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ABSTRACT

Precatalyst species present in a solution of Pd2(dba)3 and Xantphos were identified as
Pd(Xantphos)(dba) and Pd(Xantphos) 2 by use of 31p NMR and independent syntheses.
Pd(Xantphos)2 was found to form at high ligand concentrations. To determine whether
the formation of this species affected reaction rates, reaction calorimetry was used to
explore the rate of the palladium-catalyzed coupling of 4-t-butylbromobenzene and
morpholine using the ligand Xantphos at varying palladium to ligand ratios. It was found
that catalyst activity is dramatically dependent on the concentration of ligand relative to
palladium, due to formation of Pd(Xantphos)2 . Two plausible hypotheses for the low
activity of Pd(Xantphos) 2 as a precatalyst are (1) a slow rate of dissociation of a ligand
from the bis-ligated species, and (2) the high degree of insolubility of Pd(Xantphos) 2.
Magnetization transfer experiments were used to probe the rate of dissociation of ligand
for the bis-ligated species, and reaction calorimetry experiments were performed using
the more soluble t-butylXantphos in comparison to Xantphos to determine whether the
insolubility of' Pd(Xantphos) 2 causes it to have relatively low activity. It was found that
solubility is not the main cause for the low activity of Pd(Xantphos) 2, and evidence was
given to support the hypothesis that low activity results from the slow dissociation of a
ligand from the bis-ligated species.

Thesis Supervisor: Stephen L. Buchwald
Title: Camille Dreyfus Professor of Chemistry
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A. Introduction.

I. Mechanistic Studies on Palladium Catalyzed Carbon-Nitrogen Bond

Forming Reactions Using a Catalyst System Based on Pd/Xantphos.

Palladium-catalyzed carbon-nitrogen bond forming reactions have become

one of the most important cross-coupling reactions in synthetic organic

chemistry. Recently, advances have been made with the development of

catalyst systems that exhibit increased selectivity and wide substrate scope.1

One catalyst system, based on the ligand Xantphos 2 (Figure 1), has been

particularly successful in broadening the substrate scope of this reaction.3 Using

a Pd/Xantphos catalyst system, difficult reactions such as the N-arylation of both

heteroarylamines and amides,3e' f' 9g 5c the coupling of amines with ortho-

functionalized base-sensitive aryl halides,4 the amination of aryl nonaflates,3 i and

the N-arylation of 2-oxazolidinones3 j can be accomplished.

PPh 2 PPh 2

Figure 1 Xantphos.

Although catalyst systems using Xantphos have been utilized for various

types of reactions, the reason behind its efficiency is largely unknown.5 Van

Leeuwen and co-workers initially used Xantphos for palladium catalyzed
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amination reactions3a after the observation that other large bite-angle ligands

such as DPEphos 6 worked well. Both Van Leeuwen5 b and Buchwald5 c have

demonstrated that Xantphos can serve as a trans-chelating ligand when bound to

Pd(ll). The bite-angle of Xantphos in these complexes is around 153°, which is

much larger than the calculated flexible bite angle (97-135°).7 Buchwald suggests

that the large bite angle is a result of an interaction between the oxygen atom

and palladium, which can be seen in the crystal structure. Additionally, it is

possible that a palladium-oxygen interaction causes Xantphos to assume a much

larger bite-angle when catalyzing reactions. Buchwald also suggests that in

order for reductive elimination to occur from a trans-chelating complex, one arm

of Xantphos may dissociate from the metal. In support of this, Van Leeuwen has

reported that in solution cis/trans isomerization can occur5b through a one-arm

dissociation event.

Van Leeuwen and co-workers have performed a detailed kinetic analysis

of these reactions employing both a (Xantphos)Pd(Ar)Br complex and a cationic

(Xantphos)Pd(Ar)OTf complex as precatalysts.5a However, these studies, which

are based only on initial rates, may be misleading since recent studies have

shown anomalous rate behavior while measuring reaction kinetics under these

conditions.8b, c

Our goal was to continue determining the characteristics of Xantphos that

allow for increased substrate scope in carbon-nitrogen bond forming reactions.

These findings would not only yield mechanistic insight, but would also be helpful

5



in designing new ligands that could induce better selectivity and substrate scope

than is already observed.

II. Reaction Calorimetry

Reaction calorimetry8 has proven itself to be an extremely useful method

for performing kinetic analysis of multi-step reactions. Classical kinetic

measurements involve initial rate studies, "flooding"-using an unusually large

excess of one reagent, sampling, and NMR studies. Initial rate studies are

particularly misleading in catalytic reactions since in most cases only a limited

number of turnovers will be observed. Flooding is also misleading for catalytic

and multi-step reactions since this can alter the rate-determining step, and

dramatically alter the kinetic profile of the reaction. Sampling of reactions can

introduce error, and can be excruciatingly time-consuming. NMR studies have

been shown to be very useful if the conditions of the study are such that the

reaction mixture is homogeneous and no stirring is needed.

Reaction calorimetry is a non-invasive method that allows the measure of

heat flow versus time during the course of a reaction. Reaction calorimetry

conditions are considered to be "synthetically relevant" as the reaction can be

performed in a vessel under the exact same conditions it would be performed if

no kinetic analysis were being performed.
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The heat flow (q) measured during the course of a reaction is proportional

to the reaction rate, r, where AHrxn is the heat of reaction and V is the reaction

volume (Equation 1).

q = AHrnVr

Equation 1

The heat flow measurements can be used to calculate percent conversion

of starting material at any point during the reaction by dividing the area of all heat

flow measurements up to any time point t by the sum of the heat flow for the

entire duration of the reaction tf (Equation 2).

I q(t) dt

fractional conversion - to

f q(t) dt

Equation 2

Reaction calorimetry was used to study palladium-catalyzed carbon-

nitrogen bond forming reactions using Xantphos and t-butylXantphos as

supporting ligands, and Pd2(dba)3 as the palladium source.
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B. Results and Discussion

The palladium-catalyzed coupling of 4-t-butylbromobenzene and

morpholine (Figure 2) was used in calorimetry studies due to its rapid reaction

rate and the high conversion of the aryl bromide. A vial containing Pd2(dba)3,

Xantphos, NaOt-Am, 1,4-dioxane, and toluene 9 was equilibrated at 60 °C for 1 h.

Morpholine and 4-t-butylbromobenzene were injected after equilibration to initiate

the reaction. A sample reaction calorimetry kinetic analysis, which shows

fractional conversion vs. time, is also shown in Figure 2. In order to verify that

heat flow measurements correspond to conversion of starting material to product,

a GC correlation is performed by measuring conversion of starting material at

various time points in separate reactions by GC, and plotting those points on top

of the calorimetric fractional conversion vs. time plot. The two plots are

consistent, i.e., the measured heat flow is due to product formation, and

calorimetry is an accurate technique to observe heat flow in this reaction.
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Figure 2 Fraction Conversion vs. Time for Calorimetric and GC Data. [ArBr]o =
0.25 M; [Amine]o = 0.30 M (1.2 equivalents); [NaOtAm]o = 0.35 M (1.4
equivalents; 1:1 Xantphos/Pd from Pd2(dba)3 2.5 mol % Pd based on ArBr; 1,4-
Dioxane 3 ml, Toluene 1 m19.

Our initial studies revealed that the palladium to ligand ratio has a

dramatic effect on reaction rate, as shown in Figure 3. It was found that for the

simple reaction we were studying, a ligand to palladium ratio of 1:1 is optimal,

and that at higher ligand concentrations, the reaction rate dramatically

decreases. One possible hypothesis is that at high ligand ratios the

9
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concentration of active catalyst is suppressed by formation of a less active

species. In order to test this hypothesis, information was needed about the

structure of the precatalyst.

Br ~ Pd2(dba)3, Xantphost-Bu~~~~~~~~~~~~~~~~~''
0 N-H NaOAm N

~~t-Bu ~ 1 ~1.4-dioxane toluene I 
60 C t-Bu

n ni

q~

S

Oc
4

0.02 

0.015

0.01

0.005

0

0.6 0.8 1 1.2 1.4 1.6

Ligand:Pd Ratio

Figure 3 Reaction Rate vs. Ligand:Pd Ratio. [ArBr]o = 0.25 M; [Amine]o = 0.30
M (1.2 equivalents); [NaOtAm]o = 0.35 M (1.4 equivalents); Pd 2(dba) 3 2.5 mol %
Pd based on ArBr; Xantphos 2 mol % - 4 mol % based on ArBr; 1,4-Dioxane 3
ml, Toluene I m. Reaction rate is at 10 % conversion of ArBr.

10

/,

/
/

/

4-

1.8



We wanted to determine what species are present in a solution of

Xantphos and Pd2(dba)3. This knowledge would allow for structural information

about the precatalyst, and also could determine the cause of the rate decrease at

higher Xantphos concentrations. There are several species which are likely to

form in a solution of Xantphos and Pd2(dba)3, some of which are shown in Figure

4.

