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Abstract

This paper studies the cost effectiveness of climate policy if there are technology externalities.
For this purpose, we develop a forward-looking CGE model that captures empirical links
between CO2 emissions associated with energy use, directed technical change and the economy.
We find the cost-effective climate policy to include a combination of R&D subsidies and CO2

emission constraints, although R&D subsidies raise the shadow value of the CO2 constraint (i.e.
CO2 price) because of a strong rebound effect from stimulating innovation. Furthermore, we find
that CO2 constraints differentiated toward CO2-intensive sectors are more cost effective than
constraints that generate uniform CO2 prices among sectors. Differentiated CO2 prices, through
technical change and concomitant technology externalities, encourage growth in the non-CO2

intensive sectors and discourage growth in CO2-intensive sectors. Thus, it is cost effective to let
the latter bear relatively more of the abatement burden. This result is robust to whether emission
constraints, R&D subsidies or combinations of both are used to reduce CO2 emissions.
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1. INTRODUCTION

There is an increasing consensus that growing emissions of greenhouse gases pose a serious

threat to the world. One strategy for addressing this threat is to use environmental policy such as

a cap and trade system to constrain emissions; the approach envisioned in the Kyoto Protocol of

the Framework Convention on Climate Change that has entered into force and will be

implemented in most industrial nations beginning in 2008. The use of a cap and trade system in
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this agreement was seen as a success of economic reasoning by many, because such systems are

widely heralded as generating a given level of abatement in the most “cost-effective” manner.

The Bush Administration has taken the United States out of the Kyoto Protocol and instead

adopted a technology policy that includes support for R&D as an alternative strategy, with the

idea that without technological options to reduce greenhouse gases an emission constraint will

mostly punish the economy by slowing economic growth. While such a punishment seems

mostly exaggerated for “small” reductions in emissions the ultimate goal of the Framework

Convention, stabilization of greenhouse gas concentrations, requires that the world economy

reduces emissions by 90 to 95% from best projections of where it otherwise would be. This is

untested territory, and thus the need for new technology is real if these stabilization goals are to

be met. However, even recognizing that new technology is needed, one might believe that

appropriate environmental policy instruments—the right emissions constraint or tax—would

induce new technologies.

We study the cost effectiveness of these different strategies. If emissions are priced will that

induce technical change? Can R&D subsidies achieve emission reductions, and is this strategy

cheaper than using emission constraints? Are the two strategies complementary? Can one

improve on uniform emission-reduction policy by differentiating policy toward relatively dirty

technologies? Previous investigations of the two strategies include Jaffe et al. (2005) and the

general equilibrium analyses of Goulder and Schneider (1999) and Popp (2004), who show that

carbon taxes are cost effective when they are complemented by a R&D subsidy. In a cost-

minimization setting, Rosendahl (2004) and Bramoullé and Olson (2005) demonstrate

theoretically that technology externalities call for differentiation of pollution taxes. We proceed

by empirically studying these different strategies in which we pay specific attention to their

differentiation.

For this purpose, we develop a forward-looking computable general equilibrium (CGE) model

that captures empirical links between CO2 emissions associated with energy use, directed

technical change and the economy. We draw on endogenous growth models of Rivera-Batiz and

Romer (1991) and Acemoglu (2002) and specify technologies as stocks of knowledge capital

that are sector-specific investment goods, which have associated positive externalities. We

calibrate the model to the Dutch economy, where availability of investment data for knowledge

capital that is consistent with the national accounting framework allows us to pay special

attention to its representation in the benchmark data. Simulations are constructed to reveal cost

effective combinations of CO2 constraints and R&D subsidies, including the desirability of

differentiating these instruments among clean and dirty sectors.

2. BASIC FEATURES OF THE MODEL

This section describes the key specifications of our model. We offer a full description of the

model in Appendix A.



3

2.1 Model specifications

We specify a representative consumer and producers in the following sectors: agriculture

(AGR), CO2-intensive industry (IND), non-CO2 intensive industry and services (SER), trade and

transport (TT), energy (NRG), CO2-intensive electricity (CIE) and non-CO2 intensive electricity

(NCIE), where the energy sector comprises the oil- and gas industries. Agents behave rationally

and have perfect foresight. A representative consumer maximizes intertemporal utility subject to

the intertemporal budget constraint. Intertemporal utility is a function of the discounted sum of

consumption over the time horizon. Environmental quality does not enter the utility function,

implying independence of the demand functions for goods with respect to environmental quality.

Producers maximize profits over time subject to their production-possibility frontier, which

are determined by nested constant-elasticity-of-substitution (CES) functions of knowledge

capital, physical capital, labor, and intermediate inputs. In addition, imported coal is used in the

production of CO2-intensive goods and electricity. Intermediate usage of oil, gas, and coal entail

CO2 emissions, which might be subject to quantity constraints, i.e. cap and trade systems.

Technical change is characterized by innovation possibility frontiers, which describe

investment in knowledge capital in the sectors. Knowledge capital is sector specific (c.f. Basu

and Weil, 1998). Further, technical change is a deterministic process and aggregate innovation

possibility frontiers are continuous, which allows us to avoid problems due to uncertainty or

integer variables.
1
 Investments in knowledge capital merely involve final goods as input. In

addition, there is positive delayed feedback in technical change in that previous investments in

knowledge capital have a positive external effect on the efficiency of current investments, i.e.

learning-by-researching (henceforth referred to as positive feedback).
2
 We specify this positive

feedback operating within each sector only but relax this assumption in the sensitivity analysis.

Finally, knowledge-capital investments accumulate into stocks, which gives rise to an additional

technology externality on sector production. The rationale for this externality is that, while

producers can prevent others from using their knowledge capital by means of patent protection,

they cannot completely prevent knowledge embodied in patents from spilling over to other

producers in their sector. These two types of technology externalities lead to the result that profit

maximizing firms underinvest in R&D and thus there exists a rationale to subsidize investments

in knowledge capital (henceforth referred to as R&D subsidies).

