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Abstract

The problem of Simultaneous Localization and Mapping (SLAM) has received a great
deal of attention within the robotics literature, and the importance of the solutions to
this problem has been well documented for successful operation of autonomous agents in a
number of environments. Of the numerous solutions that have been developed for solving
the SLAM problem many of the most successful approaches continue to either rely on,
or stem from, the Extended Kalman Filter method (EKF). However, the new algorithm
FastSLAM has attracted attention for many properties not found in EKF based methods.
One such property is the ability to deal with unknown data association and its robustness
to data association errors.

The problem of data association has also received a great deal of attention in the
robotics literature in recent years, and various solutions have been proposed. In an effort
to both compare the performance of the EKF and FastSLAM under ambiguous data asso-
ciation situations, as well as compare the performance of three different data association
methods a comprehensive study of various SLAM filter-data association combinations
is performed. This study will consist of pairing the EKF and FastSLAM filtering ap-
proaches with the Joint Compatibility, Sequential Compatibility Nearest Neighbor, and
Joint Maximum Likelihood data association methods. The comparison will be based on
both contrived simulations as well as application to the publicly available Car Park data
set.

The simulated results will demonstrate a heavy dependence on geometry, particularly
landmark separation, for the performance of both filter performance and the data associ-
ation algorithms used. The real world data set results will demonstrate that the perfor-
mance of some data association algorithms, when paired with an EKF, can give identical
results. At the same time a distinction in mapping performance between those pairings
and the EKF paired with Joint Compatibility data association will be shown. These
EKF based pairings will be contrasted to the performance obtained for the FastSLAM-
Sequential Nearest Neighbor marriage. Finally, the difficulties in applying the Joint Com-
patibility and Joint Maximum Likelihood data association methods using FastSLAM 1.0
for this data set will be discussed.

3

U



Thesis Supervisor: Nicholas Roy, Ph.D.
Title: Assistant Professor of Aeronautics and Astronautics

Thesis Supervisor: Don Gustafson, Ph.D.
Title: Distinguished Member of the Technical Staff, C. S. Draper Laboratory

Thesis Supervisor: Marc McConley, Ph.D.
Title: Principal Member of the Technical Staff, C. S. Draper Laboratory

4



Acknowledgments

First, I would like to thank the world class institutions of Draper Laboratories, MIT,

and the Department of Aeronautics and Astronautics for allowing me the opportunity to

live, study, and perform research in such an intellectually stimulating environment. The

talented people at these fine institutions create an environment with direction, purpose,

and credentials.

I would like to thank a number of people that have made my experience at MIT and

Draper Labs unforgettable. The person with whom I have had the lengthiest interac-

tion, and whom I have gotten to know both on a personal and professional level, is Don

Gustafson. Don is not only a very talented and brilliant engineer, but also a terrific advi-

sor. Above all else Don is an inspiring teacher. It has been an honor to work with Don for

the time that I have been at Draper; given the opportunity I would not hesitate to do so

again. In addition to Don, I have had the privilege of working with Marc McConley as a

second Draper advisor. Marc has been a terrific program manager for the IR&D project

that I have worked on during my time at Draper. In addition, he has been a great advisor

and more recently a very talented proofreader. He has offered me invaluable feedback and

assistance on my thesis. I would also like to offer thanks to Tom Thorvaldsen, who has

acted as a de facto problem solver for my computer problems. He is someone who was

always willing to offer me assistance.

During the course of my thesis research and writing process I was privileged to have

Professor Nick Roy as my MIT thesis advisor. Without question the quality of my thesis

benefited greatly from Professor Roy's dedication to the highest standards of research and

an unwavering determination for me to hold similar standards during this process. I am

also very thankful to Professor Roy for his willingness to perform a number of iterations

on making corrections and edits to my thesis, the finished product will certainly reflect his

painstaking assistance. I would also like to thank Professor John Deyst for his willingness

to include me in the Draper-MIT research group meetings, which helped to influence and

motivate my research. Additionally, I would like to thank Professor Eric Feron who has

influenced my thesis work by allowing me the pleasure of participating in his classes. It

5

I



is smy belief that Professor Feron is a fantastic teacher whose lectures at times are so

powerful that they transcend the subject matter in such a way that one cannot help but

to be inspired in their own work.

In an effort, such as the research for and writing of a Master's thesis, which involves

so much time and energy, it is not possible to overstate the importance of my personal

relationships. These relationships have served to balance out my life and provide me with

a great deal of motivation to constantly push forward. I would like to thank all of the

Draper Fellows and friends I have made while at MIT, whom have made the experience

of being here that much more enjoyable. The Friday treat and social gatherings were a

good deal of fun and will be remembered for some time. In particular, I would like to

thank my good friend Peter Lommel, with whom I share such similar life experiences it

is almost scary. Peter is one of the most intelligent people that I know, and it has been

my good fortune to have a friend such as Peter who is always willing to lend an ear to

my latest hair-brained idea, or whatever it is that I have on my mind.

Finally, with great love that I would like to thank my beautiful wife Heather and my

amazing son Gideon for their contributions to my effort, which has come in the form of

incredible patience, forgiveness, tolerance, understanding, and love. Additionally, I would

like to thank my parents, Sandy and Gary Cooper, my brother and sister, Seth and Sara,

as well as my close friends, Jeff Dotson and Chad Geving, whose unwavering support in

my academic efforts has given me significant motivation to keep going during those long

days and nights of work.

Aron J. Cooper

6



Assignment

Draper Laboratory Report Number CSDL-T-1524

In consideration for the research opportunity and permission to prepare my thesis by

and at The Charles Stark Draper Laboratory, Inc., I hereby assign my copyright of the

thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Aron J. Coop/ Date

7



[This page intentionally left blank.]



Contents

1 Introduction 19

1.1 Why SLAM? ............... .......................... 20

1.2 SLAM Applications................................ 21

1.3 SLAM Methods ....... ................................. 22

1.4 Need for Data Association Algorithms . . . . . . . . . . . . . . . . . . . . 23

1.5 EKF vs. Particle Filter Data Association . . . . . . . . . . . . . . . . . . . 27

1.6 Data Association Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Thesis Statem ent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Simultaneous Localization and Mapping 31

2.1 Extended Kalman Filter SLAM . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 The EKF Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Major Issues on the Use of EKFs for SLAM . . . . . . . . . . . . . 37

2.2 Particle Filter SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Particle Filter Advantages . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Particle Filter Formulation . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Rao-Blackwellized Particle Filter . . . . . . . . . . . . . . . . . . . 41

3 Data Association 45

3.1 Individual Measurement Data Association . . . . . . . . . . . . . . . . . . 46

3.1.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Individual Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 48

9

I



3.1.3 Combined Individual Compatibility and Maximum Likelihood . . . 48

3.2 Batch Data Association ............................ 49

3.2.1 Sequential Compatibility Nearest Neighbor . . . . . . . . . . . . . .. 49

3.2.2 Joint Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Joint Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Multiple Hypothesis Data Association . . . . . . . . . . . . . . . . 61

3.2.5 Delayed Assignment Data Association Algorithms . . . . . . . . . . 63

4 Simulated Results for Filter-Data Association Marriages 65

4.1 Assumptions and Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Numerical Values Used for Simulations . . . . . . . . . . . . . . . . 67

4.2 Landmark Pairs Outside of Trajectory Simulated Experiment . . . . . . . . 68

4.2.1 Results for Perfect Data Association . . . . . . . . . . . . . . . . . 69

4.2.2 Description of Data Format Used for Filter-Data Association Algo-

rithm M arriages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Results for Sequential Nearest Neighbor Data Association . . . . . 72

4.2.4 Results for Joint Compatibility Data Association . . . . . . . . . . 77

4.2.5 Results for Maximum Likelihood Data Association . . . . . . . . . 80

4.2.6 A Quick Performance Comparison of the Various Filter-Data Asso-

ciation M arriages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Landmarks Inside of Trajectory . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Results for Perfect Data Association . . . . . . . . . . . . . . . . . 88

4.3.2 Description of Data Format Used for Filter-Data Association Algo-

rithm M arriages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Results for Sequential Nearest Neighbor Data Association . . . . . 90

4.3.4 Results for Joint Compatibility Data Association . . . . . . . . . . 93

4.3.5 Results for Maximum Likelihood Data Association . . . . . . . . . 96

4.3.6 A Quick Performance Comparison of the Various Filter-Data Asso-

ciation M arriages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10



4.4.1 Interpretation of Data Association Results . . . . . . . . . .

4.4.2 Interpretation of Measurement Rejection Results . . . . . . .

4.4.3 Filter Dependent Effects . . . . . . . . . . . . . . . . . . . .

. . . . 101

. . . . 103

. . . . 104

5 Results from Application of Filter-Data Association Marriages to Ex-

perimental Data

5.1 Experimental Set-up ..............................

5.2 Limitations of FastSLAM 1.0 for the Car Park Data Set ............

5.3 Landmark Localization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

5.4 Agent Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

105

106

106

108

111

6 Conclusions and Future Work 115

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11



[This page intentionally left blank.]



List of Figures

1-1 Data Ambiguity as a Result of Measurement Uncertainty . . . . . . . . . . 24

1-2 Data Ambiguity as a Result of Pose Uncertainty . . . . . . . . . . . . . . . 25

1-3 Data Ambiguity as a Result of Landmark Uncertainty . . . . . . . . . . . . 26

3-1 Joint Compatibility Branch and Bound Search for a two landmark - two

measurement scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-2 Joint Compatibility as a Constraint Satisfaction Problem . . . . . . . . . . 59

4-1 Trajectory and Landmark Pairings Used in Outside of Trajectory Case for

Simulated Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-2 Performance of EKF and FastSLAM for Perfect Data Association Case

with Landmarks Outside of Trajectory . . . . . . . . . . . . . . . . . . . . 70

4-3 Sequential Nearest Neighbor Data Association Performance Variation Ver-

sus Time and Landmark Separation for Landmarks Outside of Trajectory. . 73

4-4 Sequential Nearest Neighbor Data Association Measurement Rejection Char-

acteristics for EKF and FastSLAM where the Landmarks are Outside of

the Trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4-5 Average Measurement Rejection and Data Association Errors for Sequen-

tial Compatibility Nearest Neighbor using EKF and FastSLAM where the

Landmarks are Outside of the Trajectory . . . . . . . . . . . . . . . .. . . . 75

4-6 EKF and FastSLAM performance using Sequential Nearest Neighbor Data

Association for the Case where Landmarks are Outside of the Trajectory. 76

4-7 Joint Compatibility Data Association Performance Variation Versus Time

and Landmark Separation for Landmarks Exterior to Trajectory. . . . . . . 78

13



4-8 Joint Compatibility Data Association Measurement Rejection Character-

istics for EKF and FastSLAM where the Landmarks are Exterior to the

Trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4-9 Average Measurement Rejection and Data Association Errors for Joint

Compatibility using EKF and FastSLAM where the Landmarks are Outside

of the Trajectory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-10 EKF and FastSLAM performance using Joint Compatibility Data Associ-

ation where the Landmarks are Outside of the Trajectory. . . . . . . . . . 81

4-11 Joint Maximum Likelihood Data Association Performance Variation Versus

Time and Landmark Separation for Landmarks Exterior to the Trajectory. 82

4-12 Joint Maximum Likelihood Data Association Measurement Rejection Char-

acteristics for EKF and FastSLAM where the Landmarks are Located Out-

side of the Trajectory . . . . . . . . . . . . t. . . . . . . . . . . . . . . . . 84

4-13 Average Measurement Rejection and Data Association Errors for Joint ML

where the Landmarks are Exterior to the Trajectory . . . . . . . . . . . . . 85

4-14 EKF and FastSLAM performance using Joint Maximum Likelihood Data

Association where the Landmarks are Exterior to the Trajectory. . . . . . . 86

4-15 Trajectory and Landmark Pairings Used in Inside of Trajectory Case for

Simulated Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-16 Performance of EKF and FastSLAM for Perfect Data Association Case

with Landmarks Inside of Trajectory. . . . . . . . . . . . . . . . . . . . . . 91

4-17 Average Measurement Rejection and Data Association Errors for Sequen-

tial Compatibility Nearest Neighbor using EKF and FastSLAM with Land-

marks Inside of Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4-18 EKF and FastSLAM performance using Sequential Nearest Neighbor Data

Association with Landmarks Inside of Trajectory. . . . . . . . . . . . . . . 93

4-19 Average Measurement Rejection and Data Association Errors for Joint

Compatibility using EKF and FastSLAM with Landmarks Inside of Tra-

jectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

14



4-20 EKF and FastSLAM performance using Joint Compatibility Data Associ-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4-21 Average Measurement Rejection and Data Association Errors for Joint ML

with Landmarks Inside of Trajectory . . . . . . . . . . . . . . . . . ... . . 97

4-22 EKF and FastSLAM performance using Joint Maximum Likelihood Data

Association with Landmarks Inside of Trajectory. . . . . . . . . . . . . . . 98

5-1 Path and Map Estimate Superimposed on GPS-Truth for Various SLAM

Filter-Data Association Marriages . . . . . . . ... . . . . . . . . . . . . . . 109

5-2 Agent Localization Errors with Respect to GPS Path for Various SLAM

Filter-Data Association Marriages . . . . . . . . . . . . . . . . . . . . . . . 112

5-3 Root-Squared Agent Position Error with Respect to GPS Path for Various

SLAM Filter-Data Association Marriages . . . . . . . . . . . . . . . . . . . 113

15

I



[This page intentionally left blank.]



List of Tables

4.1 Pose, Landmark, and Measurement Uncertainties Used in Simulations . . . 67

4.2 Quantities Used in the Motion Model for the Simulations . . . . . . . . . . 67

4.3 Performance Comparison of Filter-Data Association Marriages for Agent

Position Error for the Case where the Landmarks are Outside of the Tra-

jectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Performance Comparison of Filter-Data Association Marriages for Land-

mark Position Error for the Case where the Landmarks are Outside of the

Trajectory . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 88

4.5 Performance Comparison of Filter-Data Association Marriages for Aver-

age Data Association Errors Made for the Case where the Landmarks are

Outside of the Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Performance Comparison of Filter-Data Association Marriages for Agent

Position Error for the Case where the Landmarks are Inside of the Trajectory 99

4.7 Performance Comparison of Filter-Data Association Marriages for Land-

mark Position Error for the Case where the Landmarks are Inside of the

Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Performance Comparison of Filter-Data Association Marriages for Average

Data Association Errors Made for the Case where the Landmarks are Inside

of the Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Map Building Characteristics of the Various SLAM Filter-Data Association

Combinations for the Car Park Data Set . . . . . . . . . . . . . . . . . . . 110

17



[This page intentionally left blank.]



Chapter 1

Introduction

The problem of robotic mapping, building a globally consistent of a robot's spatial sur-

roundings, becomes easier to solve if the true path of a robot is known [40, ?]. At the

same time, if a perfectly accurate map of the robotic agent's surroundings is available

then the problem of navigation, or localization, is easier to solve [8]. However, in most

realistic applications involving mobile agents neither of these situations, the true path or

map information, is available. Additionally, the environmental and motion measurements

used by robots are noisy and this noise creates uncertainty in the system. The operation

of these sensors correlates the uncertainty, and this correlation is what makes it possi-

ble to simultaneously solve for both robot position and map of its surroundings [40].

This approach has come to be known as SLAM or CML, Simultaneous Localization and

Mapping [9, 13] or Concurrent Mapping and Localization [25, 41], respectively.

One of the key issues in the SLAM problem is the data association problem [40]: decid-

ing which noisy measurement corresponds to which feature of the map. Noise and partial

observability can make the relationship between measurements and the model highly am-

biguous. This problem is further complicated by considering the possible existence of

previously unknown features in the map and the possibility of spurious measurements.

The problem of data association in SLAM has recently received a great deal of attention

within the Artificial Intelligence and robotics literature [3, 4, 31, 32, 21, 27, 28, 34]. Prior

to this, a substantial amount of work had been done in the tracking domain, as in radar

or target tracking [6, 5].
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The data association problem is considered by some to be one of the hardest, if not

the hardest problem, in robotic mapping [40] and a problem for which there exists "no

sound solution" [39]. In particular, of the numerous data association algorithms that

have been proposed in the literature it is not clear how these methods work with the

various SLAM algorithms. Much of the recent literature on SLAM has emphasized the

study of two types of filtering techniques: Extended Kalman Filters and Particle Filters,

and the bulk of the research that has come out on data association emphasizes the use

of one or the other of these SLAM algorithms. Different data association algorithms may

have different effects on these filters, and it is the aim of this thesis to study these effects.

1.1 Why SLAM?

In situations where a robot, or even a human with a suite of instruments, is moving

around an environment with the goal of both localizing itself and building up location

information about its surroundings, e.g. mapping or target localization, the need for

solving the SLAM problem becomes obvious.

However, utilizing a solution to the full SLAM problem may not be obvious in situa-

tions in which an agent is concerned with only self-localization or target localization and

map building: the question of whether or not solving the full SLAM problem is necessary

when only a portion of the result is needed is of concern. In certain instances, such as

those in which a reliable set of GPS signals are available, which are found in air-based

systems or those that operate in open-field environments on the ground, solving the full

SLAM problem would not be necessary to maintain tightly bounded localization since an

external sensor eliminates the need for inference over robot pose. Unfortunately, there

are numerous environments where good GPS signals are not available. For example, GPS

signals are not available or dependable in urban canyon environments, which are found

in most highly populated areas, as well as for most indoor environments.

