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Abstract
Since their discovery in mid 80's, a complete theory of high temperature supercon-
ductors is yet to take its final shape. Theory of fractionalization attempts to explain
the phenomenon by assuming that the electron is split into two particles, chargon
and spinon, carrying charge and spin respectively. Although capable of producing
the qualitative features of the phase diagram, this theory is not been able to account
for a number of experimental observations. A simple mean field model based on frac-
tionalization ideas is proposed in this work which can possibly get around some of
the drawbacks of the original fractionalization theory. Chapter one discusses various
aspects of superconductivity along with BCS theory and chapter two talks about the
motivation behind considering this model along with its basic features.
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Chapter 1

Superconductivity

Superconductivity is one of the greatest discoveries in physics during the course of

twentieth century. Apart from showing zero resistance. superconducting state has

also shown some very peculiar physical properties. Even after its discovery, by Kam-

merlingh Onnes in 1911, a complete theory of conventional superconductivity didn't

appear till mid 50's when Bardeen, Cooper and Schrieffer [1] gave a thorough ac-

count of various superconductivity p)henomenon. This theory is popularly known as

BCS theory and it demonstrated superconductivity as a truly quantum mechanical

phenomenon. A brief account of conventional superconductivity and BCS theory

is given in sections one and two respectively. Since its discovery by Bednorz and

Mdller in 1986, high temperature (high Tc) superconductivity has remained one of

the most active and competitive research areas in physics. Section three discuses

various properties of high T superconductors and failure of BCS theory to account

for the phenomenon.

1.1 Superconductivity phenomenon

In this section a brief account of important properties of superconductors are given.

Such peculiar characteristic properties shown by all conventional superconductors

were instrumnental in directing the ideas for dleveloping a theoretical description of

the plhenonelon.

11
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Figure 1-1: Resistivity s a function of temperature

1.1.1 Zero resistivity

One of the most striking characteristics of Superconductors is their non-existent re-

sistivity below a certain critical temperature, T. Certain experiments have shown

that the currents in superconducting circuits continue to persists months or years

from the time they are first put into the material. It appears as though these mate-

rials are carrying currents with a very practical hundred percent efficiency. The low

critical temperatures have prevented the widespread use of superconductors in many

industrial applications that call benefit from this efficiency.

1.1.2 Meissner effect

It was discovered in 1933 by Meissner and Ochsenfeld that a superconductor will

expel magnetic flux from its interior acting like a perfect diamagnet. Infact, based on

Maxwell's equations one can calculate the depth to which magnetic flux can penetrate

in simple metals. It is called London penetration depth, AL is inversely related to

superfluid density and is of the order of hundreds of Amgstrongs for conventional

superconductor and thousands of Amgstrongs for high temperature superconductors.

1 47rn(.e 2-) - (1. 1)
A')L '~c
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Figure 1-2: Meissner effect for type I superconductors

Simple explanation for this effect is that the impinging magnetic field will coerce eddy

currents that oppose the magnetic field, and since the material has zero resistivity,

these eddy currents will persist and will continue to repulse the magnetic field, even

after it has stopped changing. Thus a superconductor behaves as a perfect diamag-

net. If the field gets too large, say more than He. the material will eventually lose

its superconducting state as there wouldn't be enough superconducting electrons to

sustain these currents. Although, this explains perfect diamagnetism based on per-

fect conduction, it doesn't convey the complete physics related to Meissner effect. If

a sample is cooled in external magnetic field, the magnetic field would be expelled

from the interior once the sample becomes superconducting. Thus Meissner effect

can be considered as an independent property of superconductors in addition to the

property of perfect conduction. There were two types of superconducting materials,

called type I and type II which responded differently to external magnetic fields. For

type I, magnetic field is completely shielded from the interior of the superconductors.

For type II, manlgetic field is partially shielded in the interior of a superconductor.

For type II superconductors, the magnetic field in the superconductor is concentrated

along flux tubes when the applied magnetic field lies between two critical values, HC1

and H, 2.

