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Abstract

In order to improve the performance of higher-order Discontinuous Galerkin finite
element solvers, a shock capturing procedure has been developed for hyperbolic equa-
tions. The Dynamic Multiscale Viscosity method, originally presented by Oberai
and Wanderer [8, 9] in a Fourier Galerkin context, is adapted to the Discontinuous
Galerkin discretization. The notions of diffusive model term, artificial viscosities,
and the Germano identity are introduced. A general technique for the evaluation of
the multiscale model term's parameters is then presented. This technique is used to
perform efficient shock capturing on an one-dimensional stationary Burgers' equation
with 1-parameter and 2-parameter model terms. Corresponding numerical results are
shown.
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Chapter 1

Introduction

Since their introduction during the 1970s, Computational Fluid Dynamics tools have

become increasingly used in the industry, resulting in enhanced designs, shorter de-

velopment costs and increased safety levels. This success calls for CFD tools that

are both faster and more accurate, as they are expected to deal with more and more

complex problems. Although grid refinement related techniques are a possible mean

to increase the accuracy of CFD codes, they do not seem to provide a satisfactory

solution for many applications when used on their own. Compared to them, higher-

order methods, presented by Cockburn and Shu (see for example [1]), seem much

more attractive and could ultimately change the current paradigm in CFD by intro-

ducing new codes that would combine high accuracy and reliability in a cost efficient

manner.

However, many challenges still need to be addressed before a CFD code taking

full advantage of high-order methods can be put into operations. These challenges

are various and range from generating high-order grids to the visual presentation of

information. Many of these challenges are of course related to solving techniques

and, among those, obtaining efficient shock capturing capabilities is one of the most

critical. .

One possible approach to shock capturing is to introduce artificial viscosity in the

equation. Provided the correct amount of viscosity is put into the system, the shock

can be properly and accurately solved. Recently, Assad Oberai and John Wanderer
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have presented a promising method for computing this artificial viscosity from the

system itself [9]. This method, called the Dynamic Multiscale Viscosity Method, is

based on a variational formulation of the Germano identity, which is widely used in

the Large Eddy Simulation of turbulent flows, and has been implemented and tested

in a spectral context, using Fourier Galerkin discretizations.

The purpose of this thesis is to investigate the potential of this Dynamic Multi-

scale Viscosity Method (dMSV) in a Discontinuous Galerkin (DG) context. Although

a number of finite differences or finite elements methods can achieve high order ac-

curacy, the finite element Discontinuous Galerkin method has several advantages.

In this method, the coupling between elements is achieved through numerical fluxes

evaluated at the boundaries of each element, making the implementation of boundary

conditions a straightforward task, whereas other higher-order schemes often require

large stencils that complicate the implementation of these conditions. Additional ben-

efits are obtained through the use of DG, such as an easy implementation of parallel

computing techniques.

Although several methods for capturing shocks, such as Weighted Essentially Non-

Oscillatory (WENO) schemes [12], have been developped, none of them has yet set

a standard. Many of these methods are based on the detection of shocks and on the

reconstruction of lower-order, oscillations-free, solutions on the corresponding cells.

The design of an efficient and reliable shock detection algorithm is often a challenge.

Similarly, the reconstruction of the solution over the troubled cells requires the use

of a stencil, which may lead to difficult implementations of some kinds of boundary

conditions. As we shall see it later, the dMSV approach has neither of these issues:

it does not require any shock detection nor does it need any reconstruction for the

solution.

In this context, a dMSV-based shock-capturing algorithm for stationary shocks

has been developped. This algorithm has been tested with two different model terms

on a fifth-order solution, the stationary shock being generated by Burgers' equation.

The results of these tests are presented in the last chapter of this thesis.

14



Chapter 2

Time and space discretizations

This chapter is devoted to the presentation of the equations studied in this thesis.

Their mathematical formulations will be described first. We will then focus on how

to discretize them, both in space and time. For the space discretization, we use a

Discontinuous Galerkin method while a Runge-Kutta scheme is used to perform the

time marching.

2.1 Mathematical formulations

2.1.1 Purely convective equations

The first type of equation that will be discussed in this thesis is the nonlinear, purely

convective equation. The general form of such an equation can be written:

+ V -f(U) =0 (2.1)
at

where:

* u, the state, is a scalar.

* f the flux, is a function of u.

When combined with a set of boundary conditions, such equations result in math-

ematical problems which, in general, cannot be solved analytically.

15



2.1.2 Convection-diffusion equations

The development of a multi-scale viscosity algorithm requires a viscous model term to

be added to the equation. We will therefore encounter convection-diffusion equations,

which can be written:

u+V -f (U) = va (2.2)at

where the viscosity v is a positive real number and the Laplacian operator A can

operate in a one-dimensional or in a multi-dimensional space. Like purely convective

equations, convection-diffusion equations cannot, in general, be solved analytically.

2.1.3 Burgers' equations

In this thesis, we will concentrate on the one-dimensional scalar Burger's equation,

which is written:
au a u2

+ ( - (2.3)at ax 2

This shock-generating equation will be used as a model to test our multi-scale

viscosity algorithm. As mentioned before, the multi-scale viscosity algorithm requires

the addition of a viscous model term in the equation. For example, in the case of

a 1-viscosity model term, we will have to deal with the viscous Burger's equation,

which is a convection-diffusion equation:

u a (2 ) a2 U (2.4)
at ax 2 ax 2

2.1.4 Weak formulations

The weak formulations of the two preceding types of equations are the basis of many

finite elements formulations, such as the Discontinuous Galerkin formulation. Let us

call Q a convex domain, 8Q its boundary, and U(Q) the Sobolev space of acceptable

solutions to the problem.

16



In the general case of a purely convective problem, we have:

uE(a), ±V -f(u)=O
at

VVV E U(),

SVV E U(Q), L

Through integration by parts, we get:

Vv E U(Q), ( v) dx + (f

( + V- f(u)) v = 0
at

v dx + (V7 - f (u)) v dx = 0

(u) -n) v ds - jf (u) - (Vv) dx = 0

which is the weak form of the problem, n being a unit normal vector pointing toward

the outside of Q. A similar formulation can be derived for a convection-diffusion

equation.

When the exact solutions to these problems present discontinuities, such as a

shock, weak formulations can lead to non unique solutions. In such cases, the phys-

ically relevant physical solutions are the solutions satisfying the following entropy

inequality:

aU(u) aF(u)
+ < 0 (2.6)

for any convex function U and consistent entropy flux F satisfying VF = VU - Vf.

In the case of the Burger's equation, we can choose U = U2 .

2.2 Discontinuous Galerkin method

The Discontinuous Galerkin method, which was first introduced in 1973 by Reed and

Hill in the context of neutron transport, is an efficient way to discretize convection

17
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dominated or convection-diffusion problems. This section will provide the reader with

a short introduction to the method and its application to these two types of problems.

