
A Non-Intrusive Fault Tolerant Framework For
Mission Critical Real-Time Systems

by

Sebastien Gorelov

B.Eng, Electrical Engineering
McGill University, 2003

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSET
MASSACHUSETTS INSTITUTE OF TECHNOLOGY OF TECH

JUNE 2005 JUN 2

LIBRA

© 2005 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Department of Afr trd sand Astronautics

May 20, 2005

Certified by:
I. Kristina Lundqvist

Charles S. Draper Assistant Professorpf Aeronautics and Astronautics
Thesis Supervisor

Accepted by:.
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

AERO

TS INSEM
JOLOGY

2005

RIES

-J

-4

A Non-Intrusive Fault Tolerant Framework For Mission Critical
Real-Time Systems

by

Sebastien Gorelov

Submitted to the Department of Aeronautics and Astronautics
on May 20, 2005 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Aeronautics and Astronautics

ABSTRACT

The need for dependable real-time systems for embedded application is growing, and, at the
same time, so does the amount of functionality required from these systems. As testing can only
show the presence of errors, not their absence, higher levels of system dependability may be
provided by the implementation of mechanisms that can protect the system from faults.

We present a framework for the development of fault tolerant mission critical real-time systems
that provides a structure for flexible, efficient and deterministic design. The framework leverages
three key knowledge domains: firstly, a software concurrency model, the Ada Ravenscar Profile,
which guarantees deterministic behavior; secondly, the design of a hardware scheduler, the
RavenHaRT kernel, which further provides deadlock free inter-task communication
management; and finally, the design of a hardware execution time monitor, the Monitoring Chip,
which provides non-intrusive error detection.

To increase service dependability, we propose a fault tolerance strategy that uses multiple
operating modes to provide system-level handling of timing errors. The hierarchical set of
operating modes offers different gracefully degraded levels of guaranteed service. This approach
relies on the elements of the framework discussed above and is illustrated through a sample case
study of a generic navigation system.

Thesis Supervisor: I. Kristina Lundqvist
Title: Charles S. Draper Assistant Professor of Aeronautics and Astronautics

2

A mes parents.

3

Acknowledgements

I wish to recognize the people I owe the most. First, I want to thank the members of my

family, my parents Bernadette et Simon, my Babouchka, Evgenia, my Sister Valerie and her

husband Sven, my Brother Cyril and his wife Pascale, for their unconditional love, patience and

support.

Secondly, I want to thank my advisor, Professor Kristina Lundqvist, who, starting with

her famous first words "I know you, but you don't know me yet", helped me go through my

studies at MIT with the relevance of her guidance, the support of her understanding, the freedom

of her trust and the warmth of her friendship. I gratefully acknowledge her financial support.

I wish to thank Jayakanth Srinivasan for his reliably contagious energy and passionate

enthusiasm. Thanks to the camaraderie of the larger ESL team, Kathryn, Martin, Gaston, Pee,

Carl, and Anna, and especially the Swedish delegation, Johan Furunas for his friendship,

expertise and ironmanship, and Lars Asplund for his good humor and hospitality during my stay

in Vasteris.

Finally I want to thank my second family, to whom I owe so many good times. Yves, you

should be thanked as a friend, a roommate, a desert raider, a Montreal host (mmmgggnhehe), a

coworker and a thesis proofreader. Jacomo, thanks for having invented the Jacomo-way-o-life

and having taught me its guidelines. Fluff, it was an honor to enjoy your company all those

times. Nakaitso, your love of the land is inspiring. Eugene, you've been keeping it real since the

days of Stanislas. Special thoughts go to all my remote family members and friends.

Finally, I'd like to thank the Whitehead Institute cafeteria crew for working hard to

provide us with the best moment of the day, every day.

Avwayons d'l'avant nos gens !

4

Table of Contents
ABSTRA C T .. 2

ACKNOW LEDGEMENTS ... 4

TABLE O F C O N TEN TS ... 5

FIG URES AND TABLES .. 8

CH APTER 1.. 9

INTR O DU CTIO N .. 9

1.1 M ISSION CRITICAL REAL-TIM E SYSTEMS.. 9
1.2 M OTIVATION .. 9
1.3 APPROACH.. 10
1.4 FAULT TOLERANCE AND N ON-INTRUSIVE ERROR D ETECTION .. 10
1.5 ELEM ENTS OF THE GURKH PROJECT ... 11
1.6 THESIS ORGANIZATION .. 12

CH APTER 2.. 13

BA CK G R O UND ... 13

2.1 SCHEDULING IN REAL-TIME SYSTEMS ... 13
2.2 GURKH PROJECT ENABLING TECHNOLOGIES... 14

2.2.1 M odel Checkers.. 15
2.2.2 System -On-Chip Solutions... 16
2.2.3 The Ravenscar Profile of Ada95.. 16

2.3 OVERVIEW OF THE PROPOSED APPROACH ... 17
2.4 RELEVANT W ORK... 18

2.4.1 M odel-Integrated Computing .. 18
2.4.2 Execution Tim ekeeping ... 20
2.4.3 Concurrent H ardware M onitoring .. 22

CH APTER 3.. 24

3.1 THE PROFILE .. 24
3.2 THE HARDW ARE K ERNEL... 26

CH APTER 4.. 30

4.1 D ESIGN ... 31
4.2 IMPLEM ENTATION .. 33

4.2.1 VHDL Implem entation Files Added: po ntrpt.vhd ... 33
4.2.2 VH DL Implem entation Files Added: ntrptm anager.vhd.. 35
4.3 VH D L Implem entation Files M odified ... 36
4.3.1 Arbitrating R Q RAM accesses ... 36
4.3.2 Arbitrating the Processor... 38

4.4 D EVELOPM ENT AND TESTING... 38
4.5 SYSTEM D EVELOPER'S U SER GUIDE ... 39
4.6 FUTURE IMPROVEM ENTS .. 42

CH A PTER 5.. 43

5.1 M ONITORING CHIP AS A COMPONENT OF RAVENH ART ... 43
5.1.1 H igh Level H ierarchy .. 43
5.1. Inputs To TheM C .. 44
5.1.3 Outputs Of The M C.. 45
5.1.4 Inp ut D rivers .. 45
5.1.4.2 Signals driven by independent logic.. 46
5.1.4.3 Signals driven by BISM .. 46

5

5.1.5 Output D estination... 46
5.2 M ONITORING CHIP A RCHITECTURE.. 47

5.2.1 The sc top Component... 47
5.2.2 The sc_x Component.. 49
5.2.3 Possible Sources of M C D etected Error .. 53

5.3 TASK GRAPH CODING .. 54

SPECIAL A CKNOW LEDGM ENT ... 59

CH A PTER 6.. 60

6.1 FAULT TOLERANCE THEORY .. 60
6.1.1 Fault Tolerance Phases ... 60
6.1.2 Issues in Recovery for Cooperative Concurrent Processes... 61

6.2 STARTING W ITH ERROR D ETECTION .. 62

6.2.1 Transient Fault Assumption.. 62
6.2.2 Concurrent error detection .. 63
6.2.3 The Importance of the Application Context... 63

6.3 THE GURKH G ENERIC N AVIGATION SYSTEM ... 63

6.3.1 The Gurkh Generic Navigation System as an Application Testbed ... 63
6.3.2 GGN S Task M odel ... 64

6.4 FAULT TOLERANT STRATEGY... 65
6.4.1 Creating The Fault M odes... 65
6.4.2 M aking D esign-Tim e Fault M odels A vailable at Run-Tim e .. 68
6.4.3 The M onitoring Chip Interrupt H andling Task.. 68
6.4.4 Isolating the Erroneous Task .. 69
6.4.5 M onitoring Chip Task Graph Fault M ode Synchronization.. 72
6.4.6 Switchback.. 72

6.5 D ISCUSSION .. 73
6.5.1 D am age Confinem ent .. 74
6.5.2 D am age A ssessm ent... 74
6.5.3 Error Recovery ... 75
6.5.4 Fault Treatm ent and Continued Service .. 75
6.5.5 M ode Change Transition ... 75
6.5.6 Lim itations.. 76

6.6 IMPLEM ENTATION ISSUES... 77

6.6.1 Checkpointing and R ollback.. 77
6.6.2 Switchback.. 77
6.6.3 M ode Change Coordination .. 78
6.6.4 B uilding the M CIH T Lookup Table... 79
6.6.5 Coordination with RavenH aR T PO Circuits... 80

CH A PTER 7.. 81

7.1 M AJOR CONTRIBUTIONS... 81

7.2 D IRECTIONS FOR FUTURE W ORK.. 82

7.2.1 A Full-scale Application .. 82
7.2.2 Refinem ent of M odeling Techniques .. 82
7.2.3 Automated Monitoring Chip Hardware Description Generation... 82
7.2.4 Transfer of Fault Tolerant Software Functionality to Hardware ... 83
7.2.5 RavenH aR T Kernel Upgraded for System Interrupts... 83
7.2.6 Reversing the role of the M onitoring Chip .. 84

A PPEN D IX .. 88

FPGA SPACE SYNTHESIS REQUIREMENTS FOR FULL-SCALE APPLICATIONS............... 88

THE O LYM PUS A TTITUDE AND O RBITAL CONTROL SYSTEM .. 88

A SSUM PTIONS... 88

SYNTHESIS PLATFORM .. 89

6

RAVENHART .. 89
RAVENHART AND THE M C .. 90

7

Figures and Tables
FIGURE 1: SYSTEM A RCHITECTURE ... 17
FIGURE 2: TASK TIM ING PARAM ETERS.. 20
FIGURE 3: ARCHITECTURE OF KERNEL AND APPLICATION ... 26
FIGURE 4: RAVENHART HARDWARE ARCHITECTURE DIAGRAM. NEW COMPONENTS ARE MARKED WITH A (*)......... 28
FIGURE 5: SYSTEM INTERRUPT VS. PROCESSOR INTERRUPT ... 30
FIGURE 6: COMPARING SOFTWARE AND HARDWARE ENTRY RELEASE MECHANISMS ... 32
FIGURE 7: THE PONTRPT STATE M ACHINE... 33
FIGURE 8: THE NTRPTMANAGER STATE M ACHINE... 36
FIGURE 9: RECEIVING SENSOR DATA FROM HARDWARE... 40
FIGURE 10: MC AS AN ELEMENT OF RAVENHART: ARCHITECTURE DIAGRAM ... 44
FIGURE 11: THE ERRPROC STATE M ACHINE .. 48
FIGURE 12: T HE SC STATE M ACHINE... 51
FIGURE 13: LIST OF SOFTWARE CALLS TO RAVENHART FOR A PO PROCEDURE... 55
FIGURE 14: THE TASK GRAPH OF GGNS's LOW RATE NAV TASK... 57
FIGURE 15: ExAMPLE ROM TABLE TASK TIMING CODING... 58
FIGURE 16: TASK M ODEL OF G G N S.. 64
FIGURE 17: GGNS FAULT SCENARIOS, FAULT CLASSES, AND FAULT MODES A TO E .. 66
FIGURE 18: SW ITCHING M O DES... 68
FIGURE 19: M C IH T A CTIV ITY .. 69
FIGURE 20: FAULT MODE TRANSITION AND SWITCHBACK.. 71
FIGURE 21: XILINX 2VP30 CHIP UTILIZATION AND TIMING SUMMARY FOR RAVENHART SYNTHESIS OF AN

APPLICATION REQUIRING UP TO 15 TASKS AND 31 POs.. 90
FIGURE 22: XILINx 2VP30 CHIP UTILIZATION AND TIMING SUMMARY FOR RAVENHART AND MC SYNTHESIS OF AN

APPLICATION REQUIRING UP TO 15 TASKS AND 31 POS.. 91

TABLE 1: CONFIGURATION OF THE DEVELOPMENT VERSIONS 2.3 AND ABOVE OF RAVENHART 39
TABLE 2: D ECODING THE ERRORCODE SIGNAL .. 53
TABLE 3: ROM TABLE OF TASK CALLING A PO PROCEDURE ... 56
TABLE 4: GGNS TASK BEHAVIOR FOR EACH FAULT MODE ... 67
T ABLE 5: M C IH T LOOKUP T ABLE .. 80

8

Chapter 1
Introduction

The information revolution of the past few decades concerning computing technology

continues to drive the changes in our societies at a formidable rate. Software enabled systems

become omnipresent in domains as varied as manufacture, communication, finance, transport,

exploration, and health.

1.1 Mission Critical Real-Time Systems

This thesis is concerned with a specific class of software enabled systems called real-time

systems. Real-time systems are those computing machines in which the correctness of the system

depends not only on the logical result of the computation but also on the time at which the result

is produced [BWO1]. Also called embedded systems, real-time systems typically occupy a

privileged commanding position in the control loop of the larger systems they are embedded in

[LiuGO]. Real-time systems act as the brain of a wide class of engineering systems, from

dishwashers and portable phones to nuclear power plants and deep space probes. The impact that

a failure of such engineering systems can cause to their user or to the external world is what

distinguishes mission critical engineering systems. This impact could involve monetary loss or

physical threat to human lives. Space-based assets and modern jet aircrafts are examples of such

systems. Laundry machines and media players, in contrast, are not mission critical engineering

systems. When the embedded system provides a critical capability to its associated mission

critical engineering system, it is, in turn, referred to as a mission critical real-time system.

Note that safety requirements can be a subset of the engineering system's mission

requirements, and thus we consider here that the mission critical systems class includes safety

critical systems.

1.2 Motivation

High technology industries (like aeronautics, astronautics, automotive, power, and health

technologies) that use mission critical real-time systems face unprecedented commercial pressure

to optimize their real-time systems design process. This translates practically into an urgent need

for design processes that are shorter in time, less expensive, and that can yield real-time systems

9

that provide more functionality while continuing to offer, over extended periods of time, the high

levels of dependability required by their mission [VAR99].

In parallel, the trust which society places in mission critical systems grows ever higher. In

reaction, industry and governments have established different standards and certification

processes to guarantee that given mission critical real-time systems meet their required level of

dependability.

Consequently, design processes that can easily prove the dependability of their systems

are sought.

1.3 Approach

The Gurkh Project was created as a first step towards the development of a new design

process which answers the needs of mission critical real-time system industries. The Gurkh

Project aims at providing an integrated environment for the design, development, formal

verification and validation, and maintenance of mission critical real-time systems [ALO3]. To do

so, tool support is combined to System-On-Chip methodologies. Starting with existing

requirement specifications or existing code, the resultant process is meant to minimize design

time and cost while maximizing functionality and dependability.

The authors of [ALL+04] identify four means of attaining dependability: fault prevention,

fault removal, fault tolerance, and fault forecasting. While different elements of the Gurkh

Project are designed to enable fault prevention and fault removal, the work presented in this

thesis is concerned with the increase of dependability by the provision of a framework for fault

tolerance to the design process of the Gurkh Project.

1.4 Fault Tolerance and Non-Intrusive Error Detection

The literature [ALL+04], [LA90] considers afault to be defined by its ability to manifest

itself and cause the internal state of a system to transition to an erroneous state which could lead

to afailure. A failure is a deviation of a system's behavior from that required by its specification,

or from the intended system behavior inadequately described by the specification. The error is

the element of the erroneous state which makes it different from a valid state.

The practical impossibility to eliminate all development faults of complex software and

hardware systems is widely recognized in the computing community [LA90]. As opposed to

10

fault prevention and removal, fault tolerance aims at providing the means for a real-time system

to cope with faults to avoid failures after the system comes into service.

The intuitive principle behind the implementation of fault-tolerance in a system is to

provide redundant resources and the mechanisms necessary to make use of them when needed.

These mechanisms typically act in four phases [LA90]:

* error detection: the starting point of fault tolerance techniques is the detection of

an erroneous state, which is the consequence of a fault

e damage confinement and assessment: the extent to which the system state has

been damaged should be evaluated based on the damage confinement structure of

the system.

e error recovery: techniques for error recovery allow the transfer from the current

erroneous system state to a predetermined error-free state from which predictable

operation can continue.

" fault treatment and continued service: if the fault can be identified, fault treatment

will repair it to prevent it from reoccurring.

Provision of error detection can either change the target system's fault-free behavior, in

which case it is called intrusive error detection, or it can work without interfering with any of the

nominal, fault-free activities of the system being monitored, in which case it is called non-

intrusive error detection. Non-intrusive schemes have the advantage of making the system design

process less error-prone by decoupling the functionality of the different elements in the system.

1.5 Elements of the Gurkh Project

The Gurkh Project environment consists of four main components:

1. A set of tools translating software and hardware description languages to a formal

notation (timed state machines) that can be used for the verification of the target

application and the run-time environment infrastructure [Neh04].

2. A formally verified and predictable hardware run-time kernel called RavenHaRT

[Sil04].

3. An Ada Ravenscar to PowerPC and RavenHaRT kernel cross-compiler called

pGNAT [See04].

11

4. An on-line hardware monitoring device, called the Monitoring Chip, created using

a model of the target system application.

The work presented in this thesis concerns the integration of the Monitoring Chip in the

Gurkh Project environment to provide a non-intrusive framework for fault tolerant designs of

mission critical real-time systems.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 provides an overview of the approach

proposed and provides background information that motivates the approach chosen: enabling

technologies and relevant work will be presented. Chapter 3 is dedicated to Ravenscar, the

deterministic and concurrent subset of the Ada 95 software language, and to the RavenHaRT

run-time kernel, designed for Ravenscar compliant software applications. Chapter 4 presents the

modifications brought to RavenHaRT to give the run-time system interrupt capability. Chapter 5

describes the implementation of the Monitoring Chip, the error detection component enabling the

fault tolerant solution of the system. Chapter 6 then discusses the strategy used to implement the

fault tolerant framework and the existing integration issues. Finally Chapter 7 presents the

conclusions of this work and suggests future avenues of work worth considering. The Appendix

reports the FPGA gate-space requirements for the synthesis of the RavenHaRT and Monitoring

Chip hardware needed to support a typical full-scale application.

12

Chapter 2
Background

The Gurkh Project uses preemptive priority based scheduling as a central paradigm to its

process. In this Chapter, we provide background information on scheduling methods to justify

this choice. To further motivate the general approach followed, enabling technologies and

relevant work are presented, and an overview of the proposed approach is presented.

