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Abstract

Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities

of interest, evaluation of which demands the solution of a partial differential equation. We present

in this thesis a technique for the predicition of outputs of interest of parabolic partial differential

equations. The essential ingredients are: (i) rapidly convergent reduced-basis approximations -
Galerkin projection onto a space WN spanned by solutions of the governing partial differential

equation at N selected points in parameter-time space; (ii) a posteriori error estimation - relax-

ations of the error-residual equation that provide rigorous and sharp bounds for the error in specific
outputs of interest: the error estimates serve a priori to construct our samples and a posteriori to

confirm fidelity; and (iii) offline-online computional procedures - in the offline stage the reduced-

basis approximation is generated; in the online stage, given a new parameter value, we calculate

the reduced-basis output and associated error bound. The operation count for the online stage

depends only on N (typically small) and the parametric complexity of the problem; the method
is thus ideally suited for repeated, rapid, reliable evaluation of input-output relationships in the

many-query or real-time contexts.
We first consider parabolic problems with affine parameter dependence and subsequently extend

these results to nonaffine and certain classes of nonlinear parabolic problems. To this end, we

introduce a collateral reduced-basis expansion for the nonaffine and nonlinear terms and employ an

inexpensive interpolation procedure to calculate the coefficients for the function approximation -
the approach permits an efficient offline-online computational decomposition even in the presence

of nonaffine and highly nonlinear terms. Under certain restrictions on the function approximation,
we also introduce rigorous a posteriori error estimators for nonaffine and nonlinear problems.

Finally, we apply our methods to the solution of inverse and optimal control problems. While

the efficient evaluation of the input-output relationship is essential for the real-time solution of these

problems, the a posteriori error bounds let us pursue a robust parameter estimation procedure which

takes into account the uncertainty due to measurement and reduced-basis modeling errors explicitly

(and rigorously). We consider several examples: the nondestructive evaluation of delamination in
fiber-reinforced concrete, the dispersion of pollutants in a rectangular domain, the self-ignition of
a coal stockpile, and the control of welding quality. Numerical results illustrate the applicability of

our methods in the many-query contexts of optimization, characterization, and control.

Thesis Supervisor: Anthony T. Patera
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

The role of numerical simulation in engineering and science has become increasingly important.
System or component behavior is often modeled using a set of partial differential equations and as-
sociated boundary conditions, the analytical solution to which is generally unavailable. In practice,
a discretization procedure such as the finite element method (FEM) is used.

However, as the physical problems become more complex and the mathematical models more
involved, current computational methods prove increasingly inadequate, especially in contexts re-
quiring numerous solutions of parametrized partial differential equations for many different values of
the parameter. Even for modest-complexity models, the computational cost to solve these problems
is prohibitive.

For example, the design, optimization, control, and characterization of engineering components
or systems often require repeated, reliable, and real-time prediction of performance metrics, or
outputs, "se," such as heat fluxes or flowrates. These outputs are typically functionals of field
variables, "ye," - such as temperatures or velocities - associated with a parametrized partial
differential equation; the parameters, or inputs, "[," serve to identify a particular configuration of
the component - such as boundary conditions, material properties, and geometry. The relevant
system behaviour is thus described by an implicit input-output relationship, se (A)," evaluation of
which demands solution of the underlying partial differential equation (PDE).

Classical approaches such as the finite element method can not typically satisfy the requirements
of real-time certified prediction of the outputs of interest. In the finite element method, the infinite
dimensional solution space is replaced by a finite dimensional "truth" approximation space of
size K. We shall assume - hence the appellation "truth" - that the approximation space is
sufficiently rich such that the FEM approximation y(p) (respectively, s(p)) is indistinguishable
from the analytic, or exact, solution ye(p) (respectively, se([L)). Unfortunately, for any reasonable
error tolerance, the dimension K needed to satisfy this condition - even with the application of
appropriate (parameter-dependent) adaptive mesh refinement strategies - is typically extremely
large, and in particular much too large to provide real-time response.

Our goal is the development of numerical methods that permit the efficient and reliable eval-
uation of this PDE-induced input-output relationship in real-time or in the limit of many queries
- that is, in the design, optimization, control, and characterization contexts. To further motivate
our methods and illustrate contexts in which we develop them, we consider several examples.
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1.1.1 Application Problems (AP)

AP I: Nondestructive Evaluation of Delamination

Our first example is the nondestructive evaluation (NDE) of civil engineering structures. Fiber-
reinforced polymer (FRP) composites are used widely in civil engineering for bridge column seismic
retrofits to strengthen concrete and masonry structures, as well as in the rehabilitation of existing
infrastructure [44]. FRP composites, which are also widely used in aerospace applications, are two-
phase materials consisting of long unidirectional fibers within a polymer matrix. To enhance the
structural capacity of the design, layers of FRP composites are bonded to concrete structures using
adhesives such as epoxy resins. The success and performance of this reinforcement depends strongly
on the quality of the bond between the FRP composite and the substrate. However, the mechanical
properties of the composite are affected by environmental aspects such as temperature, moisture,
and contaminants. Furthermore, the quality of the bond is influenced by the manufacturing process
and the location in which the composite is fabricated; the latter is often "in the field" rather than
in a controlled environment. Since debonds or delaminations at the composite-concrete interface
often occur, effective quality control - i.e., providing reliable information about the thickness and
fiber content of the composite, and the amount, location, and size of defects - is vital to safety.
There is thus a need not only for the detection of flaws, but also for accurate characterization of
the detected defects.

There exist two major classes of NDE techniques: electromagnetic methods and mechanical
vibration methods. Infrared (IR) thermography, which belongs to the former, has been successfully
applied to detect flaws in FRP composites bonded to concrete [114] due to the fact that it is sensitive
to the presence of defects near the surface and allows for the efficient investigation of large surface
areas. In active IR thermography, the structure is actively heated and the surface temperature is
monitored using an IR imaging system. The heat transfer in the structure is affected by flaws in
the structure, which gives rise to localized hot or cold spots on the surface. The goal is then to
infer the location and size of defects from the surface temperature readings. The methods used
thus have to be reliable (to guarantee safety) and efficient (to allow for real-time characterization
in the field).

A model for a FRP composite bonded to concrete similar to the one discussed in [114] is shown
in Figure 1-1. The concrete slab considered has length 1 = 60 and thickness tC = 10, and the FRP
layer has thickness tFRP = 1. We assume that there exists a delamination of unknown width, WD,
centered at x1 = 0 along the composite-concrete interface. The thermal conductivity of concrete
is denoted kC, and the thermal conductivity of FRP is denoted kFRP; while the former is assumed
known (the uncertainty is very small in practice), the latter depends on the direction of the fibers
and the fiber content. We also define >r = kFRP/kC to be the ratio of the two thermal conductivities.
The (non-dimensionalized) heat flux, q(t) = q(t)tFRP/(kC( FRP,max - T0 )), is applied to the surface
of the structure, Itop, for t c ]0, 0.5]; here, q(t) is the heat flux, To is the ambient temperature, and
TFRP,max is the maximum allowable temperature of the FRP. The surface temperature is measured
for t E ]0, 10] at two locations on the surface: Measurement 1, denoted by si, is taken over a small
region around x1 = 0; and Measurement 2, denoted by s2, is taken over a small region around

-, = 14.5.

The temperature distribution, T(x, t), in FRP and concrete is then governed by the (appropri-
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Figure 1-1: AP I: Delamination of FRP bonded to concrete.

ately) non-dimensionalized unsteady heat or diffusion equations

9TFRP(x, t) XV 2TFRP(X, t), in QFRP,at
aTc(x, t) V 2Tc(xt),

at

(1.1)

(1.2)in Qc,

with initial temperatures TFRP (X, t = 0) = 0 and TC(x, t = 0) = 0; here, x = (Xi, X2) is the spatial

coordinate, and T(x, t) = (T - To)/(TFRP,max - To) is the non-dimensional temperature, To is

the ambient temperature, and TFRP,max is the maximum allowable temperature of the FRP. The

temperature and heat flux at the composite-concrete interface (excluding the delaminated area)

are continuous, i.e.,

TFRP = TC, on aQFRp n lmc,

-X VTFRP - nVTFRP =C, on aQFRP n aQC.
(1.3)
(1.4)

Since the conductivity of air is much larger than that of FRP and concrete, we may impose a

homogeneous Neumann boundary condition at the delamination boundary, Fdel,

VTFRp -n = 0, on rdel, (1.5)

VTc n = 0, on ]Fdel. (1.6)

The heat source q(t) is reflected in the boundary condition on the surface, given by

- XVTFRP ' = q(t), on x 2 = 11, X1 E [-30,30].

Finally, we assume that the heat flux on the left and right boundaries is zero ,

VTc n = 0, on xi = ±30, X2 E [1, 10],

VTFRP- n = 0, on x, = ±30, x 2 [10, 11],

(1.7)

(1.8)

(1.9)
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and that the temperature at the bottom boundary is at ambient level,

Tc = 0, on xi E [-30,30], X2 = 0. (1.10)

Note that the dimensions of the domain are chosen such that those boundary conditions (1.8)-
(1.10) which result from consideration of only a small section of the slab do not substantially affect
the temperature measurements.

From the problem description and the governing equations (1.1)-(1.10) it is evident that the
temperature distribution, TC(x, t) and TFRP(X, t), and hence the measured surface temperatures,
si and s2, depend on the (known) heat flux, q(t), the (unknown) delamination width Wdel, and
the (unknown) ratio of the conductivities, x. We can thus identify the input parameter set Pi

(Al, P2) (Wdel, x) E D C RP=2 , where D is the (input) parameter domain. We assume that
the delamination width satisfies 2 < Wdel < 20 and that the ratio of the conductivities satisfies
0.4 < x 1.8; we thus have D = [2,20] x [0.4,1.8].

We note that given the input parameter p, we directly determine the temperature outputs
si (p, t) and s2 (A, t) - this is referred to as the "forward" problem. However, in the characterization
context we have to infer the parameter p from given measurements of si (/p, t) and s2 (P, t) - this is
referred to as the "inverse" problem. The solution of the inverse problem is usually obtained in an
iterative procedure which requires repeated evaluation of the input-output relationship s1 (p, t) and

s2 (11, t). The computational cost can be prohibitively large if classical discretization and solution
approaches, such as finite element methods, are used to solve (1.1)-(1.10). We will return to this
problem in Sections 4.7 and 7.5 where we will consider the reduced-basis approximation and solution
of the inverse problem, respectively.

AP II: Dispersion of Pollutants

In this example we consider the dispersion of a pollutant or contaminant released at a specific
location Qp in a two-dimensional domain Q. We assume that the underlying flow or velocity field,
U = (U1, U2), is fixed, i.e., the pollutant concentration has no effect on the nature of the flow. A
sketch of the flow field is shown in Figure 1-2. The pollutant is released at the (possibly unknown)
location Qp and the (nondimensional) concentration of the pollutant, c, is measured at eight sensors
evenly distributed throughout the domain of interest.

The governing equation for the concentration is the unsteady convection-diffusion equation,

Oc(x, t) +U.V(,t,t U - Vc(x, t) = V 2 c(x, t) + gPS (X) u(t), (1.11)at
with initial condition

c(X, t = 0) co(X) = 0. (1.12)

Here, X = (XI, X2 ) is the spatial coordinate, n is the (mass) diffusivity, U is the known velocity field
which is incompressible (V -U = 0)1, and u (t) is the control input which represents the strength of
the pollution source term. Note that we nondimensionalize the concentration c by c = (T - co)/Q
and the time via Lc/Uo; here, Q = f f gPs(x) u(t) dQ dt, L = 1 is the characteristic length and
Uo = 1 the average velocity. We further note that , = 1/Pe, where Pe is the Peclet number.

'The velocity field (provided by K. Veroy [121]) represents a natural convection (steady Navier-Stokes) flow with
Gr = 10 5 and Pr = 0. Note that the solution is unique for these parameter values.
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The pollution source, gPs(x), is modeled as a Gaussian distribution with standard deviation oPS

centered at xPS _ ( 4 PS S), given by

gPS 1 _s)2)/(2()2)(1.13)
27r(o.Ps)2

The outputs of interest are the concentrations, si, 1 < i < 8, measured at the eight sensor locations.

From (1.11)-(1.13) it follows that the concentration, c(x, t), depends on the diffusivity ,, the

control input u(t), and the location (PSI S) and standard deviation .ps of the source term. We

can thus identify the input parameter p = (Al, A2, /13, P4) (,, Xzs xS uPS) E 'D c RE . Given

the parameter p, we can directly solve the forward problem to determine the output concentrations

s (p), 1 < i < 8. However, inferring the source location from given measurements si(p) requires

the solution of an inverse problem and is therefore much more complex.

Ftur I I I Dp t

We note that the Reynolds number for the specific application considered here is relatively low.

However, problems of a similar kind - usually, considering turbulent flow with higher Reynolds

numbers - have recently received a lot of attention in support of Homeland Security [17, 38, 119].
In this context a possible chemical indoor attack (for instance, in airports) is considered. The

goal is the development of algorithms and capabilities for the real-time characterization of the

unknown source location given the sensor measurement data [17]. First, the airflow is determined

from the known location of supply and return vents in the airport. Second, the dispersion of the

chemical agent is considered and the location of the source is estimated. Finally, given the known

source location, containment and control strategies, or remediation and evacuation efforts have to

be executed. Thus, real-time response in estimating the source location is critical for successful

countermeasures.
We will revisit this problem several times in this thesis: in Section 4.8.5 we first consider the case

where the source location is known and only the diffusivity varies; in Section 5.6 we additionally let

the location of the source term vary in a certain region; and in Section 7.6 we discuss the inverse

problem: locating the source from the concentration measurements.

AP III: Self-Ignition of a Coal Stockpile

For our next example we consider a one-dimensional non-isothermal reaction-diffusion model for

the self-ignition of a coal stockpile with Arrhenius type nonlinearity [23, 103, 105]. In practice this

problem arises if large piles of coal are stored, e.g., in harbors, over extended periods of time. As

the oxygen in the air reacts with the coal, the pile starts to heat up and can eventually self-ignite

if certain conditions - e.g., on porosity, oxygen concentration, and coal size - are met. We also
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note that similar models are used in combustion theory, biology, and in the description of porous
catalysts. This problem is just one of many possible examples in the large class of reaction-diffusion
systems [26]. Reaction-diffusion systems are an interesting area of applications because they have
inherently many parameters and appear in a large number of real-world applications.

The field variables are the temperature of the reactive medium (here, the coal) normalized
by the ambient temperature, T(x, t) = (T(x, t) - To)/T,, and the concentration of the reactant
(here, the oxygen in the air) normalized by the concentration of oxygen in the ambient air, c(x, t) =
(T(x, t) - To) /T. The coupled set of equations governing the first order exothermic reaction in
the one-dimensional layer of reactive medium through which a gaseous reactant diffuses are given
by

&T(x, t) - V 2 T(x, t) + 0 42 (c(x, t) + 1) e-y/(T(xt)+1) (1.14)
at

Oc(x, t) - LeV 2c(x, t) - 42 (c(x, t) + 1) e-/(T(xt)+1), (1.15)at

with initial conditions

T(x, t = 0) = To = 0, (1.16)
1

c(X, t = 0) = CO = 1 (1.17)
(3x + 1)2

Here, x E Q c IR1 is the spatial coordinate and Q - [0,1] is the spatial domain. A snapshot of
the distribution of temperature and concentration for t > 0 is shown in Figure 1-3. The boundary
conditions are

T (x, t) Ix=o = 0, T(x, t) Jx=1 = 0,

c(X, t)IX=O = 0, Ocx ) = 0.ax X=1

Note that x = 0 corresponds to the top of the pile at which T(x, t) and c(x, t) are equal to the the
ambient temperature and concentration, respectively; and x = 1 corresponds to the bottom of the
pile at which T(x, t) is equal to the ground (ambient) temperature, and the concentration gradient
is zero. The output of interest is the temperature and concentration at x = 0.2 denoted by si and

s2, respectively.
There are several parameters governing the dynamic behavior of the system: the Arrhenius

number or activation energy, y; the Prater temperature or nondimensional heat of reaction, 0; the
Lewis number, Le, which is the ratio of mass and heat diffusivities; and the Thiele modulus, D.
Note that the Thiele modulus is related to the maximum possible temperature of the system: the
temperature satisfies 1 < T < 1 + 3 for Dirichlet boundary conditions and Le = 1. We can thus
identify the input parameter A = (i, P2, A3, P4) = (y, 3, Le, 42) c D c RP=4. (As we will see in
Section 6.6.1, the model exhibits a very rich dynamic behavior for certain parameter ranges.)

We analyze and discuss the dynamic behavior of this model in Section 6.6.1.

AP IV: Control of Welding Quality

For our last example we look at the control of a gas metal arc welding (GMAW) process [113].
More specifically, we consider bead-on-plate welding of two metal plates being joined together
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Figure 1-3: AP III: Model for the self-ignition of a coal stockpile. Sketch of temperature and
concentration for t > 0.

with a partial penetration weld. A sketch of the joint-section and the welding torch, moving with

(nondimensional) velocity Pe over the workpiece, is shown in Figure 1-4. One of the key geometric
features for the quality of the weld is the welding depth, dw, since it indicates the strength of the
joint. The welding depth is defined as the depth of the joint penetration (through liquefaction and
subsequent solidification). However, the welding depth cannot be directly measured for real-time
control because (i) it is not directly visible during the welding process, and (ii) the weld pool
boundary is a very hot solid-liquid interface. It is thus necessary to estimate the pool depth from
quantities which are available for measurements. One such approach is proposed in [111, 112], where
surface temperature measurements taken from the back of the workpiece are used in a real-time
depth estimation algorithm - acceptable accuracy and speed of the depth estimate for in-process
control are achieved.

X2 Pe vLcln

1X

r-N 3.5 5

Measurement 1 Measurement 2

Figure 1-4: AP IV: Control of welding quality.

The depth estimation algorithm employs an inverse three-dimensional analytical heat conduc-
tion problem. To this end, the heat flux from the welding arc is modeled as a moving heat source
with a dual Gaussian distribution [111]: a top Gaussian heat source - which is largely responsible
for the width portion of the pool, and a lateral Gaussian heat source - which causes the "finger
penetration" and accounts for the depth portion of the weld [112]. This model results in a good
description of the entire weld pool shape and the temperature distribution in the workpiece. For
the estimation of only the weld pool depth of moderately thick materials, however, it suffices to
consider only the lateral Gaussian heat source.
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To model the welding process we restrict our attention to the two-dimensional temperature
distribution, T(x, t), in the joint-section shown in Figure 1-4; here T(x, t) - (T(x, t) - Too)/(Tm -
T,) is the non-dimensionalized temperature, where T, and Tm are the ambient and melting
temperatures, respectively, and x = (x1 , x 2 ) c Q _ [0, 5] x [0, 1] is the nondimensional spatial
coordinate. The melting point of the material is thus obtained for T(x, t) = 1. We note that the
latent heat has only a minor effect and can therefore we neglected [62]. We consider a coordinate
system moving with the same velocity as the torch; in this coordinate system, the torch is stationary
and the velocity enters as a convective term in the governing equation. The (appropriately) non-
dimensionalized governing equation is thus the unsteady convection-diffusion equation

'Txt + Pe 'T(,t = K V2 T(x, t) + qw (x) u (t), (.9at axi

with initial condition
T(x, t = 0) = To(x) = 0. (1.20)

Here, Pe = vLc/'r is the nondimensional velocity or Peclet number, v is the velocity of the torch,
L, is the characteristic length, , is the thermal diffusivity, and u(t) is the (nondimensional) heat
input. Note that we consider the start-up process and the temperature is thus zero initially. The
spatial (Gaussian) distribution of the heat input, centered at the torch position xT = (35, 1), is
given by

qw(x) =2?r2 e (( ) 2 +(X2-) 2 )/(2 ), (1.21)
w

where 77 is the efficiency and ow is the distribution parameter. The outputs of interest, s(i(p, t),
i = 1, 2, are the temperatures at the two measurement locations 1 and 2, respectively. We assume
homogeneous Neumann boundary conditions on FN, and homogeneous Dirichlet boundary condi-
tions on J'D, i.e., the temperature of the workpiece is equal to the ambient temperature sufficiently
far upwind from the torch position.

The velocity, Pe, and total heat input, u(t), can be controlled during the process while the
efficiency, 77, and distribution, o, are the system parameters that have to be estimated. Given
estimates for 77w and o (and the known inputs Pe and u(t)) we can solve (1.19)-(1.20), search for
the isotherm T(x, t) = 1 2 (corresponding to the melting temperature), and determine the weld
pool depth d,. We thus identify the parameter M = (pi, A2) -- (TIw,-w) c D C RP 2.

The in-process control of the weld pool depth dw hence requires the real-time and reliable
solution of the input-output relationship s(p, t) for (i) the online parameter estimation algorithm
and (ii) the subsequent control action to obtain the desired weld pool depth dw,d. We will discuss
the parameter estimation as well as control problem in detail in Chapter 8.

1.1.2 Computational Challenge/Thesis Objectives

The applications described above have several common features: first, the governing equations are
time-dependent (parabolic) partial differential equations whose dynamic behavior strongly depends
on the parameters characterizing the problem; second, the transient behavior of the system (and
not only the steady-state case) is crucial for the solution of these problems; and third, the efficient

2 Note that in the case where an analytic expression for the temperature field T(x, t) is known, we can (analytically
or numerically) solve T(x, t) = 1 for x at each time t.
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solution of the inverse and/or control problem requires the fast (possibly real-time) and reliable
evaluation of the input-output map p -> s(p, tk), k C K.

In actual practice, of course, we do not have access to the analytic solution of these problems
and a discretization procedure such as the finite element method is used. The algebraic equations
obtained using these procedures are, in general, very high-dimensional and their solution is ex-
pensive - applying these methods in the many-query context is thus prohibitive, and real-time
solution infeasible.

Our goals are twofold. Our first goal is the development of computational methods that permit
accurate, reliable, and rapid evaluation of input-output relationships induced by parabolic partial
differential equations in real-time and in the limit of many queries. In particular, we seek to develop
techniques for (i) accurate approximation of the relevant outputs of interest; (ii) inexpensive and
rigorous error bounds yielding upper and lower bounds for the error in the approximation; and (iii)
a computational framework which allows rapid online calculation of the output approximation and
associated error bounds.

Our second goal is the application of these computational methods to problems requiring re-
peated evaluation of these input-output relationships. In particular, we seek to use these techniques
to solve representative problems involving the control and characterization of engineered systems.
To achieve these goals we pursue the reduced-basis method.

1.2 Earlier Work

1.2.1 Reduced-Basis Method

The reduced-basis method was first introduced in the late 1970s for nonlinear structural analysis [4,
77], and subsequently abstracted and analyzed [9, 16, 37, 85, 98] and extended [43, 48, 83] to a much
larger class of parametrized partial differential equations. The reduced-basis method recognizes
that the field variable is not, in fact, some arbitrary member of the infinite-dimensional solution
space associated with the partial differential equation; rather, it resides, or "evolves," on a much
lower-dimensional manifold induced by the parametric dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both practice
and theory. To wit, Lagrangian or Taylor approximation spaces for the low-dimensional manifold
are typically defined relative to a particular parameter point; and the associated a priori conver-

gence theory relies on asymptotic arguments in sufficiently small neighborhoods [37]. As a result,
the computational improvements - relative to conventional (say) finite element approximation -
are often quite modest [85]. Later work [40, 60, 61, 76, 91, 121, 123, 124] differs from these earlier
efforts in several important ways: first, global approximation spaces are developed; second, rigorous
a posteriori error estimators are introduced; and third, off-line/on-line computational decompo-
sitions are exploited (see [9] for an earlier application of this strategy within the reduced-basis
context). These three ingredients allow us - for the restricted but important class of "parameter-
affine" problems - to reliably decouple the generation and projection stages of reduced-basis
approximation, thereby effecting computational economies of several orders of magnitude.

Much progress has been made in a posteriori error estimation for reduced-basis approximations.
In particular, a posteriori error bounds have been successfully developed for (i) linear [40, 60, 61,
91, 124] and (ii) at most quadratically nonlinear [76, 121, 123] elliptic partial differential equations
that are affine in the parameter. These two assumptions enable the development of very efficient
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offline-online computational strategies relevant in the many-query and real-time contexts. The
operation count for the online stage - in which, given a new parameter value, we calculate the
reduced-basis output and associated error bound - depends only on the dimension of the reduced-
basis space (typically small) and on the parametric complexity of the problem, but is independent of
the dimension of the underlying "truth" finite element approximation space (typically very large).

The case of non-affine parameter dependence has also been recently addressed. In particular,
problems which are locally non-affine - i.e., non-affine only in a small part of the domain - are
treated in [110]. More general non-affine problems are addressed in Barrault et al. [15] in which a
technique is introduced that recovers the efficient offline-online decomposition even in the presence
of general non-affine parameter dependence. In this approach, a (necessarily affine) "collateral"
reduced-basis approximation is developed for the non-affine terms. The essential ingredients to
this approach are (i) a "good" collateral reduced-basis approximation space, (ii) a stable and
inexpensive interpolation procedure by which to determine the approximation, and (iii) an effective
a posteriori estimator with which to quantify the newly introduced error terms.

Finally, reduced-basis approximations and error estimators have also been developed in [101,
102] for parabolic partial differential equations in which (i) the temporal forcing or controls are
known, and (ii) the outputs of interest are independent of time; see also [56, 86] for an application of
the reduced-basis method to initial value problems. However, because of these limiting assumptions
this earlier work is, in general, not applicable to the control, optimization, or characterization
context. One of the contributions of this thesis is to address and lift these restrictions - thus
allowing for a much wider field of applications - and to considerably simplify the methodology
developed in [101, 102]. Furthermore, we also extend the theory to consider nonaffine and certain
classes of nonlinear problems.

1.2.2 Model Order Reduction

Many model-order reduction techniques for linear time-dependent systems are proposed in the
literature: the most well-known are proper orthogonal decomposition (POD or Karhunen-Loeve
decomposition) [109], balanced truncation [69], and various related hybrid [55, 127] techniques.
In POD - probably the most popular model-order reduction technique - time is considered the
varying parameter, and "snapshots" of the field variable at different times are obtained from either a
numerical or experimental procedure. The optimal approximation space is constructed by applying
the singular value decomposition to these vectors, and keeping only the N vectors corresponding to
the largest singular values. Since the singular values are related to the "energy" of the system, only
the modes preserving the most energy are preserved. The reduced-order model is then obtained by
a Galerkin projection onto the space spanned by these vectors. POD has been successfully applied
in many fields: turbulent flows [59], fluid structure-interaction [35], non-linear structural mechanics
[54], turbo-machinery flows [127]. On the other hand, balanced truncation is a very popular method
on control theory. In this approach, the Hankel Singular Values (HSV) of the controllability and
observability gramians of the system are computed. The state-space dimensions with low HSVs are
truncated, leading to a reduced-order model. For high-dimensional systems, computation of the
required gramians is very expensive; combining POD and balanced truncation can overcome this
limitation.

A large number of model-order reduction techniques has also been developed in particular
to treat nonlinear time-dependent problems [8, 29, 28, 68, 84, 97, 108, 125]. Linearization ap-
proaches [125], for example, usually suffer from a lack of efficient representation of the nonlinear
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terms, whereas polynomial approximation approaches [84, 29] usually exhibit a fast exponential
growth of computational complexity with the degree of the nonlinear approximation order. These
two methods are thus quite expensive and do not address strong nonlinearities efficiently; other
approaches for highly nonlinear systems (such as piecewise-linearization) have also been proposed
[104, 97] but also at the expense of high computational cost and little control over model accuracy.

Furthermore, although a priori error bounds to quantify the error due to model reduction have
been derived in the linear case, a posteriori error bounds have not yet been adequately considered
even for the linear case, let alone the nonlinear case, for most model-order reduction approaches.

Finally, it is important to note that most model-order reduction techniques focus mainly on
reduced-order modeling of dynamical systems in which time is considered the only "variable;" the
development of reduced-order models for parametric applications is much less common [30, 25].

Our focus is (i) the simultaneous dependence of the field variable (and output) on both time
and parameters, and (ii) the introduction of rigorous a posteriori error estimators.

1.2.3 Inverse Problems

Inverse problems are pervasive in engineering and science: ranging from geophysics [115, 128], to
ecology [14], image processing [27], heat transfer [18, 19, 2, 80],physiology [11], continuum mechan-
ics [12], medicine (e.g., hyperthermia treatment) [89, 31], and nondestructive evaluation [44]. The
objective of the inverse problem is to determine unknown system parameters from observations (or
measurements) of the state variables or outputs of the system.

Because of its practical importance, many methods have been developed to solve inverse prob-
lems; see [116] for a very recent review. Unfortunately, inverse problems are generally ill-posed and
their solution thus difficult. One solution approach employs statistics: the to-be-estimated parame-
ter is considered a random variable with unknown statistics which are estimated using, e.g., Monte
Carlo Methods [52, 90] or simulated annealing [99, 100]. Probably the most common approach is
to consider inverse problems as an optimization problems: a cost functional is defined to measure
the difference between the measurements and the computed outputs from the system model. The
parameter estimate is then found by minimizing the cost functional subject to the governing equa-
tions being satisfied. However, if the computational cost to solve the governing equations is high
- as is the case for partial differential equations - the solution of the optimization problem may
become unattainable [34]. Furthermore, regularization techniques are often employed to obtain a
well-posed problem. Since the regularization changes the nature of the problem, the regularized
solution differs from the original solution and valuable information can be lost.

In [74] a solution method for inverse problems governed by elliptic partial differential equations
is proposed which explicitly quantifies the uncertainty in the problem formulation. In Chapter 7,
we extend and generalize these ideas to the parabolic case: the outputs are then functions of time
and measurements are taken at several discrete points in time. We consider several application
and present numerical results that show the validity and indeed very good performance of this
approach.
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1.3 Scope

1.3.1 Thesis Contributions

In this thesis we focus on the development of reduced-basis output bound methods and associated
a posteriori error estimation for parametrized parabolic partial differential equations. We improve
and extend on earlier work [101, 102] in this field in several directions.

First, we consider a new class of problems and output families - we rigorously treat (a)
temporal forcing/control inputs that are not known a priori (often a problem within the model
reduction context) and (b) outputs, or functionals of the time-dependent field variable, that are also

(scalar) functions of (discrete) time. We thus need to develop a new a posteriori error estimation
procedure that provides rigorous bounds for the error in the energy norm and in the output at all
(discrete) points in time. This generalization allows us to treat a much wider class of applications.

Second, based on our new a posteriori error bounds, we propose a "greedy" adaptive procedure
to optimally construct the parameter-time sample set. This sampling procedure can help avoid
ill-conditioning of the reduced-order model - a problem that easily occurs for a random sample
set without a priori knowledge of the temporal forcing (e.g., given a periodic forcing in time only
samples within one period should be chosen). Furthermore, under the assumption of linear time-
invariance (LTI), we follow an impulse approach to construct our basis. The resulting reduced-basis
approximation is then valid for all control input histories and the method applicable to (say) optimal
control.

Third, we extend the methodology to treat nonaffine and (certain classes of) nonlinear problems.
To this end, we will employ an empirical interpolation method introduced earlier [15] to approx-
imate the nonaffine and nonlinear terms. We will introduce a posteriori error bounds which are
rigorous under certain conditions on the function approximation, and offline-online computational
procedures which are valid even in the presence of nonaffine and highly nonlinear terms.

Finally, we apply our methods to inverse and optimal control problems representative of ap-
plications requiring repeated and rapid evaluations of the outputs of interest. We illustrate how
reduced-basis methods lend themselves naturally to existing solution methods, and how they al-
low the development of new methods (e.g. quantifying the uncertainty in the solution of inverse
problems) which would have been intractable with conventional methods.

1.3.2 Thesis Outline

In Chapter 2 we introduce the necessary mathematical background and give a short overview of the
finite element method. We also present a short review of the empirical interpolation method for
nonaffine coefficient functions. In Chapter 3 we summarize the reduced-basis method formulation
and associated a posteriori error estimation for linear coercive elliptic problems.

Linear parabolic problems with affine parameter dependence are discussed in Chapter 4. We
develop reduced-basis approximations and associated a posteriori error estimation and adjoint pro-
cedures for symmetric as well as nonsymmetric problems. We also propose a new greedy adaptive
procedure to "optimally" construct the parameter-time sample set. In Chapter 5 we relax the
condition on affine parameter dependence and extend the results from Chapter 4 to problems with
nonaffine parameter dependence. We particularly focus on a posteriori error estimation and on
efficient offline-online computational procedures. We extend our results to nonlinear parabolic
problems in Chapter 6. Since nonlinear problems do not allow the same generality as linear prob-
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lems, we focus on a certain class of problems with monotonic nonlinearity. At the end of this
chapter we apply the proposed method to a particular nonlinear reaction-diffusion system.

In Chapter 7 we then apply the method developed in this thesis to several parameter identifi-
cation problems. We first briefly discuss solution techniques for inverse problems and summarize
a new method to characterize the uncertainty in the parameter estimation. The application of the
proposed method to an optimal control problem is considered in Chapter 8. Our specific example
is the control of welding quality, which combines parameter estimation and control techniques.

Finally, in Chapter 9 we summarize our work and conclude with some suggestions for future
work.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter serves to provide some necessary background information for the work to follow. In
Section 2.2 we review the basis function spaces used throughout this thesis; in Section 2.3 we
introduce our "truth" approximation which is the point of departure for the reduced-basis method;
and in Section 2.4 we review the empirical interpolation method introduced in [15] which is an
essential building block for our discussion of nonaffine and nonlinear problems in Chapters 5 and 6.

2.2 Function Spaces

In this section, we introduce some notation and review some basic definitions that will be used in
the following. The summary provided here is largely based on [71, 102]. To begin, let Q C Rd,
d = 1, . . , 3 be an open bounded domain with Lipschitz-continuous boundary &Q; we denote the
closed domain by n.

We can then define the following function spaces:

2.2.1 Spaces of Continuous Functions

Definition 1. Let k a non-negative integer. The space Ck(n) is then defined as

Ck(j) = {v | D'v is bounded and uniformly continuous on Q, V a s.t. 0 < |a < k}

where, for given multi-index a (di...,ad), ai > 0, 1 < i < d,

alaI d
Da , c o a r an.

Then Ck (n) is a Banach space (i.e., a complete normed linear space) with a norm
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We recall that Co (Q) is the space of continuous, infinitely differentiable functions with compact
support, i.e., vanishing outside a bounded open set Q' c Q.

2.2.2 Lebesgue Spaces

Definition 2. Let p > 1. The Lebesgue space LP(Q) is then defined as

LP(Q) {v IVILP(Q) < 0O}

where

IIVIILP(Q) (jvPdx)<P < 1  <o0,

IIVIIL-(Q) esssuplv(x)l, p = co.
XGQ

We note that Lebesgue spaces are also Banach spaces. Here (and in subsequent chapters), "fj"
denotes the Lebesgue integral, and that, in theory, v is not a function but rather an (equivalence)
class of functions that differ over a set of measure zero. Finally, the essential supremum of a
function v, ess supxcQ v(x), is defined as the greatest lower bound Cmax of the set of all constants
C, such that lv(x)[ < C "almost everywhere" on Q.

2.2.3 Hilbert Spaces

Definition 3. Let k be a non-negative integer. The Hilbert space Hk(Q) is then defined as

H k(Q) {v Dv G L2 (Q), V a s.t. |a < k},

with associated inner product

(wv)Hk(Q) f J Dw D v dx,

IaI~k Q

and induced norm

110 Hk(Q) IDav12 dx 2

Hilbert spaces, which are the natural generalization of Euclidean spaces in the functional setting,
will be used extensively in the subsequent chapters. We note that L2 (Q) (= H0 (Q)) is the only
Lebesgue space that is a Hilbert space. Finally, since the Hilbert norm is induced by an inner-
product, the Cauchy-Schwarz inequality holds:

I(wv)Hk(Q)j IwfHk(Q)II Hk(Q).

2.2.4 Sobolev Spaces

Definition 4. Let k be a non-negative integer and p > 1. The Sobolev space Wk'P(Q) is then

defined as
Wk'P(Q) {v Dav e LP(Q), V a s.t. jal < k};
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the Sobolev spaces are Banach spaces with norms

JjVflWkp(Q) ( 1|[vilwk'P(D Dv1P dx < p < oc,
LIal~ kf)

|vJIwko.(Q) max ess sup D'v(x)l, p = 00.
|a|Gk xGQ

The Sobolev spaces are the natural setting for the variational formulation of partial differential
equations. The case k = 0 for which WO'P(Q) L IP(Q) (and hence the Lebesgue spaces are included

in the Sobolev spaces), and the case p = 2 which corresponds to a family of Hilbert Spaces, are of
particular interest. Finally, we note that the derivatives here should be interpreted in the proper
distributional sense [46].

2.2.5 Dual Hilbert Spaces

Definition 5. Given a functional f, Hilbert space Y, and associated inner product and norm, (y, )y
and |1 -||y, respectively, we define the corresponding dual space Y' as

Y' f {f | |1f||1Y, < oo} ,

where the dual norm 1| - |1y, is given by

f (v)
|1ffly' - sup . (2.1)

vEY ||v lY

The space Y' is also a Hilbert space, and for Y = Hk(Q), we denote Y'= H-k(Q); in general:

Hk(q) c - c H 1 (Q) c H0 (Q) c H- 1 (Q) c ... c H-k(Q).

From the Riesz representation theorem we know that for every f E Y' there exists a unique uY E Y
such that

(uy, v)y = f(v), V v E Y.

It follows from the Cauchy-Schwarz inequality applied to the Y-inner product that

1|fy' = sup v y - u1y.

This result is widely used in subsequent chapters.

2.3 "Truth" Approximation

In general, solving a partial differential equation exactly is difficult: a closed form solution is
often unavailable. Classical discretization methods (such as the finite element method or the finite
difference method) are therefore employed to obtain numerical approximations to the exact solution.

The point of departure for the methods presented in this thesis is the "truth" approximation
- a numerical approximation that is sufficiently accurate such that the resulting approximate
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solution is "indistinguishable" from the exact solution. We now describe how we obtain such an
approximation and introduce associated notation.

2.3.1 Exact Problem: A Simple Example

To begin, we consider, for the sake of illustration, the (linear) partial differential equation

&Qe(x, t) _ 
2pe~xt

at X2 2' , t E xe ]O, 1[, t E I E]O,tf], (2.2)

with initial condition

e(X,0) = (x), X E, (2.3)

and boundary conditions

fe(0, t) 0, t E 1, (2.4)

&=( t) 1, tE ; (2.5)

(2.2) represents (say) the one-dimensional heat equation. Equations (2.2)-(2.4) are called the strong
form of the initial-boundary-value problem.

2.3.2 Temporal Discretization: Finite Difference Approximation

Throughout this thesis, we directly consider a time-discrete framework associated to the time
interval I =]0, tf ] (I _ [0, tf]). We divide I into K subintervals of equal length At = tf/K and
define tk _ kAt, 0 < k < K = tf/At; for notational convenience, we also introduce K _{1, ... ,
and IE {t 0,. . . , tk}. Clearly, our results must be stable as At -- 0, K -* oc.

We now employ a finite difference scheme to our initial-boundary-value problem. In particular,
we approximate the time-derivative of a function g at time tk by a first-order difference:

9g t k ' t ( g ( t k ) - g t k ) .( 2 6g8t k(k-k-

Our finite-difference approximation, ye(x, tk), k E K, then satisfies

ye(x,tk) - ye(xtk-1) a2Ye(x,tk)
At X , EVkEK, (2.7)

with initial condition

ye(X, 0) yo(X), X E, (2.8)

and boundary conditions

ye(0, tk) = 0, Vk E K, (2.9)

aye(=, tk 1, V kinK; (2.10)
Ix

It can be shown that this Euler-Backward scheme is unconditionally stable [94].
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Note that we can also employ higher-order schemes such as Crank-Nicolson; details for the
Crank-Nicolson scheme are summarized in Appendix B. There are also other time-discretization
methods (aside from finite difference methods) which may be employed for time-dependent prob-
lems [51, 94, 117]. For example, if the finite element method is used for the spatial discretization,
the discontinuous Galerkin method often lends itself well to the time discretization because of its
variational origin. It was first introduced in the context of time-dependent problems in [50] and
further analyzed in [63, 106]. The discontinuous Galerkin method has also been successfully applied
to reduced-basis approximations of parabolic PDEs [101, 102]. However, finite difference methods
are also widely used [42] and are the method of choice employed in this thesis.

2.3.3 Spatial Discretization: Finite Element Approximation

In this section, we provide a brief overview of the finite element method as applied to our simple
one-dimensional example (2.7)-(2.10). Detailed treatment of the finite element method for partial
differential equations may be found in [94], for example.

Variational or Weak Form

We now derive the weak form of the problem (2.7)-(2.10). In this and the following sections, we
shall omit the dependence on the spatial variable, x; we thus write ye(t') for ye(x, tk)_

To begin, we multiply (2.7) by an arbitrary function v ( v(x)) and integrate over the domain
Q to obtain

A J v (ye(tk) - ye(Xtk-1)) j 2 e tk. (2.11)

Integrating the right-hand side by parts, we have

11 r D /Dy*t~ N) fv Dye (k)
v yetk) - ye(tk ) = - 0v > ye- ( . (2.12)At 1" V (Y Yx ax ax 09x

Rearranging terms and applying Green's Theorem, we obtain

Iv Dye (tk) [ye x=1

t j V ye(t) - Y( - ) ax = ] . (2.13)

From the boundary conditions (2.4) and (2.5), we have

I e _tk etk-1) f v Dye (tk) V Dye (0, tk)
AtLV (Y ) -Y 9) + X=1 - vX=0 . (2.14)

It then follows that

m(ye(tk), v) + At a(ye (tk),V) m(ye (tk1), v) + At f (v), V v E ye, (2.15)

where the function space ye is given by

ye ={v E H 1 (Q) | v(0) = 0}, (2.16)

and the linear form, f E ye', and bilinear forms, a: Ye x ye -+ R and m: ye x ye - R, are
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defined as
f (v) = V=1,

I' v Owa (w, v) = V , vw E ye,
f 09X 09X

m(wv) = j wv,

VV C ye ,

(2.17)

Vwv G ye.

Equation (2.15) is the weak form of (2.7)-(2.10); the weak form is the point of departure for the
finite element method, which will be discussed in the following section.

Triangulation

We now decompose the domain Q into a collection of J elements (in this one-dimensional case,
segments; in general, simplices), Tjh, 1 < j < J. Such a decomposition, which we denote Th is
known as a triangulation of Q; an example is shown in Figure 2-1(a). Note that the elements are

open (i.e., the Th exclude the nodes) and satisfy T n T3 = 0 for j -? j'; furthermore, the union of
the (closure of the) elements reconstitutes the original domain, that is,

(2.18)-a= U Th,
ThEdh

where Th refers to any particular member of the triangulation Th. In general, the sizes of the
elements in a mesh are different; here, the subscript "h" denotes the maximum diameter over all
elements.

I I I I I
X=OT1 T k

h= h

-~ h
XAJ

X=1
(a)

Figure 2-1: (a) Triangulation of the domain Q
X, for Y.

x=O x 1  Xi x=, 1

XA(

(b)

-]0, 1[; and (b) nodal basis functions #i(x), 1 < i <

Finite Element Approximation

We now define the "truth" finite element approximation space Y C ye as

Y = {v E X vT P1(T ), 1 j J}; (2.19)

in other words, Y is the space of functions which are linear over each element. We note that any
element v of Y may be written as

K
v(x) = vqn(x), (2.20)

n=1
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where K is the dimension of Y, the #,(x), n = 1,... A( form a basis for Y, and the coefficients

L = vi,..., vg]T E RN are unique. For our one-dimensional example, (2.7)-(2.10), K = J, and

we take the 0,(x) to be the hat functions shown in Figure 2-1(b).
We may now define our "truth" finite element approximation to ye(tk) of (2.15): we calculate

y(tk) C Y which satisfies

m(y(tk), v) + At a(y(tk),V) (y(tk-1), v) + At f (v), V v c Y, k E K. (2.21)

It can be shown that as h --+ 0 (and therefore K -* oc), y(x, tk) -* ye(tk), V k E K; we assume that
Y is sufficiently rich that y(x, tk) is sufficiently close to ye(tk), V k E K. The truth approximation
of the form (2.21) is the point of departure for the reduced-basis method. The reduced-basis
approximation shall be build upon the truth approximation, and the reduced-basis error will thus
be evaluated with respect to y(tk) E Y.

Discrete Equations

We note that since y(x, tk) E Y, we can express y(x, tk) in terms of the basis functions #j(x):

N
y(x,tk) _ y(tk) i(X), (2.22)

j=1

where the coefficients y(tk) [y 1(tk) ... y(tk)]T E RN associated with the basis functions #"n(x),
n = 1, ... , N, Vk E K. Substituting (2.22) into (2.21), and choosing for the test functions v (x),
we obtain the algebraic system of equations

My(tk) + At Ay(tk) = My(tk-1) + At F, (2.23)

where
Mij = m(#j, #i), 1 < ij <./V

Ai = a(,O), 1 < i,j < A (2.24)

Fj f (0j), I < i < M.

2.4 Empirical Interpolation Method

2.4.1 Coefficient-Function Approximation

We begin by summarizing the results in [15]. We consider the problem of approximating a given p-
dependent function of sufficient regularity, g( -; p) C L (Q), Vpy C D, by a reduced-basis expansion
gm( ;p). To this end, we introduce the sample sets

1h { E ,...,pM E D1, 1 <_ M <_ Mmax, (.5

and associated reduced-basis spaces

W = span {m g(x; pM), 1 < m < M}, 1 < M < Mmax, (2.26)
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in which our approximation gm shall reside. Note that the sample sets and therefore the reduced-
basis spaces are, by definition, nested: S9 c S9, c SJ , and W c W9 c W . We also
introduce the best approximation

gm(-; A) arg min |g( -; P) - zIL (Q) (2.27)
zGWh

and the associated error
E*M(P) 1g(- ; P) - g*(- ;,p)lLo(Q). (2.28)

The construction of S9 and W79 is based on a greedy algorithm. To begin, we select our
first sample point to be p = arg max~sa g(- ;p)||Lo(Q), and define S =i (, i g ),
and W9 = span {1}, where 39 is a suitably fine parameter sample over D. Then, for M > 2,
we set p g = argmax/,,E= -1 ), and define S = Sg_ 1 Ufp", A M - g(x; /A), and Wm
span {m, 1 < m < M}. In essence, W9 comprises basis functions on the parametrically induced
manifold M9 {g(- ; ) p G D}. Thanks to our truth approximation, solving for g*_ 1 (. ; ) and
hence E*M-_ 1 (p) is a standard linear program.