For a more detailed description of the method, the reader may consult [1].

Like any other numerical method, the Discontinuous Galerkin formulation aims

at approximating the exact mathematical solution of a problem (which is defined in a

space of infinite dimension), by a function that possesses a finite number of degrees of

freedom. In our case, we will approximate the Sobolev space of acceptable solutions

to a given problem, U(Q) by the finite dimensional space UhP(Q). The space uh1,(Q)

is built by discretizing the physical space Q into a grid (Th)h and by assuming that,

each element of the original space U(Q) can be approximated by a linear combination

of basis functions (#j)j=0..., so that we have the inclusion Uh1(Q) C U(Q).

2.2.1 Application to purely convective problems

The discontinuous Galerkin formulation of a purely convective problem is obtained

by applying its weak form (equation 2.5) to elements of UhP. By doing so, we get:

Find u h CU(Q) VVh E &,(Q)

/ ) (gh vh) dx + (h) n) Vh ds - J (Uh) (Vvh) dx = 0

It is then possible to choose v h equal to a basis function #5 E U(Q)P, which leads to:

( h + ( &) -n)#i ds - f(uh) -(V# ) dx = 0 (2.7)
(T) at Ja (T) J(Th)

Since uh belongs to U(Q)P we can expand it on the basis (#j)j=o..p such that uh(XI t)

ZP= u (t)#(x). By substituting this expression into (2.7), we get:

- qj ) dx + (f (U) - n) 45 ds - f ff(uh) . (Vi) dx = 0
h () a(E (T)

18



which can be rewritten:

S / (# #i) dx + (f(uh) - n) #i ds - f(uh)- (V-k) dx 0 (2.8)
o (0 a(T) (Th)

The first term of this expression involves the mass matrix, which will be called M.

It is defined by:

V(ij) C [0, ..., p]2 , Mi,j = j dx

The remaining part of (2.8) is called the jth-residual associated to uh-

Vj E [0, ... , p], Rj(uh) = j (f(Uh) -n) 5j ds - j f (uh) . (Voj) dx

If we call Uh the vector [uh, ... , uph], the problem can be rewritten:

dUh
M + R(Uh) = 0 (2.9)

dt

The specificity of the Discontinuous Galerkin method comes from the choice of

(#j)j=o,...,p. Equation (2.9) shows that the stencil of the method will be determined

by the mass matrix M and the choice of the basis functions. Understandably, the

size of the stencil plays an important role in the determination of the robustness

(i.e. ability to handle complex boundary conditions) and the computationnal cost of

the method. Typically, the smaller the stencil is, the easier the method can handle

complex boundary conditions and the faster it will be.

The Discontinuous Galerkin method aims at taking the smallest stencil possible

by taking the smallest possible support for the basis functions. Each basis function

will have a support limited to one cell T of the grid (Th)h. A typical example of

such a basis is a set of local polynomial basis functions (#h )i,h with i E [0, ... , p] and

19



h E [0, ... , card((T))]. As a consequence, with this kind of basis, the mass matrix

is block-diagonal, hence the small stencil which makes the Discontinuous Galerkin

methods well-adapted to high-order solvers.

Because of the basis used, the solutions found through the Discontinuous Galerkin

method are discontinuous from one cell to another. In order to take into account the

dependency of the solution on a given cell to its restriction to the surrounding cells,

a numerical flux F is introduced in the expression of the residuals. For example, the

the ith residual on element T is written:

R h(uh) F((f(Uh), f(Uh), n) #A ds + j c((f (u), f (uh_), n) #A ds

- Jf(Uh) (VA) dx

where the symbols ()+ and 0 refer to the respectively outside and inside values

of uh on a given edge. The numerical flux T is used for interior edges whereas

Fbc corresponds to edges that are boundaries of the physical domain Q. These two

functions do not need to be the same.

Ideally, the numerical fluxes should satisfy two important properties:

* They must be consistent with the continuous flux.

e They must respect the cell entropy inequality.

The first property simply states that, in the case of a continuous function uh across

an edge, uh = Uh then the numerical flux 7 must satisfy:

F(uh, u, n) = f(uh) -.n

With this condition on F, if (2.9) converges, it will converge to a weak solution

of the original convective problem. However, this condition is not sufficient to insure

that this weak solution corresponds to the physical solution of the problem. For-

tunately, Jiang [6] have proved that the cell entropy inequality holds for a class of

20



high-order Discontinuous Galerkin methods. This property confers a great advan-

tage to Discontinuous Galerkin methods over other finite elements methods: with a

properly chosen flux, one can be sure that if the Discontinuous Galerkin converges,

then it will converge to the entropy-satisfying weak solution, i.e. the relevant phys-

ical solution to the problem. It can be shown that an E-flux (as defined by Osher

[10]) satisfies the cell entropy inequality (see for example Serrano [13, p. 20]). In the

context of this thesis, we used the Godunov flux, which is a E-flux for the Burger's

one-dimensional equation.

If the numerical flux F satisfies the two properties mentioned above, then u h G h

will be an approximation to the physical solution of the original problem if it satisfies

the following Discontinuous Galerkin formulation:

dUh
M + R(Uh) = 0 (2.10)

dt

2.2.2 Application to convection-diffusion problems

The Discontinuous Galerkin method was first adapted to convection-diffusion prob-

lems by Bassi and Rebay in 1997 [3] then followed by Cockburn and Shu in 1998 [2]

who introduced the Local Discontinuous Galerkin formulation, which is the formula-

tion that has been used for all the results presented in this thesis. The underlying

idea of the Local Discontinuous Galerkin method is to rewrite the convection-diffusion

problem as a first order system and then apply the Discontinuous Galerkin space dis-

cretization we saw in the preceding section.

Let us illustrate the method by considering (2.2):

+ V- f (u) = vAn
at

The first step is to rewrite the equation as a first-order system by introducing a new

unknown vector q:
On

+ (V -f(u)) = vV -q
at

21



q= Vu

which leads to the following weak forms:

Vv E A(u), o dx + (V-.f(Uh) - vV -qh) vdx = 0

V~~~w,~~ i)E.()x[,.. ] w dx - (VUh) - w dx = 0
V( EUP()X 0 ..) J o Jn

if the vector qh is written [qh, ... , q~], and to the following Discontinuous Galerkin

formulations:

" du'a i .dx + (f (U).n - vgh. ) #h ds - (fu)-a-v # x
dti=0

P

E q j #h dx = j #h ds - U Vo# dx
i=0

for all j E 0, ..., p].

The numerical flux f(Uh) can be chosen to be the same as in the purely convective

case whereas the fluxes qh and uh have to be carefully chosen so that the scheme

satisfies a discrete energy inequality and it remains stable. For further information

about how these two fluxes can be chosen in a multi-dimensional context, the reader

may refer to the review article by Cockburn and Shu [1, p.238].

