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Abstract

Model-based diagnosis of devices has largely operated on hardware systems. However,
in most complex systems today, such as aerospace vehicles, automobiles and medical

devices, hardware is augmented with software functions that influence the system's

behavior. As these sophisticated systems are required to perform increasingly ambi-

tious tasks, there is a growing need to ensure their robustness and safety.

Prior work introduced probabilistic, hierarchical, constraint automata (PHCA), to

allow compact encoding of both hardware and software behavior. The contribution of

this thesis is a capability for monitoring and diagnosing software-extended systems in

the presence of delayed symptoms, based on the expressive PHCA modeling formal-

ism. Hardware models are extended to include the behavior of associated embedded

software, resulting in more comprehensive diagnoses.
This work introduces a novel approach that frames diagnosis over a finite time

horizon as a soft constraint optimization problem (COP), which is then decomposed

into independent subproblems using tree decomposition techniques. There are two

advantages to this approach. First, the approach enables finite-horizon diagnosis

in the presence of delayed symptoms. Second, the soft COP formulation provides

convenient expressivity for encoding the PHCA models and their execution semantics,
and enables the use of decomposition-based, efficient optimal constraint solvers. The

solutions to the COP correspond to the most likely state trajectories of the software-

extended system. These state trajectories are enumerated and tracked within the

finite receding horizon, as observations and issued commands become available.

The diagnostic capability has been implemented and demonstrated on several

scenarios from the aerospace and robotic domains, including vision-based rover navi-

gation, the global metrology subsystem of the MIT SPHERES satellites, and models

of the NASA New Millennium Earth Observing One (EO-1) spacecraft.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Robustness of Complex Systems

Many complex systems today, such as aerospace vehicles, robotic networks, automo-

biles and medical devices, consist of a mix of hardware and software components

that may malfunction or interact in unexpected ways, potentially leading to failures.

As these sophisticated systems are required to perform increasingly ambitious tasks,

there is a growing need to ensure their robustness and safety. For instance, the Jupiter

Icy Moons Orbiter (JIMO) and the Mars Science Laboratory (MSL) missions are ex-

pected to handle long term operations in harsh and uncertain space and planetary

environments, while executing complex mission tasks to achieve scientific objectives.

Ensuring the robustness and safety of complex systems is a top priority and ma-

jor challenge, given recent catastrophic events, such as the Space Shuttle Columbia

accident and the loss of the Mars Polar Lander (MPL). In addition to uncovering

flaws in the safety culture during system development and testing, the Columbia ac-

cident demonstrates the catastrophic consequence of failing to detect and respond to

unexpected events in the Shuttle's operational environment. In the case of MPL, the

leading hypothesis for its loss is an anomaly during its entry, descent and landing

sequence: the MPL software prematurely shut down the engine upon detection of

spurious signals from a faulty touchdown sensor, leading to the loss of the lander.

The root of the problem was that a sensor failure was not detected, and even if it was

13



detected, the software wouldn't protect against a failed sensor. Yet another example

demonstrating disastrous behavior is the Therac-25 [35], a medical device for radi-

ation therapy. The Therac-25 overdosed six people because of software errors that

allowed the device to operate in a hazardous mode. A lesson to be learned from such

catastrophic accidents is that complex systems are prone to behave in an unexpected

fashion under some conditions. These conditions may have been overlooked during

system design and development.

The need for robustness of increasingly ambitious applications can be addressed

through an intelligent onboard fault management system for monitoring complex

behavior and diagnosing faults. Model-based systems perform fault management

by automated reasoning over declarative models of system behavior [53]. Model-

based diagnosis of devices has traditionally operated on hardware models [26, 15, 21].

For instance, given an observation sequence, the Livingstone [54] diagnostic engine

estimates the state of hardware components based on hidden Markov models that

describe each component's behavior in terms of nominal and faulty modes. At the

other end of the spectrum, researchers have applied model-based diagnosis to software

debugging [9, 39, 40].

This work explores the middle ground between model-based hardware diagnosis

and software debugging, resulting in a novel capability for monitoring and diagnosing

systems with combined hardware and software behavior. This capability is crucial,

given that the functionality of many hardware components is extended or controlled

by embedded software. Two examples of devices with software-extended behavior are

a communications module with an associated device driver, and an inertial navigation

unit with embedded software for trajectory determination. The embedded software

in each of these systems interacts with the hardware components and influences their

behavior. In order to correctly estimate the state of these devices, it is essential

to consider their software-extended behavior, as it may provide additional evidence

that substantially alters the system's diagnoses. The following sections further moti-

vate this work through the vision-based navigation scenario, and present the major

challenges, proposed approach and contributions of this thesis.
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Figure 1-1: Vision-based navigation of MERS Group rovers.

1.2 Vision-based Navigation Scenario

As an example of a complex system, consider vision-based navigation for an au-

tonomous rover exploring the surface of a planet (Figure 1-1). The camera used

within the navigation system is an instance of a device that has software-extended

behavior: the image processing software embedded within the camera module aug-

ments the functionality of the camera by processing each image and determining

whether it is corrupt. A sensor measuring the camera voltage may be used for esti-

mating the physical state of the camera. A hardware model of the camera describes

its physical behavior in terms of inputs, outputs and available sensor measurements.

A diagnosis engine, such as Livingstone [54], that uses only hardware models will

not be able to reason about a corrupt image. The embedded software provides addi-

tional information on the quality of the image that is essential for correctly diagnosing

the navigation system. To see why this is the case, consider a scenario in which the

camera sensor measures a zero voltage. Based solely on hardware models of the cam-

era, the measurement sensor and the battery, the most likely diagnoses will include
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camera failure, low battery voltage and sensor failure. However, given a software-

extended model of the camera that models the process of obtaining a corrupt image,

the diagnostic engine may use the information on the quality of the image. Given that

the processed image is not corrupt, the most likely diagnosis, that the measurement

sensor is broken, may be deduced.

This scenario will be elaborated further in the next chapters, and will be used to

illustrate the capability described in this work. Chapter 5 will present experimental

results on more complex scenarios, including models of two spacecraft: the MIT

SPHERES formation flying testbed [32, 45] and the NASA New Millennium Earth

Observing One spacecraft [6, 28].

1.3 Diagnosing Software-Extended Systems

This section highlights the major challenges in monitoring and diagnosing software-

extended systems, presents an overview of prior work, and emphasizes the novel

approach and contributions of this thesis.

1.3.1 Challenges

The vision scenario introduced in the previous section demonstrates that a diagnostic

engine for complex systems with software-extended behavior must:

1. Monitor the behavior of both the hardware and embedded software, so that

the software state can be used for diagnosing the hardware. This requires an

expressive modeling framework for capturing complex software and hardware

behaviors.

2. Reason about the system state, given delayed symptoms. An instance of a

delayed symptom is the image quality determined by the camera software after

it has completed all stages of image processing.

3. Efficiently compute the leading estimates of system state.
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1.3.2 Related Work and Innovative Claims

This section addresses the differences between previous work and the approach in-

troduced in this thesis for tackling the three challenges highlighted in the previous

section. First, we compare this work to research on model-based software debugging,

which is focused on finding software bugs and not on diagnosing combined software

and hardware systems. Second, we discuss previous work on modeling and diagnosing

complex systems, with emphasis on building upon that work and the innovative claims

relative to that work. Third, we discuss previous work on model-based diagnosis in

order to address the challenge of delayed symptoms, and motivate the generalization

of this capability to software-extended systems. Fourth, we discuss research on the

core computational approaches that are relevant to performing diagnosis efficiently.

Finally, we discuss model simulation used in previous diagnostic systems, along with

the differences from this work.

Model-based Software Debugging

Much research has focused on modeling software and the application of model-based

diagnosis to software debugging [40, 39, 9, 25]. Model-based debugging was first

introduced in [9] for logic based declarative languages. This work was later extended

to imperative and object-oriented languages [39, 40] and to component-based software

[25]. The key point here is that these approaches do not deal with the diagnosis of

combined hardware and software systems.

In contrast to previous work on model-based software debugging, this work lever-

ages information within the embedded software to refine the diagnoses of physical

systems. As such, the problem of diagnosing software bugs is not addressed in this

work. Without loss of generality, it is assumed that software bugs discovered at

runtime are handled by a separate exception handling mechanism. However, given

software fault models, the work in this thesis can be applied to automated verification

of embedded software.
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Modeling and Diagnosing Complex Systems

Challenge 1 presented in the previous section highlights the need for an expressive

modeling framework to specify complex behaviors, in particular that of embedded

software. Models typically used by previous model-based diagnostic engines such as

GDE [15], Livingstone [54, 33] and Titan [38], do not support constructs for specify-

ing complex behaviors, such as hierarchical structure and multiple transitions enabled

within a single automaton. This is a major limitation for modeling complex systems,

and software-extended systems in particular. Capturing the behavior of software is

much more complex than that of hardware, due to the hierarchical structure of a

program and the use of complex constructs such as iteration, preemption, sequential

and concurrent execution. This complexity was addressed in prior work [52], by intro-

ducing Probabilistic, Hierarchical, Constraint Automata (PHCA) to uniformly and

compactly encode both software and hardware behavior. Hierarchical automata have

been introduced for reactive embedded languages such as Esterel [4] and State Charts

[27]. However, PHCA offer additional features [52] that are key for model-based di-

agnosis of complex systems. These features include traversing multiple transitions

simultaneously and enabling transitions conditioned on what can be deduced, and

not just what is explicitly assigned. In addition to introducing PHCA, the work in

[52] also has introduced the idea of PHCA-based state estimation as K-best enu-

meration, which involves stepping the PHCA automata for each of its K most likely

transitions, checking consistency with observations and commands, and performing

belief state update at each time step.

Building upon the PHCA modeling framework described above, this work intro-

duces a novel approach to PHCA-based monitoring and diagnosis. This approach

is implemented and validated on a variety of scenarios to be discussed in the next

chapters. The novelty of the approach in this thesis is threefold. First, it enables

PHCA-based reasoning over several time steps to account for delayed symptoms en-

countered during diagnosis. This is accomplished by framing diagnosis as the task

of N-Stage Best-First Trajectory Enumeration (N-BFTE), where N is the number
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of time steps within the horizon. Second, it relies on constraint decomposition to

enhance the efficiency of the diagnosis algorithm. Third, it integrates the model sim-

ulation (stepping of the automata) and consistency checking (with observations and

commands) into a single constraint optimization framework. Each of these innova-

tions for handling delayed symptoms, efficiency and model simulation, are discussed

further in the following three subsections.

Delayed Symptoms

The challenge of diagnosing hardware systems in the presence of delayed symptoms

was addressed by the Livingstone-2 (L2) [33] diagnostic engine. The Livingstone-1

[54] and Titan [53] engines enumerate and maintain only the most likely system state

trajectories. This corresponds to maintaining an approximate belief state - a proba-

bility distribution over the possible system states - at any point in time. However,

this approximation leads to incorrect diagnoses when an unmaintained trajectory be-

comes very likely given delayed evidence. L2 was introduced to address the problem

of delayed symptoms, by incrementally generating the approximate belief state; this

means that if the maintained trajectories are consistent with observations and com-

mands, only a partial belief state is maintained, similar to Livingstone and Titan.

On the other hand, if inconsistencies arise, L2 backtracks to revisit past trajectories,

and generates a new belief state. In order to accomplish this, L2 maintains a his-

tory of observations and commands over an infinite time horizon; however, to achieve

tractability, L2 uses approximate system models over the recent past, and summariza-

tion over the distant past. Furthermore, L2 resorts to a ranking system [33], which

is an order of magnitude approximation to model probabilities. The likelihood of a

trajectory in L2 is defined in terms of ranks. Finally, L2 uses conflict coverage search

to enumerate and track the most likely trajectories.

This work presents a capability for handling delayed symptoms by posing the

PHCA-based diagnosis problem over a finite time horizon. Thus, given a history of

observations and commands within a receding N-Stage time horizon, the most likely

trajectories of system state that are consistent with the observations, commands and
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the PHCA models, are enumerated and tracked. This approach has several key dif-

ferences from L2. First, PHCA models are used as the basis of the diagnostic system

presented in this work. As discussed above, PHCA models offer richer expressivity

than L2 models for specifying complex behaviors, such as embedded software. Second,

diagnosis is limited to a finite time horizon, in order to limit model growth. This is in

contrast to using approximations to achieve tractability. However, since both of these

approaches are approximations to considering an infinite horizon, they are expected

to be roughly equivalent in terms of handling delayed symptoms. Third, a limited

number of state trajectories are tracked at all times, in the spirit of Livingstone-1 and

Titan. The benefit of this is to avoid a large increase in the number of trajectories

tracked by L2 when inconsistencies arise due to delayed symptoms. Finally, this work

relies on decomposition-based constraint solvers to achieve efficiency, while L2 uses

conflict-directed search. The use of conflicts has proven very effective in diagnostic

systems. On the other hand, recent advances in decomposition techniques have mo-

tivated its use in this work. The following section sheds more light on the major

paradigms for addressing the efficiency challenge.

Computational Efficiency

Challenge 3, as highlighted in the previous section, is to efficiently compute the lead-

ing diagnoses of a software-extended system. Prior work on model-based diagno-

sis has addressed this challenge in the following prominent ways. First, the num-

ber of state trajectories maintained are typically limited to the K most likely ones

[13, 54]. This approximation efficiently tackles the intractability of maintaining all

possible state trajectories that are exponential in the number of components in the

system. Second, diagnostic engines have made extensive use of conflicts and their

derivatives, such as kernel diagnoses, to efficiently compute the leading diagnoses

[14, 55, 54, 16, 20, 38, 53]. For example, the OPSAT optimal satisfaction engine

implements the conflict-directed A* search algorithm presented in [55], which uses

conflicts to jump over diagnosis candidates that do not resolve the conflicts. Third,

model compilation has been used to achieve real-time efficiency, such as in the MiniMe
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engine [7]. Fourth, structure-based approaches to diagnosis were proposed to address

the efficiency challenge by exploiting system structure [10, 11, 18, 19, 1]. While some

approaches [10, 11] focus on a symbolic logic formulation for exploiting system struc-

ture, others [18, 19] propose exploiting the structure of constraints among multivalued

variables.

This work draws upon the benefits of three of the above approaches: limiting

the number of trajectories tracked, offline model compilation, and structural decom-

position. The number of state trajectories tracked are limited in order to achieve

tractability, similar to previous engines such as Livingstone [54] and Titan [53]. How-

ever, as opposed to previous work that uses conflict-directed search, this work advo-

cates the use of tree decomposition of constraints for model-based diagnosis, in the

spirit of [18, 19]. This is motivated by recent advances in tree decomposition tech-

niques [24, 17, 31] and decomposition-based optimal constraint solvers [47, 48]. The

diagnostic problem is thus formulated and decomposed in an offline phase, and solved

online as observations and commands become available.

Model Simulation

Model-based diagnosis algorithms typically apply a simulation step to predict model

behavior, followed by a consistency checking step to refute diagnosis candidates that

are inconsistent with observations and commands [53, 38].