Before we proceed, we note that the evaluation of e* (A), 1 5 M K Mmax, requires the so-
lution of a linear program for each parameter sample in E9; the computational cost involved
thus depends strongly on the size of 79 as well as on Mmax. In the parabolic case this cost
may become prohibitively large - at least in our current implementation - if the function g is
itself time-varying either through (i) an explicit dependence on time, or (ii) an implicit depen-
dence on time in nonlinear problems, where g is a function of the time-dependent field variable
u(t, tk). In these cases the parameter sample E9 is in effect replaced by the parameter-time sam-
ple E9 = E9 x I, i.e., the number of samples in 3 9 is multiplied by the number of timesteps K;
even for modest K the computational cost can be very high. We thus propose an alternative
way of constructing S9 : we simply replace the L (Q)-norm in our best approximation by the
L2 (Q)-norm, where L2 (Q) is the space of functions square integrable over Q - our next sam-
ple point is thus based on pg = argmaxc n g( - ; i) - ZHL2(Q) - which is relatively

inexpensive to evaluate; the computational cost is O(Mf) + O(M3 ): we first solve for the co-
efficients AM-1,m(p), 1 < m < M - 1, from ((ZM-))TZM-)AM,(p) = (ZM-)Tg(.;fp), where
ZM-= . . -M-1], and then evaluate the norm 1g(- ;yp) - ZM-lAM_(M) L2(Q). Although the

following analysis is not rigorous for this alternative (or "surrogate") construction of S~g, we in
fact obtain very similar convergence results in practice (see Section 2.4.3).

We begin the analysis of our greedy procedure with the following Lemma.

Lemma 1. Suppose that Mmax is chosen such that the dimension of M 9 exceeds Mmax; then the
space W' is of dimension M.

Proof. It directly follows from our hypothesis on Mmax that E0  4E*ma(fvmai) > 0; our
"arg max" construction then implies E*_(ptM) &o, 2 < M K Mmax, since E*_-(ptM)
Emwi([tg+1) E('4g+,). We now prove Lemma 1 by induction. Clearly, dim(Wfg) 1. Assume
dim(W9_ 1 ) M -1; then if dim(Wg) $ M, we have g(. ; p) EW _1 and thus E* _1 (g) 0;
however, the latter contradicts E*g _(p"t) > Eo > 0. El

We now construct nested sets of interpolation points TM {t 1 ,...,tM}, 1 < M < Mma. We

first set t1 = arg ess supxcq j1 (x)j, qi = 1(x)/(1(ti), B 1 = 1. Then for M = 2,..., Mmax, we

solve the linear system j1 o-- qj(ti) = M(tj), 1 < i < M - 1, and set rM(x) = M(x) -
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EMl Y- 1 qj(x), tM = arg ess supxcQ IrM(x)l, qM(x) = rM(x)/rM(tM), and B q(t),
1 < i, j < M. It remains to demonstrate

Lemma 2. The construction of the interpolation points is well-defined, and the functions {q,.. , qm }
form a basis for W 1 .

Proof. We shall proceed by induction. Clearly, we have W19 = span {qi}. Next we assume WM_- 1
span {qi, ... , qM_1}; if (i) IrM(tM))I > 0 and (ii) BM-l is invertible, then our construction may

proceed and we may form WM = span {q1, . .. ,q}. To prove (i), we observe that IrM(tM)[
Ew-(p4) > eo > 0 since e*Y 1(p4M) is the error associated with the best approximation. To

prove (ii), we just note by the construction procedure that B- 1 = rj(ti)/rj(tj) = 0 for i < j;
that BM-1 = rj(ti)/rj(tj) = 1 for i = j; and that B-11 = [rj(ti)/r (tj)l < 1 for i > j since

ti = arg ess sup 6Q Iri (x)1, 1 < i < M. Hence, BM-1 is lower triangular with unity diagonal. D

Lemma 3. For any M-tuple (aij)i=1,...,M of real numbers, there exists a unique element w G Wq

such that w(ti) = ai, 1 < i K M.

Proof. Since the functions {qi,...,qm} form a basis for Wm (Lemma 2), any member of WM

can be expressed as w = 1 qj (x) nj. Recalling that BM is invertible, we may now consider
the particular function w corresponding to the choice of coefficients Kj, 1 < j 5 M, such that

E_1 Big = ai, I < i < M; but since By = qj(ti), w(ti) = E 1 qj(ti) Kj = E 1 By r-j
ai, 1 < i < M, which hence proves existence. To prove uniqueness, we need only consider two
possible candidates and again invoke the invertibility of BM. El

It remains to develop an efficient procedure for obtaining a good collateral reduced-basis ex-
pansion gM (; p). Based on the approximation space WM and set of interpolation points TM, we
can readily construct an approximation to g(x; p). Indeed, our coefficient function approximation
is the interpolant of g over TM as provided for from Lemma 3:

M

gM(x; p) = Sp m(p) qm(x), (2.29)
m=1

where SM (p) e RM is given by

M

S By ' oMj (p) = g(ti; M), 1 < i < M; (2.30)
j=1

note that gM(ti; p) = g(ti; p), 1 < i < M. We define the associated error as

EM(I 9(' ;g ) - 9M Y) (Q)Loo (2.31)

2.4.2 Error Analysis

A Priori Stability: Lebesgue Constant

To begin, we define a "Lebesgue constant" [93] AM sup.GQ EM- 1 VA'(x)1. Here, the Vfj(x) c

Wh are characteristic functions satisfying Vr;1(ta) 6mn, the existence and uniqueness of which
is guaranteed by Lemma 3. It can be shown that

39



Lemma 4. The characteristic functions V' are a basis for WM'. And the two bases qm, 1 < m K
M, and V, 1 K m K M, are related by

M
qi(x)= Bl V9M(x), 1 < i M. (2.32)

j=1

Proof. We first consider x t,, 1 < n < M, and note that E B{V(tn) - BN 6 .

BM = q(t ), 1 < i < M; it thus follows from Lemma 3 that (2.32) holds. It further follows from
Lemma 2 and from Lemma 3 that any w E can be uniquely expressed as w EZi =1qj(x)

Z i i(EA BY V(x)) = EmI(E 1  i BY)V7 (x) = E 1 aj V (x), where a. = w(tj), 1 K
j K M; thus the V', 1 < j < M, form a ("nodal") basis for WL. E

We observe that Am depends on Wj9 and TM, but not on p nor on our choice of basis for Wh.
We can further prove

Lemma 5. The interpolation error eM((p) satisfies em(py) < E*up)(1 + Am), V p C D.

Proof. We first introduce e* (x; p) = g(x; p)-g* (x; p) and gm(x; p)-g* (x; p) -= m-1 E m(/)qm

It then follows that

e* (ti; p) (g(ti; p) - gm(ti; p)) + (gp(ti; g) - g*g(ti; ,))
M

= BMK(m([t), 1 i < M. (2.33)
m=1

Furthermore, from the definition of Em(p) and E* (M), and the triangle inequality, we obtain

Emp W( -I g p) - gm -0 11 L- L(Q)

= 19( A ) -- 9'g* -[0p + *g -;P) -M g -;P) *G

em Wp) + Ig( ; ) - g )(;

The desired result

6M(pt) - E4(pI) 19 (-) - g,( -;p)1L*(Q)
m m

Bm Km() VkM(X)HIL-(Q)
k=1 m=1
M

CMg (ti; It) ViM ( I L- (Q)
i=1

< eMg(p) Am

then immediately follows from (2.32), (2.33), and Ie* (ti; p)| e*((p), 1 < i K M. E

We can further show

Proposition 1. The Lebesgue constant Am satisfies Am < 2m - 1.
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Proof. We first recall two crucial properties of the matrix BM: (i) BM is lower triangular with
unity diagonal - qm(tm) = 1, 1 < m K M, and (ii) all entries of BM are of modulus no greater
than unity - L() 1 1 m K M. Hence, from (2.32) we can write

M

| ) = I qm(x) - E BVm (x)
i=m+1

M

< 1+ E JV.M(x)j, 1KmKM-1.
i=m+1

It follows that, starting from [VMM(x)l = jqm(x)| 1, we can deduce IVMM+-m(x)l < 1+ [VMM(x)l +
. I. . + lVMM-m 2m-1, 2 K m K M, and thus obtain E I JV'(x)j < - 1. l

Proposition 1 is very pessimistic and of little practical value (though 6*M(p) does often converge
sufficiently rapidly that e*(p) 2 M -- 0 as M -+ oo); this is not surprising given analogous results
in the theory of polynomial interpolation [93]. However, Proposition 1 does provide some notion of
stability.

A Posteriori Error Estimation

Given an approximation gM(x; pt) for M K Mmax - 1, we define &M(x;a) = sM(Lp) qM+1(x),
where eM(p) -- lg(tm+1;p) - gm(tm+1;p)|. In general, EM(p) > sM(p), since EM(p) = 9g(;it) -
gM('; A)HLO(Q) g(x;lj) - gM(x;p)j for all x C Q, and thus also for x = tM+1. However, we can
prove

Proposition 2. If g(- ; M) e Wg+1, then (i) g(x; p) - gM(x; Al) = kEM(x; A) (either EM(x; P) or

- 6 M(x; p)), and (ii) 11g( -;A) - gM( =)h LW(A) = M(p)-

Proof. By our assumption g(.; p) e Wg,, there exists n (p) E RM+l such that g(x; y)-gM(x; p)
EZf_+ Im() qm(x). We now consider x = ti, 1 < i < M + 1, and arrive at

M+1

m ( Km(p) qm(ti) = g(ti; p) - gM(ti; M), 1 < i < M + 1 . (2-34)
mn=1

It thus follows that ,m(y) = 0, 1 K m K M, since g(ti; M) - gM(ti; p) = 0,1 K i K M and the
matrix qm(ti)(= Ba) is lower triangular, and that Kms+1(y) = g(tM+1; p) - gM(tM+1; p) since

qM+1(tM+1) 1; this concludes the proof of (i). The proof of (ii) then directly follows from
flqM+1lLo(Q) -1. I

Of course, in general g(- ; p) 0 Wf9+ 1 , and hence our estimator eM(p) is indeed a lower bound;
however, if EM(A) -+ 0 very fast, we expect that the effectivity,

r/M(/1 ) (2-35)
EM (A)

shall be close to unity. Furthermore, the estimator is very inexpensive - one additional evaluation
of g( - ; A) at a single point in Q.
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Figure 2-2: NE 1: (a) Parameter sample set
m < Mmax, for the nonaffine function (2.36).
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2.4.3 Numerical Exercise 1: Approximation of a Nonaffine Function

Problem Formulation

We consider the nonaffine function

G(x; p) =- 1

,/(xi -- p(1))2 + (x2 - p2)
(2.36)

for x = (x(i), X( 2 )) E Q 10, 1[ 2 and i E D - [-1, -0.01]2. We choose for "9 a deterministic
grid of 40 x 40 parameter points over D and we take p9 = (-0.01, -0.01). Next, we pursue the
empirical interpolation procedure described in Section 2.4.1 to construct SM, Wmg, TM, and BM,
1 < M < Mmax, for Mmax = 51. We note that the parameter points in SM, shown in Figure 2-2(a),
are mainly distributed around the corner (-0.01, -0.01) of the parameter domain; and that the
interpolation points in TM, plotted in Figure 2-2(b), are largely allocated around the corner (0, 0)
of the physical domain Q.

Numerical Results

We now introduce a parameter test sample B~est of size QTest = 225, and define

EMmax - max Em(p),
IIE est

PM s S tM(JpW
Tes Te * (p)(1 +AM)
peTest

TMest Er/m (m);

pE Test

(2.37)

(2.38)

(2.39)
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here qM(p) is the effectivity defined in (2.35), and XM is the condition number of BM. We

present in Table 2.1 * PM, AM, NM, and XM as a function of M. We observe that 6*
converges rapidly with M; that the Lebesgue constant provides a reasonably sharp measure of the
interpolation-induced error; that the Lebesgue constant grows very slowly - Em(p) is only slightly
larger that the min-max result Ej*(p); that the error estimator effectivity is reasonably close to
unity; and that BM is quite well-conditioned for our choice of basis. (For the non-orthogonalized
basis m, 1 < m < M, the condition number of BM will grow exponentially with M.) These results
are expected since the given function G(x; y) is quite regular and smooth in the parameter p.

Table 2.1: NE 1: E6 ,, -M, AM, TiM, and XM as a function of M.

Using the L 2 (Q)-norm surrogate in our best approximation we can construct S% much less
expensively than using the L (Q)-norm. We present in Table 2.2 numerical results obtained from
this alternative construction of S' . The results are very similar to those in Table 2.1, which implies
that the approximation quality of our empirical interpolation approach is relatively insensitive to
the choice of norms exploited in constructing the sample.

Table 2.2: NE 1: 6f, , * M, AM, 7M, and XM as a function of M; here S9 is constructed using

the L 2 (Q)-norm as a surrogate for the L (Q)-norm.
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M EM,max PM AM iM Km
8 8.30 E-02 0.68 1.76 0.17 3.65
16 4.22E-03 0.67 2.63 0.10 6.08
24 2.68 E-04 0.49 4.42 0.28 9.19
32 5.64 E -05 0.48 5.15 0.20 12.86
40 3.66 E-06 0.54 4.98 0.60 18.37
48 6.08E-07 0.37 7.43 0.29 20.41

M EM,max PM AM TiM XM
8 1.18E-01 0.66 2.26 0.23 3.82

16 3.96 E-03 0.45 4.86 0.81 7.58
24 3.83 E-04 0.43 3.89 0.28 13.53
32 3.92 E -05 0.45 7.07 0.47 16.60
40 4.10E-06 0.43 6.40 0.25 18.84
48 6.59 E-07 0.30 8.86 0.18 21.88
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Chapter 3

Reduced-Basis Method for Elliptic
Problems

3.1 Introduction

In this chapter, we present a more detailed discussion of the reduced-basis output approximation
method for linear coercive elliptic problems. We focus particularly on the global approximation
spaces, a priori convergence theory, and the assumption of affine parameter dependence.

We begin by stating the most general problem (and all necessary hypotheses) to which the
techniqes we develop will apply.

3.2 Abstraction

3.2.1 "Exact" Problem Statement

We consider a suitably regular (smooth) domain Q c Rd, d = 1, 2, or 31 with Lipschitz-continuous
boundary 0Q, and associated (infinite-dimensional) Hilbert space ye satisfying Ho (Q) C ye C
(H1(Q))d. The inner product and norm associated with ye are given by (, .)ye and -ye (-, .)1,
respectively. The corresponding dual space of ye is denoted ye'. We also define a parameter set
D c IRP, a particular point in which will be denoted y.

Our "exact" problem may then be stated as: Given a parameter y c D C RP, we evaluate the
output of interest,

se - y (pV)); (3.1)

here the field variable, ye(,) E ye, satisfies the weak form of the p-parametrized linear elliptic
partial differential equation

a(ye (/_),V;/p) = f(V), V v EYe. (3.2)

The form a(-, y; ): Ye x ye -+ R is bilinear - i.e., linear in the first and second argument; and f
is a bounded linear functional.

'Note that Q is a reference domain and hence does not depend on the parameter.

45



3.2.2 "Truth" Finite Element Approximation

In actual practice, we replace ye with a "truth" finite element approximation space Y C ye of
finite (but large) dimension M - as discussed in the last chapter. Note that the inner product
and norm associated with Y, (., .)y and (-, .)12, respectively, are inherited from ye. Our
"truth" finite element approximation y([) E Y to ye(L) is then defined as the Galerkin projection
of ye(p) onto Y:

a(y(p),v;p) =f(v), Vv Y; (3.3)

our output approximation is then given by

S(A) = f(y(m)). (3.4)

We shall assume - hence the appellation "truth" - that the finite element discretization is suf-
ficiently rich such that y(p) and ye(pt) (and hence s(p) and se(p)) are indistinguishable. The
reduced-basis approximation shall be built upon our "truth" finite element approximation, and the
reduced-basis error will thus be evaluated with respect to y(pj) c Y and s(p). Clearly, our methods
must remain computationally efficient and stable as /-* oc.

We now make several assumptions on the well-posedness and the nature of the parametric
dependence of our problem.

3.2.3 Well-posedness

We first assume that the bilinear form a(-, -; p) is continuous,

a(p) asup , < o0, V u C D; (3.5)
veY y

coercive,

aa(/_t) .nf a (V -pA) ;> a0v > 0 V y E D; (3.6)

and symmetric, a(w, v; P) = a(v, w; M), Vw, v E Y, V p C D; and that the linear functionals f and f
are bounded. Note that the coercivity constant aa(p) and continuity constant -ya(p) are functions
of p.

3.2.4 Affine Parameter Dependence

We shall now make certain assumptions on the parametric dependence of our problem. In particular,
we shall suppose that, for some finite (preferably small) integer Qa, a(., -; p) may be expressed as

Qa

q=1

where the functions qi(p): D --+ R depend on p, but the bilinear forms aq(.,.): Y x Y -+ R are
independent of p. This assumption of affine parameter dependence is crucial for the computational
efficiency of our method. Finally, for simplicity of exposition, we assume that the linear forms f
and f do not depend on the parameter; however, (affine) parameter dependence is readily admitted
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(see for example [120]).2

3.3 Reduced-Basis Approximation

3.3.1 Critical Observation: Dimension Reduction

The reduced-basis method recognizes that the field variable y(p) is not an arbitrary member of

the K-dimensional solution space Y (K > 1) associated with the partial differential equation;

rather, it resides, or "evolves," on a much lower-dimensional and typically very smooth manifold

M {y(p)jp E D} induced by the parametric dependence [911. In the case of a single parameter

(P 1), for instance, y(p) describes a one-dimensional filament that winds through Y; this is

illustrated in Figure 3-1(a).

A {y()i E V} y(pnew) A4 = {y(p) I E D}
LOW DIMENSION 

pYULN)

yp)y(p2)

Y Y
HIGH DIMENSION

(a) (b)

Figure 3-1: (a) Low-dimensional solution manifold M induced by the parametric dependence; and

(b) dimension reduction obtained by restricting attention to M.

The finite element approximation space Y is thus much too general - Y includes many functions

that do not reside on the manifold of interest. Hence, to approximate y(p), we need not represent

every single function in Y, but rather only those which lie on M. This observation presents a

clear opportunity: we can effect significant (in many cases, Draconian) dimension reduction and

therefore considerable computational economies if we restrict attention to the parameter-induced

low-dimensional solution manifold. We may therefore pre-compute N "points" y(pn), n = 1, N

along M as shown in Figure 3-1(b), and approximate y(pnew) by taking an appropriate linear

combination of the sample points y(pn). We now make these ideas more precise.

3.3.2 Formulation

We first introduce a set of nested samples in parameter space,

SN = {1 E D, ... ,UNED}, 1<N<Nmax, (3.8)

such that S, c SN C SNmax- We then define the associated Lagrangian [85] reduced-basis approxi-

mation space as
WN=span{(n y(n),1 n N}, 1<N Nmax, (3.9)

2Note that the assumption of affine parameter dependence can be relaxed; see [15, 121] for extensions to problems

exhibiting non-affine parameter dependence or nonlinearities.
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where y(,t) E Y is the solution to (3.3) for p = /u. Note that, by construction, W1 C WN C

WNmax '

Our reduced-basis approximation YN(J) is then obtained by a standard Galerkin projection:
for any pu c D, YN(M) c WN satisfies

a(yN(), V; P) f (V), V V G WN; (3.10)

our output approximation is then

sN() (YN W))- (3.11)

Since M is low-dimensional and smooth, we thus anticipate that YN(u) -+ y(g) very rapidly, and
therefore we may choose N <. We now attempt to qualify our claim.

3.3.3 A Priori Convergence Theory

We consider here the rate at which YN(p) and SN() converge to y(p) and s(p), respectively.

Optimality

To begin, it is standard to demonstrate the optimality of YN(p) in the sense that

7a(#
y(b) - YN(A)a Y < a(/_) inf I1y(") - WN Y . (3.12)

aa(g) WNEWN

To prove (3.12), we first note from (3.3) and (3.10) that

a(y(p) - yN([)),V; P) =0, Vv EWN- (3.13)

It then follows that for any WN = UN + VN G WN (vN # 0),

a(y (p) - WN, y (P) - wN P) = a(y (/) - YN(A) - VN, y (P) - yN (A) - vN; A)

= a(y(P-) -yN (P),y(I-) -- yN ();#) - 2a fy(t) - yN (t), UN ) +a(VN, UN I #)

= a(y(p) - YN (A), Y (A) - YN (A); A) + a(vN, vN; A)

> a(y((P) - YN (A), y (A) - YN (P); A) (3-14)

from the symmetry of a, Galerkin orthogonality (3.13), and coercivity (3.6). Furthermore, from
(3.6), (3.14), and (3.7), we have

aa(A) IIY (A) - YN(A) 11 < a (y (p) -- yN(A), Y (P) - yN (A); A)

inf a(y(p) - wN, y() -wN P)
WNEWN

_ 7a(A) inf Iy (9) - wNIY. (3.15)
WNEWN

This concludes the proof.
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Furthermore, for the case of compliance, £ = f, we have

s(A) - SN () (y() ~ y(A))

a(y(p), y(p) - YN (A); it)
a(y(p) - yN (A), y (A) - yN W(;); )

< -Ya (A)IIY(P) - YN ( I'y

< 7 inf I||y(P) - WN 2 ' (-6
Cea(11) WNGWN

from (3.4), (3.11), (3.3), the symmetry of a, Galerkin orthogonality (3.13), (3.7), and (3.15). The
output approximation, sN(y), thus converges to s(p) as the square of the error in yN()-

We observed in Section 3.3.1 that the parametrically induced manifold M is typically low-
dimensional, and note that M is smooth under our hypotheses on stability and continuity - we
consider the detailed proof for the parabolic case in Section 4.3.2. We thus expect that the best
approximation will converge to y(p) very rapidly, and hence N may be chosen small.

3.3.4 Offline-Online Computational Procedure

The arguments of Sections 3.3.1 and 3.3.3 suggest that to obtain an accurate reduced-basis approxi-
mation YN ([), N need not be very large. We now develop off-line/on-line computational procedures
that exploit this dimension reduction and enable us to evaluate our approximations in real-time.

We first note that since YN(p) c WN, there exists a unique set of coefficients yN j(p), 1 < j < N,
such that

N

YN (A) x: YN j (A) (j (3.17)
j=1

We then choose as test functions in (3.10) v =j, i 1,... , N; it then follows from (3.10) that

N [yN 1iP), - - , YN N(I] T IRN satisfies

ANQ()YN(bt) FN (3.18)

where AN(M) z RNxN and FN E RN are given by ANj (p) = a((j, i;y), 1 < i, j < N, and
FN i = f((j), 1 < i < N, respectively; note that AN(A) is symmetric positive-definite.

Invoking the affine decomposition (3.7) we obtain

AN ijf (p 1()a (pr (pr);(-9
Qa

q=1

we may therefore write
Qa

AN (A) E Ze(IL) A q (3.20)AN~ N, (-0
q=1

where the parameter independent quantities matrices AN E CRNxN, are given by

AN iq a (,(), 1 < i, j < N, 1 < q < Qa. (3.21)
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Our output approximation can then be evaluated as

N

SN (P =EyN j (P) f (Gj)
j=1

N

= yNj(p) LNj, (3.22)
j=1

where

LNj ((j), 1 j N. (3.23)

We now observe that the A' and LN are independent of the parameter /; we may thus pursue an
offline-online computational strategy.

In the offline stage - performed once - we compute the (i, 1 < i < Nmax: this requires
Nmax expensive finite element solves; we then form and store LNj, 1 _ j < Nmax and A'i,
1 'i,j Nmax, 1 q < Q: this requires 2(QN axA/) operations and 0(QNax) storage.

In the on-line stage - performed many times, for each new value of y, we perform the summa-
tion (3.20) for AN(11): this requires O(QN 2 ) operations; we then solve (3.18) for the reduced-basis
coefficients yNj((p), j E N: this requires O(N 3 ) operations; and finally we evaluate the output
approximation from (3.22): this requires O(N) operations.

The essential point is that, as required in the many-query or real-time contexts, the online com-
plexity depends only on Q and N and is independent of A[, the dimension of the underlying "truth"
finite element approximation space. Since N < N, we expect - and often realize - significant

(orders-of-magnitude) computational economies relevant to classical discretization approaches.
Finally, we note that classical model-order reduction techniques, such as modal decomposi-

tion [36] and POD [7], require the evaluation of a new set of eigenmodes or basis functions - and
thus a return to the (very fine) "truth" approximation - for each new parameter value encoun-
tered. In contrast, reduced-basis methods need not invoke the "truth" approximation in the online
stage, and are therefore far more efficient in evaluating input-output relationships in the limit of
many queries.

3.4 A Posteriori Error Estimation

A posteriori error estimation procedures are very well developed for classical approximations of,
and solution procedures for, (say) partial differential equations [20, 81, 1] and algebraic systems
[33]. However, until quite recently, there has been essentially no way to rigorously, quantitatively,
sharply, and efficiently assess the accuracy of reduced-basis approximations.

As a result, for any given new M, the reduced-basis solution YN(P) typically raises many more
questions than it answers. Is there even a solution y(p) near yN(? Is s(p) - sN() < cto,
where ctOl is the maximum acceptable error? Is a crucial feasibility condition s([) S (say, in a
constrained optimization exercise) satisfied - not just for the reduced-basis approximation, sN (),
but also for the "true" output, s(fz)? If these questions can not be affirmatively answered, we may
propose the wrong - and unsafe or infeasible - action in the deployed context. A fourth question
is also important: Is N too large, |s(A) - sN()l < Et, with an associated steep (N 3 ) penalty
on computational efficiency? An overly conservative approximation may jeopardize the real-time
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response and associated action - with corresponding detriment to the deployed systems.
We may also consider the approximation properties and efficiency of the parameter samples and

associated reduced-basis approximation spaces, SN and WN, 1 < N < Nmax. Do we satisfy our
global "acceptable error level" condition, Is(u) - sN(A) I etol, V p C D, for (close to) the smallest
possible value of N? And a related question: For our given tolerance Eto, are the reduced-basis
stiffness matrices (or, in the nonlinear case, Newton Jacobians) as well-conditioned as possible -
given that by construction WN will be increasingly colinear with increasing N? If the answers are
not affirmative, then our reduced-basis approximations are more expensive (and unstable) than
necessary - and perhaps too expensive to provide real-time response.

In short, the pre-asymptotic and essentially ad hoc or empirical nature of reduced-basis dis-
cretizations, the strongly superlinear scaling (with N) of the reduced-basis online complexity, and
the particular needs of deployed real-time systems virtually demand rigorous a posteriori error
estimators. Absent such certification, we must either err on the side of computational pessimism
- and compromise real-time response - or err on the side of computational optimism - and risk
sub-optimal, infeasible, or potentially unsafe decisions.

In [60, 91], and [121, 122, 123], a family of rigorous error estimators for reduced-basis approx-
imation of a wide class of elliptic partial differential equations is introduced (see also [68] for an
alternative approach). As in almost all error estimation contexts, the enabling (trivial) observation
is that, whereas a 100% error in the field variable y(p) or output s(p) is clearly unacceptable, a
100% or even larger (conservative) error in the error is tolerable and not at all useless; we may
thus pursue "relaxations" of the equation governing the error and residual that would be bootless
for the original equation governing the field variable y(p).

We now present further details for the particular case of elliptic linear problems with exact affine
parameter dependence (3.7): the truth solution satisfies (3.3) and (3.4), and the corresponding
reduced-basis approximation satisfies (3.10) and (3.11).

3.4.1 Formulation

Error Bounds

To begin, we assume we are given a positive lower bound da(A) for the coercivity constant aa(A):

aa(A) ;> &a(A) > 0, V pED. (3.24)

We next introduce the dual norm of the residual

EN(A) =R(*;A) pY' = sup R(v; , (3.25)
Vy | V IY

where
R(v; p) f (v) - a(yN(A), v; A), Vv E Y, (3.26)

is the residual associated to YN(p). We also specify the inner product (w, v)y a(w, v; pref(s)) for
some reference value(s) Aref(s). We then define our "energy" error bound

AN (A)3.27)
a Wp
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the effectivity of which is given by

TIN (M) -(3.28)
l e(tt)lly

We may then state

Proposition 3. For the error bound AN(P) of (3.27), the effectivity satisfies [91, 123J

1 < /N (t) < a(/) V A D. (3.29)
&a(J)

for all 1 < N < Nmax.

Proof. Given our reduced-basis primal solution yN(p), it is readily derived that the error e(p)
y(A) - YN() c Y satisfies

a(e(p), v; p) = R(v; p), V v E Y. (3.30)

Furthermore, we note from standard duality arguments that

EN() = $([)fy, (3.31)

where 6(p) is given by

( (p), v)Ry = (v; p), V v E Y. (3.32)

We then note that

aa (p)|e (p)|2 < a (e (p), e (p); p

=(6 (W, e W))Y

< II (/) y e () y (3.33)

from (3.6), (3.32), and the Cauchy-Schwarz inequality; and

()[Y = a (e (p), (p); p)

<_ 7NO-)|(p-01y l e([)||y (3.34)

from (3.30), (3.32) and (3.5). The desired result directly follows from (3.33), (3.34), (3.28), (3.31),
and (3.24). E

From the left inequality of (3.29), we deduce that [e(A) ly AN(/-), V M e D, and hence that

AN(P) is a rigorous upper bound for the true error 3 measured in the 1 -|y norm - this provides
certification: feasibility and "safety" are guaranteed. From the right inequality, we deduce that
AN(P) overestimates the true error by at most '}a(M)/&a(M), 4 independent of N - this relates to
efficiency: an overly conservative error bound will be manifested in an unnecessarily large N and
unduly expensive RB approximation, or (even worse) an overly conservative or expensive decision
or action "in the field."

3 Note however that these error bounds are relative to our underlying "truth" approximation, y(p) E Y, not to
the exact solution, ye 4) E Ye

4 The upper bound on the effectivity can be large. In many cases, this effectivity bound is in fact quite pessimistic;
in many other cases, the effectivity (bound) may be improved by judicious choice of (multi-point) inner product (-, .)y
- in effect, a "bound conditioner" [124].
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We can now define a (simple) error bound for the output of interest in

Proposition 4. For AN(u) of (3.27),

8s(A) - sN() I < AN ), VAi E D , (3.35)

where

AN(p) jjY'AN(P) -(3.36)

Proof. We note that

s (p) - sN (P)e

f(e Jp))| jj||e(1 u)|y||e(p) |y

< sup jle(p)fly (3.37)

The result directly follows from the (3.4), (3.11), (2.1) and Proposition 3. 3

We note that this output bound - although very easy and efficient to evaluate - might not
provide very sharp bounds and is thus not very useful in actual practice; this will also become
evident from the numerical results. However, we can obtain a more rapid convergence of the
reduced-basis output approximation as well as a sharper bound by introducing a dual (or adjoint)
problem. We will discuss the adjoint formulation in detail in Chapter 4 in the parabolic case.

Offline-Online Procedure

The real challenge in a posteriori error estimation is not the presentation of these rather classical
results, but rather the development of efficient computational approaches for the evaluation of
the necessary constituents. In our particular deployed context, "efficient" translates to "online
complexity independent of K," and "necessary constituents" translates to "dual norm of the primal
residual, eN(p) R / YI, and lower bound for the coercivity constant, &a(y)." We now turn
to these issues.

The Dual Norm of the Residual

To begin, we note from duality (3.31), (3.32), our reduced-basis expansion (3.17), and our
assumption of affine parameter dependence (3.7), that (p) satisfies

Q N
(6d(A), V) = f(v) - E E E)(M) YNn(p) a n, V), V C Y. (3.38)

q=1 n=1

It then follows from linear superposition that we may write (p) c Y as

Q N
dp) =F+ L E E4(M) yNn(p) ,

q=1 n=1

53



where F E Y and A' E Y satisfy

(F, v)y = f (v), V v E Y, (3.39)
(A', v)y = -aq((n, v), VvEY, nEN, 1 q<Q, (3.40)

respectively; note that (3.39),(3.40) are simple parameter-independent (scalar or vector) Poisson,
or Poisson-like, problems. It thus follows that

)2N (, Nn()2(F, A )Y
q=1 n=1

Q N
+ E >I e'(p) YN n' () (An, A',)Y y (3.41)

q'=1 n'=1

The critical observation [60, 91] is that the expression (3.41) - which we relate to the requisite
dual norm of the residual through (3.31) - is the sum of products of parameter-dependent (simple,
known) functions and parameter-independent inner products. The offline-online decomposition is
now clear.

In the offline stage - performed once - we first solve (3.39), (3.40) for F and An, 1 < n < Nmax,
1 < q < Q; we then evaluate and save the relevant parameter-independent inner products (F, F)y,
(F, An)y, (An, An)Y, 1 < n, n' < Nmax, 1 q, q' < Q. Note that all quantities computed in the
offline stage are independent of the parameter p.

In the online stage - performed many times, for each new value of A "in the field" - we simply
evaluate the sum (3.41) in terms of the ®q((p), yNn(p) and the precalculated and stored (parameter-
independent) (-, -)y inner products. The operation count for the online stage is only O(Q 2 N 2 ) _
again, the essential point is that the online complexity is independent of .J, the dimension of the
underlying truth finite element approximation space. We further note that, unless Q is quite large,
the online cost associated with the calculation of the dual norm of the residual is commensurate
with the online cost associated with the calculation of sN(p)-

Lower Bound for the Coercivity Parameter

Obviously, from the definition (3.6), we may readily obtain by a variety of techniques effective
upper bounds for aa(g); however, lower bounds are much more difficult to construct. We do note
that in the case of symmetric coercive operators we can often determine &"(A) "by inspection." In
particular, we define our "minimum coefficient" coercivity lower bound [60, 124] in

Lemma 6. Assume that a(w,v; A) is given by (3.7) where q (p) > 0, Vp C D, and aq(v,v) > 0,
V GY,1 qKQ. Then, gvenfTeD,

&a(i) min (qqft ) {)aa 5 (TO aa(M), V p C D. (3.42)
qGf{1,...,Q} Eq(-g))
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Proof. We note that for any p E D,

aa(i) inf a(v, v; M)
VEY v |y

inf q=1e()a4(v,v)
vEY |vfly

( :Qjiin (A)) n

m. _="_ 8pa(v, v)

= n - =m e T q(,V

VEY 111y

q (fp) .~ ) q 8 (4V, V)
> min mnf q1E ja

-. E{.,...,Q} 0 9(fT) vCY vfly

= min E~ [)inf a (v, v; 7)

gE{1,...,Q} E8q(-) Vey Jj l y

(= in Q t aa( )
qE{ 1,...,Q} 8()7

&a~p). (3.43)

Finally, we note that the choice of the Y-norm and associated bound conditioner does affect
the quality of the error bound. The effectivity at a parameter value [ close to 77 in (3.42) will,
in general, be smaller than for a value [ farther away from 7 - in fact, for P = 77 the effectivity
is one. If the parameter domain D is large, multi-point bound conditioners can be introduced to
exploit this fact [124].

3.5 Construction of Samples: A "Greedy" Algorithm

Our error estimation procedures also allow us to pursue more rational constructions of our parame-
ter samples SN (and hence spaces WN) [123]. We denote the smallest error tolerance anticipated as

Etol, min - this must be determined a priori offline; we then permit cto, E [tol, min, o0 [ to be specified
online. We also introduce -F ( DnF, a very fine random sample over the parameter domain D of
size nF > 1.

We first consider the offline stage. We assume that we are given a sample SN, and hence space
WN and associated reduced-basis approximation (procedure to determine) YN (A), V A c D. We
then calculate

ANy = arg max AN (A);

here AN(A) is our "online" error bound (3.27) that, in the limit of nF -* oc queries, may be
evaluated (on average) in O(N 2 Q 2 ) operations; we next append p* to SN to form SN+1, and
hence WN+1. We now continue this process until N = Nmax such that E* Etol,min, where
6NAN(At*), 1 < N < Nmax.

In the online stage, given any desired ctol E [ctol, min, O [ and any new value of p E D "in the
field," we first choose N from a pre-tabulated array such that E*y (A AN(A*)) = Etol. We next
calculate YN(p) and AN(y), and then verify that - and if necessary, subsequently increase N such
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that - the condition AN (P) < Etol is indeed satisfied. (We should not and do not rely on the finite
sample BF for either rigor or sharpness.)

The crucial point is that AN(P) is an accurate and "online-inexpensive" - 0(1) effectivity and
K-independent asymptotic complexity - surrogate for the true (very-expensive-to-calculate) error
Ily( ) - YN(P) fly. This surrogate permits us to (i) offline - here we exploit low average cost -
perform a much more exhaustive (nF > 1) and hence meaningful search for the best samples SN
and hence most rapidly uniformly convergent spaces WN,5 and (ii) online - here we exploit low
marginal cost - determine the smallest N, and hence the most efficient approximation, for which
we rigorously achieve the desired accuracy.

5 We may in fact view our offline sampling process as a (greedy, parameter space, "L' (D)") variant of the POD
economization procedure [108] in which - thanks to AN (11) - we need never construct the "rejected" snapshots.
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Chapter 4

Linear Parabolic Equations

4.1 Introduction

In Chapter 3 we discussed the reduced-basis method and associated a posteriori error estimation
for linear coercive elliptic problems with affine parameter dependence. In this chapter, we will
extend these results to parabolic problems with affine parameter dependence [411. The essential new
ingredient is the presence of time in the formulation and solution of the problem - we shall "simply"
treat time as an additional, albeit special, parameter. In the first part of this chapter we focus
on symmetric problems: we introduce the reduced-basis method and associated a posteriori error
estimation, and we propose adjoint procedures that provide rigorous and sharp bound for the error
in specific outputs of interest. We then develop a new greedy adaptive procedure to "optimally"
construct the parameter-time sample set. Finally, we extend our results to non-symmetric problems,
such as the convection-diffusion equation. Based on the assumption of affine parameter dependence,
we develop offline-online computation procedures by construction rather similar to the elliptic case.
Problems with nonaffine parameter dependence are addressed in Chapter 5.

4.2 Abstract Formulation

We first recall the Hilbert spaces ye 1 H(Q) - or, more generally, Hj(O) C Ye c H1 (Q) and
Xe _ L2 (Q), where H1 (Q) {v v c L2 (), Vv E (L 2 (Q))d}, Hj(q) {v I v E H1 (Q),v aQ = 0},
and L 2 (Q) is the space of square integrable functions over Q [94]; here Q is a bounded domain in
Rd with Lipschitz continuous boundary 4Q. The inner product and norm associated with Ye (Xe)

are given by (-, .)ye ((-, -)xe) and | -lye = (-, -)j12  ( ) , respectively; for example,

(w,v)ye = fVw Vv + f w vV wv YE, and (w,v)xe f wv, Vw,vGXe.

4.2.1 Primal Problem

We may now introduce the "exact" (superscript e) - more precisely, semi-discrete - problem:

given a parameter p E D c RP, we evaluate the (here, single) output of interest

se (, tk) -- f(Ye (,tk)), Vk c K, (4.1)
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where the field variable, ye(j_, tk) E ye, V k E K, satisfies the weak form of the p-parametrized
parabolic PDE [14]

m(ye(p,tk),v;p) + At a(y(p t'),v;/t) - (ye(, t1),v; /t) + At b(v; u) u(tk),

V Ey e, V k c K, (4.2)

with initial condition (say) ye(,,, to) - yo(p) = 0. Here p and D are the input and input domain;
a(., .; p) and b(-; p) are ye-continuous bilinear and linear forms, respectively; m(., -; p) and f(.) are
Xe-continuous bilinear and linear forms, respectively; and u(tk) denotes the (here, single) control
input at time t = tk.

We next introduce a reference finite element approximation space Y C ye (C Xe) of very large
dimension A; we further define X = Xe. Note that Y and X shall inherit the inner product
and norm from ye and Xe, respectively. Our reference (or "truth") finite element approximation

y(p, tk) E Y to the semi-discrete problem (4.2) is then given by

m(y(Ptk),V;A) + At a (y( p tk), v; /t) = m(y(P, tk-1), v; P) + At b(v; M) u(tk),

V v e Y, V k c K, (4.3)

with initial condition y(/t, t0 ) - 0; we then evaluate the output s(/_, tk) c R from

s(P, tk) -(y(A tk)), Vk E K. (4.4)

We shall assume - hence the appellation "truth" - that the discretization is sufficiently rich such
that y(p, tk) and ye(/_, tk) and hence s(/t, tk) and se (/, tk) are indistinguishable. The reduced-basis
approximation shall be built upon our reference finite element approximation, and the reduced-
basis error will thus be evaluated with respect to y(p, tk) E Y. Clearly, our methods must remain
computationally efficient and stable as X -- oc.

We shall make the following assumptions. First, we assume that the bilinear forms a(., -; P)
and m(., .; p) are symmetric, a(v, w; p) = a(w, v; p), V w, v E Y, V p E D, and m(v, w; p) =

m(w, v; p), V w, V E X, V p E D. For the sake of well-posedness, we assume that a and m are
continuous,

a(w,v;fp) < -ya(M)J|wfyfl?<vy < -ya|Jw lyjjvjjy, Vw,v G Y, V c ED, (4.5)

m(w, v;ft) 7ym(p)lleWLXHVX - MLMIx|vIX, Vw,V E Y, VA ED; (4.6)

and coercive,

o < a"a - a inf a(V I /) V, pD, (4.7)
VEY 411'y y

0 < aom < am(p) - inf m(v v; P)
Vey I Vu GD. (4.8)

(We (plausibly) suppose that 7ay, -,0,, aO, and am may be chosen independent of K.) We also
require that the linear forms b(.; p) : Y -+ R and f(.) : Y -* R be bounded with respect to - y
and I - [jx, respectively. It thus follows that a solution to (4.3) exists and is unique [94].

Second, we shall assume that a, m, and b depend affinely on the parameter p and can be
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expressed as

Qa

a(w, v; /) = Ze(p) al(w,v), Vw,v E Y, VM ED, (4.9)
q=1

m(w, v; t) = E (A) M(w, v), Vw,v G Y, Vp E D, (4.10)
q=1

Qb
b(v; p) = 0 (y) bq(v), Vv E Y, Vp e D, (4.11)

q=1

for some (preferably) small integers Qa,m,b. Here, the functions a'm,b(p) : D -* R depend on y,
but the continuous forms aq, Mq, and bq do not depend on p. This affine parameter dependence
is crucial for the computational efficiency of the proposed method; however, in Chapter 5 and
Chapter 6 we extend the method to the nonaffine and nonlinear case, respectively (for a discussion
of nonaffine and nonlinear elliptic problems, see [15, 121]). For simplicity of exposition, we assume
that the linear form f does not depend on the parameter; however, (affine) parameter dependence
is readily admitted.

Third, and finally, we require that all linear and bilinear forms are independent of time - the
system is thus linear time-invariant (LTI). This is true for many physical problems governed by
parabolic PDEs, with the most notable exception of deforming domains. We point out that an
important application which often satisfies all of our assumptions is the classical heat equation [94];
we shall provide a detailed example in Section 4.2.4

We note that the method presented here easily extends to nonzero initial conditions with affine
parameter dependence and to multiple control inputs and outputs. We will comment on the exten-
sion to nonzero initial conditions in Section 4.5.2. The extension to nonsymmetric problems such
as the convection-diffusion equation is discussed in Section 4.8.

4.2.2 Dual Problem

To ensure rapid convergence of the reduced-basis output approximation we introduce a dual (or
adjoint) problem which shall evolve backward in time [20]. Invoking the LTI property we can
express the adjoint for the output at time tL, 1 < L < K, as OL(p, tk) = T(,ttK-L+k), 1 < k < L,
where TI(p, tk) c Y satisfies

M(V, F(, tkA t a(v, (Y tk m (v, 4F pt k+1);p), Vv E Y, Vk c K, (4.12)

with final condition

m(V, Q(P, tK+); (v), Vv C Y. (4.13)

Thus, to obtain VL(P, tk), 1 < k < L, V L E K, we solve once for lII(p, tk), V k E K, and then
appropriately shift the result - we do not need to solve K separate dual problems. A sketch of the
shifting property is presented in Figure 4-1. The primal problem, y(p, tk), shown on top evolves
forward in time from to to tK, whereas the dual problems, PL(, tk), V L c K, evolve backward in
time from tL to t 1 . On the bottom of the sketch we show 'ip(ti, tk) evolving backward from tK to
t1 . The blue and green brackets signify how 'p([t, tk) is related to the L(P, tk), V L E K, through
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an appropriate shift in time.
We note that the issue of "rough" final conditions - output functionals - is implicitly ad-

dressed in our temporal discretization and truth approximation. However, we stress that the output
functional, f, has to be bounded in X, otherwise IJ(p, tK+1) in (4.13) is not bounded as g --+ cc.

We also note that, given a specific input u(tk), V k c K, our results directly carry over to the
linear time-varying (LTV) case; we can no longer, however, invoke the shift property of the dual
problem - which renders the calculation of our output bound more cumbersome.

------------------ ------------------
ky Ut,t

1P ,tk)

I(ttk)

I I I I I I I

p 1 ;2 ;3t -2 t tK0-

Figure 4-1: Shifting property of the dual problem.

4.2.3 Impulse Response

The reduced-basis subspace shall be developed as the span of solutions y(pt, tk) of our "truth"
approximation (4.3) at selected points in parameter-time space. In many cases, however, the input
u(tk) will not be known in advance and thus we cannot solve for y(p, tk) - one such example is
the optimal control problem described in the Introduction. In such situations, fortunately, we may
appeal to the LTI hypothesis to justify an impulse approach, as we now describe.