Ph Ph/7) -- \ 

Pd0

/
Ph Ph

I~h2

+X
PPh2

Ph Ph X0 / \Ph Ph Ph

o PdO--0 Pd0

P Ph

~~~~~~~~~~P P~~~/'h Ph PPh

Figure 4 Species which are likely formed when Xantphos and Pd2(dba)3 are
mixed.

A common and useful method for studying palladium-phosphine

complexes is 3 1 p NMR. We wanted to determine the quantity of species present,
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and then to identify these species. However, due to the low solubility of

Xantphos and Pd2(dba)3, NMR experiments could not be conducted. To avoid

this problem, initial studies were conducted using the more soluble t-

butylXantphos (Figure 5).10

Figure 5 t-butylXantphos

Pd2(dba) 3 and t-butylXantphos (1:1 L:Pd) were stirred in toluene at room

temperature under inert atmosphere for two hours. This orange-red solution was

filtered through a glass frit inside of a glovebox to remove insoluble matter. After

concentrating this solution slightly, 31 p NMR experiments were performed at

variable temperatures. As shown in Figure 6, at least two different species were

present. Species B has a complex splitting pattern at low temperatures, and

starts to coalesce to one peak at higher temperatures. The other two peaks,

labeled as Species A, may be consistent with two inequivalent phosphorous

atoms on one palladium atom.
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Figure 6 3 1 p NMR of precatalyst at different temperatures.

In order to identify these peaks, complexes composed of palladium, t-

butylXantphos, and dibenzylidene acetone were separately synthesized as

shown in Figure 7.
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N ,CI t-butylXantphos
,Pd 

N Cl Benzene, 12 hours
C"

PPh2

,CI L
Pdh T/ Cl

PPh2 THF. -7

2'8 -
78 C

dba

'2

-78 °C to rt

t-butylXantphos

PPh2 0 / Ph

PPh2 Phi
PPh2 'Ph

-78 °C to rt

Figure 7 Synthesis of palladium-t-butylXantphos complexes.
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PdCI2(t-butylXantphos) was synthesized using an analogous procedure to

synthesize PdCI2(dppf).i1 Using the straightforward route to bisphosphine-

cyclooctatetraene Pd(O) complexes developed by Brown and Cooley,1 2 t-

butylXantphos-cyclooctatetraene Pd(O) was synthesized from the above

described PdCI2(t-butylXantphos) complex. Cyclooctatetraene is an extremely

labile ligand and can be displaced easily from a metal center with another alkene

or phosphine ligand. In this way, both Pd(t-butylXantphos)(dba)13 and Pd(t-

butylXantphos)2 were synthesized; the 31P NMR spectra are shown in Figure 8.

Pd(t-butylXantphos)(dba) corresponds to the two large peaks around p

9.8 and p 12.4 ppm. The two phosphorous atoms on palladium are inequivalent

due to the non-symmetric bonding of dba on palladium, which accounts for the P-

P coupling observed. The phosphorous atoms in Pd(t-butylXantphos)2 resonate

around p 0.8 and p 3.4 ppm (in THF). As shown above in Figure 6, the 3 1 p

NMR of this complex at 0 °C exhibits a complex splitting pattern, which suggests

that this complex does not possess tetrahedral symmetry.
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Ph

4 :12 10 8 6 4 2 -O ppm

4 1.2 10 8 6 4 2 -0 ppm

Precatalyst

r- -rr - - r " , -rp-pr , I I I . . . . . . . . , 1 r r 'r" '
4 12 10 8 6 4 2 -0 pp

Figure 8 3 1 p NMR analysis of palladium complexes made from
butylXantphos)(cyclooctatetraene). Pd(t-butylXantphos)2 and
butylXantphos)(dba) are in THF, precatalyst is in toluene.
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An X-ray quality crystal of Pd(t-butylXantphos)21 5 was grown by

synthesizing the complex by the route shown in Figure 7, dissolving the product

in benzene, and finally layering with ether. The ORTEP diagram is shown in

Figure 9a. However, this complex is extremely crowded and to allow for better

interpretation, the phenyl groups have been removed for clarity (Figure 9b). The

complex exists in the solid state as a distorted tetrahedron, with P-Pd bond

lengths: 2.3809(13), 2.3857(12), 2.3846(14), 2.4001(14) A, and P-Pd-P angles:

108.07(4), 108.73(5), 113.51(4), 108.09(4), 109.40(5), 108.90(5) ° . The Pd-P

bond length of 2.4001(14) A is slightly longer than other Pd-P bond lengths, and

the angle of 113.51(4)° is considerably larger than the other angles, which may

account for the complex splitting pattern observed by 31 p NMR at 0 °C (Figure 6).

In solution at room temperature, the complex splitting pattern is no longer

observed, meaning that the solution state structure is highly fluxional.
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Figure 9a. ORTEP diagram of t-butylXantPhos2Pd with hydrogen atoms,
benzene molecule and ether molecule removed for clarity. Thermal ellipsoids
are at 30% probability.

C1A

IA

C

C23

C22

Figure 9b. ORTEP digram of t-butylXantPhos2Pd with hydrogens, phenyl
groups, benzene molecule and ether molecule removed for clarity. Thermal
ellipsoids at 30% probability.
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Although all of these studies were performed with t-butylXantphos, it is

likely that the corresponding species also form when employing Xantphos. As a

dramatic rate decrease is observed at high Xantphos concentrations, we wanted

to determine what causes this phenomenon. As was expected, stirring an

excess of t-butylXantphos (3:1 L:Pd) and Pd2(dba) 3 in toluene produced a 31p

NMR with Pd(t-butylXantphos) 2 as the predominant species (Figure 10). This

observation suggests that the corresponding Pd(Xantphos)2 species forms at

higher Xantphos concentrations. Such an experiment was attempted with

Xantphos; however, an insoluble yellow/green precipitate formed, making

analysis by NMR impossible.
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Pd:L = 1:3

'[
-

A
r - X- '

r r- T -r 'T' -r- r-rl" - - II -, - ---- T -r 1' -r7-rm- " t- . l'T"'T-"t "--Tor r l

.4 2 10 8 6 4 2 -0 pp

Pd:L = 1:1

I

-.4 I r rl -r- ----Z 10 8 6 4 2. . . . . ..' '' - r -
.4 12 I0 8 6 4 2 -0o ppm

Figure 10 Precatalyst Mixture of Pd:L 1:3 vs. Pd:L 1:1

Although NMR experiments could not be conducted with Xantphos,

Pd(Xantphos) 2 could be isolated. Xantphos and Pd2 (dba) 3 were stirred in an

extremely dilute solution of toluene (0.002 M based on Pd). The solution was

filtered to remove palladium black, concentrated slightly, filtered again, and finally

concentrated completely. At this point, the yellow solid16 was trituated in toluene

overnight to remove dibenzylidene acetone and excess Xantphos. The resulting

yellow solid is sparingly soluble in common organic solvents. The identity of the

20
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species was confirmed to be Pd(Xantphos)2 by use of MALDI-TOF-MS analysis

and elemental analysis.

From these NMR experiments, it is believed that when Pd(Xantphos) 2

forms in a catalytic reaction, the reaction rate decreases significantly. Others

have reported trends that can account for the formation of this species.

Buchwald and co-workers reported "an unusual dependence on catalyst loading,"

where the reactions being studied were more efficient at lower catalyst

concentrations.5c Another observation is that difficult reactions employing

Xantphos are often run at very low concentrations(0.25-0.13 M), 3g,4 which would

minimize the formation of Pd(Xantphos)2.

Due to the insolubility of Pd(Xantphos)2, it was our hypothesis that catalyst

deactivation occurs at high Xantphos concentrations, i.e. this inactive species

forms, and precipitates from solution. An alternative hypothesis is that an

equilibrium exists between the bis-ligated species and the mono-ligated

palladium species in solution, and this equilibrium lies towards the bis-ligated

species (Figure 11).

` PPM2 PPh2 Ph2 P PPh2 Ph2P

4 P - Xantphos Pd 0 Pd 0 >
PPhX Ph2P pP /

= h2 P P /P Ph2 /P PPh2 Ph2 P

in solution out of solution

Figure 11 Equlibrium of palladium-Xantphos species.
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To test these hypotheses, experiments were performed at varying ligand

to palladium ratios with both Xantphos and t-butylXantphos. The results of these

studies are shown in Figure 12.

0.03

0.025

A

E
(

*-ja

0.02

0.015

0.01

0.005

0

().8 1 1.2 1.4 1.6 1.8 2 2.2

Ligand:Pd Ratio

Figure 12 Plot of Rate vs. Ligand:Palladium Ratio for both Xantphos and t-
butylXantphos. [ArBr]o = 0.25 M; [Amine] 0 = 0.30 M (1.2 equivalents); [NaOtAm]o
= 0.35 M (1.4 equivalents); Pd2(dba) 3 2.5 mol % Pd based on ArBr; Ligand 2 mol
% - 4 mol % based on ArBr; 1,4-dioxane 3 ml, toluene 1 mi.9
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At high ligand to palladium ratios (>1.6), t-butylXantphos continues to

catalyze the reaction, whereas the reaction with Xantphos provides no product.

