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1. Introduction

The time rate of additions to petroleum supply generated by exploratory

effort is the principal focus of this study. Forecasting supply from discovery

of new deposits differs from that drawn from known deposits both in the type

of data available for generating predictions and in the substantially greater

uncertainties characteristic of petroleum exploration as opposed to petroleum

production from known deposits.

Our objective is to build an intertemporal model of exploration in a

petroleum "play" which links together geostatistical data, probabilistic models

of exploration, discovery, and economics, a model which can be used to generate

probabilistic predictions of the time rate of additions to supply from new

discoveries as a function of policy choice; i.e. of future prices, costs,

fiscal and regulatory regimes.

A schematic representation of such a model is shown in Figure It. The

model is composed of two distinct types of submodels: first, submodels des-

cribing the generation of physical observables -- drilling successes and failures

and sizes of discovered deposits -- as a response to inputs of exploration

effort - predrilling exploratory effort and exploratory wells drilled; and

second, submodels of the economic processes which influence decisions as to

how many wells to drill and when, and as to what known deposits are to be

developed and produced at what rate. The output of the drilling and of the

tFrom "The Interface Between Geostatistical Modelling of Oil and Gas Discovery
and Economics" (forthcoming in Mathematical Geology).
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discovery sizes submodels is the desired probabilistic forecast of future

returns to exploratory effort in the form of drilling successes and failures

and sizes of discoveries in order of occurrence.

The reservoir economics submodel brings the output of the drilling and

discovery sizes submodels together with the economics of production. Once a

normative economic criterion for choice is specified, a minimum economic

reservoir size (MERS) can be computed -- the smallest deposit that is economical

to produce at a given point in time. The MERS is an economic gate, monitoring

the flow of new discoveries into development and production. Discoveries

which are currently uneconomical enter an inventory of subeconomic discoveries;

a "favorable" change in prices, costs, and/or fiscal regime may induce members

of this inventory to be developed and produced.

Essential attributes of exploration and discovery are captured by use of

a probabilistic model of discovery studied by Barouch and Kaufman [2,3].-

The setting is the North Sea and we use cost functions constructed by Eckbo [5]

for this province. Exploratory drilling data and field size data are drawn from

Beall [4 . We examine the behavior of drilling strategies and the consequent

time rate of supply from an individual petroleum play in the North Sea under

specific assumptions about future price and cost patterns and fiscal regimes,

which are assumed known with certainty. The North Sea is considered here as a

"price-taker" province, so exploration outcomes do not influence present or

future prices; i.e. there is no feedback from the results of exploration to

price. Uncertainty enters via the submodels describing exploration. The

two key uncertain quantities are the outcomes of drilling exploratory wells

--successes and dry holes--and the sizes, measured in barrels of hydrocar-

bons in place, of discoveries.



4

In our formulation, the number of exploratory wells drilled at each

time-period t is exploratory effort and this variable drives all succeed-

ing submodels. A priori the rate of exploratory effort at each time-period

is an uncertain quantity and we specify the joint probability law for rates

of effort by forward-looking dynamic optimization; i.e., probabilistic dy-

naniic programming. Once computed, this joint probability law for numbers

of wells drilled at each time-period is used together with that for drilling

successes and failures to compute the probability law for the times at which

the first, second, third, ... discoveries occur. The submodel for discovery

sizes is the probability law for discoverysizes in order of discovery, so upon

combining it with that for "waiting times" to the first, second, third,...

discoveries, we have a probabilistic description of both sizes of discover-

ies and the time-periods at which they are made. Each field or reservoir of

a given size possesses a prespecified production profile and a superposition-

ing of these profiles according to times of discoveries of each possible size

as dictated by the joint probability law for time and size of the nth discov-

ery, n = 1, 2, ... generates a probabilistic description of the future rate

of production at each time-period.

This is the supply function. Its properties depend jointly on the phys-

ical attributes of the play,

--the size distribution of fields as deposed by Nature,

--the number of prospects and the number of fields among these prospects,

on how

--drilling successes and failures occur,

--sizes of discoveries unfold,

--production profiles for discoveries are determined,

and on economic attributes, among which are

--a projection of (future) prices per barrel,
. .
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--exploratory drilling, development and production costs,

--the fiscal regime in force (taxes, amortization, debt service, roy-

alties, etc.),

--a normative criterion for making exploratory well drilling decisions

and development and production decisions.

While our approach to discovery and supply is superficially similar to

that adopted by Eckbo, Jacoby and Smith [ 6], it differs in essential ways;

perhaps the most important difference is-that ours is an intertemporally dy-

namic analysis while theirs is static. In particular they assume that the

rate of exploratory drilling is fixed for each future time-period and known

with certainty, and that drilling successes and failures are Bernoulli-like

with known probability of success. In our approach, drilling rates are un-

certain quantities with a probability law determined by dynamic optimization,

and drilling successes and failures are adaptive as described in section 2.

Hnyilicza and Wang [7] study a model for intertemporal supply formally

almost identical to that presented here. Their analysis is based on a compu-

tation scheme developed by the present authors and described in subsequent

sections. However, their treatment of supply in the North Sea Jurassic

Central play differs: it incorporates uncertainty about drilling successes

and failures alone. Uncertainty about sizes of fields discovered and conse-

quent effects on probabilities for future discoveries are ignored and marginal

expectations of discovery sizes in order of occurrence (cf. formula (2.6) of

section 2) are adopted as certainty equivalents; i.e., sizes of all discoveries

in order of occurrence are assumed to be known with certainty at the outset

*Revised and extended version by J.W. Wang.
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of te planning horizon. The only uncertainty remaining is at what well

and in what time period they will be discovered. By contrast, a discretized

version of the probability law for discovery sizes presented in [2 ] is

employed here,so predictive probabilities for future discoveries are explicitly

dependent on past observations. Replacing the joint probability law for

discoveries with certainty equivalents greatly reduces computation time at

the expense of ignoring an essential feature of the discovery process. This

approach may, however, be useful as an approximation. How robust an

approximation it is, is a topic for future research.

The economics of discovery and production enters the analysis through

a projection of price per barrel for each time period in the planning horizon

of time periods 1, 2, ..., T and corresponding projections of exploratory

drilling cost functions, reservoir development and production cost functions

and a specification of the tax regime and production profiles for fields of

sizes S1 , S2 , and S3

The time horizon T is defined to be the last time period at which a

wildcat drilling decision can be made. That is, a decision to drill or not

can be made at t=1,2,...T , but no wildcat drilling may occur at time periods

t > T . Production decisions are allowed at any time period t=1,2,...,T

but not beyond. Hence, the decision to produce a field of size Si discovered

at t < T must be made at time period T or earlier. Since there is a time

lag between time of discovery and the time when production begins, even when

a decision to produce is made at the time of discovery, production may continue

past time period T . Production ceases at a time period T + T* or earlier,

where T* is the time period length of the longest production profile among

all possible profiles (plus built-in lag). A finite time horizon introduces

unwanted end effects. However, numerical analysis shows that T may be

selected large enough to render these end effects negligible.
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Eckbo [5 1 used Wood-MacKenzie North Sea data to construct typical

investment and production profiles for North Sea fields as shown in his Ta-

ble 14. We use these profiles in our calculations and assume that they re-

main fixed; i.e., do not change with the time period of discovery of a field.

Then the fraction it+of a discovery at time period t of size Si that is

produced at time period t + T is independent of the time t of discovery and

6i t+ e6. for all t.* If T. denotes the number of time periods to termi-
i,t+T· iT 1

nation of production from a field of size Si, the production profile for it

is Siti0, Si i. ..., Si 6 for any t.
MI i i i T.

