
A Branching Fuzzy-Logic Classifier for Building Optimization

By

Matthew A. Lehar

B.S. Mechanical Engineering
Stanford University, 1999

S.M. Mechanical Engineering
Massachusetts Institute of Technology, 2003

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2005
MASSACHUSETTS INST1

OF TECHNOLOGY

© 2005 Matthew Lehar. All rights reserved. JUN 2 8 2005

'I /LIBRARIES

Signature of Author:

Certified by:

Accepted by:

e(Department of Mechanical Engineering

- // May 26,2005

Leon R. Glicksman
Professor of Architecture and Mechanical Engineering

Thesis Supervisor

Lallit Anand
Professor of Mechanical Engineering

Chairman, Committee for Graduate Students

WEI

ARC~fi\VES

A Branching Fuzzy-Logic Classifier for Building Optimization

By

Matthew A. Lehar

Submitted to the Department of Mechanical Engineering

on May 19, 2005 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in

Mechanical Engineering

ABSTRACT

We present an input-output model that learns to emulate a complex building simulation
of high dimensionality. Many multi-dimensional systems are dominated by the behavior
of a small number of inputs over a limited range of input variation. Some also exhibit a
tendency to respond relatively strongly to certain inputs over small ranges, and to other
inputs over very large ranges of input variation. A branching linear discriminant can be
used to isolate regions of local linearity in the input space, while also capturing the
effects of scale. The quality of the classification may be improved by using a fuzzy
preference relation to classify input configurations that are not well handled by the linear
discriminant.

Thesis Supervisor: Leon Glicksman
Title: Professor of Architecture and Mechanical Engineering

3

Acknowledgments

I would like to thank the Permasteelisa Group for their sponsorship of the MIT Design
Advisor generally, and my graduate studies in particular. I am also extremely grateful for
the generous support of the Cambridge-MIT Institute and the Martin Family Society of
Graduate Fellowships in Sustainability.

Jim Gouldstone's programming expertise has played an important role in the success of
this project. The web interface would not have been possible without his guidance.

I am grateful to Les Norford and Dave Wallace for agreeing to join my thesis committee
and for their help and suggestions.

Thank-you so much, Leon, for providing the inspiration for this project and for all your
help in making it happen. The weekly meetings were very valuable to me.

Lots of love to Mum and Dad.

Cambridge, 5/19/05

4

TABLE OF CONTENTS

INTRODUCTION 6
Background: The MIT Design Advisor 6
Strategies for Pattern Recognition 8

LINEAR METHODS: EMULATING THE BEHAVIOR OF PHYSICAL MODELS
14

Introduction 14
Linear Regression 16
Method of Subdivisions 21
Binary Classification 25
The Fisher Discriminant 28

THE MEMBRANE ALGORITHM: REFINEMENTS BASED ON STATISTICAL
TOOLS 38

Introduction 38
Membrane Model 40
Weighting Information from Multiple Histograms 48
Discussion of the Weighting Criteria 51
Measuring the Aberration 55
Reconciling the Experts 57
The Fuzzy Preference Relation 58
Fuzzy Decision Making 67
Configuring the Membrane 69

REAL-TIME OPTIMIZATION WITH SIMULATED ANNEALING 72
Overview of the Simulated Annealing Procedure 72

STRUCTURE OF THE COMPUTER PROGRAM 83
Functional Modules and Their Responsibilities 83

DESIGN OF A USER INTERFACE 90
Graphical Layout of the User Interface 90
User Control of Optimization 91
Error Checking Procedure 92
Further Accuracy Improvements 93

RESULTS 1: ACCURACY OF THE ESTIMATOR 96
Accuracy Criterion 96
Performance Statistics 96
Validation of Coding Strategies 100

RESULTS 2: OPTIMAL TUNING OF THE ANNEALING ALGORITHM 102

RESULTS 3: SENSITIVITY ANALYSIS FOR OPTIMAL BUILDINGS 105

CONCLUSION 107

REFERENCES 109

5

INTRODUCTION

Background: The MIT Design Advisor

The web-based design tool known as the "MIT Design Advisor"[1] has been in

development in the Building Technology Lab since 1999. Online and freely available to

the Internet community since 2001, the tool has been substantially expanded from its

original role as a heat-transfer model for building facades. Presently, users can access

daylighting and comfort visualizations, check their buildings against various code

restrictions, simulate both mechanical and natural modes of ventilation, and receive total

cost estimates for energy consumption over the building lifetime.

Fig. 1. The Design Advisor input panel.

The tool is designed to be used in the early stages of a building project, at a point when

architects are still entertaining a range of different ideas about siting, general plan outline,

window coverage, and other basic design issues. Accordingly, the design specifications

that the user is asked to enter (Fig. 1), and which are then used in simulation programs to

produce estimates of monthly energy usage by the building, are general in nature

(although users wishing to use more detailed constraints can open submenus where they

may be entered).

C 250 N 250 250 C 500
.Yearly

200 200 _200 400 Monthly

150 150 150 300 Heating energy required
per square meter of plan.

100 100 100 200 BLUE
4 -Cooling energy required

per square meter of plan.

50 50 50 100 GREEN

. .. Lighting energy required
-- --- - per square meter of plan.

(Kilowatt-hours / meter 2)

Fig. 2. View of the Design Advisor website showing energy consumptions calculated for 3 buildings.

The benefit of using a tool like the Design Advisor derives from the ability to compare

many different configurations of building on the basis of the amount of energy consumed.

The present version of the software includes the facility to save four different

configurations at once, so that their heating, cooling and electrical lighting consumption

may be compared graphically on the screen (Fig. 2). While this facility was considered

useful in determining how the building performance is affected when individual

7

parameters are varied, it has still been difficult for users to discover how the more than 40

different inputs defining the building can be conjointly varied in such a way as to bring

energy savings. This would require an automatic feature for optimizing multiple

parameters simultaneously in the building model. This thesis presents a possible

algorithm for such an optimization tool. Finding a robust methodology for incrementally

choosing and testing increasingly efficient combinations of input parameters is a problem

that has substantially been solved in other arenas. The principal part of the work

presented here concerns the problem of developing an allegory-function to substitute for

the physical building simulations used by the Design Advisor. Those models, which

have been verified at an accuracy of more than 85% by third-party tools, rely on physical

descriptions of the conductive, convective, and radiative behavior of building facades and

interior cavities. Although they rely on substantial simplifications of the building model,

they still require about 5 seconds of processing time to produce energy estimates for each

new building configuration, which is impractical for a large-scale optimization

incorporating hundreds of thousands of trials. Instead of running these models directly in

the optimization process, we have constructed a non-physical input-output model that can

be trained to reproduce the behavior of the physical models approximately, and that runs

in a tiny fraction of the time.

Strategies for Pattern Recognition

At the heart of the problem of creating an input-output model is the task of pattern

recognition. Given a set of sample input values and the outputs they produce, the model

must reconstruct the function that relates them. This is often accomplished with a

8

regression, in which a general form is assumed for the function and its coefficients are

adjusted so that expression predicts the sample output values with minimum error. To

match the function to the sample data so that it will correctly predict any new output, the

equation should be of the same order as the data. Pattern recognition techniques

traditionally treat the modeled phenomena as though they can be classified as

fundamentally linear, quadratic, cubic, or of some higher order. If a low-order model is

used to estimate data in a high-order problem, the presumed function will not estimate the

sample outputs with great accuracy (Fig. 3a). If, on the other hand, the problem is of

low-order and a high-order model has been applied to it, the result is a function that can

be tuned to reproduce the sample outputs exactly, but that also imposes convolutions

unsupported by the data that prevent the correct estimation of future output values (Fig.

3b).

9

* Sample point

OUTPUT True function
-- Polynomial estimate

**

INPUT

a.

OUTPUT

INPUT

b.

Fig. 3. Estimating a function using sample points. In a.), the estimation is of a low order, and the

curve does not model the sample points with much accuracy. In b.), the order is increased and all

sample points are exactly intersected, yet the estimation produces artifacts not present in the original

function.

The effectiveness of polynomial-fitting procedures, along with other basis-function

techniques such as neural networks, is limited by the difficulty of extracting general rules

10

from the training data. To be able to assign the correct output to each fresh input value

encountered after the completion of the training process, the algorithm must have some

way of deciding to what extent the sample data represents the larger reality of the

phenomenon that created it. The special information that each point provides is to some

extent merely the result of its accidental selection for the training set from among many

possible neighboring points in the input space.

The GMDH (Group Method of Data Handling) approach of Ivakhnenko[2] uses an

estimation routine that attempts to resolve this problem by adaptively matching the order

of the model to that of the underlying phenomenon represented by the training data, and

work has been carried out (see Farlow[3]) to expand the technique to a larger class of

non-polynomial basis functions as well. But in addition to the problem of order-

matching, the basic assumption that the phenomenon to be modeled has the form of a

combination of basis functions may itself be problematic. Since any function can be

arbitrarily well approximated by a Taylor series (or Fourier series, etc.) about a particular

point, the presumption of this underlying polynomial behavior can be shown to be valid

locally, but it may not capture the complete variation in a problem over a range of input

values.

A simple approach we have used to avoid this difficulty in our building performance

application is to organize training data into histograms (see the chapter on The Membrane

Algorithm). In a problem with one input dimension, this approach reduces to creating a

lookup table in which output values are designated for each of several intervals along the

11

input axis. The output values in the lookup table are averages taken over all sample data

that fall within a particular interval of input values (Fig. 4). Such a table can reproduce

with arbitrary accuracy the function underlying the sample data (Fig. 5), provided that a

large enough supply of data is used and the "bins" into which neighboring data are

grouped cover a suitably narrow range of input values.

80-

....---- '-"

40

.-.

- -4 4.. .

1-
: INPUT: OUTPUT:
0L

70-80 62.3

60-70 49.5

50-60 32.8

40-50 59.6

30-40 74.9

20-30 51.3

10-20 15.9

0-10 22.7

Fig. 4. Construction of a lookup table.

12

EL

0
I

OUTPUT

INPUT

Fig. 5. Representation of a function in one dimension using a histogram.

The obvious disadvantage of this method over basis-function methods is the difficulty of

extending it to a problem with multiple input dimensions. The accuracy of the histogram

representation of a function depends on the density of points along a given input axis. In

our single-input example, a sample size of 100 points would provide a maximum

resolution of 100 pixels with which to render of the output-generating function using the

lookup table. In the case of a function in two inputs, the same sample size would

characterize the 3-dimensional plot of the function surface with a resolution of only

(100)1/2 = 10 pixels in each dimension. As we will explain in the chapter, The Membrane

Algorithm, the problem of representing data in multiple dimensions with histograms can

be solved by using a series of 1-dimensional histograms, rather than a single, multi-

dimensional one.

13

LINEAR METHODS: EMULATING THE BEHAVIOR OF PHYSICAL

MODELS

Introduction

The problem of optimizing our existing physical building model is straightforward. We

select an optimization algorithm appropriate to the large number of varying inputs, such

as Simulated Annealing, and the output from each run of the model provides an objective

function for the Annealing algorithm. Each run of the model takes approximately 10

seconds and, since many thousands of cycles are required for the Annealing algorithm to

stabilize, an entire optimization should take several hours. Unfortunately, this is too long

to wait in the context of our particular application.

The principal use of the optimizer will be as a feature of the Design Advisor, allowing

users to find a lowest-energy building configuration. The user will be able to fix any

number of input values as exogenous to the optimization problem, so each optimized

building configuration will be unique to the particular choices made by each user.

Consequently, each new optimization must be performed in real-time as the user requests

it. Since running an optimization by using our original building simulation to calculate

values of the objective function would take hours, this cannot be the basis of a real-time

optimizer. Instead, we must develop a substitute for the original model to run in a

fraction of the time.

14

To create an emulator of the physical building model, we propose a rule-learning

algorithm that can be trained using results generated by the physical model to imitate the

model's behavior. We will refer to the total annual energy requirement that the physical

model calculates for the building as the output. The physical model transforms a set of

input values - the input vector - into a single value of the objective function - the sum of

the heating, cooling, and lighting energy that a building defined by those input

parameters will require for one year of operation. In our application (buildings),

properties such as window reflectivity or room depth are the input parameters that make

up an input vector. When enough input vectors have been evaluated by the physical

model, we can begin to make crude approximations of the values of the objective

function that correspond to new and untried input vectors. The role of the emulator is to

estimate the objective function for any input vector by finding rules that link the already-

evaluated input vectors with the values of the objective function they have been found to

correspond to. The emulator uses only the results produced by the physical model to

construct its rules, without reference to the equations of heat transfer used in the original

model. It should be able to operate many orders of magnitude faster than a detailed

physical simulation.

In the interest of speed, we would like to use the simplest possible algorithm to

approximate the behavior of the building model. A lookup table could be used if not for

the large number of input variables involved in the simulation. Presently, over 40 are

used in the Design Advisor interface, implying a 40-dimensional input space. To

populate a lookup table for such a space that could provide even two unique examples for

15

a trend along any given axis of movement within the space would require 24, or about a

trillion, training data. Using a Pentium III processor at 1 GHz, it would take 322,000

years to accumulate so many results by running the original model, not to speak of the

problem of storing and accessing such a library. Clearly, such a scheme would be

impractical due to the large number of input parameters.