2.2.3 One-dimensional implementations

Grid and basis

In this thesis, we will limit ourselves to one-dimensional equations and to the cor-

responding spaces U(Q) and Uh(Q). More precisely, the physical space Q = [-1,1]

will be divided into segments T = Xh+i, xh+1 and the local basis will consist of

Legendre polynomial functions: V(h, i) E (Th) x [0, ..., p], #5 = L.

22



For the sake of simplicity we chose to normalize the local Legendre basis, so that

two elements L2 and L4 verify the relation:

ITh
L L dx = 6ij6hh' (2.11)

With this choice of a local basis, the mass matrix M will be equal to the identity

matrix.

Numerical fluxes

For both the purely convective problem and the convection-diffusion problem, the

numerical flux f(uh) will be taken equal to the Godunov flux, which is an E-flux:

h m inuh = G u ) f U),=
f (Uh) = fG (Uh l )-+

maxsh<UU f (U),

if uh < uh

otherwise

In the convection-diffusion problem, the two remaining numerical fluxes uh and qh

are computed by taking alternatively the left and right limits of uh and qh. This

expression was proposed by Cockburn and Shu in [2]. It guarantees an optimal rate

of convergence for the solution.

uh = u_

-h h
q = 9

One-dimensional Burgers' equation

As mentioned previously, we will make an extensive use of the one-dimensional vis-

cous version of Burger's equation in this thesis. With the conventions we set so far,

the Local Discontinuous Galerkin discretization of this problem is:

V(h, h', i, j) E (h)2 x [0, ..., IP]2

23



G - h+1

du t) hu) h 2)

dt) JL (x)L (x) dx+ (2 - VL - ( -vqh)(L ) dx =0

2
d' h h 2 h 2'

qj' L 'L' dx = 'iL 31.I - J u'1'(Li x dx

G

where the expressions for the fluxes (uh)2 , q and u were given previously. Numerical

integrations were peformed using the Gauss-Legendre quadrature rules.

2.3 Runge-Kutta schemes

Attention must be paid to the fact that the scheme has to be high-order accurate in

order not to penalize the overall accuracy of the code. Runge-Kutta schemes have this

property of being high-order accurate. In addition, being explicit schemes, they are

relatively inexpensive, use a reasonable amount of memory and are easy to implement.

We decided to go for a fourth-order Runge-Kutta scheme, which allows for larger

time steps, hence reducing the time needed to perform the calculations. With the

notations introduced in (2.9) with L(Uh) = -M-1 - R(Uh), the scheme we chose to

implement can be written:

Ki= At -L(Uh)

K2 = At- L(Uh + K)

K, = At- L(Uh + 2)

K4 = At -L(U + K 3 )

Uh =Uh+_K+K +K 3 +K
n+1 n 6 3 3 6

In this scheme, the moments of the solution over a cell and its neighbours (or the

corresponding boundary conditions, if the given cell is on the boundary of the domain)

are required to compute the residual R(Uh) and to perform the time marching. Since

this matrix does not change with time, it can be computed once and stored. In the

24



case of a DG or LDG spatial discretization, the mass matrix is block diagonal. As a

result, the computation of its inverse can be done a element-wise.
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Chapter 3

Dynamic Multiscale Viscosity

High-order polynomials used in DG and LDG discretizations can provide high-order

accurate representations of smooth solutions. However, whenever shocks appear,

numerical oscillations usually start to show up in the DG and LDG solutions. These

overshoots first begin in the vicinity of the discontinuities but eventually propagate

and damage the accuracy of the overall solution. The proposed Dynamic Multiscale

Viscoscity (dMSV) approach is a way to mitigate this issue and to keep the high-order

accuracy of DG solvers.

The purpose of this chapter is threefold.

" Present our motivations to use the dMSV algorithm and the notations we will

be using in the chapter.

" Describe the dMSV method in itself. This includes presenting the variational

Germano identity, the multiscale equations and the evaluation procedures.

* Provide a comprehensive report on how the method has been implemented in a

RKDG context and explain what are the challenges that arose.
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3.1 Motivation and notation

In this section, we will first give a brief overview of an alternative limiting technique

and compare it to the dMSV methodology. Then we will introduce the notation that

is used in the dMSV method.

3.1.1 Existing shock-capturing techniques

A popular and promising class of shock-limiting and capturing techniques are the

WENO and HWENO schemes. The WENO methodology was first introduced by

Qiu (see for example [11]). It is based on first identifying which moments of the

solutions are affected by the shock and then on reconstructing these moments using

a weighted sum of reconstruction polynomials. This method has shown promising

results and is perfectly able to produce oscillation-free solutions which are still high-

order accurate in smooth regions. Yet, it has a major drawback: the reconstruction

of the solution requires large stencils which are a problem both because they may

complicate the implementation of some kinds of boundary conditions and because

these large stencils prevent the code from benefiting from the advantages linked to

DG discretizations. HWENO schemes were then developed [12]. Contrary to WENO

schemes that use large stencils and only the Oth-order moments of the solution for the

reconstruction, HWENO methods, which take into account the higher-order moments

of the solution to do the reconstruction, require smaller stencils. Nevertheless, even

these smaller stencils may be burdensome in some cases.

3.1.2 Advantages of dMSV schemes

As we will see it later, dMSV-based schemes do not perform any shock detection

or any reconstruction of the solution. The shock is captured by introducing one or

more artificial viscosities in the original equation. These viscosities are computed

through a set of consistency conditions. dMSV schemes do no present any of stencil-

related problems we mentioned earlier. This is the main reason that pushed for the

development and adaptation of these schemes to DG discretizations.
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3.1.3 Model term

Let us consider the weak form of specified a problem, either purely convective or

convective-diffusive. This problem can be expressed, following the notations intro-

duced in the preceding chapter:

uE U7 / Vh Eu , B(vh, uh) = 0 (3.1)

where B is a semi-linear form (linear in vh): UZ x g -+ R.

We know that the solution of (3.1) breaks down in the presence of discontinuities.

In order to perform the shock-capturing, we introduce a model term M. This model

term depends on the solution uh, the test function vh but also on the space s and

on a set of parameters (vk)k, the artificial viscosities. It is important to realize that

this space s can be a physical space, such as a grid with a specified mesh size, or it

can be a functional space, such as a polynomial basis of specified dimension. To take

into account these dependencies, the functional M: U'hx U x L x R -+ R will be

denoted M(vh, uh, s, (Vk)k).

From now on, we will therefore refer to the following problem:

u E Uh / VVh E 1, B(vh uh) + M(vh, uh, s, (vk)k) = 0 (3.2)

The solutions of (3.1) and (3.2) are of course different, but the model term should be

carefully designed so that it vanishes away from shocks..

