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Abstract

Application of Sector and Location Specific Models

of the "Worth" of Renewable Energy Technologies

Richard D. Tabors
Massachusetts Institute of Technology

Renewable energy sources such as solar and wind hold the potential
for providing a significant portion of the U.S. energy requirements in
the decades ahead. Unlike other energy sources their availability is
determined by nonrandom events beyond the control of the consumer. In
addition, macro-, meso-, and microclimatic conditions play a major role
in determining the worth of such renewable energy sources to their
owners. The worth of these new technologies will be a function of owner,
location, and application as well as the traditional capital and
operating cost, i.e., their worth to an owner in the southwest will be
different form that to an owner in the northeast or the southeast.

Dealing with energy sources, with geographic and sectorally specific
energy values and with energy technologies with which we have little or
no experience in the marketplace has created a set of challenges in
analysis and modeling of these new technologies in competition with
traditional energy technologies and with other emerging technologies.
This paper will look at one simulation methodology for estimating the
worth of renewable energy systems providing electricity, such as wind or
solar photovoltaic power systems, and will discuss the interaction
between such systems and traditional electric utilities with which they
may or may not be integrated, be owned or be co-located. The paper
concludes with a discussion of the issues associated with the
incorporation of econometric techniques into such a simulation modeling
structure.
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Application of Sector and Location Specific Models

of the "Worth" of Renewable Energy Technologies

Introduction

Renewable energy sources such as solar and wind hold the potential

for providing a significant contribution to total U.S. energy supplies in

the decades ahead if the technology development effort currently under

way aimed at price reduction is successful or if the price of alternative

sources increases dramatically. Unlike many of the other sources of

energy, however, solar and wind power are not available at all times and

their availability, while nonrandom, is not totally predictable by the

consumer. In addition, relatively microlevel climatic and geographic

factors play a major role in determining the worth of these systems to

their owner.(2) The worth is a function of the location and the

application as well as a function of the owner in terms of his cost of

capital and ability to internalize both site-specific costs and variable

costs in operations and maintenance.

A second set of attributes of such technologies has made them more

difficult to analyze; they represent technologies which produce a good

the demand for which is derived rather than direct, i.e., these

technologies produce electricity or heat, both of which are consumed

through other means, either "comfort" or through the dishwasher or

toaster. With the exception of the electric utility industry in which

electricity is the final product, or of specific industrial environments

within which process heat of a specific nature is required within the

production process, the demand for the product, be it photovoltaic power

equipment, a wind turbine, or a concentrating thermal collector, is

derived through its application rather than demanded directly. Given
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this environment, the use of traditional behavioral models or more

traditional marketing models in the analysis of the decisions of the

consumer becomes more difficult if not impossible. One cannot approach

the analysis of a potential energy production source such as

photovoltaics using the same tools available for analysis of even the

decision between electric and oil heat and certainly cannot the tools

available for analyzing consumer response to new soap products.(3)

Given the caveats associated with the problems of modeling potential

consumer response to these new technologies and measuring and modeling

the performance of these technologies, it is necessary to approach the

problem from a basically different direction, that of process modeling or

detailed simulation modeling. The paper which follows will introduce a

modeling structure which has been applied to analyses of applications for

photovoltaic power systems in the residential, commercial and industrial,

and central power sectors of the United States energy economy. The paper

will present a set of results of the analyses to date to highlight the

usefulness of such techniques and will then discuss work currently in the

developmental stages which will attempt to bridge the gap between the

techniques available in more behavioral modeling and those of the worth

or simulation modeling presented herein.

Worth Analysis Structure

The examples discussed in this paper will come from research work

undertaken for the Department of Energy on photovoltaic development.*

*The discussion which follows is based upon work completed or under
way within the Photovoltaics Project, Utility Systems Program, MIT Energy
Laboratory under contract EX-76-A-01-2295 Task Order 37A from the
U.S.D.O.E. No effort will be made in the length of this paper to
describe in detail the technology development efforts in photovoltaics
nor the basic physical properties by which sunlight is converted to
electrical energy. For additional information see Chalmers (1).
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The photovoltaic technology converts sunlight directly into electrical

power. It is a modular technology which gains little from economy of

scale in use but does gain, in all likelihood, from economy of scale in

production. As a result, the photovoltaic technology is equally

applicable to residential and smaller scale application as it is to

either utility or industrial scale applications. As will be discussed in

the paragraphs which follow the relative economics of the specific

applications of technology are determined by the availability and cost of

capital and operations and maintenance cost differences between

applications.

