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1. Introduction

The time rate of additions to petroleum supply generated by exploratory
effort is the principal focus of this study. Forecasting supply from discovery
of new deposits differs from that drawn from known deposits both in the type
of data available for generating predictions and in the substantially greater
uncertainties characteristic of petroleum exploration as opposed to petroleum

production from known deposits.

Our objective is to build an intertemporal model of exploration in a
petroleum 'play" which iinks together geostatistical data, probabilistic models
of exploration, discovery, and economics, a model which can be used to generate
p;obabilistic predictions of the time rate of additions to supply from new
discoveries as a function of policy choice; i.e. of future prices, costs,

fiscal and regulatory regimes.

A schematic representation of such a model is shown in Figure l+. The
model is composed of two distinct types of submodels: first, submodels des-
cribing the generation of physical observables -- drilling successes and failures
and sizes of discovered deposits -- as a response to inputs of exploration
effort - predrilling exploratory effort and exploratory welis drilled; and
second, submodels of the economic processes which influence decisions as to
how many wells to drill and when, and as to what known deposits are to be

developed and produced at what rate. The output of the drilling and of the

*From "The Interface Between Geostatistical Modelling of 0il and Gas Discovery

and Economics'" (forthcoming in Mathematical Geology).
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>discovery sizes submodels is the desired probabilistic forecast of future

returns to exploratory effort in the form of drilling successes and failures

and sizes of discoveries in order of occurrence.

. The reservoir economics submodel brings the output of the drilling and
discovery sizes submodels together ﬁith the economics of production. Once a
normative economic criterion for choice is specified, a minimum economic
reservoir size (MERS) can be computed -~- the smallest deposit that is economical
to produce at a given point in time. The MERS is an economic gate; monitoring
the floﬁ of new discoveries into development and production.. Discoveries
which are curfently uneconomical enter an inventory of subeconomic discoveries;
a "favorable" change in prices, costs, and/or fiscal regime may induce members
of this invento;y to be deveioped and produced.

Essential attributes of exploration and discovery are captured by use of
a probabilistic model of discovery studied by Barouch and Kaufman [2,3])..
The setting is the North Sea and we use cost functions constructed by Eckbo [5]
for this province. Exploratory drilling data and field size data are drawn from
Beall [4] . We examine the behavior of drilliﬁg strategies and the consequent
time rate of supply from an individual petroleum play in the North Sea under
specific assumptions about future price and cost patterns and fiscal regimes,
which are assumed known with certainty. The North Sea is cbnsidered here as a
"price-taker" province, so exploration outcomes do not influence present or
future prices; i.e. ﬁhere is no feedback from the results of exploration to

price. Uncertainty enters via the Submodgls describing exploration, The

two key uncertain quantities are the outcomes of drilling expioratory wells

--successes and dry holes--and the sizes, measured in barrels of hydrocar-

bons in place, of discoveries.
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In our formulation, the number of exploratory wells drilled at each
timg—peridd t 1s exploratory effort and this variable drives all succeed-
ing submodels. A priori the rate of exploratory effort at each time-period
is an uncertain quantity and we specify the joint probability law for rates
of effort by forward4looking_dynamic optimization; i.e., probabilistic dy-
namic progfamming. Once computed, this joint probability law for numbers
of wells drilled at each time-period is used together with that for drilling
successes and failures:to compute the probability law for the times at which
the fifst? second, third, ... diécoveries occur. The submodel for discovery
sizes is the probability law for discoverysizes in order of discoverﬁ, sorupon'
combining it with that for "waiting times" to the first, second, third, ...
discbveries, we have a probabilistic description of both sizes of discover-
ies and the time-periods at which they are made. Each field or reservoir of
a given size possesses a prespecified production profile and a superposition-
ing of these profiles according to times of discoveries of each possible sizg-
as dictated by the joint probability law for time and size of the nth discov-
efy, n=1, 2, ... generates a probabilistic description of the future rate
of production at each time-period.

This is the supply function. Its properties depend jointly on the phys-
ical.attributes of the play,

--the sizé distribufion of ‘fields as deposed by Nature,

--the number of prospects and the number of fieldé among‘these prospects,
on how

——drilling successes and failures occur,

~--gizes of diséo?eries unfold, )

~~production profiles for discoveries are determined,
and on economic attributes, among which are

——a projection of (future) prices per barrel,



;-exploratory drilling, development and production costs,

—-the fiscal regime in force (taxes, amortizationm, debt service, roy-
alties, etc.),

—-a normative criterion for making exploratory well drilling decisions

and development and production decisions.
'

While our approach to discovery and supply is superficially similar to
that adopted by Eckbo, Jacoby and Smith [ 6], it differs in essential ways;
perhaps the most important difference is- that ours.ié an intertemporally dy-
naﬁic analysis while theirs is static. In particulaf'they assume that the
rate of exploratory drilling is fixed for-each future time—pefiod and known
with certainty, and that drilling successes and failures are Bernoulli-like
with known probability of su&cess. In our approach,‘drilliﬁg rateé arg'un-
certain quantities with a probability law détermined by dynamic optimization,

“and drilling successes and failures are adaptive és described in section 2.

Hnyiliéza and Wang [ 7 i* study a model for intertemporal supply formally
almost identical to that presented here. Their anaiysis is based on a compu-
tation scheme developed by the present authors and described in subsequeﬁt
sections; However, their treatment of sﬁpply in the North Sea Jurassic
Cenfral play differs: it incorporates uncertainty about drilling successes
and failures alone. Uncertainty about sizes §f fields discovered and conse-
quent effects on probabilities for future discoveries are ignored and marginal
expectations of discovery sizes in order of occurrence (cf. formula (2.6) of
section 2) are adopted as certainty equivalents; i.e., sizes of all discoveries

- in order of occurrence are assumed to be known with certainty at the outset

*Revised and extended version by J.W. Wang.



of tﬂe planning horizon. The only uncertainty remaining is at what well
and in what time period they will be discovered. By contrast, a discretized
version of the probability law for discovery sizes presented in [2] is

employed here,so predictive probabilities for future discoveries are explicitly

dependent on past observations. Replacing the joint probability law for

' discoveries with certainty equivalents greatly reduces computation time at

the.expense of ignoring an essential feature of the discovery process. This
approach ma&, however, be useful as an épproximation. How robust anl
approximation it is, is a topic for future research.

The ecoﬁomics of discovery and production enters ;heranalysis through
a projection of price per barrel for each time period in the planning horizon
of time periods 1, 2, ..., T and cdrrespondi;g projections of exploratory‘
drilling cost functions, reservoir deveiopment and production cost functions
and a speéification of the tax regime and production profiles for fields of
sizes S1 , 52 , and S3 .