3.2 Description of the dMSV methodology

As we saw it in the preceding section, the underlying idea of dMSV scheme is to

introduce a model term in the equation. This model term is responsible for the

capturing of the shock. To do so, it relies on a set of parameters (Vk)k. In the
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case of a diffusive model term, which is the case studied in this thesis, this set of

parameters can be interpretated as artificial viscosities. The challenge is then to

compute adequate viscosities from the numerical solution itself. If the viscosities are

too large, then the accuracy of the solution will decrease dramatically and the shock

capturing will be poor. On the other hand, if they happen to be too small, then the

lack of dissipation will lead to an oscillatory solution. In the dMSV methodology,

the evaluation of the model term's parameters is performed through the Germano

identity. For more information about the method itself and the evaluation of the

parameters, one may consult [8].

3.2.1 The variational Germano identity

The Germano identity has first been developed in the context of filtered Navier Stokes

equations in 1991 (see the original paper from Germano et al. [4]), as an efficient

tool for computing eddy viscosity in Large Eddy Simulation of turbulent flows. The

variational expression of Germano's equation appears in ([8]) and can be generalized

to the case of an abstract system, such as (3.2).

Generalization of the variational Germano identity

Following Oberai [8], we write that the function uh E Uh is the solution of our modified

system (3.2), if:

YvEU", M(vh, u, s, (k)k) = B(Vh, uh) (3.3)

Now, we take a subspace of U. This subspace can be a polynomial subspace of

U, in that case, it will be denoted Uh4 with pi < p to insure that UA C Uh . But it

could also be a physical subspace of Ug. In that case, it would be noted U>i with the

grids (Th) and (T) verifying the inclusion (Th) C (T).

Let us consider a projection PV from Uh to this subspace UA (for example), and

call uh the projection of the solution uh over this subspace. A problem similar to
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(3.2) can be written over the subspace U1, that is:

B(V, wh) + M(V, Wh, s1, (Vk)k) = 0 (3.4)

We then make the assumption that the solution of (3.4), w his equal to uh, which

we consider to be the optimal solution of uh in U14. This assumption implies that the

model term M leads to solutions that can be related one to another through a pro-

jection operator. This property of the model term will enable us to find relationships

between the solutions of the same problem seen at different scales.

Since 14P c U, (3.3) implies that:

Vh1 E U'h , M(Vhus, (v)) = B(V, uh) (3.5)

Under our assumption, (3.4) leads to:

V E u, M( u si, (v ) = --B(V, u) (3.6)

Substracting (3.6) and (3.5) gives the variational Germano identity that relates scales

s and si:

Yvt E ~U', M(V, uh, s 1 , (vk)k) - M(vi, Uh, s, (vk)k) = B(v, uh) - B(V, uh) (3.7)

By applying either the dissipation or least-squares evaluation procedure, which

will be presented later in the chapter, these equations provide us with a consistency

condition on the model term. Since this condition only depends on the numerical

solutions uh and uh, it can be used to compute dynamically the unknown parameter(s)

of the model term.
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Comparing more than two scales

In the case of a model term M that contains more than one artificial viscosity, the

preceding equations will, through the use of one of the evaluation procedure that will

be explained later, give only one consistency condition by relating two scales via the

variational Germano identity. It is not enough to close the system. The solution

is then to generalize (3.7). Let consider a set of several scales (sj)j=1...N, and the

associated subspaces (Uh,)j=1...N. These subspaces must verify Uh C U - C ... Csusae Pj 3 ... ms PN PN-1

U&h c Uh. Under the assumption that the model term is such that, for every scale,Pi P*

the optimal solution of the problem at this scale is equal to the projection of uh over

the corresponding subspace, we can write the following set of Germano identities:

Vj E[1, .,N) Vv4 E Uh,

M(v, U, sj, (vk)k) - M(v, u, s, (Vk)k) = B(v , uh) - B(v>, u ) (3.8)

With this generalized expression of the variational Germano identity, developed by

Oberai [8], a number of consistency conditions can be derived, which, in turn, can

be used to determine the values of the artificial viscosities that appear in the model

term. As a result, the number of parameters in the model terms is only limited by

the dimension of Uh since it is related to the number of subspaces available to write

the consistency conditions.

Choice of subspaces

As mentioned earlier, the different scales can be either spatial scales or spectral scales.

In the case of spatial scales, the subspaces U14 are simply build upon grids that are

coarser and coarser. The projection operators Pi are then interpolation operators.

Spectral spaces are constructed in a different manner: the subspaces have not the

same polynomial (or spectral) basis while the grid remains the same. In this case, P3

are projections on given polynomials or spectral subspaces. A choice must be made

between the two types of subspaces. For high-order schemes, the choice of spectral

subspaces seems much more appropriate since it does not require incorporating inter-
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polation schemes in the code, these schemes being both computationally expensive

and likely to introduce annoying stencils. As a result, we chose to use spectral scales

in this thesis.

3.2.2 Evaluation of the model parameters

In this section, we will show how the generalized variational Germano identity is

utilized to evaluate the artificial viscosities (vk)k. For more detailed information, the

reader may refer to [8].

The consistency conditions (3.8) claim that the model term is such that on each

scale si, the optimal solution uh is equal to the projection of uh (solution of the

problem at scale s) over the subspace Uh that is u = Piuh. The consistency

conditions (3.8) can therefore be rewritten:

M(v Piuh, s, (v)) - M(v, uh, s, (Vk)k) B(v uh) - B(v>, Puh)

for j E [1, ... , N].

Let us assume that the model term contains q parameters. Q+1 scales are needed

to be able to write q Germano identities and obtain q consistency conditions. Each

of these expressions must be satisfied for each element vh of U , j E [1,...,q]. Con-

sequently, each consistency condition generates dim(Uh1) equations. The system is

therefore overdefined and specific procedures are needed to evaluate (Vk)k1,...,,. We

will present here two different procedures to perform the evaluation.

Dissipation method

The first procedure involves taking Pinuh as a test function in consistency condition

j. That is, each consistency condition becomes:

M(P-inuh u, us, (Vk)k) - M(PjUh, uh, s, (Vk)k) = B(PinUh, uh) - B(piuh, Uh) (3.9)
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for j E [1, ..., q].

In turbulence modeling, this equation has an energetic interpretation, the left-hand

side representing the difference in the dissipation of kinetic energy produced by LES

models acting at different scales. For further information about the method, one may

refer to the original work by Germano [4].

Least-squares method

Another possible approach to evaluate (Vk)k=1,...q is the least-squares method, origi-

nally developped by Goshal et al.[5] and Lily [7].

Let us consider the Jth consistency condition, the corresponding subspace Uh andPj

(#2);=o,...,pj a basis of the subspace. For all j E [1, ..., q], the jth consistency condi-

tion will be evaluated for each basis function #h of Uh, resulting in Ej dim(U,)

equations:

M(#2, u', sj, (Vk)k) - M(#, uh, s, (Vk)k) = B(#0h, uh) - B(#, uh)

with I E [0, ... , p,), j E [1, ..., q]. In order to generate q equations the preceding

equations will be written in residual form:

M(#f, u , sy, (vk)k) - M(#, uh s, (vk)k) - B(#h, uh) + B(#h, U4) = 0

and the quantity W((vk)k) will be formed:

q Pj

W((vk)k) = ((vk)) -(vk)) - B(#h, Uh)+ B( U
j=1 1=0

We now seek the values of (vk)k that minimizes this quantity, that is we compute
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(V)k=1,...,q such that:

Vk E [1, ..., q]), = 0 (3.10)
Ovk

Which generates the correct number of equations and therefore enables the compu-

tation of the model term's parameters.

