of parallel, cylindrical wires. a is the

angle between the beam direction and the normal to the plane of the grid, L is

the distance between the centers of two adjacent wires, and d is the wire

diameter. The wires run in the y-direction, and the 2-direction is normal to

the grid plane, with +' making an acute angle with the direction of the

incident beam.

Figure 2.8 Definition of the Shift Vector. The figure shows the outline of

the collector of one of the main sensor cups, with the image of the aperture

in the collector superposed on it. An incident monoenergetic beam of

particles will have the shape of the aperture as it travels through the cup.

The shift vector 5 is the vector which lies in the collector plane and points

from the point directly underneath the center of the long side of the aperture

to the corresponding point on the image of the aperture in the incident beam.

Figure 2.9 Particle Trajectory in a Main Sensor Cup. The figure shows the

projection into the x-z plane (cup coordinates) of the path of a particle

through one of the main sensor cups. The locations of the nine grids are

shown, along with identifying numbers which correspond to the grid numbers in

Figure 2.4. The x-component of the shift vector is shown as the difference

between the x-coordinate of the particle as it crosses the plane of the

aperture grid and the x-coordinate of the particle when it reaches the

collector.
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Figure 2.10 Potential Versus Distance From Aperture. The figure shows the

electrostatic potential inside the cup plotted against z (cup coordinates) in

the approximation that the potential depends only on z. Three cases are

shown; a) the main sensor, b) the side sensor in positive ion mode, and c)

the side sensor in the electron mode.

Figure 2.11 The Sensitive Area of a Main Sensor Cup. The figure shows the

16 distinct regions in which there is a different functional dependence of the

sensitive area on the shift vector.

Figure 2.12 Side Sensor Cross-Section. The figure consists of a

cross-section of the D-cup, showing the locations of the eight grids and the

collector. Compare with Figure 2.4.

Figure 2.13 Common Area of Two Circles. The figure shows the common area of

two circles of different radius as a function of the distance between their

centers. It also defines the parameter X. If the line connecting the centers

of the two circles is taken to be the x axis, with the center of the larger

circle at x=O, then X is the x coordinate of the points of intersection of the

two circles.



Figure 2.14 Sensitive Area of the D-cup. The D-cup sensitive area is the

common area of three circles of different radii all of whose centers lie on

the same line. The figure shows four different cases for which different

combinations of arcs from the three circles determine the boundary of the

common area. The formula for the common area for the cases shown in a,b, and

c is given by Equation 2.27a, while the formula for the case shown in d is

given by Equation 2.27b. The relative positions of the points XAC and XGC

determine which formula is to be used.

Figure 2.15 Main Sensor Sensitive Area Versus S /h. The figure shows a

family of curves which represent the main sensor sensitive area as a function

of the ratio of the y-component of the shift vector divided by the height of

the cup, with the x-component of the shift vector as a parameter.

Figure 2.16 Yu and Y' Versus S /h. The figure shows a graph of two of theu u x

functions required for the trapezoidal approximation to the sensitive area of

the main sensor cups.

Figure 2.17 Main Sensor Sensitive Area Versus S y/h (Trapezoidal

Approximation). The figure shows a family of curves which represent the main

sensor sensitive area as a function of the ratio of the y-component of the

shift vector divided by the height of the cup, with the x-component of the

shift vector as a parameter, in the trapezoidal approximation. Compare with

Figure 2.15.
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Figure 2.18 Main Sensor Sensitive Area Versus |S |/h (Trapezoidal

Approximation). The plot is valid for Sy equal to zero.

Figure 2.19 3-D Plot of the Sensitive Area Versus X and Y in the Trapezoidal

Approximation.

Figure 2.20 3-D Plot of the Full Response Function. The figure shows the

full response function plotted versus X and Y, utilizing the trapezoidal

approximation (defined by Equations 2.3, 2.9, and 2.31-2.34).

Figure 3.0 The Cruise Maneuver. The figure consists of four lines, each of

which has several dots on it. Each line represents a polar plot of the cup

coordinates of a hypothetical purely radial solar wind during the cruise

maneuver. The dots correspond to the times of the M-mode spectra. Each dot

which corresponds to the time of a spectrum which was analyzed is numbered.

The spectrum taken when the spacecraft was in the orientation corresponding to

point 1 is plotted in Figure 3.1; that corresponding to point 2 is Figure 3.2;

etc. The orientation of the spacecraft was the same for the spectra shown in

Figures 3.4 and 3.5.

Figure 3.1 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 1. The staircases are the data, while the smooth curve is the fit.
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Figure 3.la Reduced Distribution Function Versus Velocity for Cruise

Maneuver Spectrum 1. The staircases are the data, while the smooth curve is

the fit. The lower channels in the B-cup were not used in determining the

plasma parameters; they are included to illustrate that the currents in these

channels is not only noise, but actually includes some signal.

Figure 3.1b Reduced Distribution Function Versus Velocity for Cruise

Maneuver Spectrum 1. The staircases are the data, while the smooth curve is

a simulation done assuming "unity" response using the plasma parameters

determined from the fit which is plotted in Figure 3.1. Note how the

locations of the peaks in the simulation are correct, but their heights and

shapes are wrong.

Figure 3.2 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 2. The staircases are the data, while the smooth curve is the fit.

Figure 3.3 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 3. The staircases are the data, while the smooth curve is the

fit.

Figure 3.4 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 4. The staircases are the data, while the smooth curve is the fit.

This fit was done using the full response function. The data are the same as

were fit using the "unity response" approximation for Figure 3.4a.
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Figure 3.4a Reduced Distribution Function Versus Velocity for Cruise

Maneuver Spectrum 4. The staircases are the data, while the smooth curve is

the fit. This fit was done using the "unity" response approximation. The

data are the same as were fit using the full response function for Figure 3.4.

Figure 3.5 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 5. The staircases are the data, while the smooth curve is the fit.

This fit was done using the full response function. The data are the same as

were fit using the "unity response" approximation for Figure 3.5a. The

orientation of the spacecraft was the same as for Spectrum 4.

Figure 3.5a Reduced Distribution Function Versus Velocity for Cruise

Maneuver Spectrum 1. The staircases are the data, while the smooth curve is

the fit. This fit was done using the "unity response" approximation. The

data are the same as were fit using the full response function for Figure 3.5.

The orienation of the spacecraft was the same as for Spectrum 4.

Figure 3.6 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 6. The staircases are the data, while the smooth curve is the fit.

Figure 3.7 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 7. The staircases are the data, while the smooth curve is the fit.
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Figure 3.8 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 8. The staircases are the data, while the smooth curve is the fit.

The change in the orienation of the spacecraft between the times of the peaks

in the various cups was corrected for.

Figure 3.8a Reduced Distribution Function Versus Velocity for Cruise

Maneuver Spectrum 8. The staircases are the data, while the smooth curve is

the fit. The change in the orientation of the spacecraft between the time of

the peaks in the different cups was not compensated for. Compare Figure 3.8.

Figure 3.9 Reduced Distribution Function Versus Velocity for Cruise Maneuver

Spectrum 9. The staircases are the data, while the smooth curve is the fit.

Figure 4.1 The Goldreich Picture of the Interaction between Io and the

Jovian Magnetosphere. Field aligned currents flow in the fluxtube which links

Io. The current system is closed in the Jovian ionosphere. A similar system

for the southern hemisphere is not shown.

Figure 4.2 Io's Alfven Wings. Two views are shown of the Alfven wing and

associated current system. Figure 4.2a shows the Alfven wings as seen looking

along the flow direction of the corotating plasma. Figure 4.2b shows the

Alfven wings as viewed by an observer located along on the line which connects

Jupiter and Io. In model shown here, due to Drell, it is not neccessary to

close the current system in the Jovian magnetosphere, so the currents are

determined by the Alfven wave impedence of the plasm.
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Figure 4.3 The Streamlines of Potential Flow Around an Infinite Cylinder.

Figure 5.1 The Voyager I Jupiter Encounter. The figure shows the projection

of the spacecraft trajectory into the Jovian Equatorial plane, along with the

directions of the main sensor symmetry axis and the D-cup -z axis. Note how

the D-cup points into the corotating flow on the inbound pass, while none of

the cups points into the flow on the outbound pass.

Figure 5.2 The Voyager I Io Flyby. The figure shows the trajectory in an

Io-centered coordinate system, projected into Jupiter's equatorial plane. The

y-axis points toward Jupiter, the x-axis points in the direction of the

corotating flow, and the z-axis completes a right-handed system. The axes are

labeled in units of Io radii. The circle with its center at the origin is Io;

the circle with its center displaced from the origin is the probable position

of the Io Alfven wing in the plane of the spacecraft orbit.

Figure 5.3 The Voyager I Io Flyby. The coordinate system used to describe

the position of the spacecraft this figure is that defined in the caption for

Figure 5.2. The figure shows z plotted against /(x2 + y2)6

Figure 5.4 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1422. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.
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Figure 5.5 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1451. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.6 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1454. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.7 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 145T. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.8 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1500. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.9 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1504. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.
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Figure 5.10 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1507. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.11 Reduced Distribution Function Versus Velocity for the spectrum

taken at SCET 1510. The staircases are the data; the smooth curves are the

fits. The dropouts in the spectra are caused by interference with another

instrument on the spacecraft.

Figure 5.12 Flow Velocity Versus Time. The figure shows the flow velocities

determined from the fits to the spectra of Figs. 5.5-5.11. The smooth curves

are the velocities determined from a "best fit" to the model of Neubauer. The

quantities V1 , V2 and V3 are the components of V along I' , y , and 2

respectively.

Figure 5.13 Plasma Bulk Velocity at Different Positions in the Vicinity of

Io. The figure shows the projection of the bulk velocity of the plasm into a

plane perpendicular to the background magnetic field direction. The points at

which the vectors representing the velocities intersect the line which

represents the spacecraft orbit corresponds to the position of the spacecraft

at the time the velocity measurement was made.
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Figure 5.14 SV and- d near Io. The figure shows the projection of the

deviation from uniform flow iSV and the deviation from a dipole field 6B into a

plane perpendicular to the background magnetic field. The points of

intersection of the vectors iSV and 6B with the spacecraft trajectory are the

positions of the spacecraft at the time of the measurements.
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nable of nominal constants r MS.

Ilie delta values are the full width.

M.=de. X =

=;CCR T.EUISFCL
ST=F VOLTAGE

1
2.

4
5
6
7
8
9

10
171
12
13
14
15
16

10.0000
1-2.1980
14 .4 .7 64
16.8383
19.2868
21.8249
24.4561
27.1836
30.0.110
32.9420
35.9803
39.1200
42.3951
45.7797
49.2884
52.9256

3
4
5
6
7

'2..