Assume a situation in which an agent is operating in GPS-denied environments and

its only concern is with self-localization. If it is not going to attempt to solve the full

SLAM problem it is left with only motion measurements or an Inertial Navigation Sys-
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tem (INS) such as accelerometers, gyroscopes, wheel encoders, doppler, or image based

pseudo-inertial measurements. Even with the most accurate combinations of these de-

vices, localization using on-line algorithms becomes difficult, as very small motion errors

propagate themselves forward in time causing error growth. This problem along with

the lack of state observability using only an INS will lead to a navigation filter that will

eventually diverge; in other words the accuracy of the state estimate will quickly worsen

[10, 40]. In certain situations many of these problems can be alleviated, or at least de-

layed, by enforcing certain constraints on portions of the navigation filter. This topic is

also discussed in reference [10].

If instead the goal of an agent is to only build a map or localize a target using relative

measurements, such as range and bearing, a map building solution may not even be pos-

sible without knowing the robot's location. In situations where good a priori information

is known, in regards to the robot's location, a solution to the map building problem can

be attained. However, as soon as the robot begins to move around, the uncertainty in its

location will begin to grow without bound for the previously mentioned reasons. Solving

the SLAM problem is the logical resolution to these issues.

Further motivation for solving the SLAM problem is that it lends itself to use of instru-

ments that are lightweight and cheap, as opposed to attempting to solve the mapping and

localization problems separately which may in fact require more costly, complex instru-

mentation (e.g. GPS). If implemented correctly a solution to the SLAM problem should

be with a minimal amount of instrumentation. Additionally, solving the SLAM problem

can be done in an autonomous fashion using online algorithms; therefore regardless of the

user, be it robotic or human, it is anticipated that little or no user input will be required

for use of an instrument suite that makes use of the correct SLAM algorithms.

1.2 SLAM Applications

There are numerous applications for which successful implementations of SLAM algo-

rithms can be used to produce substantial benefits for both human and robotic agents.

First, it is a prerequisite for successful operation of mobile robots in almost every realistic
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situation [40], as most applications of mobile robots involve some form of a SLAM imple-

mentation. Some of the more interesting applications are found in undersea autonomous

vehicles [33] and robotic exploration of mines [42], with additional possibilities of future

application to extraterrestrial planet exploration [30]. For many of these applications the

SLAM solutions are only used for navigation purposes, however some do make use of the

created map information for future use [42].

In addition to robotics applications, SLAM solutions may be used to enhance the

capabilities of humans in localization and mapping, which is potentially a very powerful

concept. In particular, it is hypothesized that the correct implementations of SLAM

solutions combined with the proper instrument suite should enable one to produce systems

that could be used by humans, yet operate autonomously without human intervention.

Such systems could be used in the place of those currently in operation that involve

complex procedures to be useful and also require very heavy, expensive instrumentation.

One example of this is found in the expensive and bulky equipment currently used by

some U.S. military forces to localize targets at a distance using ground personnel.

These types of SLAM based systems could have numerous applications in the defense

realm from forward operations involving the mapping of areas where future operation

may occur, to tracking of future troop movements, and real-time mapping, as well as

the localization of specific targets. The need filled by SLAM based systems would be for

environments in which GPS signals either do not exist or are not dependable, such as the

urban canyon or indoor environments.

Non-military related uses for these type of technologies may also exist in the areas of

human extra-terrestrial planet exploration, as well as in terrestrial applications such as

for use by sportsman or search and recovery teams where GPS signals are not useful or

available.

1.3 SLAM Methods

There are many SLAM algorithms that exist in the literature at this point in time. Of

these algorithms there are many different approaches for the various aspects of the prob-
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lem. There are those that use a grid-based approach for representing the world such as

DP-SLAM [14, 15], as well as methods that attempt to describe the geometry of objects

in the map with various methodologies [44, 2]. Unfortunately, many of these method-

ologies have serious limitations. For example, the DP-SLAM algorithm is formulated for

use with a specific type of measurement device. In the case of the methods that attempt

to describe the complex geometries of the environment, there is a tendency to have diffi-

culty computing a solution in real-time especially for higher-dimensional or geometrically

complex situations, i.e. numerous landmarks of various shape.

In the context of this thesis the methods considered will be those that maintain point

representations of the world in continuous space, can be implemented as an online algo-

rithm, have incarnations that scale well to high-dimensional problems, and can be flexible

for use with any known type of environmental location measurements. From these con-

straints the two SLAM solutions that will be considered are the Extended Kalman Filter

and Particle filter, specifically Rao-Blackwellized Particle filters much like FastSLAM [30].

1.4 Need for Data Association Algorithms

Until recently much of the work on solving the SLAM problem neglected the data associ-

ation issue by assuming that it was always known a priori for all measurements [40]. In

any situation where the map of the world may contain more than one feature there will

be some amount of data association ambiguity. In fact, even in the case where it is known

that only one object exists in the world there will still be data association ambiguity if

the possibility of spurious measurements is allowed. In most applications where SLAM

solutions are used the number of dimensions required to describe the world is quite high,

as the map must contain enough prominent features to sufficiently describe an agents

surroundings. At the very least a minimal two-dimensional representation of an agent's

environment would have on the order of magnitude 0(101) objects for a very simple prob-

lem, as in the Car Park data set where the environment is made up of 15 unique features

or landmarks, along with the additional object of the agent itself [1].
Beyond the ambiguity created by multiple assignment possibilities for individual mea-
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surements, or assignment sets for multiple measurements, is the ambiguity created by

uncertainties in measurements, pose, and landmark locations. To effectively describe how

each type of uncertainty leads to greater ambiguity in data associations, a number of

figures will be examined. In these plots the following variables will be used: F denotes

the corrent estimate of the location of feature i, Z is used to describe the measurement

(or the location a measurement is indicating a feature to be), and St denotes the current

estimate of the agent's pose.

Measurement uncertainty creates greater data association ambiguity since greater

measurement uncertainty means a larger number of assignments must be considered.

This occurs because more data associations will have non-negligible likelihoods, which is

a metric used by many data association algorithms, see figure 1-1.

St

Figure 1-1: Data ambiguity as a result of measurement uncertainty. Here the inner dotted
ellipse denotes a "small" measurement uncertainty while the outer solid ellipse denotes a
"large" measurement uncertainty. Notice the increase number of features included within
the measurement uncertainty with the larger value.

Pose uncertainty has a similar effect but in this case it is unclear to the agent which
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object(s) is being observed as it is not entirely certain where it is or where it is facing, as

illustrated in figure 1-2.

+ Z9 +
FZ F2

Figure 1-2: Data ambiguity as a result of pose uncertainty. Here the ellipse surround-
ing the "pose estimate" indicates the uncertainty in robot position, while the two dotted
lines symmetric about the line pointing to the measurement indicate the heading uncer-
tainty. This indicates that the pose and heading may be anywhere within this uncertainty,
therefore allowing for confusion of which feature, F or F2 , the measurement should be
associated with

Finally, landmark uncertainty leads to assignment ambiguity by making it possible, in

a probabilistic sense, for multiple measurements to be associated with a single measure-

ment. This can be seen by the situation depicted in figure 1-3.

In practice all of these errors are usually affecting the agent all at once, in a super-

position of errors. Additionally, it is often the case that each measurement must also be

considered to be one of a never-before-seen object or of a spurious nature that must be

removed. This combination of uncertainties makes data association very difficult.
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Z

St

Figure 1-3: Data ambiguity as a result of landmark uncertainty. Here the uncertainty in
the location of features F1 and F2 makes it equally likely that the measurement Z should
be associated with either one of them.
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1.5 EKF vs. Particle Filter Data Association

In this thesis, we will look at two particular inference algorithms, each with an inherently

different treatment of the data association problem. In the EKF a single data association

is used for each measurement in a very stiff manner, such that the assignment hypothesis

made at the current time cannot be altered in the future, if future information indicates

it was incorrect. This is a result of the EKF committing to an a posteriori distribution

over robot poses and landmarks that is maintained as a single unimodal Gaussian.

In contrast, the Rao-Blackwellized particle filter represents the posterior over poses and

landmarks non-parametrically, sampling particles from the posterior. The FastSLAM 1.0

particle filter allows for per-particle data association, thereby allowing for consideration

of M independent data association hypotheses where M is the number of particles used in

the filter. Since the uncertainty in the states is carried along in the dispersion of particles

and their map knowledge as opposed to a covariance matrix, the effect of data association

assignments differs substantially from the EKF. Finally, the operation of this particular

method is such that with a non-zero probability the filter will eliminate those particles, or

hypotheses, that have made incorrect data correspondences. This fact has the potential

to have the greatest impact on the way ambiguous data associations will affect it.

1.6 Data Association Methodologies

A number of data association methodologies have been proposed and studied in the SLAM

literature. It has generally been the case that these methods have only been applied to

either EKF or FastSLAM without direct comparisons being made between the two. One

such method that was recently proposed is known as Joint Compatibility (JC) and was

applied to an EKF SLAM solution [31, 4]. In the original paper [31] that proposed this

method it was compared to another data association algorithm Sequential Compatibility

Nearest Neighbor (SCNN); however it too was only applied to an EKF implementation.

The majority of the first papers to explore the FastSLAM algorithm used a maximum

likelihood approach for data association [30, 28, 45], while one paper also explored a
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particle splitting method of data association for FastSLAM [34]. However, none of these

papers mentioned above explore the performance of both EKF and FastSLAM using the

same data association methods.

Another data association method for SLAM that has been proposed in the literature,

is Combined Constraint Data Association (CCDA), which is formulated and explored in

[4]. However, according to [30] this methodology should perform similarly to JC with the

additional property that it can be used to determine pose information if none is available

a priori.

One additional method that is mentioned in [30] is the concept of randomly sampling

data associations on a per-particle basis. As mentioned in this reference the sampling

would be done from a Probability Mass Function, or PMF, as defined by the normalized

likelihoods of measurement associations. It would of course be possible to sample from

some other PMF if so desired. While this method makes some intuitive and even mathe-

matical sense for the FastSLAM formulation, it is unclear if this method would be a useful

approach for the EKF.

There are other data associations that have recently been mentioned in the literature

that involve the use of the Hough Transform and the RANSAC algorithm. These methods,

as discussed in the available literature, perform data association in a delayed manner. In

doing this there are some possible gains in data association performance, however the end

result is that measurements will not be processed in real-time.

1.7 Thesis Statement

It is the intention of this document to advance the following thesis:

"The performance of a given data association algorithm for SLAM, in terms of the

propensity of data association errors made and the subsequent effect on localization and

mapping accuracy, depends on whether it is used in conjunction with an Extended Kalman

Filter or a Rao-Blackwellized Particle Filter formulation as the solution to the SLAM

problem."
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1.8 Thesis Overview

The research done in this thesis can be described by the following items:

- Three batch data association algorithms will be examined and described in detail:

Sequential Nearest Neighbor, Joint Compatibility, and Joint Maximum Likelihood

- The operation of the three data association algorithms will be studied with regards

to their operation when married to both EKF and FastSLAM filter implementations.

- The performance of the SLAM filter-data association combinations will be examined

using both simulated and real world data.
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Chapter 2

Simultaneous Localization and

Mapping

The Simultaneous Localization and Mapping, or SLAM, problem first arose when it was

recognized that problems of robotic mapping and navigation are very difficult, and in

some situations impossible, to solve as separate problems. The methods that have been

the most successful in solving the SLAM problem have been ones that make use of sta-

tistical methods for taking into account the uncertainty in the system states as well as

measurement uncertainty. Such a method was first proposed and popularized in a serious

of seminal papers by Smith, Self, and Cheeseman [37, 38] in which the solution took the

form of the Extended Kalman Filter.

Solutions to the SLAM problem can be very effective in situations when global mea-

surements such as GPS are not available, for instance in the case when a robot or agent

that operates indoors or in the urban canyon. In these situations, the uncertainty in both

the location of objects in the environment as well as the robots own pose become tightly

linked. This is due to the fact that in these situations the agent must rely on relative

measurements relating its current pose with objects in its surroundings, such as range

and bearing measurements. This is what leads to the concept of solving the Simultane-

ous Localization and Mapping or SLAM problem, which has also been called Concurrent

Mapping and Localization, or CML, in the literature [32].
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2.1 Extended Kalman Filter SLAM

Framing the SLAM problem as a partially observable Markov chain allows for a compact,

probabilistic notation of the SLAM problem which is known as the Bayes Filter Equation

and is derived from the SLAM posterior [30]. For the Bayes Filter equation and the SLAM

posterior to be true statements, the Markov assumption must hold. This assumption

states that if the current state is known then the previous and future data are conditionally

independent [11]. By making some very restrictive assumptions, the Bayes Filter equation

will be equivalent to a Kalman Filter [39, 30].

In order to describe this problem a number of variables must be defined. First, the

states of the system are represented by st the robot pose at time, t, and e the location

of the objects in the environment that are known to the robot, which is also referred to

as the map. The robot pose consists of N, the agent North position, Eag the agent East

position, and 0,g the agent heading. The map information, E, as it exists within the

state vector consists of the North and East positions of all landmarks in the environment,

NIN and EIN respectively for the N-th landmark. The environmental measurements as

considered across time are given by z' = {zo, zi, ..., zt} and the motion measurements

or controls as taken over time are given by w = {wo, w1, ..., Wt}. The quantity 7 is a

normalization constant that is a byproduct of applying the Bayes rule.

What we wish to maintain at each time, t, is a distribution over the current robot

pose and landmarks. We call this the SLAM Posterior:

p(st, e|zt, wt) (2.1)

Using Bayes Rule this can be re-written as:

p(st, EIzt, wt) = 7 -p(ztlst, E, z Wt) . p(st, Izt-l Wt ) (2.2)

After some manipulation this can be converted into the Bayes Filter Equation:

p(stIztwt) = r -p(ztIst, ) -Jp(st, 8|st_1, zt-1, wtl) . p(st_1z--1, w)dst-1 (2.3)
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This is a tractable formulation because it allows us to compute p(st, elzt, wt) recur-

sively, from the known sensor model p(ztlst, 0), the known motion model p(stlst_1, wt),

and the SLAM posterior of the previous time step p(st_1, |ztl-, wt-). In the filter formu-

lations discussed here, the landmarks are thought of as point objects with single locations

in two-dimensional space, such as the corner of a building or the center of a small tree.

While this is an approximation, it is sufficient for the purposes of the algorithm develop-

ment discussed here. Additionally, the error in this approximation can, for the most part,

be absorbed in measurement error and uncertainty in feature locations.

2.1.1 The EKF Formulation

The SLAM problem can easily be framed as a state space system and therefore fits into

the Kalman filter framework. In real-world applications there are often non-linearities

involved in the physics of the situation, which is why the EKF is used. This formulation

is essentially the same as the traditional Kalman filter architecture with linearization

performed to allow for the real world physics of the system dynamics and the measurement

models.

The solution offered by the EKF is attained by assuming a multi-variate Gaussian

distribution used to describe p(x). In addition the noise in the IMU and environmental

measurements must be assumed to be white. Finally, it also assumes that substantial

errors are not incurred by making use of linear approximations of the dynamics of the state

propagation in time, as well as in the physics of the state relationships for environmental

measurements.

The building blocks of the EKF are the state vector and its associated covariance

matrix.

x = t (2.4)

Here st and E are defined as:
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St Eag (2.5)

#ag
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Then the covariance matrix is defined as:

2
Nag NagEag ''' ''' ''' UNagEIN

2 - -
O"NagEag UEag

2
qOag

U2

...g.. ... ... ... 2
LNagEN ''' '' E1N -

In general this matrix is initialized as a diagonal matrix, where the variances which

lie on the diagonal represent the a priori knowledge with regard to the uncertainty in the

individual states, which consist of features and the robot pose. The off-diagonal terms are

built up over time by the filter and represent the correlations between these filter states.

Finally, knowledge of the measurements being considered by the filter must be un-

derstood. This includes both a model of the physical measurements, as well as the noise

characteristics of these measurements. To be consistent with what is used throughout

the analysis done here, range and bearing measurement pairs will be considered as a

simultaneous measurement of a single landmark. This is a reasonable for a number of

instruments that are used in SLAM implementations, such as the SICK laser.
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The physical measurements for the range and bearing can be represented as:

hk(x)=
(Nij(k) - Nag(k)) 2 + (Ej(k) - Eag(k)) 2

arCtan Ni.(k)-Nag(k)) ag

I (2.9)

However, the actual measurement is noisy and is modeled in the following way:

Zk(X) = hk(X) + Uk (2.10)

Where the noise is represented by the vector of random variables Uk, which is zero-

mean gaussian white noise.

Uk- ~N(0, Rk) (2.11)

The knowledge of the measurement uncertainty is represented by the measurement

covariance matrix, Rk.

F 2 1
R= r 0rb

2[ rb UbJ

(2.12)

The motion model used is very simple: it is assumed that the robot issues controls of

translational and rotational velocity in two-dimensions.

Vk-1 = Vtrue + Wv,k-1

Ok-1 = Qtrue + WS,k-1

(2.13)

(2.14)

Here the additive noise term Wk 1 is defined as:
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Wk1 = [ Wvk1 N(O, Q) (2.15)
[W,k-1

Q = V (2.16)
0 g02

Now the operation of the EKF formulation can be laid forth, where Zk represents the

actual measurement received and sk represent the estimated measurement as determined

by the current values of the state estimate xk [18, 22].

Propagation Step:

1. Propagate the state estimate in time:

ik(--) = q(2k-1(-), Vk_1, (-1) (2.17)

Where k - 1 indicates the most current information available for that variable.

2. Propagate the state covariance matrix: 1

Pk(-) = k_1Pk-1(+)D_1 + GkQG _ (2.18)

cos(Oag,k-_) 0

sin(qag,k-_) 0

0 1
Gk_ = 0dt (2.19)

0 0

o o

Here, the quantity dt is the time step over which state propagation is occurring.