We first note that the solution of any LTI system can be written as the convolution of the impulse
response with the control input (Duhamel's Principle): for any control input u(tk), V k C K, we
can obtain y(p, tk), V k E K, from

k

y(p,tk) - Jg(utk-j+1)u(tj), Vk c K, (4.14)
j=1

where the impulse response, g(/, tk), is the solution of (4.3) for a unit impulse control input u(tk) -

61k, V k c K. Equation (4.14) simply states that y([t, tk) is a linear combination of the impulse
response g(p, ti), 1 < j < k; it is thus sufficient that the reduced-basis subspace approximates
well the (parameter-dependent) impulse response. It still remains to select which basis functions
to retain, i.e., to determine the "best" sampling points in parameter-time space for the basis; we
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will address this issue in Section 4.5

4.2.4 Numerical Exercise 2: Design of a Heat Shield

We now turn to a particular numerical example related to transient heat conduction. We consider

the design of a heat shield, one segment of which is shown in Figure 4-2. The domain Q, a typical

point of which is (X1 , X2 ), is thus given by Q ={[0, 10] x [0, 4]1}\{(]1, 3[ x ]1, 3[) U (]4,6[ x ]1, 3[) U

(]7, 9[ x ]1, 3[)}. The left boundary, aQout (xi = 0), is exposed to a hot temperature (here nor-

malized to unity) for t c]O, tf]; the right boundary as well as the top and bottom boundaries

are insulated. The internal boundaries 8Qi, - corresponding to the surfaces of the three square

cooling channels ]i, 3[ x ]1, 3[, ]4, 6[ x ]1, 3[, and ]7, 9[x]1, 3[ - are exposed to a (normalized) zero-

temperature air flow. The (non-dimensionalized) heat transfer coefficients for the non-insulated

boundaries aQ0 ut and aQi' are given by the Biot numbers Biout and Bij, respectively. Our input

parameter is hence p - (I( 1), P(2)) = (Biout,Biin) E D = [0.01,0.5] x [0.001, 0.1] C IR= 2 . Our

output is the average temperature of the structure, which serves as a surrogate for the maximum

possible temperature of the (to-be-protected) right boundary for t E [0, 00[.

(10,(4)

a~out

Figure 4-2: NE 2: One segment of the heat shield.

The underlying partial differential equation is the heat (diffusion) equation. The (appropriately

non-dimensionalized) governing equation for the temperature y(p, tk) E Y is thus (4.3), where

y c ye = H1 (Q) is a linear finite element truth approximation subspace of dimension (exploiting

symmetry) AF 1396 shown in Figure 4-3. The bilinear and linear forms are given by m(w, v; p) -

fo w v, a(w, v; p) fa Vw Vv + p(1) fa 0Q W V + A(2) fans w v, and b(v; [L) =_ (j) faq9 v; these

forms admit obvious affine representations (4.9)-(4.11) with Qm = 1, Qa = 3, and Qb = 1. The

output can be written in the form (4.4), s(pttk) -- £(y(itk)), V k c K, where e(v) = IQ-1 fQ v
is clearly a very smooth functional. We shall consider the time interval I = [0, 20] and a timestep

At = 0.2; we thus have K = 100.

Figure 4-3: NE 2: Finite element truth approximation mesh.
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In Figures 4-4 and 4-5 we show the temperature variation over the heat shield at different points
in time and for different parameter combinations. We first note that for larger values of A(,) the
temperature is, overall, much higher than for smaller values of p(i). Also, for larger values of A(2)more heat is removed through the first cooling channel; for smaller values of A(2), however, the heat
penetrates deeper into the structure and the temperature tends to be higher and more uniform over
the heat shield.

p = 0.5, (2) = 0.001, t = t 
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Figure 4-4: NE 2: Temperature in the heat shield at t =t1 = 2 and t -t00 = 20 over the domain
Q for (a) M = (0.5, 0.001) and (b) M = (0.5, 0.1).

4.3 Reduced-Basis Approximation

4.3.1 Formulation

We first introduce the nested sample sets Spr { E , E} 1<Npr Npr,max, andQdu fidu dNpr = pr EJ11<Nr! p~a n

SC {. d.... E E)}, 1 Ndu Ndu,max, where A = (t, tk) and D - D x R; note that
the samples must reside in the parameter-time space, b. Here, Npr and Ndu are the dimensions
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Figure 4-5: NE 2: Temperature in the heat shield at t = t10 = 2 and t = 0 0 = 20 over the domain

Q for (a) y = (0.01, 0.001) and (b) p = (0.01, 0.1).
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of the reduced basis space for the primal and dual variables, respectively; in general, S # Sj"Npr -Ndu

and in fact Npr 7 Nd,. We then define the associated nested Lagrangian [85] reduced-basis spaces

WKr = span{r _ Pr) 1 < n < Npr}, 1 < Npr Npr,max, (4.15)

and

Nu=span{du _ dU), 1 < < Ndu}, 1 < Ndu Ndu,max, (4.16)

where y(r) is the solution of (4.3) at time t = tk for n = ~ and (") is the solution of (4.12)

at time t =tkn for p =nu

Our reduced-basis approximation yN(p, tk) to y(ii, tk) is then obtained by a standard Galerkin

projection: given p E D, YN(/_, tk) C Wp, V k e K, satisfies

m(yN(P, tk), v; P) + At a(yN (A, tk),V;, M (YN(Atkl),V; A) + At b(v; ) U(tk),

NprEWK (4.17)

with initial condition yN(, t0) = 0. Similarly, we obtain the dual reduced-basis approximation

XF N 01, k)
EWdu to 1p(p, tk) as the solution of

m(v, IN(M,tk); A) + At a(v, TN (P, tk); ) = M(V, TN 0, ,k+1);j), Vv Wd", V k EK, (4.18)

with final condition

m(v, N (A, tK+l); A) (, 4 v W u (4.19)

Finally, we evaluate the output estimate, sN(/_, tk), from

k

SN(P,tk) (YN(Ptk)) +y , Rp r(N (, tK-k+k);.,tk) At, Vk c K (4.20)
k'=1

where

Rpr(v; P,tk) = b(v;p) u(tk) - a(yN(P,tk), V;_t)_

1 m(yN (, tk) - yN (A, tk-1), v; ), V V C Y, V k EK, (4.21)

is the primal residual. Note that here N = (Npr, Ndu).

The critical observation is that the field variable y(p, tk), Vk E K, is not, in fact, some arbitrary

member of the very high dimensional finite element space Y; rather, it resides, or "evolves," on

a much lower dimensional manifold - in effect, a P + 1 dimensional manifold - induced by the

parametric and temporal dependence. Thus, by restricting our attention to this manifold, we can

adequately approximate the field variable by a space of dimension Npr, Ndu < K. In the next

section we will show that the field variable is indeed smooth in A which may be deduced from

the equation for the sensitivity derivatives - the stability and continuity properties of the partial

differential operator are crucial. Note, however, that the proposed method does not require great

regularity of the field variable in x; hence non-smooth domains (sharp corners) pose no impediment
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to rapid convergence. This observation is fundamental to our approach, and is the basis of our
approximation; we confirm the rapid convergence in Section 4.6.

4.3.2 A Priori Convergence Theory

We consider here the rate at which yN(,u, tk) converges to y(p, tk). The results for the dual variable
are very similar and therefore omitted.

Proposition 5. Assume that the "truth" solution y(t, tk) and the corresponding reduced-basis
solution yN(/u, tk) satisfy (4.3) and (4.17), respectively. The error, epr ( k, tk) = yQ(,tk)-yN(Atk),
is bounded by

k

acm(jp) |ePr(A,tk) I + aa ( At tE |epr(, tkt 2II

k'=1

<WN(~_4N {m(/t yjt)-w(tk) I3(I _Ya (t,) At IIy (ILtk) -w(tk) I I}< _1N lyttk N k W as ypt N Y

Sk-1

c Ia}p) At |Iy(pt,tk') - wN(tk')

- k'=1lWN WN

Before presenting the proof, we note that in the case of a non-zero initial condition, yUp, t0 ) $
0, the additional term -y.n(9) 1y([, t0) - YN(p,t1 2 - representing the error due to the initial
condition - will usually appear on the right hand side of (4.22). However, if y(p, t0 ) E Wpr , the
initial condition error, y(, t0 ) - yN(A, t0 ), is identically zero for all D E P even for y(p, to) = 0,
and (4.22) remains unchanged.

Proof. From (4.3) and (4.17) it directly follows that the error, epr(, t)k) - yNtk yN(P, tk),
satisfies

m(epr(p, tk),v; p) + At a(ePr(-,tk),V; ) - m(epr(ttk-l),v;t), Vv E Wpr, (4.23)

with initial condition ePr(A,to) = y(P,t 0 ) - yN(A,t 0 ) = 0, since y(p,t 0 ) = yN(p,t 0) 0 by
assumption. Let wN(tk) E Wpr be the projection of y(p, tk) with respect to the "m" scalarNpr

product and choose v - N(tk) _ y(,k pr ,tk) - (y(,tk) N(tk)) in (4.23). We then
obtain

m(ePr(1,, tk) - epr(, tk-1), epr tk); t) + At a(epr(,tk),epr (/,tk);j t)
= m(epr (,,, tk) - e pr(,, tk-1), y(Y, tk) - wN(tk); A) + At a(epr(,, tk), y(A, tk) - wN(tk); ,L)

or again

m(epr (,, tk),epr(,t;I) - m(e pr(,k _tk-1),e pr( t-);/)

+m(epr(A,, tk) - epr (,, tk1), e pr(, tk) _ eprC, tkl); - 1) + 2 At a(epr(At, tk), epr(, tk); IL)

= 2 m(y((A, tk) - N k(t) _ (y_, tk-1) - wN(tk-1)), yC, tk) - wN(tk); t)
+2 At a(epr(Attk),yCUtk) - wN(t); A), (4.24)

65



since m(z, y(p, t) -- wN(tk)) = 0, Vz C Wpr . We next note that
Npr

2 m(y(pu, tk) -- WN(tk) ( ([L' tk-1) - wN (tk-1)), y(, tk) - wN(tk); ~)
m(y(pi, tk) WN(tk), y(P tk) - wN (tk); p)
-m(y(u, tk-) - wN (tk-1), y( tk-1) - wN (tk-1); )
+m(y(pu,tk) - WN(tk) -Y y/"tk-1) - wN(tk-1)),

y(ptk) - wN (tk) - (Y(it - WN(tk-1));/)

< m(y(p, tk) - wN(tk), tk) - wN (tk);P)

-m(y(,, tk-1) -- wN(k-1), y( tk-1) - wN(tk-1);P)

+m(ePr(g, tk) - ePr ), Pr t) - er tk); _), (4.25)

where the last inequality follows since the projection gives the minimum distance, and

2 At a(ePr(ptk), ytk) _ wN(tk);[/)

At a(epr(,,tk) e? r (,tk);bz)

+At a(y(p,itk) - wN(tk), y([,tk) - wN(tk); P) - At a(v,v; p)

< At a(epr(,p, tk), pr (p, tk); t) -+At a(y(p, tk) -wN(tk), tk) - wN(tk); /t), (4.26)

where we used the symmetry and coercivity of a. From (4.24), (4.25), and (4.26) it thus follows
that

m(epr(t, tk), epr(,, tk); M) - m(epr( tl), epr(, tk-1); A) + At a(epr (, tk), epr( ,tk); )

-m(y(p, tk)) N(tk) -y(utkl) - wN(tk 1 ); /t)

+At a(y(P,tk) - wN(tk), y(g, tk) - wN(tk); M). (4.27)

The desired results directly follows by summing from 1 to k and invoking the coercivity and conti-
nuity of the bilinear forms a and m. El

Proposition 5 states that yN(y, tk) is the best approximation among all members of Wpr inNpr

the sense of (4.22). However, only if the field variable y(pt, tk) is indeed smooth in tt can we expect
a rapid convergence of our reduced-basis approximation. We want to obtain an approximation of
sufficient accuracy for only modest Npr - this is crucial for our method since a small value of Npr
is vital for the computational efficiency.

We will deduce the smoothness of y(p, tk) from the equation for the sensitivity derivatives. As
a preliminary result, however, we have to prove that y(tt, tk) is bounded: choosing v = y (, tk)
in (4.3) we have

m(y(Ptk), y(utk;M) + At a(yp, tk),y(Atttk);bt)
= m(y(, tk-l), (Mtk); ) + At b(y(L, tk); A) u(tk), V k E K, (4.28)

where y(p, t0 ) = 0 by assumption. We now invoke the Cauchy-Schwarz inequality for the cross

66



term m(y(p, tk-), y( t'); y) to obtain

m(y(Putk),y( tk);,) + At a(y , tk), y(, tk); A)

<+ yb((p, k M tL' tk-1) tk--1)A

+ At \\b(-; M)(v \l U(tky i g ~ tk)\\Y, V k c K. (4.29)

We now recall the identity (for c c R, d c R, p c R+)

2 |c |dl < c2 +p2 d2,
p

(4.30)

which we apply twice: first, choosing c = m2 (y(pt, tk), y(jt, tk); MI), d mi (y(p, tk-l), t)k-; p),
and p 1, we obtain

2 mi(y(putk), ( ,[tk);, mP ( y(. tk-1) yYk1--

< m(y(pu, tk-l), y(i tk-1); At) + mT(yU, tk), y(/t, tk); /_t);

and second, choosing c = b(.; y) y u(tk) , d -- Jy tt)fy, and p aa(p)i we have

2 |jb(-; p)||y, |u(tk) hy(u, tk)jjy < I 2lb(.;/t)1, U(tk)12 + aa(P) jy( tk) 112
a- Wa(p)

(4.31)

(4.32)

Combining (4.29), (4.31), and (4.32), and invoking (4.7), we obtain

m(y(p, tk), y(I, tk); A) _ m(/, tk-1), Y(, tk-1); /)
zAt

+ At a(y itk),y(p, tk); A) < A Ib(-; P)l12, \u(tk)i2
ca(p)

We now perform the sum from k' = 1 to k and recall that y(pi, t0 ) = 0, leading to

jy(p tk) pr2 b(-; U)\|2 IU(tk12,
aa (A) k'= 1

Vk c K,

where the spatio-temporal energy norm, - pr, is defined as

k

IIIv(ptk)Ipr ( (V(Atk),V(Atk); P) + E a(v(/t,tk'),V(L M tk')
k'=l

V k c K, (4.33)

(4.34)

2

; I) A t Vv E Y. (4.35)

Thus, since |jb(-; t)Jy, is bounded by assumption, y(I, tk) is bounded in the energy norm as long
as the control input u(tk) remains bounded.

We now turn to the sensitivity derivatives. To begin, we take the derivative of (4.3) with respect
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to the parameter M twice. We first obtain

m(y,(/ptk ),v; pu) + At a(y.(p,tk),v;M) m (y/ (p t ),v; p) + At b,(v; p) u(tk)

- [m (y(p, tk) y(,tkl );V;g ) - At a,,(y(.itk), v; P)], V v C Y (4.36)

with initial condition y,(p, to) = 0, and taking the second derivative results in

m(y(, tk), v; /t) + At a(y/,(p, tk),V;t) M (y(A t-1), v; A) + At b,,(v; p) u(tk)

- 2 MM(yi,(A, tk) _ 1 Ak- 1); V; A) + At a,, (y,(p, tk), V; p) I

- {mp (y(A, tk) - y (tk1), v; p) + al,(y(p, tk), v; /)}, V v c Y (4.37)

with initial condition y((p, t0 ) = 0. From the assumption of affine parameter dependence (4.9) it
follows that

&e1(p)
t a (w,v),

2 a (w,v),

V G, Y, Vp E D,

V G Y, VP C D.

A similar result follows for the bilinear form m and the linear form b from (4.10) and (4.11),
respectively. We shall also make the assumption that the bilinear forms a4(-, -), q = 1,. .. , Qa and
m-(.,.), q = 1, .. , Qm are continuous, i.e.,

a'(w,v) < _Y(P)IwMyflvly < 7y0jly lV~ly,
m (w, v) < _ (p/ )wx||v||x <_ xx,

VW,vGY, Vp CD, q=1,...,Qa

We first prove the boundedness of y/,(p, tk): choosing v = y,(t, tk) in (4.36) we obtain

m(yo(/p, t),yt (A, tk); t) + At a(y, (p, tk), y(A, tk); [)

-m(y (Aytk-),I(Atk);A) + At bt(y(ptk'); t) u (t)

-{m(Y (/t, tk) _- y(/t'tk- ),y, (/_t, tk); A) +-At a,I(y(tt, tk), y/,(/_t, tk); A)}

(4.40)

(4.42)

We now invoke the Cauchy-Schwarz inequality for the cross-term m(y,(ft, tkl), Yt([j' tk); p) which
results in

2 m(y,(p, tk- ), ,(ttk); P) < 2 m1/2(y,(A,,tkl-I)',, (,tk-);A) ml/ 2(yA(Attk)y, (At'tk);A)

* m(y1(, tk-1)y,-(Atk-);A) + m(y[L(A't),y, (Attk);AP); (4.43)

where the second step follows (4.30) with p = 1, c = ml/ 2(y (Atk-l),y (Atk-1);p), and d =
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a,(, (Wv; It)

q=1
a1

q=1

(4.38)

(4.39)

V mo EY, V y ED, q =1, .. . ,Qm -(4-41)



mI/ 2 (yt(/,_tk), y" (Itk); p). From (4.42) and (4.43) we then obtain

m(yy (/_,tk), Y/(,utk); P) - M(y(, tk ),y, 1 Qptk-1);,) + 2At a (y,Q, tk), yL(Atk); A)

< 2 At by(yi(,tk); A) z(tk) + 2m, (y(tttk) (ptk- 1), y[I( tk);A)

+ 2 At a,(y (p,tk ),y Y .t);,)

From the continuity (4.40) of aq and (4.38) it follows that

a.(y(A, tk), y[Lw, tk); _)
Qa

q=1

a (y(1u,tk), y (Atk))

< E O~a ya (pj) |jy(p, tkhjY IIYAtk)||y;
q= 1 0

similarly, from the continuity (4.41) of Mq and the affine decomposition (4.10) we obtain

m/I(y(pu,tk) - Y( tk-1) y t
Q=

q=1

q= 1

499M (L m q(Y(ptk) - Yt tk-1) y ( tk)

qyg (Pt)

x jy([t, tk) _ y(p,, tkl1) I- j A tk) IIx; (4.46)

We now apply (4.30) thrice: first, with p = Cb, c = 1b i(.;p)f|yjU(tk)|, and d = |jy1(ptkjr
second, with p = Ca, c = J2 1 Qay(9E )y( ) fly(_, tk)fly, and d = fjy/(p, tk)fly; and third, with

p =emy zqt, c = J ( |ly(A, t) -- y th-~l)Hx, and d = |lyA(p, tk)||x. We thus
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obtain from (4.44)-(4.46) after summing from k' = 1 that

k

M (yp(pt), y (A 7tk); A) + 2 At 1: a (yA(pa,tk'), yA 0/titk'); [L)
k'=1

Atk k

< t b t) II | , u(tk') 2 + t 2

k'=1 k'=1

k'=1 q

2

_Nq (A)

+Fm At y(k At kAt YA([' k' 2+ _ S:
k'=l a k'11

k

2 At k'= y, t) 2

k'=1

From the Poincar-Friedrich's inequality, lIVhIX < CPFLVdY, choosing Eb,
b + CPFea - m aa(i), Ea,b,m > 0, and invoking (4.5), we finally obtain

Ea, and cm such that

|IyA(p, tk) pr 2 -- m(y(pt k),yA(/,tk); p) + S a(y,(p, t),yA (, t);A)
k'=1

At k k'M2 At 2
<~ - b; /_t)112r, Iu(tk'~ + E _ ( a q ) Ily(L, t) 1

bk'=l a k'=1 q=1

k (Q)
Em k'=1 q=1

1(y( ,t ) - y tk'-l))12.

It thus follows that the derivative of y(p, tk) with respect to the parameter p is bounded. A similar

result can be derived for the second derivative, y, (p, tk), by starting from (4.37) with v = y,(t, tk)
and following the same steps as above - the field variable y(p, tk) is indeed smooth in M and we

can expect a rapid convergence of our reduced-basis approximation.

4.3.3 Offline-Online Computational Procedure

In this section we develop offline-online computational procedures in order to fully exploit the

dimension reduction of the problem [9, 48, 60, 91]. We first express YN(p, tk) and 'N(P, tk) as

Npr

yN ([, tk) =
n=1
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(4.49)

Qa 9Eq )
2

(4.47)

(4.48)

,YA tk)'I2

yNn (P, t k) pr,



and
Ndu

TN (A, ttk) E T Nn (A, tk) (du, (4.50)
n=1

respectively. We then choose as test functions v = (nPr < n < Npr, for the primal problem (4.17)
and v = (, 1 < n < Ndu, for the dual problem (4.18). (We prefer Galerkin over Petrov-Galerkin
for purposes of stability.)

It then follows from (4.17) that yN (/tk) = YN1(p, tk) - - - YNNpr ',) k]T C JNpr

satisfies

(M r(p) + At Ar (,)) YN(A, tk) = MPr(A) tN k-1) + At B pr (A) u(tk), V k E K, (4.51)

with initial condition yNn(p, t0 ) = 0, 1 < n < Npr. Here, MNgj(p) E IRNprxNpr and Ap(/u) ERNprxNpr are SPD matrices with entries Mgp (pi) = m((pr, Cjr; u), 1 < i, j < Npr, and A p) =
a(ir, (pr; ,), 1 < i, j Npr, respectively; and Bp(,) E RNpr is the control vector with entries

Bi() = b( ;), 1 < i < Npr.

Invoking the affine decomposition (4.9)-(4.11) we obtain

QMn

MNgi' (M = ((ipr, (pr; E)) = 8(P) m,(Cipr, Cpr), (.2

q=1

Qa

A p a(fr' jr; E)= ) 4((ir, pr), (4.53)
q=1

Qb

B p b q((ipr; E=[ q (p) b q(Cir), (4.54)
q=1

which can be written as

Qrn Qa Qb

S(p) = 8(p) Mg, A1(9) = ,(p) Ag , Bg(p) = 5g(p) By ', (4.55)
q=1 q=1 q=1

where the parameter independent quantities Mp7 E RNprXNpr, N e RNprxNpr, and B p q cRNpr
are given by

N. me((Pr r) 1 i,j - Npr,max, 1 < q:5 Qm,
A =r aq(pr, (r), 1 < i,j Npr,max, 1 < q:5 Qa, (4.56)

B = b(<r), 1 - i - Npr,max, 1 < q 5 Qb,

respectively.

A similar computational procedure for the dual problem (4.18)-(4.19) and the residual correction
term in (4.20) can also be developed. The details of this derivation and the definitions of the
necessary quantities are summarized in Appendix A.

The offline-online decomposition is now clear. In the offline stage - performed only once - we
first solve for the (pr, 1 < n < Npr,max and (d", 1 < n < Ndumax; we then compute and store the
p-independent quantities in (4.56) for the primal problem, (A.3) for the dual problem, and (A.6)
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for the output estimate. The computational cost is therefore O(K(Npr,max + Ndu,max)) solutions of
the underlying K-dimensional "truth" finite element approximation and O((N2rmax + N2umax +
Npr,maxNdu,max)(Qa + Qm)) K-inner products; the storage requirements are also O((N2rmax +
Numax + Npr,maxNdu,max)(Qa + Qrm)).

In the online stage - performed many times, for each new parameter value y - we first assemble

the reduced-basis matrices (4.55), (A.2), and (A.5); this requires O((N2r+N2u+NprNdu)(Qa+Qm))
operations. We then solve the primal and dual problem for yN(p, tk) and QN(L, tk), respectively;
since the reduced-basis matrices are in general full, the operation count (based on LU factorization

and our LTI assumption) is O(Npr + Ndu + K(Npr + N~u)). Finally, given yN tk) and IQN(/, tk)

we evaluate the output estimate sN(p,tk) from (A.4) at a cost of O(2kNprNdu); note that the

calculation of all outputs SN(p, tk), V k E K, requires O(K(K + 1)NprNdu) operations.

Thus, as required in the many-query or real-time contexts, the online complexity is independent

of K, the dimension of the underlying "truth" finite element approximation space. Since Npr, Ndu <

K we expect significant computational savings in the online stage relative to classical discretization

and solution approaches.

Finally, we note that classical model-order reduction techniques, such as modal decomposi-

tion [36] and POD [7], require the evaluation of a new set of eigenmodes or basis functions - and

thus a return to the (very fine) "truth" approximation - for each new parameter value encoun-

tered. In contrast, reduced-basis methods do not need to return to the "truth" approximation in

the online stage, and are therefore far more efficient in evaluating input-output relationships for

many different parameter values.

4.4 A Posteriori Error Estimation

From Section 4.3 we know that we can efficiently obtain the output estimate, SN(A, tk), for the

output of interest, s(p, tk): the online complexity depends only on Npr and Ndu, the dimensions

of the reduced-basis spaces for the primal and dual variable, respectively. However, we do not yet

know if sN(A, tk) is indeed a good approximation to S(p,tk), i.e., is js(p,tk) - SN(,tk) tol
where e' is a maximum acceptable error? Or conversely, is our approximation "too good," i.e.,
is Is(/, tk) - SN(/, tk)I < c'0- that is, is Npr or Nd1 too large, with associated detriment to the

online efficiency? It should also be evident that the approximation properties do not only depend

on the size of Npr and Ndu, but also on the choice of the sampling sets Sp and Sdu and associated

reduced-basis spaces WKp and Wu.
Npr Nd

We thus need to develop rigorous a posteriori error estimators which will help us to (i) assess

the error introduced by our reduced-basis approximation (relative to the "truth" finite element

approximation); and (ii) devise an "optimal" and efficient procedure for selecting the sample sets

SQ and Sdu/. Surprisingly, a posteriori error estimation for reduced-basis approximations has
kNpr du

received very little attention in the past. A family of rigorous error estimators for reduced-basis

approximations of a wide class of elliptic PDEs is introduced in [60, 91, 121, 122, 123]; we will now
extend these ideas to time-dependent (parabolic) partial differential equations. Our approach here

is a simplification and generalization of earlier efforts in this direction [102].

We remark that the development of the error bounds presented below is not limited to the

reduced-basis approximation described in this paper: with suitable hypotheses, we may consider

"any" stable ODE or PDE system and associated reduced-order model.
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4.4.1 Preliminaries

To begin, we assume that we are given positive lower bounds for the coercivity constants, aa(i)
and oam(p): &a([) : D - R+ satisfies

aa(A) > &a(A) > &0 > 0, V E D, (4.57)

and &m() : D --+ R+ satisfies

am~t) &m(i) > & > 0, V p ED; (4.58)

various recipes for this construction can be found in [91, 124]. We next introduce the dual norm of
the primal residual

Npr (,,tk) sup Rpr(v; t, tk) VkEK, (4.59)vyy V,Y
and the dual norm of the dual residual

E du k) sup Rdu(V; , V K (4.60)

where

Rdu (V;,tk) = -a(v, JN(p, tk); P) m(v, QN (A, tk)- lN(, tk+1); /), Vv E Y, Vk E K, (4.61)

is the dual residual. We also specify the inner products

(v,w)y _a(v,w;pref(s)), Vv,w E Y, (4.62)

and

(V, W)X m(v, w; gref(s)), Vv,w E Y, (4.63)

for some constant reference value(s) pref(s), and recall that -y ( , 2)7, X= (, .)1,2

We now present and prove the bounding properties for the errors in the primal variable, the
dual variable, and the output estimate. Throughout this section we assume that the "truth"
solutions y(p, tk) and p([, tk) satisfy (4.3) and (4.12), respectively, and the corresponding reduced-
basis approximations yN(p, tk) and TN(A, tk) satisfy (4.17) and (4.18), respectively. We emphasize
that our error bounds are very classical, based entirely on standard stability results invoked in a
priori analyses [94]; the critical new ingredient - tailored to the reduced-basis context - is the
offline-online computational procedure of Section 4.4.4

4.4.2 Error Bound Formulation

Primal Variable

We obtain the following result for the error in the primal variable.

Proposition 6. Let e pr(,, tk) -y-( tk) - YNC(Y, tk ) be the error in the primal variable and define
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the "spatio-temporal" energy norm

k

tV( ItkIPr ( m(v(ptk),v (itk);P)- + a(vp, tk'),v(p,tk'); t) At
k'=1

1

, Vv G Y. (4.64)

The error in the primal variable is then bounded by

ePr(p, tk)pr < Npr( k), V c D, Vk c K,

where the error bound Apr ,tk) is defined as

Apr(k At
2

8pr , k)
k

k'= 1

and pr tk) is the dual norm of the primal residual defined in (4.59).

Proof. We immediately derive from (4.3) and (4.21) that epr(p, tk) - y(/, tk) - yN(0, tk) satisfies

m(ePr (,, tk), v; A) + At a(epr (,tk), v; /) = m(ePrtk-1), v; t) + At Rpr (v;, tk),

Vv e Y, Vk e K, (4.67)

where ePr (,, t0 ) = 0 since y(/, t0 ) = yN(p, 0 ) = 0 by assumption. We now choose v = ePr (p, tk), in-
voke the Cauchy-Schwarz inequality for the cross term m(e pr(,, tk-), epr(,, tk); M), and apply (4.59)
to obtain

m(epr([,t,tk),epr(,,tk); L) +Aa(epr (/,tk), epr(J~k;

m e ((, wtk), ep r ( tk); t) mlPr
< m2 (er (2 (, pr ihMm pr,, tk-1, epr(/, t-1;

V k C K. (4.68)

We now recall the identity (for c E R, d c R, p E R+)

2 lcl Idl < -c2 +P 2 d2,
p

which we apply twice: first, choosing

C = m (epr(, tk), epr ,tk);u

d = mI (epr(,,, tk-1), ePr(,, tk-);

and p = 1, we obtain

2 m (/ tk pr),e tk);P MI m(epr(t, tk-1), epr(,, tk-1);

< m(e(pr, tk-1), epr(,, tkl);, ,) + M(er(t tk), ePr(A, tk); A);

(4.69)

(4.70)
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and second, choosing c = epr(p, t'), d - lepr (utk)Iy, and p (y) we have

2 epr (I,tk) lepr( 1,,tk)y < k t 2  a(p) perpr (,tk) (4.7
- aiL Npr

Combining (4.68), (4.70), and (4.71), and invoking (4.7) and (4.57), we obtain

m(epr(/, tk), epr(, tk); /) - m(epr(L ,k-1Pr tk-1);,)

+ At a(epr(t,tk),epr ptk);/) Epr ( tk)2, V k E K, (4.72)
-6a (41) Npr '

We now perform the sum from k' = 1 to k and recall that epr(,, t0 ) = 0, leading to

k

m(epr(,, tk) epr (,tk); A) + At a(ePr,,tk') epr(,,tk');)

k'=1

At k
< At k E pr (p, t k1)2, V k E- K, (4.73)

which is the result stated in Proposition 6.

Dual Variable

Before proceeding with the error bounds for the dual variable we have to pay special attention to
the final condition of the dual problem. The primal error at time zero, epr(y, t0 ), vanishes (for our
zero initial conditions) and therefore does not contribute to the error bound. For the dual problem,
however, the error at the final time tK+1 edu(/_ tK+1) -- q(, p tK+1) -

4 N (pL, tK+1) is - in general
- nonzero since ''(I, tK+1) is not necessarily a member of Wd}-. Instead, we obtain from (4.13)

that edu (,, tK+1) satisfies

m(v, edu (,,tK+1 R'f (v; y), V v C Y, (4.74)

where

R*pf(v; it)= i (V) - M (V, XFN (Y, tK+1); P), V V E y (4.75)

is the residual associated to the final condition. It can be shown that edu( tK+1) satisfies the
following bound [91, 123].

Lemma 7. The error edu(p. tK+1) =I'(1_, tK+1) - 4 'N(I, tK+1) is bounded by

edu IL K+1 IX < NqfW(.6

where
4, R11 (v ; pa)'(F t sup II v;Ipx (4.77)eNdu t e i itoE

is the dual norm of the residual associated to the final condition.
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It directly follows from Lemma 7 and (4.74) that

- Rxpf (ed(ptKl);,I < Elp(I edu (/,a,tK+l)fXdmUY ~ K + 1N d u d K +

&M 0m_0 ANs(. (4.78)

Note that for the special case in which the bilinear form m is parameter-independent, we can
guarantee that lI'(,, tK+1) is a member of Wdy and thus edu(/t, tK+1) is identically zero.

We are now ready to prove the bounding property for the dual problem.

Proposition 7. Let edui tk) -I'([t, tk) - TIN (Mp, tk ) be the error in the dual variable and define

K

| Iv(p,t k)jdu ( M(V( tk) V(ptk); /) + x: a(v(p,tk'), V (,tk); p) At
k'=k

(4.79)

The error in the dual variable is then bounded by

edu (tk) du du (,tk) Vp eD, Vk c K,

where the error bound Adu (,, tk) is defined as

A udu ka 
kA t

ANdLtk &a (P) E'=
du

ENdu ( kL tkV) 2 +&m uf 2

anded (pu tk) is the dual norm of the dual residual defined in (4.60).

Proof. We immediately derive from (4.12) and (4.61) that edu (/ tk) = Qj, tk) - TN(P, tk) satisfies

m(v, edu (,tk); g)Ata(vedu, tk); /) = m(v, edu (,tk1); p)+AtRdu (V; tk), Vv c Y, Vk c K,
(4.82)

with final condition m(v, edu(JtK+l);,p) R'f(v; p), V v E Y. Choosing v = edu(,u tk), invoking
the Cauchy-Schwarz inequality, and applying (4.60) we obtain

m(edu (,,tk), du (,,tk); /) + At a(edu, (,tk), du (,tk);/_)

I (edu k+ du , t+12;It M1 du , tk, du

+ At Edu _k du tk) y,Vk E K. (4.83)

We now apply (4.69) twice: first, with

c = mtn (eduettt k+1k) du p Ik+1a ) ok (

d = m2(edu ,, k) edu ,, k);t)

and p = 1; and second, with c = E du kd ,adp=d ~.Ivkn 47
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and (4.57), we arrive at

m(edu (1,tk), edu ,tk);I) - m(edu (/,tk+1), du, (Ytk+1); /)

+ At a(edu (,tk), edu (,tk); du k2,

We now perform the sum from k' = k to K and invoke (4.78) to obtain

K

m(edu (,tk) ,edu,tk);IA) + At du (,k '),edu (,,tk');

k'=k

AtK

S 'At ) du k1 2

k'=k
+ &MWAd)

V k c K, (4.84)

Vk c K, (4.85)

which is the result stated in Proposition 7. El

Output Bound

Finally, the error bound for the output estimate is given in the following proposition.

Proposition 8. Let the output of interest, s(y, tk), and the reduced-basis output estimate, sN (A, tk),
be given by

Vp ED, VkEK, (4.86)

k

sN((A, tk) = YN (titk)) + Rpr( TJN(A, tK-k+k'); /, tk') At,
k'=r

respectively. The error in the output of interest is then bounded by

s(/, tk) - sN(i, tk) As (/tk),

Vy cD, Vk ElK,

Vy e D, Vk c K,

where the output bound A' (a, tk) is defined as

A' (p, t k) = Ap~r k du t K-k+l1

(4.87)

(4.88)

(4.89)

and Ap ) and du (t, tk) are defined in Propositions 6 and 7, respectively.

Proof. To begin, we recall the definition of the dual problem for the output at time tL, L E K,
given by

m(v, OLOil tpk); [L) + At a(v, /L(A, tk); ) = m(v, OL(A, tk+1); /)

(4.90)

with final condition m(V,?$L(ptL+1);,L) £(v), V v E Y. We now choose v - ePr(a, tk) -
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y([t, tk) - YN(p, tk) in (4.90) and sum from k = 1 to L, to obtain

L L

m(ePr (tk'),L(, tk') - QL(Itk'1) (,pr(, tk'), L jtk');
k'=1 k'=1

This equation can be rewritten in the form

L

Z m(ePr(,, tk') - epr (,,tk'-1), L( , tk'); (,pr , tL), tL+1); to
k'=1

L

+ 5 At a(epr (, tk'), ?/L(A, tk'); /_) 0,
k'=1

where we used the fact that epr(p, t0 ) = 0. We now note from the final condition of the dual
problem that m(er ( L (A, _ PrtL)) to obtain

L

f(,r(/_,tL)) = M(epr /k'
k'=1

L

pr ([,tk-), ?bL(/-, tk'); j) + At a(,pr([, tk'), L (P, tk');,A)

k'=1

(4.93)
We next choose v = 4L(,U, tk) in the error equation for the primal variable, (4.67), and sum from
k =1 to L, to find

L

1(epr (,, tk')
k'=1

L
- epr(, tk'-1), L(, +k 1At)a+ L pr (,tk'), VL (P, tk);/P)

k'=1
L

E pRPr(4L(I,tk'); ,tk') At. (4.94)

From (4.93) and (4.94) we thus obtain

L

ES Rpr 'L (, tk) tk') At.
k'=1
L

= 1 Rpr Q (ptK-L+k'); /,tk') At.

k'=1

(4.95)

(4.96)
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From the definition of s(p, tk) and SN(P, tk), and (4.96) we now obtain

s (A,tk) - SN(ptk)

k

(e pr (/_, tk)) - 1 Rpr(QN(A, tK-k+k'); ,u tk') At
k'=1

k

= Ror('p(, tK-k+k') - ,N tK-k+k' ) At
k'=1

k

= : Rpr (edu _,tK-k+k'); ,tk) At.

k'=1

Invoking (4.59) and the Cauchy-Schwarz inequality we arrive at

(4.97)

(4.98)

(4.99)

|s(p, tk) - SN(,,tk)

k

,,&~r(ILtI _edu(i,tK-k~k')Ily At

k'=1

Atd K-k+k) At)

k'=1

Let us first bound the second term on the right hand side. From (4.7) and the fact that &a(p)

Oa (p), V p c D, we obtain

edu,(, K-k+k' ) 2 a(edu (, tK-k+k')

Performing the sum from k' = 1 to k leads to

V c D. (4.102)

ledu(, K-k+k')12 At <ap~ du tK-k+k1k=
),edu(/1' tK-k+k'); t) At

I >: a(edu (,,tk'), edu( tk'); p) At
aU) ,k'=K-k+1

<~(Ii) (1~ ~ ± a(edu (,tk'), du (tk'); /) At
ap)k'=K-k+1

(4.103)

(4.104)

(4.105)

+ m(eduGL, tK-k+1) edu i, tKk±1); L)) (4.106)

(4.107)

where the second inequality follows from the coercivity of m(., .; p) and the last equality from the

definition (4.79) of the ||| . 1|jdu-norm. Finally, inserting (4.107) into (4.101) and invoking (4.80)

and (4.66), we obtain

s(pt) - SN(A, tk Apr '/_ tk) du '(' tK-k+l),
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.(4.101)

k'=1

(4.108)

1
2

< ~pr k' 2

\k'=1

)edu (, K-k+k'); /_

1 1 1 ldup tK-k+1) I du )2

a (P)



which is the result stated in Proposition 8.

4.4.3 An Alternative (Simpler) Output Bound

We note from (4.89) that, using the dual formulation, we obtain a square effect in the output
bound since A'(p, tk) is the product of the primal and dual error bounds. We will observe this
effect also in the numerical results in Section 4.6.2. This desirable effect, however, comes with the
additional complexity and computational effort of the dual formulation1 . To avoid this additional
effort, we can also define a "simple" output approximation, AN (P, tk), and corresponding output
bound, N tk), which does not require the dual formulation and - in certain cases - still
results in a satisfactory convergence rate of the output approximation and sharpness of the output
bound. We state the result in

Proposition 9. Let the output of interest, s([p,tk), and the (simple) output estimate, AN(ptk), be
given by

s( tk) - f (y(,tk)), V p C D, V k c K, (4.109)

and

N(P, t k) = f (yN(p, tk)), V p E D, V k E K, (4.110)

respectively. The error in the output of interest is then bounded by

s(p, tk) - s ,N(p, utk) s (, tk), V E D, V k E K, (4.111)

where the (simple) output bound (/_t tk) is defined as

(/_t(, tk) = sup f Mp, tk) V -i E D, V k E K, (4.112)
N &rnm(M) VEY JJJX Nr t)

and &m(p) is the lower bound for the coercivity constant am(p) defined in (4.58).

Proof. From (4.109) and (4.110) we obtain

s( p, t k ) - N (II, tkl _ y(~ k ) - f (yN, M (Py tk)

- I(ePr, tk))I < sup lv)x pr(,, tk) X, (4.113)
V EY 111X

from which the result immediately follows since &m(U) lepr(,I, tk)II x m(epr( ,u tk), epr(,, tk); A)1/2 <

,Apr(" tk), Vp D, V k c K. We note that we can only bound the X-norm of the error epr~t, tk)

by the error bound Ap,(r , tk) at any given time tk. We thus obtain the requirement that 11f x,
has to be bounded, otherwise the upper bound in (4.113) does not exist.

We note that - given yN(P" tk) - the computational cost to evaluate SN(p, tk), V k C K, is

only O(KNpr) whereas the computational cost to evaluate sN(p, tk), Vk e K, using the primal-dual
formulation is O(K(K + 1)NprNdu). If K is of the order of Npr or Ndu or if several outputs of
interest have to be evaluated - which is often the case in practice - employing the simple bound

'In actual practice, of course, the primal and dual problem should be solved in parallel; they only "interact"
through the residual correction term for the output estimate.
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is computationally more efficient; we return to this discussion, and a comparison of both output
estimates and bounding properties, in Sections 4.7.2 and 4.8.5.

4.4.4 Offline-Online Computational Procedure

We now turn to the development of offline-online computational procedures for the calculation of

N k(, )I tNduk), and AN i, k). The necessary computations for the offline and online

stages - by construction rather similar to the elliptic case [91] - are detailed in Appendix A.
Here, we only summarize the computational costs involved.

The computational cost in the offline stage is (to leading order) O((Npr,max+Ndu,max)(Qa-+Qm))
solutions of the underlying "truth" finite element approximation and O((N2r,max + N u,max)(Q~ +
QaQm + Q2)) A-inner products; the storage requirement is O((N2rmax + N2umax)(Qa + QaQ2 +
Qm)). In the online stage - given a new parameter value p and associated reduced-basis solutions

MN (t) and IN(I tk), V k E K - the computational cost to evaluate A #(y tk), V k c K, is

O(K(N2r + N2u)(Q2 + QaQm + Q2)). Thus, all online calculations needed are independent of A.

4.5 Adaptive Sampling Procedure

Our error estimation procedures not only allow us to determine the accuracy of the output estimate
but also to pursue a more rational construction of the sampling set Sp (and Su) and associated

kpr(adA.)adascte

reduced-basis space Wpr (and Wd). The crucial point is that the error bound Apr tk

(respectively, Adu tk)) is an accurate surrogate for the true error |||y(l, tk) - yN(A, tk) Ifpr

(respectively, IIq(p, tk) - 'N(A, tk) du) that can be very efficiently calculated in the limit of many

queries. We may thus perform an exhaustive search over the parameter-time space to find the best

sample sets (and SAd ): in essence, a snapshot procedure in which only the snapshots retained

must actually be evaluated.

The sampling procedure for the primal and dual problem is very similar; we thus focus on

the primal problem and comment only briefly on the dual problem. Also recall that the control

input sequence u(tk) is assumed to be known - either a prescribed function or the impulse (see

Section 4.2.3).

4.5.1 Greedy Algorithm

To begin, we assume that we are given a sample set Sp and associated reduced-basis space Wp.
9 pr Npr

We then choose the next sampling point based on the following two steps: first, we search in

parameter space and select the parameter value bL* for which A ( , tK) is maximized, 2

Npr

A* arg max Apr /, K; (414)

we then select the timestep tk* for which the temporal rate of change of AP (/, tk) is largest,

tk* - arg max k) _ pr * k-1)). (4.115)

2 Note that p(r , k) is a nondecreasing sequence in k and the maximum therefore always occurs at k = K.
Np
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Here, F G (D)nF is a random parameter test sample of size nF; since the marginal cost to evaluate
Apr(p, tK) is small, the random sample can be very large, i.e., nF > 1- We then append p* =

(I*,tk*) to Sp to form ,p+, and hence Wp i, and update the reduced-basis approximationNprapproximation
and error estimation procedure accordingly. We repeat this process until the maximum error bound
at the final time tK over EF is less than a desired (most stringent anticipated) error tolerance Etol,min:
this determines Npr,max.

We note that our sample selection process is not truly optimal: given the prescribed error
tolerance Etol,min, there are undoubtedly parameter samples with fewer than Npr,max points that
suffice. Unfortunately, the latter can only be identified by prohibitively (combinatorially) expensive
calculation, and thus we must resort to heuristic approaches. Our particular heuristic, described
above, is of the "greedy" [21] variety: we focus on just the next sample point and just the currently
largest error with no regard to more global objectives. In actual practice, as we shall see in
Section 4.6.1, this carpe diem philosophy indeed leads to good samples; but we are not able to
characterize the degree of sub-optimality relative to truly optimal samples.

We elaborate on three refinements. First, we invoke a normalized error bound for the sampling
procedure to avoid dependence on the magnitude of the forcing term (the control input): in partic-
ular, we normalize with respect to yN(P, tK pr which can be calculated online in only O(KNpr)
operations. Second, we are careful to orthonormalize the basis functions (r with respect to the

(., .)y inner product by (say) Gram-Schmidt: this guarantees, for example, that the condition num-

ber of the reduced-basis matrix AN(A) is bounded from above by 1 for all N. Third, as regards

initialization, we simply set pi = ymin and choose (pr = y(pi, tk) # 0 for some small k, i.e., we
select (pr = y(pi, t') for u(tl) $ 0. This choice has a simple justification: the adaptive sampling
procedure is likely to select samples corresponding to transient behaviour which, in most cases -
and certainly for the impulse input - occurs during the first few timesteps (also see the numerical
results in Figure 4-6).

The Dual Problem

From our previous discussion in Section 4.4.2 we know that the dual error at time tK+1, edu(,u, tK+1),

may not necessarily be zero if the bilinear form m depends on A. We thus need to guarantee that
the final condition, l(pt, tK+1), is sufficiently represented in Wd for all M C D. We can guarantee

this by either (i) considering only the "elliptic" problem 4.13 and generating a basis for 'IF(p, tK+1)

first before proceeding with the greedy algorithm described above, i.e., until Aq (1) < elmin

where cemin is a desired error tolerance; or (ii) simply combining these two procedures, i.e., for

each new p* selected, we first check if A " (A) < ell is satisfied - if it is satisfied, we proceed

with 4.115, if it is not satisfied, we append (p*, tK+1) to gu and continue with the search for the
next sample.