The approach introduced in this thesis differs from previous approaches in that

it combines the simulation and consistency phases by encoding the PHCA automata

and their execution semantics as constraints. This encoding is particularly convenient

for reasoning over several time steps, as the simulation and consistency checking steps

are reduced into the single task of solving a constraint optimization problem (COP)

over the finite horizon. More specifically, the automata and their execution semantics

are mapped to a soft COP [50, 47, 2] that supports associating probabilities with

arbitrary constraints, rather than just decision (solution) variables. For instance, the

soft constraint framework allows associating probabilities with constraints that en-

code PHCA transitions, while solving for PHCA state variables, as described further
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in Chapter 3. This enables encoding uncertainty in the constraints, in order to sim-

ulate the PHCA models.

The following section presents the diagnostic system architecture that incorporates

the innovative claims discussed above. The next chapters elaborate the design, de-

velopment and demonstration of the diagnostic system.

1.3.3 Diagnostic System Architecture

This work introduces a novel monitoring and diagnostic system for software-extended

systems, based upon several key innovations, as identified in the previous section. The

main features of this capability are as follows. First, the diagnostic system is based

on the expressive PHCA modeling formalism [52] for capturing complex behaviors.

PHCA-based diagnosis is defined as the task of enumerating and tracking the K most

likely PHCA state trajectories. Second, the diagnostic task is posed over a finite time

horizon, in order to account for delayed symptoms. Third, diagnosis is framed as

a soft constraint optimization problem (COP) [50] that encodes the PHCA models

and their execution semantics over the finite horizon. This formulation integrates

the PHCA simulation phase into the COP, thereby reducing the diagnosis task to

that of solving the COP and tracking the most likely solutions, which correspond to

the most likely PHCA state trajectories. Fourth, tree decomposition [31, 17, 24] is

applied to the COP to decompose it into independent subproblems by exploiting the

structure of the constraints, thereby enabling the use of efficient optimal constraint

solvers [47, 48].

The PHCA-based diagnostic system architecture consists of two phases: an offline

compilation phase and an online solution phase, as shown in Figure 1-2. The of-

fline compilation phase precedes the online monitoring and diagnosis phase, and does

not require the availability of any observations or issued commands. The following

describe the key features of each phase.
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Offline compilation phase Online solution phase

Figure 1-2: Process diagram for PHCA-based diagnosis

Offline Compilation:

As illustrated in Figure 1-2, the offline compilation phase consists of three stages

that specify the PHCA models, formulate diagnosis as a COP over a finite (N-Stage)

time horizon, and apply tree decomposition to the COP. The offline phase sets the

infrastructure for the online monitoring and diagnosis phase, and enables the efficiency

of the online process. As mentioned above, observations and issued commands are

not required for the offline phase; those are incorporated into the online diagnostic

process described in the next section.

In the offline phase, specifications of complex, software-extended behavior are

compiled to PHCA models. These specifications are coded in the high-level Reactive

Model-based Programming Language (RMPL) [52]. The automatic compilation of

RMPL specifications to PHCA is presented in [52], and is outside the scope of this

work. PHCA models can be represented graphically, as illustrated in the following

chapters.

Given PHCA models, diagnosis is defined as the task of enumerating and tracking

the most likely PHCA state trajectories within a finite, N-Stage time horizon. The

finite-horizon diagnosis accounts for delayed symptoms. The PHCA state trajectory

estimation task is formulated as a soft constraint optimization problem (COP) [50]

within the N-Stage horizon. The COP encodes the PHCA models and their execution

semantics as probabilistic constraints, such that the optimal solutions corresponds to

the most likely PHCA state trajectories. Encoding the PHCA execution semantics as
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constraints eliminates the need for a separate model simulation step during the online

phase. Furthermore, soft constraints provide convenient expressivity for encoding the

models, by not limiting uncertainty specification to decision variables [50].

Finally, tree decomposition [24, 31] is applied to the constraint network to exploit

the independence of subproblems through local consistency and dynamic program-

ming, thus enabling the use of efficient optimal constraint solvers [47, 48] during the

online phase.

For example, consider the vision-based navigation scenario introduced in Section

1.2. In the offline phase, specifications of the image processing software, as well

as the physical behavior of the hardware components, such as the camera, can be

captured as PHCA. The PHCA is then compiled into a soft COP that encodes the

models over several time steps. This enables accounting for delayed evidence, such

as the image quality, during the online diagnosis phase. The offline compilation

does not require any observations (such as the image quality) or issued commands

(such as turning on the camera). Furthermore, the offline COP formulation enables

the online simulation of the PHCA models, and thereby the behavior of the camera

module, through constraints that encode the models and their execution semantics.

The encoding of PHCA models as soft COP posed over a finite horizon, and the

decomposition of the resulting COP are presented in detail in Chapter 3.

Online Trajectory Tracking:

The online phase uses the offline COP formulation and its tree decomposition, to

enumerate and track the most likely PHCA state trajectories that are consistent with

observations and commands within the shifting N-Stage horizon. Recall that the COP

generated offline does not specify assignments to observations and commands; those

are available in the online phase. Therefore, the COP must be updated dynamically

in the online phase.

The COP is updated in the online phase by shifting the time horizon, incorpo-

rating new observations and commands, and inserting constraints for tracking the

trajectories found within the previous horizon. Within each time horizon, the COP is
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solved using an efficient, decomposition-based optimal constraint solver [47]. Similar

to previous diagnostic engines [54, 53, 38], the solutions to the COP are enumerated in

best-first order, thus efficiently focusing on the most likely trajectories while allowing

anytime behavior.

For the vision-based navigation example, observations such as the image quality

are added to the COP in the online phase. The COP is then solved to generate the

most likely diagnoses that are consistent with the observations and commands over

the N-Stage horizon. As the time horizon is shifted, the trajectories computed within

the previous horizon must be tracked. This is accomplished by adding trajectory

tracking constraints to the COP, which is described further in Chapter 4.

1.4 Thesis Contributions

The contributions of this work are as follows.

" First, a novel capability is introduced for diagnosing combined hardware and

software systems in the presence of delayed symptoms, based on an expres-

sive modeling framework called Probabilistic Hierarchical Constraint Automata

(PHCA) [52]. This is accomplished by framing PHCA-based diagnosis as a con-

straint optimization problem (COP) based on soft constraints [50] that encode

the structure and semantics of PHCA. This formulation is particularly appro-

priate for encoding complex models since probabilities may be associated with

arbitrary sets of variables rather than only decision variables. Furthermore,

encoding the execution semantics as constraints integrates consistency checking

with model simulation over the time horizon. This integration eliminates the

need for interleaving separate model simulation and consistency checking steps

over several time steps.

" The second contribution is the ability of the PHCA-based diagnostic system to

reason about faults in the presence of delayed symptoms. While the problem of

delayed symptoms has been addressed for diagnosing hardware systems [33], this
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work generalizes the capability to more complex, software-extended behavior.

This is accomplished by formulating the COP within a finite time horizon of

N stages, where N is a parameter of the diagnostic system that controls the

amount of history maintained. Given PHCA models and parameter N, the COP

is generated automatically in an offline compilation phase. A novel approach,

called N-stage Best-First Trajectory Enumeration (N-BFTE), is introduced to

update and solve the COP in an online phase. N-BFTE dynamically updates

the COP by shifting the time horizon and incorporating new observations while

maintaining an N-stage history. The enumerated solutions correspond to the

most likely trajectories of system evolution within the finite horizon.

" The third contribution is the application of state-of-the-art decomposition tech-

niques [31, 24] to enhance the efficiency of the diagnostic process. By leveraging

structural properties of the constraints during the offline compilation phase, the

COP is decomposed into an equivalent acyclic instance. This allows the appli-

cation of dynamic programming during the online phase and thereby the use of

efficient decomposition-based optimization solvers as the computational core of

N-BFTE.

" Finally, the diagnostic system depicted in Figure 1-2, is implemented and demon-

strated on a number of scenarios, including vision-based rover navigation, mod-

els of the global metrology system of the MIT SPHERES [32] satellites, and

payload models of the NASA New Millennium Earth Observing One spacecraft

[28].

This thesis expands on preliminary versions published in [43, 42, 44].

1.5 Outline

The rest of this document is organized as follows.

Chapter 2 describes the PHCA modeling framework. The PHCA-based diagnosis

problem is formally defined as N-Stage Best-First Trajectory Enumeration (N-BFTE),
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and illustrated for the vision-based navigation scenario.

The next two chapters describe the two phases of the novel diagnostic system:

Chapter 3 introduces the formulation of N-BFTE for PHCA as a probabilistic con-

straint optimization problem (COP) during an offline compilation phase. The COP

encodes the structure and execution semantics of PHCA as probabilistic constraints

over a finite time horizon. The application of tree decomposition to subdivide the

COP is described. Chapter 4 introduces the online monitoring and diagnosis algo-

rithm that uses the offline COP formulation and the decomposed COP, to solve for

the most likely PHCA state trajectories.

Chapter 5 presents the results of testing the implemented system on several repre-

sentative scenarios, including vision-based rover navigation, and empirical validation

on models of the MIT SPHERES satellite and the NASA Earth-Observing One space-

craft.
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Chapter 2

Modeling and Monitoring

Software-Extended Systems

This chapter reviews an expressive modeling framework, called Probabilistic Hier-

archical Constraint-based Automata (PHCA) [52], which can support the specifica-

tion of complex hardware and software behaviors. Building upon this framework,

the problem of monitoring and diagnosing software-extended systems is formally de-

fined as best-first enumeration of PHCA state trajectories over a finite time horizon.

The process, referred to as N-Stage Best-First Trajectory Enumeration (N-BFTE), is

demonstrated for the vision-based navigation scenario.

2.1 Modeling Software-Extended Behavior

Figure 2-1 shows the software-extended camera module for the vision-based navigation

scenario described in Section 1.2. In this example, the failure probabilities for the

battery, camera and sensor are 10%, 5% and 1%, respectively. A typical behavioral

model of the camera is shown in Figure 2-2. The camera can be in one of 3 modes:

on, off or broken. The hardware behavior in each of the modes is specified in terms of

inputs to the camera, such as power, and the behavior of camera components, such

as the shutter. The broken mode is unconstrained in order to accommodate novel

types of failures. Mode transitions can occur probabilistically, or as a result of issued
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Battery
Camera
Sensor

Figure 2-1: Camera module for navigation system

commands. The battery and the sensor components can be modeled in a similar way.

Given a scenario in which the sensor measures zero voltage at the camera, the

most likely diagnoses of the module, generated based on the hardware models alone,

are shown in Figure 2-3. However, the unmodeled software components can offer

important evidence that substantially alters the diagnosis. A sample specification of

0.05
/

/

,'0.05

Figure 2-2: Behavioral model (PCCA) for the camera component.
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Nominal Nominay-l Bteroo
Battery=lo Cam=Broken

Cam=Broken Sensor=Broken

Sensor=Broken

0 1 Observe 2 Time
Sensor

Power On and Take Picture voltage = zero

Figure 2-3: Most likely diagnoses of the camera module based on hardware component

models. Nominal state = no failures.

the behavior of the image processing software may take the following form:

If an image is taken by the camera, process it to determine whether it is

corrupt. If the image is corrupt, discard it and reset the camera; retry

until a non-corrupt image is obtained for navigation. Once a high quality

image is stored, wait for new image requests from the navigation unit.

Such a specification abstracts the behavior of the image processing software im-

plemented in an embedded programming language, such as the state-based RMPL

language [52, 53]. For the above scenario, the behavior of the embedded software pro-

vides diagnostic information necessary to correctly estimate the state of the camera

module. For example, given that the image is not corrupt, the possibility that the

camera is broken becomes very unlikely. This is illustrated in Figure 2-4.

Typically, the behavior of a simple hardware component can be described by

a small number of modes [16]. For diagnosing such components, a flat state ma-

chine representation, such as Probabilistic Concurrent Constraint Automata (PCCA)

[54, 53] (see Appendix B), is adequate. However, software processes are generally more

complex than simple hardware components. Therefore, a more structured, compact

encoding of complex behavior is needed. Furthermore, diagnostic engines based on

flat models such as PCCA, estimate each component to be in a single mode of be-
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Sensor=Broken Cam=Broken

0 1 2 ..................... 6 Time
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Power On and Sensor
Take Picture voltage = zero S/W behavior =>

Image not corrupt

Figure 2-4: Most likely diagnoses of the camera module based on the software-
extended behavior models.

havior. However, monitoring more complex software behavior necessitates tracking

simultaneous hierarchical modes.

As highlighted in [52], a modeling formalism that will allow the specification of

complex software and hardware behavior must support: 1) full concurrency for mod-

eling sequential and parallel threads of behavior, 2) conditional behavior, 3) iteration,

4) preemption, 5) probabilistic behavior for modeling uncertainty and failure rates,

and 6) constraints for specifying co-temporal relationships among variables. Require-

ments 1)-4) are key features of software processes; requirement 5) is essential for

modeling stochastic processes for probabilistic reasoning; finally, requirement 6) is

prevalent in qualitative modeling.

Probabilistic, Hierarchical Constraint Automata (PHCA) [52] have proven to be

particularly effective representations for modeling complex behavior. Similar to Es-

terel [4], PHCA draw upon features of State Charts [27] - the foundation for the

standard semantic model for most reactive embedded languages.

The following section reviews the PHCA modeling framework for handling re-

quirements 1)-6), listed above.
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2.2 Probabilistic, Hierarchical Constraint Automata

Probabilistic, hierarchical, constraint-based automata (PHCA) [52] are compact en-

codings of Hidden Markov Models (HMMs), and provide a mechanism for modeling

both hardware and software behavior.

Definition 2-1 (PHCA)

A PHCA is a tuple < E, Pe, A, 0, C, PT >, where:

" E is a set of locations, partitioned into primitive locations E~, and composite lo-

cations Ec. Each composite location denotes a hierarchical, constraint automa-

ton. A location may be marked or unmarked. A marked location represents an

active mode of behavior.

" Pe(ej) denotes the probability that E6 C E is the set of start locations (initial

state). Each composite location li C E, may have a set of start locations that

are marked when 1i is marked.

" A is a set of finite domain variables. C[A] is the set of all finite domain con-

straints over A.

" 0 C H is the set of observable variables.

" C : E -* C[A] associates with each location i C E a finite domain state

constraint C(l).

* PT(li), for each 1i C E,, is a probability distribution over a set of transition

functions T(l1) : Et x C[A]() -> 2 E(t±1. Each transition function maps a

marked location into a set of locations to be marked at the next time step,

provided that the transition's guard constraint is consistent.

Definition 2-2 (PHCA State)

The state of a PHCA at time t is a set of marked locations, called a marking m(t) c E.
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Figure 2-5: PHCA model for the camera/image processing module. Circles represent
primitive locations, boxes represent composite locations and small arrows represent
start locations.

Figure 2-5 shows a PHCA model of the camera module in Figure 2-1. The "On"

composite location contains three subautomata that correspond to the primitive lo-

cations "Initializing", "Idle" and "Taking Picture". Each composite or primitive

location of the PHCA may have behavioral state constraints, which hold as long as

the automaton is in that location. The behavioral state constraint of a composite

location, such as (power-in = nominal) for the "On" location, is inherited by each of

the subautomata within that composite hierarchy. In addition to the physical camera

behavior, the model incorporates qualitative software behavior, such as processing the

quality of an image. Furthermore, based on the image quality, the possible camera

configurations may be constrained by the embedded software. For example, if the

image is determined to be corrupt, the software attempts to reset the camera. This

restricts the camera behavior to transition to the Initializing location.