The state transition matrix, b-1, is defined for this case as

'This equation is the result of the following derivation, where the (-) terms have been dropped for sim-
plicity. Here, Xk is the truth state and ik is the filter's estimate of the state: z4 = Xk - 4 = error in state
estimate, Pk = E[zz], and ik = (=I-izk_1 -Gk-1wk-1)(k-1_1k- -Gk-_wk_1) T . After eliminat-
ing terms that go to zero, this can be rewritten as: z4z = Dk-ikz-i 1_k1 + Gk_1wk_1wkj_1G_,
the expectation of this result can then be taken to obtain the propagation equation for Pk presented here.
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4k-1 k = - 4) = I(2N+3)x(2N+3) (2.20)

an identity matrix of size (2N +3) x (2N +3) since there are no states carried along

that explicitly describe the dynamics of theworld, i.e. velocity or acceleration states.

Measurement Update Step:

1. Covariance matrix update:

Pk(+) = [I - KkHk]P(--) (2.21)

Kk Pk(-)Hkj[HkPk(-)Hj + Rk] (2.22)

The matrix Hk, known as the measurement matrix, is the Jacobian of the measure-

ment model hk (x).

2. State estimate update:

k(-) = Xk(-) + Kk[zk - (k] 2.23)

Hk = Vhk(X) - hk(x)HD =hXk) =(2.24)iox Lk

2.1.2 Major Issues on the Use of EKFs for SLAM

One of the major road blocks that has faced the EKF method in its application to so-

phisticated problems has been the growth in complexity of the filter with the number

of objects in its map. This is primarily due to the fact that this method, in its original

formulation, relies on a covariance matrix of size O(N 2 ), where N is the number of objects

in the map.

There has been significant effort within the AI community to address this problem

during recent years. One method which has been shown to resolve the complexity issues

surrounding the use of EKF formulations and is considered the current state-of-the-art by

many, is known as Atlas [7]. This method promises constant time, or at least bounded
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time, operation and is therefore not dependent on the size of the map. However, it should

be noted that the use of the Atlas methodology is not limited to EKF solutions of the

SLAM problem, because in its general form it is a framework for using filtering methods

that aims to reduce complexity, rather a filtering method itself. There are other EKF

related methods which also promise either constant time or improved time operation and

have been shown to produce good results, such as Sparse Extended Information Filters

(SEIFs) [43, 27] and compressed EKFs [19, 20].

While these approaches do address computational limitations of the EKF formulation

they do not, in their basic formulations, fully address the data association problem. The

implementation of these methods and their robustness to data association errors will not

be discussed in this thesis since there is no evidence in the literature, as well as no logical

reason to believe otherwise, that these methods would be more robust to data association

errors than the traditional EKF-based SLAM approach.

2.2 Particle Filter SLAM

Particle filters consist of a large class of Monte Carlo estimation methods that are ap-

plicable to problems that can be posed as partially observable Markov chains [39]. The

formulation of the particle filter has been around since the mid-to-late 1990's, originally

proposed in papers by Kitagawa as well as Liu and Chen [24, 26]. Indeed the applica-

tions of particle filters to robotics problems are very widespread, but some of the greatest

achievements made by their use comes in the area of localization and mapping. The

particle filter is credited with having solved the global localization and the kidnapped

robot problem, both of which were previously unsolved and considered to be important

for robust mobile robot operation. [39].

One of the greatest drawbacks of the particle filter, as it was originally formulated, is

that it does not scale well to high dimension state spaces. This is a result of the exponential

time behavior of this implementation of the particle filter, which is not acceptable for

problems such as SLAM which must be solved in real-time while maintaining numerous

states. A development in the literature that has offered some resolution to this problem
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is the Rao-Blackwellized particle filter [12]. This method has not only showed promise

to greatly increase computational efficiency, but also improve estimation accuracy. The

concept of a Rao-Blackwellized particle filter for application to the SLAM problem has

been greatly developed in a number of papers by Montemerlo and Thrun [28, 29, 45, 30].

2.2.1 Particle Filter Advantages

Particle filters have a number of useful properties when compared to other methodologies

for solving the SLAM problem, such as the EKF. First, the particle filter can approximate

arbitrarily complex probability distributions, where as the EKF is restricted to Gaussian

descriptions at all levels of uncertainty. Additionally, particle filters are not adversely

affected by significant non-linearities in the motion and measurement models. This is

because linearization is not required in the propagation of the state uncertainty, as this

information is carried along in the distribution of the particles.

2.2.2 Particle Filter Formulation

For application of particle filters to the SLAM problem it is possible to begin at the same

place as was done for the EKF formulation, that is the SLAM posterior.

p(st, EztI, wt) (2.25)

As in the Kalman Filter formulation, this probabilistic relationship is valid if the

Markov assumption holds. The Markov assumption states that if the current state is

known then the previous and future data are conditionally independent [11].

As was done previously for the EKF the SLAM posterior can be converted into the

Bayes Filter equation by use of the Bayes Rule.

p(stIz t, wt) = 'r -p(ztIst, E) -fp(st, 8|st_1, 1 1 wt-1) p(st_1z~1, wt)dst_1 (2.26)

This equation can be solved in an approximate manner using a particle filter by ap-
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proximating the continuous probability densities defined in equation ( 2.26) with discrete

samples. The SLAM posterior may be thought of as a belief state, where a single belief (i)

is defined as a hypothesis of agent pose, the map of the environment, and an associated

weighting that defines the probability of the given belief being correct. In the particle

filter this is represented by M samples of a continuous probability distribution along with

the associated weighting for each sample.

belief (i) = p(st(i), E(i)|z1(i), w'(i)) = {st(i), ( i)}i-1...,m (2.27)

At initialization this belief state, belief (i), is defined by whatever probability distrib-

ution is known to define the uncertainty in st and E [11, 39].

p(so, EIz0, wO) = p(so, E) (2.28)

First, if a priori information describing the uncertainty in the states is available it

is used to define the initial distributions. These distributions are then sampled from, to

create the particle representation of the state space x 0 (i), po(i), where po(i) is the particle

weighting. The particle weighting is generally initialized to [11].

The estimation of the posterior can then be done in the following recursive fashion:

1. Propagation Step:

Obtain the new pose st(i) using p(stlst_1, wt_1) where this is equivalent to propagat-

ing each st-1 using independent samples of wt_1. This is defined by a motion model.

St(i) = g(st_1(i), wt_ 1 (i)) (2.29)

Here, the variable wt_1 represents the noisy motion information of the agent as in

equations 2.13 and 2.14, however in this case the noise can be represented by any

probability distribution that can be sampled from. This process approximates the

following predictive density:
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p(stlsti, wt_)p(st_1, 6|ztI, wt~l) (2.30)

2. Measurement Step:

Now alter the belief state by weighting the particles using the likelihood of the

particle occurrence given the measurement, zt.

p(ztIst(i), E) (2.31)

3. Re-sample Step:

Re-sample the M particles with replacement based on the normalized weighting,

where
M

ZP(i) = 1 (2.32)
i=1

Loop back to step 1.

This procedure approximates the creation of the following posterior probability dis-

tribution [11].

p(ztjst, e)p(stlwt_1, st1)p(sti, |z- 1, wt-1) (2.33)
p(ztlzt-1, wt_1)

Note, that in actuality the distribution that would be ideal to sample from is the

desired posterior, p(st, Ezt, ut), however this target function is unavailable. Using this

ratio to determine the particle weighting along with the sampling procedure described in

the section above, allows for the creation of an approximation to the desired posterior.

This procedure is an example of a sampling importance re-sampling (SIR) algorithm [35].

2.2.3 Rao-Blackwellized Particle Filter

The Rao-Blackwellized particle filter is a variation of the traditional particle filter that

scales well to problems of higher dimension. The Rao-Blackwellized particle filter is very

general in its formulation and can be applied to problems other than SLAM [17, 23].

However, the formulation discussed here will only explore this type of filter as it applies
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to the SLAM problem, in particular the incarnation known as FastSLAM 1.0 will be

discussed [45]. In the FastSLAM formulation, a slightly different form of the SLAM

posterior is used then what was presented in sections 2.2.2 and 2.1.1:

p(St EIz', w', n') (2.34)

The differences exist in the variable s' = {SO, Si, ..., st} which represents the entire

robot path (not just the current pose) and the variable nt = {fno, ni, ... , nt} which represent

the correct data associations over all time. The reason for maintaining the entire path,

St, in the equation will be explained below. However, the presence of the data association

assignment vector in the formulation does not seem to be dealt with in a satisfying manner

in this formulation.

The formulation invokes the Rao-Blackwellization concept of marginalizing out vari-

ables from the posterior equation by implementing the proper conditioning. This was first

developed in [12] to factor the SLAM posterior into the following:

N

p(st, E)zt, wt, nt) = p(stjzt 7 Wt ,nt e Ist, zt, ut, nt) (2.35)
i=1

In words this means that it is possible to factor the problem into N+1 estimators.

The first estimator represented by p(stIzt, w, nt) aims to determine the posterior of path

and the other estimators p(E|st, zt, ut, nt) are used to determine the location of the N

landmarks.

The path posterior p(stlzt, wt, nt) is estimated using a particle filter. The landmark

estimators are obtained using EKFs, where each particle of the FastSLAM filter maintains

N independent Kalman filters for estimating the N landmarks. The independence of the

EKFs are a result of conditioning each landmark estimator on the robot path. This has

the benefit of only having to maintain N 2 x 2 covariance matrices for each particle as

opposed to a full (2N + 3) x (2N + 3) covariance matrix.

The result is a set of particles where the i-th particle is defined as:

St W) = [s' (I pi't i), Pi'ti) ... pN,t (i), 7N,t (i)) (2-36)
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Here each particle contains a path along with the mean, ym,t(i), and covariance matrix,

Pm,t(i), for each of the N landmarks the particle is trying to estimate the location of, using

an EKF.

For initialization the pose portion of the particles is found in a manner similar to that

of the traditional particle filter.

p(so1z0 , wo, no) = p(s0 ) (2.37)

Therefore the initial particles are sampled from the pose probability distribution de-

fined by the available a priori information.

Using this framework the operation of the FastSLAM filter is now very much the same

as that laid out in the section on particle filters 2.2.2. Here the aforementioned weight is

calculated as follows [45].

pA~i) - targetdistribution p(st(i)|zt,wt,nt)
proposaldistribution p(st(i)|I-1,w, nt-1)

In actuality the distribution that would be ideal to sample from is the desired posterior,

p(stIzt, u', nt), however this target function is unavailable. Using this ratio to determine

the particle weighting along with the sampling procedure described in the section on

particle filters, allows for the creation of an approximation to the desired posterior. This

procedure is an example of a sampling importance re-sampling (SIR) algorithm [35].

Using the Bayes Rule and a Markov assumption the weighting function can be written

as [30].

pt(i) = p(ztst (i), zt4~1 wt, nt) (2.39)

This form allows for advantage to be taken of the EKF form of the landmark estimator.

Now the weight per-particle can be written as the likelihood function for the measurement.

pt(i) = exp - _(z - nt,'t)Zt(Zt - (2.40)
(27r)/ 2 /1Zt,t| 1 2
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Chapter 3

Data Association

The problem of data association refers to the concept of relating the states of nature from

which a measurement or set of measurements originate. There are many applications

when data associations are known a priori or the problem of choosing the correct ones

becomes trivial. However, for the problem of autonomous agents attempting to solve the

SLAM problem it is a key component. In fact it is one of the most difficult aspects of

developing a full solution to the SLAM problem [40, 4].

The study of data association has historically received the most attention within the

literature on target tracking [5, 6]. However, with increasing attention in recent years

being given to obtaining full solutions to the SLAM problem for robotic agents there has

begun to be increasing attention to the data association problem within the Al literature

[31, 3, 32, 21, 27, 4].

Much of the work that has come out of the AI/SLAM literature has sought to apply

the ideas previously laid out in the tracking literature to the SLAM problem. At the same

time some approaches to data association that have come out more recently appear to

be unique to the SLAM domain such as maximum common subgraph (MCS), combined

constraint data association (CCDA), and to a lesser extent joint compatibility branch and

bound (JCBB) [4, 3, 31]. None-the-less many of these approaches have been demonstrated

to perform successfully under specific conditions and implemented with particular data

association-SLAM filter pairings.

One of the pieces that appears to be missing from the literature is a comprehensive
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comparison of the performance of the most prevalent of these algorithms. In particular,

how these algorithms perform when paired with the most popular filters for solving the

SLAM problem and if the various data association picking algorithms will perform the

same independently of the filter they are paired with.

3.1 Individual Measurement Data Association

The simplest form of the data association is that of having to associate a single mea-

surement with the appropriate feature in the environment, where this could also include

the possibility of either a spurious measurement or a previously unknown feature. This

form of the problem, as opposed to a set of batch measurements that can be considered

as being received simultaneously, appears to be very common in the tracking literature,

from which many of the data association ideas originate.

3.1.1 Maximum Likelihood

One of the most basic and simplest methods for performing data association is to con-

sider the measurement likelihoods. This is done by calculating the likelihood that each

landmark known to the agent, i.e., that exists in the SLAM filter, is associated with the in-

dividual measurement being considered. This method is also known as Nearest-Neighbor

data association in the literature [5].

In general the likelihood or Nearest-Neighbor calculation can be made for any prob-

ability distribution, as long as the probability density can be calculated for any possible

measurement. For every case considered in this thesis the following assumptions will be

made, thus allowing for a straightforward analytic representation of the likelihood.

- The true measurements at the present time are normally distributed, i.e. the

measurement noise is gaussian.

- A priori knowledge of the characteristics of the measurement noise is available in

terms of standard deviation omeasure and the mean.

Now the data association is chosen by determining the maximum likelihood.
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e= arg max f..) (3.1)

=ii (27r)1/ ex ( - vi S71 vi (3.2)

The variable el = {i, j} is defined as the l-th data association for the measurement, i,

and the feature j. The variable vij is the innovation for the {i,j} pair, Si is the

innovation covariance matrix, and n is the dimension of the innovation vector which is

defined as the difference between the true measurement and the estimated measurement

give the data association el = {i,j}.

This can also be chosen based on the maximum log-likelihood or alternatively the

minimum normalized log-likelihood Nk, also known as the normalized distance [4].

ln(fij) = - --v - ( ) - In (3.3)
_21U3 3 (27r)n/2

el = arg max (ln(fi) (3.4)

Nij = vTSilvlj + ln|Sg| (3.5)

el = argmin (Nij (3.6)

Maximum likelihood can easily be made to include the ability to either reject spurious

measurements or allow for the possibility of taking measurements of a previously

unknown landmark. If only one or the other of these is going to be allowed as a

possibility a single threshold can be used as either the likelihood of a spurious

measurement or the measurement of a previously unknown landmark.

This can be done somewhat ad hoc by looking at the statistics of the measurement

errors and using this information to calculate reasonable thresholds of what would

constitute a measurement that is not consistent with the current knowledge of the

world. Alternatively, a more rigorous method can be used whereby one uses the fact

that the exponent of the likelihood calculation is x2 distributed. More about this will be
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discussed in the next section involving individual compatibility.

3.1.2 Individual Compatibility

The method of individual compatibility by itself is not a method by which data

associations can be strictly chosen. Instead those data associations that are statistically

unlikely, or incompatible, can be eliminated from consideration. In [4] this type of

method is referred to as "ambiguity reduction" as opposed to "ambiguity management"

which refers to those methods such as maximum likelihood which explicitly make data

association choices.

This can be accomplished by noting that the exponent of the likelihood function

describing the distribution of innovations is in fact x 2 distributed.

Miy = vJS-Iv (3.7)V 3 .V

Where Mij is x2 distributed, and is also referred to as Mahalanobis distance and

normalised innovation square (NIS) in the literature [5, 4].

The individual compatibility test is then given by the following inequality:

Mij < 72 (3.8)

The quantity -yr is determined from two parameters, n, the dimension of the innovation

vector and a free parameter which defines the expected percentage of correct

associations that will be excepted. In this study that parameter is always taken to be

95% or 0.95, which is commonly used in the literature [5, 4].

3.1.3 Combined Individual Compatibility and Maximum

Likelihood

One possible approach to data association for the single measurement case is to use both

individual compatibility and maximum likelihood together. This can be done by first

processing the measurement via individual compatibility and therefore eliminating those
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associations which fail individual compatibility. Then, within the set of remaining data

associations, choose the one which has the maximum likelihood. The only difference in

results between this method and using maximum likelihood by itself is that it allows for

elimination of spurious measurements. In other words there will be cases where this

method will choose to not make any data associations, thereby ignoring the

measurement and treating it as faulty.

3.2 Batch Data Association

The problem of batch data association is very similar to that of the single measurement

case and many of the algorithms developed for that case can be applied to this problem.

Batch data association refers to the situation where the measurement devices being

used, or the dynamics of the situation, are such that it is possible to treat a set of

measurements as a batch process that can be processed simultaneously. This situation

can arise when the device being used takes measurements of a portion of the

environment in snapshot form, such as a digital camera or some laser range finders. An

equivalent case can occur when the scan frequency of a measurement device is much

faster than the dynamics of the vehicle, so the motion between the first measurement of

a set and the last is negligible.

Posing the data association problem as a batch process has some nice properties which,

if used correctly, can help to better define the proper data associations. The first is

greedy mutual exclusion, which states that within a given batch of measurements no two

measurements can be associated with a single landmark. If this is a good assumption, it

alone will allow for the pruning of a large subset of all measurement-landmark pairing

possibilities. The second property that this concept allows for is the possibility for

comparing the all pairings within the entire data association set.

3.2.1 Sequential Compatibility Nearest Neighbor

One of the most basic algorithms that can be implemented to resolve data association

ambiguities in the case where a batch of measurements can be considered as
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simultaneous or near simultaneous is Sequential Compatibility Nearest Neighbor

(SCNN) [31]. This method is nearly equivalent to the methods described in section

3.1.2, however the greedy mutual exclusion property for the batch data association

requires a change in implementation.