The time horizon T is defined to be the last time period at which a
wildcat drilling decision can Qe made. That is, a decision to drill or not
can be made at t=1,2,...T , but no wildcat drilling may occur at time periods
t>T . Production decisions are allowéd at any time period t=1,2,...,T
but not beyond. Hence, the decision to produce a field of size Si diséovered
at t £ T must be made at time period - T or earlier. Since there is a time
lag between time of discovery and the time when production begins, even when
a decision to produce is made at the time of discovery, production may continue
past time period T . Production ceases at a time period T + t* or earlier,
where 7t* 1is the time period length of the longest production profile among
all possible profiles (plus built-in lag). A finite time horizon introduces
unwanted end effects. However, numerical analysis shows that T may be

selected large enough to render these end effects negligible.
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Eckbo [5 ] used Wbod-MacKen;ie gorth Sea data to construct typical
investment and production profiles for North Sea fields as shoﬁn in his Ta-
ble 14. We use these profiles in our calculations and assume that they re-
main fixed; i.e., do not change with the time period of discovery of a field.

Then the fraction § of a discovery at time period t of size Si that is

i, t+T

produced at time period t + T is independent of the time t of discovery and

) = 611 for all t.* If T denotes the number of tiﬁe periods to termi-

nation of production from a field of size si’ the production profile for it

is 81610, 51811’ ey Sisiri for any t.
The process cost formula C(Si’ t) for development and production from
a field of size Si discovered at time period t is expressed in net present
value dollars at time period t and is a composite of fixed drilling costs
Co, variable drilling and production costs ay + bisi,'production profile

§ . 6i,t+T , and capital investment costs Ai + Bisi' In place of

i,t+1° °
i
straightforward use of the investment schedule detailed in Eckbo's Table 14,

Git’

*This independence assumption is discussed in more detail in Section 3, .



we allocate capital investment costs to each time period t, t + 1, ...,

t + Ty for a production profile of length T by averaging: (Ai + BiSi)/Ti

per period; A cost inflation factor B, distinguished from the net present
value factor a, is introduced and iﬁ terms of a,B, and the abovementioned
cost and production variables, total net present value of cost at time-
period t associated with a discovery of»size Si at t that begins develop-

ment at t+t is

T T,
: i i
_ o t-1 j 1 1-(aB)
C(S;5t) =8 C0+(GB){ai+biSi}~§ZO 614(8)7} + ;I{Ai+nisi} ()

This function is a slightly simplified version of that suggested by Eckbo

[51

While any future price sequence is allowable within the framework of
our analysis, we assume , that an initial
price per barrel Py is subject to geometric price inflation by a price in-

t-l. Per-period tax pay-

flation factor vy, so that price pt at t is pt = plY
ments are normally computed as a functién of production rate and the per-
period annual net reservoir operator profit. To simplify computation, we
introduce a tai and fiscal cost factor y < 1 and represent the net present
value of revenue flow at t from a field of size Si commencing development
at t as |

t+t,

= i Tt
R(S;, t) =p,S; [ 84 xmg (o)
=t

The total net present value of a discovery of size Si made at time

period t is thus

R(Si’ t) - C(Si’ t) = V(Si’ t).
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While this model for the net present value of cash-flow from discovery
of éi at t is.a reasonable approximation to réality, any non-anticipative
model for v(Si,t), no matter how complicated in accounting detail, fits
within the framework for dynamic optimization of drilling effort described

subsequently.

We adopt maximization of expected net present value as a normative cri-

terion and assume that once a field of size S, is discovered, the decision as

i
to when--1if at all--to develop and produce it is separable from future drill-
ing aimed at new discoveries and from tﬁe past history of exploration. If

the ihteraction between the new discovery, fields alrea&y discovered, and pos-
sible future discoveries imposed by pipeline network considerations are ig-
nored, this is reasonable. Given this assumption, cémmencing development at

t of a diséovery of size Si made at t is desirable only if V(Si’ t) > 0. Op-
timal times for development to bégin are at t*s such that V(Si’ t*)‘z_max
{v(Si, t), v(Si, t+1), ..., v(Si, T)} proﬁided that at least one v(Si, t)

in this set is positive; otherwise never. Holding t fixed, a value s0(t) of
field size such that v(S°(t), t) = 0 is the minimum siée for which develop-~
ment commencing at t is economically justifiable. In order for it to be op-

timal to begin development of a discovery of size S at t, it is necessary

but not sufficient that S > S°(t).

An optimalhsequential drilling strategy is computed by use of dynamic
programming, and probabilities for number of wells drilled at time-period t
given the state history for drilling successes and failures and sizes of

discoveries prior to time-period t are a by-product.
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Figure 2 is an outline of major steps in the computation of probability
laws for cu;ulative amount discovered by time-period t , for cumulative amount
pfoduéed by time-period t , and for»the corresponding rates of discovery and
of production when a.sequentially optimal drilling strategy is employed.
Output consists of

—-mean amount and mean of cumulative amount discovered at each time

period-(Table 2 aﬁd Figures 4, 7, and 8)

-—meaﬁ amount énd mean of cumulative amount produced at each time

period (Table 1 and Figures 3 and 9)

-~mean and stan&ard devia;ion of number of wells drilled at each time

period (Table 3 and Figures 5 and 6)

—--marginal probability distribution for number of wells drilled at

t=1,2,...T (Table 4)

~-joint probability distribution for number of wells drilled at t and

cumulative number of wells drilled prior to t (Table 5)

--probability distribution for cumulative number of discoveries up to

and including t (Table 6) .

Graphs displaying the means of amount discovered at time period t , of
cunulative amount discqvered at t, of amount produced at t , and of cuﬁula—
tive amount produced at t appear in Figureé 3, 4, 7, 8 and 9.‘

Table 5 is generated and displayed because expectations.of rate of dis-
covery at each time-period and of the amounts produced at each time-period
are functions of the joint probability law for cumulative number w(t-1) of wells
drilled at and prior to time-period t-1 and number d(t) of wells drilled

at time-period t .

*
Henceforth we distinguish a_random variable (rv) from a value assumed by it
with a tilde; e.g., the rv d(t) takes on a value of d(t).
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;

Descripgion of the numerical output for one of the cases presented in
section 7 will set the stage for the mathematical results of sections 2, 3,
and 4.

Consider a play with twenty prospects, four of which are fields; which
prospects are in fact fields not known with>certainty a priori. Drilling
successes and failures are generated by hypergeometric sampling from N + M =
20 prospects of which N = 4 are fields.* The sizes of the N fields as
deposed by Nature are generated by drawing indeﬁendent sample values from a
crude discrete approximation to a lognormal distribution with the mean
of the log of size equal to 5.78 and the variance of 02 of log size equal
to 6.38 . These values of p and 02 are maximum likelihood estimates
computed using the discovery process model of Barouch and Kaufman [2,3] applied
to sizes of ten discoveries in the North Sea's Jurassic Central play as reported

by Beall [4]. The discrete approximation is a partition of the range (0,®)

for size into three intervals of equal probability. The geometric mean
for each of these three intervals is Sl = 100 million barrels , S2 =

450 million barrels , and S3 = 1500 million barrels.