13
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Figure 1-3: Meissner effect for type II superconductors

1.1.3 Isotope effect

For various elements, the superconducting transition temperature Tc was observed to

be different for different isotopes. Since neutrons carry no charge, they do not affect

the coulombic interactions between electrons and lattice ions, but they do change the

rates at which phonons can propagate through the lattice. A phonon is a mechanical

wave, and it is one of the fundamental parts of the BCS theory. BCS theory can

accurately predict how these isotope effects arise in simple metal superconductors.

1.1.4 Electronic specific heat

There are several thermodynamic changes that occur in a superconductor as it makes

its transition from the normal region (T > To) to the superconducting region(T < Ta).

The specific heat capacity of an electron changes from a linear relationship with tem-

perature to an exponential relationship. The plot of specific heat with temperature

suggests a second-order phase transition that increases the specific heat about three

times as temperature is decreased to below To. The exponential decay in the specific

heat of the form c = e-A/kBT, with A of the order of kBTC, indicated that there is a

gap in the excitation spectrum which was later confirmed through experiments. The

singularity in specific heat at T, indicated presence of a phase transition.

14

D H

. ' b



C.

or T > To, cv T --- normal metal

or T < Tc, cv e- a/ T

energy gap

T. T

Figure 1-4: Behaviour of electronic specific heat with temperature

1.2 BCS Theory

As discussed in previous section, the exponential decay of electronic specific heat in-

dicated the presence of a gap in the excitation spectrum. A band gap would have

also accounted for zero resistance. If charge carriers can move through a crystal lat-

tice without interacting at all, it must be because their energies are quantized such

that they do not have any available energy levels that they can occupy after scatter-

ing from ions. Further study of absorption spectrum for electromagnetic radiation

revealed that the absorption occurs only when the energy hlaw of incident photon is

greater than about 2A. This clearly suggested that the excitations giving exponen-

tial behaviour to specific heat are created in pairs. Isotope effect suggested that the

superconducting transition involved some kind of interaction with the crystal lattice.

All these ol-)servations together indicated that theory of superconductivity should take

into account interaction between a pair of electrons through phonon exchange.

1.2.1 Cooper pairs and origin of attractive interaction

One of the most important ingredients of the microscopic theory of superconductivity

is that the electrons close to the Fermi surface can be bound in pairs by an attractive

interaction forlning Cooper pairs. Since there is no cost, in free energy for adding

or subtracting a fermion at the Fermi surface, a condensation phenomenon can take

15



Figure 1-5: Electron interaction via phonon exchange

place if two fermions are bounded by energy EB, lowering the energy of the system

by the same amount. Therefore we get more stability by adding more and more

bounded pairs at the Fermi surface. Any pair of electrons would repel due to coulomb

interaction and hence the attractive potential should be large enough to outweigh this

repulsion. Phonons, quanta of lattice vibrations, interact with electrons and can give

rise to attractive potential. An electron attracts the positive ions in its vicinity to

itself, and this higher density of positive charge can overscreen the coulombic repulsion

between the electrons and can cause attraction between electrons. If the temperature

is too large, the number of random phonons in the lattice due to thermal processes will

destroy this coupling and hence destroy the superconductivity at high temperatures.

1.2.2 The BCS Hamiltonian

After understanding that the phenomenon involved phonon interaction a simplified

Hamiltonian could be constructed which could address the problem. Consider Feyn-

man diagram of two electrons scattering off each other by phonon mediation: If H0

is the Hamiltonian representing free electrons and phonons then the effective Hamil-

tonian of system of electrons interacting through transfer of phonons is given by,

H H + l'7k,k',qCk,+ q s C k - q,sck,sCk s . (1.2)
k,s,k' ,s',q

16



The matrix elemnent, I1 kk' q' represenltilng the plhollnon interaction is of the form,

I ¥q 2 hWq

l/k'k'q: (k - 4k-q)2 - (h-q) 2 ' (1.3)

Now, one can consider the superconducting electron system as being in some sort of

a condensate phase with electrons with opposite spin and momentum forming a pair.