Within the analyses undertaken all applications have been assumed to

exist within the United States energy economy and all have access to

electric power provided by a utility through their standard grid system.

As a result, all of the applications are either grid interconnected or,

in the case of central power, are fully utility integrated. Figure 1

presents a schematic diagram of the modeling system as it has been

developed and as it is being applied to photovoltaic power systems. As

can be seen, the measurement of the economic value of the system within a

particular application is made relative to the cost of purchased electric

power from the electric power system. The fact that photovoltaic power

systems provide power at different levels, and at different times during

the day is significant in that the cost of utility generation also

differs during the day as a function of level of demand. Thus the value

of photovoltaic generated electric power is a function of both when and

where it is being provided within the system. The analysis has

recognized this difference in that the simulation models developed match

the simulated output of the photovoltaic power system on an hour by hour
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basis (for 8760 hours per year) with the hourly operating costs of the

electric utility for the same time period as shown in their rates. In so

doing the worth of electric power from the photovoltaic power system can

be measured in terms of the cost to the consumer of buying that power

(also theoretically the cost to the utility of producing power) during

each time period throughout the year.

Given the above description one can see that the value to the owner

of having a photovoltaic power system is not independent of the overall

operating environment of the electric utility. Indeed, if one posits a

relatively high level of penetration of photovoltaic power systems within

any given utility, the value of the photovoltaic system to the owner is

not independent of the number and performance of other photovoltaic power

systems as well.

Under the circumstances discussed above the modeling requirements

are iterative and highly specific in nature. For an accurate evaluation

of the cost effectiveness of a photovoltaic power system within a given

application, such as a residence, it is necessary to know or estimate the

operating characteristics of the utility within which the system is being

installed and to know the present--and if possible future--level of

penentration of photovoltaic power within the utility system. In

addition it is necessary to match carefully the operating characteristics

and timing of the photovoltaic power system with those of the utility

within which it is operating. The results of such analyses as shown in

Figure 1 is a highly deterministic structure in which the application

passes information to the utility concerning the load which the utility

may expect. Clearly with increased penetration of photovoltaics within

the system the utility would see less load from the residential sector
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and indeed might even see negative load if the residential sector were to

generate excess power which could be incorporated back into the utility

grid. In turn the utility provides information to the residential

customer with a photovoltaic power system concerning the prices during

any given period of time. Handled iteratively one can estimate the value

of photovoltaic power systems to an individual owner given a specific

utility, a specific level of photovoltaic power system penetration into

that utility and given a relatively microgeographic, climatological

environment within which the photovoltaic power system would operate.

To complete such an analysis requires detailed information on the

performance of such a system and detailed information on the performance

of such a system and detailed information on the economic and financial

environment within which the potential owner would be operating. As an

example within the residential sector, would the potential owner of the

system be the homeowner and if so would an investment such as a

photovoltaic power system be accepted within the mortgage structure of a

new home? If so the tax structure of the United States and the

long-term-loan nature of a mortgage would make the application of

photovoltaics within such an environment more attractive than would be

the case in the industrial sector, for instance, where anticipated return

on capital investments is higher and where current energy expenditures

are tax-deductible, not the case in the residential sector.

In summary the modeling structure requires the accurate simulation

of specific sectoral or individual behavior in order to evaluate the

economic worth to the owner of a capital-intensive energy producing

technology such as a photovoltaic power system. The assumptions required

in such an analysis are many. Probably the most significant is that the
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owner of such a system be an economic man, i.e., it is assumed that the

life cycle breakeven capital cost is the critical variable influencing

the decision to purchase or not to purchase the technology. This

assumption is called into question most strongly in that it implies than

an owner would or could make the decision on the basis of life cycle cost

effectiveness. In addition, given that there is little or no practical

experience on the performance of photovoltaic systems, assumptions

concerning their lifetime and likely performance characteristics over

time are open to question as are imputed values for both discount rates

and the price of alternative sources of electrical energy. Given these

caveats, however, it is nonetheless possible to derive considerable

quantities of policy relevant information from the analyses and to begin

the process of bridging from models which are totally deterministic in

their assumptions to modeling structures which will allow for the

inclusion of both deterministic and behavioral attributes within their

structure.