Regarding international trade, domestically produced goods and physical capital are allocated

between domestic and export markets. Goods traded on domestic markets are combined with

imported goods into an Armington (1969) aggregate, which satisfies demand for intermediate-

and final goods. An exception is coal imports, which are directly used in certain CO2-intensive

industries and the CO2-intensive electricity sector. Domestic investment in physical capital is

combined with foreign investment into an Armington aggregate as well, satisfying investment

                                                  
1
 Even though indivisibility of knowledge capital and uncertainty related to R&D processes are facts of life,

averaging out makes these facts matter less at aggregate levels (Romer, 1990).
2
 Rivera-Batiz and Romer (1991) dub this specification ‘knowledge-based’ in contrast to the former specification,

which they dub ‘lab-equipment’ for its emphasis on physical inputs.
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demand for physical capital. We do not model international trade in knowledge capital. As a

small open economy, it is potentially easy for the Netherlands to meet CO2-emission constraints

by specializing in non-CO2 intensive sectors so that the implied emissions occur outside the

economy. While that might be a realistic response for a small economy independently pursuing a

CO2 reduction policy, if it succeeds only by increasing emissions elsewhere there is little or no

real climate benefit. The Armington specification, as opposed to a Heckscher-Ohlin formulation,

closes international trade in a way that limits this leakage effect.

2.2 Equilibrium and growth

Each agent solves its optimization problem. When markets clear at all points in time, the

output, price and income paths constitute an equilibrium. Markets for production factors and

final goods are perfectly competitive but there initially is no market for CO2 emissions associated

with energy use. The technology externalities support nonconvexities in the possibility frontiers

and cause private and social returns to knowledge capital to diverge.

Economic growth reflects the growth rates of the labor supply and stocks of physical and

knowledge capital. Growth of the labor supply is exogenous and constant over time. Growth

rates of both capital stocks stem from endogenous saving and investment behavior. The economy

achieves balanced growth over time with the stocks of physical and knowledge capital growing

at the same rate as the labor supply.

3. CALIBRATION

In this section, we describe the calibration of our model in which we pay special attention to

the accounting of knowledge capital. Accounting for knowledge capital in CGE models is

relatively new and, when undertaken, is typically done in a rudimentary fashion because of

absence of detailed information. Because of the availability of investment data for knowledge

capital in The Netherlands that is consistent with the national accounting framework, we

calibrate our model to the Dutch economy. We choose 1999 as the benchmark year.

3.1 Accounting for knowledge capital

To account for knowledge capital, we identify and capitalize flows associated with knowledge

and subsequently incorporate these in the national accounting matrix (Statistics Netherlands,

2000). We follow De Haan and Rooijen-Horsten (2004) and identify expenditures on R&D,

expenditures on education (EDU) and investments in information- and communication

infrastructure (ICT) as knowledge flows.
3
 ICT is included because of its role in disseminating

and storing knowledge and is therefore an important part of the infrastructure required for

knowledge capital to be productive.

                                                  
3
 We are aware that this identification entails to a certain degree unavoidable randomness. There are many types of

knowledge and knowledge may be embedded not only in software and books but also in e.g., people and
traditions. It therefore is difficult to comprehensively measure and aggregate knowledge. Yet, it is not altogether
different from aggregating physical capital goods. The main difference is, of course, that it is difficult to attach a
value to knowledge capital (Griliches, 1979).
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To capitalize these knowledge flows, we take the following two steps. First, we create an

additional (column) account registering investments in the stock of knowledge capital and an

additional (row) account registering services derived from the stock. Investment in ICT is reported

as investment and expenditures on R&D and education are reported as derived services. We

assume the Dutch economy to be on a balanced growth path in 1999, which implies a fixed

relation between investments in and services derived from the sector-specific stocks of knowledge

capital. This relation gives us the total column and row accounts for knowledge capital as a result

of the three knowledge flows. Second, we debit the national accounting matrix to avoid double

counting. Given that investments in ICT are originally reported as investments in physical capital,

we debit the investment (column) account with the amounts of investment in ICT. Expenditures on

R&D and education are originally reported as intermediate consumption requiring us to debit the

intermediate goods matrix. We follow Terleckyj (1974) and assume that knowledge is embodied

in tangible goods and services, which allows us to debit each sector’s expenditures on education

and R&D from the sector’s consumption of intermediate goods proportionally to its sector of

origin. We balance the national accounting matrix by adjusting the (row) account for labor.

3.2 Data and parameter values

Besides accounting for knowledge capital, we make further data adjustments to account for

CO2 emissions associated with energy use. We divide the electricity sector into CO2-intensive

and non-CO2-intensive electricity generation using techno-economic data for the key

technologies that are sufficient to give an appropriate representation for both types of electricity

generation (Böhringer, 2003). Table B.1 (see Appendix B) presents cost structures and market

shares of the electricity generation technologies in The Netherlands. Further, we obtain data on

fossil-fuel inputs in The Netherlands from the GTAP-EG database (Palstev and Rutherford,

2000) and match this data with CO2 emission data for The Netherlands (Koch et al., 2002). We

classify CO2-intensive industry, trade and transport, energy and CO2-intensive electricity as CO2-

intensive sectors and agriculture, non-CO2 intensive industry and services and non-CO2 intensive

electricity as non-CO2 intensive sectors. Table B.2 presents the national accounting matrix and

Table B.3 reports factor- and CO2 intensities.

Turning to model parameters, we use general parameter values that are standard in the

literature (see Tables A.5-6 in Appendix A). Regarding international trade, however, we assume

unitary substitution elasticity between domestic and foreign commodities, which is lower than is

often used. This limits the leakage effect discussed above. Many of the largest trading partners of

The Netherlands are implementing similar environmental policies, such as the EU emissions

trading scheme, which limits effects of international trade on relative factor shares. Regarding

technology-related parameters, we use a 25% depreciation rate for knowledge capital.
4
 Pakes and

Schankerman (1979) study patent renewals in the United Kingdom, Germany, France, The

                                                  
4 
Alternatively, one can take the view that knowledge doesn’t depreciate at all. This assumption is likely to be valid

if the sector or industry under study is narrowly defined and its stock of knowledge capital changes only slowly
(Griliches, 1988). This assumption is less likely to be valid, however, if one defines sectors more broadly or for
periods where one might suspect more rapid obsolescence of knowledge capital such as the decades following
the ICT boom.
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Netherlands and Switzerland and find a point estimate for the depreciation rate of 25% with a

confidence interval between 18 and 35%. This estimate is consistent with data on lifespans of

applied R&D expenditures, which suggests an average service life of four to five years. More

recently, Jorgenson and Stiroh (2000) have estimated a geometric depreciation rate for computer

equipment and software of 31.5%. Further, we assume a positive feedback effect in technical

change of 20% being the difference between the private- and social returns to knowledge capital.