The process cost formula C(Si, t) for development and production from

a field of size S discovered at time period t is expressed in net present

value dollars at time period t and is a composite of fixed drilling costs

Co, variable drilling and production costs ai + biSi, production profile

it' i, t+l i,ti and capital investment costs A. + BiSi. In place of

straightforward use of the investment schedule detailed in Eckbo's Table 14,

*This independence assumption is discussed in more detail in Section 3.



we allocate capital investment costs to each time period t, t + 1, ...,

t + Ti for a production profile of length Ti by averaging: (Ai + BiSi)/Ti

per period. A cost inflation factor , distinguished from the net present

value factor a, is introduced and in terms of a,B, and the abovementioned

cost and production variables, total net present value of cost at time-

period t associated with a discovery of size S. at t that begins develop-

ment at-t+T is

T.
t-1 I~~~

C(Si, t) = t-l [ C+(a) {a.+b.S. { i 6 ij () +
I 1 1 j=O

This function is a slightly simplified version of that suggested by Eckbo

[5],

While any future price sequence is allowable within the framework of

our analysis, we assume that an initial

price per barrel p1 is subject to geometric price inflation by a price in-

t-1
flation factor y, so that price t at t is t = ply Per-period tax pay-

ments are normally computed as a function of production rate and the per-

period annual net reservoir operator profit. To simplify computation, we

introduce a tax and fiscal cost factor y < 1 and represent the net present

value of revenue flow at t from a field of size Si commencing development

at t as

t+T.
R(Si, t) = PtSi i (ay)- t t

T=t

The total net present value of a discovery of size Si made at time

period t is thus

R(Si , t) - C(Si, t)-= v(Si , t).

-r
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While this model for the net present value of cash-flow from discovery

of Si at t is a reasonable approximation to reality, any non-anticipative

model for v(Si,t), no matter how complicated in accounting detail, fits

within the framework for dynamic optimization of drilling effort described

subsequently.

We adopt maximization of expected net present value as a normative cri-

terion and assume that once a field of size Si is discovered, the decision as

to when--if at all--to develop and produce it is separable from future drill-

ing aimed at new discoveries and from the past history of exploration. If

the interaction between the new discovery, fields already discovered, and pos-

sible future discoveries imposed by pipeline network considerations are ig-

nored, this is reasonable. Given this assumption, commencing development at

t of a discovery of size S. made at t is desirable only if v(Si, t) > 0. Op-
1 1

timal times for development to begin are at t*s such that v(Si, t*) > max

{v(Si, t), v(Si, t + 1), ..., v(Si, T)} provided that at least one v(Si, t)

in this set is positive; otherwise never. Holding t fixed, a value SO(t) of

field size such that v(SO(t), t) = 0 is the minimum size for which develop-

ment commencing at t is economically justifiable. In order for it to be op-

timal to begin development of a discovery of size S at t, it is necessary

but not sufficient that S > SO(t).

An optimal sequential drilling strategy is computed by use of dynamic

programming, and probabilities for number of wells drilled at time-period t

given the state history for drilling successes and failures and sizes of

discoveries prior to time-period t are a by-product.
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Figure 2 is an outline of major steps in the computation of probability

laws for cumulative amount discovered by time-period t , for cumulative amount

produced by time-period t , and for the corresponding rates of discovery and

of production when a sequentially optimal drilling strategy is employed.

Output consists of

--mean amount and mean of cumulative amount discovered at each time

period (Table 2 and Figures 4, 7, and 8)

--mean amount and mean of cumulative amount produced at each time

period (Table 1 and Figures 3 and 9)

--mean and standard deviation of number of wells drilled at each time

period (Table 3 and Figures 5 and 6)

--marginal probability distribution for number of wells drilled at

t=1,2,...T (Table 4)

--joint probability distribution for number of wells drilled at t and

cumulative number of wells drilled prior to t (Table 5)

--probability distribution for cumulative number of discoveries up to

and including t (Table 6)

Graphs displaying the means of amount discovered at time period t , of

cumulative amount discovered at t, of amount produced at t , and of cumula-

tive amount produced at t appear in Figures 3, 4, 7, 8 and 9.

Table 5 is generated and displayed because expectations of rate of dis-

covery at each time-period and of the amounts produced at each time-period

are functions of the joint probability law for cumulative number w(t-l) of wells

drilled at and prior to time-period t-l and number d(t) of wells drilled

at time-period t

Henceforth we distinguish a random variable (rv) from a value assumed by it
with a tilde; e.g., the rv d(t) takes on a value of d(t).
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Description of the numerical output for one of the cases presented in

section 7 will set the stage for the mathematical results of sections 2, 3,

and 4.

Consider a play with twenty prospects, four of which are fields; which

prospects are in fact fields not known with certainty a priori. Drilling

successes and failures are generated by hypergeometric sampling from N + M =

20 prospects of which N = 4 are fields. The sizes of the N fields as

deposed by Nature are generated by drawing independent sample values from a

crude discrete approximation to a lognormal distribution with the mean p

of the log of size equal to 5.78 and the variance of a2 of log size equal

to 6.38 . These values of p and a2 are maximum likelihood estimates

computed using the discovery process model of Barouch and Kaufman [2,3] applied

to sizes of ten discoveries in the North Sea's Jurassic Central play as reported

by Beall [ 4]. The discrete approximation is a partition of the range (0,o)

for size into three intervals of equal probability. The geometric mean

for each of these three intervals is S1 = 100 million barrels , S2 =

450 million barrels , and S3 = 1500 million barrels.

The planning horizon is T = 20 years (periods), (Exploratory drilling

in fact drops to zero by the ninth period.) Expected discoveries and rates

of production are computed for two initial prices per barrel: $5 and $12.

Price is assumed to increase by 6.6% per year (y = 1.066). Eckbo's cost

formulation (1.1) is used and costs are assumed to increase by 6.6% per year

also ( = 1.066). Individual components of the cost function (1.1) are in 106$:

With no change in the size of the state space, drilling successes and failures
can be assumed to be realizations drawn from an infinite sequence of dichotomous
exchangeable uncertain quantities if the mixing cdf is indexed by a parameter
of dimension 2. Modelling drilling successes and failures as hypergeometric
sampling is proposed by Jacoby, Eckbo, and Smith (1977), p. 232.
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Exploratory Drilling Cost = $5

Total Operating Costs t = $18.87 + .004*(Size of field)

Total Investment Costs (not including exploratory drilling)
= $296.10 + 1.12*CSize of field)

Investment costs are incurred according to the investment profiles shown in

Eckbo's Table 14. For each discovery size, total operating costs are spread

evenly over the time periods in which production takes place.

Figure 3 displays the expectation of amount produced in each period if

an optimal sequential drilling strategy is employed (numerical values appear

in Tables 3 and 4 of section 7).At 12$/BBL all discovered fields of size

S1 = 100 million barrels, S2 = 450 million barrels, and S3 = 1500 million

barrels are put into production, while t 5$/BBL fields of size 100 million

barrels, even.if discovered, are not put into production. Hence expected

rates of production at 5$/BBL are smaller than at 12$/BBL. Cumulative expected

rates of production and cumulative expected discoveries are shown in Figure 4.

While cumulative production behaves differently at 5$/BBL than at 12$/BBL,

the mean and variance of the underlying size distribution of fields is

sufficiently large to induce virtually identical optimal drilling policies.