2.1 Scheduling in Real-Time Systems

Real-Time Systems have traditionally been built using cyclic executive approaches. For

such systems, the application software consists of a fixed set of tasks executing periodically. The

cyclic executive schedule is a timeline of task execution arranged such that each task runs at its

correct frequency. The major cycle is the time period of execution of the complete timeline. The

major cycle is composed of minor cycles, one for each task's own higher frequency execution

requirements. If different tasks have different frequency requirements, the major cycle must have

a frequency set to the least common multiple of all required frequency [VAR99]. Since the

schedule is carefully elaborated in design time, tasks can share a common, unprotected address

space.

The guarantee of deterministic behavior that is provided by the cyclic executive makes its

usage attractive in mission critical real-time systems. For simple periodic systems, the cyclic

scheduler approach is very effective. However, the scheduling problem is known to be

computationally infeasible for large systems and its quickly growing complexity requires

suboptimal schemes to be used in practice [BWO1]. Furthermore, the necessity for tasks to share

a harmonic relationship imposes artificial timing requirements [VAR99] that can be wasteful in

processor bandwidth [Pun97]. Cyclic executives are difficult to construct, thus making them very

inflexible to changes. For instance, adding a new task with large computation time or very low

frequency requirements in the application requires major changes and rework of the complete

system's schedule. While this method is very rigid, it presents the advantage of being

deterministic.

An alternative approach to cyclic executive is concurrent tasking. This more flexible

approach uses task attributes to determine which task should run at any time. These scheduling

attributes, which can include the task's deadline, its worst-case execution time (WCET), its

13

period, or its worst-case response time, are usually used to define the priority of a task. In effect,

the task's priority is thus based on its timing requirements. The use of fixed-priority tasks is a

popular approach to the scheduling problem; schedules composed of such tasks can be computed

at design time and lend themselves well to analysis. In fixed priority preemptive schemes, a

higher priority task becoming runnable while a lower priority task is running will be immediately

granted the processor. In non-preemptive schemes, the running task will be completed before the

runnable task starts executing. Tasks can therefore be in the following states: running, runnable,

suspended on a timing event (periodic tasks), or suspended on a non-timing event (event-

triggered tasks) [BWO1].

An important advantage of concurrent methods is that minor design changes result in

small implementation modifications, which is not the case for cyclic executive approaches.

Although a lot more flexible, traditional concurrent tasking does not typically reach a level of

determinism appropriate for certification [IS099]. The motivation behind the creation of the

restrictive Ravenscar Ada 95 language subset is precisely to allow for enough determinism in

concurrent designs to satisfy the certification requirements of safety critical real-time systems

[BAJL99].

As mentioned in the introduction, the need for better design processes contributes to the

emergence of concurrency as the preferred approach [PZ03], even in traditionally very

conservative mission critical application domains like spacecraft engineering [BW+93]

[VAR99].

By using the tasking model of the Ravenscar profile as one of the pillars of the Gurkh

Project, we aim to combine the benefits of the flexibility of concurrent designs with the benefits

of the dependability of deterministic system implementations.

2.2 Gurkh Project Enabling Technologies

An embedded system's functionality can be implemented using both hardware and

software components. The share of responsibility of functionality implemented using hardware

and software components can vary between the two extremes of pure software functionality and

pure hardware functionality.

14

Current practice usually defines the appropriate standard of distribution of functionality

between software and hardware in a system. This standard is challenged with the emergence of

new technologies.

In particular, our research has been enabled by the emergence of three technologies at the

basis of our framework: model checkers, System-on-Chip implementation methodologies, and

the Ravenscar profile of Ada 95.

These emerging sets of technical options are a consequence of the advances of computer

and software engineering research. Increasing computing power is made available. Better

algorithms and more computing power allow more efficient and powerful model checkers.

Advances in semiconductor technology miniaturization yield Field Programmable Gate Arrays

(FPGA) that can contain more gates. System-on-Chip methodologies make hardware design and

its desirable features of parallelism, robustness and speed more accessible than ever.

2.2.1 Model Checkers

Model checking is an integral part of the Gurkh Project process. The Uppaal tool suite

offers an integrated environment to model, validate and verify real-time systems modeled as

networks of timed-automata [PLOO]. The use of the networks of timed-automata modeling

technique and the Uppaal model-checking tool in particular have been deemed an effective

method to verify concurrent real-time systems models by both academia [Bur03] and industry

[DYGO]. System modeling can be done in different ways. Modeling techniques for mission

critical real-time systems must allow the representation of concurrency, delays, and deadlines

[Bur03]. Automatic verification then checks the feasibility and safety of the system model.

The Gurkh Project development process uses the Uppaal tool to verify application

designs at different phases of their development lifecycle: the tool can be used at the beginning

of the process or to incorporate existing components into the system model.

The use of Uppaal in the Gurkh Project process offers other advantages than formal

verification of application system models. The ability for the Uppaal user to simulate a model's

timing behavior has an ancillary benefit in that the user incidentally gains a valuable in-depth

understanding of the bounded sequence of interactions that take place within the system.

Furthermore, hardware/software integrated modeling showed that Uppaal can be used to help

define the boundary between hardware and software components. The advantage of this is that

hardware/software co-design decisions can be delayed in the design process to the moment

15

where the optimal breakdown solution is found, and a well defined interface between hardware

and software is obtained.

Finally, the application system model is used to derive the timing model used by the

monitoring device, the Monitoring Chip, to verify the timely and correct execution flow of the

system tasks.

The Uppaal tool was used to show the feasibility of the design of a Ravenscar compliant

Run-Time kernel in [ALO3b]. This formally verified design was used to implement the

RavenHaRT hardware kernel.

2.2.2 System-On-Chip Solutions

A System-On-Chip (SoC) is an implementation technology that typically contains one or

more processors, a processor bus, a peripheral bus, a component bridging the two buses and

several peripheral devices [MosOO]. In the implementation technology we use for our research,

the SoC consists of one or more processors and FPGA fields that can be easily configured to

present all the hardware mentioned above and more [Xil04]. The benefit of this technology lies

in the great flexibility we have in defining the hardware/software interface. As mentioned above,

this allows us to challenge the current approach to solving real-time system problems.

The Gurkh Project development platform uses this implementation technology. The

software running on the SoC processor is scheduled by the RavenHaRT runtime kernel which is

synthesized as a peripheral device. The Monitoring Chip is synthesized as another peripheral

device of the chip's processor. Figure 1 shows the system architecture of the Gurkh Project. The

SoC development platform used at MIT's Aero/Astro Embedded System Lab consists of Xilinx's

Virtex-2 Pro hardware. The ML310 boards used for project development have 2 PowerPC

processors each, along with over 30,000 FPGA fabric logic cells and over 2400 kb of block

RAM. Xilinx's ISE foundation version 6.3, with Xilinx's Embedded Development Kit software

version 6.3, along with Mentor Graphics' ModelSim SE Plus 5.8e were the tools used for design

entry, simulation, synthesis, implementation, configuration and verification.

2.2.3 The Ravenscar Profile of Ada 95

Real-time software languages need to provide support for concurrency and predictability

[Shaw01]. As discussed in [Sil04], the Ada programming language is highly suitable for the

Gurkh Project by virtue of the build-in safety and real-time support features the language offers.

16

In the context of a particular application domain, restricted profiles of Ada give the

possibility to keep subsets of the complete language for increased optimality. The Ravenscar

profile in particular offers a concurrent tasking subset to meet the dependability, analysis, and

certifiability requirements of mission critical real-time system design [BDV03]. Because of the

central importance of the role of the Ravenscar profile in the Gurkh Project, Chapter 3 is

dedicated to its description and that of RavenHaRT.

2.3 Overview of the proposed approach

The Gurkh Project, well described in [ALO3] and [Sil04], provides the overarching

context for our non-intrusive fault tolerant real-time systems development framework. The focus

of the work presented in this thesis is the provision of fault tolerant capabilities in this context,

and we will only summarize here the salient points of the Gurkh Project relevant to that focus.

Gurkh framework application software can be developed in Ada 95 Ravenscar. A model

of the application is extracted from the code, and different model checking tools verify the

necessary timeliness and correctness properties. The application software is cross-compiled to

run on the target processor and to communicate with RavenHaRT, the hardware real-time kernel

developed in-house for Gurkh. An integrated model of both RavenHaRT and the application can

be checked by the different tools and the implementation can be corrected for the next design

iteration. The timed model of the application is also used to synthesize the Monitoring Chip

(MC), which provides the non-intrusive error detection capabilities by monitoring the

communication exchanges between the processor and RavenHaRT. The system architecture is

shown in Figure 1.

Figure 1: System Architecture

17

The fault tolerance strategy adopted is based on the types of errors that can be detected.

The error detection capabilities offered by the MC concern two types of errors:

* illegal control flow from the software application

e tasks breaking their execution time bounds

Assuming the software faults are transients, they are tolerated using system

reconfiguration by allowing the application to switch to fault tolerant modes of operation.

Although the implementation details of this approach are application specific, the concept is

generic and presented in detail in Chapter 6. Fault tolerant modes of operation in the presence of

task errors are designed for the real-time system to offer a predictable and gracefully degraded

service while waiting for nominal operations resumption.

Once the MC signals the error to RavenHaRT, the appropriate handler task is activated

by the hardware kernel to switch the mode of operation of the application to the mode

determined by the error information provided by the MC. Before terminating, the handler forces

backward error recovery of the faulty task. The task is thus reset to the state it was in at the last

checkpoint. When the handler exits, the application system runs in the appropriate mode. If the

faulty task has a hard deadline, the whole mode changing operation is designed such that the

faulty task is given another chance at meeting its deadline in the new mode of operation, thus

exploiting time redundancy. The MC is designed to eventually restore continued nominal

service.

2.4 Relevant Work

2.4.1 Model-Integrated Computing

The classical approach in computer science is to make a very clear separation between

computer system's software and hardware components. The bridge between the two is usually

clearly defined and standardized, allowing computing problems to abstract some of the total

complexity of the system. However, embedded systems are among the computer systems in

which software and physical systems exhibit the tightest coupling characteristics. Mastering

such complex component interactions presents new challenges. Model-Integrated Computing

answers the need existing for embedded system software and its associated physical system to

evolve together in order for the embedded system to fulfill its control responsibilities [SK97].

18

The concept behind Model-Integrated Computing is to make design-time models of an

application system available at run-time to benefit its dynamic behavior. The use of models,

which first consists of capturing the computational processes required by the application, is

extended to capture information about the environment the software executes in and the dynamic

behavior of the application. Such a design paradigm eases the definition of functional

decomposition boundaries helpful for fault prevention. It furthermore enables the application to

be reflective: it can give it the ability to supervise its own operation. The Multigraph

Architecture is a Model-Integrated Computing framework developed at Vanderbilt University to

support domain specific Model-Integrated Program Synthesis (MIPS) environments [LBMOO].

The ideas of Model-Integrated Computing are directly relevant to our work. The Gurkh

Project could be seen as implementing a special case inside the generic context, an already

domain-specific subset of the Multigraph Architecture. The Gurkh process aims at offering the

possibility to generate models and code automatically from formal specifications. Those models

are used for formal verification and model checking, as well as to implement the fault tolerant

solution. They give the system the ability for the application to be reflective, or to self-

reconfigure in the presence of faults. Models are also used to represent and manage resource

limitations. For real-time systems, the limited resource is time. Key to the Gurkh Project is the

ability for the system to capture timing relations in its models and to provide timing information

to the supervisory device: the Monitoring Chip. Reconfiguration then consists of using spare

time to cope with faults.

In [LBMOO], Ledeczi discusses a wide range of different possible levels of self-

adaptability. The paper recognizes a shortcoming in the general approach they present: mission

critical applications can only accept a strictly limited and controlled form of self-adaptability.

The Multigraph Architecture aims to be widely applicable and some of its components are

simply not compatible with the predictability and dependability requirements of mission critical

applications. The ideas of monitoring and configuration modification are present in Gurkh. The

concept of having generative capability for dynamic architectures is interesting, but the Gurkh

approach uses pre-designed functionality models in order to meet the predictability requirements

mentioned above. Finally one of the main contributions of our work is to implement the concept

of reflectivity by exploiting the advantages of hardware monitoring based on the models of the

application. Again, this is the role of the Monitoring Chip.

19

2.4.2 Execution Timekeeping

The predictable timing requirements of real-time systems impose strict timing analysis

constraints on the design process. Modem processors benefit from architectural features like

caches and pipelines designed to speed up the execution time of individual instructions, which

consequently varies as a function of many factors. For real-time applications, the necessary

timing analysis is thus rendered very complex or inaccurate, and the use of latest generation

processors not a privileged option [WA02]. Timing analysis accuracy is important; whereas

overestimation of the worse case execution time (WCET) of a block of code results in poor

resource utilization, underestimation invalidates the analysis required for timeliness certification,

which is a much worse problem. In [WA02], Ward and Audsley have pushed the idea of using

VHDL technology to synthesize Ada Ravenscar code into hardware circuits with the stated

purpose to get the most accurate timing analysis possible from software. This effort proves the

importance of having accurate timing analysis.

Hard real-time system design incorporates the task's deadline as a constraint, and uses the

estimated Best-Case Execution Time (BCET) and WCET as design parameters to accomplish the

objective of satisfying the deadline constraint. The BCET and WCET are contained inside the

time period between task activation and its deadline.

Task Task
Execution Execution
Start 4 End

Actual Task
Execution Pessimism Time Redundancy Available For Fault Tolerance

Task Task Task Task Hard
Activation BCET WCET Deadline

Figure 2: Task Timing Parameters

Although reduced to a minimum, the inaccuracy of the timing bounds estimate for

practical application is never eliminated completely. The difference between the actual execution

time and the worst-case estimate is referred to as pessimism in the literature, and is illustrated in

Figure 2. On the one hand, the WCET is chosen to feature some pessimism to guarantee a safe

upper bound on task execution time. On the other hand, too much pessimism leads to inefficient

20

resource usage. System design relies on the guarantee offered by the WCET. Hence, breaks in

timing bound estimates are dangerous, and should be detected and handled.

Typical temporal redundancy schemes repeat the execution of a faulty task using the time

remaining after the fault is detected and before the deadline occurs [MM01]. This extra time

between a task's WCET and its deadline is the spare time that is exploited to carryout the fault

tolerance approach we propose.

Harbour mentions the importance for hard real-time systems to monitor the execution

time of all tasks [HA03]. While monitoring of task execution times is routinely done for cyclic

executives, the constructs required to support such capability for concurrent systems are not as

easily implemented. Previous work by Harbour et Al. [HR+98], proposes the addition of an

execution time clock library for Ada 95 that can be used to monitor the timing behavior of the

executing application, and in [HA03], Harbour and Aldea Rivas suggest an extension to that

library allowing a single task to manage the execution-time budgets of several other tasks.

However, while the execution clock mechanism themselves are found compatible with the

Ravenscar profile, the overrun management schemes proposed in [HR+98] use techniques such

as dynamic priorities and aborts, which are not Ravenscar compliant. To solve this problem, de

la Puente and Zamorano proposed a Ravenscar compliant scheme that allows a supervisory task

to detect overruns and preempt the faulty task [PZ03].

The main advantage of the Gurkh Project hardware monitoring scheme is that the

software application is completely independent from its monitoring device. The monitored tasks

are not required to arm and disarm software timers. By being active concurrently and

functionally decoupled from the monitored task, the hardware monitoring scheme is a lot simpler

than its software counterparts. The system design process proposed in the Gurkh Project is thus

less error-prone. As for some software solutions [PZ03], the scheduling of the system tasks is

perturbed only after the overrun is detected, as soon as it occurs. The overall concept is similar to

the supervised overrun detection scheme described in [PZ03].

Task overruns caused by a violation of the BCET or WCET may have system level

repercussions. For instance, a misbalance in the appropriate share of processor time between

tasks may develop. Additionally tasks interacting with the faulty task may miss their deadlines.

One of the conclusions reached by de la Puente and Zamorano is that action to tolerate task

overruns has to be taken at the system level:

21

"(...) there is a need to provide a system-level service for

reconfiguration after an overrun has been detected" [PZ03].

Following this recommendation, the approach we adopt in Gurkh implements predictable

system-level reconfiguration, in which the system is given the ability to enter fault handling

modes of operation that allows it to manage the specific task overrun detected. The approach

clearly targets the tolerance of unanticipated state-dependent faults that reveal their existence by

violating their timing bounds or by transitioning to unexpected software application states. It is

important to underline that lack of intervention by the MC is not a guarantee of correct system

functionality. Other types of faults in the system might go unnoticed to the MC. These can be

handled by other error detection techniques, in conjunction with the MC.

2.4.3 Concurrent Hardware Monitoring

Beyond processor spares, hardware voting techniques, and general replication as a fault

tolerance measure, the idea of using redundant hardware that does not implement application

functionality, but which is designed expressly for monitoring, has been around for some time. A

good example of a successful full scale implementation of this concept on a mission critical real-

time system is The ELEKTRA Railway Signaling System presented in [KK95]. The

implementation is based on a two channel system. While the first channel provides the main

interlocking control services, the second monitors the outcome of the control functions against

safety rules. Actions are taken by the first channel only if the second agrees that no safety

conditions are violated.

Mahmood and McCluskey present in [MM88] a survey of concurrent system-level error

detection techniques using a watchdog processor: a simple coprocessor monitoring the behavior

of the system. The coprocessor compares concurrently information about the system's behavior

with behavior information provided before runtime. Such an error detection scheme does not

depend on a particular and simplistic fault model. No particular faults are checked for, only the

general presence of errors (possibly triggered by different types of faults) in the memory access

behavior, the control flow, the control signals or the result reasonableness. Less hardware is

required to implement this approach than for replication approaches. The watchdog is a self-

contained circuit, designed independently from the monitored processor. It is also integrated or

removed from the system without major changes, and does not exclude the use of other error

22

detection techniques. These findings are directly relevant to our approach, and the Monitoring

Chip can be described using the framework of watchdog processors.

In [MM88], experimental studies in a test with fault injection on external microprocessor

pins find that invalid program flow error detection technique is the most efficient error detection

technique. Two schemes are discussed: assigned- and derived-node signature control flow

checking. The Gurkh approach is closer to the first approach. Our concept of node comes from

the application / kernel integrated model verified in the Gurkh process. Nodes are basically

bounded by two consecutive accesses to the kernel from software. The system architecture of our

approach helps us a lot in this case, since the application running on the processor needs to

communicate with the hardware kernel, the MC can simply tap in on the exchanged information.