3.3 Discontinuous Galerking implementation

As mentioned earlier, the dMSV methodology has been implemented by John Wan-

derer and Assad Oberai [9] in a Fourier Galerkin context. However, we think that

Runge-Kutta Discontinuous Galerkin formulations offer several advantages for high-

order schemes, hence our effort to adapt dMSV shock capturing techniques to Dis-

continuous Galerkin formulations. Implementing these techniques raise several chal-

lenging issues that will be presented in the following subsection.

3.3.1 Challenges for a DG implementation

Diffusive terms

The model term M(vh uh, s, (Vk)k) is of diffusive nature. Although the implementa-

tion of such a term in a Fourier Galerkin context is straightforward, its implementation

in a DG context is more complicated and one needs to pay particular attention to

which numerical fluxes are used in order to have a consistent scheme. In this thesis,

we chose to use Cockburn and Shu's LDG method [2] to discretize our model terms.

In the simple case of a one-viscosity model term, M(vh uh s S) = -P f(Th) AUh vh dx,

applied to the one-dimensional Burger's equation, the discretization is:

V(h, h', i, j)E (7h-)2 X [0,) ... , )p]2

--- _ _ G- h+}
du(t) -- h)(IL) dx = 0
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qJ L'L' dx = U'' 2 J (Lh'), dx

U -= U((
2 G min h < h <h

with the fluxes: and 2 if =--
qh = q max 2<uu )2 otherwise

Spectral decomposition of local Legendre polynomials

In a Fourier Galerkin context, the model term is chosen such that, near the shock,

the high frequencies of the solution, which are responsible for the oscillations, are

more smoothed than the lower ones. The Fourier basis allows a differentiation be-

tween the high frequencies of the solutions and the lower ones, hence enabling an

efficient treatment of the oscillations near the shock. In our Discontinuous Galerkin

discretization, where local Legendre basis are used, this distinction can no longer be

made, and one needs to be particularly careful because of the fact that each element

in a DG context had a bounded support. Each basis function over this element is

therefore not periodic and, as a consequence, there is no direct analogy between the

spectrum of a solution discretized on a DG cell and the same solution expressed in

terms of a finite Fourier series over the same domain.

Loss of properties

The spectral formulation brings a certain number of properties that are lost when

switching to Legendre basis, making the implementation of the dMSV more compli-

cated. In particular, we can mention the following loss of properties when going from

Fourier to Legendre:

o non-orthogonality of Legendre polynomials' derivatives and non commutativity

of the projection and space-differentiation operators

In a Fourier context, the derivative of the basis functions remain orthogonal one

with another and the projection and space-differentiation operators commute;

this is not the case anymore when Legendre basis are used. As we will see it in

the section dedicated to the model term, if the model term is such that it in-
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cludes more than one parameter, these properties have important consequences.

e non-invariance in translation.

The Fourier basis is invariant under translations; Legendre series are not. Con-

sequently, whereas the transition from stationary to moving shocks are straight-

forward in a Fourier context, the same operation in a Legendre context is a real

challenge and has yet to be solved.

Gibbs phenomenon

The implementation of the dMSV methodology, which relies essentially on the Ger-

mano identity, involves projections of the solution on various scales. In Fourier

Galerkin and Discontinuous Galerkin contexts, these projections generate the so-

called Gibbs phenomenon when the solution is discontinuous, introducing spurious

high-frequency oscillations. In some cases, these oscillations may be large enough to

affect the evaluation of the model term's parameters, and lead to undervalued (hence

inefficient) viscosities.

One possible way to mitigate the Gibbs phenomenon is to take a projection oper-

ator that is more suited to the discontinuities of the solution than the plain L2 norm

projection operator. The following plot shows two different projections of the "step"

function f(x):

f(x) 1, if X < 0

-1, if Lg> 0

on the Legendre basis (Li)i=o,...,25.
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Figure 3-1: Projections of the step function on (Li)io,...,25

This simple example shows how the L 1 projection can be used to reduce the

amplitude of the Gibbs oscillations. As we will see it later, we will make extensive

use of this projection in one of the test cases we ran. The methodology for the

computation of L 1 projections will be detailed further in the chapter.

3.3.2 1-viscosity and 2-viscosity model terms

This section will describe the model terms we chose to implement in our shock-

capturing algorithm and give more general insights on the way multi-parameter model

terms are to be constructed.

1-viscosity model term

The first model term we implemented is the simple 1-viscosity model term. This term

is of diffusive nature and its weak form can be written:

M(vn, s ) = - Au - o dx
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The corresponding one-dimensional Local Discontinuous Galerkin representation is:

M(vh uh hsYi) h h Tf qh(Vh

(3.11)

q fTr, LI''L ' dx = uh'Lj' - h dx

with the fluxes:

This model term has essentially been implemented for the validation of the method.

As we will see later, its performance is not as high as that of more elaborated model

terms and its main advantage relies on the relative simplicity of its LDG formulation.

We will now introduce a useful way of representing on which moments of the

solution uh and of the test function vh the artificial viscosity is acting. Let us consider

two axes representing the Legendre moments of the solution uh (x-axis) and the test

function vh (y-axis). Given a fifth-order space U(h and the third-order subspace Ul1

(we need two scales to close the system), in our 1-viscosity model term, the parameter

-9 is acting on the following squares:
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Figure 3-2: domains affected by the artificial viscosity V at scales 5 (right) and 3 (left)

In this case, the artificial viscosity P acts on every moment of the solution or

the weighting function so its representation is straightforward. For more complicated

model terms however, these plots give very valuable insights on whether or not these

model terms fit within the dMSV framework.

2-viscosity model term

The goal of multiple-parameter model terms, such as our proposed 2-viscosity model

term, is to introduce a separation of the modes of the solution, to group them and, to

assign a different viscosity to each group. As we will see it in the next chapter, this

increased complexity in the dMSV formulation is more than offset by the achieved

shock-capturing performance.

If PL2J denotes the projection over the subspace U1 and I the identity function

then the weak form of our proposed 2-viscosity model term is:

M(v,u,s, ,) = - j Au - v dx - ijA( - PLPJ) u. ( - pL2J)v dx (3.12)

The underlying idea is to distinguish between the modes that correspond to high-
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order Legendre polynomials (Li, i > [2]) and the ones that correspond to lower-order

Legendre polynomials (Li, i < [f]). Each of these two groups of moments has a

different behavior near discontinuities. As a result, we are expecting better shock-

capturing capabilities by assigning a specific artificial viscosity to each of them.