Linear Regression

One naive scheme for estimating the output value that results from a large suite of inputs

is to use a linear regression. The input values are each multiplied by some constant

coefficient that best captures the sensitivity of the output to that variable, and the scaled

input values are then added together to make a predicted output value:

Output = a,X, +a 2X 2 +a 3 X 3 .a aX, (a1n)

In set-theoretic terms, the role of a linear regression is to provide an ordering rule for a

set of training data. If the linear prediction of an output value is given by the dot product

W -X = Output , where W is a vector of weighting coefficients, then W is a unique way to

order the training data input vectors X such that their predicted outputs are monotonically

increasing. For a set of n data,

W -X 1 >W -X,Vi < n (2)

To imitate the dynamics in the building model effectively, we must use a scheme that can

accommodate nonlinearity in the training data. Because nonlinear functions are not

monotonic in general, they will not be well approximated by a pure linear regression.

16

The values of the objective function Fi from a nonlinear training set provide a measure of

the inaccuracy of the regression in the magnitude of a set D, where

D={X,W e RL :W .X >W -XiF(Xj)< F(Xi),Vi < j 5 n (3)

This set of points D, which we call the set of misordered points, is shown graphically in

Fig. 6 for a two-dimensional input space. The nonlinearity of the function in Fig. 6 is

related to the breadth of the region of overlap after a linear classification.

17

Input 2

* Output > median

x Output <median

N
N

i~~NN

N
N N

~ 4~ N.

N N

~
N

N

W-Vector

0 Input 1

11X

IAN

egion of Overlap

Span of input values projected along the vector W

Class 1 Domain
(lower output)

Min. Projection

CIs Dmi

Class 2 Domain
(highe r output)

Re oin of Overmp

Fig. 6. A function of two inputs. The vector W is oriented in the 2-dimensional input space so as to

order the data in accordance with the output values. In the Region of Overlap the data are out of

order in respect to their output values, defining a set D.

The particular vector W used in the regression can be said to be optimal on a set

{X1 , i < n} if the magnitude I|DJJ is minimized by that choice of W. Although poorly

represented by any linear regression, the set of training data that follows a nonlinear

objective function will have an associated minimum set D that is nonempty. We can

measure the degree to which a subset of the training data submits to a linear ordering

18

Max Projection

using the average predictive accuracy , the ratio of monotonically ordered points
n

to the total number of training points n that are used in the regression. This measure of

the accuracy of a regression will depend on two factors:

1) The particular coordinates in the input space where the regression is centered,

and

2) The subset of n training data used to determine D in the vicinity of those

coordinates.

Regression
I Line

INPUT
Regression

Subset

Fig. 7. Applying a regression to a limited subset of the training data allows greater accuracy over a
limited part of the input space.

19

The regression approximates F over the range of input vectors included in a subset of the

training data. The slope of the regression line in Fig. 7 represents the vector of

coefficients W, and is chosen so as to minimize the deviation of the line from a limited

set of neighboring data points. If we assume the objective function F is continuous, for a

given vector of weighting coefficients Wo we can show that the accuracy of prediction

I I approaches 1 in the limit as we reduce the interval defining the region of the
n

input space from which training data may be used in the regression:

First, we define a set B representing any monotonic interval in a continuous nonlinear

function: if

" S is the initial set of training data X e R L : X1,X2,...Xn,

* D is the set of misordered points resulting from the ordering of S by WO, and

" the set S - D is nonempty,

there exists a subset of vectors Br c S containing a vector X such that:

B, r= {X : W -X > W -X, -:> F(Xj) F(X),VX C S :I(X - Xo)I< r (4)

where r is a scalar. Such a subset is illustrated for the single-input case in Fig. 7, over

which the behavior of the function is monotonic. For a single Xo within S, we can define

aF
a distance p between the vector Xo and the nearest point for which W = 0 , where X"

aXa

is any scalar component of X. Then, for any Xo defined on F,

iee RLXo +E>X 0 ->F(X0 +e)>F(X0):E<p (5)

20

This is to say that the function F is monotonic within a range p of Xo. From (4), we see

that within a training set S there always exists some set of coordinates B for which the

outputs vary monotonically with the ordering provided by Wo. (5) allows us to

determine the bounds on the largest monotonic set BP that contains X; since a continuous

function is by definition monotonic between points where partial derivatives of the

function equal 0, we will end up with a monotonic set simply by narrowing the radius of

inclusion r until r < p . This means that the accuracy of a linear regression will generally

improve as data more remote from a chosen reference point X are removed from the

regression calculation. However, although we are able to evaluate a given input more

and more accurately in the context of the other points that remain in the regression, we

lose the ability to evaluate it relative to the entire training set. The quality of the local

ordering of points in the subset improves while the global ordering disappears. There is

no "ideal" regression to characterize a particular region of the input space because

narrowing the scope of input points in the regression to increase the linearity also makes

the regression less comprehensive.

Method of Subdivisions

For any given point in the input space, and given the ability to determine the weighting

vector W that minimizes - for a prescribed set of training data in the neighborhood
n

of that point, the problem that remains is where to draw the boundary between data that

will and will not be included in the regression. Since we cannot choose a subset to

maximize linear ordering within the set at the same time that we maximize the coverage

21

of the regression, we propose a method of multiple regressions that systematically divides

up the input space. This method is unconventional in the sense that the space is

repeatedly divided in half to create a branching hierarchy of divisions. Most other

methods (e.g. Savicky[4] and Hamamura[5]), rather than a segmenting, rather than

branching, approach is usually taken when using binary classifiers to represent multiple

output categories.

We begin by performing a regression on the entire training set. This will identify

linearity at the largest possible scale, but rather than finding an approximation to the

function using this very coarse regression, we would like instead to use it to put limits on

the range of possible output values. A second regression based on only those training

data that lie within the indicated range could then be performed, limiting the range still

further. After many such subdivisions of the space we would arrive at the point where

further regressions could not be justified due to the small number of chaotic distribution

of the remaining samples. At each decision point, where a set of training data is divided

into two distinct groups according to output, we create a linear regression that is special

to that decision point. What results is a "tree" of linear regressions calculated on the

basis of various subsets of the training data. This tree can then be used to classify new

input points by passing the component values down the tree to regressions that deal with

ever more specific regions of the input space. The reason for using this multi-stage

approach is that it exploits linearities in the data at a range of different scales, rather than

just at a small scale where a single regression is not comprehensive, or just at a large one

where it is not accurate. At the end of a cascade of binary decisions, we can predict the

22

probable range of outputs that a new input point could evaluate to by noting the limits on

the outputs of training data that were given the same classification - the same "slot" at

the bottom of the tree.

Output

Output

Input

k

Input

Fig. 8. A broadly linear function (top) can display extreme nonlinearities at a finer scale. Conversely,
a highly nonlinear function (bottom) can approximate linear behavior when taken over a small
range.

Changes in the value of the function in respect to an input variable can resemble a linear

relationship over a large range, but become highly nonlinear at a smaller scale. The

23

ab

A

reverse can also be true (see Fig. 8). Using a scheme of successive subdivisions of the

input space, we should be able to capture these linearities at many different scales.

The particular coordinates on which a regression should be centered at each stage of this

process are not known a priori. However, the multi-stage approach provides a way

around this problem: while it does not construct a regression for every possible grouping

of training data points it effectively subdivides the input space into successively smaller

contiguous data sets. Any single input vector will belong in one of these (arbitrarily

small) subsets, so that no matter which input we choose from the training data, it will be

associated with some regression constructed from its immediate neighbors. This

guarantees that the regression will be locally accurate. At the same time, we can learn

which of these local regressions we should use to evaluate an input by consulting the

more general regressions in the next layer up in the branching structure. In Fig. 9, two

regression lines have been drawn: one follows the general trend of the function taking in

the full range of inputs. The other is based on a highly restricted range of inputs, and

only functions to distinguish output values within that narrow range. Using only the

restricted regression as an ordering for the entire data set would clearly be disastrous, but

it provides great accuracy if the crude regression is first used to identify the neighborhood

of values where the restricted one will be effective. From (5), we see that we eventually

arrive at a perfect linear ordering of a subset of data simply by narrowing the range of

that subset. This means that there will always be an accuracy benefit from narrowing the

scope of the subset on which the regression is performed. By using a series of

24

successively narrower regressions, we can design a predictive algorithm that is both

comprehensive and minutely accurate.

Complete
Data*

Restricted
Data

INPUT

Subset

Fig. 9. Two regression lines: one is based on the complete data set and the other on a restricted

monotonic subset.

Binary Classification

The process of determining which terminal subgroup a given input belongs in can be

compared to skiing down a mountainside on which the snow trails repeatedly divide in

25

two. At the first branching point, the skier makes a very general choice, such as whether

to ski on the shaded or the sunlit side of the hill. As she proceeds to commit to one trail

or another at each fork, the quality of the decisions becomes more specific: a decision as

to which chairlift area she would prefer to end up in, and then whether to take the smooth

run or the one with moguls. Finally, she decides which of two available queues to turn

into for the chairlift ride back up the mountain. Her ultimate choice of a queue makes a

very specific distinction, but it can only be arrived at by a history of decisions at a more

general scale.

Like the skier who chooses a more and more specific route as she progresses down the

mountain, our multi-stage procedure uses a series of linear regressions to make

increasingly specific predictions of the value of an objective function. At each level of

the decision process, we preserve as much generality as possible, so as not to interfere

with the better resolving power of subsequent steps. We ensure this outcome by using

the regression functions to impose the weakest possible restriction at each level. The

vector w serves as a two-group classifier, projecting input vectors onto a scalar value that

is less than 0 if the input is selected for one group, and greater than 0 if it is selected for

the other (Fig. 10).

26

class A class B
+- - -- +

Fig. 10

The two-group (binary) classification tree is the most conservative possible scheme for

sorting input vectors because no distinction is made at any level of the tree that would

also be possible at the next level down. A decision about which general group a vector

belongs in does not bias or influence the next decision about which part of the selected

group should be chosen. The only new information added at each selection stage is an

identification of the next-most-specific subgroup to which an input will be assigned. We

could of course obey this same principle while choosing from among 3,5, or 100

subgroups at each level, but a 2-group scheme should in general be preferred because it

allows the subgroups to remain larger and the classifications less restrictive down to a

lower level of the tree than any multiple-classifier scheme (Fig. 11).

27

2-Class, 4 Levels 4-Class, 2 Levels

Fig. 11

The more layers of decision opportunities we have, the more individual regressions we

bring to bear on the classification and the more informed the ultimate prediction will be.

The Fisher Discriminant

The Fisher Discriminant is a regression technique that is often used as a criterion for

separating a group of samples into two categories based on their known parameters. If

some of the samples are arbitrarily designated as "Type A," and the others as "Type B," a

linear model can be built up to correlate the parameters of each sample optimally with its

specified type. For instance, if we were to classify cars on the highway as either "fast" or

"slow," we would do so according to whether their speed is above or below a chosen

threshold value. Then, the values of input parameters like engine size, body type, color,

and weight could be correlated with the side of the threshold on which the car is found.

Once the correlation has been established using this training data, it can be used to predict

whether a new car, whose type has not been observed, will likely be fast or slow based

only on the knowledge of its size, body, color, and weight.

28

In our experiment, the cars on the highway are replaced by the training data. These

consist of a set of vectors (of parameters like size, color, and weight) for which values of

the objective function (e.g. speed) are known in advance. Taking any subset of this data,

we can choose an objective function value as a marker value that divides the subset into

two parts: one containing the inputs for which the objective is below the marker value,

and the other for which the objective exceeds the marker value. To divide a set of

training vectors evenly in half, we would choose the median of the objective function

values as the marker. If we create a linear regression from the training data, finding the

linear combination of the components of each input vector that best approximates the

objective function, we can use that regression to predict an objective value for any new

input vector, and place it in one group or the other depending as the objective value is

above or below the threshold.

The Fisher Discriminant is a particular kind of regression that is optimized for the case in

which we would like to separate data into two groups. Like any other regression, it

projects the multi-dimensional parameter space onto a 1 -D vector traversing that space.

But instead of adjusting that vector (hereafter called w) so as to minimize the sum of the

squares of the differences between each vector's true objective value and its predicted

value, the Fisher Discriminant orients w so as to discriminate optimally between the two

classes. The length of the projection of each measurement along w can then be used to

classify it as either of group "A" or "B" (Fig. 12).

29

Parameter 2

x

0

0
\ W-Vector

x

x
x X

Parameter 1

X
\

X 0

* Type "A"

x Type "B"

Projection on W

Fig. 12. A line clearly divides the data into two classes in this example, in which the overall mean has

been normalized to the origin of the coordinate system. Positive projections on W can be classified as

"A," negative as "B."

There are many possible ways to "optimize" the orientation of w to discriminate between

two classes of data. The Fisher Discriminant uses two principal measures: the projection

of the mean difference vector on w, and the projection onto w of the spread of the data in

each of the two classes. The mean difference vector (a between-class metric) is the axis

along which the two groups of data are most distinct from each other; the spread of the

data (a within-class metric) shows how the positions of data points in each of the two

groups become more concentrated or more diffuse when measured along a given axis.

Optimizing one of these measurements to the exclusion of the other can result in a poor

classification in certain circumstances. As shown in Fig. 13 and Fig. 14, either metric

can contain the information that is essential to the group-separation problem. The Fisher

30

Discriminant finds a compromise between the separation critera by optimizing both

simultaneously.