Other architectures must use elaborate and complex schemes for the watchdog processor to track

the behavior of the system. Derived-signature (derived from the nodes) control flow checking is

one such intricate scheme. Our MC verifies not only the execution timing of tasks, but also the

correct and timely traversal of the control flow graph inside each task, as it is done for the

assigned-signature control flow checking scheme. In addition to proving the viability of the

concept of having hardware monitoring of the system behavior, the work presented explicitly

identifies the opportunity represented by the possibility of automated watchdog program

generation from a high-level language program. This is one of the elements identified in the

Gurkh design process: the generation of the MC circuit based on the model of the application.

Now that the key ideas behind our framework have been presented, we explore the role of

the Ravenscar profile in the Gurkh project in Chapter 3.

23

Chapter 3
Ravenscar and RavenHaRT

This Chapter presents the key concepts behind the concurrent tasking model of the

Ravenscar profile of Ada 95. Those concepts play an important role in the Gurkh Project.

First and most visibly, the concurrency model imposes rules on the production of the

application software. Second, the model dictates the architecture of the implementation of the

Ravenscar supporting kernel, including the interrupt mechanism. Third, the Ravenscar Kernel

and software interaction in turn constrain what the Monitoring Chip can monitor. Fourth,

adherence to the principles of the Ravenscar profile also imposes constraints on the design of the

fault tolerant infrastructure. For the sake of completeness and because these principles are

omnipresent throughout our framework, we will present the important characteristics of these

principles here even though the literature is rich in references to the Ravenscar profile definition.

In particular, the interested reader could refer to [BDR98] for a formal definition of the profile

and [BDV03] for a practical user guide.

3.1 The Profile

The core of the Ada language is mandatory for all language implementations. A set of

annexes is defined to extend the language in order to fulfill special implementation needs. In

particular, the real-time annex is mandatory for Ravenscar. Specific compiler directives, known

as pragma Restricitons, are used to denote the forbidden features of Ada 95 that need to be

specified to implement the Ravenscar profile [ALO3b]. They are listed below [ALO3b]:

NoTaskHierarchy Max EntryQueue_Depth => 1

NoAbortStatements NoCalendar
NoTaskAllocators NoRelativeDelay

NoDynamicPriorities NoProtected TypeAllocators

NoAsynchronousControl NoLocalProtectedObjects

MaxTaskEntries => 0 NoRequeue
MaxProtectedEntries => 1 NoSelectStatements
MaxTasks => N NoTaskAttributes
SimpleBarrierVariables NoTaskTermination

In addition, the pragma LockingPolicy restricts the policy to CeilingLocking.

24

The profile prevents tasks to be dynamically allocated, and allows only for a fixed

number of tasks. None can terminate, so each consists of an infinite loop. Tasks have a single

invocation event. That event can be called an infinite number of times. The invocation event can

be time-triggered or event-triggered. Time-triggered tasks make use of a delay until statement.

Tasks can only interact through shared data in a synchronized way, through the use of Protected

Objects (POs). POs may contain three different types of constructs, the Protected Function, the

Protected Procedure and the Protected Entry. A Protected Function is a read-only mechanism,

while the Procedure is a read-write mechanism. The Protected Entry is associated to a boolean

Barrier variable and both implement a mechanism used for event-triggered invocation of tasks.

A task suspends itself by calling the Entry of a PO that has a closed Barrier. The suspended task

is then put on the PO's Entry Queue, which can only have one task. The same PO can possess

multiple Protected Functions or Procedures, but only one Protected Entry. To change the value of

a PO's Barrier, only a Procedure belonging to that PO can be used. When a Procedure of a PO is

about to exit, the Entry Queue of the PO is checked. If the Entry Queue has a suspended task

waiting on the PO's Barrier to open, the value of the Barrier is checked to see if the Procedure

has altered it. If the Procedure has indeed altered it, and thus the Barrier is now open, the

remainder of the PO's Entry code is executed in the context of the task that called the Procedure.

The task suspended on the Entry queue is then made runnable again. Since a Protected Function

is read-only, it cannot change the value of its PO's Barrier [BDR98], [BDVO3].

Priority-based preemptive scheduling is used in the RavenHaRT kernel, with FIFO

within priority used to distinguish tasks with equal priorities. The Ceiling Locking mechanism is

used to synchronize access to POs and prevent deadlocks and priority inversion problems. This

mechanism works as follows: all tasks are given fixed priorities in the system. Each PO is also

associated to a priority, called Ceiling Priority: it has the priority of the highest priority task that

can access it. There is only one way a task can change priority and it is by accessing a PO. When

a task accesses a PO, its priority is raised to the PO's Ceiling Priority. Ceiling Locking prevents

other tasks potentially accessing the same PO of preempting the task that just saw its priority

raised.

The profile defines a restricted subset of the complete Ada 95 language. As mentioned

before, these restrictions enable the design of real-time systems that can meet hard real-time and

mission critical certification requirements. Furthermore, they enable the profile to be mapped to

25

a small run-time kernel that need only support the restricted behavior of the Ravenscar profile

[Sil04]. The RavenHaRT hardware kernel was designed with the purpose of exploiting this

possibility.

3.2 The Hardware Kernel

RavenHaRT was developed by Lundqvist and Asplund in [ALO3b] and implemented in

hardware by Silbovitz in [Sil04] using VHDL. The kernel design and implementation

characteristics influence parts of the framework: it puts constraints on the design of the interrupt

mechanism and it specifies how the Monitoring Chip can track task timing and task execution

flow.

The RavenHaRT kernel is designed for application software written in Ravenscar

compliant Ada 95 and compiled with a special purpose cross compiler to run on a single

processor system. The compiler used in the Gurkh Project is called pGNAT, and is presented by

Seeumpornroj in [See04]. Based on the open-source GNAT compiler, pGNAT uses a modified

version of the GNARL run-time library and the GNAT's GCC back end to generate RavenHaRT

compatible and Ravenscar compliant PowerPC object code.

Figure 3 reproduced from [Sil04] shows the architecture of the kernel and the application.

PPC

Interface State Machine FPGA

Task
Arbitration

Protected
Objects:

Procedures, Ready Delay
Functions, Queue Queue

Entry

Main Kernel Functions VCounter

Figure 3: Architecture of Kernel and Application

26

The purpose of the kernel is to determine what task should be running on the processor

at any time. To do so, RavenHaRT keeps track of task priorities and software service calls. These

calls can be classified as either elaboration-time calls or run-time calls. The elaboration-time

services the kernel provides are the creation of tasks (Create), the setting of the frequency of the

kernel clock used to keep track of the task delay mechanism (SetFreq), the command to start the

scheduling (FindTask), and provision of the system time to the software (GetTime). The run-

time services the kernel provides includes the delay until command (DelayUntil) that suspends

the calling task and all the PO servicing commands that enforce the Ceiling Locking mechanism

(change of task priorities) and the event-triggering mechanism (Entry queue and Barrier checks).

To make sure the highest priority active task is always the one running, RavenHaRT

manages a Ready Queue (RQ) holding each task's ID and current status (active or inactive) and

current priority. Another construct, the Delay Queue (DQ), constantly finds the next task to be

awakened. When the time to awake the task comes, the Ready Queue makes the task runnable.

The hardware kernel also has PO managing circuits. Each PO declared in the code has its own

PO circuit (poone), and each PO circuit is composed of a Protected Entry Circuit (entry) and a

Procedure / Function circuit (procfunc). The PO circuits can alter the task priorities of the RQ,

suspend a task blocked on an Entry depending on the PO's Barrier value, and release the task

blocked on the Entry. It is important to state that once the Procedure called by a task opens the

Barrier of the PO, the Entry called by the suspended task finishes executing in the context of the

task calling the Procedure, and only after does the Procedure exits the PO. At this point in time,

both "suspended, Entry-calling" task and "releasing, Procedure-calling" task are active. Both are

now outside the PO and have their original priorities restored. The Ready Queue will schedule

the highest priority task to run first. Following the FIFO within priority rule, the "releasing

Procedure-calling" task will run if both have the same priority.

27

Figure 4: RavenHaRT Hardware Architecture Diagram. New components are marked with a (*).

Figure 4 shows the hardware architecture of RavenHaRT. Each circuit is identified and

the hierarchy is represented by placement of the circuit areas and the different tones of gray. The

external circuit is called interface opb because it is the circuit as seen from the bus interface.

OPB stands for On-Chip Peripheral Bus. The interfaceopb contains three circuits, the Bus

Interface State Machine (BISM), the Kernel Interface State Machine (KISM) and

kernelinternal, which contains the rest of RavenHaRT's logic. The RQ entity is composed of

rq_ram, arbitrate_rq_ram, and rq_state circuits, while the DQ entity is composed of dq_ram and

dq_state. The PO logic is inside the multipo circuit, which is composed of one po one circuit for

each PO in the system. As mentioned above, each po one circuit contains procfunc and entry,

and also the channelcontrollerpo 1 circuit and the pontrpt circuit. Inside the proc func and

entry state machines, two paths can be taken. They correspond to the nominal and exception

paths. The kernel has therefore the ability to react differently to exception code from the

application.

28

At the same level as multipo, arbitratecpu resolves potential conflicts caused by sudden

priority changes of tasks involved with POs. The timer circuit provides the timekeeping and

kernel clock frequency setting services, while the ntrptmanager arbitrates potential

simultaneous system interrupt signals.

The implementation described in [Sil04] does not include system interrupts servicing

functionality. A mechanism implementing such functionality is presented in Chapter 1. The

components marked with an asterisk in Figure 3 were designed, implemented and integrated in

the original RavenHaRT by the author to enable system interrupt servicing.

29

Chapter 4
System Interrupts

An embedded system provides the computing abilities necessary to control some physical

process. Embedded systems therefore need to communicate with hardware, reading input via

sensors and providing outputs via actuator commands. In our fault tolerant framework, error

detection relies on the Monitoring Chip which must interrupt the normal operation of the system

to handle timing or control flow errors.

The term system interrupt is employed to distinguish the interrupt corresponding to the

necessity for hardware external to the RavenHaRT kernel to intervene in the execution of the

application, from the lower-level processor interrupt. The processor interrupt is a low-level

technical mechanism already used in the processor-RavenHaRT system. Using the precise

vocabulary of the PowerPC405 User Manual [PPC], RavenHaRT preempts a task by signaling a

noncritical, asynchronous exception to the PowerPC, triggering a precise, interrupt referred to as

external. The term external is chosen by opposition to an internal interrupt such as the Machine

Check or Data Storage interrupts signaled by the processor itself.

The system interrupt we are concerned with in this Chapter is thus a higher-level type of

interrupt, external to the PPC-RavenHaRT system. Figure 5 below depicts this idea. The dashed

arrow represents the conceptual system-level interrupt which is implemented in practice by the

physical signals represented by the regular arrows.

Figure 5: System Interrupt vs. Processor Interrupt

30

The design solution found to implement system-level interrupts in Gurkh is called the

Hardware Interrupt PO-Entry Release Mechanism. The design and implementation issues are

discussed in [Gor04].

The relevant details of the mechanism are provided below.

4.1 Design

The design of the Hardware Interrupt PO-Entry Release Mechanism proved to be an

interesting exercise in hardware/software co-design. Our solution emulates the normal software

Entry release mechanism used by RavenHaRT to implement event-triggering of tasks, as per the

Ravenscar profile. The Hardware Entry Release Mechanism is illustratively compared to the

"normal" software-activated entry mechanism in Figure 6. Our solution necessitates the creation

of very high priority Ada Ravenscar tasks that act as interrupt handlers. According to the

Ravenscar profile, tasks cannot be created nor destroyed. They can however be event-triggered

via a Protected Object's Entry construct. In our hardware interrupt design, an interrupt handler

PO and its Entry are declared in software, and the Entry code is empty. We associate one such

unique PO for each hardware interrupt handling Ravenscar task. As the very high priority

interrupt handling tasks starts running after system initialization, the tasks at once call their PO's

Entry. The POs have by design a Barrier that is always closed, and thus the tasks subsequently

suspends. Only a hardware signal can trigger the opening of the Barrier of the Entries in the

hardware kernel, leading to the scheduling of the interrupt handling task. In RavenHaRT, the

status and current priority of each task is held in the RQ RAM. Once the Entry state machines

are activated by their Barrier becoming opened, they make the appropriate request to the RQ

RAM to activate the interrupt handling task on the Entry Queue, exactly like "normal" software-

activated Entries do.

31

Open the barrier
so Task 1 can -
run.

Hardware

Kernel Software Kernel
Entry
Release

Ok, you are Task 1 runs-
suspended. now.
Task n runs

Time now.

Suspend me,
the barrier is Hardware Entry Release
closed.

Figure 6: Comparing Software and Hardware Entry Release Mechanisms

Another approach to the problem of enabling hardware interrupts could have been to

access the RQ RAM directly upon receiving an interrupt, without resorting to Entries and POs.

This other approach was found to be less convenient. By using a PO's Entry we have a visible

construct in software which already exists, and that carries out the task's suspension and

activation process. It makes the work of the application developer simpler to consider the

classical Interrupt Service Routine as just another task with its own PO, with the small difference

that this PO has only one, empty, hardware-triggered Entry. Furthermore, the RQ RAM access

problem is delicate, and it is preferred to use the entry state-machine, with its already well

developed and tested interface, to interact with the RQ RAM.

32

Suspend me,
the barrier is
closed.

4.2 Implementation

4.2.1 VHDL Implementation Files Added: po ntrpt.vhd

The mechanism is easily configurable for synthesis of systems with different numbers of

distinct system interrupts. Our solution takes the form of a hardware state-machine present in

every PO circuit, even the ones not associated to interrupt handlers. This state machine, the

"pontrpt.vhd", is inactive in those POs. When activated by an interrupt signal, it is able to

emulate the appropriate signals that would be issued by software to trigger the entry release of

the PO it is in. This implementation solution is somewhat inefficient in terms of FPGA gate

space, but is conceptually easy to understand. The pontrpt state machine is shown in Figure 7.

ntrpt == 1
AND

Estate E8 N1N uenit-
N1 Egb~ng=0

Eg~ntrp=1 Ubntrpt=1

NndNew ntrpt=0 UEe,..n3rpt=I
Eftrpt= Ef_ntrpt= 1

FRndNewjntrpt=1

Figure 7: The pontrpt State Machine

To understand the implementation, it is worth noting the following points concerning the

normal software Entry release mechanism that involves the PO entry, PO proc_func and

channelcontrollerpol circuits. A Ravenscar task calls a PO's Entry code in software. This

triggers the activation of the corresponding PO entry circuit in hardware. The kernel requests

from the code the value of the Barrier (RavenHaRT does not store this value) and one of two

paths are taken in the entry state machine. Either the Barrier is opened and the entry-continues-

execution path in the state machine is taken, or the Barrier is closed and the entry-suspends-the-

calling-task path in the state machine is taken. The latter path involves the entry circuit signaling

33

a task in the Entry Queue hardware (a simple hardware signal) and the RQ circuits being

instructed to suspend the calling task. Later, a Ravenscar task calls the same PO's Procedure

code in software with the purpose of opening the Barrier. The proc func circuit is then activated.

One of its purpose is to check the PO's Barrier value if the Entry Queue signal indicates a task

waiting. If the Barrier just opened, the proc_func circuit signals the entry circuit to proceed. Just

before coming back to its initial state, the entry state machine commands a very important signal

to the RQ RAM: the valid bit of the task status field in the RAM is set to one, thus activating the

task that called the Entry. In this case, the priority of the task is also set back to the value it was

before calling the PO's Entry. Finally, the last state transition of the entry circuit signals back the

procfunc circuit so itself can come back to its initial state. Doing so, the procfunc state

machine resets the priority of the Procedure calling task to the value it was before calling the

PO's Procedure and indirectly (through channelcontrollerpol) sends the crucial FindNew

signal. The FindNew signal is the signal making RavenHaRT check if the currently running task

is the highest priority active task in the RQ RAM. If it is not, then RavenHaRT initiates a task

switch, pre-empting the currently running task. The FindNew signal is necessary each time tasks

become active from DQ wake-up or from PO Entry release, and each time the PO related Priority

Ceiling mechanisms change the priorities of active tasks.

Design of the po-ntrpt state machine is essentially an interfacing problem. The

appropriate signals are emulated so that the entry circuit is tricked into "thinking" that it is a

software Procedure that is opening the Barrier.

At the hardware hierarchical level of the PO, there are five major differences worth

noting explicitly between the normal software and the proposed hardware Entry release scheme:

1. In the hardware release scheme, there is no software Procedure, and

consequently no hardware activity of the procfunc state machine. This state

machine is completely bypassed. Signals sent by it are emulated, and we make

sure that signals that could activate it do not accidentally do so.

2. In the hardware release scheme, the entry state machine of the PO is exploited.

The software Entry code however, being empty, will not lead to an exception.

Therefore in our scheme, we assume that the entry state machine path taken is

always the nominal path.

34

3. The PO which is associated to the interrupt handling task contains only one

software entity, the Entry. The ceiling priority of the PO will thus be the same

as the priority of the task. Therefore the priority of the interrupt handling task

never changes and the last transition of the entry state machine will be useful

only because the valid bit of the suspended task will be set in the RQ RAM.

4. FindNew is sent by the channelcontrollerpol circuit, triggered by the last

transition of the procedure state machine. In the hardware release scheme, we

make channelcontrollerpo 1 trigger FindNew by using a signal called

FindNewntrpt coming from the po-ntrpt state machine.

5. Similarly, the signal making the last transition of the entry state machine is

sent by channelcontrollerpol. As above, the signal will be triggered by using

a signal called Efntrpt from the pontrpt state machine.

The most important input of the po-ntrpt state machine is the hardware interrupt input.

This is where the RavenHaRT circuit links a hardware signal interrupt to a particular PO-

Ravenscar Handler Task combination. Aside from the obvious reset, clock and interrupt inputs,

the pontrpt state machine will also input other signals to guarantee synchronicity with the rest

of the system. These are control signals and signals indicating the state of the various circuits the

po-ntrpt is interacting with.