Recall that Figure 2-4 shows the most likely diagnoses based on the software-
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extended PHCA model. At time Step 2, as the sensor measurement indicates zero

voltage, the most likely estimated trajectories end at 1) battery = low with 10%

probability, 2) camera = broken with 5% probability and 3) sensor is broken with

1% probability. For the first trajectory, which indicates that the battery is low, the

power to the camera is not nominal, hence the camera will stay in the "Off" location.

For the second trajectory, the camera will be in the "Broken" location. For the

third trajectory, which indicates that the sensor is broken, the power input to the

camera will be unconstrained, and hence the PHCA state of the camera may include

a marking of the "On" location. Although the evolutions of this third trajectory have

an initially low probability of 1%, at time Step 6 they become more likely than the

others, as the embedded software determines that the image is valid. The reason for

this is that the second most likely trajectory at Time 2, with the camera = "Broken"

location marked, has a 0.001 probability of generating a valid image. This makes the

probability of that trajectory 0.005% at Time 6. This latter trajectory is less probable

than those trajectories stemming from the sensor being broken with 1% probability.

Similarly, the first trajectory with battery = low and camera = off becomes less likely

at time Step 6, as there is 0.001% probability of processing a valid image while the

camera is "Off'.

PHCA models have the following advantages that support their use for diagnos-

ing systems with software-extended behavior. First, since HMMs are intractable for

encoding reactive systems, a compact PHCA encoding of HMMs is essential in or-

der to support real-time, model-based deduction. This compact encoding is achieved

by factoring HMMs into a set of concurrently operating automata. Second, PHCAs

provide the expressivity to model the behavior of embedded software by satisfying

requirements 1) to 6) described in the previous section. More specifically, PHCA sat-

isfy these requirements through key features such as: concurrently active automata;

state constraints associated with PHCA locations that must hold whenever a PHCA

location is marked; hierarchical structure that enables modeling structured behaviors

and the initiation and termination of complex concurrent and sequential behaviors;

simultaneous marking of several transition targets, which enables modeling iterative
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and recursive behaviors. Further details of PHCA features can be found in [52].

As an example of concurrency, the PHCA in Figure 2-5 allows the simultaneous

marking of the "On" location of the camera, as well as the "Initializing", "Idle", or

"Taking Picture" locations. While an image-based navigation function may require

high level camera state estimates, such as "On" or "Off', a function that coordinates

imaging activities may need more detailed camera state estimates, such as "Initializ-

ing" or "Taking Picture". Simultaneous marking of several camera locations such as

"On" and "Initializing", allows their use within functions that require estimates at dif-

ferent levels of granularity. This is in contrast to diagnosis based on non-hierarchical

models that estimate each component to be in a single mode of operation.

The next section formally defines the problem of PHCA-based monitoring and

diagnosis in the presence of delayed symptoms, thereby establishing the framework

for addressing the challenges set forth in Section 1.3.

2.3 Best-First Trajectory Enumeration for PHCA

PHCA-based monitoring and diagnosis are each formulated as the task of enumerat-

ing and tracking the most likely trajectories of system state. Given a PHCA state

distribution at time t and an assignment to observable and command variables in A

(see Definition 2-1) at times t + 1 and t respectively, Best-First Trajectory Enu-

meration (BFTE) is the problem of estimating the most likely transitions to PHCA

states at time t + 1. BFTE is a best-first shortest path problem, which can be solved

using a variant of the Viterbi algorithm [30], to find the most likely hypotheses that

explain the observations and commands.

Maintaining all possible state trajectories at each time step is intractable, because

of the exponential growth in state space. Diagnostic systems have achieved reactivity

by typically focusing on the leading diagnoses [13, 15, 16, 54, 53]. For instance, at

every time step, the Titan mode estimation engine [53] maintains a limited number

of trajectories (K-Best). A potential problem with this approach is that it may miss

the best diagnosis. This would occur if a trajectory through a state is initially very
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Figure 2-6: Missed diagnosis as a result of tracking a limited number of trajectories
(K-Best)

unlikely and hence is pruned; however, it becomes very likely after additional evi-

dence. Figure 2-6 illustrates this situation for the camera module, where the initially

unlikely state (Sensor = Broken) is pruned. This results in the best diagnosis to be

unreachable when additional evidence is available at Time 6.

Dealing with delayed evidence is particularly important for diagnosing systems

with software-extended behavior, due to typically delayed observations associated

with software processing. The Livingstone-2 (L2) engine [33] addressed the problem

of delayed symptoms for diagnosing systems modeled as concurrent constraint au-

tomata. This work generalizes delayed-symptom diagnosis to PHCA, by performing

BFTE within a receding, N-Stage time horizon. Unlike L2, the N-BFTE approach

limits the number of trajectories being tracked, while leveraging the N-Stage his-

tory of observations and issued commands to reason about delayed symptoms. This

approach avoids a large increase in the number of trajectories tracked by L2 when

inconsistencies arise due to delayed symptoms. The L2 approach and comparison to

this work were discussed under related work in Section 1.3.
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2.4 N-Stage Best-First Trajectory Enumeration

Consider the problem of N-Stage Best-First Trajectory Enumeration (N-BFTE)

for PHCA. Given a probability distribution P(S(t)) of PHCA states S at time t,

and assignments to observable and command variables in A at times [t..t + N] and

[t..t + N - 1], respectively, the task of N-BFTE is to estimate the most proba-

ble trajectories, within the time horizon [t..t + N], that are consistent with the

observations, commands and the PHCA model. The probability of a trajectory

< St, St+1, St+2 , .., St±N> is defined as:

P(St) - 1 PT(st+j+l st+iAt+j) . 17 P(Ot+ist+ji) (2.1)
j=O..N-i j=o..N

where PT is the transition probability from a current state to a target state. A PHCA

state consists of multiple marked locations, each of which may transition to multiple

target locations. Hence, T is encoded as a set of transitions taken from locations

within the current state and leading to locations within the target state. Therefore,

PT is the product of the probabilities of all transitions T E T. In this thesis the

probability of observations Ot+j for j = O..N in Equation 2.1 is taken to be:

. .s f 1 if Ot+j A St+j consistent
P(Ot+f|St±J ) =( 2.2)

0 otherwise

Note that Equation 2.2 is an approximation to the observation probabilities. Con-

sider the case in which an assignment to an observable variable o is not entailed,

but there exist values of oi that are consistent with the current state S. Then, as

discussed in [15], a uniform distribution over the possible values of oi can typically

be assumed. This means that the probability P(oilS) = 1/m, where m is the number

of consistent values of oi. Equation 2.2 is thus an overestimate of this uniform dis-

tribution. However, the uniform distribution introduces the complexity of counting

additional satisfying assignments. In [37], a method for incorporating an observation

probability distribution is devised.
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The same approximation applies to the guard constraints of PHCA transitions

(see Definition 2-1). Recall that PT in Equation 2.1 refers to the probability of the

set of enabled transitions T. A necessary condition for enabling each transition T

E T is that its guard is satisfied. Similar to observation probabilities, Equation 2.1

implicitly assumes that the transition guard probabilities are either 0 or 1. The

probability is 0 if the guard is inconsistent with observations and commands, and 1

otherwise. This reduces PT to the product of probabilities of consistent transitions.

However, consider the case in which a guard constraint is consistent with observations

and commands, but not entailed. Then, the guard probability 1 is an overestimate. A

better probability estimate can be obtained by counting the number m of models that

are consistent with a given state S, and the number s of subsets of those models that

satisfy the guard. Then, the probability of the guard is s/m. However, as mentioned

above, this process is computationally expensive, and thus an approximation is used

in practice.

The likelihood of the trajectory defined in Equation 2.1 is based on the follow-

ing two key assumptions. The first assumption is that transitions are conditionally

independent, given the prior state S. This is analogous to component failure indepen-

dence assumptions made in previous diagnostic systems [15, 16, 54]. This assumption

enables the transition probability PT to be expressed as the product of probabilities

of individual transitions T E T, for each time step within the finite time horizon.

Second, the observation and transition guard probabilities are assumed to be 1.0 if

they are consistent with the current state. The limitation of this is that it does not

provide a bias towards observations and guards that are entailed, rather than simply

consistent. On the other hand, this approximation avoids the added complexity of

counting all consistent interpretations.

Generating the maximum probability trajectories within the time horizon differs

from approaches that calculate a belief state [52, 38]. A belief state is a probability

distribution over possible states of the system. Figure 2-7(a) shows a Trellis Diagram

[53], which represents the evolutions of system state. Notice that each state can be

reached through multiple previous states. Therefore, belief state calculation requires
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Figure 2-7: (a) Trellis diagram showing the evolution of an approximate belief state;
(b) branching tree representation showing state trajectories.

calculating the probability of each state by summing all transition probabilities that

lead to that state. This is accomplished by using the belief state update equations

for hidden Markov models [3]. Since full belief state maintenance is intractable for

many real world applications, in practice only an approximation is computed, based

on a limited number of maintained states.

The N-BFTE approach generates the most likely trajectories, rather than a belief

state, by branching trajectories outward at every time step, as shown in Figure 2-7(b).

This approach is referred to as Maximal Probability Diagnosis [47, 12].

Chapters 3 and 4 further elaborate the discussion on the likelihood of the trajecto-

ries defined in this section. The following section gives an overview of the two-phase

approach to N-BFTE.

2.5 The N-BFTE Process

The N-BFTE process, as highlighted in Chapter 1 and illustrated in Figure 1-2,

consists of two phases: an offline compilation phase and an online solution phase.
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The steps of the process are as follows.

2.5.1 Offline Phase

The offline phase occurs before runtime, and does not require the availability of any

observations or commands. This phase consists of three steps:

" PHCA Specification: Mixed software and hardware behavior is specified

in the state-based specification language RMPL, and is compiled into PHCA.

The PHCA models are represented graphically, as shown in Figure 2-5. The

compilation of RMPL to PHCA is presented in [52].

" PHCA Encoding: Given a PHCA model, the N-BFTE problem for PHCA

is formulated as a soft constraint optimization problem (COP) within the N-

Stage horizon. The soft constraints encode the PHCA models and their execu-

tion semantics over the N-Stage horizon. This encoding does not require the

availability of observations and commands. As discussed above, the N-BFTE

formulation enables accounting for delayed symptoms during diagnosis. Fur-

thermore, encoding the PHCA semantics combines the model simulation and

consistency checking steps during the online diagnosis process.

" Tree Decomposition of COP: The COP generated in the PHCA encoding

step is decomposed into a tree structure. This removes cycles from the constraint

network, thus enabling efficient solution during the online phase.

The benefit of the offline phase is that the models are compiled into a constraint

optimization problem, and decomposed into an equivalent acyclic instance prior to

runtime. This enables the efficiency of the online monitoring and diagnosis phase.

2.5.2 Online Phase

The online phase corresponds to runtime, when observations and commands are avail-

able. The COP formulated and decomposed in the offline phase is dynamically up-

dated to incorporate observations and commands. The updated COP is solved using a
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decomposition-based constraint solver [47, 48]. The solutions to the COP are enumer-

ated in best-first order, thus solving the N-BFTE problem within each time horizon.

The solutions correspond to the K-Best PHCA trajectories in decreasing order of

probability, as given by Equation 2.1. As the time horizon shifts, the COP is up-

dated to track the trajectories obtained from the previous horizon, and the N-BFTE

process repeats.

The online phase uses decomposition-based COP solvers to efficiently compute

the system diagnoses. The online phase achieves the best performance for a highly

structured system that can be optimally decomposed in the offline phase.

2.6 Summary

This chapter reviewed probabilistic, hierarchical constraint automata (PHCA) as a

modeling framework for complex systems. The relative advantages of PHCA over

previous models were highlighted in the context of modeling and diagnosing software-

extended systems. In particular, the vision-based navigation scenario, introduced in

Section 1.2, was modeled as a PHCA. Based on this PHCA model, diagnosis in

the presence of delayed symptoms was illustrated. Diagnosis was defined as the

Best-First Trajectory Enumeration (BFTE) of PHCA state trajectories. In order

to account for delayed symptoms, the BFTE problem was framed over an N-Stage

time horizon (N-BFTE). Within the N-BFTE framework, the likelihood of a PHCA

state trajectory was defined in terms of the initial state probability of the PHCA,

the state transition probabilities along the trajectory, and observation probabilities

in each state within the trajectory. The solutions to N-BFTE thus correspond to

the most likely trajectories within the N-Stage horizon. N-BFTE is thus an instance

of maximal probability diagnosis. Finally, a two-phase approach to tackling the N-

BFTE problem was introduced, building upon the diagnostic system architecture

introduced in Chapter 1. In the offline phase, the N-BFTE problem is framed as

a soft COP, which encodes the semantics of the PHCA. This effectively unifies the

model simulation and consistency checking steps in the online phase. Furthermore,
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the COP is decomposed into an acyclic instance, motivated by recent developments

in decomposition-based optimal constraint solvers. In the online phase, the COP is

updated to incorporate runtime observations and commands, and is solved efficiently

using a decomposition-based solver. The following two chapters describe each of the

offline and online phases, respectively.
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Chapter 3

Offline Phase: Formulation of COP

The PHCA-based monitoring and diagnosis process consists of two phases: offline

model compilation and online execution. This chapter focuses on the offline phase,

which occurs before commands and observations are available. The models are first

compiled into a constraint optimization problem (COP) over a finite time horizon,

which is then decomposed into an acyclic instance.

3.1 Encoding the N-BFTE Problem for PHCA

The N-BFTE problem for PHCA models, described in the previous chapter, is formu-

lated as a soft COP [50, 2], which associates a value with each constraint assignment.

As discussed in Section 1.3, previous work [55, 47, 53] has framed diagnosis as a COP.

However, the approach in this thesis is distinguished collectively by three features.

First, the COP is formulated over a finite time horizon, thereby enabling diagnosis

in the presence of delayed evidence. Second, the COP encodes the structure and

execution semantics of PHCA models. This encoding is particularly convenient for

reasoning over several time steps, since it collapses the model simulation and consis-

tency with observations and commands into the single task of solving a constraint

optimization problem (COP) over the finite horizon. The soft constraint framework

offers convenient expressivity for encoding the models by associating probability val-

ues with arbitrary constraints, rather than just variables to be solved for [50, 2].
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Finally, the soft constraint framework enables leveraging an extensive body of recent

advances in decomposition-based optimal constraint solvers [47, 51, 48], in order to

efficiently compute the solutions.

This chapter presents the full encoding of PHCA models as a soft COP for per-

forming N-BFTE, and the subsequent decomposition of the COP into independent

subproblems. The following starts by introducing the soft constraint framework, and

in particular the special case of valued constraints.

3.1.1 Soft and Hard Constraints

Constraint programming [36, 17] is an approach for solving combinatorial problems.

This is accomplished by framing the problem as a set of variables with corresponding

finite domains representing sets of possible values for the variables, and constraints

that restrict the possible combinations of values of the variables. Combinations of

values to variables are generally referred to as tuples. A solution to such a constraint

problem is an assignment to variables of interest - referred to as solution variables -

that satisfy all constraints. These type of problems are thus referred to as constraint

satisfaction problems (CSP) [17]. Furthermore, a class of problems, called Optimal

CSPs (OCSP) [17], additionally specify a multi-attribute utility function over solution

variables (referred to as decision variables in this context). The solution to an OCSP

must thus satisfy all constraints, while simultaneously maximizing (or minimizing)

the utility function, defined over the decision variables.

