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Crystallographic Studies of the Metal-Responsive Transcription Factor NikR

By
Eric R. Schreiter

Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy in Biological Chemistry, June 2005

ABSTRACT

Metal ion homeostasis is critical to the survival of all cells, because requirements
for these essential nutrients must be balanced with their toxicity when present at elevated
concentrations. Regulation of nickel concentrations in Escherichia coli is achieved via
nickel-induced transcriptional repression of the nickel permease complex, NikABCDE,
mediated by the NikR metalloregulatory transcription factor. To understand how this
takes place at a molecular level, X-ray crystallography was used to determine three-
dimensional structures of the NikR. Structures of apo-NikR and Ni2t-NikR show an
interesting quaternary arrangement of the functional NikR tetramer, consisting of two
dimeric Ribbon-Helix-Helix (RHH) DNA-binding domains separated by a tetrameric
regulatory domain that binds metal ions (MBD). NikR is the only known metal-
responsive member of the RHH family of transcription factors, and the structural
relationships between NikR and other RHH proteins are detailed in this thesis. The high-
affinity nickel-binding site of NikR is located at the tetramer interface of the MBD, with
square-planar coordination by three histidines and a cysteine sidechain. A structure of
NikR in complex with a 30 base-pair oligonucleotide containing the nik operator
sequence illustrates the dramatic conformational changes associated with DNA binding,
shows the nature of the specific and non-specific contacts between NikR and its operator,
and reveals a second functionally relevant metal-binding site created at the interface of
the RHH domain and MBD. Binding of nickel ions to the high-affinity site of NikR is
proposed to increase affinity for the nik operator through a combination of mechanisms.
Perhaps the most important of these is by ordering one face of the MBD of NikR,
allowing productive interaction with the DNA phosphate backbone in the center of the
operator. Additional metal ions further increase the affinity for operator by binding to the
site situated at the RHH-MBD domain interface, and perhaps by binding to one of several
sites on the surface of NikR identified by soaking crystals in excess Ni 2 .

Thesis Supervisor: Catherine L. Drennan

Title: Associate Professor of Chemistry
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Overview of this thesis

This thesis describes X-ray crystallographic experiments directed towards gaining

a better understanding of the molecular mechanism of nickel-mediated repression of

nikABCDE transcription by the Escherichia coli NikR protein. Chapter 1 provides the

reader with a brief introduction to the importance of metal ions, specifically nickel, in

biology. It also describes biochemical and biophysical characterizations of the NikR

protein that have been carried out by other laboratories prior to and during our

investigations. Finally, it gives a short overview of what is known regarding the

structural mechanisms of ligand-regulated transcription factors.

In Chapter 2 we report the first two crystal structures of NikR to be determined,

that of full-length apo-NikR and the nickel-bound isolated metal-binding domain (MBD).

We learned that the NikR tetramer is composed of two dimeric Ribbon-Helix-Helix

(RHH) DNA-binding domains (DBDs) flanking a central, tetrameric MBD, and that this

separation of the two RHH domains explains how NikR can bind an operator sequence

with sub-sites separated by two turns of DNA. The Ni2+-MBD structure also provided

the first view of the high-affinity nickel-binding site of NikR, coordinated in a square-

planar geometry by histidine and cysteine sidechains across the tetramer interface. This

work was published, essentially as written here, in the October, 2003 issue of NAature

Structural Biology,, now called Nature Structural and Molecular Biology.

Chapter 3 describes two additional crystal structures of NikR, the full-length

nickel-bound NikR tetramer and the complex between NikR and a 30 base-pair double-

stranded oligonucleotide containing the nik operator sequence. The full-length Ni -

NikR structure confirms that the structure of the MBD and the high-affinity nickel

binding site are the same in the context of the full-length protein. It also shows a unique
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conformation of the RHH domains with respect to the MBD, illustrating the

conformational flexibility of NikR. In the structure of the NikR-operator DNA complex,

the RHH domains have undergone a more dramatic rotation, pointing now towards the

same face of NikR and creating an interface with the MBD where a putative potassium

ion from the crystallization buffer is bound. This new metal-binding site involves

coordination by two carboxylate sidechains of the RHH domain. Mutagenesis of these

residues, done by Sheila Wang in Dr. Deborah Zamble's laboratory, supports the idea

that this site is important for the operator-binding function of NikR. The NikR-DNA

complex also reveals contacts to the slightly curved operator DNA from both the RHH

domain and MBD. This work has been prepared in manuscript format and will be

submitted for publication in the near future.

Chapter 4 represents a work in progress towards understanding the ability of NikR

to bind divalent transition metal ions. A structure of the MBD of NikR in complex with

Cu2 ' ions shows the metal binding at the same position as, and with a similar

coordination to Ni2+ . Another structure of the MBD, crystallized in the presence of Zn +

shows zinc ions putatively bound to a site adjacent to the Ni/Cu 2 site, with two protein

sidechain ligands in common. Further work will be required to confirm this assignment,

however, as the low pH (5.6) and low occupancy of the zinc ion in the structure call its

validity into question. Also described in this chapter, crystals of either Ni24-NikR or the

NikR-DNA complex were soaked in solutions containing millimolar concentrations of

Ni2+ ions in an attempt to observe a secondary nickel binding site on NikR that has been

observed biochemically to substantially increase the affinity of NikR for its operator

when occupied. Four unique nickel-binding sites were located in both crystals, and
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provide a basis for future mutagenesis experiments to determine their relative importance.

This work has been prepared as a manuscript such that it could be published pending

additional work to characterize the metal ion binding sites that have been identified.

As mentioned previously, the amino-terminal DNA-binding domain of NikR

belongs to the Ribbon-Helix-Helix (RHH) structural superfamily, which binds DNA via

specific contacts from -strands of the protein to the nucleotide bases exposed in a DNA

major groove. Chapter 5 reviews the important structural aspects of the RHH family and

compares NikR to the other structurally characterized members. A structure-aided

sequence alignment also allows comparison with putative RHH sequences for which no

structural information is available. This chapter was written such that it could eventually

be submitted for publication as a structural review of the RHH family.

A brief afterword is provided as Chapter 6, to put into context for the reader what

was accomplished in this work, what questions have been raised as a result, an what types

of experiments could be done in the future to learn more about this system.

Finally, the appendices in Chapter 7 are intended to provide future experimenters

with detailed protocols that were used during this work, and to catalog works in progress

that are not yet part of a larger story.

10



Some abbreviations used in this thesis:

ABC: ATP-Binding Casette

ADA: N-(2-(Acetamido)imino)diacetic Acid

AdoMet: S-Adenosylmethionine

CD: Circular Dichroism

CSD: Cambridge Structure Database

EDTA: Ethylenediaminetetraacetic acid

EGTA: Ethylene glycol-bis(2-aminoethyl)-N,N,N',N'-tetraacetic acid

LB: Luria-Bertani media

MBD: Metal-Binding Domain of NikR

MSA: Gel-Mobility Shift Assay

PAR: 4-(2-Pyridylazo)resorcinol

PDB: Protein DataBank

PEG: Polyethylene Glycol

RHH: Ribbon-Helix-Helix

RMSD: Root Mean Square Deviation

SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

TEA: Triethyl amine

XAS: X-ray Absorption Spectroscopy

11



Chapter I: Introduction

I.A. The importance of metals in biology

Metal ions play a variety of roles in biological systems. By themselves, they

serve to carry charge, such as in the generation of an action potential in a neuron, and to

maintain the osmotic balance of cells'. As cofactors of proteins and enzymes, metal ions

serve to stabilize functional protein folds, reversibly bind and transport dioxygen, shuttle

electrons, and promote chemical reactions that would otherwise be extremely

unfavorable. I hope to illustrate in this thesis how metal ions can also serve as a specific

signal to regulate the production of proteins at the transcriptional level.

Despite their many uses within cells, metal ions, particularly transition metal ions,

can be harmnful if present in greater than normal abundances'. They can catalyze the

formation of hydrogen peroxide and other damaging reactive oxygen species, or can bind

to non-specific sites on proteins and nucleic acids, either preventing the normal function

of the molecule or creating a new reactivity that may be detrimental to the cell.

Fortunately, a number of mechanisms exist to regulate the intracellular concentrations of

metal ions such that they are maintained at productive levels. There are specialized

metal-binding proteins such as the metallothioneins 2, capable of chelating excess free

metal ions, and integral membrane efflux proteins3, which pump metal ions out of the

cell. Alternatively, some organisms control concentrations of specific metals by

regulating production of the proteins responsible for their uptake from the environment.

All of these homeostatic mechanisms can be controlled at the transcriptional level by

metalloregulatory transcription factors, proteins capable of transducing the signal of
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metal binding to an increase or decrease in gene expression. Structures of a number of

metalloregulatory transcription factors are illustrated in Fig. I.1. Recently, strong

arguments have been made against intracellular pools of "free" copper4 or zinc5 ions,

both of which employ metalloregulatory transcription factors with exceptional sensitivity

to their respective metals. It seems likely that other biologically important transition

metal ions are maintained in a similar fashion.

Metals that do not usually have a use in our bodies, such as platinum, gold,

lithium, technetium, and gadolinium, have found use as therapeutics or contrast agents

for medical imaging'. The most talked about metal compound of recent is cisplatin, an

anticancer drug that has received press because of its successful use in the treatment of

American cyclist Lance Armstrong's testicular cancer.

I.B. Nickel in biology

Nickel is found ubiquitously throughout the environment at low to moderate

concentrations, primarily in the Ni2+ oxidation state6 . Nickel is an essential trace element

for the growth a number of bacteria, archaea, and plants, and studies have shown

depressed growth rates of several mammals on nickel-deficient diets6 . Although the

reasons for the beneficial effects of nickel in mammals are not understood, the molecular

details of the nickel requirements of bacteria have been well studied. To date, at least

eight nickel-dependent enzymes have been identified and characterized from bacteria and

archaea, representing a wide range of interesting chemistry 7. Among them are carbon

monoxide dehydrogenase (CODH), which is capable of interconverting the gases CO and

CO2, acetyl-coenzyme A synthase (ACS), which can convert CO gas into a metabolically
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available carbon source, NiFe-hydrogenase, which catalyzes the reversible oxidation of

hydrogen gas, and methyl-coenzyme M reductase, which evolves methane. Considering

these reactions, it is clear why bacteria and archaea that metabolize these gases have a

nickel requirement for their growth. All eight of the characterized nickel-dependent

enzymes have been studied structurally, either by X-ray crystallographic or NMR

methods. The nickel cofactor-containing active site of each of these enzymes is

represented in Fig. 1.2. This figure shows that nickel cofactors can be complicated,

sometimes requiring post-translational modification of the protein scaffold and assembly

of a multinuclear metallocluster. The maturation processes of the urease and NiFe-

hydrogenase enzymes are the most extensively studied and appear to include the

involvement of nickel metallochaperones (UreE and HypB, respectively) capable of

specifically inserting nickel into the correct position within the enzyme active site 8, a

feature they may have in common with many complex metalloenzymes.

I.C. Nickel uptake in bacteria

Bacteria can acquire nickel via the low-affinity, high-capacity magnesium

transport system, CorA, when nickel is present at very high concentrations 9. However,

under physiological conditions where magnesium concentrations are high and nickel

concentrations are generally quite low (low nanomolar in sea and fresh water), nickel

uptake via CorA is not relevant and more specific high-affinity transporters are

requiredl°. Two classes of high-affinity nickel importers have been identified in bacteria.

The first is an ATP-Binding Cassette (ABC)-type transporter", exemplified by the

NikABCDE complex in E. coli' 2, which need nickel for incorporation into the three
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NiFe-hydrogenase isozymes for growth under anaerobic conditions. This complex

consists of a soluble periplasmic nickel-binding protein (NikA), two integral membrane

subunits (NikB and NikC), and two cytoplasmic ATP-binding cassette subunits (NikD

and NikE), which couple hydrolysis of ATP to a conformational change in the

membrane-spanning subunits, allowing transport (Fig. 1.3). Crystal structures of NikA

were reported recently' 3 , and NikBCDE can be thought of as generally similar on a

structural level to the B12 transporter complex BtuCD4 . Transcriptional regulation of the

nik operon in E. coli is mediated by the NikR protein in a nickel-dependent manner (Fig.

1.3). The second class of transporter is represented by HoxN from R. eutropha, a single-

component high-affinity nickel permease' l6. Nickel transport systems in bacteria have

been reviewed in more detail recently 7 '17.

I.D. The NikR protein

When transposon mutants of E. coli with significantly reduced hydrogenase

activity were isolated'0o' 8 and the disrupted nik locus was sequenced, it was found to

encode the ABC-type transporter complex NikABCDE, described earlier. The authors

noticed that increased concentrations of nickel repressed transcription of the nik operon,

and that an inverted repeat sequence flanked the putative -10 region of the nik promoter.

These two pieces of information hinted at the existence of a transcription factor capable

of regulating transcription of the nik operon dependent upon nickel concentrations.

Subsequently, an open reading frame (ORF) immediately downstream of NikE was found

to encode a 133 amino acid protein responsible for the nickel-dependent regulation of nik

transcription, and was termed nikR 19 .
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Since its discovery, the NikR protein from E. coli has been characterized

extensively using biochemical and biophysical methods. An alignment of E. coli with

homologous protein sequences is shown in Fig. 1.4. NikR was identified as a member of

the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins using sequence profile-

based database searching methods20 . A detailed structural comparison of NikR with

other RHH family members is provided in chapter V of this thesis. Treatment of purified

NikR with the protease elastase produced a stable N-terminal fragment approximately the

size of a RH-IH protein. Furthermore, this N-terminal domain was found to fold as a

dimer, have the (x-helical content expected of a RHH protein, and to weakly bind DNA.

Mutation of Arg3 to Ala, a residue predicted from homology with other RHH members to

be important for DNA binding, abolished the DNA-binding activity of the N-terminal

NikR fragment. The relation of NikR to other members of the RHH family is reviewed

in detail in Chapter 5 of this thesis.

Sequence alignment of the C-terminal portion of NikR revealed seven conserved

amino acid sidechains with the capability of coordinating nickel ions. Addition of nickel

ions to purified NikR or the isolated C-terminal domain (hereafter referred to as the

metal-binding domain, or MBD) revealed a 1:1 Ni2 f:NikR binding stoichiometry and

produced additional characteristic features at 302 nm and 460 nm in the UV-Vis

absorption spectrum21. The nickel-bound protein is a faint yellow color when

concentrated in solution. An X-ray absorption spectroscopy (XAS) study showed that

this nickel binding site in NikR had a square-planar coordination geometry, with the

nickel coordinated by one S and three N/O ligands22. Their results also suggest that this

coordination geometry changes to a six-coordinate site with loss of thiolate ligation in the
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presence of specific DNA. Although this result is not supported by our structural work, it

is possible that differences in sample preparation could account for the discrepancy

between the studies (see Chapter 3). Nickel binding to the MBD of NikR was associated

with an increase in secondary structure content, as assayed by circular dichroism (CD),

and a change in the shape of the protein, as monitored using analytical ultracentrifugation

(AUC) 23. Additionally, NikR is tetrameric, either in the absence or presence of nickel

ions. By titrating nickel into a solution of NikR in the presence of EGTA to keep the free

nickel ion concentration low, and monitoring the absorbance at 302 nm, a dissociation

constant (K) of nickel for NikR was measured to be 1-2 pM23 ,24. Other divalent

transition metal ions such as Cu2+, Zn2+, Co2+, and Cd-+ bind NikR with the same

stoichiometry and similar affinities, implying that the high-affinity metal binding site of

NikR is not selective for nickel24.

DNase footprinting of an oligonucleotide containing the sequence upstream of the

nikA gene in the presence of NikR and stoichiometric nickel ions revealed that NikR

protects a region encompassing the inverted repeat sequence and -10 region of the nik

promoter mentioned earlier23'2 5. Titration of Ni-NikR into the footprinting assay solution

gave a Kd of' 5-30 nM for the nik operator. Oddly, despite this high affinity for the nik

operator, no shift of this DNA sequence is observed in a gel-mobility shift assay (MSA)

after incubation with Ni-NikR. A shift is seen, however, if the gel and running buffer

contain 35 glM NiCl,. Titrating NikR into this MSA reveals a Kd of 10-20 pM for the nik

operator in the presence of excess nickel ions, a value significantly tighter than that

obtained from the DNase footprinting assay with stoichiometric Ni-NikR. This result

hints at the existence of secondary nickel site(s) on NikR in the presence of DNA.
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Indeed, two independent techniques were successful at determining a Kd of Ni2+ for this

secondary site, although the values obtained differ significantly. In one study, an

extended footprint was seen in the DNase assay in the presence of excess nickel, and this

feature was exploited to calculate a Kd of -30 kpM for this secondary site23. A second

study, however, failed to reproduce this extended footprint but instead lowered the

concentration of Ni- -NikR below the Kd with stoichiometric nickel and titrated in excess

NiCIl to regain the original DNase footprint 25. Using this method, the authors

determined a Kd for the secondary nickel site of 30 nM, three orders of magnitude

different from the value obtained in the original study. Chapter III of this thesis describes

structural evidence for the existence of a secondary metal binding site on NikR in the

presence of operator DNA. Stoichiometric amounts of divalent transition metal ions such

as Cd2 , Co2 , and Cu' are capable of activating NikR to bind specifically to DNA with

an affinity similar to that of Ni +. The response of NikR to excess metal ions is

somewhat specific for nickel, however, because excess nickel produced the highest

affinity for specific DNA relative to other metals 25.

Finally, it was estimated that under anaerobic conditions in Luria-Bertani (LB)

media, E. co/i contain -125 molecules of NikR per cell, corresponding to an intracellular

concentration of -200 nM using a cell volume of lx10-'5 L2 3 . This concentration of NikR

with stoichiometric nickel bound would result in a substantial occupancy of the nik

operator, given the measured Kd of 5-30 nM. It remains to be seen whether occupancy of

both nickel binding sites and the associated increased operator affinity is physiologically

relevant.
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Some recent work has focused on characterization of the roles of the NikR

ortholog from the human gastric pathogen, Helicobacter pylori (HpNikR). This

organism requires significant amounts of nickel for incorporation into the active sites of

both NiFe-hydrogenase and urease. The latter catalyzes the hydrolysis of urea to

ammonia, increasing the pH of the bacterium's local environment and allowing it to

colonize the acidic lining of the human stomach. The result is an increased risk of

developing gastric ulcers.

First, it was demonstrated that HpNikR was responsible for inducing urease

expression in that organism , a role that contrasts with the repressor function preformed

by the NikR from E. coli. Recently, transcriptome analysis of a deletion mutant revealed

that H. pyloi NikR regulates transcription of not only the nickel importer and urease

enzyme, but also other regulatory networks, through repression of the gene encoding the

ferric uptake regulator (Fur) protein27 ' 8 .

I.E. Structural mechanisms of ligand-regulated transcription factors

Ligand-regulated transcription factors represent a large and functionally important

class of DNA-binding proteins that are capable of regulating metabolic pathways in

response to te presence or absence of a small molecule (usually) ligand. NikR belongs

to the metalloregulatory sub-class of this group and is capable of regulating nickel uptake

in a nickel-dependent manner. Our results described in this thesis, including structures of

NikR in the apo, ligand-bound, and DNA-bound states, have allowed us to propose a

detailed mechanism of ligand-activated transcriptional repression (see chapter 3) for this
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system. For only a small number of these ligand-regulated transcription factors is an

equivalent amount of structural information available (see below).

The only other metalloregulatory transcription factor for which structures of the

apo, metal-bound, and DNA bound states are available is the DtxR/IdeR family (Fig.

1.1.A)29-33. For this family of iron-activated regulators, binding of metal ions to three

unique sites is able to stabilize the dimeric form of the protein and produce a subtle

conformational change that places the two DNA-binding domains (DBDs) of the dimer at

the correct spacing to productively interact with two operator sub-sites along a DNA

molecule. This seems to be a general theme among dimeric ligand-regulated

transcription factors that bind operator DNA sequences containing two sub-sites. Similar

mechanisms have been proposed for the TetR34, FadR35, and Trp36 ' 7 repressor

transcription factors, where binding of the ligand forces a conformational change in the

dimeric protein that alters the orientation of the DBDs relative to each other and leads to

a strong increase or decrease in affinity for the operator DNA. In the case of the well-

studied lactose repressor, Lacl, ligand binding clearly reorganizes the interface between

the DNA-proximal subdomains of the dimer, but exactly how that change is propagated

to the DBDs remains a matter of debate as the DBDs are generally disordered in the

absence of DNA38-40. Interestingly, ligand binding to PurR, a structural homolog of LacI,

at the same structural location has exactly the opposite effect on operator affinity 4 .