Between-Class Only

-4--

2 _ 1

hyperplane

hyperplane

W-Vector

W-Vector

S
2

Within-Class Only

Fig. 13. Insufficiency of the within-class criterion alone. The input vectors are 2-dimensional, and the

the regions of points representing groups A and B are shown in two shades of gray. The orientation

of W (dashed line) that produces an optimal between-class separation is horizontal, allowing the data

to be cleanly divided according to its projections on W. If the within-class criterion alone is used, W

is vertical when the projections of the spread of data onto Win each group are minimized, yet these

projections are insufficient to distinguish between the groups.

31

a

i~-, ~ - - - -

W-Vector

hyperplane 2

Within-Class Only IM2y

hyperplane W-Vector

Between-Class Only

Fig. 14. Insufficiency of the between-class criterion alone. In this example, the within-class spread

provides the essential information for separating the two groups of data.

Between-Class Separation

The mean difference vector is oriented along the line connecting the point at the mean

coordinate values of the training inputs in one group (or class), and the mean point of

those in the other group. In Fig. 13 and Fig. 14 this vector is shown for the two-

parameter case. In the analysis that follows, m represents the vector (of 2 or more

dimensions) of mean values for each of the input parameters, taken over the set of data

points in group A or B. We wish to orient w parallel to the mean difference vector so that

the projection of the data points onto w shows the greatest possible separation between

the groups. We express the degree of alignment of the vector w with the mean difference

vector (mB -MA) as the dot product. Since the quantity w - (mB - MA) will be

maximized when w 1 (mB - MA), we can define a between-class covariance matrix

32

SB = (MB mA_ mB M)T such that the scalar expression WTSBw , equivalent to the

square of w . (mB -MA), is also maximized when w 1 (mB - M,). The parallel

alignment of w and (mB - mA) maximizes the projected distance between the clusters of

each class of data.

Within-Class Separation

The other expression optimized in the Fisher Discriminant preferentially indicates

orientations of w that emphasize the density of clustering within each class, as viewed

through the projection onto w. Maximizing the clustering density reduces ambiguity due

to two class regions overlapping in the input space. The clustering density is inversely

related to the quantity WTS W , the within-class covariance matrix. SW is defined:

S, = (x M x"6-) + (x" -MBX T6)
neCA neCB

where x is a vector representing a sample input. The diagonals of S, are the variances

of each of the input parameters within class "A," added to the variances from class "B."

The off-diagonal elements of S, are the covariances - the tendency of one component of

the input vector to stray from the mean at the same time that another component strays

from its own mean. If the components of the sample input vectors are chosen

independently, the covariances should converge to 0.

The Fisher Discriminant has the form

33

w TS w
J(w) = B

w Sww

which is maximized when the between-class covariance is maximized, and the within-

class covariance minimized. To do so, we differentiate (7) with respect to w and set

dJ(w) -o (8)
dw

d (f(x) _f'(x)g(x) -f(x)g'(x).
By the quotient rule for matrices, d g'x)) 2 (x) . Applying this

dx g (x) g2(X

rule to (8), we have

dJ(w) d(w T SBw) w Tsw w d(wS WW)w Ts Bw= (9)
dw dw dw

By the rules of matrix differentiation, d(XTCX) = 2Cx , so (9) becomes
dx

(wTsBWw = (WTSWW Bw (10)

Because we are only interested in the direction of w, and not the magnitude, we may drop

the scalar factors WTS Bw and WTS w. As we noted before, SBw has the same

direction as (mA - mB), so we may write (10) as a proportional relationship,

wexc S-I(mB-mA) (11)

which we use as a formula for w.

Simplification for a One-Dimensional Space

The Fisher criterion given by (7) can be expressed in a more intuitive form if we

consider the case of only one input parameter for the data under consideration. The mean

difference vector (mB -MA) becomes the simple difference of group means for the

34

single parameter, (mB-mA), and the matrix SB becomes a scalar with the value (mB-mA) 2 .

The matrix S, can be seen to reduce to the sum of the within-class covariances of the

two classes, where the within-class covariance is defined as s = (y" - mk)2 . In this
neCk

expression, y" is the (1 -D) parameter value of a single datum n within the group Ck , and

mk is the mean input value for that group. Eq. (7) can now be re-written as

w2 (mB mA) 2

J(w) =W2(B M) ,or
2(S2 +S 2)

A(mB mA

2= 2 (12)
SA ± B

giving the measure of the separateness of the two groups A and B in an input space of

one dimension. The measure increases as the mean parameter values of the two groups

get farther apart, and as the variation within each of the two groups is reduced.

Minimizing the Nonlinearity

The purpose of this paper is to argue that the same methods used to classify data into two

discrete categories are also effective at predicting functions with a continuous range of

outputs. For continuous functions, the ability of any linear regression to characterize the

output is limited by the nonlinearity of the function. In the case of a continuous linear

function of many variables, the Fisher Discriminant can be used to exactly divide the

input space into a region that will produce outputs below the mean value and a region

producing outputs above the mean. In the case of a nonlinear function, the boundary

defined by the Fisher Discriminant between regions of the input space will not cleanly

35

separate the data according to output values, but will be subject to a degree of

"interference" because the true division between output classes is not a straight line or

flat plane (or hyperplane, in the case of 4 or more input dimensions), but a meandering

boundary (Fig. 15).

Input 2
L

NNN W-Vector
x

NN

NNN

x

NNN
x

x x \

x x

Actual class
boundary

* Type "A"

x Type "B"

Linear Discriminant
boundary

Fig. 15. The boundary between classes in a nonlinear function cannot be completely defined by a

linear discriminant.

If our task were to separate the outputs from a nonlinear function into two classes, above-

and below-mean, with the minimum of interference, the Fisher Discriminant would

provide a way to preferentially select those orientations of w that minimize the

overlapping of the two classes at the boundary. The quantity J, which gives the ratio of

36

mean separation to clustering density in the discrete two-class problem, would serve to

indicate the level of interference between higher-than-mean output and lower-than-mean

output in our hypothetical nonlinear function. A smaller value of J would indicate a

more diffuse distribution of samples belonging to each class in the direction of w, and an

increase in the region of overlap between the classes. J is equivalent to an inverse

measure of nonlinearity in a given direction within the input space.

In our discussion of the method of subdivisions, we drew attention to the phenomenon of

linearity at different scales (Fig. 8). The objective function we are trying to approximate

can be fairly linear at one scale and extremely nonlinear at another. If we now vary one

input parameter while keeping the others constant, we can observe that the objective

function changes in a more linear way when we vary one input than it does when we vary

another.

37

THE MEMBRANE ALGORITHM: REFINEMENTS BASED ON

STATISTICAL TOOLS

Introduction

However well the Fisher Discriminant succeeds in minimizing the region of overlap, we

are still left with the question of how well we can characterize a continuous function

simply by being able to place a sample input vector in the "above mean output" or

"below mean output" category. Even if the power of discrimination between these two

classes is great, we still have only determined the likely output of the function to a very

low resolution. To increase the resolution of the result, we use the discriminant

repeatedly, first dividing the entire data set along the mean output value and then

successively dividing up each resulting class along its class mean. Such an approach

gives a more resolved answer, but would not be expected to perform any better than a

straightforward linear regression, in which a final value of the function output is

approximated by the magnitude of the projection of the input vector along w.

38

Initial Dataset
Subsets:

------------ Layer 1
S------ Layer 2

- Layer 3

Discriminant used to
divide subset

Fig. 16 By dividing the data set into successively smaller pairings, we approximate a continuous
representation of the output space

The Fisher algorithm orients w to minimize the diffuseness of each class, which has the

effect of seeking linearity in the input space. To take full advantage of the special

properties of the Fisher Discriminant, w must be recalculated at each level of the

decomposition of the data set. A decomposition scheme in which w is successively

recalculated has two main advantages over a simple regression formula:

" In general, a linear approximation will be more appropriate in respect to some

inputs than to others, but the emphasis on any given group of inputs, indicated

by an orientation of w that aligns more closely with them than with others,

will vary depending on the region of the input space in question. Different

choices of W are appropriate for the different subsets of data being analyzed.

* As we reach lower levels of the decomposition, the range of input values

under consideration becomes smaller. Changes in the value of the function in

respect to an input variable can resemble a linear relationship over a large

range, but become highly nonlinear at a smaller scale. The reverse can also be

39

true (see Linear Methods, Fig. 3). The optimal orientation for w can vary as

we home in on increasingly specific subsets of data.

Any orientation of the W-vector, no matter how carefully chosen, will necessarily

misclassify some inputs in a nonlinear problem. In our branching scheme, a

misclassification at the top of the decision tree is more serious than one that occurs lower

down. For example, the first classification is the most crude because it can only decide

whether a sample belongs in the upper or lower half of the entire catalogue of training

data. A misclassification at this level prevents the sample from participating in the

successively finer distinctions that occur at lower levels of the decision tree.

Membrane Model

As a way of correcting the misclassification of inputs at each level of the decision tree,

we have implemented a histogram method called a "Membrane." The Membrane

identifies mistakes made by the existing hierarchy of linear discriminants in classifying

the training data, and creates permanent structures that will adjust the classifications of

new inputs once the tree is completely "trained," and has been put into service as an

estimator. The idea of applying a correction to the classification provided by a linear

discriminant is not new; a method known as a Support Vector Machine (SVM)[6] works

on the principle of using the mean-squared lengths of vectors between poorly classified

points and the hyperplane as bases for a theoretically defined nonlinear boundary.

However, because the process of constructing such a boundary is effectively a numerical

optimization that becomes more complex with each additional vector, the algorithm

40

cannot be scaled to accommodate our large set of training data. We are proposing the

Membrane as a nonlinear correction scheme that does not increase computational

complexity as more correction points are added.

The first step in the construction of the Membrane is to reorient the axes of our input

space to align with the vector selected by the Fisher Discriminant (keeping the axes

orthogonal), so that the hyperplane perpendicular to that vector, which separates lower-

than-median output cases from higher-than-median ones, becomes a horizontal surface

through our input space. This is shown for the 3-dimensional case in Fig. 17.

41

}W

perpendicular distance

input value

projections on

X2 histogram axes

Fig. 17. Construction of axes parallel to the hyperplane along which histograms can be calculated.

During the process of building up the estimator using the training data, we of course have

the benefit of knowing the true output, whether above- or below-median, from each

training point. Comparing the true outputs from these points to the classification they

receive from the linear discriminant, we may now infer the existence of a manifold that

intersects the space between cases with lower-than-median outputs (shown as squares in

Fig. 18) and higher-than-median (shown as X's), lying roughly parallel to the hyperplane

42

but separating the two groups according to their true output values, whereas the

hyperplane distinguished them only to a linear approximation. In the explanation that

follows, we will refer to this postulated manifold as the Membrane.

3 AXES DEFINING AN INPUT SPACE
x X

Training Data

x x

X X

Fig. 18. The hyperplane selected by the Fisher Discriminant algorithm is the flat surface that best

separates the training data into two distinct groups in this artificially generated example. The

membrane ideally separates the data that the hyperplane can separate only to a linear

approximation.

We build up a model of the membrane using histograms to record the deviations of input

values that have been misclassified by the hyperplane along with those values that were

correctly classified, but which occupy the same region of the input space as the

misclassified values. Because of the potentially high dimensionality of the input space, it

is not practical to create a single multi-dimensional histogram, particularly when the

number of input dimensions is large. If a particular model contains n inputs, and the N

training data are distributed uniformly through the input space, the average density of

43

data points over the range of any given input variable is N"". For a problem with 30

input dimensions and 1 million data points, this would amount to only 1.58 data points

encountered as one follows a line through the input space between the lower and upper

limits of one variable, all others remaining constant. Worse, the point density would

increase by a factor of only 101130, or 8%, for each order-of-magnitude increase in the

total number of training data. Because the number of input variables in our problem is

large (30 inputs were selected to represent a 40-input problem), we cannot feasibly

construct a multi-dimensional histogram that covers the entire input space with even a

minimal resolution. Instead, we have used a probabilistic scheme that synthesizes the

information from many partial histograms containing incomplete representations of the

input space. For the 30-dimensional problem, we maintain 30 separate 1-dimensional

histograms. Each histogram represents the projection of all data points onto a one-

dimensional axis running through the input space.

44

Records

magnitude

of

Records magnitude ofI
deviation

Histogram I projection axis Histogram 2 projection axis

Fig. 19. Two 1-dimensional histograms characterize the membrane surface of this 3-dimensional

input space. The height of each bin of the histogram corresponds to the maximum deviation from

the hyperplane of any misclassified point that lines up with the bin along the projection axis.

Histogram 1 clearly contains more information about the membrane shape than Histogram 2 in this

example.

As shown in Fig. 19, each 1-dimensional histogram contains an impression of the shape

of the membrane, although each one's information is incomplete and oversimplified,

being only a projection of a higher-dimensional space. This operation in shown for the

original orientation of the input dimensions in Fig. 20.

45

Recording a Misclassified Input

vectors defining
classification
boundary

X2

relevant bin

height of bar represents

max/min projection of all

misclassified inputs for

this bin

misclassified input

Fig. 20. Each training data point that has been misclassified will recorded differently by each of the

histogram axes.