Hence only one graph of expectation of cumulative discoveries is displayed in

Figure 4. That is, given the costs, prices, and size distribution employed in

this run, production policy is price sensitive, but drilling policy is'not.

tOperating costs consist of platform operating costs, administrative costs,
transportation costs and harbor and terminal operating costs. (See Table 5,
in Eckbo.) Investment costs include platform costs, drilling costs, pipe-
line costs, terminal costs and miscellaneous costs.
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2. Modelling Discovery

A petroleum prospect is a geologic anomaly conceived of as containing

hydrocarbons that forms a target for drilling. A petroleum play is a collection

of. prospects within a geographic region, all of which share certain common geo-

logic attributes; i.e. there is lateral persistence of these attributes across

the area in which the play is located. The petroleum play is a "natural" unit

for analysis of the evolution of discovery effort over time and of petroleum

supply, since it is a conceptual template used by oil and gas explorationists

to plan exploration programs.

Predrilling exploratory effort applied to a play generates a collection

of prospects, each of which is appraised for its economic viability. Since it

is never a priori certain (a) whether or not a prospect contains hydrocarbons,

(b) if it does, how much petroleum is in place in it, and (c) how much petroleum

can be recovered from it, uncertainty plays an important role in the explora-

tionist's perception of the economic viability of exploratory drilling. Con-

sequently, a model of exploratory drilling should reflect its essential geologic

and technological uncertainties. We call a probabilistic model that does this

a discovery process model. The particular structure of such a model depends on

the level of informational detail about geologic and depositional attributes of

prospects in the play assumed to be observable.

At one extreme are models for a small set of observable attributes; e.g.

the number of dry exploratory wells drilled and the number that made discoveries;

the sizes (BOE in place) of discoveries. At the other extreme are models for

descriptively rich sets of attributes, some of which bear on the presence or
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absence of hydrocarbons in a generic geologic anomaly and others that determine

the amount of hydrocarbons in it. Presence or absence of source beds, favorable

timing, favorable migration beds, adequacy of seal are typical of the latter;

area of closure, porosity, connate water saturation, are examples of the latter.

These may be supplemented by maps which describe the spatial disposition of

various combinations of attributes. This type of information can be used to con-

struct a spatial probability law incorporating "lateral persistence" or proba-

bilistic dependencies among attribute values across the area of the play. Proba-

bilities for drilling successes and failures and for sizes of discoveries then

become "spatial" in character.

Implementation of a play model incorporating this level of detail requires

data generally available only to exploration companies or government agencies

actively involved in the planning and execution of exploration of the play being

modelled. The essential features of the evolution of exploration in a play can

be captured by models more modest in their demand for input data. Prediction of

the temporal flow of supply from the play can be done using a discovery model

built from two key empirical features of petroleum plays: first, the size dis-

tribution of deposits is generally positively skewed with a very few large

deposits and many small ones; second, on the average, the large deposits are

found in the early stages of exploration of the play.

Our model for discovery is composed of three assumptions. The first two

together compose a probability law for the sizes of discoveries in the order in

which they occur. The third describes a probability law for drilling successes

and failures. This latter assumption is somewhat simplistic and may be elaborated
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in several ways without severe analytical computation. However, in order to

divide difficulties we keep it simple; later on we discuss possible extensions

of it.

I. (Lognormal size distribution) Let A. be the size of the
ith pool among N pools deposed by nature in the geological
zone within which the play takes place. The Ais are values
of mutually independent identically distributed lognormal
random variables.

II. (Sampling without replacement and proportional to random
size) Given A1,...,A N the probability of observing
A1,.. An in that order is

n
H A./(A.+...+AN).

j=l

III. There are M prospects in the play of which N are known to
be deposits. Drilling successes and failures take place
via hypergeometric sampling of these M prospects.

The model for discovery sizes composed of I and II is imbedded in III in the

sense that it describes a sequence of n N discovery sizes in order of occurrence

conditional on n discoveries having been made. A discrete version of it will be

used here. Assumptions I, II, and III together constitute a model for outcomes

of a decision to drill a given number of wells independently of when these wells

are made. That is, the model describes the physical consequences of a drilling

program consisting of drilling a pre-specified number of exploratory wells in

the play.

The economic consequences of drilling will be attached to physical outcomes

once models of exploration and production costs, prices and fiscal regimes over

time are specified.
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'The process generating sizes of discovered deposits in order of occurrence

is imbedded in the drilling process; i.e. deposit discovery occurs only when a

well making a discovery occurs. Letting Zi be barrels of oil in place dis-

covered by the ith exploratory well, and defining

discovers a deposit

0 is dry

the ordered pair (xi,Zi) describes the outcome of the ith well drilled. If

Xi = 0 then Zi = 0 and if xi = 1 then Zi > 0. Consequently, if x i = 1 and

Z x = , then the jth discovery of size Y Z. > 0 occurs at the ith well.
R S 1

The sequence Yj, j=1,2,...,N is assumed to be uninfluenced by the number of

dry holes between discovery wells:

IV. The sequence Y ,...,YN of sizes of deposits discovered in order
of occurrence is independent of the sequence X,...,xi,.... of
drilling successes and failures.

Values Y1,...,Y of the first n N discovery sizes may be interpreted as

observations produced by sampling without replacement and proportional to size

from a finite population {Y1,...,Y N} of deposit sizes whose elements were

generated by independent sampling from a (lognormal) superpopulation. An

exact computation of the probability of observing Y1 e dY1 , ... Y edYn

requires numerical evaluation of a rather complicated integral (cf. [2 ] for

discussion). In order to keep computational costs within reasonable bounds

we discretize the submodel for discovery sizes in the following way: let

A(k), 0 k 1 denote the kth fractile for A, =l,2,...,N, the sizes of

deposits as deposed by nature (Assumption I). Divide [0,1] into K intervals
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of equal length and define S as the geometric mean of a generic A conditionalm Z

on A E [A (m-l/K), A(m/K)], m = 1,2,...,K. These intervals are intervals for

A . of equal probability 1/K, and we shall interpret any A e [A (m-il/K), A(m/K)]

as having "size" S m. This form of discretization enormously simpli-

fies computation of probabilities for discovery sizes, replacing a density for

AR concentrated on [0,-) with a multinomial probability function attributing

probability 1/K to each size S1,S2,...,SK;

P{A=S} d P{Aie C [A(m-l/K),A(m/K)]} = 1/K.