However, at ligand to palladium ratios between 1 and 1.6, the rate profiles are

essentially identical for Xantphos and t-butylXantphos.

To further test the hypothesis that the solubility of Pd(Xantphos)2 can

cause catalyst deactivation, reactions were catalyzed by employing

Pd(Xantphos)2 and Pd(t-butylXantphos)2 as precatalysts. Rate verses fractional

conversion is shown in Figure 13a, and rate verses time is shown in Figure 13b

for the coupling of p-t-butylbromobenzene and morpholine.
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0.003 --

Pd(t-butylXantphos)2
0.0025 -

0.002

0.03015

.-E
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0.001
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0 0.2 0.4 0.6 0.8

Fractional Conversion

Figure 13a Reaction Rate vs. Fractional Conversion for reactions catalyzed by
Pd(t-butylXantphos) 2 and Pd(Xantphos) 2 [ArBr]o = 0.25 M; [Amine]o = 0.30 M
(1.2 equivalents); [NaOtAm]o = 0.35 M (1.4 equivalents); 2.5 % Pd(L) 2 based on
[ArBr]; 1,4-dioxane, 4 mi.
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Figure 13b Reaction Rate vs. Time for reactions catalyzed by Pd(t-
butylXantphos) 2 and Pd(Xantphos) 2 [ArBr]o = 0.25 M; [Amine] 0 = 0.30 M (1.2
equivalents); [NaOtAm]o = 0.35 M (1.4 equivalents); 2.5 % Pd(L) 2 based on
[ArBr]; 1,4-dioxane, 4 ml.

The reaction catalyzed by Pd(Xantphos)2 exhibits a very interesting kinetic

profile in that the rate is slowly increasing throughout the reaction. This can be

compared to the kinetic profile of the corresponding reaction in which Pd(t-

butylXantphos) 2 is the precatalyst. In this reaction, the rate is generally the same

25
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throughout the reaction, exhibiting zero-order kinetics. This is very similar to an

observation of zero-order kinetics made both by van Leeuwen and co-workers5 a

and by Hartwig and co-workersref while studying palladium-catalyzed carbon-

nitrogen bond formation using Pd/Xantphos and Pd/BINAP catalyst systems,

respectively. Buchwald and Blackmond8a later demonstrated that the zero order

dependence on substrate may arise from the slow rate of active catalyst

formation. This would be the case if a slow dissociation of t-butylXantphos from

Pd(t-butylXantphos)2 was occurring. This slow dissociation is also occurring from

Pd(Xantphos)2; however, along with this dissociation is a slow equilibration

allowing more precatalyst into solution, which accounts for the increasing rate of

reaction.

Attempts were made using a 3 1 p NMR magnetization transfer experiment

to measure the rate of dissociation of a ligand from the bis-ligated species

(Figure 14); a procedure which has been reported before by Grubbs and co-

workers. 17 To do this, a solution containing Pd(t-butylXantphos) 2 and t-

butylXantphos (1.0:1.5 ratio) in benzene-d 6 was equilibrated in an NMR probe,

and then the free ligand was selectively inverted using a 180° pulse. After

variable mixing times between 0.0100 and 5.12 s, a nonselective 90° pulse was

applied. Using this method, if free ligand were to exchange rapidly enough with

complexed ligand, the peak area for the complex would decrease following

exchange with the inverted signal of the free ligand. Even at 60 °C, however, no

change in the integral values was observed, meaning that no appreciable
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exchange (or less exchange than is capable of being detected by NMR) was

occurring between the complexed and free ligand.

This method is only useful for rates of exchange that are large enough

relative to (1) the relaxation rate of the complexed ligand, and (2) the relaxation

rate of the free ligand. That is, the rate of magnetization loss due to exchange of

the complexed ligand with free ligand must be large enough to measure before

the NMR signal of the complexed ligand returns to equlibrium and/or the before

the free ligand relaxes back to equilibrium following selective inversion. We

found that in this case, the rate of exchange is too slow to measure before

relaxation occurs, and a binding constant could not be obtained. This data

suggests that the binding constant is very large for Pd(t-butylXantphos)2,

meaning that the reason for its inefficiency as a precatalyst is likely the slow

formation of the active mono-ligated species (Figure 14).

PPh2 \ PPh2 Ph2 P

Xantphos T 

0 Pd 0 Pd

PPh2 PPh2 Ph2 P

Figure 14 Equilibrium between mono and bis-ligated Xantphos-palladium

species.

27



C. Conclusions

Products from mixing Xantphos and Pd2(dba)3 were identified as

Pd(Xantphos)2 and Pd(Xantphos)(dba). This was accomplished by separately

synthesizing the analogous t-butylXantphos species, and comparing their 31P

NMR spectra to the 31 P NMR spectrum of a mixture of t-butylXantphos and

Pd2(dba)3 . Pd(Xantphos)(dba) serves as the precatalyst and Pd(Xantphos) 2

demonstrates extremely low activity as a precatalyst.

Reaction rates were essentially the same for reactions catalyzed by

Xantphos and t-butylXantphos at ligand:Pd rations between 1.0 and 1.5, meaning

that the insolubility of Pd(Xantphos)2 is not the cause of its low activity, since

Pd(t-butylXantphos)2 is completely soluble. Furthermore, it was demonstrated

through reaction calorimetry that Pd(Xantphos)2 is in equilibrium with

Pd(Xantphos) by use of Pd(Xantphos)2 as the precatalyst. The size of this

equilibrium was probed by use of a magnetization transfer experiment, and it was

found that formation of Pd(Xantphos)2 in the palladium-catalyzed amination of 4-

t-butylbromobenzene significantly decreases the rate of reaction, not due to

solubility, but due to a very large binding constant for ligand on the bis-ligated

species which causes a slow generation of mono-ligated active catalyst.
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D. Experimental

Reagents. Toluene and THF were purchased from J. T. Baker in CYCLE-

TAINER® solvent delivery kegs and vigorously purged with argon for 2 h. The

solvent was further purified by passing it under argon pressure through two

packed columns of neutral alumina (THF) or through neutral alumina and copper

(II) oxide (toluene). 1,4-Dioxane, benzene, and morpholine were purchased from

Aldrich Chemical Co. in SureSeal containers and taken into a glovebox before

use. Xantphos, dichlorobis(acetonitrile)palladium (II1),

tris(dibenzylideneacetone)dipalladium(0), and lithium granules were acquired

from Strem Chemicals, Inc. and used without further purification. 1-Bromo-4-tert-

butylbenzene was purchased from Aldrich Chemical Co. and distilled from CaH2

prior to use. Sodium tert-amylate (NaOtAm), purchased from Aldrich, was stored

and used inside of the glovebox. 4,5-dibromo-2,7-di-tert-butyl-9,9-

dimethylxanthene, n-BuLi (2.5 M in SureSeal bottle), and cyclooctatetraene were

purchased from Aldrich Chemical Co. and used without further purification.

Chlorodiphenylphosphine (98%) was purchased from Strem Chemical Co. and

distilled over CaH2 under reduced pressure prior to use. All reagents used in

reaction calorimetry experiments were handled and stored in a nitrogen-filled

glovebox, except for tris(dibenzylideneacetone)dipalladium(0), which was

weighed in air into a septum-sealed vial. This vial was then evacuated/backfilled

with argon three times before it was taken into a glovebox.
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Analytical Methods. 1H NMR spectra were obtained either on a Bruker 400

MHz, or a Varian Mercury 300 MHz spectrometer, with chemical shifts reported

with respect to residual solvent peaks. 31P{1H} NMR spectra were obtained

either on a Varian 500 MHz, or Varian Mercury 300 MHz, with chemical shifts

reported with respect to calibration with an external standard of phosphoric acid

(0 ppm). MALDI-TOF was performed on a Bruker Omniflex calibrating externally

with a ProteoMassT M Peptide MALDI-MS Calibration Kit. Melting points

(uncorrected) were obtained on a Mel-Temp capillary melting point apparatus.

Gas Chromatographic analyses were performed on a Hewlett-Packard 6890 gas

chromatography instrument with an FID detector using 25m x 0.20 mm capillary

column with cross-linked methyl siloxane as a stationary phase. Elemental

Analyses were obtained from Atlantic Microlab, Inc. (Norcross, Georgia).

Reaction Calorimetry Experimental Details. Reactions were performed in

either an Omnical SuperCRC or an Omnical Reactmax reaction calorimeter. The

instrument contains an internal magnetic stirrer and a differential scanning

calorimeter (DSC), which compares the heat released or consumed in a sample

vessel to an empty reference vessel. The reaction vessels were 16 mL