We cannot make conclusive assessments of the true shape of the membrane based on the

evidence of any one histogram, but we are able to make statistical predictions about its

shape by combining the information from multiple histograms. In certain cases

(including the case shown in Fig. 19), a single histogram may contain a clear indication

of the true boundary between low-output and high-output cases. For example, if the

hyperplane has misclassified nine out of ten of the input values belonging to a certain bin

of one histogram, we may predict that future values that belong to this bin should be

46

oppositely classed. They should be assigned to the group that was not originally

indicated by the hyperplane's segregation of the input space.

Two different types of histogram are used for each axis of the hyperplane: one to keep

track of input values that were found on the low side of the discriminant boundary, but

that actually belong (because of the high output value they produce) with the inputs on

the high side, and another histogram for inputs that were classed as high, but actually

have low outputs. In both cases, the number of misclassified points is recorded alongside

the number that inhabit the same part of the input space, yet were correctly classified by

the hyperplane. By "the same part of the input space," we mean the region that projects

onto the histogram axis within the assigned limits of one particular bin, and which lies

within a distance of the hyperplane limited by the maximum distance of any misclassified

case belonging to that bin. By comparing the number of correctly and incorrectly

classified points that lie within such a region of the input space, we determine the overall

probability of a misclassification in that region.

47

x New Input

-- I
-- I

- I

I -

Fig. 21. After the membrane has been created using the training data, the histogram bins (shaded)

corresponding to a new input vector can be found by projecting the vector onto each of the histogram

axes.

Weighting Information from Multiple Histograms

The shape of the membrane is encoded in the histograms. Each case from the training

data has an output value given by the original building simulation - the output that the

estimator must learn to predict. We label each case as "well classified" or

"misclassified," according to whether or not the classification by the linear hyperplane

agrees with the true output value. To be well classified, a case must lie above the

48

I ...
L

hyperplane if its output is greater than the median of the set, and below the hyperplane if

its true output is lower-than-median. We gradually build up a picture of the way in which

the true boundary between greater-than-median and lower-than-median cases undulates

with respect to the hyperplane by recording the misclassifications in the histograms.

After this process has been carried out for each of the hyperplanes in the overall decision

tree (one hyperplane per binary classification), we are prepared to attempt the prediction

of output values for new cases that have not been evaluated with the original building

simulation. When confronted with a new input vector to classify, the estimator first

classifies the point based on whether it is located above or below the hyperplane in the

input space. The histogram data is then consulted to determine if that classification must

be adjusted due to the irregular shape of the membrane. The particular bin that

corresponds to the projected length of the new input vector (Fig. 21) along each

histogram provides several statistics attesting to probability of the new input being

misclassified. They are:

1. The probability of misclassification, given the history of training data

encompassed by the bin and classified correctly or incorrectly by the

hyperplane.

2. The total number of training data points logged by the bin.

3. The distance between the new input and the hyperplane, as a fraction of the

maximum distance between any misclassified training point and the

hyperplane.

49

If the distance between a new point and the hyperplane is greater than the maximum

distance of a misclassified training point ever recorded by any one of the bins into

which the new point project, we may conclude that the point has, after all, been

correctly classified by the hyperplane (Fig. 22). This surmise becomes more reliable

the more cases in total have been recorded as aligning with the particular bin.

d

-t
b

Fig. 22 The new input vector, although lining up with a bin in each of the two histograms, belongs to

only one. Its distance d from the hyperplane surface is larger than any misclassified vector among

the training data belonging to bin b. As such, this point would be considered correctly classified by

the hyperplane because we conclude that it lies above the membrane surface based on the

information from bin b.

50

--I,-

Discussion of the Weighting Criteria

The second criterion on which histogram information is rated, the total number of

training data to have been logged in the indicated bin of the histogram, serves principally

to screen out the contributions of histogram bins that have collected too few data to offer

statistically meaningful results. Criterion 1 is described in Fig. 23 for two artificially

created membrane shapes. On the basis of this criterion, which is the probability that an

input vector belonging within the scope of one of the bins has been misclassified by the

hyperplane, the histogram shown rates much better in respect to the membrane in Fig.

23a than the one in Fig. 23b. In case a, there are very few points above the membrane

surface that fall within the scope of any of the histogram bins, because the height of the

bins shown in the figure closely follows the projected contour of the membrane surface.

The misclassified points in each of these bins therefore vastly outnumber the correctly

classified ones that lie above the membrane surface, giving all the bins a high reliability

rating from criterion 1. The histogram in case b has high reliability in its leftmost bins,

but that rating diminishes as we move to the right along the axis, where it becomes less

clear from looking at the bin profile whether the corresponding points lie above or below

the membrane surface. As we move along the histogram to the extreme right in figure b,

the probability of a misclassification continues to drop until it is finally quite unlikely that

a point belonging to the bin lies below the membrane surface. Since we are able to make

this conclusion with high accuracy, the reliability of the negative verdict on

misclassification is high in respect to criterion 1, just as the positive verdict had high

reliability at the leftmost end of the histogram.

51

.i volume consisting
of misclassified

points

density of
misclassified points

Fig. 23. Histograms use various means to identify the surface geometry of the membrane. In these

artificially generated examples, the maximum deviation of a misclassified point is shown for each bin

of a particular histogram, along with a grayscale panel showing the ratio of misclassified to correctly

classified points in each bin.

By choosing a different histogram axis to represent the membrane surface in Fig. 23, we

lose the description of the contour of the surface, and the probability of misclassification

for each bin becomes ambiguous, since a roughly equal number of correctly and

incorrectly classified points are projected onto the new histogram (Fig. 24).

52

b.)a.)

0

4-)

0

-H
(I.

Fig. 24 The information recorded for the same membrane surface as in Fig. 23a has a different

character when we change perspectives to the other histogram.

However, we gain new information by switching perspectives that relates to Criterion 3 -

the distance from a new input point to the hyperplane as a fraction of the furthest distance

within the same bin from any misclassified training point to the hyperplane. This

information is useful because the closer a point is to the hyperplane, the more likely it is

that the point has been misclassified. To understand the reason for this, we can consider

a simplified membrane like the one in Fig. 25. Although a real membrane surface in our

problem would vary in as many as 30 dimensions, and this membrane varies in only one,

it serves to illustrate the principle that the hyperplane is the linear average of the

membrane - its "DC" component, in relation to which the membrane height oscillates up

and down but never permanently diverges. The points lying between the membrane and

53

...

the hyperplane are misclassified, but if we slice through the input space parallel to but

slightly above the hyperplane (as in Fig. 25) we encounter fewer misclassified points

within each slice as we get further away from the hyperplane. This demonstrates the

usefulness of Criterion 3 - the relative height of new input points above the hyperplane -

as a measure of the likelihood of its misclassification. A new input vector that is closer to

the hyperplane is more likely to belong to the set of misclassified points.

1

2

Misdassified Points

Example Histogram Bin

Hyperplane

Fig. 25. The higher a point lies above the hyperplane, the less likely it is to belong to the set of

misclassified points beneath the membrane surface.

54

Measuring the Aberration

A higher-dimensional space than the 3-D one depicted in Fig. 24 submits to the same

analysis. A space of n dimensions contains a linear hyperplane of dimension n-1. If an

input has been misclassified by this hyperplane boundary, it is considered more

"aberrant," the greater its distance from the hyperplane. The distance is measured

orthogonal to the hyperplane, so that the line along which the measurement is made runs

parallel to the W-Vector. The height of the projection above the axis of the histogram is

only recorded if it is the most aberrant projection of an input value yet recorded by that

particular bin of the histogram.

Each axis sustains two histograms - one for inputs located above the hyperplane whose

outputs evaluate to a number lower than the median, and another histogram of inputs

found below the hyperplane whose outputs are higher than the median. Each of the two

histograms contains data about the number of inputs projected into each bin and the

maximum aberration of any misclassed input value in each bin. The tally of inputs for

each bin is separated into the number of inputs that are misclassed, and the number that,

though classed correctly, fall within the region of the input space between the positions of

misclassed values. As shown in Fig. 26, given a nonlinear boundary surface separating

high- and low-valued points, a well classified point located above the surface could be

closer to the hyperplane than a misclassified point located below the surface.

55

O below-surface point

* above-surface point

Fig. 26. The linear boundary surface used to discriminate between high- and low-valued points

approximates the real "boundary," a nonlinear surface along which the output values corresponding

to all points are theoretically equal. Because the surface is nonlinear, the precedence of points can be

confused when they are projected onto a single histogram.

The projection of the two points onto the histogram pictured in Fig. 26 shows the

distances between the points and the hyperplane only. This particular histogram does not

capture the distinction between the high-valued input and the low-valued one. The

projection onto a single axis has destroyed certain information that would lead to a

correct ordering of the input values. Ambiguities such as these require that we find a

robust means of coordinating inputs from multiple histograms to minimize erroneous

judgments.

The incompleteness of the data represented in a histogram requires us to make

probabilistic judgments when using histogram data to classify new input points. Between

56

k

......

the hyperplane and the projected height of the most aberrant misclassified point, there

will be many correctly classified points with intermediate projected heights, like the

"above-surface" point in Fig. 26. To make the best possible guess as to whether a new

point found in this range is misclassified, we can only ask if the majority of other points

in the same range are misclassified. Each axis onto which input values have been

projected will express a different view of the data. Any new input point can be matched

with the appropriate bin from each histogram, but each will return a different probability

that the input has been misclassified by the linear estimator. If we maintain 30 variables

in our model, each new point will correspond to 30 different estimates of the probability

that this point has been misclassed.

Reconciling the Experts

We are now faced with the question of how to value each of the histogram estimates in

relation to each other. No single histogram is likely to contain all the information

necessary to make an informed choice about how best to classify the inputs, so the

optimal decision will be a negotiated mixture of many single estimates. In general, a

probability above 0.5 would indicate that a point was more likely misclassified, and

below 0.5 the original classification would tend to be correct. Since each estimate is a

numerical probability between 0 and 1, the simplest scheme for combining them would

be to use either the average or the median value to determine an overall verdict of

"misclassified" or "correctly classified." However, as the probability varies strongly

between different histograms and their verdicts are therefore determinedly contradictory,

57

averaging will tend to dilute the useful information that is exclusive to individual

histograms.

The Fuzzy Preference Relation

It is more correct to say that each histogram offers unique information, than to say that all

approximate a "correct" average. A given histogram will be quite accurate in

representing certain features, and will have nothing useful to say about others.

Unfortunately, we have no explicit measure of a histogram's accuracy in reporting a

given probability of misclassification - only a few vague guidelines. For example, we

can say that 1.) histogram bins containing many recorded hits provide more reliable

information than those that have only recorded a few. We can also judge a verdict of

"misclassified" as more likely if 2.) the input in question had a small projected height

above or below the hyperplane, relative to other inputs recorded in a given bin. Finally,

we have more confidence in a verdict if 3.) the corresponding probability is closer to 0 in

the case of a correctly classified point, or 1 in the case of a misclassified point.

Probabilities closer to a value of 0.5 are inherently more ambiguous, or of higher

"entropy." Claude Shannon's Mathematical Theory of Communication[7] uses this

quantity of entropy in the analysis of communication channels to represents the degree of

variability of the channel. In a system that produces a stream of bits, each bit having a

value of 1 or 0, the entropy can be said to decrease as restrictions are placed on the

probability of reading one value or the other from the bit stream as it emerges from the

channel. As an example, suppose we find that a particular bin records n misclassified

inputs of which the most aberrant is a distance a from the hyperplane. There may also be

58

a number m of correctly classified points that come within the same range of input values

that are also within a distance a from the hyperplane. These are allotted to the same bin.

The relative proportions of correctly and wrongly classified points provide some

guidelines about our ability to classify any new points that fall within the bin's input

range. The probability of a new misclassification in a given bin is based on the relative

number of misclassifications already recorded. We define the probability p of a

misclassification as

n
p= m+n (13)

If this probability is close to 0.5, we have very little basis for predicting whether future

input vectors assigned to that bin will be correctly or incorrectly classified. On the other

hand, if p is close to 1, we can be reasonably certain that any new vector assigned to the

bin will turn out to be a misclassified point, like the majority of those that preceded it.

The Shannon Entropy H can be used to assign a numerical value to the predictive

usefulness of the bin based on its probability value. H is defined as

-1p log pi (14)

where each p, represents the probability of a possible state of the system. In our case,

there are two possible states: any new input applied to the system will either be correctly

classified or misclassified by it. There are two possible states, namely the probability of

misclassification by a given bin, p, and the probability of a correct classification, i-p.

Substituting into (14), we have

H = -p log p - (1 - p) log(1 - p)

which is graphed for values ofp between 0 and 1 in Fig. 27.

59

0.35

0.3 - -

0.25 -

' 0.2 -_ -

0.1
0

0.05 ---

0

5 ; i C) o o C) C) C) CD C) C) CD U

Probability p

Fig. 27. The entropy of an experiment with 2 mutually exclusive possible outcomes, in relation to the

probability that the first outcome will occur. The high entropy at P=0.5 indicates the condition of

maximum uncertainty

The entropy is greatest for the value p = 0.5, and is minimized forp = 0 andp = 1, in

agreement with our natural intuition about the relative uncertainty of predictions made

using those values of p. Using the entropy formulation as a reference, we rate a

probability of 0.5 as having zero usefulness, and apply monotonically higher ratings to

histogram bins the greater the value of the expression Ip - 0.51.