The planning horizon is T = 20 years (periods). (Exploratory drilling
in fact drops to zero by the ninth period.) Expected discoveries and rates
of production are computed for two initial prices per barrel: $5 and $12.
Price is assumed to increase by 6.6% per year (y = 1.066). Eckbo's cost
formulation (1.1) is used and costs are assumed to increase by 6.6% per year

also (B = 1.066). Individual components of the cost function (1.1) are in 106$:

*
With no change in the size of the state space, drilling successes and failures
can be assumed to be realizations drawn from an infinite sequence of dichotomous
exchangeable uncertain quantities if the mixing cdf 1is indexed by a parameter
of dimension 2. Modelling drilling successes and failures as hypergeometric
sampling is proposed by Jacoby, Eckbo, and Smith (1977), p. 232.
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Exploratory Drilling Cost = $5
Total Operating Costs™ = $18.87 + ,004*(Size of field)

Total Investment Costs (not including exploratory drilling)
= $296.10 + 1,12*(Size of field)

Investment costs are incurred according to the investment profiles shown in
Eckbo's Table 14. For each discovery size, total operating costs are spread

evenly over the time periods in which production takes place.

Figure 3 displays the expectation of amount produced in each period if
an optimal sequential drilling strategy is employed (numerical values appear
in Tables 3 and 4 of section 7).At 12$/BBL all discovered fields of size
S1 = 100 million barrels, 52 = 450 million barrels, and S3 = 1500 million
barrels are put into production, while dt 5$/BBL fields of size 100 million
barrels, even.if discovered, are not put into production. Hence expected
rates of production at 5$/BBL are smaller than at 12$/BBL. Cumulative expected
rates of production and cumulative expected discoveries are shown in Figure 4.
While cumulative production behaves differently at 5$/BBL than at 12$/BBL,
the mean and variance of the underlying size distribution of fields is
sufficiently large to induce virtually identical optimal drilling policies.
Hence only one graph of expectation of cumulative discoveries is displayed in
Figure 4, That is, given the costs, prices, and size distribution employed in

this run, production policy is price sensitive, but drilling policy is' not.

Operating costs consist of platform operating costs, administrative costs,
transportation costs and harbor and terminal operating costs. (See Table 5,
in Eckbo.) Investment costs include platform costs, drilling costs, pipe-
line costs, terminal costs and miscellaneous costs.
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f : 2. Modelling Discovery

A petroleum prospect is a geologic anomaly conceived of as containing
hydrocarbons that forms a target for drilling. A petroieum play is a collection
of prospects within a geographic region, all of which share certain common geo-
‘logic attributes; i.e. there is lateral persistence of these attributes across
the area in which the play is located. The petroleum play is a "natural” unit
for analysis of the evolution of discover& effort over time and of petroleum
supply, siﬁce it is a conceptual template used by oil and gas explorationists

to plan exploration programs.

Predrilling exploratory effort applied to ; play generates a collection
of prospects, each of which is appraised for its economic viability. Since it
is never a priori certain (a) whether or not a prospect contains hydrocarbons,
(b) if it does, how much petroleum is in place in it, and (c) how much petroleum
can be recovered from it, uncertainty plays an impoftant role in the explora-
tionist's perception of the economic viability of exploratory drilling. Con-
sequently, a model of exploratory drilling should reflect its essential geologic
and technological uncertainties. We call a probabilistic model that does this

a discovery process model. The particular structure of such a model depends on

the level of informational detail about geologic and depositional attributes of

prospects in the play assumed to be observable.

At one extreme are models for a small set of observable attributes; e.g.
the number of dry exploratory wells drilled and the number that made discoveries;
the sizes (BOE in place) of discoveries. At the other extreme are models for

descriptively rich sets of attributes, some of which bear on the presence or
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absence of hydrocarbons in a generic geologic anomaly and others that determine
the amount of hydrocarbons in it. Presence or absence of source beds, favorable
timing, favorable migration beds, adequacy of seal are typical of the latter;
area of closure, porosity, connate water saturation, are examples of the latter.
These may be supplemented by maps which describe the spatial disposition of
various combinations of attributes. This type df information can be used to con-
struct a spatial probability law incorporating 'lateral persistence'" or proba-
bilistic dependencies among attribute values across the area of the play. Proba-
bilities for drilling successes and failures and for sizes of discoveries then

become "spatial” in character.

Implementation of a play model incorporating this level of detail requires
data generally available only to exploration companies or government agencies
actively involved in the planning and execution of exploration of the play being
modelled. The essential features of the evolution of exploration in a play can
be captured by models more modest in their demand for input data. Prediction of
the temporal flow of supply from the play can be done using a discovery model
built from two key empirical features of petroleum plays: first, the size dis-
tribution of deposits is generally positively skewed with a very few large
deposits and many small ones; second, on the average, the large deposits are

found in the early stages of exploration of the play.

Our model for discovery is composed of three assumptions. The first two
together compose a probability law for the sizes of discoveries in the order in
which they occur. The third describes a probability law for drilling successes

and failures. This latter assumption is somewhat simplistic and may be elaborated
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in several ways without severe analytical computation. However, in order to
divide difficulties we keep it simple; later on we discuss possible extensions

of it.

I. (Lognormal size distribution) Let A, be the size of the
ith pool among N pools deposed by na%ure in the geological
zone within which the play takes place. The A;s are values
of mutually independent identically distributeé lognormal
random variables. '

II. (Sampling without replacement and proportional to random
size) Given Al,...,AN the probability of observing
‘Al,...An in that order is

n

jgl Aj/(Aj+. . .+AN) .

III. There are M prospects in the play of which N are known to
be deposits. Drilling successes and failures take place
via hypergeometric sampling of these M prospects.

The model for discovery sizes composed of I and II is imbedded in IITI in the

sense that it describes a sequence of n £ N discovery sizes in order of occurrence
conditional on n discoveries having been made. A discrete version of it will be
used here., Assumptions I, II, and III together constitute a model for outcomes

of a decision to drill a given number of wells independently of when these wells
are made. That is, the model describes the physical consequences of a drilling
program consisting of drilling a pre-specified number of exploratory wells in

the play.

The economic consequences of drilling will be attached to physical outcomes
once models of exploration and production costs, prices and fiscal regimes over

time are specified.
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(Ihe process generating sizes of discovered deposits in order of occurrence

is imbedded in the drilling process; i.e. deposit discovery occurs only when a
well making a discovery occurs. Letting Zi be barrels of oil in place dis-

covered by the ith exploratory well, and defining

if the ith well
0 is dry

1 discovers a deposit
X5

the ordered pair (xi’zi) describes the outcome of the ith well drilled. 1If

x, = 0 then Zi = 0 and if x; = 1 then Z, > 0. Consequéntly, if x; = 1 and

i

th

i
i th
z = j, then the j discovery of size Y, = Zi > 0 occurs at the i~ well.

X

g=1 *

The sequence §j’ j=1,2,...,N is assumed to be uninfluenced by the number of
dry holes between discovery wells:

IV. The sequence Y s5see,Y  of sizes of deposits discovered in order
of occurrence %s 1ndependent of the sequence Xyse ..,xi,.... of
drilling successes and failures.