Letting N denote the number of deposits in the play, defining N as the

number of deposits of size Sm , and N = (N1,...,NK), the probability that nature

deposes N1 deposits of size S1, N2 of size S2, etc. is

- - N1 ,...,NK () 

Given that nature has generated N = N, the probability P{Sj ,...,Sj IN}

of observing S ,Sj ,...,SJ in that order follows from assumption II, sampling
1 2 N

without replacement and proportional to size: letting k(n,m) denote the

number of discoveries of size Sm among the first n discoveries,

P{SJ ,Sj ,...,S N} =
1 2 2

N Sj1 [N. - k(l,j 2) ]S [Nj - k(N-l,j N) Sj

K K K

E NmSm [N - k(l,m)]Sm [Nm - k(N-l,m)]Sm
m1 m= 1 m= 

Putting these discretized versions of I and II together, we have the probability

of observing S ,...,S. in that order as
1 N
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PISl ,...,S j } = KN () PS ,...,Sj I N
1 ~ N N - l

N

where summation is over {NfN > 0, m=l,2,...,K and Z N = N}.
m=l m

Marginal and conditional probabilities for any ordered sequence of sizes

(Sj ,...,S. ),lm<n•N are calculable using the above probability function.
m n N

Fortunately, the multinomial coefficients (N) need not be computed in the

course of computing these probabilities, for after some algebra we find that

N1 N2 NK

N! S1 2 .'SK

P{jl, ,SjN} KN S[S-S [S-S. -SS ]...[S-S -S -...- S.
KNl 1 2 ¾l J2 JN-l

(2.1)

where S = N S.
mm

m=l

The above probabilities are probabilities for events that may obtain when

all N fields in the play are discovered. The probability of observing discovery

sizes Y1 = S , Y2 = Sj ,...,Y = S in that order when n < N may in principle
1 2 n

be directly computed from (2.1 ). An alternative is to compute these "forward"

probabilities as follows: suppose that among S ,...,Sjn, ni are of size Si

and define ri = Ni-ni. Then letting

K
bk - niSi ) - S. - S -...- S

i=l Jl J2 k

N! nl n 2 nK N-n n K -
PIS q...'s I S S S rSi+b]-P{Sj ,...,Sjn } = N S r S +b

1 in KN(Nn)! '1 2 K k=l i=l k

, K

where is summation over {r1,.. ,rKI Z ri = N-n, ri 01.
i-
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decomposing the products in the above sum by partial fractions and

relation

1 Go '-(riSi+bk)

riSi+bk 0

expression for P{Sj ,... ,S } becomes
J n

-n N' n, nK b 1
K N-n! 1 .SK I ce ] K I e dX,

0 J=1 i

n 1 K -XSi
where c = TI [b-bj] . Notice that - . e is the Lapl

] .at.= Ki 1

(2.2)

ace transform of

a probability function assigning probability 1/K to each of K values S1,...,S K

of S. Each Si is a function Si(K) of K and is chosen in such a way that

1 K -XSi(K)
lim I e
K-~ K i=l

X -Xx

= f e f(x)dx,
0

f the density for a generic A~. In place of (2.3) P{Sjl ,...,S j } may be

represented as

,-n N nl nK n b- 1 S Nn7n-n!* S S Ij 1 . c y I-C.- y dy
N-n! 1 . K Lj i l

When exploratory drilling is modelled as taking place at discrete

points in time and more than one well may be drilled at each time point,

there is no natural temporal ordering of discoveries made at a given

point in time. Hence we are led to consider sampling as taking place

without replacement and proportional to size but for which the natural

ordering of observations is partially lost. In the ensuing analysis of

intertemporal rates of drilling we need explicit formulae for probabilities

Upon

using the

the above
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of two types of events generated by such a sampling process: the probability

that the first k discoveries are of sizes Y" ''Yk and the probability

that the next n-k discoveries are of sizes Yk+l,'.'' Yn given that the

first k discoveries are of sizes Y ...'' Yk. To distinguish probabilities

for events composed of ordered discovery sizes from events composed of

discovery sizes without regard for order we define a (Y1,..., Yk) as the

compound event composed of the union of all k! orderings of Y,..., Yk' and

present integral representations for P{a(Y1,...,Y)} and Pa (Yk+l,...,Yn)f

a(Y1'" ,Y ) } -

If observed sizes are generated by sampling proportional to size and

without replacement, but the order of observations is lost the probability of

observing S ,.. ,S possesses a simple integral representation that follows

from the law of total probabilities and the following nice combinatoric identity.

Given Y1 Sl' Y2 S ,...,Y = S. and a number S, it can be shown that
1 2 2 n in

-XY

[ Y] 1TT [ S+b S e [1 - e d

where for a fixed ordering (Y l,...,Yj) of 1 ..' n' bj i Y +Y +

for i=l1,2,...,n and Z denotes summation over the n! permutations of (1,2,...,n).
a

Using this combinatoric identity, the probability of discovering sizes

Si ,.,S i in the first n discoveries without regard to order is
1 n

NN N-n n n
N) -N r' (r .,N-n ) [ Si] [ i (riSi+bj) I 

1' K =1 Y. a i=l i (2.3)

N -n K -X K -XS K -)S n
(N-n) ( )K [ K Sie i] 1 e i]N-n-l k k

i=l j=l k=ln e 
0 i j 1 k=l
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Letting L(X) denote the Laplace transform of f and L' the derivative of L, as

K- with N and the parameters of f fixed, (2.3) approaches

(N-n) (n)
n (-Yk

[ I f(Y.)] f [-L'(X)] [L(X)] 1I (l-e )dX,
j=1 0 k=l1

(2.4)

or in terms of the inverse function U(L) = X of L,

(N-n) (N)
n 1 N-n-i n u(x)Yk

[ II f(Y.)] f x II (1-e )dx .
J=1 o k=l

The marginal density for the size of the. th (1sjn) discovery when n dis-

coveries have been made is

(2,.5)
-XY.

(N-n) (N) f(YJ) N-n-in- [-L'(] [L(]N-n[1-L() (-e )d
0

if the order in which the first n sizes discovered is "lost". If f has mean M1,

the marginal mean of Y in this case is
n

(N-n) f [-L(X)] [M+L'(X] n[... ..6.-n-)

(N-n)n () [-L'()] [M+L'(X)]0 [1-L(X)] [L(X)] dX (2.6)
o

when the order of Y"t Y' is "Lost", while if the order of the Y s is

not "Lost", it is

n(N) f L"()) [L(X)] [-n 1-L(X)]n-l d
0

(2.7)
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Letting E(Y.) denote the expectation of the jth discovery when order is kept,

it can be shown that (2.6) is equal to 1 E(Yj).n E

Using the combinatoric identity presented earlier twice, the joint proba-

bility of (Y,... 'Yk) and O(Yk+l ,.''Y ) is

P{a(Yk+l'' 'Y n) ' (Y1' 'Yk) }

n X X
N n 00 0 d2 N-n= f(Yjn )()(k) f f dIXd {- [L(X+)] + (Yk+l+...+Y n) X [L(X+e)]

j=l 0 0 d2X

-X(Yk++...+Y) k -XY n -(Y)
x e T (l-e i) f (l-e (2.8)

j=1 Z=k+l

and P{(Y k+l.' ,Yn) a(Y'... 'Yk) can be computed as

r{G(Y1'" ' k)' (Yk+l" 1Yn)}/ P{(a( Yl'-''Yk )}

Since the numerical computations presented in section 7 are done by dis-

cretizing the size distribution, the above theoretical results are not directly

employed. However, they provide a connection between the discrete version and

the continuous version of the discovery process that can be exploited when

adaptive updating of the parameters of the discovery process is considered,

cf. Barouch [5 ].

tIntegrating (2.8) with respect to Yk+l...,'Yn and then with respect to e,

(2.7) reduces to P{a(Y1 ,...Y k) } and is formally identical to (2.4).
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. Modelling Development and Production for Individual Fields

Once a discovery has been made, the field operator does an economic and

engineering analysis to determine whether or not the field should be put into

production and if so, he specifies a development and production strategy for

the field. At the individual field level, the problem of determining -- rela-

tive to some prespecified normative criterion -- the optimal development and

production strategy for the field is in fact elaborately complicated and worthy

of study in its own right. (Uhler's [8] deterministic optimal control formu-

lation of the individual field problem is a recent example of a long line of

studies of the individual field problem.)