12
23
.4

16

PEAK
VOLTAGE

12.1980
14..,471 104
16.8383
19.2868
21. 8249
24. 456 1
27.1836
30.0110
32. 91420.
35.9803
39..1300
42.3951
45.7797
49.2984
52.9256
56.5960

AVERAGE
VOLTAGE

11.0990
12.3372
1565 74
18.0626
20.55 39
23.1405
25. 8198
28.5973
.31. 4765
34. 46 12
37.5552
40.7625
44.0874
47.5340
51. 1070
54.8108

DELTA
VOLTAGE

2. 197 95
*2-27846
2.36192
2. 4S846

2. 6.31 12
2.72751
2.82742
2. 31 00
a. 038 36
3.14967
3.26505
3.38466
3.50865
3.63718
3.77042

PRCTONS
AV=AGE

46.0847
50. 531
54.7646
58.8298
62.7640
66.5970
70.3517
74.0422
77.6829
81. 2S8
84.8573
88. 4 0 83
9 1. 9'4 U7
95.4725
98. 99-58
102.522

4. 57437
U.32uuc
U.13652
3- 99194
2. 37860
3.78922
2.71944
2.66253
3. 61877
3. 58 509
3.55 99 6
3. 54 213
3. 5 30 6 7
2. 52 478
3. 52381
3.52729
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page 2 of 11Table of nominal constants for MJS.

The delta values are the full width.

M mode. K M 1.036633

MODULATOR
STEP

17
18
19
20

-2.1
22
23

-24
25
26
27
28
29
30
31
32

T.%RZ:MOL
VOLTAGE

56.6960
60.6045
64.6562
68.8564
73.2104
77.7239
82.4027
87.2529
92.2809
97.4930
102.296
108.497
114.303
120.322
125.561
133.029

PEAK
VOLTAGE

60.6045
64.6562

.68.8564
73.2104
77.7239
82.4027
87.2529
92.2309
97.4930
102.896
108.497
114.303
120.322
126. 56 1
143.029
129.734

AVERAGE
VOLTAGE

58.6502
62.6304
66.7563
71.0334

. 75.4671
80. 063.3
84.8278
89.7669

- 94.8869
100. 194
105.696

. 111.400
117.313
123. !442
129.795
136.381

PROTCNS
MODUZATOR

STEP

18
19

21
22

1.06.053
109.594

116.716
120.304
123.914
127.548
1 1.209

.138.622
142.378
146.169
149.998
153.867

21.71

26
27
28

DELTA
VOLTAGE

3.90854
4.05171
4.2001'3
4.35400
4.51350
4,67885
4.85023
5.02792
5.521210
5.40303
5.60097
5.80614
6.01883
6. 23932
6.46788
6.70482

AVE.RAGE
SPEZ

3.
1.
.J.

3.
3.
3.
3.

3.
3.

3.
3.
3.
3.
3.
3.

53La75
54587
56033
57790
59835
621,50
6"71 3
67531
7056 9
73330
77303
80980
84353
88921
9)3175
97613
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Table of nominal constants for MJS.

The delta values are the full width.

M4 mde. KC a 2.036633

TI SHOLO
VOLTAGE

139.734
146.684
15.3.889
16 .358
169.101.
177. 127
185.447
194. 072
203.013
212. 282
221.890
231.850
242. 174
252. 877
263. 972
275.474

PEAK

VOLTAG

146.684
153.889
161.58
169.101
177.127
185.447
194.072
203.013
212.282
221.890
231.850
242.174
252. 877
263. 972
275.474
287. 396

AVE'AC
VOLTAG

143.209
150.287
157.624
165. 230
173.114
131.287
189.760
198.543
207.648
277.086
226. 870
237.012
247.526
258.425
259.723
281.435

page 3 of 11

DETA
VOLTAGC

6.35042
7.20505
7.46398
7.742 sa
8.02621
8.32024
8. 6250 3
8.94098
9.26830
9.60791
9.95996

.10.3247
10.7029
11.0950
11. 50 15
11. 92259

PROTONS
AVERAGE
SP ZD

165.731
169.777
173.872
178.018
182.216
186.46 8.
190.776
195.141
199.566
204.051
208.599
213.211
217.889
222.634
227. 4Q 9
232.335

DETA
Sp ZZ

4.
4.
4.
4.
4.
4.
4.

4.
4.
4.
4.
4.
IL.
4.
4.
4.

022>.
07030
12004
17149
22468

336 447

39462

45434
51605
5794 7
644t,9

71125
77977
84q9 1
92197

STEP

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48

,-M- 14%0 4.e%

S7D z

33
34

41

35
36
27
48
29

41

42

44
45
46
47
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page 4 of 11Table of nominal constants for MJS.

The delta values 4re the full width.

M mode. K 1.03663

MODULATOR
STEP

49
50

- 51
52
53
54
55
56
57
58
59
60
61
62
63
64

THRESHOLD
VOLTAGE

287.396,
299.756
312.568
325.850
339.618
353.891
368.687
384.024
399.923
416.40$5
433.490
451. 202
469.562
488.594
508.324

28. 777

PEAK
VOLTAGE

299.756
312.568
325.850
339.618
353.891
368.687
384.024
399.923
416.405
433.490
451.202
469.562
488.594
508.324
528.777
549.979

PROTONS
MODULATOR

STEP

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

AVERAGE
SPEED

237.294
242.327
247.437
252.624
257.892
243.241
268.674
274.193
279.798
285.493
291.279
297.158
303.132
309.203
315.373
321.644

AVERAGE
VOLTAGE

293.576
306.162
31 9. 209
332.734
346..755
361.289
376.355
391.973
408.164'
424.948
442.346
460.382
479.078
498. 459
518.551
539.378

DELTA
VOLTAGE

12.3596
12.8123
13.2817
13.7683
14.2727
14.7954
15.3374
15.8992
16.4817
17.0854
17.7114
18. 3601
19.0327
19.7300
20.4526
21.2019

DELTA
SPEED

U. 99552
5. 07096
5.14831
5.22735
5.30808
5.39071
5. 47 50 a
5.56147
5.64981
5. 7398U
5.83177
5.92602
6.02197
6.12003
6.21999
6.32227
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page 6 of 11Table of nominal constants for MJS.

The delta values are the full width.

M mode. K = 1.036633

MODULATOR
STEP

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

THRESHOLD
VOLTAGE

1016..92
1056.00
1096.52
1138.52
1182.06
1227.19
1273.98
1322.48
1372.76
1424.88
1478.90
1524.91
1592.97
1653.16
1715.55
17;0.# '

MODULATOR

STEP

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

PEAK
VOLTAGE

.1056.00
1096.52
1138.52
1182.06
1227.19
1273.98
1322.48
1372.76
1424.88
1478.90
1534.91
1592.97
1653.16
1715.55
1780.22
1847.27

AVERAGE
VOLTAGE

1036. 46
1076.26
1117. 52
1160.29
1204.62
1250.58
1298.23
1347.62
1398.82
1451.89
1506.91
1563.94
1623.06
1684.35
1747.89
1813.75

DELTA
VOLTAGE

39.0840
40.5156
41.9999
43.5383
45.1333
46.1866
48.5005
50.2773
52.1191
54.0283
56.0076
58.0591
60.1860
62.3909
64.6763
67.0437

PROTONS
AVERAGE

SPEED

454.349
462.976
471.752
4 8 C. 68 1
4389. 4 9
499.007
508.410
517.978
527.713
517.619
5u7.,E 98
557.955
568.291
-79. 2 1C

58 9 .82,

DELTA
SPEED

8.40751
9.55270
F.70063
8. 85173
9. 00599
('. 1621 -1
9. 32216
9.4846A
9.65058
9.31954
9. 99188
10. 1671
10. 3459
10.5278
10. 7134
1 u.9025
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Table of nominal constants for MJS.

The delta values are the full widths.

M =de. K = 1.036633

page 5 of 11

MODULATOR
STEP

65
66
67
68
69.
70
71
72
73
74
75
76
77
78
79
80

THRESHOLD
VOLTAGE

549.979
571.958
594.741
618.360
642..843..
668.224
694.534
721.808
750.081.
779.390
809.772
841.268
873.917
907.762
942.848,
979.218

PEAK
VOLTAGE

571. 958
594.741
618.360
642.843
668.224
694.534
721.808
750.081
779.390
B09.772
841.268
873.917
907.762
942.848
979.218
1016.92

AVERAGE
VOLTAGE

560.968
583.349
606.550.
630.601
655.533

*681.379
708.171.
735.944-
764.735
794.581
825.520
857.593
890.840
925.305
961.033
998.069

MODULATOR
STEP

AVERAGE
SPEED

' 328.018
334.498
341.085
347.782
354.590
361.513
368.552
375.709
382.988
390.390
397.918
405. 574
413.361
421.282

U2 9. 3 3 8
437.533

DELTA
SPEED

6.42646
6.53276
6.64139
6.75213
6.86498
6.98037
7. 09766
7.21749
7.33985
7.46432
7.59155
7. 72088
7.85297
7.99780
S. 12496
8.26465

DELTA
VOLTAGE

21. 9785
22.7837
23.6184
24.4836
25.3804
26.3103
27.2739
28.2732
29.3088
30.3826
31.4956
32.6492
33.8452
35.0852
36.3704
37.7026

PROTONS

65
66
67
68
69
70
71
72
73
74

76
77
78
79
so
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Table of nominal constants for MJS.

The delta values are the full widths.

M mode. K = 1.036633

MODULATOR -THRESHOLD PEAK
STEP VOLTAGE VOLTAGE

1847.27
..1916.77
1988.82
2063.51
2140.93
2221.19
2304.39
2390.63
2480.04
2572.72
2668.80
2768. 40
2871.64
2978.67
3089. 61
.3204.3 ~:

1916.77
1988.82
2063.51
2140.93
2221.19
2304.39
2390.63
2480.04
2572.72
2668.80
2768.40
2871.64
2978.67
3089.61
3204.63
3323.85

page 7 of a

AVERAGE
VOLTAGE

1882.02
1952.79
2026.16
2102.22
2181.06
2262.79
2347.51
2435.34
2526.38'
2620.76
.2718.60
2820.02
2925.15
3034.14
3147.12
3264. 24

DELTA
VOLTAGE

69.5017
72.0476
74.6870
77.4229
80.2590
83. 1992
66.2471
89.4065
92.6816
96.0769
99.5964
103.245
107.027
110.943
115.012
119.225

PROTONS
MODULATOR

STEP
AVERAGE

SPEED

600.819
612.011
623.402
63U.995
646.792
6 9.79 9
671.020
683.457
696.115
709.999
722.111
73 5. 4L57
749.042
76.868
776.941
791.266

DELTA
SPEED

11.0948
1 1.2910
11.4907
11.6 42
11.9013
12.1126
12.3275
12.5467
12.7697
12.9971
13.2285
13.4641
13.7044
13.9489
14.1979
14.4515

97
98
99

100
'101
102
103
104
105
106
107
108
109
110
111
112

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
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page 8 of 11Table of nominal constants for MJS.

The delta values are the full widths.