In this case the algorithm must be varied to exclude the possibility of a particular

landmark from being associated with more than one measurement within a single batch.

This can be implemented in a number of ways and here are two possible

implementations of this.

Implementation 1: Process measurements as a batch.

1. Remove as possibilities all associations which fail the individual compatibility test.

2. Calculate the likelihoods for all remaining data associations el = {i, ij}.

3. Choose the data association that maximizes the likelihood function, as in equation

3.1 except consider all measurements .

4. Eliminate from future consideration within the current measurement batch all

hypotheses el that include either the measurement, i, or the feature, j.

5. Repeat process starting with step 2 until all of the measurements have been

assigned data associations, or in other words until we have achieved a maximal

hypothesis set, Em = {ei, e2, ...em}.

Implementation 2: Process measurements sequentially but independently while

preserving mutual exclusion rule.

1. Randomly pick one of the measurements, ifixed, that has not been processed from

the batch.

2. Eliminate from consideration those features, j, that do not satisfy the individual

compatibility requirement with the chosen measurement ifixed.

3. Calculate the likelihoods over all remaining associations, el = {fixed, j}, for the

fixed ifixed.
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4. Choose the data association, el = {ifixed, j} from this set with the maximum

likelihood.

5. Eliminate from future consideration within the current measurement batch all

hypotheses el that include either the measurement, ifixed, or the feature, j.

6. Repeat process starting with step 1 until all of the measurements have been

assigned data associations, or in other words until we have achieved a maximal

hypothesis set, Em = {ei, e 2 , ---em}.

A benefit of using either of these implementations is that measurement updates can be

made after each data association choice is made for individual measurements.

The first implementation may be beneficial because it will sequentially pick the global

maximum that is still available via mutual exclusion. This means it has the property of

at least considering likelihoods across multiple measurements.

The second implementation is advantageous because of its simplicity and therefore ease

of implementation. Additionally, this second method has a random component to the

way it chooses which measurements to process first, second, etc. This is particularly

beneficial if there is an ordering effect, where a certain association tends to always be

chosen by the first measurement processed. If there is a random component then there

is more of a chance that the association chosen will be the correct one. This random

ordering property may be more beneficial to the SLAM algorithm than it is to the EKF.

Sequential compatibility does have two obvious drawbacks. First, it does not allow for

the possibility that the data association which appears to be correct, when viewed

through the possible assignments of a single measurement of the batch, may not be

correct if all measurements and possible associations are considered jointly.

Second, a notion of optimality over an entire batch of data associations does not exist in

the traditional SCNN implementation, whereby measurements are processed one at a

time and therefore data association choices are based only on the compatibility of a

given measurement and the greedy mutual exclusion requirement. The second SCNN

implementation as introduced here does maintain a notion of optimality over the entire

batch, where optimality in this situation refers to finding those associations that have
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globally maximum likelihoods. However, the notion used in this method is relatively

weak as it seeks to find the Maximum Likelihood of individual measurements over all

data associations while enforcing individual compatibility and mutual exclusion.

3.2.2 Joint Maximum Likelihood

The method of joint maximum likelihood aims to find the maximal set of data

associations, Ek which maximizes the product of the likelihoods [4].

Ek= arg max J fer (3.9)
{VenEEi}

where E, = {ei, e2, ... , em} is a possible data association set and em = {i, j} is a data

association of measurement i with feature j. The equation for the likelihood fern = fij is

given in 3.2.

This problem can also be formulated as a maximization of the sum of log-likelihoods,

which can be beneficial due to increased numerical stability.

Ek= argmX ln(femn) (3.10)
{VemEEI}

Finally, this problem can equivalently be stated as a minimization of the sum of the

normalized Nearest Neighbor distance [4]. Here the variable Nem is equivalent to Nij as

defined in equation 3.5.

Ek = arg min Nem (3.11)
{VemEE}

A known algorithm for finding the maximum log-likelihood set is the maximum-weight

bipartite graph [4]. Additionally, some authors [31] suggest that any data association

that does not satisfy individual compatibility should not be considered in joint
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maximum likelihood data association. However, there is nothing in the formulation of

this method that requires this. Under certain circumstances making this addition will

lead to elimination of data associations that are in fact correct, so this concept will not

be put into effect for the implementations of this method as discussed here.

One way to think about this method which can help to give one intuition into how it

operates is to consider the likelihoods as probabilities. This can be accomplished by

normalizing the likelihoods over all possible feature assignments for each measurement

such that:

N

S Pike(measurement = i, f eature = j) = 1 (3.12)
j=1,i=fixed

Continuing this logic, the probability that is desired is the joint probability over data

associations of measurement i to feature j, where each i and j can only occur once.

P(Ek) = P(ei, e2 , ... , em) (3.13)

Where Ek = {ei, ..., em} is a maximal data association set and a el = {i, j} represents

the assignment of measurement zi with landmark j. Now if an independence assumption

between data associations is made this probability can be re-written as:

P(Ek) = P(ei)P(e2)...P(em) = fJP(ei) (3.14)
1=1

From here it seems that the most desirable Ek would be the one that corresponds to the

highest probability, which would correspond to the maximum likelihood. Therefore the

chosen data association set is:

E = arg max P(Ek) = arg max f P(ei) (3.15)
k k 1=

Herein lies an intuitive view of maximum likelihood data association, which could in fact

be implemented in this way if one so desired.
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3.2.3 Joint Compatibility

The concept behind Joint Compatibility (JC) data association is to take the individual

measurement, chi-squared, gating test into the realm of batch data association. While

the Sequential Compatibility Nearest Neighbor method maintains a notion of

compatibility amongst an entire batch set of measurements by enforcing the individual

compatibility requirement on a sequential basis, it does not consider simultaneous

compatibility of the data associations for the entire batch of measurements. Sequential

compatibility also fails to maintain a concept of joint optimality across the entire data

association set. In a sense, SCNN is a naive application of individual measurement

association to the batch data set situation, and has serious failures to take advantage of

characteristics of a batch measurement set.

Joint compatibility resolves both of the major pitfalls of SCNN. At the core of the JC

concept is the idea that it is possible to expand the individual compatibility concept to

a set of many measurements and their landmark assignments. In this method the idea is

to find the maximum likelihoods data association sets Ek that are simultaneously jointly

compatible. Joint compatibility also maintains a concept of optimality for the entire

data association set E, as the solution that will be chosen is the maximal, or nearest

maximal, data association set that has the maximum likelihood. The Joint

Compatibility method works in the following way:

1. Of all possible data association pairs, el = {i, j}, those that do not satisfy

individual compatibility are eliminated.

2. Using the remaining el an appropriate search method is used to find the maximal

data association set, or nearest maximal set, that satisfies the Joint Compatibility

requirement. In the case that multiple, maximal data association sets exist the one

with the maximum joint likelihood should be chosen.

Consider, vEk which is the innovation sequence for a batch of measurements using the

chosen data association set Ek.
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Ve,

1 'kVe 2  (3.16)

Ve2n

Ek Ze. Zej=Zi (3.17)

Here, zi is measurement i and 2j is the estimated measurement considering the

landmark j is the one being associated with measurement zi.

In the case of range and bearing measurement pairs being considered, as is the case

here, j would be:

zj = hj(k) = ti(ka) -ag (3.18)
arctan- Sag ]

To determine the joint innovation covariance the Jacobian Vhz = lh must be

calculated. Here:

he,(2)O

ZEk = hEk (k) = : (3.19)

he, G2)

This Jacobian is equivalent to building up the following matrix.

He]

HEk= : (3.20)

He

The terms He, are what is traditionally referred to as the measurement matrix for

el = {i, j} in the Kalman Filter literature. To complete the formulation the matrix REk

must also be constructed, which is a block diagonal matrix of copies of the measurement

covariance matrix.
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Re, 0 --. 0

0 Re2 '
REk (3.21)

0

0 ... 0 Rei

Re = Re2 = Re= Orb (3.22)
Urb ab

In the cases considered here Grb = 0, where Urb is the range-bearing measurement cross

term, o2 is the variance of the noise in the range measurements, and u'2 is the variance

of the noise in the bearing measurements.

These quantities are then used to compute SEk, the covariance of the innovations.

SEk = HEkPHEk + RE (3.23)

The chosen data association set, Ek, must satisfy Joint Compatibility in the following

way:

VEk = ZEk - ZEk (3.24)

Then the joint innovation is subject to the following test, or Joint Compatibility

requirement:

MEk EkS1 VEk < -Y1 (3.25)

Here n of -y1 is the dimension of the innovation sequence and Yn is also a function of the

free parameter which determines the probability of not rejecting a good measurement.

This is generally taken as 95% or 99%. The requirement of satisfying the MEk < Yn

must be met at all levels in joint compatibility from the individual measurement case to

the maximal data association set.
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Measurement 1 F-i F-2 Null

Measurement 2 A
F-2 Null F-1 NuK F-1 F-2

Figure 3-1: Joint Compatibility Branch and Bound Search for a two landmark - two
measurement scenario.

Branch and Bound

In order to search all allowable data associations, so that the best Jointly Compatible

set Ek can be found, specific search algorithms must be implemented or developed. It is

the goal of the search algorithms to search all viable solutions while doing so in as little

time as possible or with the least computational complexity. The method that has been

presented in the literature to perform this function is called Branch and Bound [31, 4].

This search method is uses a depth first search tree where each level of the tree

represents a measurement within the batch being considered and each leaf of the tree

represents pairing of landmark to the measurement at that level. These leaves would

include the null assignment, signifying the possibility of a spurious measurement, see

figure 3-1.

In the Branch and Bound search methodology the decision of which node is chosen to be

searched next is determined by which association given the largest likelihood.
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At each level of the tree the current E is checked to verify that it passes joint

compatibility. If the current association set does not satisfy the compatibility

requirement the search down that path is halted and pruned from consideration. The

search then moves back up the tree to expand and consider the next available addition

to the association set. In this way the methodology "bounds" its search to only

compatible sets of data associations.

Joint Compatibility as a Constraint Satisfaction Problem

Another possible method for posing the Joint Compatibility problem is to view it as a

Constraint Satisfaction Problem (CSP). In framing the problem in this way a more

intuitive representation of the problem can be attained, and additionally search methods

that are used for solving CSPs become easily applied to the problem at hand [46, 36].

- It will be demonstrated how JC can be framed as a CSP.

- A search method will be presented for solving the CSP formulation, namely

Backtrack Search with Forward Checking (BT-FC) using Dynamic Variable

Ordering (DVO).

- The search method will be at worst, as efficient as Branch and Bound. In most

cases it is expected to be more efficient.

The framing of JC as a CSP is straightforward. Using the framework laid out in [46] a

CSP is defined by the triple < V, D, C >, where V represents the variables, D represents

domains, and C represents constraints. In this problem these are defined as:

- Domains == Measurements

- Variables == Landmarks, Spurious Measurement

- Constraints:

- V # V (Mutual Exclusion Constraint)

- M[vv 2 ...v1 < y, (Joint Compatibility Constraint)
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Measurement 1

{F-1, F-2, F-3,Null}

{F-1, F-2, F-3,Null} {F-1, F-2, F-3,Null}

Measurement 2 Measurement 3

Figure 3-2: Joint Compatibility as a Constraint Satisfaction Problem. Where {F-1,F-2,F-
3,Null} represent the possible variable assignments and the F-i's correspond to features in
the filter and Null represents the assignment of measurement rejection or new landmark
hypothesis depending on the given situation.

Pictorially, this can be represented as in figure 3-2 which shows a three measurement,

three landmark case.

Backtracking Search with Forward checking using Dynamic Variable

Ordering

Once the Joint Compatibility method of data association is framed as a CSP

pre-existing search methods for solving CSPs can be implemented to efficiently find the

optimal Jointly Compatible data association set, Ek. One method is Backtracking

Search with Forward Checking, (BT-FC), using Dynamic Variable Ordering, (DVO)

[46, 36]. Use of this method is advantageous as it makes it possible to take advantage of

the structure of the problem, in particular the sparsity of those data associations that

are allowed after accounting for the often large number that are eliminated by use of
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individual data association, or measurement, compatibility.

The method of Dynamic Variable Ordering is described in [46], and is summarized here

for completeness. The premise of this method is that the order of the domains to

expand next within the BT-FC search tree and which of the available variables in that

domain to assign should be done dynamically as the search proceeds. This is in contrast

to the traditional BT-FC search process where the ordering of domains to expand and

variables to assign is fixed.

Dynamic Variable Ordering methodology:

- Most constrained domain: Meaning the domain with the fewest allowable variable

assignments, in this case that would mean the measurement with the fewest

individually compatible landmarks.

- Least constraining variable assignment: Choose the variable assignment that rules

out the fewest variables in other domains, which in the JC case this means choose

the landmark assignment that is present in the fewest other domains.

The BT-FC method using DVO works in the following way:

- Prune domains using constraint propagation, where the constraints used are

defined in 3.2.3.

- Push onto a Queue: DVO chosen children of the domain which is also chosen using

DVO.

- Loop: while Queue is not empty

- Pop queue, thus making a variable assignment to a particular domain.

- Prune domains based on the above assignment, if a domain has become

empty then backtrack and go to 1. This is the Forward Checking step.

- Check the Joint Compatibility of the current data association set (partial or

maximal), E , based on variable assignments to the domains as depicted in

figure 3-2. If the set fails the compatibility test then backtrack and go to 1.
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- If the data association set, El, is maximal and has a larger Joint Likelihood

then the previous candidate set, Ek, then save as current candidate. Now

backtrack and go back to 1.

- Push onto the Queue: DVO chosen children of the domain which is also

chosen using DVO, and loop back to 1.

The benefit of this method is that it speeds up the search process by reducing the

branching factor at the highest levels of the search tree to the minimal allowed while

still searching the entire tree. Considering that the Branch and Bound method can be

thought of as comparable to either pure backtracking search or at best BT-FC, the

literature allows for a simple comparison of the Branch and Bound method to BT-FC

using DVO. In comparing these methods for determining a solution to the N-queens

problem, using comparable computational resources, the capability of these methods is

about 15-30 queens for the non-DVO based methods and about 1,000 queens for the

DVO based method [46]. While this is a rough comparison it does give an order of

magnitude sense of how the performance of these two methods would stand up.

3.2.4 Multiple Hypothesis Data Association

The basic concept behind this method is that at the time of receiving an observation

and prior to processing it, the way to deal with ambiguity in the data association is to

consider all reasonable data association possibilities simultaneously. The success of this

method relies on the idea that information about which data association is correct will

come in the form of future information, therefore allowing the filter to decide which past

data associations are correct.

In an EKF framework this method requires the maintenance and update of an entire

bank of EKFs where each has committed to a different set of data associations at each

measurement step. Unfortunately, such a bank of filters can grow in size in an

exponential fashion since every filter in the bank may have to split into multiple filters

after each measurement is received. Even in the case where pruning methods may be

available to limit the number of EKFs needed to explore the data association ambiguity,
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with a large number of landmarks this method will quickly become very

computationally expensive. Additionally, there is the problem of deciphering how to use

the information available in the numerous filters being maintained for a useful purpose,

as the different filters will contain conflicting information. In essence, this methodology

for EKFs is very difficult to implement as a real-time algorithm.

For FastSLAM the multiple hypothesis concept is already ingrained in the formulation

as data association is done on a per-particle basis. The particles are not only a

representation of the uncertainty of the pose, but are also individual hypotheses of the

pose states. Therefore, it may be advantageous to allow for each particle to try each

data association hypothesis that is plausible, as well as the measurement rejection and

new landmark hypothesis. This can be accomplished by splitting each particle and

forcing it into enough copies to consider each of these hypotheses. Such a method has

been explored in the literature by Thrun, Nieto, Guivant, and Nebot in [45].

This method is interesting because it allows for a simple method by which both the

possibility of measurement rejection and new landmark initializations can be considered

simultaneously. Additionally, this method appears to have good SLAM results [45].

There are some major problems with this method however. First, it is not clear how to

interpret the information in the filter when these multiple hypothesis of particles that

have been split are floating around. Additionally, in order to allow this method to

continue to work in real-time some ad hoc limits must be put in place when the number

of particles are reduced to the original number and these limits will be heavily

dependent on changing variables such as the number of landmarks in the filter and the

number of measurements being received.

Because of the way that the FastSLAM filter works in term of sampling particles based

on their weighting this method would intuitively seem to have the same results as

simply making data associations by sampling the likelihoods of the data associations.

According to one of the original authors of the FastSLAM method this is indeed the

result of applying this type of data association method to this filter [30].
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3.2.5 Delayed Assignment Data Association Algorithms

More recently a number of new data association algorithms have appeared in the

literature that take a different approach to the ones previously discussed. The basic

premise of these methods are to put more importance on making the correct data

association algorithms and less importance on processing measurements as they arrive.

The benefit of doing this is that it allows of future data to resolve data association

ambiguities that may otherwise be unresolvable. Some methods that incorporate this

method make use of the RANSAC algorithm [16] to match data from the multiple

measurement sets, while others make use of the Hough Transform to accomplish a

similar goal of improving data association assignments by delaying the assignments made

[32]. More recently there has been a paper [21] that discussed a maximum likelihood

data association method that also sought to improve data association assignments by

being "lazy" about making assignments. This method has the additional property of

being able to go back in time and repair previous data association assignments.