4.2.2 VHDL Implementation Files Added: ntrpt-manager.vhd

To accommodate several different interrupting sources, the Hardware Interrupt PO-Entry

Release Mechanism handles their simultaneous activation using the new ntrpt manager circuit

located inside kernelinternal. Thus the need exists for a circuit able to regulate interrupt

requests. The "ntrpt manager.vhd" state machine does precisely this. It was build for three

interrupt lines, but can be extended to any number of interrupts. The ntrpt manager allows the

system to order the processing of the different possible interrupts. The system designer must thus

prioritize the multiple system interrupts. The state machine gives a token to the highest priority

interrupt signal which is activated first. Once an interrupt has acquired the token, its signal

propagates to the output and no other interrupt can get the token. When the corresponding

interrupt is reset, the token is released and the highest priority interrupt signal available at that

moment acquires it. The ntrpt-manager state machine diagram is represented in Figure 8.

35

out1=1

1 ==1

inl==O and in2==' inl==O and in2==1
and in3==1

tken3 Wn = 0 taken2*

M031 IOut2= 1

Figure 8: The ntrptmanager State Machine

4.3 VHDL Implementation Files Modified

The following VHDL files were modified to accommodate the integration of po ntrpt in

the system: channelcontrollerpol, po one, multipo, RQ stateandramandarbit,

arbitrate_rq_ram, kernelinternal, arbitrate cpu and interface opb. All the changes are

straightforward, except for two, in arbitrate rcram and arbitrate cpu.

4.3.1 Arbitrating RQ RAM accesses

For each hardware PO circuits, both entry and proc func components have the possibility

to write to the RQ RAM. The communication between the two PO components and the RQ

RAM is realized at the hierarchical level of kernelinternal, by the interconnections between the

multipo component and the RQstateandramandarbit component. By design, the original

kernel of [Sil04] used the POId signal to select and validate the appropriate communication lines

between multipo and RQstate andramandarbit. POId identifies uniquely the PO currently

operating. These communication lines consist of the RQ RAM access lines and the FindNew

signal lines. For each PO, there is one set of the following RQ RAM control and data signals:

. ramen, to enable a RAM access, is a 1 bit signal.

36

e ram-we, to specify a read or write, is a 1 bit signal. Note that POs only write to

the RAM, they never read.

e ramaddr, to specify which task should be read or written. The Ready Queue state

machine is the one reading the RAM.

e ram-assign, the actual data to be written, includes the priority and status bit of the

task.

In addition, FindNew is a 1 bit command for the RQ State machine. Each PO can

generate this signal.

We call Interrupt PO the PO assigned to the interrupt servicing task. Under

circumstances when hardware interrupt may occur, the interrupt PO must be able to carry out RQ

RAM access and signal FindNew information to the RQ RAM and RQ state machine. In this

case however, the POId signal is not available to select and validate the appropriate lines. Logic

must therefore be provided at the level of kernelinternal to ensure that information from the

interrupt PO is correctly processed.

The problem of RQ RAM access is probably the most challenging issue of the design of

the Hardware Entry Release mechanism. The components that can access the RQ RAM are the

RQ_state state machine (read/write) and every PO's proc_func or entry state machines (writes

only). In the version of RavenHaRT which does not support hardware interrupts, only the PO

validated by POId can be active at any time. The only possible collisions that can happen in

accessing RQRAM in this case are therefore between PO writes and RQstate reads or writes.

The purpose of arbitrate_rq_ram is precisely to resolve the possible conflict. In the version of

RavenHaRT which supports hardware interrupts there is a need to protect the RQ_RAM from a

possible three way conflict between the previous RQstate and PO components, and the new

interrupting PO. At the heart of the problem is that we need to maintain synchronicity between

the software possibly requesting PO commands to be executed and the hardware that needs to

execute these while simultaneously processing the hardware interrupt. Two different approaches

were implemented and tested to achieve this three-way arbitration of the RQ RAM. The first

approach keeps the RQ stateandramandarbit entity and its component unaltered, and uses

an extra circuit. The second approach completely modifies the "arbitrate rqram" circuit and

requires a small change in the rq_stateandramandarbit circuit. The first approach was

abandoned because of its complexity. The complexity arises from the fact that the two arbitration

37

circuits are cascading the information and that they are on two different levels of hierarchy. This

makes the arbitration problem spread in time and space. We therefore favored the approach that

concentrated the arbitration into one component, the completely redesigned arbitrate rqram.

That circuit basically sequences and carries out all the possible combinations of requests: coming

from the RQ State Machine (RQ), from software-triggered PO (POsoft) and from interrupt PO

(POhard). What complicates the problem significantly is that requests can follow one another in

time. If arbitrate rq_ram uses an arbiter that saves a request temporarily to output it a clock cycle

later, the corresponding new state in the state machine must be able to listen and store another

potential incoming request, and so on. Fortunately, the number of possible combinations is

restricted to only a few by the logic of the state machines initiating those requests.

4.3.2 Arbitrating the Processor

The circuit of arbitratecpu was slightly modified to "filter out" any rapid changes, or

transients, in the identity of the new task that is about to preempt the currently running one.

Changes appear at the output of arbitratecpu only after the inputs have stabilized for a time of

ARBITRATEDELAY clock cycles. That ARBITRATEDELAY consists of 18 clock cycles.

This fix decreases the response performance of RavenHaRT but is necessary, considering the

new possibility of having an Interrupt Task becoming active anytime. The justification and the

analysis leading to the choice of ARBITRATEDELAY are documented in [Gor04].

4.4 Development and Testing

The redesign and testing of arbitraterq_ram is documented in detail in [Gor04].

The results of the testing reported in [Gor04] identify a bug in the implementation of the

Hardware Entry Release mechanism. The document mentions different possible reasons for the

presence of the bug, without positively identifying any. Since the document was written, further

testing and simulation revealed that the actual testing procedure was flawed and at the source of

the problem. Searching for that cause took time but allowed us to gain confidence in our

implementation.

Referring to table 2 of [Gor04] called "Features of the Different Development Versions

of RavenHaRT" (which stops at version v2.2.5), we give below the exact configuration of

versions v2.3 and above, according to the format of this table.

38

version

v2.3 and Yes Yes No Yes Yes No No
above

Table 1: Configuration of the Development Versions 2.3 and above of RavenHaRT

The features that were not kept in versions v2.3 and above are not discussed here.

4.5 System Developer's User Guide

With the current implementation, system developers must change the hardware: they

must manually ensure the correct synthesis of the particular system interrupt requirements of

their application in RavenHaRT. This involves mainly updating the ntrpt -manager circuit to

handle the appropriate number of interrupts (the current implementation can handle three),

prioritize them, account for the appropriate number of PO in the system (the sum of application

POs and interrupt POs) and finally assign each interrupt to a particular PO and PO circuit. This

last step can be confusing if the developer forgets that the PO(0) is reserved as a null PO [Sil04].

The system interrupt solution presented here also makes assumptions on the Ravenscar

programming style and pGNAT compiler.

Figure 9 illustrates the software implementation of a task, GPS-receiver, which waits for

incoming GPS messages from hardware. GPS -receiver hangs on a PO called

GPSRCV EVENT. The Barrier of that PO is opened when Procedure Signal is called from the

Interrupt,_Handler task. The InterruptHandler task is activated by the Hardware Interrupt PO-

Entry Release Mechanism.

39

d -09495 -uM-M AS -_ _ _ __ _ _ -__ __-_ _,

Data Flow

-- Control
Flow

InterruptPO

Hardware

Figure 9: Receiving Sensor Data from Hardware

The code below shows the corresponding Ravenscar software:

e For the GPSRCVEVENT PO:
-- Event PO declaration ---------------------
protected type EventObject(Ceiling : System.Priority) is

entry Wait (D : out gps message_datatype);
procedure Signal (D : in gpsmessage datatype);

private
pragma Priority(Ceiling);
Current : gps message datatype;
Signalled : Boolean := False;

end Event Object;

protected body EventObject is
entry Wait.(D: out gpsmessage datatype) when Signalled is
begin

D Current;
Signalled := False;

end Wait;
procedure Signal(D: in gps messagedatatype) is
begin

Current D;
Signalled True;

end Signal;
end EventObject;
-- Event PO instantiation ---------------------
GPS RCVEVENT : EventObject(4);

* For the Interrupt PO:
protected Interrupt_PO is

40

______________ -- _ - -_~M~ - --. -

entry WaitforInterrupt; -- parameterless
-- no software procedure to open the Barrier

private
pragma AttachHandler(WaitforInterrupt,<interrupt_POid>);
pragma InterruptPriority(<interrupt_PO priority>);
Activated Boolean := False;

end Interrupt PO;
protected body Interrupt_PO is

entry WaitforInterrupt when Activated is
begin

-- empty
end WaitforInterrupt;

end Interrupt_PO;

e For the GPS receiver Task:
-- Event-Triggered GPS Task -------------------
task GPSreceiver is

pragma Priority(3);
end GPSreceiver;

task body GPS receiver is
begin

loop

GPS RCV EVENT.Wait(gps data);
-- GPS message processing goes here

end loop;
end GPS receiver;

* For the InterruptHandler task:
task Interrupt_Handler is

pragma Priority(<interrupt_PO priority>);
end InterruptHandler;

task body Interrupt_Handler is
hwgps: gpsmessagedatatype;

hw data: hw datatype;
begin

loop

Interrupt PO.WaitforInterrupt;
-- the rest of the code is the interrupt handling
hwdata <read-register>;
hw_ gps := GpsMessageDatatype(hw data);
GPS RCV EVENT.Signal(hw-gps);
-- ack the interrupting device
<device register> := <acknowledge-code>;

end loop;
end InterruptHandler;

The pGNAT compiler should react to the AttachHandler pragma inside the

Interrupt_PO declaration by connecting the PO ID <interruptPO id> to that particular

Interrupt_PO and its entry. The Interrupt handling task simply calls the Entry and gets suspended

41

until hardware interrupts. It then reads the data from the device, calls the GPSRCV EVENT PO

Procedure, delivers the data, acknowledges the interrupting device, and loops to suspend again.

4.6 Future Improvements

Although appropriate for the development stages of the Gurkh Project, the system

interrupt solution presented here has a few limitations. The concept of scheduling the interrupt

handler is easy to understand, but the Interrupt PO-Entry Release Mechanism is complex because

it involves many entities at different levels of the hardware hierarchy. This complexity

contributes to make the kernel harder to model and to verify. Furthermore, the design solution is

not very flexible for system developers needing to add system interrupts. Although

straightforward, the design of the ntrpt-manager entity must be modified to accommodate

different numbers of interrupts.

A future redesign of RavenHaRT should include a revision of the system interrupt

mechanism solution. In particular, the use of a PO and its Entry can be completely abandoned.

The design of the system interrupt solution should focus on the central element of interest, the

Ready Queue. A cautious design should give the capability of altering the RQ RAM directly to

two types of external elements. The interrupts, the first type, should alter the status bit of their

handler task in the RQ RAM directly, and subsequently call FindNew to activate their task. The

software interrupt handling tasks, the second type, should be given kernel support to alter their

status bit in the RQ RAM directly, in order to suspend themselves.

Such an implementation would make the hardware design simpler and easier to verify,

but would require coordination with the pGNAT compiler design.

42

Chapter 5
The Monitoring Chip

This Chapter describes the architecture of the Monitoring Chip (MC). The Monitoring

Chip forms the central element of our fault tolerance framework by providing non-intrusive error

detection. Using a model of the application software, it monitors the execution of the application

system and listens to the calls the software system makes to the hardware kernel. Its functionality

allows it to time the execution times of the different task and alert the rest of the system when the

timing bounds are violated. The Monitoring Chip can also alert the rest of the system when the

sequence of interactions between software application and hardware kernel is different from the

expected sequence of interactions. The MC is in hardware and therefore offers its services in a

non-intrusive manner to the system. As mentioned in Chapter 2, the hardware monitoring

scheme presents the advantages of being active concurrently and being functionally decoupled

from the monitored task.

The paragraphs that follow describe in detail the technical aspects of the Monitoring

Chip. This information is especially relevant to anyone interested in getting familiar with the

VHDL code.

5.1 Monitoring Chip As A Component Of RavenHaRT

In the description below, capitalized names refer to constants defined in the file

myvariables.vhd

5.1.1 High Level Hierarchy

The Monitoring Chip hardware is integrated inside the RavenHaRT top-level circuit to

take advantage of the functionality of the Bus Interface State Machine (BISM) and Kernel

Interface State Machine (KISM) processor interface circuits of the kernel. This implementation

is more efficient in terms of gate-space needed as processor interfacing functionality does not

need to be duplicated.

The Monitoring Chip ipcore itself consists of the following files:

e sc-topparallel.vhd, the MC's top level hardware description

" sc_x.vhd, the actual task timer, each task being monitored in the system must have its

own sc x.vhd file

43

* serialcom.vhd, for serial transmission of the alert and the diagnosis message to an

external entity

Hierarchically, the scx components are contained in sc top, which also contains the

serialcom component. In turn, sc top is a component inside the interfaceopb.vhd. The signals

driving the Monitoring Chip are produced by the Kernel Interface State Machine, Bus Interface

State Machines or some other logic of the interface opb component. Figure 10 illustrates this

hierarchy.

interface opb
sctopparallel

kernel_internal

BISM serialcom

sc_0 sc_1 sc-n

KISM

Figure 10: MC as an element of RavenHaRT: Architecture Diagram

The input and output signals are described and their origin and destination detailed in the

next paragraphs.

5.1.2. Inputs To The MC

In addition to the clock and resetn signals, sc top requires the following inputs:

sccs is the signal used to tell the monitoring chip that a service call is being issued to

the kernel and that the instr and arg signals are valid and should be read. The

signal is active when positive.

instr is the instruction that the software system is sending to the kernel. It contains

CMDREG bits.

44

arg is the argument of the instruction. This is used for kernel commands that concern

a particular PO. It therefore contains BITPO bits.

tsw-irq is to inform the monitoring chip that the kernel has interrupted the software

system in order to perform a task switch.

nexttask keeps the MC informed on what is the next task the software system is switching

to. It has BITTASKS bits.

errclr is a signal used to acknowledge the receipt of the alerting signal from the MC.

sTime of size MAXTIME bits is the system time used by the kernel.

5.1.3 Outputs Of The MC

The outputs of the MC consist of the alert signal and the diagnostic information, in

parallel or serial form.

sc-irq is the alert signal which is used as a direct interrupt to the kernel.

Tx_sc is the serial line that outputs the task that raised the error, the diagnosis of the

error and the timestamp when the error was detected.

The same information (not including the timestamp) is available in parallel.

errtask is the signal for the task identity with BITTASKS bits.

errcode is the signal for the diagnosis of the error with 4 bits.

5.1.4 Input Drivers

5.1.4.1 Signals driven by KISM

sc-cs, instr and arg are driven by the KISM state machine of the interface opb

component. All are initialized to zero when KISM resets. For the following commands received

by the kernel, when KISM is in state i4, sccs is set to one:

DELAYUNTIL i
FPSi

UPEi

UFEi

FPEi

UFPXi

UPXEi

UFXEi

FPXi

ESi

UEBi

UEEi

45

UEXi
EXi
RST_E

RSTFP

This list corresponds to the commands the MC reacts to; these are all the commands

except CREATE, GETTIME, SETFREQ and FINDTASK. When sc cs is activated, instr is set

to the corresponding command. The KISM is simply relaying the command information received

by the kernel to the MC. For all instructions on that list except DELAYUNTILi, KISM also

relays the information concerning which PO the command is addressed to, by setting the arg

signal.

States i6 and i7 of KISM reset sccs to zero. In state i9, corresponding to the software

system providing the barrier value to the kernel, sc_cs is set to 1, instr to "barr" and arg to the

correct POId. As the KISM goes through i6 again, sccs is reset to 0.

5.1.4.2 Signals driven by independent logic

tswirq and nexttask are both altered whenever the state of KISM is il and the

interruptack is set to one. In this case, tsw irq is set to one and nexttask is set to NTcpu.

Otherwise tsw-irq is zero and nexttask bits are on high impedance ('Z').

sTime is an output of the kernel component kernelinternal.

5.1.4.3 Signals driven by BISM

errclr is driven by the BISM state machine. It is initialized to zero when BISM resets, and

set to one in BISM's state busstate whenever the software system reads from the addrreg9

register containing the error information: errtask and errcode. errclr is zero again when BISM

goes to state ackstate.

5.1.5 Output Destination

The current implementation sees scirq connected to the signal ntrpt1, the highest priority

interrupt input of the kernel. This allows the MC to alert the kernel, which will then schedule the

MC Interrupt Handling Task (MCIHT) to run on the processor.

Txsc is routed to the outside of the interface_opb component and then outside

opbadartktopk to the external interface of the system.

46

errtask and errcode are destined to be read by the software system. Whenever software

reads the addrreg9, the hardware concatenates errtask and errcode so that the error code and

faulty task identity are accessible by the software.

5.2 Monitoring Chip Architecture

This section describes the logic of the sc top and scx components of the MC. The

functionality of each process or state machine is detailed.

5.2.1 The sctop Component

The sctop component, declared in the sc topparallel file, contains six logic groupings:

the timer process, the callproc process, the tswproc process, the serialcom component, the

errproc process and the collection of sc-x components for the task being monitored.

5.2.1.1 timer

The timer generates clock ticks at a frequency equal to

(clk frequency)/(system-frequency). The resulting output is labeled tick.

5.2.1.2 callproc

This process has the responsibility to present valid callsc signals to the sc_x

components. It selects the particular scx component pointed by the cpureg_array variable only

if sccs is one and tswirq is zero. This is akin to a "smart" multiplexer designed to filter out

sccs signals that occur at the same time a task switch is operating. Exactly as it is the case at the

level of kernel communication, the software could send a command as the KISM transitions to

state il, interrupt. Here also, if a task switch is taking place, the call sc signaling will not occur.

The call sc signal is like tsw irq and sccs in that it stays high only for one clock cycle..

5.2.1.3 tswproc

This process uses the information from tsw irq and nexttask to determine which task is

running. This information comes in two forms: the cpureg_array signal, used to select the

appropriate task for the call sc signal, and the running signal, which similarly signals which sc x

components should have its counter running.