Within the CSP framework, the constraints take the form of hard constraints, that

is, tuples are either allowed by the constraint or not. However, there are problems for

which the hard constraint formulation is inadequate, such as problems that must deal

with uncertainty. Soft constraints [50] provide a generic framework for problems that

must incorporate uncertainty, fuzziness, partial or preferential constraint satisfaction.

There are various types of soft constraint problems, as surveyed in [2]. This work

is based on a particular class of soft constraint problems, called valued constraint

satisfaction problems (VCSP). which associate valuations with constraints [50]. In

particular, a probabilistic CSP is a special case of a VCSP in which the constraint
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valuations correspond to probabilities [221.

The following formally defines the COP as a VCSP [50], and in particular a prob-

abilistic CSP [22].

Definition 3-1 (Constraint Optimization Problem)

A constraint optimization problem (COP) consists of a set of variables X = {X 1 , ... , Xn}

with a corresponding set of finite domains D = {D 1 , ... , Dn }, a set of constraints R =

{R 1 , ... , Rm}, a valuation structure (E, <, D, I, T), and functions F = {F 1 , ... , Fm}

mapping tuples of the constraints R to E. Each constraint Ri g Dei x ... x Dik is

defined over variables {Xi, ... , Xik} X. The set E is totally ordered by < with a

minimum element I E E and a maximum element T E E, and E is an associative,

commutative, and monotonic operation, with identity element I and absorbing ele-

ment T. Each F E F is a function F : R -- E, mapping tuples of Ri to values in

E. Functions F are thus called valuations of constraints R.

The set of values E allows different levels of constraint satisfaction to be expressed.

The element I means that the constraint is satisfied, and T means that the constraint

can never be violated. Within this valuation framework, a constraint is hard if all its

valuations are either I or T.

A probabilistic CSP [22] is a special case of VCSP with a valuation structure

(E, <, D, I, T) = ([0, 1], max,., 1, 0), as described in [5]. Values in E correspond

to probabilities ordered by max, or equivalently >. Probability 1.0 is associated

with constraint tuples that hold with certainty and probability 0.0 is associated with

constraint tuples that are not allowed by the constraint. Finally, - corresponds to

multiplication over the real numbers.

Given the COP in Definition 3-1, the optimal solution to the COP is an assignment

t E Di x ... x D, to variables X that has the best value obtained by aggregating the

valuations F. The operation E is used to combine several valuations, such that the

value V of t, an assignment to X, is given by:
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m

V (t) =( Fi) (t). (3.1)

Suppose that the solution to the COP is desired for a subset Y C X of variables of in-

terest. Then, in addition to the combination operator E, projection of the valuations

onto the subset Y of variables is required. Combination and projection are formally

defined as follows [17, 49]:

Definition 3-2 (Combination and Projection)

Let f, g E F be two valuation functions. Let t E D1 x ... x Dn, and let t Jy denote

the restriction of an assignment t to a subset Y C X of variables. Then:

1. The combination of f and g, denoted f D g, is the valuation function that maps

each t to the value f(t) e g(t);

2. The projection of f onto a set of variables Y, denoted f 4y, is the valuation

function that maps each t to the value f (t1 ) f (t 2 ) < ... < f (tk), where

t1 , t 2 , .. . , tk are all the assignments for which ti Jy= t. Recall that < is the

total order operator in the valuation structure (E, <, E, 1, T).

Therefore, given the COP in Definition 3-1 and a subset Y C X of variables of

interest, the optimal solution to the COP is an assignment t to variables Y that has

the best value given by:

m

V t) = (( Fi) 4y) (t) (3.2)
i=l

Based upon the soft constraint framework presented above, the following sections

introduce the COP formulation of the N-Stage best-first trajectory enumeration (N-

BFTE) problem for PHCA. Furthermore, the functions F are defined such that the

solutions to the COP, which have values given by Equation 3.2, correspond to the

most likely PHCA state trajectories defined by Equation 2.1.
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3.1.2 Elements of the COP Formulation

In order to perform N-Stage best-first trajectory enumeration for PHCA, the structure

and semantics of a PHCA model is encoded as a soft COP (Definition 3-1) that

consists of:

* A set of variables L' U At U E' for each of t = 0..N, where L= {LI, ... , L'}

is a set of variables that correspond to PHCA locations l E E, At is the set of

PHCA variables at time t, and E' {E , ..., En} is a set of auxiliary variables,

used to encode the execution semantics of the PHCA within the N-Stage time

horizon.

" A set of finite, discrete-valued domains DL. U DA U DE, where DL. {Marked,

Unmarked} is the domain for each variable in LE, DA is the set of domains for

PHCA variables A, and DE is a set of domains for variables E.

" A set of constraints R that encode the PHCA and their execution semantics

over the N-Stage time horizon. For instance, these constraints specify initial

PHCA marking, state behavior and transition consistency, and the semantics of

stepping the PHCA, by identifying enabled transitions and the resulting PHCA

markings over several time steps. Types of constraints R and their complete

formulation are presented in the following sections.

" A probabilistic valuation structure (E, <, E, -L, T) = ([0, 1], max,-, 1, 0), as dis-

cussed in the previous section [5]. The choice of the total order max favors higher

probability values, while the choice of multiplication - as the combination op-

erator relies on conditional independence of the component probabilities. This

form of diagnosis is referred to as Maximal Probability Diagnosis [47, 23, 12].

" A set of functions F : R - [0,1] that map tuples of constraints R to probabil-

ities. For hard constraints, tuples disallowed by R are assigned probability 0;

tuples allowed by R are assigned probability 1. For soft constraints, tuples are

mapped to a range of probability values E [0,1], based on the PHCA model, as
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given by functions F presented below. These functions incorporate the prob-

ability distribution Pe of PHCA start states, and probabilities PT associated

with PHCA transitions (refer to Definition 3-1).

* The solution variables of the COP are LE for [t..t + N]; each assignment to

the solution variables represents a PHCA state trajectory, where each state is a

marking of PHCA locations. The optimal solution to the COP is an assignment

T to the solution variables that has the maximum valuation VBSt, given by:

m

VBest = max[(( Fi) 4 (t+N)})(T)] (3.3)
i=l

m

T = arg max[(( Fi) 4  
(t+N)})(T)] (3.4)

i=1

The aggregate valuation VBSt in Equation 3.3 is obtained by instantiating Equa-

tion 3.2 for the probabilistic valuation structure ([0, 1], max, -, 1, 0). The projection

operator 4 is maximization, as presented in Definition 3-2. This means that the best

solution is picked such that its extension to all variables generates the maximum

probability value. This formulation results in an instance of maximal probability di-

agnosis [47, 23, 12]. Note that the multiplication operator - for combination appears

as a product fH in Equation 3.3. The functions F in Equation 3.3 are introduced

in the next sections, such that the value of the best solution VBSt corresponds to

an upper bound on the maximum probability of the trajectory defined by Equation

2.1. As pointed out in [12], the probabilities are not necessarily exact; they are only

approximate values, used to identify the more plausible diagnoses.

Recall that enumerating the most likely trajectories (BFTE) differs from that of

belief state enumeration [38, 52]. State enumeration considers all transitions that may

lead to the same state. The belief state is then computed using the standard hidden

Markov model (HMM) belief state update equations [3]. This involves summing tran-

sition probabilities from previous states to the current state. In practice, tractability

in this framework is achieved by computing an approximation to the true belief state,
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typically by limiting the number of states maintained. In contrast to belief state

enumeration, transition probabilties are not summed in the case of N-BFTE. This

corresponds to an instance of the Viterbi algorithm [30].

3.1.3 Encoding the PHCA Execution Semantics

A key to framing PHCA-based N-BFTE as a COP is the formulation of the constraints

R that capture the behavior and execution semantics of the PHCA, and the functions

F that map the constraints R to probability values that capture the uncertainty within

the PHCA models.

PHCA execution involves determining the consistency of state behavior constraints,

identifying enabled transitions from a current PHCA state, and taking those transi-

tions to determine the next state. In the following, nested parentheses are used to

represent levels of hierarchy in a state assignment. For example (On(Idle)) means the

state is in the "Idle" location within "On". Referring back to the PHCA example in

Figure 2-5, if at time t the PHCA state is (On(Idle)) and the transition guard con-

straint (command = TakePicture) is satisfied, and at time t+1 the state constraint

(shutter = moving) of the transition's target location is consistent, then the PHCA

state at time t+1 will be (On(TakingPicture)).

The following semantic rules apply to PHCA hierarchies:

" Full Marking of Descendent Start Locations: When a composite location

becomes marked, all of its start locations (subautomata) are marked. For ex-

ample, since "Initializing" is a descendent start location of the composite "On"

location (as indicated by small arrows in Figure 2-5), a PHCA in state "Off"

may transition to state (On(Initializing)).

" Hierarchical Composite Marking/Unmarking: A composite location should

be marked if any of its subautomata are marked, and unmarked if none of its

subautomata are marked. For example, in the camera model, marking the

"Idle" location necessitates marking the "On" location. Furthermore, the "On"
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location can not be marked if the camera is not initializing, idle or taking pic-

ture.

The semantic rules for PHCA execution are captured via constraints presented be-

low. In particular, there are two types of full marking constraints that impose the

conditions for a full marking. One for encoding the initial (at t=O) PHCA state as

probabilistic full markings of locations, and the other for encoding full markings of

transition targets. The first imposes the full marking for t = 0, based on the initial

state distribution Pe. The second defines marking for all t > 0, when transitioning

from one state to the next. Each of these is introduced in the next section, under

T=0 constraints and transition constraints, respectively.

The complete set of constraints R within the COP formulation are divided into

four categories:

" Consistency constraints specify the consistency of PHCA state constraints

and transition guard conditions with commands and observations.

" T=O constraints limit the initial PHCA states to a probabilistic distribution

on start states. These constraints are applicable to the initial time t = 0 only.

" Transition constraints encode the semantics of consistent transitions and

probabilistic choice among consistent transitions, as well as identification and

full marking of transition targets.

" Marking constraints encode the conditions for marking primitive and com-

posite PHCA locations, including the hierarchical composite marking rule, stated

above.

3.1.4 Consistency Constraints

The PHCA execution semantics builds upon the consistency of state constraints and

transition guards, with respect to the current state marking, commands and obser-

vations. Variables ET, with domain {Consistent, Inconsistent}, are introduced to
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indicate the consistency of each state constraint and transition guard at each time

point. Note that these consistency variables are introduced in order to facilitate the

encoding of more complex constraints, described in the following sections. In partic-

ular, using these variables within a more complex constraint reduces the number of

variables that appear in the scope of that constraint.

Consistency constraints are generated for all locations with associated state con-

straints and for all transitions that have guards.

State Constraint Consistency:

These constraints encode the consistency of PHCA state constraints with respect to

the current state marking and observations, for each time t.

Vt E {0..N},VL E E : Statet = Consistent <- C(L)' (3.5)

where State' E E is a variable introduced to denote the consistency of state con-

straints with observations. The constraint in Equation 3.5 is instantiated for each

primitive and composite PHCA location L that has a behavioral state constraint

C(L) (see Definition 2-1). Recall that C(L) is a propositional logic sentence that

specifies the behavior of the PHCA when location L is marked. Referring to the cam-

era model in Figure 2-5, the "Off' location has a conjunctive constraint C("Off")

= (powerin = zero A shutter = closed).

The state constraint consistency, in Formula 3.5, is a hard constraint, that is, it

maps to tuples with probability value 1.0 if the tuples are consistent with the con-

straint; otherwise, the tuple has value 0.0. The tuples of the constraint are generated

by enumerating sets of assignments to observable variables (interpretations) that are

models of the state constraint, that is, they satisfy the state constraint. Table 3.1

shows the tuples of the constraint with corresponding probability values for the "Off'

location of the camera model. Note that the domains of the powerin and shutter

variables are {zero, nominal} and {open, closed, moving}, respectively.
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Statet
Consistent
Inconsistent

Table 3.1: State

Guardt.
Consistent
Inconsistent

Table 3.2: Guard
for generic time t.

powerin shuttert

{zero} {closed}
{ nominal} {open, moving}

consistency for camera "Off" location,

commandt
{TakePicture}
{ TurnOn, TurnOff, Reset, No-command}

consistency constraint for T = (Initializing

Probability
1.0
1.0

for generic time t.

Transition Guard Consistency:

Similar to the state constraints, the transition guard consistency constraints, given

by Formula 3.6, encode the consistency of transition guards with respect to issued

commands and observations.

Vt E {0..N - 1},VT E T : Guard'= Consistent * C(r)' (3.6)

C(r) is a propositional logic sentence, referred to as C[A] in Definition 2-1. Within

the camera model, the commands TurnOn, TurnOff, TakePicture and Reset are all

transition guards. The consistency of a given transition guard with observations and

issued commands is a necessary, but not sufficient condition for that transition to be

taken. Consider the transition guard TakePicture, used to transition from the Initial-

izing location to the TakingPicture location. This is given by C(Initializing -

TakingPicture) - (command = TakePicture). For each time t, this guard is

mapped to a constraint, as shown in Figure 3.2. In this example, the command

variable has the domain { Turn On, TurnOff, TakePicture, Reset, No-command}.

Mapping Propositional Formulae to Valued Constraints

For each consistency constraint, the constraint's tuples are generated by first convert-

ing the propositional sentences C(L) and C(T) to disjunctive normal form (DNF).

This form corresponds to a disjunction of conjunctive propositional clauses. Mod-
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els of the conjunctive clauses in the DNF sentence are equivalent to tuples of the

constraint that are associated with the assignments Consistent. Tuples associated

with Inconsistent assignments are generated by first negating the original proposi-

tional sentence, and then converting this negation into DNF from which the tuples

are derived as described.

For example, consider the state constraint C(L) = (X = a V Y = b), where the

domain of each of X and Y is {a, b}. This disjunctive clause is equivalent to a DNF

sentence, consisting of the two "conjunctive" clauses X = a and Y = b. Each of these

clauses is equivalent to a tuple associated with the assignment Consistent. That is,

X a is equivalent to the first tuple, in which the values of Y are not constrained.

Y b is equivalent to the second tuple, in which the values of X are not constrained.

In order to get the tuples associated with Inconsistent, the negation of X = a V Y = b

is first computed as not(X = a) A not(Y = b). This is a DNF sentence with a single

clause not(X = a) A not(Y = b). The clause maps directly to the tuple X = b and

Y = a, which is associated with the assignment Inconsistent.

3.1.5 T=O Constraints

The following four constraints apply only to the initial time T=0, and will be referred

to as T=O Constraints. These constraints enable the probabilistic marking of PHCA

start locations. More specifically, if the state constraint of a starting location is not

consistent with initial observations, it will not be marked; otherwise, it will be marked

probabilistically. On the other hand, non-starting locations are initially unmarked.

For each marked composite location, all of its descendent start locations must be

marked, recursively, based on the full marking semantics discussed previously. This

initial marking of start states is probabilistic.