These methods are certainly useful and quite powerful in their ability to discern the

correct data association in ambiguous situations. However, they will not be studied

in-depth here as they would require a change in paradigm with respect to the real-time

filtering applications that are being considered.
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Chapter 4

Simulated Results for Filter-Data

Association Marriages

Through the use of simulations, a comparison will be made of the operation of the EKF

and FastSLAM filters when married to three different batch data association methods:

Sequential Nearest Neighbor, Joint Compatibility, and Joint Maximum Likelihood. To

make these comparisons, relatively simple scenarios will be used. However, the problems

posed by such scenarios will be shown to be challenging in certain cases and the same

problems will persist in more complex situations.

The basic simulation involves an agent moving around a square trajectory for eight

minutes of simulation time. During this time the agent takes measurements of two

landmarks every five seconds. As a part of this analysis the same set of simulations were

run for eight different landmark pair separations. These eight landmark pair separations

were used both for a scenario where the landmark pairs are outside of the agents

trajectory, as examined in section 4.2 and for a case where the pairs are inside, or

partially inside, the trajectory as discussed in section 4.3. The purpose of this is to offer

problems of varying difficulty to the data association algorithms.
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4.1 Assumptions and Simulation Set-up

In order to interpret the results presented here it is important to understand the major

assumptions made in the problem set-up. First, it is assumed that only two landmarks

are present in the world at a given time, and that the filter begins with an initial

estimate of the location of the landmarks and a notion of uncertainty in the landmarks

position. It is assumed that the agent has an a priori estimate of its own pose as well as

a reasonably correct notion of the uncertainty in the pose, in other words the initial

error between the distribution mean and the truth state is bounded.

Additionally, it is assumed that all measurements are received as range-bearing pairs

and both landmarks are seen at every measurement time step. The possibility of a

spurious measurement is still allowed within the data association algorithm. These

assumptions mean that the data association problem for these simulations can be

reduced to the determination of which of the two landmarks each measurement should

be associated with. At the same time the possibility that one or both of the

measurements received should in fact be rejected as spurious is also allowed.

The greatest simplifying assumption that is made here is that the algorithms do not

need to deal with adding new landmarks that may not have been known about a priori.

If both the possibility of measurement rejection and a new landmark exist

simultaneously the data association problem becomes much more difficult. Most

solutions to this problem that would make use of the algorithms discussed here would

involve some ad hoc procedures to be functional. This is because the criteria that is

used here to reject measurements is the same one that would be used to make the

decision to initialize a new landmark, if that was allowed as a possibility.

Finally, for each of the landmark separations that is studied for each filter-data

association pair, including the perfect data association case, a set of 20 Monte Carlo

runs were performed. It should be noted that while this is expected to be a sufficient

number of runs to determine trends in the behavior of filter-data association marriages,

it may not be enough to determine true average behavior for a given situation.
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4.1.1 Numerical Values Used for Simulations

This section will briefly describe the relevant numerical values used in the simulation in

terms of uncertainties, the motion model, and the data association thresholds. The

initial pose and landmark uncertainties, as well as the measurement uncertainties, used

in the simulation are given in table 4.1. The implication here is that the initial

distribution of both landmark and pose states is assumed to be Gaussian. While this is

knowingly an incorrect assumption for angular states (heading), it was made to allow for

direct comparisons between EKF and FastSLAM performance.

f{N,E}ag rn JN,E}Fi,- rge Ubearing

10 m 0.393 rad 20 m 5 m 8 x 10-3 rad

Table 4.1: Initial pose and landmark uncertainties used in simulations, as well as the
range and bearing measurement uncertainties used.

The motion model used for the agent is relatively simple: it involves a slip scale factor

and a skid error both for the translational velocity and rotational velocity. The

translational velocity was held constant at 3.0 meters-per-second, while the rotational

velocity was nominally zero except when the agent turned the corner on the trajectory.

The numerical values used for these quantities are given in table 4.2.

Vt Vr I slip, skid,, slip,I skid,
3.0 m/s 0 rad/sec 0.1 0.01 m/s 0 0.01 rad/sec

Table 4.2: The slip scale factor and skid error used for calculating the translational and
rotational velocity errors, as well as the translational and rotational velocities used.

These values are used to calculate the translational and rotational velocity errors in the

following way:

av = slip, - |vt| + skid, (4.1)

a0, = Slipvr - IVr + skidv, (4.2)

The errors in both components of velocity are assumed to be normally distributed, such

that:
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Vt,measure ' N(Vt,true, oav) (4.3)

Vr,measure ~ N(Vr,true, oVr) (4.4)

For the Joint Compatibility and Sequential Nearest Neighbor methods of data

association there is a free parameter which must be chosen so that a threshold for

measurement rejection can be established, as previously stated in 3.1.2, this will always

be taken to be 95%. This is a result of using the following rule:

=vS v- < 7, (4.5)

For a single measurement of range and bearing, n is equal to 2 and therefore -yn is taken

to be 5.9915. However, for Joint Compatibility the value of n will very depending on the

portion of the data association set that is being tested.

4.2 Landmark Pairs Outside of Trajectory

Simulated Experiment

The trajectory used along with the landmark pairing separations considered for the

outside of trajectory case, including the numbers assigned to these pairings, are depicted

in figure 4-1.

While this case is seemingly very simplistic in nature the results obtained are important

and can generalize to many more complex situations. When it comes to picking the

correct data associations the challenge of overcoming ambiguity will often boil down to

resolving the data association ambiguity for just two landmarks.

This is best understood by considering the case where two landmarks that are relatively

close together are within view of a measurement instrument and because of the relative

distance and the accuracy of the instrument some ambiguity exists. If then a third

landmark comes into view but is further away than the separation of the previous two
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Trajectory and Landmark Pairs Used for Simulated Results
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Figure 4-1: The trajectory and landmark pairings used in computing the simulated results
for the outside of trajectory case. Landmark Pair Numbers correspond to separations of
[4m,10m,20m,30m,40m,100m,200m,400m].

landmarks which are still in view, the data association problem can in-effect be

decoupled so that the problem is still one of resolving the ambiguity between the closer

two (of the three) landmarks. This case will not always hold, but in many cases it does

and the results from this experiment are therefore informative.

4.2.1 Results for Perfect Data Association

In order to set a performance benchmark against which to compare the performance of

the data association-filter marriages, a set of twenty simulations for each landmark

separation were run where data association assignments are known a priori. The results

from these simulations are expressed using average RMS of the state errors for both an

EKF and FastSLAM approach. The RMS errors are plotted as a function of landmark

separation in figure 4-2.

Intuitively, the results shown here make a good deal of sense, particularly for the EKF.

Namely, for the EKF the average RMS errors for the pose states (agent position and

heading) decrease with increased landmark separation. This is because more

information can be gained about the agent's pose when the landmarks are further away
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Figure 4-2: Performance of the EKF, denoted using solid lines, and FastSLAM, denoted
using dash-dot lines, filters for the perfect data association case where the landmarks are
located outside of the trajectory. Subfigures (a) and (b) show the agent's RMS error in
position and heading, while (c) shows the average RMS error in the estimated landmark
positions.

from the observer and one another. Additionally, the average RMS error in the

landmark states increases for large separations which is also intuitively sensible. This

behavior is due mainly to the fact that for situations where the landmarks are far away,

small bearing measurement errors have a large effect on where the landmarks are

interpreted to be via measurements. Conversely, this effect is not seen in the agent

states because the two landmarks, whose positions are being measured, are located in

opposite directions which helps to cancel this effect out.
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Similar behavior to that described for the EKF is seen for the FastSLAM filter as well.

However, it is obvious from figure 4-2 that the FastSLAM filter has much tighter

average performance than that of the EKF, as the EKF has much larger variability in

its performance which is indicated by the error bars. The average performance of the

FastSLAM filter for localizing the pose states is shown to be significantly better than

the EKF for all but one landmark separation, where the biggest difference appears for

landmarks that are closer together. Overall the error in the pose states for FastSLAM is

relatively flat with changing landmark separation, where there is about a 1.5 meter

difference between the best and worst cases for position and about 0.07 radians for

heading.

The characteristics of the average RMS error in landmark position for FastSLAM is

similar to that of the EKF with slightly more variability. One thing that may be

significant to note is the decreased performance of FastSLAM and EKF for the 200

meter landmark separation case, which is the one where the landmarks are lined up at

the end of the trajectory, pair seven in figure 4-1.

This same behavior will come up again in later cases of FastSLAM-data association

algorithm marriages. It is likely an artifact of particle depletion issues with the

FastSLAM 1.0 filter used here, which may come into play in this situation since the

"wrong" particles may be sampled away when the agent is moving directly towards (or

away from) one of the landmarks. This would be caused by a decrease in observability

that occurs under this situation, since lateral motion becomes more difficult to

determine.

4.2.2 Description of Data Format Used for Filter-Data

Association Algorithm Marriages

For each of the data association methods considered there are four different sets of plots

that are shown. The first is a three-dimensional plot which shows the average data

association error made for the particular data association algorithm when married to a

particular SLAM filter. This is plotted as both a function of time and landmark
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separation. For the EKF the average is of an ensemble nature, as it is taken over twenty

Monte Carlo runs. For FastSLAM two results are shown: the first is the ensemble

average of the number of data association errors averaged over all particles and the

second is the ensemble average for just the maximum likelihood particle at each

measurement step.

The second set of plots is calculated in exactly the same manner as for the data

association errors. However, the statistic considered by these plots is the average

number of measurements rejected.

The third set of plots consolidates the information shown in the first two sets of plots by

averaging this data over time. These plots then show the average number of

measurement rejections and data association errors only as a function of landmark

separation.

The final set of plots attempt to depict the performance of the SLAM filters. All three

of the plots in this set show average RMS errors for different quantities: agent position,

agent heading, and landmark position. This is the same format that was used to show

the performance of the filters for the perfect data association case in 4-2.

Additionally, a set of three tables will be used to compare the results for the three

different data association methods applied to the two filtering methods considered.

These tables will summarize RMS agent position error, RMS landmark position error,

and average data association errors. This will be done in a separate section where all

methods will be compared simultaneously.

4.2.3 Results for Sequential Nearest Neighbor Data

Association

Due to the characteristics of Sequential Nearest Neighbor data association, as discussed

earlier, particularly its lack of a notion of optimality and its inability to consider

associations to multiple measurements in a joint manner, it would be expected that this

method would perform worse than the Joint Compatibility and Joint Maximum

Likelihood methods. The results shown here demonstrate that, in terms of the number
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data association errors made, this is the case for larger landmark separations when

compared to the other methods studied. At the same time this method makes fewer

data association errors at the smallest landmark separations when compared to the

other two data association algorithms considered.

EKF with Sequential Nearest Neighbor: Average Data Association Error FastSLAM with Sequential Nearest Neighbor: Avg Data Association Error Per Particle
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Figure 4-3: Sequential Nearest Neighbor data association performance variation over time
and landmark separation where the landmarks are located outside of the trajectory. The
average number of data association errors versus time and landmark separation for EKF
(a) and FastSLAM, where (b) shows the average per-particle errors and (c) shows just the
errors for the maximum likelihood particle. Landmark Pair Numbers [1,...,8] correspond
to separations of [4m,10m,20m,30m,40m,100m,200m,400m).

In figure 4-3 it can be seen that for the EKF-SCNN marriage, data association errors

are being made regularly, even at landmark separations of 40 meters. This is much

worse than the FastSLAM-SCNN marriage, which makes very few data association
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errors for landmark separations greater than 20 meters. It will also be shown that other

data association algorithms perform better, when married to the EKF, than the SCNN

algorithm does for landmark separations greater than 30 meters.

EKF with Sequential Nearest Neighbor: Average Measurement Rejection FastSLAM with Sequential Nearest Neighbor: Avg Measurement Rejection Per Particle
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Figure 4-4: Sequential Nearest Neighbor data association measurement rejection charac-
teristics where the landmarks are located outside of the trajectory. The average number of
measurements rejected versus time and landmarks separation for EKF (a) and FastSLAM,
where (b) shows the average per-particle rejection and (c) shows results for just the max-
imum likelihood particle. Landmark Pair Numbers [1,...,8] correspond to separations of
[4m,10m,20m,30m,40m,100m,200m,400m].

In the Figure 4-4, the most notable aspect is the large number of measurements that

get rejected using this method. It is particularly interesting to see that the average

number of measurements rejected per-particle for FastSLAM is close to one. This would

be of greater concern; however, the lower plot also shows that the maximum likelihood
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particle makes far fewer rejections, which due to re-sampling, means that the

measurement information is still being absorbed into the filter. At the same time this

could become a significant issue for real world applications which will be discussed in

chapter 5. The most notable feature of these plots are the characteristics seen in

subfigure 4-4(c), which shows that for FastSLAM the maximum likelihood particle only

rejects measurements for the 200 meter landmark separation case and only for certain

spots in the trajectory. This is notable because it appears to correspond to a noticeable

improvement in filter performance over the perfect data association case.

FastSLAM and EKF with Sequential Nearest Neighbor: Average Data Association Error FastSLAM and EKF with Sequential Nearest Neighbor: Average Number of Measurement Rejections
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Figure 4-5: Average measurement rejection, (a), and data association errors, (b), for
Sequential Nearest Neighbor data association for both EKF and FastSLAM for the case
where the landmarks are outside of the trajectory. Here the EKF data is denoted using
solid lines, and FastSLAM data is denoted with dash-dot lines for average particle behavior
and with dashed lines for maximum likelihood particle behavior.

The plots in figure 4-5 shows some interesting characteristics in comparing EKF and

FastSLAM for SCNN. The average data association error plot, 4-5(a), shows that at

small landmark separations less than 20 meters, the EKF is actually performing better

than FastSLAM. It is also interesting to note that the average number of data

association errors made by the maximum likelihood particle at the smallest separations

4 and 10 meters performs far worse than SCNN with the EKF. The measurement

rejection plot, 4-5(b), once again demonstrates that the average particle in FastSLAM

rejects many more measurements than the EKF implementation or the FastSLAM
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maximum likelihood particle.

FastSLAM and EKF with Sequential Nearest Neighbor: Average RMS Agent Position Error

Landmark Pair Separation log(m)

(a)

FastSLAM and EKF with Sequential Nearest Neighbor: Average RMS Agent Heading Error

Landmark Pair Separation log(m)

(b)

Landmark Pair Separation log(m)

(c)

Figure 4-6: EKF, denoted using solid lines, and FastSLAM, denoted using dash-dot lines,
performance using Sequential Nearest Neighbor data association where the landmarks are
located outside of the trajectory. Subfigures (a) and (b) show the agents RMS error in
position and heading, while (c) shows the average RMS error in the estimated landmark
positions.

In comparing figures 4-2 and 4-6 for landmark separations from 10 meters to 30 meters

it can be seen that the EKF has experienced a significant decrease in performance,

especially in localization. This is the range in which SCNN makes the most data

association errors and measurement rejections. It is interesting to see that for the 4

meter separation case there is not a large change in performance even though this is also

the case for which data association errors are most prevalent. This is because the
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landmarks are quite close in proportion to the range measurement error and therefore

data association errors have less of an effect.

Additionally, it is interesting to observe that the performance of the FastSLAM filter,

while slightly degraded in come cases, is not significantly affected by the ambiguous data

association situation. The most notable difference here is that the spike in position error

for the 200 meter landmark separation case, that was seen in the perfect data

association case, figure 4-2, is not present here in figure 4-3. This behavior is the result

of two factors, the first is that the SCNN algorithm appears to have the ability to act as

a pre-filter, only allowing the best measurements to be processed. The second factor is

that particles which reject measurements receive the lower weights in this scheme, which

is based on the gating threshold, and are therefore more likely to be sampled away.

4.2.4 Results for Joint Compatibility Data Association

The results for data association errors made using Joint Compatibility can be seen in

figure 4-7. For the EKF these results are similar to those using SCNN, however it

appears that at smaller landmark separations Joint Compatibility performs worse. In

comparing the FastSLAM results it appears that for the average particle the number of

data association errors made is slightly larger with JC than it was with SCNN, however

with JC there is an increased dependence on time, or location within the trajectory.

Also the average particle appears to make a single data association error at the first

measurement. The most significant difference, in data association errors, between SCNN

and JC for FastSLAM can be seen in the maximum likelihood particle performance.

Here, the maximum likelihood particle makes very few data association errors for

landmark separations greater than 10 meters.

The results for measurement rejections using Joint Compatibility are shown in figure

4-8. It appears that the characteristics are not that much different than was found with

SCNN; however, the average number of rejections being made has been reduced for both

the EKF and FastSLAM with both the average per-particle and maximum likelihood

particle.

The average measurement rejection and data association error performance is
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FastSLAM with Joint Compatibilty: Avg Data Association Error Per Particle
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Figure 4-7: Joint Compatibility data association performance variation over time and
landmark separation where the landmarks are located outside of the trajectory. The
average number of data association errors versus time and landmark separation for EKF
(a) and FastSLAM, where (b) shows the average per-particle error and (c) shows just errors
made by the maximum likelihood particle. Landmark Pair Numbers [1,...,8] correspond
to separations of [4m,10m,20m,30m,40m,100m,200m,400m].

summarized in figure 4-9. The most significant result that can be seen here for the EKF

is that at the landmark separations of 4 and 10 meters this method performs far worse

than SCNN. For the FastSLAM filter the most significant item to note about these plots

is that the maximum likelihood particle makes fewer data association errors and the

average particle makes fewer measurement rejections than was found using the SCNN.

The performance of the EKF and FastSLAM filters when paired with Joint

Compatibility is shown in figure 4-10. In examining the results for the EKF, it appears
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FastSILAM with Joint Compatibility: Avg Measurement Rejection Per Particle
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Figure 4-8: Joint Compatibility data association measurement rejection characteristics
for the case where the landmarks are located outside of the trajectory. The average
number of measurements rejected versus time and landmark separation for EKF (a) and
FastSLAM, where (b) shows the average per-particle rejection and (c) shows results for
just the maximum likelihood particle.. Landmark Pair Numbers [1,...,8] correspond to
separations of [4m,10m,20m,30m,40m,100m,200m,400m].

that this pairing has both good and poor results. The most obvious demonstration of

the poor results comes from the large increase in RMS position errors for the 4 meter

landmark separation case. Additionally, there is some decrease in performance, via

landmark error, for some larger landmark separations. However, those increases are not

as significant.