Because each histogram's estimate may have unique information to offer, we would

prefer to preserve information from each, weighting the histograms according to the

overall quality of prediction that each provides. We have already identified three criteria

60

on which to judge the soundness of particular histogram bin's prediction, which we re-

phrase as follows:

1. Difference between predicted probability of misclassification and the value

0.5

2. Total population of points recorded by the bin

3. Greatest recorded distance of a misclassified output from the hyperplane

Each time we attempt to predict the output group based on the input coordinate values, a

different criterion may contain the crucial information. The criteria are not comparable

on a numerical basis, so instead of asking which histogram has the highest weighted sum

of scores, it would be more appropriate to pose the question in a weak form, namely

"which estimate scores well in the greatest number of categories?" In general, we would

prefer to use a histogram whose representation of the feature of interest is guaranteed by

all available guidelines, rather than excelling only in one. We cannot know which

guarantor of histogram quality is most relevant, so we would prefer to have some

confirmation from all of them. More particularly, we would like to know which

estimates can be said to be the least overshadowed by other estimates when all the criteria

are considered.

We have used a decision-making algorithm called a "Fuzzy Preference Relation" to find

optimal combinations of histogram estimates. The Fuzzy Preference Relation' is a

development of the idea of a "fuzzy set," first introduced by Zadeh[9]. A fuzzy set is a

group of elements for which the requirements of membership are not strict; that is, there

After Orlovsky[8]

61

are different degrees to which an element can "belong" to the set. This "fuzziness" is

reflected in the comparison between one histogram and another. A histogram x may not

be strictly better or more useful than histogram y, but could dominate y on the basis of

certain criteria only, just as y may simultaneously dominate x in respect to other criteria.

In general, the dominance of one histogram over another will not be complete, or "strict,"

because the measure of dominance comes from several different sources, and the sources

are allowed to disagree. In our case, these sources are the several different criteria we

would like to apply to a comparison of 2 histograms at a time. The traditional approach

to Fuzzy Decision-Making is to define a preferability index that ranks the members of a

set - in our case, histograms - according to a measure of their reliability (Baas and

Kwakernaak[10]). However, this idea is not appropriate to our application because we

wish to preserve the special information that an unreliable source may be able to provide,

even if it is not favored in general. Instead, we have pursued a weighting scheme that

asks, not "which is the most reliable source," but "to what extent do the fuzzy ratings

imply that [source] x, is better than [source] x2?" 2 Each of our 3 criteria provides a basis

on which to judge the dominance of one histogram over another. We can visualize these

judgments as coming from 3 different "experts" on the question of histogram dominance.

One expert specializes in applying the first criterion, and in a match-up between two

histograms, always chooses the one that dominates on this criterion as the more reliable.

In our model, this first expert chooses the histogram with the higher population of

recorded input values. The second expert discriminates between histograms based on the

projected height of the present input vector. The third will choose based on the proximity

of each histogram's probability value to either 0 or 1. We have no way of combining the

2 Dubois[1 1], pp. 283.

62

judgments made by the experts because they are of completely different kinds. The most

we can do is to observe how often the experts' opinions align with each other. The

criterion used by each expert is listed at the left of Table 1. These criteria are evaluated

for each of 4 hypothetical histograms, and the results displayed in the table.

Histogram X1 Histogram X2 Histogram X3 Histogram X4
Probability of 0.26 0.71 0.34 0.49

Misclassification _ .26__.71_.34__.4

Bin Population 4 15 22 19

Distance from 0.03 0.02 0.05 0.01Hyperplane , I

Table 1. Performance statistics for 4 histograms

The values given to each histogram are interpreted as follows: in the first row, the

probability furthest from a value of 0.5 is preferred. In the second, the higher the bin

population, the more reliable the histogram. In the third, the histogram showing smallest

projected height for the given input value is the most reliable. With this basis for

preferring one histogram over another, we can begin a pairwise comparison. In each

pairing, if we decide that the unanimous choice of one histogram over the other (that is,

the agreement in all three categories that one histogram is superior) should be represented

by a 1, and the unanimous choice against a histogram by a 0, we fill in the remaining

scores as 0.33 for the vote of one expert, and 0.66 for two experts' votes. These numbers

do not amount to a weighting scheme, but will rather be used as a way of coding for the

poll of experts on each histogram pair. They indicate the extent to which a histogram can

be said to "dominate" its partner.

63

Using the Fuzzy Preference Relation proposed by Orlovsky, we try all possible pairings

of the histograms to determine the degree to which each dominates the other. In Fig. 28,

these pairings are shown in a matrix, in which the numbers represent the degree to which

the histogram labeled by row dominates the histogram labeled by column. The number

between 0 (no dominance) and 1 (strict dominance) that is used to describe the

intermediate degrees of dominance is called a "preference" in fuzzy logic. The Fuzzy

Preference Relation is a matrix made up of the preferences that result from each pairing

of two histograms. The numbers on the diagonal of the matrix are all "1," indicating that

there is no meaningful preference of a histogram over itself.

64

PAF

HISTOGRAM

x.,

x 2

x 3

x 4

TNER

Xl

Fig. 28. The matrix of fuzzy preferences for the histogram performance figures in Table 1. Where
the cross-diagonal entries do not sum to 1, there was a tie3 between histograms in at least one
category.

Comparing the histograms against each other in groups of 2, we award points to one

histogram for each category in which it dominates the other. Since we are using 3 criteria

for comparing the histograms, dominance in each category is awarded 0.33 points, so that

dominance in all categories should add up to a score of 1 except where there is a tie (see

3 In this context, a tie can only arise from two situations: the fact that cases closer to the hyperplane are
more likely to be misclassified does not allow us to decide precedence between a bin giving a verdict of
"misclassified" in which the aberration is great, and a bin giving a verdict of "well classified" in which the
aberration is small. In each bin, the relative size of the aberration tends to support the verdict, and neither
bin can be said to be more correct on this score. This would also be true if the relative aberration tends to
contradict the verdict in both cases.

65

x 2 x 3)x4

1.0 .33 .66 .33

.33 1.0 .33 .33

.33 .33 1.0 .66

.66 .33 .33 1.0

footnote 3). In Fig. 28, we can see that X2 dominates XI to the extent of 0.33, and Xl

dominates X2 to the extent 0.66. These two preferences are complimentary, and must

add to 1. They also show that Xl dominates X2 to a larger degree than vice versa, and

we can extract a "net preference" value from the comparison of the two numbers - the

degree to which one dominance overwhelms the other. In Fig. 29, the matrix is redrawn,

but this time the numbers have been reduced so as to indicate only the net preference.

The dominance by XI over X2 becomes 0.33, which is the net difference between X I's

dominance of X2 and X2's dominance of XI. To the cell showing the dominance of X2

over XI, we write in a 0.

66

x, X2

x,

x 2

x 3

x 4

Extent Non-
Dominated

0.0 0.0 .33 0.0

0.0 0.0 0.0 0.0

.00 0.0 0.0 .33

.33 0.0 0.0 0.0

.66 1.0 .66 .66
x, x 2 x 3 x 4

Fig. 29. The matrix of net fuzzy preferences based on the values in Fig. 28. The largest number in
each column is the maximum extent to which each histogram is dominated by another. The tallies at
the bottom give the residual (1-max. domination).

Fuzzy Decision Making

The net preference numbers in the matrix in Fig. 29 derive from two set theory operations

defined by Orlovsky as the "fuzzy indifference relation" and the "fuzzy strict preference

relation." A "fuzzy set" is a set defined by a membership criterion that does not simply

include or exclude elements, but includes them to varying degrees. The degree of

67

x3 X4

inclusion is given by a membership function p, such that the membership of an element

x in a fuzzy set C is given by p(x).

Orlovsky demonstrates that the value of a membership function p(x) can be interpreted

as the degree to which something is true of the relationship between x and y. If U(x)

gives the degree of membership in a set, then a function u(x, y) gives a degree of

membership indicated by x, y, and the relationship between them. For our purposes, the

value of represents the degree of truth in the statement, "x is preferred to y," expressed

x y . Orlovsky refers to the fuzzy set R constituted by this u(x, y) as a Fuzzy

Preference Relation (FR), because it admits the elements x and y to the degree that x y .

Accordingly, an FR R~' is defined by the membership function p-1 (x, y) = p(y, x) 4.

New FRs can be derived from R and R-1 as follows: If R' = R r-) R-', then R' is

called the Fuzzy Indifference Relation, because it captures the degree to which a

preference of x to y is compensated by a preference of y to x. Similarly, a relation

RS = R \ R-' is a Fuzzy Strict Preference Relation because it is the extent to which x is

preferred to y beyond the preference of y to x.

Fig. 28 shows a matrix of preferences M, where M = p(h,,hj) and h refers to a

histogram, and the case (i=j) is the trivial comparison of a histogram against itself. We

have defined a function p(h , hj) by awarding 0.33 points for each criterion on the basis

of which h, is preferred to hi . The elements of M are therefore given by a fuzzy

68

4 Orlovsky, pp. 157

relation R, and the net preferences in Fig. 29 are given by the Strict Preference Relation

Rs.

It should be noted that in applying the Strict Preference Relation to the bins, we are not

taking account of one important criterion that may influence the preferences significantly.

The orthogonal axes along which the bins are constructed, taken along with the W-vector,

represent a sufficient basis for the full input space, just as did the original input parameter

directions. The axes of the space have been reoriented parallel to the hyperplane, so each

represents a mixture of components from the variables originally chosen for the given

binary classification of training data. Since each of the inputs has a certain importance

for the output, both independently and in conjunction with other inputs, it is likely that

the bins of certain axes will be inherently more significant than others. This disparity is

not explicitly represented by our scheme of weighting criteria, and may represent an

intractable source of error in the Fuzzy Preferences.

Configuring the Membrane

The previous section on the Fuzzy Preference weighting method completes our

discussion of the role of the Membrane in improving the accuracy of the estimator.

Certain difficulties related to the deployment of the Membrane in a real application

remain to be addressed. The analysis presented in this chapter has not covered the

determination of the following parameters that control the Membrane's practical

performance:

1. The number of histogram bins assigned to each axis of the input space

69

2. The total number of training cases used to populate the histogram bins.

3. The number of input variables involved in the classification at each decision point

The first issue requires us to make a compromise between the resolution at which we

characterize the membrane and the statistical certainty with which we do so. For a given

number of training cases, defining a large number of bins along each axis into which to

sort the cases provides appraisals of new input points that are highly specific to their

locality in the input space. On the other hand, the more bins are created, the fewer

training data will be observed to project into each bin, lowering the statistical value of a

verdict reported by any one bin. The outcome of Point 1 therefore depends on Point 2;

the more training cases we can accommodate initially, the larger the optimal number of

bins will be for each axis. Our program, constrained by the memory limits of the 512-

Mb/RAM workstation on which the simulation was assembled, can use up to 15,000

training cases from the building model to construct the estimator framework. At this

capacity, we have determined through a process of trial-and-error that the optimal

number of bins to use for each histogram-axis is about 30. In general, the best choice for

Point 3 - the optimal number of input parameters to include in each binary classification

- is the full complement, since a given set of input dimensions generally provides more

information than any subset that it contains. In the case of a Membrane, however, the

decision reached for a given classification is an approximation based on many competing

suggestions, and is beset by the noise from the ambiguity of a projection of an n-

dimensional space onto one axis. The optimal number of inputs will likely be something

less than the full complement, since the less influential inputs will tend to confuse rather

than clarify the verdict of the Membrane. We have found that choosing a subset of 30 out

70

of a possible 40 inputs provides the best balance of information content and noise. A

different set of 30 inputs may be chosen at each branch point in the decision tree.

71

REAL-TIME OPTIMIZATION WITH SIMULATED ANNEALING

Overview of the Simulated Annealing Procedure

The optimization problem is to try many different configurations of building parameters

until we can be satisfied that one set has been found that minimizes the energy

consumption. For a concave function, the optimal solution is found in the shortest series

of steps by using a gradient-search algorithm to modify an initial guess through several

iterations. Newton's Method 5 may be employed to control the scope of successive

adjustments and prevent divergence. This technique is not appropriate for functions that

are not everywhere convex, as a gradient search may converge at locally minimal points

in the design space that represent inferior solutions.

The model of building physics contained in the Design Advisor software can be

represented as a function in several variables giving the total energy consumption of the

building. Although the function does not have an explicit formulation, approximations to

the gradient at a given coordinate location can be found through successive evaluations of

the function. In this way, the minimum value of the building function could be found

using a gradient search, provided the underlying function is convex. However, the

function contained in the building model can be shown to be nonconvex through simple

experiments. For example, we can see that given a certain elevation of the sun as seen

from the window of a building, there will be a particular angle of the blinds A, equal to

the sun elevation, that maximizes the amount of direct sunlight that the room receives.