M mode. K = 1.036.633

MODULATOR
STEP

113
114

-115
116
117
118
119
120
121
122
123
124
125
126
127
1.46

THRESHOLD
VOLTAGE

3323.85
3447.44
3575.56
3708. 38
3846. 06'
3988.78
4136.73
4290.09
4449.08
4613.89
4784.74
4961.85
5145.44
5335.76
5533.05
5737.57

MODULATOR
STEP

805.847
82C.688
835.795
851.173
866.825
882.759
898.977
915.487
932.293
949.400
966.814
984.542
1002.59
1020.96
1039.66
1058.70-

14.709
14.9730
15.2410
15. 5133
15.7917
16.0743
16.3628
16. 565
16. 9553
17.2594
17.5695-
17.3852
18.2066
18.53L2
18 . 3675
13.2069

PEAK
VOLTAGE

3447.44
3575.56
3708.38
3846.06
3988.78
4136.73
4290.09
4449.08-
4613.89
4784.74
4961.85
5145.44
5335.76
5533.05
5737.57
5949.59

AVERAGE
VOLTAGE

3385.65
3511.50
3641.97
3777.22
3917.42
4062.75
4213.41
4369. S9
4531.49
4699.32
4873.29
5053.64
5240.60
5434.41
5635.31
5843.58

DELTA
VOLTAGE

123.593
128.120
132.813
137. 679
142.722
147.948
153.367
158.988
164.812
170.848
177.105
183.594
190.320
197.293
204.520
212.012

PROTOZIS
AVERAGE

SPEED
DELTA
SPEED

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
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page 9 of 11Table of nominal constants for MJS.

The delta values are the full width.

1.074608

MODULATOR THRESHOLD
STEP VOLTAGE

1
. 2

3
4
5

7
8
9

10
11
12
13
14
15
16

10.0000
14.4765
19.2869
24.4563
30.0113
35.9i07
42.3956
49.2890
56.6967
64.6571
73.2114
82.4040
92.2823
102.898
114.305
126.564

PEAX
VOLTAGE

14.4765
.19.2869
24.4563
30.0113
35.9807
42.3956
49.2890
56.6967
64.6571
73.2114
82.4040
92.2823
102.898
114.305
126.564
139.737

AVERAGE
VOLTAGE

12.2382
16.8817
21.8716
27.2337
32.9960

- 39.1881
45.8423
52.9928
60.6769
68.9343
77.8077
87.3431

*97.5900
108.601
120.434
133.150

DELTA
VOLTAGE

4.47647
4.81044
5.16934
5.55501
5.96947
-6.41483
6.89343
7.40773
7.96040
& s.55431
9.19254
9.87837
10.6154
11.4074
12.2584
13.1730

MODULATOR
STEP

3
4
5
6
7
a
9

10
11
12
13
14
15
16

ELECTRONS
AVERAGE

SPEED

2067.48
2432.31
2770.76
3093.20
3405.69
3712.22
4015.56
4317.81
4620.60

-4925. 25
5232.89
5544. 
5860.87
6182.84
6511.10
6846.33

E mode.

DELTA
SPEED

381.335
348.319
328.585
316.292
308.703

302.344
302.157
303.422
305. 891
309.388
313.787
318.995
324.944
331.582
338.874
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page 10 of 11Table of nominal constants for MJS.

The delta values Lre the full widths.

L Mode. -

MODULATOR
STEP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

THRESHOLD
VOLTAGE

10.0000
30.0113
56.6968
92.2825
139.737.
203.018
287.405
399.937
550.001
750.114
1016.97
1372.83
1847.37
2480.19
3324.06
4449.38

MODULATOR
STEP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

PEAK
VOLTAGE

30.0113
56.6968
92.2825
139.737
203.018
287.405
399.937
550.001
750.114
1016.97
1372.83
1847.37
2480.19
3324.06
4449.38
5950.02

AVERAGE
VOLTAGE

20.0056
43. 3541
74.4897
116.010
171.377
245. 212
343.671
474.969
650.058
883.542
1194.90
1610.10
2163.78
29C2. 12
3886.72
5199.70

DELTA
VOLTAGE

20.0113
26. 6855
35.5857
47.4543
63.2814
84.3870
112.532-
150.064
200.113
266.855
355.858
474.544
632.815
843.872
1125.32
1500. 4.

PROTON
AVERAGE

SPEED

59. '3357
90.0803
11d.668
148.385
180.531
216 .070
255.889-
300.895
352.069
410.501
477.421
554.227
642.519
744.134
861.181
996.092

DELTA
SPEED

32.07 13
29.4129
28.7616
30.6730
33.6197
37.45-85
42.1787
47.8334-
54.5 151
62.3493
71.4897
82.1219
94.4626
108.767
125.329
144.493
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page 11 of 11Table of nominal constants for MJS.

The delta values are the full widths.

E2 Mode. K = 1.333522

MODULATOR
STEP

1
2

.3
(4
5
6
7

9
10
17
12
13
14
15
16

THRESHOLD
VOLTAGE

10. 0(00
30.0118
56.6968
92. 282
139.737
20 3. 01A
287. 405
399.337
550.001
750.1114
7016. 7
1312. 8 3
1847.3
2480.19
332(4.06
949.38

PEAX
VOLTAGE

30.0113
56.6968
92.2925
13q.737
203. 01A
247.L05
39q,937
550.001
750.114
1016. QO
1372. A3
18 i7, 37
2a4A. 19
332(4.06
4U49. 38
5950.02

AVERAGE
VOLTAGE

20.0056
43*35041
7 4.4897
116.010
171 .377
2u5. 212

-343.671
4714.964
650. P5R
R83. 542
1194.90
1610. 10
2163.73
2902.12
3886.72
5199.70

DELTA
VOLTAGE

20.0113
26.6855
35 ,.5 A 197
47. 4543
63.281 4
AL .38 70.
112.532
150.064
200.113
266.855
355.858
47%. 5u -
632.815
843.872
1125.32
1500.64

EL TRONS
MODULATOR

STEP

1
2
.3
4
5
6
7
8
9

10
11
12
13
14
15
16

AVERAGE
SPEED

256UL. 0R
3860.12
5085.13
6358.58
7736.11
9259.03
10965.3
12893'.9
150 .9
175 90.8
20 U58 . a
23749.7
27533.2
31887. 6
36903.3
4f6A4.5

DELTA
SPEED

137 4.53
1217.55
1232.LL9
1314, U
1440.67
1605. 17
1807.*4 4
20 4q.7 6
2336.08
2671.7 9
3063.48
3519.09
4047.91
4640. 86
5370.59
6191.91
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Appendix B
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SUBROUTINE CUPINT(DN,U,W,NSTEP,CUR)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 U(3),VZSUP/134.9/,RO/100./,ECHRGE/1.6E-19/
REAL*8 PI/3.14152654/
REAL*8 AMVZ(128)/

+ 46.06, 50.50, 54.73, 58.79, 62.72, 66.56
+ 77.63, 81.23, 84.80, 88.35, 91.89, 95.41
+ 105.99, 109.52, 113.07, 116.64, 120.23, 123.83
+ 134.81, 138.53, 142.28, 146.07, 149.90, 153.77
+ 165.62, 169.66, 173.76, 177.90, 182.09, 186.34
+ 199.43, 203.91, 208.46, 213.07, 217.74, 222.48
+ 237.13, 242.16, 247.27, 252.45, 257.71, 263.06
+ 279.60, 285.29, 291.08, 296.95, 302.92, 308.99
+ 327.79, 334.26, 340.84, 347.54, 354.34, 361.26
+ 382.71, 390.11, 397.63, 405.28, 413.06, 420.98
+ 445.54, 454.02, 462.64, 471.41, 480.33, 489.41
+ 517.60, 527.32, 537.22, 547.29, 557.54, 567.97
+ 600.37, 611.55, 622.93, 634.52, 646.30, 658.30
+ 695.58, 708.46, 721.56, 734.89, 748.47, 762.28
+ 805.22, 820.05, 835.14, 850.51, 866.15, 882.07
+ 931.56, 948.65, 966.05, 983.76,1001.80,1020.10
REAL*8 AMOVZ(128)/

+ 4.57, 4.32, 4.13, 3.99, 3.88, 3.79
+ 3.62, 3.58, 3.56, 3.54, 3.53, 3.52
+ 3.53, 3.54, 3.56, 3.58, 3.59, 3.62
+ 3.70, 3.74, 3.77, 3.81, 3.84, 3.89
+ 4.02, 4.07, 4.11, 4.17, 4.22, 4.28
+ 4.45, 4.51, 4.58, 4.64, 4.70, 4.78
+ 4.99, 5.06, 5.15, 5.22, 5.31, 5.38
+ 5.65, 5.73, 5.83, 5.92, 6.02, 6.11
+ 6.42, 6.53, 6.63, 6.75, 6.86, 6.97
+ 7.33, 7.46, 7.59, 7.71, 7.85, 7.98
+ 8.41, 8.54, 8.70, 8.84, 9.00, 9.15
+ 9.65, 9.81, 9.98, 10.16, 10.34, 10.52
+ 11.09, 1 .28, 11.48, 11.69, 11.89, 12.10
+ 12.76, 12.99, 13.22, 13.45, 13.69, 13.94
+ 14.70, 14.96, 15.23, 15.50, 15.78, 16.06
+ 16.94, 17.24, 17.56, 17.87, 18.20, 18.50

CUR=0.D0
VZT=AMVZ(NSTEF)-AMDVZ(NSTEP)/2.00
VZ=VZT
X1=( VZ-U(3))/W
IF (XI .GT. 30DO) RETURN
DVZ=AMDVZ(NSTEP)/10.00
N=0

10 CONTINUE
N=N+1
NN=MOD(N,2)
VZ=VZ+0VZ
X1= (VZ-U(3))/W
IF (Xl .LT. -5.00) GO TO 10
IF(X1 .GT. 3.00) GO TO 100
P1=(VZT/VZ)** 2

P2=(VZSUP/VZ),r*2
X=DA8S(U(1)/VZ)

70.31,
, 98.93,
, 127.47,
, 157.67,
, 190.65,
, 227.29,
, 268.49,

315.15,
368.29,

, 429.03,
, 498.64,

578.58,
670.51,

, 776.34,
, 898.27,
,1038.80,

3.72,
3.52,
3.65,
3.93,
4.33,
4.85,
5.47,
6.22,
7.10,
8.12,
9.32,

10.70,
12.32,
14.18,
16.35,
18.90,

DD
D0
DD
D0
D0

74.00,00
102.46,00
131. 12,00
161.62,D0
195.01, 00
232.18,DD
274.00,DD
321.42,O D
375. 44, D
437.22,DD
508.04,DO
589.38,D0
682.94,00
790.65,DD
914.77,00

1057.90/DD
00

3.66,D0
3.53,00
3.67,D
3.97,00
4.40,D0
4.92,DD
5.56,D0
6.32,00
7. 21, 00
8.25,00
9.47,00

10.89,D0
12.53,00
14. 44, 00
16.64,D0
19.10/00

00
00
00
D0
D0
D0
00
00
0D
DD
D0
D0
D0
DO
0D
0D
D0

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
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Y=U(2)/VZ DO 00560
CALL TRANSP(X,Y,P1,P2,T) DO 00570
CALL AREAOV( X,Y,P1,P2,R) 00 00580
IF(NN .EQ. 1)CUR=CUR+R*T*DEXP( X1**2 *VZ*2.00 00 00590
IF( NN .EQ. 0) CUR=CUR+R*T*OEXP(-X1**2)*VZ D 00600
GO TO 10 DO 00610