borosilicate screw-thread vials fit with open-top black phenolic screw caps and

white PTFE septa (KimbleBrand) charged with Teflon-coated stir bars. Sample

volumes did not exceed 4.2 mL. A stock solution of Xantphos or t-butylXantphos

was made by dissolving 0.250 mmol ligand (145 mg Xantphos, 173 mg t-

butylXantphos) in 5.00 mL toluene in a volumetric flask to make a 0.0500 M
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solution. Pd2(dba)3 was weighed in air and brought into the glovebox by

evacuating and backfilling a small vial with argon three times. 1 mL of dioxane

was then added and stirred to form a slurry. This slurry was then added to the

previously weighed NaOtAm in the reaction vessel. The desired amount of ligand

was added by taking a portion of the stock solution and diluting to a total volume

of 1.0 mL in toluene, so that each reaction contained a constant amount of

toluene with varying amounts of ligand (i.e., If 0.025 mmol ligand was desired,

0.50 mL of the stock solution was delivered to a vial and 0.50 mL toluene was

added. If 0.03 mmol ligand was desired, 0.60 mL of the stock solution was

delivered to a vial, and 0.40 ml of toluene was added.) This solution of ligand was

added to the calorimeter vial containing the NaOtAm and Pd2(dba)3, and finally

2.0 mL of dioxane was added and the reaction vessel was sealed. This vessel

was then removed from the glovebox and placed in the calorimeter and stirred for

one hour, allowing the contents of the vessel to reach thermal equilibrium.

Simultaneously, a syringe containing 1-bromo-4-tert-butylbenzene and

morpholine was placed in the sample injection port of the calorimeter, and was

allowed to thermally equilibrate. The reaction was initiated by injecting the

mixture of aryl bromide and amine into the stirred catalyst-NaOtAm solution. The

temperature of the DSC was held constant at 333K using the internal

temperature controller in the calorimeter, ensuring that the reaction would

proceed under isothermal conditions. A raw data curve was produced by

measuring the heat flow from the sample vessel every six seconds during the

reaction. Due to the delay between the instantaneous heat flow being evolved
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from the reaction vessel, and the time the thermophile sensor detects the heat-

flow, the raw data curve must be calibrated. To accomplish this calibration, a

constant amount of current was passed through a resistor in the sample chamber

of the calorimeter thereby producing a known quantity of heat. This process

results in a response curve, which is then transformed into a square wave

allowing for the response time of the instrument to be calculated using the

WinCRC software. Application of the response time to the raw data results in a

"tau corrected data curve." The tau corrected data curve is a plot of heat flow

(mJ s-1) versus time. The reaction rate, which is directly proportional to the heat

flow (Equation 1), fractional conversion (Equation 2), and instantaneous

concentrations of reactants/products can all be calculated from this tau corrected

data curve.

q = AHnVr

Equation 1

| q(t)dt
fractional conversion = to

f q(t) dt

Equation 2

As a control, the conversion measured by GC analysis was compared to

conversion measured by heat flow (Figure 15). Agreement between the two
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curves suggests that calorimetric analysis was a valid method for studying rates

of this type of reaction.
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Figure 15 Fractional Conversion vs. Time for Calorimetric and GC Data. [ArBr]o
= 0.25 M; [Amine] 0 = 0.30 M (1.2 equivalents); [NaOtAm]o = 0.35 M (1.4
equivalents; 1:1 Xantphos/Pd from Pd2(dba)3 2.5 mol % Pd based on ArBr; 1,4-
Dioxane 3 ml, Toluene 1 ml.

Crystal Structure Determination of Pd(t-butylXantPhos)2. Crystals suitable

for X-Ray diffraction were obtained by layering ether on a saturated solution of

Pd(t-butylXantPhos) 2 in benzene in a glovebox. A single crystal (0.17 x 0.12 x
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0.09 mm3) was mounted on a magnetic glass pin and placed on the goniometer

head under a stream of N2 delivered from a Cyrostream 700 at 100K. A Siemens

Platform three circle diffractometer equipped with an APEX CCD detetctor was

used to obtain the data. The crystal was exposed to MOK, radiation (X=0.71073

A), collecting 10 sec. frames, of which 230195 measured and 26495 independent

reflections were observed, with Rit = 0.1009 in C2/c (space group #15), to

d=0.80 (20=52.78°). Data was processed using SAINT supplied by Siemens

Industrial Automation, Inc., and structure determination was completed by direct

methods using SHELXTL, V6.10, G. M. Sheldrick, University of Gottingen. The

structure was refined on F2 by full-matrix least-squares methods, and absorption

correction was applied with SADABS. All non-hydrogen atoms were refined

anistropically, except for the extremely disorded ether molecule. All hydrogens

were placed in calculated positions and left to ride on their parent atoms. The

benzene molecule was disordered and each carbon was set at half occupancy.

The refinement of 1465 parameters using 26495 reflections and 0 restraints gave

R1=0.0637, wR2 =0.1639 [1>2c(1l)], goodness of fit on F2 = 1.070, Apmax/min =

1.398/-0.967 e.A '3 .

Magnetization Transfer Experiment. Pd(t-butylXantphos)2 (34.2 mg, 0.0230

mmol) and t-butylXantphos (24.2 mg, 0.0350 mmol) were weighed inside of a

glovebox into a small vial and dissolved in d6-benzene (0.70 mL). This solution

was placed inside of a screw-cap septum-sealed NMR tube. The tube was

equilibrated in the NMR probe at either 20 °C or 60 °C. The free t-butylXantphos

34



was selectively inverted using a 180° pulse. After variable mixing times between

0.0100 and 5.12 s, a nonselective 90° pulse was applied. 16 transients with a

relaxation delay of 35 s (T1 of Pd(t-butylXantphos)2 is 1.17 s; T of t-

butylXantphos is 6.46 s) was needed to obtain a spectrum with an acceptable

signal to noise ratio. 1H decoupling was applied during the 90° pulse. Integration

values at the variable mixing times for the complex were determined.

Sample Analysis of Precatalyst by 3 1p NMR. t-butylXantphos (69.9 mg, 0.10

mmol) and Pd2 (dba)3 (45.9 mg, 0.0500 mmol) were dissolved in toluene (2.0 mL)

and stirred for 2 h inside of a glovebox. This solution was filtered over a glass frit

to remove insoluble matter, and concentrated to a volume of 0.7 mL. This

solution was then transferred to a septum-sealed NMR tube.

Material Preparation

Preparation of t-butylXantphos. 4,5-d ibromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (5.0 g, 10.4 mmol) was dissolved in THF (150 mL) in a 500 mL

flame-dried round-bottom flask under argon. This solution was cooled to -78 °C,

and n-BuLi (8.8 mL of a 2.5 M solution in hexanes, 22 mmol) was added

dropwise over 20 min. The solution was stirred at -78 C for 2 h, then

chlorodiphenylphosphine (4.5 mL, 24 mmol) was added dropwise over 45 min.

With stirring, the solution was allowed to warm to room temperature overnight.

The solution was washed with water (3 X 100 ml), dried over MgSO 4, and

concentrated with the aid of a rotary evaporator to give a light yellow oil. With
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vigorous stirring, EtOH (50 mL) was slowly added to the yellow oil to form a slurry

of crude t-butylXantphos which was filtered and recrystallized from toluene/EtOH

to afford 6.13 g (85%) of the white solid. 1H NMR (CD2CI 2, 300 MHz): = 7.42

(d, 4 J(H,H) = 2.40 Hz, 2H), 7.24 (m, 20H), 6.55 (m, 2H), 1.67 (s, 6H), 1.11 (s,

18H). 3 1 p NMR{1H} (CD2CI2, 300 MHz): = -16.3; Lit. mp 194-195 C,10

experimental mp 194-195 °C.

Preparation of PdCI2(t-butylXantphos). Procedure was adapted from

Hayashi's procedure to make PdCI2(dppf).1 1 A slurry of benzene (20 mL) and

dichlorobis(acetonitrile)palladium (11) (518 mg, 2.00 mmol) was stirred in a

septum-sealed 100 mL round-bottom flask in a glovebox under nitrogen

atmosphere. t-butylXantphos (1.38 g, 2.00 mmol) was dissolved in benzene (20

mL) and added slowly with stirring to the dichlorobis(acetonitrile)palladium (II)

slurry. This mixture was stirred for 12 hours during which time a yellow

precipitate formed, as well as an orange solution. The yellow solid was filtered

over a glass frit in a glovebox and washed with benzene (10 mL) and ether (10

mL) until the supernatent was clear, and finally dried under high vacuum to afford

457 mg (29%) of yellow solid. mp 171 °C dec; IR (KBr) 3057, 2964, 2906, 2869,

1479, 1436, 1426, 1395, 1364, 1255, 1234, 1190, 1094, 741, 706, 692 cm-1; 1H

