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Task 2(b)

DETECTION OF GEOLOGIC ANOMALIES

BY GRID LINE SEARCH

by

E. Barouch and G.M. Kaufman

The first problem addressed is to determine the probability that a

geologic anomaly as represented by its projective area on the surface

will be crossed by at least one of a pattern of rectangular (seismic sur-

vey) grid lines partitioning a subregion of a petroleum basin into

rectangles.

The solution to this problem is used in the design of a maximum

likelihood method for making inferences about the size distribution of

anomalies in the region from observation of the sizes of a set of

detected anomalies and about the number of undetected anomalies remaining

as well. (17 pages)





1. INTRODUCTION

The problem of detecting a geologic anomaly by line search was studied

by Agocs (1955) for the case where lines run parallel to one another and in

one direction only. The probability that an anomaly with convex projective

shape on the surface will be crossed by one or more parallel grid lines is the

solution to a generalized Buffon needle problem. Agocs briefly mentions the

more general problem: determine the probability that an anomaly will be

detected by a grid of lines that partitions the region of search into

rectangles. A solution for the case of circular anomalies is given.*t

McCammon (1976) reviews these results and, for the case of parallel line

search, provides a formula for the probability that two parallel lines will

intersect a randomly placed and randomly oriented line of given length.

He places bounds on intersection probabilities for parallel-line and square

grid search by considering the limiting cases of a circular target and a

target composed of a line asserting that, "In exploration, after all, rarely

Agoc's solution is incorrect; the correction is given by P. Boisard (1966).
It is a simple special case of the a more general result proven in this
paper (cf. formula-(9)).

t
Detection probabilities for continuous grid search for targets whose pro-
jective area on the surface can be approximated by a convex figure, or more
particularly, by an ellipse, are similar in functional form but not identical
to detection probabilities for grid patterns generated by drill holes.
For a given partition of a region into rectangles or rhomboids by grid lines,
the corresponding drill hole pattern consists of search points at the inter-
sections of grid lines; hence the probability of detection of a target of
fixed areal extent is always less than the corresponding detection prob-
ability for grid-line search. Detection probabilities for drill hole patterns
have been extensively studied by Drew (1966, 1967), Savinskii (1965),
Singer (1969, 1972, 1975), Tsaregradskii (1970), Slichter (1955). and others.
Savinskii provides tables of detection probabilities for elliptical targets;
Singer (1972) presents a computer program, Elipgrid, that computes
detection probabilities.
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are the shapes of targets being sought known with much precision." McCammon

summarizes his study in the form of six conclusions:

(1) To a first approximation, the probability of inter-
section of a simple plane geometric figure is directly pro-
portional to the ratio of the largest dimension of the plane
projection of the figure to the minimum spacing between lines
along which the search is conducted.

(2) When the largest plane dimension of the hidden target
is small compared with the smallest spacing between the lines
of search, target shape does not greatly affect the probability
of intersection.

(3) The probability of intersecting a target twice for a
particular type of search can be used as a lower bound if
there is an element of uncertainty of detection for a parti-
cular type of geophysical tool.

(4) The geometry of the search pattern becomes more
critical as the largest dimension of the target approaches
the minimum line spacing of the search. When the largest
dimension is less than the minimum line spacing, the prob-
ability of intersection is greater for parallel-line search
than for an equibalent square-grid type search, whereas the
opposite is true when the largest dimension exceeds the
minimum line spacing.

(5) The probability of intersection of an elliptical
target for a rectangular grid can be approximated by con-
sidering the limiting cases of a line and a circle for a
parallel-line and square-grid type of search, respectively.

(6) Nonorthogonal grids do not greatly affect the
probability of intersection, provided target orientation
is unknown.

A principal objective of the work of Slichter (1955) and Agocs is to

deduce characteristics of grid-line search useful in optimizing the design of

a search strategy when the cost of search increases with an increase in the

density of grid-lines crossing a region of fixed area (cf. Slichter (1955)).

121cCammon (1976), p. 381.
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An excellent example is the work of Pachman (1966); he provides a model

for optimal allocation of seismic grid-line search effort in one or more

regions subject to know cost-effectiveness functions and an overall budget

contraint. Targets are elliptical with fixed ratio of major to minor axes,

target areas are generated by a lognormal random process, and each target is

located in a region by assigning kinematic density to it. Detection prob-

abilities for a range of grid-line configurations and expected payoff

generated by them are computed by monte carlo simulation. According to McCammon,

What is desired, however, is not an optimum spacing but rather
some knowledge of the uncertainty associated with a particular
search strategy, which is dictated most often by the costs of
exploration.