The Applications, A Discussion of the Results

The discussion which follows presents the results of worth analyses

carried out for the residential sector, for the commercial sector and

industrial sector and for the central power sector. While the economic

environments and the modeling structures required differ between the

application areas, it is significant to analyze briefly the range of

conclusions which can be drawn from this work.

Beginning with analyses carried out for the residential sector,

Figures 2, 3, and 4 present the result of analyses carried out for



x
Z
W
0
LI

enO

a,

_P: 0
LN

0

::

03

<I
LC.

C4

c'J
N
0-en

IW.

9

I-

I
J

cn

0

31naOW (dM/,$) iSO3 -Illd3V N3A3- >IV3

l



10

I

I

en

00
I0

z
0

0

w

ILN

Lnc>
cl:

c
U

Il11

O ( /) 

3naow (d/$) SOO lLdVO

mA:

-J

0

C)o~

N3A3 -V3ES

IJ
Li

LL

LO
to J

Ln

r W
N
c(

410 U) cr

I)

Cuj

to

IO

0
0

LO

I



al

w_.1

C

Li

t.

1

ll

t

U4 <I I

LL

L0
N,-

N
N

OC:

11

-J.I
w
co

Ln Ln 0

]llOi4 (dM/$) lSO IVIIdVO N3A3- MV38ES

!



12

Boston, for Phoenix and for Omaha.* In each case the utility rate

structure was either that in use or an experimental time of day structure

under consideration for use in the region. The results then show the

amount that an owner could pay for the photovoltaic hardware measures in

1975 in $/peak watt of installed capacity net of all operating expenses

and all nonphotovoltaic capital expenses. It should be noted that these

values compare favorably with the DOE program goals of hardware being

available at $.50 per peak watt in 1986 and lower values by 1990.

Present costs for photovoltaic power systems are in the range of $9 to

$11 per peak watt but have shown rapid declines in recent years which

would support the achievement of the DOE goals.**

The results of the analysis show maximum values for photovoltaic

systems of $.89 in Phoenix, $.42 in Boston and $.24 in Omaha at the point

of maximum value, between 25 and 35 square meters of cell area. This

reflects a combination of factors in the analysis. Most significant is

the cost of alternative power and the availability of solar insolation.

The systems analyzed provided between 40 and 45% of the electrical power

of the given residence and in each case they provided power for sale back

to the utility. Critical uncertainties within the analysis are in four

areas, the price for components other than the photovoltaic cells

(referred to as balance of systems costs) such as power conditioning

equipment, wiring and support systems; economic parameters, particularly

*The results on residential applications of photovoltaic power
systems are taken from Carpenter and Taylor (4). Additional discussion
may be found in GE (5) and Westinghouse (6).

**For additional information concerning DOE photovoltaic goals and
the progress toward achieving those goals the reader should refer to
Photovoltaics Multi Year Program Plan. (7)
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the discount rate; the future price of oil and therefore the cost of

alternative energy; and the rate at which the utility is willing to buy

power from the photovoltaic generator. The analyses presented have

assumed values of $.41 per peak watt of balance of systems costs, a 3%

discount rate, a 3% rate of increase in real fuel costs and a 50% buyback

rate. Sensitivity analyses undertaken showed the most sensitivity to the

choice of the discount rate and buy back rate with fuel escalation also

having a significant impact on the final estimate of breakeven capital

cost. The balance of system cost impact was differentially significant

to the locations as it is a fixed dollar amount rather than a proportion

of the total value. (4)

The residential analysis has pointed to a significant potential

market area and a potential early market for photovoltaic power systems

in the United States. It has also identified those areas in both

economics and technology development which must be developed further

before any firm predictions of market potential can be developed. In

addition it identified the critical role which will be played by the

electric utilities in encouraging or discouraging the acceptance of the

technology within the system and therefore the necessary role of the PUCs

in regulating the correct rate for power buyback.