Values Yl”"’in of the first n < N discovery sizes may be interpreted as
observations produced by sampling without replacement and proportional to size
from a finite population {Yl,...,YN} of deposit sizes whose elements were
generated by independent sampling from a (lognormal) superpopulation. An
exact computation of the probability of observing Y1 € le,..., n € dY
requires numerical evaluation of a rather complicated integral (cf. [2 ] for
discussion). In order to keep computational costs within reasonable bounds

we discretize the submodel for discovery sizes in the following way: let

- A(K), O £k £ 1 denote the kth fractile for Al, 2=1,2,...,N, the sizes of

deposits as deposed by nature (Assumption I), Divide [0,1] into K intervals
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of equal length and define Sm as the geometric mean of a generic Ai conditional

on Az e [A (m-1/K), A(m/K)], m = 1,2,...,K. These intervals are intervals for

Az-of equal probability 1/K, and we shall interpret any Az e [A (m-1/K), A(m/K)]
as having "size" Sm' This form of discretization enormously simpli-

fies computation of probabilities for discovery sizes, replacing a density for
Az concentrated on [0,») with a multinomial probability function attributing
probability 1/K to each size 31’82"°”S
def

KF
?{Al=sm} P{A2 e [A(m-1/K),A(m/K)]1} = 1/K.
Letting N denote the number of deposits in the play, defining Nm as the

number of deposits of size Sm’ and N = (N NK), the probability that nature

1000
deposes Nl deposits of size Sl, N2 of size SZ’ etc. is

P{N = N} = i K = ( ) KN

N
N
Nl""’NK -

Given that nature has generated E = N, the probability P{Sj ,...,Sj IH}
1 N

of observing S in that order follows from assumption II, sampling

I
3173, In
without replacement and proportional to size: letting k(n,m) denote the

number of discoveries of size Sm among the first n discoveries,

P{sjl,sjz,...,sjulg} =
lesj1 [sz - k(1,j2)]sj2 [NjN - k(N*l,jN)]SjN
= - = e — _ .
INS I[N -k(1,m]s I[N - k(N-1,m)]S
m=1 0 m=1 n m=1 '

Putting these discretized versions of I and II together, we have the probability

of observing S, ,...,S, 1in that order as
I In



22

B{S; 5.8 } = K ) G RS, veeesSy [N}
1 N N = 1 N
N
where summation is over {EINm 20, m=1,2,...,Kand IN_ = N}.
m=1

Marginal and conditional probabilities for any ordered sequence of sizes

(Si seeesS. ),1<m<ngN are calculable using the above probability function.
m n

Fortunately, the multinomial coefficients (g) need not be computed in the

course of computing these probabilities, for after some algebra we find that

Ny N
ors ) - N1 I
jl""’SjN— - X 3S[s-S. J[s-S. -S. J...[S-S. SR
» I J1 32 ) IN-1
K (2.1)
where S= I NS .
mm
m=1

The above probabilities are probabilities for events that may obtain when
all N fields in the play are discovered. The probability of observing discovery
sizes ¥, =s, , ¥, =65, ,...,Y =8, in that order when n < N may in principle

1 jl 2 j2 n i,
be directly computed from (2.1 ). An alternative is to compute these "forward"

probabilities as follows: suppose that among Sj ""’Sj » ny are of size Si

1 n
and define r, = Ni—ni. Then letting
% ,
b, =()n,8,) -S., -8, -...-8. ,
kit 3 4 I
N1 n; ny ny ' N-n n K -1
P{S; 5..es8; b= 5, 8, ... 5 ) (.- L) I ) r;S;+b, ]
1 In K (N-n)! 1°°°°Tx k=1 i=1

K
]
where £ is summation over {rl,...,rKl Ir

= N-n, r, 2 O}.
i=1 i

i
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Upon decomposing the products in the above sum by partial fractions and

using the relation

riSi+bk

the above expression for P{Sj ,...,Sj } becomes

1 n
n 'n n -b K =AS,AN-n
-n _N! 1 il |1 i A
K N-n! Sl f[glc:le ] [K izle. da, (2.2)
n -1 1 K =S :
where ¢, = I [b,-b.,] ~. Notice that = I e is the Laplace transform of
h| 23 K._
2=1 i=1
2#3
a probability function assigning probability 1/K to each of K values Sl""’SK

of S. Each S, is a function Si(K) of K and is chosen in such a way that

K =2S,(K) © =AxX
1im %- Z e 1 = f e f(x)ax,
K i=1 0

f the density for a generic AL' In place of (2.3) P{S ,...,Sj } may be

n

3

represented as
- y ng lrn b.-1 K S, N-n
) EgﬁT Sl1 cee SK { [jzlcjy J } [%‘izly %] dy .

-ah;ﬁue£p16£ét;;y driliiﬁéJié'mbaélled—éé fakiné placé”;f.d{;crete
points in time and more than one well may be drillgd at each time point,
there is no natural tempofal ordering of discoveries made at a given
point in time. Hence we are led to consider sampling as taking place
without replacement and proportional to size but for which the natural
ordering of observations is partially lost. In the ensuing analysis of

intertemporal rates of drilline we need explicit formulae for probabilities
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of two types of events genérated by such a sampling process: the probability

that the first k discoveries are of sizes Yl ,...,Yk and the probability
k|

that the next n-k discoveries are of sizes Yk+ seecy Yn given that the

first k discoveries are of sizes Yl’ seesy Y. ‘To distinguish probabilities

k'
for events composed of ordered discovery sizes from events composed of
-discovery sizes without regard for order we define o (Yl,..., Yk) as the

compound event composed of the union of all k! orderings of Y .oy Yk’ and

1’
present integral representations for P{G(Yl,...,Yn)}_and E{c(Yk+ "'f’Yn)l

o(Yl,...,Yn)}.

If observed sizes are generated by sampling proportional to size and

without replacement, but the order of observations is lost the probability of

observing Si ,...,Sin possesses a simple integral representation that follows
1
from the law of total probabilities and the following nice combinatoric identity.

Given Y, = S

1 , Y, =S, ,...,Y =S. and a number S, it can be shown that

jl 2 i PY n k|

n n -1 ' ® 3 B L
[ I Y%]; Yy m[s+b, ] = sfe I [1 -e ]dx
% oi=1 J1i 0 1

where for a fixed ordering (Y, ,...,Y. ) of Y.,...,Y¥ , b
iy jn 1 n

, =Y, +Y +...+Yj
g 1 Jia n
for 1=1,2,...,n and g denotes summation over the n! permutations of (1,2,...,n).

Using this combinatoric identity, the probability of discovering sizes

Si ,._..,Si in the first n discoveries without regard to order is
1 n '

a

N, _-N o N-n n -1
) (C Y[ OIS, 1 [} T (e,S,.4b,) 1 =
n } SRS .1 -1 1173
1 K 2=1 "2 o i=1 i (2.3)
N, -n « K ~1S, K -AS, K -AS, n
(N-n) (n)K“ f [ %_ z Sie 1] [.% Z o 1]N—n--lII [1-e k] kdl}
0 i=1 j=1 =1
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/
Letting L()) denote the Laplace transform of f and L' the derivative of L, as