Thus only the interaction between such a pair would be considered in estimating the

energy of the system. \Vith this assumption, the ground state can lower its energy

by considerable amount as compared to unperturbed Fermi liquid state. The BCS

Hamiltonian for electrons with this assumption and including Coulomb repulsion is

given by,

HBCS = k(Ck TCkC-kJ - E l/k,kCkT Ck/ICklCkt. (1.4)
k k,k'

Where k = k - P with k is energy of the free electron and p is fermi energy (which

is same as chemical potential at low temperatures) and V. k' which includes screened

Coulomb repulsion Uk k' is given by

'k,k' = -2i{'_k.k',k'-k - Uk,k' (1.5)
- Ukk' ~~~~~(1.5)

1.2.3 Gap equation and excitation spectrum

Once the simplified Hamiltonian is obtained, the next step is to find the expression

for quasiparticle excitation energies which should indicate the presence of a gap. One

can diagonalize such a Hamiltonian with quartic interaction by using the Bogoliubov-

Valatin transformation with quasi particle operators, k and 'Y-k-

Yk = UkCk - VkCki '-k = UkC-kl + VkCkT (1.6)

These operators satisfy fermionic anti-commutation relations with k and Vk being

real numbers and u. + v2 = 1. One can write the BCS Hamiltonian in terms of

quasiparticle operators and elimination of the off-diagonal terms which would give

a. Hamiltonian of systemn of independent fermions. Te condition for vanishing of

17



off-diagonal terms can be written as

2411vk - (k - V) : Vkk'UkVk 0 (1.7)
k'

By defining Ak = Ek' V/k,k' k'Uk' and using 'ul + v = 1 one can arrive at the integral

equation for the gap parameter Ak given by

I A
Ak = E Vkk 2, + Ak2)1/2 (1.8)Vk ~k' 

Above equation is called 'gap equation'. After eliminating the off diagonal interaction

terms, one gets a Hamiltonian which is given by,

HBCS = EN + E Ek(mk + n-k). (1.9)
k'

Here, nmk= kYk and nl-k = '-T ko-k denote the number operators for excitations.

EN is the ground state energy and Ek is the energy of elementary excitations and

these two are given by

EN = E2~kV - E Vk,k'UkVkUk'Vk (1.10)
k k,k'

Ek = (, + A2)1/2 (1.11)

Ground state is annihilated by both gamma operators and is given by

J'P t Ct ~~~~~~~~~~(1.12)o) = [11('ak + kckTCkl] 0) (1.12)

At finite temperatures, for calculating physical quantities, the mnk operators can be

replaced by their thermal averages, namely by Fermi-Dirac distribution function.

Due to nonzero value of quasi-particle excitations, the gap parameter decreased as

temperature increases and eventually goes to zero at a critical temperature T.

18



1.2.4 Comparison of BCS predictions against experiments

Once the excitation spectrum is know one call go on to calculate various physical

quantities and check for consistency with the experiment. For simplicity one can one

consider a, model for potential Vkk,.

Vkk, = V if k<h WD

= 0 otherwise

Here V is a constant and htWD is Debye energy. I this assumption, Ak is constant

too and can be calculated by explicit integration. The final expression is given by[3]

hwDA = W (1.13)
sinh[1/VD()] (1.13)

Where D(p,) is density of states at Fermi energy. One can estimate the product

VD(M) by noting that,

V I q 2 (1.14)
hWD

Electron-phlonon interaction amplitude .lfqf can be given from Fr6hlich Hamiltonian

by [3]

MIqj Nhk Ivk

MIq~ Nm IVk2
lMhWD

Where Vk is Fourier transform of screened ion potential. Since D(,u) N/I one finds

that

VD ( ) Y (-- 2 ( 1.15)

While hwD is of the order of 0.03 eV, the factor NVk which is average screened ion

potential over the unit cell, is around few electron volts. Thus (NVk/hWD)2 is of the

19



order of 104. m/M is the ration of electron mass to ion mass and is around 10- 5.

