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The Pricing of Durable Exhaustible Resources

1. Introduction

Hotelling's r-percent growth rule for the price of an exhaustible

resource has had only limited success in explaining the evolution of re-

source prices. The prices of many exhaustible resources have experienced

long secular declines, or more commonly, have fallen over a long period

and then later risen, following a U-shaped profile.

The demand characteristics for a large class of exhaustible

resources make the simple Hotelling model inadequate as a means of ex-

plaining historical price behavior. These resources are durable, so that

their demands are functions of the stocks in circulation rather than the

flows of production. The best examples of such resources include diamonds,

gold, silver, and the other precious metals, but copper and other metals

also have durable aspects.2

In a recent paper in this Journal, Stewart (1979) used a discrete-

time model to argue that competitive producers with constant extraction

costs would produce a durable resource at such a rate that Hotelling's

r-percent rule would still apply. For a partially durable resource

(i.e. one that depreciates over time) Stewart's result is technically correct

but not very meaningful in that it requires an unlimited amount of production

in the first period to instantaneously bring the stock of resource in circulation

to its maximum value. In this way (if the amount of depreciation each period

1 - For results of some recent empirical tests of the Hotelling model, see
Heal and Barrow (1979), Feige and Geweke (1979), and Smith (1979). Heal
and Barrow find U-shaped price profiles to predominate for many resources
over the past century. For an excellent source of resource price data,
see Manthy (1978).

2 - Salant and Henderson (1978) note that the real price of gold moves with
upward surges followed by sharp drops, with price rising much faster than the
real rate of interest during the surge. They explain this behavior by intro-
ducing anticipations of government gold policies into a standard Hotelling mo-
del of production. But while this is an effective way of explaining short-
term fluctuations in gold prices, it is not so effective as an explanation of
the long-term secular behavior of price.
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is larger than the amount of production) the stock in circulation can fall and

the price can rise (according to the r-percent rule) over all succeeding periods.

For a perfectly durable resource and constant demand (or a rate of demand growth

smaller than r), Stewart's result is simply incorrect - clearly the stock in

circulation can only increase in such a case, so that (with constant demand)

price can only fall.3

Here we reformulate the durable resource problem in continuous-time, and

show that the problem is in fact ill-defined when extraction cost is constant.

We will see that with rising marginal and average extraction cost the competitive

price is always falling for a perfectly durable resource and constant demand,

and the price profile is U-shaped for a partially durable resource and/or growing

demand. Properly accounting for the characteristic of durability may thus help
4

explain the observed behavior of resource prices.

In the next section we present and solve a simple model for the general

case of a partially durable resource and autonomous growth in demand. The be-

havior of the model is discussed in Section 3 for the simplest case of perfect

durability and static demand, in Section 4 for the case of partial durability

and static demand, and in Section 5 for the general case. Section 6 compares

the rate of production in a competitive market with the socially optimal rate.

2. The Model

With non-durable resources such as oil or gas, demand is a flow, since

once a unit of the resource has been consumed (burned), it no longer provides

utility. A unit of a durable resource, on the other hand, continues to provide

3 - In Stewart's model all production would take place in the first period in
in this case, so that there would be no relevant inter-temporal price variation.
In addition, Stewart has mis-specified the demand relationship by setting price
equal to the marginal value of services from a unit of stock in circulation,
rather than setting the user cost of holding that unit equal to the marginal value.

4 - There are other explanations for the observed U-shaped profiles of
resource prices over the long run. For example, Pindyck (1978) showed that
the introduction of exploration and reserve accumulation can result in a
U-shaped price profile.
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utility as long as it is held, so that demand is a stock relationship. We

write the demand relationship as:

D(Q) = f(Q)y(t) (1)

where D(Q) is the marginal value of services from a stock of resource in

circulation of size Q, f'(Q)< 0, and y(t) provides for autonomous growth

in demand.5 For simplicity we will assume a constant proportional growth

rate, so that y(t) = eat.

The user cost of 1 unit of the resource stock is just rp - p + p,

where r is the interest rate and 6 the rate of depreciation of the stock.

Equating this user cost with the marginal value (1) provides the differential

equation that the resource price must satisfy at all time:

p =-f(Q)eat + (r + 6 )p (2)

The remainder of the model looks like a standard Hotelling model,

except that we assume that marginal production cost increases with the rate

of production q, i.e. C"(q) >0. Letting X represent cumulative production

and X total available reserves, the producer's problem can be written as:

-rt
max [pq - C(q)]e dt (3)
q

subject to Q = q - Q, Q(O) = 0, (4)

X = q, X<Xo, q >0, (5)

together with eqn. (2) for p.