100 CONTINUE D 00620
CUR=CUR*RO*ECHRGE*DN/(W*DSQRT(PI))*1.E20*DVZ*2.00/3.DO 00 00630

C CUR=CUR+R*T*DEXP(-X1**2)*VZ DO 00640
C CUR=CUR*RO*ECHRGE*DN/(W*DSQRT(PI))*1.E20*DVZ 00 00650

RETURN DO 00660
END D 00670
SUBROUTINE TRANSP(X,Y,P1,P2,T) D 00680
IMPLICIT REAL*8(A-H,O-Z) DO 00690
C=1/42.00 DO 00700
X2=X**2 D 00710
Y2=Y**2 DO 00720
T=((1.00-C*DSQRT(1.D0+X2))*(1.00-C*DSQRT(1.00+Y2)))**5 DO 00730
T=T*((1.D0-C*OSQRT(1.00+X2/(1.00-P1 )* 00 00740

* (1.0-C*DSQRT(1.D0+Y2/(1.00-P1) **3 00 00750
T=T*(1.D0-C*DSQRT(1.00+X2/(.1.00+P2 * 00 00760

* (1.00-C*DSQRT(1.00+Y2/(1'D00+P2) DO 00770
RETURN 00 00780
END DO 00790
SUBROUTINE AREAOV(X,Y,P1,P2,R) DO 00800
IMPLICIT REAL*8 (A-H,0-Z) DO 00810
REAL*8 A/.33800/,B/.19700/,C/.093D0/,D/.37200/ 00 00820
SHIFT=A+B*2*(DSQRT( 1.00+P2) -1.00)/P2+C/DSQRT(1.00-P1)+ 00 00830

+ D*2*(1.D0-DSQRT(1.D0-P ))/P1 D 00840
X1=SHIFT*X D 00850
Y1=SHIFT*Y 00 00860
IF (XI .GT. 4.9400) GO TO 100 D 00870
R=(4.94D0-X1)/3.8400 00 00880
IF (Xl .LT. 1.100) R=1.00 DO 00890
IF (Y1 .LT. -2.0200) GO TO 10 DO 00900
Y3=YU(X1) 00 00910
Y4=YUP(Xl) 00 00920
IF (Y1-Y3) 1,1,2 DO 00930

1 RETURN 00 00940
2 IF (Y1 .GT. Y4) GO TO 100 D 00950
R=R*(Y4-Y1)/(Y4-Y3) 00 00960
RETURN 00 00970

10 IF (Y1 .LT. -3.6300) GO TO 100 00 00980
R=R*(3.63DO+Y1)/1.6100 D0 00990
RETURN D 01000

100 R=0.00 00 01010
RETURN 00 01020
END 00 01030
FUNCTION YU(X) 00 01040
IMPLICIT REAL*8 (A-H,O-Z) D 01050
A=.76200 00 01060
B=1.01800 00 01070
C=.24700 00 01080

- D=.25D0 D 01090
YU=A*DCOS(B*X+C)/(1.DO+0*X) D 01100
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RETURN DO 01110
END DO 01120
FUNCTION YUP(X) DD 01130
IMPLICIT REAL*8 (A-HO-Z) DO 01140
A=2.500 DO 01150
B=0.12500 D 01160
YUP=A-B*(X-1.DO)**2 DO 01170
RETURN DO 01180
END 00 01190
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SUBROUTINE DCPINT(DN,U,W,NSTEP,CUR) 00 00010
IMPLICIT REAL*8 (A-H,O-Z) D 00020
REAL*8 U(3),VZSUP/134.9/,ECHRGE/1.6E-19/,PI/3.141592654/,RC/6.35/,00 00030

, RG/5.1308/, RA/5.6438/, D 00040
, RCG2/13.99739136/,RCA2/8.47002156/,RAG2/5.5273698/,RO/82.7/ 00 00050
REAL*8 AMVZ(128)/ D 00060

+ 46.06, 50.50, 54.73, 58.79, 62.72, 66.56, 70.31, 74.00,00 00070
+ 77.63, 81.23, 84.80, 88.35, 91.89, 95.41, 98.93, 102.46,00 00080
+ 105.99, 109.52, 113.07, 116.64, 120.23, 123.83, 127.47, 131.12,DD 00090
+ 134.81, 138.53, 142.28, 146.07, 149.90, 153.77, 157.67, 161.62,DD 00100
+ 165.62, 169.66, 173.76, 177.90, 182.09, 186.34, 190.65, 195.01,00 00110
+ 199.43, 203.91, 208.46, 213.07, 217.74, 222.48, 227.29, 232.18,00 00120
+ 237.13, 242.16, 247.27, 252.45, 257.71, 263.06, 268.49, 274.00,00 00130
+ 279.60, 285.29, 291.08, 296.95, 302.92, 308.99, 315.15, 321.42,00 00140
+ 327.79, 334.26, 340.84, 347.54, 354.34, 361.26, 368.29, 375.44,00 00150
+ 382.71, 390.11, 397.63, 405.28, 413.06, 420.98, 429.03, 437.22,DD 00160
+ 445.54, 454.02, 462.64, 471-41, 480.33, 489.41, 498.64, 508.04,00 00170
+ 517.60, 527.32, 537.22, 547.29, 557.54, 567.97, 578.58, 589.38,00 00180
+ 600.37, 611.55, 622.93, 634.52, 646.30, 658.30, 670.51, 682.94,00 00190
+ 695.58, 708.46, 721.56, 734.89, 748.47, 762.28, 776.34, 790.65,00 00200
+ 805.22, 820.05, 835.14, 850.51, 866.15, 882.07, 898.27, 914.77,00 00210
+ 931.56, 948.65, 966.05, 983.76,1001.80,1020.10,1038.80,1057.90/00 00220
REAL*8 AMDVZ(128)/ 00 00230

+ 4.57, 4.32, 4.13, 3.99, 3.88, 3.79, 3.72, 3.66,00 00240
+ 3.62, 3.58, 3.56, 3.54, 3.53, 3.52, 3.52, 3.53,00 00250
+ 3.53, 3.54, 3.56, 3.58, 3.59, 3.62, 3.65, 3.67,00 00260
+ 3.70, 3.74, 3.77, 3.81, 3.84, 3.89, 3.93, 3.97,00 00270
+ 4.02, 4.07, 4.11, 4.17, 4.22, 4.28, 4.33, 4.40,00 00280
+ 4.45, 4.51, 4.58, 4.64, 4.70, 4.78, 4.85, 4.92,00 00290
+ 4.99, 5.06, 5.15, 5.22, 5.31, 5.38, 5.47, 5.56,00 00300
+ 5.65, 5.73, 5.83, 5.92, 6.02, 6.11, 6.22, 6.32,00 00310
+ 6.42, 6.53, 6.63, 6.75, 6.86, 6.97, 7.10, 7.21,D 00320
+ 7.33, 7.46, 7.59, 7.71, 7.85, 7.98, 8.12, 8.25,00 00330
+ 8.41, 8.54, 8.70, 8.84, 9.00, 9.15, 9.32, 9.47,DD 00340
+ 9.65, 9.81, 9.98, 10.16, 10.34, 10.52, 10.70, 10.89,DD 00350
+ 11.09, 11.28, 11.48, 11.69, 11.89, 12.10, 12.32, 12.53,DD 00360
+ 12.76, 12.99, 13.22, 13.45, 13.69, 13.94, 14.18, 14.44,00 00370
+ 14.70, 14.96, 15.23, 15.50, 15.78, 16.06, 16.35, 16.64,DD 00380
+ 16.94, 17.24, 17.56, 17.87, 18.20, 18.50, 18.90, 19.10/DD 00390
CUR=O.D0 D 00400
IF(U(1) .EQ. 0.00 .AND. U(2) .EQ. 0.00) GO TO 1 D 00410
PHI=DATAN2(U(2),U(1)) D 00420
GO TO 2 DO 00430

1 PHI=0.00 DO 00440
2 VT2=U(1)**2+U(2)**2 DO 00450
VZT=AMVZ(NSTEP)-AMDVZ(NSTEP)/2.D0 D 00460
VZ=VZT D 00470
X1=( VZ-U(3))/W D 00480
IF (X1.GT. 2.DO) RETURN 00 00490
DVZ=AMOVZ(NSTEP)/10.00 00 00500
N=O D 00510

10 CONTINUE D 00520
N=N+1 D 00530
NN=MOD(N,2) 00 00540
VZ=VZ+DVZ D 00550
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X1=( VZ-U(3))/W
IF Xl .LT. -5.00) GO TO 10
IF Xl .GT. 3..00)GO TO 500
Pl= VZT/VZ)**2
P2= VZSUP/VZ)**2
PSI=VT2/VZ**2
CALL TRNSPD(PSI,PHI,P1,P2,T)
CALL SHIFT(PSI,P1,P2,DCA,DCG,OAG)
IF (DCA .EQ. 0.DO) GO TO 150
XCG=(RCG2+0CG**2)/(2.DO*DCG)
XCA=(RCA2+OCA**2) / (2.DO*DCA)
IF (XCA-XCG) 100,200,200

100 CALL CLAROV(RCG2,RC,RG,DCG,A1)
CALL CLAROV( RAG2,RA,RG,DAG,A2)
R=Al+A2-RO
GO TO 250

150 R=RO
GO TO 250

200 CALL CLAROV(RCA2,RC,RA,DCA,R)
250 CONTINUE

IF(NN .EQ. 1)CUR=CUR+R*T*DEXP( X1**2)*VZ*2.00
IF( NN .EQ. 0) CUR=CUR+R*T*DEXP( -X1**2)*VZ
GO TO 10

500 CONTINUE
CUR=CUR*ECHRGE*ON/(W*OSQRT(PI))*1.0020*DVZ*2.D0/3.D0
RETURN
END
SUBROUTINE TRNSPO(PSI,PHI,P1,P2,T)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 C/.0238100/,A1/0.00/,A2/1.0821D0/,A3/.872700/

A4/.9599DO/,A5/.6981D0/,A6/.0698D0O/,AM/1.186800/,
T= 1.00-C*DSQRT 1.00+PSI*OCOS (PHI-Al **2 *

* l.DO-C*OSQRT 1.DO+PSI*0SIN PHI-Al **2 *
* 1.00-C*0SQRT 1.DO+PSI*DCOS PHI-A2 **2 *
* 1.00-C*OSQRT 1.00+PSI*OSIN PHI-A2 **2 *
* 1.00-C*0SQRT 1.DO+PSI*OCOS PHI-A3 **2 *
* 1.00-C*0SQRT l.DO+PSI*0SIN PHI-A3 **2 *
* 1.D0-C*OSQRT 1.DO+PSI*OCOS PHI-A4 **2 *
* 1.00-C*OSQRT 1.00+PSI*DSIN PHI-A4 **2 *
* 1.00-C*0SQRT l.DO+PSI*OCOS PHI-AS **2 *
* 1.DO-C*0SQRT l.DO+PSI*DSIN PHI-A5 **2 *
* 1.00-C*OSQRT 1.0O+PSI*OCOS PHI-A6 **2 *
* 1.DO-C*DSQRT 1.DO+PSI*DSIN PHI-A6 **2 *
* 1.00-C*0SQRT 1.00+PSI*OCOS PHI-AM **2/( 1.00-1)))
* 1.DO-C*OSQRT 1.OO+PSI*OSIN PHI-AM **2/ 1.00-P1)
* 1.00-C*DSQRT 1.DO+PSI*DCOS PHI-AS **2/ 1.00+P2)
* 1.DO-C*DSQRT 1.DO+PSI*DSIN PHI-AS **2/ 1.DO+P2
RETURN
END
SUBROUTINE CLAROV(R2,RL,RS,D,A)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 PI/3.14159265400/
IF (D-RL+RS) 1,1,2