Under these approximations, VD(p,) is of the order of .1 and hence one can replace

sinh in expression for A by exponential function. Thus,

A = 2hWDel/l/D( t ) (1.16)

is a very small quantity, about one percent of the Debye energy and hence corre-

sponds to a temperature of the order of 1K. If the electron phonon interaction is too

strong then this approximation is not valid and one can get a bigger value for A.

But, one can see that the superconducting transition temperatures predicted by BCS

theory are very low temperatures, much lower than those corresponding to high TC

superconductors.

To get finite temperature effects one replace the quasiparticle number operators

by thermal averages for fermions (i.e. Fermi-Dirac function). Thus,

'7,k = ---k- (Ek) exp(Ek/kT) + 1 (1.17)

This modifies the gap equation to

1AT) E- vk' -Ak'(T) - 2 f(Ek,)] (1.18)2k k ' ±~,Ak)

By considering same assumption as before for Vkk, and by understanding that the

gap vanished at T, one arrives at following expression for transition temperature:

kBT = 1.14hWDe - 1/ VD(i ) (1.19)

This along with the value for zero temperature gap gives 2Ao/kBT = 3.5 which is

in good agreement with experiments which give value lying between 2 and for 5 for

most elements. Isotope effect is evident from expression for T as it involves the

Debye frequency which is proportional to square root of ionic mass. By considering

the thermal averages one can also get the expression for the energy of the system and

20



hence specific heat. In the simple model considered for Vkk,, one can see that the

specific heat is given by

___ 2_ af
(T) = 2Ek (1.20)

k dr r 9Ek

The observed discontinuity in specific heat arises from the derivative term as A is

not smooth across T. The equation predicts a increase by a factor of 2.5 in specific

heat, as the element is cooled through T, which is in reasonable agreement with

experiments.

Thus we can see that the BCS theory can indeed account for various observed

phenomenon regarding conventional superconductors. High T superconductors ex-

hibit a number of peculiar properties that cannot be explained within BCS theory

and that is the topic of discussion for the next section.

1.3 tHigh Temperature Superconductivity

All conventional superconductors had an upper cutoff critical temperatures of around

30°K which was what BCS theory suggested. One can increase TC by making the lat-

tice more rigid, and thereby increasing WD, the cutoff frequency for electron phonon

interaction. But this would at the same time decrease the electron-phonon interac-

tion. Another way of increasing Tc would be increasing the density of electron states

near fermi energy, thereby making the ground state more stable. But, due to electron-

phonon interaction, the phonon spends part of its time as a virtual electron-hole pair.

Thus increasing the electron density beyond certain limit results in decreasing the

effective frequency of the phonons and hence critical temperature Tc. It was a pleas-

ant surprise when, in 1986, Bednorz and Mfiller discovered that superconductivity

occurred at 35K in certain compound of lanthanum, barium, copper and oxygen.

High temperature superconductivity is exhibited by only a particular class of

materials, the rare earth copper oxides with various kinds of dopants. They are

layered materials consisting of copper oxide(CuO 2) planes in which the copper atoms

21



form a square lattice and oxygen atoms lie between each nearest-neighbor pair of

copper atoms. The rest of the atoms, rare earth atoms, dopants and excess copper

and oxygen form charge reservoir layers separating the square planar Cu0 2 layers.

These charge reservoir layers influence the oxidation state of the planar copper atoms,

which is either Cu++ or Cu+++. The parent unldoped compound is an insulator and

has all the planar coppers atoms in the Cu++ state, with one unpaired spin per site.

In a systems which has an average density of one electron per site, the conduction is

suppressed by large Coulomb energy required for double occupation. Such a collective

Coulomb blockade makes the undoped compound an insulator. The unpaired electron

spins order anti-ferromagnetically, so that neighboring spins are anti-parallel. The

resulting state is called a Mott insulator. High temperature superconductivity occurs

when the undoped parent compound is doped with holes. Removing electrons or

equivalently adding holes to these materials both destabilizes the anti-ferromagnetic

spin order and relieves the electronic congestion, turning them from insulators to

conductors.