4.5.2 Extensions

The extension of the adaptive procedure to the case of multiple control inputs is straightforward.
If the control inputs are given, the sampling algorithm can directly be applied; however, if the
control inputs are unknown, e.g., in the optimal control context, we can simply adjust the impulse
approach. We begin with an impulse in the first control input - all other control inputs are set
to zero - and generate the basis using the standard algorithm. When the adaptive procedure
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terminates, we set the first control input to zero and the second control input to the impulse and
restart the adaptive sampling - initialized to the already existing sample set S and associated

kjpr

reduced-basis space Wp. In effect, the multiple control input scenario simply adds an "outer
Npr

loop" to the standard algorithm.

We may also consider nonzero initial conditions. In the case of a parameter-independent nonzero
initial condition, we simply set pr = yo and apply the standard algorithm. For (affinely) parameter-
dependent initial conditions yo(p) we may write

QY

Yo W)- Z ( ) g, V E D, (4.116)
q=1

where the yg E Y, 1 < q < Qy, are given members of Y; only the functions E(A) : D -> R, 1 < q <
Qy depend on /t. In this case we initialize Wpr to span<q Q. f{y }, and then apply the standard

sampling algorithm of Section 4.5.1 (with initial condition yo(p)). In both these cases we retain
the condition epr (/, t0) = 0.

Note that the case of multiple control inputs with nonzero initial conditions is a straightforward
combination of the previous two cases. We first generate a reduced-basis for the nonzero initial
condition (with zero control input); given this basis, we then further adapt to the control inputs
using the impulse approach (for zero initial condition).

4.5.3 Backup Procedure

At this point we need to clarify that our proposed adaptive sampling procedure is not foolproof,
i.e., the method can fail by possibly selecting a new sample point [I* = (t*, tk*) which already is a
member of Sr . In this case we cannot, of course, append A* to Sp since this would directly result

-Npr kjpr

in a singular reduced-basis system. We note that this problem does not appear for elliptic problems
because the true error and the error bound are (theoretically) zero for all p C SN. For parabolic
problems, however, this is no longer the case due to the time-dependence. The reason for this is

twofold: first, even the actual error epr(,, tk) pr is nonzero for f = (p, tk) E Spr and second,

in our adaptive sampling procedure we base our decision on the error bound, A p tk), which

serves as a surrogate for the actual error - even if the temporal rate of change of IIepr(, tk) pr

is small, the temporal rate of change of Ap (r, tk) itself can be much larger and result in a "false"

timestep decision tk* in (4.115).

If our standard procedure fails, we thus revert to a backup routine to select the timestep tk*.

We first introduce a small random sample set B est in time. Then, for each tjest in B-est we append

ftest =(* tiest) to Sf to form , and hence Wp, update the reduced-basis approximation

and error estimation procedure accordingly, and calculate the error bound Apr (P*, tK) at the final

time tK. We then choose the timestep tiest that results in the largest reduction of the error bound,
i.e., we set

tk* = min Aprj tK) (4.117)
t = pr

test

The idea behind this approach is simple: were we to append kIest to S , the new error bound at

the final time would be Ag (utK) - we simply select that timestep t3 in EE that reduces the
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error bound at tK by the largest amount.

4.6 Results for Numerical Exercise 2

We now present numerical results for the example introduced in Section 4.2.4. We first define
the inner product (w, v)y fO Vw Vv + 0.01 fa0t w v + 0.001 faR w v, corresponding to (4.62)
for pref = (0.01,0.001); from the bilinear form a in Section 4.2.4 it follows that we may choose
da(P) = 1 in (4.57). Note that the bilinear form m happens to be parameter-independent in this
example, and thus edu(,, tK+1) = 0 here. We thus have no (computational) need for (., -)x. We
recall that the time interval is I= [0, 20], the timestep At = 0.2, and K = 100.

4.6.1 Adaptive Sampling Procedure

Before discussing the convergence properties we present numerical results for our adaptive sampling
procedure. For purposes of illustration, we construct a reduced-basis space for the (one-)parameter
set D [0.01] x [0.001, 0.1], i.e., we assume p(i) = 0.01 is fixed. We initialize the procedure with

S1r ([( 2 ),min = 0.001, t1 ) and set the desired error tolerance (for the primal energy norm) to

Ctoi,min = 1 E-3. We plot and tabulate the resulting sample set S in pL(2)-tk space in Figure 4-6
we need Npr = 15 basis functions to obtain the desired accuracy. We note that for this problem

the adaptive sampling procedure selects all the samples on the p(2) = 0.001 axis before selecting
any other samples. Also, samples taken from only near the extreme parameter values (minimum
and maximum) in D1 are sufficient to guarantee the desired tolerance everywhere in D1 ; in general,
this is not the case.

4.6.2 Convergence Results

We now present convergence results for the full two-parameter numerical example. The primal
and dual samples in b = D x 1 are constructed according to the adaptive sampling procedure in
Section 4.5; we obtain Npr,max = 22 and Ndu,max = 21 for Etol,min = 1 E -3. We first define the
effectivity associated to the primal and dual error bounds as

Apr (tk)
p r(1_,tk) --- A pr (/" ) (4.118)

1er(p, tk) pr

and
du~k ,du tk)

e udu(,,,tk)Hdu (4.119)
edu (j k) I du'

respectively. Similarly, the effectivity for the output bound is defined as

As (p, tk)
k u( N ,) N (4.120)TI U, s (A ptk ) - N t ~k

The effectivity serves as a measure of rigour and sharpness of the error bounds: we have ?pr(p, tk) >

1, V p C D, since Apr(,, tk) is a true upper bound to the error in the I I Ipr-norm; and ideally we

would like Tpr (p, tk) 1, V p c D, so as to obtain a sharp bound for the error. (Similar arguments

apply to the dual and to the output.)
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[10

tloo

200

to

10-3 10-2 10-1
A(2)

n npr knr
1 0.001 1
2 0.001 2
3 0.001 3
4 0.001 4
5 0.001 7
6 0.001 12
7 0.001 24
8 0.001 40
9 0.001 82

10 0.100 1
11 0.100 3
12 0.100 10
13 0.100 22
14 0.090 5
15 0.091 47

Figure 4-6: NE 2: Sample set S for 'Di [0.01] x [0.001, 0.1] and Npr = 15."pr
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In Table 4.1(a) we present, as a function of Npr (max,rel N)pr mxpr is the

maximum over ETest of fy(ptk) _ yN(/,tK)K) maxre is the maximum over -Test

ofZ (pUtK)/(,K Pr is the average over BTest X I of N ,k Y(,k _ (P,tk
Here =Test C (D)400 is a random input sample of size 400; py = arg max Iy(, tK)f. We
also present in 4.1(b), as a function of Npr (= Ndu),Emaxrel, maxrel, and emaxrel is the

maximum over 3 Test of |s(u, tK) - sN(Y, tK)1/1S(1stK)I, A axrel is the maximum over BTest of

A s(P,tKIS(p tK)1, and S is the average over ETest of A'( , tq(p))/|s(p, tq(P)) - sN(p, tq(p))I-
Here p, arg max4EEeeIs(/_, tK) (note the output grows with time), and t((p) - argmaxtk :

1s(1, tk) - sN(P, tk) . We observe very rapid convergence of the reduced-basis approximation. Fur-
thermore, as we may expect, As((p, tk) converges roughly as the square of Apr (,, tk); we see that

for only Npr = Nd1 = 8 the error in the output is less than one percent. Also, the effectivities are

very good: 0(1) for the primal error bound, and 0(10) for the output bound; note the latter are

worse than the former as our bound cannot take into account any correlation between the primal

and dual error. (We do not at present have good a priori upper bounds for the effectivities; see [91]
for treatment of the elliptic case.)

In Table 4.2 we present, as a function of Npr(= Nd), the online computational times to calculate

SN(A, tk) and A((p, tk), V k C K. The values are normalized with respect to the computational

time for the direct calculation of the truth approximation output s(A, tk) - f(U(, tk)), V k c K.
We note that even for the largest value of Npr(= Nd1 ) the calculation of SN(p, tk) and As(Ap, tk) is
approximately 100 times faster than the direct calculation of s(pi, tk). The actual average run-time

to compute sN(p, tk) and As(/p, tk) in MATLAB 6.5 on a 750 MHz Pentium III varies from 0.041

sec. (for Npr = Ndu = 4) to 0.061 sec. (for Npr = Ndu = 20). (The growth with Npr is less than

expected due to memory-access issues.) We emphasize that the reduced-basis entry does

not include the extensive offline computations - and is thus only meaningful in the real-time

or many-query contexts.

We can now define lower and upper output bounds

sy(ptk) tk) _ As(wtk) < S(/u tk) N t) + AsN(Awtk) k _ (_ tk).

We know that s+ (p, tk) (respectively, s-(f, tk)) are certifiably upper (respectively, lower) bounds

for the true output s(p, tk) - see Proposition 8; that these bounds are accurate - see Table 4.1; and

that these bounds may be evaluated very fast online - see Table 4.2. The bounds may thus serve

to ensure a feasible design3 , a "good" design, and a fast design process or real-time decision [79].

4.7 AP I: Nondestructive Evaluation of Delamination

With the theory developed thus far we are ready to consider the reduced-basis approximation for

the delamination problem introduced in Section 1.1.1. The sketch of the FRP reinforced concrete

slab is shown in Figure 1-1. We first exploit symmetry and consider only the half-width of the

slab (x1 > 0) for our truth approximation. We also note that the geometry of the slab depends on

the delamination width Wdel; we treat the geometric variation in an indirect way by performing an

affine geometric mapping (see [120] for a detailed discussion of affine mappings) from the parameter

3 For example, to honor an optimal-control constraint of the form s(pu, tk) < Tmax we may conservatively impose
+ (,Zk Ta.max.
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(a) (b)

Table 4.1: NE 2: Convergence rate and effectivities for the output, Npr = Ndu-

Npr sN(A, tk), Vk c K AsN I, tk), VkcK s(_, tk), V k E K
4 3.OOE-03 3.11 E -03 1

8 3.59 E -03 3.20 E -03 1
12 4.19 E -03 3.28 E -03 1

16 4.77 E -03 3.36 E -03 1
20 5.57E-03 3.48 E -03 1

Table 4.2: NE 2: Online computational times (normalized with respect to the time to solve for

s( p , tk), V k c K).

dependent solution domain to a fixed reference domain Q with Pi,ref = 5, shown in Figure 4-7. The

reference domain , a typical point in which is (X1 , x2), is then given by Q = [0, 30] x [0, 11]. By

dividing Q into 10 subdomains, Q', 1 < i < 10, we only have to consider the geometric variations

in regions Q2 , Q3 , Q7 , and Q8 - the remaining regions do not vary with the delamination width

Wdel. We define the outputs, i.e., the surface temperatures at the two measurement points, to

be the average temperatures over the "fictitious" regions Q6 and Qio of size IQ6 1 = 0.125 and

jQjoj = 0.5, respectively. We note that these regions are introduced for easier reference only, the
affine mapping does not require a distinction between the regions Q9 and Q10 and the regions Q5

and Q6 , respectively. The delamination is indicated by the magenta horizontal line, Edel, between

the domains Q1, Q2 and q5, Q7 , respectively. Note that the delamination is modeled as having zero

width and homogeneous Neumann boundary conditions on the surface. We assume homogeneous

Neumann boundary conditions on FN and homogeneous Dirichlet boundary conditions on FD-

We next identify the input parameter set4 p = ([pi, 12) (Wdei/ 2 , >c) E D - [1, 10] x [0.4, 1.8] C
iRP= 2 , where > - kFRP/CC, and derive the time-discrete weak form of the governing equations (1.1)-

(1.10). The temperature distribution T(p, tk) E Y in the FRP-concrete slab then satisfies (4.3)

with initial condition T(p,t 0 ) = 0, where Y c ye ={vv c H 1 (Q),v = OrD} is a linear finite

element truth approximation subspace of dimension M = 5603. The truth approximation mesh

and a zoom on the delamination are shown in Figure 4-8. It can be shown that the bilinear and

linear forms a, m, and b admit the affine representation (4.9)-(4.11) with Qa = 10, Q, = 3,

Qb = 3, respectively; we summarize these terms in detail in Appendix C. We also define the inner

product (w, v)y = a(w, v; Pref) and (w, v)x m(w, v; Pref), corresponding to (4.62) and (4.63)

for Pref = (5,1.2), respectively. We immediately observe from the definitions of the aq, Mq, and

4 Because of symmetry, we consider only the half-width of the delamination as our parameter
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Npr ~pr Apr T rN max,rel max,rel ~ r
4 3.19E-01 1.37E +00 5.44
8 4.71 E -02 5.93 E -02 1.84
12 1.12 E -02 1.15E-02 1.04
16 1.23 E -03 1.24E-03 1.02
20 1.60E-04 1.62E-04 1.04

Np m"ax,rel mnax,rel U
4 1.40 E -02 2.15 E +00 97.5
8 1.19E-03 1.07E-02 49.9
12 1.59 E - 04 7.42 E -04 5.95
16 1.73E-06 1.22E--05 16.8
20 3.10E-08 1.30E-07 22.5



10.75--1

2 Q10

F 1  2  F3  V4q q qq
------- _ _ _ __8 9

FdelI I

I II I

N I I I

I I

I I
I I

0.5 5.5 12 1 i5 30

rD

Figure 4-7: AP I: Reference domain Q Uj1<< Qi.

g,mt(p) listed in Appendix C that the necessary conditions from Lemma 6 are satisfied; we may thus
choose &(M) = min1<qi<Q,(E)(p)/E)(Pref)) and &m(p) = min1<qQm( E9(p)/En(pref)) in (4.57)
and (4.58), respectively. The two outputs, s, (LItk) = fil(T(p, tk)), V k E K and s 2 (A,tk) --

£2(T(ptk)), V k E K, can be written in the form (4.4), where 41(v) = vQ6 1 fQev and e 2 (v) =
I 0 1 -' fQ,. v. We shall consider the time interval I = [0, 10] and a timestep At = 5 E-2; we thus
have K = 200.

We briefly return to our previous discussion concerning the set of admissible output functionals
e. We remarked in the proof of the simple output bound (4.112) that the output functional t has
to be bounded with respect to 11 - jjx. This requirement is the reason why we define the output
here to be the average temperature over a small patch: as K - oo, the dual norms of the outputs
functionals I|f|lx, and 11f2||x' tend to I Q6--2 and Q101- , respectively - the dual norms thus
blow up as the size of the regions Q6 and Q10 goes to zero. Since our methods must remain stable
as K --> oc we do have to choose a (small) finite area for our output measurement.

We first present numerical results for the truth approximation. We assume that the surface is
exposed to the heat source u(tk) - q(tk) = 1 for 1 < k < 10 and u(tk) = q(tk) = 0 for k > 11,
corresponding to the heat being applied for t E [0, 0.5]. We show in Figure 4-9 snapshots of the
temperature distribution over Q at four timesteps for p = (5, 1). The temperature reaches its peak
on the top surface for t 10 . At this point the heat turns off and the temperature evens out in the
structure; we observe that the FRP cools down much slower on top of the delamination. We also
present, in Figure 4-20(a), the thermal signal s 1 (p, tk) - s2 (A, tk), V k E K, for /p2 = 1 fixed as
a function of pl. The thermal signal is defined as the difference between the surface temperature
on top of the delamination and the surface temperature on top of the undamaged structure. In
actual practice, the thermal signal should be normalized with respect to some measure of either
s1(p, tk) or s2(P, tk), e.g., the maximum output maxtyE s1,2(A, tk). We then avoid the dependence
on the magnitude of the heat input which may be hard to determine in practice - and thus cause
significant difficulty. We note that the thermal signal is more pronounced with increasing width of
the delamination. We also plot in Figure 4-20(b) the thermal signal for ui = 3 fixed and varying
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(a)

(b)

Figure 4-8: AP I: (a) Finite element truth approximation mesh; and (b) zoom on the delamination

shown in magenta.

P2; as expected, the thermal response is faster for larger ratios of x = kFRP/kC.

4.7.1 Reduced-Basis Approximation

We next generate the sample set Sq and associated reduced basis space Wpr according to the
Npr Npr

adaptive sampling procedure described in Section 4.5. We initialize the procedure with = (5, 1.2)

and tki = lAt and set the desired error tolerance (for the relative error in the energy norm) to

eto1,min = 1 E-4. We sample on a random parameter test sample EF E (D)4 00 of size 400 - we

need Npr,max = 217 basis functions to obtain the desired accuracy. We also generate the sample

sets Sdud and Sdu"2 and associated reduced-basis spaces Wd 1 and W d 2 for the two dual

problems corresponding to the two output functionals Li(v) and t 2 (v), respectively; we obtain, for

ftol,min = 1 E -4, piu = (5, 1.2), and kf" = 201At: Ndu,1,max = 169 and Ndu,2,max = 135.

We plot the sample sets Sq4 and S du in 1 - tk-space in Figure 4-11(a) and (b), respectively
K pr du, 1

(the color of the sample points is associated with the magnitude of A2 so as to better identify

the location in three-dimensional parameter-time space). The sample sets reflect the transients

occurring at small k for the primal problem and at large k for the dual problem. We also note that

the samples are largely located along the "boundary" of the parameter domain D.

4.7.2 Numerical Results

We now present convergence results and error bounds for the primal problem, the two dual problems,
and the output estimates. In Table 4.3 we present, as a function of Npr, the maximum relative

error in the energy norm marep , the maximum relative error bound Apre1, and the average

effectivity pr: EPra is the maximum over ETest of Illepr(/_,tK )pr/WIy(/1YtK) , Apr is
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(a) (b)

(c) (d)

Figure 4-9: AP I: Temperature distribution for [ = (5, 1) at (a) t = t10 , (b) t 20 , (c) t 40 , and (d)
t60.
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Figure 4-11: AP II: (a) Sample set S with Npr,max = 217, and (b) sample set du, for the first
output, si, with Ndu,1,max = 169.

the maximum over ETest of Ap tK)/j ly(tK)jj , and pr is the average over ETest x [ ofthe mximumover est pr(A

APN ( k)y k - yN(Mugk)II|, where py arg maxp y(p, tK)HI. Here Eest C (D) 121 is

an input sample of size 121 (a regular 11 x 11 grid). We also present in Table 4.4(a) and (b) the
corresponding results for the two dual problem: we tabulate, as a function of Ndu, du a du,E max ,rel' max rel'
and 7du (the definitions of these quantities are similar to the ones for the primal problem). We
observe that the primal and dual error converge rapidly and that the bounds are very sharp; the
effectivities are 0(1) for all values of Npr and Ndu. We also note that both dual problems require
less basis functions than the primal problem to obtain the desired accuracy. Furthermore, we also
obtain a smaller Ndu,max for the dual problem corresponding to the second output, s2, because the
influence of the parameter M, on the dual problem is smaller for this output functional.

We next present in Table 4.5(a) and (b), as a function of Npr = Ndu, the convergence rates

Table 4.3: AP I: Convergence rate and effectivities for primal problem.
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Npr 6pr Apr -pr
P max,rel max,rel T

20 8.09 E -02 3.18 E -01 2.74
40 2.71 E -02 8.01 E -02 2.77
60 1.02E-02 2.01 E -02 2.58
80 5.02 E -03 8.40 E -03 2.83
100 1.68E-03 2.91 E -03 2.50
120 7.40 E -04 1.71 E -03 2.45
140 4.37 E -04 8.56 E -04 2.32
160 2.13 E -04 4.84 E -04 2.21
180 1.30E-04 3.16 E -04 2.18
200 9.55 E -05 2.70 E -04 2.20



Nd 1  max,rel max,rel 7
20 2.04E-01 7.46 E -01 2.62
40 5.23 E - 02 9.69 E -02 2.41
60 1.36E-02 2.23 E -02 2.56
80 3.30 E -03 5.39 E -03 2.61

100 1.74E-03 2.27 E -03 2.29
120 6.45 E -04 9.00E-04 2.25
140 1.51 E -04 3.77 E -04 2.13
160 8.16 E -05 1.41 E -04 2.09

(a) (b)

Table 4.4: AP I: Convergence rate and effectivities for dual problem corresponding to (a) output 1
and (b) output 2.

and error bounds for the two outputs. To this end, we define the maximum relative output error
ES the maximum relative output bound Asx and the average output effectivity S : 0maxre1

is the maximum over 3 Test of S(, tn(#)) - SN(, ty(A))/Smax, Amnaxrel is the maximum over Test

of As (p, K)ISmaxI, and -7S is the average over ETest of As (p, t- sN
here t,(p) arg maxtk Cs | ([1t,) -- SN (u, tk)I and Smax = maXtkEmaxTEest IS(p, tk) . We also

plot maxre, and Amax,rej as a function of Npr and Ndu1 for output 1 and 2 in Figures 4-12 and 4-13,
respectively. We first observe that the output error and output bound converges roughly as the
square of the primal and dual errors and error bounds, respectively. We only need Npr = Ndu = 50
to obtain an accuracy in the output bound for output 1 of approximately 1%; for output 2 even
Npr = Ndu = 30 is sufficient. However, the output effectivities are considerably large, 0(100), for
all values of Npr and Ndu - in fact, the effectivities are much larger than we may anticipate. We
note, however, that the output effectivities are generally worse than the effectivities for the energy
bound because our output bound cannot take into account any correlation between the primal and
dual error (see [74] for a discussion in the elliptic context).

We further see from Figure 4-15 that the error (and bound) decreases for fixed Nd1 as Npr
increases; similarly, for fixed Npr the error (and bound) decreases as Ndu increases. Note that we
can obtain a specific desired accuracy in the output bound for different combinations of Npr and
Ndu- We may thus select values for Npr and Ndu so as to minimize the computation cost involved
to obtain a desired accuracy.

We now consider numerical results for the simple bound of Proposition 9. We present in
Table 4.6(a) and (b), as a function of Npr, 6nmax,rel, Aaxrei, and 97; these quantities are defined

with respect to the simple output estimate, .N(/_, tk), and simple output bound, LN(P, tk). The
convergence rate of the output error and output bound is now "only" of the order of emaxre1 and
Apr The output effectivities are also worse than for the primal-dual formulation. For an
accuracy of 1% in the output bound we would now require Npr = 180.

We note that, if our interest lies in sharp output bounds and small effectivities, we could also
adopt the approach taken in [121], i.e., we define the output estimate

SN (4, tk) = yN (M tk)), Vp E D, Vk e K, (4.122)
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Nd max,rel max,rel Td

20 5.10E-02 2.03E-01 3.05
40 7.66 E -03 1.73E-02 2.65
60 1.93E-03 3.57E-03 2.37
80 5.75 E - 04 1.03E-03 2.39
100 1.89E-04 3.18 E -04 2.36
120 7.97 E -05 1.25 E -04 2.25



Npr Ndu Emax,rel Amax,rel 77S
20 20 1.78E-02 1.23 E +00 174
40 40 1.75E-03 3.85 E -02 260
60 60 1.67E-04 2.24 E -03 189
80 80 7.57 E -06 2.43 E -04 268
100 100 6.21 E -07 3.21 E -05 222
120 120 1.34E-07 6.84 E - 06 212
140 140 3.36 E - 08 1.82E-06 210
160 160 8.64 E - 09 4.14 E - 07 384

(a)

Table 4.5: AP I: Convergence rates and effectivities for (a) output 1 and (b) output 2.

Npr E9A ~
Npr _ max,rel miax,rel p?
20 6.76 E -02 2.58 E + 01 211
40 1.44E-02 6.24 E +00 341
60 3.34 E -03 1.46 E +00 363
80 1.43E-03 4.73E-01 379
100 3.71 E - 04 2.77E-01 445
120 9.81 E - 05 1.24E-01 604
140 4.59 E -05 6.33 E -02 573
160 2.34 E -05 2.88 E -02 674
180 1.03 E -05 1.08E-02 1002
200 6.02 E -06 9.18 E -03 1117

(a)

Npr Enax,rel mnax,rel N
20 9.22 E -03 1.81 E +01 1379
40 2.56 E -03 4.38 E +00 1185
60 1.55 E -03 1.02 E + 00 1220
80 9.79 E -04 3.32 E -01 1321
100 1.95E-04 1.95 E - 01 813
120 1.99E-04 8.66 E - 02 619
140 9.37 E -05 4.44 E -02 479
160 3.45 E -05 2.02 E -02 459
180 2.33 E -05 7.55 E -03 391
200 1.56E-05 6.44 E -03 780

(b)

Table 4.6: AP I: Convergence rate and effectivities using simple bounds for (a) output 1 and (b)
output 2.
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Npr Ndu Emax,rel Amax,rel Y
20 20 7.53 E -04 2.72E-01 817
40 40 8.32 E -05 3.59 E - 03 636
60 60 7.82 E -06 2.35 E -04 242
80 80 1.07E-06 2.21 E -05 324
100 100 7.96 E -08 3.34 E -06 274
120 120 6.02 E - 09 8.30 E - 07 258

(b)
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Figure 4-12: AP I: (a) Maximum relative output error e'naxrel and (b) maximum relative output
bound adreu for output 1.

and corresponding output bound

k

n'y (p, tk) -- pr( k) Ndu~ (~K-kl+1 RPr ($N (,tKk~k'); k')L (4.123)
k'=1

where LA'N (p, tk) and Z4d u tk) are defined in Propositions 6 and 7, respectively. It is then easy

10 du10d

to show that

|s.,t) -- s(p,) . s..... k), V .pED, V.k E K. (4.124)
Note that we also require the dual problem following this approach. However, we employ the
residual correction term to increase the sharpness of the output bound instead of the accuracy of
the output estimate. We present in Table 4.7, as a function of Npr and Ndu, the maximum relative
output error eimaxre mxmm relative output bound Aiaxre, and aveae uput effectivity i
obtained for this formulation. We observe that the convergence rate of the output error and bound
is slower than for the standard primal-dual formulation, but the output effectivities are extremely
good, 0(1) almost throughout. Due to the slower convergence rate, however, we still require
approximately Npr =Nd1 = 50 to obtain an accuracy of 1% in the error bound for output 1 and
Npr = Ndu1 = 30 for output 2. Thus, in terms of the size of Npr and Ndu1 there is no gain in choosing
this formulation over the standard primal-dual approach.

Finally, we present in Table 4.8, as a function of Npr (= Nd1 1), the online computational time
to calculate sN(pu, tk) and da~p tk), V k E K, for output 1. The values are normalized with
respect to the computational time for the direct calculation of the truth approximation output
s([p, t) - egu 1 1 ,k)), V k E K. We note that the time to compute sN(#u,tk) dominates the time to
compute L\~J(pt, tk) for small values of Npr = N 11. This is due to the K 2 -complexity of evaluating
the residual correction term. Since K is not too large in the present example we still obtain
computational savings of a factor of 125 for Npr = Ndu1 = 50 (corresponding to an accuracy in the
output bound of 1%). The average actual run-time for the output estimate and output bound in
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Figure 4-13: AP I: (a) Maximum relative output error &inax rel and (b) maimumn relative output
bound Arnax,re1 for output 2.

MATLAB 6.5 on a 750 MHz Pentium III is 0.5 sec.
We should note, however, that a large number of timesteps often results because of the require-

ment that the (discrete) time integration be accurate -- and thus / t be small. For the time history
of the output estimate sN(kU, tk) itself, on the other side, a coarser time grid often suffices. Evaluat-
ing the output estimate, sN (i, tk), at only every (say) 10th timestep, decreases the computational
cost by a factor of 10, i.e., the complexity is 0(K(K +4-1)NprNdu/10).

We thus define K = {10, 20,30, ... , K} and present in Table 4.9 the online computational times
to calculate sN(I#,tgk), V k E K, and ASN (mtk), V k E K, i.e., we evaluate the output estimate,
SN (p, tk), only at every 10th timestep. The online time to calculate zsy (bt, tk) remains unchanged,
but we observe - especially for small Npr= Ndu up to 0(5) reduction in computational effort
to evaluate sN(,u, tk), V k c K. (The savings are not quite 0(10) here because the size of K is
moderate; in Section 4.8.5 we will consider an example where K is larger resulting in savings of very
close to 0(10).) We recall that we require Npr = Ndu = 50 for an accuracy in the output bound of
1%: in this case, the overall savings compared to the direct calculation of the truth approximation
s(#u, tk), V k E K, are now almost a factor of 800. Also, the average actual run-time in MATLAB
6.5 on a 750 MHz Pentium III now decreases to only 0.18 sec.

Finally, we compare these results with the online computational times to calculate the simple
output estimate and output bound, s~N([, tk) and n%( u, tk), V k E K. For the same value of Npr
these values are smaller since the computation does not involve the solution of the dual problem.
In order to make a valid comparison, however, we need to compare the computational efficiency at
a fixed accuracy: we thus recall that we required Npr = 180 to obtain an accuracy of 1% in the
output bound (corresponding to Npr =Ndu =50) -- the resulting computational savings are then
only of the order of 30, the average run-time is 1.87 sec.

At this point we should also recall that, in the case of multiple outputs, each output requires a
separate dual problem. The computational complexity of the primal-dual formulation thus increases
with the number of outputs, while the computational complexity of the primal-only approach is
(effectively) independent of the number of outputs. In applications with a large number of outputs
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Npr Ndu Emax,rel max,rel r /
20 20 6.76 E -02 1.24 E + 00 12.3
40 40 1.44E-02 4.23 E -02 3.88
60 60 3.34 E -03 5.08 E -03 1.68
80 80 1.43E-03 1.57E-03 1.18
100 100 3.71 E -04 3.84 E -04 1.07
120 120 9.81 E - 05 9.98 E - 05 1.05
140 140 4.59 E - 05 4.61 E - 05 1.01
160 160 2.34 E - 05 2.35 E - 05 1.01

(a)

Table 4.7:
in (4.122)

AP I: Convergence rate and effectivities for output estimate and
and (4.123), respectively: (a) output 1 and (b) output 2.

output bound defined

Table 4.8: AP I: Online computational times to calculate sN(p, tk) and , tk)
(normalized with respect to the time to solve for s(p, tk), V k c K).

for all k c K

the primal-only approach may therefore be advantageous, despite the larger value of Npr required
to obtain a desired accuracy.

4.8 Nonsymmetric Problems: Convection-Diffusion Equation

We now relax the assumption of symmetry on the bilinear form a(., .; p), permitting treatment of
a wider class of problems. A representative example is the unsteady convection-diffusion equation,
where the presence of the convective term renders the operator nonsymmetric. We will see that
most results directly carry over from the symmetric to the nonsymmetric case; we therefore focus
on the differences and refer back to the symmetric case whenever possible.

We note that the time-discretization deserves more attention when solving convection-diffusion
equations. The Euler-Backward scheme, although employed in this section for simplicity, can intro-
duce too much numerical diffusion for certain problems and should not be used for pure advection
problems solved over long timescales. However, it also has desirable "stability" advantages, e.g.,
errors are always damped. The Crank-Nicolson scheme, on the other side, is neutrally stable
and introduces no numerical damping. The disadvantage of this method is that perturbations or
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Npr Ndu Emax,rel max,rel 77

20 20 9.22E-03 2.82E-01 1.92
40 40 2.56 E -03 4.61 E -03 2.40
60 60 1.55E-03 1.64E-03 1.30
80 80 9.79 E -04 9.87E-04 1.06
100 100 1.95E-04 1.97E-04 1.02
120 120 1.99E-04 1.99E-04 1.00

(b)

Npr = Ndu sN(/, tk), V k c K A' (y, tk), V k e K s(p, tk), V k G K
20 3.11 E -03 9.78 E -04 1
40 5.22 E -03 1.54E-03 1
60 7.90 E -03 2.34 E -03 1
80 9.49 E --03 3.88 E -03 1

100 1.48E-02 9.98 E -03 1
120 2.01 E - 02 1.74E-02 1
140 2.55 E -02 3.21 E -02 1
160 3.10 E - 02 4.36 E - 02 1



Table 4.9: AP I: Online computational times to calculate SN(AI, tk) and

(normalized with respect to the time to solve for s(t, tk), V k c K).

Table 4.10: AP I: Online computational times to calculate
with respect to the time to solve for s(p, tk),V k c K).

As (,,tk) for all k E K

sN (A, tk) and 3 ([L, tk) (normalized
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Npr = Ndu SN(A, tk), V kK As (, tk), VkEK s(,utk),VkEK

20 6.90 E -04 9.78 E -04 1
40 9.70 E -04 1.54E-03 1
60 1.31 E -03 2.34 E -03 1
80 1.82E-03 3.88 E -03 1
100 2.97 E -03 9.98 E -03 1
120 5.59 E -03 1.74E-02 1
140 9.28E-03 3.21E-02 1
160 1.23E-02 4.36 E -02 1

Npr SN(, tk), V k E K ANs (k), V k c K s(t, tk), V k K

20 2.10E-04 4.52 E -04 1
40 3.97 E -04 6.36 E -04 1
60 6.73 E -04 8.75 E -04 1
80 1.08E-03 1.33E-03 1

100 2.05 E -03 3.70 E -03 1
120 4.37E-03 6.20E-03 1
140 6.44 E - 03 1.20E-02 1
160 8.24 E - 03 1.65E-02 1
180 1.06E-02 2.09 E - 02 1
200 1.41 E -02 2.68 E -02 1



round-off errors are not damped, and too large a timestep can result in a phenomenon referred to
as "ringing." The time-discretization scheme chosen thus depends on the specific problem at hand,
for a further discussion see [42].

4.8.1 Abstract Formulation

We directly consider the "truth" approximation here: given a parameter p E D C IRP, we evaluate
the output of interest

s (p, t k) = t~~~,t)), V k E K. (4.125)

where the field variable, y(p, tk) c Y, satisfies

m(y(P, tk), v; p)+At aCD(y(/_, tk), v; A) = m(y (p, tk-1), v; M)±zt b(v; [z) u(tk), Vv c Y, Vk e K,
(4.126)

with initial condition (say) y(p, t0) = yo(y) = 0. Here, aCD(., .; p) and b(.; p) are Y-continuous
bilinear and linear forms, respectively; m(-, -; P) and f(.) are X-continuous bounded bilinear and
linear forms, respectively; and u(tk) denotes the control input at time tk.

We shall make the following assumption. First, we assume that the bilinear form m(., -; A) is
symmetric, m(v, w; P) = m(w, v; p), Vw, v E X, Vp C D, and satisfies the continuity and coercivity
conditions (4.6) and (4.8), respectively. We also require that the linear forms b(.; A) : Y -* R and
f(-) : Y -* R be bounded with respect to 11 - y and 1 -||x, respectively. We also assume that the
bilinear form aCD(., -; t) is continuous,

aCD(w,v;Ap) < 7a(p)jwfly vjy < 'a/wjyjvjy, Vw,v E Y, Vp C D, (4.127)

and coercive,

0 < a0, < aa (p) -- inf a CD p E .(418a - vEY |vfl Vyu c D. (4.128)

(We (plausibly) suppose that -ya, aa, may be chosen independent of A(.) It thus follows that a
solution to (4.126) exists and is unique [94].

We note that we do not require the bilinear form aCD to be symmetric anymore. However, we
point out that aCD can always be written in the form

aCD (WV;t)a D (W, V;A)ac (w, v; p), V w, v E Y, V p E D, (4.129)

where aD(,-; p) is symmetric, aD (v, w; p) = aD(w, v; p), V w, v c X, V pE D, and aC(.,-;At) is
skew-symmetric, aC(v, v; A) = 0, V v C X, V p E D. It directly follows that

aCD(VV;t)a D (VV;_t) ac (v, v; y)aD(VV;t), V v E Y, V pt ED; (4.130).

thus, only the symmetric part aD will enter into the coercivity (4.128). This results will be useful
for our a posteriori error estimation procedure to follow.

We shall assume that aCD, m, and b depend affinely on the parameter p, i.e., m and b can be
expressed in the form of (4.10) and (4.11), respectively; and aCD can be written as

QaCD

aCD(WV;t) CD() CD q(W, V), Vw,v C Y, Vp E D, (4.131)
q=1
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for some (preferably) small integer QaCD. Here, the function 9CD(p) : D -> R depends on y, but

the continuous forms a CDq do not depend on p. Finally, we also require that all linear and bilinear

forms are independent of time - the system is thus linear time-invariant (LTI).

Dual Problem

To ensure rapid convergence of the reduced-basis output approximation we also introduce a dual

problem in the nonsymmetric case - which shall evolve backward in time [20]. Invoking the

LTI property we can express the adjoint for the output at time tL, 1 < L < K, as ?/L(p,tk) -

,I(p, tK-L+k), 1 < k < L, where Q(p,tk) e Y satisfies

m(v, 'I(pt, tk); P) + At aCD(V, QF(bt, tk); p) = m(v, I (p, tk+1); A), V v E Y, V k E K, (4.132)

with final condition
m(v, I(p, tK+1); Y) = f (v), Vv E Y. (4.133)

Again, to obtain OL(L, tk), 1 < k < L, V L c K, we solve once for (p , tk), V k C K, and then

appropriately shift the result - we do not need to solve K separate dual problems.

Conservation Form

Before we introduce the reduced-basis approximation we have to comment on the specific choice

of the weak form for convection-diffusion equations - these problems are an important class of

applications since they widely appear in fluid dynamics; we already mentioned one such example

in the Introduction in (1.11). To this end, we first consider the "exact" problem

Y e(tk) - ye(tk l) etk) 1 e( k -1 X t )

At - + U - Vye(t ) = e(k-1) -+ ) ), V k C K, (4.134)

with initial condition (say) ye(to) = 0. Here, ye E Ye is the field variable and ye is an appropriate

Hilbert space; g(x) u(tk) represent the source term; U is the velocity field; and Pe is the Peclet

number. The Peclet number, Pe = UoLc/i, represents the ratio between the strength of the

advective and diffusive process, where Uo is the average velocity, L, is the characteristic length,

and r, the diffusivity.

We shall require that the (exact) velocity field is incompressible, i.e, V -U = 0. However, in ac-

tual practice (and for our truth finite element discretization) we introduce a (piecewise-polynomial)

approximation, U, to the exact velocity field U which may only be approximately divergence-free.

In general, we do not obtain V - U = 0 pointwise, and thus the specific form of the weak form

of (4.134) is important in determining the lower bound for the coercivity constant aa(p) and guar-

anteeing that (4.130) is satisfied [42]. More specifically, we require the convective term, U -Vw, be

written in conservation form, that is

a(w, v; ) = (U -Vw) + vw(V . (4.135)

It is then easy to show that the bilinear form ac(-, .; U) is skew-symmetric for (i) a contained flow,

that is (n . U) = 0 everywhere on the boundary, where n is the unit outward normal, or (ii) a flow
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with Dirichlet boundary conditions. We have

ac(v,v;U) = v(U.Vv)- Jv2(V.U)/ 1

2 2 "
- ~jf-vv2+ v2(v .fJ)

V -(Uv2) - v2(V. U)+ v2(V. -U)

- f(n.U)v2=0, VvEY. (4.136)

We will thus employ the conservation form (4.135) in our numerical examples to follow. Note
that we implicitly assume here (and in the examples to follow) that all quadratures are performed
exactly.

We remarked earlier that the Peclet number, Pe, represents the ratio between the strength of
the advective and diffusive process: for Pe < 1 the flow is diffusion-dominated, whereas for Pe >> 1
the flow is advection-dominated. In the applications considered in this thesis the Peclet number
varies in the range 1 < Pe < 100; for certain ranges of the parameter values, small diffusivities

(usually), the problems we consider are thus advection-dominated - this is also the reason why
Crank-Nicolson is the preferred time-integration scheme. We do not, however, consider stabilization
methods, such as bubble functions, for the convection terms here.

4.8.2 Reduced-Basis Approximation

We first introduce the nested sample sets S f = {#4 E D,. . . , DI E D}, 1 Npr Npr,max, and
(Zu-ffd pr Npr

Sd u Ie{ D, . ., du c D}, 1 Ndu _< Ndumax, where jz (t, tk) and D D x l. We then
define the associated nested Lagrangian [85] reduced-basis spaces

Wp = span{r ,(pr), 1 < n < Npr}, 1 < Npr < Npr,max, (4.137)

and

W u = span{du _(ftdu), 1 < n < Ndu}, 1 < Ndu < Ndu,max, (4.138)

where y(#2nr) is the solution of (4.126) at time t = tk for # - # and i~tQnU) is the solution of

(4.132) at time t = nt for /_pdu

Our reduced-basis approximation YN (p, tk) to y(p, tk) is then obtained by a standard Galerkin

projection: given p C D, yN(/, tk) G Wpr satisfies
Npr

m(yN (P, tk),V;) + t aCD (yN (p, tk),V;A) m(yN(Atk-),V;A) +At b(v;p) /t= y kk),

VCEWNr, V k c K, (4.139)

with initial condition yN(p, t0) = 0. Similarly, we obtain the reduced-basis approximation 'I'N(A, tk) E
Wdj" to XI'(p, tk) as the solution of

m(v, T N(1, tk); /) + At aCD(v, TN(p, tk); p) - m(v, TINQ', tk+1); P)

VvWNu V k c K, (4.140)
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with final condition

(V, FN (P, tK+'); f M ~ , V V E Wd, . (4.141)

Finally, we evaluate the output estimate, sN(p, tk), from

k

SN (A, tk) (yN (A, tk)) + E RPr(N (P, tK-k+k'); ,,tk') At, Vk E, (4.142)
k'=1

where

RPr(v; P, tk) = b(v; p) u(tk) - aCD(yN (A, tk), v; - 1Tm(yN(A, tk) - yN(P, tk-1), V;

V v c Y, V k c K, (4.143)

is the primal residual.

A Priori Convergence Theory

We consider here the rate at which yN(/1, tk) converges to y(p, tk). The proof for the dual variable

is very similar and therefore omitted.

Proposition 10. Assume that the "truth" solution y(p, tk) and the corresponding reduced-basis so-

lution yN (P, tk) satisfy (4.126) and (4.139), respectively. The error, ePr ( ktk) _ ytk)-yN (IP, tk),
is bounded by

k
am(p) |e( + ,tk)fx +aa(p) At 1 1e(p,tk')12

k'=1

< N W { Ym (A) |Iy(A,tk) - WN(tk) a( 2 At y(,tk) N(tk) 2<Ng i6nf WN X-W

+c inf Ya (A) 2 At Iy( p, tk') - wN(tk') 2 44)+ S n N Y 414
k'=1 WN (tk) WN aa '

Before turning to the proof, we note that we obtain the additional factor -ya(p)/aa(pt) in the

nonsymmetric case as compared to the symmetric case of Proposition 5. Since this factor is greater

than one, we expect a slower convergence of our reduced-basis approximation (and, in turn, a larger

Npr (and Ndu) required to obtain a desired accuracy) for nonsymmetric problems. We confirm this

observation numerically in Section 4.8.5 (see Figure 4-23).

Proof. It directly follows from (4.126) and (4.139) that epr(/t, tk) - y(Atp tk) - yN(A, tk) satisfies

m(ePr(,,, tk), v; p) + At aCDeprtk), v; t) = m(epr( tk- 1), v;), Vv Wr, (4.145)

with initial condition epr(,, to) = y(A, t0 ) - yN(A, t0 ) 0, since y(p, t 0 ) yN(p, t0 ) 0 by
assumption. We next let wN (tk) C Wr be the projection of y(p, tk) with respect to the "i"

scalar product and choose v wN(tk) _y tk) pr (/_,tk) - (y(ptk) _N(tk)) in (4.145). The
treatment of the bilinear form m follows directly the proof of Proposition 5 for the symmetric case.
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For the bilinear form aCD we obtain

2 At aCD(,,r(1, tk), y(p, tk) - wN(tk); t) (4.146)
2 At 1a(A) ePr(,tky (Attk) - WN(t (4.147)

< a t jy(ptk) -- wN(tk) 1 aa(t epr(,tk) 2, (4.148)
aa(p)

where we used the continuity of aCD and invoked (4.30) with c = ya(A) y(, tk) -- wNtk
d = Ilepr(, tk) Iy, and p = aa(A). We can then write

m(epr(t, tk), epr ,tk); t) - m(epr (A tt), epr (, tk- );) + 2 At aCD (epr (,tk), epr (,tk);/t)

< m(y(p,t k) - WN (tk) y(fttk) - wN(tk); A)

-m(y(A, tk-1) - WN(tk-1), Y(t tk-1 _ wN(tk-1);

+ / At 2 y(t tk) - wN(tk) + aa( epr(/ttk')1 2. (4.149)
+_-_t k)-WN Y+ aA)A

The desired results directly follows by summing from 1 to k and invoking the coercivity and conti-
nuity of the bilinear forms aCD and m.

D

As in Section 4.3.2, we can also prove the boundedness of y(p, t') (and y/,(/t, tk)) for the
nonsymmetric problem (4.126). The proof follows the same lines as in the symmetric case and is
therefore omitted (we invoke the coercivity, continuity, and affine decomposition for the bilinear
form aCD and require a condition similar to (4.40) for the bilinear forms aCDq 1 <q ! QacD).

Offline-Online Computational Procedure

The offline-online computation decomposition and the corresponding operation counts for the pri-
mal and dual problems is equivalent to the procedure discussed in Section 4.3.3. We only re-
call that - given a new parameter value p - the online cost to evaluate the output estimate
SN (P, tk), V k G K is O(Nr +N3u+K(N2r +Ndu)+K(K+1)NprNu) and thus independent of M.

4.8.3 A Posteriori Error Estimation

We now turn to the a posteriori error estimation for the nonsymmetric problem. To begin, we define
- similar to (4.57) and (4.58) - positive lower bounds &a(A) : D -+ R+ and &m(At) : D -+ R+ for
the coercivity constants aa(p) in (4.128) and am(t) in (4.8), respectively. We also introduce the
dual norm of the primal residual (4.143)

E p ,k = Ppr k , VkEK, (4.150)
Npr VEY IVIV|Y

and the dual norm of the dual residual

edu (Atk d su , V k E K, (4.151)
vEY |V y
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where

Rdu (V;, tk) -aCD (v, TN(p, tk);) _ Im(, XN(P, tk) - IN(p, tk+1); A), V v E Y, V k c K,
AtI

(4.152)
is the dual residual in the nonsymmetric case. We also specify the inner products

(v,w)y aD (v, W; pref(s)), V v, E Y, (4.153)

and

(v, W)X m(v, w; pref(s)), V v,w Y, (4.154)

for some constant reference value(s) pref(s), and recall that - = (-, -)2, -x = ()X2
We note that, because of the skew-symmetry of ac, the definition of the Y-norm and the lower

bound for the coercivity constant only refer to the symmetric part aD. Thus, only the affine
decomposition of aD(V, w; t) is important for the choice of our bound conditioner in Lemma 6.