Finally, the methionine repressor, MetJ, which has the same RHH DNA-binding

domain fold as NikR, is activated by the co-repressor S-adenosylmethionine (AdoMet)

via what appears to be a purely electrostatic mechanism. Structures of the apo, ligand-

bound, and DNA-bound forms of the repressor show no significant difference in protein
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conformation 4 243 . Furthermore, computational studies demonstrated that the charge

increase at the DNA-binding surface of MetJ due to AdoMet binding could account for

the 1000-fold increase in affinity of this repressor for its operator 44.
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I.G. Figures

Figure 1.1. Structures of prokaryotic metal-responsive transcription factors. Proteins are
represented as ribbons colored by subunit. Nickel ions are shown as cyan spheres, other
metal ions as green spheres. The name of each transcription factor and physiological
iunctions regulated are given below. Notably, each is a dimer that uses a Helix-Turn-
Helix (HTH) motif to specifically interact with DNA except NikR. Figure produced using
PyMOL.

A. The DtxR/IdeR/MntR family:metal uptake, oxidative stress, toxin production B.
ModE: molybdate uptake C. ArsR/SmtB family: heavy metal resistance D. Fur/Zur
family: iron metabolism, zinc uptake E. MerR/CueR/ZntR family: mercury, copper, zinc
efflux. F. NikR: nickel uptake.
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Figure 1.2. Nickel-containing cofactors of nickel-dependent enzymes. Nickel is green,
iron is brownl, sulfide is yellow, and water molecules are red spheres. Metal ligation is by
unmodified protein sidechains and backbone except where noted. A. Reduced, active
hydrogenase from D. norvegium (PDB code ICC 1). Similar structures in 2FRV, IH2A,
I FRF, and I E3D. B. Urease active site from K aerogenes, IFWJ. Similar structures in
2UBP and IE9Z. C. CODH active site from R. rubrum, 1JQK. Similar structures in
IJJY, IMJG, and IOAO. D. ACS active site from M. thermoacetica, IMJG. Similar
structure in I OAO. E. Methyl-coenzyme M reductase active site from M. marburgensis,
I MRO. Similar structures in 1HBN and E6V. F. Oxidized Ni-SOD active site from S.
coelicolor, IT6U. Other structures in 1QOD, IQOF, IQOG, QOK, and IQOM. G.
Active site of E. coli glyoxylase, I F9Z. H. Active site of K. pnellmoniae aci-reductone
clioxygenase., 1M40. Figures were prepared using PyMOL.
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Schematic representation of the regulation of nickel uptake in Escherichia
coli.
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Figure 1.4. Protein sequence alignment of NikR homologs. Numbering is for the E. coli
protein, secondary structure elements are from the structure of the E. coli NikR.
Sequences longer than the E. coli sequence have been truncated. Red highlight indicates
strict conservation of an amino acid, yellow indicates weaker conservation.
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Chapter II: Crystal Structure of the Nickel-Responsive Transcription Factor NikR

II.A. Summary

NikR is a metal-responsive transcription factor that controls nickel uptake in Escherichia

coli by regulating expression of a nickel-specific ABC transporter. We have determined two

structures of NikR: the full-length apo-repressor at 2.3 A resolution and the nickel-bound C-

terminal regulatory domain at 1.4 A resolution. NikR is the only known metal-responsive

member of the ribbon-helix-helix family of transcription factors, and its structure displays an

interesting quaternary arrangement consisting of two dimeric DNA-binding domains separated

by a tetrameric regulatory domain that binds nickel. The position of the C-terminal regulatory

domain enforces a large spacing between the contacts that each NikR DNA-binding domain can

make with the nik operator. The regulatory domain of NikR contains four nickel-binding sites at

the tetramer interface, each displaying a novel square-planar coordination by three histidines and

one cysteine side chain. Differences between the apo-NikR and nickel-binding domain

structures suggest mechanisms of DNA-binding activation upon nickel binding, and contribute to

our understanding of intracellular metal regulation.

Note: The results presented in this chapter have been published in: Schreiter, E.R., Sintchak,
M.D., Guo, Y., Chivers, P.T., Sauer, R.T. & Drennan, C.L. Crystal structure of the nickel-
responsive transcription factor NikR. Nature Structural Biology 10, 794-799 (2003).
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II.B. Introduction

Nickel is essential for anaerobic metabolism in bacteria, which use high-affinity uptake

systems to obtain sufficient quantities of this metal for growth'. Nickel uptake must be tightly

regulated, however, because too much nickel is toxic. In Escherichia coli, nickel concentrations

are controlled by transcriptional repression of the nickel-specific ATP-binding casette (ABC)

transporter complex encoded by the nikABCDE operon2'3. In the presence of excess intracellular

nickel, the nickel-dependent repressor NikR binds to an operator sequence within the nikABCDE

promoter, turning off expression of the transporter and decreasing nickel import. NikR orthologs

are found in Gram-negative bacteria and archaea, suggesting common mechanisms of nickel

regulation across a diverse set of microorganisms.

NikR is the only known metal-responsive member of the ribbon-helix-helix (RHH)

family of transcription factors. This 133 residue protein is a tetramer that shows no detectable

DNA-binding in the absence of nickel 4. There are two classes of nickel-binding sites in NikR4.

C)ne set of sites (four per tetramer) has picomolar affinity for nickel, and occupancy of these sites

results in NikR binding to a region spanning roughly 40 operator base pairs (bp) with an affinity

in the mid nanomolar range. Further addition of nickel fills low-affinity metal binding site(s)

(apparent Kd = 30 gLM), extending the NikR-DNA contact region to -65 bp and increasing DNA-

binding affinity to 15 pM. The low-affinity nickel binding site(s) may only exist in the protein-

DNA complex, and the mechanism(s) by which nickel binding to either set of sites modulates

NikR's affinity for and contacts with operator DNA are not well understood. There is, however,

evidence that DNA binding causes a change from four- to six-coordinate geometry in the high-

affinity nickel site of NikR as assayed by X-ray absorption spectroscopy (XAS)5. E. coli NikR

contains a dimeric N-terminal domain (Metl-His47) that binds operator DNA weakly and is
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homologous to RHH transcription factors, including the Arc, Mnt, CopG, MetJ, TraY, and co

repressors6 . The C-terminal regulatory domain, or metal binding domain (MBD), of E. coli

NikR (Gly48-Asp 133) is tetrameric and contains the high affinity nickel-binding sites

To gain insight into how nickel regulates NikR function, thereby regulating its own

uptake, we have determined the crystal structures of two forms of E. coli NikR: full-length apo-

NikR at 2.3 A resolution and the nickel-bound C-terminal regulatory domain at 1.4 3A resolution.

These structures establish basic architectural features of NikR, including the relative positions of

the DNA-binding domains, the nickel-binding sites, and the tetramerization interface. The

structures explain the relatively large operator sub-site spacing, reveal a novel biological nickel

coordination, and show how changes in nickel coordination geometry might be effected with

minimal structural rearrangement.

II.C. Results and Discussion

11. C. i. Overall fiattres of fill-length apo-NikR

The NikR structure reveals a simple modular design, with dimeric RHH DNA-binding

domains attached at either end of the tetrameric C-terminal regulatory domain (Fig. II. I .a). The

N-terminal sequences of two NikR subunits intertwine to form each C,-symmetric RHH domain,

as has been observed for other family members7 T 1. The C-terminal regulatory domain forms a

tetramer with approximate D (dimer of dimers) symmetry. We will refer to the two MBD

subunits that are attached to each DNA binding domain as the core dimer. Each subunit in the

NIBD has a ferredoxin-like fold (P-at-3-3-ca-). The MBD subunits in each core dimer form an

extensive hydrophobic interface, composed predominantly of branched hydrophobic side chains,

between their respective [3-sheets. The tetramerization interface between core dimers is located
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at the end of the 3-sheet distal to the DNA-binding domains. This interface results in an eight-

stranded antiparallel P3-sandwich structure with -90 ° of twist across its length. Several

interactions appear to contribute to the formation of a stable tetramer, including a hydrophobic

cluster formed by Leu85 from each MBD subunit and hydrogen bonding between the 13-strands

fiom adjacent subunits. The symmetry axes of the MBD tetramer are not coincident with the

symmetry axis of either DNA-binding domain, making the overall structure of apo-NikR

asymmetric.

IL C. 2. Nickel binding

In the absence of a structure of full-length NikR with nickel bound (see Methods

Section), the structure of the isolated MBD has allowed us to locate the high-affinity binding site

for nickel, and to compare apo and nickel-bound forms of this domain (Fig. II.l.b). The four

nickel-binding sites in this structure are located at the tetramer interface. In each site, the nickel

ligands are arranged in a novel square-planar coordination consisting of the side chains of His87,

His89, and Cys95 from one NikR subunit and the side chain of His76 from the adjacent subunit

across the tetramerization interface (Fig. II.2.a). The detailed geometry of the site is described in

Table IV. 1. The square-planar nature of this high-affinity binding site may confer specificity for

nickel over other biologically relevant metal ions that do not commonly adopt this geometry.

The nickel-binding sites of NikR are not equivalent to any of the catalytic nickel sites that have

been identified in enzyme structures'. The square-planar nickel site in the anaerobic acetyl-CoA

synthase (ACS) enzyme is the most similar, but employs two cysteine sulfur atoms and two

protein backbone amide nitrogens to coordinate nickel.
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The overall fold of the MBD is largely the same with and without bound nickel, but

superposition of the nickel-free and nickel-bound tetramers (1.6 A rmsd for common C, atoms)

reveals some notable differences (Fig. Il.l.b). The most significant structural changes affect

helix u(3 and the loop between strands 3 and 4 near the nickel-binding site (labeled with an

asterisk in Fig. II. I .b). Helix 3 is ordered in just one of the four subunits of the nickel-free

structure and, even in this subunit, is shifted relative to the nickel-bound structure. This a-helix

has a significantly higher average B-factor than the rest of the apo-NikR model (88.8A2 vs. 65.1

A2, respectively). His76 in helix 3 serves as one of the nickel ligands (Fig. II.2.a), making it

likely that the position and folding of this helix are stabilized by bound nickel. Indeed, nickel

binding increases the -helical content of the MBD and full-length NikR in solution4 . The

remaining three nickel ligands in strands 3 and 34 are connected by a loop that moves closer to

the nickel site in the nickel-bound structure, resulting in a shift of -2.6 A in the side-chain

position of His89, one of the nickel ligands (Fig. 11.3.a). The His87 and Cys95 nickel ligands

adopt significantly different sidechain rotamers in the two structures, and the movement of these

nickel ligands coincides with additional movements in the side chain positions of several nearby

residues. These movements of the nickel ligands and neighboring residues between the nickel-

free and nickel-bound structures suggest that the nickel-binding site is not pre-organized.

The nickel coordination observed in the NikR MBD structure is similar in most details to

that predicted by XAS studies and site-directed mutagenesis experiments, with Ni-N and Ni-S

bond lengths of 1.90 and 2.18A, respectively 5 . Square-planar geometry and the use of His87,

]His89, and Cys95 as nickel ligands are both observed in the structure and predicted by solution

studies. The solution studies, however, predict that Glu97 is the fourth nickel ligand, whereas

we observe His76 in this role. Glu97 hydrogen bonds to one of the nickel ligands in the MBD
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structure (His87) and is part of an interesting hydrogen-bond network linking adjacent nickel

sites, as shown in Fig. II.3.b. Mutations at this position would therefore be expected to

destabilize nickel binding. However, the XAS spectra of the nickel-bound MBD and full-length

NikR molecules are not identical, suggesting that several different nickel coordination

geometries may be possible. Moreover, XAS experiments show that the nickel site changes from

four-coordinate to six-coordinate upon binding to operator DNA5. In the MBD structure, several

nearby side chains (5 to 6.5 A from the nickel ion) are conserved in NikR orthologs (Figs.

1.2.a,b) and might serve as new nickel ligands if the protein conformation changed modestly

upon DNA binding.

I1. C. 3. MBD holmology to other regulatory domains

The MBII) of NikR is structurally homologous to several classes of proteins containing an

"ACT-like" domain13 and is most similar to the regulatory domains of the metabolic enzymes

phosphoglycerate dehydrogenase (PGDH), ATP phosphoribosyltransferase (ATP-PRTase)l5

and phenylalanine hydroxlyase (PheOH) . PGDH and the MBD of NikR share a common

topology, a similar quaternary structure for two protein subunits, and nearly identical positions

for binding of their respective allosteric ligands, serine and nickel (Figs. 1I.l.c,d). PheOH has a

different quaternary organization but its ligand (phenylalanine) has been proposed to bind in a

similar location to the serine in PGDH. The topology and tertiary organization of the NikR

IVIBD also matches the regulatory domain of LrpA'7, thought to be representative of the leucine-

responsive regulatory protein (Lrp) family of transcription factors. The LrpA C-terminus serves

las the archetype, for the recently categorized Regulation of Amino acid Metabolism (RAM)

domains'. The similarities between these regulatory domains suggest that a common mechanism
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may be employed to propagate ligand-binding signals to adjacent protein domains, but the

molecular details remain to be elucidated.

I. C. 4. The Ribbon-Helix-Helix domain and operator recognition

The DNA-binding domain of NikR has a dimeric structure similar to other proteins in the

RHH family. This domain is structurally most similar to the Mnt, Arc, MetJ, CopG, and o

repressors, in order of increasing rmsd values (Table I1.1). Mutagenesis experiments and

homology with other RHH proteins suggest that residues on the surface of the anti-parallel 3-

sheet in the NikR DNA-binding domain should contact the major groove in each nik operator

sub-site 6. RHH repressors also use a few residues from the second -helix to contact the DNA

phosphate backbone. Interestingly, NikR homologues show considerably more sequence

conservation throughout this second -helix than would be expected based on DNA-binding

considerations. Since NikR is the only RHH transcriptional repressor that is known to be metal-

responsive, it is possible that this helix is important for the allosteric regulation of NikR by

nickel.

Most RHH proteins bind as tetramers to operator sequences containing tandem binding

sites, usually arranged as an inverted repeat, for each dimeric DNA-binding domain. The center-

to-center distance between the tandem operator sub-sites is typically one turn of the DNA helix

or less (Figs. II.4.c,d). NikR is unusual in this regard, as its operator sub-sites are separated by a

center-to-center spacing of more than two complete turns of the DNA helix. The structure of

NikR reveals that the regulatory MBD tetramer enforces this larger spacing of operator sub-sites.

Although apo-NikR is approximately the correct size to span the larger operator, closer

inspection of Fig. 11.4.b shows that the DNA-binding domains are not positioned to allow both to
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bind simultaneously to a linear B-form DNA molecule. A conformational change in both the

protein and DNA would be needed to allow bivalent interactions. Specifically, we expect a

rigid-body rotation of the RHH domains relative to the MBD tetramer that brings the base-

contacting 3-sheets closer together, as well as a curvature of the DNA to prevent steric clashes

with the regulatory domain helices (Figs. 11.4.a,b). The DNA-binding domains of NikR are

linked to the tetrameric MBD by residues that are partially disordered in one subunit of the apo-

NikR structure and have different conformations in the others. Difference distance matrix

analysis using ESCET'9 and AO, A plots ° of the four apo-NikR molecules support the notion

that this poorly conserved linker serves as an inter-domain hinge, with vertices at residues 41 and

48-49. Linker flexibility coupled with nickel-induced allosteric changes in the MBD presumably

allows the DNA-binding domains to assume conformations compatible with strong operator

binding.

[I. C. 5. Implications for NikR filnction

The structures presented here are consistent with several possible models for how nickel

binding could regulate NikR function. First, nickel binding creates or stabilizes a form of NikR

in which the RHH domains are positioned correctly for operator sub-site binding. As mentioned

above, the structure of the full-length protein in its apo-form is not capable of binding DNA,

suggesting that the role of nickel could be to induce or stabilize a protein conformational change.

Analytical ultracentrifugation (AUC) experiments 4, XAS data5, and comparison of the structures

presented here are all consistent with the idea of conformational changes in NikR. The ordering

of helix cx3, as well as movement of a loop and conserved side chains near the nickel binding site

could all be part of a signal propagation to the RHH domains. The high degree of conservation
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of the residues of the second helix of the RHH among NikR homologs suggests that this helix

could be a region to which a signal is propagated. This communication would be a long-range

allosteric effect since the nickel site is 25-30 A from the center of this helix.

In a second model of NikR activation, nickel would exert its influence on gene

transcription by formation or stabilization of the tetrameric form of NikR that is required for

DNA binding. In vitro, however, nickel is not essential for tetramer formation. Our structure of

apo full-length NikR is tetrameric, and AUC studies show that NikR is a tetramer with and

without nickel4. The caveat for both crystallography and AUC is that these techniques require

higher concentrations (> 50 pM) of NikR than one would expect to find in an E. coli cell (-200

nM)4. The position of nickel ions bound at the dimer-dimer interface, coordinated by residues

from two protein subunits, also suggests a role in tetramer stabilization. Perhaps tetrameric NikR

can form in vivo and in vitro without nickel, but is not stable as a tetramer in the presence of

DNA without nickel, and thus is ineffective as a repressor. This idea is consistent with

denaturation experiments that show that nickel increases the stability of the MBD to the presence

of urea4, but the stability of the tetramer in the presence of DNA has not been measured.

Finally, nickel binding could act to increase the affinity of NikR for operator DNA by

,decreasing the net negative charge of the regulatory MBD tetramer, making an interaction with

DNA more electrostatically favorable. If the MBD tetramer does indeed contact operator DNA,

it is likely to bind via the face of the MBD oriented toward the DNA model in Fig. 11.4.b. An

electrostatic potential surface generated in GRASP 2' (Fig. 11.5) shows a stripe of neutral to

positive charge amid an otherwise negatively charged MBD surface. It should be noted that

these models of nickel-dependent regulation of NikR function are not mutually exclusive. It
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seems likely that nickel plays multiple roles in activating NikR for operator binding, and that a

combination of changes in repressor properties is required for function.

Metal-responsive transcription factors play a key role in intracellular physiology. These

proteins must respond efficiently and specifically to excess metal, preventing toxicity while

allowing the appropriate levels of trace metals required for cell growth and proliferation. The

structure of NikR reveals the architecture of a protein capable of this level of

regulation. Interestingly, the regulatory domains of NikR are similar in structure to regulatory

domains of allosteric enzymes such as PGDH. Indeed, the nickel-binding sites of two NikR

subunits can nearly be superimposed upon two PGDH allosteric effector sites. Thus, NikR uses

a well-studied DNA-binding fold, a regulatory fold found in enzymes and transcription factors,

and a unique metal-binding site that should exhibit specificity for nickel. This modification of a

classical RHH repressor endows the NikR subclass of this family with novel metal-responsive

capabilities. The presence of NikR homologues in organisms ranging from bacteria to archaea

suggests that this architectural motif will be common to proteins that regulate nickel uptake

through changes in gene expression.

11.D. Materials and Methods

I. D. 1. Protein Expression and Purification

Full-length NikR and MBD were overexpressed as described2 4. To produce full-length

selenomethionine (SeMet) NikR, cells were grown in LeMaster medium 22 supplemented with 50

mg,/L SeMet. Proteins were purified by Ni-NTA chromatography (Qiagen) followed by size-

exclusion chromatography on either Sephacryl S-100 HR 16/60 or Superdex 75 16/60

(Pharmacia). Protein samples were then concentrated using Centriplus (Millipore) concentrators
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for crystallization. Nickel content of NikR samples was assayed using the divalent metal

indicator 4-(2-pyridylazo)resorcinol (PAR)23 .

II.D. 2. Crnstalli:ation and data collection

Crystals of apo-NikR or SeMet apo-NikR were obtained by hanging-drop vapor diffusion

after one week at room temperature by mixing 2 tL protein (8 mg/ml in 20 mM Tris [pH 8.0],

300mM NaCl) with 2 giL precipitant solution (100 mM N-(2-(acetamido)imino)diacetic acid

(ADA) [pH 6.5], 6% w/v PEG 6000, 50 mM MgCI1). Although the protein was purified with

one nickel ion bound per NikR subunit and was yellow in color, crystals of full-length NikR

were colorless, presumably because the ADA buffer chelated the nickel at the concentrations

used for crystalliization. Apo and apo-SeMet NikR crystals belonged to space group P2 12 121 and

were cryoprotected using Paratone-N oil. Yellow crystals of nickel-bound MBD were obtained

by hanging drop vapor diffusion using 1.5 LL protein (10 mg/ml in 20 mM Tris [pH 8.0],

300mM NaCl) and 1.5 tL precipitant solution (0.2M di-sodium tartrate, 20% w/v PEG 3350) at

room temperature after 4-5 days. MBD crystals also belonging to space group P2 12 121 were

cryoprotected in the precipitant solution supplemented with 20% ethylene glycol by using

sequential soaks. All crystals were flash-cooled in a gaseous N2 stream at 100 K and all data

were collected at this temperature (Table 11.2). Diffraction data were reduced to intensities using

the HKL program suite24.