NMR (CD 2CI 2, 300 MHz): = 7.70 (d, 4 J(H,H) = 1.70 Hz, 2H), 7.23 (m, 22H), 1.87

(s, 6H), 1.26 (s, 18H); 13C NMR (CD2CI2, 500 MHz): = 153.3 (m), 148.4 (m),

135.7 (m), 135.0 (m), 130.6 (s), 130.2 (s), 128.8 (s), 128.6 (s), 128.5 (s), 128.5

(s), 127.7 (s), 119.4 (m), 118.9 (m), 38.0 (m), 35.5 (s), 31.7 (s), 26.8 (bs)
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(complexity of spectrum due to 31P-13C coupling); 3 1 p NMR{1H} (CD 2CI 2, 300

MHz): = 23.3; MALDI-MS: Observed C47H480 2P2PdCI (Complex-CI):

Theoretical 829.1907 (26.6%), 830.1922 (64.9%), 831.1915 (100.0%), 832.1927

(60.2%), 833.1907 (99.7%), 834.1935(45.4%), 835.1913 (57.5%), 836.1938

(25.7%), 837.1923 (14.9%); Found 829.2071 (35.8%), 830.2068 (76.1%),

831.2242 (100.0%), 832.1912 (70.5%), 833.2227 (97.3%), 834.2245 (51.2%),

835.1700 (59.4%), 836.2003 (25.6%), 837.1684 (5.5%).

Preparation of Cyclooctatetradienide Solution ( 0.30 M). As prepared

previously by Katz and co-workers, 12 THF (16 mL) was added to a flame-dried 3-

neck 25 mL round-bottom flask under argon and cooled to -78 C. Lithium

granules (76 mg, 11 mmol, washed with hexanes to remove mineral oil) were

added under a positive flow of argon. Cyclooctatetraene (0.54 mL, 4.8 mmol)

was then added via syringe. The mixture was stirred overnight while warming to

room temperature to form a green/blue solution that could be stirred at room

temperature until use. Best results were obtained by using the solution the same

day, but it can be stored for up to 4 days with minimal decomposition.

Preparation of Pd(t-butylXantphos)(cyclooctatetraene). Inside of a

glovebox under nitrogen atmosphere, PdCI 2(t-butylXantphos) (170 mg, 0.20

mmol) was weighed into a 25 mL round-bottom flask equipped with a stirbar.

The flask was sealed with a rubber septum and further sealed with black

electrical tape. The flask was removed from the glovebox and THF (8.0 mL) was
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added to form a yellow slurry. The slurry was degassed by three

freeze/pump/thaw cycles, and finally cooled to -78 C. Cyclooctatetradienide

(0.70 mL of the 0.30 M solution in THF, 0.20 mmol) was added dropwise over

five min and then stirred for thirty min to form a green slurry. Cannula

transferring a portion of this solution to a flame-dried septum-sealed NMR tube

under argon allowed for 31 p NMR analysis. Decomposition will begin to occur at

room temperature, and this complex was not isolable. 31 p NMR{1H} (THF, 300

MHz): = 11.384 (s).

Preparation of Pd(t-butylXantphos) 2. t-butylXantphos (830 mg, 1.2 mmol)

was weighed into a 25 mL round-bottom flask and evacuated/backfilled with

argon three times. The solid was dissolved in THF (5.0 mL), and then subjected

to three freeze/pump/thaw cycles. While still cold, it was slowly cannula

transferred to the Pd(t-butylXantphos)(cyclooctatetraene) solution prepared

above. This mixture was stirred for thirty min while warming to rt to form a yellow

solution. This yellow solution was taken into the glovebox and filtered. The

resulting solution was concentrated, dissolved in benzene, filtered, and finally

layered with ether. Bright yellow crystals formed which were suitable for X-Ray

analysis (140 mg, 48 %). mp 162 °C dec; IR (KBr) 3053, 2964, 2905, 2867,

2280, 1585, 1477, 1426, 1398, 1361, 1284, 1256, 1240, 742, 696 cm'1 ; 1H NMR

(C6D6, 300 MHz): = 7.05 (m, 48H), 1.78 (m, 12), 1.20 (m, 36H); 13C NMR (C6D6,

500 MHz): = 154.4 (bs), 153.7 (bs), 145.3 (m), 141.7 (m), 139.7 (bs), 137.4

(bs), 135.0 (s), 133.9 (s), 132.7 (m), 131.2 (bs), 124.6 (m), 123.6 (m), 121.0 (m),
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36.8 (s), 35.3, (m), 33.0 (s), 32.2 (m), 22.9 (bs); 31p NMR{ 1H} (C6D 6, 300 MHz): 

= 3.70 (m), 1.58 (m); Anal. Calcd. For C94H960 2 P4 Pd: C, 75.87; H, 6.50. Found:

C, 75.97; H, 6.48.

Preparation of Pd(t-butylXantphos)(dba). Dibenzylideneacetone ( 280 mg,

1.2 mmol) was weighed into a 25 mL round-bottom flask and

evacuated/backfilled with argon three times. The solid was dissolved in THF (5.0

mL), and was then subjected to three freeze/pump/thaw cycles. While still cold, it

was slowly cannula transferred to the Pd(t-butylXantphos)(cyclooctatetraene)

solution prepared above. This mixture was stirred for thirty min while warming to

rt to form a red/yellow solution. All attempts to isolate this complex led to

decomposition. However, 31p NMR analysis prior to isolation attempts revealed

the species previously observed in precatalyst solutions (see Figure 8). In

solution before attempted isolation: 3 1 p NMR{1H} (THF, 300 MHz): = 12.3 (d,

2 J(P,P) = 29.1 Hz), d = 9.82 (d, 2 J(p,p) = 29.4 Hz).

Preparation of Pd(Xantphos) 2. Xantphos (579 mg, 1.00 mmol) and Pd2(dba)3

(229 mg, 0.250 mmol) were weighed into a flame-dried 500 mL round-bottom

flask and evacuated/backfilled with argon three times. Toluene (300 mL) was

added, and the solution was stirred for 4 h. The solution was then filtered with a

cannula filter into another flame-dried round-bottom flask under argon to remove

insoluble matter. This solution was concentrated slightly and allowed to rest

overnight so that any extra palladium black would settle. The resulting solution
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was filtered again, and finally concentrated to dryness. At this point, the yellow

solid was stirred in toluene (100 mL) overnight to remove dibenzylidene acetone

and excess Xantphos. The remaining yellow solid was isolated by filtration and

is sparingly soluble in all common organic solvents. The identity of the species

was confirmed to be Pd(Xantphos) 2 by use of MALDI-TOF-MS analysis and EA.

IR (KBr) 2924, 2854, 1461, 1398, 1377, 1222 cm-1 ; MALDI-MS: Anal. Calcd. For

C78 H640 2P4Pd: Theoretical 1260.2894 (22.9%), 1261.2909 (63.4%), 1262.2911

(100.0%), 1263.2907 (64.6%), 1264.2914 (77.2%), 1265.2933 (51.4%),

1266.2931 (43.7%), 1267.2949 (25.4%); Found 1260.3405 (24.0%), 1261.3285

(67.4%), 1262.3166 (100.0%), 1263.3162 (73.2%), 1264.3300 (79.3%),

1265.3424 (47.5%), 1266.3491 (35.5%), 1267.3104 (25.1%). Anal. Calcd. For

C78H640 2P4Pd: C, 74.14; H, 5.10. Found: C, 74.44; H, 4.97; mp 164 °C dec.
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Appendix A:

Selected Spectra:
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X-Ray Crystallographic Data for Pd(Xantphos) 2

Table 1. Crystal data and structure refinement for 04168t.

Identification code 04168t

Empirical formula C1 62H1560 4P6Pd2

Formula weight 2563.78

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 67.321(4) A

b = 14.6266(8) A

c = 28.5119(17) A

Volume 25882(3) A3

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 28.31°

Absorption correction

Refinement method

Data / restraints parameters

Goodness-of-fit on F2

Final R indices [>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

4

1.329 Mg/m 3

0.390 mm -]

10836

0.17 x 0.12 x 0.09 mm3

0.66 to 28.31°.

-89<=h<=89, -19<=k<=19, -38<=l<=38

262953

32170 [R(int) = 0.1294]

99.9 %

SADABS

Full-matrix least-squares on F 2

32170 / 0 / 1397

1.198

R1 = 0.0801, wR2 = 0.2530

R1 = 0.1200, wR2 = 0.2911

0.430 and -0.686 e.A-3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103 )

for 04168t. U(ecl) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

C(140)

C(1)

Pd(1)

P(7)

P(8)

0(3)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

C(11)

C(12)

C(]3)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

1610(3)

973(1)

0

65(1)

306(1)

357(1)

306(1)

302(1)

-140(1)

247(1)

357(1)

404(1)

-352(1)

283(1)

636(1)

341(1)

447(1)

668(1)

416(1)

106(1)

0(1)

456(1)

377(1)

374(1)

584(1)

174(1)

521(1)

-94(1)

36(1)

-516(1)

680(1)

4746(15)

921(7)

7664(1)

8520(1)

6723(1)

6966(3)

9253(3)

6101(4)

9360(4)

7141(4)

5788(4)

4202(4)

9037(5)

6592(4)

9822(4)

9830(4)

5815(4)

10403(4)

5421(4)

7876(4)

8102(4)

9245(4)

6048(4)

4862(4)

7172(4)

6815(4)

10392(4)

10291(4)

7560(4)

9624(5)

6214(5)

4082(4)

385(3)

2500

1862(1)

2934(1)

1988(1)

2068(2)

3498(2)

1482(2)

1474(2)

2560(2)

2350(2)

1232(2)

1113(2)

2015(2)

2486(2)

1321(2)

2431(2)

1782(2)

1344(2)

817(2)

1839(2)

2107(2)

2683(2)

3186(2)

600(2)

2661(2)

1455(2)

448(2)

960(3)

1511(3)

255(12)

77(3)

27(1)

28(1)

33(1)

33(1)

30(1)

41(1)

32(1)

34(1)

36(1)

40(1)

43(1)

37(1)

41(1)

32(1)

41(1)

40(1)

36(1)

34(1)

38(1)

37(1)

34(1)

39(1)

37(1)

41(1)

35(1)

42(1)

43(1)

53(2)

49(2)
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C(28)

C(29)

C(30)

C(31)

C(32)

C(33)

C(34)

C(35)

C(36)

C(37)

C(38)

C(39)

C(40)

C(41)

C(42)

C(43)

C(44)

C(45)

C(46)

C(47)

C(48)

C(49)

Pd(2)

P(3)

P(4)

P(5)

P(6)

0(2)

0(1)

C(52)

C(53)