Our principal concern here is the temporal evolution of supply at the play

rather than individual field level. Consequently we shall not consider dynamic

optimization of production from individual fields. Rather, we propose a static

model of individual field production over time, one which mirrors practical pro-

duction experience: each field of size S has an associated production profile

6(S) (6 (S), 61 (S),...,6(S... )

where 6t(S) is the proportion of S produced at the tth period of time after the

field's discovery; 6(S) will be assumed to be independent of the time period at

which the field is discovered. It will be convenient in subsequent analysis to

define t(S) = 0 for t<O. In the numerical examples discussed later we choose

elements of 6(S) to match actual North Sea production experience as recorded by

Eckbo [ 5 ].

Once the minimum economic reservoir sizes (MERS) for periods t=0,1,2,...,T

are computed we can determine time periods at which a field of a particular size
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exceeds the MERS for that period.

In general the MERS at t may depend on the past history of exploration prior

to t. If, however, (a) prices .and costs are known with certainty at t=0,1,2,...,T,

(b) individual field production profiles are static over time, (c) maximization

of expected net present value is the criterion for decision-making, (d) pipeline

network decisions -- requiring joint consideration at each time-period of the

sizes of all discovered fields, of potential future discoveries, and of past

pipeline decisions -- are ignored, and (e) the decision when, if at all, to put

a discovered field into production is made in light of its economic desireability

as a marginal decision-making unit independent of past history, then the MERS at

each time period is also independent of past history. We divide our difficulties

by adopting these assumptions in subsequent analysis. If at t a field of size SQ

exceeds the MERS for at least one time period subsequent to t, a reasonable

but not necessarily optimal rule is to put it into production at the first

such time-period. More formally, let T be the set of time-periods among

0, 1, 2, ..., T at which size S exceeds the MERS, and define

T(t) = {lITET and t-l < T T},

and

I smallest element of T (t) if T (t) is non-empty,

t(t) =
+ - otherwise.

Then TL(t) is a time period at which a field of size S discovered at period t

and put into production at T(t) has positive net present value. If Tz(t)

is empty, then fields of size St discovered at time period t and subsequently

will not be put into production at any time period within the planning horizon.

Throughout, reference to the time period at which a field is "put into produc-

tion" means that the decision to produce is made at that time period. Physical

production may, because of time lags, occur subsequent to this time period.
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When future prices and costs are known with certainty, and the decision-

making criterion is maximization of expected present value, the optimal time

to start production of a discovered field regarded as a production unit opera-

ting independently from other discovered fields and of its optimal production

profile may be found by deterministic optimization. The optimal production

profile for a field of given size will be a function of the time period

subsequent to its discovery at which production begins; i.e., a discovery of

size St at period t will possess a physical production profile S_(t+Ae(t))

where A*(t) is the number of time periods subsequent to period t at which

physical production begins. The components of 6(t+A(t)) depend on both

St and t+A(t) . With the above assumptions in force, a discovery of size

St at period t will physically begin production at period t+A*(t).
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-4. Drilling, Amounts Discovered, Amounts Produced

We assume that drilling is done and outcomes are observed at discrete

.th
points 1,2,...,t,.... in time and call the ith point in time "period t". As

defined in section 2, the ordered pair (xi,Zi) describes the outcome of

drilling the ith well: xi = 1 if the ith well is a discovery and xi = 0 if

it is a dry hole. The size of deposit discovered by the ith well is Zi = 0

if xi = 0 and is Zi > 0 if xi = 1.

At the outset-the numbers d(t) of wells drilled at periods t=0,.,2,...,T

are rvs whose joint probability law is determined by dynamic optimization given

a normative criterion for decision-making by the operator, a specification of

the economic structure of the operator's optimization problem, and the joint

probability law for the xis and Zis as described in section 2. Once the joint

probability law for numbers d(t), t=0,1,2,.... is computed, all essential pro-

perties of amounts discovered and amounts produced are computable using it and

the oint probability law for (i,z i=1,2.....; i.e. the probability law

for the total amount of hydrocarbons discovered at periods 0,1,...,t,...,T

and that for amounts produced at periods 0,1,...,t,...,T. The amounts produced

at t depends on both the production profiles of deposits discovered at t and

on whether or not a deposit of a given size discovered at T t is "profitably"
0

put into production at some T, T TSt.
0

The basic idea is simple: let w(t) = d(O)+d(l)+...+d(t) denote the total

number of wells drilled at 0,1,...,t and compute the probability distribution

of the waiting time to the nth discovery, measured in number of wells
n

- -'' - F I
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drilled. Then compute the probability that (t-l) < < w(t) -- that the n

discovery is made at period t. The probability distribution for sizes

Yl-...YnI.... of discoveries is as described in section 2 and is independent

of times of discoveries. Consequently, if the nth discovery is made at period t,

the amount discovered Yn has a probability distribution given Y1,...,Yn-1 as

shown in (2.2); the marginal probability distribution for Yn is as given in (2.5).

thLetting h denote the marginal probability that the n discovery is of

size S, the marginal probability that a discovery of size S is made at period

t is P{W(t-l) < n .w(t)}hn ,Q so the marginal expectation of amount discovered

at period t is E(Z(tl)+l+...+Z(t)

N 

I P{w(t-l) < wn L(t)}E(Yn (4.1)
n=l

with E(Y ) as given in (2.6). The probability P{w(t-l) < wn < w(t)} can ben n

computed in two stages. First compute P{wn = Wn1; then compute P{w(t-l) < n 

w(t)} using the joint probability law for d(O),d(l),...,d(t).

Among simple possible characterizations of w are:n

(i) xl,...xi,.... is a Bernoulli process with known parameter p.
W W

Then P{n =w ( n ) p(lp)

ii) xl,...,xi,...,x is a sub-sequence of an infinite sequence of
n

exchangeable rvs. Then the probability that n-l ls appear among

the first w -1 x.s and =1 possesses a representation of the formn 1 n

w -1 1 -n

n-l ) I n(1-) ndF()
0

where F is some cdf concentrated on [0,1]. If F is beta with para-

meter (a,B),
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wn-1 B(a+n,wn+B-n)

P{n-n} =( n-l B(a,B)

(iii) xl,...,xN+M are hypergeometric as in Assumption III. Then

N M N+M
P{nn [(n-l)( / N ) ] [N-n+l/N+M-w +1].

n

Explicit calculation of the time period at which the nth discovery is made may

be done by use of

P{% ~n(O)} = E P{n<j }P{(O)=j} (4.2)
j=n

for t = 0, and by use of

P{(t-l)<&n (t)} =

(4.3)
co 0o

I I P{~(t-l)=j, d(t)=k}[P{nj+k} - P{n<j}]
k=O j=n

for t > 0. Formula (4.2) is the probability that the nth discovery is made

at period 0 and (4.3) is the probability that the nth discovery is made at

period t > 0.

The marginal probability distribution for the starting time of production

ththfrom the nth discovery follows directly from (4.2) and (4.3). LettingTt(t) t+AL(t), the marginal probability that the nth discovery is of size

St and discovered at t is the marginal probability that a production profile

Sl6 commences at t+At(t). Hence the marginal probability that an amount

th
St6itTAt(T) is produced at t from the n discovery is the probability that

the nth discovery is made at T and is of size S .

tRecall that 6 T - 0 for < 0, so that if the nth discovery is made at

T' >t-A(T') the amount produced from it at period t is zero.