5 As summarized in Papalambros[12] pp. 151-152

72

We have a lower solar input for angles that are less than this maximizing A, but a lower

solar intensity will also result from greater angles. Starting with the blinds set horizontal,

we observe the sun intensity increasing as we increase the angle to A, and decreasing

thereafter. If we further assume both that the room is presently being cooled to maintain

a comfortable temperature and that the sunlight is sufficiently bright at any angle to

maintain the minimum level for work activities, the angle A is the least efficient angle for

energy conservation because it maximizes the surplus of solar heating. In at least one

input dimension, the blind angle setting, a gradient search would either reduce or increase

the input value depending on whether it began just above or just below A (Fig. 30). If the

blind angle that minimized the need for cooling were less than A, a gradient search would

never correctly identify it if it began with an angle value greater than A. Applied to a

nonconvex function, the gradient search will reveal only erroneous local minima. We

have discovered a nonconvexity in the building model that by itself disproves the

convexity of the general building energy function.

73

Penetration of Sunlight Through Blinds

2.2

. 2.1 -

2 -
0

U

= 1.4

1.7

1 .3 I I I I I I I I I

-2 0 2 4 6 8 10 12 14 16 18 [A] 22 24 26

Blind Aigle (deg. above horizontal)

Fig. 30. The light intensity inside a room as a function of blind angle, using venetian blinds of high

surface reflectivity. If the optimization begins using a scenario with a blind angle less than 20

degrees, it will move the angle to the left to achieve lower cooling loads. If it begins above the 20-

degree threshold, the optimization moves to the right to achieve lower cooling (data excerpted from

McGuire[13]).

In view of this nonconvex, nonlinear behavior in the building model, a method of

optimization different from the gradient search is called for. The problem of finding a

global minimum energy configuration is complicated by the nature of the input variables

in the building problem. The variables represent a mixture of continuously-valued

quantities and discrete ones such as compass directions. In moving from West to North,

or North to East, we have no idea whether we are "increasing" or "decreasing" the value

of the input variable. Finding that a north-facing building fagade produces a lower-

energy result than an west-facing, we would not be able to infer the likelihood of further

74

improvements from moving to an east-facing configuration. We must simply try all the

different orientations and then compare the results, and the optimization procedure

becomes a challenge of controlling the randomness in the choice of inputs to promote

lower-energy performance.

Optimization procedures that employ randomness to explore the input space of a function

are called heuristic. They differ from deterministic search procedures in the sense that

the steps followed to arrive at an optimum set of inputs are not guaranteed to be the same

each time the algorithm runs. We wish to apply such a heuristic to the estimator that we

are using as a surrogate for the building simulator. In the discussion that follows, when

we refer to an instance of "evaluating" of the objective function, we mean that the entire

decision hierarchy of our estimator - the cascade of many successive binary decisions

that ultimately places the probable output within a narrowly bounded range of values -

will be invoked for each evaluation. A complete run of a heuristic process often involves

thousands of evaluations, so the speed with which we can navigate the tree of binary

decision points is critical to the performance of the optimization. The optimum value

provided by a given run of a heuristic process will not necessarily be reproduced by

subsequent runs, although all such "optima" will all lie within a certain distance of the

true optimum with a certain probability. The three heuristic search procedures that were

examined for this project were the Genetic Algorithm, the Particle Swarm Optimization,

and the Simulated Annealing Algorithm.

75

Genetic Algorithm and Particle Swarm

Like gradient search methods, heuristics are trial-and-error calculations. By repeated

tests of the output corresponding to a particular set of inputs, we gather information about

not only the performance of the algorithm and the rate of improvement in input choice,

but also the likely direction within the input space in which further improvements will be

found. The idea of a Genetic Algorithm is to code some prediction of likely future

improvements into the present solution. It accomplishes this in a manner similar to a

population of living organisms striving to deal with a stress in their environment. Just as

stronger individuals in a group of wild animals often win precedence in the competition

for healthy mates, populations of "solutions" (proposed sets of input choices) in a genetic

algorithm are compared against each other on the basis of the output value they produce.

Solutions judged to be stronger on this basis will be mated - averaged or otherwise

combined - with other strong choices, and the "offspring" of such pairs of strong

individuals are then given extra representation in the next candidate pool. With each

passing generation, the "genes" expressed in the pool of surviving combinations of inputs

align ever more closely with the globally optimal solution, whose output value is the

lowest of all. Random selection provides the combinations of inputs in the starting

population, and perturbs the variable settings of certain individuals during mating to

simulate mutation and provide better coverage of the input space. The Particle Swarm

optimization exercises the wild animal metaphor in a different sense. This time, the

various trial solutions are like birds in a loosely organized migration. The entire group of

solutions follows a path through the input space that they trace out in parallel, evaluating

each new set of output values after an interval of movement. Each individual adjusts its

76

own movement to match the bulk movement of the swarm, but it will also be pulled

somewhat in a direction that it personally evaluates as constructive. For example, if the

swarm is moving in direction y, but then shifts direction to move in the x-direction, an

individual agent within the swarm will tend to continue somewhat in the y-direction if it

has noticed its local output value increasing due to movement in that direction (Fig. 31).

As with the Genetic Algorithm, the practitioner will usually look for the many individuals

in a population to begin to cluster around the same ideal combination of input values,

thereby signaling the end of the experiment.

1 Steepest descent

To ard r~ass I- I_ -

r o war

irection
of m ver nt

X2

Fig. 31. Direction of movement of a single particle within the input space, in a Particle Swarm
Optimization. The movement to a new sample point is influenced both by the value of the gradient at
the present position (steepest descent) and by the direction in which the center of mass of the rest of
the swarm lies. The "momentum" of a swarm of particles often serves to prevent individual agents
from becoming trapped in local minima.

77

Simulated Annealing

Genetic Algorithms (GA) and Particle Swarm Optimizations (PSO) can demonstrate an

interesting variety of ways to approach a minimum energy building configuration, and

may include optimal designs in their candidate pools that resemble each other very little

in their input values. They are especially useful when we desire to understand the trade-

off between different variable quantities - how much of x we must sacrifice if we wish to

increase y and still keep our output in the neighborhood of the global optimum. On the

other hand, both methods have the disadvantage that they are computationally expensive

when compared with analytical methods such as the gradient search. The number of

evaluation steps must be multiplied by the number of individuals in the population to give

the total number of function evaluations required for the optimization. By contrast, the

method of Simulated Annealing uses only one function evaluation per iteration of the

search algorithm. Because our simulation software is run through an online interface, we

have placed a high priority on the speed of our optimization procedure, and do not

immediately wish to present an array of trade-off comparisons to the user of the Design

Advisor website, although that may be a direction for future development. In the short

term, our software delivers a single optimized building design that minimizes energy

consumption within the user's design thresholds. The Simulated Annealing (SA) is

conceptually simple compared with the other heuristics discussed above. The procedure

is based on the idea of a "random walk" through the input space (Fig. 32a). Beginning

with an initial guess, the input parameters are varied randomly and then re-evaluated. A

record is kept of the lowest function value yet encountered, and given an unlimited

78

number of iterations, we will eventually find the globally optimal value by accident. This

kind of optimization takes the opposite approach to the gradient search (Fig. 32b), which

hones in very rapidly on a locally superior solution, but lacks the comprehensive

coverage of the random walk, forever ignoring the true global optimum if it becomes

trapped in the vicinity of a local minimum. To try to combine the comprehensiveness of

the random walk and the efficiency of the gradient search, the Annealing algorithm

begins to search the input space in a highly random way, and progressively reduces the

randomness to the point at which the process becomes purely a gradient search (Fig. 32).

Equation (15) describes the dynamics of this evolution from random walk to gradient

search:

P=e(Er (15)

P represents the probability of moving from a certain point in the input space to an

adjacent point whose corresponding output E has a greater, and therefore worse, value.

Adjacent points whose outputs are smaller are accepted unconditionally.

79

a.)

Random Walk

b.)

Gradient Search

Fig. 32. The two conceptual bases of the Simulated Annealing algorithm.

The parameter T is analogous to the temperature of a bar of iron during a metallurgical

annealing process. When the bar is at a high temperature, its constituent atoms are

relatively free to assume a wide range of energy levels. An atom will spontaneously

enter a more energetic state with high probability. As the bar cools, the atoms become

increasingly less able to assume states of higher energy, and will tend to progress only to

lower energy levels. If the bar begins at a high temperature and is then flash-frozen, it

can become tempered, a condition in which permanent interatomic stresses develop in the

material because the atoms are not energetic enough to escape local energy wells and find

lower-energy lattice configurations that relieve the stress. If the bar is instead cooled

very slowly, the atoms tend to explore the vicinity of the lowest-energy positions through

the accidents of sustained random motion, then settle into a final, unstressed state when

80

the temperature finally becomes low enough to confine them to their local wells. In our

application the temperature can be thought of as the degree of liberty given to the

algorithm to explore new locations within the input space, regardless of possible

increases in the output value corresponding to that new location.

The ability of the system to reach its minimum possible energy state depends on the

design of the cooling strategy. In (15) this takes the form of the function T = f(e),

where e is the degree of the completion of the annealing operation. Iff is a steeply

decreasing function, the process resembles flash-freezing; the search allows movement in

the input space only to coordinates where lower output values are found, and concludes

quickly like a gradient search. If a shallow slope is chosen for the functionf, the

algorithm will allow the exploration of inferior solutions to persist for longer, and the

"random walk" phase of the experiment will provide more coverage of the input space

before the search is confined to choose only better-valued solutions. If the temperature

iron bar in our analogy could be lowered by infinitesimally small increments over an

infinitely long period, the bar could be said to be fully annealed, all atoms having found

their lowest possible energy states. In any real annealing problem, we must settle for a

compromise between the duration of the experiment and the robustness of our final

minimum-energy configuration. We use a temperature program Ti = cT1, where c is a

constant between 0 and 1, to produce a cooling schedule that approaches an absolute zero

or fully "frozen" condition asymptotically. The experiment is allowed to come to an

"equilibrium" condition at each temperature step, reached when the random perturbations

cease to improve the best recorded output value at the given temperature. Then the

81

temperature is lowered by one step, where it remains until an equilibrium has been

established at the new temperature. The experiment is finally stopped when the lowest

recorded output value ceases to change with further reductions in temperature.

82

STRUCTURE OF THE COMPUTER PROGRAM

Functional Modules and Their Responsibilities

The Linear Discriminant

The library of building cases used to train the estimator program is handled by a class

called BroadTooth. The name BroadTooth distinguishes this class, which is concerned

only with implementing the Fisher Discriminant, from a separate class called FineTooth,

which invokes the membrane technique to improve on the output from BroadTooth. Both

classes are recursive, in the sense that they are capable of dividing a given library of data

in half (along the median output value), determining the vector that optimally separates

the two halves in the input space, and creating two new copies of themselves to process

each of the two halves as separate datasets. We stop creating new copies of BroadTooth

at the point when a sufficient number exist at the lowest level of the tree to provide the

desired resolution for the overall classification of data. At the conclusion of the exercise,

we are left with a decision tree consisting of a Fisher Discriminant at each branch point

that can linearly separate input data into "high" and "low" categories. This process is

illustrated in the block diagram in Fig. 33.

83

Set of building cases
(inputs & outputs)

* Instance of OLQAdTqM

Fig. 33. The creation of a decision tree. Each BroadTooth object accepts a block of building data,

separates the training data into two groups according to output value, and passes each group to a

new copy of itself, which will further subdivide the data.

The estimator can function at the most basic level using only the tree of BroadTooth

instances. New input points, for which we would like to estimate the likely output value,

cascade through the tree structure in the same fashion as a case from the training data. At

each decision point the new input encounters in the tree, it will be classed either to the

left or the right, depending on the discriminant vector calculated for that decision point

by the corresponding instance of BroadTooth. The numerical output value can be

estimated from the limits on the range of values that belong in the chosen category at the

bottom of the tree, as in Fig. 34. It will be remarked that the range of output values for a

given category is not necessarily proportional to the number of library cases attributed to

84

each - the number of library cases is the same for all categories because each group is

divided along the median output value.

15 - 35 KWh/m2 35 - 79 79 - 94 94-99 99- 114 114 - 138 138 - 184 184-235

Estimate = 106.5

Fig. 34. A classification tree terminating in 8 distinct categories. The limits ascribed to the fifth
category (99-114 KWh/M2 in this example) subtend the range of training case output values between
the 50 1h and 6 2 .5th percentile (1/8 th) of the library. If a new input is classed in one of these categories,
its likely output value is estimated as the average of the range limits of the category.

Each time an instance of BroadTooth is called on to provide the vector that optimally

separates data into two groups, it must perform two basic operations:

1. Enquire which set of n input variables out of the total of m have the greatest

influence on the separability of the two groups, and

2. Find the optimal vector w corresponding to the particular set of n inputs that was

chosen.

A class called Tree is responsible for providing both of these pieces of information (Fig.

35). It is desirable to use only those input variables that most significantly influence the

output value, because insignificant inputs can add noise and ambiguity to the membrane

procedure. Simply performing a sensitivity analysis on each variable will not reveal

effects on the output that emerge from the interactions of two or more variables. Instead,

we determine the degree to which library cases may be distinguished by output value

85

from a knowledge of their position in a space consisting of selected subsets of the input

variables.