C(54)

C(55)

C(56)

C(57)

C(58)

-476(1)

623(1)

-84(1)

427(1)

833(1)

145(1)

-262(1)

427(1)

129(1)

1006(1)

440(1)

424(1)

419(2)

272(1)

762(1)

665(1)

-6(2)

-25(2)

-318(1)

295(1)

969(1)

351(2)

1838(1)

2097(1)

1792(1)

1499(1)

1945(1)

1737(1)

1773(1)

1472(1)

1576(1)

1711(1)

2051(1)

2151(1)

1174(1)

1417(1)

10561(5)

8097(5)

7830(5)

4494(4)

8447(5)

5427(5)

10904(5)

3182(4)

4970(5)

7876(6)

6347(5)

5079(4)

5910(6)

5227(5)

6576(5)

2932(5)

7206(6)

8813(6)

7639(9)

2596(5)

6923(6)

2978(6)

731(1)

-416(1)

958(1)

296(1)

2145(1)

2834(3)

-727(3)

265(4)

2626(4)

-55(4)

-1593(4)

-660(4)

1331(4)

3290(4)

928(3)

3169(2)

-118(2)

1911(2)

3352(2)

3427(3)

1189(3)

2497(2)

3851(3)

3562(2)

3990(2)

911(3)

4403(3)

4343(3)

3401(3)

2681(3)

-472(3)

-189(3)

-265(3)

2045(3)

3589(3)

2936(4)

2765(1)

3190(1)

1901(1)

2777(1)

3222(1)

2192(1)

3639(1)

3400(2)

1726(2)

1481(2)

2930(2)

3865(2)

4177(2)

1486(2)

54(2)

45(1)

46(2)

41(1)

53(2)

49(2)

56(2)

43(1)

55(2)

59(2)

58(2)

53(2)

70(2)

58(2)

68(2)

64(2)

74(2)

78(3)

96(4)

72(2)

74(3)

97(4)

25(1)

28(1)

26(1)

27(1)

28(1)

31(1)

32(1)

28(1)

29(1)

31(1)

30(1)

32(1)

36(1)

35(1)
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C(59)

C(60)

C(61)

C(62)

C(63)

C(64)

C(65)

C(66)

C(67)

C(68)

C(69)

C(70)

C(71)

C(72)

C(73)

C(74)

C(75)

C(76)

C(77)

C(78)

C(79)

C(80)

C(81)

C(82)

C(83)

C(84)

C(85)

C(86)

C(87)

C(88)

C(89)

C(90)

C(91)

C(92)

C(93)

C(94)

2221(1)

1378(1)

1327(1)

1978(1)

2299(1)

1178(1)

1320(1)

2376(1)

2184(1)

1253(1)

1114(1)

2002(1)

2023(1)

2037(1)

2490(1)

1422(1)

2023(1)

1672(1)

2012(1)

1482(1)

2699(1)

1584(1)

1760(1)

1624(1)

2360(1)

2213(1)

1088(1)

1523(1)

2393(1)

2442(1)

2477(1)

1276(1)

2403(1)

1989(1)

1490(1)

2194(1)

905(4)

-844(4)

720(4)

-757(4)

2396(4)

-1083(4)

742(4)

-207(4)

2752(4)

2198(5)

803(4)

2063(4)

1355(4)

-2351(4)

-767(4)

1578(4)

-1710(4)

3369(4)

2080(4)

161(4)

-519(4)

1775(4)

3150(4)

-250(4)

-733(4)

2034(4)

-1937(4)

-511(4)

-836(4)

4005(4)

585(4)

1066(4)

1159(4)

-2589(4)

-1491(4)

2333(4)

2003(2)

2563(2)

4030(2)

4016(2)

2956(2)

2572(2)

3531(2)

3249(2)

3226(2)

797(2)

1934(2)

3905(2)

1757(2)

3209(2)

3035(2)

1041(2)

2421(2)

2513(2)

1422(2)

4395(2)

3089(2)

1527(2)

3028(2)

3776(2)

4243(2)

4269(2)

2405(2)

1441(2)

4751(2)

3510(3)

3515(2)

2405(2)

1915(2)

2201(2)

2406(2)

1340(2)

31(1)

28(1)

32(1)

34(1)

31(1)

35(1)

30(1)

31(1)

29(1)

46(2)

38(1)

32(1)

29(1)

34(1)

37(1)

36(1)

34(1)

35(1)

33(1)

35(1)

41(1)

31(1)

35(1)

30(1)

35(1)

36(1)

40(1)

41(1)

36(1)

46(1)

41(1)

29(1)

34(1)

41(1)

35(1)

39(1)
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C(95)

C(96)

C(97)

C(98)

C(99)

c(1 00)

C(101)

C(102)

C(103)

C(104)

C(105)

C(106)

C(107)

C(108)

C(109)

C(1 10)

C(111)

C(112)

C(113)

C(114)

C(115)

C(116)

C(117)

C(118)

C( 119)

C(120)

C(121)

C(122)

C(123)

C(124)

C(125)

C(126)

C(127)

C( 28)

C(129)

C(130)

1632(1)

2214(1)

1119(1)

2689(1)

1837(1)

2627(1)

1436(1)

2258(1)

1799(1)

2087(1)

1466(1)

2004(1)

1834(1)

1279(1)

1703(1)

2559(1)

1524(1)

2390(1)

2001(1)

2256(1)

1983(1)

1843(1)

1776(1)

2484(1)

1720(1)

1403(1)

1606(1)

1873(1)

1254(1)

1556(1)

957(1)

955(1)

1071(1)

1486(1)

1589(1)

1260(2)

-337(4)

-894(4)

2603(5)

817(5)

-429(4)

-845(5)

4226(4)

3579(4)

-983(4)

1773(5)

4605(5)

-859(4)

1937(5)

1966(4)

3708(5)

3622(4)

4068(4)

1881(4)

-3229(4)

1879(5)

-3349(4)

-758(6)

-1259(5)

2830(4)

-1979(5)

-2351(4)

4786(5)

1818(6)

3044(5)

4410(5)

1427(5)

2329(5)

1891(7)

4988(6)

-1718(5)

4699(7)

4271(2)

4891(2)

2288(3)

3582(2)

1232(2)

5154(2)

1732(2)

3505(2)

4634(2)

4947(2)

2644(3)

4521(2)

4070(2)

2572(2)

3357(2)

3234(2)

2309(2)

1586(2)

2995(2)

4790(2)

2488(2)

5191(2)

965(2)

2956(2)

4505(3)

2236(3)

1600(3)

4585(2)

1017(2)

3173(3)

1651(2)

1822(3)

287(2)

3538(3)

933(2)

3470(6)

36(1)

41(1)

45(2)

46(1)

39(1)

43(1)

41(1)

40(1)

40(1)

51(2)

48(2)

38(1)

48(2)

36(1)

42(1)

41(1)

40(1)

38(1)

42(1)

44(1)

41(1)

61(2)

47(2)

36(1)

52(2)

45(1)

54(2)

58(2)

41(1)

51(2)

44(1)

50(2)

70(2)

65(2)

53(2)

139(6)
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1457(1) -1330(5)

2699(1)

2782(1)

1484(3)

1157(1)

2638(1)

1255(3)

950(1)

1200(1)

2800(1)

1223(1)

879(1)

1157(2)

1564(2)

1379(2)

1790(2)

1628(2)

736(2)

1405(2)

735(3)

784(3)

168(6)

-1323(7)

6000(7)

1631(8)

-1289(7)

2302(8)

1331(9)

-2578(4)

264(4)

4762(5)

2458(8)

1015(11)

3974(8)

4540(8)

4832(8)

4156(9)

7524(10)

4520(10)

8784(12)

8194(13)

5272(3)

4964(3)

3417(6)

-94(3)

5660(3)

4223(9)

3769(3)

2231(3)

3365(2)

1540(3)

157(4)

4665(4)

296(4)

105(4)

5407(4)

5241(5)

285(6)

5073(5)

886(6)

573(7)

66(2)

82(3)

151(7)

83(3)

79(3)

246(12)

110(4)

46(1)

43(1)

52(2)

96(3)

161(7)

108(3)

109(3)

111(3)

145(4)

157(5)

144(4)

196(5)

206(6)
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C(131)

C(132)

C(133)

C(134)

C(135)

C(137)

C(138)

C(139)

C(141)

C(142)

C(143)

C(144)

C(145)

C(200)

C(201)

C(207)

C(206)

C(202)

C(205)

C(204)

C(203)

��_

1161(2) 53(2)



Table 3. Bond lengths [A] and angles [] for 04168t.

C(140)-C(128)

C(1)-C(127)

Pd(1)-P(7)

Pd(1)-P(7)#I

Pd(1)-P(8)#1

Pd(l)-P(8)

P(7)-C(5)

P(7)-C(3)

P(7)-C(16)

P(8)-C(7)

P(8)-C(21)

P(8)-C(4)

0(3)-C(6)

0(3)-C(1 9)

C(3)-C(12)

C(3)-C(1 8)

C(4)-C(33)

C(4)-C(3 8)

C(5)-C(24)

C(5)-C(9)

C(6)-C(I 16)

C(6)-C( 0)

C(7)-C(20)

C(7)-C(1 9)

C(8)-C(31)

C(8)-C(20)

C(8)-C(35)

C(9)-C(26)

C(I 0)-C(22)

C(10)-C(13)

C(11)-C(18)

C(11)-C(14)

C(12)-C(23)

C(13)-C(15)

1.492(14)

1.636(13)

2.3844(13)

2.3844(13)

2.3878(14)

2.3878(14)

1.851(5)

1.838(5)

1.860(5)

1.844(5)

1.842(6)

1.859(6)

1.387(6)

1.379(7)

1.402(7)

1.403(7)

1.398(9)

1.397(8)

1.404(8)

1.406(8)

1.387(8)

1.398(7)

1.394(8)

1.404(8)

1.387(8)

1.423(8)

1.541(8)

1.378(9)

1.397(8)

1.532(9)

1.401(8)

1.407(8)

1.383(7)

1.519(8)
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C(13)-C(39)

C(13)-C(27)

C(14)-C(23)

C(15)-C(31)

C(15)-C(19)

C(16)-C(17)

C(1 7)-C(25)

C(21)-C(29)

C(21)-C(42)

C(22)-C(25)

C(24)-C(34)

C(25)-C(30)

C(26)-C(28)

C(28)-C(34)

C(29)-C(32)

C(30)-C(46)

C(30)-C(45)

C(30)-C(44)

C(32)-C(37)

C(33)-C(36)

C(35)-C(47)

C(35)-C(49)

C(35)-C(43)

C(36)-C(41)

C(37)-C(48)

C(38)-C(40)

C(40)-C(41)

C(42)-C(48)

Pd(2)-P(5)

Pd(2)-P(4)

Pd(2)-P(3)

Pd(2)-P(6)

P(3)-C(66)

P(3)-C(56)

P(3)-C(55)

P(4)-C(80)

1.553(8)

1.563(8)

1.387(8)

1.400(8)

1.399(7)

1.431(7)

1.412(8)

1.384(9)

1.418(8)

1.389(9)

1.412(9)

1.548(8)

1.407(10)

1.430(10)

1.399(9)

1.491(10)

1.527(10)

1.592(10)

1.371(10)

1.423(9)

1.517(9)

1.553(10)

1.523(9)

1.410(10)

1.423(12)

1.395(10)

1.370(12)

1.383(11)

2.3809(13)

2.3857(12)

2.3846(14)

2.4001(14)

1.847(5)

1.849(5)

1.852(6)

1.835(5)
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P(4)-C(54) 1.848(5)

P(4)-C(71) 1.850(5)

P(5)-C(60) 1.853(5)

P(5)-C(90) 1.845(5)

P(5)-C(52) 1.855(5)

P(6)-C(70) 1.837(5)

P(6)-C(67) 1.836(5)

P(6)-C(81) 1.866(6)

0(2)-C(53) 1.383(6)

0(2)-C(76) 1.395(6)

0(1)-C(62) 1.381(6)

0(1)-C(82) 1.397(6)

C(52)-C(82) 1.383(7)

C(52)-C(65) 1.402(7)

C(53)-C(80) 1.377(7)

C(53)-C(58) 1.411(7)

C(54)-C(86) 1.392(8)

C(54)-C(99) 1.412(7)

C(55)-C(72) 1.388(8)

C(55)-C(75) 1.400(6)

C(56)-C(83) 1.409(7)

C(56)-C(62) 1.396(7)

C(57)-C(138) 1.507(12)

C(57)-C(139) 1.507(9)

C(57)-C(61) 1.538(7)

C(57)-C(145) 1.512(10)

C(58)-C(123) 1.408(8)

C(58)-C(101) 1.522(8)

C(59)-C(91) 1.390(7)

C(59)-C(71) 1.409(7)

C(60)-C(64) 1.395(7)

C(60)-C(93) 1.391(7)

C(61)-C(65) 1.407(7)

C(61)-C(78) 1.413(7)

C(62)-C(106) 1.388(7)

C(63)-C(67) 1.386(7)
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C(63)-C(118) 1.396(7)

C(64)-C(85) 1.390(8)

C(66)-C(89) 1.407(8)

C(66)-C(73) 1.414(7)

C(67)-C(102) 1.427(8)

C(68)-C(74) 1.409(8)

C(68)-C(123) 1.386(9)

C(68)-C(127) 1.560(9)

C(69)-C(125) 1.394(8)

C(69)-C(90) 1.417(7)

C(70)-C(84) 1.394(7)

C(70)-C(107) 1.398(7)

C(71)-C(77) 1.408(7)

C(72)-C(113) 1.403(8)

C(73)-C(79) 1.400(7)

C(74)-C(80) 1.423(7)

C(75)-C(92) 1.412(8)

C(76)-C(111) 1.388(8)

C(76)-C(81) 1.392(7)

C(77)-C(94) 1.385(7)

C(78)-C(95) 1.397(7)

C(79)-C(142) 1.406(9)

C(81 )-C(109) 1.403(7)

C(82)-C(95) 1.397(7)

C(83)-C(87) 1.384(7)

C(84)-C(114) 1.418(7)

C(85)-C(141) 1.411(8)

C(86)-C(131) 1.413(9)

C(87)-C(96) 1.411(8)

C(87)-C(100) 1.547(8)

C(88)-C(102) 1.381(8)

C(88)-C(110) 1.425(8)

C(89)-C(98) 1.401(8)

C(90)-C(108) 1.398(8)

C(91)-C(112) 1.392(8)

C(92)-C(115) 1.390(9)