For the FastSLAM filter, the performance with JC has not changed substantially from

what was seen with SCNN. The most significant change comes in the increase in agent
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Figure 4-9: Average measurement rejection, (a), and data association errors, (b), for Joint
Compatibility data association for both EKF and FastSLAM where the landmarks are
outside of the trajectory. Here the EKF data is denoted using solid lines, and FastSLAM
data is denoted with dash-dot lines for average particle behavior and with dashed lines
for maximum likelihood particle behavior.

and landmark position error for the 200 meter separation case. This is again attributed

to the geometry of this case, with regards to the positioning of landmarks along the line

of motion of the agent. The SCNN method achieves different results from JC in this

situation because of the measurement rejections it is making, this is reflected in almost

twice as many measurement rejections than JC on average.

4.2.5 Results for Maximum Likelihood Data Association

As can be seen in figure 4-11 the Joint Maximum Likelihood (JML) method of data

association produces the most consistent results, in terms of data association errors,

across time when paired with both the EKF and FastSLAM, when compared with the

Joint Compatibility and Sequential Compatibility Nearest Neighbor methods. For the

EKF the number of data association errors being made, for small landmark separations

of 4 meters and 10 meters, is comparable to Joint Compatibility, however slightly worse

than what was seen for SCNN. At intermediate separations of 20 and 30 meters Joint

Maximum Likelihood continues to have similar performance, in terms of data

association errors made, to that of JC using an EKF. However, when compared to the
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FastSLAM and EKF with Joint Compatibility: Average RMS Agent Position Error FastSLAM and EKF with Joint Compatibility: Average RIMS Agent Heading Error

24-

22

200
6 0.1

t16 -- 00

Ii "4 0.081

0.06

1.0 -

6--

0-02 - - - - - - -

Landmark Pair Separation log(m) Landmark Pair Separation log(m)

(a) (b)
FastSLAM and EKF with Joint Compatibility: Average RMS Landmark Position Error

154-

13

12 -T

t

10

to to
7 -

6

Landmark Pair Separation log(m)

(c)

Figure 4-10: EKF, denoted using solid lines, and FastSLAM, denoted using dash-dot lines,
performance using Joint Compatibility data association where the landmarks are located
outside of the trajectory. Subfigures (a) and (b) show the agents RMS error in position
and heading, while (c) shows the average RMS error in the estimated landmark positions.

SCNN method, when paired with an EKF, the performance is similar to 30 meter

separations but at the smaller separation of 20 meters SCNN performs worse than the

other two methods.

When compared to the previous two methods studied for usage by the EKF the JML

method sets itself apart for the cases of landmark separation greater than 30 meters by

making no data association errors after that distance.

The pairing of FastSLAM with Joint Maximum Likelihood method appears to have

slightly worse performance than the other two methods for the smallest landmark
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Figure 4-11: Joint Maximum Likelihood data association performance variation over time
and landmark separation for EKF (a) and FastSLAM, where (b) shows the average per-
particle error and (c) shows just the maximum likelihood particle error. The average
number of data association errors versus time and landmark separation. Landmark Pair
Numbers [1,...,8] correspond to separations of [4m,10m,20m,30m,40m,100m,200m,400m].

separation considered, 4 meters. However, for separations of 10 meters and greater the

JML method paired with FastSLAM appears to perform far better than any of the

combinations studied. For this pairing no data association errors occur for landmark

separations of greater than 10 meters. As can be seen in subfigures 4-11(b) and 4-11(c)

the performance of the average particle and the maximum likelihood particle in making

data association choices correctly are very similar. This is very interesting as it has

implications for the performance of the this filter-data association pairing when applied
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to the problem where the possibility of new, previously not-seen landmarks are allowed.

This behavior indicates that when using JML, when faced with such a problem,

FastSLAM would have a set of particles that would be fairly similar in their concept of

the map of the environment.

The plots of the measurement rejections made using JML can be seen in figure 4-12.

Examining these plots, it is obvious that the loss of observability effect caused by

walking directly towards a landmark from which measurements are being received is

once again showing up. Here it affects the data association algorithm for both EKF and

FastSLAM. It shows up in measurement rejections during the portion of the trajectory

where the agent moves either directly toward, or away from, a landmark because the

lack of observability causes an increase in the error of the landmark estimate. This in

turn is reflected in the data association algorithm rejecting measurements because for

some period of time measurements are more likely to not fit the current state estimate.

The average number of data association errors made and measurements rejected for the

pairing of Joint Maximum Likelihood with both the EKF and FastSLAM filter can be

seen in figure 4-13. The most notable features here are that the average data

association error for both the mean per-particle and maximum likelihood particle are

essentially equivalent for FastSLAM. Additionally, the spike in measurement rejections

for the 200 meter landmark separation can be seen for both EKF and FastSLAM in

subfigure 4-13(b).

Figure 4-14 shows the mapping and localization performance obtained for marrying

JML with EKF and the FastSLAM filter. These results are very encouraging since for

most of the cases shown demonstrate performance that is very comparable to the perfect

data association case. For the EKF the only large deviation from this case is the error in

landmark localization when the separation the landmarks is less than 30 meters or less.

The FastSLAM filter when paired with Joint Maximum Likelihood seems to perform as

good or better than in the perfect data association case. The only exception to this is

the error in landmark location the 100 meter landmark separation, however even here

the result is comparable to that obtained with perfect data association.
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Figure 4-12: Joint Maximum Likelihood data association measurement rejection charac-
teristics for the case where the landmarks are exterior to the trajectory. The average
number of measurements rejected versus time and landmarks separation for EKF (a)
and FastSLAM, where (b) shows average per-particle rejection and (c) shows results for
just the maximum likelihood particle. Landmark Pair Numbers [1,...,8] correspond to
separations of [4m,10m,20m,30m,40m,100m,200m,400m].

4.2.6 A Quick Performance Comparison of the Various

Filter-Data Association Marriages

Examining table 4.3 it is apparent that for this case, where the landmarks are located

well outside of the agent trajectory, FastSLAM has better performance than the EKF in

comparing perfect data association as well as all data association methods considered.

For the EKF based marriages used, under uncertain data association, it appears as
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Figure 4-13: Average measurement, (a), and data association errors, (b), for Joint Max-
imum Likelihood data association for both EKF and FastSLAM. Here the EKF data is
denoted using solid lines, and FastSLAM data is denoted with dash-dot lines for average
particle behavior and with dashed lines for maximum likelihood particle behavior.

though EKF-JML performs the best in terms of minimum error for agent localization.

In comparing the FastSLAM-data association combinations, no one method appears to

really stand out as the best performing for agent localization, although JML may have a

slight edge over the other two in terms of the smallest maximum average RMS error.

A summary of the performance of the various filter-data association combinations for

landmark localization is given in table 4.4. This data also indicates that the EKF-JML

combination gives slightly better performance in landmark localization when compared

with the other two EKF based methods. For the FastSLAM based methods it is once

again difficult to discern which of the three data association methods leads to the best

filter performance in terms of minimal landmark position error. It does appear as

though the JML and SCNN produces similarly good results with a slight edge over the

JC method. An important item to note from the information given in this table is that

the average landmark position errors across EKF and FastSLAM based methods are

very comparable, with FastSLAM maintaining a much smaller edge for this metric.

The average data association error information for JML, JC, and SCNN when paired

with EKF and FastSLAM are shown in table 4.5 for the outside of trajectory landmark

situation. The most notable trends for both EKF and FastSLAM are how the SCNN
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Figure 4-14: EKF, denoted using solid lines, and FastSLAM, denoted using dash-dot
lines, performance using Joint Maximum Likelihood data association for the case where
the landmarks are exterior to the trajectory. Subfigures (a) and (b) show the agents RMS
error in position and heading, while (c) shows the average RMS error in the estimated
landmark positions.

data association method has the lowest average number of mistakes at small landmark

separations, but also has a long tail making mistakes out to 40 meter landmark

separations. At the same time the JML method seems to have the opposite property,

making large numbers of mistakes for the very close together pair, 4 meters, but then

dropping off very quickly with increasing landmark separation.

One other observation that can be made examining all three of these tables 4.3, 4.4,

and 4.5 is the effect of using data association algorithms even in situations where no
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Landmark Pair Separation (meters)
4 10 20 30 40 100 200

Perfect Data Association - EKF (m) 12.3 12.3 12.2 12.1 12.0 10.2 8.3
UPerfect-EKF (m) +7.9 +7.8 ±7.6 ±7.6 i7.6 +8.0 ±6.5
JC - EKF (m) 13.2 13.9 13.7 16.2 15.2 11.4 9.2
UJC-EKF (M) ±9.4 +7.8 +8.6 ±9.7 ±9.6 +7.9 ±5.3
SCNN - EKF (m) 11.3 16.3 14.9 15.6 16.2 11.2 9.4
USCNN - EKF (m) ±6.2 ±7.9 ±8.4 ±8.5 ±11.3 +8.5 ±5.9
JML - EKF (m) 13.1 13.0 12.9 12.7 12.4 10.8 8.8
aJML-EKF (m) ±9.1 ±8.3 +8.7 ±8.8 +8.9 ±8.7 ±6.4
Perfect Data Association - FS (m) 7.7 6.8 7.1 8.3 6.7 7.6 8.4
UPerfect-FS (m) ±2.3 ±1.9 +2.2 ±3.3 +2.7 ±3.6 +4.0
JC - FS (m) 6.2 6.4 7.7 6.7 7.7 8.2 9.0
UJC-FS (M) ±2.1 +2.3 ±2.5 ±2.8 ±2.6 ±3.5 ±3.7
SCNN - FS (m) 5.5 7.5 6.2 8.5 7.0 7.2 7.0
USCNN-FS (M) ±2.3 ±2.9 ±3.0 ±4.2 ±2.3 ±3.4 ±2.0
JML - FS (m) 6.8 8.0 7.0 6.1 7.7 7.4 6.5
UJML-FS (M) ±2.9 ±2.9 ±2.7 ±2.3 ±4.1 ±3.1 ±3.0

Table 4.3: Performance comparison of filter-data association marriages for agent position
error using an average RMS error metric. In this case the landmarks are located outside
of the agents trajectory.

incorrect data associations are being made. Namely, that the performance of the filters

are not identical to the performance under the perfect data association. Obviously, if no

incorrect data associations are being made in these instances the change in performance

must be due to measurement rejections that are occurring. In essence all data

association methods have the ability to act as a pre-filter for measurements coming in,

and in fact will even in situations where data association appears to be trivial. In some

cases this has a pronounced positive effect, in other cases it does not, nonetheless the

effect is there and it is important to be aware of.

4.3 Landmarks Inside of Trajectory

An additional set of scenarios were studied for the data association-SLAM filter problem

using simulated data. For these scenarios the landmark separation is varied over the

same intervals as before, however the locations vary drastically from the outside of
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Landmark Pair Separation (meters)
4 10 20 30 40 100 200

Perfect Data Association - EKF (m) 7.3 7.2 7.1 7.2 7.2 7.3 7.8
JPerfect-EKF (m) ±2.9 +3.0 ±3.0 +3.0 +3.1 +3.6 ±3.8
JC - EKF (m) 8.2 8.3 8.9 10.4 7.9 7.9 8.6

JJC-EKF (M) ±3.6 +3.7 ±3.8 +5.5 +3.2 ±3.2 +2.7
SCNN - EKF (m) 6.4 9.1 9.1 8.9 8.3 8.4 9.1

9SCNN-EKF (M) ±2.0 +4.4 +6.1 +6.8 +3.0 +3-3 +2.9
JML - EKF (m) 7.6 7.5 8.3 9.3 7.0 7.5 8.4

JJML-EKF (M) +3.7 +3.8 +4.1 ±5.8 +3.3 ±3.6 +3.2
Perfect Data Association - FS (m) 7.9 7.0 7.4 7.3 6.5 6.9 8.5

O'Perfect-FS (m) +2.0 +1.7 +2.0 +2.4 +1.8 +2.1 +2.5
JC - FS (m) 7.5 7.4 6.8 6.8 8.0 7.9 10.0
0 rJC-FS (in) +2.2 +2.4 +2.2 +1.8 +2.0 ±2.4 +2.0
SCNN - FS (m) 6.3 7.6 7.8 7.4 6.0 8.2 6.8

rSCNN-FS (i) +2.9 +2.2 +2.7 +2.1 +1.1 +2.4 +1.7
JML - FS (m) 7.6 7.2 6.8 6.2 6.6 8.6 8.6

rJML-FS (i) +2.5 +2.1 +2.2 1.6 +2.1 +2.8 +2.0

Table 4.4: Performance comparison of filter-data association marriages for landmark po-
sition error using an average RMS error metric. In this case the landmarks are located
outside of the agents trajectory.

trajectory case. The trajectory used along with the landmark pairings is shown in figure

4-15.

Here the rightmost landmark, denoted with XX is positioned at 85 meters East and 0

meters North. This landmark remains in the same location for all scenarios and the

westerly landmark is moved further west based on the given landmark separation.

4.3.1 Results for Perfect Data Association

The results for this set of landmark pair positions given perfect data association is

shown in 4-16. As can be seen here the results for these scenarios vary drastically from

those seen in the landmarks outside of trajectory case. One example of this is the

dramatic decrease in performance of both filters for almost all landmark separations.

This is particularly true for the FastSLAM filter which, in the majority of scenarios,

performs worse than the EKF.

While these differences in performance are significant, of greater importance is the fact
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Landmark Pair Separation (meters)
4 10 20 30 40 100 200

JC - EKF 0.78 0.76 0.25 0.25 0.11 0 0
QJC-EKF +0.59 ±0.85 A0.5 +0.45 ±0.22 0 0
SCNN - EKF 0.43 0.39 0.32 0.16 0.08 0 0
USCNN-EKF +0.11 +0.26 +0.32 +0.22 ±0.12 0 0
JML - EKF 0.84 0.72 0.20 0.20 0 0 0
UJML-EKF ±0.49 +0.92 +0.6 +0.6 0 0 0
JC - FS 0.66 0.44 0.11 0.026 0.008 0.007 0.001
QJC-FS +0.14 +0.2 +0.01 +0.003 +0.001 +0-001 ±0-001
JC - FS for ML Particle 0.73 0.20 0.007 0.001 0 0 0
UJC-FSw/ML +0.70 ±0.58 +0.009 +0.002 0 0 0
SCNN - FS 0.58 0.5 0.2 0.007 0.004 0.003 0
USCNN-FS +0.04 +0.12 +0.16 +0.003 +0.001 +0.001 0
SCNN - FS for ML Particle 0.97 0.69 0.38 0.01 0 0 0
9SCNN-FSw/ML +0.32 +0.39 +0.38 +0.02 0 0 0
JML - FS 0.73 0.2 0.0004 0.0002 0.0001 0 0
9JML-FS +0.72 +0.6 +0.001 +0.0004 +0.0002 0 0
JML - FS for ML Particle 0.73 0.2 0 0 0 0 0
9JML-FSw/ML +0.71 +0.6 0 0 0 0 0

Table 4.5: Performance comparison of filter-data association marriages for data associa-
tion errors made by the combination used. In this case the landmarks are located outside
of the agents trajectory.

that the overall trends continue to make physical sense. The agent localization errors

decrease with increasing landmark spacing, while the landmark position errors increase.

These trends are essentially the same as what was seen in the former scenario.

4.3.2 Description of Data Format Used for Filter-Data

Association Algorithm Marriages

For purposes of brevity, a more limited set of figures will be examined for the landmarks

inside of trajectory scenarios. In this case two sets of plots will be examined for each

data association method considered. The first set of plots will show average RMS error

in: agent position, agent heading, and landmark position. The second set of plots

demonstrate the average number of data association errors and measurement rejections

made by the EKF filter, average particle and the maximum likelihood particle for
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Trajectory and Landmark Pairs Used for Simulated Results
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Figure 4-15: The trajectory and landmark pairings used in computing the simulated
results for the inside of trajectory case. Landmark Pair Numbers [1,...,8] correspond to
separations of [4m,10m,20m,30m,40m,100m,200m,400m].

FastSLAM. After these plots are used to examine each data association algorithm

individually, a set of three tables will be used to examine the performance across all

filter- data association marriages.

4.3.3 Results for Sequential Nearest Neighbor Data

Association

Examining subfigure 4-17(a), which shows the average data association errors for the

EKF and FastSLAM filters when paired with SCNN for the inside of trajectory

landmark case, it appears that the characteristics seen here are similar to those seen in

the outside of trajectory landmark case.

One of the characteristics that remains the same is that the SCNN algorithm performs

better at smaller landmark separations when paired with the EKF than it does with

FastSLAM. Additionally, for FastSLAM the average particle and the maximum

likelihood particle have similar data association error characteristics to what was seen

previously. The main difference appears to be an effect whereby the EKF-SCNN pair

makes more data association errors for 20 meter landmark separation than it does for 10
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Figure 4-16: Performance of the EKF, denoted using solid lines, and FastSLAM, denoted
using dash-dot lines, filters for the perfect data association case with Landmarks inside.
Subfigures (a) and (b) show the agents RMS error in position and heading, while (c)
shows the average RMS error in the estimated landmark positions.

meter separation. This is an unusual result as the relationship between data association

errors and landmark separation has for the majority of cases been shown to be a

monotonically decreasing one. The measurement rejection characteristics seen in

subfigure 4-17(b), are very similar to previous landmark configuration with the only

significant difference being the absence of the spikes in rejection that had been seen for

200 meter landmark separations.