K+~ with N and the parameters of f fixed, (2.3) approaches

N n F N-n-1 2 ATy
®n) ) [ 1 FCp] [ L' )] L] I (l1-e )da, (2.4)
i= 0 k=1

or in terms of the inverse function U(L) = X of L,
1 S
n 4 n -u(x)Y
Mn) ) [TFEP] [0 (e ydx .
i=1 0 k=1
The marginal density for the size of the.jth_(lstn) discovery when n dis-

coveries have been made is

® -AY '
(N-n) (ﬂ) £y [ -Lr )1 [L(A)]N'“'ltl-_m)]“'lu-e Jyax (2.5)
5 |

if the order in which the first n sizes discovered is "lost". If f has mean Ml’

the marginal mean of ?n in this case is

(N-n) (g) [ L' [M,+L" () ] [1-L) 1% Loy 1 1g
0

(2.6)

when the order of §1"'°’§n is "Lost", while if the order af the fjs is

not "Lost", it ié

a) f LM L 1ML 17 @D
.0 A -
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Letting E(Yj) denote the expectation of the jth discovery when order is kept,
n v
it can be shown that (2.6) is equal to %— T E(Y

a1

Using the combinatoric identity presented earlier twice, the joint proba-

bility of o(Y ’Yk) and o(Y ..,Yn) is

e k+1’”

P{G(Yk+l,...,Yn), c(Yl,..;,Yk)}

n ®© © 2 - _
= 1FEPQ@ [ [ ade - mowo N+ k) S owe 1™
j=1 00 d“x
A+ AT ) kK AAY, n 0¥
e Kt (e Ny 1 (e b (2.8)
3=1 et

and P{U(Yk+1,...,Yn)Io(Yl,...,Yk)} can be computed as

P{G(Yl,...,Yk), 0(Yk+l,...,Yn)}/P{o(Yl,...,Y }.

1)

Since the numerical computations presented in section 7 are dome by dis-
cretiéing the size distribution, the above theoretical results are not directly
employed. However, they provide a connection between the discrete version and
the continuous version of the discovery process that can be exploited when
adaptive updating of the parameters of the discovery process is considered,

cf, Barouch [5].

+Integrating (2.8) with respect to Yk+l""’Yn and then with respect to 6,
(2.7) reduces to P{G(Yl,...,Yk)} and is formally identical to (2.4).
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5. Modelling Development and Production for Individual Fields

Once a discovery has been made, the field operator does an economic and
engineering analysis to determine whether or not the field should be put into
production and if so, he specifies a development and production strategy for
the field. At the individual field level, the problem of determining -- rela-
tiveAto some prespecified normative criterion -- the optimal development and
production strategy for the field is in fact elaborately complicated and worthy
of study in its own right. (Uhler's [8] deterministic optimal control formu-
lation of the individual field problem is a recent example of a long line of

studies of the individual field problem.)

Our principal concern here is the temporal evolution of supply at the play
rather than individual field level. Consequently we shéll not consider dynamic
optimization of production from individual fields. Rather, we propose a static
model of individual field production over time, one which mirrors practical pro-

duction experience: each field of size S has an associated production profile

§(8) = (8 (8), 8§ (8),...5,8 _(S),....)
0 1 t

where Gt(S) is the proportion of S produced at the tth period of time after the
field's discovery; §(S) will be assumed to be independent of the time period at
which the field is discovered. It will be convenient in subsequeht analysis to
define 6t(S) = 0 for t<0. 1In the’numerical examples discussed later we choose

elements of §(S) to match actual North Sea production experience as recorded by

Eckbo [ 5 ].

Once the minimum economic reservoir sizes (MERS) for periods t=0,1,2,...,T

are computed we can determine time periods at which a field of a particular size



27

excee&s the MERS for that period.

- In general the MERS at t may depend on the past histdry of exploration prior
to t; If, however, (a) prices.and.costs are known with certainty at t=0,1,2,...,T,
(b) individual field production profiles are static over time, (c) maximization
of expected net present value is the criterion for decision-making, (d) pipeline -
network decisions -- requiring joint consideration at each time period of the
sizes of all discovered fields, of potential future discoveries, and of past
pipeline decisions -- are ignored, and (e) the decision when, if at all, to put
a discovered field into production is made in light of its economic desireability
as a marginal décision—making unit independent of past history, then the MERS at
each time period is also independent of past history. We divide our difficulties
by adopting these assumptions in subsequent analysis. If at t a field of size Sl
exceeds theIMERS for at least one time period subsequent to t, a reasonable
but not necessarily optimal rule is to put it into production at the first
such time—périod. More formally, let T2 be the set of time-periods among

0,1, 2, ..., T at which size S, exceeds the MERS, and define

L

Tl(t) = {Tlrst and t-1 < Tt S-T},
and 7
smallest element of Tz(t) if Tl(t) is non-empty,
. Tz(t) =
+ o otherwise.

Then Tz(t) is a . time period at which a field of size Sz diséovered at period t

and put into production ét Tz(t) has positive net present value. If Tz(t)
is empty, then fields of size Sl discovered at time period t and subsequently

will not be put into production at any time period within the planning horizon.

*Throughout, reference to the time period at which a field'is "pu? into proiuc;
tion" means that the decision to produce is made at that time pe?lod. ?hzs ca
production may, because of time lags, occur subsequent to this time period.
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When future prices and costs are known with certainty, and the decision-
making criterion is maximization of expected present value, the optimal time
to start production of a discovered field regarded as a production unit opera-
ting independently from other discovered fields and of its optimal production
profile may be found by deterministic optimization. The optimal production
profile for a field of given size will be a function of the time period
éubsequent to its discovery at which production begins; i.e., a discovery of
size S2 at period t will possess a physical production profile §£(t+Az(t))
where A*(t) is the number of time periods subsequent to period t at which
physicallproduction begins. The components of Qz(t+AE(t)) depend on both

Sz and t+Az(t) . With the above assumptions in force, a discovery of size

SZ at period t will physically begin production at period t+Az(t).
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4. Drilling, Amounts Discovered, Amounts Produced

We assume that drilling is done and outcomes are observed at discrete
points 1,2,...,t,.... in time and call the ith point in time "period t'". As
defined in section 2, the ordered pair (xi’zi) describes the outcome of

h th

drilling the 1t well: x; = 1 if the i~ well is a discovery and X, = 0 if

it is a dry hole. The size of deposit discovered by the ith well is Zi =0

if x =0 and is Z, > 0 if x, = 1.

i i
At the outset the numbers &(t)‘of wells drilled at periods t=0,.,2,...,T
are fvs whose joint probability law is determined by dynamic optimization given
a normative criterion for decision-making by the operator, a specification of
the economic structure of the operator's optimization problem, and the joint

probability law for the iis and iis as described in section 2. Once the joint

probability law for numbers a(t), t=0,1,2,.... is computed, all essential pro-

.perties of amounts discovered and amounts produced are computable using it and

the joint probability law for (i:421)4>i=1s2s----i,i-e- the probability law

for the total amount of hydrocarbons discovered at periods 0,1,...,t,...,T

and that fof amouﬁts produéed at periods 0,1,;..,t,...,T. The amounts produced
at t depends on both the production profiles of deposits discovered at t<t and
on whether or not a deposit of a given size discovered at TOSt,iS "profitably"
put into production at some T, TOSTSt.