The former is at least equal to the 25% depreciation rate whereas estimates of the latter lie in the

range of 30-60% (see e.g. Baumol, 2002, or Otto et al., 2006), who find a positive feedback

effect of 45% with delays up to eight years). We base the coefficient value for the knowledge

spillovers on Coe and Helpman (1995) who estimate the elasticity of R&D stocks on total factor

productivity at 9% for non-G7 OECD countries.

Finally, we consider a 27-year time horizon, defined over the years 1999 through 2025, and

calibrate the model to a balanced growth path of two percent, which serves as reference case in

the simulations below.

4. SIMULATIONS

We analyze cost-effectiveness of both environmental- and technology policy to reduce

cumulative CO2 emissions in production over the time horizon of the model by 10% relative to

the reference case, where we differentiate both policies between CO2-intensive and non-CO2-

intensive sectors. Environmental policy takes the form of quantity constraints for CO2 emissions

(i.e. cap and trade systems) and technology policy takes the form of R&D subsidies. To avoid

leakage of CO2 emissions to consumption in all simulations, we also reduce these emissions by

10% relative to the reference case using a separate quantity constraint.

4.1 Simulation 1: Differentiated CO2-emission constraints

Figure 1 shows effects of the various possibilities to differentiate the CO2 emission constraint

between CO2-intensive and non-CO2-intensive sectors on shadow prices of CO2 emissions in the

sectors (lower graph) and discounted utility (upper graph). We explain this figure in several

steps, starting with the horizontal axes that list percentage changes in CO2 emissions of the non-

CO2-intensive sectors. As a first step, we set these percentage changes exogenously and calculate

the CO2-emission constraint for the CO2-intensive sectors necessary for total emissions in

production to be reduced by 10%. Second, we use the model to calculate the general equilibrium

result associated with each differentiation of both CO2 emission constraints. The lower graph

maps the corresponding sets of shadow prices for CO2 emissions required to meet the sectoral

emission constraints. In general, technology externalities positively affect the shadow prices. In

this simulation, however, we find the shadow prices with technology externalities to exhibit

negligible differences from those without technology externalities.
5
 For this reason, we present

only one curve for each sector in this graph. Yet, the technology externalities have a noticeable

                                                  
5
 The difference between shadow prices with and without technology externalities is difficult to graphically detect in

this simulation. Technology externalities have a positive effect on the shadow price of CO2 emissions because of
their positive effect on welfare and hence overall demand for energy and concomitant CO2 emissions. Yet, this
effect is limited in this simulation because of the deadweight losses associated to the CO2 emission constraints.
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Figure 1. Effects of differentiated CO2-emission constraints on discounted utility. Notes: CO2 emissions
in the CO2-intensive sectors change to the extent that overall CO2 emissions in production are reduced by 10%.

effect on welfare. As a last step, therefore, we map the changes to discounted utility that

correspond with each differentiation of the CO2 emission constraints in the upper graph. Utility

indices smaller than one imply welfare losses relative to the reference case. The upper curve

shows the welfare loss if there are technology externalities whereas the lower curve shows the

welfare loss if there are none. The left dashed vertical line represents the set of uniform shadow

prices, which is the cost-effective (highest welfare) set if there are no technology externalities.

The right dashed vertical line represents the set of differentiated shadow prices, which is the

cost-effective set if there are technology externalities.

We find that the conventional result of uniform shadow prices across sectors being cost

effective holds if there are no technology externalities. The 10% emission reduction in

production entails a welfare loss of 0.36% over the time period and results in a shadow price of

2.25 per ton CO2 in all sectors. When there are technology externalities, however, we find that

welfare is higher for all differentiations of the CO2 emission constraints. If the constraints can be

set at different levels, we find it cost effective to differentiate the constraints toward the CO2-

intensive sectors. The 10% emission reduction in production now entails a welfare loss of 0.34%

over the time period and results in shadow prices of 2.30 per ton CO2 in the CO2-intensive

sectors and 1.60 per ton CO2 in the non-CO2-intensive sectors. CO2 emission constraints direct

technical change toward non-CO2 intensive sectors yielding relatively more technology



8

externalities in these sectors and therefore raising their opportunity cost of abatement. The

electricity sector, for example, redirects its R&D toward biomass and wind technologies

resulting in relatively more knowledge spilling over from the development of these technologies

than fossil-fuel electricity technologies. Thus, it is cheaper to shift some abatement toward CO2-

intensive technologies and sectors.

The bias in technical change can be best understood with help of the general framework

presented by Acemoglu (2002) or the framework applied to energy biased technical change of

Otto et al. (2005). On the supply side of the economy, CO2-emission constraints give rise to a

substitution effect in production in that knowledge capital substitutes for fossil fuels raising the

profitability of investing in knowledge capital in the CO2-intensive sectors. On the demand side,

however, CO2-emission constraints give rise to a substitution effect in consumption as

consumers shift toward non-CO2-intensive goods raising the profitability of investing in

knowledge capital in the non-CO2-intensive sectors. When introducing CO2 emission constraints,

we find the demand side to be relatively important as substitution in consumption is necessary

for cost-effective emission reduction. Technology externalities reinforce the bias.

4.2 Simulation 2: Differentiated R&D subsidies

We now study R&D subsidies as our instrument to reduce overall CO2 emissions in

production by 10% relative to the reference case. Figure 2 shows effects of the various

possibilities to differentiate the CO2 emission reduction between CO2-intensive and non-CO2-

intensive sectors on required R&D subsidies (lower graph) and discounted utility (upper graph).