32

th
Defining hn ~ as the marginal prLJability that the n discovery is of

size S, the marginal expectation E(pn(t)) of the amount pn(t) produced at

period t by the nth discovery is

K
Eh hn S 6aPS P{w(T-1)<w •w(r)I (4.4)
=1 n,Tc{jlj+L (j)st} Y T-A (T)() }

and so the marginal expectation of the amount produced at period t is
N

E(p n(t)).
n=l

To sum up, we have given explicit formulae for computation of the expec-

tation of amount discovered at t and for the amount produced at t (4.4). First

moments of these quantities are relatively easy to compute, but higher moments

of P(t)+...+0n(t)+.... are quite complicated so we defer presentation here.
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5. Computation of Probability Law for d(t), t=0,1,2,...,T by Dynamic Optimization

We determine the joint probability law describing the evolution of an

optimal sequential drilling policy by use of dynamic programming. Let at denote

the history of exploration at period t: at = (Z (tl)+l ,Z Z(t)) The

number d(t) of wells drilled at t is the number of components of at, and

Z(tl)+k denotes the size of field discovered by the kth well drilled at

period t (Z t)+k 0 is the size of a discovery and Z = 0 denotesw(t-l)+k ww(t-l)+k

a dry hole). The history of exploration up to and including period t is

Ht (a0,al... at) and H t in terms of Ht_1 is (Htlt).

Adopting maximization of expected net present value as a normative criterion

for decision-making, let vt(.) be the net present value at t over t,t+l,....

of discovery of sizes Z (tl)+l ... ,t) made at t and let Eotl denote

expectation with respect to the distribution of (Z (t-1)+ ... Z ) given

HRt 1 and d(t). If Vt(Ht-1) is the expectation of an optimal policy over t,t+l,...,T

given Htl, then given a constant discount rate a, by the principle of opti-

mality

Vt (Ht 1) max {E t v t(t) + E,t iH Vt+1((Ht-l, t}
d(t)eD(t) - Ht-1 t -1

where D(t) is a set whose elements are numbers of wells that are allowable at t.

At t = 0, there is no history of drilling, H_1 is empty, and so we define

V0(H 1) = max {Ea v0(a0) + E V(
d(O)cD(O) -00 0~-

tD(t) may depend on past history Ht 1
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No exploratory drilling takes place at t > T so we define

VT+1 (HT ) = max
d(T)SD(T) EaTIHT VT (T) 
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6. Implementation of the algorithm and the computer program.

6.1 General

The model and corresponding computational regimes presented in the pre-

ceding sections have been programmed for computation. The structure of the

resulting software system is discussed here. Inputs to the program are:

(1) the number of prospects (denoted by M ), (2) the number of fields (NF),

(3) the number of discretized sizes (KD), (4) the parameters of the lognormal

distribution of sizes, (5) a discount rate employed by the decision maker

(ALPHA), and (6) streams of projected costs and prices (C and P). The output

consists of an optimal drilling policy, the expectation of the rate of discovery

per time period, the expectation of the rate of production per time period,

and probabilities attached to other events which may be of interest to the

decision maker. Among these conditional probabilities of a specified number

of successes in each time period, probabilities of the ith discovery occurring

in period t for all (i,t) pairs. The program allows computation of prob-

abilities for other types of events (cf.. subsection 6.3).

The obvious way to solve a dynamic programming problem like that posed

in Section 4 is by straightforward backward induction. This is done by the

first part of the main program, which computes an optimal drilling policy.

The second part of the main program employs a specially designed forward

looking algorithm designed to exploit features of the optimal drilling strategy

computed by the first part of the main program. This algorithm scans a large

decision tree displaying possible future outcomes and computes probabilities

needed for the next stage of computation: computation of the output quantities --

expectation of rate of discovery per period, etc. -- listed above. This is
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accomplished with a subprogram in which success and failure probabilities

are computed, along with probabilities for discovery of fields in each size

class given the current state history.

A description of subprograms is given in the following order:

(1) main program, part I and part II, (2) subroutines PP, PROB, and SP, in

which needed probabilities are computed, and (3) other subroutines. The

following block diagram may help understanding of program structure. An

arrow A . B indicates that block A calls and uses computations done

by block A

6.2 The MAIN Program

Suppose the decision maker is at the beginning of some period t . Past

history at t consists of the number of wells drilled up to and including

t-l and the number of discoveries of each size S1, S2, ..., SKD made by

these wells. At the beginning of period t , no prospects are assumed to be

in the process of drilling. A decision as to how many wells to drill is taken

immediately subsequent to the beginning of period t. As with most dynamic

programming algorithms, all possible past histories must be scanned at each

decision point. Because of rapid escalation of computational cost with an

increase in dimensions of the problem, it is important that an efficient

procedure for scanning past histories be designed. After some trial runs

and after rough estimation of the number of computation operations involved,
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the following procedure was found to be reasonably efficient: loop first

on the number of wells drilled in past periods (KKK), then on the number of

discoveries (NPS), then on the number of discoveries in each size class (NS1,

NS2, NS3, ...), and last on the time period number (JJJ). At each decision

point the expected profit (in NPV$ subsequent to production for that period)

of drilling 1 to t (LIMIT) wells is computed; I is the capacity constraint on

number of wells per period. The upper limit I may be reviewed as a techno-

logical or as a budget constraint. Choosing small substantially reduces

computational cost.

Output is generated by MAIN I and includes the optimal number of wells to

drill in each period (NND) conditional on each possible state history and the

expected profit (EX) in NPV$ of following an optimal strategy at each future

decision point.

Methods for scanning past histories that decrease computational cost

were tested. For some particular combinations of cost-price vectors, it is

not necessary to scan all feasible drilling decisions at each time period.

For example, if costs are rising faster than prices, and it is found that for

some past history of successes and failures and sizes discovered j wells

should be drilled at period t , then the decision at period t-l given the

same past history is certainly to drill no less than j wells. By exploiting

this fact, computation time can be reduced.

MAIN II moves forward in time, scanning first by period number (JJJ),

then by number of wells drilled (KKK), and last by sizes (NS1, NS2, NS3, ...).

For example, MAIN II computes the joint probability of a history of drilling

successes and failures and discovery sizes occurring at the termination time

period t. Denote this probability by F . After computing F , joint

probabilities (PT) of j discoveries at period t are computed for all
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(t,j) pairs. Then the expectation of j discovered (EL) at future time

periods and the expectation of amounts produced (AMPRO) at future time periods

are computed.

6.3 Computing Probabilities

Suppose NF fields have been found. What is the probability that a

particular sequence of sizes (Y1,...,YNF) is discovered in that order?

These probabilities, as described in Section 2, are computed by subroutine

PP and stored.

Subroutine PROB, called by MAIN, computes the joint probability of N(i)
KD'

discoveries of size Si (i=l,...,KD) and NND -- Z N(i) failures for NlT
i=l

wells drilled. This probability is computed as the product of two terms,

P1 and P2 where P1 = Prob{N(i) discoveries of size Si, i=1,2,...,KDlpast
KD

history and I N(i) discoveries} , and where P2 = Prob{N(i) discoveries
i=l KD

of size Silpast history; i N(i) discoveries}. The term P1 is computed by
i=l

the subroutine PROB. The term P2 is computed by subroutine SP, called

by PROB, using the stored probabilties computed by PP.

The computation of P2 in SP poses the following problem. If the order

of past discoveries is known, and the order of sizes discovered by the next
KD

I N(i) discoveries is also known, then probabilities P2 can be easily

computed as marginal probabilities of. the joint probabilites computed in PP.