Tree.java

50ROTPq1h.java

4
51

7

Input Variables for
Max. simparMpibity

1,4,5,7,11
Corresponding

Piwiminant Vector

Branch.java

4

1Jv1
1,4,5,7,11

1,4,5,7,11

--- Request
I 4t - Return

Instances of Branch

Fig. 35. Each instance of BroadTooth finds an optimal vector to separate its dataset into 2 groups

using the class Tree. Tree establishes a different instance of Branch to explore each permutation of

input variables - in this example, a subset of 5 variables has been requested. The permutation giving

the strongest separability J is returned to BroadTooth along with its optimal Discriminant vector, W.

The measure of our power to distinguish output values based on selected input variables

is given by the separability criterion J, which has been derived in detail in the chapter

called Linear Methods. Briefly put, J is the ratio of the convolution of the W-vector with

the between-class covariance matrix to the convolution of the W-vector with the within-

class covariance matrix for a given set of cases, when only a certain subset of input

variables are considered as the basis of the input space. To find the particular

86

combination of n input variables that gives the greatest value of J, we might expect that

the separability criterion would need to be checked for every possible permutation

containing n members. That would imply a number of checks equal to

M!

(m -n)!n! (16)

where m is the total number of input variables available to choose from. If we elect to

use 30 variables out of a possible 40, expression (16) evaluates to 848 million checks.

This calculation is performed during the training phase of the program and therefore does

not delay the process for a user of the website. On the other hand, it represents about a

week of processor time to calculate variable selections for an entire hierarchy of

BroadTooth instances like the one shown in Fig. 33. The optimal selection of 30

variables will change with the level of the hierarchy, and even with different areas of the

input space represented by BroadTooth instances that lie on the same level. Fortunately,

we can use a simplifying principle that substantially reduces the required processing time.

Our definition of the separability criterion J satisfies the monotonicity relation.

J(X+) > J(X) (17)

"where X denotes a set of [variables], and X denotes a larger set of [variables] which

contains the set X as a subset 7." This means that the separability of a given set of cases

will always be greater, the more dimensions are added to the input space in which we

calculate the Fisher Discriminant. Accordingly, if we find any permutation X of 31 or

6 BishopO, pg. 108: "In reducing the dimensionality of the data we are discarding information, and this
cannot reduce (and will typically increase) the theoretical minimum achievable error rate." A set of
variables necessarily possess more power to resolve the output value than any subset of those variables.
7 Ibid., pg. 305.

87

more variables that has a lower separability than some other permutation Y of subset of

only 30 of those 31 variables, we can discount all subsets X' of X that contain 30

variables, since by transitivity,

J(X')< J(X)< J(Y) (18)

The class Tree uses this reasoning to reduce the number of instances of Branch that it

must create (originally one for each possible combination of 30 variables). The process

follows the pattern shown in Fig. 36: say we wish to choose 2 input variables out of a

total of 5 to characterize the output from a function. We begin by choosing the first

variable that will be excluded from consideration - represented by the first level of the

tree diagram in Fig. 36. The Tree class creates an instance of Branch with an instruction

to calculate the value of J for the complete set of variables minus the one chosen for

exclusion. The Branch instance then recurses, creating a new instance of Branch from

which the first plus an additional variable are excluded. This Branch, in turn, calculates

the corresponding value of J and recurses again, and so forth until a Branch instance has

been created in which all the variables save 2 have been excluded from the analysis. This

terminal Branch corresponds to the point A in Fig. 36. The class Tree, which manages

the process from above, now stores the value of Jreturned by the terminal branch and

begins another chain of Branch objects, this time specifying a different variable as the

first to be excluded. At any junction in the heirarchy, each Branch object may spawn

several new Branches at the next level down to explore all possible permutations with

one less variable. At each of the junctions in Fig. 36, the index of the variable excluded

is indicated next to the corresponding branch point. However, because the value of Jfor

any new Branch is immediately reported to Tree, it can immediately close any avenue of

88

exploration if the root Branch returns a value of Jthat is lower than the current minimum

J for a terminal Branch. Such a halt on the recursion process is represented in Fig. 36 by

the point B. Although we have only explored the hierarchy down to the first level, we

already know after excluding only one variable that the direction is not promising. The

monotonicity relation dictates that no value of Jthat we calculate at any point below B

will be as high as the J at the point B itself. If J is already lower at B than for the terminal

point at A, we can safely overlook all the terminal points that emanate from B.

B 12 3

3 4 5 4 5 5 4 5Bihp

Fig. 36. (graphic credit: C. Bishop)

89

DESIGN OF A USER INTERFACE

Graphical Layout of the User Interface

The practical "last step" in the design of the classifier package has been to give the

software an internet presence so that it can directly interact with the existing modules of

the Design Advisor website. This purpose-built HTML interface has been written to

accept information from building scenarios that users have already created using the other

tools of the site.

1. Hold whic

El Typology
El Glazing Tyl
l Window Ai

El Insulation
0 Insulation
n Orientation
l Room Dep

El Room Heig

h inputs fixed? 2. Select a Scenario to Optimize -Thresholds
0 0 0 Low HigI

sgunb -- -- --

e low-e -- -- --

,ea 100 -- -- -- 50

Type foam -- -- --

Thickness 2.0 -- \jj10

thnor --

rht 2.?

3. Clic S rio Box(to Save

Fig. 37

90

cm
Cm

m

0pffimizerI

Previously saved building scenarios are represented in the website by tabs at the bottom

of the screen, which show selected information about the building design such as window

type and plan area. When the user enters the site's optimizer mode, that information is

copied and listed in a table under its scenario number. By selecting the appropriate

column of this table, the user indicates which pre-saved scenario he would like to

optimize, and then clicks one of the occupied or unoccupied tabs to choose a cell in

which to store the newly optimized scenario. After a short delay, the parameters of the

optimized building appear in the selected tab. The optimized building scenario functions

in the same way as a manually entered scenario; its energy consumption, comfort rating,

and daylighting properties can be viewed, and it can be sent to the Setup page where the

user can adjust the values of the parameters and re-save.

User Control of Optimization

Among the roughly 40 different design variables that influence the output of the building

simulation, only a small subset are subject to control by the user during the optimization

process. The variables that the user is permitted to hold fixed or otherwise constrain are

indicated in Table 2, along with some others that are either permanently fixed during

optimization or always free to vary. Those variables whose participation the user does

not control (marked as "fixed" and "free" in the table) are so designated because it is

assumed that the user would not wish to have that control. For example, once the user

has designated the city in which the proposed building will be situated, it is most unlikely

that he would wish to find a new, more optimal city to put the building in. Conversely,

there is little enough reason to expect that a designer would insist on a particular width

91

for the blind slats that we have allowed this parameter to vary without consulting the

user.

Variable Typical Settings User Option (X)
Can Fix Can Limit

Window typology Single glazed, double-skin facade X
Glazing type Clear, blue-tinted, low-e glass X
Window area 65% of facade area glazed X X
Insulation type Foam, fiberglass X
Insulation thickness 4cm X X
Room orientation South-facing X
Room depth 8m X X
Room height 3m X X
Room width 3m Fixed
Percent overhang 20% of window height X X
Minimum light level 400 lux Fixed
Location Los Angeles, London, Cairo Fixed
Lighting system Variable bulb brightness X
Type of ventilation Mechanical (sealed), Hybrid X
Occupancy .075 persons/i 2 Fixed
Equipment 3 W/ m_ Fixed
Air exchange rate 0.5 L/person/sec Fixed
Blind angle when closed 45 degrees Free
Blind width 3cm Free
Blind color Shiny aluminum, white plastic X
DSF cavity depth* 10cm X X
DSF cavity flow rate* 50 L/hr. Fixed
DSF cavity source* Interior Free
DSF cavity extract* Exterior Free

Table 2

Error Checking Procedure

The estimator achieves an average accuracy of 90% (implying an average error of 10% of

the true output) when benchmarked against the full building simulation used by the

Design Advisor. We use the estimator to calculate the output for each input vector

generated during the annealing process, and to verify at the end of that process that we

92

have found outputs that cannot be improved by further exploration of the input space.

Because the estimator does not replicate the behavior of the full simulation perfectly, it is

impossible to say with complete certainty that the best input vector indicated by the

estimator is actually best overall. If the building performance function is highly

nonlinear, many local minima, characterized by widely varying input vectors, will be

detected. An accuracy of 90% may not be sufficient to distinguish one minimum from

another with great certainty. To provide for this eventuality, we use the original building

simulation to verify the 5 best cases returned by the estimator. Each run of the original

model requires as much time to complete as 1000 runs of the estimator, so the price in

computation is high for the final verification procedure.

Further Accuracy Improvements

The library of cases used to train the estimator was constructed using inputs generated

randomly between agreed reasonable limits. The vast majority of cases produce outputs

with a value between 0 and 1500 KWh per m2 of building floor area. Certain input

limits, labeled "can limit" in Table 2, can be adjusted by the user to constrain the

optimization. To constrain the process further, particular inputs may be held fixed during

optimization if the user finds that certain aspects of his building design are not

negotiable. We generally observe a significant increase in the minimum possible energy

consumption as constraints are added, but the magnitude of this effect is smaller if the

starting configuration is already a relatively low-energy building. The resolution of the

estimator may not be sufficient to give accurate predictions of these marginal

improvements. Whereas the estimator might move an inefficient building by a distance

93

of 20 or 30 output slots (roughly 600 KWh/m2) to an optimal configuration, an already

low-energy building may only move by a distance of 1 or 2 (from 20-50 KWh/m 2).

Additionally, the superior cases found by the annealing algorithm, though quite different

in their specific combinations of input values, may all be attributed to the same output

slot. In other words, they may be resolved into the same range of output values at the

lowest level of the binary classification tree. In this case, the annealing algorithm will

not be able to distinguish which one is best.

The problem of discerning improvements in input configurations and comparing the

available improvements against each other becomes difficult near the bottom of the range

of possible output values. We have addressed this issue by creating a special, second-

pass estimator that applies only to the cases that belong in the lowest range of output

values. The library on which this estimator is trained before being deployed is restricted

to cases having total energy consumptions within the lowest bracket of the original

estimator's predictive range. Any new case assigned to this lowest slot by the original

estimator will then be re-evaluated by the new low-output-only estimator. Fig. 38 shows

one example of a decision path through the estimator that invokes this second estimator.

94

)0 KWh/m2

~10 KWh/M 2

LOW-OUTPUT-ONLY ESTIMATOR

Fig. 38. The branching discriminant tree has recourse to a secondary tree to increase the resolution

of small output predictions.

95

I

RESUL TS 1: ACCURACY OF THE ESTIMA TOR

Accuracy Criterion

We have measured the accuracy of the estimator by testing it on 3000 randomly

generated scenarios. In each scenario, the imputs have been randomized independently.

We predict an output value E' for each of these scenarios, and calculate a "true" output

E in parallel using the full building model. The overall error can then be expressed as a

normalized standard deviation o:

(19)
2 E ,jc- =

n -i

where n = 3000 scenarios.

Performance Statistics

The library data used to train the estimator conforms to the input range limits specified in

Table 3, below:

Variable Min. Max.
Room depth (m) 4 15
Room height (in) 2.5 5
Room width (in) 3 10
Sill height (% of window height) 5 25
Overhang depth (% of window height) 1 30
Minimum allowable light level (lux) 0 1000
Angle of blinds when "closed" (deg.) 0 90
Depth of window cavity (in, double-skin fagade typologies only) 0.1 0.2
Rate of airflow through cavity (kg/hr.) 30 90
Conductivity of insulation (W/mK) 0.02 0.04

96

Thickness of insulation (m) 0.02 0.1
Density of occupants (people/m2) 0.025 2
Density of equipment (W/m2) 0 15
Air-change rate (L/s/occupant) 7.5 40
Blind width (m) 0.01 0.05
Blind emissivity 0.1 0.9
Blind absorptivity 0.1 0.9

Table 3. Limits on randomly generated input variables in the training library.

As a baseline for the accuracy study we use a process that selects output values randomly

from the feasible range of building model outputs - between 10 and 1500 KWh per

square meter of floor area. This range accounts for roughly 99% of outputs from full

building simulations that conform to the input limits in Table 3. A random process is the

lowest-quality estimate possible, since it is completely independent of the quantity being

estimated. By performing a numerical simulation it can be shown that randomly

generating solutions gives a normalized standard deviation of 6.8 (Fig. 39).

97

Estimator Error

Discriminant Plus 10
Membrane

Discriminant Only 31

Linear Regression 490

Random Prediction 680
(1 0-1 500 KWh/mA 2)

0 100 200 300 400 500 600 700 800

Percent Error = Std. Deviation[ApproxJOutput] x 100

Fig. 39. Normalized standard deviations for the estimator with and without the membrane module,

against a baseline error of 680% for the random (minimally accurate) case.

The difference between the error of the Linear Regression in Fig. 39, with a value of

490%, and the accuracy of the branching linear Discriminant method (31%) confirms the

usefulness of a branching decision tree for nonlinear problems. The result labeled

"Discriminant Only" is the error for an estimator using a hierarchy of dual-outcome

decisions to reduce the range of the predicted output to a narrow range. The "Linear

Regression" uses the same Fisher Discriminant technique as each branch of the decision

tree, except that instead of using the projection onto the vector W to choose between two

smaller output ranges, it measures the absolute magnitude of that projection to give an

immediate prediction of the output value (Fig. 40).