We obtain Figure 2 in a similar fashion as Figure 1 except that we now compute R&D subsidy

rates instead of shadow prices of CO2 emissions in general equilibrium. Finally, the left dashed

vertical line represents the set of uniform R&D subsidies and the right dashed vertical line

represents the set of differentiated R&D subsidies.

We find that R&D subsidies can also achieve the 10% emission reduction in production. In

fact, differentiating R&D subsidies toward non-CO2 intensive sectors not only can reduce

emissions but also increases welfare compared to the reference case. Table 1 shows that

compared to the hypothetical reference case, however, using R&D subsidies to achieve the

emission reduction always entails a welfare loss as R&D subsidies are a first-best instrument to

internalize technology externalities but a second-best instrument to reduce emissions.

The cost-effective set of R&D subsidies yields a welfare gain of 11.6% over the time period

and comprises an R&D subsidy of 48% in the non-CO2-intensive sectors and an R&D tax of

36% in the CO2-intensive sectors. Although the introduction of an R&D subsidy in the non-CO2-

intensive sectors has a negative effect on CO2 emissions because of substitution effects in

production and consumption, the R&D subsidy also gives rise to a strong rebound effect that

offsets the substitution effects. As the R&D subsidy lowers the marginal costs of non-CO2-

intensive goods, it indirectly increases demand for these goods and the concomitant demand for

energy and CO2 emissions. More importantly, by internalizing some of the technology

externalities as well, the R&D subsidy increases welfare leading to an overall higher demand for
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energy and CO2 emissions that strengthens the rebound effect. If R&D subsidies are the sole

instruments of choice, an R&D tax in CO2-intensive sectors is thus preferred in the cost-effective

solution to keep overall emissions within bounds.
6
 Essentially, the policy is one of supporting

growth of non-CO2 intensive sectors while slowing it in CO2-intensive sectors. Introducing R&D

subsidies in all sectors is feasible albeit cost ineffective in achieving the emission reduction.

Figure 2. Effects of differentiated R&D subsidies on discounted utility. Notes: CO2 emissions in the CO2-
intensive sectors change to the extent that overall CO2 emissions in production are reduced by 10%.

Table 1. Effects of policies on discounted utility (percent change from reference).

% change from: original reference hypothetical reference

reference cases
original 0.00 –28.20
hypothetical with correction for technology externalities 28.20 0.00

simulations
differentiated CO2-emission constraints –0.34 –28.54
differentiated R&D subsidies to reduce CO2 emissions 11.60 –16.60
combinations of differentiated CO2-emission constraints

and differentiated R&D subsidies
27.08 –1.12

                                                  
6
 This finding is in line with other studies. Popp (2004), for example, finds that subsidizing energy R&D yields

significant increases in energy technology but nevertheless has little effect on CO2 emissions.
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4.3 Simulation 3: Combinations of differentiated CO2-emission constraints and
differentiated R&D subsidies

We next study combinations of CO2 emission constraints and R&D subsidies as our

instruments to abate CO2 emissions in production by 10% relative to the reference case. For this

purpose, we augment the first simulation by introducing combinations of differentiated R&D

subsidies before computing the general equilibrium associated with each differentiation of the

CO2 emission constraints. This way we can identify both the cost-effective set of differentiated

CO2 emission constraints and the efficient set of differentiated R&D subsidies. Figure 3 shows

effects of the various possibilities to differentiate the CO2 emission constraint between CO2-

intensive- and non-CO2-intensive sectors on shadow prices of CO2 emissions in the sectors

(lower graph) and discounted utility (upper graph) when the efficient set of R&D subsidies is

introduced next to the CO2-emission constraints.

Figure 3. Effects of cost-effective set of differentiated CO2 emission constraints and differentiated
R&D subsidies on discounted utility. Notes: CO2 emissions in the CO2-intensive sectors change to the extent
that  overall CO2 emissions in production are reduced by 10 percent.
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Emission reduction is cost effective if R&D subsidies complement rather than substitute for

CO2 emission constraints. The cost-effective set of instruments yields a welfare gain of 27.1%

over the time period and comprises R&D subsidies of 62% and 52% in the CO2-intensive and

non-CO2-intensive sectors as well as shadow prices of 15.40 and 4.20 per ton CO2 in the

respective sectors. Of course, the emission reduction still comes at a cost when compared to the

hypothetical reference case in which we would already correct for the technology externalities

(see Table 1). Compared with this hypothetical case, welfare falls by 1.12% over the time period,

which is significantly more than the 0.34% welfare loss in the case where we do not yet make

such a correction (see the first simulation). The CO2 emission constraints are more binding when

the technology externalities are already corrected and hence they entail a bigger deadweight loss.

Regarding differentiation of the policy instruments, we find that continued differentiation

remains a feature of the cost-effective policy in this simulation because of interacting policy

effects. The CO2 emission constraints are principally introduced to reduce emissions but also

induce technical change and concomitant technology externalities. Similarly, R&D subsidies

correct for the technology externalities but at the same time affect CO2 emissions. The R&D

subsidies are now differentiated toward CO2-intensive sectors, as they are in the hypothetical

reference case in which we just correct technology externalities without regard for emission

reduction, and subsequently direct technical change toward these sectors. CO2 shadow prices

remain differentiated in this simulation as technology externalities, and hence the opportunity

costs of abatement, remain higher in non-CO2 intensive sectors because of their initial size and

knowledge intensity. Compared to the first simulation though, the difference in shadow prices

narrows while shadow prices increase in magnitude because of the CO2-emission constraints

being more binding.

4.4 Macro-economic effects

Table 2 shows that the three simulations have different macro-economic effects besides

having different welfare implications. Contracted growth characterizes the first simulation with

CO2 emission constraints. Except for non-CO2-intensive industry and services, all sectors lower

their production relative to the reference case, where CO2-intensive sectors decrease their

production relatively more as they are subject to the more stringent CO2 emission constraints.