Figures 5, 6 and 7 present similar preliminary results to those

above but for three commercial/industrial establishments in Phoenix. In

this instance the load data used in the analysis were received from the

cooperating utility rather than being generated from a simulation model

as was the case in the residential analysis reported above. There are

both advantages and disadvantages to use of actual rather than simulated

load data.
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The most significant advantage is one of ease of use and availability of

the data. many individual firms and commercial establishments as well as

individual utilities are now maintaining records of consumption on

15-minute or one-hour time periods. With large and complex energy

consumers there are dramatic differences in analytic costs when comparing

simulation runs which create load data with the use of load information

collected at the source. An additional advantage is that it is possible

to match the individual load data with the processes involved within the

industry or the individual HVAC system in use in the commercial

building. There are, however, disadvantages in the use of fixed load

data relative to simulation modeling of the loads. The most significant

is the inability to impute any type of behavioral change in energy

consumption with respect to alteration in the price of electricity.

While this feature was used only sparingly in the analysis of the

residential systems, it did allow the researchers to separate the effects

of time of day rates alone in modifying the behavior of the owner from

changes that could be attributed to the availability of "free" electrical

power directly from the photovoltaic system.

Figures 5, 6, and 7 present the results of analyses which assume

varying internal rates of return to the establishments for capital

investments. The lowest rates, 3% would correspond to the level of rate

of return required of a household as discussed in the previous section.

Such levels are not acceptable in commercial or industrial establishments

where a traditional rate of return of 10% is more likely. As can be seen

in the figures the worth of the photovoltaic system declines rapidly as

the required rate of return increases. In addition it can be seen that

at a 10% rate of return the addition of a 10% investment tax credit (ITC)
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adds little to the worth of the photovoltaic system. As was the case

with the residential sector the worth of the system is sensitive to the

buyback rate--shown as 50 or 100% with a 3% rate of return.

The value of photovoltaic power systems to the user is less in the

case of the industrial and commercial users than was the case in the

residential sector. This is largely brought about by the difference in

the financial structures of the two sectors. In addition, it appears

that the industrial and commercial sectors are more sensitive to the

"goodness of fit" between solar availability and current load than is the

case in the residential system. The results gained to date on the

commercial and industrial analyses are preliminary but their overall

conclusions are that the modeling structure is capable of being used for

analysis of the value of such systems to their owners. An improvement in

overall reliability nd sensitivity in analysis will be gained if it is

possible to develop a set of generic process models which can be

sensitive to price elasticities or if it is possible to gain access to

load data disaggregated to the production line level in order to posit

behavioral changes which could results from shifts in price.

Probably one of the most interesting of the analyses carried out to

date utilizing the modeling structure discussed above has been in the

area of utilization of the photovoltaics as a generation source owned by

the utility. Much of the early work in analysis of the potential for

photovoltaic power systems made the assumption that if it generated

electricity it would of necessity be a central rather than a dispersed

technology in its application. (8) As the above discussions of

residential and commercial applications tend to indicate, this is not the

case. In addition, it was assumed in early analyses that photovoltaics
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used in central power applications needed to be coupled with of dedicated

storage if they were to operate effectively within a utility system.

This has also been shown not to be the case. The analysis of

photovoltaics when used in a central power mode requires, therefore, a

modeling structure in which the photovoltaic power system (or wind

system) can be dispatched when available within the system as a whole and

requires a reoptimization of overall system capacity decisions based upon

the availability of power with a high capital and low to zero operating

cost component. As a result the analyses carried out for the value of

photovoltaic power systems integrated in a central power system reflect a

simulation approach for the entire utility operating system. (9,10,11)

The results of this analysis are shown in Figure 9 for four regional

utilities. The results indicate the value of photovoltaics at different

levels of penentration within the utility system and produce a generally

downward sloping curve which indicates that the higher the level of

penetration of photovoltaics into the system the lower is the value of

the marginal unit of photovoltaic generation. These results are highly

predictable given the fact that photovoltaic power tends to be generated

on peak and as a result it replaces the more expensive power generation

and fuel costs sources first then begins slowly to provide power in

intermediate periods. While photovoltaics can have an influence on the

amount of base load capacity optimally carried by a utility it cannot in

any generation sense replace more than a fraction of that capacity.