1. D. 3. Structure determination and model refinement

The nickel-bound MBD structure was phased by multi-wavelength anomalous dispersion

(MAD) techniques using nickel peak and remote wavelengths (Table 11.2). Nickel sites were
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located and initial phases were generated using CNS2 5 . Solvent flattening, phase extension and

4-fold NCS averaging in DM26 dramatically improved the quality of the electron-density map.

An initial model was manually built into these maps using Xfit27 and refined using CNS against a

high-resolution native dataset. Waters were added using wARP2 8 and manually checked against

2F,,-Fc and F,-F, electron density maps. After several rounds of iterative manual rebuilding, the

model was further refined using SHELXL 20 to include anisotropic thermal displacement

parameters for all atoms, and checked against a composite omit electron density map calculated

in CNS 25. Amino acids having obvious electron density for two side chain conformations were

modeled at half-occupancy.

Selenium peak data was used to phase apo-NikR by Se single-wavelength anomalous

dispersion (SAD). SOLVE 29 was used to locate four well-ordered Se atoms (Met106 of each

molecule) and one lower occupancy site (Metl from one molecule) and to generate initial

phases. Solvent flattening in DM allowed placement of the MBD tetramer as well as two DNA-

binding domains; into the flanking RHH domain electron density. Phase extension and four-fold

NCS averaging improved the experimental electron-density map and allowed for manual

refitting of domain positions. This model was then refined against a high-resolution (2.3 A)

native dataset, and checked against a composite omit electron density map calculated in CNS25.

Iterative rounds of model building and refinement were conducted using Xfit and CNS,

respectively. Helix or3 was removed in three apo-NikR molecules because of high B-factors and

a lack of interpretable electron density in omit maps.

Coordinates and structure factors for the Apo-NikR and Ni-bound regulatory domain

structures have been deposited in the Protein Data Bank (accession codes 1Q5V and 1Q5Y,

respectively).
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II.G. Tables and Figures

Table II.1. Structural comparison of the NikR RHH domain with other RHH domains.

Structure PDB code Rmsd' NalIn 2

Aruc-DNA complex 1BDT 1.6 81
Mnt repressor(N-term domain) IMNT 1.6 76
CopG-DNA complex 1B01 1.7 81
Arc repressor 1ARR 1.7 80
M/IetJ repressor 1CMB 1.8 77
CopG repressor 2CPG 2.0 78
NMetJ-DNA complex 1CMA 2.2 76
(c repressor 1IRQ 2.6 76

'Calculated from a best C alignment using the Secondary Structure Matching (SSM) server at
(http://www.ebi.ac. uk/msd-srv/ssm/ssmstart.html) with residues 1-42 of two subunits of NikR corresponding to one
RHH domain as a search model.
-Nailgn = number of C, atoms aligned for both molecules of each dimeric RHH domain.
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Table II.2. Data collection, phase determination and refinement statistics.

Data Collection
Crystal WT NikR Se-Met NikR MBD I MBD 2

Data Set Native Se-Peak Native Ni-Peak Ni-Remote

Space Group P21 21 21 P21 21 2 1 P21 21 21 P21 21 21 P2 1 21 21

Cell Dimensions (A)
a 46.34 46.29 45.85 45.89 45.87
b 69.61 69.54 78.29 78.36 78.35

c 159.10 159.32 81.39 81.75 81.73

Beam Line X25 8BM X25 5.0.2 5.0.2

Temperature (K) 100 100 100 100 100

Wavelength () 1.1000 0.9791 1.1000 1.4852 0.9500

Resolution Range (A) 50-2.3 50-2.5 50-1.4 50-2.7 50-1.4

Observations 250494 356862 360689 63581 221766
Unique Reflections 23458 17369 57926 7589 53354

Completeness (%)' 99.2(97.4) 98.8(96.4) 99.2(94.2) 88.2(58.2) 90.6(60.8)
II / ()' 27.0(5.8) 23.6(5.7) 17.5(3.7) 33.5(19.3) 18.7(2.6)
R () 1

,
2 5.2(35.9) 7.1(31.9) 6.2(31.0) 6.1(8.3) 5.1(40.9)

Phasing
Number of sites/asu 5 4

Resolution Range (A) 44.3-3.0 36.2-2.7

Figure of Merit 0.39 0.65

R efinement
Rcrvst (Rfree) (%) 3 24.7(30.5) 16.0(22.0)

Resolution Range (A) 50-2.3 10-1.4

Number of protein atoms 3626 2528

Number of nickel ions - 4

Number of glycerol atoms - 20

Number of water molecules 22 242

R.m.s. deviations

Bond lengths (A) 0.009 0.010

Bond angles () 1.30

Bond distances (A) - 0.029

Ramachandran (%)
Most favored 91.1 90.8

Additionally Allowed 8.2 9.2

Generously Allowed 0.7 0.0

Disallowed 0.0 0.0

Average B-factor (i 2) 65.8 27.9
1The number in parentheses is for the highest resolution shell.

2R';,, = Zihk [li,-l) - <Il/,k>l / 'hll <lhk/)> , where f{hkl) is the ih measured diffraction intensity and <lhk)> is the mean of
the intensity for the miller index (hkl.
'3Rcryst = Zhk/ Fo,(hk) - IF,(hkl) / Yhkl F,(hkl). Rfre = Rryst for a test set of reflections (8% for WT NikR, 5% for MBD)
no t included in refinement.
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Figure 11.1. Nik.R structures and structural comparisons.

Ni-regulatory domain (MBD)('-,
Ribbon-helix-helix

(RHH)

I-----CL----~~'-

aj

F igure II. .a. Ribbon diagram of the apo-NikR tetramer colored by protein subunit. Domains are
bracketed and labeled as either ribbon-helix-helix (DNA binding domain) or Ni-Regulatory domain
(i\IBD). Secondary structure elements of the blue NikR subunit are labeled.

Figure II. 1. b. Superimposition of the C traces of the regulatory domain of apo-NikR (light grey)
and nickel-bound MBD (colored by protein subunit) based on all common C positions. Nickel
atoms from the nickel-bound MBD structure are shown as cyan spheres. The most similar regions
are the 3-strands of the central f3-sheets, while the most significant differences are in the loop
(labeled with an asterisk near the green subunit) and helix (labeled 3) nearest each nickel-binding
site. Note the absence of this helix in the three other apo-NikR molecules.
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Figure II. I.c. Two subunits of the nickel-bound MBD tetramer displayed as ribbon diagrams and
colored by molecule. Amino acid side chains ligating nickel are shown in ball-and-stick and
colored by atom type (carbon atoms from the two subunits are green and grey, respectively) and
nickel is shown as a cyan sphere.

Figure II.l.d. Regulatory domains of two subunits of PGDH (from PSD), displayed as in Figure
II.l .c. Bound serine is shown in cyan ball-and-stick. Note the similarity in location of bound
allosteric ligand and the contribution to binding of each ligand from two protein subunits across
their interface. All figures were prepared using Ribbons 3° .
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Figure 11.2. Strictly conserved amino acids at the high-affinity nickel-binding site of NikR.

Figure 11.2.a. Stereo view of the nickel-binding site in the Ni-bound MBD structure. Ribbons are
colored as in Figure II.1. by protein subunit, conserved residues surrounding the nickel-site are
shown in ball-and-stick and colored by atom type, and nickel is shown as a cyan sphere. A 2Fo-Fc
electron density map contoured at 1.2c is displayed around the nickel and conserved residues.

E. co7i
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NYTDIIVATLIHILIHLDHDHC ILtEI LVRGD
HYSHLIKSSIH HLDHKE ECIFE VV LNGD
DFHEIITSST HIHLNEDQ CLEM ILVKGK

H H CE
Filgure 11.2.b. Sequence alignment of NikR proteins from bacterial and archaeal species with
numbering and secondary structure elements from the E. coli NikR structure. Invariant residues
that are potential nickel ligands within the regulatory domain are boxed. Residues colored in blue
are seen as nickel ligands in the nickel-bound MBD structure, those in red are within 4.8-6.5A of
the nickel.
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Figure 11.3. Side chain movements and interactions at the high-affinity nickel site.

Figure 1I.3.a. Comparison of the nickel ligands between apo-NikR and nickel-bound MBD after
superposition of all common C atoms of each tetramer. Amino acid sidechains of the nickel
ligands are shown in ball-and-stick with carbon atoms in green for the nickel-bound MBD structure
and white for the apo-NikR structure. Nickel ions are depicted as cyan spheres, nickel-ligand
bonds as grey lines.

5'
TyrS8'

-k Glu97'

Glu97 /e

Tyr58

Figtlre II. 3. b. Hydrogen-bond network between two nickel-binding sites in the nickel-bound MBD
structure. Amino acid side chains of two molecules of the NikR regulatory domain are shown in
ball-and-stick with grey or green carbon atoms, respectively. Dashed lines indicate hydrogen
bonds.
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Figure 11.4. NikR vs. other ribbon-helix-helix transcription factors.

( N)

Figure II.4.a. Hypothetical model of full-length NikR with nickel ions bound assuming no
conformational change of the RHH domains relative to the MBD upon nickel binding. This model
was generated by modeling all disordered portions of the Apo-NikR tetramer after complete
symmetry-related molecules and positioning of nickel ions after superposition with the nickel-
bound MBD tetramer. Inter-domain linkers are denoted with arrowheads, curved arrows show the
proposed directions of movement of the RHH domains for operator binding.

-80A

NikR- 16bp
AMI"#ACGAATACTTAAAATCG T
T(6 !' GCTTATGAATTTTAGCA

Figlure I.4.b. Apo-NikR structure and DNA operator sequence. Ribbon DNA is idealized B-form
with sub-sites highlighted in orange. Below the apo-NikR tetramer is the nik operator sequence
with sub-sites in orange and the inter-site distance in base-pairs. Distance bars illustrate the
approximate distances between the two RHH domains and operator sub-sites. This apo-NikR
tetramer conformation would not be able to bind DNA since the RHH domains are too far apart.
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Figure II.4.c. Ribbon diagram of Arc-DNA structure (PAR) 3 1

binding sites in orange.
and sequence of operator with

CopG - 5bp
ATTGAGM G

Mnt- I bp

THA G TA
filgure 1. 4. d. Operator sequences of other RHH transcription factors with binding sites highlighted.
Note the relatively large binding-site spacing of the NikR operator relative to those of other RHH
proteins.

54

Arc - bp
TU G" CT, QT. C

A~CCACGAAA~SdMT 



Figure 11.5. Electrostatic potential surface of a NikR model.

Surface Potential 0.000

I 00

Figtlre 11.5. Electrostatic potential surface of a NikR model. The model was produced by building
a complete backbone for the NikR tetramer (modeling in missing portions of the apo-NikR model)
and building missing side chains by using common rotamers and avoiding steric clashes. An
electrostatic potential surface, colored as indicated in the scale bar above in units of kT e, was
produced using GRASP. The top view is in the same orientation as Figure I.4.a,b. The bottom
view is rotated 90 ° to show the face of NikR proposed to interact with operator DNA.

55

;·�grls



Chapter III: Crystal Structure of the NikR-operator DNA complex and the

mechanism of repressor activation by metal ions

11I.A. Summary

Metal ion homeostasis is critical to the survival of all cells. Regulation of nickel

concentrations in Escherichia coli is achieved via nickel-induced transcriptional

repression of the nickel permease, NikABCDE, mediated by the NikR repressor. Here

we report two crystal structures of full-length nickel-activated E. coli NikR, the isolated

repressor at 2.1 A resolution and in a complex with its operator DNA sequence from the

nik promoter at 3.1 A resolution. Binding stoichiometric nickel ions activates NikR by

ordering one face of the metal-binding domain to permit complementary interaction with

DNA rather than directly altering the conformation of the DNA-binding domains. The

conformational changes associated with DNA binding create a second functionally

relevant metal-binding site at the interface between the DNA-binding and metal-binding

domains.
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III.B Introduction

Metal ions are essential nutrients for all cells, but their intracellular concentrations

and distribution must be tightly regulated to avoid toxicity. Nickel ions are particularly

important to the physiology of microorganisms such as the model prokaryote Escherichia

coli (E. coli) and the human gastric pathogen Helicobacter pylori (H. pylori). In these

organisms, incorporation of nickel into enzymes such as [NiFe]-hydrogenase and urease

is necessary for metabolic adaptation to changing environmental conditions. In E. coli

nickel is acquired via an ABC-type membrane transporter, NikABCDE:. Transcription

of the operon encoding this nickel importer, nikABCDE, is repressed in the presence of

nickel by NikR3 4 . NikR therefore serves as a cytoplasmic nickel sensor, stopping

production of the nickel importer when intracellular levels of nickel are sufficient. In H.

pylori, which require the enzyme urease to survive and colonize the acidic gastric mucus

of the human stomach, NikR plays a more complex regulatory role. Transcriptome

analysis of a deletion mutant revealed that H. pylori NikR regulates transcription of not

only the nickel importer and urease enzyme, but also other regulatory networks, through

repression o the gene encoding the ferric uptake regulator (Fur) protein5' 6.

The NikR protein that has been characterized most extensively at the molecular

level is the homolog from E. coli. E. coli NikR is a homotetramer that binds one

nickel(Ii) ion per subunit with picomolar affinity7' 8. Stoichiometric nickel ions activate

NikR to bind a 28-bp palindromic operator sequence (GTATGA-N 16-TCATAC) within

the promoter of nikABCDE with low nanomolar affinity7 '9. Recently, it was

demonstrated that NikR can bind a variety of divalent transition metal ions with high

affinity, and that stoichiometric amounts of these other ions can activate NikR to bind
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operator DNA with potency comparable to that of nickel8 '9. In the presence of excess

nickel, the affinity of NikR for its operator is enhanced at least 250-fold, and biochemical

evidence supports the existence of a second nickel-binding site in the presence of

operator DNA with nanomolar to micromolar affinity for nickel7 '9. The formation of this

tighter protein-DNA complex is a nickel-selective response.

The previously reported crystal structure of apo-NikR revealed a modular domain

organization., with two dimeric ribbon-helix-helix (RHH) domains flanking a tetrameric

metal-binding domain (MBD) (Fig. III.l.a) 1° . This spatial separation of the two DNA-

binding domains explained how NikR could recognize two operator sub-sites distantly

separated by two turns of DNA. A crystal structure of the nickel-bound form of the

isolated MBD showed that the high-affinity metal binding site of NikR is located at the

subunit interfaces, with nickel ions each bridging two subunits of the tetramer. Nickel

ions bind with a square-planar coordination geometry, ligated by the protein sidechains

His87, His89, and Cys95 from one NikR subunit, as well as the sidechain of His76' from

an adjacent subunit. In the absence of bound nickel ions, the (x-helix contributing His76'

(helix c3) to the metal binding site is structurally flexible and was disordered in the apo-

NikR crystal structure. The disordered-to-ordered transition of helix a3 within the MBD

upon nickel binding gave preliminary insight into the structural changes that take place

upon activation of NikR by metal ions.

The initial crystal structures of the E. coli NikR transcription factor lead to the

proposal of several possible mechanisms for activation of repressor activity by nickel

ions. These hypotheses included an allosteric effect of nickel binding leading to specific

conformational changes in NikR that favor DNA binding; stabilization of the active
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tetrameric form of NikR by nickel ions binding at the subunit interface; and creation of a

more electropositive DNA-binding surface of the repressor upon binding of positively

charged nickel ions. It was further proposed that these mechanisms would not be

mutually exclusive and would likely act in concert to increase operator affinity in the

presence of nickel ions. We now present two new crystal structures of full-length NikR

activated by stoichiometric nickel ions, both alone and bound to a 30 base-pair (bp)

oligonucleotide containing its operator DNA sequence from the nik promoter. These

structures allow us to evaluate functional proposals of NikR repressor activation by metal

ions, delineate the drastic conformational changes required for operator recognition, and

reveal the formation of a second metal-binding site in the presence of DNA. They further

provide a rare set of structural views of a ligand-responsive transcription factor in the

unbound, ligand induced, and DNA bound states, adding a new model system to the

understanding of this important class of transcription factors.

11I.C Results and Discussion

1II. C. Fitll-length nickel-activated NikR

The crystal structure of full-length NikR with stoichiometric nickel reveals

domains that are comparable to the two previously determined structures of NikR, with

the MBD closely matching the structure of the isolated nickel-bound MBD tetramer

(rmsd 0.89-0.90 for 304 Cx atoms), and the RHH DNA-binding domains similar to those

of the apo-NikR structure (rmsd 0.82-1.21 for 84 Ca atoms). The most significant

difference in this structure is the relative orientation of the RHH domains with respect to

the MBD (Fig. 11. 1). As shown in Fig. 11I. l.b, the RHH domains extend almost
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completely outward from the MBD, pointing the DNA major-groove binding P-sheets in

opposite directions. This rigid-body domain movement occurs about flexible linkers

connecting the domains, represented by residues 41-52 as described previously' 0 . This

crystal form was grown in the presence of a detergent (cyclohexyl-propyl-3-D-

maltoside), which is seen bound at the interface between the RHH domain and MBD

(Fig. 111.2). The detergent could be helping to stabilize the extended conformation of Ni-

NikR. Crystals of Ni-NikR grown under the same conditions in the absence of detergent

that diffracted X-rays poorly showed a similar orientation of the domains, although the

RHH domain was partially disordered in this structure (unpublished data).

III. C. 2 The NikR-operator complex

In the crystal structure of the nickel-activated NikR tetramer in complex with its

operator DNA, the individual RHH and MBDs are again very similar to the previously

determined structures of NikR. The RHH domains align well structurally with both apo-

NikR (rmsd 1.16-1.35 for 84 C atoms) and nickel-bound NikR (rmsd 1.06-1.16 for 84

Co atoms), while the MBD closely resembles the nickel-bound forms of both the isolated

MBD (rmsd 0.95-1.02 for 304 Cot atoms) and full-length NikR (rmsd 0.81-0.84 for 304

Cot atoms). The orientations of the RHH DNA-binding domains of the repressor relative

to the MBD., however, are dramatically different than in the structures of NikR alone

(Fig. 111.1). Specifically, the RHH domains rotate about the flexible interdomain linkers

to orient their antiparallel -strands towards the same face of the repressor, allowing each

to occupy the DNA major groove of an operator palindrome half-site. Each individual

RHH-DNA interaction closely resembles the binding mode of other RHH family
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members such as Arc 1 , MetJ 12, and CopG' 3. To allow for this dramatic rotation, the

linker of one subunit of each RHH domain is extended by the unwinding of the final turn

of helix c2 (Fig. 111.3). This conformation of NikR results in a new protein-protein

interface between the RHH and MBD and creates a second metal-binding site at this

interface, apparently occupied by potassium ions from the crystallization solution, in this

crystal structure. The DNA in the operator complex is B-form, with no dramatic bends at

the interface with protein as observed in some other protein-DNA complexes. The DNA

curves smoothly around the face of the NikR tetramer, bending by -22 ° over its length

and contacting both RHH DNA-binding domains as well as two of the four MBD

subunits.

The high-affinity nickel binding site within the MBD of NikR has the same

square-planar coordination (within coordinate error) in the NikR-DNA complex structure

as in the structure of nickel-activated NikR and the isolated MBD (Fig. III.3.c). This

observation is in contrast to X-ray absorption spectroscopy (XAS) results describing a

coordination change from square planar, as observed in our structures, to a six coordinate

site with loss of thiolate ligation upon specific DNA binding' 4 . It is possible that this

difference could be attributed to differences in sample preparation. Our crystal structure

of the NikR.-DNA complex shows an occupied second metal-binding site whereas the

XAS samples were prepared with no excess ions in the sample.

III. C. 3 NikR- operator interactions

An extensive set of polar interactions (hydrogen bonds and salt bridges of <3.4A

distance) are made between NikR and its operator (Fig. 1.4.a). These interactions can
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be described in three sets for clarity: specific interactions from the RHH domain, non-

specific interactions from the RHH domain, and non-specific interactions from the MBD.

First, specific hydrogen bonding interactions are made by the sidechains of Arg3 and

Thr5 from the -sheets of the RHH domains to nucleotide bases in the operator major

groove, contacting the five base-pairs of each operator half-site that abrogate NikR

binding when mutated (Fig. 111.4)4. This observation confirms that the crystal structure

represents a specific NikR-operator complex. Second, -14 nonspecific polar interactions

are contributed by each RHH domain to contact the phosphate backbone of DNA (Fig.

III.4.a). These include hydrogen bonds between two consecutive backbone amide

nitrogens at the N-terminus of helix (2 and DNA phosphates on either side of the major

groove. Analogous positive helix dipole-negative phosphate backbone interactions have

been described previously for other RHH family members and serve to anchor the

domain to DNA and properly orient the specificity-determinant 3-sheets within the major

groove -1
3 . Other nonspecific interactions with the DNA phosphate backbone are made

by the conserved sidechains of Thr7, Asn27, Arg28, Ser29, and Arg33 from the RHH

domain. The final set of interactions, also nonspecific, is from the MBDs of two NikR

subunits. The sidechain of Argl 19, in a loop connecting the final c-helix and P-strand of

NikR, extends between the phosphates of the DNA minor groove (Fig. 111.5).