5.2.1.4 serialcom

47

This component has two inputs: an 8 bit port labeled TxData, and a LoadA signal to

validate the bits present at TxData. The TxBusy output signals that the Tx, one-bit-output port is

sequencing the currently latched TxData bits out through the port. The rate is controlled by

BRDIVISOR.

5.2.1.5 errproc

This component is responsible for retrieving and centralizing the task error information.

It searches the tasks one after the other until an error is found. The diagnostic information is

gathered and the process drives the errtask, errcode and scirq signals that are outputs of the MC.

The process also drives the serialcom component and loads the diagnostic information byte after

byte. Figure 11 shows the errproc state machine.

TxBusy == 0
LoadA = 1
TxData = ALIVE if (error != 0) then

erroverload= 1 TxBusy == 1
LoadA = 0

_____'end yect=byenr1

TxBusy == 1reset TxBusy == 12cntr = bytecntr+1

LoadA = 0 byte cntr == 9
LoadA = 0
byte cntr = 0 TxBusy == 0

LoadA = 1
TxBusy==1 TxData = txdata reg(bytecntr);
erroverload==1

reset LoadA = 0

TxBusy == 0se

TxBusy==1/
erroverload==0 errclear = (others=>'0')
LoadA =0 errcode = err code

txdata-reg(1) = "0000"&errcode

error 0
idle sc irqint == 0 read

LoadA 0errclear == 0
loop to find error at task i
txdata reg(0) = conv-std_logic-vector(i,NUMTASKS)
errtask = conv-std-logic-vector(i,BITTASKS)
sc irqint = 1
errclear(i)= 1
txdata-reg(2) to txdatareg(9) = stime

Figure 11: The errproc State Machine

48

The state machine initializes in the reset state and goes to idle after transmitting an

"ALIVE" signal to the serialcom component. If an error is detected while in the idle state, all

scx components will be polled by increasing index number order and the first to have an active

error bit will have its ID registered by the errtask signal and the first txdata reg signal. The third

to the tenth txdata reg signal contain the timeStamp of the present instant. The state machine

then moves to read state, propagates the error to the output of sc top and acknowledges the error

of scx. Read state sets the second txdata reg signal to the errcode and resets errclear,

proceeding to send state. Send and send2 states loop and transmit all txdata-reg to the serialcom

component. Once the transmission is done, there are two design possibilities: either the state

machine resets, or it transitions to idle state. The functionality is present to detect more than one

error as the first error is being processed through the read and send states using the erroverload

signal. The current implementation resets and will process the second error once it receives the

errclr input to sc-top from the BISM state machine. However, the timestamp that will be

transmitted once the second error is processed will correspond to the time the second error starts

to be processed, not the time it actually occurred. If this is problematic, several design ideas can

solve the problem at the cost of extra logic space. A buffer could be added to each task to latch

the timestamp when the error occurs, or a single FIFO buffer could store more than one error

information set at once.

5.2.2 The scx Component

5.2.2.1 interface signals

The scx components have six inputs:

tick The tick signal comes from the timer process of sctop.

instr The signal comes from the KISM state machine of the interface-opb component.

arg Like instr, arg comes from the KISM.

running The running signal comes from the tswproc process of sc top.

callsc The callsc signal comes from the callproc process of sc-top.

errclear The errclear input is an ouput of the errproc process of sc-top.

sc-x outputs consist simply of:

error The error signal is fed into the errproc process of sc-top.

errorcode The errorcode signal is fed into the errproc process mentioned before.

49

The sc-x components contain five logic groupings: the errclr process, the wcet-proc

process, the romifx component, the verification logic and the sc process. These are explored

below.

5.2.2.2 errclr process

The purpose of the errclr process is to delay the transmission of the errclear signal by one

clock cycle. The output is called clrerr.

5.2.2.3 wcet proc process

This process checks that the WCET time of the current running task at the current Task

Graph location is not broken. The process holds the value of WCET in wcetreg and counts down.

If the task breaks its WCET, the missedtotwcet signal is raised. This happens when wcetreg,

tick, and running are all equal to '1' and update wcet is equal to zero. missedtotwcet is reset

when clrerr is 1. The wcetreg counter is loaded with the value of tgrWCET when update wcet

is 1. When update wcet is zero, tick and running are '1' and wcetreg is bigger or equal to 1,

wcetreg is decremented by one. This is the hardware counter that gives the WCET monitoring

capability to the scx components.

5.2.2.4 romifx component

The x at the end of romifx is replaced by the task number corresponding to the above

scx. The romifx component consists of a ROM data structure. It has a clock input, an address

input of address-depth number of bits, and an enable signal. Its output is a simple data port of

size datawidth bits. The romifx components store the Task Graph information of each task. This

information contains the expected behavior of the software task. It records the order of expected

software calls to the hardware kernel including the different branches potentially followed, the

arguments of these instructions, and the best-case and worst-case execution timing information.

For a description of the rules used to encode this information, see the section below on Task

Graph coding. The following signals contain the task-graph information whenever romifx is

read:

tgr branch of size code-depth bits
tgr call of size CMDREG bits
tgrarg of size BITPO bits
tgrWCET of size WCET_width bits

tgrBCET of size BCET width bits

50

5.2.2.5 verification logic

Logic outside of the romifx component constantly verifies these signals. BCETOK is 1

whenever wcetreg is smaller or equal to tgr _BCET. WCETOK is 1 whenever wcetreg is greater

or equal to tgrWCET. To understand why the inequalities are directed as such, the reader

should remember that the counter counts down. INSTR OK is 1 whenever instrint equals

tgrcall. ARGOK is 1 whenever arg_int equals tgrarg. ISNODE is 1 when tgrcall is a node.

The signals that are verified against the Task Graph information come from the sc process, which

we describe below.

5.2.2.6 sc process

This process is akin to a processor inside the sc hardware. It reads instructions from the

romifx component and checks that transitions occurring are legal and that their BCET and

WCET are met. Figure 12 shows the sc state machine.

update wcet

a squence has been searched without match (error)

a new ca 11arrived before completing the previous (error)

missedtot wcet = 1 (errror) a transition tch is found
error cleared call while tgr adr

no calls not pointing to a node(errror) 4 checkcall

3

~1
wait forsvc

5

a tr sition match is not found

getdatafrom_tgr

Figure 12: The sc State Machine

51

The two active states in sc are states waitfor_svc and checkcall. States update wcet and

getdatafrom tgr transition immediately to waitfor_svc and get datafromtgr respectively.

Their purpose is to wait one clock cycle, in the first case to let the wcetreg latch tgrWCET

inside the wcetproc, and in the second case to let romifx be read and all the checking logic be

valid.

The tgraddr signal is somewhat equivalent to a processor's program counter. In state

waitfor_svc, the tgraddr variable should always point towards a data line in romifx that

contains a NODE in its tgrcall field. In other words, NODEs are the locations in the Task Graph

where the sc process awaits service. This is why, when in this state a new call is received and the

BCET is OK, the process checks that the present tgrcall field is a NODE. Before making that

check, missedtotwcet equal to one signals an error and sets update wcet and tgradr to the

errorhandleraddress. callsc equal to one signals that the instr and arg inputs to sc are valid,

and these are latched into argint and instrint, the verification logic signals. If indeed ISNODE

is one, the sc starts fetching the next entry in the ROM Table by incrementing tgradr and

transitioning to state get data-from-tgr, illustrated by path 1 in the graph of Figure 12. If

ISNODE is not one, then an error occurred and scerror and updatewcet are raised, the

tgraddr is set to the error handler address of the romifx component and sc transitions to

updatewcet state, which is path 2. If a new call is received and the BCET is not OK then

updatewcet is raised and the process follows path 2 as well. Here however, diagnosis is

accomplished by setting missed_bcet to NOT(BCETOK) and scerror to NOT(ISNODE).

Note that if ISNODE is one then the errorcode output of sc-x will contain only one active bit:

the missed_bcet. If BCET is missed and ISNODE is zero then errorcode will contain two

active bits: scerror and missedbcet. Finally, in waitfor_svc, if errclear is one, then scerror is

set to zero and path 3 is used to remain in waitfor_svc. Path 3 is taken by default.

In state checkcall, we first check if a sequence has been searched completely or if a new

service called has been received before the search could complete. If either is true then an error is

reported by raising sc error and update wcet and transitioning to state update wcet. tgraddr is

updated to the error handler address of the romifx component. Transition 1 is taken in the graph

of Figure 12. Otherwise, state check call verifies if the current accessed romifx data line

corresponds to the received call. If INSTROK, BCETOK and WCETOK are all 1, then a

transition match is found. If the instruction is a DELAYUNTILi or if the argument of the

52

instruction matches, update_wcet is raised and tgraddr is updated with the content of

tgrbranch, making the sc process branch to the next appropriate NODE. If the argument of the

instruction does not match (ARG OK = 0) then several similar instructions to different PO are

possible and sc process simply transitions to getdatafrom tgr after incrementing tgr_addr, thus

continuing the search. This is path 5. Finally if INSTROK is not 1, then similarly the search

continues by taking path 5 and incrementing tgr_add.

5.2.3 Possible Sources of MC Detected Error

In summary, the sc process can get into the errorhandleraddress section following these

circumstances:

* A new node was reached after searching a sequence of transitions, and the transition

received from software was not found.

* A new call was received from software before the previous one could be checked.

* The call was received too early, and BCET was broken.

" In state waitfor_svc, tgr_addr not pointing to a node, which is a symptom of a Task

Graph coding error.

* missedtot_wcet is signaled

Concerning the second item, a particular application having many possible transitions

will make it more likely that an error is generated because the sequence was not checked

completely as a new command was received. One way to solve this problem could be to

overclock the scprocess.

Another way to present this information is to look at the different error codes that the

errorcode of a sc x circuit can output to the sc top circuit. Table 2 lists the different error

codes.

wcet bcet Sc error missed tot wcet decimal diagnostic
0 0 0 0 0 tgr coding error
0 0 0 1 1 wcet of sequence is broken
0 0 1 0 2 transition not in sequence
0 1 0 0 4 bcet of call is broken

0 1 1 0 6 bcet of call is broken
0 1 1AND tgr coding error

Table 2: Decoding the error-code signal

Note that the wcet field is not set to one.

53

A MC returning the Error Code 0000 reveals a Task Graph coding error. To protect

against such a possibility from blocking a software task after a system's entry into service, a

simple mechanism could be implemented. This mechanism would disable the monitoring of the

task that returned a Task Graph coding error. Task Graph coding error should be automatically

and systematically verified using tool support.

5.3 Task Graph Coding

Until a reliable tool is build to generate Task Graphs of application tasks from Uppaal

diagrams automatically, the system developer must be familiar with the manual process of Task

Graph Coding.

Task Graphs constitute the "software" that is executed by the Monitoring Chip. They are

the model of the application task that the Monitoring Chip uses to enforce its monitoring.

We shall demonstrate Task Graph coding with an example from the GGNS system.

GGNS is presented in Chapter 6. The Task Graph coding below corresponds to the GGNS PO

Procedure code.

Figure 13 shows an ordered, sequential list of all the calls to the kernel in the source code

for that Procedure (preceded by a ' $' character), along with the control statements.

54

START
$FPs FUNCTION PROCEDURE START
IF NO EXCEPTION

$UPe PROCEDURE END
ELSE EXCEPTION

$UFPx FUNCTION PROCEDURE EXCEPTION
$UPxe PROCEDURE EXCEPTION END

END IF THEN ELSE EXCEPTION

IF BARRIER REQUEST

IF BARRIER CLOSED

ELSE BARRIER OPEN

$UEb ENTRY BEGIN

IF NO EXCEPTION

$UEe ENTRY END

ELSE EXCEPTION

$UEx ENTRY EXCEPTION

END IF THEN ELSE EXCEPTION
END IF THEN ELSE BARRIER CLOSED

END IF BARRIER REQUEST

IF NO EXCEPTION

$FPe FUNCTION PROCEDURE END
ELSE EXCEPTION

$FPx FUNCTION PROCEDURE

EXCEPTION END

Figure 13: List of Software calls to RavenHaRT for a PO Procedure

This list is one description of the Task Graph corresponding to a task calling only one PO

Procedure. We use this to code the ROM Table, which is shown in Table 3 below.

55

Address branch call arg WCET BCET Comment

10011 01010 Exi 100 101 000

10010 00000 node 000 101 000

10001 10010 UExi 100 101 000

10000 01010 UEei 100 101 000

01111 00000 node 000 101 000 two paths possible

01110 01111 UEbi 100 101 000

01101 00000 node 000 101 000

01100 00000 FPxi 100 101 000 next node is first node
01011 00000 FPei 100 101 000 next node is first node
01010 00000 node 000 101 000 two paths possible
01001 01010 BARR 000 101 000

01000 01101 BARR 001 101 000

00111 00000 node 000 101 000 two paths possible
00110 00111 UPxei 100 101 000

00101 00000 node 000 101 000

00100 00101 UFPxi 100 101 000

00011 00111 UPEi 100 101 000

00010 00000 node 000 101 000 two paths possible
00001 00010 FPSi 100 101 000

00000 00000 node 000 101 000

Table 3: ROM Table of Task Calling a PO Procedure

The ROM Table should be read from the bottom up. We call sequence of a node the

possible transitions that can emerge from the node. In the ROM Table, the sequence of a node

contains the node and all commands above it until the next node, which is not included in the

sequence.

When coding the ROM Table, the branch address of each call that is not a node must

point to the address of a node, or else an error will be signaled with error code 0000 or 0110 (see

Table 2).

56

The same information in graph form is shown in Figure 14, with the node address

displayed in decimal:

0 START

FPsi

UFPxi
2 5

UPei UPxei

7

BARR opened

BARR closed
13

UEbi
UExi

15 18

Exi
UEei

10

FPei FPxi

END 0

Figure 14: The Task Graph of GGNS's Low Rate Nav Task

One important design parameter is the counter resolution and range. These are

determined by the variables BCETwidth, WCETwidth and system-frequency. For example, if

the clock frequency is 100 MHz and the system frequency is set to 1000 then 1 tick is generated

out of the timer process in the sc top component every ((10^3) / 10^8 = 10^-5) 10 microsecond.

BCET and WCET can therefore represent a range of value of (2^BCET width * 10 us) and

57

(2^WCETwidth * 10 us) respectively with a 10 us resolution. These numbers should be

carefully chosen to match the application's timing as efficiently as possible.

For the Task Graph coding of nodes, the corresponding BCET should always be zero.

The corresponding WCET is the "tot-wcet", or total WCET. This number is the greatest WCET

value of all the possible commands of the present sequence plus one. This is the number checked

by the wcet-proc process. For all other commands, the wcet and bcet numbers to be entered are

computed by finding the difference between tot_wcet and the particular transition's actual bcet

and wcet. Considering the following example:

N+4 node 6
N+3 Esi 2 4
N+2 Esi 1 3
N+1 Esi 3 5
N node 5 0
addr call WCET BCET

Figure 15: Example ROM Table Task Timing Coding

At address N, 5 represents the time after which the countdown timer of the sequence

signals a missedtotwcet error. At address N+3, 2 here represents the time after which the

countdown timer will make WCETOK equal to zero if the particular path is followed. Since

totwcet = 5, then the actual WCET of the N+3 call is 5 - 2 = 3. Similarly, N+3's actual BCET

is 5 - 4 =1. The verification logic will yield a BCETOK of 1 once the countdown timer,

starting at 5, decreases to 4. Address N+2 has a WCET of 1, which means it is a transition with

the longest WCET in the sequence. Its actual wcet is 4. Filling the timing information of the

Task Graph thus requires knowing the bcet and wcet values for all transitions, finding the longest

wcet, adding one to it and setting it as the sequence's tot-wcet, and then performing the

complementary algebra to find the wcet and bcet numbers to enter in the table. There should be

no zeros in the WCET column, except if totwcet is zero as well. This disables WCET

monitoring capability.

The errorhandleraddress is meant to point towards a different section of the ROM

Table. This allows monitoring to continue if the task's behavior is changed by the system

reacting to the error. The capability to switch to different parts of the ROM Table depending on

58

the error source (missed BCET, unrecognized software transition, etc) is used for system fault-

mode configuration synchronization as explained in Chapter 6.

Special Acknowledgment

Special thanks to Johan Furunas from Malardalen University for providing the design and

implementation of the Monitoring Chip.

59

Chapter 6
Implementing Fault Tolerance

The inability to produce error free software is widely recognized [TPOO], [LA90]. As

seen previously, fault tolerance is the technique adopted to cope with faults that remain in the

system after the design phase is complete.

The elements presented in the previous Chapters have built a base than can support non-

intrusive fault tolerant designs of mission critical real-time systems. Together, RavenHaRT and

the Monitoring Chip (MC) provide the run-time context and error detection functionality

allowing the real-time system to gain awareness of the correct and timely execution time of its

tasks. Now that the real-time system is alerted of the appearance of faults in its application tasks,

the question emerges on how to find a practical and efficient way to take corrective action. This

Chapter studies this question. Principles of fault tolerance are reviewed in section 6.1. We then

examine our options: Section 6.2 looks at what can be done using the MC services as a starting

point. A mission-critical real-time system application example, the Gurkh Generic Navigation

System (GGNS), is presented in Section 6.3 with the purpose of illustrating the fault tolerant

solution ultimately proposed. This solution is presented in Section 6.4, discussed in Section 6.5,

and the issues related to its implementation in the context of the Gurkh Project are presented in

Section 6.6.

6.1 Fault Tolerance Theory

Classical fault tolerance theory identifies three constituent phases in a fault tolerant

system once errors are detected: damage confinement and assessment, error recovery, and fault

treatment and continued service [LA90]. We present these generalities below, along with a

discussion about relevant issues related to backward error recovery of concurrent processes.

6.1.1 Fault Tolerance Phases

e Damage confinement and assessment: during the damage confinement and

assessment step, the extent of the unwanted consequences of a fault is assessed.