High T materials are often described in terms of a phase diagram having tem-

perature (T) and doping (x) as two axes, where x is the number of excess holes per

planar copper atom. Such a phase diagram is shown in the figure. The solid lines

in this figure denote phase boundaries. For low doping, the compound is in anti-

ferromagnetic phase denoted by A. The maximum temperature for which this order

persists happens for x=O. The transition temperature for this phase falls off rapidly

with increasing x and appears to fall to zero for x of a few per cent. For larger values

of x, there is another phase boundary, containing the superconducting phase, S. This

phase has its maximum transition temperature at what is called optimal doping. To

the left of this point, materials are said to be underdoped, and to the right they are

overdoped.

In addition to sharp phase boundaries there is also a well-defined crossover line to

a pseudogap phase. For underdoped materials, gap -like features appear at tempera-

tures much higher than the superconducting T, giving a pseudo-gap phase. This is not

a sharp transition, and so the bold dashed curve in figure simply indicates the tem-

22
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Figure 1-6: High Tc superconductor phase diagram

peratures below which the existence of this pseudogap becomes evident. Finally there

is a part of the phase diagram at low temperatures, indicated by the thin dashed line.

overlapping the region where anti-ferromagnetism disappears and superconductivity

grows up, where the system may exhibit a variety of phases. In this region there is

evidence for spin glass behavior and for charge-modulated mesophases called stripes.

It is even possible for the charge and doping to be modulated from layer to layer - a

phenomenon called staging. For different high TC compounds, different behaviors are

observed in this region of the phase diagram. It appears that, in the vicinity of the

crossover from anti-ferromagnetism to superconductivity. there are many competing

phases that can be stabilized by small variations in the chemistry. As a result, this

region is poorly understood.

While BCS state for conventional superconductivity was obtained as a perturba-

tion to the Fermi liquid state, the parent undoped compound for high TC supercon-

ductors is Mott insulator. The anomalous normal-state properties of the cuprates

clearly suggest that these materials are not just a normal Fermi liquid above Tc, and

therefore may not be adequately described by BCS theory below T,. The electrical
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dc resistivity p(T), exhibits a linear dependence in temperature over a wide range

of temperatures above To. For a conventional Fermi liquid associated with normal

metals, p(T) - T2. This is a manifestation of the long lifetime of electrons near the

Fermi surface in a conventional Fermi liquid . The nuclear spin-lattice relaxation rate

T]-l(T)shows a temperature dependence substantially different from that of normal

metals. Other anomalous normal-state properties of the copper-oxide superconduc-

tors include the thermal conductivity ,(T),the optical conductivity u(w), the Raman

scattering intensity S(w), the tunneling conductance as a function of voltage g(V),

and the Hall coefficient RH(T) . All of these normal-state properties are quite unchar-

acteristic of the Fermi liquid usually associated with the normal state of conventional

superconductors.

Early experimental studies usually assumed that the superconductivity was s-wave

and interpreted all of the data in terms of that assumption. After clear demonstration

of the linear temperature dependence of the low T penetration depth, possibility that

the superconducting gap might have nodes and d-wave symmetry was taken very

seriously. In a d-wave superconductor, quasiparticles near the nodes can be excited

at low temperatures thereby causing a steeper decrease in superfluid density. A

superconducting pairing state with dx2_y2 symmetry has the energy gap of the form:

A(k,T) = Ao(T) cos(kxa) - cos(kya) . where Ao(T) is the maximum value of the

energy gap at temperature T and a is the lattice constant or distance between nearest

neighbor Cu atoms in the plane. The angular momentum and spin of a Cooper pair

is L=2 and S=O, respectively (i.e. singlet d~2_y2 pairing).

All these aspects clearly suggest high T, superconductivity to be a quiet different

phenomenon not explained by BCS theory. Among various options explored, frac-

tionlization ideas have contributed significantly, towards a completes theory of high

Tc superconductivity. Next chapter talks about this in the context of Z 2 gauge theory.
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Chapter 2

Fractionalization and the mean

field model

In this chapter a simplified model based on fractionalization ideas would be presented.