With respect to inputs to production, the factor substitution effect in production increases

marginal returns to factors other than energy, where the marginal return to physical capital

increases to the extent that investments in physical capital actually increase slightly relative to

the reference case. Foreign investment changes accordingly. International trade in goods falls

proportionally to domestic trade as we assume trading partners of The Netherlands to introduce

similar CO2 emissions abatement policies. Biased growth characterizes the second simulation

with R&D subsidies. By using R&D subsidies in non-CO2 intensive sectors and R&D taxes in

CO2-intensive sectors, one speeds up growth in the former while slowing it in the latter. The

production structure, for example, shifts markedly from CO2-intensive to non-CO2-intensive

goods. Although increased welfare and limited substitution possibilities in the economy lessen
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Table 2. Effects of CO2-reduction policies on the Dutch economy (percentage changes).

Simulation: 1 2 3
2005 2015 2025 2005 2015 2025 2005 2015 2025

Production Total –0.4 –0.6 –0.9 30.9 44.8 45.2 47.6 77.3 96.0
   CO2 intensive IND –0.7 –1.3 –2.0 –7.7 –7.4 –26.5 88.6 137.0 167.5

TT –0.7 –1.3 –2.0 –9.0 –12.7 –37.1 36.4 61.1 75.0
NRG –4.6 –7.2 –10.9 –10.6 –7.0 –27.5 12.7 25.8 21.1
CIE –1.1 –1.8 –2.8 –6.5 –1.0 –9.4 46.2 73.9 81.3

   Non-CO2 intensive AGR –0.6 –1.2 –1.8 16.2 21.4 –8.6 20.1 58.9 83.3
SER 0.1 0.2 0.3 48.3 73.8 89.0 50.7 78.6 97.6
NCIE –0.3 –0.6 –0.8 22.6 30.8 16.4 31.9 70.9 95.9

Investments in knowledge capital Total –0.2 –0.3 –0.5 243.6 279.1 310.1 337.0 491.8 600.8
   CO2 intensive IND –0.9 –1.6 –2.2 –36.7 –41.6 –52.6 650.6 959.4 1191.7

TT –1.0 –1.7 –2.4 –36.4 –46.6 –61.1 365.0 541.5 633.6
NRG –5.2 –8.1 –11.5 –41.4 –41.3 –53.8 235.2 370.5 363.5
CIE –1.2 –1.9 –2.7 –39.0 –34.6 –38.7 403.6 616.3 696.0

   Non-CO2 intensive AGR –0.9 –1.4 –2.1 169.2 177.1 77.6 167.0 362.4 472.2
SER 0.0 0.2 0.2 320.3 367.9 415.5 303.3 435.1 533.2
NCIE –0.4 –0.6 –0.8 180.2 222.4 159.4 193.6 412.7 535.2

Investments in physical capital 1.0 1.6 2.0 37.9 86.0 122.5 37.3 40.9 49.3
Exports of goods –0.9 –1.7 –2.6 0.8 –3.0 –38.2 30.2 57.3 73.6
Imports of goods –0.6 –1.0 –1.5 3.8 11.1 3.9 31.4 56.1 69.7
Foreign investment 0.8 1.3 1.5 12.8 51.3 77.7 38.0 42.8 50.8
Shadow price of CO2 emissions CI 2.3 2.3 2.3 15.4 15.4 15.4

NCI 1.6 1.6 1.6 4.2 4.2 4.2
Subsidy on investments in CI –0.36 –0.36 –0.36 0.62 0.62 0.62

knowledge capital NCI 0.48 0.48 0.48 0.52 0.52 0.52
Notes: Shadow prices of CO2 emissions are in €/t CO2. AGR is agriculture, IND is CO2-intensive industry, TT is the trade and

transport sector, SER is non-CO2 intensive industry and services, NRG is the energy sector, CIE is CO2-intensive electricity
and NCIE is non-CO2 intensive electricity. CI refers to CO2-intensive sectors and NCI to non-CO2 intensive sectors.

the negative impact for the CO2-intensive sectors for the first half of the model horizon, these

sectors are hit hard afterwards when more substitution has been taking place and path

dependency in technical change is strong. Further, more physical capital is required to expand

the non-CO2-intensive sectors and as a result investments in physical capital increase. Foreign

investments change accordingly. Finally, more goods are now imported and fewer goods

exported. Enhanced growth characterizes the third simulation with both CO2 emission constraints

and R&D subsidies. Because of the introduction of R&D subsidies in all sectors, total factor

productivity and hence production levels increase throughout the economy relative to the

reference case. As a result, demand for production factors increases as is reflected in, among

others, increased investment in physical capital. Foreign investments and international trade in

goods change accordingly.

4.5 Sensitivity analysis

Table 3 reports the sensitivity of our results to key parameter values. We use central

parameter values in all sensitivity simulations (see Tables A.5-6 in Appendix A) except for the
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parameter subject to analysis. Given the importance of technical change for our findings, we

focus on technology parameters, which simultaneously are a good proxy for the knowledge-

capital accounting. Effects are reported as index values compared to the regular simulations.

The general result from Table 3 is that our findings are robust to the range of parameter values

considered. The cost-effective set of instruments still includes R&D subsidies as complements

to, rather than substitutes for, CO2 emission constraints while the cost-effective differentiation

remains unchanged (no index value changes sign).

Turning to the specific parameters subject to analysis, lowering the depreciation rate of

knowledge capital ( H ) by 25% has a negative effect on discounted utility in all simulations as

fewer investments in knowledge capital are required yielding less positive feedback in technical

change.
7
 The overall decrease of technology externalities reduces the relative opportunity cost of

CO2 abatement in the non-CO2-intensive sectors and hence the cost-effective differentiation of

the CO2 emission constraints in the third simulation. As R&D subsidies fall relatively more in

non-CO2-intensive sectors in the third simulation, the gap between R&D subsidies widens. In the

second simulation, this gap widens as well albeit for a different reason. Bigger stocks of

knowledge capital enhance total factor productivity and the rebound effect, ceteris paribus. It

therefore is cost effective to further differentiate R&D subsidies to keep emissions within

bounds. The opposite holds if we increase the depreciation rate of knowledge capital by 25%.

Table 3. Piecemeal sensitivity analysis.