Figure 4-18 shows the filter performance obtained using SCNN for this configuration of

landmark locations. While these results are difficult to compare with those seen of the
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Figure 4-17: Average measurement rejection (a), and data association errors, (b), for
Sequential Nearest Neighbor data association for both EKF and FastSLAM when the
landmarks considered are inside of the agent trajectory. Here the EKF data is denoted
using solid lines, and FastSLAM data is denoted with dash-dot lines for average particle
behavior and with dashed lines for maximum likelihood particle behavior.

outside of landmark case, they are still interesting unto themselves. One interesting

result can be seen in plots 4-18(a) and 4-18(b), which demonstrate that the FastSLAM

filter performs significantly better at agent localization then the EKF at landmark

separations of 4 and 10 meters. This is particularly interesting because it was shown in

the previous plots that for these separations fewer data association errors are being

made by the EKF-SCNN combination.

Two other interesting results can be seen in subfigure 4-18(c): the first is the large spike

in RMS landmark position error for the EKF with a landmark separation of 20 meters

and the second is the increase in performance over the perfect data association case for

FastSLAM in landmark localization. The spike in position error for the EKF is

attributed to the increase in data association errors for this same condition, of course

these two results have the potential to interact, that is, an increase in the number of

data association errors leads to greater errors in localization error, at the same time

greater localization error leads to an increase in data association ambiguity and a

greater probability of increased data association errors.

It is unclear what leads to the increase in performance of FastSLAM in landmark
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Figure 4-18: EKE, denoted using solid lines, and FastSLAM, denoted using dash-dot lines,
performance using Sequential Nearest Neighbor data association for the case where the
landmarks are within the trajectory. Subfigures (a) and (b) show the agents RMS error in
position and heading, while (c) shows the average RMS error in the estimated landmark

positions.

localization, hut it is likely related to the large number of measurement rejections

occurring for these scenarios.

4.3.4 Results for Joint Compatibility Data Association

Figure 4-19 shows the data association error and measurement rejection characteristics

for Joint Compatibility data association when paired with the EKE and FastSLAM

filters for the situation where the landmarks are located inside of the agent's trajectory.
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Examining subfigure 4-19(b) it is apparent that while there are some small changes in

the measurement rejection characteristics of the filter-JC combination when compared

with the landmarks outside of trajectory situation, these changes do not appear to be

significant.

Comparing the results shown here for data association errors, in plot 4-19(a) to those

seen previously in plot 4-9(a) for the landmarks outside of trajectory case, there is a

drastic change in the average number of errors made for both filters. One of the most

significant changes is with the EKF, where there are far fewer errors made in this case,

no errors for landmark separations greater than 30 meters, and the number of errors

decreases monotonically with landmark separation. Most importantly is the result that

in this case Joint Compatibility, when paired with the EKF, makes fewer data

association errors than either the average particle or the maximum likelihood particle

when JC is paired with FastSLAM for landmark separations of 4 and 10 meters. This is

in contrast to what was seen in the case where the landmarks were located outside of

the agents trajectory.

FastSLAM and EKF with Joint Compatibility: Average Data Association Error FastSLAM and EKF with Joint Compatibility: Average Number of Measurement Rejections
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Figure 4-19: Average measurement rejection, (a), and data association errors, (b), for
Joint Compatibility data association for both EKF and FastSLAM when the landmarks
are within the trajectory. Here the EKF data is denoted using solid lines, and FastSLAM
data is denoted with dash-dot lines for average particle behavior and with dashed lines
for maximum likelihood particle behavior.

It is also notable that the FastSLAM maximum likelihood particle experiences average
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data association errors of greater than one for the landmark separation of 4 meters.

Such a large number of data association errors being made by the maximum likelihood

particle would lead one to believe that the FastSLAM filter would perform quite poorly

under this condition. However, by examining the filter performance plots in 4-20 it does

not appear that these data association errors are having a negative effect, since the RMS

state errors for the 4 meter landmark separation are in fact better than in the perfect

data association case 4-16(c). This behavior is the result of incorrect data associations

having a minimal effect when these errors occur for landmarks that are close together.

FastSLAM and EKF with Joint Compatibility: Average RMS Agent Position Error
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Figure 4-20: EKF, denoted using solid lines, and FastSLAM, denoted using dash-dot lines,
performance using Joint Compatibility data association when the landmarks are located
inside of the trajectory. Subfigures (a) and (b) show the agents RMS error in position
and heading, while (c) shows the average RMS error in the estimated landmark positions.
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One other interesting behavior to notice in figure 4-19 is the increase in the RMS error

that FastSLAM experiences in the change in landmark separation from 10 meters to 20

meters. While this may seem a bit out of the ordinary, it appears to be the result of the

existence of data associations errors at this landmark separation, which can be seen in

subfigure 4-20(a). As very few data association errors occurred at this landmark

separation for FastSLAM, however there is a noticeable effect on the performance of the

filter. This indicates that in this situation there is an unhappy medium for the

FastSLAM-JC marriage whereby there is a reasonable probability of a data association

error occurring and such an error will cause a significant negative effect on the filter by

inducing larger state errors for landmark separations near 20 meters.

4.3.5 Results for Maximum Likelihood Data Association

Examination of subfigure 4-21 indicates some interesting results for the Joint Maximum

likelihood method of data association. First, in comparison to the results obtained using

the JML method for the outside of trajectory configuration, a couple of differences can

be noted. First, the performance when paired with the EKF is very good at determining

the correct data associations, especially when compared with the EKF in the other

landmark configuration situation and FastSLAM in this situation. A second difference

to note is the substantial increase in the average data association error experienced by

FastSLAM for the 4 meter landmark separation scenario, for the current situation.

The measurement rejection plot, 4-21(b), is also informative, as it indicates that the

average number of measurements rejected by this method is very minimal. This plot

indicates that no measurements are rejected by the EKF or the maximum likelihood

particle in FastSLAM. There are a few measurements rejected by the average particle in

FastSLAM, but at less than 10-7 average rejections any effects are almost negligible.

The most interesting part of this result is found when considering what was seen in

figure 4-13(b), which showed the measurement rejection when using JML for the

outside of trajectory landmark case. In that case there were minimal measurement

rejections except for a single special case when the landmarks were separated by 200

meters. The fact that this is not seen here presents indirect evidence that the
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Figure 4-21: Average measurement, (a), and data association errors, (b), for Joint Maxi-
mum Likelihood data association for both EKF and FastSLAM when the landmarks are
located inside of the trajectory. Here the EKF data is denoted using solid lines, and Fast-
SLAM data is denoted with dash-dot lines for average particle behavior and with dashed
lines for maximum likelihood particle behavior.

explanation presented to explain this phenomena was valid.

Figure 4-22 shows plots of the average RMS state errors for the JML-filter marriage

case. The most interesting characteristic about these plots is how well behaved the EKF

implementation is here, particularly in terms of its monotonic behavior with changing

landmark separation. This behavior is very similar to what was seen in the perfect data

association case for this situation. While the average RMS state errors are still larger

than those in the perfect data association case they are very close to these values. These

characteristics are an indication that the EKF and JML may be a good marriage.

The results for the FastSLAM filter and JML are also good, as they remain close to

what was seen in the perfect data association case. In fact for certain situations the

average RMS errors are smaller for the unknown data association case when JML is

used. This is the result of JML acting as a pre-filter, which in effect alters the weighting

of particles for the re-sample step in FastSLAM. In this case the effect of this turns out

to be positive for reducing RMS state errors.
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Figure 4-22: EKE, denoted using solid lines, and FastSLAM, denoted using dash-dot lines,
performance using Joint Maximum Likelihood data association when the landmarks are
located inside of the agents trajectory. Subfigures (a) and (b) show the agents RMS error
in position and heading, while (c) shows the average RMS error in the estimated landmark
positions.

4.3.6 A Quick Performance Comparison of the Various

Filter-Data Association Marriages

Table 4.6 shows the average agent position error results for all filter-data association

combinations, as well as the perfect data association case, for the landmarks inside of

trajectory case. One of the most interesting results seen here is that the best performing

cases are EKF based, which is in contrast to what was seen in the previous section 4.3.

However, it should also be noted that the worst performing case here is also EKF based,
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that is EKF-SCNN.

Landmark Pair Separation (meters)
4 10 20 30 40 100 200

Perfect Data Association - EKF (m) 17.0 16.4 15.5 15.2 14.5 10.6 8.6
UPerfect-EKF (m) ±13.5 ±13.1 ±11.6 +10.3 +10.2 +11.1 +9.9
JC - EKF (m) 17.7 19.2 18.4 17.3 16.6 11.2 9.0
UJC-EKF (M) +9.1 ±14.2 +13.0 +11.6 +11.8 +7.0 +6.0
SCNN - EKF (m) 48.3 52.9 32.1 26.8 18.7 11.5 9.1
USCNN-EKF (M) +33.6 +38.0 +24.5 +26.7 +16.9 +7.1 +6.1
JML - EKF (m) 21.8 20.2 17.1 16.4 15.6 12.3 9.2
JML-EKF (M) ±13.8 +16.6 +13.7 +12.0 +11.2 +11.4 +9.3

Perfect Data Association - FS (in) 27.1 26.4 24.2 17.4 26.3 12 9.7
UPerfect-FS (in) +16.0 +14.1 +11.8 +4.6 +12.2 +3.8 +3.7
JC - FS (in) 24.3 24.4 25.6 18.4 21.4 13.4 9.0
UJC-FS (M) +9.6 +11.7 +12.5 +10.0 +10.8 +7.1 +2.3
SCNN - FS (in) 30.1 25.9 29.1 17.3 17.2 13.4 8.6
tSCNN-FS (M) +19.8 +17.7 +12.7 +8.5 +10.1 +4.4 +3.1
JML - FS (in) 28.9 26.5 27.3 17.1 20.9 13.5 9.1
UJML-FS (M) +15.5 +12.8 +16.6 +11.9 +10.8 +5.5 +4.7

Table 4.6: Performance comparison of filter-data association marriages for agent position
error using an average RMS error metric, where the data is given in meters. In this case
the landmarks are located inside of the agents trajectory.

It is notable that for this situation the EKF-JC is one of the best performing marriages,
with the EKF-JML having similar performance. For the FastSLAM algorithm the JC

method appears to give the best results, in terms of agent localization at landmark

separations of 20 meters or less. For landmark separations of greater than 30 meters the

SCNN method when paired with FastSLAM does the best. This is an indication of

dependence of landmark separation on filter-data association marriage performance for

FastSLAM filters.

Examination of table 4.7, which gives the average RMS landmark position errors,
indicates that both EKF-JC and EKF-JML have similar performance for this metric,
with Joint Compatibility having a slight edge. It is also notable that in this situation

SCNN when paired with an EKF is clearly the worst performer. Interestingly enough a

similar behavior to what was seen in the agent localization results are also seen here for

the FastSLAM marriages, where JC gives the best results up until 30 meter landmark
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Landmark Pair Separation (meters)
4 10 20 30 40 100 200

Perfect Data Association - EKF (m) 3.1 3.5 4.0 4.5 5.0 6.8 10.3

UPerfect-EKF (m) +0.86 +0.93 ±1.1 +1.3 +1.7 +3.7 ±6.5
JC - EKF (m) 4.3 3.7 4.1 4.7 5.2 7.0 10.9

UJC-EKF (M) +1.6 ±1.4 +1.4 ±1.7 +2.0 +2.2 ±4.0
SCNN - EKF (m) 7.0 7.8 13.9 8.1 5.8 7.2 10.9

USCNN-EKF (M) ±3.0 +3.7 +5.7 +6.1 +4.8 +2.3 ±4.1
JML - EKF (m) 4.8 4.0 4.1 4.6 5.1 7.8 11.2

UJML-EKF (M) ±1.8 +1.6 +1.2 +1.5 +1.8 +3.9 ±6.1
Perfect Data Association - FS (m) 5.6 5.3 6.8 6.1 8.5 8.5 11.5

UPerfect-FS (m) +1.9 +1.3 +1.9 +1.9 +2.0 +1.8 +2.6
JC - FS (m) 7.1 6.2 6.6 6.3 7.5 9.7 10.3

UJC-FS (M) +2.1 +1.8 +2.0 +1.8 +2.0 +2.7 +2.0
SCNN - FS (m) 7.9 7.4 6.8 6.1 6.0 9.6 9.6

USCNN-FS (W) +3.1 +2.0 +1.6 +1.6 +1.6 +1.9 +2.4
JML - FS (m) 7.7 6.3 7.2 6.1 7.2 10.2 10.6

UJML-FS (M) +2.0 +2.5 1.8 +1.5 +2.4 +2.2 +3.4

Table 4.7: Performance comparison of filter-data association marriages for landmark po-
sition error using an average RMS error metric, where the data is given in meters. In this
case the landmarks are located inside of the agents trajectory.

separation after which SCNN clearly performs the best. This is further evidence of the

dependence on landmark separation for which methodology works the best.

Similar trends in the average number of data association errors made (to what was seen

for the first set of simulations) are seen for the landmarks inside of trajectory case which

are shown in table 4.8. One of these trends is the relatively small number of errors

made by SCNN for landmark pairs that are close together and a tail for which the

algorithm continues to make ever-decreasing errors out to landmark separations of 40

meters. One noticeable difference in the results for this situation are the significantly

smaller number of errors made by JML when paired with the EKF.

4.4 Summary of Results

The motivation for performing the sets of simulated experiments described above is

multi-faceted. In part the motivation is to develop some level of intuition about the
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Landmark Pair Separation (meters)
4 10 20 30 40 100 200

JC - EKF 0.71 0.13 0.06 0 0 0 0
UJC-EKF +0-63 ±0.11 ±0-19 0 0 0 0
SCNN - EKF 0.33 0.25 0.32 0.07 0.02 0 0
USCNN-EKF ±0.17 ±0.19 ±0.39 ±0.16 ±0.1 0 0
JML - EKF 0.36 0.075 0.0005 0 0 0 0
UJML-EKF (M) ±0.33 ±0.21 ±0.002 0 0 0 0
JC - FS 0.73 0.27 0.023 0.0005 0.0002 0 0
UJC-FS ±0.19 ±0.18 ±0-006 ±0.0003 ±0.0001 0 0
JC - FS for ML Particle 1.1 0.15 0.002 0 0 0 0
UJC-FSw/ML ±0.62 ±0.32 ±0.005 0 0 0 0
SCNN - FS 0.57 0.31 0.017 0.003 0.003 0 0
USCNN-FS ±0-10 ±0-17 ±0-006 ±0-001 ±0.01 0 0
SCNN - FS for ML Particle 1.01 0.49 0.02 0.005 0.004 0 0
USCNN-FSw/ML ±0.37 ±0.42 ±0.04 ±0.005 ±0.01 0 0
JML - FS 1.1 0.15 0.003 0.0006 0.0004 0.0001 0
UJML-FS ±0.66 ±0.26 ±0.007 ±0.0004 ±0.0003 ±O-0001 0
JML - FS for ML Particle 1.1 0.15 0.002 0 0 0 0
JJML-FS ±0.67 ±0.25 ±0.006 0 0 0 0

Table 4.8: Performance comparison of filter-data association marriages in terms of data
associations, here the metric used is the average number of data associations made by the
EKF, the average FastSLAM particle and the maximum likelihood FastSLAM particle.
In this case the landmarks are located inside of the agents trajectory.

operation of the various filter-data association algorithm marriages, as well as possibly

determine if particular marriages appear to work better than others by analyzing the

basic simulations considered. Additionally, it would be advantageous to be able to use

this simple data to get a handle on what conditions may lead to poor performance on

the part of both the data association algorithms and the filter-data association

combinations.

4.4.1 Interpretation of Data Association Results

Based partially on the intuition developed in section 1.4, which helped to clarify those

elements which can lead to data association ambiguity, as well as on the results that

were presented in this chapter two sets of effects, first and second order, are presented

here. The first order effects are those which appear to have the greatest effect on the
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operation of the data association-filter marriages. The second order effects also have an

effect on the operation of the data association algorithms, and therefore the SLAM

filters, however the effects are less influential in overall performance and may not affect

all methods in the same manner.

First Order Effects:

1. Filter performance under correct data association varies with the landmark

location. In this case that effect is translated into a dependence on both total

landmark separation and distance of landmarks from the agent.

2. All of the data association algorithms studied demonstrate a variation in

performance with landmark pair separation, worse at smaller landmark

separations and better at larger separations (with one exception).

3. The effect of an incorrect data association on the SLAM filter is also dependent on

landmark pair separation, for the landmarks for which the data association occurs.

For example, a data association error made between two landmarks that are very

close together can have a very minimal effect on the filter. However, such a data

association error made between two landmarks that are separated by a significant

distance will cause significant errors in the filter.

Second Order Effects:

1. For data association performance, in terms of errors made, there is a small but

noticeable dependence on the location of the agent along the trajectory for some of

the data association algorithms.

2. Again for data association performance there appears to also be a small change in

performance over time that the filter is in operation, which would be dependent on

the correlations that are built-up in the filter over time and the information gain.

This effect appears to be specific to the EKF-Joint Compatibility marriage, and

cannot be an effect of agent location as it is not cyclical.

The first order effects discussed above become coupled in the implementation of a

SLAM filter-data association algorithm marriage. The result of this is that at small
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landmark separations many data association errors are made, however at the these

landmark separations data association errors do not have a significant negative effect on

the operation of the filter. At the same time the filter does not naturally perform well,

in a relative manner, at agent localization when the landmarks that are seen are close

together. As the separation of landmarks becomes larger both the data association

algorithms and the SLAM filter increase in performance. However, with this increase in

performance the negative effect of an incorrect data association also increases. In the

end this indicates that one would expect there to be some intermediate landmark

separation where there is a non-negligible probability of a data association error

occurring for which the effect of a data association error will be significant. It may be

that the performance of the various marriages will be dependent on this effect. In the

case discussed here it appears that this problematic landmark separation would appear

to be in the 20 to 40 meter range.