The basic idea is simple: 1let w(t) = d(0)+d(1)+...+d(t) denote thé total
number of wells drilled at 0,1;...,t and compute the probability distribution

of the waiting time W to the nth discovery, measured in number of wells

A TR Y gt e

Bk ol
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drilled. Then compute the probability that w(t-1) < w £ w(t) -- that the nth

discovery is made at period t. The probability distribution for sizes
§1""’§n""' of discoveries is as described in section 2 and is independent
ofvtimeé of discoveries. Consequently, if the nth discovery is made at period t,
the amount discovered §n has a probability distribution given'Y

4 as

100
" shown in (2.2); the marginal probability distribution for §n is as given in (2.5).

n-1

Letting hn 2 denote the marginal probability that the nth discovery is of
td . )
size SL’ the marginal probability that a discovery of size Sl is made at period

t is P{&(t—l) < an < ;(t)}hn » S0 the marginal expectation of amount discovered

2L

at pgriod t is E(Z&(t-l)+1+"'+z&(t)) =
N ~ N ~ .
T Plu(t-1) < o s w(t)IE(Y ) (4.1)
51 n - n

with E(?n) as given in (2.6). The probability B{&(t-l) RS ;n < a(t)} can be
computed in two stages. First compute P{Jxn = mn}; then compute P{w(t-1) < &n <
w(t)} using the joint probability law for d(0),d(1),...,d(t).

Among simple possible characterizations of &n are:

~

(1) xl,...,ii,.... is a Bernoulli process with known parameter p.

w w
5 = = (N N, 0
Then P{W =w } = ( __,) p (1-p) |

ii) xl,...,ii,...,xw is a sub-sequence of an infinite sequence of
h .
exchangeable rvs. Then the probability that n-1 1ls appear among

the first mn—l ;8 and in=1 possesses a representation of the form
w -1 1 -n

W
n n n
€ 1) fo £7(1-) 7 dF(E)

where F is some cdf concentrated on [0,1]. If F is beta with para-

meter (o,B),
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mn-l) B(a+n,mn+3-n)
B(o,B)

P{mn=mn} = ( n-1

(ii1) gl""’§N+M are hypergeometric as in Assumption III. Then

N ) ( M )/(N+M

p{;n=wn} = [(,, o n N )] [N-nH+l/NM-w +1].

Explicit calculation of the time period at which the nth discovery is made may

be done by use of

PG <5(0))} = [ Plo_s]IREa(0)=1) (4.2)
j=n -

for t = 0, and by use of

- Plu(t-1) <w sw(t)} =
(4.3)

I I Pla(e-1)=3, d(t)=k}P{a_sj+k} - P{u_sj}]
k=0 j=n

for t > 0. Formula (4.2) is the probability that the nth discovery is made

at period 0 and (4.3) is the probability that the nth discovery is ma&e at

period t > 0.
fhe marginal ;robability distribution for the starting time of production

from the nth discovery follows directly from (4.2) and (4.3). Letting

rz(t) = t+A£(t), the marginal probability that the nth discovery is of size

SZ and discovered at t is the marginal probability that a production profile

sﬂél commences at t+A£(t). Hence the marginal probability that an amount

is produced at t from the nth discovery is the probability that
-’.

S£§e,t—T—A£(T)

the nth discovery is made at T and is of size SZ'

+Recall that =0 for T < 0, so that if the nth discovery is made at

2,5

r'>t—A£(r') the amount produced from it at period t is zero.
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Definiﬁg hn as the marginal prcoability that the nth discovery is of

,f;

size Sz, the marginal expectation E(En(t)) of the amount Sn(t) produced at

period t by the nth discovery is
K

T h

) P{o(t-1)<w_sa(t)} (4.4)
2=1 n’zre{j|j+A2(j)st} "

SZ 52,1:—1‘-A2('r)

and so the marginal expectation of the amount produced at period t is
N . - .
L E(p (t)).
n=1 _
To sum up, we have given explicit formulae for computation of the expec-
tation of amount discovered at t and for the amount produced at t (4.4). First

moments of these quantities are relatively easy to compute, but higher moments

of El(t)+...+5n(t)+.... are quite complicated so we defer presentation here.
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5. Computation of Probability Law for &(t), t=0,1,2,...,T by Dynamic Optimization

We determine the joint probability law describing the evolution of an
optimal sequential drilling policy by use of dynamic programming. Let %% denote
the history of exploration at period t: 9, = (zm(t_1)+1,...,zm(t)). The

number d(t) of wells drilled at t is the number of components of Op» and

denotes the size of field discovered by the kth well drilled at

Za(t-1)+k

period t (Zm(t-1)+k > 0 is the size of a discovery and zm(t—1)+k

a dry hole). The history of exploration up to and including period t is

= 0 denotes

Ht = (go,gl,...,gt) and Ht in terms of Ht-l is (Ht_l,gt).

Adopting maximization of expected net present value as a normative criterion
for decision-making, let vt(-) be the net present value at t over t,t+l,....

Z denote

w(t=1)+1°>"""" -1
expectation with respect to the distribution of (Zm(t-l)+1""’zm(t)) given

of discovery of sizes Z ) made at t and let E

w(t o, [H

7 Ht-l and d(t). If Vt(Ht-l) is the expectation of an optimal policy over t,t+l,...,T

givén H , then given a constant discount rate o, by the principle of opti-
t-1 P

mality

Vt(Ht-l) = max {E0 B vt(gt) + oE

v .. (H }
d(t)ed(t) -t t+l t-l,gt))

t-1 gtlHr.-l

where D(t) is a set whose elements are numbers of wells that are allowable at t.+

At t = 0, there is no history of drilling, H—l is empty, and so we define

V.(H.,) = max {E_v,(0,) +aE_V (5)}.
0% T yoyep@y 2,00 g 1%

+D(t) may depend on past history Ht—l'



34

No exploratory drilling takes place at t > T so we define

max Ec - VT(QT).

v (1) =
TH T d(t)eD (1) ~T!'T-1
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6. Implementation of the algorithm and the computer program,

6.1 General

The model and éorresponding computational regimes presented in the pre-
ceaing sections have been programmed for computation. The structure of the
resulting software system is discussed here. Inputs to the program are:
(1) the number of prdspects (denoted by M ), (2) the number of fields (NF),
(3) the number of discretized sizes (KD), (4) the parameters of the lognormal
distribution of sizes, (5) a discount rate employed by the decision maker
(ALPHA), and (6) streams of projected costs and prices (C and P). The output
consists of an optimal drilling policy, the expectation of the rate of discovery
per time period, the expectation of the rate of production per time period,
and probabilities attached to other events which may be of interest to the
decision maker. Among these conditional probabilities of a specified number
of successes in each time period, probabilities of the ith discovery occurring
in period t for all (i,t) pairs. The program allows computation of prob-
abilities for other types of events {(cf. subsection 6.3).

The obvious way to solve a dynamic programming problem like that posed
in Section 4 is by straightforward backward induction. This is done by the
first part of the main program, which computes an optimal drilling policy,
The second part of the main program employs a specially designed forward
looking algorithm designéd to exploit features of the optimal drilling strategy
computed by the first part of the main program. This algorithm scans a large
decision tree displaying possible future outcomes and computes probabilities
needed for the next stage of computation: computation of the output quantities --

expectation of rate of discovery per period, etc. -- listed above. This is
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accomplished with a subprogram in which success and failure probabilities
are comﬁﬁteﬁ, along with probabilities for discovery of fields in each size
class given the current state hiséory.