A logical extension of this thought leads to the following inference

problem:

In a geographic region bounded by a simple curve of finite length,

Nature deposes N+M geologic anomalies, each of which may or may not be a

mineral deposit. A search for deposits is carried out by seismic or magnetic

surveying along linear grid lines which partition the region into rectangles.

Suppose that an anomaly is detected if at least one grid line crosses

the surface area of the anomaly. (More realistically, let the probability

that an anomaly will be detected is a monotone increasing function of the num-

ber of grid lines crossing it.)

What can be said a priori about the number of anomalies that will be

detected? About the surface area and shape of a generic anomaly that

remains undetected? If the number of anomalies is not known with certainty

what inferences about it can be made rom observation of the surface area,
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shape, and orientation of anomalies detected by the survey? What inference

can be made ex post about.the surface areas and shapes of undetected

anomalies?

In order to answer these questions we need to make specific assumptions

about:

(1) the spatial density of anomalies; i.e., the probability
law that characterizes the number of anomalies in each
element dA of area of the region,

(2) the probability law for the surface area and shape of
a generic anomaly,

and

(3) the probability law that describes jointly the location
of a fixed point within a generic anomaly and the angle
formed by a line fixed in it with respect to a reference
coordinate system.
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2. SIZE DISTRIBUTION AND DETECTION PROBABILITIES

We study the problems of detection and inference about the parameters of

the underlying size distribution in two dimensions, viewing and anomaly.

as a rigid figure K on the x-y plane; i.e. an anomaly is represented by its

projection onto the x-y plane. Its position is determined by the location

of a point p(x,y) fixed in K and the angle formed by a line fixed in K

and a fixed line in the x-y plane. We consider only figures whose boundaries

are simple closed curves.

To fix ideas, first suppose that the figure K is randomly located on

the plane in the following fashion: all angles ee[0,2 7] are equally likely

and the probability that the point p(x,y) is contained in a rectangle with

sides of length dx and dy is the same irrespective of the location of

this rectangle. We then say that the figure K "has kinematic density on

the plane."

A rectangular lattice with sides of lengths 2A and 2B is superposed on

the plane and K is detected if at least one lattice line crosses K. Let

D(KI#) be the probability that K is detected given the lattice dimensions.

Since the shape and area of K is determined by its boundary curve C , we

will write D(KI#) as D(CI#) as well.

We further assume that the boundary curve of a generic K can be repre-

sented by an equation of specific functional form indexed by a "small" number

of parameters, so that numerical values for D(KI#) can be computed. In the

geostatistical literature on search and detection, it is often assumed that an

ellipse is a reasonable approximation to the boundary curve of the surface

area of an anomaly or deposit, so we study this particular case in detail.

Suppose that N anomalies, K ,...,K N are mutually independently dis-

tributed in the plane, each with kinematic density and in addition that the

size and shape (boundary curve) of each anomaly is random. That is, the

boundary curves C ,...C N of K ,...,KN are a realization of a random process

characterized by a probability law of the following kind: C ...'CN are
1
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mutually independent and identically distributed with common density g(.IO)

indexed by a parameter 0 e0 of finite (and small) dimension. For example,

if the boundary curve of a generic anomaly is elliptical in shape, assigning

a joint density to the lengths of the principal axes of an ellipse will deter-

mine the density of its boundary curve as well as the density for its area.

In practice, the parameter 0 of the "size" distribution of anomalies

is not known with certainty and one wishes to make inferences about it based

on observation of detected anomalies. In order to do so we must compute the

joint probability of observations yielded by superposing a given grid design

on the plane. Given a point estimate of , the probability distribution of

"sizes" of undetected anomalies can be estimated as well.

The joint density of the random variables C CN is, since they are
N 1

independent, 1 g(Ci.0). Let g(Cil0)dCi denote (an approximation to) the
i= 1

probability that the rv Ci lies in the infinitesimal set dCi of curves and

for the moment ignore measure-theoretic issues. Defining dC = (dC ... ,dCN)

and C = (C ,...,CN), the joint probability of C d C, K ,.*Kr being
1 N - 1

detected, and Kr+,...,KN not detected is

r N
i D(Cj #)g(C jO)dCj 1 [1-D(CkI#)]g(Ckl0)dCk . (1)

-k=r+1 -

The probability of observing CladC1, ...C r rdC is

N-r r
[l-D(#;o)] Dg(j[)g(Cj0O)dC. (2)

j=l -

where, letting C denote the range set of C ,

D(#;e) = f D(Cl#)g(Cl)dC. (3)
C
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If we wish to ignore labelling of the Cs we append a combinatorial factor

N( to (2).