Discounted utility Cost-effective differentiation of instruments
Simulation: 1 2 3 1 2 3

 U  U  U   
p

CI

EM - p
NCI

EM

  
s

CI
- s

NCI   
p

CI

EM - p
NCI

EM

  
s

CI
- s

NCI

Regular simulation 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H

low 1.00 0.99 0.97 1.00 1.09 0.93 1.10
H

high 1.00 1.01 1.02 1.00 0.92 1.04 0.90

low 1.00 0.95 0.93 1.00 0.93 0.99 1.10

high 1.00 1.09 1.13 1.00 1.05 1.01 0.80

uniform 1.00 0.99 1.00 1.00 1.59 0.86 0.90
H

low 1.00 0.96 0.94 1.00 0.91 1.00 1.20
H

high 1.00 1.05 1.07 1.00 1.27 1.01 0.70
Notes: All numbers are indexed to the regular simulation. Results in Simulation 1 are robust at the 1% precision level.

Simulation 1 refers to differentiated CO2-emission constraints; Simulation 2 to differentiated R&D subsidies; Simulation 3
to combinations of differentiated CO2-emission constraints and differentiated R&D subsidies. Low and high refer to 25%
lower and higher parameter values than in the regular simulation and uniform refers to positive feedback in technical
change being specified to operate across sectors. U denotes discounted utility, pEM denotes the shadow price of CO2

emissions and s denotes the R&D subsidies.

Lowering the positive-feedback effect in technical change ( ) by 25% has a negative effect

on discounted utility in all simulations as fewer technology externalities are enjoyed. The

                                                  
7
 At the same time, lower depreciation rates lead to bigger stocks of knowledge capital yielding more knowledge

spillovers. This positive welfare effect, however, is outweighed by the negative welfare effect of less positive
feedback in technical change.
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decrease of technology externalities reduces the relative opportunity cost of CO2 abatement in

non-CO2-intensive sectors and hence the cost-effective differentiation of R&D subsidies in the

second simulation and of CO2 emission constraints in the third simulation. As R&D subsidies

fall relatively more in non-CO2 intensive sectors in the third simulation, the gap between R&D

subsidies widens. The opposite holds if we increase the positive-feedback effect by 25%.

Specifying a positive feedback in technical change to operate across rather than within sectors

has a small negative effect on discounted utility, especially in the second simulation, as

technology externalities in the non-CO2-intensive sectors now also benefit CO2-intensive sectors

requiring a higher R&D tax in the latter to keep emissions within bounds. Consequently, the

cost-effective differentiation of R&D subsidies widens in the second simulation. In the third

simulation, however, the cost-effective differentiation of both policy instruments narrows as

positive feedback benefits all sectors while the policy instruments are used for their first-best

purpose.

Finally, lowering the substitution elasticity between knowledge capital and other factors in

production ( H ) by 25% has a negative effect on discounted utility in especially the second- and

third simulations as substitution possibilities to adjust to the CO2 abatement are limited.

Moreover, the limited substitution possibilities translate into lower demands for knowledge

capital and therefore fewer technology externalities. Consequently, changes in model results are

similar to the analysis in which we changed the height of the positive-feedback effect.

5. CONCLUSIONS

Recent interest has arisen with respect to the role of induced innovation in environmental

policy, particularly regarding climate change. The Kyoto Protocol that many industrial countries

are pursuing relies on a conventional cap and trade system to constrain emissions. The US has

withdrawn and has instead adopted technology policy as an alternative strategy with the intent of

directing R&D to reduce CO2 emissions. The questions we addressed in this paper are: Which

strategy is preferred from a welfare perspective or does a combination of both strategies work

better? Can one improve on uniform emission-reduction policy by differentiating policy toward

CO2-intensive sectors?

To answer these questions, we developed a forward-looking computable general equilibrium

model that captures empirical links between CO2 emissions associated with energy use, directed

technical change and the economy. We specified technologies as knowledge capital, which are

sector-specific investment goods and which empirical research has long found to cause positive

technology externalities leading to underinvestment relative to what is socially optimal.

At this point, it is necessary to add some policy reality to the discussion. If policies can be

designed to correct for technology externalities the economy can gain substantially. We show

this to be the case, such that welfare in the Dutch economy under study can be improved by

nearly 30% over our 27-year time span. We find that R&D subsidies that are optimally

differentiated to achieve a 10% reduction in CO2 emissions improve the economy by about 12%

relative to the reference case where technology externalities are not yet internalized. This appears
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to be a double-dividend world where CO2 emissions are reduced while leaving the economy

better off. The difficulty, however, is how to design such technology policy in reality. The

unrealized 30% welfare gain from the technology externalities is evidence of the difficulty of

correcting for them. Our best past efforts, patent protection and government funded R&D, leave

us with significant underinvestment. To realize the emission reduction requires that we overcome

the known limits of government funding and intellectual property rights protection and then

direct technology policy toward non-CO2-intensive sectors. Our results suggest that the

differential policy to achieve the emission reduction needs to be very strong. Essentially, it

means creating disincentives for R&D in CO2-intensive sectors causing them to wither away, and

creating large subsidies for non-CO2-intensive sectors, accelerating their growth. If it is possible

to ideally correct for the technology externalities, we find that the preferred policy is to do so in

combination with CO2 emission constraints, i.e. cap and trade systems. These constraints are

costly to the economy relative to the case where technology externalities are corrected for

without reducing emissions, but a combination is much preferred to R&D subsidies alone or

emission constraints alone.

Regardless of the particular instruments chosen, we find that technology externalities call for

differentiation of instruments between non-CO2-intensive and CO2-intensive sectors, such that

the latter bear relatively more of the abatement burden. Essentially such differentiation partly

corrects for the CO2 implications of the technology externalities. The welfare gain for

differentiated emission constraints is relatively small compared with uniform constraints. The

gain is large for the differentiation of R&D subsidies; in fact, uniform R&D subsidies are

negative in all sectors, essentially slowing economic growth to achieve the emission reduction

with highly negative welfare effects relative to the reference case or the cases involving emission

constraints.