Both orders are, however, unknown. We overcome this difficulty by assuming

that the current past history, denoted by H , can arise from many ordered

sequences of discovered sizes having the same numbers of discoveries in each

size class. Call a generic sequence hi . The probability of hi given H

is computable from the joint probabilities generated by PP. Calling a generic
KD

ordered sequence of i N(i) sizes of discoveries subsequent to H , k ,
i=lgves

gives
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KD

P2= I I P(hilH) P(khi' I N(i))
2 h.eB k.J i=l

1 J
KD

where J is the set of ordered sequences of length I N(i) containing
i=l

N(i) sizes Si, i=1,2,...,KD and B is the set containing all ordered

sequences of length equal to the number of discoveries in H with the same

number of discoveries of each size as in H.

Probability routines incur small cost per one decision point and they

yield exact results. In large size problems, however, the total cost may be

large because the number of decision points grows rapidly with increasing

dimensionality.

6.4 Other Subroutines

SIZE - this subroutine computes discretized sizes from the lognormal

distribution as explained in Section 2.

PRICES - this subroutine supplies the program with a price sequence for

the entire planning horizon.

TABL - this subroutine computes the profit in NPV$ for each possible

number of wells that can be drilled at each time period for each

possible past history.

(Cost and revenues depend on the period in which production starts; for a

given discovery at t , production does not necessarily start at t ).

PROF - this subroutine computes the optimal production start up period

for each discovery 

Some discovered fields may not be produced at all. If costs rise faster

than prices, a field starts production immediately or never. In other

cases production can start in later periods within the planning horizon.

6.5 Computation Time

We used IBM/370 of the M.I.T. Computation Center. Later versions may
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use the PRIME system. CPU time for run number 1 (see Section 6) is

4 minutes,
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The Computer Program - A Block Diagram



,42

7. - Results

We present results from the following input parameters:

--Number of sizes=KD=3

--Stream of prices=P(I)=P(O)*GAMMA

--A constant cost inflation factor=BETA

--A constant discounting rate=ALPHA

--Pairs of prospects and fields (M,WF)=(10,5),(12,4),(20,4)

--Upper bound on the number of drilling-LIMIT(=4 in all the runs)

--Size categories are (100xl1, 450xl1, 1500x10 5)

--Lognormal distribution P=5.78 , 2=1.38

To facilitate presentation of results we number runs. The run numbers

appearing on the graphs and in the tables are:

Run 1: 10 Prospects, 5 Fields. The price starts from $12 in the first

period, and increases each period by GAMMA=-1.066 . The cost

inflation factor BETA=1.066 , and the NPV discounting rate

ALPHA=. 858.

Run 2: 10 Prospects, 5 Fields. Here GAMMA=1.015 , BETA=.066 and

ALPHA-.896.

Run 3: 12 Prospects, 4 Fields. Parameters are identical to those of

Run 1.

Run 4: 20 Prospects, 4 Fields. Otherwise the parameters are identical

to those of Run 1.

Run 4a: Identical to Run 4, but the present price P(0)=$5. The difference

hetween Runs 4 and 4a are only in the rates of production.
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Table 1: Iean Amount and Cumulative Amount
Produced in Each Period (in 106 BBLS)

cum

15.64
46.13
87.54

130.17
172.28
210.99
243.45
271.72
296.22
316.98
327.27
332.90
336.22
338.97
340.57
341.36
341.84

in
period

15.64
30.38
41.66
42.74
42.55
38.68
32.45
28.24
24.46
20.74
10.25
5.58
3.26
2.73
1.50
0.79
0.00

2

cum.

15.64
46.02
87.68

130.42
172.97
211.64
244.09
272.33
296.79
317.53
327.78
333.36
336.62
339.35
340.93
341.72
341.72

in
period

10.33
21.42
29.32
32.29
33.37
31.59
26.81
23.58
20.51
17.24
10.05
5.87
3.87
2.37
1.49
0.76
0.45
0.27

3

cum.

10.33
31.74
61.06
93.35

126.73
158.32
185.12
208.71
224.22
246.46
256.50
262.37
266.24
268.61
270.10
270.86
271.32
271.59

in
period

1.11
4.84
9.81
10.07
21.51
25.12
27.05
27.68
27.56
25.56
22.89
19.21
14.92
11.77
8.62
5.94
4.15
2.28
1.20
0.48
0.16
0.08
0.00

4

cum.

1.11
5.95

15.76
31.83
52.92
78.03

105.08
132.75
160.32
185.88
208.77
227.97
242.89
254.66
263.29
269.23
273.38
275.66
276.85
277.35
277.49
277.57
277.57

1 4a
in

period

15.64
30.37
41.53
42.63
42.51
38.71
32.46
28.27
24.50
20.76
10.30
5.62
3.32
2.75
1.60
0.79
0.48

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

in
period

_ ....... 

.69
3.29
6.70

11.28
15.18
17.71
19.22
19.87
20.20
18.91
17.13
14.42
11.09
8.80
6.61
4.66
3.39
1.91
1.04
0.05
0.02
0.01
0.00

.69
3.98

10.68
21.96
37.14
54.85
74.07
93.95

114.14
133.05
150.18
164.60
175.69
184.49
191.10
195.76
199.15
201.06
202.10
202.50
202.60
202.61
202.61

I

---- " . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , · .. - . -- �-

. --

I cuim .
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Table 2:

RunPeriod

1
2
3
4
5
6
7
8

Mean Amount Discovered CCumulative in 106 BBLS)

1

196.04
292.77
341.72
341.72

2

196.04
292.86
341.67
341.67

.3 .'.

129.64
210.05
242.26
273.45
273.45

.4

81.05
149.79
205.12
243.82
259.15
273.32
273.36
273.36

Table 3: Mean and Standard Deviation of Number of Wells
Drilled

Run
Period

1
2
3
4
5
6
7
8

1
Mean St.Dev.

4.000 0.0
3.0126 0.1540
2.3009 0.8503
0.1669 0.3779
0.0 0.0

_ __

__ __

. " .__

2
Mean St.Dev.

4.0000 0.0
3.0229 0.1541
2.7096 0.8539
0.0061 0.0779
0.0 0.0

__ __

__ __.

3
Mean St.Dev.

4.0000 0.0
3.5697 0.5208
1.8694 1.0341
1.4198 1.2331
0.0833 0.2771
0.0 · 0.0

__ __

__ __

4
Mean St.Dev.

4.0000 0.0
3.9988 0.0639
3.9385 0.4845
3.4822 1.2175
1.3842 1.217.
0.7412 1.0789
0.0328 0.1867
0.0007 0.0366

.