We now present the bounding properties for the errors in the primal variable, the dual variable,
and the output estimate. The error bounds are indeed equivalent - taking into account that the
primal and dual residuals are different now - to the results presented in Section 4.4.2. Throughout
this section we assume that the "truth" solutions y(p, tk) and XI('p, tk) satisfy (4.126) and (4.132),
respectively, and the corresponding reduced-basis approximations yN(p, tk) and 'i'N(p, tk) satisfy
(4.139) and (4.140), respectively.

Proposition 11. Let epr(, tk) -y(t, tk) - yN(A, tk) be the error in the primal variable and define

the "spatio-temporal" energy norm

k2

|v(L, tk) Ipr (M(v(A, tk),v(Atk);I) + a (vtk'),v(p,tk'); IL) At , Vv E Y. (4.155)
k'=1

The error in the primal variable is then bounded by

epr (_, tk) pr < Apr tk), Vp ED, Vk cK, (4.156)

where the error bound AprGLtk) is defined as

k2

A (pr (A)tk) _At r p k 2 , (4.157)Npr&a 01) > CNpr
k'=1 /

prand EIV (p, tk) is the dual norm of the primal residual defined in (4.150).

Proof. The proof directly follows from Proposition 6 and (4.130).

Proposition 12. Let edu , tk) - (/t, tk) - FN((A, tk) be the error in the dual variable and define

K

|||v4p,tk) du (M (V(Atk), (Atk); A) + aD (v(,tk'), V(,tk'); A) At (4.158)
k'=k
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The error in the dual variable is then bounded by

edu(, tk) du < Adu tk), V pe D, V k E K, (4.159)

where the error bound Adu (,, tk) is defined as

Ad~u k) At KEdu Uptk' 2 +uMA AI 22(410
_d (At K &aW\2d d

k'=k

and edu (/_, tk) is the dual norm of the dual residual defined in (4.151).

Proof. The proof directly follows from Proposition 7 and (4.130).

For the output bound we obtain the following results.

Proposition 13. Let the output of interest, s([_, tk), and the reduced-basis output estimate, sN(U, tk),
be given by

s(A, tk) - (y(/ttk)), Vg G D, Vk e K, (4.161)

and

k

SN ([t, tk) (YN (A, tk)) + Rpr ('N (M, tK-kk'); / tk') At, V p E D, V k e K, (4.162)
k'=1

respectively. The error in the output of interest is then bounded by

s(1, tk) - sN(0, tk) s (JL'tk), Vjp c D, Vk E K, (4.163)

where the output bound A'(p, tk) is defined as

A'N (p, t k) __ Apr k d u t K-k+), (4.164)

and pr (l, tk) and ANdu ( tk) are defined in Propositions 11 and 12, respectively.

Proof. The proof follows directly from Proposition 8 and (4.130).

Finally, we note that the simple output approximation, sN (p, tk), and corresponding bound,
(p, tk), according to Proposition 9 also holds for the nonsymmetric problem.

Offline-Online Computational Procedure

The offline-online computational decomposition directly follows our previous discussion in Sec-
tion 4.4.4 and in Appendix A; also see Appendix B for the necessary computations if the Crank-
Nicolson scheme is used. We therefore only summarize the computational costs involved in the
online stage; that is - given a new parameter value p and associated reduced-basis solutions

yN t) and IN(/tk), V k E K - the computational cost to evaluate A' (p, tk), V k C K, is
O(K(Npr + Ndu)(Q2 + QaQm ± Q2)). Again, all online calculations needed are independent of f.
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4.8.4 Numerical Exercise 3: Banks and Kunisch

We now turn to a particular numerical example of a convection-diffusion equation. We consider a
one-dimensional model for brain transport discussed in [14], where the authors use this problem as
a test case for their parameter estimation algorithms. In this section, we focus on generating the
reduced-basis approximation for this model and discuss the sampling procedure and convergence
results. In Section 7.4 we return to this example and employ our reduced-basis approximation to
solve the parameter estimation problem.

The transport system, defined on the one-dimensional domain Q = [0, 1], is given by

yt = ql yxx + q2 yx - q2, (4.165)

with initial conditions
y(0, x) -2X2 + 2Z, (4.166)

and homogeneous Dirichlet boundary conditions, y(t, 0) = y(t, 1) = 0. The outputs of interest is
the average values of y over a small domain centered at the points x = 0.25, 0.5, 0.75 as a function
of time t, where t C I= [0, 1].

The system response is influenced by two parameters, the diffusivity qi and the velocity (and
forcing) q2. We assume that qi varies in the range 0.1 < qi < 1, and that q2 satisfies 0.5 < q2 < 5.
Our input parameter is hence p = (Pi, P2) = (qj, q2) E D = [0.1, 1] x [0.5, 5] C RP=2 .

We next consider the time-discrete "truth" approximation of (4.165). The weak form of the
governing equation for y(p, tk) G Y is (4.126), where Y c Ye = Hoi(Q) is a linear finite element
truth approximation subspace of dimension M = 800, and u(tk) = 1, V k e K. The bilinear forms
are given by m(w, v) = f2 w v, aCD(w, v; i) = Al f wx vx - A2 fn w_ v, and b(v; p) = -P2 f v; the
bilinear forms admit the obvious affine representations (4.10), (4.11), and (4.131) with Qm = 1,
Qb = 1, and QaCD 2. Also note that the bilinear a satisfies (4.129) with aD

Pi fQ wx vx and aC (w, v; P) = P2 fQWx V. We also define the inner products (w, v)x = fQ wv and

(w, V)y fQ wX vX, corresponding to (4.153) for pi = 1; we may hence choose (see Lemma 6)
&a(p) = Al in (4.57). Note that the bilinear form m happens to be parameter-independent in this
example, and thus edu(,, tK+1) - 0 here. We have three outputs, sq(A, t') -- t (Y(A, tk)), 1 < q < 3,
can be written in the form (4.125), where fq(v) = Q fqV, 1 q 3, and Q" = [0.245,0.255],
Q12 = [0.495, 0.505], and Q 1 = [0.745,0.755]. We note that fq(v) E X, 1 < q < 3, since the outputs
are integrals over small regions. We choose a discrete timestep At = 0.01 for the time interval
I = [0, 1]; we thus have K = 100.

Reduced-Basis Approximation

We generate the sample set Sp and associated reduced basis space WP' according to the adaptive
sampling procedure described in Section 4.5. Since the initial condition is nonzero, we initialize
the procedure with (pr yo and set the desired error tolerance (for the relative error in the energy
norm) to Ctoi,min = 1 E -4. We sample on a random parameter test sample EF E (D) 1600 of size
1600. We plot and tabulate the resulting sample set Sp in P1 - P2 - tk-space in Figure 4-14 - wekNpr

need Npr,max = 16 basis functions to obtain the desired accuracy. We note that although K = 100,
only basis functions within the first 30 timesteps are selected. Furthermore, we observe that the
samples are not distributed uniformly over D x I[. Instead, more samples are (adaptively) chosen
in the "difficult" parameter range - for small diffusivities p1 and large velocities p2.
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Table 4.11: NE 3: Convergence rate and effectivities for primal problem.

Table 4.12: NE 3: Convergence rate and effectivities for dual problem corresponding to output 1.

We also generate reduced-basis spaces for the three dual problems corresponding to the three
output functionals q(v), 1 < q < 3; we obtain (for Eto1,min = 1 E -4): Ndumax =24, Numax = 24,
and N umax = 22.

Numerical Results

We now discuss the convergence results and effectivities for the primal problem, the dual prob-
lem, and the output estimate; we only consider the dual corresponding to output 1, s1 (/_, tk)
f1(y(t, tk)) (the results for the other two outputs are almost identical).

In Table 4.11 we present, as a function of Npr, mrax r and pr: for t

of these quantities see Section 4.7.2. Here ETest E (D)400 is a random input sample of size 400.
The convergence results for the dual problem, cdu , du , and -dU as a function of Ndu1 are~max,rel 7 max rel~ 7
presented in Table 4.12. We observe a rapid convergence of the primal and dual reduced-basis
approximation and that the error bounds are very sharp. We also note that the error for the dual
problem converges slower than the error for the primal problem. This is related to the output
functional which reflects as a very "rough" initial condition for the dual; the initial condition for
the primal, on the other side, is much smoother.

We next present in Table 4.13(a) and (b) the convergence rate for the output using the dual for-
mulation of Proposition 13 and the simple bound of Proposition 95, respectively. To this end, we de-
fine c'axre1, Anaxrei, and 7S: c'naxre1 is the maximum over -Test of Isi(, tq(M)) - SN(/p, tq(t)) /Smax,

naxre1 is the maximum over ETest of As (t, tK)/|smax|, and 7js is the average over ETest of

5 Since m is parameter independent here, we can simply choose &m(p) = 1 for the output bound
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Np Yna re Apr -pr
pr max,re max,rel 77

3 4.54 E -01 7.39E-01 1.31
6 5.22 E -02 6.08 E -02 1.15
9 2.20 E -03 2.69 E -03 1.12
12 2.85 E -04 3.76 E -04 1.08
15 8.51E-05 1.09 E -04 1.24

Nd 1  7 A u, -dd_ eax,rel maxrel 7
3 6.03E-01 1.78E+00 2.22
6 3.97E-01 1.18 E + 00 1.66
9 1.31E-01 2.26E-01 1.26
12 8.88 E - 02 1.10E-01 1.12
15 7.45 E - 03 8.67 E - 03 1.08
18 3.16 E - 03 3.99 E - 03 1.08
21 2.72 E - 04 3.50E-04 1.04
24 5.47 E -05 6.54 E -05 1.03



Sample Set SP N =16

30-

20

10,

0*

0: 0
0*

3 -- 0.8
2 - 0.6

0.4
10.2

R2

Figure 4-14: NE 3: Sample set Sp for D = [0.1, 1] x [0.5,5.0] and Npr = 16.
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___ pr p~r
n Anr kn
1 yo(x)
2 (0.100,5.000) 1
3 (0.100, 5.000) 22
4 (0.262,5.000) 2
5 (0.262,5.000) 23
6 (0.678,5.000) 3
7 (0.571, 5.000) 21
8 (0.117,4.294) 9
9 (0.117,4.294) 24
10 (1.000,5.000) 21
11 (0.166,5.000) 1
12 (0.100,0.500) 1
13 (0.177,5.000) 10
14 (0.177,5.000) 3
15 (0.177, 5.000) 5
16 (0.177, 5.000) 15



(a) (b)

Table 4.13: NE 3: Convergence rate and effectivities for output 1 using (a) dual formulation and
(b) simple output bound.

AS(p, tISn (P))/s(A, t (11)) - sN (A, tq (p))1; here t, (p) argmaxke s(ptk) - sN(ptk) and smax
max Rmaxp IS (,r tk)I (the quantities Ex ax,re and il' are defined similarly). We also
plot Esaxrel and Amaxrei as a function of Npr and Ndu in Figure 4-15(a) and (b), respectively.

We first note that, because of the slower convergence of the dual bound, we need to choose
Ndu > Npr to observe the square effect in the output error and output bound: however, for our
choice of Npr and Nd1 , emax,rel (respectively, AN(ptk)) does converge roughly as the square of

Emax,rel (respectively, AN ( k-t )). The output effectivities are 0(10) for the output bound in
Table 4.13(a) and 0(10 - 100), for the simple output bound in Table 4.13(b). We observe from
Figure 4-15 that increasing Ndu while keeping Npr constant results in a more accurate output
estimate and output bound. Similarly, for constant Ndu the accuracy of the output estimate and
bound increases as Npr increases. We note that we need approximately Npr = 7 and Ndu = 12 to
obtain an accuracy in the output bound of 1%; using the simple output bound we obtain the same
accuracy for Npr = 12. It thus follows that introducing the dual formulation in this problem does
not pay off - the simple output bound converges fast enough and is thus sufficiently accurate even
for small N. We also pointed out already that we need to introduce a separate dual problem for
each output - thus, for problems with many outputs (also see the next section), the simple bound
is certainly advantageous.

4.8.5 AP II: Dispersion of Pollutants

We now return to example AP II - the dispersion of a pollutant in a two-dimensional flow -
introduced in Section 1.1.1. We assume here that the location of source term is known. A sketch of
the flow field U with the source location and the eight measurement sensors is shown in Figure 4-16.
The domain , a typical point in which is (XI, x 2 ), is given by Q = [0, 4] x [0, 1]. We assume that
the concentration at the left boundary, FD, is zero and that the remaining boundaries, FN, are
impermeable. The diffusivity n is assumed to vary in the range 0.01 < K < 1; our input parameter
is hence M = (pi) = (K) c D = [0.01, 1] C R1=1 .

The time-discrete weak form of the governing equation (1.11) for the concentration c(1, tk) E
Y is thus (B.2) (we use the Crank-Nicolson scheme for the time-integration here6 ) with initial
condition c(/, t 0) = 0, where Y c ye {v I v H 1(Q), v = 0D} is a linear finite element truth

6 Here, we have UO = 1, L, = 1, and n c [0.01, 1]; the Peclet number thus varies in the range 1 < Pe < 100. For
small diffusivities the flow is clearly advection-dominated and thus Crank-Nicolson is the preferred time-integration
scheme.
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Npr Ndu 68re Asnxe 778Npr du max,rel max,rel

3 12 4.92 E -02 9.38E-01 17.9
6 15 1.06E-04 3.68 E -03 28.0
9 18 1.11 E-05 9.86 E - 05 5.52
12 21 1.29E-08 6.48 E - 07 17.3
15 24 5.75 E - 10 2.27E-08 10.1

Npr s Arei7ASN m ~ ax,rel miax,rel
3 1.85E-01 2.92 E +01 31.5
6 1.36E-02 2.40 E + 00 88.3
9 1.1OE-03 1.06E-01 98.6
12 1.38E-04 1.48E-02 42.1
15 8.95 E - 06 4.28 E - 03 111
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drnax,re for output 1 using the dual formulation.
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Figure 4-16: AP II: Velocity field with pollution source and measurement locations.

approximation subspace of dimension X = 3720.
Figure 4-17. The bilinear and linear forms are given

m(w, v)

aCD (w, v; )

b(v)

The truth approximation mesh is shown in

jIw v,

Aj Vw-VvJ+ v( V) + vw

9 PS g(X) V,

(V - )

(4.167)

(4.168)

(4.169)

where the source term gPs(x) is defined as

1 1 -- s2 s+(X
2 XPS)2

gPS(x) = 27r(o.PS) 2 e 2 (,PS)2 (4.170)

with the source location x5 = (s, 4Ps) = (3, 0.4) and standard deviation .ps 0.05. The velocity
field, U, is a Natural Convection (Navier Stokes) Flow with Gr = 10 5 and Pr = 0 taken from [121].
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We note that the bilinear and linear forms m and b are parameter independent, that a CD admits the
affine representation (4.131) with Qa = 2, and that the convective term ac is written in conservation
form. We also define the inner products (w, v)x f2 wv and (w, v)y j_ f Vw - Vv, corresponding
to (4.153) for pi = 1; we may thus choose &a(P) =Mi in (4.57). Again, m is parameter independent
here and thus edu(, tK+1) - 0. The sensor measurements, or outputs, are given by

sq(p, tk) -(yLtk);1q(X)) E jlq(x) yutk), 1 < q 8, V k E K (4.171)

where the spatial sensitivity is modeled as

(x 1 -x )2 +(x 2 - xlq 2

lq(x) = 2  
(4.172)

with standard deviation al = 0.05. We have j(y(p, tk); lq(x)) c X, 1 < q < 8, since the lq(x) are

(smooth) Gaussian functions. The sensor locations, X q = (x 1,x 1q), are given by xt ' = (3.5,0.2),
5 2 = (3.5,0.8), xs = (2.5, 0.2), X4 = (2.5, 0.8), X5 = (1.5,0.2), x16 = (1.5,0.8), X17 = (0.5, 0.2),
and x1

8 = (0.5, 0.8). We shall consider the time interval I= [0, 2] and a timestep At = 2.5 E-3; we
thus have K = 800.

Figure 4-17: AP II: Finite element truth approximation mesh.

We present in Figures 4-18 and 4-19 snapshots of the concentration over Q at eight timesteps
for the two extreme values of the diffusivity - M = 0.01 and p = 1.00 in the parameter set D,
respectively. For p = 0.01 the flow is clearly advection dominated, whereas for M = 1.00 the diffusive
terms dominate. We also show, in Figures 4-20 and 4-21, the outputs, i.e., concentration readings
at the 8 measurement locations, for the two parameter values M = 0.01 and p = 1.00, respectively.
We first note that the measured concentrations are considerably lower for p = 1.00 because of the
diffusive effects. On the other side, as already seen in Figure 4-18, the pollution "cloud" stays
more compact for p = 0.01 thus resulting in higher concentration outputs. Comparing Figures 4-18
and 4-20 we can in effect track the pollution cloud as it moves through the domain the pollution
is first registered at sensor 1, then sensor 2, sensor 4, and so on. However, due to the small amount
of diffusion present in the system the peak concentration in the outputs does decrease over time.

Reduced-Basis Approximation

We generate the sample set S55 and associated reduced basis space W" according to the adaptivegpr ppr

sampling procedure described in Section 4.5. We initialize the procedure with ftr = l it1 kI ) =
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t= 50 At

t= 100At

t = 200 A t

t = 600 A t

Figure 4-18: AP II: Concentration c(pI = 0.01, tk) at t = t', t50, t100, t150I, 200, t0 0 , t600, t 800 .
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t= 150At

t = 400 A t

t = 800 At

t = 1 A t



t = 50 A t

t= 100 At t= 150 At

t = 200 A t t = 400 A t

t = 600 A t t = 800 A t

Figure 4-19: AP II: Concentration c(p = 1.00, tk) at t - t', t 50 , t100, t 150, t200, 400, 600, t 800
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t = 1 A t
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Figure 4-20: AP II: Outputs sq(P = 0.01, tk), 1 < q < 8, as a function of time.
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Figure 4-21: AP II: Outputs sq(pu = 1.00, tk), 1 < q < 8, as a function of time.
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(0.01, 1At) and set the desired error tolerance (for the relative error in the energy norm) to ftol,min =

1 E-4. We sample on a log-random parameter test sample EF E (D) 6 0 of size 60 - we need

Npr,max = 207 basis functions to obtain the desired accuracy. We also generate the sample sets
s dul du,2 Idul du,2

Sd" and Sjd' and corresponding reduced-basis spaces Wd and W for the two dual

problems corresponding to the two output functionals iq (v), q = 1,2, respectively; we obtain (for

Etoi,min = 1 E-4 and pdu = (u,tkud) = (0.01, 801At)): Ndu,1,max = 225, Ndu,2,max = 200 '.

We plot the sample sets SLp and Sdu in M - tk-space (note the logarithmic scale in p) inkpr SNd>'
Figure 4-22(a) and (b), respectively. The plots reflect the fact that the primal evolves forward in

time whereas the dual evolves backward in time -- sp and S 1" are biased towards the beginning

and end of the time interval, respectively. We also note that the primal and dual sample sets are
biased towards smaller p values - convection dominates diffusion in this parameter range (see

Figures 4-18 and 4-19) and the problem is thus more complicated. We could a priori expect this
behavior from Propositions 5 and 10: a more "nonsymmetric" (i.e., complicated) problem results in

a slower convergence rate of the reduced-basis approximation and thus more samples are required

to obtain the desired accuracy. We also confirm this result numerically in Figure 4-23: we generate

two separate reduced-basis approximations for the time histories at two fixed parameter values,
p = 0.01 and p = 1.00, i.e., we consider a problem where time is the only varying parameter (as

is usually the case in POD). We plot the convergence rates of the relative errors, |I e(p, tk) IIpr/
I y(p, tk)jj, as a function of N in Figure 4-23. The convergence is slower for the smaller p-value
and more samples are required to obtain a specific desired accuracy.

Sample Set SP' N = 207 Sample Set S for output 1, Ndu,mx = 225
N Pr pr~max Ndu d~a

80 80 a 0 80 ! go

0 0 70 ' *f8
00 070 -, , 0

0 0
0 0

600 60C -00 0 0 0 0 0
50 50 0 0

0 0 2 0 0
000 0 0 0 0 0 0,

400 0 00 : O 0

0 0 300 0 0
0 0! 0200 0 . 0....20.*0

....... 0.. 0 .00 0 0R .. . ... ..
%0O: 0 0 0 0 0 0 0 0

00 0 0 0 0: 100 00

0: 0
0!48 .0 10

10-2 101 10 0

(a) (b)

Figure 4-22: AP II: (a) Sample set S with Npr,max = 207, and (b) sample set Sdu for the first
'Npr ''d

output, si, with N a - 225.
du,max-

7 The dual problems corresponding to the remaining outputs give similar results so we restrict our attention to
only the first two outputs
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Figure 4-23: AP II: Convergence rate of the relative error ujje(,t1jIIp for y= 0.01 and 1.00.11y(,Lt )IIl n i .0

Numerical Results

We now present convergence results and effectivities for the primal problem, the dual problems
corresponding to the first and second output, and the output estimate (for the definitions of the
quantities presented see Sections 4.6.2 and 4.8.4). Here, the parameter test sample, ETest - (D)50,
is a log-random sample of size 50.

In Table 4.14 we present, as a function of Npr, the maximum relative error, fpraxrel, the maximum
relative error bound Apre, and the average effectivity VPr; for the dual problems 1 and 2 we
tabulate E duxre mAxdu and ?du as a function of Ndu in Table 4.15(a) and (b), respectively. Wema max rel)
observe that the primal and dual reduced-basis approximations converge very fast. The effectivities
are very good, 0(1), for both the primal and dual problem. We note that the effectivities are slightly
larger for small diffusivities 0(3) and smaller, 0(1), for diffusivities close to p = 1. In general, we
would expect the bound conditioner to perform better for small diffusivities and worse for larger
diffusivities. However, for small diffusivities the convective term is dominant and the solution is
far from elliptic which usually results in larger effectivities. We would thus expect overall higher
effectivities than observed here.

We next turn to the convergence of the output estimate. We plot in Figures 4-24 and 4-25(a)
the maximum relative output error, Enxre1, and in Figures 4-24 and 4-25(b) the maximum relative
output bound, A'axrei, as a function of Npr and Ndu for output 1 and 2, respectively. As expected,
the error (and bound) decreases for fixed Ndu as Npr increases; similarly, for fixed Npr the error
(and bound) decreases as Ndu increases.

We also tabulate the relative maximum output error, output bound and output effectivities, as
a function of Npr = Ndu, for output 1 and 2 in Tables 4.16(a) and (b), respectively. We observe
the square effect in the output error and output bound: A, (p, tk) converges roughly as the square
of Ap(,, tk). However, the effectivities are considerably larger, 0(100), because our bound cannot
take into account any correlation between the primal and dual error. In Table 4.17(a) and (b)
we present the maximum relative output error, output bound, and effectivity for output 1 and 2
using the simple bound of Proposition 9 (for &m (p) = 1). The convergence of the output error and
bound is now only O(Ap(pt, tk)) and thus considerably slower; the effectivities, on the other side,
are only 0(10 - 100). To obtain an accuracy of the bound for output 1 of one percent, we require

116



Table 4.14: AP II: Convergence rate and effectivities for primal problem.

du A du jd
Ndu Emax,rel max, rel

20 4.23E-01 1.85 E +00 4.58
40 1.75E-01 7.51 E -01 3.93
60 7.66 E -02 1.55E-01 2.43
80 3.43 E -02 4.38 E -02 2.06
100 1.22E-02 1.54E-02 1.90
120 4.54 E -03 6.35 E -03 1.82
140 1.53E-03 2.04 E -03 1.73
160 1.1OE-03 1.31 E -03 1.69
180 3.77 E -04 5.39 E -04 1.62
200 1.97E-04 2.25 E -04 1.62

(a)

N u 77d
Ndu max,rel Amuax,rel fu
20 4.20 E -01 2.07 E +00 5.14
40 1.88E-01 3.92 E -01 2.84
60 6.66 E -02 1.13E-01 2.66
80 2.08 E -02 3.41 E -02 1.95
100 7.32 E -03 9.86 E -03 1.77
120 2.39 E -03 5.11 E - 03 1.76
140 7.27 E -04 1.09E-03 1.66
160 4.57 E -04 5.81 E -04 1.63
180 2.03 E -04 2.31 E - 04 1.60
200 5.91 E -05 1.01 E -04 1.56

(b)

Table 4.15: AP II: Convergence rate and effectivities for dual problem corresponding to (a) output

1 and (b) output 2.
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N pmre Apr -pr
Npr max,rel max,rel 7
20 3.96E-01 2.45 E +00 5.20
40 1.39E-01 5.04E-01 2.77
60 4.60 E -02 1.08E-01 2.17
80 1.95 E -02 3.60 E -02 2.03
100 1.17E-02 1.46E-02 1.85
120 3.03 E -03 3.91 E -03 1.74
140 7.61 E -04 1.37E-03 1.66
160 6.01 E -04 7.17 E -04 1.62
180 1.74E-04 2.88 E -04 1.58
200 9.59 E -05 1.33E-04 1.60
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Figure 4-24: AP II: (a) Maximum relative error Enax,re, and (b) maximum relative output bound

dnax,re for output 1 using the dual formulation.

approximately Npr = Ndu = 70 for the primal-dual formulation and approximately Npr = 140 for
the simple bound.

We next turn to the computational efficiency of the proposed method. We recall that the
computational cost is O(N3r + KN 2r) to solve for yN(y' tk), 0(2KNpr) to evaluate the simple

output estimate, AN(P,,tk), Vk E K, and 0(K(K+1)NprNdu) to evaluate SN(utk), Vk E K, using
the primal-dual formulation. The computational cost involved thus depends strongly on the total
number of timesteps K: if K < Npr, Ndu, the O(N3r )-term dominates and - given a certain desired
accuracy - introducing the dual problem can result in computational savings of up to 0(4). In
most cases, however, K > Npr, Ndu, and the computation cost due to the residual correction term,
O(K(K + 1)NprNdu), is likely to dominate. We already observed this behaviour in Section 4.7.2
for the delamination problem for small Npr and Ndu.

We present in Table 4.19, as a function of Npr(= Ndu), the online computational times to
calculate SN(L, tk) and As 9(, tk), V k E K, for output 1. The values are normalized with respect
to the computational time for the direct calculation of the truth approximation output s(/_, tk) =
j(u(#t, tk)), Vk c K. We note that the computational saving are moderate due to the K 2-complexity
of the residual correction term. We thus define K = {10, 20, 30,... , K} and present in Table 4.20
the online computational times to calculate sN(/t, tk), V k c K and As p, tk), V k E K. Again, the
online time to calculate A~J ([, tk) remains unchanged. However, we observe - especially for small
Npr = Ndu - up to 0(10) reduction in computational effort to evaluate sN( u, tk), V k E K. For
small Npr = Ndu the computational effort is dominated by the residual correction term with the

O(K(K + 1)NprNdu/10) complexity, for larger Npr = Ndu this effect is less obvious because of the
O(N3r) complexity to solve for yN (' tk).

We compare these results with the online computational times to calculate the simple output
estimate and output bound, N(A, tk) and &-y(p, tk), V k E K, presented in Table 4.21. The online
times are smaller since the computation does not involve the solution of the dual problem. We also
note that these times are (effectively) independent off the number of outputs considered. To obtain
an accuracy for the output bound of one percent, we require approximately Npr = Ndu = 70 for the
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Npr Ndu Emax,rel _ nax,rel 77

20 20 1.37E-01 1.30 E + 01 1908
40 40 4.09 E -02 1.02 E +00 150
60 60 3.07 E -03 4.62 E -02 182
80 80 2.12 E -04 4.01 E -03 185

100 100 3.87 E - 05 6.37 E -04 229
120 120 3.40 E - 06 6.49 E - 05 119
140 140 1.22 E - 07 7.51 E - 06 150
160 160 9.99 E - 08 2.24 E -06 175
180 180 4.55 E - 09 3.71 E - 07 140
200 200 1.98E-09 6.72 E - 08 110

(a)

Npr Ndu Emax,rel max,rel 7

20 20 1.60E-01 1.87 E + 01 3096
40 40 4.13 E -02 6.47E-01 1722
60 60 3.45 E -03 4.30 E -02 209
80 80 3.11 E-04 3.52E-03 160
100 100 3.58 E - 05 4.77 E - 04 206
120 120 1.01 E - 06 6.63 E - 05 160
140 140 9.77 E - 08 5.14 E - 06 185
160 160 3.10E-08 1.53E-06 174
180 180 6.14 E - 09 2.18 E - 07 111
200 200 5.58E-10 4.61 E - 08 180

(b)

Table 4.16: AP II: Convergence rate and effectivities using dual formulation for (a) output 1 and

(b) output 2.

Npr Enax,rel ax,rei

20 2.84E-01 9.86 E +00 41.8
40 4.62 E -02 2.03 E +00 41.1
60 1.13E-02 4.35E-01 55.2
80 2.46 E -03 1.45E-01 48.9
100 1.69E-03 5.86 E -02 42.3
120 2.52 E -04 1.57 E -02 78.5
140 1.40E-04 5.49 E -03 107
160 3.43 E -05 2.88 E -03 146
180 1.50 E -05 1.16E-03 113
200 1.11 E-05 5.37 E -04 148

(a)

Npr Enax,rel max,rel 7

20 1.69E-01 1.27E+01 99.1
40 5.76 E -02 2.60 E + 00 47.9
60 1.61 E -02 5.58E-01 37.7
80 4.75 E -03 1.86E-01 32.7
100 2.77 E -03 7.53E-02 43.0
120 4.53 E -04 2.02 E -02 46.4
140 1.06E-04 7.06 E -03 64.1
160 9.53 E -05 3.70 E -03 56.1
180 3.38 E -05 1.49 E -03 46.8
200 1.92E-05 6.89 E -04 37.1

(b)

Table 4.17: AP II: Convergence rate and effectivities using simple bounds for (a) output 1 and (b)
output 2.

119



10 0

-2 0 =d =10 u110N 120 N 120

10 du -

10 ~ ~~~.. .... 10.. . ..........

-E E

10- -

1010
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

2 40 6 80 10Npr 10 10 10 10 200 40 6 80 00Npr12 14 16 18 20

(a) (b)

Figure 4-25: AP II: (a) Maximum relative error el axre, and (b) maximum relative output bound

dnax,re for output 2 using the dual formulation.

primal-dual formulation and Npr =140 for the simple bound. The computational savings compared
to the underlying finite element truth approximation are a factor of 40 for the simple bound, a factor
of 15 for the primal-dual formulation with the output evaluated for all k E K, and a factor of 70
for the primal-dual formulation with the output evaluated for all k C K. The actual run-times to
compute the output estimate and output bound in MATLAB 6.5 on a 750 MHz Pentium III are
2.59 sec. (simple bound), 6.25 sec. (primal-dual, k E K), and 1.35 sec. (primal-dual, k E K).
We note that the computational saving observed here are smaller than in Section 4.7.2 because the
dimension of the truth approximation, N, is smaller. We also note that these results are for a single
output - were we to consider several outputs, the online computational time for the primal-only
approach would remain the same, whereas the computational time for the primal-dual formulation
would increase with the number of outputs.

Let us now assume that the acceptable accuracy in the output bound is 10% instead of 1%. We
observe from Table 4.16 and 4.17 that Npr = Ndu = 50 and Npr = 90 are now sufficient for the
primal-dual and primal-only approach, respectively. The computational savings are now a factor of
110 for the simple bound, a factor of 19 for the primal-dual formulation with the output evaluated
for all k E K, and a factor of 90 for the primal-dual formulation with the output evaluated for all
k C R - the simple bound is now clearly preferable. The run-times are now 0.85 sec., 5.02 sec.,
and 1.06 sec., respectively.

Finally, we remark that the decision about employing the primal-dual formulation for the output
bound or the simple (primal-only) output bound usually depends on the specific problem. The
simple bound is advantageous if (i) K is large, i.e., K > Npr, and the output estimate has to be
evaluated for all k E K - in this case the O(K(K + 1)NprNdu) complexity is detriment to the
computational efficiency, and (ii) if many outputs are required and thus as many dual problems
have to be evaluated.
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Npr Ndu max,rei nax,rel ?7
20 20 2.84E-01 1.30 E +01 39.4
40 40 4.62 E -02 1.03 E +00 15.7
60 60 1.13E-02 5.27E-02 5.18
80 80 2.46 E -03 5.65 E -03 2.18
100 100 1.69E-03 2.25E-03 1.32
120 120 2.52E-04 2.90 E -04 1.18
140 140 1.40E-04 1.41 E -04 1.07
160 160 3.43 E -05 3.57E-05 1.08
180 180 1.50E-05 1.53E-05 1.02
200 200 1.11 E-05 1.11 E-05 1.01

(a)

Npr Ndu dnax,re max,rel ?7

20 20 1.69 E - 01 1.87 E + 01 120
40 40 5.76 E -02 6.55E-01 8.41
60 60 1.61 E -02 4.77 E -02 2.44
80 80 4.75 E -03 8.20 E -03 1.40
100 100 2.77 E -03 3.15 E -03 1.22
120 120 4.53 E -04 4.67 E -04 1.08
140 140 1.06E-04 1.09E-04 1.03
160 160 9.53 E -05 9.55 E -05 1.01
180 180 3.38 E - 05 3.39 E - 05 1.00
200 200 1.92E-05 1.92 E - 05 1.00

(b)

Table 4.18: AP II: Convergence rate and effectivities for output estimate and
in (4.122) and (4.123), respectively: (a) output 1 and (b) output 2.

Table 4.19: AP II: Online computational times to calculate SN 0, k) and AQN k) for all k E K

(normalized with respect to the time to solve for s(M, tk), V k c K).

121

output bound defined

Npr = Ndu sN(I, tk), V k K As (,, tk), V k E K s(, tk), V k K

20 4.33 E -02 2.10E-03 1
40 5.22 E -02 2.95 E -03 1
60 5.70 E -02 4.OOE-03 1
80 6.27E-02 7.86 E -03 1

100 6.78 E -02 1.63 E -02 1
120 7.78 E -02 2.63 E -02 1
140 8.73 E -02 3.53 E -02 1
160 9.44 E -02 4.56 E -02 1
180 1.04E-01 5.74 E -02 1

200 1.16E-01 7.39 E -02 1



Table 4.20: AP II: Online computational times to calculate SN(p, tk) and A' (p, tk) for all k E K

(normalized with respect to the time to solve for s(p, tk),V k c K).

Table 4.21: AP II: Online computational times
with respect to the time to solve for s(/_, tk), V k

to calculate
c K).

sN(P, tk) and AQ~,tk) (normalized

122

Npr = Ndu SN(, tk), V k C K As p(, tk), V k C s(,tk),V k c K
20 5.34 E - 03 2.10E-03 1
40 7.OOE-03 2.95 E -03 1

60 8.53 E -03 4.OOE-03 1
80 1.03E-02 7.86 E -03 1

100 1.35 E -02 1.63E-02 1

120 1.96E-02 2.63 E -02 1

140 2.73 E -02 3.53 E -02 1
160 3.36 E -02 4.56 E -02 1
180 4.14 E -02 5.74 E -02 1
200 5.10E-02 7.39 E -02 1

Npr SN(p, tk), V k E1 K a (p, tk), V k K s(t, tk), V k K
20 8.63 E - 04 9.30 E -04 1

40 1.72 E - 03 1.13E-03 1
60 2.82 E -03 1.28E-03 1
80 4.13 E - 03 2.10E-03 1

100 7.02E-03 5.38E-03 1
120 1.23E-02 7.91 E -03 1

140 1.69E-02 1.00E-02 1
160 2.10 E -02 1.30 E -02 1
180 2.66 E -02 1.59E-02 1
200 3.45 E - 02 1.99E-02 1



Chapter 5

Nonaffine Linear Parabolic Equations

5.1 Introduction

In Chapter 4 we developed the reduced-basis method and associated a posteriori error estimation
for linear parabolic problems with affine parameter dependence. Based on the affine assumption
we introduced very efficient offline-online computational procedure relevant to the many query or
real-time context.

Unfortunately, if the affine parameter dependence is not met, this computational strategy breaks
down; the online complexity will still depend on K. For example, for general g(x; p) (here x E Q
and p E D) the bilinear form

a(w, v; g(x; p)) = Vw - Vv + jg(;) w v (5.1)

will not admit an efficient, i.e., online K-independent, computational decomposition. In a recent
note Barrault et al. [15] introduce a technique that recovers the efficient offline-online decomposi-
tion even in the presence of nonaffine parameter dependence - we briefly reviewed the empirical
interpolation method in Section 2.4. In this approach, the authors develop a "collateral" reduced-
basis expansion gm(x; p) for g(x; p) and then replace g(x; p) in (5.1) with the (necessarily) affine
approximation gm(x; p) -- EM=1 pm m(p)qm(x). The essential ingredients are (i) a "good" collat-
eral reduced-basis approximation space, W9 = span{qm(x), 1 < m < M}, of dimension M, (ii) a
stable and inexpensive interpolation procedure by which to determine the S0 m (p),7 1 < m < M,
and (iii) an effective a posteriori estimator with which to quantify the newly introduced error
terms.

We now apply this technique and extend the results of the previous chapter to parabolic prob-
lems with nonaffine parameter dependence, i.e., where g is a nonaffine function of the parameter

At and spatial coordinate x; we will consider nonlinear problems in Chapter 6. Since the primary
focus here is the treatment of the nonaffine terms, we do not consider adjoint formulations in this

chapter.
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5.2 Abstract Formulation

We directly consider a time-discrete framework associated to the time interval I =]0, tf]. We recall
that I is divided into K subintervals of equal length At = -, that tk is defined by tk kAt, 0 <
k < K ; furthermore, E {t0,..., t} and K {1, ... , K}. We shall consider Euler-Backward
for the time integration. We also recall our reference (or "truth") finite element approximation
space Y of very large dimension P1. Clearly, our results must be stable as At -> 0, K -+ oc, and
K -> 00.

We may now directly consider our "truth" finite element approximation: given a parameter
p E D, we evaluate the (here, single) output of interest

s(p, tk) -(y(- t tk)), Vk e K, (5.2)

where the field variable y(p, tk) E Y, V k E K, satisfies the nonaffine parabolic partial differential
equation

m(y(P, tk),V) + At a(y(, tk), v; g(x; p)) = m(y(p, tk-1), v) + At b(v; h(x; p)) u(tk), V v E Y,
(5.3)

with initial condition (say) y(p, t 0) = yo(p) = 0. Here, M and D are the input and input domain;
m(., -) is a X-continuous bilinear form; a(., *; g(x; p)) is a Y-continuous linear operator; b(-; h(x; p))
and f(.) are X-continuous linear forms; and u(tk) denotes the (here, single) "control input" at time
t - tk. Note that a and b depend on g(-; t) E L (Q) and h(.; f) e L (Q); we further assume
that these functions are continuous in the closed domain 0 and sufficiently smooth with respect to

D E V. We shall suppose that a is of the form

a(w, v; g(x; M)) = ao (w, v) + a,(w, v, g(x; t)), (5.4)

where ao(-,-) is a continuous (and, for simplicity, parameter-independent) bilinear form and ai(., -, g(-))
is a trilinear form. For simplicity of exposition, we assume here that h(x; p) = g(x; p) and also that
m and f do not depend on the parameter.

We shall make the following assumptions. We assume that a(-, -; g(x; p)) and m(., -) are contin-
uous

a(w,v;g(x;Ap)) < ^a(p)jwjyjvjy -yjwjyflvfly, Vw,v E Y, V t E D, (5.5)
m(w,v) < 7mWWlX lvx, Vw,v C Y; (5.6)

coercive,

0 < a0a aa(p) E inf a(w, w; g (x; P)) V c D, (5.7)
_ ~ wCX flw||At

0 < am inf m(v,v) (5.8)

and symmetric, a(v, w; g(x; p)) a(w, v; g(x; p)), V v, w E Y, V/t c D, and m(v, w) = m(w, v),
V w, V C Y, V A c D. (We (plausibly) suppose that 'Y , ymI aa, am may be chosen independent of
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iV.) We also assume that the trilinear form a, satisfies

ai(w,v,z) <; -Ya1|1WIIX flvkx |ZflLoo(Q), Vw,V C Y. (5.9)

Next, we require that the linear forms b(.; h(x; it)) : Y --+ R and t(-) : Y -+ R be bounded with
respect to 1| - ||x. And finally, we require that all linear and bilinear forms are independent of time
- the system is thus linear time-invariant (LTI). It follows, given that g(-; p1) C LO (0), that a
solution to (5.3) exists and is unique [94].

5.2.1 Numerical Exercise 4: A Nonaffine Diffusion Problem

As a numerical example we consider the following nonaffine diffusion problem defined on the unit
square, Q =]0,1[ 2 E GR 2 : Given p = (p 1, /2) E 'D = [-1, -0.01]2 C JRP=2, we evaluate y(p, tk) E Y
from (5.3), where Y c Y' = Hol(Q) is a linear finite element truth approximation subspace of
dimension AP = 2601,

m(w, v) =j W v, ao(w, v) Vw -Vv, al(w, v, z) z w v, b(v; z) z v, (5.10)

and z = G(x; p) is the (nonaffine) function defined in (2.36). The output can be written in the
form (5.2), s(ttk) - £(y(tLtk)), V k c K, where f(v) = IQI-1 fQ v - clearly a very smooth
functional. We shall consider the time interval I = [0, 2] and a timestep At = 0.01; we thus have
K = 200. We also presume the periodic control input u(tk) = sin(27rtk), tk E E.

Two snapshots of the solution y(pi, tk) at time tk = 25At are shown in Figures 5-1 (a) and (b)
for A = (-1, -1) and p = (-0.01, -0.01), respectively. The solution oscillates in time and the peak
is offset towards x = (0, 0) for p near the "corner" (-0.01, -0.01).

= t(-1,-1), t=25 A t

0.04

0.03,

0.011

0

= (-0.01,-0.01), t = 25 A t

0.1 .

0.08

0.06

'0.04,.

0.02s

01

X2
x1

(a)

X

(b)

Figure 5-1: Solution y(p, tk) at tk = 25At for (a) y = (-1, -1) and (b) /y = (-0.01, -0.01).
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5.3 Reduced-Basis Approximation

5.3.1 Formulation

We first introduce the nested sample sets SY = {j4 E D,..., N E } 1< N < Nmax, where
A = (p, tk) and D D x I. We then define the associated nested Lagrangian [85] reduced-basis
space

WK = span{(n = y(A"), 1 n < N}, 1 < N < Nmax, (5.11)

where y(A) is the solution of (5.3) at time t tkyn for p = p.

Before we proceed, let us first motivate the need for the empirical interpolation approach in deal-
ing with nonaffine problems: were we to follow the classical recipe, the reduced-basis approximation
would be obtained by a standard Galerkin projection: given p. E D, we evaluate

SN (P, tk) (yN (p, tk)), Vk e K, (5.12)

where YN(A, tk) c WN satisfies

m(yN ptk), v) At a(yN(, k g(X;

m(YN(,tk),V) + At b(v;g(x; )) U(tk), V v G WN1 , V k E K, (5.13)

with initial condition yN(/u, t0) = 0. We now express YN(P, k (=1 yNa(p, tk) (j and choose
as test functions v = (n, 1 < n < N in (5.3) to obtain, V k E K,

N

{m(,(j) + At (ao ((i, (j ) + ai1((i, (j, g (x; M))) IyN j (P, k
j=1

N

Z m((i, (j) yN j(, tk-1 +At b((i;g(x; M)) u(tk), 1 < i < N. (5.14)
j=1

We observe that while m((j, (j) and ao((i, (j) are parameter-independent and can thus be pre-
computed offline, b((i; g(x; M)) and a,((, (j, g(x; tt)) depend on g(x; p) and must therefore be eval-
uated online for every new parameter value p. The operation count for the online stage will thus
scale as O(N 2 K), where K is the dimension of the underlying truth finite element approxima-
tion space: the reduction in marginal cost gain obtained in moving from the truth finite element
approximation space to the reduced-basis space will be quite modest regardless of the dimension
reduction.

To recover online K-independence, we appeal to the empirical interpolation method discussed
in Section 2.4. We simply replace g(x; At) in (5.13) with the (necessarily) affine approximation
9M(X; P) = Pm pMm(pL)qm(x) from (5). We thus construct the nested samples S9, = {p G
D, -- , ptC C D}, 1 < M < Mmax, associated nested approximation spaces W span{m
g(pgi), 1 < m < M} = span{qm, 1 < m < M}, 1 < M < Mmax, and nested sets of interpolation

points TM {t 1 , ... , tM}, 1 < M < Mmax, following the procedure of Section 2.4. Our reduced-
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basis approximation YN,M(/, tk) to y k(p, tk) is then: given p G D, yN,M(01, tk) e WN satisfies

m(yN,M (A, tk), V) + At a(yN,M (A, tk), V; 9M (X; 0))

= m(yN,M(u, tk-1), V) + At b(v; gM (x; p)) U(tk), V v e WN, V k c K, (5.15)

with initial condition YN,M(p, to) = 0. We then evaluate the output estimate, SN,M(A, tk), from

SN,M(Itk) = (yN,M (A, tk)), V k c K. (5.16)

We now express yN,MItk) __ N yN,Mn,tk) (n, choose as test functions v = (n, 1 < n <
N, and invoke (2.29) to obtain

N M

m((,(j) + At ao((i,( j) + + S pM m(L) ai(Ci,(j, qm) YN,Mj (IL, tk)
j=1 m=1

N M

= m((i, (j) YN,M j (A, tk-1) + At pM m(y) b((i; qm) U(tk), 1 < i < N. (5.17)
j=1 m=1

where PM m(I), 1 < m < M, is determined from (2.30). We indeed recover the online K-
independence: the quantities m((j,(j), ao((i,(j), ai((, j,qm), and b((i;qm) are all parameter

independent and can thus be pre-computed offline, as discussed further in Section 5.3.3.

Note that we construct the parameter-time sample set S' and associated reduced-basis space

WN using the adaptive sampling procedure described in Section 4.5. During the sampling process

we shall use the "best" possible approximation gM(x;#) of g(x;p) so as to minimize the error

induced by the empirical interpolation procedure, i.e., we set M = Mmax.