A description of subprograms is given in the following order:
(1) main program, part I and part II, (2) subroutines PP, PROB, and SP, in
which needed probabilities are computed, and (3) other subroutines. The
following block diagram may help understanding of program structure. An
arrow A-———3»B indicates that block A calls and uses computations done

by block A

6.2 The MAIN Program

Suppose the decision maker is at the beginning of some period t . Past
history at t consists of the number of wells drilled up to and including
t-1 and the number of discoveries of each size Sl’ SZ’ ceey SKD made by
these wells. At the beginning of period t , no prospects are assumed to be
in the process of drilling. A decision as to how many welis'to drill is taken
immediately subsequent to the beginning of'period t. As with most dynamic
programming algorithms, all possible past histories must be scanned at each
decision point. Because of rapid escalation of computational cost with an
increase in dimensionsAof the problem, it is important that an efficient
procedure for scanning past histories be designed. After some trial runs

and after rough estimation of the number of computation operations involved,
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" the following procedure was found to be reasonably efficient: loop first

on the number of wells drilled in past periods (KKK), then on the number of
discoveries (NPS), then on the number of discoveries in each size class (NS1,
NS2, NS3, ...), andilast on the time period number (JJJ). At each decision
point the expected profit (in NPV$ subsequent to production for that period)
of'drilling 1 to £ (LIMIT) wells is computed; £ is the capacity constraint on
number of wells per period. The upper limit £ may be reviewed as a techno-
logical ér as a budgeﬁ constraint. Choosing £ small substantially reduces
computational cost.

Output is generated by MAIN I and includes the optimal number of wells to
drill in each period (NND) conditional on each possible state history and the
expected profit (EX) in NPV$ of following an optimal strategy at each future
decision point.

Methods for scanning past histories that decrease computational cost
were tested. For some particular combinations of cost-price vectors, it is
not necessary to scan all feasible drilling decisions at each time period.

For example, if costs are rising faster than prices, and it is found that for
some past history of successes and failures and sizes discovered j wells
should be drilled at period t , then the decision at period t-1 given the
same past history is certainly to drill no less than j wells. By exploiting
this fact, computation time can be reduced.

MAIN II moves forward in time, scanning first by period number (JJJ),
then by number of wells drilled (KKK), and last by sizes (NS1, NS2, NS3, ...).
For example, MAIN II computes the joint probability of a history of drilling
successes and failures and discovery sizes occurring at the termination time
period t. Denote this probability by F . After computing F , joint

probabilities (PT) of j discoveries at period t are computed for all
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(t,j) pairs. Then the expectation of j discovered (EL) at future time
periods and the expectation of amounts produced (AMPRO) at future time periods

are computed.

6.3 Computing Probabilities

Suppose NF fields have been found. What is the probability that a
particular sequence of sizes (Yl,...,YNF) is discovered in that order?
These probabilities, as described in Section 2, are computed by subroutine
PP and stored.

Subroutine PROB, called by MAIN, computes the joint probability of N(i)

KD

discoveries of size Si (i=1,...,KD) and NND -- X N(i) failures for NID
i=1
wells drilled. This probability is computed as the product of two terms,

Pl and P2 , Wwhere Pl = Prob{N(i) discoveries of size Si’ i=1,2,...,KD|past

KD

history and Z N(i) discoveries} , and where P2 = Prob{N(i) discoveries
i=1 KD

of size Silpast history; Z N(i) discoveries}. The term Pl is computed by

i=1
the subroutine PROB. The term P2 is computed by subroutine SP, called

by PROB, using the stored probabilties computed by PP.

The computation of P2 in SP poses the following problem. If the order
of past discoveries is known, and the order of sizes discovered by the next
Kg N(i) discoveries is also known, then probabilities P2 can be easily
i;;puted as marginal probabilities of. the joint probabilites computed in PP.
Both orders are, however, unknown. We overcome this difficulty by assuming
that the current past history, denoted by H , can arise from many ordered
sequences of discovered sizes having the same numbers of discoveries in each
size class. Call a generic sequence hi . The probability of hi given H
is computable from the. joint probabilities generated by PP. Calling a generic

KD

ordered sequence of Z N(i) sizes of discoveries subsequent to H , kj s
i=1
gives ’
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KD
P = Y P(h,|H) P(k,|h,, ] N(i))
2 hyeB k,eJ * SR 5

where J 1is the set of ordered séquences of length %E N(i) containing
i=
N(i) sizes Si’ i=1,2,...,KD and B 1is the set contaiiing all ordered
sequences .of length equal to the number of discoveries in H with the same
number of discoveries of each size as in H.
Probability routines incur small cost per one decision point and they
yield exact results. In large size problems, however, the total cost may be

large because the number of decision points grows rapidly with increasing

dimensionality.

6.4 Other Subroutines

SIZE -~ this subroutine computes discretized sizes from the lognormal
distribution as explained in Section 2.

PRICES - this subroutine supplies the program with a price sequence for
the entire planning horizon.

TABL - this subroutine computes the profit in NPV$ for each possible

number of wells that can be drilled at each time period for each
possible past history.
(Cost and revenues depend on the period in which production starts; for a
given discovery at t , production does not necessarily start at t ).
PROF - this subroutine computes the optimal produétion start up period
for each discoveryﬂ% |
Some discovered fields may not be produced at all, If costs rise faster
than prices, a field starts production immediately or never. In other

cases production can start in later periods within the planning horizon.

6.5 Computation Time

We used IBM/370 of the M.I.T. Qomputation Center. Later versions may
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use the PRIME system. CPU time for run number 1 (see Section 6) is

-4 minutes,
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'7. -kesults

We pregent results from the following input parameters:
=-Number of sizes=KD=3

~-Stream of prices=P(I)=P(O)*GAMMAI-1

-=A ;;nstant cost inflation factor=BETA

--A constant discounting rate=ALPHA

—-Pairs of prospects and fields (M,WF)=(10,5),(12,4), (20,4)

~-Upper bound on the number of drilling-LIMIT(=4 in all tﬁe runs)

--Size categories are (lOOXlOE 450xld§ 1500x10°)

--Lognormal distribution u=5.78 , 02=1,38

To facilitate presentation of results we number runs. The run numbers

appearing on the graphs and in the tables are:

Run 1: 10 Prospects, 5 Fields. The price starts from $12 in the first
period, and increases each period by GAMMA=1.066 . The cost
inflation factor BETA=1.066 , and the NPV discounting rate
ALPHA=,858.

Run 2: 10 Prospects, 5 Fields. Here GAMMA=1.015 , BETA=.066 and
ALPHA-. 896,

Run 3: 12 Prospects, 4 Fields. Parameters are identical to those of
Run 1.

Run 4: 20 Prospects, 4 Fields. Otherwise the parameters are identical
to those of Run 1.

Run 4a: Identical to Run 4, but the present price P(0)=$5. The difference

hetween Runs 4 and 4a are only in the rates of production.
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Table 1: Mean Amount Aﬁd Cuﬁulative Amount
Produced in Each Period (in 106 BBLS)

2 4 ba
in in in _ in in

iperiod cum. period cum period cum, period cum, period cum.