Unwanted consequences can spread with any flow of information during the time

between the occurrence of the fault and its detection. The structure of the system

60

constrains these flows of information and will be used for the confinement of the

damage by the use of protection mechanisms [LA90].

e Error Recovery: error recovery is the first active step, and consists of making the

changes necessary to eliminate the error. If the damage of an error detected can be

sufficiently well predicted, forward error recovery schemes, where selective

adjustments to the system state are made, can be applied. Conversely, if the

damage is unanticipated, backward error recovery schemes are more suitable. In

backward error recovery, the reversal of time is simulated by restoring a previous

system state [LA90]. The saved system state is called the recovery point, and the

restoration of that state is referred to as rollback.

* Fault Treatment and Continued Service: the last step consists of making sure the

fault that created the error does not reoccur. Repetition of the fault can cause

system failure as the fault tolerance mechanism tries and fails to cope with the

errors. Eradication of the fault from the system is called fault treatment, and

involves localizing the fault and repairing the system. This step is very difficult to

implement at runtime for software systems, and his hardly ever attempted in such

conditions. If the fault is transient, the system can do without fault treatment.

Continued Service concerns the resumption of normal system operations [LA90].

6.1.2 Issues in Recovery for Cooperative Concurrent Processes

A problem particular to concurrent processes which exchange information arises when

individual processes undergo backward error recovery. This problem is called the Domino Effect

because of the chain of rollbacks that can occur among processes than communicate with each

other between their respective recovery points. If a recovery point precedes a communication

exchange, the process that rolled back will not be able to communicate with its correspondent

unless the correspondent rolls back as well, and so on. The strategy to work around this problem

is to identify which, of the subsets of processes interacting with the process causing the error,

will need to be altered to maintain the consistency of the system [LA90].

61

6.2 Starting with Error Detection

The MC error detection service could be used only as an instrument for the enforcement

of predetermined WCET of tasks. A system could be developed relying on the assumption that

whatever WCET number is preset for a task in the MC, that number will never be broken,

whether the task completes execution or not. The infrastructure would in this case provide an

interrupt service to the application tasks, much as cyclic-executive systems do, but in a

concurrent tasking context. The erroneous task's priority could then be altered to let other tasks

meet their deadlines. However, this would directly go against the Ravenscar profile's task model

requirements specifying "NoDynamicPriorities".

There are many ways for a system to react to task overruns. In [PZ03], the authors

quickly overview overrun handling methods present in the literature. Their conclusion is that

recovery action must be taken at the system level rather than at the individual task level.

In [BWO1], Bums and Wellings discuss mode changes and event-based reconfiguration

mechanism as a possible solution to deadline overruns, WCET overruns, or unacceptable high

frequency of sporadic processes. These ideas are interesting, but the requirement to follow the

Ravenscar profile restricts in our case the options suggested.

A possible overrun handling approach is to simply force the erroneous task to restart,

exactly as before. This simple scheme is the most basic form of deployment of time redundancy

as a fault tolerant mechanism. Still, this scheme provides little guarantees of recovery success.

Mission-Critical systems could not afford relying on such a weak level of protection. Another

handling approach would be to force the erroneous task to stop executing. The system could be

designed with this possibility in mind. The challenge would then be to solve the question of the

enforcement of Ravenscar constructs and the guarantee of integrity.

6.2.1 Transient Fault Assumption

The decision concerning what fault tolerant strategy to use in the Gurkh Project is made

by considering what assumptions are placed on the faults that are to be tolerated. Citing a NASA

Technical Report:

"A large number of the faults in operational software are state-
dependent faults activated by particular input sequences [TPOO]."

62

It is therefore arguable that such faults can be considered as being transient. As we shall

see below, our fault tolerant strategy relies in part on this assumption.

6.2.2 Concurrent error detection

It is important to note that while the system is based on the principles of concurrency, we

assume that it runs only on one processor. This implies that while the action of monitoring is

concurrent, multiple erroneous tasks cannot be detected simultaneously. The erroneous task is

treated before any other task in the system execute. Our implementation is not faced with the

issues of concurrent error handling and can therefore afford to handle errors sequentially, one

after the other. Concurrent error handling issues will have to be addressed in the Gurkh Project

on multiprocessor implementations. [XRROO] provides a good discussion of the issues posed by

concurrent error handling.

6.2.3 The Importance of the Application Context

Fault tolerant theory recognizes the importance of the real-time application characteristics

in determining a particular fault tolerant solution that can carry out efficiently the error detection,

the damage confinement and assessment, the error recovery, and the fault treatment for

continued service.

6.3 The Gurkh Generic Navigation System

To give substance to the issue of providing fault tolerance in the Gurkh Project, we

developed an elementary application testbed, the Gurkh Generic Navigation System (GGNS). An

overview of the GGNS application testbed is presented in subsection 6.3.1 and subsection 6.3.2

presents the task model of the application.

6.3.1 The Gurkh Generic Navigation System as an Application Testbed

To motivate the GGNS application testbed, we briefly describe the system on which the

GGNS design is based. The system that inspired the GGNS application computes navigation

information, such as position, velocity and acceleration, based on two sensors: Inertial

Measurement Unit (IMU) measurements and the Global Positioning System (GPS) data. GPS

data enters the system in the form of messages that are processed to yield Line-Of-Sight (LOS)

63

data, which is fed into a Kalman Filter (KF). The KF estimates present and future navigation

information and corrects these estimates according to incoming LOS navigation data. These

estimates are fed to a high rate Sequencer task. The Sequencer gathers all information and

performs the actual navigation computations. Control laws are then applied to the derived

navigation information so that actuators are appropriately exploited and navigation of the

satellite system is achieved.

We are less concerned by the data-processing details of the existing system than by the

organization of the different tasks, the data flow between them and their associated timing

constraints. GGNS therefore models the core real-time software architecture of the guidance and

navigation system described above. The model provides enough functional complexity to

provide a representative subset of a Ravenscar-compliant target application and is small enough

for the MC and RavenHaRT to be synthesized on the FPGA.

i Klmn ilerLowRateNav

LOS

t:
TakP

High_Rate_Nav GPS_-RCV
Task Task

Control and Data
Flow

IMU Event
PO PO

IMU_InterruptHandler GPSInterruptHandler

Figure 16: Task Model of GGNS

6.3.2 GGNS Task Model

The GGNS task model is shown in Figure 16. The system consists of five tasks; three are

internal to GGNS and two interrupt handler tasks provide input data. The HighRateNav task,

acts as the overall sequencer, which provides actuator input to the higher level system. The

LowRateNav task acts as the Kalman filter, carrying out estimation of navigation information

by integrating information from both the GPS and IMU. The GPSRCV task is an event-

triggered task that gathers LOS data from the GPS_InterruptHandler.

64

The High_RateNav task collects IMU data and KF data. The LowRateNav task

collects LOS data and sends KF data. The GPSReceive task is triggered by the arrival of a GPS

message and has two activities: collect the GPS message, and send LOS data.

The data communications between these three main tasks are implemented with POs.

Three of the POs are the buffers containing LOS data, KF navigation data, and IMU data. Event

PO implements the event-triggering capability of the GPS Receive Task. The

GPS_InterruptHandler receives GPS messages and interacts with Event PO.

IMUInterruptHandler receives incoming IMU data and interacts with the IMU data buffer.

While being relatively simple, the GGNS uses the key techniques of concurrency and

data exchange used in Ravenscar-compliant applications. Cyclic tasks High _RateNav and

LowRateNav run with different periods and priorities and interact through two POs that

include multiple Procedures and Functions. GPS Receive is event-triggered, and communicates

with a cyclic task through a protected buffer. This is an instance of Ravenscar software whose

purpose is to process incoming hardware information.

6.4 Fault Tolerant Strategy

The fault tolerant strategy adopted for the GGNS application example is based on the

concepts of Model-Integrated Computing concerning the provision of system-level

reconfiguration capability to the system. The strategy defines different modes of operation

destined to tolerate different application task faults. A particular fault mode of operation

implements a consistent system-wide service level which yields a gracefully degraded version of

the nominal service. In this sense, the strategy implements forward error recovery at the system-

level. In parallel, backward error recovery is used at the task level to ensure inter-task operating

mode consistency and to prepare for possible restoration of nominal operation.

6.4.1 Creating The Fault Modes

To use fault models at run-time, the system designer must go through a four step process

which identifies system faults, builds the fault models, selects the ones to make available at run-

time and finally assembles a fault mode lookup table to be used at run-time.

The first step identifies each possible combination of task errors (which we refer to as

fault scenarios) and organizes these hierarchically into classes. The first class corresponds to the

65

nominal case where all tasks execute correctly within their execution time bounds. The second

class regroups the possible cases of only one task being erroneous. The third class regroups the

possible cases of exactly two tasks being erroneous, and so on. This hierarchical organization

serves the purpose of illustrating the different classes of degraded service to be provided in

increasing order of criticality.

For GGNS, we are concerned with the three main tasks illustrated in Figure 16.

HighRate_Nav, LowRateNav and GPSReceive. There are therefore only eight fault

scenarios to consider; they are represented by circles and ellipses in Figure 17.

NOMINAL

FAULT CLASS 1

GPS_-RCV)FLOW RT FIL
FAI LS FAILlSIQ

FAULT CLASS 2

A.OW & GPS\;WG

FAILl

FAULT CLASS 3

ALL 3FAIL

FAULT CLASS 4

Figure 17: GGNS Fault Scenarios, Fault Classes, and Fault Modes A to E

The second step builds the fault modes; to each fault scenario we associate a fault mode

designed to protect the system against the fault. As the number of tasks in the application system

increases, the number of possible fault scenarios in the hierarchy increases exponentially. This

can quickly become problematic if a fault model is to be built for each fault scenario. At this

point, the application's formal model becomes helpful because it provides an abstraction of

system behavior that captures the critical interaction between tasks. Using this information, the

number of fault modes constructed can be made smaller than the number of different fault

scenarios. This requires the functional relationships and dependencies between the tasks to be

exploited wisely.

66

For GGNS, HighRateNav (Hi) needs information issued by GPSReceive (GPS)

which is intermediately processed by LowRateNav (Lo). If GPS is faulty or Lo is faulty, or

both fail simultaneously, Hi will not have access to reliable GPS information. In the three cases

the same fault mode can thus be entered to handle the situation. If only Lo is faulty, the designer

might decide that some raw information is better than none, and the system bypasses Lo

temporarily. The latter choice would yield two fault modes (A and B in Figure 17) for the three

fault scenarios (001,010,011). Similarly at the third class, if both Hi and Lo fail or if both Hi and

GPS fail, then we would need to insure that Hi can fulfill its essential responsibilities without

reliable GPS information. This is fault mode D accounting for 101 and 110. The resultant system

has 5 fault models and 8 fault scenarios, as seen in Figure 17.

The actual work of constructing the fault models for each task involves a substantial

design effort which is application dependent. What should be the behavior of Hi if Lo is

erroneous? In this case, what should be the behavior of Lo, or GPS? Table 4 details the specific

behavior of each task corresponding to each fault mode of GGNS.

Fault HighRate Nav Low Rate Nav GPSReveiveTask

Mode (sporadic)

A Degraded GPS Holding Error
Mode States

B Degraded LOS Quarantined Nominal
Mode

Basic Mode and
C Nominal Nominal

Quarantined

Basic IMU only Quarantined Quarantined

Mode

E Survival Mode Survival Mode Survival Mode

Table 4: GGNS task behavior for each Fault Mode

The third step requires the system designers to select and implement only the fault modes

required for the target level of fault tolerance given the limited resources of time and gate space

available to them. The hierarchy of fault scenarios assists the designers in this decision.

67

Finally, the fourth step constructs the Fault Model Lookup Table that will be used to

retrieve the fault mode to be switched to given the current mode, the identity of the erroneous

task, and the type of error detected. Note that the reconfiguration mechanism can only switch to a

mode of the upper or lower class adjacent to the class of the current fault mode.

6.4.2 Making Design-Time Fault Models Available at Run-Time

To make the chosen design-time fault modes available at run-time, each application task

follows the same template as shown in Figure 18, which was reproduced from [LSG05].

task body AppTask x is

operationmode : ModeType
- other declarations

begin
loop
-- Do something

OperationalMode := Switch.CheckMode;
case OperationalMode is
when Nominal=> -- take one path;

null;
when Mode_1 =>-- take another path

null;

-- do other paths if needed
end case;
-- reauisite delay statement MIntHdr

end loop; Task
end AppTask-x;

Figure 18: Switching Modes

The first instruction that a task executes within the loop is a call to the CheckMode

Function to read the MODE protected variable present in the SWITCH . This MODE variable

determines the control flow of the application task. The different paths through the program

converge before the task delays itself or loops. The ChangeMode Procedure of the SWITCH

Protected Object is the only way to change the value of MODE, and is accessed by the

Monitoring Chip Interrupt Handling Task (MCIHT) to issue a mode change instruction.

6.4.3 The Monitoring Chip Interrupt Handling Task

As first discussed in the Monitoring Chip As A Component Of RavenHaRT section of

Chapter 5, subsection 5.1.5, the MCIHT will be the task preempting the erroneous task as a

consequence of the Monitoring Chip's intervention. The deployment of the fault tolerant

resources preventing the erroneous task to damage the system is therefore undertaken by the

MCIHT. The behavior of the MCIHT is illustrated in Figure 19.

68

WIF! 27-T -7- -OT- JURM lw- W- 'W J. - AM

- _______________ mm ~mm ~L - ~L~I A~. L. .~ L -' - A~.

Figure 19: MCIHT Activity

First, the MCIHT is responsible for polling the register of the Monitoring Chip that

contains the errtask and errcode information. By doing so, the fault tolerant strategy can adapt to

the particular error that occurred. The action of reading from that register acknowledges the

interrupt (the errclr signal is set) so that no other explicit interrupt acknowledgment is needed to

be accomplished by the software.

Second, the MCIHT task accesses the fault mode Lookup Table and retrieves the next

mode of operation given the current mode of operation, the identity of the erroneous task, and the

task error code.

Third, the MCIHT calls the ChangeMode Procedure of the Switch PO, as illustrated in

Figure 18. For safety purposes, the MCIHT is the only task possessing the privilege to modify

the MODE variable.

Fourth and when appropriate, the MCIHT initiates backward error recovery of the

erroneous task. This is done in software by calling a special function which restores the state of

the erroneous task's last checkpoint. To keep software and hardware synchronized, the

appropriate hardware PO circuits of RavenHaRT are reset by the task itself.

Finally, the MCIHT loops around, and suspends on the Entry of the corresponding

interrupt PO, thus respecting the system interrupt model presented in Chapter 4.

6.4.4 Isolating the Erroneous Task

69

Upon MCIHT suspension, the erroneous task resumes execution. Since the task was

rolled back, it will first check the mode it should operate in and then start along the path of

execution corresponding to the new mode. The behavior of the erroneous task in this new mode,

i.e. the fault mode it triggered, can vary. The fault tolerant strategy can implement the concept of

stand-by sparing presented in [Ran75] by making use of alternates, which are computations that

attempt to deliver a gracefully degraded version of the service required by the task when

executing in its Nominal mode. Another strategy can consider that the fault sustained is transient

and thus enable the same computations of the Nominal mode to be executed in the new fault

mode. The only reason why this second strategy would be implemented is to bet that the second

time around, the task behaves as expected. This is the strategy chosen for our implementation,

based on the transient fault assumption. This time around however, measures need to be taken to

prevent the damage of the previous or possible new error to spread to the rest of the system. We

want to isolate, or quarantine the erroneous task. These measures consist in part of flagging each

transaction that the erroneous task undertakes with its correspondents. In Ravenscar, each

transaction is accomplished through the used of a PO and so this measure is easy to implement.

Under the principles of Model-Integrated Computing, the new operating mode applies for

all tasks, and consequently the mode should change the behavior of the system so that the fault is

tolerated. Therefore, once the tasks that interact with the faulty tasks have changed mode, they

will adapt their behavior so as to ignore the faulty task. This is the other part of the measures

required to quarantine the erroneous task. The reason that flagging of interactions is necessary is

that flagging acts as a synchronization mechanism. It is necessary to warn the interacting tasks

that they should change fault modes before proceeding. The flagging is necessary to enforce a

consistent mode of operation for all tasks that depend on the rolled back erroneous task. A task

processing PO data that has been flagged knows it should rollback and check the MODE variable

of the switch PO. In Figure 20, the need for both a flagging mechanism and fault mode change to

isolate the erroneous task is made explicit.

70

Task X+1 of Priority X+1 executes in MODE=NOMINAL
Calls Entry of PO A, finds PO Barrier closed therefore suspends

Task X of Priority X executes in MODE=NOMINAL
MC detects an error...

... - MCIHT of Priority >> X+1 preempts faulty
Time task

... before Procedure of Reads MC device register
PO.A can be called Transitions to MODE = Z

Rolls Back Task X

Loops and Suspends

Task X of Priority X starts from beginning in MODE=Z
Calls Procedure of PO A, sets Flag, releases Entry
called by X-1, Entry gets executed in context of task X

Runnable again, Task X+1 checks Flag is set, initiates Rollback

Task X+1 now executes in MODE=Z, PO A is ignored to ISOLATE
Task X, Task X+1 delivers degraded but safe service corresponding to
mode Z

Task X finishes execution of MODE=Z as expected

MCIHT Activates for Switchback
Transitions to MODE = NOMINAL
Does Not Roll Back Task X
Loops and Suspends

Figure 20: Fault Mode Transition and Switchback

The task restarting in the new mode ignores communication with the erroneous task. In

an effort to feature graceful degradation, it outputs safe results to the other tasks it interacts with.

In the new mode, Flags from the erroneous task are ignored because communication with the

erroneous task is a non-issue. The erroneous task becomes effectively quarantined. The Domino

Effect discussed before is avoided simply because the dependent tasks are restarted in a fault

mode designed to make them the shield preventing the error from propagating to the rest of the

system.

Tasks not dependent on the erroneous task will eventually restart in the new mode. Their

independence will make them unaffected by the error so the new mode for these tasks can be the

same as the Nominal mode.

71

6.4.5 Monitoring Chip Task Graph Fault Mode Synchronization

As stated in Chapter 5, the Task Graphs of the MC are models of the application tasks of

the system. Therefore, proper Task Graph coding in the MC ROM tables should include a

starting call to the CheckMode Function to read the MODE protected variable present in the

SWITCH Protected Object. If different MODE paths diverge, the MC will be able to track each

path. Therefore synchrony between what is executing on the processor and what is monitored is

established without the need for an explicit synchronization mechanism.