98

Parameter 2
A

x

x0

Par

Xe

Projection on W

W-Vector

eter 1

* Type "A"

x Type "B"

Fig. 40. Using the projection of an input point onto the W-Vector, we can either distinguish lower-
than-median (Type A) inputs from higher-than-median (Type B) in a binary classification, or find a
numerical estimate of the output directly by taking the magnitude of the projection itself, as in a
basic linear regression.

The likely explanation for the large performance difference in Fig. 39 between the linear

regression and the discriminant-based approach is that the building performance function

is quite nonlinear. It is only by segregating the input space into small discrete sections, as

in the branching method, that a linear analysis can succeed in identifying output values

within a reasonable approximation. The uppermost item in the graph in Fig. 39 is the

error measured in the predictions of the estimator in its final version. By adding the

membrane feature to the discriminant algorithm, we reduce its overall error margin by a

factor of 3.

99

Validation of Coding Strategies

Certain input variables not listed in Table 3 are compound inputs, meaning that by setting

them to a particular value, we are effectively choosing a set of fixed numeric values to be

represented by a single designation. All of the discrete input values are composed in this

way. For example, if we choose the value "west" for the input describing the orientation

of a building, this corresponds to the choice of a particular numeric coding that can be

manipulated in the same way as other numeric values during the training and

optimization phases. In the case of the orientation, we use 4 different numeric inputs to

represent the four cardinal directions. For the purposes of the estimator, each orientation

corresponds to a set of 3 "zeros" and I "one," with a different input taking the value

"one" for each direction (Table 4).

Input 1 Input 2 Input 3 Input 4

North] 0 0 0

South 0 1 0 0

East 0 0 1 0

West 0 0 0 1

Table 4. Coding for the building orientation

The choice of the city in which to site the building is another example of a non-numeric

input. The coding scheme used for the city input is more complex than the orientation,

since many different kinds of information are associated with the location choice. As an

approximation, we have used four numeric inputs to code the name of the city: average

direct solar intensity, average diffuse solar intensity, average outdoor temperature, and

latitude. Each possible choice of siting for a building corresponds to a particular

combination of these four numeric descriptors. The weather files invoked by choosing a

100

city in our program contain hour-by-hour information on the first 3 of these, for a period

of 1 year. This amounts to a true count of (1 year times 365 days times 24 hours times 3

parameters plus latitude equals) 26, 281 numeric inputs, but these are highly coupled to

each other. We hypothesize that the total variability of building performance by city can

be adequately represented using only 4 inputs. To test the validity of this assumption, we

have compared the accuracy of the estimator for cities that appear in the training data

against its accuracy for cities that are new, but which fall within the scope of the training

data when only the 4 characterizing inputs are considered. If the 4 inputs were

completely adequate for describing the city, there would be no difference in the accuracy

when the estimator is applied to the new location. In actuality, of course, some

information is lost in the operation of reducing the dimensionality of the city input from

26,281 to 4, but the additional error incurred is relatively small; from the baseline of 9.7,

the predictive accuracy changes to 13.8 when the estimator handles cities that it has not

yet encountered in the training data.

101

RESULTS 2: OPTIMAL TUNING OF THE ANNEALING

ALGORITHM

Using the final version of the estimator, we can test the performance of hundreds of

hypothetical buildings in the time it would take to perform a single run of the original

building simulation. The estimator has been developed to serve as an extremely rapid

surrogate for the building simulation - one that would allow an optimization to complete

in only a few seconds. Using Simulated Annealing, excellent coverage of the input space

can be achieved by testing about 1000 building configurations. We have adjusted the

parameters of the annealing operation to allow the swiftest possible discovery of global

optima without sacrificing thoroughness. As described in the chapter, Real-Time

Optimization with Simulated Annealing, the probability of moving the search to a new

point in the input space depends on "temperature" of the algorithm and the predicted

output value of the building represented by the new input configuration. If the new

output evaluates to a lower number than the previous point, the new point is accepted

unconditionally. If the new output is higher (therefore worse), the new point is accepted

with the following probability p:

P = e (20)

where E is the predicted output value and T is the monotonically decreasing temperature

of the annealing process. We used a fitness criterion for judging the effectiveness of

different suites of control parameters. Having chosen in advance a particular low-energy

output value, we count the average number of function evaluations that an annealing

102

algorithm requires to find a scenario with an equal or lower value. Each suite of settings

tested is used in 10 consecutive annealing experiments. We have found as a result of this

test that the settings for the annealing parameters shown in Table 5 generally permit the

most efficient searches for our building problem.

Starting T 500 KWh/m2
Number of repetitions before temperature decrement 50
Number of repetitions at successive temperatures before termination 3
Tem erature multiplier 0.2

Table 5. Best parameters for the Simulated Annealing segment.

Using these figures, it is possible to put bounds on the degree to which our algorithm will

tolerate moving to a worse-performing input point, in the interest of covering the input

space as completely as possible. As the algorithm begins, T = 500, which according to

(20) is high enough that the algorithm will move to new input points that are worse than

the initial point by an amount 350 KWh/m 2 (i.e. Eold - E new= -350) with a probability P

= 0.5. As the algorithm proceeds, we put an increasing priority on finding lower-valued

outputs, and we become less interested in exploring the design space fully to avoid

focusing on local minima. Accordingly, as the temperature is reduced, it becomes less

likely that the algorithm will move to points with worse predicted outputs. After we have

twice decreased the temperature by the temperature decrementfactor of 0.2, the current

temperature becomes 500 x 0.2 x 0.2 = 20. At this stage, P = 0.5 is the probability of

2moving to a point that is only worse by an amount 14 KWh/M2. In our cooling schedule,

the temperature continues to be reduced each time by the same factor until moving to

worse ouputs becomes vanishingly unlikely (Fig. 41).

103

Cooling Profile

CL

-

600

500

400

300

200

100

0
1 2 3 4 5 6

Stage

Fig. 41. The experiment temperature during an annealing operation can follow any number of

profiles that end by letting the temperature approach zero. We have selected this exponential decay.

During the annealing process, we reduce the temperature by steps, waiting at each step

for the algorithm to arrive at a point where the lowest output yet recorded at the current

temperature is not beaten by an even lower output for a duration of 50 further new point-

selections. The number of selections that pass without improving the output is referred to

in Table 5 as the number of repetitions. At that point the temperature is reduced, and

continues to be lowered by the same fraction until finally terminating when the

experiment has recorded three repetitions at successive temperatures. The lowest

recorded output from the experiment is then reported as the global optimum.

104

RESULTS 3: SENSITIVITY ANALYSIS FOR OPTIMAL BUILDINGS

The ability to generate building scenarios that are close to the global minimum for energy

consumption in a given geographic region leads to the question of how robust these

solutions are. If the output value changes dramatically in the vicinity of the optimal point

for a relatively small change in one of the input variables, we can say that the output has

a high sensitivity to that input. Generally high (>1) sensitivities for all variables usually

indicate that the solution space is discontinuous or ill-conditioned. Fig. 39 shows that the

sensitivities in our model not only vary greatly by variable, but also by the conditions

under which an optimum was chosen. We have compared two optimizations: one for a

building located in Edmonton, Canada, and another for Cairo, Egypt. As we might

expect, the Edmonton building is more sensitive to variations in required minimum light

level, since the intensity of daylight will be barely sufficient or insufficient to meet the

lighting needs of an office room. On the other hand, the depth of the window overhang is

much more critical in Cairo, where strong overhead sunlight can contribute greatly to the

cooling load if not intercepted by shades.

It will be remarked that the output is more sensitive to the thickness of the wall insulation

in Cairo than in Edmonton. This seems strange, considering that insulation plays a far

more important role in a cold environment such as Edmonton, but the fact that a great

deal of wall insulation is required in Edmonton is precisely the reason why the optimal

output is less sensitive there. In locations where the optimal amount of wall insulation is

large, a large amount will be selected by the optimizer, meaning that slightly more or less

105

than the considerable thickness chosen will have relatively little impact on the result. On

the other hand, the optimizer chooses a very low thickness for Cairo, but a little more or

less than the chosen value may make the difference between having some insulation and

none at all; this difference would certainly have a strong influence on the output.

Model Sensitivity to Inputs

Blind Angle When Closed

Equipment Density

Occupant Density

Min. Light Level

Overhang Length

Room Height

Room Depth

Insulation Thickness

Window Area

-2 -1.5 -1 -0.5 0 0.5

Log(%Change, Output I %Change, Input)

E Cairo U Edmonton

Fig. 42. Input sensitivity of the energy performance of buildings in the Design Advisor.

On the logarithmic scale of the graph in Fig. 42, a value of 0 on the horizontal axis

indicates that changing a particular input produces a proportional change in output. That

this should be true of any input variable in the vicinity of an optimal point suggests a

sharp, discontinuous shape for the solution as a function of the inputs.

106

- -I,

CONCLUSION

The MIT Design Advisor belongs to a group of software products that explore how

architects' design strategies will affect the energy performance of their buildings. At this

stage, none of these products is equipped to recommend improvements to a design; the

trial-and-error guidance they provide is passive, and practitioners must find other means

to intelligently guide them toward configurations that make the most efficient use of their

site conditions. The optimizer package presented in this thesis is a first effort towards the

automation of such an "intelligence." By the standard of an experienced practitioner of

energy-efficient design, this tool is not "knowledgable," and for all the complexity of its

searching algorithms, represents an approach to finding the lowest-energy design that is

completely ignorant of the rules of good architectural practice. The optimizer does not

teach a user why its recommendations lead to a more efficient building, it only presents a

checklist of improvements to follow. Very often, the results derived from several

optimizations of the same building produce entirely different recommendations. Yet this

is also a strength of the program because, blind to the pedagogy of established energy-

conscious design practice, it rates solutions solely on the basis of their bottom line - the

energy savings they represent. There are often many different ways to reduce the energy

consumption of a particular building, and they can contradict each other, as we should

expect based on the nonlinear and ill-conditioned nature of the solution space in our own

building simulator. The advantage offered by a "blind" software program is that avoids

making many limiting assumptions that even the most experienced designers sometimes

adopt. This optimizer is able not only to refine the architect's existing approach to his

107

design, but even to circumvent that approach entirely, suggesting radical re-designs that

lead to the best building performance.

The purpose of the optimizer as a feature of the larger Design Advisor suite is to serve

the original vision of the site: to provide reassurance that the most basic choices in the

design of a building will not commit the client to a wasteful and expensive project. The

remaining question is, "how do we know what is wasteful? Wasteful relative to what?"

A building using a large amount of energy may actually be extremely efficient, given the

function it needs to perform. The answer to the question is unique to each architect's

own set of requirements. It is the question we have sought to address with the addition of

an optimizer to the larger Design Advisor tool. Beyond the straightforward goal of

providing recommendations of better designs is has the more important function of

showing the limits of possible improvements.

108

REFERENCES

[1] "MIT Design Advisor" Website. Leon Glicksman, James Gouldstone, Matthew

Lehar and Bryan Urban: @ 2001 http://designadvisor.mit.edu

[2] "Past, Present, and Future of GMDH." A. G. Ivakhnenko. Published in Self-

Organizing Methods in Modeling: GMDH Type Algorithms. Stanley J. Farlow,

ed. Marcel Dekker, Inc. New York: 1984.

[3] "The GMDH Algorithm." Stanley J. Farlow. Published in Self-Organizing

Methods in Modeling: GMDH Type Algorithms. Stanley J. Farlow, ed. Marcel

Dekker, Inc. New York: 1984.

[4] "Combining Pairwise Classifiers with Stacking." Petr Savicky and Johannes

Fiirnkranz. Published in Intelligent Data Analysis (2003), pp. 219-229.

[5] "A Multiclass Classification Method Based on Multiple Pairwise Classifiers."

Tomoyuki Hamamura, Hiroyuki Mizutani, and Bunpei Irie. Published in

Proceedings of the Seventh International Conference on Document Analysis and

Recognition, January, 2003.

[6] "A Tutorial on Support Vector Machines for Pattern Recognition." C.J.C.

Burges. Published in Data Mining and Knowledge Discovery, Volume 2, No. 2

(1988), pp. 1-47.

[7] The Mathematical Theory of Communication. Claude Shannon and Warren

Weaver. University of Illinois Press. Urbana: 1963.

[8] "Decision-Making with a Fuzzy Preference Relation." S.A. Orlovsky. Published

in Fuzzy Sets and Systems 1, 1978, pp. 155-167.

109

[9] "Fuzzy Sets." L.A. Zadeh. Published in Information and Control, June 1965, pp.

338-353.

[10] "Rating and Ranking of Multiple-Aspect Alternatives Using Fuzzy Sets." S. M.

Baas and H. Kwakernaak. Published in Automatica, Volume 13 (1977), pp. 47-

58.

[11] Fuzzy Sets and Systems: Theory and Applications. Didier Dubois and Henri

Prade. Academic Press. New York: 1980.

[12] Principles of Optimal Design: Modeling and Computation. Panos Y.

Papalambros and Douglass J. Wilde. Cambridge University Press. New York:

2000.

[13] A System for Optimizing Interior Daylight Distribution Using Reflective

Venetian Blinds with Independent Angle Control. Molly McGuire, Masters

Thesis in Building Technology at the Massachusetts Institute of Technology,

2005.

[14] Neural Networks and Pattern Recognition. Christopher M. Bishop. Oxford

University Press. New York: 1995.

110