The worth of central power photovoltaic systems is less than was the

case for either residential or commercial/industrial applications. The

cost of capital is again a significant contributor as is the cost of land

and other requirements in operations and maintenance inherent in megawatt
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scaled installations. On the other hand there are economies of scale in

power conditioning equipment which work in favor of the large scale

applications. Figure 9 contains two scales on the vertical axis which

represent two assumptions concerning the balance of systems costs

inherent in such systems. The left axis assumes a balance of systems

cost of $.50 per watt peak while the right axis assumes a value of $.30

per watt peak. As can be seen at $.50 per watt peak only the Northeast

and Southwest show positive values in breakeven capital cost given the

base line analyses undertaken.

In summary the analyses undertaken on individual sectors has pointed

to the significance of balance of systems costs and their guaranteed

reduction over time, to the significance of the economic parameters of

discount rate and/or required rate of return and significantly to the

interaction between the customer and the utility in terms of the buyback

rate for electric power. Using only the simplified models discussed

above the next step in the analysis need be the interaction between

utility and application penetration level to analyze the impact of

increased penetration upon the actual utility rates which would result.

Further Research

The results of the models described above are limited in scope.

They do not go beyond a set of assumptions about the behavior of the

consumer and are limited in flexibility in looking at the overall

potential for the technology in contributing to the U.S. energy economy.

This factor is made more serious by the static nature of the analysis

both in terms of its temporal assumptions and in terms of its structural
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assumptions concerning the nature of the electrical power system beyond

1985 and the pricing systems which will be in use beyond 1985. (12,13)

As a result there are two directions in which additional research need go

and is proceeding.
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The first direction is to remain within the basic structure

discussed above but to evolve additional behavioral information into the

analysis. An example of such additional information is in terms of the

likely behavioral response of consumers to changes in price of

electricity. While limited effort has been made in this direction within

the residential modeling activity little has been done or can be done in

the commercial and industrial sectors without basic changes in the

structure of the models. Additional flexibility in the basic structure

can be added by incorporating alternative structures of utility systems

and utility pricing in the two decades ahead. Work in this area has

become a significant portion of research activities within the Utility

Systems Program at MIT. (14) Other work in this area requires more

effective consideration of competing alternative energy systems such as

photovoltaics and wind energy systems when utilized wthin the same

utility structure.

The second major area of additional research needs to be in the area

of bridging the gap between traditional econometric behavioral models of

technology acceptance and the engineering process models discussed in

this paper. (15,16) Work has begun on bridging the gap between these

modeling types though at the time of this writing only the most

preliminary structural efforts have been completed. Figure 10 indicates

a proposed effort within the residential sector to analyze the consumer

choice decision involving alternative energy sources within the home.

The ties are at this stage weak and conceptual but it is expected that

they will be strengthened as further research work is carried out. As

can be seen the process or simulation modeling effort produces a price

for electrical power. The behavioral models take price as a given and
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calculate the mix of appliances within a given residence which would

result from a given set of prices for alternative fuels. This mix of

appliances can be used within the process modeling to set the level of

electrical energy demand and as a result begin the process of iteration

toward a uniform solution.

Efforts under way in the commercial and industrial sectors have not

proceeded to the point of being able to draw a flow diagram to connect

together the results of the two modeling activities. At this early

stage, however, it is clear that additional information must be gathered

and analyses undertaken to evaluate the capital requirements of the new

technologies and to look at these new technologies not as entities unto

themselves in a life cycle cost structure but to look also at these

technologies as competing for scarce capital available to the given

firm. (17) In this way the traditional production function must be

expanded conceptually to include not only capital, energy and labor but

to look at capital has having both an energy and a more traditional

productive capital component.

Conclusions

The work described to date has been focused upon answering a narrow

band of questions relating to a solar technology: "At what price would

photovoltaic power sytems be competitive on a life cycle basis with

traditionally generated electrical power at a set of locations within the

United States, given a set of assumptions concerning the performance of

such systems and the economic characteristics of their consumers?" It is

necessary to develop the tools to carry this analysis further to answer

far more complicated questions associated with the amount of potential
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volume one might anticipate for photovoltaic sales, the decision

criterion which would be applied by the owners of such systems and the

operating flexibility which those owners would then show to accommodate

their consumption to the availability of power. To accomplish these

objectives requires both the further development of the models as

described in the sections above and the development and verification of

experimental technical and market/economic data on consumer economic and

market perception.
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