The first section talks about basic idea behind Z2 gauge theory of fractionalization.

In section two motivation behind the new model is given and third section discusses

basic features of the model. In the end a short conclusion is given talking about the

scope of the model for further work.

2.1 Fractionalization

Strongly interacting many-electron systems in low dimensions can exhibit exotic prop-

erties, for example: the presence of excitations with fractional quantum numbers. In

these cases, the electron is 'fractionalized', i.e. effectively broken into the constituents

which essentially behave as free particles. The basic constituents being, chargon and

spinon carrying charge and spin of the electron respectively. The classic example of

this splitting is the one-dimensional (d) interacting electron gas. Electron 'fraction-

alization' is also predicted to occur in 2d systems in very strong magnetic fields that

exhibit the fractional quantum Hall effect. It is believed that this idea of fractional-

ization of the electron could occur under conditions that are far less restrictive than

the two examples mentioned above. Once the electron is fractionalized, it's charge
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is no longer tied to it's Fermi statistics. The resulting charged boson (the chargon)

can then directly condense leading to superconductivity. There is a third distinct

excitation, namely, the flux of the Z2 gauge field (dubbed the vison). Vison is gapped

in fractionalization phase.

2.2 Motivation

2.2.1 Problems with fractionalization

The Z2 gauge theory of fractionalization had several drawbacks in terms of explaining

the observed properties of high Tc superconductors. One of the observed features of

cuprates is linear decreasing of superfluid density, (ns(T)), with low temperatures.

The slope of this decrement is observed to be independent of doping x. Thus ns(T) =

ns(O) - AT with ns(O) x but A independent of x. In fractionalization theory,

ns(0) - x is obeyed but, as the current carried by nodal quasi-particle is proportional

to doping, the coefficient A is proportional to x2.

As mentioned in the previous section, the Z2 gauge theory implies existence of

a gapped excitation; the Z2 vortex or "vison". Visons are the topological defects

occurring in the underlying order of Z 2 gauge field and hence are believed to have

excitation energy of the order of interbond interaction. However, experiments of

detecting vison have led to negative results, putting bounds on vison gap to be less

than 200K which is anl order of magnitude less than the natural scale J 1000K.

Another inconsistency of the theory with experiments was regarding spectral func-

tions obtained using ARPES. Fractionalization predicted that the nodal spectral func-

tion doesn't change drastically as temperature decreases below T, while the antin-

odal spectral function shows sharp excitations as temperature decreases below T,.

Behaviour of nodal spectral function is inconsistent with the experiments.

Another feature of cuprates is their small magnetoresistance in pseudo-gap region

showing metallic behaviour. In conventional superconductors, just above T,, thermo-

dynamic fluctuations produce small, transient regions of the superconducting state,
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Figure 2-1: Phase diagram for the modified Hamiltonian

giving rise to an anomalous increase in the normal-state conductivity. Within the

framework of fractionalization, the transport in pseudo-gap region which is because

of chargon motion would probably be analogous to that of a superconductor near

critical region giving large magnetoresistance. Fractionalization also proposed an

fractionalized antiferromagnetic state for doping close to zero. The antiferromagnetic

order in such states would not get destroyed quickly on doping. Experimetaly, its

observed that the artiferromagnetic order persists for a relatively small doping.

2.2.2 Possible solution

One can possibly get around some of the inconsistencies of the theory through certain

modifications. Assume that the pseudo-gap state as a fractionalized fermi liquid phase

(denoted by FL*). Doped holes are assumed to form a Fermi surface of volume x

which consists of four small pockets centered at (+7r/2, ±/2). Holes behave as

elementary excitations at this Fermi surface and co-exist with d-wave paired spinons.