Two cases are interesting to note.

" The erroneous task can fail at any point in the Task Graph. To account for this

possibility, we saw in section 5.3 that the tgraddr signal, first described in

subsection 5.2.2.6's description of the sc process for each task, is set to

errorhandleraddress upon error detection. This allows the MC to branch to any

part of the Task Graph if an error is detected. In our case, we specify the

errorhandleraddress to be the start address of the Task Graph.

e The tasks depending on the erroneous task can self-trigger their own rollbacks we

saw above. They can only do so after having checked the Flag following

communication with a PO. An appropriately coded Task Graph will therefore

account for the possibility that task may then initiate a rollback by including a

branch to the start address of the Task Graph.

6.4.6 Switchback

We will now look at the strategy used to resume Nominal mode operation despite the

isolation of the erroneous task under fault mode behavior.

Because of the self-imposed requirement stating that only the MCIHT shall modify the

MODE variable of the Switch PO, switchback to Nominal mode must involve execution of the

MCIHT and intervention of the Monitoring Chip.

Under the transient fault assumption, we decided earlier to have the behavior of the

erroneous task in the new fault mode be the same as the nominal task behavior. While keeping

the erroneous task quarantined, this scheme presents the advantage that monitoring for errors can

continue as before. The Task Graph of the Monitoring Chip for this task in this fault mode can be

72

adapted to the capability desired from the Monitoring Chip. Consider that the Task Graph of the

fault mode is the same than the Task Graph of the Nominal mode. Two outcomes are then

possible, depending on if an error is detected.

e An error is detected; the MCIHT runs and decides if a new MODE switch is

necessary. More likely than not, a MODE switch will be unnecessary since the

system should stay in the fault mode in which it already is.

" No errors are detected

The second case basically says that this time around, the fault that triggered the error that

lead to the present fault mode did not reoccur.

Other switchback strategies might be considered, depending on the design-time fault

assumptions. If the fault is unlikely to occur two times in a row, the MCIHT and the MC ROM

Table might be coded so that switchback occurs automatically after one loop of the erroneous

task under the fault mode. Conversely, if a fault is likely to occur several times in a row, the MC

ROM Table might be coded not to react to it, thereby saving processor execution time otherwise

wasted on the purposeless execution of the MCIHT. A possible implementation would see the

task's fault mode worst-case execution times be changed to higher values. The problem in this

case is to find a way for the MC to identify that conditions for switchback are met. This could be

done by setting the task's fault mode best-case execution time to the values of the task's Nominal

mode worst-case execution time. The MC would then detect if the timing bounds are broken

from below, indicating that the nominal upper timing bounds are not broken.

The case of similar Task Graphs for Nominal and fault modes is the one we decide to

choose for our implementation. In our implementation, the second outcome described above (no

errors detected) is a sufficient condition for switchback initiation. To signal the MCIHT in cases

of no errors, the Monitoring Chip must be altered. The modification involves the use of an extra

bit, the Switchback Bit, in the ROM table and the use of a new error code. The details are given

in the implementation section below.

6.5 Discussion

The fault tolerant strategy presented fits with the constituent phases of fault tolerance

outlined in section 6.1 and the mode change requirements identified in [RC04].

73

6.5.1 Damage Confinement

Damage confinement is ensured in part by the present Ravenscar structure, by the MC

error detection mechanism, and the Fault Mode paradigm.

Let us recall the decoupling between faults and errors. Errors are what are detected and

faults are what cause errors. Our error detection mechanism tracks only certain kinds of errors:

execution time bound errors and task flow errors. Thus three cases can be distinguished:

1. A Fault occurs that leads to an error detectable by the MC.

2. A Fault occurs that leads to an error not detectable by the MC.

3. A Fault occurs that leads to an error that is detectable by the MC and

another that is not.

Since the types of faults of case 2 are non-detectable, we cannot protect the system

against them. In case 3, the fault that caused a detectable error might also have caused an

undetectable error; for example, corrupted data. We want to protect the system against these

errors also. Note that the only way that erroneous task can communicate corrupted data to the

external world is by making use of POs. Invoking a PO involves making transactions with

RavenHaRT that are picked-up by the MC, which by then will have detected the detectable error

caused by the same fault. The MC signals errors it detects immediately. In our single processor

system, before any other task can run, the MCIHT will take action to handle the error. Thus, if

the fault causing the detectable error also caused data corruption, the erroneous data will not get

propagated. After the MCIHT changed the system's mode of operation, the erroneous task will

announce to the task that are depending on it that it is in quarantine, using the Flag on the PO

communication. Once all interacting tasks are in the same fault mode of operation, the erroneous

task is prevented from providing data to the rest of the system.

In case 1, the damage to the rest of the system caused by the error might simply be

considered to be the extra execution time taken. In this case the fault mode change will make the

system adapt to the problem and the damage will be contained.

6.5.2 Damage Assessment

The damage assessment is a design time issue. Making no assumptions on the fault, but

making assumptions on the error, we predict the extent of the damage to be limited to the

74

damage caused by the simple elimination of the erroneous task (the consequence of its isolation

while in quarantine). By preparing for the worse, the other tasks can make guarantees on their

level of service.

6.5.3 Error Recovery

At the task level, the error is recovered with backward error recovery using the rollback

mechanism. At the system level, the error is masked with forward error recovery. By

functionally taking the erroneous task out of service, the behavior of the system displays graceful

degradation. The erroneous task is ready to be switched back into operation any time.

6.5.4 Fault Treatment and Continued Service

Our fault tolerant strategy does not attempt to identify and eradicate the faults causing the

errors that are detected. The transient fault assumption allows us to do so.

Resumption of normal operation is implemented by the switchback mechanism which is

achieved by the coherent action of a composition of elements: the MC Fault Mode Task Graph

coding, the erroneous task fault mode behavior and the MCIHT behavior.

6.5.5 Mode Change Transition

In [RC04], Real and Crespo survey the issues related to the temporal overload produced

during Mode Change Transitions for real-time systems. They identify four aims to be reached

during the Mode Change Transition to ensure system feasibility. Each objective is addressed in

the context of our fault tolerant strategy [LSG05]:

1. Schedulability - During the Mode Change Transition, the control flow

of the erroneous task and its dependents change due to the rollback

mechanism. The Mode Change Transition scheduling verification is

made prior to system implementation for each task using the smallest

of the Nominal or fault mode deadlines and using a WCET for the task

consisting of the sum of the WCET of the task in both Nominal and

fault mode of operation.

75

2. Periodicity - The behavior of RavenHaRT is not altered during the

transition and the kernel will continue to ensure activation of periodic

tasks.

3. Promptness - The promptness requirement is necessary to answer to

Mode Change Requests that come from outside the real-time system. In

our system, the Mode Change Request comes from within the real-time

system to handle the error detected. Thus the promptness requirement

simply falls back on the requirement that tasks in the fault mode shall

meet their deadlines.

4. Consistency - The use of Protected Objects for inter-task

communication, combined to the fixed priority requirement of

Ravenscar ensures that shared resources are used consistently.

Our fault tolerant strategy gives us the possibility to meet the Mode Change Transition

objectives.

6.5.6 Limitations

The fault tolerant strategy presented has a number of limitations in terms of mode change

transients, space requirements, design efforts and verification complexity.

The switchback policy enforced is a tradeoff between lack of promptness to return to

nominal operation and inefficient usage of computing cycles while processing the MCIHT. Each

execution of the MCIHT causes transients in the scheduling of the system tasks which must be

designed to handle these.

Physically, the required logic space to implement the elements is constrained by the space

available on the FPGA chips used. For RavenHaRT, space required is proportional to the number

of task. For the MC itself, the space required is proportional to the same number. The fault

tolerant strategy proposes the elaboration of fault modes for different classes of failures, as in

Figure 17. If more than one erroneous task is to be tolerated at the same time, the number of fault

modes grows at an exponential rate. Each task must have a defined behavior for each fault mode.

Not counting the design effort necessary to ensure coherent and predictable system-wide

behavior of tasks for each fault mode, each new fault mode must be accounted for in the MC's

ROM Tables. FPGA gate space becomes a limiting factor. For the same reasons, design and

76

verification efforts grow significantly with increasing number of fault modes. The complexity of

the fault tolerant strategy can then become sufficiently large that the error proneness of the fault

tolerant system overweighs the error proneness of the original fault intolerant system.

Ultimately, the focused design of a restricted number of fault modes used to tolerate

targeted errors in the context of a specific application will provide fault tolerant services

satisfyingly increasing the dependability of the embedded system.

6.6 Implementation Issues

We now examine the specific changes brought to the Gurkh Project to implement the

fault tolerant strategy proposed.

6.6.1 Checkpointing and Rollback

New low-level software capability must be added to the system to implement

checkpointing and rollback. The checkpointing is done at the start of every loop of the system's

task. The rollback mechanism is either called by the MCIHT, when the rolledback task is the

erroneous task, or by a task itself, when it is a dependent of an erroneous task. The rollback

mechanism can therefore accommodate both.

The development version of our system uses C-code in a Ada Ravenscar structure. For

reference, the checkpointing function is called checkpointo. A chkpoint TCBLIST construct is

created for each task to provide the storage space necessary to save a task's context. The

assembly function storeregisters in tsw.S is the function used to copy the current task context in

the chkpointTCBLIST construct.

The function restore tcb(int taskid) called from another task than the task specified by

taskid is used to copy the content of the checkpoint structure back in the appropriate memory

locations, thus implementing rollback. The function restorerunningtcb is used to copy the

content of the checkpoint structure back in the appropriate registers when the calling task needs

to self-rollback.

6.6.2 Switchback

The MCIHT's behavior depends on the current value of the MODE variable and the

information provided by the MC. In non-switchback situations, the MCIHT must rollback the

77

erroneous task, whereas in switchback situations, the MCIHT does not need to do so. For the

MCIHT to distinguish the two situations, we need to add the capability for the MC to provide the

information. This capability is thus implemented in the MC hardware circuit. An extra bit, the

Switchback Bit is added to the ROM Tables of the tasks. The MC following a fault mode path in

the Task Graph will check if this bit is set on completion of the Task Graph. Completion of the

Task Graph is detected by a command having a branch address corresponding to the start address

of the ROM Table.

System developers will therefore have to code into the MC's Task Graph if successful

completion of a Mode of operation should trigger switchback or not. If so, the Switchback Bit of

the correct entry of the ROM Table should be set to one. On completion of the Task Graph, the

MC finding the Switchback Bit set communicates the errorcode signal 1111. Receiving this

code, the MCIHT recognizes a switchback situation. This mechanism requires new logic to be

added to the VHDL description of the sc process of the scx circuits.

6.6.3 Mode Change Coordination

POs provide a practical interface for task inter-communication. The Flagging mechanism

described above is necessary only for task suspending on Entries, and task calling PO Procedures

to activate blocked Entries. Each PO in the system contains an extra boolean, the Flag. All PO

Procedures opening PO Barriers must have an extra input boolean containing the value of the

Flag. If the task calling the Procedure is the erroneous task of the current fault mode, it will set

the Flag. In parallel, all tasks suspending on PO Entries must check the value of the PO's Flag on

returning from the Entry call to verify if they should initiate self-rollback or not. These changes

are straightforward to implement in the Ada code, as we can see in the example below.

-- Event PO declaration ---------------------
protected type Any_Object(Ceiling : System.Priority) is

entry Wait(D : out message_datatype);
procedure Signal(D : in message_datatype;

Flag : in Boolean);
Function ShouldRollback Flag : out Boolean);

private
pragma Priority(Ceiling);
Current : messagedatatype;
ModeTransition : Boolean False; -- the Flag
Signalled : Boolean : False;

end EventObject;

protected body AnyObject is

78

11 . I

entry Wait (D: out messagedatatype) when Signalled is
begin

D := Current;
Signalled := False;

end Wait;
procedure Signal(D: in message datatype;

Flag in Boolean) is
begin

Current := D;
Signalled := True;
ModeTransition Flag;

end Signal;
function Should Rollback (Flag out Boolean) is
begin

Flag := ModeTransition;
end

end AnyObject;

6.6.4 Building the MCIHT Lookup Table

Our implementation currently uses if-else software constructs to implement the Lookup

Table required for the MCIHT to determine its actions. Since it is the only entity with writing

privileges to the MODE variable, the MCIHT keeps an internal copy of the current MODE. This

software solution becomes problematic and inefficient quickly as the number of fault mode in the

system increases. For optimal efficiency the Lookup Table should be implemented in hardware

and integrated in the MC. The MCIHT would then simply have to retrieve the next mode to

switch to. Table 5 shows what the construct looks like for the GGNS application example.

79

'F7'aw- - -t- - - -i - A,- --- - --- A' -- ---AL

Current errtask errcode Next
Mode Mode

Nominal 1 0001 A

Nominal 2 0000 Failure
Nominal 2 0001 B
Nominal 2 0010 B
Nominal 2 0100 B
Nominal 2 0110 B
Nominal 2 1111 Nominal

B 2 1111 Nominal

Table 5: MCIHT Lookup Table

6.6.5 Coordination with RavenHaRT PO Circuits

In our tightly coupled software / hardware design, software rollback should be conducted

carefully. In particular, a task forced to rollback during PO transactions will leave the

corresponding RavenHaRT PO circuits hanging. To avoid problems of unsynchronized hardware

we allow the erroneous task in its fault mode to reset the hardware circuit about to be used. To

enable this capability, two new commands were added to the vocabulary used to communicate

with RavenHaRT. The RSTE command resets the entry component of the PO circuit specified

by writing in the Lower Parameter Register. Similarly, the RSTPF command resets the

proc_func component of the PO circuit passed as a parameter. These modifications required

editing the myvariables.vhd, interface opb.vhd and kernel internal.vhd hardware description

files. Thus, the erroneous task executing in its fault mode behavior will call RSTE before

calling Es (Entry Start) and RSTFP before calling FPs (Function / Procedure Start).

The tasks initiating self-rollback do not need to make use of these commands, because

they cannot be interrupted and rolled back in the middle of a PO interaction, and consequently

their PO circuits will already be reset.

80

Chapter 7
Conclusion and Future Work

The work presented in this thesis detailed a proof-of-concept implementation of a non-

intrusive fault tolerant framework for mission critical systems. This framework fits in the larger

context of the Gurkh Project, which provides a tool-supported environment for the design,

development, formal verification and validation, and maintenance of mission critical real-time

systems. The Gurkh Project process benefits from the Ada Ravenscar Tasking software model,

hardware based kernel scheduling, and non-intrusive error detection. The Gurkh Project process

aims at producing mission critical real-time systems that are faster and cheaper to develop, and

that prove to be as dependable as their counterpart designed using non fault tolerant and cyclic

executive approaches.

7.1 Major Contributions

In this thesis, major components of the Gurkh Project environment were for the first time

integrated and functionally described. The RavenHaRT kernel was augmented with system level

hardware interrupt capability and the Monitoring Chip was fully integrated in hardware with

RavenHaRT. Description of both elements was detailed to allow future system designers to

modify or use the functionality these elements provide at their full extent.

To provide higher dependability to the systems developed using the Gurkh Project

process, a fault tolerant framework was provided that exploits the benefits of the Ravenscar

profile, the RavenHaRT kernel scheduling and the Monitoring Chip.

The fault tolerant approach developed provides system level handling of errors using the

non-intrusive task overrun and flow error detection services of the Monitoring Chip. Multiple

system operation modes are used to isolate the erroneous task and reconfigure the rest of the

system, thus providing a degraded but predictable level of service. Implementation issues are

explored at the conceptual and at the practical level. These include the necessary fault mode

design, the provision of damage confinement, the coordination between hardware and software

during task rollback and mode transition, and the provision of efficient switchback capability for

continued nominal service.

81

7.2 Directions for Future Work

Future work should be undertaken to complete the objectives of the Gurkh Project.

We classify the directions of future work into different classes depending on their

immediate relevance with the fault tolerant framework presented. In order, the more relevant

directions are presented first.

7.2.1 A Full-scale Application

Currently, many implementation details of the fault tolerant strategy suggested are still to

be refined against a full-scale application example. The best driver for the further development

of the fault tolerant framework would be transition from workbench example (such as GGNS) to

a full-scale application. Real-world requirements would drive the development of the framework

towards a more mature implementation. The performance of the implementation of these

solutions could subsequently be compared to those of traditional non-fault tolerant cyclic

executive approaches, and confidence would be gained in our approach.

7.2.2 Refinement of Modeling Techniques

The model-checking tools used for system verification are sensitive to the complexity of

the models used. In the face of complex systems, modeling heuristics are required to allow

efficient modeling of the different components of the system. Such heuristics would allow the

total system complexity to be broken down into hierarchies of models with increasing levels of

detail. Certain properties would be verified on models providing only the required level of detail.

The modeling techniques would need to be established by considering the safety and bounded

liveness properties to be checked. A better understanding of the formal analysis process would

therefore help the modeling task.

7.2.3 Automated Monitoring Chip Hardware Description Generation

The Monitoring Chip performs using a model of the application. The model consists of a

Task Graph for each task in the system. Currently, the Task Graphs are hand-coded in the ROM

Table in the hardware description file of the Monitoring Chip. As the number of tasks and the

number of fault modes in a design increases, the hand coding of the Task Graphs becomes

tedious and time-consuming. A tool that would automatically analyze the verified state machines

82

of the system application and create Task Graphs designed to be used in the MC would be very

useful to the Gurkh Project process. The Task Graphs produced would be guaranteed to never

yield the Task Graph coding error mentioned in Chapter 5. The tool could be extended to input

Ada Ravenscar Gurkh software directly, and produce the MC VHDL file directly. In the VHDL

hardware description of the MC, only the number of task and each task's ROM Table changes

depending on the application. Automatic MC Hardware description generation would enable a

faster, systematic and less error prone Task Graph coding technique than the current manual

technique.

7.2.4 Transfer of Fault Tolerant Software Functionality to Hardware

In the current fault tolerance approach, the MC Interrupt Handler is responsible for

deciding which mode of operation to switch to. To do so, a lookup table is used in software. As

the number of tasks and fault modes increases, the size of the Lookup Table will increase as

well. The time required for the MC Interrupt Handler to search the Lookup Table will increase as

well, making the mode switching mechanism possibly too time-consuming to be acceptable as a

solution. For faster mode switching, a simple solution would be to transfer the Lookup Table to

hardware, keeping the execution time of the MC Interrupt Handler as small as possible, since the

latter would only have to retrieve which mode to switch to from a register.