Interactions are also made between a loop leading into helix O3 of the MBD (asterisk in

Fig. III.3.a) and the center of the NikR operator, including the backbone amide nitrogen

of Arg65 and the sidechains of Lys64 and Arg65, which make polar interactions with

DNA backbone phosphates (Fig. 111.5). This portion of NikR is disordered in the absence
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of bound nickel (Fig. III.l.a), implying that positioning of these residues upon metal

binding is of functional importance.

111. C. 4 From zero to nanomolar ajfinity fbr DNA

The DNA-binding activity of many transcription factors is regulated by the

binding of small molecule effectors. In very few cases, however, is the mechanism of

activation understood at the molecular levell5' 8. Our structures of apo-NikR, nickel-

activated NikR and the NikR-DNA complex allow us to propose and evaluate detailed

mechanistic hypotheses regarding the metal ion-activated repressor function of E. coli

NikR. In the absence of nickel, NikR has no measurable affinity for an oligonucleotide

containing its operator seqeuence7 . Addition of stoichiometric nickel ions leads to a

half-maximal protection of the nik operator from DNase at a concentration of 5-30 nM

NikR. We previously proposed several plausible mechanisms by which stoichiometric

amounts of metal ions could activate NikR to bind a specific DNA sequence"). First, the

location of nickel ions bound at the subunit interface (Fig. 111.3), coordinated by amino

acid sidechains from both halves of the NikR tetramer, led us to propose that nickel

binding could serve to stabilize the active tetrameric form of the repressor. The NikR-

DNA complex structure shows that the nickel coordination is unchanged when NikR is

bound to DNA, and supports the idea that nickel could stabilize this interface in the

presence of DNA, holding the tetramer together in the face of stress induced by

conformational change upon operator binding. This type of stress is hinted at by the

unwinding of the final turn of helix c2 of the RHH domain that is required to adopt the

DNA-bound conformation. The possible occurrence of dimeric NikR at intracellular
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concentrations and the nature and magnitude of strain induced at this interface upon

operator binding have yet to be demonstrated.

Second, binding of nickel cations to NikR could increase its affinity for

polyanionic DNA by simple electrostatic arguments. Such an electrostatic mechanism

has been demonstrated for the RHH family member MetJ, in which binding of the

positively charged corepressor S-adenosylmethionine has no effect on protein

conformation but increases the calculated surface potential at the interface with DNA 19 .

In contrast, the positive charges introduced by nickel binding to the high-affinity site of

NikR would be largely neutralized by deprotonation of the cysteine and histidine ligands

and are not likely to contribute significantly to the charge at the protein surface. Binding

of excess nickel ions to additional sites such as the potassium site observed in our

structure could have such an effect, however.

It is possible that metal binding exerts an allosteric effect on the conformation of

NikR, thereby increasing the affinity for its operator. Numerous structures of ligand-

activated transcription factors support the model that ligand binding alters the

conformation of the DNA-binding domain, leading to an increase or decrease in affinity

for DNA 7, '' 20.2 1 For many prokaryotic transcription factors that are dimeric, this

allosteric transition results in a change in the spacing of two DNA-binding domains,

leaving them better suited to interact with multiple operator sub-sites along the DNA

molecule. Our crystal structures of NikR in the unliganded (apo), nickel-bound

(activated), and operator-bound forms provide insight into allosteric transitions upon

ligand binding (Fig. III. I), and do not support such a mechanism. The apo-NikR

structure revealed a conformation that was not suitable for interaction with operator
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DNA'O. The nickel-activated NikR structure now demonstrates that stoichiometric nickel

binding alone does not preorganize a conformation capable of operator binding.

Furthermore, the RHH domains of NikR are connected to the MBD by flexible linkers

that vary significantly in length and amino acid sequence as a function of species, making

it unlikely that a signal could be propagated via this route.

Nickel binding does, however, have a very direct short-range effect on the

conformation of NikR. As mentioned previously, residues 62-80 of NikR are disordered

in the absence of nickel, but form a stable o-helix (helix a3) when nickel is bound due to

the direct involvement of His76 from helix 3 in nickel coordination. In addition, the

NikR-DNA complex structure shows that 6-8 polar interactions are made between the

loop containing positively charged residues Lys64 and Arg65 and the negatively charged

phosphate backbone of operator DNA (Fig. 111.5). Since this loop and the following helix

are disordered in the absence of nickel, binding of the nickel corepressor creates a surface

of the MBD suitable for interacting with DNA by stabilization of these secondary

structure elements. Complementary interaction of the MBD with DNA would localize

NikR to the D[)NA helix and allow cooperative interaction of both RHH domains. Stable

binding to the operator then occurs when the specific operator base sequence is

recognized and additional specific base contacts can be made.

The hypotheses presented here regarding activation of the NikR repressor activity

are not mutually exclusive and could act in concert to create the dramatic increase in

affinity of NikR for its operator that has been observed upon stoichiometric nickel

binding.
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IL .C. 5 From nanomolar to picomolar affinityfor DNA

Addition of excess divalent metal ions to 1:1 nickel-NikR increases the binding

affinity of NikR for its operator DNA from nanomolar to as much as 10-20 pM7 '9,

implying the existence of a second metal-binding site. The effect is most dramatic for

excess Ni2s compared to Cu +, Mn ' , Zn>", Cd"2 , and Co> 9. Although we crystallized

the NikR-operator complex with only stoichiometric nickel ions, a second metal-binding

site was observed at the interface generated between the RHH domain and MBD. In our

crystal structure, the metal in this site is best modeled as a potassium ion from the

crystallization buffer. The potassium is coordinated by two strictly conserved amino acid

sidechains, Glu30 and Asp34, from the RHH DNA-binding domain, and by the three

backbone carbonyl oxygens of Ile 116, Glnl 18, and Vall21 from a loop of the MBD (Fig.

111.5). The average K4-O metal-ligand bond distance at the site is 2.81A, which agrees

well with an average bond length of 2.84A for similar coordination in the Cambridge

Structural Database (CSD) 22. Conserved Arg33 interacts with the potassium ligand

Glu30 and links this metal-binding site to residues responsible for both nonspecific and

specific DNA binding (Fig. III.5). Glu30, Arg33, and Asp34 all originate from the

second helix of the RHH domain, explaining the high degree of conservation along this

helix among NikR sequences that is not seen for other RHH repressors. Thus this metal

site appears to stabilize the MBD-RHH domain interface and lock NikR into a

conformation that is suitable for interacting with DNA.

To examine whether this second metal-binding site is functionally relevant to the

formation of the NikR-DNA complex, a D34A mutation was introduced into NikR and

mobility shift assays (MSA) were performed in the presence of excess nickel. D34A-
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NikR has the same secondary structure content and high-affinity nickel-binding

properties as WT-NikR (data not shown). However, this mutation results in very weak

DNA binding and no shift indicative of a 4:1 NikR-DNA complex (Fig. 111.6),

demonstrating that this residue is critical for the response of NikR to excess metal ions.

Preliminary experiments with mutations of the other potassium ligand, E30, suggest that

this residue is also required (data not shown).

Since the concentration of K+ in the NikR-DNA complex crystallization solution

is less than that within an E. coli cell23, we expect that under physiological conditions this

site would be occupied by K' if no metal with a higher affinity for this site is available.

Previous experiments to measure the affinity of nickel for the "low-affinity" nickel-

binding site demonstrated that nanomolar concentrations of excess nickel are sufficient to

increase the affinity of NikR for its operator, even in the presence of 100 mM potassium .

It is possible that excess nickel ions displace potassium at the second metal binding site

when present and thereby increase operator affinity, although preliminary experiments

suggest that excess Ni2+ ions bind elsewhere on NikR and may increase affinity via

increased electrostatic attraction (chapter IV). NikR would therefore be capable of

multiple levels of transcriptional repression, perhaps reducing nikABCDE transcription

with stoichiometric nickel and potassium bound through a "localize and lock"

mechanism, and completely arresting transcription when excess nickel ions are available

by increasing electrostatic interactions.

Metal-responsive transcription factors play key roles in intracellular physiology,

and NikR is especially important for microorganisms that rely on nickel ions for

specialized metabolic processes. The crystal structures described here demonstrate that
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NikR appears to employ a different mechanism of ligand induction than has been

hypothesized for most transcription factors. Instead of having a direct effect on the

orientation of the RHH DNA-binding domains, the biggest role of high affinity nickel

binding seems to be localization of the repressor to the DNA helix via a short-range

allosteric effect that creates a DNA-complementary surface on the MBD. Identification

of a functionally relevant second metal binding site suggests a mechanism for stabilizing

NikR in the DI)NA-bound conformation.

I.D Materials and Methods

Nickel-bound selenomethionine (SeMet) labeled NikR was produced and purified

as described previously'° . All crystallization described here is using SeMet NikR.

III. D. 1 NikR-DNA complex.formation

Deprotected and desalted deoxyoligonucleotides containing the NikR operator

sequence were obtained from Integrated DNA Technologies. The oligos were purified by

reverse-phase HPLC on a C8 column using a triethylamine buffered acetonitrile-water

gradient. Purified complimentary oligos were annealed by mixing equimolar quantities

in water and cooling from 85 to 4 °C over -12 h and lyophilized. NikR-DNA complex

was produced by adding a solution of 10 mg ml- ' Ni-NikR in 20 mM

tris(hydroxymethyl)aminomethane (Tris) pH 8.5, 300 mM NaCl directly to the

lyophilized oligos with a ratio of 4 mol NikR/1.2 mol double-stranded oligo. The

mixture was then exchanged into 10 mM Tris pH 8.5, 100 mM NaCI using a Micro Bio-

Spin P-6 column (BioRad), and incubated on ice for 30 min prior to crystallization.
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II.D. 2 C'stsa llization and data collection

Crystals of full-length NikR with stoichiometric nickel ions bound were grown

using sitting-drop vapor diffusion by mixing 2 pL of Ni-NikR (10 mg mL -' in 20 mM

Tris pH 8.5, 300 mM NaCl) with 2.5 tIL of precipitant solution (200 mM MgCI2, 100

mM N-[2-lydroxyethyl]piperazine-N'-[4-butanesulfonic acid] (HEPES), 30% v/v

polyethylene glycol (PEG) 400) and 0.5 pL of 345 mM cyclohexyl-propyl-J3-D-maltoside

(CYMAL-3) at room temperature. Arrowhead-shaped crystals appeared after one day at

20 °C and were mounted in fiber loops and cooled to 100 K in a gaseous N2 stream for

data collection without additional cryoprotection. Data were collected at beamline 5.0.2

of the Advanced Light Source on an ADSC q315 CCD detector. Diffraction data were

reduced and scaled in DENZO and SCALEPACK 24, respectively. Crystals of Ni-NikR

belonged to the space group P3 121 with unit cell dimensions a=b=50.4 A, c=182.3 A.

Diffraction-quality crystals of the NikR-operator complex were obtained with a

30 bp blunt-ended oligonucleotide encompassing the wild-type E. coli NikR operator

sequence within the promoter of the nik operon, as shown in Fig. III.3.b. Plate-shaped

crystals measuring 400x200x50 [pm were grown at 20 °C using the hanging drop vapor

diffusion method in a drop consisting of 2 ptL of NikR-DNA complex mixed with 2 jL of

precipitant solution (200 mM KC1, 50 mM MgC1, 50 mM Tris pH 7.5, and 10% w/v

PEG 4,000), appearing after 2-3 days. These crystals were cryoprotected by sequential

30 second soaks in the precipitant solution supplemented with 10%, 20%, and 30%

ethylene glycol prior to cryo-cooling in a gaseous N2 stream at 100 K. Data collection

and reduction were as described above except that the wavelength was chosen to
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maximize the anomalous signal from selenium. NikR-DNA complex crystals belonged

to the space group C2 with unit cell dimensions a=197 A, b=76 A, c=132 A, =110 °.

NikR is known to bind its operator as a tetramer, and two such NikR tetramer-DNA

operator complexes were present in the asymmetric unit (ASU).

III.D. 3 Structure solution and refinement

The structure of full-length Ni-NikR was solved by molecular replacement (MR)

using the program EPMR25 and a model of a dimer of the MBD (pdb code Q5Y) with

data between 15 and 4 A resolution. The top solution from this search had reasonable

packing in the space group P3 121, and this model was held fixed while searching for the

RHH domain using a RHH dimer model from the apo-NikR structure (Q5V). This

combined model was refined by rigid body refinement followed by cycles of positional

and B-factor refinement in CNS26 alternated with manual inspection against simulated

annealing composite omit (SA-omit) electron density maps and rebuilding of the protein

model in Xfit2 7. This led to a model with good geometry (see Table II1.1) comprising

two molecules of NikR, two Ni2 ions, twenty-seven water molecules, and one molecule

of the CYMAL-3 detergent. CNS topology and parameter files for the CYMAL-3

detergent molecule were derived from slight alteration of the MA4 (cyclohexyl-hexyl-

beta-d-maltoside) entry from the HIC-Up server28. Residues 44-48 within the flexible

linker of one NikR molecule and the two C-terminal residues of each NikR molecule

were disordered and not included in the final model.

To solve the NikR-operator DNA complex, two MBD tetramers and two RHH

DNA-binding domain dimers were located by MR with the program Phaser29, using data

70



between 50 and 3.1 A resolution. MR models were derived from the Ni-bound MBD

(lQ5Y) and apo-NikR (Q5V) structures, respectively. Electron density maps calculated

from this partial model allowed placement of two additional DNA-binding domain

dimers. Electron density resembling a DNA double helix was evident in maps calculated

from this model, but was of poor quality. An anomalous difference fourier map was

calculated in CNS using phases from this molecular replacement model and data

collected at the selenium absorption peak, allowing accurate positioning of 16 selenium

atoms and 6 nickel ions. These sites were refined and used to calculate SAD phases in

the program SOLVE30 with the Se peak data to 3.4 A resolution. The electron density

map obtained from SAD phasing was modified using the program DM31 from the CCP4

suite32 by phase combination with a polyalanine version of the molecular replacement

solution, solvent flattening, histogram matching, non-crystallographic symmetry

averaging, arid phase extension to 3.1 A. The resulting electron density maps were of

excellent quality, clearly showing the DNA double helix with individual base pairs

resolved (Fig. 111.7). A model of the two crystallographically unique oligonucleotides

was built into this density modified map, each comprising all thirty base-pairs of the

synthesized sequence. The pseudo-palindromic oligonucleotides in the crystal exhibit

chain-orientational disorder, equally populating the two possible directional orientations.

Specific nucleotide base contacts are made by NikR to only those portions of the oligo

that are strictly palindromic and therefore not affected by the orientational disorder.

Crystallographic refinement of the NikR-DNA complex model against a MLHL target

was carried out using CNS. Highly weighted NCS restraints were applied during the

early cycles of refinement and lowered during later cycles. Sugar pucker and Watson-
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Crick base-pairing restraints were applied to the DNA throughout. Several refinement

cycles consisting of simulated annealing, positional, and B-factor refinement followed by

manual inspection against SA-omit maps and rebuilding using Xfit produced the

crystallographic model reported in Table III.1. The final NikR-DNA complex model

comprises eight NikR molecules (residues 1-131), two double stranded 30 base-pair

deoxyoligonucleotides, eight Ni2' ions, and eleven K' ions. Ni2 ions were identified

from an anomalous difference fourier map calculate using data collected at 1.4845 A

(data not shown). K ions were identified based on the contents of the crystallization

solution, the size of the difference electron density peak, and the bond lengths and B-

factors of the sites after refinement. All structure figures were prepared using PyMOL3 3.

III. D. 4 NikR multants and mobility shift assays

Mutants were constructed from the pNIK103 parent vector 4 by using the

QuickChange PCR mutagenesis method (Stratagene). The D34A mutation was prepared

by using the primers 5'-GTTCCGAAGCTATCCGCGcCATTCTGCGTAGCGC-3'

and5'-GCGC'TACGCAGAATGgCGCGGATAGCTTCGGAAC-3'. The E30A mutation

was prepared by using 5'-

GTTATAAC'AACCGTTCCGcAGCTATCCGCGACATTCTG-3'and 5'-

CAGAATGTCGCGGATAGCTgCGGAACGGTTGTTATAAC-3'. The fidelity of the

mutagenesis was confirmed by DNA sequencing (ACGT, Toronto). Wild-type NikR and

the D34A mutant were purified on a Ni(II)-NTA column (Qiagen), followed by anion

exchange chromatography, as previously described 4'8. The molecular mass of the D34A

mutant was confirmed by electropray mass spectrometry (MWcaic = 15049.8 Da, MWob =
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15049.2 Da). An assay with Ellman's reagent was used to show that both wild-type

NikR and the D34A mutant were fully reduced, and an HPLC assay was used to confirm

that both proteins were apo34. Nickel binding experiments were performed as described.

Electrophoretic mobility-shift assays were performed with a 100-bp DNA fragment

containing the nik promoter as previously described9 , and a binding buffer containing 20

mM Tris (pH 7.5), 100 mM KCI, 3 mM MgCI 2, 0.1% IGEPAL, 5% glycerol, and 0.1

mg/ml sonicated herring sperm DNA (Promega). Nickel was added to the binding buffer,

running buffer, and the gel before polymerization, to a final concentration of 35 tM.
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III.G Tables and Figures

Table [11.1 Data collection, phase determination and refinement statistics.

Data Collection
Crystal
Data Set

Space Group
Cell Dimensions

a (A)

b(A)
c (A)

3 (0)
Wavelength (A)
Temperature (K)
Resolution Range (A)
Observations
Unique Reflections
Completeness (%)'

Rsym (%)1,2

Ni-NikR
Native

P3121

49.84
49.84
181.69

90

1.0000

100

50-2.1

184200

15884

98.2(90.0)
20.8(3.7)
8.0(30.5)

NikR+DNA 1

Native
C2

197.20

76.13

132.09

110.27

1.0000

100

50-3.1

146795

31966
94.1(70.3)
15.1(4.5)

6.1(17.5)

NikR+DNA 2

Se-Peak
C2

195.97

76.02

132.28

110.37

0.9793

100

50-3.4
156641

24360
95.1(74.8)
15.0(6.7)

7.0(17.9)

Phasin2 of NikR+DNA
Number of sites/asu
Resolution Range (A)
Figure of Merit

Refinement
Rcryst (Rfree) (%)3

Resolution Range (i)
Number of atoms
(Average B-factor (A2))

Protein
DNA

Nickel/Potassium ions
Detergent atoms
Water molecules

R.m.s. deviations
Bond lengths (A)
Bond angles (0)

Ramachandran (%)

23.9(27.5)
50-2.1

1946(58.6)

2(48.8)
32(83.5)

25(54.4)

0.007
1.28

22

50-3.5

0.33

26.1(30.3)
50-3.1

8034(101.7)
2448(92.6)
19(104.6)

0.008

1.30

Most favored 88.1 79.4

Additionally Allowed 11.0 19.2

Generously Allowed 0.8 1.3

Disallowed 0.0 0.0

'The number in parentheses is for the highest resolution shell.

2Rsym = Ei'hk/ li'(hk.) - <I(hk/>l / ]hk] <I(hkl)>, where I(hkl) is the i h measured diffraction intensity and <I(hk> is the
mean of the intensity for the miller index (hkl).
3R,,Yt = Xhk/[l Fo(hkl) - F(hkl) / hk F o(hkl). R = Ryst for a test set of reflections (6% for Ni-NikR, 7%
for NikR-DNA) not included in refinement.
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Figure III.1 Conformational flexibility of NikR. a: Apo-NikR tetramer displayed as a
ribbon with the MBD colored grey and the RHH domains colored red. b: Nickel-
activated NikR tetramer displayed as in a except the RHH domains are colored green and
nickel ions are shown as cyan spheres. c: Operator-bound NikR tetramer displayed as in
a and b, except the RHH domains are colored blue and potassium ions are shown as pink
spheres.