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C(93)-C(120) 1.394(8)

C(94)-C(112) 1.399(8)

C(95)-C(103) 1.525(7)

C(96)-C(106) 1.401(8)

C(97)-C(108) 1.417(8)

C(97)-C(126) 1.416(9)

C(98)-C(142) 1.402(9)

C(99)-C(117) 1.407(8)

C(100)-C(133) 1.520(9)

C(100)-C(132) 1.556(10)

C(100)-C(137) 1.559(9)

C(101)-C(111) 1.536(8)

C(101)-C(143) 1.538(8)

C(101)-C(121) 1.565(9)

C(103)-C(116) 1.534(8)

C(103)-C(106) 1.544(8)

C(103)-C(119) 1.545(10)

C(104)-C(114) 1.380(8)

C(104)-C(122) 1.414(9)

C(105)-C(124) 1.419(9)

C(105)-C( 11) 1.403(8)

C(107)-C(122) 1.400(8)

C(109)-C(124) 1.382(9)

C(110)-C(118) 1.384(8)

C(1 13)-C(1 15) 1.413(8)

C(1 17)-C(129) 1.394(9)

C(120)-C(141) 1.398(8)

C(124)-C(128) 1.548(9)

C(125)-C(126) 1.407(10)

C(127)-C(144) 1.458(11)

C(127)-C(135) 1.465(10)

C(128)-C(130) 1.517(13)

C(128)-C(134) 1.519(14)

C(129)-C(131) 1.413(10)

C(200)-C(201) 1.419(15)

C(201 I)-C(205)#2 1.394(16)
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C(207)-C(206)

C(206)-C(205)

C(202)-C(203)

C(205)-C(201)#3

C(204)-C(203)

P(7)-Pd(1l)-P(7)t 1

P(7)-Pd(1 )-P(8)#l 1

P(7)#1-Pd(l)-P(8)# 

P(7)-Pd(l)-P(8)

P(7)#1-Pd(l)-P(8)

P(8)#1-Pd(l)-P(8)

C(5)-P(7)-C(3)

C(5)-P(7)-C(16)

C(3)-P(7)-C(16)

C(5)-P(7)-Pd(1)

C(3)-P(7)-Pd(1)

C( 16)-P(7)-Pd(l1)

C(7)-P(8)-C(21)

C(7)-P(8)-C(4)

C(21)-P(8)-C(4)

C(7)-P(8)-Pd(1)

C(21)-P(8)-Pd( 1)

C(4)-P(8)-Pd(1)

C(6)-0(3)-C(1 9)

C(12)-C(3)-C(18)

C(12)-C(3)-P(7)

C( 18)-C(3)-P(7)

C(33)-C(4)-C(38)

C(33)-C(4)-P(8)

C(38)-C(4)-P(8)

C(24)-C(5)-C(9)

C(24)-C(5)-P(7)

C(9)-C(5)-P(7)

C(I 6)-C(6)-0(3)

C(I 6)-C(6)-C(1 0)

116.68(7)

106.51(4)

108.73(5)

108.73(5)

106.51(4)

109.58(8)

99.4(2)

100.2(2)

99.6(2)

118.71(16)

117.44(17)

117.87(18)

96.0(2)

101.9(3)

101.0(3)

116.30(18)

122.5(2)

115.46(18)

113.6(4)

118.9(5)

117.6(4)

123.4(4)

119.9(6)

118.9(5)

121.0(5)

119.8(5)

123.2(4)

116.9(4)

117.0(4)

123.0(5)

1.413(16)

1.487(17)

1.239(19)

1.394(16)

1.37(2)
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0(3)-C(6)-C(10) 120.0(5)

C(20)-C(7)-C(19) 117.9(5)

C(20)-C(7)-P(8) 126.2(4)

C(l 9)-C(7)-P(8) 115.9(4)

C(31)-C(8)-C(20) 119.3(5)

C(31)-C(8)-C(35) 120.5(5)

C(20)-C(8)-C(35) 120.0(5)

C(26)-C(9)-C(5) 120.8(6)

C(22)-C(10)-C(6) 117.8(6)

C(22)-C(1 0)-C(1:3) 125.9(5)

C(6)-C(10)-C(13) 116.2(5)

C(1 8)-C(11)-C(1,4) 119.7(5)

C(23)-C(12)-C(3) 120.1(5)

C(I O)-C(13)-C(15) 107.5(4)

C(10)-C(13)-C(39) 112.0(5)

C( 15)-C(13)-C(39) 112.5(5)

C( 10)-C( 13)-C(2'7) 109.4(5)

C(15)-C(13)-C(27) 107.2(5)

C(39)-C(13)-C(27) 108.1(5)

C(23)-C(14)-C( 1) 119.1(5)

C(31)-C(15)-C(19) 117.7(5)

C(31)-C(15)-C(13) 125.8(5)

C( 19)-C(15)-C(13) 116.6(5)

C(6)-C(16)-C(17) 118.1(5)

C(6)-C(16)-P(7) 118.6(4)

C( 17)-C(16)-P(7') 123.3(4)

C(25)-C(17)-C(1 6) 119.5(6)

C(3)-C( 18)-C(11) 120.6(5)

0(3)-C(1 9)-C( 15> 120.1(5)

0(3)-C(19)-C(7) 117.1(4)

C(I 5)-C(19)-C(7) 122.9(5)

C(7)-C(20)-C(8) 120.6(5)

C(29)-C(21)-C(42) 118.3(6)

C(29)-C(21)-P(8) 121.0(4)

C(42)-C(21)-P(8) 120.7(5)

C(25)-C(22)-C(10) 121.8(5)
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C(14)-C(23)-C(12) 121.5(5)

C(5)-C(24)-C(34) 120.0(6)

C(22)-C(25)-C(]17) 119.8(5)

C(22)-C(25)-C(30) 122.8(5)

C(17)-C(25)-C(30) 117.5(6)

C(28)-C(26)-C(9) 120.7(6)

C(26)-C(28)-C(34) 119.2(6)

C(21)-C(29)-C(32) 121.7(6)

C(46)-C(30)-C(25) 108.2(5)

C(46)-C(30)-C(45) 116.1(8)

C(25)-C(30)-C(45) 108.8(5)

C(46)-C(30)-C(44) 106.5(7)

C(25)-C(30)-C(44) 110.3(6)

C(45)-C(30)-C(44) 106.8(6)

C(8)-C(31)-C( 15) 121.6(5)

C(37)-C(32)-C(2,9) 120.4(7)

C(4)-C(33)-C(36) 120.6(6)

C(24)-C(34)-C(28) 119.4(6)

C(47)-C(35)-C(49) 108.0(7)

C(47)-C(35)-C(43) 110.5(6)

C(49)-C(35)-C(43) 107.9(7)

C(47)-C(35)-C(8') 110.6(6)

C(49)-C(35)-C(8') 111.9(5)

C(43)-C(35)-C(8) 108.0(5)

C(41)-C(36)-C(33) 118.2(7)

C(32)-C(37)-C(48) 118.9(7)

C(40)-C(38)-C(4) 118.9(7)

C(41)-C(40)-C(38) 122.2(7)

C(40)-C(41)-C(3 6) 120.0(6)

C(21)-C(42)-C(48) 120.0(8)

C(37)-C(48)-C(42) 120.7(7)

P(5)-Pd(2)-P(4) 108.07(4)

P(5)-Pd(2)-P(3) 108.73(5)

P(4)-Pd(2)-P(3) 113.51(4)

P(5)-Pd(2)-P(6) 108.09(4)

P(4)-Pd(2)-P(6) 109.40(5)
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P(3)-Pd(2)-P(6)

C(66)-P(3)-C(56)

C(66)-P(3)-C(55)

C(56)-P(3)-C(55)

C(66)-P(3)-Pd(2)

C(56)-P(3)-Pd(2)

C(55)-P(3)-Pd(2)

C(80)-P(4)-C(54)

C(80)-P(4)-C(71)

C(54)-P(4)-C(71)

C(80)-P(4)-Pd(2)

C(54)-P(4)-Pd(2)

C(71)-P(4)-Pd(2)

C(60)-P(5)-C(90)

C(60)-P(5)-C(52)

C(90)-P(5)-C(52)

C(60)-P(5)-Pd(2)

C(90)-P(5)-Pd(2)

C(52)-P(5)-Pd(2)

C(70)-P(6)-C(67)

C(70)-P(6)-C(81)

C(67)-P(6)-C(81)

C(70)-P(6)-Pd(2)

C(67)-P(6)-Pd(2)

C(81)-P(6)-Pd(2)

C(53)-0(2)-C(76)

C(62)-O(1)-C(82)

C(82)-C(52)-C(65)

C(82)-C(52)-P(5)

C(65)-C(52)-P(5)

C(80)-C(53)-0(2)

C(80)-C(53)-C(58)

0(2)-C(53)-C(58)

C(86)-C(54)-C(99)

C(86)-C(54)-P(4)

C(99)-C(54)-P(4)

108.90(5)

98.9(2)

101.3(2)

99.9(2)

116.64(18)

118.29(17)

118.38(16)

100.3(2)

100.6(2)

99.9(2)

117.05(16)

116.40(17)

119.31(16)

101.8(2)

95.7(2)

101.9(2)

122.55(16)

113.44(16)

117.99(16)

101.5(2)

102.0(2)

95.9(2)

114.54(18)

119.90(17)

119.56(17)

115.3(4)

113.9(4)

117.5(4)

115.9(4)

126.5(4)

117.0(4)

124.3(5)

118.6(5)

118.3(5)

118.0(4)

123.5(4)
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C(72)-C(55)-C(:75)

C(72)-C(55)-P(3)

C(75)-C(55)-P(3)

C(83)-C(56)-C(62)

C(83)-C(56)-P(3)

C(62)-C(56)-P(3)

C(138)-C(57)-C(139)

C(138)-C(57)-C(61)

C(139)-C(57)-CI(61)

C(138)-C(57)-C(' 145)

C( 139)-C(57)-C(' 145)

C(61)-C(57)-C(145)

C(123)-C(58)-C(53)

C(123)-C(58)-C(101)

C(53)-C(58)-C(1 01)

C(91)-C(59)-C(71)

C(64)-C(60)-C(93)

C(64)-C(60)-P(5)

C(93)-C(60)-P(5)

C(65)-C(61)-C(78)

C(65)-C(61 )-C(57)

C(78)-C(61)-C(57)

C(106)-C(62)-O(1)

C(106)-C(62)-C(56)

0(1)-C(62)-C(56,)

C(67)-C(63)-C(118)

C(85)-C(64)-C(6))

C(52)-C(65)-C(61)

C(89)-C(66)-C(7'3)

C(89)-C(66)-P(3)

C(73)-C(66)-P(3)

C(63)-C(67)-C( 102)

C(63)-C(67)-P(6)

C(] 02)-C(67)-P(6)

C(74)-C(68)-C(1 '23)

C(74)-C(68)-C(1 : 7)

119.0(5)

123.4(4)

117.5(4)

117.5(5)

123.1(4)

119.3(4)

106.7(11)

108.3(5)

111.4(5)

111.3(11)

107.4(8)

111.8(5)

116.8(5)

124.3(5)

118.8(5)

121.0(5)

118.9(5)

121.5(4)

119.5(4)

118.8(4)

120.0(5)

121.2(4)

119.9(5)

123.0(5)

117.1(4)

121.1(5)

121.1(5)

121.1(5)

118.6(5)

116.7(4)

124.7(4)

118.6(5)

119.4(4)

122.0(4)

119.3(5)

117.7(6)
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C(123)-C(68)-C(127) 122.9(6)

C(125)-C(69)-C(90) 120.3(6)

C(84)-C(70)-C(107) 118.0(5)

C(84)-C(70)-P(6) 121.8(4)

C(107)-C(70)-P(6) 119.9(4)

C(77)-C(71)-C(59) 118.8(5)

C(77)-C(71)-P(4) 123.9(4)

C(59)-C(71)-P(4) 117.4(4)

C(55)-C(72)-C(1 13) 121.3(5)

C(79)-C(73)-C(66) 119.5(5)

C(68)-C(74)-C(80) 121.1(5)

C(55)-C(75)-C(92) 120.4(5)

C(111 )-C(76)-Ci(81) 123.6(5)

C(1 1)-C(76)-0(2) 119.6(5)

C(81)-C(76)-0(2) 116.8(5)

C(94)-C(77)-C(71) 119.8(5)

C(95)-C(78)-C((61) 121.1(5)

C(73)-C(79)-C(142) 121.3(5)

C(53)-C(80)-C(74) 116.7(5)

C(53)-C(80)-P(4) 119.4(4)

C(74)-C(80)-P(4) 123.9(4)

C(76)-C(81)-C(109) 117.1(5)

C(76)-C(81)-P(6') 117.1(4)

C(109)-C(81)-P(6) 125.8(4)

C(52)-C(82)-C(95) 124.0(5)

C(52)-C(82)-O(1) 116.9(4)

C(95)-C(82)-O(1) 119.1(4)

C(56)-C(83)-C(87) 121.2(5)

C(70)-C(84)-C(114) 121.4(5)

C(64)-C(85)-C(141) 119.5(5)

C(131)-C(86)-C(54) 122.2(6)

C(96)-C(87)-C(83) 119.4(5)

C(96)-C(87)-C(100) 121.5(5)

C(83)-C(87)-C(100) 119.0(5)

C( 102)-C(88)-C( 110) 120.1(5)

C(98)-C(89)-C(66) 121.8(6)
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C(108)-C(90)-C(69) 118.7(5)

C(108)-C(90)-P(5) 118.7(4)

C(69)-C(90)-P(5) 122.4(4)

C(59)-C(91)-C(] 12) 119.7(5)

C(115)-C(92)-CI(75) 120.3(5)

C(120)-C(93)-C(60) 121.0(5)

C(77)-C(94)-C(I 12) 121.0(5)

C(82)-C(95)-C('8) 117.3(5)

C(82)-C(95)-C(103) 118.1(5)

C(78)-C(95)-C(103) 124.5(5)

C(87)-C(96)-C(1 06) 120.6(5)

C(108)-C(97)-C(126) 119.5(6)

C(89)-C(98)-C(142) 119.3(6)

C(117)-C(99)-C(54) 120.0(6)

C(133)-C(100)-C(132) 108.3(7)

C(133)-C(100)-C((137) 110.3(6)

C( 132)-C(100)-C(1 37) 107.3(6)

C(133)-C(100)-C(87) 112.3(5)

C( 132)-C(1 00)-C(87) 107.2(5)

C(137)-C(100)-C2(87) 111.2(5)

C(I 11 )-C(101)-CI(58) 106.7(5)

C( 11)-C(101)-C(143) 112.1(5)

C(58)-C(101)-C(143) 113.2(5)

C( 111 )-C( 101 )-C'(121) 108.9(5)

C(58)-C(101)-C(121) 107.5(5)

C(l 43)-C( 101)-C(121) 108.4(5)

C(88)-C(102)-C(67) 120.4(5)

C(95)-C(103)-C(116) 111.4(5)

C(95)-C(103)-C( 106) 105.5(4)

C( 116)-C(103)-C(106) 111.2(5)

C(95)-C(103)-C(:1 19) 109.1(5)

C(l 16)-C(103)-C(119) 111.1(5)

C(106)-C(103)-C(1 19) 108.3(5)

C(1 14)-C(104)-C(122) 119.5(6)

C(124)-C(105)-C(111) 119.7(6)

C(62)-C(106)-C(96) 118.0(5)
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C(62)-C(106)-C(103) 117.7(5)

C(96)-C(106)-C(103) 124.1(5)

C( 122)-C( 107)-C(70) 121.4(6)

C(90)-C(108)-C(97) 121.3(5)

C(124)-C(109)-C((81) 121.4(6)

C(118)-C(110)-C(88) 119.1(5)

C(76)-C(111)-C(I 105) 118.1(5)

C(76)-C(111)-C(I 101) 118.3(5)