45

Table 4: Probabilities for n Wells Drilled in Period t

Run 1: t

i

1
2
3
4
5

0

0.0
0.0
0.0854
0.8350
1. 0000

. 1

0.0
0.0
0.0
0.1632
0.0

2

0.0
0.0056
0.4428
0.0019
0.0

..3

0.0
0.9762
0.4717
0.0
0.0

1.0000
0.0182
0.0
0.0
0.0

0 1 2 3 4

1 0.0 0.0 0.0 0.0 1.0000
2 0.0001 0.0 0.0 0.9766 0.0233
3 0.0872 0.0 0.0289 0.8839 0.0
4 0.9939 0.0061 0.0 '0.0 0.0
5 1.0000 0.0 0.0 0.0 0.0

0 1 2 3 4
t _ 3

1 0.0 0.0 0.0 0.0 1.0000
2 0.0020 0.0 0.0009 0.4204 0.5767
3 0.1242 0.1595 0.5169 0.1225 0.0769
4 0.3909 0.0460 0.3155 0.2476 0.0
5 0.9169 0.0829 0.0002 0.0 0.0

t 0 1 2 3 4

1 0.0 0.0 0.0 0.0 1.0000
2 0.0002 0.0 0.0002 0.0 0.9996
3 0.0144 0.0 0.0019 0.0 0.9837
4 0.1018 0.0 0.0052 0.1000 0.7930
5 0.3693 0.1083 0.3133 0.1872 0.0220
6 0.6508 0.0512 0.2039 0.0940 0.0
7 0.9687 0.0297 0.0016 0.0 0.0
8 0.9997 0.0 0.0003 0.0 0.0
9 1.0000 0.0 0.0 0.0 0.0

Run 2:

Run 3:

Run 4:

i
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Table 5: The Joint Probabilities for n Wells in Period t
and m Wells Drilled Prior to t

n

t m 0 1 2 3 4

Run 1:
2 4 --- --- --- .9762 .0182

3 6 .0019 --- .0037 --- ---
3 7 .0714 --- .4330 .4717 ---
3 8 .0121 --- .0061 ---

4 6 .0019 --- ---
4 7 .0714 --- --- --- ---
4 8 .0140 --- .0019 ---
4 9 .2698 0.1632 --- --- ---

5 6 .0019 --- --- ---
5 7 .0714 --- --- ---
5 8 .0140 ---
5 9 .2698 --- --- ---

Run 2: 2 4 .0001 --- --- .9766 .0233

3 4 .0001 --- --- --- 
3 5 --- --- --- ---
3 6 - --- --- ---
3 7 .0744 --- .0183 .8839 ---
3 8 .0127 --- .0106 --- ---

4 4 .0001 --- ---
4 5 ---
4 6 --- ---
4 7 .0744 - ---
4 8 .0127 --- --- --- ---
4 9 .0122 .0061 --- --- ---

5 4 .0001 --- --- ---
5 5 ---
5 6 --- ---
5 7 .0744
5 8 .0127 --- --- ---
5 9 .0122 --- ---
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Table 5 cont. n

t m 0 1 2 3 4

Run 3:
2 4 .0020 --- .0009 .4204 .5767

3 4 .0020 --- --- ---
3 5 -- -- 
3 6 .0020 --- .0007 --- --
3 7 .0050 --- .3385 --- .0769
3 8 .1170 .1595 .1777 .1225 ---

4 4 .0020- --- --- ---
4 5 -- -- 
4 6 .0002 -- - --- ---
4 7 .0050- --- --- ---
4 8 .1172 --- .0004 --- --
4 9 .0242 --- .2262 .2476 ---
4 10 .0889 --- .0889
4 11 .1534 .0460 --- --- ---

5 4 .0020 ---
5 5 -- -- 
5 6 .0002- --- --- ---
5 7 .0050 --- --- ---
5 8 .1172- --- --- ---
5 9 .0242 ---
5 10 .0891 --- .0002
5 11 .2967 .0829 --- --- -

6 4 .0020 ---
6 5 -- -- -
6 6 .0002- --- --- ---
6 7 .0050- --- --- ---
6 8 .1172 --- --- ---
6 9 .0242- --- --- ---
6 10 .0891 --- ---
6 11 .2967 --- ---
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Table 5 cont.
n

t m 0 1 2 3 4

Run 4: 2 4 .0002 --- .0002 --- .9996

3 4 .0002 --- ---
3 5 --- --- --- ---
3 6 .0000 --- .0002 --- --
3 7
3 8 .0142 --- .0017 --- .9837

4 4 .0002 -- - ---
4 5. --- --- ---
4 6 .0000- --- --- ---
4 7
4 8 .0142 --- .0001
4 9 --- --- --- ---
4 10 .0003 --- .0015 ---
4 11
4 12 .0871 --- .0037 .1000 .7930

5 4 .0002- --- --- ---
5 5 - - ---
5 6 .0000 - ---
5 7 - ---
5 8 .0142 --- ---
5 9 --- --- --- ---
5 10 .0003 --- .0001 --- --
5 11 --- ---
5 12 .0874 --- .0012
5 13 --- ---
5 14 .0009 --- .0027 ---
5 15 .0015 --- .0765 --- .0220
5 16 .2647 .1083 .2328 .1872 ---

6 4 .0002 --- --- ---
6 5
6 6 .0000 --- --- ---
6 7 -- - ---
6 8 .0142 ---
6 9 --- ---
6 10 .0003 --- ---
6 11 _ --- ---
6 12 .0874 --- .0001 ---
6 13 --- ...
6 14 .0012 --- .0009
6 15 .0015 --- ---
6 16 .2656 --- .0018 ---
6 17 .0060 --- .0848 .0940 ---
6 18 .1164 --- .1164 ---
6 19 .1579 .0512 ---
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Table 5 cont.
Run 4 cont.

t m 0 1 2 3 4

7 4 .0002 
7 5 - - - ---
7 6 .0000 ---
7 7 --- - ---
7 8 .0142 --- --- ---
7 9 --- --- --- - -
7 10 .0003 --- ---
7 11 --- --- ---
7 12 .0874- --- --- ---
7 13 - - - ---
7 14 .0012 --- .0001
7 15 .0015 --- ---
7 16 .2659 --- .0006 ---
7 17 .0060- --- --- ---
7 18 .1173 --- .0009 --- --
7 19 .2130 .0297 --- ---

8 4 .0002 --- ---
8 5 - ---
8 6 .0000 --- --- ---
8 7 --- - ---
8 8 .0142- --- --- ---
8 9 --- --- --- ---
8 10 .0003 --- ---
8 11 --- --- --- ---
8 12 .0874 --- ---
8 13 - - --- ---
8 14 .0012- --- --- ---
8 15 .0015 --- ---
8 16 .2659 --- .0000 --- --
8 17 .0060 --- ---
8 18 .1176 --- .0003
8 19 .2130 --- ---

9 4 .0002 -- - --- ---
9 5 --- --- ---
9 6 .0000 --- --- ---
9 7 --- - ---
9 8 .0142
9 9 --- ---
9 10 .0003
9 11
9 12 .0874- --- --- ---
9 13 ---
9 14 .0012- --- --- ---
9 15 .0015 ---
9 16 .2659 ---
9 17 .0060 --- --- ---
9 18 .1176 --- .0000 --- ---
9 19 .2130 --- ---
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Table 6: The Probability of n Discoveries
Prior to or at Period t

t n
1

1 .9762

2 1.0

3 1.0

4 1.0

2

.7381

1.0

1.0

1.0

3

.2619

.9167

1.0

1.0

4

.0238

.5000

1.0

1.0

5

0.0

.0854

.8350

1.0

n 1 2 3 4 5

1 .9762 .7381 .2619 .0238 0.0

2 1.0 1.0 .9170 .'018 .0871

3 1.0 1.0 1.0 1.0 .9938

4 1.0 1.0 1.0 1.0 1.0

n
t

1

1 .8586

2 .9899

3 1.0

4 1.0

5 1.0

2

.4061

.8671

.9818

11.0

1.0

3

.0667

.5099

.7636

1.0

1.0

4

.0020

.1242

.3909

.9169

1.0

n 1 2 3 4

1 .6244 .1620 .0134 .0002

2 .8978 .5346 .1531 .0144

3 .9855 .8468 .4654 .1018

4 .9990 .7737 .8172 .3693

5 1.0 .9965 .9123 .6508

6 1.0 1.0 1.0 .9687

7 1.0 1.0 1.0 .9997

8 1.0 1.0 1.0 1.0

Run 1:

Run 2:

Run 3:

Run 4:

L
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