T=O Model Marking:

This constraint specifies that each top-level PHCA is started at t = 0, and is formu-

lated as:

55



1

PHCA Models

CameraModel() PowerModel

EngineModel() PropulsionModel()

GuidanceSoftwareModel()

Figure 3-1: PHCA models for spacecraft subsystems.

Camera0 Engine0 GuidanceSoftware0 Propulsion0 Power0 Probability

Marked Marked Marked Marked Marked 1.0

Table 3.3: Model Marking at T=0

VC E (PHCAModels) : C = Marked (3.7)

In Constraint 3.7, PHCA Models refers to a set of individual PHCA that model

top-level subsystems. For example, a spacecraft model may contain a PHCA model

for each of its five subsystems (Figure 3-1. The camera model in Figure 2-5 is one

instance of a PHCA model.

For the example in Figure 3-1, Table 3.3 specifies the constraint that all PHCA

models are marked at t = 0. Note that the models will stay marked for t > 0 as

long as at least one location (subautomaton) within the model is marked. This holds

because, based on the hierarchical composite marking semantics, the PHCA model

will be marked.

T=O Unmarking:

This constraint specifies that all non-start PHCA locations are Unmarked at t = 0.

VC E Ec,VL E (Subautomata(C) - (C)) : Lo = Unmarked (3.8)

For the camera model in Figure 2-5, each of the locations TakingPicture, Idle, ProcessingIm-

age, CorruptImage and ValidImage are initially unmarked.
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Camera' Starto f Starto Start oCn Probability
Marked Enabled Enabled Enabled 1.0

Unmarked Disabled Disabled Disabled 1.0

Table 3.4: T=0 Full Marking constraint for the camera in Figure 2-5.

T=O Full Marking:

This constraint enforces the initial full marking of composites, that is, the start

locations of each marked composite automaton are marked. This is formulated as:

VC E Ec : [Co = Marked 4 (VL E E(C) : Start = Enabled)]

A[C =Unmarked 4 (VL E O(C) : Start = Disabled)] (3.9)

In this formulation, StartL is a variable associated with start location L, taking on

values from the domain {Enabled, Disabled}. This variable is introduced because start

locations can not be explicitly marked, since their state constraint may be violated

at t = 0. Instead, a Start variable associated with each start location is enabled.

This variable is then used to probabilistically mark those start locations that have

consistent state constraints, according to the initial state distribution for the PHCA.

The probabilistic marking of start locations is implemented by the initial probabilistic

marking constraint, introduced in the next section.

Constraint 3.9 is instantiated for each composite location that contains start lo-

cations. As an example, consider the PHCA for the camera model. This PHCA

constitutes a composite location containing start subautomata Off, On and Broken.

The On location itself is a composite location that contains the subautomaton Ini-

tializing. Likewise, the ProcessingImage location has a single start location. Table

3.4 shows Constraint 3.9 instantiated for the camera model.
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T=O Probabilistic Marking:

This constraint encodes the initial state probabilistic marking Pe of start locations

. It states that if a location is marked, then its Start must be enabled, and its state

constraint must be consistent with observations. This constraint is formulated as:

VC E Ec,VL E E(C) : L = Marked -

(Starto = Enabled A State = Consistent) (3.10)

Note that Constraint 3.10 is an implication rather than equivalence, since a location

may be unmarked probabilistically even if its state constraint is consistent and its

Start is enabled.

Constraint 3.10 is a soft constraint, in which tuples are mapped to a full range

of probability values E [0..1]. Each model M of Constraint 3.10, with Scope(M)

={L0 , Start2, State2}, is mapped to a probability value using the valuation function

FO. This captures the probabilistic marking of start locations. Essentially, if the

state constraint of a start location L is consistent, then L is marked with probability

Pe(L), and unmarked with probability 1 - Pe(L):

Prob( L 0 = Marked) if Condition1

F0 (M) 1 - Prob(LO = Marked) if Condition2 (3.11)

1.0 otherwise

where Condition1 is:

(LO = Marked) A (Starto = Enabled) A (State2 = Consistent) (3.12)

and Condition2 is:

(LO = Unmarked) A (Startt = Enabled) A (State2 = Consistent) (3.13)

58



C1
0.7

P1 P2

Figure 3-2: PHCA example with initial start probabilities.

As an example, consider the PHCA in Figure 3-2 which shows the initial prob-

abilities of all start states (Pe in Definition 2-1). Constraint 3.10 for this PHCA is

instantiated for each of the start locations P1, C2, P3 and P4. Table 3.5 shows this

instantiation for location C2.

3.1.6 Transition Constraints

Transition constraints encode the necessary conditions for enabling transitions, choos-

ing probabilistically among consistent transitions, as well as for identifying and mark-

ing transition targets. PHCA transitions have the following properties, which are

captured by the transition constraints:

First, PHCA have probabilistic, guarded transitions that originate from primitive

C20  Startc2  Stateo2  Probability
Marked Enabled Consistent 0.8

Unmarked Enabled Consistent 0.2
Unmarked Disabled Consistent 1.0
Unmarked * Inconsistent 1.0

Table 3.5: T=0 Probabilistic Marking example. The * notation indicates the full
domain of the variable; in this case {Enabled, Disabled}
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Figure 3-3: Transitions disallowed from composite PHCA locations.

locations, as specified by PT in Definition 2-1. For example, in the camera model,

there is a guarded transition from primitive location Initializing with guard TakePic-

ture. It transitions to TakingPicture with probability 0.95, and transitions to Broken

with probability 0.05. Note that the dotted transition from the On location is a

shorthand for transitions from each of On's subautomata to Broken. The general

form of a PHCA transition is a tuple (Source, Guard, Targets, Probability). True is

considered to be a special case of a transition guard that is always satisfied. Recall

that the consistency of the guards was encoded through Constraint 3.6.

Second, PHCA transitions are not allowed to originate at composite locations.

This restriction is imposed in order to offer a simpler semantics. However, disal-

lowing transitions from composite locations is not limiting, since a transition from

a composite location can always be encoded as a set of transitions from primitive

locations that are within the composite location. This is illustrated in Figure 3-3.

Third, each PHCA transition may have multiple targets, as illustrated by Figure

3-4. This property is in contrast to previous models, such as probabilistic concurrent

constraint automata [53). Multiple targets offer an advantage for modeling complex

behavior, as discussed earlier.

Consider the PHCA in Figure 3-4. Multiple targets are marked simultaneously

to model nested concurrent behaviors (such as targets2). Thus, for instance, if T2 is

enabled (with probability2), then all locations in targets2 must be marked. Likewise, if

TI is enabled (with probabilityl), its locations within targetsl must be marked. If the
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TI <sourcel,guardl,targetsl, targetsl

T2 <sourcel, guard2, targets2, probabllity2>

Figure 3-4: PHCA transitions with multiple targets.

state constraint of a target is violated, the transition can not be enabled. Therefore,

the semantics of marking multiple, possibly nested targets is modeled as a logical

AND, representing conjunction of marked targets. This is captured by the transition

target marking constraints, as well as the full marking constraints, presented in the

next section.

Finally, making a probabilistic choice among transitions that originate from a

primitive source location corresponds to choosing exactly one consistent transition

from that source. Therefore, for each primitive location, probabilistic choice is en-

coded as an exclusive OR (XOR) among the location's outgoing transitions. Note

that nested choice constructs may be used in the RMPL specification of the models,

as described in [52]. In this case, the choice constructs are mapped into a probabilistic

AND-OR tree, which is transformed using distribution into a two-level tree. The root

node of the two-level tree represents probabilistic choice among a set of transitions,

and the leaves represent the targets of each transition branch. The net effect is that

a location can have multiple orthogonal sets of mutually exclusive transitions. This

compilation step is presented in further detail in [52].

Figure 3-5 shows the logical mapping of transition choice, target marking, and tar-

get full marking, reflecting the semantics in [52]. The following starts by introducing

the probabilistic choice constraints.
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T1 <sourcel,guardl,targetsl, targets1

T2 <sourcel, guard2, targets2, probablity2>

Figure 3-5: Semantics of transition choice, target marking, and composite full mark-
ing.

Probabilistic Transition Choice:

This constraint encodes the probabilistic choice among transitions from each primitive

location as an exclusive OR constraint, given by:

Vt E {O..N - 1},VP E Ep: (]T E T: Source(T) = P ->

[Pt = Marked 4 (]T E {T|Source(T) = P} : Tt = Enabled

A(VT' E ({T|Source(T) = P} - {T}) : T't  Disabled))]

[Pt =Unmarked 4 (VT E {T|Source(T) = P} : T= Disabled)]) (3.14)

This constraint specifies that a single transition is enabled among the possible out-

going transitions of a primitive location P, if and only if the P is marked.

Each model M of this constraint, with Scope(M) ={Pt} U {Tt|Source(T) = P},

is mapped to a probability value using the function:

FT ( M ) = Prob(Ti ) if (]T t : Tt = Enabled) (3.15)
1.0 otherwise

The probability of each tuple corresponds to the probability of the enabled transition

that appears in that tuple.

The following example in Figure 3-6 shows a probabilistic choice between two

transitions for a section of the PHCA in Figure 2-5. In order to encode this prob-

abilistic choice, a location variable Of ft, with domain {Marked, Unmarked}, is
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0.95

Figure 3-6: PHCA with two probabilistic transitions.

Off, T1V T2' Probability
Marked Enabled Disabled 0.95
Marked Disabled Enabled 0.05

Unmarked Disabled Disabled 1.0

Table 3.6: Probabilistic transition choice constraint.

first introduced for time t. Then, auxiliary variables T1t and T2', with domain

{Enabled, Disabled}, are introduced for transitions TI and T2, respectively.

The probabilistic transition choice constraint is instantiated at time t for the choice

among the two transitions TI and T2:

Of f t = Marked * ((]T E {T1,T2}: T t = Enabled)

A(VT' E ({T1, T2} - {T}) : T4 = Disabled)) A
Off t - Unmarked a (VT E {T1, T2} : T' = Disabled) (3.16)

This logical formula is compiled into a set of allowed tuples M, with associated

probability values obtained using the function FT(M) above, as shown in Table 3.6.

Probabilistic choice is made among consistent transitions, as encoded by the fol-

lowing constraint.

Transition Consistency:

This constraint encodes the necessary, but not sufficient conditions for taking a consis-

tent transition. This includes marking the transition's source location, and achieving

consistency of the transition's guard condition, given the current state marking and
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rt Initializingt  Guardt Probability
Enabled Marked Consistent 1.0
Disabled * * 1.0

Table 3.7: Transition constraint for the (Initializing --+ TakingPicture) transition,
represented by variable T at time t. Each * represents the full domain of the variable
in the corresponding column.

issued commands.

Vt E {0..N -1},VE T: T t = Enabled=-

(Source(T)t = Marked A Guardt = Consistent) (3.17)

Table 3.7 lists the allowed tuples of Constraint 3.17 for the transition (Initializing -

TakingPicture). Similar constraints are generated for each PHCA transition.

The transition constraint in Formula 3.17, along with the guard consistency and

transition choice constraints, specify that probabilistic choice is made among consis-

tent transitions from marked primitive locations.

So far, the above constraints have not encoded the marking of transition targets,

and in particular the full marking of composite targets. These are encoded through

the constraints presented in the following sections. The next section first motivates

the encoding of target marking constraints, and discusses the different categories of

PHCA target locations that must be handled by these constraints.

Direct and Indirect Targets

As illustrated in Figure 3-4, there are two kinds of transition targets. The first type

is a direct target, such as those in the set targets 1 of Figure 3-4. The second type

is an indirect target, such as the start locations that will be marked through the full

marking of their composite parent.

The distinction between direct and indirect targets is made because a direct target
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is marked by an enabled transition, while an indirect target is marked by its com-

posite parent (by full marking). The full marking constraint must assure recursive

propagation of a full marking through nested parallel processes (start locations) that

are marked.

Consider the explicit marking of direct transition targets by the following formula:

Vt E {O..N - 1},VT E T :

Tt = Enabled => (VL E Targets(T) : I0±) = Marked) (3.18)

While this constraint enforces marking, it does not enforce a target to be unmarked

if there is no enabled transition to it. Therefore, rather than using Constraint 3.18

above, a set of constraints is introduced for specifying the marking and unmarking of

each PHCA location. This set of constraints is referred to as Marking Constraints,

to be discussed in Section 3.1.7. Marking constraints take into consideration:

1. The state constraint consistency of transition targets with commands and ob-

servations, as encoded by Formula 3.5. This consideration is important because

a target with inconsistent state constraint can not be marked, and a transition

to an inconsistent target can not be enabled.

2. Whether a direct transition to a target is enabled. The identification of direct

transition targets is encoded by the Target Identification constraint presented

below.

3. Whether the target has an enabled Start. That is, whether the target is marked

by its composite parent. This is encoded by the Target Full Marking constraint

presented below.

Refer to Figure 3-7 for an example of nested start locations that are indirect

targets. If a transition to location C1 is enabled, C1 is identified as a direct transition

target (Target Identification), and Target Full Marking of C1 enables the Start of
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C1

Figure 3-7: Nested start locations; each start location is indicated by a small arrow.

locations P1 and C2. Once the Start of location C2 is enabled, C2 is considered

an indirect target; therefore, the Target Full Marking constraint recursively enables

the Start of P3 and P5. Once Target Identification and Target Full Marking identify

direct targets and enable the Start of indirect targets, the Marking Constraints use

this information to encode the marking and unmarking of each location, based on the

considerations listed above.

The formulation of the Target Identification and Target Full Marking constraints

is presented below, followed by the formulation of Marking Constraints in the Section

3.1.7.

Target Identification:

The following constraint enforces that a target may be enabled (transitioned to) if

and only if at least one of the transitions to the target is enabled. This is formulated

as:

Vt E {0..N - 1}VL E E : TransitionTo(tl) = Enabled <

(-T E {TITarget(T) = L} : Tt = Enabled) (3.19)

Note that TransitionToL is a variable introduced for each PHCA location that is a

direct transition target, as illustrated in Figure 3-10.
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T1

start(P) P

T2
T3

Figure 3-8: Target Identification example. P is a primitive start location; T1, T2 and
T3 are transitions; start(P) indicates that P is a start location.

For example, consider the primitive location P in Figure 3-8. The instantiation

of Constraint 3.19 generates the mutually exclusive tuples in Table 3.8. T1, T2 and

T3 are variables introduced for each of the incoming transitions of P.

Note that the target identification constraint is instantiated only for PHCA lo-

cations that have incoming transitions, and thus are direct targets. The Target Full

Marking constraint, presented in the next section, incorporates the identification of

indirect targets. Indirect targets are start locations that are enabled through the full

marking semantics discussed in Section 3.1.3.