1 A=PI*RS**2
RETURN

AS/0.D0/

*

*

*

00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
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2 IF(D-RL-RS) 3,4,4 D0 01110
3 QS=( R2-D**2 )/(2.00*D*RS) D 01120

QL=(R2+0**2)/( 2.D0*D*RL) D0 01130
A=RS**2*(PI/2.0O+0ARSIN(QS)+QS*DSQRT(1.DO-QS**2))+ 00 01140

+ RL**2*(PI/2.DO-DARSIN(QL)-QL*DSQRT(1.00-QL**2)) 00 01150
RETURN D 01160

4 A=0.O0 D 01170
RETURN DO 01180
END DO 01190
SUBROUTINE SHIFT(PSI,P1,P2,DCA,DCG,DAG) D 01200
IMPLICIT REAL*8(A-H,0-Z) DD 01210
S=.49500+.72C00*(1.DO-DSQRT(1.00-P1))/Pl+ DD 01220

+ .29000*(DSQRT(1.00+P2)-1.00)/P2 D 01230
B=S/(.16600+.13900*(DSQRT(1.DO+P2)-1.00)/P2) D 01240
DCA=DSQRT(PSI)*6.00*S DD 01250
OCG=OCA/B 00 01260
DAG=DCA-DCG DO 01270
RETURN 00 01280
END DO 01290
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SUBROUTINE ABCCUR(ON,W,U1,A,ZNCHN,DISTF) DIS00010
IMPLICIT REAL*8 (A-H,0-Z) DIS00020
REAL*8 CM(100),VZSC2,SCPOT/-12.50/ DIS00030
COMMON/CM/CM,N13 DIS00040
INTEGER*4 NCHN(2),NSTEP(129)/22,16,10,6,41*4,84*2/,NFIRST DIS00050
INTEGER*4 NTAIL(2) DIS00060
INTEGER MFIRST(128)/3,6,10,13,17,20,23,26,29, DIS00070

, 32,35,38,39,41,42,44,45,46,48,49,50,52,53,54,55,56,58,59,60,61, DIS00080
, 63,64,65,66,67,68,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85, DIS00090
86,87,88,89,90,92,93,94,95,96,97,98,99,100,101,102,103,104,105, DIS00100
106,107,108,109,110,111,112,113,115,49*0/ DIS00110

REAL*4 AMA1,AMA2,AMC1,AMSFT,ABCS DIS00120
REAL*4 AAAVZ,AAVZ,AVZ,AAADVZ,AADVZ,ADVZ,DVOLT DIS00130
REAL*8 U(3),ZX(4,2),ZY(4,2,2),Ul(3),AA(2),SS(2),CC(2) DIS00140
REAL*8 A1(2),XBAR(2),A2(2),B(2,2),D(2,2),AC(2),CRR(129)/129*0.DO/ DIS00150
REAL*8 X(4)/-4.9400,-1.1000,1.1000,4.9400/, DIS00160

, Y(4,2)/-3.6300,-2.02D0,2.0200,3.6300, DIS00170
-3.6300,-2.0200,2.0200,3.6300/ DIS00180

REAL*8 R/100./,T/.65/,ECHRGE/1.60-19/,SQRTPI/1.772453851/ DIS00190
REAL*8 PI/3.141592654/,PRESET/Z7FFFFFFF/,DISTF(128),CUR1(241,5,2) DIS00200
COMMON/TRNPAR/AMA1(100,129),AMA2(100,129),AMC1(100,129), DIS00210
AMSFT(100,129) DIS00220

COMMON/ABCSET/ABCS(241,4,2) DIS00230
COMMON/VZ/AAAVZ(22,5),AAVZ(4,40),AVZ(2,84),AAADVZ(22,5), DIS00240

AADVZ(4,40),AOVZ(2,84),DVOLT(128),NFIRST(129) DIS00250
00 1 1=1,128 DIS00260
IF(I .GE. 80)MFIRST(I)=I+36 DIS00270

1 DISTF(I)=0.00 DIS00280
C THE FOLLOWING LINE IS FOR NON-ZERO SPACECRAFT POTENTIAL DIS00290

VZSC2=2.DO*Z*ECHRGE*SCPOT/(A*1.670-27*1.D6*W**2) DIS00300
C DIS00310

CONST=R*T*Z*ECHRGE*1.0020/SQRTPI*DN DIS00320
NCHAN1=NCHN(1) DIS00330
NCHAN2=NCHN( 2) DIS00340
NCHAN3=NCHN(2)+1 DIS00350
NTAIL(1)=NFIRST(NCHAN1) DIS00360
NTAIL(2)=MFIRST(NCHAN2)-1 DIS00370
CALL SETCUR(W,U1,A,Z,NTAIL,1,CUR1) DIS00380
NTAIL(1)=MFIRST(NCHAN1) DIS00390
NTAIL(2 )=99+NFIRST(NCHAN2)-NSTEP(NCHAN2) DIS00400
CALL SETCUR(W,U1,A,Z,NTAIL,2,CUR1) DIS00410

C DIS00420
C NORMALIZE VELOCITY DIS00430
C DIS00440

DO 3 I=1,3 DIS00450
3 U(I)=Ul(I)/W DIS00460

C DIS00470
C INTEGRATE ACROSS CURRENT CHANNEL DIS00480
C DIS00490

DO 2700 NCHAN=NCHAN1,NCHAN3 DIS00500
CURENT=0.00 DIS00510
NS=NSTEP(NCHAN) DIS00520
00 2600 JJ=1,NS DIS00530
G=0.00 DIS00540

C DIS00550
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SELECT VALUE OF VZDVZ

IF(NCHAN .GE. 6 .AND. NCHAN .LE. 45)GO
IF( NCHAN .GE. 46)GO TO 20
VZ=OBLE(AAAVZ(JJ,NCHAN))*OSQRT(Z/A)/W
DVZ=DBLE(AAADVZ(JJ,NCHAN))*OSQRT(Z/A)
GO TO 100

10 VZ=DBLE(AAVZ('J,NCHAN-5))*0SQRT(Z/A)/W
DVZ=DBLE(AADVZ(JJ,NCHAN-5))*DSQRT(Z/A)
GO TO 100

20 VZ=OBLE(AVZ(JC ,NCHAN-45))*DSQRT(Z/A)/W
DVZ=OBLE(AOVZ(JJ,NCHAN-45))*DSQRT(Z/A)

100 CONTINUE
C THE FOLLOWING LINE CORRECTS FOR NON-ZERO

VZ2=VZ**2+VZSC2
IF(VZ2 .LT. 0.00)GO TO 2600
X1=(DSQRT(VZ2)-U(3))**2

C
C X1=(VZ-U(3))**2

IF (Xl .GT. 16.00) GO TO 2600
C
C ASSIGN VALUES OF RESPONSE PARAMETERS

TO 10

SPACECRAFT POTENTIAL

S=DBLE(AMSFT("J,NCHAN))
CC 1 )=BLE(AMC1(JJ,NCHAN))
CC 2) =1.000-CC(1)
AC 1 )=BLE (AMA1(JJ,NCHAN))
AC 2 =OBLE(AMA2(JJ,NCHAN))
AA 1 =(AC(1)+VZ**2)/S**2
AA 2 =(AC(2)+VZ**2)/S**2
SS 1 =S*VZ*U(1)/(VZ*VZ+AC(1))
Ss 2 =S*VZ*U(1)/(VZ*VZ+AC(2))

C COMPUTE CURRENTS
C

DO 2020 L=1,4
ZX(L,1)=DSQRT(AA(1))*(X L)-SS 1)

2020 ZX( L,2 )=DSQRT(AA(2) (X L)-SS )
XBAR(l)=(PSI(ZX(2,1),SS 1),AA(1) +PSI(ZX(4,1) ,SS (1),AA(1))-

- PSI(ZX(1,1),SS(1),AA 1))-PSI(ZX(3,1),SS(1),AA(1))+
+ (ZX (4,1)-ZX (3,1))*FUN(SS(1),AA(1)))/
/ (DSQRT(PI*AA,(1))*
* (PHI(ZX(4,1))+PHI(ZX(1,1))-PHI(ZX(3,1))-PHI(ZX(2,1))))
XBAR(2)=(PSI(ZX(2,2),SS(2),AA(2))+PSI(ZX(4,2) ,SS(2),AA(2))-

- PSI(ZX(i,2),SS(2) ,AA(2))-PSI(ZX(3,2),SS(2),AA(2))+
+ (ZX( 4,2)-ZX (3,2))*FUN(SS(2),AA(2)))/
/ (DSQRT(PI*AA(2))*
* (PHI(ZX(4,2))+PHI(ZX(1,2))-PHI(ZX(3,2))-PHI(ZX(2,2))))
IF (DABS(XBAR(1))-1.100) 2021,2021,2022

2021 A2(1)=1.000
GO TO 2023

2022 A2(1)=1.2570-0.063DO*DABS(XBAR(1))-
- 0.12600*DSQRT(XBAR(1)**2-5.1000*DABS(XBAR(1))+6.61200)

2023 CONTINUE
IF (DABS(XBAR(2))-1.100) 2026,2026,2027

C
C

C

C

DIS00560
DIS00570
DIS00580
DIS00590
DIS00600
DIS00610
DIS00620
DIS00630
DIS00640
DIS00650
DIS00660
DIS00670
DIS00680
DIS00690
DIS00700
DIS00710
DIS00720
DIS00730
DIS00740
DIS00750
DIS00760
DIS00770
DIS00780
DIS00790
DIS00800
DIS00810
DIS00820
DIS00830
DIS00840
DIS00850
DIS00860
DIS00870
DIS00880
DIS00890
DIS00900
DIS00910
DIS00920
DIS00930
DIS00940
DIS00950
DIS00960
DIS00970
DIS00980
DIS00990
DIS01000
DISOlOlO
DIS01020
DIS01030
DIS01040
DIS01050
DIS01060
DIS01070
DIS01080
DIS01090
DIS01100
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2026 A2(2)=1.000 DIS01110
GO TO 2028 DIS01120

2027 A2(2)=1.25700-0.06300*DABS(XBAR(2))- DIS01130
- 0.12600*DSQRT(XBAR(2)**2-5.1000*DABS(XBAR(2))+6.61200) DIS01140

2028 CONTINUE DIS01150
Y 3,1)=.76200*DCOS(1.01800*XBAR(1)+.2470)/(1.000+.2500*XBAR(1)) DIS01160
Y 3,2)=.76200*DCOS(1.01800*XBAR(2)+.247D0 )/(1.000+.2500*XBAR(2)) DIS01170
Y 4,1)=2.500-0.12500*( XBAR 1)-1.000) **2 DIS01180
Y 4,2)=2.500-0.12500*(XBAR(2)-1.000)**2 DIS01190