To recapitulate: (2) is the probability of observing CedC given the

lattice # when

(a) we know that there are N anomalies, each of which has

kinematic density;

(b) each Ci is of a given functional form indexed by a small

number of parameters;

(c) the Cs are independent rvs, identically distributed

with density g('1O) having parameter Os0 .

Even in this relatively simple case, computation may be reasonably complicated.

In what follows we compute D(CiI#) and D(#;8) explicitly for the case of

random ellipses.

In practice, the number N of anomalies is not known with certainty and

it is reasonable to conceive of the number N(A) of occurrences in a region A

as being a realization of a stochastic point process. Since each anomaly is

of finite area, modelling the "number of occurrences in a region A" as a

point process makes sense only if the location of an "occurrence" is defined

with respect to a point fixed within the boundary curve of an anomaly. We

might choose the center of gravity of each anomaly; when the boundary curve

of each anomaly is symmetric, there is a natural center.

The process may be viewed as unfolding in two steps:

(i) a center is located at a point (x,y) according
to the probability law governing the location
of centers;

(ii) given that a center is located at (x,y), a size
and shape is generated according to the probability
law governing the C.s.

In addition to assuming mutual independence of the C.s, we shall also assume

independence of the point process locating centers from that generating the C.s.
*1
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A reasonable model is to regard spatial occurrence of centers as a Poisson

process with inhomogenous intensity X(x,y) , (x,y) being coordinates of a

point in the plane. The intensity X(x,y) may depend on variables other than

location as well.

Imposition of a rectangular lattice of lines on the plane divides it into

disjoint rectangular regions which we may number 1,2,.... Letting R be the
m

ith rectangular region and setting R = U R i , A(Ri)/X(R) is the probability
i=l

of a center occurring in R. given that N(R)=N centers occur in the region R.

This can be seen as follows: suppose N(R)=N. Then for any non-negative
m

integers kl,...,km for which Z k. = N the joint probability that
i=l1

N(Ri)-k i , i=1,2,...,m given N(R)=N is

P{N(Rl)=kl, N(R2)=k2,...,N(R )=k .(4)

P{N(R)=N1

The process generating the N(Ri)s is Poisson with the properties (a) the

N(Ri)s are independent unconditional as regards N(R) and (b) the probability

that (Ri)=ki unconditional as regards N(R) is

k.
exp{-X(Ri)} [X(Ri)] 1/kr (5)

where

X(Ri) = X(x,y)dxdy. (6)
R.

m
Consequently, substituting (6) and recognizing that Z (Ri) = A(R) since

i=l
m

RiR = for iij and U R. R , we have
i=l 1
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P{N(R1)=k1 , N(R2)=k2,... N(Rm)=kmIN(R)=N}

(7)

/ N X lA(R)l R2)k2 T A(R m) k

k --k) LX(R) (R) " L(R) J

For a non-homogenous Poisson process, this last probability is the analogue

of the "uniform" distribution for the N(Ri)s in the homogenous case when

N(R)=N is given. Using it we can compute the analogue of (2) in the non-

homogenous case. In place of kinematic density, the location of the center

of an anomaly and the angle now have joint density A(x,y)dxdydO/(R)

for (x,y)£R and zero for (x,y)/R.
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3. PROBABILITY OF DETECTION WHEN C. IS AN ELLIPSE

If the x-y plane is divided into rectangles by imposing a rectangular

grid on it, what is the probability that an ellipse with major axis of length

2a and minor axis of length 2B<2a will not.be crossed by at least one grid

line (detected) when the ellipse is equipped with kinematic density?

Let the rectangles formed by the grid have sides of length 2A in the

direction of the x-axis and length 2B in the direction of the y-axis.