5.3.2 A Priori Convergence Theory

We consider here the rate at which YN,M([, tk) converges to y((p, tk). To this end, we first define

1 sup b(v; g(.; p) - gM (-; y)) (5.18)
6MGL) VEY IVIIY

1 SPSPa (w, v; g (-; p) -- gm (;p)(-9
942(I#) 6MCL)sup sup ,(5.19)

wM(A) wEY vEY UWyUIIVY

b(3(v) gsup (-;)). (5.20)

where EM([) is the interpolation error defined in (2.31). We can prove

Proposition 14. For EM() of (2.31) satisfying EM(p) < aa(IL)/(4,0 2 (y)) (say), the error e(y, tk)
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y (tt, k ) _ YN,M (p, tk) satisfies

k k

am fle(pztk)h + a At < T)tk' 2 At U( k')2

k'=1 k'=1

+ WN(tk)EWK {m f ly~utk) - WN X + At (Ya(p) - 2 aa(p)) fl(pt2k - wN(tk) 11

k

+ At (7Ya(P) + 2 aa(/u)) 1 inf y(p, tk') - wN(tk') 2, (5.21)
k'=1 WN (tk')CWK 

where

T (p) = 5 ( 22 24'3(p) 2

(/) \ ( Paa(p) 2 J

Proof. To begin, we note from (5.3) and (5.15) that

m(e(p, tk) - e(tk-1), v) + At a(e(p, tk), v; g(X; A))

= At (b(v; g(X; I) - gM(X; P)) u(tk) - a(yN,M(1, tk), V;g(X;/- gM (X; p)) , V v C WN. (5.22)

with initial condition e(p, t0 ) = 0, since y( p , t0 ) = yN,M(/, t0 ) = 0 by assumption. Let wN(tk) E
WN be the projection of y(p, tk) with respect to the "m" scalar product and choose v = wN(tk) _
yN(A, tk) _ e(ptk) _ (y(,l'tk) - wN (tk)) in (5.22). Following the same steps as in the proof of
Proposition 5 we obtain

m(e(pu, tk), e(g, tk)) - m(e(, tk--1), e, tk-1)) + At a(e(,, tk), e(p, tk); g(X; p))
< m(y(wtk) -wN(tk) Iy(utk) _WN(tk))

-m(y(A, tk-1) _N (tk-1), y ,tk-1) - N (tk-1))
+At a(y(p, tk) - wN(tk), Y('Cu tk) - wN(tk); g(X; A))

+2At (b(v; g(x; t) - gM(x;lt)) u(tk) - a(yN,M(P, tk), V;g(X;A)- gM(X; t))), (5.23)

which after summing from k' = 1 to k leads to

k
m(e(t, tk), e(/t, tk)) + At 1 a(e(t, tk'), e( , tk); g(X; A))

k'=

< m(y (A,tk) - wN (tk), y(Pt tk) -WN (tk))
k

+ At 13 a(y(p), tk') - w N(tk'), Y(At, tk' wN (tk'); g(X; t))
k'=1

±2At E (1i(/_L) IU(tk') I + '2 (Pt) I IYN,M (A,tk )HIy) EM(At) l~~y (5.24)

where the last inequality follows from (5.18) and (5.19). We now note that lVIy 5 Ily(p,tk) -
WN y - Je(p, tk)Hy and recall the identity (4.30) which we apply four times: first, with c
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EM(/) V)1(y) u(tk) , d -- HY(ut)-wN(tk) y, and p2 =a a(I); second, with c= eM(1) 1j(i) u(tk')

d = IIe(p, t')IIy, and p2 = aa(p)/4; third, with c = EM(p) 2(P) IyN,M(p, tk)Iy, d _y ,t') -

wN(tk) y, and p 2 = &a(P) ; and fourth, with c = EM(pA) 02(() IyN,M(A, tk)Ily, d ke(ptk)Iy,

and p2 = aa(p) / 4 . We can then bound the last term of (5.24) by

k=

S 1 ) 
++ 2 ( ) 

Z NN,M,(,)tk 
') Y M)

k k

< EM (It)2 5 01 (A)2 At 1: U(tk 2 +2(P)2 At t yNM k' 2

Ga(I k'=1 k'=1

+2 At aa( yt) -WN (t x 2  S Yk')Lfy. (5.25)
k'=1 k'=1

We next obtain from (5.15) with v = YN,M(tL, tk), invoking the Cauchy-Schwarz inequality for the

cross-term m(yN,M (i, tk), YN,M (P, tk-1)) and applying (4.30) with c = M1 /2 (YN,M ([, tk), YN,M((p, tk)),

d = m1/2(N, M (A, tk-1), YN,M 01, tk-1)), and p = 1, that

m(yN,M (A, t k), YN,M (P, tk)) - m(yN,M(P, tk-1), YN,M(P, tk-1))

+2 At a (yN,M (A, tk), YN,M (C, tk); g(X; A))

< 2 At b(yN,M (, tk); gM (X; A)) u(tk)

+2,At a(yN,M(t k), YN,M (P, tk);g(X;A) _ gM (X; /t))

S2 AtO3(P) HYN,M(,t ) I k + 2 At M (p) 02 (L) IYN,M (/-, tY

A3 2 k)2 + At a(0) 1YN,M(A, tk)y, (5.26)
a W - 2 02(P) EM (A)

where the second inequality follows from (5.19) and (5.20), and the last inequality from (4.30) with

c = 3 3(A) u(tk), d = IyN,M(, tk) y, and p = ca(A) - 2 02(A) EM(p); note that p > 0 from our

assumption on eM(I). Invoking (5.5) and summing from k' = 1 to k we obtain

k

m(yN,M(P, tk), YN,M (, tk)) + At E a(yN,M(, tk'), YN,M (, tk'); g(X; jt))
k'=1

< At E u(tk)2. (5.27)
~ a( ) - 2 25(A)2M() k'=1

From the coercivity of m and a, and our assumption on EM(p) it then directly follows that

At |3yN,M utk') A2t3> 2k)2 (5.28)
k'=1 - a (j)(a (C ) - 2 02 (A) E M (A)) k'=1

r 2 k

< 2aPa ) At u(t)2. (5.29)
k'=1
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From (5.24) and invoking (5.25) and (5.29) we obtain

k

m(e(0, tk), tk) + At a(e(p, tk'), e(g, tk'); g(X;)
k'=1

< m(y(P, tk) -WN (tk),P tk _ WN (tk)
k

+At > a(y(p,tk') - wN(tk'), yItk') - wN (tk');g(X;))
k'=1

k k
2 At aa(p) I y(P,tk') -wN(tk')112 +AtaCa S le(pptk')1 2

k'=1 k'=
k

+T(p) At k U(tk')2, (5.30)
k'=1

where

T5() = M()2 V(),()2 + /2(t) 2 43(/t) 2

T Cat 0- ) Ca (p)2-

The desired result then directly follows from the continuity and coercivity of m and a.

El

We note from Proposition 14 that M should be chosen such that EM (A) is of the same order as
the best-fit error, otherwise the term T(p) may limit the convergence of the reduced-basis approx-
imation. We will observe a similar requirement for M and the nonaffine function approximation
error EM(p) when we discuss a posteriori error estimation in Section 5.4.

As regards the best approximation, we note that WN comprises "snapshots" on the (P + 1
dimensional) manifold My - {y(/_, tk) V (M tk) e D} induced by the parametric and temporal
dependence. The critical observation is that My is very low-dimensional and smooth under our
hypotheses on stability and continuity - the proof follows the same lines as in Section 4.3.2 for
the affine case. We thus expect that the best approximation will converge to y(p, tk) very rapidly,
and hence that N may be chosen small.

5.3.3 Offline-Online Computational Procedure

In this section we develop the offline-online computational procedure in order to fully exploit the
dimension reduction of the problem [9, 48, 60, 91]. We first express YN,M (O, tk) as

N

YN,M (t, tk) = YN,Mn (P, tk) (n, (5.31)
n=1

and choose as test functions v = <, 1 n < N in (5.15). (We prefer Galerkin over Petrov-Galerkin
for purposes of stability.) It then follows from (5.17) that yNM(_, tk) = [YN,M (t, tk) yN,M 2(, tk)

YN,MN (_, tk)]T E RN satisfies

(MN + At AN(A)) N,M(It k) = MN YN,M ' tk-1) + At FN(p) u(tk), Vk C K, (5.32)
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with initial condition yN,M n(p, t0 ) = 0, 1 < n < N. Given yNM ' tk), V k E K, we finally evaluate

the output estimate from

SN,M(, tk) = L' yNM ( tk), Vk E K. (5.33)

Here, MN G RNxN is a parameter-independent SPD matrix with entries

MN i~j = mn((j, (j), 1 < i, j < N. (5.34)

Furthermore, we obtain from (2.29) and (5.4) that AN(A) C jNxN and FN(y) E RN can be

expressed as

M

AN( 1-) AO,N + 7 SOMm(p) AmN, (5.35)
m=1

M

FN(P) E (p Mm((p) F), (5.36)
m=1

where pMm(p), 1 < m < M, is calculated from (2.30), and the parameter-independent quantities
AO,N IRNxN, Am E IRNxN, and FW E RN are given by

Ao,N i~j =ao ((ji, (j), I < i, j < N,

Am = a, ((i, (j, qm), 1 i,j1N, 1<m<M,

FK% b((i; qm), 1<5i<5N, 1 5mMM

respectively. Finally, LN G RN is the output vector with entries LNi = f((j), 1 < i < N.

The offline-online decomposition is now clear. In the offline stage - performed only once - we
first construct the nested approximation spaces Wh and sets of interpolation points TM, 1 < M <

Mmax; we then solve for the (., 1 < n < Nmax and compute and store the p-independent quantities
in (5.34), (5.37), and LN. The computational cost - without taking into account the construction
of Wh and TM - is therefore O(KNmax) solutions of the underlying K-dimensional "truth" finite
element approximation and O(MmaxN2ax) -inner products; the storage requirements are also

O(MmaxNax)- In the online stage -performed many times, for each new parameter value [I -
we first compute WM(p) from (2.30) at cost O(M 2) by multiplying the pre-computed inverse of

BM with the vector g(ti; A), 1 < i < M; we then assemble the reduced-basis matrix (5.35) and

vector (5.36); this requires O(MN 2 ) operations. We then solve (5.32) for yN,Mu tk); since the

reduced-basis matrices are in general full, the operation count (based on LU factorization and our

LTI assumption) is O(N 3 + KN 2 ). Finally, given yN M (p, tk) we evaluate the output estimate

SN,M(P, tk), V k C K, from (5.33) at a cost of O(KN).

Hence, as required in the many-query or real-time contexts, the online complexity is independent

of K, the dimension of the underlying "truth" finite element approximation space. Since N, M < 
we expect significant computational savings in the online stage relative to classical discretization

and solution approaches (and relative to standard reduced-basis approaches built upon (5.13)).
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5.3.4 Implementation Issues

At this point we need to comment on an important issue concerning the actual numerical imple-
mentation of our proposed method which, if not addressed properly, can lead to erroneous results.
We first note that solving the "truth" finite element approximation (5.3) for y(p, tk) necessitates
the integration of terms of the form f2 v g(x; M) (and f9 w v g(x; p)) - which (usually) have to be
evaluated by (say) Gaussian quadrature:

AQP

v g(X; A) w W ov(xQ) g(xQP; A), (5.38)
j= 1

where the wj are the elemental Gauss-Legendre quadrature weights, xf are the correspond-
ing elemental quadrature points, and NQp is the total number of quadrature points. Similarly,
the reduced-basis approximation procedure requires, during the offline stage, the evaluation of
(say) f2 (i qm. For consistency, the term f2 (i q, should be evaluated using the same quadrature
rule (5.38) that was used to develop the "truth" finite element approximation,

KQP

(i qm -_1 wj (i (xz ) q. (xz ); (5.39)
1j=1

absent this consistency, uN,M(M) will not converge to u(p) as N, M -> oc.

From the construction of the interpolation points ti, 1 < i < Mmax, we note that the qm,
1< m < Mmax, can be written as a linear combination of the basis function i = g(x; 1-), 1 < i <
Mmax, obtained from our greedy adaptive procedure in Section 2.4: $i = Timqm, 1 < i, m K Mmax,
where T E RMmaxxMmax is the corresponding transformation matrix . Unfortunately, it turns out
that T is badly conditioned and the resulting q, required in (5.39) susceptible to large round-off
errors. To avoid this problem we follow a different route. First, while generating the basis functions

j - g(x; p') E IR, 1 < i < Mmax, we also generate a corresponding set of functions (9 evaluated
at the quadrature points xj, 1 j < NQp, that is P(x( ) = g(xf; Mg), 1 < j 5 XQp, 1 < i <
Mmax. Next, we construct the set of interpolation points t2 and functions qj from the j according to
the procedure of Section 2.4. During this procedure, we also construct vectors of quadrature-point
values, q.P C RNQP, 1 Km < Mmax, from the C,: starting with q, = Q (x)/(1(ti) and then
setting rM (X) = ( () - Em-1 0 -1 9 P (x), qM(x) = rM (x)/rM(tM), 2 < M < Mmax, where
the o-,-- are determined during the construction of the qj. Note that qP is simply the "basis"
function corresponding to qm, but evaluated at the quadrature points, i.e., qlf(xQ) = qm(x ),

1 5 j < AQP, 1 < m < Mmax. Given the qP, we can then directly evaluate the integral fa (iqm
from

JVQP] i q( Wj Q, ) Q (5.40)
j= 1

Using this approach during the numerical implementation we can avoid the round-off errors that
resulted from the conditioning of the transformation matrix T.
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5.4 A Posteriori Error Estimation

5.4.1 Preliminaries

We now turn to the development of our a posteriori error estimator. To begin, we recall the
definition of () D -> R+ as a lower bound for the coercivity constant aa(p). We next

introduce the dual norm of the residual

EN,M(A, tk) = Skv , VkEK,
VEY |1||Y

(5.41)

where

R(v; y, t') = b(v; gM(x; p)) u(tk) - a(yN,M (A, V; 9M(X; A))

- m(yNM (A, tk) - YN,M (A, tk-1), V), Vv e Y, Vk c K,

is the residual. We also introduce the dual norm

<"a( tk) SUP b(v; qM+1) U(tk) - a,(yN,M(M, tk), v, qM+), V k e K,
vEY ||v| y

which reflects the contribution of the nonaffine terms. Finally, we specify the inner products

(vw)y = ao(v,w), V v,w E Y and (v,w)x = m(v,w), V v,w C Y, and recall the definition

eM(p) - g(tM+1;I1) - gM(tM+1;p)l from Section 2.4.2.

We now present and prove the bounding properties for the errors in the field variable and the
output estimate. Throughout this section we assume that the "truth" solution y(p, tk) satisfies
(5.3) and the corresponding reduced-basis approximation YN,M(P, tk) satisfies (5.15).

5.4.2 Error Bound Formulation

Primal Variable

We obtain the following result for the error bound.

Proposition 15. Suppose that g(x; p) c W 1 . Let e(p,tk) - y( tk)
in the field variable and define the "spatio-temporal" energy norm

k

||(V( tk|||II M(V(ptk k _ a (v(tk' ),V(,tk' ); g(x; A))
k'=1

- yN,M(p, tk) be the error

1
2

, V v G Y. (5.44)

The error is then bounded by

k e(Y, t)Hl M(p, tk), V E D, Vk E K, (5.45)
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where the error bound ANM( tk) is defined as

S k k tkI2 (5.46)S/= aNM() ,t )

Proof. We immediately derive from (5.3) and (5.42) that e(p, tk) - y(At, tk) - YN,M((, tk), Vk E K,
satisfies

m(e(p, tk), v) + At ae(p, tk), V; g(X; -)) =m(e(, tk-1), v) + At R(v; ft, tk)

+ At (b(v; g(x; t) - gM(X; p)) u(tk) - al(yN,M(p, tk), V, g(X; /t) - gM(X; /t)))

V v Y, (5.47)

where e(p, t0 ) = 0 since y(p, t 0) = yN,M(t, t0) = 0 by assumption. We now choose v = e(A, tk),
invoke the Cauchy-Schwarz inequality for the cross term m(e(p, tk-), e(At, tk)), and apply (5.41)
to obtain, V k c K,

m(e(t,tk),e (Atk)) + At a(e(, tk), e(ttk); g(X;))

< mF (e(,tk ( tk) m (e(tk,1 e(t, tk-))+ At 6N,M(A,tk k) x (5.48)

+ At (b(e(t, tk); g(x; P) - gM(x; At)) u(tk) - a1(yN,M(pt k), e(t, tk), g(X; - gM(X; p))

From our assumption, g(x; p) c Wq, Proposition 2, and (5.43) it directly follows that

b(e(p, tk); (X; - gM(x; t)) u(t') - a,(yNm (p, tk e k), g() P) ) gM

< eM (M) sup b(v; qM+1) k a (yN,m (, k), v, qm+ e(,t k)
VEY Iv~ly

< eM (M) 4na (ttk) Il(_k) y . (5.49)

We will now apply (4.30) thrice: first, choosing c =m (e(A, tk) e( tk) d -- e t-l) t -
and p 1, we obtain

2 m2 (e(tk, (t, tk)) m (e(Atk-e tk-

< m(e(t, tk-), e(At, tk-)) + mT(e(A, tk), e(At, tk)); (5.50)

second, choosing c = EN,M(At, d tk) y, and p (&a(p))/2)i we have

2 N (,tk) k 2 (pAt, tkI 2 +&a (4+ 2 (/ttk) 1; (5.51)

and third, choosing c = eM(p) 4n (,, tk), d = Ie(, ttk)Ily, and p = (&a(p)/2)2 gives

2 M(t) -1D"(p, tk) 2e(Attk)IIX < 2 e2 (,,) 4na (/_,tk) 2 &a(e) tk)11; (5.52)
&a(A) + 2
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Combining (5.48) and (5.49), and invoking (5.7) and (5.50)-(5.52), we obtain

m(e(p,t'),e(p,tk)) - m te(, etk- (utkl)) + At a(e( wtk),e(p,tk); g(X;P))

< 2At (EN,M(P, ±k 2 2 n k)2 , V k c K, (5.53)

where we used the fact that &a(P) 5 aa(U), V P E D. We now perform the sum from k' = 1 to k

and recall that e(p, to) = 0, leading to

k

m(e(p,tk),e(A,tk)) + j At a(e(p, tk'), e(L tk'); g(X;I))
k'=1

2At k

&a) S (EN,M(, tk') 2  ( tk') 2 ), V k E K, (5.54)
aa()k'=1

which is the result stated in Proposition 15.

We note from (5.46) that our error bound comprises the affine as well as the nonaffine error

contributions. We may thus choose N and M such that both contributions balance, i.e., neither N

nor M should be chosen unnecessarily high. We also recall that our (crucial) assumption g(x; p) E

W9+1 cannot be confirmed in actual practice - in fact, we generally have g(x; p) V Wg+l and
hence our error bound (5.46) is not completely rigorous, since eM(p) < eM(p). We comment on
both of these issue again in detail in Section 5.5 when discussing numerical results.

Output Bound

We can now define the (simple) output bound in

Proposition 16. Suppose that g(x; p) c Wg+1. Let the output, s(/j, tk), and the output estimate,

sN,M(P, tk), be given by (5.2) and (5.16), respectively. The error in the output of interest is then
bounded by

sA, tk) - sN,M (/, tk) ,M (/, tk), V k E K, VpE D, (5.55)

where the output bound A'NM (p, tk) is defined as

ASM(ptk) SU (v) A yM L, k). (5.56)

Proof. From (5.2) and (5.16) we obtain

s(A ,tk ) - sN,M(A,tk) (y( tk) (N,M(, tk

= ((e(p,tk))
f(v)

< sup ||e(p,tk) X
vEY IIvLIX

from which the result immediately follows since IIe(/, tk) Ix 5 YM p(_, tk), V p ED, V k E K. El
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Note that m is parameter-independent here; we thus have no need for the bound conditioner
&m() required for the simple bound in (4.112).

5.4.3 Offline-Online Computational Procedure

We now turn to the development of offline-online computational procedures for the
AN,M(Ptk) and s tk). We first note from standard duality arguments that

EN,M(P, t k)

calculation of

sup R(v; Mtk)
vGX 1v||y

(5.57)

(5.58)

where 6(p, tk) E X is given by

V v X; (5.59)

(5.59) is effectively a Poisson problem for each tk E E

From (5.42), (5.4), and (5) it thus follows that e(p, tk) satisfies

M N

(e(pt'),v)x = E oWMm(p)u(v;qm)y(tk) - r yN,M n 1, tk)-
m-1 n=1

+YN,M n (,t k ) ao ((n, v) -+ E m M m(P) YN, M n (P, t k) a, ((n, v, qm) , V C X.
MIa

It is clear from linear superposition that we can express (p, tk ) as

M

8(t) = E (m() (tk)
q=m

N

n=1
M

+ An + Eu Om(P)
m=1

where we calculate Fm c X, AO E X, A' E GX, and Mn E X from

= b(v; qm),

= a1((n, v, qm),

= mn((n, V),

Vv E X, 1 K m K Mmax,

VvEX, l n f Nmax,

VV C X, 1 K n K Nmax, 1 < m < Mmax,

V X, I < n < Nmax;

note B, Ao,', and M are parameter independent.
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(5.60)

Am,n ) YN,M n (M tk) }

(Fm, v)y

(A, v)y

(A44n, V)y

(Mn, v)y

(5.61)

(5.62)

(6(p, tk), V)y = R(v; P, t), I

YN,M n (A, t k-1) ) n((,, v)

(yN,Mn (/_t tk) -- YN,M n (P, t k-1))M



From (5.58) and (5.62) it follows that

M

M ~k m# m'# U(t k )ff
E Z '= Mm(It>mI(I)U(t )mm

Mm'= 1

M N

+ E ZWMm)
m=1 n=1

U(tk) a n -N PM (p Aa f' YN,M n (fLtk)
=1

Am)

N

+ I: (N,M n (A, tk) _ YN,M n G4 tk-1

n,n'=1

(YNMfn'(#,k - N,M n', t )k-1) mm

M

+YN,Mn (A, tk) YN,M n' (, tk) - YN,M n'(A k-1 ) aon + E mm(1)A" [T
m= 1

+yN,Mn(L, tk) YN,Mn'(/, tk (Ano

M

+ Z(Mm() Sm'()YN,Mn(I, tk) YN,M n'(P, t k Anmm

m,m'=1

where the parameter-independent quantities A are defined as

= (Fm, Fm')y,

= -2 (Fm,AO)y,

= -2 (Fm, A',)y,

2
- ~(Fm, Mn)y,(A~,A%)y,
At

=(AOs, AOs,)y,

= (AOn, A' ,,

= (A l AM,)y,

= (A'n, Mn')y,,

At2

1 m, m' < Mmax;

1 Km K Mmax, 1 < n < Nmax;

1 Km m' < Mmax, 1 < n < Nmax;

1 Km < Mmax, 1 < n < Nmax;

1 K nn' K Nmax;

< lm K Mmax, 1 < n, n' < Nmax;

1 K m m' < Mmax, 1 < n, n' < Nmax;

1 n, n' < Nmax;

1<m< Mmax, 1< n,n'< Nmax;

1 K n rn' K Nmax.

The evaluation of <ba(,, tk) is very similar; to this end, we first calculate FM+l E X and A'± 1 4 E
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+ (YN,Mn(P, tk) - YN,Mn(, k-1))

M

+ 1 PM m(p)AnnAnm)
m=1

(5.63)

(5.64)

mm'

A mm

nn'

(5.65)

EN,M (A, t k 2)



X from
(FM+1, v)y = b(v; q}+1), Vv E X,

(A 1 v)y = a((n, v; qM+1), V v C X, 1 < n Nmax; (5.66)

It then follows from (5.43) and standard duality arguments that

4)a(, tk)2 
= y (tk)2 ' M+1

N N

+ yN,M n ( {, tk Y(tk ) + A M + y ' tk A al
± ZyNMn(IlMlt+ ±I: YN,Mn'( nt)fllM~l M+l

n=1 n'=1

where the parameter-independent quantities A are defined as

AM+1 M+1 = (TM+1, TM+1)y;

Aan +1 M+1 (FM+1,AM+1 ,n)Y, 1 < n <_ Nmax; (5.67)

A l= (A',,, A ,)y, 1 n, n' < Nmax.

The ofiine-online decomposition is now clear.
In the offline stage we first compute the quantities F, A 0'1, and M from (5.62) and (5.66)

and then evaluate the A from (5.65) and (5.67); this requires (to leading order) O(MmaxNmax)
expensive "truth" finite element solutions, and O(Mmax Nmax) K-inner products. In the online
stage - given a new parameter value p and associated reduced-basis solution yNMp, tk), V k c K

- the computational cost to evaluate A'NM p, tk) and ASNM, tk), Vk C K, is O(KM 2 N 2 ). Thus,
all online calculations needed are independent of K.

5.5 Results for Numerical Exercise 4

We now return to the numerical example introduced in Section 5.2.1. We first employ the empirical
interpolation method of Section 2.4 to construct the approximation to the nonaffine function G(x; M)
defined in (2.36). The function G(x; M) already served as our test problem in Numerical Exercise
1, we can thus directly use the sample set S1 and associated basis Wh - and hence TM and BM
- constructed in Section 2.4.3 (we use the L (Q)-norm results here).

We next generate the sample set SN and associated reduced basis space WN according to
the adaptive sampling procedure described in Section 4.5. We initialize the procedure with A4
(-0.01, -0.01) and t = lAt and set the desired error tolerance (for the relative error in the energy
norm) to Eto1,min = 1 E-6. We sample on a deterministic parameter test sample EF C (D) 160 0 of
size 1600 (EF is the same sample set used in Section 2.4.3 for the construction of Sg) we need
Nmax = 54 basis functions to obtain the desired accuracy.

We plot the sample sets SY in t - tk-space in Figure 5-2. We note that (i) more samples are
selected in the difficult parameter range near the corner t = (-0.01, -0.01); and (ii) although
K = 200 here, the samples are only selected within the first 40 timesteps because of the periodic
control input. Were we to follow a naive approach and select the samples on a regular grid in time
(without using the adaptive sampling procedure), our reduced-basis system could easily become
ill-conditioned.
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Sample Set SY, N = 54

NN~a~e ma

400

20 - 0

10 -

0 0
0 ---- 0.2

-0.2 -0.4
-0.4

-0.6 -0.6
-0 -0.8 -0.8

Figure 5-2: NE 4: Sample set 5"y

We now turn to the convergence results. In Figure 5-3 we plot, as a function of N and M,
the maximum relative error in the energy norm cy,~axrl heey",~a~e is the maximum over

'Test of |||e(p, tK K)jjj, where My -- arg max/,E= ||1yU(, tK)W, and ETest c (D)225 is a
input sample of size 225 (a regular 15 x 15 grid). We observe that the error levels off at smaller
and smaller values as we increase M reflecting the trade-off influence between the reduced-basis
approximation and the coefficient function approximation contribution to the error: for fixed M
the error in the coefficient function approximation gM (x; [) to g(x; p) will ultimately dominate
for large N; increasing M renders the coefficient function approximation more accurate, which in
turn leads to the drops in the error. We further note that the separation points reflect a balanced
contribution of both approximations to the error: increasing either N or M while keeping the other
one fixed has a very small effect on the error; to reduced the error both N and M have to be
increased.

In Table 5.1 we present, as a function of N and M, the maximum relative error in the energy
norm EMmaxre1, the maximum relative error bound AMmre, and the average effectivity T:

NM is te mxiu oe NMIIt)M~(~,tKre)HI
AN,M,max,rel is the maximum over Test of A, and T is the average over

Test x I of AN,M () -k YN(A, tk) . The specific N, M combinations presented roughly
correspond to the separation points of the convergence curves in Figure 5-3. We observe that the
reduced-basis approximation converges very fast and the bounds are very sharp - actually too
sharp. For the first three N, M combinations we obtain effectivities less than one: our error bound
is not an upper bound for the true error. We recall that our proof for the bounding property
is based on the assumption that g(x; p) E Wg± 1 .In general, however, this assumption is not
satisfied and our error estimators may not be rigorous upper bounds since eM(p) EM(p) if

g(x; M) V W 1gy (also see Section 2.4.2). To regain the bounding property, we shall select N and
M such that the contribution to the error bound due to the nonaffine function approximation is
much smaller than the contribution of the affine terms. Although this approach does not guarantee
that g(x; [) c Wg 1 , we can hope to absorb the lower bound property of 6M(y) in the rigorous
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Figure 5-3: NE 4: Maximum relative error in the energy norm.

Table 5.1: NE 4: Convergence rate and effectivities as a function of N and M.

error bound for the affine terms. If we thus increase M while keeping N fixed, we indeed obtain
effectivities larger than one even for small values of N, M, as shown in Table 5.2.

We next turn to the output estimate. In Table 5.3 we present, as a function of N and M, the
maximum relative output error E',M,max,re1, the maximum relative output bound A',M,max,re1, and
the average effectivity 7N,M: EN,M,max,re is the maximum over BTest of |s(p, t()) - sN(U, t
Smax, max,relis the maximum over 'Test of AVNMii, tK) Ismax and T is the average over ETest
of A'M(t,(I())/s~pt2 (p)) - sN,M (P, tn (p))1. Here t (p) arg maxk1 s(A, t') - sN(, tk)I and

Smax = maxk EE max/IgTest S(,, tk) . We note that, to calculate the average output effectivity 77,
we exclude parameter values from the sample ETest where eN,M,max,re < 1 E -8 so as to avoid
contamination by round-off errors. We see that the output error and output bound converges very
fast - for only N = 20 and M = 24 our error bound for the error in the output - even for our
simple bound - is quite close to 0.1%. Also, the effectivities are, of course, not as good as for the
energy norm bound, but still acceptable for the simple bound.

In Table 5.4 we present, as a function of N and M, the online computational times to calculate
SN,M(I1, tk) and AN,Mt, tk), Vk c K. The values are normalized with respect to the computational
time for the direct calculation of the truth approximation output s(p, t1) = (y(, tk)), V k E K.
(The growth with N and M is less than expected due to memory-access issues.) The computational
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N M EN,M,maxrel AN,M,max,rel

5 8 4.12 E -02 2.87 E -02 0.50
10 16 3.12 E -03 4.40 E -03 0.96
20 24 1.97E-04 2.05 E -04 0.87
30 32 2.46 E -05 3.49 E -05 1.19
40 40 4.27 E -06 6.03 E -06 1.19
50 48 7.48 E -07 1.06E-06 1.38



Table 5.2: NE 4: Convergence rate and effectivities as a function of N and M.

Table 5.3: NE 4: Maximum relative output error, output bound, and effectivities.

saving for an accuracy of close to 0.1 percent (N = 20, M = 24) in the output bound are close to a
factor of 100. The actual run-time to compute the output estimate and output bound in MATLAB
6.5 on a 750 MHz Pentium III is 0.11 sec. (for N = 20, M = 24). We also note that the time to
calculate A' M(y, tk) exceeds that of calculating sN(A, tk) considerably - this is due to the higher

computational cost, O(KM 2N 2 ), to evaluate ANM (' tk). Thus, although the theory suggest to
choose M large so that the error due to the nonaffine function approximation is small, we should
choose M as small as possible to retain the computational efficiency of our method. We emphasize
that the reduced-basis entry does not include the extensive offline computations - and is thus only
meaningful in the real-time or many-query contexts.

Table 5.4: NE 4:Online computational times (normalized with respect to the time to solve for
s(,L tk), V k c K).
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N M 6 N,M,max,rel N,M,max,rel

5 16 2.09 E -02 2.98 E -02 1.34
10 24 3.09E-03 4.38E-03 1.42
20 32 1.45E-04 2.05 E - 04 1.42
30 40 2.46 E -05 3.48 E -05 1.41
40 48 4.26 E -06 6.04 E -06 1.42

N M eN,M,max,rel N,M,max,rel JN,M
5 8 4.23 E -02 1.67E-01 7.70
10 16 3.03 E -03 2.56E-02 21.2
20 24 1.79E-04 1.19E-03 159
30 32 7.65 E -06 2.03 E -04 52.2
40 40 2.21 E -06 3.52 E -05 20.5
50 48 1.29E-07 6.17 E -06 33.2

N M SN,M(A, t), V k E K AsNM(p, tk), V k E X s(p, tk), V k G K

5 8 6.96 E -04 4.29 E -03 1
10 16 7.61 E -04 6.51 E -03 1
20 24 1.05E-03 1.09E-02 1
30 32 1.25E-03 1.87E-02 1
40 40 1.68E-03 3.30E-02 1
50 48 2.06 E -03 5.32 E -02 1



5.6 AP II: Dispersion of Pollutants

We now return to the pollutant dispersion problem introduced in Section 1.1.1. In the last chapter
we discussed the reduced basis approximation and associated a posteriori error estimation for the
case of affine parameter dependence - we assumed that the location of the source term is fixed and
the diffusivity is the only varying parameter. In this section we take the next step and assume that
the source location can also vary in a certain range. The source term gPs(x; M), defined in (4.170),
is given by

1 ( )+(x2 _s)2

gPS(x;*p) = 2 e 2 apS 2  
, (5.68)

27ro.pS2

where xps = (xs, 4 Ps) denotes the source location and .Ps is the standard deviation; note that we
use the notation gPs(.; A) now to signify that xps is an input parameter. We immediately recognize
that the parameter dependence is nonaffine - we thus require the theory developed for nonaffine
problems in this chapter.

For easier reference, we repeat the sketch of the flow field U with the source location and
the measurement sensors in Figure 5-4. The domain Q, a typical point in which is (Xi, x 2 ), is
given by Q _ [0, 4] x [0, 1]. We shall assume that the concentration at the left boundary, IPD,
is zero and that the remaining boundaries, FN, are impermeable. We shall also assume that the
diffusivity , varies in the (now, smaller) range 0.05 < K < 0.5 and that the source location, Xps
satisfies 2.9 < xps < 3.1 and 0.3 < s 05; our input parameter is hence i {-i, u2,tt3}

{,I s E D V [0.05, 0.51 x [2.9, 3.1] x [0.3,0.5] c Ra; the standard deviation .ps = 0.1
is assumed fixed. For notational convenience we also define Qps [2.9,3.1] x [0.3, 0.5], i.e., the
spatial domain in which the source is located.

FN

~Zf __84___

Figure 5-4: AP II: Velocity field with pollution source and measurement locations.

The time-discrete weak form of the governing equation (1.11) for the concentration c(p, tk) E Y
is again (B.2) with initial condition c(p,t0 ) = 0, where Y c ye = {vjv c H 1 (Q),v = 0|rD} is
a linear finite element truth approximation subspace of dimension .A = 3720 (the finite element
mesh is the same as in Figure 4-17). The bilinear and linear forms m, aCD and b are defined
in (4.167), (4.168) and (4.169), respectively, where gPs(x; p) is now given by (5.68). We note
that the parameter dependence of b(v; g(x; M)) is now nonaffine, m is parameter independent and
aCD admits the affine representation (4.131) with Qa = 2. We also define the inner products
(w, v)x = f- w v = m(w, v) and (w, v)y = f9 Vw -Vv, corresponding to (4.153) for pi = 1; we may
thus choose &a([) = Al in (4.57). The outputs, sq([, tk), 1 < q < 4, are evaluated from (4.171)
with lq(x) defined in (4.172); the sensor locations Xq are the same as in Section 4.8.5. We shall
now consider the time interval I = [0, 1] and a timestep At = 5 E -3; we thus have K = 200. We
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note that, since we consider a shorter time interval here, we restrict our attention mainly to the
first four outputs located in the immediate vicinity of the source.

We point out that the admissible spatial variation of the source location is fairly small compared
to the domain Q; we would require 100 patches of size QPs to completely cover Q. The reason for
choosing a small region QPS is twofold: first, the flow field, U, is quite complex, i.e., sources that
are close to each other can result in very different pollutant distributions. We plot in Figures 5-5
and 5-6 the field variable c(p, tk) at six timesteps for p = (0.05, 2.9, 0.3) and p = (0.05, 3.1, 0.5),
respectively. These parameter values correspond to the source being located at two opposite corners
of QPS. Although the two sources are close to each other, the resulting dispersion patterns are
already decidedly different. This difference would be far more evident for source locations close to
separation points in the flow. We also plot, in Figures 5-7 and 5-8, the first four outputs sq(p, tk),
1 < q < 4, as a function of time for I = (0.05, 2.9, 0.3) and [ = (0.05, 3.1, 0.5), respectively.
We observe that the difference in the field variable is also reflected in the outputs. Second, the
minimum admissible diffusivity considered is small, and thus convection plays a dominant role in
the problem solution. We recall from Section 4.8.5 that more samples are required for "more"
non-symmetric problems - even the fixed source location with rK C [0.01, 1] resulted in a basis with
Npr,max = 207. Thus, choosing QPS larger would result in a reduced-basis approximation which is
too high-dimensional with associated detriment to the computational efficiency (we will see that
the computational savings for the given problem are already modest).

5.6.1 Reduced-Basis Approximation

We first consider the approximation to the nonaffine function gPs(x; p) defined in (5.68). We
choose for E9 a deterministic grid of 41 x 41 parameter points over [2.9,3.1] x [0.3,0.5] and we
choose (p,4, pt,) = (3, 0.4). Note that gPS(x; 1) does not depend on pl. Next, we pursue the
empirical interpolation method of Section 2.4 (using the L (Q)-norm) to construct Sg, Wm, TM,
and BM, 1 < M < Mmax, for Mmax = 66. We plot in Figures 5-9(a) and (b) the sample set S9
and the set of interpolation points TM, respectively. The samples are (almost) symmetric around
the center (3,0.4) and the interpolation points are, of course, centered around x = (3,0.4).

We next generate the sample set SN and associated reduced basis space WK according to the
adaptive sampling procedure described in Section 4.5 with M = Mmax for the nonaffine function
approximation. We initialize the procedure with My = (0.05,3,0.4) and tk = 1At and set the
desired error tolerance (for the relative error in the energy norm) to Etol,min = 1 E -4. We sample
on a parameter test sample EF (D) 2420 of size 2420 (EF is log-random in pi and deterministic in
1p2 and pL3); we require Nmax = 256 basis functions to obtain the desired accuracy.

We next present the sample set SN': since we obtain a four-dimensional parameter-time space
now, we first project the sample set S down onto (a) the ptL-tk-space, and (b) the pi12-/L 3 -tk-space
and plot the result in Figure 5-10(a) and (b), respectively. We observe, as in Section 4.8.5, that the
samples are biased towards smaller diffusivities Ati (note the logarithmic scale). Furthermore, it is
very interesting to note that almost all samples are located on the boundary of the mu2-P3-space,
i.e., the physical domain in which the source location lies.

5.6.2 Numerical Results

To begin, we present convergence results for the nonaffine function approximation. We present in
Table 5.5 E*max, PM' AM, 'TiM, and <m as a function of M (see Section 2.4.3 for the definitions
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t= 40 At

t=80At t= 120At

t= 160 At t = 200 A t

Figure 5-5: AP II: Concentration c(p, tk) for p = (0.05, 2.9, 0.3) at t = t1, t 40 , t80, t 12 0, t160I t200

144

t = 1 At



t= 40 At

t= 80 At t = 120 At

t= 160 At t = 200 At

Figure 5-6: AP II: Concentration c(ip, tk) for p = (0.05, 3.1, 0.5) at t = t', t 40 , t 80 , t 120 , t160 , t20O.
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Figure 5-7: AP II: Outputs sq(p, tk), 1 < q 8, for p = (0.05, 2.9, 0.3) as a function of time.

of these quantities; here Eet is a test sample of size 225). We observe that the maximum error
EM ,max for the best approximation converges rapidly with M; that the Lebesgue constant provides
a reasonably sharp measure of the interpolation-induced error; that the Lebesgue constant grows
slowly with M but deteriorates slightly for M = 40; that the error estimator effectivity is reasonably
close to unity (recall that sM(p) eM(p), 1 < M < Mmax); and that BM is well-conditioned for
our choice of basis.

We now turn to the convergence results and error bounds for the reduced-basis approximation.
In Figure 5-3(a) and (b) we plot, as a function of N and M, the maximum relative error in the
energy norm EN,Mmaxre and the maximum relative error bound AY,M,max,rel; here, eN,M,max,rel is
the maximum over BTest of e(p, tK) Y(,ytK) and AY is the maximum over ETestN,M,max,rel
of AY,M(,tK y(ytK), where BTest c (D) 1000 is an input sample of size 1000 (a 10 x 10 x 10
grid log-random in i and random in A2 and A3), and py = arg max/E, Iy(p, tK)

We first note that N is much larger than in the previous example because the problem is much
more complex. We observe the same convergence behavior as in the previous numerical example.
For increasing N and fixed M the interpolation induced error starts to dominate at one point and
the error does not further decrease - only by simultaneously increasing N and M can we obtain
a smaller error and hence a better approximation. We also note that the error bound shows the
same behavior as the actual error. However, there are differences in the (N, M) asymptotes which
may reflect in our choice of N and M: concerning the actual error, we may select M = 30 for
N = 160 without being limited by the interpolation induced error. The M = 30 asymptote for
the error bound, on the other side, already levels off for approximately N = 100 - we thus need
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Figure 5-8: AP II: Outputs sq(p, tk), 1 < q 8, for it = (0.05,3.1,0.5) as a function of time.
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AP II: (a) Parameter sample set Skr, Mmax = 66, and (b) interpolation points ti,
1 < m < Mmax, for the nonaffine pollution source (5.68).
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Figure 5-10: AP II: (a) Parameter sample set S, Nmax = 256, (a) projected onto pi-tk-space; and
(b) projected onto pi2-t 3 -tk-space .

Table 5.5: AP II: Nonaffine function approximation; 6 *M,max' PM AM,
of M.
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Table 5.6: AP II: Convergence rate and effectivities as a function of N and M.

to choose M = 40 so as not to limit the convergence of the error bound. Also, we observe that
the M = 50 and M = 60 curves for the actual error coincide (the M = 40 curve deviates slightly
only for N > 220); thus choosing M = 50 is sufficient even for N = Nmax. For the error bound
the M = 40 asymptote separates earlier, and there is a slight difference between the M = 50 and
M = 60 asymptotes for N 220.
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Figure 5-11: AP II: (a) Maximum relative error in the energy norm and (b) error bound.

In Table 5.6 we present, as a function of N and M, e, x , and the averageN,M,max,rel N,M,rnax,rel
effectivity T, where 7 is the average over ETest x E of AYM I, k)k) - YN(, 1k. Here,
we select M, for a given N, such that the nonaffine function approximation does not limit the con-
vergence of the error bound. We confirm the fast convergence already observed in the convergence
plots and note that the effectivities are very good throughout.

We next present in Tables 5.7 and 5.8 the maximum relative output error EN,M,m,re, the
maximum relative output bound AN,M,max,re1, and the average effectivity U7 M as a function of N
and M for output 1 and 2, respectively (the results for the third and fourth output are similar to the
results presented). Here, EMmare1 is the maximum over -Test of Is(p, tn(A)) - SN(A, tn (A)) /Smax,

N,M,max,rel is the maximum over ETest of A, (p, tK) SmaxI and U7 is the average over ETest
of A'NM (#, to (p)) - SN,M (1, tn(p))1, where t.(pt) -- arg maxtkR I/s,, tk) - SN (A, tk)
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N M ey AY -
N,M,max,rel N,M,max,rel 9

40 20 2.26E-01 8.38E-01 3.59
80 30 2.78 E -02 5.70 E -02 2.40
120 40 5.18 E - 03 8.87 E -03 1.89
160 40 1.07E-03 1.97E-03 1.79
200 50 3.60 E -04 5.70 E -04 1.72
240 60 9.55 E -05 1.71 E -04 1.65
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Table 5.7: AP II: Maximum relative output error, output bound, and effectivities for output 1.

Table 5.8: AP II: Maximum relative output error, output bound, and effectivities for output 2.

and Smax = maxtkG maxCTest Is(.p, tk) . The error in the output converges fast and the output
effectivities are still acceptable for the simple output bound. However, for an accuracy of the
output error bound of 1%, we require approximately N = 160 and M = 40. Although the true
error is almost two magnitudes smaller, in actual practice we can only guarantee the accuracy as
determined from our error bound. Better effectivities, i.e., sharper bounds, would therefore be
advantageous since the required values for N and M to obtain the desired accuracy decrease - if
the effectivities would be close to one, N = 80 and M = 30 would suffice for a 1% accuracy in the
output bound. We could probably achieve these numbers by introducing the dual problem (see the
results in Section 4.8.5).

Finally, in Table 5.9 we present, as a function of N and M, the online computational times
to calculate SN,M(P, tk) and As~(p, tk), V k C K. The values are normalized with respect to

the computational time for the direct calculation of the truth approximation output s(z, tk)
i(y(p, tk)), V k E K. The computational savings for N = 160 and M = 40 - corresponding to an
output bound with 1% accuracy - are approximately a factor of 30. The corresponding run-time
in MATLAB 6.5 on a 750 MHz Pentium III is 0.78 sec. We note that, despite the O(KM 2N 2 )
complexity to calculate the output bound, the time to calculate sN (, tk) ultimately dominates
because of the large N. The savings here are pretty small because (i) the dimension K of the
underlying truth approximation is not very large, and (ii) we have to choose N large to obtain the
desired accuracy.
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N M 6
N,M,max,rel AN,M,max,rel . N,M

40 20 2.82E-02 2.69E+00 109
80 30 3.91 E -03 1.83 E - 01 70.7
120 40 5.64E-04 2.85E-02 66.2
160 40 1.03E-04 6.33 E -03 66.7
200 50 1.77E-05 1.83E-03 142
240 60 4.27E-06 5.49 E - 04 134

NM N,Mmaxrel N,M,max,rel T N,M

40 20 1.64E-01 7.34 E + 00 50.5
80 30 1.47E-02 4.99E-01 57.4
120 40 2.18 E -03 7.76 E -02 53.1
160 40 5.36 E -04 1.72E-02 68.4
200 50 1.33E-04 4.99 E -03 85.2
240 60 1.94E-05 1.49E-03 77.0



Table 5.9: AP II: Online computational times

s (y, tk), V k E- K).
(normalized with respect to the time to solve for
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N M SN,M(p, t), V k E K ANM(y, t), V k C K s(p, tk), V k e K
40 20 1.04E-03 2.34 E -03 1
80 30 2.78 E -03 5.19 E -03 1
120 40 1.04E-02 1.19E-02 1
160 40 1.85E-02 1.75 E --02 1
200 50 3.20 E -02 2.65 E - 02 1
240 60 4.85 E -02 3.62 E -02 1
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Chapter 6

Nonlinear Parabolic Equations

6.1 Introduction

In the last two chapters we developed reduced-basis methods and associated a posteriori error
estimation procedures for linear parabolic partial differential equations with affine and nonaffine
parameter dependence. We now extend our methodology to treat certain classes of nonaffine
nonlinear parabolic partial differential equations. More specifically, we consider problems where
a(w, v; g) can be written as

a(w, v; g(w; x; p)) - aL (WV) + j ;xA)v. (6.1)

Here, x E Q is the spatial coordinate, y c D is the input parameter, aL(w, v) is a bounded bilinear
form, and g(w; x; p) is a nonaffine nonlinear function which is monotonically increasing in w. Similar
to the previous chapter, we will introduce a "collateral" reduced-basis expansion for g(w; x; y) and
employ the empirical interpolation method to determine the coefficients for the approximation to

g(w X; ).
The nonlinear dependence on the field variable, however, introduces new numerical difficul-

ties: first, our greedy choice of basis functions ensures good approximation properties, but is very
expensive for the nonlinear time-dependent case; second, since the field variable is not known in
advance, it is difficult to generate an explicit affine approximation of g(w; x; [); and third, it is
challenging to ensure that the online complexity remains independent of K even in the presence of
highly nonlinear terms.