Target Full Marking:

This constraint captures the full marking semantics of composite targets, by recur-

sively enabling the Start of each of the composite location's subautomata. Unlike the

T=O Full Marking constraint in Formula 3.9, for t > 0 the marking of a composite

location C does not enable the Start of its subautomata. Otherwise, all the start

locations of C would be enabled as long as C is marked. Therefore, unlike T=O full

TransitionTo( 1 ) T1V T2t  T3' Probability
Enabled Enabled * * 1.0
Enabled Disabled Enabled * 1.0
Enabled Disabled Disabled Enabled 1.0
Disabled Disabled Disabled Disabled 1.0

Table 3.8: Target identification constraint. Each * represents the full domain of the
variable in the corresponding column.
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TransitionToc1  Startc1  Start 1 Startt2  Probability
Enabled * Enabled Enabled 1.0
Disabled Enabled Enabled Enabled 1.0
Disabled Disabled Disabled Disabled 1.0

StarttC2  Startt4  Starttp Probability
Enabled Enabled Enabled 1.0
Disabled Disabled Disabled 1.0

Table 3.9: Full marking of C1 and C2 from Figure 3-7. Each * represents the full
domain {Enabled, Disabled}.

marking, target full marking encodes the following. The start locations of a com-

posite location C are enabled if and only if a transition to C is enabled, or if C is

an enabled start location. Furthermore, the start locations of C are disabled if and

only if all transitions to C are disabled, and C is not an enabled start location. This

formulation is given by:

Vt c {1..N},VC c Ec:

[(VL E 0(C) : Start= Enabled) e

(TransitionToc = Enabled V Startc Enabled)]A

[(VL c 0(C) : Startt = Disabled) e

(TransitionTot = Disabled A Startc Disabled)] (3.20)

As illustrated by the scenario in Figure 3-7, full marking is applied to both direct com-

posite targets and composites with enabled Start (that is, they are enabled start loca-

tions). This is captured in Formula 3.20 through assignments to the TransitionToc

and Startc variables.

For example, Tables 3.9 list the constraint tuples generated for the PHCA in

Figure 3-7, for each of the Cl and C2 composite locations. C1 is assumed to be both

a direct target and a start location. On the other hand, C2 is just a start location

(an indirect target).

Note that for the special case of an indirect target location, a TransitionTo
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variable is not generated. Location C2 in the Table 3.9 example demonstrates this

case. The assignment TransitionTo = Disabled can, therefore, be substituted by

true to simplify Constraint 3.20 to:

Vt E {1..N}, VC E Ec:

[(VL E O(C) : Startt = Enabled) 4 Startt = Enabled]

[(VL E G(C) : Start= Disabled) * Starts = Disabled] (3.21)

Building upon the Target Identification and Target Full Marking constraints, the

following section presents the constraints for marking the target locations.

3.1.7 Marking Constraints

The above constraints identify the enabled transitions and enforce the full marking

of targets; however, they do not encode the process of taking transitions. The target

marking constraints presented below encode this process based on the state constraint

consistency of a target, for both direct targets and start locations.

The marking constraints are instantiated for each location in a PHCA. The fol-

lowing sections present three types of marking constraints: Primitive Target Marking,

Composite Target Marking, and Hierarchical Composite Marking/Unmarking (recall

Section 3.1.3). Each of these constraints is formulated below.

Primitive Target Marking:

This constraint formulates the marking and unmarking of each primitive location,

based on whether its state constraint is consistent, and whether it is a direct target

or an indirect target. Recall that an indirect target is a start location of a composite.

The primitive target marking constraint encodes that a primitive location can be

marked if and only if: 1) its state constraint is consistent with commands and ob-

servations AND 2) either a transition to it is enabled OR its Start is enabled by full

marking of its composite parent. Otherwise, the location is unmarked.
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Figure 3-9: Marking example scenario.

This constraint is formulated as:

Vt E {1..N},VP E Ep : [Pt = Marked

(TransitionTop = Enabled V Start' = Enabled) A Statep = Consistent]

[Pt =Unmarked # (TransitionTop = Disabled A Startp = Disabled)]

(3.22)

The case t = 0 is not included in Constraint 3.22, because targets do not exist in the

initial state (t=0). However, the marking of locations at time t = 0 is encoded by

the T=0 Constraints presented previously in Section 3.1.5.

To illustrate primitive target marking, consider the scenario in Figure 3-9: Transi-

tion1 is enabled, thereby enabling the full marking of C1. This means that, in addition

to identifying C1 as a direct transition target (see Target Identification constraint),

the Start variables to locations P1 and C2 will be enabled by the Target Full Mark-

ing constraint. Suppose that it is possible to mark C1, because its state constraint is

consistent; then, P1 will be marked via the Primitive Marking constraint.

Location P1 in Figure 3-9 is the special case of an indirect target with start

location. Therefore, Constraint 3.27 is instantiated to generate the allowed tuples

listed in Table 3.10.
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P11 Start t Statetp, Probability
Marked Enabled Consistent 1.0

Unmarked Disabled * 1.0

Table 3.10: Marking of primitive location P1 in Figure 3-9.

Composite Target Marking:

This constraint formulates the marking and unmarking of each composite location.

Similar to the primitive case, marking of a composite location depends on the con-

sistency of its state constraint with commands and observations, and whether it is a

direct target or a start location. However, unlike the primitive case, a composite loca-

tion has the added requirement that it must be marked when one of its subautomata

is marked. The composite marking constraint is formulated as:

Vt E {1..N},VC E Ec : [Ct = Marked => Statec = Consistent]

[C = Marked <= (TransitionToc = Enabled V Startc = Enabled)

AStatec = Consistent]

A[Ct =Unmarked => (TransitionToc = Disabled

AStartc = Disabled)] (3.23)

This is a "weaker" version of the primitive target marking constraint (Formula 3.22),

which ensures consistency with the hierarchical composite marking/unmarking con-

straint presented in the next section. The weakening of Constraint 3.23 is achieved by

using implication, as opposed to the equivalence in the primitive marking constraint

3.22.

As an example of composite marking, consider the PHCA in Figure 3-9. The com-

posite marking constraint is instantiated for each of locations C1 and C2; Table 3.11

lists the tuples that are models of each constraint instance. Location C1 is a direct

transition target. On the other hand, C2 is both a transition target and a start loca-

tion.
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C1t TransitionTotc1  Statetc Probability
Marked * Consistent 1.0

Unmarked Disabled * 1.0

C2t TransitionTotc2 Startc2 StateC2 Probability
Marked * * Consistent 1.0

Unmarked Disabled Disabled * 1.0

Table 3.11: Composite marking of the C1 and C2 locations in Figure 3-9. Each *

represents the full domain of the variable in the corresponding column.

Consider the particular scenario in Figure 3-9, in which Transition1 is enabled.

This corresponds to TransitionToci = Enabled in Table 3.11, which is consistent

with the tuple in the first row of Cl's constraint. If, furthermore, the state constraint

of C1 is consistent, the tuple is consistent and thus the constraint is satisfied. On

the other hand, if the state constraint of C1 is not consistent with some observations

or commands, then in order for the constraint to be satisfiable, Transition1 must be

disabled. This demonstrates that the constraint will enforce the enabling of those

transitions for which the targets can be marked.

The composite marking constraint alone may not necessarily determine the mark-

ing and unmarking of composites. For example, if both TransitionTo and Start are

disabled and State is consistent, the first two tuples of C2's constraint in Table 3.11

will be satisfied. The following section introduces the constraint for incorporating the

hierarchical semantics of PHCA, which will further restrict the composite marking.

Hierarchical Composite Marking/Unmarking:

This constraint encodes how the marking and unmarking of each composite location is

affected by the state of its subautomata, as discussed in Section 3.1.3. This constraint

complements the full marking constraints that encode how marking of a composite

location affects the marking of its subautomata (Constraints 3.9 and 3.20).
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Hierarchical marking/unmarking is formulated as:

Vt e {0..N},VC c Ec :

[C' Marked * (]1L E Subautomata(C) : L' = Marked)|A

[C' Unmarked 4 (VL E Subautomata(C) : Lt = Unmarked)] (3.24)

Subautomata(C) is the set of locations that are the children of C. Constraint 3.24

specifies that a composite location is unmarked if and only if all of its subautomata

are unmarked; furthermore, a composite location is marked if and only if at least one

of its subautomata is marked.

Referring back to the example scenario in Figure 3-9, Constraint 3.24 is instanti-

ated for each of locations C1 and C2. Table 3.12 shows the mutually exclusive set of

tuples for each instantiation of the constraint.

Recall from the discussion in the previous section that the first two tuples of the

composite marking constraint for C2 in Table 3.11 are satisfied in case TransitionTo

and Start are disabled and State is consistent. Then, the hierarchical constraint for

C2, shown in Table 3.12, enforces the marking or unmarking of C2 based on the

marking of its subautomata.

C1t  Plt P2' C2 Probability
Marked Marked * * 1.0
Marked Unmarked Marked * 1.0
Marked Unmarked Unmarked Marked 1.0

Unmarked Unmarked Unmarked Unmarked 1.0

C2' P3t  P4t P5 t  Probability
Marked Marked * * 1.0
Marked Unmarked Marked * 1.0
Marked Unmarked Unmarked Marked 1.0

Unmarked Unmarked Unmarked Unmarked 1.0

Table 3.12: Hierarchical composite marking/unmarking of the C1 and C2 locations in
Figure 3-9. Subautomata(C1) = {P1,P2,C2} and Subautomata(C2) = {P3,P4,P5}.
Each * represents the full domain of the variable in the corresponding column.
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3.1.8 Special Cases of Marking Constraints

To develop a compact encoding for the Marking Constraints, PHCA locations are

divided into four categories. Figure 3-10 shows these categories for both primitive

and composite locations, in the left and right columns, respectively. In the first case,

a location is both a direct target of one or more transitions, and a start location of a

composite automaton. This case is shown in Figure 3-10(a) for a primitive location P

and a composite location C. Figures 3-10(b) and 3-10(c) show special cases of 3-10(a)

in which the location is a direct target but not a start, and only a start but not a

direct target, respectively. Finally, Figure 3-10(d) is the case in which a location is

neither a direct target nor a start location. This last case does not hold for primitive

locations; however, a composite location of this category is possible, since it can get

marked through the hierarchical composite marking/unmarking semantics discussed

in Section 3.1.3.

The primitive and composite target marking constraints, formulated above, can

be instantiated for all categories of locations shown in Figure 3-10. However, more

compact encodings of the primitive and composite marking constraints can be ob-

tained for the special cases of locations in Figure 3-10 (b), (c), (d). The following

sections begin by discussing the two special cases of the primitive target marking

constraint specified in Formula 3.22.

Primitive Marking Case 1: direct target, non-start location This case is

illustrated in the left column of Figure 3-10(b). The variable Start is not generated

for this case of non-start location. Constraint 3.22 is then simplified by substituting

Start p = Disabled with true and similarly Start p = Enabled with false:

Vt E {1..N},VP E p: [P' = Marked *

(TransitionT ot, Enabled A Statet = Consistent)]

Pt[Pt Unmarked 4 (TransitionTot = Disabled)] (3.25)

This captures the desired semantics that targets of enabled transition must be marked
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Primitive Location
Cases:

Composite Location
Cases:

start(C)

start(P) start(C)

Figure 3-10: Categories of PHCA locations: (a) direct target and start location; (b)
direct target and non-start location; (c) indirect target and start location; (d) indirect
target and non-start location. Category (d) is possible only for composite locations.
P refers to a primitive location; C refers to a composite location; TI refers to a
transition; start refers to a start location.
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(AND constraint), otherwise the transition can not be enabled. To see this, Constraint

3.25 can be broken up into the following two formulae:

Vt E {1..N},VP E p : Pt = Marked 4 TransitionTot = Enabled
P (3.26)

Vt E {1..N},VP c E p : Pt = Marked * Statep = Consistent

Primitive Marking Case 2: indirect target, start location

This case is illustrated in the left column of Figure 3-10(c). The variable Tran-

sitionTo is not generated for this location, since it is not a direct target of a tran-

sition. Similar to special case 1, the Constraint 3.22 is simplified by substituting

TransitionTop = Disabled with true and TransitionTop = Enabled with false:

Vt E {1..N},VP E E p: [Pt = Marked 4

(Startt = Enabled A State, = Consistent)]

A[Pt = Unmarked e

Startt = Disabled] (3.27)

Note that this captures the semantics that all enabled start locations must be marked.

This corresponds to the AND semantics for the marking of start locations, as shown

in Figure 3-5.

The following sections discuss special cases of the composite target marking con-

straint, specified in Formula 3.23.

Composite Marking Case 1: direct target, non-start location

This case is illustrated in the right column of Figure 3-10(b). Similar to the

primitive location case, the variable Start is not generated for a non-start composite

location. Substituting Startc = Disabled with true and Startc = Enabled with false
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simplifies Constraint 3.23 to:

Vt E {1..N},VC E EC : [Ct = Marked =# Statet = Consistent]

[C = Marked -= (TransitionToc = Enabled A Statet = Consistent)]

[C = Unmarked =>' TransitionToc = Disabled] (3.28)

Note that the third term

[Ct = Unmarked => TransitionTo' = Disabled]

of Constraint 3.28 encodes unmarking of a composite location as an implication spec-

ifying that all transitions to it are disabled; this is equivalent to specifying that

enabling a transition to the composite location implies the marking of that location.

This effectively encodes the deterministic AND constraint for marking the targets of

each enabled transition.

Composite Marking Case 2: indirect target, start location

This case is illustrated in the right column of Figure 3-10(c). The variable Transi-

tionTo is not generated for this location, since it is not a direct target of a transition.

Substituting TransitionToc = Disabled with true and TransitionToc = Enabled

with false simplifies Constraint 3.23 to:

Vt E {1..N},VC E Ec : [Ct = Marked =* Statec = Consistent]

S[C = Marked +- (Startc = Enabled A Statet = Consistent)]

Ct = Unmarked =* Start'c = Disabled]

(3.29)

The above constraint is analogous to the Constraint 3.28, which captures the case of

direct transition targets (Figure 3-10(b)).
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Composite Marking Case 3: indirect target, non-start location

This case is illustrated in the right column of Figure 3-10(d), and is only possible

for a composite location. Neither the TransitionTo nor the Start variables are gen-

erated for this location, since it is neither a direct target nor a start location. The

substitutions (TransitionToc = Disabled) - true, (TransitionToc = Enabled) -

false, (Startc = Disabled) - true and (Startc = Enabled) - false simplify Con-

straint 3.23 to:

Vt E {1..N},VC E Ec : C t = Marked =* Statec = Consistent (3.30)

3.1.9 Summary of Constraint Encoding

The above sections have presented the encoding of PHCA as a soft constraint opti-

mization problem (COP). For convenience, the constraints are also listed in Appendix

A. The encoding forms the basis for solving the N-Stage best-first trajectory enu-

meration (N-BFTE) problem for PHCA. The COP formulation includes consistency

conditions within the PHCA, and initial probabilistic markings of the PHCA, as well

as the transition and marking constraints that capture the semantics of the PHCA

models. Given a command sequence, solving the COP will simulate the PHCA mod-

els over several time steps, along with checking consistency with observations. Recall

that the COP formulation is performed offline, when observations and commands are

not yet available. Consistency checking necessitates the addition of constraints that

encode the assignments to observable and control variables. Therefore, the COP is

dynamically updated in the online phase as the time horizon shifts, and observations

become available. The updates to the COP are presented in Chapter 4, as part of

the online N-BFTE algorithm.

Recall from Figure 1-2 that, subsequent to the COP formulation in the offline

phase, the COP is decomposed into independent subproblems, in order to enhance

the efficiency of the online solution phase. This decomposition step is discussed in

the following section.
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C3

Cs
Starti Startc2

Figure 3-11: Hypergraph of a constraint network.

3.2 Tree Decomposition of the COP

The COP formulated in the previous sections forms a constraint network (X, D, C),

where C is a set of soft (valued) constraints. A constraint network can be represented

as a hypergraph, which is defined as follows [17].