Then if a > A2+B2 ,. the ellipse is certain to be detected. Suppose that

the origin of the x-y coordinate system is at the center of one of the

rectangles. In order to motivate our calculations, consider Figure 1. As

an ellipse with principal axis of length 2a < 2/Ai+BZ inclined at an angle

0 with respect to the x-axis is kept entirely within the rectangle and

slid around the perimeter of the rectangle while maintaining at least one

point of tangency with this perimeter, the center of the ellipse inscribes

a rectangle with corners (xl,yl), (X-_l,y), (Xl,Yl), and(xl,yl). The

center of the ellipse may lie anywhere within this inscribed rectangle without

crossing a grid line. Hence the probability that the ellipse is not detected

is the ratio of area of the inscribed rectangle R(a,SB,) to 4AB.

By virtue of symmetry, the area of the inscribed rectangle R(0,a,B) is

4xlY1. The probability we wish to compute is the expectation, with respect

to uniform measure for e on [0,2w], of 4xlY1 over allowable angles of the

principal axis for given, fixed a and . By "allowable angle" we mean an

angle 8 such that when the center of the ellipse is at (x,y) the ellipse

lies entirely within the rectangle RAB. Again, by virtue of symmetry, we

need only consider angles 8e [0,4w].

Consequently, for fixed a and S the expectation of the area of all

allowable inscribed rectangles in RAB is

2 02
.- AB 81 . ..................... (8)
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where [1e,02] is the allowable interval for 0.

In the appendix we show that

x = A - {2sin2e+a2cos2e},

Y = B - { 2 cos 20+a2 sin 20}2 ,

whereupon the probability D((a,a)I#) that an ellipse with axes of length 2a

and 2 will be crossed by at least one grid line of the lattice when the

ellipse is distributed with kinematic density on the x-y plane is

82

1- [02-01e] - rA {1 + -2 cos20}4 de
7T Ael

02

_ 2B f {1 + B2 sin2 e} de (9)

w1

02

f {1 + i ( f)2sin2}2d0}.
AB0el a 

The definition of the allowable interval [01,82] depends on a, 8, and whether

A<B or B<A, and it is presented in the appendix. As a check of the formula

for D((a,B)J#), notice that when a==r, the ellipse is a circle of radius r,

01=0, 2=-;2, and

D((a,8))= r+ r r2
A B AB

As rmin {A,B}, the probability of the circle not being detected approaches zero.

4. INFERENCE ABOUT N AND 

Once equipped with an explicit formula for the probability that an anomaly

with elliptical boundary curve will be detected given #, we can compute
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maximum likelihood estimators (MLE) for N and using the joint probability

of CdC, K...,Kr being detected and Kr+lK,,K not being detected. If we

ignore labellings of the Cis and assume that the ellipses are spatially dis-

tributed with kinematic density, this probability is, defining Ci (aisi)

N N-r
(r)[1-D(#;e)] n D((ai,i) #g((aii ) -)daidai

r i=l (9)

r D((.,O ) #)g((i)|J)da di
= ( ) (#;e)r [-D(#_ N-r { I

i=l D(#;e)

Since D(#;8) is the marginal probability that a generic K whose shape and

area is not known with certainty will be discovered,

D((i,Bi) # )g((aiBi) l)
(10)

D(#;e)

is the density for the size and shape of a generic discovery; D in the ratio

D((ai,fi) I#)/D(#;e) plays the same role here as the tail probability normalizing

a sampling density in the presence of truncation.

The joint likelihood function for N and is

L(N,ldata) (N)[lD(#; )]N-r

Lg(r(ct.,~.j0) (11)

X I [g((aiBile)]
i=l

since the probability of detection given (ai ,i) does not depend on or N

In principal it is possible to compute a joint maximizer (N,0) of L(N,0ldata),

but since D(#;O) is an average of terms composed of elliptic integrals, this

computation is difficult to carry out. A feasible strategy is to evaluate

D(#,) numerically and then compute numerical values for L(N,eldata) over

N = r, r+l, ... and the range of values.

Alternatively, conditional maximum likelihood values for N and for 

may be computed using (9):
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(i) compute a maximizer * of the likelihood function

r
L(ldata) II g((ai,i) l_)/_(#;_)

i=l

for the size and shape of r observed discoveries;

(ii) given the estimate * of 0, compute a conditional (on )

MLE N* for N using

L(NIO,data) (N)[i-(#;0)N-r

Chapman (1951) has shown that anecessary condition for N* to be a maximizer

of L(NI ,data) is N* = [r/D(#;0 )]; if N* = r/D(#;0*) for some integer N ,

then both N* and N*-l maximize L(N!O*,data). Numerical computation of * is

clearly easier than a corresponding calculation of (N,0). However, conditional

MLE and joint MLE are not equivalent in general.