In the first part of this chapter we develop the necessary theory and also present a numerical
example to test and confirm our approach. In Section 6.6 we consider the application to a specific
problem in the class of reaction-diffusion systems. Since the focus here is the treatment of the
nonlinear term, we do not consider adjoint formulations (see [1211 for an application of adjoint
techniques in the reduced-basis context to the steady Navier-Stokes equation).

6.2 Abstract Formulation

As in the last two chapters, we directly consider a time-discrete framework associated to the time
interval I =]O, tf]. We recall that I is divided into K subintervals of equal length At = , that tk is
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defined by tk = kAt, 0 < k < K K A ; furthermore, E1 = {t, , }and K {1, ... , K}. We shall

consider Euler-Backward for the time integration. We also recall our reference (or "truth") finite
element approximation space Y of very large dimension A1. Clearly, our results must be stable as
At -+ 0, K -+ oc, and P/ -- oc.

We directly consider the "truth" approximation here: Given a parameter p e D, we evaluate
the (here, single) output of interest

s(p, tk) --- wtk)), V k E K (6.2)

where the field variable y(pu, tk) G Y, V k E K, satisfies the weak form of the nonlinear parabolic
partial differential equation

m(y(p, tk), v) + At a L(y(Atk), v) + At g(y(A, tk); ; [)v

= m(y(p, tk-1), v) + At b(v) u(tk), V v e Y, (6.3)

with initial condition (say) y(p, t0) = 0. Here, p and D are the input and input domain; m(., -) and
b(.), f(-) are X-continuous bilinear and linear forms, respectively; aL (-, .) is a Y-continuous bilinear
form; u(tk) denotes the (here, single) control input; and g(w; x; p) C L2 (Q), Vw E Y is a nonlinear
nonaffine function of the field variable y(p, tk), the spatial coordinate x, and the parameter p,
which is monotonically increasing in w for all p G D. We note that the field variable, y(Pb, tk), is of
course also a function of the spatial coordinate x. In the sequel we will use the notation y(X; /_, tk)
to signify this dependence whenever it is crucial.

We shall make the following assumptions. We assume that aL(-,-) and m(-,.) are continuous

aL(w,v) 'ajWflYHVHY, VW,V C y, (6.4)

m(wv) ymflWXflVjX, Vw,v E Y; (6.5)

coercive,

o < a inf a'(w, w) (6.6)
Wex Xwh

0 < am inf m(, v); (6.7)
VEY flvfl3(

and symmetric, aL (VW) L (w, v), V v, w c Y, and m(v, w) = m(w, v), V w, v E X. (We
(plausibly) suppose that 7ya, 7Ym, aa, am may be chosen independent of V.) We also require that
the linear forms b(-) : Y -* R and f(-) : Y -> R be bounded with respect to f1 - x. And finally,
we require that all linear and bilinear forms are independent of time - the system is thus linear
time-invariant (LTI).

Since the focus of this section is the treatment of the nonlinearity g(w; x; p) we assume that
the bilinear and linear forms m, aL and b, f are parameter independent; a parameter dependence
of either form is readily admitted. Note also that our results presented here directly carry over to
the case where g is also an explicit function of (discrete) time tk.
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6.2.1 Numerical Exercise 5: A Nonlinear Diffusion Problem

We now turn to a numerical example. We consider the following nonlinear diffusion problem defined
on the unit square, q =]0, 1[ 2 C R 2 : Given p = (Al, A2) E 'D = [0.01, 10]2, we evaluate y(p, tk) E y
from (6.3), where Y C Ye - Hol(7) is a linear finite element truth approximation subspace of
dimension M = 2601,

m(w, v) j fw v, aL(w, v) j f Vw - Vv, b(v) - j 100 v sin(27rxi) cos(27rX2 ), (6.8)

and the nonlinearity is given by

ejMt"tt) - 1
ty ; , ) e);2 ) = ti

M2
(6.9)

The output s(ti, tk) is evaluated from (6.2) with f(v) = f2 v. We presume the periodic control input
u(tk) = sin(27rtk), tk C I. We shall consider the time interval I [0, 2] and a timestep At = 0.01;
we thus have K = 200.

We note that A2 represent the strength of the nonlinearity whereas pj represents strength of
the sink term in (6.9); as A2 - 0 we have g(w; y) --+ p1w. The solution thus tends to the solution
for the linear problem as [2 tends to zero. We believe that, because of the monotonicity of g,
it can be proven that the problem is well-posed. Two snapshots of the solution y(II, tk) at time
tk - 25At are shown for p = (0.01, 0.01) and p = (10, 10) in Figures 6-1(a) and (b), respectively.
We observe that the solution has two negative peaks and two positive peaks with similar height for
p = (0.01, 0.01) (which oscillate back and forth in time). As A2 increases, the height of the negative
peaks remains largely unchanged, while the positive peaks get rectified as shown in Figure 6-1(b).
The exponential nonlinearity has a damping effect on the positive part of y(p, tk), but has (almost)
no effect on the negative part. Note that the solution for M = (10, 10), of course, also oscillates in
time - with the positive peaks always being smaller than the negative peaks.

Solution for = (10,10), t25A t

-1.5

0.5
0.5

x 0 0

Solution for p (10, 10), t 25 A t

1.5

0.5-

x 0 0

1x

(a) (b)

Figure 6-1: NE 5: Solution y(p, tk) at tk = 25At for (a) y = (0.01, 0.01) and (b) IL = (10,10).

The influence of the nonlinearity is also evident in the output s(pt, tk) - the average of y(p, tk)
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over Q - plotted in Figure 6-2(a) and (b) for M = (0.01, 0.01) and
Note the very different scaling of the output for the two parameters:

IL = (0.01, 0.01) since the positive and negative peaks of y(p, tk) have
p = (10, 10) the output is well below zero for all times and oscillates w
frequency.

'X 10 -4 Ouptut s(p,tk) for g = (0.01,0.01)

2

0

-2 0.5

_0 0.5 1
time t
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s(L, tk) is close to zero for

almost the same hight. For
ith approximately twice the

Ouptut s(,t k) for g= (10,10)
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-0.15
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time t

(b)

1.5 2

Figure 6-2: NE 5: Output s(p, tk) for (a) A = (0.01, 0.01) and (b) At = (10, 10).

6.3 Reduced-Basis Approximation

6.3.1 Formulation

We first introduce the nested sample sets SN = { i E ... , A E D}, 1 < N < Nma, and

Sj={t { DE,,. . , E}, 1 < M < Mmax wherei (ptk) and D D x T. Note that,
since g(.; x; A) is a function of the field variable y(p, tk), the sample set SM' must now also reside in
parameter-time space D; in general, SN 5 SM9 and in fact N $ M. We then define the associated
nested Lagrangian [85] reduced-basis space

WN = span{(n = y(AY), 1n < N}, 1 N < Nma, (6.10)

where y(j2y) is the solution of (6.2) at time t - tkn for A = py. We also define the nested collateral
reduced-basis space

Wmg = span{n g(y(fg); X;f), 1< n < M} = span{qi,... , qM}, 1 < M < Mmax, (6.11)

and nested set of interpolation points TM = {t,. . . , tM}, 1 < M < Mmax.
Let us first assume that we do not have access to the empirical interpolation method and instead

follow the standard approach. We would then our reduced-basis approximation by a standard
Galerkin projection: given p E D, the reduced-basis approximation yN(t, tk) C WY to y(p, tk)
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satisfies

M (YN(11, tk)V + Ata'(YN (A,tk),V) + At 9 YN (IL, tk;X;/,V

= m(yN(, k-1), V)Atb(v)u(tk), V v W, V k E K, (6.12)

We may now express yN(p', tk) - I yNj (, tk)j=j and choose as test functions v = (j, 1 < i < N,
in (6.12) to obtain, V k E K,

N L(Ig(N

i) - At aL(j, i)} yNj (I,tk) + j ( N [ ,tk ;X;
j=1 j=1

N

Zm((j, (i) yNj(p,t') + At bk(-) u(tk), 1 < i < N. (6.13)
j=1

We may now apply a (say) Newton iterative scheme to solve (6.13) at each timestep for yNj(IL, tk), 1 
j < N: given the solution at the previous timestep, yNj(/_, tk-1), 1 < j < N and a current iterate

yNj CI, tk), 1 < j < N, we find an increment 6 yNj, 1 < j < N, such that

E mn(Cj, (j) + At aL(j) + At 91 PNn(A, tk)(n X;IL)j (i (i 5YNj
j=1 n=1

N N

Zm(jNi) YNj3 (/l, tk-1) kAt b((j) U(tk) 1 M {(j,
j=1 j=1

+At aL (j, qj)} 9Nj I, tk) - At ; ;Nj , tk)(;;) $j, 1 < i < N(6.14)
Sj=1

where gi is the partial derivative with respect to the first argument.

We note that if g is a low-order at most quadratically) polynomial nonlinearity in y([t, tk), we

can expand the nonlinear terms g(Zj = 1Nj (Att tk)(j; x; M) and gi( =1 Nn (I, tk)(n; X; M) into their
power series and develop an efficient, i.e., online /-independent, offline-online computational de-

composition [122, 121]. Unfortunately, for high-order polynomial or non-polynomial nonlinearities

this trick cannot be used. Hence, (E 1Nj G, tk) j; xI) and gI( INn(A, tk
must be evaluated online at every Newton iteration with .M-dependent cost.

To recover online K-independent cost, we again appeal to the empirical interpolation method.

We replace the nonlinearity g(yN(P, tk); x;A) in (6.12) by the affine approximation gM (X; /,tk)
given by

M

gJM(X;Amtk) 1 9Mm(1, tk)qm(x) (6.15)

m= 1
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where the coefficients SOMm(p, tk) are determined from

M

BY WMj(p, tk) = g(yN,M (ti; [t, tk); t,; t), 1 < i < M, (6.16)
j=1

and B_ = qj(ti), 1 < i, j < M. Note that, contrary to the nonaffine case, WM(p, tk) now also

depends on time. Our reduced-basis approximation YN,M ([t, tk) to y(p, tk) is then obtained by a
standard Galerkin projection: given t E D, YN,M([t, tk) e WNY satisfies

m~yM(ttk), V) + Ata(YN,M(/_t, tk), V) + At j gM(xAtt)vM (yN,M (P, + Lt ay, # Mk N, ; AM k

= m(yN,M (, tk-1),V)+At b(v) U(tk), V v e WN, V k c K, (6.17)

with initial condition YN,M (p, t 0) = 0. We will show in the next section that (6.17) indeed allows
an efficient offline-online decomposition. Finally, we evaluate the output from

SN,M (P, tk) = f(yN,M (M, tk)), Vk C K. (6.18)

At this point we should remark that our current approach of constructing the sample set S9 and
associated reduced-basis space W9 in the nonlinear parabolic case is computationally prohibitively
profligate. The reason, related to our greedy adaptive sampling procedure proposed in Section 2.4,
is twofold. First, we need to calculate and store the "truth" solution y(A, tk) at all times tk G I on
the grid -9 in parameter space. For our numerical example in Section 6.2.1 -9 is of size 144 -
we thus need to solve (6.3) 144 times and store 144 x 200 "truth" solutions y(/t, tk)! And second,
as pointed out in Section 2.4, determining the next sample point #g in -9 - x i requires the
solution of a linear program for all p C 39 if the function g is time-varying, as is inherently the
case in the nonlinear context. 1 We note, however, that both of these reasons are due to the fact
that we do not have an error estimator for y(tt, tk) without knowing the approximation for g (which
depends on y(At tk)). Since this computation is too expensive in our current implementation, we
revert to the least squares surrogate in this chapter. In choosing this approach we in fact rely on
our numerical comparison in Section 2.4 which shows that we can expect similar results.

6.3.2 Offline-Online Computational Procedure

In this section we develop the offline-online computational decomposition to recover online K-
independence even in the nonlinear case. We first express YN,M(At , tk) as

N

YN,M (A, tk) = yN,Mn(A, tk) (, (6.19)
n=1

and choose as test functions v = (n, 1 < n < N, in (6.17).

It then follows from (6.15) that yN,M(Atk) = EYN,M1(Attk) yN,M2(A, tk) ... yN,M N(0, tk)T G

'Note that in the linear nonaffine parabolic case the function g depends only on x and p and not on time.
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iRN, V k C K, satisfies

(MN + At AN) YN,M(/tk) + At 0 N,M OM(P, tk) = MN (N,M 'tk-1) + At BN U(tk), (6.20)

with initial condition YN,M n (P, t0 ) = 0, 1 < n < N. Here, the coefficients OM(P, tk) - [WM1(i, tk)PM2 /, tk) .. PM M(p, tk)]T RM are determined from (6.16); MN c RNxN AN C RNxN, and
NM c RNxM , are parameter-independent matrices with entries MN ij = m(j, (j), 1 < i, j < N,ANij = a((j, (j), 1 < i, j 5 N, and C'M = f2 (I jq, 1 < i <N 1 j M, respectively; and

BN C RN is a parameter independent vector with entries BNi = b(Ci), 1 < i < N 2
We can now substitute PM m(,(, t') from (6.16) into (6.20) to obtain the nonlinear algebraic

system

(MN + At AN) YN,M(, tk) + At DN,M g(ZN,M YM (, tk)t iM)

= MN N,M (Atk-1) + At BN U(tk), V k G K, (6.21)

where DN NM(BM)1 E RNxM ZN,M 7 JRMxN is a parameter-independent matrix with
entries Z3 = (j(ti), 1 < i < M, 1 j N, and tM = [t .T ERM is the set of
interpolation points. We now solve for yN,M() t'k) at each timestep using a Newton iterative scheme:
given the solution for the previous timestep, yNM t tk-1), and a current iterate QN M (, tk), we
find an increment 6yN,M such that

(MN + At AN + AtEN) LNM

= MN NN,M tk-1) + At BN(,) U(tk) - (MN + At AN) 9NM(/, tk)

-At DN,M g(ZN,M 9N,tM k); tM;P), (6.22)

where EN E IRNxN must be calculated at every Newton iteration from

MN

E. S D g( N,Mn (A, tk j(tm), 1 < i, j < N. (6.23)
m=1 - n=1k

Finally, we evaluate the output estimate from

SN,M(M, tk) - LT YNM( tk), Vk e 1K, (6.24)

where LN C RN is the output vector with entries LNi = e((i), 1 < i < N.
The offline-online decomposition is now clear. In the offline stage - performed only once - we

first construct the nested approximation spaces Wh and sets of interpolation points TM, 1 < M <
Mmax; we then solve for the (n, 1 < n < Nmax and compute and store the A-independent quantities
MN, AN, BM, DN,MI B N, and ZN,M. In the online stage - performed many times, for each new
parameter value p - we solve (6.22) for yN,M (A, tk) and evaluate the output estimate SN,M (/_, tk)
from (6.24). The operation count is dominated by the Newton update at each timestep: we first

2 We follow the notation based on the previous chapters here. It should be straightforward to distinguish betweenthe control vector, BN, and the "interpolation" matrix, BM in (6.16).
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assemble EN from (6.23) at cost O(MN 2) - note that we perform the sum in the parenthesis
of (6.23) first before performing the outer sum - and then invert the left hand side of (6.22) at
cost O(N 3 ). The operation count in the online stage is thus O(RK(MN 2 + N 3)), where R is the
average number of Newton steps per timestep. We thus recover K-independence in the online stage.

We remark that, in actual practice, M can be quite large - and in fact much larger than N.
In this case it is straightforward to reduce M without sacrificing accuracy by splitting the time
interval i into several smaller subintervals E1, ... , I such that E = Ui= 1, Ri. We then construct,
in the offline stage, I separate samples sets S', 1 < i < I and associated reduced-basis spaces
Wk , 1 < i < I on each interval Ri, 1 i < I. In the online stage we simply "switch" to the
corresponding sample - and hence TM, BM, and DN,M - as time progresses. This approach
renders the offline computation more expensive, but can increases the online efficiency considerably
while retaining the desired accuracy.

6.4 A Posteriori Error Estimation

6.4.1 Preliminaries

We now turn to the development of our a posteriori error estimator; by construction rather similar
to the nonaffine parabolic case in Chapter 5. To begin, we recall that the bilinear form aL is
assumed to be parameter independent here; we can thus use the coercivity constant aa and have
no need for the lower bound &a (p) required earlier. We next introduce the dual norm of the residual

EN,M(P, tk) SUP R(v;M tk) Vk e K, (6.25)
vEY 1VflY

where

R(v; A,tk) - b(v)u - i m(yN,M(/I, tk) - YN,M (I, tk-1),v)

- aL(yN,M(P, tk)M - j tk) v, V v E Y, V k E K, (6.26)

is the residual associated to the nonlinear parabolic problem. We also require the dual norm

'0 -sup f, .m+l v (6.27)
v EY 1v11Y

and the error bound eM (p, tk) for the nonlinear function approximation given by

WMI(/J k) g(yN,M(tM+1; A, tk); tM+1; [,) - 9M(yN,M(tM+1; [t, tk); tM+1; bt) 1. (6.28)

We note that, contrary to the nonaffine case, the error bound eM (p, tk) is now also a function of
(discrete) time.

The bounding properties for the errors in the field variable and the output estimate are stated
below. Throughout this section we assume that the "truth" solution y(t, tk) satisfy (6.3) and the
corresponding reduced-basis approximation YN,M(p, tk) satisfies (6.17), respectively.
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6.4.2 Error Bound Formulation

Primal Variable

We obtain the following result for the error in the energy norm.

Proposition 17. Suppose that g(yN,M(A, tk); /) G WM1 , V k E K. Let e(p, tk) = y(,tk) -
yN,M(p, tk) be the error in the field variable and define the "spatio-temporal" energy norm

k

| I MA, t k) I-- VY tk, V (A tl B + E a L VA~ k'VAt) k t IVvcY (6.29)

The error is then bounded by

Vp c D, Vk e K, (6.30)

where the error bound ANMGp, tk) is defined as

EN,M (P, tk1) 2 + 2At q 2

a k1=1
CM(/I, tk 2)

Proof. We immediately derive from (6.3) and (6.26) that e(,, tk) -- y(, tk) - yN,M (,tk), V k c K,
satisfies

m(e(p,tk),V) + Ata'(e (ytk),V) + AtJ

= m(e(1, tk-1), v) + At R(v; y, tk) + At

:(g(y(Ii,tk); x;,A) _- g(yN,M (,,tk);X; bt) ) V

1 Mk (yNM(wtk
N, (M (X ,t-9 (yN,M (A, tk); X; A) )V,

where e(p, t0 ) = 0 since y(p, to) = yN,M( pt 0 ) = 0 by assumption. We now choose v = e(p, t')
in (6.32), immediately note from the monotonicity of g that

(6.33)

invoke (6.25) and the Cauchy-Schwarz inequality for the cross term m(e(p, tk ), e(/_, tk)) to obtain,
Vk E K,

m(e(pt, tk), e(p, tk)) + At aL k k (e(, tk k e (I, tk k

+ At EN,M,,t e (k - 9(yN,M(A,tk; , (,Utk).

We will now apply (4.30) twice: first, choosingc = m2 (e(ptk),e( u tk) d =
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k
k'=1

(6.31)

Vv C Y,

(6.32)

(6.34)

1
2

k~,t) _<AY, k),

1
2

ADNM , k 2A

g(y(M, tk; X; tt) - g(yN,M (Y, t k;X;Y e/Z tk >0



and p = 1, we obtain

2T m2 (e (it, tk), e (p, tk)) M 2 (e(At, tk) <(t tkl) (e~i (p , e(t, tkl))±m(e(u, tk), e(p, tk));

(6.35)

and second, choosing c = eN,M(A, tk), d e ( tk) y, and p = (aa/2)2 we have

2 IN(t)(tk k6 )N(Itk + a k
aa 2

We now note from our assumption g(yN,M(it, tk); x; P) e W 19+ 1 and Proposition 2 that

9M (X; At, tk) - g(yN,M(A, tk); X; )) eM(lt tk) qM+1(x); (6.37)

it thus follows that

2 (gMx ;Atk) - g(yN,M tk);X; t)) e(,tk)

2 sup [LN ( M( -g9 (yN,M(t), k t) Vk

< 2 sM(,tk ) s { QM (petk)I
< ~ ~ e 2oh eM(,t)SPfq~v 14 ~l

2 M(p,tk) dq Ie(t,tk) Iy

<_ 2 gM(/,tk)2 q 2 + ' Ie( I tk), (6.38)
aac M 2

where we applied (4.30) with c = sM(p, 1+) M, d - e(t1) y, and p (aa/2)i in the last step.
Finally, from (6.34), (6.35), (6.36), (6.38), and invoking (6.6) we obtain the bound

m(e( tk), e(A, tk)) +At k a(e( tk'), e( t, tk')) t NM(,tk 2 + 1 2M(At, tk') 2

k'=1 k'=1
(6.39)

which is the result stated in Proposition 17. E

We note from (6.31) that our error bound comprises two terms: the contribution from the

linear (affine) terms and from the nonlinear (nonaffine) function approximation. Similar to the

linear nonaffine case, we may thus choose N and M such that both contributions balance, i.e.,
neither N nor M should be chosen unnecessarily high. However, our choice should also take the

rigor of the error bound into account - we comment on this issue after stating the bounding

property for the output estimate.

Output Bound

We can now define the (simple) output bound
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Proposition 18. Suppose that g(yN,M (,tk); A) E Wg 1 , V k c K. The error in the output is
then bounded by

IS 01, t') -- sN,M(II, t kI < ,sM(M,tgk), V k E K, V p E D, (6.40)

where the output bound is defined as

/N,M(, tk)SUP ( y M tk), V k G K, V ILE D. (6.41)
VEY IV x

Proof. The result directly follows from (6.2), (6.18), and the fact that the error satisfies Ie(t, tk))IJX <

AN,M(I3 tk),V k c K, V ED. El

We note that the condition g(yN,M(Q, tk); u) E W V k c K is very unlikely to hold: first,

because Wg is constructed based on g(y(it, tk); y) and not g(yN,M(I, tk)), and second, particularly
because of the time-dependence of g(yN,M(u, tk); M). Our choice of N and M is thus even more im-
portant - the contribution of the non-rigorous part, 9M M(p, tk), to the error bound AM IL, tk)
should be small compared to the contribution of the rigorous part eN,M (p, tk).

6.4.3 Offline-Online Computational Procedure

The offline-online computational procedures for the calculation of ANMAt tk) (and As,M(, tk))
are very similar to the previous discussions in Sections 4.4.4 and 5.4.3. We will therefore omit the
details and only summarize the computational costs involved in the online stage. In the online
stage - given a new parameter value p and associated reduced-basis solution yNM (A, tk), Vk C K

-the computational cost to evaluate AM(, tk) (and hence AsNM(A, tk)) is O(K(N + M)2 ) and

thus independent of AF.

6.5 Results for Numerical Exercise 5

We now return to our model problem from Section 6.2.1. We first construct the sample set S9 and
associated reduced-basis space Wh - and hence TM and BM - using the empirical interpolation
method described in Section 2.4.3; we employ the surrogate least squares approach on 9 = 79 x I
for the greedy procedure, where E9 C D 144 is a regular 12 x 12 grid.

We next generate the sample set SNY and associated reduced basis space WK according to the
adaptive sampling procedure described in Section 4.5 - since the "truth" solutions y(p, tk) are
stored on Eg, we sample on this parameter-time grid and base our choice of basis on the energy
norm of the true error e(p, tk) and not on the error bound. We initialize the procedure with

p = (0.01,0.01) and tk? =lAt and set the desired error tolerance (for the relative error in
the energy norm) to Etoi,min = 1 E -6. We sample on the parameter test sample "9 used for the
construction of Sok. We need Nmax = 55 basis functions to obtain the desired accuracy.

We plot the sample set Sy in M - t-space in Figure 6-3. We note that the samples are
largely located in the M2 = 10 plane where the strength of the nonlinearity is largest. Furthermore,
because of the periodic control input, all samples are selected within the first 100 timesteps although
K = 200 here.
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Sample Set SY, N =55

1000

60 - .
40 .

200

00- 1

10

02 100

F10e63 N :SmlestSy

Table 6.1: NE 5: Convergence rate and effectivities as a function of N and M.

In Figure 6-4(a) and (b) we plot the maximum relative error E, and maximum rel-N,M,max,rel admxmmrl
ative error bound A'Mmxre1 as a function of N and M, respectively; here E, is theNM~mx~relN,M,max,rel
maximum over ETest of ||e(ptKK)|I and N,M,max,rel is the maximum over ETest of

AN,M (KIK)HY(Ly ,t)HI, where 1y = arg maxp -T y(p, tK) I1, and ETest C (E) 225 is a test
sample of size 225 (a regular 15 x 15 grid). We observe the same convergence behavior as in the
nonaffine case: the curves level off at lower and lower levels as M increases. However, M is much
larger now as compared to the nonaffine case due to the (implicit) time dependence of g. We also
note that the true error essentially converged for M = 80 - the M - 80 and M = 100 asymptotes
are identical. The error bound, on the other side, still decreases considerably for M > 80 (note the
different M values in the two plots). To obtain small relative error bounds we should thus choose
M large.

In Table 6.1 we present, as a function of N and M, Cm x LY and the averageN,M,max,reP N,M,max,rell
effectivity 7: 77Y is the average over EBest x E of AN,M(I, / Igkk _ yN(, tk)H. We confirm
the fast convergence already observed in Figure 6-4 and observe that the effectivities are very good
for higher values of N and M.

We now turn to the output estimate and present the maximum relative output error EsM,m,re1'
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N M NMmaxrel _N,M,max,rel

1 10 3.82E-01 4.22 E +01 79.8
5 30 1.36E-02 1.17E+00 26.0

10 50 1.62E-03 3.54 E -02 8.65
20 80 1.46E-04 3.52 E -03 8.25
30 110 1.88E-05 1.01 E-04 3.82
40 140 4.94 E-06 1.78E-05 1.69
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Figure 6-4: NE 5: (a) Maximum relative error in the energy norm and (b) maximum relative error
bound.

Table 6.2: NE 5: Maximum relative output error, output bound, and effectivities.

the maximum relative output bound AMmaxre1, and the average effectivity T7NM as a func-
tion of N and M in Table 6.2. Here, esM,max,rel is the maximum over ETest of Is(pt, t(p)) -

SN (A, tp /smax, AN,M,max,re is the maximum over ETest of ANM Ii, tK 8 max and iJ is the aver-
age over ETest of A, , sN,M(A, t7(A))1, where t,(t) arg maxtkR Is(p , tk)-

SN(p1, tk)I and smax maXtkl maxAE"Test S(I, tk)1. The reduced-basis output estimate converges
very fast: for only N = 5 and M = 30 the relative error in the output is close to 1%. However, the
output bound largely overestimates the true error, which is reflected in the very large effectivities.
For an accuracy of 1% in the output bound, we would thus require approximately N = 25 and
M = 100. Introducing adjoint techniques [121] might be a remedy for the poor output bounds.

Finally, in Table 6.3 we present, as a function of N and M, the online computational times
to calculate SN,M(pL, tk) and A',M (, tk), V k C K. The values are normalized with respect to
the computational time for the direct calculation of the truth approximation output s(/_, tk) -
f(y(p, tk)), V k E K. We note that the gain in the online response time is much larger in the
nonlinear case. This is mainly due to the fact that solving for the "truth" approximation (6.6)
involves the matrix assembly of the nonlinear terms. The actual run-time to compute the output
estimate and output bound in MATLAB 6.5 on a 750 MHz Pentium III is 1.41 (for N = 25,
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- M=20

N M 6NMmax,re AN,M,max,rel I!N,M
1 10 1.00E-00 9.19 E +02 494
5 30 1.91 E -02 2.55 E +01 597
10 50 1.46 E - 04 7.71 E - 01 1410
20 80 1.67E-05 7.66 E - 02 1357
30 110 5.16 E - 06 2.21 E - 03 416
40 140 1.56E-06 3.88 E -04 200

10 0 10 2



Table 6.3: Online computational times (normalized with respect to the time to solve for

S (/_, tk), V k e K).

M = 100). We already pointed out, however, that the offline computations necessary in the
nonlinear case are also more extensive - primarily due to the sampling procedure for SjQ. If
the many-query context, or a clear demand for real-time response of an engineering system or
component in operation, can justify the offline cost, the reduced-basis methods, and in particular
our approach described here, can be gainfully employed in many practical applications.

6.6 Application to Reaction-Diffusion Systems

In this section we apply our method to a specific problem belonging to the class of nonlinear
reaction-diffusion systems [26]. Reaction-diffusion systems are an interesting area of application
for several reasons: First of all, they appear in a large number of real-world applications: ranging
from Biology [22], where reaction-diffusion equations characterize the pattern formation in mor-
phogenesis and mutations in genetics; to Ecology, where they govern predator-prey relation and
the spreading of epidemics; to Physiology, where the conduction in nerves and carbon monoxide
poisoning is described by reaction-diffusion equations; to Chemistry [5, 6, 32], probably the most
notable application area of reaction-diffusion equations. Furthermore, inherent to these equations
and the specific application area are a large number of parameters, which, in general, have a very
strong influence on the dynamic behavior of the system, e.g., such as reaction rates in chemistry.
To analyze and understand the specific problem, many different parameter combinations have to be
investigated. The solution of reaction-diffusion equations, however, is a very challenging task be-
cause the equations are time-dependent, and often highly nonlinear and coupled. Efficient solution
techniques which can characterize many parameter combinations are therefore important. Finally,
in many applications - such as chemical engineering - understanding, modeling, and simulation
is often only the first step; the original goal is to control the behavior and outcome using (say)
techniques from optimal control theory [58].

The general form of a reaction-diffusion equation can be written as

' - V (D(t)y(x; p, t)) + f(y(x; p, t); p). (6.42)(9t

Here, x E c Rd is the spatial domain, p E D is the parameter vector, y is the vector-valued field
variable, e.g., containing temperatures and concentrations, D(p) is the diffusion matrix, and f(y; /i)
is a vector-valued function containing the (non)linear reaction terms. Our particular application
is the self-ignition of a coal stockpile introduced in Section 1.1.1. We note, however, that similar
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N M SN,M(A, tk), V k e K AM(, tk), V k E K s(p, t), V k E K
1 10 6.62 E -05 8.66 E-05 1
5 30 1.19E-04 7.35E-05 1

10 50 1.74E-04 9.57E-05 1
20 80 3.88E-04 1.57E-04 1
30 110 7.20E-04 2.62 E - 04 1
40 140 1.22 E -03 4.33 E -04 1



models are also used in combustion theory, biology, and in the description of porous catalysts.
We note that we cannot apply our a posteriori error estimation procedures to this problem

because (i) the system is coupled, and (ii) our monotonicity assumption for the nonlinearity is
not satisfied. We therefore only consider the reduced-basis approximation and do not discuss the a
posteriori error estimation.

6.6.1 AP III: Self-Ignition of a Coal Stockpile

More specifically, we consider a one-dimensional non-isothermal reaction-diffusion model for the
self-ignition of a coal stockpile with Arrhenius type nonlinearity [105, 103, 23], described in detail
in Section 1.1.1. The parameters governing the dynamic behavior of the system are the Arrhenius
number, -y, the Prater temperature, 3, the Lewis number, Le, and the Thiele modulus, 4. Here,
we assume that three of those parameters - 0, Le, and D - are fixed and only Y is varying. The
values, taken from [23], are given by,3 = 4.287, 42 = 70000, and Le = 0.233; and -y varies in the
range 12 < -y < 12.6. We can thus identify the input parameter p = y E D - [12, 12.6] C IRE{''.
We will see that the system exhibits a very interesting dynamical behavior in terms of complex
oscillatory patterns for this parameter range.

We next derive the weak form of the governing equations (1.14) and (1.15) and discretize in
time using Euler-Backward. We also introduce the linear finite truth approximation subspaces
YT {vIv e H 1 (Q), v = 0O1 o,1} and Y {vIv c H 1 (Q), v = 0 1=o} of dimensions X = 800 and
K 801, respectively; here Q - [0,1] is the spatial domain. We shall consider the time interval
I= [0,6] and a timestep At = 1 E-3; we thus have K = 6000. Our truth approximation is thus:
Given p C D, find T(p, tk) C YT and c(A, tk) E Y, V k E K, such that3

m(T(p, tk), VT) + At a(T(p, tk), VT)

-At CD2 j (c(, tk) + 1) e-j/(T(1_,tk)+1) VT = m(T(p,tk-1),vT), V VT E YT (6.43)

m(c(z, tk), Vc) + At Le a(c(p, tk), vc)

+At (D2 j(c(A, tk) + 1) e-p,/(T(y,tk)+1) VC - m(c(p, tk-1), vC), V vc E Y (6.44)

with inital conditions T(p, t0) - To, c(p, t0 ) = co. We then evaluate the outputs from

s1(, tk) -- i(Ty tk)), Vk c K, (6.45)

and
s2(, tk) -- (CA tk)), Vk e K. (6.46)

Here, f(v) = fQ 6(x - 0.2) v, and the bilinear forms are given by

m(w, v) = jwv, a(w, v) = Vw - Vv. (6.47)

3 Note that we use our usual notation here: T(p, tk) -T(x; I, tk) and c(,, tk) = c(X; A, tk).
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We also define the nonlinearity g as

g(c(p, tk), T(p, tk); p) = (c(p, tk) + 1) e-p/(T(Atk)+1) (6.48)

We plot in Figure 6-5(a) and (b) the outputs si and s2 for p = 12.0 over (discrete) time and in
phase space si - s2, respectively. The sharp peak in the temperature output si and corresponding
drop in the concentration output s2 indicates the ignition of the system. After the ignition, the
system goes into a stable steady-state solution. In Figure 6-6(a) and (b) we show the corresponding
output plots for ft = 12.5; we first note that the ignition occurs later in time and that the maximum
temperature reached is higher. For this parameter value the system does not return to a steady-
state solution, but converges to a period 1 limit cycle. Finally, we present in Figures 6-7(a) and (b)
the output plots for p = 12.6: the time of ignition occurs at a later and the maximum temperature
is higher than before. Although hardly visible in the phase plot because of the initial transients,
the system converges to a limit cycle with mixed mode oscillations. We show in Figures 6-8 the
phase plots for the two parameter values M = 12.5 and M = 12.6 without the transient behavior.
We can clearly see the period 1 limit cycle for p = 12.5; as p is increased, a period doubling cascade
occurs leading to the mixed mode oscillations for p = 12.6.

Output, p = 12

4s (pt): Temperature

5 - s2(..,t): Concentration

2 -

1 --------- ---------- ------

5 - -......

0 1-2
0 1 2 3

time t

(a)

0

0
0

4 5 6

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1-

0-

-0.1

Phase Plot: g = 12

1.5 2 2.5
Temperature

(b)

3 3.5 4

Figure 6-5: AP III: Outputs sl(p, t') and s 2 (A, tk)
plot.

for py = 12.0, (a) as a function of time (b) phase

6.6.2 Reduced-Basis Approximation

We first introduce the nested sample sets SNT {j' E D,...,i-4 E D}, 1 NT NT,max,

S . C D}, 1 Nc < Ncmax, and - for the nonlinearity S = {jf E

... , Ct E D}, 1 < M < Mmax, where f = (p, tk) and D9 D x 1E. We then define the associated
nested Lagrangian reduced-basis spaces

WNT kan T(T t), 1 rNT}, 1 NT < NT, (6.49)
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Output, = 12.5

4s (,t): Iemperature
s2(p,t): Concentration
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Figure 6-6: AP III: Outputs s1(j, tk) and S2(A, tk) for /L = 12.5, (a) as a function of time (b) phase
plot.

Output, p = 12.6
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Figure 6-7: AP III: Outputs s1 (p , tk) and s 2 (A, tk) for /z = 12.6, (a) as a function of time (b) phase
plot.
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Phase Plot: = 12.5
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Figure 6-8: AP III: Outputs s 1 (y, t') and s2 (p, tk) in phase plane for (a) t = 12.5 and (b) p = 12.6.

and
= span{ = c(Pttk), 1 < n NC}, 1 < Nc 5 Nc,max, (6.50)

where T(pft, tkn) and c(nt, tks) are the solutions of (6.43) and (6.44) at time t = tni for A = An
and t = tnE for p = pc, respectively. We also define the nested collateral reduced-basis space

W span{m - g(c( p),T(pAm);), 1< m < M}
= span{q,...,qM}, 1 < M Mmax,

and nested set of interpolation points TM = {t,...., tM}, 1 < M < Mmax.
Our reduced-basis approximation is then: given M c D, TN,M(p, tk) E WNT and cN,M(ptk) (

Wk

m(TN,M (A, tk), VT) + At a(TN,M (M, tk), VT)

-At 2 MTNM (X; , tk) VT = m(TN,M(/,-tk-), VT),

m(cN,M (A, tk), vc) + At Le a(cN,M(p, tk), Vc)

+At <)2 CN,MTN,M (X;Atk) v- = m(cN,M1(,tk-), Vc),9MV =M(N, A Vvc G Wh (6.53)

with inital conditions determined from m(T(t, t0 ), VT) = m(To, VT), VVT E WT, and m(c(p, t 0), vc)

m(co, vc), Vvc c WKr; here g'CNMTN,M (x; ptk) is the approximation to g(c(p, tk), T(p, tk); M) given
by

gCN,M,TN,M

M

- E9Mm(p, tk)qm(x)
m=1

(6-54)
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where the coefficients WMm(iu, tk) are determined from

M
BM'O~j (Y, tk) = g(C(t,; Y, tk), T(ti; /_L, tk); /),

j=1
1 < i < M (6.55)

and BM = qj (ti), 1 i,j M, 1 K M < Mmax. Finally, we evaluate the outputs from

SN,M (,k) - e(TN,M (L, tk)),

SN, =# k CN,M (A, 'M(,t)k)),

and

Vk E K,

Vk E K.

(6.56)

(6.57)

Offline-Online Procedure

The offline-online procedure follows directly from our previous discussion in Section 6.3.2. We first
express

TNM(/_, tk)

CN,M (I, tk)

NT

E (jjTN,Mn (A,tk),
n=1

Nc

n CN,Mn (9, tk),
n=1

and choose as test functions VT = (nT, 1 < n K NT in (6.52), and v, = , 1 < n < N, in (6.53).

It then follows that TN,M(p, tk) =TN,M1([, tk) - TN,MNT (A, tk)]

[cN,Ml(A, tk) . .-cN,MNC (A, tk)], C RNc, V k c K, satisfy

(Mk i+ At A T) TN,M(I, k At ' 42 0 N,MT M(,tk)

(Mr + At Le Ac ) cN,MC#,tk 2 N,Mc MGtk) =

E IN and 1N,M (,tk) _

MkT !TN,M(At ), (6.60)

(6.61)

with initial condition MTTN,M(, = - N,M, where TGNMi = m(To,(T), 1 K i K NT and
MCGNM([1 t0 

-NM, where cNMi = m(co, (T), 1 K i K N.. Here, pM(Itk) E RM is determined

from (6.55); MN E RNTxNT, A Tc RNTxNT, CN,MT C JNTxM MK Nc I x N Ac IRNc xNC,

and CN,M c IRNc xM are parameter-independent matrices with entries Mig, = m((T, (T) 1 K

i, j < NT, AT = a((T, (T), 1 K i, j NT, C' = fT (q, I1 i < NT, 1 j < M,
MK Cc = jc), 1 < i, < Nc, Acj = a((i, q%), 1 < i, j 5 NC, M = fQCcq) 1M i
N,, 1 < j M, respectively.

We can now substitute pM(/I, tk) e RM from (6.55) into (6.60) and (6.61) to obtain the coupled
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system of nonlinear algebraic equations

(M +At AT) NMItk) At 42DN,MT

9 (ZNMc CN,M(!M; A k) NI,M T TNMM M; = MT TN,M (A, tk-1 6.2

(Mn + At Le Ac) !N,M(ft, k At C2DN,M c

g(ZN,Mc CN,M(tM A t k N,MT TN,M(tM wk); = MK !N,M(Pt ) (6.63)

with initial condition MTTNM((, t0) = IN,M and McCN,M (A, t0 ) _ oN,M, which has to be solved

using (say) Newton's Method for all k E K. Here, DN,MT = CN,MT(BM)-1 2 RNTxM and
DN,Mc - C,Mc (BM-1 E RNc x M; and Z,M T G IM x NT and ZN,Mc C IRMxNc are parameter-
independent matrices with entries Z M T (ti), 1 j < NT, 1 < i < M and ZM

(C(ti), 1 < j < Nc, 1 < i < M, and tM = [ti .. . tm] G RM is the set of interpolation points.

Finally, we evaluate the output estimates from

s1,M ( t) -L T NM(tLk), Vk C K, (6.64)

and

SNM(/,t) LN cN,M(pk), Vk e K, (6.65)

where LN T CRNT and L% E ]RNC are the output vectors with entries L T - f((T), 1 < i < NT and
LCi = f(Q), 1 < i < N, respectively.

The online-offline decomposition is now clear. In the offline stage - performed only once - we
first construct the nested approximation space Wh and sets of interpolation points TM, 1 < M <
Mmax; we then solve (6.43) and (6.44) for the (f, 1 < j < NT and (j, 5 j < Nc, respectively, and

store the parameter independent quantities Mk, AN, DM,N T Mn, Ac, DM,N C ZM,NT, ZM,Nc,

and BM. In the online stage - given a new parameter value p - we solve (6.62) and (6.63) for
TN,M(Itk) and CNMQI, tk) and evaluate S M , tk) from (6.64) and (6.65). The operation count

in the online stage is O(RK(MN 2 + N 3)), where R is the average number of Newton steps per
timestep and N = NT + Nc; The operation count is thus independent of .

6.6.3 Numerical Results

We first consider the approximation (6.54) for the nonlinear function, g(c(ft, tk), T(J, tk); p), defined
in (6.48). We sample on a regular grid E9 of size 31 and set (1, tk!) (12,1). Note that we need
to precalculate and store the "truth" solutions for all timesteps and parameter points in E9. We
next pursue the empirical interpolation method of Section 2.4 (using the L (Q)-norm surrogate)
to construct M 'g, Wg, TM, and BM, 1 < M Mmax, for Mmax = 44. The resulting sample set

Sg is plotted in Figure 6-9(a). We observe that the samples are largely located along a curved line
in parameter-time space. This curve represents the time of the first ignition, tignition, as a function
of the parameter P. To confirm this, we plot the ignition curve, i.e., the timestep where s 1 (, tk)
reaches its maximum for each parameter value, in Figure 6-9(b).

We next generate the sample sets Sj 4 and S using our adaptive sampling procedure from

Section 4.5 using the true errors in the energy norm, eT(, tk)III and Iec(t, tk) I1, instead of the
error bound. Here, eT(#,tk)(u - T(wtk) - TN,M( ttk), ec(A, tk) - C(tk) - cN,M(A, tk) and the
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Sample Set S9, M = 44
800

700 -- ---- -
0

0

600-

000

500- --

300 - - - - - - - - -
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100 - . ..... .

12 12.1 12.2 12.3 12.4 12.5

(a)

Sample Set S9, M = 44Mmax
800

700 - --- - - - --

600-

50 0 - -- -.-.--.-

400 - - - -- - --

300

200-

1 0 0 -- - -- - - --- -- -- --

- First Ignition
12.6 12.1 12.2 12.3 12.4 12.5 12.6

(b)

Figure 6-9: AP III: Sample set Sk.

energy norm is defined as IIv(p, tk) 112  m(V(ptk), v(, tk)) + , A a(v(p, tk'), v(p, tk')). We
note that, although we use the true errors, our sampling procedure fails for this problem. The
reason is that the reduced-basis approximation cannot capture the point ignition, tignition, without
sufficiently resolving the transient behavior before the ignition occurs: the rate of change in the
error (and norm) will be largest at the tignition - the adaptive procedure thus repeatedly suggests
to pick the sample point corresponding to the point of ignition, tignition, instead of first choosing
samples leading up to tignitio. We thus employ the backup procedure described in Section 4.5.3. We

plot the samples sets ST and Sk in parameter-time space in Figure 6-10(a) and (b), respectively.
We note that the samples sets S' and ST differ in size as well as in the specific samples chosen.

Sample Set ST, NT = 30
1000

900-

800 - -- - -- - - - -

700 - - - --

0
6 0 0 - - -- - - - - -.-.--- -- .--- .

5 0 0 - - - - -- - -- - - -

4 0 0 - -- --- - - - -- - - -

300 - ---- --

2 0 0 - - -- - -- - -- - -- -- - - - -

100 --- -- -

0
121 1.n1.o24 25 1.
12.1 12.2 12.3 12.4 12.5 12.6

(a)

Sample Set Sc, N = 30N c,max
1000

......-. .-.- --. --. - -. . -- --.. . .900-

700- -- - -
0

6 0 0 - - -- - - - - - - - - -- - - -- - -
0

500 - - --- -

4 0 0 - - .--- -- -- -.- --.- -.

300-

2 0 0 - - --- - -- --- -.--.-.-.-.-

1 0 0 - - .-.. -. -. ---- -- .- .- .-- --.-.-.-.-.- . --. ---. --

1007

12.1 12.2 12.3 12.4 12.5

(b)

12.6

Figure 6-10: AP III: Sample set (a) ST and (b) Sc.