C
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Figure 111.2 The cyclohexyl-propyl-p-D-maltoside detergent bound to Ni-NikR. NikR
is represented as a cartoon colored by protein subunit. Bound nickel ions are cyan
spheres. The detergent molecule is shown as sticks colored by atom type.
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Figure II1.3 The NikR-operator DNA complex. a: Ribbon representation of the NikR-
operator DNA complex structure. The NikR tetramer is colored by subunit, and
secondary structure elements are labeled. Asterisks indicate the loop of the MBD that
contacts the operator DNA backbone. DNA is displayed as sticks with a cartoon tube
through the phosphorus positions to represent the backbone. The dyad-symmetric
operator half-sites are colored orange. The DNA helical axis as calculated in CURVES is
shown as a purple tube. Nickel and potassium ions are shown as cyan and pink spheres,
respectively. b: The dsDNA used for co-crystallization with NikR, which includes the
wild-type NikR operator sequence. Dyad-symmetric operator half-sites are highlighted
in orange, the -10 region of the nik promoter is underscored with red. c: The high-
affinity nickel-binding site of NikR. Protein is shown as a C, trace with sidechains as
sticks colored by subunit. Nickel is represented as a cyan sphere.

b
A CGAATACTTAAAATCG
T !lG CTTATGAATTTTAGCi

C

80

r
F



Figure 111.4 NikR-operator DNA interactions. a: Schematic representation of polar
interactions between NikR and operator DNA. Only half of the operator DNA is shown
because the interactions made with the other half are symmetric and equivalent. Base-
pairs colored blue were shown to abrogate NikR binding when mutated. The protein
atoms making interactions are colored by protein subunit, and correspond to the color
scheme in Fig. 11.2.a. Interactions contributed by the MBD are underlined. b: Stereo
view of a NikR RHH domain J3-sheet bound in the DNA major groove. DNA is

represented as sticks colored by atom type. The RHH 3-sheet is represented as a C, trace
colored as in Fig 111.2, with sidechains shown as sticks. Hydrogen bonds are shown as
dashed lines. c: Schematic representation of the specific NikR-operator interactions.
Base pairs are colored as in a, protein is colored by subunit as in Fig. 11.2.a. d,e,f:
Specific DNA contacts made by Arg3 and Thr5. Stick representation colored by atom
type with dashed black lines representing hydrogen bonds.

a
N2'7 ND;

R33, NH'
T7, OG '

IR28, 
S29, 

S5;29, OC

R213, NH

R6';, NH
R65, N

K64S N
R65_ 

28, NH1

R28, N
S29,N
S29, OG

N27, ND2
R33, NH1
T7, OG1
R119, NH1
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Arg3(Ns) -+ Thyl3(04)
Arg3(Nl) -> Gual4(06)

Arg3(Nc) -> Thy9(04)
Arg3(Nr) - GualO(06)

Thr5(Oy) -> Thyl1(04)
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Figure 111.5 The second metal binding site. Protein, DNA, and metal ions are displayed
as in Fig. 111.2, with sticks for protein sidechains and portions of the backbone. Bonds to
the potassium ion are shown as solid black lines and hydrogen bonds as dashed black
lines. E30, R33, D34 are conserved among NikR sequences. An asterisk indicates the
loop of the MlBD that contacts the operator DNA backbone, as described in Fig. 111.2.a.
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Figure III.6 DNA binding in the presence of excess metal. WT NikR (1 pM - 100 nM)
or the D34A mutant (10 pM - I [pM) containing stoichiometric nickel were incubated
with I 00-bp nik DNA in the presence of 35 M NiSO4. The reactions were analyzed on
a 7% native gel with 35 ,uM NiSO 4 in the gel and running buffer. Note that although
there is 100 mM KC1 in the binding buffer, only nickel was added to the gel and running
buffer.

WT D34A
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Figure III.7 Averaged experimental electron density map. A portion of the solvent-
flattened, averaged experimental electron density map contoured at 2 is shown
superimposed on the final refined model of DNA. DNA is shown as sticks colored by
atom type.
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Chapter IV: Divalent Transition Metal Ion Binding to NikR

IV.A. Summary

Escherichia coli NikR regulates the transcription of a nickel uptake protein

complex, but is capable of binding a range of divalent transition metal ions in addition to

Ni +, including Co +, Cu +, Zn +, and Cd +. To understand how the high-affinity nickel

binding site of NikR is able to accommodate these other metal ions, we have determined

the structure of the metal binding domain (MBD) of NikR in complex with Cu2 ' ions and

in the presence of Zn2+ . We observe that Cu2+ ions bind in a very similar manner to Ni2+ ,

but with longer bond lengths and a geometry distorted from square planar. Crystals

grown in the presence of Zn?2 reveal a protein structure similar to apo NikR, but with an

electron density peak near the Ni2+/Cu>+ binding site tentatively assigned as a Zn + ion

with a pyramidal coordination by His87, Cys95, and Glu97, two of which are directly

involved in binding Ni2t and Cu>. In addition, to understand how excess Ni> ions affect

the affinity of NikR for DNA, we soaked crystals of both Ni-NikR alone and the NikR-

DNA complex in excess Ni-4 ions and collected x-ray diffraction data at the nickel

absorption peak wavelength to check for additional binding sites. We observe four Ni2

binding sites on the surface of the protein that are common to both crystal forms, as well

as two sites unique to the NikR-DNA complex, that delineate potential secondary metal-

binding sites.
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IV.B. Introduction

The NikR protein from Escherichia coli is responsible for regulating intracellular

nickel ion concentrations in this organism. This regulation is accomplished by repressing

transcription of the nickel permease complex nikABCDE in response to increasing nickel

(see chapter I for more details). Previous structural and biophysical work has revealed

the quaternary organization of NikR, illustrated conformational changes associated with

high-affinity nickel binding, shown how NikR binds its operator DNA sequence, and

uncovered a second metal binding site on NikR in the presence of DNA' -6 (see also

chapter 3 of' this thesis). Recently, work examining the selectivity of metal binding and

activation by NikR was published 5' 6. The authors first found that in addition to Ni + ,

NikR is capable of binding a number of divalent transition metal ions such as Cu2 i, Co2+,

Zn:2 and Cd- with high affinity6. Their binding constants approximately follow the

Irving-Williams series of divalent transition metal-complex stabilities: Mn < Co < Ni <

Cu > Zn 7. The binding constants relevant to the work described here are 9x10- 3, x10- 17 ,

and <x10 1- M, for Ni>+ , Cu +, and Zn>+, respectively6 . Very similar values were

obtained for the isolated MBD relative to the full-length protein. Although Cu> binds to

NikR with a considerably higher affinity than Ni2 , thermal and chemical denaturation

studies showed that stoichiometric Ni2+ was able to stabilize the folded structure of NikR

by at least 20°C and 0.7 M guanidine HC1 relative other metal ions, suggesting perhaps

that it has a unique allosteric effect on the protein. Circular dichroism spectra

demonstrated that NikR has a greater u-helical content with Ni-2 or Cu2 + bound, relative

to the apo or Zn24-bound forms.
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A parallel study investigated the metal ion selectivity of the specific DNA-

binding response of NikR5. Stoichiometric amounts of Cu-2 , Co2+, and Cd2 ' produced

binding affinities to the nik operator that were similar to Ni2' (3x10-9 , 1x10-8, 2x10- 8, and

5x10-9 M for Cu +, Co2+, Cd2+ and Ni + , respectively). Stoichiometric Zn>+ also allowed

operator binding, but with lower affinity. With excess Ni2 present, NikR binds its

operator sequence with much higher affinity. This higher affinity binding was somewhat

specific for nickel, as an excess of other metal ions produced and affinity 30-100 fold

weaker than with Ni . The results support the hypothesis of a second metal binding site

on NikR in the presence of DNA, and suggest that nickel may have some selective effect

on the conformation or stability of NikR. In chapter III of this thesis, a structure of the

NikR-DNA complex revealed a second metal binding site, but was occupied by

potassium from the crystallization buffer rather than nickel.

Here we describe crystallographic experiments aimed at understanding how NikR

is capable of binding a range of divalent transition metal ions and examining the effect of

excess nickel ions on the protein. We have used the isolated MBD of NikR as a model to

examine the binding of metal ions to the high-affinity binding site because the isolated

domain crystallizes more readily and the crystals diffract X-rays to higher resolution than

the full-length protein. Our previous crystallographic work shows that the structures of

the MBD and high-affinity nickel-binding site are extremely similar in the context of full-

length NikR (chapter 111) and the isolated MBD4 (RMSD of 0.88 A for alignment of 316

common C,, atoms). In addition, metal ion affinities and protein stability in the presence

of metal ions are similar for full-length NikR and the isolate MBD, suggesting that the

isolated MBD is a good model for studying high-affinity metal ion binding to NikR.
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IV.C. Results and Discussion

IV C. 1 Crystal structure of C1u -MBD NikR

The structures of the Cu2+-MBD and Ni-+-MBD complexes are extremely similar,

with a RMSD = 0.22 A for 304 C, atoms of the MBD tetramer. Cu2+ ions bind in the

same position in the high-affinity site of NikR as Nile ions, and with similar coordination

geometry (Fig. IV.2). The Cu2+ site is distorted square planar with longer protein-metal

ion bond lengths relative to the Ni24-bound structure, particularly for the trans ligands

H89 and C95 (Table IV.1). Visible absorption spectra of both Ni>2 and Cu2 bound to

NikR or the isolated MBD show features that are suggestive of square-planar or distorted

square-planar geometry and at least one thiolate ligand6 .

Examples of square-planar complexes of both Ni> and Cu> with proteins (from

the PDB) and small molecules (from CSD) are relatively common ' . The distances

between the bound Cu 2 + ion and H89 and C95 of MBD NikR (2.44 and 2.43 A,

respectively) are considerably longer, however, than the mean Cu2 '-ligand bond distances

observed for equivalent interactions found in the PDB (2.02 and 2.15 A). It is possible

that the difference in metal-ligand bond lengths observed for Cu2t could explain the

differential effect on NikR stability relative to Ni-+ that was observed previously6 . We

proposed previously that ordering of helix a3 of NikR via coordination of H76 from this

helix to a bound metal ion is important for the increase in affinity for nik operator

observed in the presence of stoichiometric metal ions (chapter III). This proposal is

supported by the similarity in operator affinity of the Ni2 and Cu 2+ bound proteins, since

H76 is involved in coordination of both ions. Although it seems strange that a
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transcription factor regulating a nickel uptake operon would respond as efficiently to

copper ions., it has been demonstrated that there is likely no copper available in the

cytoplasm of E. coli since the transcription factor, CueR, regulating production of the

copper efflux pump exhibits zeptomolar sensitivity to copper ions9.

In comparison to the functionally diverse family of blue-copper proteins, Cu2 -

NikR and Cu-2-MBD are deep orange in color (Fig. IV.l), owing to a broad, intense

absorption band centered at 388 nm with an extinction coefficient of 7600 M-lcm1'.6

Although both NikR and the blue-copper proteins have coordination of the Cu2 ion by

histidines and a cysteine thiolate, the coordination geometries are significantly different.

Blue-copper proteins generally have a trigonal planar or pyramidal coordination by two

histidines and a cysteine, with one or two additional longer interactionsl ° . The square-

planar Cu2 -binding site of NikR is shown in Fig. IV.2.

I V C. 2 Crystd structure of MBD NikR crystallized in the presence of Zn> ions

MBD NikR was crystallized in the presence of Zn 2+ ions in a new crystal form

(Fig. IV.3) and the structure was solved by molecular replacement. Following several

cycles of refinement and refitting of the MBD structure determined in the presence of

Zn2+, a +4.2(. peak in the F,-Fc electron density map was evident near the high-affinity

Ni2+/Cu:+ binding site between the sidechains of H87, C95 and E97 (Fig. IV.4). The

rotamers of these sidechains more closely resemble those in the apo-NikR structure than

the Ni2+-bound structure (Fig. II.3.a). The location of the peak is intriguing because it is

near the high-affinity nickel binding site and is located between three sidechains that are

important for binding nickel". Modeling of this peak as Zn 2 ion results in a high B-
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factor for the Zn2+ (74.6 A2) relative to the average B-factors for the protein (47.0 Af2) or

for the surrounding sidechains (40-55 A2). Modeling the peak as a water molecule,

however, results in a relatively low B-factor for the water (31.8 A2) compared to

surrounding residues. Since the B-factor and occupancy of an atom are correlated, the B-

factor of the unknown atom was fixed at 47.0 A2, the average B-factor for the protein

atoms in the structure, and the occupancy of either Zn2 ion or a water molecule was

refined. Refinement of Zn 2+ at this position gives an occupancy of 0.57, and refinement

as water gives and occupancy of 2.18. This result suggests either a low-occupancy Zn>

ions or a very well ordered water molecule. The geometry of the site is approximately

tetrahedral with an open coordination site, so assignment as a bound metal ion seems

possible (Fig. IV.4). The solution from which the crystals grew contained the metal ions

Na', Fe 3 , and Zn2 +. The coordination is not reasonable for Na', which strongly prefers

six-coordinate sites of all oxygen ligands1 2. To evaluate Fe3+ as a possibility, inverse

beam data were collected on the same crystal and the data was scaled anomalously,

keeping Friedel pairs separate. These data and phases from the partially refined model

were used to calculate an anomalous difference Fourier map, which should exhibit a peak

at the position of any iron atoms in the structure since the data was collected at a

wavelength (1.5418 A) where iron has a significant anomalous signal (-3.2 e). The

anomalous difference Fourier map showed no significant peak at the position of the

unknown atom, ruling out Fe34 as a possibility. The peak was therefore tentatively

assigned as Zn + with an occupancy of 0.57 (Fig. IV.5). Future multi-wavelength data

collection around the Zn absorption edge could confirm the assignment. Although the

protein sidechain to Zn 2 ' distances are somewhat long (-2.5 A) for a coordinated metal
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ion (2.14-2..36 A for equivalent interactions in the PDB)8 , it is possible that the model

reflects the average of the Zn2+-bound state, where the ligands are closer, and the

unbound state, where the protein sidechains are in an alternate conformation. The low

resolution of the data (2.5 A), however, prevents the evaluation of this possibility.

Superposition of the MBD+Zn> structure with one subunit of the Ni2+-MBD structure

shows that the Ni2- site and putative Zn-' site are separated by -4.5 A (Fig. IV.6).

One concern regarding the relevance of this structure is the relatively low pH

(5.6) at which MBD NikR was crystallized. A pH significantly below seven could affect

the protonation state of the histidine and cysteine sidechain ligands and consequently the

affinity of Zn>+ ions for the site. More importantly, the pH difference could alter the

binding mode of Zn 2t ions to the protein if multiple, related sites are accessible.

Square-planar coordination of Zn>' in proteins or small molecule complexes is

rare8, so it could be expected that zinc ions bind to NikR via a different mode than either

Ni2' or Cu'. The largest difference between the sites with respect to the function of

NikR is the loss of ligation by His76' across the tetramer interface. This explains the

disorder of helix 3 in the structure (His76 is located on helix cr3) and lower a-helical

content for the Zn -bound form relative to Ni2' or Cu2' as measured by circular

dichroism 6. Perhaps it also explains the 100-fold lower affinity of Zn +-NikR for the nik

operator5 , since ordering of helix a3 upon metal binding could be a requirement for tight

operator binding (see chapter lI). Finally, it is unlikely that Zn2' will activate NikR in

vivo, since zinc metalloregulatory proteins exist with femtomolar sensitivity for the

metal, making the intracellular "free" zinc concentration essentially zero 3 .
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IVC. 3 Additional Ni2 -binding sites on NikR

By soaking crystals of NikR and the NikR-DNA complex (each containing a

Ni2 :NikR ratio of 1:1) in solutions containing millimolar concentrations of NiCl2, we

were able to identify secondary nickel-binding sites on NikR. Seven unique sites were

observed in addition to the high-affinity binding site (Table IV.2) in anomalous

difference Fourier maps calculated from data collected at the nickel absorption peak

wavelength (Figs. IV.7 and IV.8). Sites 1-4 were observed on multiple NikR subunits

and in both crystal forms, while two sites (6 and 7) were observed only in the context of

the NikR-DNA complex. Any of these sites could be considered as possibilities for a

secondary nickel binding site. Nickel ions at site 1 are coordinated by the free N-terminal

amine and carbonyl oxygen of Metl, and are closest in proximity to the operator in the

DNA-bound form of NikR (Fig. IV.8). Sites 2-7 are all located on the surface of the

MBD of NikR and all include coordination by histidine sidechains except site 7. None of

sites 2-7 is closer than -15 A to the DNA operator in the complex structure, but sites 3, 4,

and 7 are located nearby helix (x3 and could stabilize its ordered structure, which has

been proposed to be important for operator binding (chapter III). In addition, sites 2 and

6 are located nearby the inter-domain linker and could help to stabilize a conformation of

the RHH domains that is suitable for DNA binding.

The goal of these experiments was to identify candidates for a secondary nickel

binding site on NikR that was identified biochemically and shown to increase the affinity

of NikR for the nik operator by -1000-fold relative to only stoichiometric nickel. The

structure of NikR in complex with operator DNA (chapter III) identified a functionally

significant second metal binding site on NikR at the interface between the DNA-binding
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Ribbon-Helix-Helix (RHH) domains and the MBD, which was modeled as a potassium

ion from the crystallization buffer. It was therefore tempting to speculate that although

potassium is present at -250mM in a typical E. coli cell 4, nickel could have a

significantly higher affinity for this site and displace potassium. Soaking a crystal of

NikR-DNA in a solution containing 200mM KF and 5mM NiC12t revealed no nickel

bound at the potassium site, however (Fig. IV.8). There are two possible explanations for

this result. The first is that nickel can bind at this site, but binding was somehow

prevented under the experimental conditions. It is also possible that this site is normally

occupied by potassium or another abundant metal ion and that excess nickel ions bind to

one or more of the unique sites identified in this study. The increase in the affinity of

NikR for its operator could then be due to a simple charge increase on NikR, promoting

affinity for negatively charged DNA as has been proposed in the case of the RHH family

member MetJ' 5, or a consequence of stabilization of either helix a3 or the RHH domain

conformation by the nickel ions.

The secondary nickel site characterized biochemically showed specificity for Ni2'

relative to other divalent transition metal ions5. Most of the sites identified here involve

coordination by only one or two protein sidechains, and the resolution of data is too low

to learn about the details of the coordination geometry of the sites. Although most of the

sites involve coordination by a histidine sidechain, this is a common ligand for all of the

metal ions that have been shown to bind NikR and does not explain the observed

specificity for Ni2+. The relevance of the newly identified sites to the function of NikR

could be tested in a number of ways. First, mutagenesis could be carried out on the

amino acids seen here to participate in coordination of additional nickel ions, followed by
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DNA-binding assays of the mutants to determine which sites have an effect.

Furthermore, soaking crystals in lower concentrations of excess NiCl, to observe which

sites on NikR are bound first could lend support to the relevance of one site over another.

Although none of the Ni2+ sites identified in the soaking experiments described

here involves coordination by conserved sidechain positions, it has not been

demonstrated that NikR proteins other than that from E. coli are responsive to nickel ions

above a 1:1 stoichiometry. The physiological relevance of this secondary site has also

not been conclusively established. Transcription assays at varied concentrations of nickel

will need to be carried out to determine its importance.

We have demonstrated here that Cu + ions bind in a similar manner to the MBD

of NikR as Ni> ions, and that Zn2+ ions potentially bind a related site without ordering

helix cr3. Furthermore, we identified candidates for a secondary nickel binding site on

NikR that can be tested by mutagenesis experiments. Studies such as this are key to

providing a molecular description of metal ion-dependent transcriptional repression by

this interesting metalloregulator.

IV.D. Materials and Methods

IV.D. 1 Crystal strulcture of Cue -MBD NikR

MBD NikR was overexpressed and purified with nickel bound as described

previously 4. Nickel was removed from the sample by incubation with 10 mM EDTA

(representing a -I10-fold excess over MBD) at 4 °C for 48 hours. The sample changed

color from light yellow to colorless. To remove Ni-EDTA and excess EDTA, the sample

was passed twice through Micro Bio-Spin P-6 columns (Bio-Rad). Cu 2 + was added by
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slow addition with vortex mixing of a 50 mM CuC12 stock solution until a stoichiometry

of 1.2:1 CuC12:MBD was reached. Upon addition of CuCl,, the sample became a dark

yellow-orange color. Cu-F-MBD was crystallized in the same form and under the same

conditions as Ni2+-MBD, the structure of which was published previously 4. Briefly, 1.5

[tL of -10 mng/mL Cu-MBD in 300 mM NaCI, 20 mM Tris, pH 8.0 was mixed with 1.5

[tL of 0.2 M disodium tartrate dehydrate, 20% w/v PEG 3350 in a hanging-drop vapor

diffusion experiment. Crystals appeared within 2-4 days and were deep yellow orange in

color (Fig. IV.1).

Crystals were cryoprotected using a solution that contained 20% ethylene glycol

in the precipitant. A dataset was collected at APS beamline 8BM at 100 K to 1.5 A

resolution. Data was reduced using DENZO/SCALEPACK1 6. Statistics are given in

Table IV.3.

Crystals of Ni-+-MBD and Cu2+-MBD were isomorphous, so the protein

component of the Ni-+-MBD structure (Q5Y) 4 was used directly as a starting model for

refinement. Refinement was carried out in Refmac 5 from the CCP4 program suitel7

Rigid body refinement of the MBD tetramer and individual subunits was followed by

rounds of positional and B-factor refinement alternated with manual refitting of the

model in Xit 18. Currently, Rwork = 18.2% and Rr, = 21.6% after refinement of

anisotropic tlermal displacement parameters and addition of hydrogens in their riding

positions (Table IV.4). The final model contains residues 50-132 of NikR. One

molecule of the tetramer is missing residues 64-66 from a loop.