4.4.2 Interpretation of Measurement Rejection Results

For the problem as set-up here it is an important result to determine whether or not

significant measurement rejections have a negative effect on the SLAM filter. In essence,

the question can be posed as, "Are the data association algorithms rejecting good

measurements due to poor performance or are they in effect acting as a pre-filter by only

allowing the best measurements to be processed by the SLAM filter?"

Further measurement rejection can be significant for real-world applications whereby the

filter must recognize new, previously unseen, landmarks in the environment and

initialize these landmarks as states in the SLAM filter. Measurement rejection is

significant because for these applications the decision process used here to reject a

measurement is the same as that used to initialize a new landmark. In essence

significant measurement rejection could pose problems when the same method is applied

to real-world applications.
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4.4.3 Filter Dependent Effects

One additional consideration is how data association errors and measurement rejections

are treated for the two SLAM filters, EKF and FastSLAM. For EKF this is relatively

straightforward and well understood, as a measurement rejection or data association

error experienced by the EKF are experienced by the filter as a whole. However, these

choices are made on a per-particle basis for FastSLAM, and after these choices are made

the particles are then sampled with replacement. Because of this process and the fact

that both of these events affect particle weighting differently it is not straightforward

how these occurrences affect the filter as a whole.
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Chapter 5

Results from Application of

Filter-Data Association Marriages to

Experimental Data

In order to get a sense of how the various filter-data association marriages might operate

in a real-world application, an attempt is made here to use these marriages to compute

SLAM solutions on experimental data. The data used in this effort was publicly

available via the website of Professor Eduardo Nebot at the University of Sydney and is

titled the Car Park data set [1]. This data consists of time-stamped inertial

measurements, GPS measurements, and range and bearing measurements of a set of

beacons.

The results from this process will show that in this particular situation the Joint

Maximum Likelihood and Sequential Nearest Neighbor methods of data association

produce equivalent results when paired with an EKF implementation. Along with this,

some interesting results will be presented for the implementation of Joint Compatibility

data association for use with the EKF. Additionally, there is a short discussion of the

problems this particular data set poses for implementations of the FastSLAM 1.0

algorithm and how the limitations of the FastSLAM 1.0 algorithm limit the use of the

type of data association algorithms considered here.
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5.1 Experimental Set-up

The Car Park data set was obtained by driving a small truck around the top-level of a

flat, open parking ramp. This truck was equipped with a kinematic GPS system that

gives quoted accuracy of 2 cm Circular Error Probable (CEP) [34], which will be used

in establishing ground truth. For motion measurements the truck was equipped with

inertial measurement units that have a one-sigma accuracy of 7 degrees steering and 0.7

meters-per-second in velocity [1]. Additionally, the truck had a SICK laser

measurement unit mounted on the front of it, which supplied range and bearing

measurements of the environment. The landmarks considered in this experiment were a

set of steel poles of 6 cm diameter. These poles were also covered in reflection tape.

This set-up made the problem of landmark extraction trivial, such that the range and

bearing measurement of landmarks were quite accurate. In addition, the location of the

steel poles was obtained using GPS giving a ground truth for the environment as well.

5.2 Limitations of FastSLAM 1.0 for the Car Park

Data Set

There are a number of factors which may have led to the difficulties that were faced

when using a FastSLAM 1.0 implementation to solve the SLAM problem posed by the

Car Park data set. A leading candidate for causing problems in any FastSLAM 1.0

implementation is particle depletion. The problem of particle depletion is the process of

limiting particle diversity, which can eventually lead to the situation where every

particle in existence is an ancestor of a single particle. In the study performed here only

200 particles were used in the FastSLAM filter, and it is possible that increasing this

number of particles would alleviate some of the problems associated with particle

depletion. However, successful implementations of FastSLAM for processing

experimental data have been reported using an equivalent number of particles [34].

Additionally, it should be noted that the particle depletion problem is one that has been

addressed in the more recent version of this algorithm, FastSLAM 2.0 [30, 29].

106



As documented in one of the original papers on this filtering method, the leading cause

of particle depletion is the use of highly accurate range and bearing measurements [30].

The Car Park data set gives one sigma range accuracies on the order of 0.1 meters and

bearing accuracies on the order of 1 degree, which would indicate that the particle

depletion problem might be a likely suspect for problems experienced.

However, the fact that other authors have successfully used this data set on FastSLAM

implementations for the situation where data associations were known a priori and for

the case of unknown data associations using a particle splitting multiple hypothesis

method, [34], suggests that if particle depletion is part of the problem it is only part of

the story. Additionally, the successful implementation of FastSLAM using the SCNN

data association presented here suggests that some other negative synergy exists for the

implementation of FastSLAM paired with Joint Maximum Likelihood and Joint

Compatibility, considering that neither of these methods were successful when married

to FastSLAM and applied to the Car Park data set.

This negative synergy appears to come from the combination of the very accurate SICK

laser, range and bearing, measurements and the way in which FastSLAM 1.0 carries

around its notion of state uncertainty. This becomes problematic in the data association

methods discussed here because the data association choices are made on a per-particle

basis and all depend on the measurement likelihood.

As shown in equation ( 2.40), the measurement likelihood is a function of uncertainty in

the states involved in the measurement, as well as the uncertainty in the measurement.

However, in FastSLAM the pose states for a given particle are considered to be known

perfectly in the likelihood function. Additionally, the covariance matrix for each

landmark known to a given particle, which is a measure of the uncertainty of the

landmark position, is driven down very fast due to the accurate measurements and

perfect pose information at the particle level. These operational peculiarities along with

the fact that an individual particle is in fact going to have an inaccurate pose mean that

the likelihood of many incoming measurements goes to zero.

Due to the effects of this, the use of Joint Maximum Likelihood or Joint Compatibility

data association in this situation, leads to numerous non-existent landmarks being
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initialized into the FastSLAM filter. This behavior in effect destroys both the quality of

the map and causes the path estimate to diverge. It will be shown that a reasonable

solution to the problem posed by the Car Park data set can still be found using

FastSLAM 1.0 with the SCNN data association method.

5.3 Landmark Localization

The results of both map building and agent localization can be seen in figure 5-1, for

SCNN 5-1(a), JML 5-1(b), and JC 5-1(c) data association methods when paired with

an EKF implementation and for SCNN when paired with FastSLAM 5-1(d). In order to

allow the filters to deal with both spurious measurements and new landmark

initialization, an ad hoc method had to be employed. This method was accomplished by

counting the number of times (or hits), each landmark in the filter is observed, as

decided by the data association method. Only those features in the filter which are seen

three or more times are included in the map the agent has built. All other features are

considered extraneous and to be the result of spurious measurements. This method is

reflected in the map information shown here.

By visual inspection of these plots it can be seen that the results obtained using an EKF

when paired with SCNN and JML data association produce essentially identical results.

Due to the fact that the range and bearing measurements being considered are so

accurate with respect to landmark separations, along with the fact that this

implementation of JML makes use of the individual compatibility requirement, as does

SCNN in a similar manner, this is not an incredibly surprising result.

Examining the estimated landmark locations in subfigure 5-1(c) indicates that in this

situation the EKF-JC combination has improved landmark estimates over the use of

EKF with SCNN and JML. It can also be seen from this plot that this method has

missed one of the known features. Something that is more difficult to observe is that the

EKF-JC method has two estimates of a single landmark. These two situations are likely

related.

Finally, the results for the FastSLAM-SCNN marriage can be seen in subfigure 5-1(d).
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This plot indicates that the map built by this combination of SLAM algorithm and data

association method is noticeably worse than the previously mentioned EKF based

combinations.
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Figure 5-1: Plots of the path and map produced by the SLAM-Data Association combina-
tions superimposed on the path and map given by GPS data. The results for each method
are given by the following sub-figures (a) shows EKF-SCNN, (b) shows EKF-JML, (c)
shows EKF-JC, and (d) shows FastSLAM-SCNN.

In order to quantify how well each of the four SLAM filter-data association algorithms

perform map building, a set of statistics was generated and are shown in table 5.1.

These statistics aim to describe the quality of the map generated by each. The statistics

given are: NF the number of features recognized, dF the average error in feature

position estimate, odF the standard deviation of the error in the feature position
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estimates, d" the maximum feature position estimate error, and Nextra the number of

features included in the filter but not in the map, i.e. those with fewer than 3 hits.

Examination of table 5.1 verifies what was seen in subfigures 5-1(a) and 5-1(b), which

indicated that the EKF paired with SCNN and JML have identical performance in

map-building. One of the most interesting items to note from this table is the

performance of the EKF-JC combination. The average landmark position estimate for

this method is a two fold improvement over EKF with SCNN and JML, additionally

there is a much smaller standard deviation in error and a noticeably smaller maximum

error.

NF dEF (M) UdF (x (m) Nextra

SCNN - EKF (m) 15 0.1493 0.2661 0.0771 4
JML - EKF (m) 15 0.1493 0.2661 0.0771 4
JC - EKF (m) 14 0.0615 0.1640 0.0517 58
SCNN - ES (i) 15 0.3507 0.747 0.2329 4

Table 5.1: Map building characteristics of the SLAM Filter-Data Association combina-
tions considered here. The descriptive variables used are as follows: NF is the number of
features recognized by the 3 hit criteria, dF is the average error in all of the feature posi-
tion estimates, o-dF is the standard deviation of the error in all feature position estimates,
da is the maximum error over all estimates, and Nextra is the number of extraneous
landmarks included in the filter that do not meet the 3 hit criteria.

While these statistics indicate exemplary performance by EKF-JC, the values given by

NF and Nextra may be of concern. The fact that this method only recognizes 14 unique

features is likely connected with it also having two estimates of one feature. This

indicates that some combination of mistakes mAde by the JC data association algorithm

and the EKF caused either multiple initializations of a single landmark ,or the more

likely scenario is that some portion of the measurements that came from the two

estimate landmark were processed on a landmark that was initialized to be the true

feature with a missing estimate. The second scenario is more likely given the evidence.

Concern with regard to Nextra being 58, may be well founded, as such a large number of

extraneous landmarks will slow down the operation of the SLAM filter, particularly

traditional EKF implementations. This would be of particular concern for situations

with a longer run-time and potentially larger number of extraneous features being added
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to the filter. To alleviate this problem some systematic method would have to be

employed, which could possibly be as simple as an enhanced method of what was used

here, i.e. the 3 hit method.

In the end, this larger number of extraneous features created by the JC data association

method is an indication that these methods can act not only to resolve data association

ambiguity, but also as a pre-filter, where only the best measurements are accepted. This

was also reflected in the simulated results as a large number of measurement rejections

for the JC method.

The results for the FastSLAM-SCNN combination are interesting as they indicate

similar performance to the EKF with SCNN and JML for feature recognition, having

the same number of features recognized, 15, and the same number of extraneous

features, 4. However, the performance results in terms of dF, UdF, and d"a' were the

worst of the 4 methods. This is somewhat of a surprising result, but is likely a remnant

of particle depletion issues discussed in section 5.2 that plague FastSLAM 1.0 for use

with this data set. The mapping results seen here for FS-SCNN appear to be worse than

those shown in [34], which has FastSLAM paired with the multiple hypothesis method.

Unfortunately these statistics are not available for a comparison.

5.4 Agent Localization

The results from the four SLAM filter-data association methods considered are shown in

figures 5-2 and 5-3. The first figure shows four plots, for the four methods considered,

which depict North and East agent position errors with respect to the GPS estimated

path versus time. The second figure shows the same information in a single plot, but

here it is total error, or root-square of the North and East Error components, versus

time.

The plots 5-2(a) and 5-2(b) are consistent with the results seen for landmark

localization, where EKF-SCNN and EKF-JML produce essentially identical results.

Additionally, the agent localization results for the EKF-JC combination are nearly

identical to those of the other two EKF based marriages, which can be seen in subfigure
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Figure 5-2: Plots of North and East agent position errors with respect to the GPS in-
dicated location for the various SLAM Filter-Data Association marriages. The results
for each method are given by the following sub-figures (a) shows EKF-SCNN, (b) shows
EKF-JML, (c) shows EKF-JC, and (d) shows FastSLAM-SCNN.

5-2(c) and figure 5-3. In comparing these three methods it is difficult to say if one

performs substantially better than the other two for agent localization.

Finally, an examination of subfigure 5-2(d) and figure 5-3 depict the agent localization

performance for the FastSLAM-SCNN combination. It is clear that this method

performs worse than the three EKF based ones. At the same time the localization error

does remain well-bounded which is a positive note. In comparing these results to those

presented for the FastSLAM multiple hypothesis method shown in [34] that method

does appear to perform better at agent localization.
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Figure 5-3: Comparison plot of the root-squared agent position error with respect to the
GPS indicated location for the various SLAM Filter-Data Association marriages.
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Chapter 6

Conclusions and Future Work

One of the primary results of the work done here was that the data association methods

considered demonstrate heavy dependence on landmark separation. In particular each of

the three data association methods considered, JC, JML, and SCNN, appear to perform

differently for a given landmark separation. For example, in the simulated results

section it was demonstrated that, on average, the SCNN has the characteristic of

making fewer data association errors when considering landmarks of small separation, in

comparison to the results obtained using JC or JML. The SCNN method also had the

property that the data association errors tapered off much more slowly at larger

landmark separations than the other two methods. Additionally, it was generally found

that both JC and JML have the opposite property where they make a relatively large

number of errors at small landmark separations, but then drop off very quickly making

few errors even at intermediate landmark separations. These results generally held true

for both sets of simulations considered.

An additional observation that can be drawn from the simulated data, is that the

occurrence of data association errors do not in and of themselves facilitate filter

divergence for either the EKF or FastSLAM. The effects of these errors on filter

performance is heavily dependent on the separation of the landmarks for which these

errors occur. Additionally, the evidence suggests that even when data association errors

occur for landmarks of various separations using either EKF or FastSLAM, they will not

necessarily diverge. Both of these methods also appear to have some capability to
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recover from data association errors, at least for landmarks that are separated by a

reasonable distance.

In analyzing the filter performance for the simulated results it is difficult to conclude

that a single filter-data association combination gives the best results. Essentially, there

appears to be a great deal of variability. First, there is variation between the two

simulation environments considered. In the case where the landmarks are located outside

of the trajectory FastSLAM based combinations dominate the performance. However, in

the case where the landmarks are located inside of the trajectory EKF based methods

dominate. At the same time there is a large amount of variability of performance within

the EKF and FastSLAM based methods, where for a given situation different data

association methods give better results for the various landmark separations considered.

One of the most intriguing results in the data presented in the simulated results chapter

is the importance of measurement rejection properties of the data association algorithms

discussed here. It can be seen in this data that for several cases where no data

association errors are being made, the filter performance varies from that obtained

under perfect data association. For these simulated experiments this variation in

performance must be due to measurement rejections. The most important aspect of this

observation is that in a number of instances the rejection characteristics appear to lead

to significant improvements in filter performance.

In many ways the results presented for the experimental Car Park data set complement

the simulation results presented. These results indicate that in situations, such as the

one here, where highly accurate measurements are used along with good initial pose

estimates, that the SCNN and JML (with individual measurement compatibility

requirement) data association methods produce identical results when paired with an

EKF SLAM solution. Another interesting result was the performance of the EKF-JC

marriage as this method gave a map which was more accurate than that built by any of

the other methods considered. This accuracy was compromised by the fact that it failed

to map one of the fifteen objects in the environment and mapped one feature twice. One

of the most intriguing aspects of the EKF-JC result is its apparent connection to

measurement rejections, as the filter contained 58 extraneous objects, i.e., those features
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initialized into the filter that were viewed fewer than three times. This is further

evidence of the importance of the measurement characteristics of these methods, and

that allowing these methods to reject measurements can lead to increased filter

performance.

The results obtained using FastSLAM 1.0 with the experimental data were somewhat

disappointing, however not completely unexpected as the particle depletion issues that

potentially go along with this method are well known. The problem of particle depletion

would not be unlikely in this situation because of the highly accurate instruments being

used. At the same time the results that were obtained indicate that the problems faced

were not just a result of particle depletion, but also that in the situation considered here

two of the three data association methods may not have been effective when used in

conjunction with FastSLAM 1.0. It may be that by employing some ad hoc

methodologies, these data association algorithms could be retrofitted to work in this

situation with FastSLAM.

6.1 Future Work

A number of issues that should be addressed in the area of data association and SLAM,

as well as possible work that stems from the results presented here, are as follows:

1. Perform a similar comparison to what was done here using FastSLAM 2.0. The

results from applying this implementation to the Car Park data set would be

particularly interesting as this method claims to resolve particle depletion

problems faced by the 1.0 version. This would also be interesting because it would

indicate if the problems with using this data set were more a function of particle

depletion or more a function of the data association algorithms being used.

2. Develop a better understanding of how the measurement rejection property of the

data association algorithms interacts with the operation of the SLAM filters, i.e., if

it improves or degrades performance.

3. Develop a more rigorous method for removing extraneous landmarks from the
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EKF implementation, particularly something that could operate on-line. Such a

tool may employ methodologies similar to what can be done using negative

information in FastSLAM.

4. Additionally, while the application of the SLAM filter-data association marriages

to the Car Park data set are useful, in many ways this data set does not offer an

incredibly challenging data association problem due to the high level of accuracy

given by the SICK laser. This being the case it would be very informative to apply

these same marriages to a data set that supplies a more challenging SLAM-data

association problem.
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