A monopoly producer could control the market price p as well as

the total stock in circulation Q, so that the monopoly solution is found

by explicitly accounting for the three state equations (2), (4) and (5)

5 - It is not clear whether our definition of durability would apply to
non-precious metals such as copper or aluminum. In a model of the aluminum
market, Gaskins (1974) writes demand as a flow relationship, arguing that
aluminum "is durable in the same way that newsprint or steel are durable.
It is not a 'normal' durable good like an automobile or a computer...[but]
like newsprint must be substantially transformed (fabricated) from its scrap
condition to yield useful services." In this paper we are interested in
"normal" durable goods for which demand is a stock relationship. If we
treat the fabricator as the consumer of copper or aluminum, then these re-
sources might indeed be considered as "normal" durable goods.
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when performing the maximization. Competitive producers, on the other hand,

have no control over p or Q, so that the competitive solution is found by

maximizing (3) subject to (5), and then using (2) and (4) to determine the

market-clearing price and production levels. Here we present the solution

for the competitive market and examine its characteristics.

The solution is obtained by straightforward application of the Maximum

Principle. The Hamiltonian is:

-rt -rt
H = pqe - C(q)e + Xq (6)

Maximizing (6) with respect to q and differentiating the resulting equation

with respect to time gives:

-rt · -rt C -rt
= r[p-C'(q)]e - pe + C"(q)qe-rt

Since A = -aH/aX = 0, we can rewrite (7) as:

q C"(q) [ - rp + rC'(q)] (8)

Finally, substitute eqn. (2) for p:

q C 1(q)[6p + rC'(q) - f(Q)et] (9)

This equation and equations (2) and (4), together with the boundary con-

ditions Q(O) = 0, q(T) = 0 (which guarantees that H(T) = 0 as long as C(O) = 0),

and the condition that |T q(t)dt = X, determine the equilibrium production
0

and price profiles.

Note that is bounded only if C"(q) # 0. Suppose C"(q) = 0 Then

production is described by an impulse function at t = 0 that brings Q to its

maximum level. With perfect durability and static demand q = 0 for t > 0,

and price remains constant and equal to f(Q)/r, i.e. the capitalized marginal

value flow from 1 unit of stock. With partial durability price will rise

during t > 0 according to the r-percent rule, as is evident from eqn. (7)

(with C"(q) = 0 and A = 0). But must also satisfy eqn. (2). To determine

the level of output combine eqns. (2) and (7) to eliminate p:

(r + 6)p - f(Q) - rp - C'(q)] (10)
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Now differentiate this equation with respect to time, and substitute

eqn. (4) for Q:

(q - 6Q)f'(Q)/6 (11)

Now combine eqn. (7) (the r-percent rule) with eqn. (11) to eliminate p:

q(t) = rip - C'(q)] + 6Q (12)

Note that q < 6Q (which is necessary for p to rise), and q + 0 for all

t > 0 as 6 .6

It is much more interesting - and much more realistic - to drop the as-

sumption that C"(q) = 0. In what follows we therefore assume that C"(q) > 0.

As is evident from eqn. (7) the r-percent rule no longer applies, but we

will see that the model now provides a better description of historicalprice

behavior.

3. Perfect Durability, Static Demand

Here 6 = a = 0, so that eqn. (9) becomes

q -[f(Q) - rC'(q)]/C"(q) (13)

The rate of production q will be non-zero only if f(Q)/r > C'(q), i.e. the

capitalized marginal value flow from a unit of stock is greater than the

marginal cost of extracting the unit (so there is a positive rent), and there-

fore q < 0 up to the terminal time T. Now consider two cases.

First suppose that the resource constraint is non-binding, i.e. X

is very large, so there is a Q < X for which f(Qo) = rp = rC'(0). In this

case Q + Q asymptotically as q + 0 and q -+ 0 asymptotically. This is illustrated

by the trajectories qA and QA in Figure 1.

Now suppose the resource constraint is binding, i.e. Xo < Q, so that

production must cease at time T before marginal profit falls to zero. Then

PT = f(QT)/r = f(X)/r > C'(0), and qT < 0. The trajectories for this case

are given by qB and QB in Figure 1.

6 - The reader can demonstrate that perfect durability but growth in demand also
leads to q > 0 for t > 0 and the r-percent rule for price if C"(q) = 0.
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Figure I Optimal Trajectories; Perfect Durability, Static Demand

4. Partial Durability, Static Demand

Now a = 0 but 6 >0 so that eqn. (9) becomes

q = -f(Q) - rC'(q) - p]/C"(q) (14)

Note from equation (2) (with a = O) that the price profile is U-shaped

if the resource constraint is binding, and price is always falling if

there is no resource constraint (i.e. if reserves are infinite).

The behavior of production is easiest to see from the phase diagram of

Figure 2. Note that initially as Q rises p grows (i.e. becomes a smaller nega-

tive number), and the [q = 0] isocline shifts to the left. Later as Q falls

(if the resource constraint is binding), p begins falling to 0 (as Q 0) and

the isocline shifts to the right.