Definition 3-3 (Hypergraph)

A hypergraph H= (V, S) is a structure that consists of a set of vertices V {vi, ..., on

and a set of subsets of these vertices S = {S1, ..., Sm}, where Si c V, called hyper-

edges. As opposed to a regular edge, a hyperedge can connect more than two variables.

The structure of a COP (X, D, C) can be represented as the hypergraph H = (X, S),

where X is the set of COP variables, and S is the set of scopes of the constraints in

C.

Figure 3-11 shows an example of a hypergraph for a COP based on some of the

constraints presented in the previous section. The vertices of the hypergraph corre-

spond to the variables {P, TI, T2, GuardTi, Command, TransitionToci, Startpi,

Startc2} and the hyperedges are the scopes of the constraints {C1, C2, C3, C4, C}.

Each Ci is an instance of a constraint formulated in the previous sections: C1 is an

instance of the transition guard consistency constraint in Formula 3.6, with scope
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{ Guardri, Command}; C2 is an instance of the probabilistic transition choice con-

straint in Formula 3.14, with scope {P, T1, T2}; C3 is an instance of the transi-

tion consistency constraint in Formula 3.17, with scope {T1, P, GuardTl}; C4 is

an instance of the target identification constraint in Formula 3.19, with scope {T1,

TransitionToci}, and C5 is an instance of the target full marking constraint in For-

mula 3.21, with scope {Trans'itionToci, Startpi, StartC21.

A hypergraph reflects the acyclic structure of the constraints in the COP. By

exploiting the structure of the constraints, the COP can be transformed into an

equivalent, acyclic instance. Such a transformation enhances the efficiency of solving

the COP, through the application of techniques like dynamic programming [17]. An

acyclic form of the COP can be obtained through tree decomposition [24, 31] of the

COP:

Definition 3-4 (Tree Decomposition)

A tree decomposition for a COP (X, D, C) with variables X, domains D and valued

constraints C is a triple (T, X, A), where T = (N, E) is a rooted tree with nodes N

and edges E, and the labeling functions X(ni) 9 X, and A(ni) C C are defined such

that:

1. For each constraint cj E C, there exists exactly one node ni E N such that

cj E A(ni). For this ni, var(cj) C X(ni) (covering condition);

2. For each variable xi E X, the set {nj c N I xi c X(n)} of nodes labeled with

xi induces a connected subtree of T (connectedness condition).

Figure 3-12 shows a tree decomposition of the COP hypergraph in Figure 3-11. The

tree decomposition results in an acyclic COP (X, D, C'), where C' is obtained by

composing the constraints in A(ni):

C'= U ( C) (3.31>
njEN CiEA(ni)
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ni {P, T1, T2, Guardn}

{ C2, C3}

{ T1, TransitionToci, { Guardri, Command}
Startpi, Startc2} {Ci
{C4, C5}

12 13

Figure 3-12: A tree decomposition of the hypergraph in Figure 3-11.

The operator ( in Equation 3.31 (see Section 3.1.1) joins the constraints associated

with each tree node, while multiplying the values of each pair of joined constraint

tuples.

Recall that observations and commands are not available in the offline phase, when

tree decomposition is applied to the COP. As highlighted in the previous section,

the COP must, therefore, be dynamically updated in the online phase, in order to

incorporate assignments to observable variables. However, updating the COP in the

online phase does not affect the offline tree decomposition; since each observation

is a unary constraint over an observable variable Oi, it can be added to the tree

decomposition as a leaf child of any node ni for which O E X(ni) [47]. This means

that the constraint is inserted into the tree as a leaf of any node that includes O in

its set of variables. The implication of this is that the observations and commands

can be incorporated into the tree structure during the online phase.

Tree decomposition is revisited briefly in Chapter 4, in the context of the online

monitoring and diagnosis phase.

3.3 Summary of the Offline Phase

In summary, this chapter introduced the offline formulation of the N-Stage Best-

First Trajectory Enumeration (N-BFTE) problem, as a soft COP that encodes the
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PHCA models and their probabilistic execution semantics as valued constraints. The

application of tree decomposition to the COP was discussed. The next chapter builds

upon this offline formulation, by introducing the online PHCA-based monitoring and

diagnosis phase.
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Chapter 4

Online Phase: Best-First

Trajectory Tracking

The previous chapter introduced the offline encoding of PHCA models and their

execution semantics as a valued COP over a finite time horizon. The COP was

subsequently decomposed into a tree structure. Building upon this offline formulation,

this chapter presents the online monitoring and diagnosis process that enumerates and

tracks the most likely PHCA state trajectories within the finite time horizon. Figure

1-2 illustrates the online phase, which incorporates observations and commands into

the diagnosis process.

4.1 PHCA State Trajectories

Given a PHCA model, recall that N-BFTE is the problem of finding the most likely

trajectories of system state that are consistent with a sequence of observations, com-

mands, and the PHCA model within the N-Stage time horizon (Section 2.3).

In the offline phase, the N-BFTE problem was formulated as a valued COP that

encodes the simulation of PHCA models given commands, as well as the conditions

for consistency with observations within the time horizon. This encoding thus effec-

tively restricts the trajectories of PHCA state evolution. The possible evolutions of

PHCA states over the N-Stage horizon, as encoded by the valued constraints, can be
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represented as a Trellis diagram, shown in Figure 2-7(a). In the context of N-BFTE,

the Trellis diagram is unfolded into a branching tree, as shown in Figure 2-7(b). The

branches of this tree are the possible evolutions of PHCA state trajectories. Solving

the N-BFTE problem thus corresponds to finding the most likely branches of this

tree, as defined by Equation 2.1. Referring to the vision-based navigation scenario

in Figure 2-4 represents an example of most likely PHCA state trajectories. The

trajectories are found by updating and solving the tree-structured COP formulated

in the previous chapter. This is accomplished through the online N-BFTE process,

which is described in Section 4.2.

4.2 The N-BFTE Algorithm

The N-BFTE problem, formulated during the offline phase as a soft COP, is dy-

namically updated and solved during the online phase when new observations and

commands become available. The steps of the online N-BFTE process are given by

the pseudocode in Figure 4-1. First, the COP is updated as follows. New obser-

vations taken during runtime, as well as commands issued to the system are added

to the COP. As the time horizon shifts, observations and commands are truncated

accordingly. Furthermore, all initial constraints are removed from the COP. However,

in order to track the trajectories from the previous horizon, a new constraint is added

to the COP. This latter constraint restricts the set of initial states within the new

horizon. Finally, the updated COP is solved using an optimal constraint solver, and

the process repeats. The following discusses each step of the process in further detail.

Consider the initial time horizon [0..N]. During the first iteration of N-BFTE,

observations and commands are added to the COP as unary constraints with proba-

bility 1 (part 1.1 of Figure 4-1). These constraints will be referred to as the history of

observations H -t+N) and the history of commands H--t1+N-1) within the N-Stage

horizon. Each constraint within Ho and HC represents an assignment to observable

and command variables, respectively. For example, if a command TakePicture is is-

sued to the camera module at time t, the unary constraint commandt = TakePicture
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N-BFTE (COP, Traj(_-*+), H-t+N) Ht+N--1)) -- + Traj N+1)(i~l1K)' 0 'C (i~l.K)

1. Update the COP (X, D, V) to obtain COP' (X, D, V'):

1.1 If this is the first iteration of N-BFTE, then:
V1 = V U H -t+N) U H (-t+N-1)

0 C
Skip to step 2.

1.2 Shift the time horizon from (t - t + N) to (t + 1 -* t + N + 1)
by deleting observations O(M and commands C(M from constraints
Ho and HC.

1.3 Add new observations 0 (t+N+l) and commands C(t+N) to the COP:
Ht+1 -t+N+1)_O(t+N+1) U Ht+1-t+N)

H (t+1-+t+N) =C(t+N) U H(+1-+t+N-1)
C C

1.4 Remove the T=O Constraints if the horizon is shifted from t = 0,
and remove the Initial State Constraint (see 1.5) if t > 0.

1.5 o tacktrajctoies (t~t+N)1.5 To track trajectories Traj( K), constrain the initial state assignments

L(t+l) of Tra +N+1) to be consistent with S(t±) E aj ,(tt+N)
where each state represents an assignment to solution variables LE.
Add to V the Initial State Constraint:

(V L G E : L(t+l) A (Vi 1..K )7

with valuation function F, that maps each model M of this constraint
to a probability value given by:

F1 (M) = P ('S't) - PT(S~t1J't +M

if L(t+l) A St+) are consistent; 0 otherwise.

The set of states Si t)) denote the beginning states of Traj i=1 .
The probabilities P(S 't)) are obtained using the valuation function
Fo if t = 0, or through previous iterations of N-BFTE otherwise.

2. Enumerate and return the K most likely trajectories Traj (tl-tN+1) byJ(2 1.K)

solving the COP for sets of solution variables {L+,.., L N)} using
an optimal constraint solver.

3. Repeat.

Figure 4-1: Online N-BFTE process.
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n1

n2 13

n4

Figure 4-2: Addition of a unary constraint to the tree decomposition in Figure 3-12.

is added to the COP. This constraint generates a single tuple with value 1.

Recall that the COP generated in the offline phase was decomposed into a tree

structure (Section 3.2). Adding unary constraints does not alter the structure of the

COP, because the constraint can be added as a leaf node. This is illustrated in Figure

4-2 for the example presented in Section 3.2.

The COP is solved within the initial time horizon, after the addition of observa-

tions and commands. The solutions correspond to the K most likely trajectories, in

decreasing order of likelihood, defined by Equation 2.1. Figure 4-3(a) illustrates two

most likely trajectories found within the initial time horizon [to..t ]. Recall that the

branching tree represents evolutions of PHCA state trajectories.

As time progresses during the online solution phase, the N-stage horizon is shifted

from [t..t + N] to [t + 1..t + N + 1]. The history of observations and commands outside

the N-Stage horizon is truncated (part 1.2 of Figure 4-1). Deleting an observation

corresponds to setting the tuples of its unary constraint to all possible values allowed

by the domain of the observable variable. The commands are treated similarly. Fur-

thermore, shifting the time horizon requires the addition of any new observations and

issued commands (part 1.3 of Figure 4-1). This is accomplished as described above,

by adding a new unary constraint to the tree structure, if it does not exist already for

that observable variable, and by setting the tuple of the constraint to the observed

value, with probability 1.
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Figure 4-3: N-BFTE example. Each node represents a PHCA state (marking). A
trajectory is represented as a sequence of filled nodes. The dotted lines represent a
single-step shift of the time horizon.

In addition to incorporating new constraints for observations and commands, as

the time horizon is shifted, the T=0 Constraints (Section 3.1.5) are removed (part

1.4 of Figure 4-1). Similar to observations and commands, these constraints can be

deleted by setting their respective tuples to all possible combinations of assignments.

In order to track the trajectories found from the previous iteration of N-BFTE,

a new Initial State Constraint (Section 3.1.5) is added. This constraint restricts the

start states at Time t + 1 to match the states of the enumerated trajectories within

the previous time horizon. This can be seen in Figure 4-3(b). As the time horizon

is shifted from [to..tn] to [ti..tn+1 ], the states at ti coincide. This means that the

initial states of the trajectories within the new horizon are fixed; however, the rest of

the trajectory is recomputed within the new horizon. The new trajectories will thus

effectively track the prior, while allowing the flexibility to regenerate the rest. This

accounts for delayed symptoms that may otherwise result in incorrect diagnoses, as

shown in Chapter 2 (Figure 2-6).
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The Initial State Constraint is formulated in part 1.5 of Figure 4-1. The scope

of this constraint is the initial location variables L, given a time horizon [t..t + N].

Since the scope of the constraint is fixed, the structure of the constraint can be

incorporated into the offline tree decomposition phase. Therefore, the online phase

need only generate the tuples and valuations of this constraint. As shown in Figure

4-1, each tuple of the constraint is mapped to a value given by function Fl. The value

of each initial state S in the new horizon is obtained by multiplying the probability

of the previous state S' from which S stems, by the transition probability from S' to

S. These values can be normalized across the number K of maintained trajectories.

Finally, the updated COP is solved using a decomposition-based optimal con-

straint solver, such as [48, 51, 47]. The complexity of these solvers are bound by

structural properties of the tree decomposition. Time complexity is exponential in

the maximum number of variables in a tree node, and space complexity is exponential

in the number of variables shared between two nodes [31]. This is in contrast to an

exponential complexity in the total number of COP variables.

Consider the vision-based navigation scenario in Figure 2-6. If a time horizon

[0..6] is used, trajectories will be generated starting from the (Nominal) state at

Time 0. Even though the number of trajectories is limited, the trajectory ending at

state (Sensor = Broken) at time 6 will have the highest probability based on the

delayed observation. Consequently, the state (Sensor = Broken) at Time 2 will be

maintained because it is part of the most likely trajectory within the horizon [0..6].

As the horizon is shifted to [1..7], the initial constraints IC for probabilistic marking

of the start states are removed from the COP (part 1.4 of Figure 4-1). Instead, the

trajectories from the previous horizon are tracked by adding a constraint that limits

the states at time 1 to correspond to those of the trajectories obtained within the

previous horizon (part 1.5 of Figure 4-1). The new constraint for initial states is a

valued constraint that maps each initial state to its probability value. The probability

of each initial state within the new horizon [1..7] is computed as the probability of

its previous state, multiplied by the transition probability to the new initial state, as

given in Figure 4-1.
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4.3 Parameter Selection

The two parameters of the diagnostic system presented above are the size N of the

time horizon, and the number K of maintained trajectories within each horizon. The

tradeoff between N and K is as follows. Increasing the number K of enumerated

trajectories solves the delayed-symptom problem by maintaining a larger number of

trajectories at each time step. In this case, N can be chosen to be small. On the other

hand, if a large time horizon is considered, even a single trajectory will be enough to

perform diagnosis in the presence of delayed symptoms.

The choice of parameters N and K is typically dependent on the properties of

the modeled domain and scenarios. For a system with many combinations of similar

failure states with high probability, the number of trajectories maintained will have

to be very large in order to be able to account for a delayed symptom that supports

an initially low probability state. For such systems, considering even a small number

of previous time steps gives enough flexibility to regenerate the correct diagnosis.

4.4 Summary

This chapter introduced the online monitoring and diagnostic process, called N-Stage

Best-First Trajectory Enumeration (N-BFTE). This process enumerates and tracks

the K most likely trajectories of system state, within an N-Stage time horizon, given

observations and issued commands within the horizon. This is accomplished by dy-

namically updating the tree-decomposed constraint optimization problem (COP),

which was generated in the offline phase. More specifically, the COP is updated by

shifting the time horizon, incorporating new observations and commands, and in-

serting constraints for tracking the trajectories found within the previous horizon.

Within each time horizon, the COP is solved using an efficient, decomposition-based

optimal constraint solver [47]. The next chapter presents the empirical validation of

this system on representative scenarios.
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Chapter 5

Results and Discussion

The monitoring and diagnosis system presented in the previous chapters has been

implemented and empirically validated. This chapter presents the results for repre-

sentative scenarios, including models of the MIT SPHERES satellites and the NASA

Earth Observing One (EO-1) spacecraft.