Pushing the same idea one step further, the functionality and execution time of the MC

Interrupt Handler could be further minimized by moving the functionality of the Switch PO and

MODE variable to hardware. Each task would start its execution by verifying the hardware

register holding the MODE variable and would be instructed to follow its corresponding task

path.

For large systems implementing our fault tolerant strategy, transfer of fault tolerant

software functionality to hardware would be very advantageous in terms of system

responsiveness to errors.

7.2.5 RavenHaRT Kernel Upgraded for System Interrupts

The system interrupt solution described in Chapter 4 was designed to be integrated to the

finished RavenHaRT design. As mentioned in Chapter 4, a RavenHaRT kernel upgrade could

benefit from a more direct system interrupt solution that would have direct access to the kernel's

Ready Queue. Such a design would be easier to prove correct.

83

Other avenues for RavenHaRT design optimization are described in [Sil04].

7.2.6 Reversing the role of the Monitoring Chip

The MC will signal an interrupt based on a timing model of the executing task. Thus,

given pre-estimated execution times, the MC can inform the system of an irregular timing

behavior. With little modifications, the reverse functionality could also be provided. The MC

could be used as a passive device non-intrusively counting the execution times of the system

application tasks. Using the very same hardware architecture and supporting logic, a task's timer

circuit could be enabled to count up at a predetermined frequency as its task starts executing.

Reading from the same Task Graph ROM Table mechanism described in section 5.3, the

hardware entity could store the counter's elapsed time after each new task software call to the

kernel. A special comparator circuit would only keep the longest elapsed time for the WCET

value and only the smallest elapsed time for the BCET value. Those two quantities would be

stored for, and associated to, each Task Graph node sequence. At run-time, the "Reverse

Monitoring Chip" configuration would effectively record the extrema execution time bounds

monitored for each node sequence of each task.

This "Reverse Monitoring Chip" could be used during system development to assist the

work on execution time analysis of the application tasks. Since one of the outcomes of the

execution time analysis in the Gurkh Project process is to provide useful BCET and WCET

values for the MC to use, the Reverse Monitoring Chip could help the calibration of the bounds

to be used for the system's operational service. Extensive testing would be required to provide

extrema bounds that are useful: rarely accessed but perfectly normal system states that yield

execution-time extremum values should be sought for. This is why the technique of the Reverse

Monitoring Chip measurement would be used as a complement, not a substitute, to traditional

execution time analysis techniques.

While yielding no guarantees, the information provided by using the Monitoring Chip in

a reverse configuration would be useful to confirm the accuracy and the usefulness of the

execution-time bound values ultimately chosen to be used in the Monitoring Chip for the

system's operational service.

84

References

[ALO3] Asplund, L. and Lundqvist, K., "The Gurkh Project: A Framework for Verification and
Execution of Mission Critical Applications", 2 2"d Digital Avionics Systems Conference,
2003.

[ALO3b] Asplund, L. and Lundqvist, K., "Ravenscar-Compliant Run-time Kernel for Safety-
Critical Systems Real-Time Systems", 24, 29-54, 2003, Kluwer Academic Publishers,
The Netherlands, 2003.

[ALL+04] Avizienis, A., Laprie, J.-C., Landwehr, C., Randell, B., "Basic Concepts and
Taxonomy of Dependable and Secure Computing", IEEE Trans. on Dependable and
Secure Computing, 1(1): 11-13, 2004

[BAJL99] Burns, A, Asplund, L., Johnson, B, Lundqvist, K, "Session Summary: The Ravenscar
Profile and Implementation Issues", Ada Letters, June 1999, Vol. XIX, No. 2.

[BDR98] Burns, A., Asplund, L., Romanski, G., "The Ravensccar Tasking Profile for High
Integrity Real-Time Programs", Ada-Europe 98, LNCS 1411, 1998, pp 263-275.

[BDV03] Burns, A., Dobbing, B., Vardanega, T., "Guide for the Use of the Ada Ravenscar
Profile in High Integrity Systems", University of York Technical Report YCS-2003-348,
2003.

[Bur03] Burns, A., "How to Verify a Safe Real-Time System: The Application of Model
Checking and Timed Automata to the Production Cell Case Study", Real-Time Systems,
24, 135-151, 2003, Kluwer Academic Publishers, The Netherlands, 2003

[BWO1] Burns, A., Wellings, A., "Real-Time Systems and Programming Languages", Third
Edition, Addison-Wesley, 2001

[BW+93] Burns, A., Wellings, A., Bailey, C.M., Fyfe, E., "The Olympus Attitude and Orbital
Control System, A Case Study in Hard Real-time System Design and Implementation",
European Space Agency ESTEC Contract 9198/90/NL/SF

[DYOO] David, A., Yi, W., "Modelling and Analysis of a Commercial Field Bus Protocol",
Proceedings of the 12th Euromicro Conference on Real-Time Systems pages 165-172,
2000

[Gor04] Gorelov, S., "Development and Testing of the hardware interrupt PO-entry release
mechanism for the RavenHaRT kernel", Embedded Systems Lab Working Paper,
Aeronautics and Astronautics, Massachusetts Institute of Technology, September 2004

[HA03] Harbour, M.G., Aldea Rivas, M., "Managing Multiple Execution-Time Timers from a
Single Task", Ada Letters Vol.XXIII, No.4, December 2003

[HR+98] Harbour, M.G., M.A. Rivas, et.al., "Implementing and Using Execution Time Clocks
in Ada Hard Real-Time Applications", Proceedings of the 1998 Ada-Europe International
Conference on Reliable Software Technologies, pp 90-101, June 08-12, 1998

[IS099] "Programming Languages - Guide for the Use of the Ada Programming Language in
High Integrity Systems", ISO/IEC DTR 15942, July 1st, 1999.

[KK95] Kantz, H., Koza, C., "The ELEKTRA Railway Signalling-System: Field Experience
with an Actively Replicated System with Diversity", Proc. of FTCS. 1995

[LA90] Lee, P.A., Anderson, T., "Fault Tolerance: Principles and Practice" (Second Revised
Edition), Dependable Computing and Fault-Tolerant Systems Vol. 3, Springer-Verlag
Wien New York, 1990

85

[LBMOO] Ledeczi, A., Bakay, A., Maroti, M., "Model-Integrated Embedded Systems", IWSAS
2000, LNCS 1936, pp. 99-115, 2000, Springer-Verlag Berlin Heidelberg 2000

[LiuO0] Liu, Jane W.S., "Real-Time Systems", Prentice-Hall, Inc. 2000
[LSG05] Lundqvist, K., Srinivasan, J., Gorelov, S., "Non-Intrusive System Level Fault-

Tolerance", 10th International Conference on Reliable Software Technologies - Ada-
Europe 2005 York, United Kingdom, June 20-24, 2005

[MM88] A. Mahmood, E. J. McCluskey, "Concurrent Error Detection Using Watchdog
Processors - A Survey", IEEE Transactions on Computers, vol 37, no .2, pages 160-174,
Feb. 1988

[MMO1] Ram Murthy, C.S., Manimaran, G., "Resource Management in Real-Time Systems and
Networks", The MIT Press, Cambridge, Massachusetts, 2001

[MosO0] Mosensoson, G., "Practical Approaches to SOC Verification", Technical Paper,
Verisity Design, Inc. 2000.
http://www.verisity.com/resources/whitepaper/technical-paper.html

[PLOO] Pettersson, P., and Larsen, K.G., "Uppaal2k", Bulletin of the European Association for
Theoretical Computer Science, volume 70, pages 40-44, 2000

[PPC] "PowerPC Processor Reference Guide", Xilinx Embedded Development Kit 6.1
September 2, 2003

[Pun97] Punnekkat, S, "Schedulability Analysis for Fault Tolerant Real-Time Systems", PhD.
Thesis, Uniiversity of York, Department of Computer Science, June1997

[PZ03] de la Puente, J.A., and Zamorano, J., "Execution-Time Clocks and Ravenscar Kernels",
Ada Letters Vol.XXIII, No.4, December 2003

[Ran75] Randell, B, "System Structure for Software Fault Tolerance", IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, June 1975.

[RC04] Real J., Crespo, A., "Mode Change Protocols for Real-Time Systems: A Survey and a
New Proposal", Real-Time Systems, 26, 161-197, 2004.

[See04] Seeumpornroj, P., "pGNAT: The Ravenscar Cross Compiler for the Gurkh Project,"
Massachusetts Institute of Technology, 2004

[Shaw0l] Shaw, A., "Real-Time Systems and Software", John Wiley and Sons, Inc, New York,
2001.

[Sil04] Silbovitz, A., "The Ravenscar-Compliant Hardware Run-Time Kernel," Massachusetts
Institute of Technology, 2004

[SK97] Sztipanovits, J., Karsai, G., "Model-Integrated Computing", IEEE Computer, April
1997.

[TPOO] Torres-Pomales W., "Software Fault-Tolerance: A Tutorial", NASA Technical Report,
NASA-2000-tm210616, 2000.

[VAR99] Vardanega, T., "Development of on-board embedded real-time systems: An
engineering approach", Technical Report ESA STR-260, European Space Agency, 1999.
ISBN 90-9092-334-2.

[WA02] Ward, M., Audsley, N.C., "Hardware Implementation of the Ravenscar Ada Tasking
Profile", CASES 2002, October 8-11, 2002, Grenoble, France, 2002 ACM 1-58113-575-
0/02/0010

[Xil04] "Xilinx Virtex-II Pro Embedded Development Platform Documentation", ML3 10 User
Guide, November 2, 2004.

86

[XRROO] Xu, J., Romanovsky, A. and Randell, B., "Concurrent Exception Handling and
Resolution in Distributed Object
Systems", IEEE Trans. on Parallel and Distributed Systems Vol. 11, No. 10, 1019-1032,
October 2000

87

APPENDIX
FPGA Space Synthesis Requirements For Full-Scale Applications

This section looks at the FPGA space synthesis required to implement the RavenHaRT

and the Monitoring Chip on full-scale applications.

The Olympus Attitude and Orbital Control System

We base our analysis on the case study of the Olympus Attitude and Orbital Control

System presented in [BW+93]. When it was launched in 1989, the Olympus satellite was the

largest civil three-axis-stabilized communication satellite. The Olympus Attitude and Orbital

Control Sub-System (AOCS) is a prime example of a mission critical real-time system.

In this case study, the authors demonstrate the feasibility of re-implementing the AOCS

using Ada and its concurrent tasking facilities. The AOCS is required to operate in 6 modes of

operation. The case study concerns only the re-implementation of the Normal Mode of operation,

which is the most complex and the one used for the greatest percentage of the satellite's lifetime

[BW+93]. Note that the AOCS modes of operation are not related to the Gurkh Project fault

tolerant modes of operation discussed in Chapter 6.

Assumptions

We chose this example application because we believe that its size requirements are

reflective of the type of full-scale applications that the Gurkh Project targets. The software

architecture used, even though developed in Ada 83 using the HRT-HOOD design method, is

believed to have similar structure requirements than that of an Ada 95 Ravenscar

implementation.

Specifically, the HRT-HOOD Ada 83 implementation of the AOCS contains 9 cyclic

objects, 4 sporadic objects, 14 protected objects and 16 passive objects for a total of 3300 lines

of code.

The following assumptions are made concerning the transition from Ada 83 to Ada 95

Ravenscar.

" All cyclic and sporadic objects are considered to be tasks.

" All protected and passive objects are considered to be Protected Objects.

88

Synthesis Platform

The numbers of Figure 21 and Figure 22 were obtained using the Xilinx XST tool in the

development environment described in section 2.2.2. More specifically:

" Hardware Used: Xilinx ML310 Board, Virtex 2 Pro Device xc2vp3Off896-6

* Synthesis Tools: Xilinx XST EDK 6.3

RavenHaRT

The synthesis of RavenHaRT used in the Gurkh Project requires the number of tasks and

POs to be specified as powers of 2 [Sil04]. We therefore count 16 tasks and 32 POs for the

synthesis of a RavenHaRT capable to support the Olympus AOCS. The numbers of Figure

Figure 21 represent the device utilization and timing summaries for a synthesis of the

RavenHaRT kernel that features 16 tasks and 32 POs. Note that one task and one PO must be

reserved for the null task and the null PO. Such a synthesis would therefore accommodate up to

15 tasks and 31 POs.

Design Summary:
Number of errors: 0
Number of warnings: 213
Logic Utilization:

Total Number Slice Registers:
Number used as Flip Flops:
Number used as Latches:

Number of 4 input LUTs:
Logic Distribution:
Number of occupied Slices:
Number of Slices containing o
Number of Slices containing u

8,928 out of 27,392
8,920

8

32%

14,885 out of 27,392 54%

10,411 out of
nly related logic:
nrelated logic:

13,696
10,411

0

76%
out of
out of

Total Number 4 input LUTs: 15
Number used as logic: 14
Number used as a route-thru:
Number used for Dual Port RAMs:

(Two LUTs used per Dual Port RAM)
Number used as Shift registers:

Number of bonded IOBs:
1OB Flip Flops:
1OB Dual-Data Rate Flops:

Number of PPC405s:
Number of JTAGPPCs:
Number of Tbufs:
Number of Block RAMs:
Number of GCLKs:
Number of DCMs:
Number of GTs:
Number of GT10s:

,804 out of
,885
381
346

192

147 out of
257
43
2 out of
1 out of.
288 out of
45 out of,
10 out of
4 out of
0 out of
0 out of

27,392 57%

556 26%

2
1

6,848
136,
16
8
8
0

100%
100%

4%
33%
62%
50%
0%
0%

Total equivalent gate count for design: 3,210,534
Additional JTAG gate count for IOBs: 7,056
Peak Memory Usage: 265 MB

89

10,411 100%
10,411 0%

Figure 21: Xilinx 2vp30 Chip Utilization and Timing Summary for RavenHaRT synthesis of an
application requiring up to 15 tasks and 31 POs

As can be seen in Figure 21, this configuration uses about 10 400 Virtex Slices, the unit

of logic used in Virtex's Configurable Logic Blocks (CLB) (Virtex uses two slices per CLB).

This represents about three quarters of the total capacity of the 2vp30 Chip. The total equivalent

gate count for this design is 3,210,534.

RavenHaRT and the MC

We now synthesize the RavenHaRT and MC hardware that would be necessary to

implement the Olympus AOCS. The MC circuit size requirements varies with two factors: the

number of tasks, already determined to be 15, and the size of the ROM Table. The size of the

ROM table depends on the exact application software. Then, the ROM Table for each task

depends on the number of calls to RavenHaRT the task does. This number is proportional to the

number of PO interactions the task has. Using the RAM Table code of the GGNS application

shown in section 5.3, we approximate the number of ROM table lines needed per PO interaction.

This number is 20. We use the description of the software architecture provided in [BW+93] to

approximate the average number of PO interaction per task. This number is 5. We therefore

assume that on average, each task of an application similar to the AOCS requires 5 x 20 lines of

ROM Table code. Since the ROM Table depth must be a power of 2, we chose to instantiate the

MC circuit with task ROM Tables of depth 128. The numbers of Figure 22represent the device

utilization and timing summaries for a synthesis of the RavenHaRT kernel that features 16 tasks

90

and 32 POs and a Monitoring Chip that features 15 task timing circuits and 128 lines of ROM

Table coding per task circuit.

Design Summary:
Number of errors; 0
Number of warnings: 222
Logic Utilization:

Total Number Slice Registers: 9, 582 out of 27, 392
Number used as Flip Flops: 9,574
Number used as Latches: 8

Number of 4 input LUTs: 16,300 out of 27,392
Logic Distribution;
Number of occupied Slices: 11,333 out of 13,696
Number of Slices containing only related logic: 11,333
Number of Slices containing unrelated logic: 0

*See NOTES below for an explanation of the effects
Total Number 4 input LUTs: 17,220 out of 27,392
Number used as logic: 16,300
Number used as a route-thru: 382
Number used for Dual Port RAMs: 346

(Two LUTs used per Dual Port RAM)
Number used as Shift registers: 192

Number of bonded IOBs:
IOB Flip Flops:
IOB Dual-Data Rate Flops:

Number of PPC405s:
Number of JTAGPPCs:
Number of Tbufs:
Number of Block RAMs:
Number of GCLKs:
Number of DCMs:
Number of GTs:
Number of GT10s:

148 out of
258
43
2 out of
1 out of

352 out of
60 out of
10 out of
4 out of
0 out of
0 out of

34%

59%

82%
out of 11,333 100%
out of 11,333 0%
of unrelated logic
62%

556 26%

2
1

6,848
136
16
8
8
0

100%
100%

5%
44%
62%
50%
0%
0%

Total equivalent gate count for design: 4,207,853
Additional JTAG gate count for IOBs: 7,104
Peak Memory Usage: 275 MB
Timing summary:

Constraints cover 2217490 paths, 0 nets, and 83248 connections

Design statistics:
Minimum period; 28.033ns (Maximum frequency: 35.672MHz)
Maximum path delay from/to any node: 2.149ns

Device utilization summary:

Number of External IOBs
Number of LOCed External IOBs

Number
Number
Number

Number
Number
Number
Number

of
of
of

of
of

of
of

PPC405s
RAMB16s
SLICEs

BUFGMUXs
DCMs
JTAGPPCs
TBUFs

148 out of 556
143 out of 148

2
60

11333

out of 2
out of 136
out of 13696

10 out of 16
4 out of 8
1 out of 1

352 out of 6848

Figure 22: Xilinx 2vp30 Chip Utilization and Timing Summary for RavenHaRT and MC synthesis
of an application requiring up to 15 tasks and 31 POs

91

26%
96%

100%
44%
82%

62%
50%
100%
5%

As can be seen in Figure 22, this configuration uses about 11 300 Virtex Slices, the unit

of logic used in Virtex's Configurable Logic Blocks (CLB) (Virtex uses two slices per CLB).

This represents about three quarters of the total capacity of the 2vp30 Chip. The total equivalent

gate count for this design is 4,207,853, or a 31% increase from the kernel only design.

92