When the resource constraint is non-binding, X = 0, H -+ 0 asymptotically,

and q q = 6Q such that f(Q)i/(r+6) =- pq = C q). (These relationships deter-

mine Q, q and .) This case is illustrated by trajectories qA and QA in Figure

3, and as can be seen from trajectory A in the phase diagram of Figure 2,

q < 0 always if Q = 0 initially. Note that these trajectories describe a simple

stock adjustment model. As the industry "matures" price falls, asymptotically

approaching its long-run equilibrium level f(o)/(r + 6).



-7-

When the resource constraint is binding q will typically fall

monotonically to 0, with Q increasing until time T1 when q = Q(T1), and

falling thereafter, as illustrated by trajectory B1 in the phase diagram

and by q and QB in Figure 3. The price profile is therefore U-shaped,

i.e. price falls at first as the stock in circulation is built up, and

later rises, with p at first rising and then later falling towards zero as

Q depreciates towards zero. The r-percent rule clearly does not hold, even

over the period of rising price. The interval (0, T1) over which price is

falling is determined largely by C"(q). If C"(q) is small, q will be high

initially (but falling more rapidly), so that Q approaches its maximum value

more rapidly. Finally, note that if 6 is large, q can begin falling, then

rise, and then fall towards 0 as in trajectory B2 in the phase diagram.7

A

Q

Figure 2 Phase Diagram: Parlial Durobilily,
Static Demand

is

7 - q begins rising if the [q = 0] isocline shifts leftward enough, and then

falls again as the isocline shifts back to the right.

-

1,3

. .
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Figure 3 Optimal Trajectories: Partial Durability, Static Demand

5. Partial Durability, Growth in Demand

This is the general case, with the dynamics of production given by

eqn. (9). The behavior of price and production will not be very different

from the static demand case discussed in the last section. We can again re-

fer to the phase diagram of Figure 2, but note that with a > 0 the [q = 0]

isocline will rotate to the right over time around its point of intersection

with the q axis.

When the resource constraint is not binding (reserves are infinite),

q and Q will approach steady-state equilibrium growth paths in which H = 0,

so that p = C(q)/q. Thus as q increases price moves up the average cost

curve, q >Q, and Q keeps increasing.

When the resource constraint is binding, behavior is again characterized

by trajectory B1 in Figure 2, so that q falls to zero, and Q rises and then falls.

However, if a is large enough, p can always be rising (from a high initial value).

Since Q + 0 only asymptotically after production has ceased, p need not approach

0 asymptotically as in the case of static demand.

6. Optimality of Competitive Equilibrium

We now show that the rate of production in the competitive market is

t
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socially optimal in that it maximizes the sum of discounted consumer and pro-

ducer surplus. We demonstrate this for the general case of a partially durable

resource with growth in demand.

The total flow of value of services at time t from a stock in circulation

of size Q is et Tf(S)dS. Thus the social maximization problem is:
0

max t f(S)dS - C(q e-rtdt (15)

O O

subject to q q - Q, Q(O) =0 16)

and X = q, <X q< X (17)

The solution is again found be straightforward application of the Maximum

Principle. The Hamiltonian is

Q

a ·-r~· )t~ s~ds - C~q-rt
H = e ( - r ) t f(S)dS - C(q)er + Xq + p(q - 6 Q) (18)

o0

Maximizing (18) with respect to q and differentiating the resulting equation with

respect to time gives:.

+ = C"(q)qe- r t - rC'(q)e - r t (19)

Since X = -aH/aX 0 and

P -H/Q = -e(-r)tf(Q) + , (20)

we can write (19) as:

q C" [6pert + rC'(q) - f(Q)e at]

Now note that (t) = per t is the (undiscounted) shadow price of a unit

of stock in circulation, and can be identified with - and follows the same dynamics

as - the competitive market price p(t). To see this, differentiate (t) with

respect to time and substitute (20) for p:

- -f(Q)e' t + (r + 6)E
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This is identical to eqn. (2) if we set = p, so that the competitive rate

of production is indeed socially optimal.

7. Concluding Remarks

We have seen that Hotelling's r-percent rule will not apply for a

resource that is partially or totally durable. Instead, if marginal production

cost rises with the rate of production (which it must for the problem to make

much sense), the competitive market price will fall initially as the stock in

circulation increases, and later rise as the stock decreases and eventually

depreciates asymptotically to zero after production has ceased. Even during

this later period of rising price, however, the r-percent growth rule does not hold.

As we mentioned at the outset of this paper, the price profiles for

many resources have indeed been U-shaped over the long term (50-100 years).

Accounting for durability, as well as the process of reserve discovery and accumu-

lation during the early periods of resource use, may help explain this pattern

of price behavior.
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