5.1 Implementation

The N-Stage Best-First Trajectory Enumeration (N-BFTE) capability, described in

the previous chapters, has been implemented in C++. Figure 1-2 shows both phases

of the N-BFTE process.

In the offline phase, the N-Stage soft COP is generated automatically, given a

PHCA model and parameter N. The implementation also supports the use of PCCA

models (see Appendix B), used within Livingstone-1 [54], Livingstone-2 [33], and

Titan [55] diagnostic engines.

To enhance the efficiency of the solution phase, tree decomposition techniques [24,

31] are applied to decompose the COP into independent subproblems, by exploiting

the structural properties of the constraints. Tree decomposition of the COP during the

offline compilation phase enables backtrack-free solution extraction during the online

phase [17]. The implementation supports the use of different decomposition packages,

in particular hypertree decomposition [24], bucket elimination [19], and TOOLBAR
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[34] which provides several decomposition schemes. Note that using TOOLBAR in

the context of this work requires mapping the VCSP to a Weighted CSP [34].

The online monitoring and diagnosis process uses both the COP formulation and

its corresponding tree decomposition, as shown in Figure 1-2. The online phase

consists of a loop that implements the pseudocode in Figure 4-1 of Chapter 4. At

each iteration of the loop, the updated COP is solved using an implementation of the

decomposition-based constraint optimization algorithm in [47].

The following sections present the demonstration scenarios and empirical valida-

tion results.

5.2 Demonstration Scenarios

The N-BFTE capability has been validated on several scenarios, which are discussed

in this section. First, consider the vision-based navigation scenario introduced in

Chapter 1. The diagnoses generated for this scenario were presented in Chapter

2. Table 5.1 shows the size of the COP in terms of the number of variables and

constraints generated in the offline phase. As expected, the size of the COP is linear

in the size of the time horizon N. Table 5.1 also shows the breakdown of the variables

into the three different categories: LE for location (solution) variables, A for PHCA

variables, and E for auxiliary variables introduced for capturing the PHCA execution

semantics (see Section 3.1.2). The distribution of variables across the three categories

indicates that E contains the majority of the variables.

For a time horizon with N = 6, the COP has 436 variables and 441 constraints,

and is solved online in ~ 1.5 sec.

The constraints that simulate the PHCA semantics have also been empirically

validated for a number of random PHCA models, such as the examples presented in

Chapter 3.

The diagnostic system has further been validated on models of two spacecraft:

the MIT SPHERES testbed, and the NASA Earth Observing One spacecraft.
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N Constraints Variables Lr A E
1 91 96 8 22 66
2 161 164 2 33 119
3 231 232 16 44 172
4 301 300 20 55 225
5 371 368 24 66 278
6 441 436 28 77 331
7 511 504 32 88 384
8 581 578 36 99 437
9 651 640 40 110 490
10 721 708 44 121 543

Table 5.1: Number of constraints and variables generated for the camera model in
Figure 2-5. N is the size of the time horizon.

5.2.1 SPHERES Global Metrology

SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satel-

lites) [45] is a formation flying upgradeable testbed, developed at the Space Systems

Laboratory at MIT, for demonstrating novel metrology, control and autonomy tech-

nologies on the International Space Station (Figure 5-1).

Two representative models [41] of the SPHERES Global Metrology subsystem

were used for demonstrating the capability in this work. The global metrology sub-

system provides measurements to update estimates of position and attitude for each

SPHERES satellite. This is accomplished by using ultrasonic time of flight measure-

ments from five external beacons to ultrasound sensors on the SPHERES surfaces to

Figure 5-1: The SPHERES testbed. [32, 45]
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determine attitude and position with respect to a global reference frame.

The following is an example of a complex interaction that may occur on SPHERES:

The thrusters on each SPHERES satellite generate significant ultrasonic noise when in

use, which interferes with the global measurement system. Therefore, the thrusters

must be turned off during global measurements. Otherwise, the signal from the

beacons will be corrupted and the global measurement will be unreliable.

Modeled SPHERES components include beacons, sensors, ultrasound signals,

global measurements, and thrusters that may interfere with the ultrasound signals,

possibly causing failures. These models are described in [41].

The first model (SPHERES 1) consists of 5 components, and the second model

(SPHERES 2) consists of 18 components. The results are presented in Section 5.3.

5.2.2 Earth Observing One

Earth Observing One (EO-1) is a NASA New Millennium spacecraft which has val-

idated a number of instrument and spacecraft technologies. Models of the EO-1

spacecraft were developed at NASA and used for validating L2 on EO-1 [28]. The

EO-1 model consists of 12 components, which are parts of the Advanced Land Imager,

the Hyperion instrument and the Wideband Advanced Recorder Processor onboard

the EO-1.

5.3 Results

Both the SPHERES and EO-1 systems are modeled as probabilistic, concurrent con-

straint automata (PCCA) [54]. The definition of a PCCA is included in Appendix

A. A PCCA model is a special case of PHCA that allows for parallel composition

of probabilistic constraint automata, but not sequential composition. Nevertheless,

these models provided realistic scenarios for validating the approach in this work. All

experiments were run under Windows XP on a 1.6 GHz Pentium M processor.

Figure 5-2 shows the size of the COP generated offline, for each of the models.

Recall that SPHERES 1 consists of 5 components, SPHERES 2 consists of 18 compo-
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Figure 5-2: Size of the COP generated offline for the SPHERES and EO-i models.

nents, and EO-1 consists of 12 components. The EO-i models took the longest time

to compile to a soft COP. This is because the domain sizes for the EO-1 models are

on average larger than those of the SPHERES models.

For each of these models, the COP generated in the offline phase was decomposed

using bucket elimination. For instance, Figure 5-3 shows the constraint graph of the

EO-1 model, for N = 1. This graph was generated using the TOOLBAR package

[51]. The nodes of the constraint graph represent the variables of the COP, similar

to a hypergraph. The edges of the graph connect variables that appear in the same

hyperedge of a hypergraph [17]. Figure 5-4 shows the decomposition of the constraint

graph into a tree structure, also generated using TOOLBAR. This tree-structured

COP is solved online, generating a single trajectory in 0.16 seconds.

95



Figure 5-3: Constraint graph of the EO-1 model for N 1.
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Figure 5-4: Tree decomposition of the EQ-i constraint graph in Figure 5-3
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Online N-BFTE performance
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Figure 5-5: Online performance for the SPHERES and EO-1 models.

Figure 5-5 shows the time required for solving the online N-BFTE problem. The

results for the online phase were obtained for various nominal and failure scenarios

as a function of the time horizon size N, for the same number of trajectories tracked

(K=1 in Figure 5-5). For each of the tested scenarios, N-BFTE successfully generated

the correct diagnosis based on delayed observations within the time horizon N. For

instance, in the SPHERES scenarios most symptoms exhibited delays of 3 or 4 time

steps. Choosing a time horizon of N = 4 was enough to account for all delayed

symptoms.

The implementation and empirical validation results on the representative sce-

narios above are a proof of concept of the approach presented in this work. More

complex PHCA models are currently being developed for an adaptive vision system

[46], to navigate a network of robotic explorers.
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5.4 Future Work

Future work relates to enhancing the efficiency of diagnosis, handling delayed symp-

toms effectively, and the extension of this work to other applications.

Enhancing the efficiency of diagnosis can be addressed by unifying decomposition-

based [24, 10] and conflict-directed [55] techniques into the optimal constraint solver.

This unification would leverage the advantages of two major approaches to achieving

efficiency in diagnostic systems: exploiting system structure and exploiting conflicts.

Future work also includes optimizing the offline compilation step, to minimize the

number of variables and constraints generated.

With respect to diagnosis in the presence of delayed symptoms, the parameters

N and K of the diagnostic system are typically dependent on a given scenario and

domain model. Future research may investigate the optimal size of the diagnosis

horizon and its relationship to the number of trajectories tracked. This will allow

for automated parameter selection for the diagnostic system, based on properties of

the modeled domain. Accuracy of the diagnostic capability can also be addressed

through observation and transition guard probabilities. This work used an upper

bound approximation to observation probabilities and transition guard probabilities,

as described in Chapter 3. The diagnostic system can be improved by using better

estimates of the observation probability and transition guard probability function in

Equation 2.1.

In addition to monitoring and diagnosis of complex hardware and software sys-

tems, this work has several new applications, including distributed diagnosis, verifica-

tion and planning [44]. Traditionally, model-based verification of embedded systems

has focused on determining program correctness using techniques such as symbolic

model checking [29]. However, verification is performed offline during design and de-

velopment, and is not guaranteed to verify against all possible system failures. This

work applies to probabilistic online monitoring from PHCA specifications, as well as

to verification of embedded software, given fault models. Another application is to

leverage structural tree decomposition to develop a distributed variant of this work
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[8], by mapping individual tree nodes to different processors. Finally, this work can

be used in the context of finite-horizon planning and execution, similar to [1]. In par-

ticular, extending the system to PHCA-based reconfiguration will result in a unified

fault diagnosis and recovery capability that can support complex, software-extended

models.

5.5 Conclusions

This thesis introduced a capability for model-based diagnosis of systems with complex

hardware and software behavior. The key contributions of this capability include:

" Diagnosis of complex systems, based on an expressive modeling formalism (PHCA),

and its encoding as a soft constraint optimization problem.

* Complex systems diagnosis in the presence of delayed symptoms, through N-

Stage best first trajectory enumeration (N-BFTE).

" Efficient online diagnosis, by leveraging state-of-the-art constraint decomposi-

tion techniques.

* Validation against representative spacecraft and robotic domains.

99



100



Appendix A

List of PHCA Encoding

Constraints

The following is a summary of the constraints presented in Chapter 3, for encoding

Probabilistic Hierarchical Constraint Automata (PHCA):

State Constraint Consistency:

Vt E {0..N},V L E : Statet= Consistent * C(L)t (A.1)

Transition Guard Consistency:

Vt E {O..N - 1},VT E T: Guardt = Consistent 4* C(T) t (A.2)

T=O Model Marking:

VC E (PHCAModels): CO = Marked (A.3)

T=O Unmarking:

VC E Zc,VL E (Subautomata(C) - E (C) : L0 = Unmarked (A.4)
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T=O Full Marking:

VC E Ec : [CO = Marked e (VL E O(C) : Start= Enabled)]

A[CO = Unmarked e (VL E O(C) : Start= Disabled)]

T=O Probabilistic Marking:

VC c Ec,VL E 0(C) : L = Marked -

(Starto = Enabled A State2 = Consistent)

with valuation function

Prob(L0 = Marked)

1 - Prob(L' = Marked)

1.0

if Condition1

if Condition2

otherwise

where Condition1 is:

(LO = Marked) A (Start = Enabled) A (Stateo = Consistent) (A.8)

and Condition2 is:

(L = Unmarked) A (Starto = Enabled) A (Stateo = Consistent) (A.9)

Probabilistic Transition Choice:

Vt E {0..N - 1},VP E Ep: (IT E T: Source(T) P =>

[Pt = Marked - (]T C {T|Source(T) = P} : Tt = Enabled

A(VT' E ({TjSource(T) = P} - {T}) : T' Disabled))] A
[Pt = Unmarked 6 (VT E {T|Source(T) P} : T t = Disabled)]) (A.10)
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with valuation function:

FT(M) Prob(T) if (]T : Tt =Enabled) (A.11)
1.0 otherwise

Transition Consistency:

Vt E {0..N - 1},VT T : Tt= Enabled =>

(Source(T) t = Marked A Guardt = Consistent) (A.12)

Target Identification:

Vt E {0..N - 1},VL E Z : TransitionTo> = Enabled 6

(ET {TITarget(T) L} : Tt = Enabled) (A.13)

Target Full Marking:

Vt E {1..N}, VC E Ec:

[(VL E O(C) : Start= Enabled) e

(TransitionToc = Enabled V Startc= Enabled)]

[(VL E E(C) : Start' = Disabled) e

(TransitionTot = Disabled A Start' = Disabled)] (A.14)

Primitive Target Marking:

Vt Ef {1..N},VP E E p: [Pt = Marked

(TransitionTot = Enabled V Startt = Enabled) A Statet = Consistent]

Pt = Unmarked # (TransitionTop = Disabled A Startp = Disabled)]
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Composite Target Marking:

Vt E {1..N},VC E Ec: [C'-= Marked =o Statec = Consistent]

A = Marked -= (TransitionToc = Enabled V Startc Enabled)

AStatec = Consistent ]

C [=t Unmarked = (TransitionToc = Disabled

AStartc = Disabled)] (A.15)

Hierarchical Composite Marking/Unmarking:

Vt E {O..N},VC E Ec:

[Ct = Marked # (-]L E Subautomata(C) : Lt = Marked)]A

[Ct = Unmarked 4 (VL G Subautomata(C) : Lt = Unmarked)] (A.16)
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Appendix B

Probabilistic Concurrent

Constraint Automata

A probabilistic constraint automaton for component "a" is defined by the tuple A,=

(Ha,Ma,Ta,Pa):

1. Ha = H' U H is a finite set of discrete variables for component "a", where

each variable 7ra E la ranges over a finite domain D(7ra). Ha' is a singleton

set containing mode variable {Xa} =1' whose domain D(Xa) is the finite set

of discrete modes in Aa. Attribute variables H; include inputs, outputs, and

any other variables used to define the behavior of the component. Ea is the

complete set of all possible full assignments over Ha and the state space of the

component Ea = Ea4 x is the projection of E, onto mode variable Xa.

2. Ma : Eax -+ C(HU) maps each mode assignment (Xa = Va) E E to a finite

domain constraint Ca(Xa = Va) E C(H1), where C(H;) is the set of finite domain

constraints over 11. These constraints are known as modal constraints and are

typically encoded in the propositional form A A True I False I (u = y) I -,A,

, A A2 A A V A2 , where y C D(u). If the current mode is (xz = Va) at time-step

t, then the assignments to each attribute variable rt E HU at time-step t must

be consistent with Ca(Xa = Va). These constraints capture the physical behavior

of the mode.
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3. T, : El- x C(U) --+ E'- is a set of transition functions. The set of finite

domain constraints C(H;) are also known as the transition guards, encoded in

the propositional form A. Given a current mode assignment (Xa = Va) E EZa

and guard ga E C(HU) entailed at time-step t, each transition function Ta(a

Va, ga) E Ta(Xa =Va, ga) specifies a target mode assignment (xa =') E E a

that the automaton could transition into at time-step t + 1. Ta = Tn U Tf

captures both nominal and faulty behavior.

4. Pa : Ta(Xa = Va, ga) -+ !R[O, 1] is a transition probability distribution. For each

mode variable assignment in Ex- and guard g', there is a probability distrib-

ution across all transitions into target modes defined by the set of transition

functions Ta(Xa = Va,ga).

The PCCA plant model is then defined by the tuple P = (A,H,Q):

1. A = {A1, A2, .. . , An } is the finite set of constraint automata that represent the

n components of the plant.

2. H = Ua= n na is the set of all plant variables. The variables H are partitioned

into a finite set of mode variables H" = Ua= in;", control variables HC C

U=..a r observation variables " c U- r r;, and dependent variables Hd C

Ua= .. nr. Ec, Y, and Ed are the sets of full assignments over HC, H", and Ud.

3. Q C C(H) is a set of finite domain constraints that capture the interconnections

between plant components.
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