All figures of protein structures and electron density maps were produced using

PyMOL' 9
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I VD.2 Crystal structure of MBD NikR + Zn2

Apo MBD-NikR was produced as described above for the Cu2'-MBD NikR

structure. Zn2+ ions were added to Apo MBD-NikR as a stock of 20mM Zn-NTA

complex to avoid MBD precipitation. The final Zn:MBD ratio was 3:1. Hexagonal-

shaped crystals measuring -100gtm per side (Fig. IV.3) were obtained by mixing 1.5 pL

Zn 2+-MBD solution (-9mg MBD/mL in 300 mM NaCl, 20 mM Tris, pH 8.0) with 1.5 pL

of precipitant (10% Jeffamine M-600, 0.1 M Na Citrate, pH 5.6, 0.01 M FeC13) in a

hanging-drop vapor diffusion experiment at room temperature.

A dataset was collected at 100 K on a single crystal after cryoprotection with 30%

ethylene glycol in the precipitant condition using a Rigaku rotating Cu anode source.

Data was reduced using DENZO/SCALEPACK 6 . Statistics are given in Table IV.3.

Since Matthews coefficient analysis suggested only one molecule of MBD-NikR

per asymmetric unit (asu), the protein component of one MBD subunit from the Ni +-

MBD structure (Q5Y) was used as a search model for molecular replacement using

PHASER2 0 . A good solution was found in P6,22 and was refined in CNS2' by rigid body

refinement followed by simulated annealing. Analysis of 2Fo-Fc and F-Fc maps

calculated using the resulting model indicated that helix a3 of the MBD was mostly

disordered, as in the apo-NikR structure (1Q5V) 4. This helix was removed from the

model and cycles of positional and B-factor refinement alternated with manual refitting in

Xfit1' were carried out. The current model includes one subunit of MBD NikR (residues

50-61 and 80--130), three water molecules, and a zinc ion (see Results and Discussion for

details of the assignment as zinc ion), and has good geometry (Table IV.4).
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lJVD.3 Excess Ni: > soak of Ni-NikR crystals

Crystals of Ni2--NikR were grown as described in chapter 3 of this thesis. One

such crystal was soaked in precipitant solution supplemented with 8 mM NiC12 at room

temperature for 70 min. before cryo-cooling in a gaseous N2 stream at 100 K. A dataset

was collected on this crystal at the nickel peak wavelength (1.4845 A) at beamline 5.0.2

of the ALS and processed anomalously using DENZO/SCALEPACK'6 . Statistics are

given in Table 1V.3.

The Ni2 '-NikR model described in chapter III was refined against this dataset

using CNS2 . Rigid body refinement of the whole structure and individual domains was

followed by simulated annealing, positional, and individual B-factor refienement. Phases

from the refined model were used to calculate an anomalous difference Fourier map to

locate the positions of any nickel ions in the structure. A 4 contour of this map

superimposed on a C, trace of the two crystallographically unique NikR subunits is

shown in Fig. IV.7.

I VD. 4 Excess Ni t soak of NikR-DNA crystals

Crystals of NikR-DNA were grown as described in chapter III. One such crystal

was soaked in precipitant solution supplemented with 5 mM NiCl, at room temperature

for 60 min. before cryoprotection with 25% ethylene glycol and cryo-cooling in a

gaseous N. stream at 100 K. A dataset was collected on this crystal at the nickel peak

wavelength (1.4862 A) at beamline X29A of the NSLS and processed anomalously using

DENZO/SCALEPACK' 6 . Statistics are given in Table IV.3. Soaking of crystals in
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solutions with NaCl substituted for KCl resulted in crystal cracking and loss of

diffraction.

Although the dataset from the crystal soaked in excess NiCl 2 scaled well as C2,

the unit cell dimensions differed significantly from non-soaked crystals of the NikR-

DNA complex (a=199.6 A, b=82.3 A, c=125.8 A, 3=104.8 ° vs. a=197.2 A, b=76.1 A,

c=132. 1 A, 1!3=1 10.3°), and simple rigid body refinement using the previous model was

unsuccessful. Molecular replacement was therefore carried out using PHASER2 °, with

the NikR tetramer and duplex DNA as search models. Two copies of each were found in

the space group C2, and were used for subsequent refinement in CNS 21. Rigid body

refinement of the whole structure and individual domains was followed by restrained

simulated annealing, positional, and grouped B-factor refinement. Phases from the

refined model were used to calculate an anomalous difference Fourier map to locate the

positions of nickel ions in the structure. A 4G contour of this map superimposed on a Ca

trace of one NikR-DNA complex is shown in Fig. IV.8.
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IV.G. Tables and Figures

Table IV.1. Comparison of metal binding geometry for the Ni2+-MBD and Cu2 +-MBD
structures. ]Each value is an average of measurements from the four crystallographically
independent molecules of MBD-NikR in the ASU. The average estimated standard
uncertainty (ESU) in the atomic coordinates for each structure is 0.05 - 0.10 A,
depending upon the method of estimation. See Fig. IV.2 for pictures of the binding sites.

Bond Lengths (A) Ni2 + Cu2+

H76'(N&) 1.85 2.00

H87(N&) 1.94 2.09

H89(N6) 2.01 2.44

C95(Sy) 2.22 2.43

Angles () Ni2+ Cu2+

C95 - M 2 - H87

H87- M2+- H89

H89 - M2-- H76'

H76' - M2+- C95

93.0

91.0

87.6

88.3

99.2

83.7

84.4

94.1
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Table IV.2. Ni2+ binding sites on NikR identified in soaks with excess NiC12. Nickel
coordination is by amino acid sidechains unless otherwise noted. A prime denotes an
amino acid from another subunit of the NikR tetramer. Sites are displayed relative to the
Ni-NikR and NikR-DNA structures in Figs. IV.7 and IV.8. Sites 1-4 are observed in both
structures. Site 5 is only in the Ni-NikR soak, and sites 6 and 7 are only observed in the
NikR-DNA complex.

Site description

Previously characterized high-affinity metal-binding site in NikR
(His87, His89, Cys95, His76')

Metl (free N-terminal amine and backbone carbonyl)

His 125, His 125'

His79, His92'

His78, His 110, D114

His 123

His48

Asp 104, Asp 107

104

Site #



Table IV.3. Data collection statistics.

Ni-NikR NikR-DNA

Crystal Cu2+-MBD MBD+ Zn2+ excess Ni2+ soak1 excess Ni2+ soak'

Space Group P21 212, P6222 P3 121 C2

Cell Dimensions

a (A) 45.95 46.33 50.73 199.63

b (A) 78.44 - - 82.31

c (A) 81.46 125.27 183.07 125.74

() - - 104.75

Wavelength (A) 0.9791 1.5418 1.4845 1.4862

Temperature (K) 100 100 100 100

Resolution Range () 50-1.5 20-2.5 50-2.7 50-3.8

Average Redundancy 8.1 6.4 9.3 3.4

Completeness (%)2 97.9 (85.2) 98.0 (98.3) 98.3 (89.3) 94.1 (63.4)

1/ () 2 16.9 (5.3) 12.9 (3.5) 16.3 (4.5) 10.5 (3.0)

Ry (/o)23 5.7 (25.4) 7.5 (46.9) 8.9 (28.8) 7.9 (30.4)

Datasets were scaled anomalously, keeping Friedel pairs separate.
>The number in parentheses is for the highest resolution shell.
'Rsvnym = hkl L(hl) - <I(hkl)> / ZhkI <J(hk/)>, where I(hkl) is the i' measured diffraction intensity and <I(hkI)> is the
mean of the intensity for the miller index (hk).
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Table IV.4. Model refinement statistics.

Ni-NikR NikR-DNA
Crystal Cu2 +-MBD MBD+ Zn2+ - 2excess Ni2+ soak2 excess Ni 2+ soak2

Rcryst (Rfree) (%) 18.2 (21.6) 27.0 (32.6) 27.2 (30.4) 43.7 (46.9)

Resolution Range (A) 15-1.5 20-2.5 50-2.6 50-3.8

Number of protein atoms 2554 476 1959

Number of metal ions 4 1 10

Number of water molecules 243 3 0

R.m.s. deviations

Bond lengths (A) 0.017 0.007 0.009

Bond angles (0) 1.62 1.29 1.33

Ramachandran (%)

Most favored 91.8 88.9 84.7

Additionally Allowed 8.2 11.1 14.0

Generously Allowed 0.0 0.0 0.8

Disallowed 0.0 0.0 0.4

Average B-factor (A) 22.7 47.0 73.7

Rc,,s = hXki F,,(hkl)l - F(hk)ll / hkl IF(hkl)l. Rfree = Rcryst for a test set of reflections (5%) not included in
refinement.
2Protein models for the Ni-NikR and NikR-DNA excess Ni> soaks are not fully refined. Each was used
after partial refinement to calculate anomalous difference fourier maps. Only rigid-body refinement of the
NikR-DNA excess Ni 2+ soak was done, so no model statistics are given.

106



Figure IV.1.
magnification.

Crystals of Cu2+-MBD NikR. Pictures taken using a microscope at -50x
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Figure IV.2. Stereo view comparison of the high-affinity metal binding site of MBD
NikR with Cur+ (part A) and Ni>~ (part B) ions bound. See Table IV. 1 for bond length
and angle measurements. Protein is represented as a Ca trace colored by molecule, with
sticks colored by atom type for the metal ligands. Metal ions are represented as colored
spheres. A simulated-annealing composite omit map for the Cu2-- MBD structure,
contoured at lo , is shown in blue mesh superimposed on the model in the second frame
of part A.
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Figure IV.3.
magnification.

Crystals of MBD+Zn2 +. Pictures taken using a microscope at -50x

Figure IV.4. Positive difference density peak in the MBD+Zn 2

represented as sticks, colored by atom type. Helix o3, which would
view of this site is disordered and absent from the model. A FO-Fc
contoured at +3c0 is shown in red mesh.

structure. Protein is
normally occlude the
electron density map
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Figure IV.5. Stereo view of the putative Zn2+ binding site. Protein is represented as a
C, trace colored by molecule, with sticks colored by atom type for the metal ligands.
Zinc ion is represented as a grey sphere. The zinc ion is slightly out of the plan of the
three protein sidechains.

, 
1

/ /

Figure IV.6. Stereo view superimposition of Ni +-MBD and MBD+Zn 2+ and
comparison of Ni2/Cu 2 and Zn2+ binding sites. One subunit each of the Ni2 -MBD
(pink) and MBD+Zn 2 (green) structures were superimposed. Protein is displayed as a
C( trace, metal ligand sidechains as sticks. Metal ions are shown as spheres.
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Figure IV.7. Nickel binding sites from Ni-NikR crystals (without DNA) soaked in 8
mM NiC12. The two NikR molecules in the asymmetric unit (ASU) of this crystal form
are shown as a C, trace colored by subunit. An anomalous difference Fourier map
calculated using model phases and contoured at 4o is show in blue mesh. Numbered sites
are described in Table IV.2. Sites without numbers are related to a numbered site by
crystallographic symmetry. The two views are related by a 90° rotation.
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Figure IV.8. Nickel binding sites from NikR-DNA crystals soaked in 5mM NiCI 2.
Representation is the same as Fig. IV.7, except that DNA is represented as an orange
cartoon tube passing through the phosphate positions. Bound potassium ions are shown
as pink spheres. Numbered sites are described in Table IV.2.
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Chapter V: NikR and the Ribbon-Helix-Helix Family

V.A. Summary

The amino-terminal DNA-binding domain of NikR belongs to the Ribbon-Helix-

Helix (RHH) superfamily of transcription factors. Visual inspection of the structures of

RHH family members currently available in the PDB permitted alignment of sequences

proposed to belong to this family. Despite low sequence identity among members of this

family, several motifs are apparent in the sequence alignment, which primarily contribute

to the correct folding of this small, dimeric domain. The alignment also allowed

identification of a 36 residue core (72 residues for both molecules of a dimer) that could

be used to structurally superimpose the family members. Analysis of root mean square

deviation (RMSD) values for pairwise structural alignments of the family members

reveals that the DNA-binding domain of NikR is structurally most similar to the Arc

repressor from bacteriophage P22 and the ParG repressor from Salmonella newport, and

least similar to the omega repressor from Streptococcus pyogenes. Comparison of the

available RtIH-DNA complex structures shows that the family shares a generally similar

mode of DNA binding, but the details of the specific interactions vary among the

members.
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V.B. Introduction

When the crystal structure of the methionine repressor protein, MetJ, was

determined in 1989, a model for how MetJ would bind its operator DNA was proposed

where ct-helices at the C-terminus of the protein inserted into the DNA major groove to

make sequence-specific interactions. The model was based on the structures of

transcription factor-DNA complexes available at the time, including zinc fingers,

homeodomains, and the bacteriophage repressor and Cro proteins, which showed DNA

major groove binding by a-helices. When the crystal structure of MetJ in complex with

operator DNA was reported three years later, it was exciting to see that the antiparallel 3-

sheet at the N-terminus of the protein, not an c-helix, was situated in the DNA major

groove, making specific nucleotide base contacts2 . A model for this mode of DNA

binding had been proposed two years earlier for the Arc and Mnt repressors from

bacteriophage P22 based on an NMR structure of Arc and biochemical data showing

where the DNA binding specificity determinants of both proteins was located3-5.

According to the Structural Classification of Proteins (SCOP) database6 , the

Ribbon-Helix-Helix (RHH) superfamily is currently represented by seven members

whose three-dimensional structures have been determined: NikR from Escherichia coli7 ,

a nickel-dependent repressor of nickel uptake genes; MetJ from Escherichia coli -,, which

regulates transcription of the methionine biosynthetic genes in a S-adenosylmethionine

(AdoMet)-dependent manner; the Arc 3'8 and Mnt 9 repressors from bacteriophage P22,

responsible for regulation of the phage lytic cycle; the streptococcal repressor proteins

CopG'"'" and o ', which control plasmid copy number; and ParG from Salmonella

newport 3 , involved in partition of plasmids during cell division. Structures of each are
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depicted in Fig. V. 1, shown in the DNA-bound form when available. Recently, a number

of other proteins have been proposed to be members of the RHH family on the basis of

sequence alignments, nuclear magnetic resonance (NMR) secondary structure

assignment, circular dichroism (CD), analytical ultracentrifugation (AUC), gel filtration

chromatography, and/or mutagenesis. These include the TraY 14 '15 and TrwAl 6 proteins

from E. co/i, which regulate bacterial conjugation; AlgZ'7 , responsible for control of

alginate biosynthesis in Pseudomonas aerulginosa; ParD , an anti-toxin that also controls

transcription of a toxin/anti-toxin pair; PutA'9, a large, multifunctional enzyme from E.

coli involved in proline catabolism that also regulates transcription of proline utilization

genes; and a; DNA-binding protein from Methanopyruls kandleri of unknown function,

nicknamed 7kMk: °.

The structural aspects of the RHH fold and DNA-binding properties were

reviewed a decade ago2 1, when only structures of the Arc repressor and MetJ were

available. .A wealth of structural information about these and several other family

members has become available since then, allowing a more detailed analysis than was

previously possible. The RHH domain is dimeric (Figs. V.1, V.2), comprising tightly

intertwined identical monomers, except in the case of TraY, which contains two repeats

of the RHH sequence (Fig. V.3) and folds as a monomer '1 5. Short [3-strands at the N-

termini of each monomer pair to form an antiparallel -sheet. Binding of the RHH

domain to DNA places this -sheet in the DNA major groove, where two or three amino

acid sidechains from each strand point into the groove and make the critical sequence-

specific nucleotide base contacts (Fig. V.2.a). A conserved set of non-specific DNA

backbone phosphate contacts are made by the two protein backbone amide nitrogens at

115



the N-terminus of the second a-helix (helix a2) of the domain on either side of the major

groove (Fig. V.2.b). This interaction is electrostatically favorable, since the positive

dipole at the helix N-terminus is oriented directly towards a negatively charged phosphate

of the DNA backbone. These contacts anchor the domain to DNA and properly orient the

base-contacting -sheet. Other non-conserved DNA phosphate contacts are made by

sidechains and backbone of flexible N-terminal extensions (if present), or by sidechains

of helix al or helix a2. All RHH proteins whose DNA-binding properties have been

studied bind as higher-order oligomers to multiple sub-sites within their operators,

arranged as inverted or tandem repeats.

V.C. Results and Discussion

V. C. 1. Sequence alignment of Ribbon-Helix-Helix proteins

Visual inspection of the available RHH structures was used to create a multiple

sequence alignment, to which the sequences of predicted RHH proteins were aligned

using secondary structure prediction and profile matching (Fig. V.3). Although the

pairwise identity of the aligned sequences is quite low (average pairwise identity of

15.3% for sequences in Fig. V.3), a number of motifs emerge upon inspection of the

alignment. First, a clear pattern of hydrophilic-hydrophobic repeats is present along the

N-terminal f3-strand between positions 2-7, with the hydrophobic sidechains (3,5,7)

pointing toward the domain core and the hydrophilic positions (2,4,6) pointing away from

the domain to make nucleotide base contacts upon DNA binding. In addition, Arg or Lys

is present in position 2 or 6 in each sequence. The t) repressor has a lysine in position 3,

which alters the conformation of the -sheet in this protein. Since no structures of the
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operator complex or mutagenesis data are available, it remains to be seen how this altered

conformation affects the DNA-binding mode of o. Several of the predicted RHH

sequences contain a hydrophobic sidechain at position 2, 4, or 6. As NikR, CopG, and

MetJ only use two of these three positions to make specific base contacts, it is possible

that these substitutions may not impair DNA binding. A hydrophobic amino acid may

provide some specificity by allowing van der Waals interactions with the methyl group of

thymine bases, for example. A second feature of the sequence alignment is a consensus

G-X-S/T/N in the turn between helix (xl and helix a2. A clear exception is MetJ, which

has six additional amino acids between the helices, has an extra turn of helix at the C-

terminus of helix x 1, and necessarily adopts a different conformation of this loop. NikR

and several predicted RHH sequences are also one amino acid longer in this region. The

length and conformation of this turn/loop do not, therefore, appear to be defining

characteristics of the RHH domain. Finally, four positions along helix ul and helix c2

(positions 15, 27, 31, and 35) are conserved as hydrophobic, primarily branched-chain

amino acids. Taken together with positions 3, 5, and 7 from the N-terminal 3-strand

mentioned earlier, these sidechains comprise the majority of the hydrophobic core of the

RHH domain.

V. C. 2. Structural alignment of Ribbon-Helix-Helix proteins

In order to superimpose and structurally compare the available RHH structures, a

core of 36 amino acid positions was chosen, which includes only the N-terminal P-strand,

helix Col, and helix Co2 (Fig. V.3). Portions of the proteins prior to the -strand, after

helix Cx2, or in the loop connecting helix cal and helix Ca2 were excluded from the
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alignments. Seventy-two C, positions (36 from each molecule of the dimer) were used to

make a best-fit superposition of the RHH structures (Fig. V.4) and to calculate root mean

squared deviation (RMSD) values for each pairwise comparison (Table V. 1). Visual

inspection of both the superposition (Fig. V.4) and RMSD values (Table V. 1) leads to the

conclusion that, despite low sequence similarity among the RHH family members, they

share a very similar fold. NikR is structurally most similar to ParG, followed by Arc and

CopG. If the Co repressor is removed from Table V. 1, nearly all of the remaining pairwise

RMSD values are below 2A, indicating that the structures are highly similar and that

perhaps co is an outlier. The 3-strand and helix (x I of the co repressor adopt different

orientations relative to helix ut2 than the other RHH proteins, possibly a consequence of

substitution of Lys for a hydrophobic amino acid at position 3, which does not allow

insertion of this sidechain into the hydrophobic core of the domain. The register of the

hydrogen bond pairing between strands of the 13-sheet is therefore shifted relative to the

other RHH family members, which all show a juxtaposition of the sidechains at position

4 and 4' in the -sheet. A structure of the complex between o and its operator DNA

sequence would confirm that it shares the same binding mode with other RHH family

members. In addition, mutagenesis experiments could be carried out to determine which

amino acid positions are responsible for sequence-specific DNA contacts in this

repressor.

V C. 3. DNA binding by Ribbon-Helix-Helix proteins

Sequence-specific DNA-binding proteins such as transcription factors use both

direct readout, involving intermolecular contacts between the protein and nucleotide
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bases, and indirect readout, where the conformation of a particular DNA segment is

recognized by the protein, to bind DNA in a sequence-specific manner.22 As mentioned

previously, RHH proteins bind as multiple dimers to operators containing repeats of a

sub-site, making protein-protein contacts between dimers when bound. Each of the

available RHH-DNA co-crystal structures available shows some bending of the DNA

operator. Structures of two dimers each of Arc, CopG, or MetJ bound to their respective

operator sequences all display an overall bending of the DNA by 50-60° over its length.