C WRITE(6,*)XBAR(1),Y(3,1),Y(4,1) DIS01200
SS(1)=S*VZ*U()/VZ*VZ+AC) DIS01210
SS(2)=S*VZ*U(2)/(VZVZ+AC 2) DIS01220
00 2030 L=1,4 DIS01230
ZY(L,1,l =DSQRT (A * DIS01240
ZY L,2,1 =DSQRT A * , DIS01250
ZY L,1,2 =DSQRT * , - DIS01260

2030 ZY L,2,2 =OSQRT AA12 * Y,- DIS01270
Al 1)=( PH (ZX(1,) +PHI ZX(4,1))-PHI(ZX(3,1))-PHI(ZX(2,1)))/ DIS01280
/ (ZX 4,1)-ZX(3,1 ) DIS01290
A1(2)= PHI(ZX(1,2) +PHI(ZX(4,2))-PHI(ZX(3,2))-PHI(ZX(2,2)))/ DIS01300
/ (ZX 4,2)-ZX(3,2)) DIS01310

2049 CONTINUE DIS01320
00 2500 I=1,2 DIS01330
00 2450 J=1,2 DIS01340
B(I,J)= PHI(ZY(4,I,J))-PHI(ZY(3,I,J)))/(ZY(4,I,J)-ZY(3,I,J))- DIS01350

- (PHI(ZY(1,I,J))-PHI (ZY(2,I,J)))/(ZY(1 ,I,J)-ZY(2,I,J)) DIS01360
0(IJ)=-U(1)**2*AC(I)/ VZ**2+AC(I )U(2)**2*AC(J)/(VZ**2+AC(J)) 01S01370
IF (D(I,J) .LT. -50.000) GO TO 2050 DIS01380
D(I,J)=CC(I)*CC(J)*DEXP(D(I,J))/DSQRT(AA(I)*AA(J)) DIS01390
GO TO 2051 DIS01400

2050 D(IJ)=0. DIS01410
2051 CONTINUE 0IS01420

G=(VZ/S)**2*0(I,J)*A1(I)*A2(I)*B(I,J)/4+G DIS01430
2450 CONTINUE DIS01440
2500 CONTINUE DIS01450

CUR=VZ*DEXP(-Xl)*G*DVZ DIS01460
CURENT=CURENT+CUR DIS01470

C WRITE(6,2) JJ,CUR,CURENT,VZ DIS01480
2 FORMAT(' JJ,CUR,CURENT,VZ=',14,,3016.7) DIS01490

2600 CONTINUE DIS01500
CRR(NCHAN)=CURENT DIS01510

2700 CONTINUE DIS01520
C WRITE(6,9000 )(CRR(I),I=NCHANi,NCHAN3) DIS01530
9000 FORMAT(5016.6) DIS01540
C DIS01550
C CALCULATE CONTRIBUTION FROM "TAIL" DIS01560
C DIS01570

00 3000 NCHAN=NCHAN1,NCHAN2 DIS01580
DISTF(NCHAN)=CRR(NCHAN)-CRR(NCHAN+1) DIS01590
IF NCHAN .NE. N13)GO TO 17 DIS01600
CM 1)=CRR(NCHAN DIS01610
IF NCHAN .LE. 4 CM(1)=DISTF(NCHAN) DIS01620

17 NF=NFIRST(NCHAN DIS01630
IF(NCHAN .LE. 4 GO TO 2775 DIS01640
NF1=NFIRST(NCHAN+1)-1 DIS01650
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N=NSTEP(NCHAN)+1 DIS01660
00 2725 I=NF,NF1 DIS01670
IF(CUR1(I,1,1) EQ. PRESET) GO TO 3000 DIS01680
IF(CUR1(I,1) EQ. 0.00) GO TO 2725 DIS01690
DISTF(NCHAN)=DISTF(NCHAN)+CUR1(I,1,1)+ DIS01700

+ CUR1 I,2,1 *DBLE(AMSFT(N,NCHAN)-ABCS(I,1,1) )+ DIS01710
+ CURl 1,3,1 *DBLE(AMA1 (N,NCHAN )-ABCS I,2,1 + DIS01720
+ CUR1 1,4,1 *DBLE( AMA2 N,NCHAN -ABCS 1,3,1 + DIS01730
+ CUR1 I,5,1 *DBLE(AMC1 N,NCHAN -ABCS I,4,1 DIS01740

C WRITE(6,9001)I,NCHAN,DISTF(NCHAN DIS01750
9001 FORMAT(' I,NCHAN,OISTF(NCHAN)='I4,2D16.7) DIS01760

N=N+l DIS01770
2725 CONTINUE DIS01780

N1=N DIS01790
N2=NSTEP(NCHAN+1)+l DIS01800
IF(NCHAN .EQ. N13)CM(2)=DISTF(NCHAN) DIS01810
GO TO 2750 DIS01820

2775 CONTINUE DIS01830
I=1 DIS01840
N1=NSTEP(NCHAN)+l DIS01850
N2=NSTEP(NCHAN+1)+l DIS01860

2750 00 2900 LL=N1,100 DIS01870
M=1 DIS01880
IF(I .GE. MFIRST(NCHAN))M=2 DIS01890
IF( CUR1 (I,1,M) EQ. 0.O0)GO TO 2900 DIS01900
IF( CUR1 (I,1,M) .EQ. PRESET)GO TO 3000 DIS01910
DISTF(NCHAN)=OISTF(NCHAN)+ DIS01920

+ CUR1 I,2,M)*DBLE(AMSFT(LL,NCHAN)-AMSFT(N2,NCHAN+1))+ DIS01930
+ CUR1 I,3,M *OBLE AMA1( LLNCHAN)-AMA1 N2,NCHAN+1) + DIS01940
+ CUR1 I,4,M *DBLE AMA2 LL,NCHAN)-AMA2 N2,NCHAN+1 + DIS01950
+ CUR1(I,5,M)*DBLE AMC1 LL,NCHAN )-AMC1 N2,NCHAN+1) DIS01960
IF(NCHAN .EQ. N13)CM(I-NF1+2)=DISTF(NCHAN) DIS01970
IF( NCHAN .EQ. N13 .AND. NCHAN .LE. 4)CM(I+1)=OISTF(NCHAN) DIS01980
I=I+1 DIS01990
N2=N2+1 DIS02000

2900 CONTINUE DIS02010
3000 CONTINUE DIS02020
5000 CONTINUE DIS02030

00 5001 NCHAN=1,128 DIS02040
5001 DISTF(NCHAN)=OISTF(NCHAN)*CONST/DBLE(DVOLT(NCHAN)) DIS02050

RETURN DIS02060
END DIS02070
FUNCTION FUN(SIGMA,ALPHA) DIS02080
IMPLICIT REAL*8 (A-H,O-Z) DIS02090
REAL*8 SQRTPI/1.772453851/ DIS02100
X=SIGMA*DSQRT(ALPHA) DIS02110
FUN1=2.000*SQRTPI*X*DERF(X) DIS02120
IF (DABS(X) .GT. 10.000) GO TO 1 DIS02130
FUN1=FUN1+2.000*DEXP(-X*X) DIS02140

1 FUN=FUN1 DIS02150
RETURN DIS02160
END DIS02170
FUNCTION PHI(Z) DIS02180
IMPLICIT REAL*8 (A-H,O-Z) DIS02190
SQRTPI=1.772453851 DIS02200
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IF (DABS(Z) .GT. 10.00) GO TO 1 DIS02210
PHI=Z*OERF(Z)+OEXP(-Z*Z)/SQRTPI DIS02220
RETURN DIS02230

1 PHI=Z*OERF(Z) DIS02240
RETURN DIS02250
END DIS02260
FUNCTION PSI(Z,SIGMA,ALPHA) DIS02270
IMPLICIT REAL*8 (A-H,O-Z) DIS02280
SQRTPI=1.772453851 DIS02290
PSI=SQRTPi*DERF(Z)*(-.500+SIGMA*DSQRT(ALPHA)*Z) DIS02300
IF (DABS(Z) .GT. 10.00) RETURN DIS02310
PSI=PSI+SIGMA*DSQRT(ALPHA)*DEXP(-Z*Z) DIS02320
RETURN DIS02330
END DIS02340
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SUBROUTINE SETCUR(W,U1,A,Z,NTAIL,M,CUR1) CUR00010
c CUR00020
C THIS PROGRAM COMPUTES THE CURRENTS IN THE TAIL AND THE DERIVATIVES CUR00030
C OF THOSE CURRENTS WITH RESPECT TO THE PARAMETERS CUR00040
C WHICH DESCRIBE THE RESPONSE FUNCTION CUR00050
C CUR00060

IMPLICIT REAL*8 (A-H,O-Z) CUR00070
INTEGER NTAIL(2),M CUR00080
REAL*8 U(3),ZX(4,2),ZY(4,2,2),U1(3),AA(2),SS(2),CC(2) CUR00090
REAL*8 SCPOT/-12.500/,ECHRGE/1.6D-19/ CUR00100
REAL*8 A1(2),XBAR(2),A2(2),B(2,2),D(2,2),AC(2),PRESET/Z7FFFFFFF/ CUR00110
REAL*8 X( 4)/-4.94D0,-1.10DO,1.10D0,4.9400/,CUR1(241,5,2) CUR00120
REAL*8 Y( 4,2)/-3.6300,-2.02D0,2.0200,3.6300, CUR00130

, -3.6300,-2.0200,2.02D0,3.6300/ CUR00140
REAL*8 PI/3.141592654D0/,DCUR(4)/0.00,.O500,.00100,.0100/ CUR00150
REAL*4 ABCS,TVZ,TDVZ CUR00160
COMMON /ABCSET/ABCS(241,4,2) CUR00170
COMMON /TAIL/TVZ(241),TDVZ(241) CUR00180

C THE FOLLOWING LINE IS FOR NON-ZERO SPACECRAFT POTENTIAL CUR00190
VZSC2=2.DO*Z*ECHRGE*SCPOT/(A*1.67D-27*1.D6*W**2) CUR00200

C CUR00210
C CUR00220
C NORMALIZE THE VELOCITY CUR00230
C CUR00240

00 1 I=1,3 CUR00250
1 U(I)=Ul(I)/W CUR00260

2000 CONTINUE CUR00270
NT1=NTAIL(1) CUR00280
NT2=NTAIL(2) CUR00290
DO 3700 JJ=NT1,NT2 CUR00300

C CUR00310
C CHOOSE VZ AND DVZ CUR00320
C CUR00330

VZ=DBLE(TVZ(JJ))*DSQRT(Z/A)/W CUR00340
VZ2=VZ**2+VZSC2 CUR00350
IF(VZ2 .LT. 0.00) GO TO 3690 CUR00360
DVZ=DBLE(TDVZ(JJ))*DSQRT(Z/A) CUR00370