The one-dimensional Local Discontinuous Galerkin formulation for this 2-viscosity

model term is as follow:

- h+h+2
M~vhuh~,~,) =.q([.v] -fh~k(v).,dx)

.- 2-([.(]I - IPL)]2 ' fh [(RI pP)v] xdx)

The auxiliary quantities q and = being:

-h'+!

7 ' fT Lj L,4' dx = [uhL' h'- f' uh'( Lj') dx

12

qj, f L>"L>, dx = ([- R PlJ)uh"L,"" - fh,,(' - PLhiRh" (L') dx
- h" _

and the fluxes:

Uh' - Uh'

(If - IPLJ)Uh" = (If - IPLuJ)Uh"

qh - h

h =h
q = +

With a 2-viscosity model term, three different scales are needed to form enough con-

sistency conditions to close the system. Given a fifth-order space U1, the following

two subspaces: U3 and 1 can be used as scales in the generalized Germano indentity

(3.8) to determine T7 and -. In which case, the domains affected by each parameter

at each scale are:
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Figure 3-3: domains affected by the artificial viscosities TJ and TV at scales 5 (right), 3
(middle), and 1 (left)

Two remarks can then be made about this model term:

" Our proposed 2-viscosity model term is a generalization of the 2-viscosity model

term proposed by Oberai and Wanderer in [9] to a context in which the space-

differentiation and the projection operators do not commute and in which the

derivatives of the basis functions do not have any orthogonality relationship.

" It illustrates the fact that, when dealing with multi-parameter model terms,

the subspaces that will be used to derive the consistency conditions cannot be

arbitrary. In our example, the modes are equally divided into two groups and

this division is to remain the same for every scale on which the model term

is to be applied. For example, choosing U4 would have led to an unbalanced

partition of the moments between the two groups and must therefore be avoided

since it may lead to an incorrect evaluation of the parameters - and v.

The choice of a multi-parameter model term is therefore constrained by the

structure of the model term itself, which has to be consistent at every scale

on which the term will be applied. This consistency requirement reduces the

number of scales that are actually available to write the Germano identities,

as we showed it in the preceding paragraph. The reduced number of scales

available reduces in turn the number of possible parameters in the model term.
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3.3.3 Projections

Writing the consistency conditions for the model term's parameters involves projec-

tions on Legendre basis of various dimensions. Several projection operators can be

used, but when Gibbs oscillations begin to develop, the choice of a specific projection

operator has a direct impact on the performance of the algorithm. The purpose of

this section is to present two projection operators that have been used in our dMSV

routine.

L 2 projection

The L 2 projection is straightforward with our choice of a normalized Legendre basis

on each element of the DG discretization. The L 2 projection operator Pm is defined

by:

P: -- , p;>m+1

Pm(Lh){0 if i>m+1

Lh if i < m

Although very simple to implement and inexpensive, the results given by this L 2

projection are subject to the Gibbs phenomenon. In certain cases, another projection

operator, such as the L1 projection operator, which be detailed in the next section,

will be needed to achieve a correct evaluation of the parameters.

L 1 projection

Let us consider a known function f defined over [-1, 1] and P, = 'O aiLi its L1

projection over the space of polynomials R., [X]. Then the L' projection is defined

by the ai, which are such that the quantity (which represents the L 1 norm of f - P,)

is minimized:

{ao, ail -,an}= arg min If (x) - Pm(x) dx (3.13)/if+1
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This equation is then turned into a Linear Programming problem and solved.

If we divide the interval [-1, 1] into M equal subinterval, the integral (3.13) can be

approximated by the following expression, with h = -2, Fm = hF(xm), L' = hL'(xm)

and xm = 2Z- - 1:

M M

E |F(xm) - Pn(xm)|h = E
m=1 m=1

n

|Fm - E aiL LI
i=o

whose associated Linear Programming problem is:

Find ao, ... , a, T1 , ... , TM such that:

M

min E Tm
m=0

under the constraints:

F1 - E 0aiL'

F2 - E 0 iL'

FM - E a

-TM

K TM

< F1 - En_ a~

<F2 -- Ean

FM - EOL

which, in turn, can be written more conveniently in the following matrix form:

n+1 M

min [0, ... , 0, 1, ... , 1] x y
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under the constraints:

-LO -LI

-LO -L'

-LO -L'

LO LI

LO L'

-1 0 ... 0

0 -1 ... 0

0 0 ... -1

-1 0 0

0 -1 ... 0

0 0 --- -1

3.3.4 Algorithms structure

Regardless of which model term is used, our dMSV algorithms all have a common

structure, which is presented in the following figure:

Moments (1)

Parameters (7)

Figure 3-4: dMSV algorithms structure
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where:

1. The moments of the solution over the whole domain are given as inputs to the

algorithm. Our implementation used a Runge-Kutta time-marching scheme;

the tests showed that it is usually unnecessary to run the algorithm at each

stage of the Runge-Kutta scheme.

2. The LDG auxiliary variables (i.e. the variables q) are computed. The number

of auxiliary variables needed are directly linked to the structure of the model

term.

3. The moments have to be projected on different scales during the parameter

evaluation process, and it usually does make sense to compute these projec-

tions at the beginning of the algorithm since they will be used in (2), (4) and

(5). When straightforward projections are used, such as the L2 projection, the

gain is not significant, but it becomes important when the computation of the

projection is expensive, for example when L projections are used.

4. The various quantities involved in the consistency conditions are evaluated,

leaving the model term parameters as unknowns.

5. The time-derivative terms that are evaluated by computing the Discontinuous

Galerkin residuals of the solution at the corresponding scales.

6. The linear system derived from the consistency conditions is solved.

7. The parameters are now determined.
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Chapter 4

Results

In this chapter, the numerical results that have been obtained using the previously de-

scribed Dynamic Multiscale Viscosity methodology are presented. Two model terms

have been tested, the first one involving only one parameter and the second one in-

volving two artificial viscosities. Regardless of which model term is used, we achieved

optimal accuracy in the case of smooth solutions. The shock-capturing capability of

each model term will also be discussed.

4.1 1-viscosity model term

The procedure presented in the section uses the simple 1-viscosity model term (3.11).

The Runge-Kutta discontinuous Galerkin scheme is built upon fifth-order elements

and a fourth-order time marching algorithm.

For the derivation of the consistency conditions and the evaluation of the artificial

viscosity, the L projection operator presented in the preceding chapter, the scales

R [X] Rh [X] and the dissipation method have been used.

4.1.1 Smooth solution

The first test aimed at determining whether the accuracy of the Runge-Kutta Discon-

tinuous Galekin scheme was affected by the presence of a model term, in the case of a
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smooth solution. To do so, we considered the one-dimensional linear transport equa-

tion, to which we added the 1-viscosity model term (3.11) presented in the preceding

chapter.

oj 9 h Vh dx + f h vh dx + M(Vh,u, s, ) = 0
a t a z

with the initial condition: u(x, 0) = + sin(wrx) and periodic boundary conditions.