Spinons and holes have average number given by < ftf >= 1 and < ctc = x >

respectively. Transition to superconducting phase (denoted by dSC) would happen

when < cf > 0. Based on these assumptions one expects the model to have

qualitative features indicated in the diagram. In the underdcloped dSC phase one

expects to have quasi particle excitations with current of 0(1) which would make

coefficient A independent of doping. One also expects the hole pockets centered
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around nodal points along k, = k to give metallic behaviour to charge transport and

hence giving low magnetoresistance. In FL* Quasiparticle excitations along k = ky

would be sharp and would be expected not to change significantly across Tc. In

this model, presence of spinful fermionic holes carrying charge-e would disturb the

magnetic order making AF* phase fall sharply with doping. More work might be

needed to get around the difficulty associated with flux-trapping experiments.

2.3 The simplified mean field Hamiltonian

The Hamiltonian for the model is given by

H = Z Ek,,C Ck,o+Z Ckffk fk,± + k (fkt f-kI + f-k,1fk,T) +b E (Ct,afk,a + ft,aCk,,)
k,u k,a k k,o

(2.1)

Here the coupling b is zero in FL* phase (which occurs above Tc) and is not equal

to zero in dSC. Further b is assumed to be function of temperature with b(O) v - .

Ak denotes dX2_y2 pairing. To diagonalize the Hamiltonian, define,

*dkT fk,T, dk,l = fk,l, hk,T = Ck,T, hk, =Ck (2.2)

=> H = Z {k,chk' hk + d (kf ' + Ak'X) dk +- b ( k ozdk + dkoZhk) (2.3)
k k k

Let,

Tk ( (2.4)
dk

= H E tk A/Ik' Ik (2.5)
k

Where,
6 k,c 0 b 0

0 --{k c 0 -b
MAk 0 Ek, -b (2.6)

b 0 Ok f Ak

0 -b Ak -ek,f
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Quasiparticle excitation energies are eigenvalues of Mk given by:

22 '2 + E + 2b2 ± (- E2)2 + 46b2(2,c + E2 + 2(k,C,f (2.7)

Where, -k Ak + (2.8)

Location of gapless excitations xwoul(d be given by detAIk = 0 which Call be found

as follow:

= det k = 0

2 2 24 CkcE k - 2b Ek,cCkf - 0

~~~~~~2 =20=> (Ck c~k e -b) + OkbcA k =- 0

Thus at the quasiparticle nodes one must have: Ak = 0 and Ck,cCk,f -b
2 = Thus

the gapless points are only along the lines k = ±ky as required by experiments. To

solve the second condition one can assume the dispersion relations for hole and spinon

as : k,c 
: a(k 2 - k2) Ck,f v Ulfk

Here k is the distance along the diagonal from the location of spinon node given by

(7r/2, 7r/2'). k0 , the fermi wave-vector, behaves as k0 - x/ for a two dimensional

system. The second condition for gapless points can now be written as k(k 2 - ko2) -

b2 /avlf. It is proved in the appendix 1 that such a equation would have only one root

for sufficiently small doping x.

2.4 Conclusion

Although a first hand estimate of calculation of superfluid density, done in appendix

2, looks promising, more work is required to determine various other properties of the

model. The resonating valence bond (RVB) phenomenon is coming out as a promis-

ing candidate for explaining high T superconductivity. In an RVB configuration,

each electron pairs with another electron to form a singlet bond. An RVB state is
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Figure 2-2: RVB configuration [4]

a superposition of many such configurations, all having same energy. The ground

state of doped cuprates is believed to have a significant overlap with the RVB state.

The simplified model given, considers spinon interacting with holes with interaction

strength dependent on doping. Something very similar happens in an intuitive model

of RVB induced superconductivity. Consider an RVB configuration in which there

is an isolated pair of unbonded electron (considered as spinon) and hole lying next

to each other. One can form another RVB configuration with positions of the two,

hole and electron, reversed. These two configurations have same energy and hence an

infinitesimal amount of electric field can cause a system existing in one configuration

to go to one existing in the other. Result of such an event would be a net flow of

charge in the direction of the electric field. A sufficiently large number of such events

could give rise to a continuous motion of holes causing superconduction. One also

expects more events of electron and hole exchange as doping is increased. Exchange

of electrons and holes can only take place along x and y directions, which may induce

directional character to the interaction which might be able to account for the d-

wave nature of the superconductor. All these observations make the Z2 gauge theory,

along with the model considered, a promising development towards explaining the
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lhiglh teliperature superconductivity.
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Appendix 1

Existance of only one gapless point

The cubic equation that we need to consider is given by

(k 2 _ k.2) = b2 /(vlf (2.9)

As both k() and b have leading doping dependence of Vx, the equation can be re-

written as:

(k2
- ax) = 3x

k3 -a t k - Ox=0

For an arbitrary x, one can find the number of roots as follow: Let, f (k) = -

axk - 3x which would has a minima and maxima at k equal to ax/3 and - aV/x/3

respectively. As f(O) is less than zero, there can be only one root for k > 0. There

can be double root on the negative k axis if f(- ax/3) > 0.

> - 3 A/3'V 3 3d1>= ax T: -x > 03
32 V3- ly

Thus, for x 0, there would be only one root.
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Appendix 2

Calculating physical quantities in the model

Once the Hlamiltonian is written in terms of quasiparticle excitations, one can proceed

on the lines of BCS calculations to find out various properties expected from the

model. Here I would sketch how one can go around doing the calculations. The

superfluid density as a function of temlnperature c'all be given by

e2
2

n -= Jd-1kk2 (= no-k)) -(2.10)

One gets the same expression in BCS theory and one can use the same tricks to sim-

plify the expression as those used in the theory. For low temperatures, the decrement

in the density is determined by the size of quasiparticle excitations around node and

is given by
~2

n. = no - mkBT node (2.11)
VFV6

Here, VF =k and vo -ak and they parametrize the quasiparticle dispersion inHere, VF = -0kk andv= a .

the vicinity of the node. To proceed further into the calculation, one needs to realize

that in the earlier calculations k was measured with respect to the spinon node. While

in the above formula for superfluid density assumes k=0 as the origin of the 2D k

space. So we need to shift the origin of the 2D k space to spinon node. If 0 is the

original polar coordinate which defines A(0) = Aocos(0) and 0 is the polar coordinate

of a system located at spinon node then, SO k. And so, v, - k. After a bit
of labour one can get the two velocities required in ters of energies or wave vector

of labour one can get the two velocities required in terms of energies or wave vector
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at quasiparticle node. Calculation of various derivatives is little bit treaky and my

approach relies on expanding excitation energy as a Taylor around the node. For

calculating VF, one can simplify the analysis by assuming that A is zero. This should

be valid as node lies on the A = 0 line. I assumed that the k,c and k,f can be

expressed as Ek,c,node + (ek, c and Ek,f,nod-c + Ek,f respectively with Ek,c,nodeEk,f,node = b2 .

After doing the expansion, one gets expression for 6 (k in terms of various quantities

at node and k,c,nodeCk,f,no,e = b2. One can read off the derivative from this expression,

/ k '2ri (2.12)

2akk 2- (Ekc k , + [b{ Ck,f[C])node (2.12)

with,

2

[a) I E - k,c - kf
ek,c + k,f

[b] FI(1 + k,c - kf ( Ek,c - Ek,f
2 Ek.c + kf EkcEkf 

[] I + k-kc - kj2 k.c + k,f , k,c + ek,f[c [ %(.c :--) (Ek,C k)

For vo, one gets,

VO = A (c + 2ekckf)2] (2.13)
k Ek,c + Ek,fj node

Next step is to determine the doping dependence of various quantities which would be

determined by the doping dependence of nodal wave vector. By looking at the cubic

equation for the spinon node one can see that the leading doping dependence would

be given by, knode x 1/ 3. This would give knOdec x 2/3 and eknod.?,f X
1/ 3

. Using

this one can determine the leading order doping dependence of the two velocities as

VF - x1/3 and v x/ 3. This way one expects that the slope of the decrement of

superfluid density with temperature to be independent of temperature.
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