Thus, is a true double dividend possible? In principle differentiated R&D subsidies with or

without CO2 emission constraints lead to that result, relative to the reference case. However, if

we can design such precise incentives for R&D we might as well compare our situation to a

reference case where technology externalities are already corrected without regard to emission

reduction. Compared to the “R&D corrected” reference case, emission constraints entail a larger

welfare loss than does the “emission constraints only case” relative to the reference case where

technology externalities are not yet corrected. So, the answer depends in part on perspective and

in large part on the confidence one has that public policy can effectively direct R&D.
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APPENDIX A. STRUCTURE AND PARAMETER VALUES OF THE MODEL

This appendix provides an algebraic summary of the model. We formulate the model as a

mixed-complementarity problem using the Mathematical Programming System for General

Equilibrium Analysis (Rutherford, 1999), which is a subsystem of the General Algebraic

Modeling System (Ferris and Munson, 2000). In this approach, three classes of equilibrium

conditions characterize an economic equilibrium: zero-profit conditions for production activities,

market clearance conditions for each primary factor and good, and an income definition for the

representative consumer. The fundamental unknowns of the system are activity levels, market

prices, and the income level. The zero profit conditions exhibit complementary slackness with

respect to associated activity levels, the market clearance conditions with respect to market

prices, and the income definition equation with respect to the income of the representative

consumer. The notation 
z
 denotes the zero profit condition for activity z and the orthogonality

symbol  associates variables with complementary slackness conditions. For the sake of

transparency, we use the acronyms CES (constant elasticity of substitution), CD (Cobb Douglas),

and LT (Leontief) to indicate functional form. Differentiating profit and expenditure functions

with respect to input and output prices provides compensated demand and supply coefficients

(Hotelling’s lemma), which appear subsequently in the market clearance conditions. An

equilibrium allocation determines production levels, relative prices, and incomes. We choose the

price of intertemporal utility as numeraire and report all prices in present values. Tables A.1

through A.6 list the nomenclature.

A.1  Zero profit conditions

Production of goods:
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Aggregate production of electricity:
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Investments in knowledge capital:
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Investments in physical capital:
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Armington aggregate:
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Imports of goods:
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Imports of coal:
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Foreign direct investment:

  t

FDI p
t

FX p
t

FDI 0  
FDI

t   t = 1,..,T (A.10)

Exports of goods:
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Exports of physical capital:
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Intratemporal utility:
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A.2  Market clearing conditions
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Knowledge capital (in market):
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Knowledge capital (in stock):
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Physical capital (in stock):
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Import aggregate:
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Armington aggregate:
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Foreign investments:

 

FDI
t
=

t

I

p
t

FDI
I

t
i

 
p

t

FDI

  t = 1,..,T (A.25)



22

Foreign exchange:

  

BOP
t

=
t

EX Y

p
t

FX
EX

t

Y
+

t

EX K

p
t

FX
EX

t

K i,t

IM Y

p
t

FX
IM

i,t

Y

i

             t

IM COAL

p
t

FX
IM

t

COAL t

FDI

p
t

FX
FDI

t

t

W

p
t

FX
W

t

 
p

t

FX

  t = 1,..,T (A.26)

CO2 emissions in consumption:
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CO2 emissions in production:
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Intratemporal utility:
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Intertemporal utility:
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A.3  Income balance
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A.4  Endowments

Supply of labor:

  
L

t
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L
0   t = 1,..,T (A.32)

Balance of Payments:
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A.5  Constraints

CO2 emission constraint of environmental policy in consumption:

  

EM
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(A.34)

CO2 emission constraint of environmental policy in production in Simulations 1 and 3:
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where:

  

a EM = EM
c

c

and in Simulation 2:
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CO2-emission constraint of technology policy in simulation 2:
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where:
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and in Simulation 3:
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Terminal condition for physical capital:
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Terminal condition for physical capital:
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A.6  Nomenclature

Table A.1 Sets and indices.

i   AGR, IND,TT ,SER, NRG,CIE, NCIE Sectors and goods (aliased with j)

E   NRG,CIE, NCIE Energy (sectors)

EL   CIE, NCIE Electricity (sectors)

FF   COAL, NRG Fossil fuel (sectors)

c
  

CI : IND,TT , NRG,CIE

NCI : AGR,SER, NCIE
Sectors according to CO2 intensity

t   1,..,T Time periods

Table A.2 Activity variables.

,itY Production of goods in sector i at time t

tEL Aggregate production of electricity at time t

,itH Stock of knowledge capital in sector i at time t

  H i,t
Knowledge spillover applied to sector i at time t

 
TH

i
Terminal stock of knowledge capital in sector i

  
R

i,t Investments in knowledge capital in sector i at time t

  Ri,t
Feedback in technical change applied to sector i at time t

 
K

t
Stock of physical capital at time t

 TK Terminal stock of physical capital

 
I

t
Investments in physical capital at time t

  
A

i,t

Armington aggregate of domestic- and foreign intermediate
goods in sector i at time t

  
IM

i,t

Y
Aggregate imports of goods in sector i at time t

 
IM

t

COAL Aggregate imports of coal at time t

 
FDI

t
Foreign direct investment at time t

 
EX

t

Y Aggregate exports of goods at time t

 
EX

t

K Aggregate exports of physical capital at time t

 
W

t
Intratemporal utility at time t

 U Intertemporal utility
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Table A.3 Income and endowment variables.

 B Budget of the representative agent

  
BOP

0
Initial Balance of Payments of the domestic representative agent

 
BOP

t
Balance of Payments of the domestic representative agent at time t

  
H

0i
Initial stock of knowledge capital in sector i

  
K

0
Initial stock of physical capital

  
L

0
Initial endowment of labor

 
L

t
Endowment of labor at time t

  
EM

0
Initial allowances of CO2 emissions

 EM Overall allowances of CO2 emissions

Table A.4 Price variables (in present values).

p Prices

FX

tp Price of foreign exchange at time t

EMp Shadow prices of CO2 emissions

cs Subsidy on investments in knowledge capital in sectors c

tr Rental rate of capital at time t

tw Wage rate at time t

Table A.5 Parameters.