C THE FOLLOWING LINE IS FOR NON-ZERO SPACECRAFT CHARGE CUR00380
X1=(DSQRT(VZ2)-U(3)) CUR00390

C CUR00400
C X1= VZ-U(3)) CUR00410

I F (Xl .LT. -4.DO) GO TO 3690 CUROO42O
IF Xl .GT. 4.00) GO TO 3800 CUR00430
X1=X1**2 CUR00440

C CUR00450
C THIS LOOP COMPUTES THE DERIVATIVES CUR00460
C CUR00470

DO 3600 KK=1,4 CUR00480
G=O.DO CUR00490
S=DBLE(ABCS(JJ,1,M)) CUR00500
CC(1)=DBLE(ABCS (JJ,4,M)) CUR00510
AC(1)=DBLE(ABCS(JJ,2,M)) CUR00520
AC(2)=OBLE(ABCS(JJ,3,M)) CUR00530
IF(KK .EQ. 2) S=S+OCUR(2) CUR00540
IF(KK .EQ. 3)AC(1)=AC(1)+OCUR(3) CUR00550
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IF KK .EQ. 4)AC(2)=AC(2)+OCUR(4)
CC )=1.000-CC(1)
AA 1 =(AC(1)+VZ**2)/S**2
AA 2 =(AC (2)+VZ**2)/S**2
SS 1 =S*VZ*U(1)/(VZ*VZ+AC(1)
ss 2 =S*VZ*U(1)/(VZ*VZ AC(2))
00 3020 L=1,4
ZX(L,1 =OSQRT(AA(1) * -

3020 ZX(L,2 =SQRT( AA( 2)) *
XBAR(I =('IZX2 1 A , +PSI(ZX(4,f),SS(1) AA(1))-

- PSI(ZX(1,1),SS(1 , )-PSI(ZX(3,1),SS(1),AA(1))+
+ (ZX 4,1)-ZX(3,1) *FUN(SS(1),AA(1)))/
/ (DSQRT(PI*AA(1))*
* (PHI(ZX(4,1))+PHI(ZX(1,1))-PHI(ZX(3,1))-PHI(ZX(2,1))))
XBAR(2)=(PSI(ZX(2,2),SS(2),AA(2))+PSI(ZX(4,2),SS( 2),AA(2))-

- PSI ZX(1,2),SS(2),AA(2 ))-PSI(ZX(3,2),SS(2),AA( 2))+
+ (ZX 4,2)-ZX( 3,2))*FUN(SS(2),AA(2)))/

/ DSQRT(PI*AA(2) 
)*

* (PHI(ZX(4,2))+PHI(ZX(1,2))-PHI(ZX(3,2))-PHI(ZX(2,2))))
IF (DABS(XBAR(1))-1.100) 3021,3021,3022

3021 A2(1)=1.000
GO TO 3023

3022 A2(1)=1.25700-0.063D0*DABS(XBAR(1))-
- 0.12600*DSQRT(XBAR(1)**2-5.10DO*DABS(XBAR(1))+6.61200)

3023 CONTINUE
IF (DABS(XBAR(2))-1.100) 3026,3026,3027

3026 A2(2)=1.000
GO TO 3028

3027 A2(2)=1.25700-0.06300*ABS(XBAR(2))-
- 0.12600*DSQRT(XBAR(2)**2-5.1000*DABS(XBAR(2))+6.61200)

3028 CONTINUE
Y 3,1)=.76200*DCOS( 1.01800*XBAR(1)+.24700)/(1.000+.25DO*XBA
Y 3,2)=.76200*OCOS(1.01800*XBAR(2 )+.24700 )/(1.000+.2500*XBA
Y 4,1)=2.5D0-0.125D0*(XBAR(1)-1.0D0)**2
Y 4,2)=2.5DO-0.125DO*(XBAR(2 )-1.000) **2
SS(1)=S*VZ*U(2)/(VZ*VZ+AC(1)
SS (2)=S*VZ*U (2) / (VZ*VZ+AC (2))
DO 3030 L=1,4
ZY L,1,1)=DSQRT(AA(1))*(Y(L,1)-SS 1
ZY L,2,1)=OSQRT AA(1))*(Y( L,2)-SS(1
ZY L,1,2)=DSQRT( AA( 2))*(Y L,1)-SS 2))

3030 ZY L,2,2)=DSQRT AA(2))*(Y L,2)-SS(2))
999 FORMAT(8010.2)

A1(1)=(PHI(ZX(1,1) +PHI(ZX(4,1))-PHI(ZX(3,1))-PHI(ZX(2,1)))
/ (ZX(4,1)-ZX(3,1 )
A1(2)=(PHI(ZX(1,2)) +PHI(ZX(4,2))-PHI(ZX(3,2))-PHI(ZX(2,2)))
/ (ZX(4,2)-ZX(3,2)
00 3500 I=1,2
00 3450 J=1,2
B(I,J)= PHI(ZY(4,I,J))-PHI(ZY(3,I,J)))/(ZY(4,I,J)-ZY(3,I,J)
* (PHI (ZY(1,I,J))-PHI (ZY(2,I,J)))/(ZY(1 ,I,J)-ZY(2,I,J))
D(IJ)=-U(1)**2*AC(I)/ (VZ**2+AC( I))U(2)**2*AC(J)/(VZ**2+AC
IF (D(I,J) .LT. -50.DO) GO TO 3050
D(IJ)= C(I)*CC(J)*DEXP(D(I,J))/DSQRT(AA(I)*AA(J))
GO TO 3051

RR1))
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3050 D(IJ)=0.D0 CUR01110
3051 CONTINUE CUR01120

G1=(VZ/S)**2*0(I,J)*A1(I)*A2(I)*B(I,J)/4 CUR01130
G=G+G1 CUR01140

C CUR01150
C COMPUTE DERIVATIVE WITH RESPECT TO C ANALYTICALLY CUR01160
C CUR01170

IF 1KK NE. I) GO TO 3440 CUR01180
IF I+J .EQ. 2 GD=G1*2.000/CC(1) CUR01190
IF I+J EQ. 3 GD=G1*(CC(2)-CC(1))/(CC(2)*CC(1))+GD CUR01200
IF I+J EQ. 4 GD=GD-Gl*2.000/CC(2) CUR01210

3440 CONTINUE CUR01220
3450 CONTINUE CUR01230
3500 CONTINUE CUR01240
C CUR01250
C COMPUTE DERIVATIVES NUMERICALLY CUR01260
C CUR01270

CUR1(JJ,KK,M)=VZ*DEXP(-X1)*G*DVZ CUR01280
IF(KK .NE. 1)CUR1(JJ,KK,M)= CUR01290

= ((CUR1(JJ,KK,M)-CUR1(JJ,1,M))/DCUR(KK)) CUR01300
3550 CONTINUE CUR01310

CUR1(JJ,5,M)=VZ*DEXP(-Xl)*GD*DVZ CUR01320
3600 CONTINUE CUR01330

GO TO 3700 CUR01340
3690 CONTINUE CUR01350

CUR1(JJ,1,M)=0.00 CUR01360
3700 CONTINUE CUR01370

RETURN CUR01380
3800 CONTINUE CUR01390

00 3850 L=JJ,200 CUR01400
CUR1(L,1,M)=PRESET CUR01410

3850 CONTINUE CUR01420
RETURN CUR01430
END CUR01440
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SUBROUTINE PREP PREOOO 10
INTEGER NSTP(5)/20,14,8,4,2/ PRE00020
REAL*4 VOLT(228),CW(227),RATIO/1.036633/ PRE00030
REAL*4 DVZ(2,129),VZT(228) PRE00040
REAL*4 AAAVZ,AAVZ,AVZ,TVZ,AAADVZ,AADVZ,ADVZTDVZ,DVOLT PRE00050
COMMON /VZ/AAAVZ(22,5),AAVZ(4,40),AVZ(2,84),AAADVZ(22,5), PRE00060

AADVZ(4,40),ADVZ(2,84),DVOLT(128),NFIRST(129) PRE00070
COMMON /TAIL/TVZ(241),TDVZ(241) PRE00080

C PRE00090
C GENERATE TABLE OF THRESHOLD SPEEDS AND CHANNEL WIDTHS PRE00100
C PRE00110

00 1 K=1,228 PRE00120
1 VOLT(K)=RATIO**(K-1)*60.-50. PRE00130

DO 2 K=1,227 PRE00140
IF(K .LE. 128)DVOLT(K)=VOLT(K+1)-VOLT(K) PRE00150

2 CW(K)=ALOG(VOLT(K+1)/VOLT(K))*.5 PRE00160
VZT(1)=43.76871 PRE00170
00 3 K=1,227 PRE00180

3 VZT(K+1)=VZT(K)*EXP(CW(K)) PRE00190
C PRE00200
C GENERATE TABLE OF SPEEDS FOR INTEGRATION OF FIRST 5 CHANNELS PRE00210
C PRE00220

00 4 NCHAN=1,5 PRE00230
NFIRST(NCHAN)=1 PRE00240
AAAVZ(2,NCHAN )=1.02*VZT(NCHAN) PRE00250
AAAVZ(1,NCHAN)=(VZT(NCHAN)+AAAVZ(2,NCHAN))/2. PRE00260
DVZ(1,NCHAN)=AAAVZ(2,NCHAN)--AAAVZ(1,NCHAN) PRE00270
NSTEP=NSTP(NCHAN) PRE00280
DVZ(2,NCHAN)=(VZT(6)-AAAVZ(2,NCHAN))/FLOAT(NSTEP) PRE00290
AAADVZ(1,NCHAN )=DVZ(1,NCHAN)*4./3. PRE00300
AAADVZ(2,NCHAN)=(DVZ(1,NCHAN)+DVZ(2,NCHAN))/3. PRE00310
00 4 N=1,NSTEP PRE00320
AAADVZ(N+2,NCHAN)=DVZ(2,NCHAN)*2./3. PRE00330
IF(MOD(N,2) .EQ. 1)AAADVZ(N+2,NCHAN)=DVZ(2,NCHAN)*4./3. PRE00340
IF(N .EQ. NSTEP)AAADVZ( N+2,NCHAN )=DVZ( 2,NCHAN )/3. PRE00350

4 AAAVZ(N+2,NCHAN)=AAAVZ(N+1,NCHAN)+DVZ(2,NCHAN) PRE00360
C PRE00370
C GENERATE TABLE OF INTEGRATION VELOCITIES FOR CHANNELS 6-45 PRE00380
C PRE00390

00 5 NCHAN=6,45 PRE00400
DVZ(1,NCHAN)=( VZT(NCHAN+1)-VZT(NCHAN))/4 PRE00410
AADVZ(1,NCHAN-5)=DVZ( 1,NCHAN)*4./3. PRE00420
AADVZ(2,NCHAN-5)=DVZ 1,NCHAN)*2./3. PRE00430
AADVZ(3,NCHAN-5)=DVZ 1,NCHAN )*4./3. PRE00440
AADVZ(4,NCHAN-5)=DVZ 1,NCHAN)/3. PRE00450
DO 5 NSTEP=1,4 PRE00460

5 AAVZ(NSTEP,NCHAN-5)=VZT(NCHAN)+FLOAT(NSTEP)*DVZ(1,NCHAN) PRE00470
C PRE00480
C GENERATE TABLE OF INTEGRATION VELOCITIES FOR CHANNELS 46-128 PRE00490
C PRE00500