Iterated up to t = 1- , the numerical solution is then compared to the analytical

one. The L 2 norms of the errors are shown in the table below for various mesh sizes:

number of elements 20 30 40

1e| IL2 5.366236E-8 4.418526E-9 9.367500E-10

Table 4.1: L 2 error for the transport equation with a smooth initial condition and a

1-viscosity model term

These results are used to compute the rate of convergence of the scheme. The

rate of convergence of the procedure is presented on the figure below, the x-axis of

the plot corresponding to the logarithm of the number of elements in the grid and

the y-axis to the logarithm or the error:

48



.1b b III I I I I

-17-

5.9

-18.5-

-19.5

-205

-20.5

3 31 32 33 34 35 36 3.7

Figure 4-1: 1-viscosity dMSV - convergence rate for a smooth solution

We observe that the rate of convergence of the algorithm is close to the optimal

one which, in our case, is O(h5+1). As a result, when the solution is smooth, the code

achieves optimal accuracy.

4.1.2 Burgers' equation

The 1-viscosity model term procedure has been tested on the viscous Burgers' equa-

tion, on a 19-element grid, with the initial condition u(x, 0) = - sin(lx) and the

boundary conditions uh(_-) - 1, uh(1) = -1 and q(1) = 0. The strength of the

shock generated by the equation is represented by the Peclet number Pe = 1.5.,r

where v is the physical viscosity.

The results for various Peclet numbers are presented below:
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Figure 4-2: iterated solution (top) and artificial viscosity evolution (bottom) over the

time period [0, lf]for Pe=100
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Figure 4-3: iterated solution (top) and artificial viscosity evolution over the time

period [.5 4] (bottom) for Pe=+inf
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These figures validate the dMSV methodology as a way of capturing shocks in

a Discontinuous Galerkin context. Regardless of the Peclet number, the shock was

properly captured in every case we tested. However, two factors negatively impacted

the cost of the algorithm:

" The amount of artificial viscosity produced by the dMSV routine is such that it

requires smaller CFL numbers (i.e. more time iterations) in order to keep the

algorithm stable.

" To mitigate the effects of the Gibbs phenomenon, a L1 projection was used in

the evaluation routine (trials with a L2 projection showed oscillations for Peclet

numbers greater than 25). As we explained it in chapter 3, each L1 projection

requires the solving of linear programming problem, which greatly increases the

computational cost of each time iteration.

Even though, the 1-viscosity model term dMSV algorithm performs the shock cap-

turing correctly, it is computationally costly and this cost prevents it from being used

for anything else than the mere validation of the algorithm. For operational purposes,

the 2-viscosity model term algorithm, although more complicated to implement, must

be preferred.

4.2 2-viscosity model term

In this section, we describe the implementation of the proposed 2-viscosity model

term (3.12). The space discretization is a fifth-order Discontinuous Galerkin and the

time iteration is performed by the fourth-order Runge-Kutta scheme presented at the

end of chapter 2.

The parameter evaluation routine uses L2 projections and the scales R1 [X], R2 [X]

and Rh [X] for the derivation of the consistency conditions. As for the 1-parameter

case, the evaluation of the parameters is achieved through a dissipation method.
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4.2.1 smooth solution

In order to assess the impact of the addition of a model term on the accuracy of

the Runge-Kutta Discontinuous Galerkin method, an accuracy study was conducted

on the one-dimensional linear transport equation, to which we added our 2-viscosity

model term:

I &uh vhB~ uh
U h + hvh dx + M(Vh, us, ,v) = 0

a 8t f9 a x

with the initial condition: u(x, 0) = 1 + sin(7rx) and periodic boundary conditions.

The solution is interated up until t = 1 and the L2 norm of the error between the7r

computed and the numerical solutions is then estimated. The results are presented

in the table below:

number of elements 20 30 40

Ie|L2 5.296765E-8 4.458097E-9 9.419499E-10

Table 4.2: L 2 error for the transport equation with a smooth initial condition and a
2-viscosity model term

The rate of convergence of the algorithm is presented on the figure below, the

x-axis of the plot corresponding to the logarithm of the number of elements in the

grid and the y-axis to the logarithm or the error:
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Figure 4-4: 2-viscosity dMSV - convergence rate for a smooth solution

The rate of convergence of the scheme is close to the optimal one (O(hs+5)).

The accuracy of our RKDG scheme is therefore not penalized by the presence of the

shock-capturing model term in the case of a smooth solution.

4.2.2 Burgers' equation

The scheme was then tested with a shock-generating equation. Similarly to the 1-

viscosity model term case, we used the viscous Burgers' equation with the initial

condition u(x, 0) = -sin(ix) and the boundary conditions u h(-1) = 1, uh(1) - -1,

q(1) = 0 and 4(1) = 0. The strength of the shock generated by Burgers' equation is

still asssessed by a cell Peclet number, defined by Pe = 1.5h where v is the physical

viscosity.

The results of these tests are shown on the following plots for various Peclet

numbers together with the associated evolution of the artificial viscosities with respect

to time (for every of these tests, the number of elements in the grid is constant and

equal to 19):
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Figure 4-5: iterated solution (top) and artificial viscosities evolution over the time
period [0, -] (bottom) for Pe=5
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Figure 4-6: iterated solution (top) and artificial viscosities evolution over the time
period [0, 9] (bottom) for Pe=10
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period [0, ] (bottom) for Pe=100
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The following obsevations can be made about these results:

" Compared to the 1-viscosity model term case, the shock is better captured. As

a result, we conclude that increasing the number of parameters of the model

term to better adapt the smoothing to the Legendre-spectrum of the computed

solution yields more accurate results. In addition to that, the amount of artificial

viscosity needed for the shock capturing is less than what was required by the

1-viscosity model term, thus allowing for the use of larger CFL numbers.

" The viscosity plots show that the viscosity T related to the high Legendre modes

is usually smaller than 7, which is computed from the whole Legendre spectrum

of the solution. This result may look paradoxical and contradictory to the

results obtained by John Wanderer and Assad Oberai in [9] who found that, in

a Fourier Galerkin context, T7 was larger than T - result which makes intuitive

sense-. However, one has to keep in mind that there is no intuitive correlation,

in our situation, between the Fourier frequencies and the amplitudes associated

to each Legendre polynomial in the Legendre decomposition of the solution.

The fact that, in our case, V is greater than T is explained by the fact that high

frequency Fourier oscillations does not necessarily correspond to high frequency

Legendre oscillations.

" Unlike the 1-viscosity model term case which required the use of an L' projection

operator, the 2-viscosity model term case works fine with the L2 projection,

hence decreasing the computational cost of the algorithm.