Description Value

a Abatement of CO2 emissions 0.10

Knowledge spillover coefficient 0.09

Coefficient of positive feedback in technical change 0.20

g Growth rate 0.02

r Interest rate 0.05

K Depreciation rate of physical capital 0.05

H Depreciation rate of knowledge capital 0.25
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Table A.6. Elasticities

Description Value

Elasticity of substitution in intertemporal utility

Between time periods 0.5

Elasticities of substitution in intratemporal utility

YE

W
Between energy and other goods 0.5

E

W
Between electricity and fossil fuels 0.7

Elasticities of substitution in international trade

A Between domestic and foreign commodities 1.0

Elasticities of substitution in aggregate electricity production

EL Between CO2-intensive and non-CO2 intensive electricity 1.0

Elasticities of substitution in production sector AGR IND TT SER NRG CIE NCIE

H
Between knowledge capital and

remaining inputs 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 i

KLEM
Between intermediate inputs and

remaining inputs 0.4 0.5 0.7 0.7 0.9 0.1 0.1

 i

M Between intermediate inputs 0.1 0.2 0.3 0.3 0.5 0.1 0.1

 i

KLE Between labor and remaining inputs 0.3 0.2 0.4 0.4 0.5 0.1 0.1

 i

KE Between physical capital and energy 0.7 0.7 0.7 0.7 0.7 0.7 0.7

 i

E Between electricity and fossil fuels 0.5 0.5 0.5 0.5 0.5 0.5

FF

i
Between fossil fuels 0.9 0.9 0.9 0.9 0.9 0.5

Notes: The substitution elasticities in utility are assumed. The substitution elasticity in intertemporal utility lies between
smaller values typically found in time-series studies (e.g., Hall, 1998) and larger values typically found in studies that also
exploit cross-sectional data (e.g., BwUDRY AND WINCOOP, 1996). The substitution elasticity in international trade is lower
than usual to reflect introduction of similar CO2 emission reduction policies by most of the trading partners of The
Netherlands. We obtain the substitution elasticities in production from the TaxInc model (STATISTICS NETHERLANDS,
1990), except for the substitution elasticity between knowledge capital and remaining inputs, which we obtain from
Goulder and Schneider (1999), and except the substitution elasticity in aggregate electricity production, which is
assumed.
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APPENDIX B. DATA

Table B.1  Cost and market shares of electricity technologies (%).

Cost shares Market share
Physical
Capital Labor Energy

Intermediate
inputs Total

CO2 intensive
Natural-gas fired 24.9   5.6 62.2   7.3 100.0 56.9
Hard-coal fired 38.6   5.6 23.7   9.0   76.9 25.5
Oil-fired 46.9   2.2 40.3 10.6 100.0  7.6

Non-CO2 intensive
Biomass 18.8   6.6 58.5   83.9  4.6
Nuclear 59.0   5.1 17.4   81.5  4.4
Wind 86.4 19.8 106.2  1.0

Source: Böhringer et al. (2003)

Table B.2  National accounting matrix for The Netherlands in 1999 (million euro).
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Agriculture 16.69 0.10 0.13 2.66 0.02 0.02 32.73 10.52 0.76 2.28 0.07 65.96
CO2-intensive

industry 1.22 4.92 1.43 8.29 0.13 0.05 0.07 34.66 3.96 0.28 7.31 0.01 62.31
Trade and

transport 0.62 0.65 3.14 4.03 0.23 0.01 0.02 77.38 7.06 0.51 6.87 –0.01 100.50
Non-CO2 intensive industry

& services 4.94 4.84 14.60 65.57 1.03 0.64 0.08 30.78 157.80 89.33 59.92 0.15 429.67
Energy 1.01 0.94 1.49 1.08 4.17 0.83 10.85 5.37 0.07 1.05 0.08 26.93
Electricity 0.55 0.63 0.57 0.73 0.05 3.32 0.39 2.07 2.20 0.01 0.60 0.00 11.13
Imports 16.58 21.01 13.75 58.18 6.06 1.26 62.90 23.59 0.25 203.56
Taxes minus

subsidies 1.08 0.12 –0.98 2.40 4.60 0.38 0.06 7.66
Labor 6.91 10.90 33.23 132.72 1.23 0.76 0.09 185.84
Physical

capital 13.84 10.09 25.52 87.43 8.26 2.16 0.31 0.56 16.96 3.50 168.63
Knowledge

capital 2.53 8.12 7.63 66.58 1.17 0.60 0.07 86.71

Total 65.96 62.31 100.50 429.67 26.93 10.01 1.12 189.02 266.76 118.04 78.03 0.54 1348.90
Sources: Statistics Netherlands (2002),  Böhringer et al. (2003), De Haan and Rooijen-Horsten  (2004) and own calculations.
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Table B.3 Selected factor-intensities of the Dutch economy in 1999 (% of gross sectoral product)

Knowledge capital
Physical
capital

Labor CO2

Sector R&D EDU ICT Total

Production

CO2 intensive 3.2 4.8 0.7  8.7 23.0 23.1   0.08

CO2-intensive industry 8.3 4.4 0.4 13.1 16.2 17.5   0.03

Trade and transport 0.8 6.3 0.6  7.7 25.4  33.0   0.03

Energy 1.8 1.3 1.3  4.4 30.7   4.6   0.33

CO2-intensive electricity 1.3 2.4 2.3  6.0 21.6   7.6   0.19

Non-CO2 intensive 3.7 8.7 1.5 13.9 20.5 28.1 <0.01

Agriculture 1.8 1.6 0.4  3.8 21.0 10.5   0.01

Non-CO2 intensive industry & services 4.0 9.8 1.7 15.5 20.4 30.9 <0.01

Non-CO2 intensive electricity 1.3 2.4 2.3  6.0 28.3  7.8   0.00

Consumption   0.01

Note: Capital intensities are respectively services derived from knowledge- and physical capital expressed as percentages of
gross sectoral product. CO2 intensities are CO2 emissions in Mt. expressed as percentage of gross sectoral product in million
euros. We obtain data on knowledge capital from De Haan and Rooijen-Horsten (2004) and data on CO2 emissions from
the GTAP-EG database (Paltsev and Rutherford, 2000) and the Emission Monitor for The Netherlands (Koch et al., 2002).
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