C(105)-C(111)-C(101) 123.5(5)

C(94)-C(112)-C(91) 119.7(5)

C(115)-C(113)-(C:(72) 119.5(6)

C(84)-C(114)-C(104) 119.9(6)

C(92)-C(115)-C(113) 119.4(6)

C(129)-C(117)-(:C(99) 121.2(6)

C(110)-C(118)-(:(63) 120.6(5)

C(141)-C(120)-((93) 119.8(6)

C(107)-C(122)-C(104) 119.7(6)

C(68)-C(123)-C(58) 121.5(5)

C(109)-C(124)-(:C(105) 119.9(5)

C(109)-C(124)-(:(128) 120.8(6)

C(105)-C(124)-C:(128) 119.4(6)

C(69)-C(125)-C(126) 121.3(6)

C(125)-C( 126)-C:(97) 118.9(6)

C(144)-C(127)-C (135) 121.7(7)

C(144)-C(127)-C((68) 111.8(7)

C( 135)-C( 127)-C(68) 112.0(6)

C(144)-C(127)-C(1) 99.1(7)

C(135)-C(127)-C'(1) 101.8(7)

C(68)-C(127)-C(1) 108.3(6)

C( 130)-C(128)-C'(140) 101.4(12)

C( 1 30)-C(128)-C(1 34) 108.8(9)

C(140)-C(128)-C'(134) 114.8(12)

C(130)-C(128)-C(124) 108.2(6)

C(140)-C(128)-C(124) 112.0(7)

C(] 34)-C(128)-C(124) 111.0(7)

C(I 17)-C(129)-C(131) 119.3(6)
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C(86)-C(131)-C(129) 118.8(6)

C(120)-C(141)-C:(85) 119.6(6)

C(79)-C(142)-C(98) 119.4(5)

C(200)-C(201 )-C(205)#2 119.1(11)

C(205)-C(206)-(C(207) 114.2(12)

C(206)-C(205)-C(201)#3 118.0(12)

C(202)-C(203)-C(204) 149.9(19)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2 #2 x,-y+l,z-1/2 #3 x,-y+l,z+1/2
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Table 4. Anisotropic displacement parameters (A2 x 103) for 04168t. The anisotropic

displacement factor exponent takes the form: -2 2 [ h2 a*2UIl + ... + 2 h k a* b* U 12 ]

U1 1 U2 2 U3 3 U2 3 U 13 U1 2

238(17)

54(5)

27(1)

28(1)

35(1)

39(2,)

29(2)

51(3)

33(3)

37(3')

32(3')

37(3')

32(3')

45(3')

30(3)

35(3)

53(4)

30(3)

36(3)

39(3)

49(3)

34(3)

33(3)

36(3')

36(3)

51(3,)

31(3)

39(3)

51(3)

37(3)

43(3)

410(20)

117(8)

33(1)

36(1)

38(1)

36(2)

32(3)

46(3)

42(3)

42(3)

46(3)

37(3)

54(4)

39(3)

50(3)

32(3)

39(3)

43(3)

39(3)

42(3)

44(3)

43(3)

37(3)

38(3)

50(3)

45(3)

41(3)

47(3)

55(4)

71(5)

54(4)

58(7)

51(5)

21(1)

21(1)

25(1)

25(2)

30(3)

26(3)

25(2)

24(2)

28(3)

51(4)

35(3)

35(3)

46(3)

26(2)

42(3)

44(3)

36(3)

22(2)

25(3)

34(3)

33(3)

43(3)

24(2)

33(3)

30(3)

41(3)

25(3)

44(4)

61(4)

-81(11)

-5(5)

0

-1(1)

-1(1)

-5(2)

2(2)

6(2)

5(2)

-5(2)

-4(2)

-1(3)

-1(3)

-11(2)

-3(3)

1(2)

-12(3)

-2(3)

-9(2)

-9(2)

-6(2)

-3(2)

-8(2)

-4(2)

-7(2)

-10(2)

-3(2)

12(3)

-6(2)

8(3)

-11(3)

-11(9)

11(4)

10(1)

10(1)

11(1)

14(2)

12(2)

16(2)

15(2)

16(2)

9(2)

22(3)

6(2)

25(3)

17(3)

10(2)

30(3)

12(2)

19(2)

15(2)

18(2)

16(2)

14(2)

17(3)

10(2)

23(3)

7(2)

16(3)

16(3)

8(3)

32(3)

243(18)

-25(5)

0

-2(1)

7(1)

-3(2)

1(2)

21(3)

1(2)

-9(2)

7(2)

1(2)

-5(3)

-12(2)

-7(2)

1(2)

-5(3)

1(2)

0(2)

-11(2)

-16(3)

-3(2)

-1(2)

5(2)

10(2)

-16(3)

-2(2)

0(3)

-22(3)

1(3)

-11(3)
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C(140)

C(1)

Pd(l)

P(7)

P(8)

0(3)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)



C(28)

C(29)

C(30)

C(31)

C(32)

C(33)

C(34)

C(35)

C(36)

C(37)

C(38)

C(39)

C(40)

C(41)

C(42)

C(43)

C(44)

C(45)

C(46)

C(47)

C(48)

C(49)

Pd(2)

P(3)

P(4)

P(5)

P(6)

0(2)

0(1)

C(52)

C(53)

C(54)

C(55)

C(56)

C(57)

C(58)

40(3)

41(3)

61(4)

38(3)

39(3)

39(3)

45(4)

48(3)

55(4)

37(3)

95(6)

77(5)

111('7)

75(5)

37(3)

39(4)

101('7)

119(7)

55(5;)

86(6)

44(4)

161(10)

22(1)

25(1)

24(1')

24(1)

24(1')

25(2')

31(2')

30(2')

21(2')

31(3:)

24(2)

32(3)

34(3)

31(3')

73(5)

61(4)

55(4)

42(3)

86(5)

60(4)

62(4)

37(3)

71(5)

114(7)

49(4)

41(3)

62(5)

61(4)

67(5)

51(4)

87(6)

64(5)

181(11)

43(4)

91(6)

47(4)

38(1)

44(1)

40(1)

40(1)

42(1)

42(2)

49(2)

38(3)

48(3)

43(3)

46(3)

46(3)

51(3)

49(3)

46(4)

31(3)

20(3)

47(3)

30(3)

52(4)

58(4)

49(4)

44(4)

28(3)

26(3)

52(4)

31(3)

41(4)

75(5)

85(6)

36(4)

46(4)

45(4)

54(4)

70(5)

146(9)

16(1)

17(1)

17(1)

16(1)

20(1)

24(2)

19(2)

19(2)

19(2)

18(2)

20(2)

20(2)

26(3)

27(3)

21(3)

10(3)

-5(2)

-8(3)

13(3)

18(3)

31(3)

-3(3)

22(3)

-11(4)

-1(3)

-15(3)

5(3)

16(3)

-27(4)

13(4)

-11(4)

10(4)

16(6)

-2(3)

-40(5)

22(5)

-2(1)

-1(1)

-2(1)

0(1)

-5(1)

-1(2)

3(2)

0(2)

0(2)

1(2)

-5(2)

2(2)

-5(2)

4(2)

13(3)

12(2)

14(3)

22(3)

8(3)

21(3)

17(3)

24(3)

26(3)

16(3)

20(3)

39(4)

22(4)

26(4)

-4(3)

7(4)

30(4)

28(5)

10(4)

-10(4)

3(4)

128(9)

8(1)

9(1)

9(1)

9(1)

9(1)

9(1)

12(1)

13(2)

7(2)

9(2)

9(2)

12(2)

14(2)

14(2)

4(3)

1(3)

-14(3)

0(2)

-1(3)

14(3)

7(3)

4(3)

23(3)

4(4)

9(4)

-9(3)

10(5)

18(4)

22(3)

6(3)

10(5)

-16(5)

-16(6)

-11(4)

13(4)

19(5)

0(1)

4(1)

1(1)

0(1)

-2(1)

4(2)

8(2)

0(2)

0(2)

1(2)

7(2)

7(2)

9(2)

5(2)
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C(59)

C(60)

C(61)

C(62)

C(63)

C(64)

C(65)

C(66)

C(67)

C(68)

C(69)

C(70)

C(71)

C(72)

C(73)

C(74)

C(75)

C(76)

C(77)

C(78)

C(79)

C(80)

C(81)

C(82)

C(83)

C(84)

C(85)

C(86)

C(87)

C(88)

C(89)

C(90)

C(91)

C(92)

C(93)

C(94)

29(2)

29(:2)

23(2)

31(3)

29(2)

33(3)

26(2!)

25(2)

22(2)

37(3)

26(2)

34(3)

28(2)

31(3)

27(3)

29(3)

29(3)

30(3)

38(3)

33(3')

29(3')

28(2')

28(3,)

28(2')

32(3')

39(3:)

41(3:)

44(3)

35(3)

48(3)

38(3)

22(2')

31(3)

32(3')

29(3,)

45(3)

41(3)

38(3)

52(3)

47(3)

43(3)

52(3)

43(3)

48(3)

42(3)

77(5)

65(4)

40(3)

43(3)

45(3)

58(4)

59(4)

53(3)

43(3)

43(3)

49(3)

61(4)

46(3)

50(3)

43(3)

49(3)

48(3)

46(3)

50(3)

48(3)

44(3)

48(3)

47(3)

46(3)

58(4)

45(3)

47(3)

24(2)

15(2)

23(2)

23(2)

22(2)

23(2)

22(2)

18(2)

21(2)

20(2)

20(2)

23(2)

19(2)

26(3)

27(3)

22(2)

21(2)

32(3)

23(2)

27(3)

35(3)

21(2)

26(2)

23(2)

20(2)

20(2)

37(3)

28(3)

20(2)

53(4)

33(3)

22(2)

29(3)

34(3)

33(3)

31(3)

-6(2)

1(2)

0(2)

2(2)

0(2)

-3(2)

-3(2)

3(2)

-1(2)

2(3)

6(2)

-6(2)

-4(2)

2(2)

2(2)

-1(2)

-5(2)

-8(2)

-3(2)

0(2)

9(3)

4(2)

-8(2)

1(2)

-1(2)

-2(2)

-3(3)

-7(2)

2(2)

-10(3)

2(2)

6(2)

-9(2)

-7(3)

-3(2)

-4(2)

11(2)

7(2)

10(2)

11(2)

11(2)

12(2)

11(2)

7(2)

5(2)

7(2)

6(2)

10(2)

12(2)

11(2)

11(2)

11(2)

10(2)

12(2)

16(2)

15(2)

16(2)

12(2)

8(2)

12(2)

8(2)

11(2)

20(3)

12(2)

7(2)

26(3)

9(2)

12(2)

15(2)

16(2)

13(2)

23(3)

1(2)

-2(2)

5(2)

8(2)

1(2)

-7(2)

-1(2)

4(2)

-3(2)

12(3)

-3(2)

-10(2)

-1(2)

4(2)

5(2)

2(2)

3(2)

1(2)

-1(2)

6(2)

5(3)

3(2)

3(2)

5(2)

9(2)

-3(2)

-7(3)

-9(3)

10(2)

-15(3)

4(2)

0(2)

-2(2)

3(3)

5(2)

-6(3)
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C(95) 39(3) 46(3) 24(2) 8(2) 15(2) 12(2)

C(96) 44(3) 62(4) 17(2) 2(2) 11(2) 16(3)

C(97) 27(3) 58(4) 51(4) 17(3) 14(3) 5(3)

C(98) 34(3) 57(4) 44(3) 6(3) 13(3) 2(3)

C(99) 46(3) 48(3) 23(2) -5(2) 15(2) 6(3)

C(100) 38(3) 61(4) 23(3) -1(3) 4(2) 8(3)

C(101) 34(3) 48(3) 39(3) 2(3) 10(2) 9(2)

C(102) 47(3) 37(3) 43(3) -5(2) 25(3) -3(2)

C(103) 38(3) 62(4) 26(3) 13(3) 19(2) 18(3)

C(104) 61(4.) 66(4) 32(3) -8(3) 24(3) -24(3)

C(105) 38(3) 59(4) 47(4) -14(3) 15(3) 6(3)

C(106) 41(3) 55(4) 21(2) 8(2) 15(2) 19(3)

C(107) 41(3) 76(5) 31(3) -17(3) 19(3) -21(3)

C(108) 29(3) 44(3) 39(3) 5(2) 15(2) 2(2)

C(109) 26(3) 60(4) 36(3) -17(3) 6(2) 6(2)

C(110) 38(3) 50(3) 36(3) 0(3) 17(3) -10(3)

C(111) 34(3) 47(3) 34(3) -4(2) 10(2) 8(2)

C(112) 34(3) 53(3) 29(3) -11(2) 16(2) -3(2)

C(113) 34(3) 53(4) 36(3) -3(3) 12(2) -2(3)

C(114) 49(3) 56(4) 27(3) -5(3) 15(3) -4(3)

C(115) 31(3) 54(4) 36(3) -10(3) 12(2) 1(2)

C(116) 58(4) 108(6) 27(3) 21(3) 28(3) 37(4)

C(117) 58(4) 59(4) 27(3) -14(3) 21(3) -2(3)

C(118) 35(3) 50(3) 25(2) 1(2) 14(2) -2(2)

C(119) 53(4) 60(4) 56(4) 19(3) 34(3) 14(3)

C(120) 38(3) 45(3) 51(4) -2(3) 16(3) 1(3)

C(121) 51(4) 51(4) 59(4) 11(3) 22(3) 1(3)

C(122) 54(4) 94(6) 32(3) -19(3) 22(3) -38(4)

C(123) 32(3) 60(4) 27(3) 4(3) 8(2) 9(3)

C(124) 35(3) 63(4) 53(4) -24(3) 14(3) 6(3)

C(125) 33(3) 66(4) 28(3) 13(3) 8(2) 1(3)

C(126) 33(3) 72(5) 47(4) 21(3) 17(3) 1(3)

C(127) 46(4') 118(7) 27(3) -6(4) -7(3) 21(4)

C(128) 43(4) 92(6) 49(4) -30(4) 7(3) 25(4)

C(129) 68(4) 54(4) 38(3) -12(3) 23(3) -9(3)

C(130) 209(13) 73(6) 240(15) -73(8) 202(13) -51(8)
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37(3) -11(3) 18(3)

C(132) 52(4) 63(5) 68(5) -14(4) 6(4) 2(4)

C(133) 46(4.) 141(8) 37(4) -30(5) -7(3) 45(5)

C(134) 269(17) 63(6) 224(15) -68(8) 210(15) -51(9)

C(135) 57(5) 152(9) 38(4) -33(5) 16(3) -11(5)

C(137) 61(5) 123(8) 35(4) 29(4) -1(3) -2(5)

C(138) 207(1L4) 91(8) 590(30) -173(14) 320(20) -86(9)

C(139) 59(5) 211(12) 45(4) -26(6) 3(4) 71(7)

C(141) 44(3) 43(3) 53(4) 3(3) 22(3) 0(3)

C(142) 34(3) 48(3) 43(3) 13(3) 12(3) 5(3)

C(143) 42(3) 58(4) 48(4) 4(3) 8(3) 18(3)

C(144) 29(4) 154(10) 77(6) -39(6) -8(4) 5(5)

C(145) 175(1 1) 284(17) 74(6) 100(9) 101(7) 183(12)
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