4.3 Conclusion

A higher-order one-dimensional Burgers' equation Runge-Kutta Discontinuous Galerkin

solver was developped. Its accuracy was successfully tested and the advantage of us-

ing higher-order polynomials over grid refinement was proven. In order to enhance

the shock capturing capabilities of the algorithm, a procedure was developed and

implemented.
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This scheme is based on the Dynamic Multiscale Viscosity (dMSV) methodology

presented by Oberai in [9] and [8]. This methodology was adapted to the Runge-

Kutta Discontinuous Galerkin context. This method is general and does not depend

on the space dimension nor does it depend on the order of the interpolants. As a

result, provided the order of the interpolants are compatible with the required scales

for the evaluation of the model term's parameters, the method is applicable to any

order and any spatial dimension.

Using this method, a shock capturing routine for the Burgers' equation in a fifth-

order Runge Kutta Discontinuous Galerkin context was developped. This routine is

able to handle 1-parameter and 2-parameter model terms and uses a Local Discon-

tinuous Galerkin formulation presented by Shu in [2] to discretize the diffusive parts

of the model terms. With either the 1-parameter model term or the 2-parameter one,

the routine maintains high accuracy in the regions where the solution is smooth and

presents good shock capturing capabilities for stationary shocks. The result is a new

shock capturing alternative for Runge Kutta Discontinuous Galerkin solvers.

To enhance these results, future research directions may include:

" An investigation of new, computationally cheaper, projection operators, or the

implementation of new projection methods, especially in the case of the 1-

viscosity model term, whose Ll projection operator is very expensive.

* The moving shock case, which may require more elaborated projection operators

or eveluation methods.

* Alternative model terms. Going from one parameter to two parameters in the

model term greatly improves the shock capturing capabilities of the code. So

increasing the number of parameters in the model term is definitely a promising

way to improved performances.
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Appendix A

1-viscosity model term consistency

condition

In this appendix, the consistency condition for the evaluation of the parameter of the

model term (3.11) for the viscous Burgers' equation in a DG context is presented.

Weak formulation

The weak formulation of the viscous Burgers' equation, using a LDG scheme, is:

hE(Th)

with:

Ih

5iu h vh d
-at Vd + [T( (2 -

2 
h1- vq h) V h12_I((u2

2

vqh) ddx+M(vh, u, s,) 0

2 qi = [.F(Uh)h]h+.!-
2 I~fh

h
U hdLi dx

dx

(L )i,h being the local Legendre basis we introduced in chapter 2 and Ah the length

of an element.
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Model term

Forcing an explicit dependance of the parameters on the order of the solution, the

model term can be written, for uh of order n:

M(vh, uh, s, )
hE(Th) Ih

AU h vh dx

or, using the LDG methodology:

M(Vh, uh, s,7) = [F7(qh)Vh] h2

n 2

qh = [y(Uh )L h _2

2 Auhi4 )x dx

Consistency condition

For a fifth-order solution, using the scales R5 [X], R 3 [X] and the dissipation method,

the consistency condition can be written:

-A = B

- h+1

A= ( - I
hE(Th) - h--I

~h3
(p 3Uh)x dx

au Ph _ p3Uh)(p31 h) dx 2 - vqh -
(p3uh)2 ~h+A

)P3u h h -j
2

__ (73Uh)2
v 2 +

2
vqh) (P3Uh)x dx

where F(x) means that an appropriate flux of the expression x must be used, instead

of just x.
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Appendix B

2-viscosity model term consistency

conditions

In this appendix, the consistency conditions for the evaluation of the parameters of

the model term (3.12) for the viscous Burgers' equation in a DG context are presented.

Weak formulation

The weak formulation of the viscous Burgers' equation, using a LDG scheme, is:

h (Th)

with:

Ih
h

OUhv h dx+ (Uh)2 - vq h) v h-h12I(it2
2

_ h)dh h h

,Ah

2
h? = [.7U ]h I dLh

= Fu)Lhl2± - uh dx
2 JTh dx

(L )i,h being the local Legendre basis we introduced in chapter 2 and A/h the length

of an element.
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Model term

Forcing an explicit dependance of the parameters on the order of the solution, the

model term can be written, for uh of order n:

M(vh,u, s , ) = S -, AUnh
hE(Th) h

or, using the LDG methodology:

vh dx±+((
n' fh

p[ J)uh)(( __ p[L)Vh) dx

- ( [.Fqv h : 2vh dx)
2 ITh

- PL11) - I
2 (

Ah - 1!

2 = [y(Uh)L h 2
2 2

Ah=((f lp! J)Uh)h]h±
2 2 )L-h.

=d
qdx

I~h

- PL J)Vh) dx)

Uh d (L) dx
dx

Th lJ h) h(L) dx

Consistency conditions

For a fifth-order solution, using the scales R 5 [X], R 3 [X], R1 [X] and the dissipation

method, the consistency conditions can be written:

A B

D E

with:

-1)A = hT
hE('Th)

[
P3 Uh

qh
(p3h) dx

1 ~ - 13h
3 p-1

2

1- ( p2)(p3ulh) 
2
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=

hE(Th)

and:

B = I:
hE(Th)

M(on Un s, 1 , 8 )

- ( FY(q )(ff

C

F



- [(i-- p)(p 3 Uh)] dx + I-[( PI _ 2)(p3Uh)], dx

y(u _ p3Uh)(p3U ) dx + (u 2

- ( u h

-

D= q
hE(Th)

(lp3Uh)2
V - +

2

5 )PUh

Ih+2

.. 2

F(q) (f - PO)(P1 uh)

- I h [(1 - pO)(pluh)] dx+ J

Sq

I7h
-l )(PU dx
5

qh [(R - P2)(pluh)] dx

- IpUh)(Pluh) dx
(plu 2

2+ F( P tuh 2

- ( (U) (Pu h)2
- V + vqh) (IlUh)x dx

where the auxiliary LDG variables are V(h, i) c (Th) x [0, ... ,n]:

A

2

2

2

__h - [jr(Uh)Lh1.!

2 2

*i =: [FUh)Lh'I
2

qh = r'1-/3h ) L"I

2

- = [(( -_ p 2)Uh 2+
hh2

2 = [2F(( - p2)pi

ITh
U d (L')dx

(Th1u h) d(L ) dxITh dx

(PY) d (L) dx

Th dx

(p _ p2)Uh)d(L) dx

p_ 72)p~)d(')d
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I-fh
C= I:

hE(Th)

(Ip
3Uh)

2

2 vqh) P3Uhj

-2

vqh)(p3Uh) dx

E = I:
hE(Th)

1 - h+ .1
- 5 )(fl - pjiU) 2

F E
hE(Th)

IJ(U 
h



[2 ~ h - P
2 ~ ~~ p2;srL* - I

- P 2)p3Uh) d(L ) dx

where F(x) means that an appropriate flux of the expression x must be used, in-

stead of just x.
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