Precise conditions guaranteeing the existence and uniqueness of such

estimators, and an investigation of differences between conditional and joint

MLE are topics for future study.
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APPENDIX

In order to integrate (8) we must express the coordinates (xl,l)

in terms of a, , and . To this end we first express (x l,l) in terms

of the coefficients a, b, and c of an ellipse

a2(x-x 1 )2 + b2 (y-yl)2 + c(x-xl)(Y-yl) = 1 (A.1)

centered at (xl,Yl) and tangent to the perimeter of the rectangle RAB at

points S and T (cf. Figure 1), and then compute a, b, and c in terms

of a,B, and .

At point S, dy/dx = 0, and at point T dx/dy = 0, so

Xs-X1 = -[c/2a2](B-y1) and YS = b, (A.2)

and

YT-Yl = -[c/2b2j(A-x 1) and xT = A. (A.3)

Substituting (A.2) and then (A.3) back into (A.1) and solving for x1 and

Y1 gives

= A - 2b[4a2b2-c2 ]-i

and

Y = B - 2a[4a 2b2-c2] .

Next, transform from (x,y) coordinates to (a,B) coordinates, the a

coordinate at an angle with respect to the x-coordinate and perpen-

dicular to a:

(x-xl)cos0 +(y-y 1)sinO = u

- = v4)

(x-xl)sin+(y-yl)cose = v

For (u,v) = (,0), (11) is a2 cos2 e + b2sin2 + csinecos = l/U2 and
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for (u,v) = (0,S), (A.1) is a2sin20 + b2cos2 - csin0cos = 1/82, so

a2+b2 = (1/a2) + (1/82). Since the equation of the ellipse in (u,v)

dinates is (u2/a2) + (v2/ 2 ) = 1,

-Z[(x-x1)2cos
20 + (y-yl)2sin2 0 + xy sin28]

+ I-[(x-x 1)2Sin2n + (y-Y1)2 cos22 - xy sin20] = 1

and comparing coefficients of (A.5)and (A.1)

2 =cos
2 + sin2 0

a2 =2
b2 = sin2 e + cos2 e

U2 82

and

c2 = > -2 sin20.

Using (A/6). we find

x = A - { 2sin2 0 + a2cos20}i,

Y = B - { 2cos2 0 + 2sin 2 e0}.
(A.7)

Substituting (A.7) in the integral (8) gives the explicit representation for

the probability D((a,8)#) that an ellipse with axes of length 2a and 28

having kinematic density will be crossed by at least one grid line of the lattice #.

2 e 2 28
1 - f- XY lde {1-7 1 80-ell 

e-

02 c+2 -8 2

f -+ 82 cos 2 } 2d0
Gi

82 + 2_a2
B 1 + z sin2 e}jde (A.8)

+ A {1 + i-( )2sin226} de}
91

As a check of this formula, notice that when a=a=r , the ellipse is a circle

of radius r , 1 = 0, 02 = is and

coor-

(A.5)

(A.6)
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2 xlyld r r r 2

TrAB A B +AB
0

As r-t min{A,B} the probability of the circle not being detected approaches

zero.

Which angles are allowable depend on whether A<B or B<A. If B<A,

then allowable intervals for are

(1) [0,+X] if B<a<B,

(2) [0, arcsin[B2- 2/a 2- 2] if 8<B<a<A,

and

(3) [arcsin[a 2-A2 /a2-S2 ], arcsin[B2-_ 2/a 2- 2]] if a<B<A<a.

If B>A then allowable intervals for 8 are

(1) [0,2rr] if <a<A,

(2) [arcsin[a 2-A2/ 2-82], 4e] if 8<A<a<B,

and

(3) [arcsin[W 2-A2/a2- 2], arcsin[B 2- 2 /a2-B2]] if B<A<B<.

Defining the allowable interval for e as [81,82]' the above conditions

may be expressed more compactly, with the understanding that ca>, as

0 if 8<B and a<A when B<A or

<a<A when B>A

1
arcsin[a 2-A2/a2-B2] if g<B<A<a or if

B<A and a>A when B>A

and

ir if S<A and a<B when A<B or

B<a<B when A>B

2 =

arcsin[B2-2/a2-2] if 8<A<B<a or if

<B and a>B when A>B
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