The molecular details of the cause of this bend vary, however. In the MetJ-DNA

complex structure (Fig. V.l.b), the largest local bend is at the center of each sub-site,

where the specific contacts from MetJ are located. For Arc and CopG, the majority of the

bend is localized in the center of the operator, between the two dimer-bound sub-sites

(Fig. V.l.c,d). This difference is not surprising, given that the quaternary interactions

between bound RHH dimers are similar for Arc and CopG, and are significantly different

for MetJ (Fig. V.l.b-d). NikR represents a unique case since there is no direct contact

between the two RHH dimers in the co-crystal structure (Fig. V.l.a), although it also

binds its operator DNA sequence as a tetramer. The large, tetrameric, C-terminal metal-

binding domain (MBD) of NikR separates the two RHH domains in space, allowing

NikR to bind an operator sequence with sub-sites separated by two full turns of DNA.

The DNA in the NikR-operator complex curves slightly and uniformly over its length,

bending by a total of only -22 ° . The curvature of the NikR operator could be due to its

interaction with NikR or because of the A-tract sequence (TTAAAAT) comprising the -

10 region of the nik promoter between the operator sub-sites . The major groove widths

around the l-strands of the bound RHH proteins vary as well, although a general
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correlation seems to exist between the distance separating the N-termini of helices a2 of

each unbound RHH dimer and the DNA major groove width around the protein when

bound (Table V.2 and Fig. V.5). The local DNA distortion in the complex structures

could be a result of conforming to a rigid protein framework, or may be a consequence of

indirect readout of a sequence-specifically distorted local DNA conformation. This

analysis is complicated further by the interesting observation that the phosphates

contacted by the N-termini of helices cr2 on either side of the major groove are separated

by five base-pairs in the NikR-DNA complex and six base-pairs in the Arc, CopG, and

MetJ co-crystal structures. The difference in the binding mode of NikR may be due to

the limited range of orientations available to the RHH domains of NikR, since they are

each tethered to the large, central metal-binding domain.

The details of the specific DNA base contacts do not appear to be conserved

across the RHH superfamily. Each characterized family member binds a unique operator

sequence (or- sequences). RHH proteins use 2-3 amino acid sidechains from each N-

terminal 3-strand (positions 2, 4, and 6) to make direct nucleotide base contacts, and the

identities of these three sidechains vary across the family (Fig. V.3). Although MetJ

binds a symmetric operator sequence by making contacts that follow the two-fold

symmetry of' the dimer, other members recognize asymmetric sub-site sequences and

correspondingly make asymmetric contacts (Fig. V.6). In general, the nucleotide base

interactions made by the RHH family are common relative to the known protein-DNA

structures 4, with Lys or Arg at position 2 or 6 of the 3-strands making the most specific

contacts. Perhaps the most interesting comparison with regards to operator sequence

specificity is NikR and CopG. Both of these proteins have Arg-X-Thr-X-Thr at positions
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2-6 of their P-strands, but naturally recognize unique operator sub-site sequences (Fig.

V.6). Indeed, their structures in complex with operator DNA show different

conformations of the base-contacting sidechains. It would be interesting to learn whether

substitution of the CopG sub-site sequence into the NikR operator (with the correct

spacing) could allow tight binding, or whether other factors such as the large, C-terminal

metal-binding domain of NikR play an important role in specificity. The recently

identified 7kMk protein also shares this Arg-X-Thr-X-Thr motif along its putative P3-

strand, but no operator sequence has yet been identified for this protein. Perhaps learning

more about sequence specificity in the NikR and CopG systems could allow prediction of

an operator sequence for 7kMk.

RHH proteins constitute a functionally diverse structural superfamily that appears

to be steadily growing in size. Although the RHH family members use a common set of

themes for interacting with DNA, they recognize different operator sequences, make

unique protein-protein interactions to stabilize their complexes with DNA, and can be

ligand regulated or simply concentration dependent in their ability to bind operator. It is

our hope that this detailed structural analysis will aid the identification of new members

of this expanding family.

V.D. Materials and Methods

VD. 1. Sequence alignment of Ribbon-Helix-Helix proteins

Sequence alignment of structurally characterized RHH proteins was accomplished

by visual inspection of the structures and comparison of structural markers such as
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secondary structure elements. Alignment of additional sequences began with limited

sequence alignments reported previously 4- 20, followed by manual adjustments.

VD. 2. Struclural alignments qf Ribbon-Helix-Helix proteins

Structural alignments and calculation of RMSD values were carried out in

LSQKAB, part of the CCP4 program suite 25. All structural figures were prepared using

PyMOL26 .
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V.F. Tables and Figures

Table V.1. Pairwise RMSD values, in A, for structural alignment of the RHH structures
currently available in the PDB. 72 common C, atoms of each dimeric domain were used
for the superposition. See Fig. V.3 for the Ca positions used.

ParG
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Table V.2. Major groove width vs. helix uo2 N-termini separation. The major groove
width where the operator is contacted by the RHH 3-strands is compared with the
separation of the backbone amide nitrogen atom of residue 24 (N-24, see Fig. V.3 for
numbering, Fig. V.2 for contacts) in the two molecules of the unbound RHH dimer.

RHH Protein

Arc

C opG

MetJ

NikR

Major groove width (A)

14.3

8.6

9.4

12.8

N-24 separation (A)

15.4

13.6

13.2

14.6
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Figure V.1. Structures of RHH proteins.

Figure V. l.a. Two views of a ribbon representation of the NikR-DNA complex. The
RHH portion of each molecule is colored, other portions of the protein are grey. DNA is
represented as orange tubes passing through the phosphates of the DNA backbone.
Nickel ions bound to NikR are represented as cyan spheres. The second view is shown
from the top relative to the first.

Figure V I.b. Two views of a ribbon representation of the MetJ-DNA complex. The
RHH portion of each molecule is colored, other portions of the protein are grey. DNA is
represented as orange tubes passing through the phosphates of the DNA backbone. SAM
molecules bound to MetJ are represented as cyan sticks.
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Figure V. I.c. Two views of a ribbon representation of the Arc-DNA complex. The RHH
portion of each molecule is colored, other portions of the protein are grey. DNA is
represented as orange tubes passing through the phosphates of the DNA backbone.

Figure V l.c. Two views of a ribbon representation of the CopG-DNA complex. The
RHH portion of each molecule is colored, other portions of the protein are grey. DNA is
represented as orange tubes passing through the phosphates of the DNA backbone.
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Figure V. I.e. Two views of a ribbon representation of Mnt.
molecule is colored, other portions of the protein are grey.

The RHH portion of each

U

Figure V. ./.' Two views of a ribbon representation of ParG. The RHH portion of each
molecule is colored, other portions of the protein are grey.
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Figuzlre V. l.g. Two views of a ribbon representation of co. The RHH portion of each
molecule is colored, other portions of the protein are grey.
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Figure V.2. Common features of DNA binding by RHH proteins.

Figure V.2.cl. Sequence-specific nucleotide base contacts in the DNA operator major
groove by RHH proteins. The RHH protein is shown as a cartoon colored by molecule,
the backbone of the 3-strands is shown as a Ca trace, the three amino acid sidechains
from each Pf-strand and the DNA are represented as sticks, and hydrogen bonds between
the protein and DNA bases are shown as dashed lines. The structure depicted here is that
of the Arc-I)NA complex, but is meant to represent the general RHH protein. The
nucleotide base sequence and three amino acid sidechains vary among RHH family
members. Secondary structure elements are labeled.
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Figure V 2. b. RHH backbone-DNA phosphate
Representations are similar to Fig. V.2.a.

backbone anchoring contacts.
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Figure V.3. Sequence alignment of characterized RHH proteins. Numbers indicate Cu
positions used for stnlctural alignment, and are refered to throughout the text. Secondary
structure elements are shown above the alignment and labeled. Sequences with red
names have structures determined alone and bound to operator DNA. Sequences with
blue names have structures determined alone only. Black names have no structures
determined. Amino acids are shaded by property: blue - positive charge, red - negative
charge, white - hydrophobic, green - neutral hydrophilic, purple - aromatic, orange -
Gly or Pro, Y'ellow - Cys.
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Figure V.4. Superimposition of RHH domains.

Figure V14.a. Stereo view of a Ca trace of superimposed RHH domains. Colors are as
follows: NikR - blue, MetJ - yellow, Arc - red, CopG - green, Mnt - orange, ParG -
purple, co - cyan.

IFigure V4.b. Stereo view of a C, trace of superimposed RHH domains. View is from
the top relative to Fig. V.4.a.
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Figure V.5. Superimposition of DNA-bound RHH domains.

Figulre V.5.. Stereo view of superimposed DNA-bound RHH domains. RHH proteins
are shown as a C, trace, DNA as a smooth tube passing through the backbone phosphate
positions. Colors are as follows: NikR-DNA - blue, MetJ-DNA - yellow, Arc-DNA -
red, CopG-DNA - green.

I\

Figure V.5.b. Stereo view of superimposed DNA-bound RHH domains.
top relative to Fig. V.5.a.

View is from the
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Figure V.6. Specific polar contacts between RHH 3-strands and DNA operator sub-sites.
Schematic representation of polar interactions between the three amino acid sidechains of
each 3-strand of a RHH dimer and the nucleotide bases within a DNA operator sub-site.
R = purine, Y = pyrimidine. Arrows indicate polar interactions. Dashed arrows indicate
interactions that only occur in some structures of CopG but not others. Contacted bases
are shaded. The approximate location of the RHH dimer symmetry axis is indicated by
an oval.
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Chapter VI: Afterword

VI.A. Implications of this work

X-ray crystal structures of the NikR protein from Escherichia coli provided the

first three-dimensional views of this protein, allowed identification of metal ion binding

sites, and showed in detail how NikR interacts with its operator DNA sequence. The

work described in this thesis has contributed significantly to our knowledge of the

structure and mechanism of function of NikR. In a more general sense, it adds to the

rapidly expanding field of intracellular metalloregulation, and to the study of the

structural mechanisms for ligand induction in transcription factors (see chapter I).

VI.A. Future experiments

Our results led us to propose hypotheses regarding the function of NikR that can

be tested experimentally in the future. In chapter III, we propose that ordering of helix

a3 upon metal ion binding to the high-affinity site of NikR is important for the increase

in affinity for operator DNA. This hypothesis could be tested by attempting to stabilize

the folded structure of this helix in the absence of metal ion. For example, a disulfide

crosslink between this helix and a less flexible part of the protein could be introduced'.

Mutation of the amino acid sequence of the helix to a sequence with a higher propensity

to form a stably folded helix may also be effective. Chapter III and chapter IV described

our effort to identify secondary metal ion binding sites on NikR to explain the increased

affinity of NikR for operator DNA in the presence of excess metal ions. A collaboration

is currently underway with Dr. Deborah Zamble's lab at the University of Toronto to

study the importance of the putative potassium binding site we observed at the RHH-
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MBD interfatce by using DNA-binding assays of mutant proteins. A similar experimental

approach could be used to study the relevance of additional nickel binding sites at the

surface of NikR identified by soaking crystals of the DNA complex in excess NiCl2.

The in vivo relevance of additional binding sites could be measured by observing

nik transcription levels within cells growing with various concentrations of nickel in the

media. Orthologs of E. coli NikR should also be studied in more detail to examine

whether secondary metal ion binding sites play a functional role for the NikR family as a

whole, or whether the effect is specific to the E. coli protein. Transcriptome analysis of a

Helicobacter pylori NikR knockout revealed that it plays a role in the regulation of a

large number of genes in that organism 2. Similar studies could be done with E. coli NikR

to see if it regulates transcription of anything besides the characterized nik operon.

Additional studies to examine intracellular trafficking of nickel ions will likely

contribute in the near future to our understanding of why and how the somewhat relaxed

metal ion specificity of NikR is tolerated by E. coli. What type of kinetic controls are in

place in this organism to deliver nickel ions to the enzyme active sites where they are

required when NikR binds nickel so avidly? Furthermore, are there no "free" nickel ions

in a normally growing cell, as has been proposed recently for both copper and zinc' 5?

Answering these questions will move us several steps closer to an overall description of

how intracellular metal ion concentrations are regulated.
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Chapter VII: Appendices

VII.A. Protocols

ViI.A. 1. NikR plasmids

Expression of NikR or the MBD of NikR (residues 49-133) was from plasmids

pNIK 103 1 or pNIK 1022 , obtained from Peter T. Chivers (Washington University School

of Medicine). Each was created by ligation of the appropriate coding sequence into pET-

22b using the restriction enzymes NdeI and XhoI.

VI/.A. 2. Preparation of competent Escherichia coli cells and plasmid transformation

E. coli strain DL41 was made chemically competent by a variation of the TSS

method 3, and was suitable for storage at -800 C for several years.

1. Grow bacteria in Luria-Bertani (LB) media at 37°C until the culture reaches

an optical density at 600 nm (OD6 00 ) of 0.5.

2. Incubate the culture on ice for 10 min.

3. Pellet the culture by centrifugation at 1000 x g at 40 C for 10 min.

4. Resuspend the bacterial pellet in 1/10 the original culture volume of ice-cold

transformation and storage solution (TSS) (10 % polyethylene glycol (PEG)

8,000, 5 % dimethyl sulfoxide (DMSO), 30mM MgCI, in LB media) by

gentle aspiration with a pipette.

5. Aliquot the 1/10 resuspension in 100 VtL volumes into 1.5 mL microcentrifuge

tubes and label for storage at -80°C
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Generally, E. coli were transformed with plasmid stock before each

overexpression of NikR. E. coli made chemically competent via the procedure described

above were transformed with expression plasmids derived from standard plasmid

miniprep kits as follows:

1. Thaw a 100 ptL aliquot of competent cells on ice.

2. Mix 1 pL of supercoiled plasmid DNA (from miniprep) into the competent

cells and incubate the mixture on ice for 20 min.

3. Place mixture in a 42°C water bath for 60 sec.

4. Incubate the mixture with shaking for 60 min. at 37°C.

5. Plate 10-100 pL (depending on the original DNA concentration) of cells onto

LB agar containing the appropriate antibiotic selection.

6. Incubate plates overnight at 37°C.

VII.A. 3. Overexpression of NikR or MBD in E. coli strain DL41

1. Pick 4-5 colonies from a recent transformation to inoculate 10 mL starter

cultures of LB supplemented with the appropriate antibiotic (usually 100

plg/mL ampicillin).

2. Grow starter cultures overnight at 370C with shaking (or rotating).

3. Pre-equilibrate I L aliquots of autoclaved LB in 2 L baffled shaker flasks at

37 0C.
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4. Mix multiple starter cultures together to ensure equivalent inoculation of

larger cultures.

5. Add antibiotics to larger cultures immediately before inoculation.

6. Inoculate L cultures with 4 mL of starter culture.

7. Incubate with shaking at 220 rpm with periodic monitoring of OD600 to

estimate culture doubling time.

8. Grow cultures until OD 60 0 reaches 1.0-1.2 and remove a 1 mL aliquot ("pre-

induction" sample) to analyze later by SDS-PAGE. Pellet 1 mL aliquot by

microcentrifugation at full speed for I min., discard supernatant, and store

cell pellet at -200 C for analysis by SDS-PAGE.

9. Induce NikR overexpression by addition of solid isopropyl-[3-D-

thiogalactopyranoside (IPTG) to each flask to achieve a final concentration of

-1 mM when the culture OD600 reaches 1.0-1.2. For convenience, a I g bottle

of IPTG may be divided into four equivalent 250 mg portions and one portion

added to each IL flask.

10. Allow cultures to incubate with shaking at 37°C for four hours after

induction.

11. Remove, pellet, and store another I mL aliquot ("post-induction" sample) for

SDS-PAGE analysis.

12. Pellet cultures in 1 L centrifuge bottles by centrifugation at 4C for 30 min. at

10,000 x g.

13. Combine pellets and store at -800 C until purification.
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V'I.A.4. Overexpression of selenomethionine (SeMet) labeled NikR in DL41

The E. coli strain DL41 is a methionine auxotroph, and was designed to be

suitable for expression of SeMet labeled proteins. Expression of SeMet labeled NikR

was carried out much the same as described above for WT NikR, with the following

modifications:

1. Starter cultures and 1 L cultures are in chemically defined LeMaster medium4 ,

supplemented with lx Kao and Michayluk vitamin supplement (Sigma) and

50 mg/L D,L-selenomethionine (Sigma), instead of LB. The vitamin

supplement, selenomethionine, and antibiotic are added to the medium

immediately before inoculation.

2. The doubling time of DL41 in the LeMaster medium is considerably slower

than in LB, generally around 60 min.

3. After induction with IPTG, the cultures are incubated for 10-12 hours (instead

of'4 hours) before harvesting. Addition of another 100 Vtg/mL ampicillin after

induction should help plasmid retention and protein yield since the growth

times are considerably longer.

VII.A.5. Purification of NikR or MBD /br crystallization

VII.A.5.a. Immobilized nickel-affinity chromatography

1. Thaw frozen E. coli cell pellet on ice. This procedure is described for a pellet

from 8 L of cell culture as described above.
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2. Resuspend cell pellet in 50 mL buffer 1 (100 mM potassium phosphate, 300

rnM NaCl, 10 mM imidazole, pH 8.0) gently using first a spatula and then a

manual tissue homogenizer.

3. Add phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, from

a freshly-made 200 mM stock in isopropanol to the resuspended cells to a

final concentration of 2 mM.

4. Sonicate the resuspended cells intermittently for 5 min. or until mostly

clarified. Use a metal beaker packed in ice to keep the suspension cold.

5. Pellet the insoluble fraction after sonication by centrifugation at 35,000 x g for

30 min. at 4C. Keep a small aliquot of the supernatant for SDS-PAGE

analysis ("cell break supernatant").

6. Decant supematant into a clean 100 mL bottle and add NiCIl from a

concentrated stock to a final concentration of 100 M with mixing. Note:

Failure to add NiCI it'ill result in NikR removing nickelfrom the Ni-affinit-'

resin.

7. Add 10 mL (solid volume) of Ni-affinity resin (Novagen) and nutate at 4°C

for at least 10 min. (Batch bind)

8. Pour the mixture into a gravity flow chromatography column with a stopcock

(1 in. x 9 in. works well) and allow resin to settle to the bottom.

9. Allow the cell break supernatant to flow through the column and take a small

sample for SDS-PAGE ("flow-through").
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10. Wash the resin with 50 resin-bed volumes of buffer 1, flowing at a rate of < 5

miL/min, keep a sample for SDS-PAGE ("lOmM wash"). Washes can be

carried out a room temperature with buffer that has been equilibrated at 40 C.

I11. Wash the resin with 10 resin-bed volumes of buffer 2 (100 mM potassium

phosphate, 1 M NaCI, 35 mM imidazole, pH 8.0), keep a sample for SDS-

PAGE ("35mM wash").

12. Elute NikR from the column with -1.5-2 resin-bed volumes of buffer 3 (100

mM potassium phosphate, 300 mM NaCi, 250 mM imidazole, pH 8.0), take a

sample for SDS-PAGE ("250mM elution"). The resin should change color

during this step from light grey or white to its original light blue color. The

eluted NikR should be fairly concentrated and therefore have a light yellow-

orange color.

13. Run a SDS-PAGE gel of the samples collected from each step of the

expression and affinity chromatography to check the overexpression level and

sample purity. Such a gel is show in Fig. VII.I. The 250 mM elution sample

should be > 90% pure as judged by coomassie-stained SDS-PAGE.

14. NikR can be quantitated at this stage by A276 using an extinction coefficient of

4400 M-1 cm- 1 for full-length NikR or 2900 M- l cm- for the MBD. The

sample must first be exchanged into a buffer that does not contain imidazole

(which absorbs at 276 nm) and then denatured in 8 M guanidine hydrochloride

(Pierce) (to remove bound nickel, which also absorbs at 276 nm when bound

to NikR). Typical NikR yields after Ni-affinity chromatography are 20-30 mg

of NikR per 1 L of E. coli culture.
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VII.A.5.b. Size-exclusion chromatography

The NikR sample should be mostly pure after Ni-affinity chromatography. Size-

exclusion chromatography (SEC) is useful to remove the small amount of aggregated

NikR that usually exists and which can inhibit crystallization.

1. Concentrate the NikR sample to 10-15 mg/mL so that a small volume can be

loaded onto the SEC column. Overconcentration can result in NikR

precipitation, which can be reversed by increasing the sample pH to 9 or

adding EDTA to remove nickel from the protein.

2. Equilibrate the SEC (generally Superdex 200 for full-length NikR and

Superdex 75 for MBD) with buffer 4 (20 mM tris(hydroxymethyl)

arninomethane (Tris), 300 mM NaCl, pH 8.5) that has been filtered. The pH

of a Tris-buffered solution is especially sensitive to temperature, so pH the

solutions at the temperature where they will be used (4°C).