00 6 NCHAN=46,129 PRE00510
DVZ(1,NCHAN)=(VZT(NCHAN+1)-VZT(NCHAN))/2. PRE00520
ADVZ(1,NCHAN-45 )=DVZ( 1,NCHAN)*4./3. PRE00530
ADVZ(2,NCHAN-45)=DVZ(1,NCHAN)/3. PRE00540
00 6 NSTEP=1,2 PRE00550
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SUBROUTINE DATARD FXROO010
C FXROO020
C THIS SUBROUTINE READS DATA FOR ANALYSIS. DATA SELECTION FXROO030
C INFORMATION IS READ FROM UNIT 8. THE CONTROL VARIABLES ARE: FXROO040
C ITYM TIME OF SPECTRUM TO BE ANALYZED FXR00050
C CC NOISE CURRENT FXROO060
C CN STATISTICAL UNCERTAINTY DUE TO NOISE FXROO070
C NP 1=FIT VELOCITY,4=KEEP VELOCITY FIXED FXROO080
C LCHAN ARRAY INDICATING WHICH CHANNELS ARE TO BE FIT FXROO090
C THE DATA ARE READ FROM UNIT 2. THE FIRST SPECTRUM OF MODE FX-R00100
C TYPE ITLMOD TAKEN LATER THAN THE TIME SPECIFIED BY ITYM IS FXROO110
C CHOSEN FOR ANALYSIS. THE CHANNELS INDICATED BY T IN LCHAN ARE FXROO120
C READ INTO DRAY. THE STATISTICAL WEIGHT FOR EACH DATA POINT IS FXROO130
C THEN COMPUTED AND STORED IN WRAY FXROO140
C FXROO150

INTEGER*4 NCHN(2),NFIRST FXRO160
INTEGER*4 NINT,NPTS,NPARM,NP,ITLMOD,JTLMOD FXROO170
INTEGER NSY/31536000/,NSD/86400/,NSH/3600/,NSM/60/,JTYM(6),ITYM(6)FXR00180
REAL*4 CURRNT(512) FXROO190
REAL*4 SHIFT(100),A1(100),A2(100),C1(100) FXR00200
REAL*4 AMAI,AMA2,AMC1,AMSFT,ABCS FXR00210
REAL*4 AS,BS,C,CN,CC FXR00220
REAL*4 AAAVZ,AAVZ,AVZ,TVZ,AAADVZ,AADVZ,ADVZ,TDVZ,DVOLT FXR00230
REAL*8 DRAY,WRAY,PARM FXR00240
LOGICAL*1 LCHAN,LT FXROO250
COMMON/LCHAN/LCHAN(128,4),CN,CC FXR00260
COMMON /ABCSET/ABCS(241,4,2) FXR00270
COMMON /VZ/AAAVZ(22,5),AAVZ(4,40),AVZ(2,84),AAADVZ(22,5), FXR00280

AADVZ(4,40),ADVZ(2,84),DVOLT(128),NFIRST(129) FXR00290
COMMON/CFIT/NPTS,NPARM,PARM(10),DRAY(512),WRAY(512),NP FXR00300
COMMON/AS/AS(72,4),BS(72,4),C(4),NINT(72,4) FXR00310
COMMON/TRNPAR/AMA1(100,129) ,AMA2(100,129),AMC1(100,129), FXR00320

AMSFT(100,129) FXR00330
LOGICAL*1 LARRY FXR00340
REAL*8 ARRY(512),ARRY1(512,6) FXR00350
C(1)=16. FXR00360
C 2)=4. FXR00370
C 3)=2. FXR00380

C C 4)=1. FXR00390
C 4)=18. FXR00400
READ (8,*) NPTS,NPARM,NP FXR00410
READ (8,*) (PARM(I),I=1,10) FXR00420
READ (8,*) ITYMITLMOD FXR00430
T=(ITYM(1 -1979)*NSY+ITYM(2)*NSD+ITYM(3)*NSH+ITYM(4)*NSM+ITYM(5) FXR00440
READ (8,* CN,CC FXR00450
READ (8,300) LCHAN FXR00460

300 FORMAT (64L1) FXR00470
1 READ (2,350) JTYM,JTLMOD FXR00480

350 FORMAT('0',6I5,' JTLMOD=',14) FXR00490
IF(JTLMOD .EQ. 1)NET=64 FXR00500
IF( JTLMOD .EQ. 2)NET=512 FXROO510
T1=(JTYM(1)-1979)*NSY+JTYM(2)*NSD+JTYM(3)*NSH+JTYM(4)*NSM+JTYM(5) FXROO520
READ(2,400) (CURRNT(I),I=1,NET) FXR00530

400 FORMAT(1X,4E12.3) FXROO540
IF (T1-T) 1,2,2 FXROO550
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2 IF(JTLMOD-ITLMOD) 1,3,1 FXROO560
3 CONTINUE FXROO570
WRITE(35)(CURRNT(I), I=1,NET) FXROO580
N=O FXROO590
DO 20 NCP=1,4 FXR00600
DO 10 NCHAN=1,128 FXR00610
IF(.NOT. LCHAN(NCHAN,NCP)) GO TO 10 FXR00620
N=N+1 FXR00630
IF (ITLMOD .EQ. 1) N1=NCHAN+16*(NCP-1) FXR00640
IF (ITLMOD .EQ. 2) N1=NCHAN+128*(NCP-1) FXR00650
DRAY(N)=CURRNT (N) FXR00660
WRAY(N)=DSQRT((4.D-2*DRAY(N))**2+(DBLE(CN)/DBLE(DVOLT(NCHAN)))**2)FXROO670

10 CONTINUE FXR00680
20 CONTINUE FXR00690

READ(1,*)ABCS FXR00700
DO 30 I=1,128 FXR00710
READ 15 SHIFT(J),J=1,60) FXR00720
READ 25 SHIFT(J) ,J=61,100) FXR00730
READ 16 A1(J ,J=1,60) FXR00740
READ 26 Al J ,J=61,100) FXR00750
READ 17 A2 2 ,J=1,60) FXR00760
READ 27 A2 2 ,J=61,100) FXR00770
READ(18) Cl & ,J=1,60) FXR00780
READ(28) (Cl ,J=61,100) FXR00790
DO 29 J=1,100 FXROO800
AMSFT(J,I)=SHIFT(J) FXROO810
AMAl (,) =A1 ( FXROO820
AMA2( ,1 =A2 J FXROO830
AMC1 (,1 =C1 ( FXROO840

29 CONTINUE FXROO850
30 CONTINUE FXROO860

READ(30,9100")NINT FXROO870
READ(30,9101 PAS FX R00880
READ( 30 ,9101 )BS FXROO890

9100 FORMAT(20I4) - FXR00900
9101 FORMAT( 5016.7) FXR00910

LARRY=.TRUE. FXR00920
RETURN FXR00930
END FXR00940
SUBROUTINE S::MCOM(PARM,LARRY,ARRY,ARRY1) FXR00950
LOGICAL*1 LCHAN, LARRY FXR00960
INTEGER*4 NCHN(2).NPTS,NPARM,NP,NINT FXR00970

C THE FOLLOWING STATEMENT IS A MODIFICATION FXR00980
C REAL*4 VO(3)/41.2,28.95,3.5/,DB(3)/-25 .8 ,33 .0,37.2/ FXRO099O
C FXR01000

REAL*4 AS,BS,C,CN,CC FXR01010
REAL*4 AAAVZAAVZ,AVZ,TVZAAADVZ,AADVZ,ADVZ,TDVZ,DVOLT FXR01020
REAL*8 DN/1.D0/,A/64.D0/,Z/1.DO/,DIST(128),PARM(10) FXR01030
REAL*8 F(71,4),WSPVSC(3) ,VCP(3),ARRYl(512,6),ARRY(512) FXR01040
COMMON/LCHAN/LCHAN(128,4), CN ,CC FXR01050
COMMON/VZ/AAAVZ(22,5),AAVZ(4,40),AVZ(2,84),AAADVZ(22 ,5), FXR01060

AADVZ(4,40),ADVZ(2,84),DVOLT(128),NFIRST(129) FX R01070
COMMON/AS/AS(72,4),BS(72,4),C(4),NINT(72,4) FXR01080
WSP=PARM( 4) FXR01090
VSC(1)=PARM(1) FXR01100
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VSC (2)=PARM (2)
VSC (3) =PARM( 3)

C THE FOLLOWING TWO STATEMENTS ARE A MODIFICATION
C DO 9991 MP=1,3
C9991 VSC(MP)=DBLE(VO(MP))+PARM(3)*DBLE(DB(MP))
C

F
F

N P=0
DO 300 NCP=1,3
CALL VSCCP(VSC,NCP,VCP)
NCHN(1)=1
NCHN (2)=127

C WRITE(6,9000)DN,WSP,VCP,A,Z
9000 FORMAT(5D16.7)

CALL ABCCUR(DN,WSPVCP,A,Z,NCHN,DIST)
C WRITE(6,9000)(DIST(NN),NN=1,71)

00 100 J=1,4
DO 100 NCHAN=1,71
N1=NINT(NCHAN,J)
N2=N1+1
F(NCHAN,J)=(DBLE(AS(NCHAN,J)) *IST(N1)+

+ DBLE(BS(NCHAN,J))*OIST(N2))*OBLE(C(J))
100 CONTINUE

00 150 NCHAN=1,71
IF(.NOT. LCHAN(NCHAN,NCP))GO TO 150
NP=NP+1

C ARRY(NP)=PARM(5)**2*F(NCHAN,1)+PARM(6)**2*F(NCHAN,2)+
C + PARM( 7)**2*F(NCHAN,3)+PARM(8)**2*F(NCHAN,4)+
C + DBLE(CC)/OVOLT(NCHAN)

ARRY(NP)=PARM(5)*F(NCHAN,1)+PARM(6)*F(NCHAN,2)+
+ PARM(7)*F(NCHAN,3)+PARM(8)*F(NCHAN,4)+DBLE(CC)/DVOLT(NCHAN)
IF(.NOT. LARRY)GO TO 150
00 130 NSP=1,4

C 130 ARRY1(NP,NSP)=F( NCHAN,NSP *2.DO*PARM(NSP+4)
130 ARRY1(NP,NSP)=F(NCHAN,NSP)
150 CONTINUE
300 CONTINUE

RETURN
END
SUBROUTINE VSCCP(VSC,NCP,VCP)
REAL*8 TM(9,4) ,VJE(3) ,VSC(3) ,TJESC(9) ,VCP(3) ,T(9) ,V(3)
DATA TM/0.5,C.8137977,0.2961981, -0.8660254,0.4698463,0.1710101,
1 0.,-0.3420201,0.9396926,
2 0.5,-0.8137977,-0.2961981, 0.8660254,0.4698463,0.1710101,
*0. ,-0.3420201,0.9396926,
3 -1.,0.,0., 0.,-0.9396926 ,-0.3420201, 0.,-0.3420201,0.9396926,
4 -0.6819984,-0.02552388,-0.7309082,
* 0.7313537,-C.02380140,-0.6815829, 0.,-0.9993908,0.03489950/
CALL DVTRNS(VCP,TM(1,NCP),VSC)
RETURN
END
SUBROUTINE DVTRNS (VP,T,V)

C VP = TV+VO
REAL*8 VP(1),(1) ,V(1 *) T7*VVP(1) = T(1)*V(1)+T(4)*V(2)+T(7)*V(3)
VP 2 = T(2)"'V(1)+T(5)*V( 2)+T(8 *V(3)
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(200)

VP(3) = T(3)*V(1)+T(6)*V(2)+T(9)*V(3) FXR01660
RETURN FXR01670
END FXR01680