1 [ — — — —— — — —— -— —

2 — — —— —— - —— — — ——— ——

3 P — a— - - - —— —— pa— [

4 - - - - - - - - - —
5 15.64 15.64 | 15.64 15.64 10.33 10.33 1.11 1.11 .69 .69
6. 30.37 46.13 | 30.38 46.02 21.42 31.74 4.84 5.95 3.29 3.98
7 41,53 87.54 | 41.66 87.68 29.32 61.06 9.81 15.76 6.70 10.68
8 42,63 130.17 | 42.74 130.42 32.29 93.35 | 10.07 31.83 11.28 21.96
9 42,51 172,28 | 42.55 172.97 33.37 126.73 | 21.51 52,92 15.18 37.14
10 38.71 210,99 | 38.68 211.64 31.59 158.32 | 25.12 78.03 17.71 54.85
11 32.46 243,45 | 32.45 244,09 26.81 185.12 | 27.05 105.08 19.22 74.07
12 28.27 271.72 )} 28.24 272.33 23.58 208.71 | 27.68 132.75 19.87 93.95
13 24,50 296.22 | 24.46  296.79 20.51 224,22 | 27.56 160.32 20.20 114.14
14 20.76 316.98 | 20.74  317.53 17.24 246,46 | 25.56 185.88 18.91 133.05
15 10.30 327.27 | 10.25 327.78 | 10.05 256.50 | 22.89 208.77 17.13 150.18
16 5.62 332,90 5.58 333.36 5.87 262,37 | 19.21 227.97 14,42 164.60
17 3.32 336.22 3.26 336.62 3.87 266.24 | 14.92 242.89 11.09 175.69
18 2,75 338.97 2.73 339.35 2.37 268.61 | 11.77 254.66 8.80 184.49
19 1.60 340.57 1.50 340.93 1.49 270.10 8.62 263.29 6.61 191.10
© 20 0.79 341.36 0.79 341.72 0.76 270.86 5.94 269.23 4.66 195.76
21 0.48 341,84 0.00 341.72 0.45 271.32 4,15 273.38 3.39 199.15
22 - J— -— - 0.27 271.59 2,28 275.66 1.91 201.06
23 —-— - _— —_— - - 1.20 276.85 1.04 202.10
24 — - - -— - - 0.48 277.35 0.05 202.50
25 —_ - - —_ - — 0.16 277.49 0.02 202.60
26 - - - -_— - - 0.08 277.57 0.01 202.61
27 —_ —_— -_ - - - 0.00 277.57 .00 202.61
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Mean Amount Discovered (Cumulative in 106 BBLS)

Table 2;

Period Run 1 2 3. 4
1 196.04 196.04 129.64 ~ 81.05
2 292.77 292.86 210.05 149.79
3 341.72 341.67 242,26 205.12
4 341.72 341.67 273.45 243,82
5 - - 273.45 259.15
6 —_ - - 273,32
7 - - _— 273.36
8 - - - 273.36
Table 3: Mean and Standard Deviation of Number of Wells

Drilled '
Run 1 2 3 4

Period Mean St.Dev. | Mean St.Dev. | Mean St.Dev. | Mean St.Dev.
1 4.000 0.0 4.0000 0.0 4.0000 0.0 4.0000 0.0
2 "13.0126 0.1540/3.0229 0.1541|3.5697 0.5208|3.9988 0.0639
3 2.3009 0.8503{2.7096 0.8539|1.8694 1.0341(3.9385 0.4845
4 0.1669 0.3779{0.0061 0.077911.4198 1.2331|3.4822 1.2175
5 0.0 0.0 0.0 0.0 0.0833 0.2771]1.3842 1.2171
6 - - - - 0.0 0.0 0.7412 1.0789
7 - - - - - - 0.0328 0.1867
8 - - - - - - 0.0007 0.0366
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Table 4: Probabilities for n Wells Drilled in Period t

Run 1: n 0 1 2 3 4
’ t
1 0.0 0.0 0.0 0.0 1.0000
2 0.0 0.0 0.0056 | 0.9762 | 0.0182
3 0.0854 | 0.0 0.4428 | 0.4717 | 0.0
4 0.8350 | 0.1632 | 0.0019 | 0.0 0.0
5 1.0000 | 0.0 0.0 0.0 0.0
Run 2:
. 0 1 2 3 4
1 0.0 0.0 0.0 0.0 1.0000
2 0.0001 | 0.0 0.0 0.9766 | 0.0233
3 0.0872 | 0.0 0.0289 | 0.8839 | 0.0
4 0.9939 | 0.0061 | 0.0 0.0 0.0
5 1.0000 | 0.0 0.0 0.0 0.0
Run 3: . n 0 1 2 3 4
1 0.0 0.0 0.0 0.0 1.0000
2 0.0020 | 0.0 0.0009 | 0.4204 | 0.5767
3 0.1242 | 0.1595 | 0.5169 | 0.1225 | 0.0769
4 0.3909 | 0.0460 | 0.3155 | 0.2476 | 0.0
5 0.9169 | 0.0829 | 0.0002 | 0.0 0.0
Run 4: \\\Ql 0 1 2 3 4
t
1 0.0 0.0 0.0 0.0 1.0000
2 0.0002 | 0.0 0.0002 | 0.0 0.9996
3 0.0144 | 0.0 0.0019 | 0.0 0.9837
4 0.1018 | 0.0 0.0052 | 0.1000 | 0.7930
5 0.3693 | 0.1083 | 0.3133 | 0.1872 | 0.0220
6 D.6508 0.0512 0.2039 0.0940 0.0
7 0.9687 | 0.0297 | 0.0016 | 0.0 0.0
8 0.9997 | 0.0 0.0003 | 0.0 0.0
9 1.0000 | 0.0 0.0 0.0 0.0
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Table 5: The Joint Probabilities for n Wells in Period t
and m Wells Drilled Prior to t
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Run 1:

Run 2:

Run 3:

Run 4:
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Table 6: The Probability of n Discoveries
Prior to or at Period t
. S | 2 3 4 5
1 .9762 .7381 .2619 .0238 0.0
© 2 1.0 1.0 .9167 .5000 .0854
3 1.0 1.0 1.0 1.0 .8350
4 1.0 1.0 1.0 1.0 1.0
. S | 2 3 4 5
1 .9762 .7381 .2619 .0238 (0.0
2 1.0 1.0 .9170 .5018 .0871
3 1.0 1.0 1.0 1.0 .9938
4 1.0 1.0 1.0 1.0 1.0
. S | 2 3 4
1 .8586 L4061 .0667 .0020
2 .9899 .8671 .5099 L1242
3 1.0 .9818 .7636 .3909
4 1.0 1.0 1.0 .9169
5 1.0 1.0 1.0 1.0
t\n 1 2 3 4
1 6244 .1620 .0134 .0002
2 .8978 .5346 .1531 .0144
3 .9855 .8468 4654 .1018
4 .9990 . 7737 .8172 .3693
5 1.0 .9965 .9123 .6508
6 1.0 1.0 1.0 .9687
7 1.0 1.0 1.0 .9997
8 1.0 1.0 1.0 1.0
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