3. Load NikR onto the column and elute at a flow rate of 0.5-1.0 mL/min,

monitoring A2 80.

4. NikR will elute as a tetramer in primarily a single peak of molecular weight

(MW) -60,000 (15,096 Da for the NikR monomer). See Fig. VII.2 for a

sample chromatogram. Generally a smaller peak of aggregated protein will

el ute shortly before the main peak.

5. Run a SDS-PAGE of the fractions around the main peak and pool the

fractions containing the highest purity NikR.
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6. Estimate the concentration of NikR in the pooled fractions by measuring A276

of the denatured protein as described previously. Typical yield after SEC is

10-20 mg of NikR per I L of E. coli culture.

7. Store the purified sample of NikR at 4C, where it appears to be stable for

years.

VI.A. 6. Qulantitation of Ni2 +.'NikR ratio utsing PAR

The metallochromic indicator 4-(2-pyridylazo)resorcinol (PAR) can be used to

rapidly determine concentrations of metal ions in protein samples 5-7. The Ni2+-PAR

complex exhibits absorption maxima at 502 nm and 528 nm that do not overlap with the

absorbance of denatured protein and can therefore be used to determine the concentration

of Ni>2 ions in a sample of NikR.

1. Make a 1 mM stock solution of PAR in water using volumetric glassware.

Store the solution at 40C in the dark.

2. Use nickel concentration standards to produce a calibration curve for A502 and

A528 vs. [Ni 2+] in 8 M guanidine HC1. Such a calibration curve is shown in

Fig. VII.3, and is generally linear only in the range of 0-12 jaM.

3. Determine the concentration of NikR using A76 of denatured protein as

described above.

4. Dilute the protein sample and PAR together with 8 M guanidine HCI until the

estimated [Ni +] is 5-10 jpM and the [PAR] is 100 jtM. Typically, a sample

containing 10 jaL NikR, 20 jtL PAR, and 170 jaL of guanidine was used.
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5. Allow at least 30 min. for complete denaturation and nickel dissociation from

the NikR sample.

6. Read the absorbance at 502 nm and 528 nm after blanking the UV-Vis with a

sample containing buffer in place of the protein solution.

7. Estimate the [Ni 2+] by comparison with the calibration curve.

8. Divide the [Ni ] by [NikR] to obtain the fraction of NikR with nickel bound.

PVI.A. 7. HPL C purification of deoxyoligonucleotides for co-crystallization with NikR

Single-stranded deoxyoligonucleotides (mole scale synthesis) were purchased

from Integrated DNA Technologies (IDT-DNA) after standard desalt purification. These

oligonucleotides were further purified by reverse-phase HPLC as described below, a

procedure obtained from the laboratory of Carl Pabo:

1. Prepare two I L stock solutions of 1 M triethyl amine (TEA). The first stock

solution should be adjusted to pH 6.5 using glacial acetic acid in a fume hood

(TEAA). The second should be adjusted to pH -7 by bubbling CO, through

the solution (TEAB).

2. Make several liters each of 50 mM TEAA in acetonitrile (buffer A) and H20

(buffer B).

3. Dissolve each oligonucleotide in 10 mM TEAB in H20 and filter through a

0.2 tm centrifuge filter.

4. Inject sequentially onto a 2.2 cm x 15 cm Vydac C4 column (product

#214TP102215) maintained at 500C using a column heater and separate using

the gradient described in Table VII. 1 with a flow rate of 8 mL/min.

148



5. Collect the peak above A260 = 0.8. A sample chromatogram is shown in

Fig. VII.4.

6. Dialyze each oligo three times against 4 L of 10 mM TEAB.

7. Lyophilize oligos to dryness.

8. Resuspend oligos in 1 mL and quantitate using A260.

9. Anneal complimentary oligos by mixing equimolar amounts, placing them in

an insulated waterbath at 900 C and allowing them to cool slowly to 4°C

overnight.

10. Aliquot double-stranded oligos into 1.5 mL microcentrifuge tubes in portions

suitable for crystallographic experiments and concentrate to dryness using a

speed vac.

I . Store double-stranded oligos at -20°C or -80°C.

VII.B. Crystal structure of the R33M NikR mutant

VII. B. I Resullts and Discussion

The crystal structure of the nickel-bound R33M NikR mutant was solved by

molecular replacement and is shown in Fig. VII.5. The MBD of the R33M NikR

tetramer is very similar to the structures of the isolated Ni2+-MBD and full-length Ni +-

NikR (chapter III). The RHH DNA-binding domain (DBD), however is slightly altered

in its structure due to the mutation. The largest difference is a twist of the 3-strands by

-13 in the R33M structure relative to WT NikR (Fig. VII.6). Comparison to the

previously determined apo, nickel-bound, and DNA-bound structures of NikR gives

RMSD values of 1.06 A, 1.44 A, and 1.89 A, respectively when comparing 80 C, atoms
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of the dimeric RHH domain. In the WT structures, Arg33 makes a hydrogen bond to the

backbone carbonyl oxygen of Thr7' (Fig. VII.7.a), an interaction that is disrupted by

mutation to methionine (Fig. VII.7.b). The orientation of the RHH domains relative to

the MBD is also different in this structure than has been observed previously (Fig. VII.8).

It seems unlikely that this is a consequence of the mutation, but rather reflects the

inherent structural flexibility of NikR.

V. B. 2 Materials and Methods

Ni -R33M NikR was expressed and purified exactly as the wild-type NikR (see

chapter 2). Crystals of nickel-bound R33M NikR were grown by mixing 1.5 L of

protein solution (10 mg/mL R33M NikR in 20 mM Tris, 300 mM NaCI, pH 8.0) with 1.5

pIL of precipitant (0.2M MgClI, 0. IM NaHEPES pH 7.5, 30% PEG 400) in a sitting drop

vapor diffusion experiment at room temperature. A crystal from this condition that grew

after one week was cooled to OOK in a gaseous N2 stream directly from the drop without

cryoprotection. A dataset was collected at beamline X12-B of the NSLS to 2.3 A

resolution. The data were reduced using DENZO/SCALEPACK 8 in the point group P2,

statistics are given in Table V11.2. Matthews coefficient analysis indicated that there

were likely four molecules of R33M NikR per ASU. The Ni2+-R33M NikR structure was

solved by molecular replacement in the space group P2 1 first using AMoRe 9 with the

Ni2-MBD tetramer (lQ5Y)'O as a search model. Four obvious solutions were found

corresponding to the four possible orientations of the Ni-+-MBD tetramer. Subsequently,

EPMR"I was used to locate the two RHH dimers using a portion of the apo NikR

structure (Q5V)' while holding the MBD solution fixed. Inspection of 2Fo-Fc maps
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following rigid body refinement in CNS'2 revealed that the MBD of Ni2+-R33M NikR

was nearly identical to the published Ni2+-MBD structure. In the RHH domains,

however, there was a clear twist of the beta-strands relative to the alpha-helices compared

with the apo-NikR model (Fig. VII.6), and the strands were removed to be rebuilt

manually. At this stage there was also clear positive Fo-Fc density for two of the linkers

connecting the RHH domain and MBD, corresponding to one RHH dimer. After several

cycles of rebuilding in Xfit' 3 and positional and individual B-factor refinement in CNS,

the current model consists of the entire MBD tetramer (except for a small loop, residues

64-66 in each molecule) as well as a complete RHH dimer and the linkers connecting it

(Fig. VII.5). The other RHH dimer, however, shows a considerable amount of disorder

and -30% of this domain has not been modeled owing to uninterpretable density.

Neither of the linkers to this RHH dimer have been modeled either because of the

disorder. The current model therefore contains 473 out of 532 amino acids, 4 Ni-+ ions,

and 36 water molecules with an Rwork = 25.7% and Rtre = 29.5%. Model refinement

statistics are given in Table VII.3. Figures were produced using PyMOL' 4.

VII.C. Two additional crystal forms of apo NikR

An interesting question regarding the function of NikR is how flexible the ribbon-

helix-helix (RHH) domains are relative to the metal-binding domain (MBD). In our

original structures of apo-NikR (Q5V) and Ni2'-NikR, neither NikR tetramer was in a

conformation suitable for interaction with operator DNA. This seems to contradict a

mechanism where high-affinity nickel binding enforces a conformation of NikR that can

bind DNA, but does not rule out that in the absence of nickel the repressor is locked into
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a non-productive conformation. Since crystallography provides only a single snapshot of

a molecule per crystal (unless multiple copied of the molecule are present in the ASU),

multiple structures in unique crystal forms are required to provide information about

dynamic processes such as conformational change. To learn more about the range of

conformations accessible by apo-NikR, I crystallized apo-NikR and a single point mutant

in two crystal forms that are distinct from the original apo-NikR structure (IQ5V).

VII. C. I Apo-NikR crystal.form #2

The first crystal form of wild-type (WT) apo-NikR was grown by mixing 1.5 gL

of Cu2 -NikR (10 mg/mL) in 20 mM Tris, pH 8.0, 300 mM NaCl with 1.5 ptL of

precipitant solution, consisting of 0.1 M NaCl, 0.1 M sodium acetate trihydrate, pH 4.6,

12% v/v 2-methyl-2,4-pentanediol (MPD) at room temperature in a sitting drop vapor

diffusion experiment. Diamond-shaped colorless crystals measuring -300x250x00pLm

grew after 24 hours and were cryoprotected by increasing the precipitant MPD

concentration to 25 %/ before cryo-cooling in liquid nitrogen (LN 2). Since the crystals

grew at pH 4.6 and were colorless, Cu2+ ions were no longer bound to the protein. A

dataset was collected to 2.8 A resolution at APS beamline 8BM. Data were reduced

using DENZO/SCALEPACK 8 in the point group P222. Statistics are given in Table

VII. 1.

Matthews coefficient analysis suggests that this crystal form contains 5-9

molecules of NikR in the ASU, with predicted solvent contents of 63-33%, respectively.

Systematic absences suggest that the space group is likely P212 121 (Table VII.4).

Molecular replacement trials were carried out with one, two, or four subunits of the MBD
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or a RHH domain dimer from the original apo-NikR structure ( 1Q5V)l° as search models,

using the programs AMoRe9 , EPMR' L , and Phaser 5s in all four of the primitive

orthorhombic space groups. No searches yielded reasonable solutions.

VII. C. 2 Apo-NikR cnrstalform #3 (E63A point mutant)

The second new apo-NikR crystal form was grown by mixing 1.5 L of Ni +-

E63A NikR (10 mg/mL in 300 mM NaC1, 20 mM Tris, pH 8.0) with 1.5 pL of

precipitant, containing 0.1 M NaCl, 0.1 M sodium acetate, pH 4.6, and 12% w/v PEG

6000 at room temperature in a sitting drop vapor diffusion setup. Irregularly shaped

colorless crystals measuring -150x100x100pm grew after 2-4 days. Again, because the

crystals were grown at low pH and were colorless, they likely contained the apo form of

the protein. These crystals were cryoprotected by soaking in the precipitant solution

supplemented with 20% v/v ethylene glycol before cryo-cooling in LN2. A dataset was

collected to 3.4 A at ALS beamline 8BM. Data were reduced using

DENZO/SCALEPACK 8 in the point group P2. Statistics are given in Table VII. 1.

Matthews coefficient analysis implies either three or four molecules of NikR per

ASU with 54% or 39% solvent, respectively. Systematic absences strongly imply that

the space group is P2 1. A reasonable molecular replacement solution was found by

searching first with a tetramer of the MBD followed by a dimer of the RHH domain from

the original apo-NikR structure (1Q5V)' ° in P2 1 using the program Phaser's. Only one

RHH domain was located, searching for a second gave no reasonable solutions.

Although the crystal packing was reasonable for the molecular replacement solution and

2Fo-Fc maps calculated from that partial model revealed continuous density for the two
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inter-domain linkers, the maps were overall quite noisy and rigid body refinement of the

solution in (NS did not significantly reduce the R-factors. A cavity was present in the

crystal lattice where the second RHH domain could be expected, but the electron density

present there was not continuous and could not be interpreted as a RHH domain.

Although the molecular replacement solution for the MBD and one RHH domain seems

correct, any positional refinement resulted in a decrease in Rwork but not Re,,, which

could not be reduced below 48%.
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VII.E. Tables and Figures

Table VII.1. Gradient programs for
deoxyoligonucleotides. Solvent A is 50 mM
TEAA in HO.

reverse-phase HPLC purification of
TEAA in acetonitrile, solvent B is 50 mM

Time (min.)

0

16

24

Flow Rate (mL/min.) Solvent %B

8

8
8

0
0
95

Separation

Shut Down

Program
Start Up

0
32
37
40
45
53

8
8
8

8

8

8

95
83
70
70
95
95

0
8

24

8

8

8

95
0

0
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Table VII.2. Dataset statistics.

Crystal Ni2+-R33M NikR Apo NikR #2 Apo NikR #3

Space Group P21 P2,272, P2 1

Cell Dimensions

a (A) 47.41 51.50 51.11

b () 123.25 132.11 50.99

c (A) 51.62 147.43 93.73

() 116.5 - 93.2

Wavelength (A) 1.0000 0.9793 0.9793

Temperature (K) 100 100 100

Resolution Range (A) 50-2.3 50-2.8 50-3.4

Unique Reflections 23,274 25,123 6,590

Average Redundancy 4.5 8.6 3.6

Completeness (%)' 98.4 (88.7) 98.1 (85.1) 95.8 (72.7)

1 / ()' 23.4 (3.7) 25.4 (3.2) 22.4 (4.2)

Rsym(%)1 2 6.3 (21.7) 6.7 (38.6) 6.6 (18.5)

'The number in parentheses is for the highest resolution shell.

Rsym = E'hA lI j(h[) - <I(hk/)>l / hkI <I(hkl)
>

, where f'hkl) is the ith measured diffraction intensity and <I(hk/)> is the
mean of the intensity for the miller index (hk/).
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Table VII.3. Model refinement statistics.

Crystal Ni2+-R33M NikR

Rcryst (Rfree) (/)' 25.7 (29.5)

Resolution Range (A) 50-2.3

Number of protein atoms 3604

Number of nickel ions 4

Number of water molecules 36

R.m.s. deviations

Bond lengths (A) 0.008

Bond angles (0) 1.29

Ramachandran (%)

Most favored 92.6

Additionally Allowed 7.4

Generously Allowed 0.0

Disallowed 0.0

Average B-factor (A2) 69.1

'Rcrst = FLhAl F,(hkl[) - Fc(hk k l ,Fo(hkl. Ree = R,,,, for a test set of reflections (5%) not included in
refinement.
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Table VII.4. Systematic absences. Intensities of the 001, OkO, and hOO reflections for
apo-NikR crystal form #2 are shown after processing as P222. The pattern of intensities
is consistent with the space group P212121 .

0 0 5 17.7 5.2
0 0 6 72203.7 5143.3
0 0 7 17.8 11.4

0 0 8 178445 12661

0 0 10 2334.8 172.5
0 0 11 28.6 26.4
0 0 12 216048 12507
0 0 13 64.1 17.8
0 0 14 193538 13702
0 0 15 -0.6 37.6
0 0 16 68555.0 3977.3
0 0 18 1271.9 81.7
0 0 19 12.4 29.9
0 0 20 8118.4 477.0
0 0 21 70.6 41.5
0 0 22 4886.9 292.0
0 0 23 164.5 45.5
0 0 24 3208.9 194.1
0 0 25 -13.1 68.2
0 0 26 3214.1 192.0
0 0 27 -25.0 41.9
0 0 28 1404.0 98.2
0 0 29 -36.4 59.1
0 0 30 10840.1 633.6
0 0 31 -40.4 63.3
0 0 32 549.3 67.8
0 0 33 50.4 60.3
0 0 34 1631.9 109.3
0 0 35 128.0 118.8
0 0 36 358.4 59.9
0 0 38 224.4 76.6
0 0 39 63.9 76.1
0 0 40 437.3 81.8
0 0 41 53.8 108.7
0 0 42 1601.9 117.7
0 0 43 285.1 129.5
0 0 44 1365.6 118.5
0 0 46 794.5 101.1
0 0 47 -6.3 106.2
0 0 48 937.3 94.8
0 0 49 -33.2 108.8
0 0 50 256.7 87.4
0 0 51 -18.3 93.0
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37.8
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Figure VII. . SDS-PAGE illustrating overexpression and immobilized nickel affinity
purification of NikR.

1 2 3 4 5 6 7 8 9 10

50

37

25

15

l()kD

1 - Molecular weight markers

2 - Before induction

3 - After induction

4 - Before induction

5 - After induction

6 - Cell break supernatant

7 - Column low-through

8 - 35 mM irnidazole wash

9 -- 250 mM imidazole elution

10 - Purified NikR standard (5 ,Gg)

161



Figure VII2. Size exclusion chromatogram.
200 column (Amersham Biosciences). A8o
milliliters. NikR eluted as a tetramer at 80 mL.
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Figure VII.3. Ni2+-PAR calibration curve. The curve allows estimation of Ni2 +

concentrations in a sample by addition of 4-(2-pyridylazo)resorcinol (PAR) and
measurement of A502 or A528.
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Figure VII.4. Chromatogram showing reverse-phase HPLC purification of a
deoxyoligonucleotide. A260 is plotted versus retention time in minutes. The solvent
gradient and flow rate are described in Table VII. 1.
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Figure VII.5. Ribbon representation of the Ni2+-R33M NikR mutant structure, colored
by protein subunit. Ni>' ions bound in the high-affinity site are represented as cyan
spheres. The two views are related by a 90 ° rotation.
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Figure VII..6. Superimposition of RHH DBDs. Stereo view of superimposed C, traces
of the RHH domains of R33M (yellow), apo (red), Ni2+-bound (green), and DNA-bound
(blue) NikR. Note the twist of the 3-strands in the R33M structure relative to the others.
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Figure VII.7. Comparison of the protein environment around position 33 of Ni2 +-WT
NikR (A) and R33M (B). Protein is shown as sticks with carbon atoms colored by
subunit. Hydrogen bond represented as a dashed black line.
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Figure VII.8. Superposition of NikR MBDs to illustrate inter-domain flexibility. Stereo
view of the superimposed Cs traces of R33M (yellow), apo (red), Ni2+-bound (green),
and DNA-bound (blue) NikR. 312 Ca atoms of the MBD tetramer were used for the
structural alignment.

168



71 Fulkerson Street, Apt. 310
Cambridge, MA 02141

Phone: (617)304-8301
E-mail: eric_sch@mit.edu

Eric R. Schreiter

Education

Research
Experience

Awards
Received

· Massachusetts Institute of Technology (MIT), Ph.D. in Biological Chemistry. June, 2005.

· Truman State University, B.S. summa cum laude in Chemistry, May 2000.

· Graduate Research Assistant, October 2000 - present, MIT

The laboratory of Dr. Catherine L. Drennan uses protein crystallography as a tool to
investigate metalloproteins of medicinal or environmental significance. Specifically, I studied
a transcription factor called NikR that regulates nickel uptake in bacteria and archea. I have
solved several crystal structures of this protein with the goal of understanding the
mechanism of nickel-dependent DNA binding.

* Undergraduate Research Assistant, January 1998- May 2000, TSU

In the laboratory of Dr. Richard Freeman I synthesized novel room-temperature ionic liquids
and characterized these compounds using NMR, Raman, Fluorescence, and UV-Visible
spectroscopies.

.

Publications

Sigma Xi Grant-in-Aid of Research, Fall 1999

Truman State University Undergraduate Research Fellowship, Summer 1999

Honors in Chemistry, received on diploma from TSU, Spring 2000

Summa Cum Laude, received on diploma from TSU, Spring 2000

· Schreiter, E. R.; Wang, S.; Zamble, D.; Drennan, C. L. "Crystal Structure of the NikR-
operator DNA complex and the mechanism of repressor activation by metal ions"
Manuscript in preparation.

* Schreiter, E. R.; Sintchak, M. D.; Guo, Y.; Chivers, P. T.; Sauer, R. T.; Drennan, C. L.
"Crystal structure of the nickel-responsive transcription factor NikR" Nature Structural
Biology 2003, 10, 794.

Drennan, C. D.; Heo, J.; Sintchak, M. D.; Schreiter, E.; Ludden, P. W. "Life on carbon
monoxide: X-ray Structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide
dehydrogenase" PNAS 2001, 98, 11973.

. Sitze, M. S.; Schreiter, E. R.; Patterson, E. V.; Freeman, R. G. "Ionic Liquids Based on
FeCI3 and FeCI2. Raman Scattering and ab Initio Calculations" Inorganic Chemistry
2001, 40, 2298.

Schreiter, E. R.; Stevens, J. E.; Ortwerth, M. F.; Freeman, R. G. "A room-temperature

molten salt prepared from AuCI3 and 1-ethyl-3-methylimidazolium chloride" Inorganic
Chemistry 1999, 38, 3935.

169