We next present convergence results for the error in the energy norm. In Figure 6-11 (a) and (b)
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we plot, as a function of NT, Nc, and M, the maximum relative errors E mTm and EMN,M,max,re, an N,M,max,rell
respectively (see Section 6.5 for the definition of these quantities). We observe the typical behavior
of the error convergence: the M-asymptotes level off at a lower and lower error as M increases.

Finally, we present convergence results for the error in the outputs. In Figure 6-12(a) and (b)
we plot, as a function of NT, Nc, and M, the maximum relative output errors E, andN,M,max,rel

EN,M,max,rel respectively (see Section 6.5 for the definition of these quantities). The output error
shows the same behavior as the error in the energy norm. To obtain a maximum relative error in
both outputs of less than 1 percent, we require approximately M = 44, NT = 20, and N, = 22.

------ -- - -- - - - - - - ---

- M=4
-- M =12
-- M= 20
+ M= 28

- M =36
-v- M = 44

5 10 NT 1NC

(a)

100

10~

E

20 25 30

- --- - -- --- -

- M=4
M=12
M= 20
M= 28

-v- M=36
-M = 44

5 10 N ,5 N c 20

(b)

Figure 6-11: AP III: Convergence results for energy norm error.

- ------------ - -- --

-M 4
--- M=12 -
.--- M=20
SM =28

-- M =36
-- M =44

5 10 15
N, N

(a)

20

100

10-1

E
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10-31
025 30

-O------0- - - ---

- M=4
- M=12
- M= 20

+ M= 28
-- M=36
-- M = 44

(b10 N15

(b)

Figure 6-12: AP III: Convergence results for output error.

Finally, we present in Figures 6-13 and 6-14 the outputs and output estimates, s1 ,2 (/t, tk)
and s M(p, tk), and the relative output errors, c" (11,tk) - Isg(1t'tk) - s1 ,M ptk)j1 .a(M) and

8re (t, tk) = 2 (, tk) - s2N,M pt1/nax(p), as a function of (discrete) time for p = 12.0 and
t = 12.6, respectively; here, sax.(P) = maxtk.Rsl ftt) and s ax(f) = maxtkiRs2 tk)
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Temperature, it = 12

x 1
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11
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00 1 2 3
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Figure 6-13: AP III: Output s(p, tk) and output estimate SN(A, tk), output error, and energy norm
error as a function of time for M = 12.0.

Temperature, g = 12.6
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Figure 6-14: AP III: Output s(p, tk) and output estimate sN(A, tk), output error, and energy norm
error as a function of time for p = 12.6.
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Chapter 7

Application to Real-Time Parameter
Estimation and Inverse Problems

7.1 Introduction

In this chapter we employ the reduced-basis method and associated a posteriori error estimation
for the efficient (real-time) solution of parameter estimation and inverse problems. To this end, we
revisit several of the application problems discussed previously in this thesis - the fast and reliable
evaluation of the input-output relationship will be the basis for the efficient and robust solution of
the estimation problem.

We will start by formally introducing the notion of the "inverse" problem in our context and
shortly review some standard approaches to solving these problems. We then incorporate the
reduced-basis approximation in the inverse problem solution and discuss a method that can quantify
the uncertainty due to measurement and modeling errors. The second part of this chapter is devoted
to numerical tests based on the applications and problems introduced in earlier chapters.

7.2 Inverse Problems

7.2.1 Forward vs. Inverse Problem

Our main focus in the last chapters was the development of efficient and reliable numerical methods
to evaluate input-output relationships governed by parametrized partial differential equations. More
specifically, we were concerned with the following problem: given an input parameter [ in the
admissible parameter set D, we evaluate the output of interest, s((p, tk) -- f(y(p, t')), V k E K,
where the state variable, y(p, tk), is the solution of a parametrized partial differential equation.
Our methods, an all our efforts so far, are geared towards solving the (so called) "forward" problem
- that is, the evaluation of the input-output map p -- s(/,tk),V k E K. Let us now assume we
are interested in going the other way around, i.e., given the output s(y, tk), V k c K, we ask: what
is the parameter value p that resulted in this output? This problem is commonly referred to as
the "inverse" problem and its solution requires, in general, the repeated solution of the forward
problem; this is where our methods come into play.

Inverse problems have received a lot of attention in engineering and science because of their
practical importance in many applications, ranging from geophysics [115, 128], to ecology [14],
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image processing [27], heat transfer [19, 2, 80], continuum mechanics [12],physiology [11], medicine

(e.g., hyperthermia treatment) [89, 31], and nondestructive evaluation [44]. The objective of the
inverse problem is to determine unknown system parameters from observations (or measurements)
of the state variables or outputs of the system.

We note that most of the literature on inverse problems can be divided into "theoretical" or
"numerical" work. The former is concerned with developing concepts of uniqueness of solutions in
parameter estimation problems and determining stability, i.e., whether the "identified" parameters
depend continuously on the problem data. The latter, on the other hand, is concerned with devel-
oping efficient algorithms to solve inverse problems. Although we review some of the theoretical
background, our main focus here is the latter.

7.2.2 Formulation

We henceforth assume that there exists a "true" parameter, p*, the corresponding "true" state,
y*(tk) -( y *, tk), and the resulting "true" output, s*(tk) (y* (tk)), Vk C K. In general, however,
measurements of the complete state y* (tk), V k e K may not be possible; instead, only the output
s* (tk) - representing the observable part of y* (tk) - is available for measurements. Furthermore,
in actual practice the measurements themselves may be (i) corrupted by noise - we thus have no
access to s*(tk) itself but rather to a (noisy) measurement z(tk); and (ii) unavailable at all times
tk, V k e K, but only on a coarser timescale tk, V k E Kexp, where (say) Iexp ={10, 20, ... IK}. We
also note that the output s*(tk), and hence z(tk), also depends on the control input u(tk). However,
we shall assume here that u(tk) is known and may even be set by the operator, e.g., such as the
heat input in the delamination example.

We can now formulate the inverse problem more precisely: Determine p E D such that

s(t, tk) -- tk), V k E xp. (7.1)

This problem, however, is generally "ill-posed," i.e., it is possible that no solution exists (which
may often be the case in problems where experimental data is used), or that one has multiple
solutions. Furthermore, even if a unique solution exists it might not depend continuously on the
measurements. Given these complications, the question arises as to one can actually expect to
identify p* from (7.1). The problem of parameter identifiability [53] is, in general, described as the
injectivity of the input-output map p --+ s(p, tk), Vk E Kexp. Many different notions of identifiability
exist in the literature [14]; the following definition is taken from [14] (IV.3. Definition 3.1):

Definition 6. (a) The parameter p is identifiable at p* with respect to D if for any P E D,
s(p, tk) = s(p*, tk), V k E Rexp implies p = AL*.

(b) The parameter p is called identifiable with respect to D if it is identifiable at p* with respect to
D for every p* C D.

We note that the identifiability of p does not only depend on the problem itself (i.e., the
governing equation), but also on the outputs and even the number of observations taken for each
output. Furthermore, a problem may be parameter identifiable considering the exact (or analytic)
solution, but loses this property when considering the discretized problem; in some cases even the
discretization technique can be decisive [14].

Solving the estimation problem (7.1) is thus not a trivial task. In applied problems additional
complications arise from modeling errors and, as mentioned previously, measurement errors. From
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the latter it follows that even for the true parameter value p* we have s(/I*, tk) -# z(tk), whereas
from the former it follows that the state y( *, tk) does not exactly replicate the true physical
state. Because of all these complications, parameter estimation problems are usually considered as
optimization problems.

7.2.3 Solution Methods

The first step in stating the optimization problem is the choice of a cost functional or error criterion
J(p, z); two options are usually considered: the equation error criterion and the output error
criterion. The equation error criterion requires knowledge of the entire state y(p, tk) which is
usually not readily available in actual practice. The output error criterion, also called output least
squares (OLS) formulation, does not bear this disadvantage since only the output measurements
are required. In our context, the OLS formulation can be stated as

J(M, z) = 1 S Is(ipt ) -- z(tk)I!2, (7.2)

kCexp

where f - f denotes the usual Euclidean norm. Here, z(tk) denotes the (noisy) measurement and
s(pi, tk) is the output. We then obtain the parameter estimate p* by minimizing (7.2) over p C D
subject to the governing partial differential equations being satisfied. For example, assuming the
governing PDEs are given by (4.3) and (4.4), we obtain

= arg min J(p, z), (7.3)

s.t. (4.3), (4.4).

The OLS formulation has a wider applicability in practice and is thus more often used. However,
it has two major disadvantages: first, it requires (repeated) solution of the governing equation; and
second, the cost function is often very flat and not convex in p. Reduced-order models, such as the
one presented in this thesis, can be gainfully employed for the efficient solution of the governing
equations. To obtain a well-posed problem and avoid the second difficulty, regularization techniques
such as Tikhonov regularization [118], are often used. The regularized cost functional is given by

JR(i, Z) = 1 E I s tz) I +2 _ SR R(y) (7.4)
kE~exp

where R(p) is the regularization term and JR > 0 is the regularization parameter. A common
choice for the regularization term R(p) is R(p) = 1j - A1l 2 , where A is some a priori estimate of
the true parameter p*. By regularizing the problem, however, we introduce some assumptions a
priori which affect the solution; the solution of the regularized problem is biased towards the a
priori information included in the cost functional and in general different from the solution of the
original problem. Furthermore, the uncertainty present in the original problem statement is not
quantified and thus valuable information might be lost.

Many algorithms exist to solve the optimization problem (7.3). We mention especially the
Levenberg-Marquardt algorithm, a quasi-Gauss-Newton method specialized for minimizing least
squares problems, and the Broyden-Goldfarb-Fletcher-Shanno (BFGS) method, a widely used
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quasi-Newton technique. Other options are the Conjugate-Gradient method or even genetic al-
gorithms. We note that if finite differences are used to approximate the gradient information,
the Newton and Gauss-Newton methods become computationally increasingly expensive with the
number of parameters that have to be estimated.

7.3 Integration of the Reduced-Basis Framework

In this section we discuss a solution method for inverse problems with which we can explicitly
quantify the uncertainty in the problem formulation due to noise and modeling errors in the form
of a "possibility region," R(*) [75]. The basic idea is: rather than aiming to find one regularized
solution we strive to identify (almost) all parameter values that satisfy the constraints of the
problem, e.g., the given measurements and governing equation. To this end, we first presume the
existence of a region Z* (exp, tk) such that z(tk) E Z * (eexp, tk), V k E Kexp. We (plausibly) assume

that the measurements z(tk) lie in a band around s*(tk), bounded by the experimental error Eexp;
we thus define

Z*(eexp, tk) = [s*(tk) - Eexp, s*(tk) + Eexp], V k c Kexp . (7.5)

It is important to note that we assume here that Eexp - and thus Z* (Cexp, tk) - are known. In

actual practice, this may not always be the case and we thus have to quantify the measurement
errors first before solving the inverse problem [73]. In some cases, however, it may be possible to
deduce the measurement error from the experimental setup, e.g., from the limited thermal resolution
of an IR camera used for temperature measurements.

We next note that, in general, there will exist multiple parameters p such that the associated
outputs s(A, tk) lie within Z*(eexp, tk) for all k E K. We denote the parameter set containing these
parameters by P(p*), given by

p(p*) = { C D 1 S(p, tk) E Z*(Eexp, tk), V k E Kexp}. (7.6)

When the output is induced by partial differential equations, however, evaluating s(w, tk) for a given

[t is expensive. We thus incorporate the reduced-basis approximation into the solution process and
"replace" the "truth" approximation output s(/_, tk) by the output estimate sN(P, tk). Thanks to
our rigorous a posteriori error estimation procedures, we know that s(p, tk) satisfies s- (p, tk)
s(p, tk) 5 s+ (p, tk), V k C K, where the upper and lower output bounds are defined as s± (P, tk)

SN(P, tk) ± Asp, tk), V k G K. We take this modeling uncertainty into account and define the
possibility region, R* = R(pL*), by

*{*) { D [s T([, t), sN(ptkj f Z*(eexp,(tp) t 0, V k C Kexp}. (7.7)

We note that P(p*) c R(p*) and, since p* E P(p*), it follows that p* E R(p*). Furthermore, as
our uncertainty due to modeling errors decreases, A'(/_, tk) -+ 0, we obtain 1Z(p*) -> P(p*)

In our solution we account for the experimental (or measurement) errors, Eexp, and (reduced-
order) modeling error, A,(/_, tk). Both error components have the same effect on the size of the
possibility region: larger errors in the measurement and model lead to an increase in R(p*), whereas
the size of 7Z(p*) decreases if better measurements and/or a better model are available. This fact
should also guide our choice of N for the reduced-basis approximation, i.e., if possible, we should
avoid spoiling accurate measurements by an inaccurate model with large output bounds, A (p, tk)
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The reason is that measurement errors are, in general, harder to improve than the accuracy of our
model. We also note that our solution does not incorporate modeling errors committed in designing
our "truth" approximation. If the "truth" approximation does not replicate the physical system
well, we cannot (and should not) expect the reduced-basis approximation to do so. This should
always be remembered when interpreting results in actual practice.

We shortly return to our previous discussion of parameter identifiability. In actual practice,
the constraints specifying the solution will not only be satisfied by the unique p*, but by a set of
parameter points contained in the possibility region, R(p*). However, it follows from Definition 6
that, absent measurement and modeling errors (Eexp = As (p, tk) = 0), the possibility "region"
for an identifiable problem is just the unique parameter point /p*, i.e., R(p*) = P*. Although this
condition will hardly ever be met in practice, we can numerically test and confirm this behavior.
We simply "decrease" the measurement error gradually and plot the possibility region for each
error level. We will use this as a regular test when discussing numerical results in Section 7.4-7.6.

Finally, we note that we can easily extend these ideas to treat problems with multiple outputs.
We then have, of course, a separate measurement corresponding to each output - each additional
measured output results in a set of additional conditions that have to be satisfied. We simply require
that the condition stated in (7.7) has to be satisfied simultaneously for all outputs. Thus, increasing
the number of outputs considered in the parameter estimation procedure will, in general, decrease
the uncertainty of the parameter estimate. We will also observe this behavior in the examples to
follow.

7.3.1 Construction of the Uncertainty Region

We now turn to the construction of the possibility region R(p*). More precisely, we are interested
in finding a set of boundary points, p *, of 7Z(p*) which we will then use in Section 7.3.2 to find
a closed form description for 1Z(p*). To this end, we first find a parameter point A - R(p*) -
referred to as the initial center p1c. To obtain pgc we solve

pic = arg min 1 IISN(pAtk) _ Z(tk) 2 , (7.8)
AED 2 -

kE-Kexp

subject to the governing equation (say) (4.17) being satisfied. We evaluate the output estimate,

SN(01, tk), from (4.20) or, if we employ the simple bound, from (4.110). In the numerical examples
in Sections 7.4-7.6 we employ a Finite-Difference Levenberg-Marquardt scheme [64] to solve (7.8)
and use the geometric center of the admissible parameter domain D as the initial guess. We
recall that solving the optimization problem with the truth approximation output s(A, tk) would
be computationally very expensive. In actual practice, we do not need solve for the true minimizer
of (7.8); instead we stop the optimization procedure as soon as one iterate lies within 7Z(P*).

Given p1c, we perform a search along d, directions determined by the angles 3j, 1 < j < do,
to find the boundary point p4, 1 j < do: we start with (say) 01 = 0 and conduct a binary

chop along this direction to find the boundary point pf*, i.e., we first choose two parameters Pin
and pout located inside and outside 7Z(p*), respectively. We next calculate pmean = (Ain + pout)
and check whether prmean lies within R(p*). If /mean is inside 7Z(p*) we set Ain = ymean and
pout = pout, otherwise we set Pin = Pin and /out = /mean. We repeat this process until Ilyout - Pin 11
is smaller than a desired tolerance Apl*. We next increment f1 by AO = 360/do degrees to obtain
02 = 01 + AO and conduct a binary chop along the new direction to find pR*. We repeat this
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process for all directions 0., 1 < j < do.

There are two important issues concerning the construction of R(p*). First, the algorithm relies

on the fact that R(p*) is star-shaped with respect to pic. If we find, or suspect, that this is not the
case, we should restart the algorithm with a new initial center in R(p*) to obtain the remaining
part of the boundary. Second, R(M*) might not be connected. In this case we have to map the
boundary using different initial centers for each region separately.

Finally, we remark that the algorithm is not truly exhaustive, i.e., it is possible that we "miss
out" on parameters which satisfy (7.7). However, we certainly decrease the uncertainty as compared
to a single regularized solution.

7.3.2 Smallest Enclosing Ellipsoids

Given the set of boundary points PAL, 1 j do, we are interested in finding a closed-form
description of the possibility region R(t*). In general, the closed-form description is favorable
because of (i) visualization, storage, or post-processing requirements, e.g., a possible subsequent
design or optimization over all p e lZ(p*) would be much simplified given such description; and (ii)
constructing 7Z(p*) becomes increasingly expensive with the number of parameter dimensions - we
would thus like to characterize the possibility region with only a limited number of boundary points.
One possible approach to obtain this closed-form description is to find the ellipsoid with minimum
area (or volume) which contains the given set of (boundary) points. This problem, usually referred
to as "smallest enclosing ellipsoids," has been widely studied [39, 87, 88, 107, 126].

An ellipsoid in Rd is defined as the set of points X E Rd satisfying

(X - Xc), Q (X- Xc) = 1, (7.9)

where x, E Rd is the center of the ellipsoid and Q E Rdxd is a positive definite matrix. Furthermore,
the ellipsoid body is the set of points x E Rd such that (x - x)T Q (x - x,) < 1. Given a set of
points xi, 1 < i < d, the problem of finding the minimum enclosing ellipsoid can then be written
as the convex program [72]

min - log det(Q) (7.10)

s.t. (x - ) Q (xi -e) < 1, 1 < i < d,
Q positive definite,

which can be solved using Welzl's algorithm [126].

Here, we use a suboptimal but much simpler approach which can be cast as a linear program.
We first note that (7.8) can also be written as

XTPX + pTX + c = 0, (7.11)

where xc = -jP-lp and Q = P/(xTPXc - c); here P E Rdxd, p E Rd, and c C R. Given the set
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of boundary points Pj , 1 < j < d,, we then define the linear program

min (7.12)r Z TP -R*+T R*+< ljdA Pl P - 1 + c < 0, 1 < j < d ,

s t. p * P ATg + c ;> 6,1 < j do,

Pi = 1, P symmetric.

Here, we are essentially minimizing the largest diameter of the ellipsoid to the given set of boundary
points subject to the constraint that all boundary points lie in the ellipse. We note, however, that
the solution of this problem is not guaranteed to result in an ellipse, i.e., we may obtain a hyperbola
or parabola.

We will now apply the above ideas to a few of the problems discussed earlier in this thesis.
The general procedure for testing our methods is as follows: we first select the "true" parameter
value p* E D; given I*, we solve the "truth" finite element approximation and evaluate the output
s*(t') s (*, k); finally, given s*(tk) we then construct z(tk) and Z*(e xp, tk) in (7.5) by adding
the measurement error, Eexp, to the data. Throughout this chapter, we measure fexp in percent of
the maximum output s*ax _- maxkEK s(*, tk)1, i.e., "Exp =1%" is equivalent to Cexp = 0.01*ax.
We then attempt to estimate p* given the inputs z(tk) and Z*(Eexp, tk) for the inverse procedure.

We will not use actual physical experiments here and we thus do not have to be concerned about

modeling errors in the "truth" approximation. All timing results presented are obtained on an Intel

750 MHz Pentium III processor running MATLAB 6.5.

7.4 Numerical Exercise 3: Banks and Kunisch

We first consider the one-dimensional convection-diffusion problem discussed in Section 4.8.4. The
specific transport system (4.165)-(4.166) models the movement of fluids and transport of substances

within the brain. Knowledge of this process is important in understanding the transport of large

protein molecules in brain interstitial fluid (ISF) and hence fundamental to understanding cerebral

function. The physiological investigations are focused on the issue whether the flow in brain tissue

is governed by simple diffusion or diffusion plus convection. Given the measured outputs SN,J,
1 < j < 3 - in actual practice obtained from animal tests - the goal is thus to determine the

diffusivity qi and the velocity q2.
We recall that the parameter and admissible parameter domain are p = (pi, 12) = (qi, q2) C

D E [0.1, 1] x [0.5, 5] C RP=2 ; and the timestep and number of total timesteps are given by
At 0.01 and K = 100, respectively. Based on the numerical results and our previous discussion

in Section 4.8.4 we employ the primal formulation with the simple bound defined in Proposition 9;
we thus have no need for the dual problems corresponding to the three outputs.

7.4.1 Parameter Estimation

In [13, 14], the authors consider the model problem (4.165)-(4.166) as a test case for their parameter

estimation techniques. They discretize the original equations using quasi-modal techniques and

cubic spline based schemes. The true parameter, p* = (0.3,1.75), is estimated by solving the OLS
formulation with a Finite-Difference Levenberg-Marquardt Algorithm.
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In general, modal techniques are only applicable to simple problems where the true modes do
not depend on the parameter. Since the (to-be-estimated) parameter itself is unknown, it may not
be possible to generate an approximation space that can represent the true modes sufficiently well.
The use of (quasi-)modal techniques in parameter estimation problems is therefore very restricted
in practice. Cubic spline based schemes, on the other hand, do not bear this disadvantage and can
be applied to more general problems. Although the basis may also depend on the parameter for
cubic splines, the necessary coefficient matrices can be precomputed and used in an offline-online
fashion [14] for the constant parameter case. If the parameters are spatially varying, more elaborate
techniques, e.g., series expansions, can be used to avoid the increasing computational cost due to
repeated evaluation of the coefficient matrices.

Here, we consider the results summarized in [13, 14] for the case with three outputs and observed
at only one point in time. The authors report that the parameter estimation scheme using the quasi-
modal technique fails to converge for this case while the cubic spline method performs well: for
Ns = 8 (the dimension of the approximation space) the parameter estimate is A = (0.3001, 1.7486).
The authors also report that cubic splines in general perform better for transport systems and yield
better results for a given amount of data. To see how the reduced-basis approximation performs
compared to the cubic spline method, we solve (7.8) with Eexp = 0 and we choose N = 8 for the
dimension of the reduced-basis space; as the stopping criterion we require that two consecutive
iterates satisfy jlpk _ Ak+ I/,klj < 1 E-10. We obtain, after 7 iterations and 0.5 sec., the estimate
pic = (0.2999,1.7501). We observe that the reduced-basis approximation performs equally well
in estimating the unknown parameter. However, the solution to (7.8) alone does not quantify the
uncertainty in the system due to noise or modeling errors and is therefore only the first step in our
robust estimation procedure.

Before analyzing different aspects of this procedure, we present a typical solution to the inverse
problem. We assume that p* = (0.3,1.75), Eexp = 1%, and Kexp {10} (i.e., the output is
measured only at one (discrete) timestep tk = 10At). We choose N = 12 for our reduced-basis
approximation and solve (7.8) for the initial center p1c. After 3 iterations and 0.28 sec. we obtain

Pic = (0.3007,1.7480) (note that we stop the optimization as soon as one iterate lies within 1(p*)).
We next evaluate the boundary points p , 1 < j < 72, with \3 = 50 (do = 72) and ApR* = 1 E -4:

we require 827 forward solutions obtained in a total of 16.9 sec. Finally, given the boundary points

b*, 1 < j < 72, we solve (7.12) for the enclosing ellipse containing R.
In Figure 7-1(a) we plot the "true" parameter value, /*, the initial center, pic, the boundary

points pF* and the enclosing ellipse. We observe that the initial center is close to the true parameter
value. However, only the possibility region 7Z(p*) renders a clear picture of the uncertainty in the
problem. We also observe that the enclosing ellipse gives a very good (and tight) description
of the actual possibility region marked by the blue boundary points - this is certainly problem
specific and may not always be the case. Finally, we notice that we do not need such a small
increment AO - and hence so many boundary points pF* - to find the enclosing ellipse in actual
practice. In general, a larger A 3 suffices to capture almost all (in the probabilistic sense) parameter
values p G- R(p*). To this end, we plot the corresponding result for AO = 200 in Figure 7-1(b): the
enclosing ellipse is only slightly different, but the number of forward solutions and time to construct
R(pL*) dropped by approximately a factor of 4 to 212 and 4.26 sec., respectively.

We next consider the sensitivity of the possibility region with respect to the measurement error

Eexp- We assume that the true parameter is p,* = (0.3,1.75) and the measurements are taken at
Kexp = {10}. We choose N = 12 for our reduced-basis model and set AO = 10' to construct the
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Figure 7-1: NE 3: True parameter value p*, initial center
AO = 50 and (b) AO = 200.
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Figure 7-2: NE 3: Possibility regions R(p*) as a function of measurement error.

We obtain a similar result for the sensitivity with respect to modeling errors due to our reduced-
basis approximation. We assume that the true parameter is p* = (0.3, 1.75), the measurements
are taken at Kep = {10}, and the measurement error is now fixed at fexp = 0.1%. We also set
AO = 100 to construct the possibility region. In Section 4.8.4 we observed that the accuracy of
the reduced-basis approximation - and hence the modeling errors introduced - strongly depend
on the dimension of the reduced-basis space. To show this effect on the solution of the parameter
estimation problem, we solve the inverse problem using four reduced-basis approximations with
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N = 6, 10, 12, and 14. The enclosing ellipses are plotted in Figure 7-3(a) and (b): as expected,
a larger dimension of the reduced-basis space and thus smaller modeling errors result in a smaller
possibility region R(p*).

0.28 0.29 0.3
(,

(a)

0.31 0.32 0.33

Figure 7-3: NE 3: Possibility regions lZ(bt*) as a function of N.

The current example shows the behavior anticipated for an identifiable problem: the possibility
region shrinks with decreasing measurement and modeling errors and eventually reduces to the
single parameter point p*. We confirm the last conjecture by setting the measurement error to
zero, Eexp = 0%, and using the "best" reduced-basis approximation with N = 16 resulting in the
smallest modeling errors. We solve the estimation problem for p* = (0.3,1.75) with AO = 50 and
Apl/*) = E -8 and plot the boundary points of the possibility region in Figure 7-4 (note the
scaling of the axis). The initial center pIc differs from the true parameter point /p* only in the fifth
decimal place and the maximum deviation for any point within l(p*) from pic is only 0.025%.
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time become available. We shall assume that the measurements are taken at Kexp = Ki, 1 < i < 4,
where K1 ={10}, K 2 ={10, 20, 30}, K3 -{10, 20,... ,50}, and K4 ={10, 20,... , 100}, i.e., we
assume that we have access to 1, 3, 5, or 10 measurements in time. We shall consider the true
parameter p* = (0.3,1.75) and the measurement error Eexp = 0.1; we choose the dimension of the
reduce-basis space to be N = 12 and set A0 = 5'. We solve the estimation problem and plot
the possibility regions in Figure 7-5. We note that each additional measurement in time acts as
an additional constraint in constructing the possibility region. The regions thus shrink with the
number of measurements and are strictly contained within each other.

1.756
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1 .7 5 2 - - ----. .. .* ...... IK ,. 0 0

andK454{ ,20,.., 1(}

0 IK

~. 1.75 - - ...... .

+.74 0

1.746 -....

N.~26 0.298 0.13 0.302 0.304
g1

Figure 7-5: NE 3: Possibility regions JZ~i*) for K, {_f10}, K2 {_f10, 20, 30}, K3  { 10, 20, ... , 50},
and K4 {-f10, 20,..., 1001.

Finally, we show that size of the possibility region, R(p*), does not only vary with the size of
measurement and modeling errors, but may also depend on where the true parameter, p*, lies within
the admissible parameter set D. We consider four different values for p*, each lying close to one
of the "corners" of D. We solve the parameter estimation problem (with 6 exp = 0.1, Rexp = {10},
N = 12, and A0 = 100) and present the enclosing ellipses in Figure 7-6 - note that the scaling of
the axis is the same in all plots. We observe that the uncertainty increases for larger values of the
diffusivity pi but is fairly insensitive with respect to the velocity p2.

We recall that the approach taken in [13, 14] results in only one (possibly regularized) solution
to the parameter estimation problem. Our approach presented here, on the other hand, renders a
more complete picture of the problem specific features: we can explicitly quantify the uncertainty
in the solution due to (i) modeling and measurement errors; (ii) the number of observations in
time; and (iii) the actual value of the to-be-estimated parameter. This knowledge may also help to
design experiments to obtain actual data. As the number of parameters increases, the applicability
of (quasi-)modal techniques would be even more restricted, whereas the detriment to cubic spline
based schemes (the increased dimension of the approximation space) would probably be small.
The efficiency of our approach - including the construction of R* - would certainly deteriorate
because the computational cost to determine the possibility region increases exponentially with the
number of parameters.
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7.5 AP I: Nondestructive Evaluation of Delamination

We now turn to the nondestructive evaluation problem introduced in Section 1.1.1. The surface of
the tested structure is exposed to a heat source for t c [0, 0.5] and an IR imaging system is used to
monitor the surface temperature for t C I = [0, 10]. The measurement noise is due to the limited
thermal resolution of the IR imaging system. We shall assume here that the experimental error
varies in the range 0.3 - 5.0% [114]. Our goal is to infer the delamination length, Wdel, and the
conductivity ratio, x, from the measured surface temperatures s, (/_, tk) and s2 (p, tk).

We recall that the parameter and admissible parameter range are given by A - (p, A2)
(WdeI/2 , x) c D - [1, 10] x [0.4,1.8] (note that we consider the half-width of the delamination
as the parameter), the timestep is At = 5 E-2, the time interval of interest is I = [0, 10], and
the number of timesteps is K = 200. The heat input is thus applied for the first ten timesteps:
u(tk) q(tk) = 1 for 1 < k < 10 and u(tk) - (tk) - 0 for k > 11. We employ the reduced-
basis approximation generated in Section 4.7 to solve the parameter estimation problem; based
on our discussion of the convergence and computational efficiency results, we use the primal-dual
formulation here.

7.5.1 Estimation of Delamination Length

To begin, we present a sample solution of the parameter estimation procedure: we shall assume that
the true parameter p* = (4, 1.2) has to be estimated, that the measurement error is Eexp = 0.5%, and
that we are privy to measurements taken at KXp = {10, 20,... , 200}. We next choose the dimension
of the primal and dual reduced-basis approximations to be N = Npr = Ndu,1 = Ndu,2 = 50. Given

the noisy measurements, we first solve (7.8) for pic; we obtain pic (3.991, 1.198) in 6.16 sec.
after only 3 iterations. We next construct the boundary of the possibility region with the tolerance
Ap* = 1 E-4 and solve (7.12) for the enclosing ellipse. The result is shown in Figure 7-7. Since
the scalings of the two parameters p1 and P2 are very different (reflected in a high eccentricity of
the enclosing ellipse) we do not use a constant increment A,3 for the search angle /; instead we
set 3j = 1(1 - cos(j7/15))180' for 0 < j 15, and Oj = 1(3 - cos(jir/15))180' for 16 < j 5 28;
we thus have do = 28 search directions. Solving for the boundary points requires a total of 345
forward solutions (note that each evaluation involves the solution of the primal and the two dual
problems) and takes a total of 211.6 sec.

We next consider the sensitivity of the parameter estimation with respect to measurement
and modeling errors. We present in Figure 7-8(a), as a function of Eexp, the enclosing ellipses
for p* = (4,1.2); here N = Npr = Ndu,1 = Ndu,2 = 50 and Kexp = {10, 20,... ,200} . We
observe that the uncertainty in the parameter estimate shrinks with a decreasing measurement error.
We note that a 2% error in the temperature measurements results in a maximum uncertainty of
approximately 5% in the estimated delamination width. In Figure 7-8(b), we present, as a function
of N = Npr = Ndu,1 = Ndu,2, the possibility regions for p*= (4, 1.2) and a constant measurement

error Eexp = 0.3%. We plot the actual boundary points, p , here because the influence of N is
more visible. It is interesting to note that smaller modeling errors, i.e., larger N, only increases
the accuracy in the pi direction - the accuracy in the /2 direction is limited by the measurement
error (a smaller eexp results in a decrease of R(p*) also on the P2 direction). However, our primary
interest lies in estimating the delamination half-width Pi - we only estimate p2 as a means to
quantify the (maximum) uncertainty in P1. We also note that the "cut" edges, e.g., for the N = 60
region, are the result of the limited resolution of the search angles Oj.

189



S =(4.0,1.2)
SC==(3.991,1.198)

...........-

0:-

3.9 3.95 4
11

4.05 4.1 4.15

Figure 7-7: AP I: Possibility region IZ(M*) for p* = (4,1.2).

..... = 0.3 %
exp

ee1%

2%exp

.. ....4....

.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5
g

1,

(a)

1.215-

1.21-

1.205-

1.2F

1.195 F

1.19- ---

1.18 9
3.95 4

91

(b)

4.05 4.1

Figure 7-8: AP I: Possibility region R([t*) for p* = (4,1.2) as a function of (a) Eexp and (b) N.

190

1'

1.23

1.2

1.19-

1.18-

1.17-

1.1.85

1.5-

1.45--

1.4-

1.35 -

F.1.3

& 1.25

1.2

1.15

1.1

1.05

4

W

*N = 90
0 N = 70
+ N = 60

AN = 50
-....... .. ..... . ...

................ ..... ........... -

- -.. .

1.,22-

1.21 -

CM



Table 7.1: AP I: Uncertainty in the parameter estimate.

In actual practice, we may only be interested in quantifying the absolute uncertainty of the
parameter estimate instead of the enclosing ellipse - especially as the number of parameters
increases and visualizing the results becomes harder. To this end, we introduce the "bounding
box," i.e., the smallest box which contains the minimum enclosing ellipse. We present in Figures 7-
9 the ellipses and corresponding bounding boxes for the results shown in Figure 7-8(a). The length
and height of each box now correspond to the uncertainty of the parameter estimate, denoted by
Ap and Ap 2 , for the given measurement error. We tabulate the results for the four different
measurement errors in Table 7.1. We observe that the uncertainty increases almost linearly with
the measurement error.
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Figure 7-9: AP I: Possibility region R(pL*) and bounding box for p* = (4, 1.2) as a function of 6exp.

We next consider the sensitivity with respect to which measurement is used for the solution of
the inverse problem. We shall assume that the true parameter is p* = (8, 1.6), the measurement
error is Eexp = 0.5%, and measurements are taken at K = {10,20,..., Kf}; we also choose N =

Npr = Ndu,1 = Nu,2 = 50. We next define S to be the set of measurements used in the parameter
estimation procedure, i.e., S = {1} means that only the first measurement employed. We present in
Figure 7-10 the two enclosing ellipses for S = {1} and S = {2}. We note that using only the second
measurement (on top of the undamaged region) results in a very poor estimate of the delamination
width. Employing only the first measurement, on the other hand, results in a very good estimate
of the delamination width. If we combine both estimates we effectively obtain the shaded region as
our possibility region: S = {1} limits the uncertainty in pi whereas S = {2} limits the uncertainty
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in P2. We observe that choosing the "correct" location for the sensors can considerably decrease
the uncertainty; our analysis can thus help in guiding the placement of sensors in actual practice.
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Figure 7-10: AP I: Possibility region R(p*) for M* (8,1.6) for S= {1} and S = {2}

We now investigate the sensitivity of the parameter estimation with respect to the number
of measurements in time. To this end, we shall assume that p = (4,1.2), Eexp = 0.3%, and
N Npr = Ndu,1 = Ndu,2 = 50. We solve the inverse problem for Kexp = Ki, 1 < i < 3, where
K, a {5,10, ... 200}, K2 ={10, 20, ... ,200}, and K3 ={20,40,.. .,200}. We plot the possibility
regions for these three cases in Figures 7-11. We observe that the possibility regions corresponding
to K, and K2 coincide; it is thus sufficient to consider measurements taken at only every 10th
timestep. However, the uncertainty does increase if measurements are taken only for all k C K3-
Since the size of K exp strongly affects the computational efficiency - recall the O(K(K+ 1)NprNdu)

complexity to evaluate the output estimate - the choice of Kexp should reflect the trade-off between
the acceptable uncertainty and computational cost.

We also point out that the length of the observation interval is very important in obtaining a
good estimate. We shall assume that the true parameter is p* = (7.5,1.2) and the measurement
error is Eexp = 0.5%; we also choose N = Npr = Ndu,1 = Ndu,2 = 50. We first recall from Figure 4-10
that the difference in the temperature measurements for different parameter values becomes visible
only after a certain transient. Furthermore, the time for the transient increases with increasing
values of p and p2. We plot the enclosing ellipses for K = {10, 20,... , Kf} with Kf = 100 and
Kf = 200 in Figure 7-12. We observe that the longer observation time considerably decreases the
uncertainty in the estimate.

Finally, we consider the dependence of the inverse solution on the actual delamination width
and the conductivity ratio. We assume that Eexp = 0.3% and Kexp = {10, 20,...,200} and set
N = Npr = Ndu,1 = Ndu,2 = 50. We next solve the parameter estimation procedure for the four
"true" parameters p* = (3,1.6), (3,0.6), (8,1.6), and (8,0.6). The enclosing ellipses are shown
in Figure 7-13 (note that the scaling of the axis is the same in all plots). We observe that the
uncertainty increases with increasing delamination width, Wdel. Unfortunately, an accurate estimate

of Wdel is especially important if Wdel is large since the safety of the structure may be influenced.
We also just showed that additional temperature measurements in time do not help to decrease
this uncertainty - however, additional temperature measurements on the surface, i.e., between the

192



1.26

1.25-

1.24-

1.23-

1.22-

1.21-

1.2-

1.19-

1.18-

1.17-

1.16-
3.9 3.95 4

91
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locations where si and s2 are measured, would most likely lead to an improved estimate.
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Figure 7-13: AP I: Possibility regions R(p*) for different "true" parameter values p*.

7.6 AP II: Dispersion of Pollutants

As the last application in this chapter we consider the pollutant dispersion problem introduced
in Section 1.1.1. Our goal is the following: Given the concentration measurements (or outputs),
sg(pu, tk), 1 < i < 4, at the first four sensor locations, we need to determine the source location

(and possibly the diffusivity) of a pollutant dispersing in a fixed flow field U. The description of
the problem is detailed in Section 5.6, where we also discussed the reduced-basis approximation.

We recall the input parameter, /pz, given by p {P1, /2,,p3} {, Xj, } E D [0.05,0.5] x
[2.9,3.1] x [0.3,0.5] C RP'3, and the spatial domain, QPS, defined as =PS - [2.9, 3.1] x [0.3, 0.5].
The time interval of interest is I = [0, 1] and the timestep is At = 5 E -3; we thus have K = 200.
For notational convenience, we also define S as the set of outputs used in the parameter estimation
procedure, i.e., S = {1, 2, 3, 4} means that measurements at all four outputs are used in the solution
of the inverse problem.
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7.6.1 Estimation of Source Location

To begin, we shall assume that the diffusivity is known, M1 = 0.1, and only the location of the source
term, (P2, A3), has to be found. We present a sample solution of the inverse problem in Figure 7-
14. Here, the true parameter is 14,3 = (2.93, 0.47) and the measurement error is Eexp = 1.0%. The

measurements are taken at 10 points in time, K,,p = {10, 20,.. ., 100}, and we assume that we
have access to all four outputs, S = {1, 2,3, 4}. We choose N = 140 and M = 40 for the dimension
of the reduced-basis and nonaffine function approximation space, respectively. We first solve (7.8)
for pic = (p2,Ic, p3,Ic); we obtain pic = (2.927,0.469) after 4 iterations and a total of 8.34 sec. We
next construct the possibility region R(p*): we choose the tolerance ApR* = 1 E -4 for the binary
chop and increment the search angle by AO = 200; we thus have a total of d3 = 18 search directions

(we use these values for AyR* and AO throughout this section). Solving for the <, 1 j 18,

requires 175 forward solutions and takes a total of 158.9 sec. Given the boundary points, ,LF*, we
solve (7.12) for the enclosing ellipse. We note that the ellipse is nicely centered around the unknown
parameter value A*,.

0.49

0.485 - ---- -- --- -

0.48 -

0.475 - -- --- ---- -

:L 0.47-

0.465 -

0.455 = (2.93,0.47)
o0 C=(2.927,0.469)

0.49 2.91 2.92 2.93 2.94 2.95 2.96

Figure 7-14: AP II: Possibility region R(p*) for p* = (2.93,0.47).

We next consider the sensitivity with respect to measurement and modeling errors. We shall
assume that the source is located at p4,3 = (2.95,0.4), the measurements are taken at 1Kp =
{10, 20, ... , 100}, and all four sensors provide data, S = {1, 2, 3, 4}. We plot in Figures 7-15 and 7-
16 the enclosing ellipses as a function of eexp (for N = 140, M = 40 fixed) and as a function
of (N, M) (for Eexp = 0.5% fixed), respectively. We observe, as in the previous examples, that
smaller measurement and modeling errors result in a smaller possibility region and thus smaller
uncertainty in the parameter estimate. We also note from 7-16 that there is a big difference between
the (N, M) = (100, 40) and (100, 40) regions, whereas this difference is less pronounced for larger
values of (N, M). We should therefore always ensure that the reduced-basis approximation satisfies
a certain maximum acceptable error tolerance.

We now turn to the question which sensor measurements are most crucial for obtaining an
accurate parameter estimate. We shall assume that the source is located at p*,3 = (2.95, 0.4),
that the measurements are taken at 1exp = {10, 20, ... , 100}, and that the measurement error is

Eexp = 0.1%. We choose N = 140 and M = 40 for the reduced-basis approximation. We recall

195



0.44

0.43F

0.42

0.41-

0.4F

0.39-

0.38

0.37--

2.9 2.91 2.92 2.93 2.94 2.95
(2

(a)

0.41

0.405

E 0.4

0.395

2.96 2.97 2.98 2.99 3

Figure 7-15: AP II: Possibility region R(p*) for p* = (2.95, 0.4) as a function of Eexp.

2.92 2.93 2.94
g2

0.41

0.405F

=r 0.4

0.395

n2.95 2.96 2.97 2.98

N = 220, M = 50
N = 180, M = 40
N =140,M =40
N =100,M =40

2.945

(a)

2.95
(2

(b)

2.955 2.96

Figure 7-16: AP II: Possibility region IZ(p*) for p* = (2.95,0.4) as a function of N and M.

196

=0

-..-.-

- -4

exp = 0.1 %

e =0.5%
exp

E =1%

E =2%
exp

- -

exp = 0.1 %

e =0.5%
- exp

E =1%
-exp =2%exp -

2.945 2.95
R2

(b)

2.955 2.96

0.

0.42-

0.41-

0.4

0.39--

0.38-

0.37

0.36

.91

-- N = 220, M = 50
N = 180, M = 40
N=140,M=40
N=100,M=40

'

'A' '

L

........... ... .... .....e

:f

0.3 30.
2.94



from Figures 5-5 and 5-6 that the dispersion of the pollutant strongly depends on the diffusivity
pi - we thus consider two different values for the diffusivity, p' = 0.05 and [i = 0.5. We
first present in Figure 7-17(a) the enclosing ellipses for [, = 0.05 for different combinations S. We
immediately notice that the first sensor measurement alone is sufficient in estimating /u,; including
the remaining sensor measurements in the inverse solution does not yield a smaller possibility region
R(p*). However, if only the measurement of the first sensor fails, R(p*) increases considerably.
This result could be expected since the flow is clearly convection-dominated for p, = 0.05 and the
first sensor lies directly in the track of the pollution cloud. For yi = 0.5 the picture is different: we
plot the boundary points, -F*, in Figure 7-17(a) for different combinations S.1 We observe that
the measurements from sensor 1 and 3 are now equally important. Furthermore, even sensor 4
contributes very slightly to decreasing the uncertainty. Since the flow is now diffusion dominated,
the vicinity of a sensor to the pollution source plays a much more important role than the exact
flow field U. We thus note that a find grid of sensors is important for obtaining sharp estimates
for all possible source locations and diffusivities.

Concerning the sensitivity of the parameter estimate with respect to additional measurements
in time (for a fixed S), we observed that (i) taking more observations over the same time period,
e.g., exp = {5, 10,15,..., 100}, does not lead to an improved parameter estimate, and (ii) taking
observations over a longer time period, i.e., KXP = {10, 20, ... , 200}, resulted in only a very slight
decrease of the possibility region.

0.41 0.41

0.4 - ......4....0..

& 04& 0.4-...

0.395 - 0.395
s= {1}

-S = (1,2,3,4) 0 S={1,2}
S={2,3,4) + S={1,2,3}
S={1} A S ={1,2,3,4}

0_3? 9 295 03?9 .55 29
94 2. 45 2 5 2.955 2.96 0. .94 2.945 2.95 2.55 2.96

(a) (b)

Figure 7-17: AP II Possibility region 7z(p*) for A*,3 = (2.95,0.4) with (a) pi 0.05 and (b)
pli = 0.5.

We now turn to the problem of simultaneously estimating the diffusivity, pi, as well as the
source location, ([2, [3). We shall assume that measurements are taken at Kexp = {10, 20, ... , 100}
and that all four sensors provide data, S = {1, 2, 3, 4}. We choose N = 140 and M = 40 for our
reduced-basis approximation.

We first consider a fixed measurement error, Eexp = 1.0%, and the two "true" parameters
[L* = (0.06,3.08,0.42) and p* = (0.4,3.08,0.42). Note that the location of the source is the same in

'We plot the boundary points, pfz, here because the slight but important differences are not visible when only
considering the enclosing ellipses.
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both cases and only the diffusivities are different. Given p*, we generate the noisy measurements
and solve (7.8) for the initial center pIc; we obtain pic = (0.0619,3.078,0.419) after 4 iterations and
11.5 sec. To construct the (now three-dimensional) possibility region, we search along 18 directions
in three-dimensional parameter space; we require a total of 169 forward solutions obtained in 148.9
sec. Finally, we solve (7.12) for the enclosing ellipsoid, which is plotted in Figure 7-19(a). We
proceed similarly for the true parameter 14: the initial center is pIc = (0.399, 3.080,0.420) and the
corresponding ellipsoid is shown in Figure 7-19(b). We observe that the higher diffusivity results
in a considerably larger possibility region R(p*) (the scaling of the /p2 and pL3 axis is the same in
both plots). The smaller uncertainty in estimating p* is due to the fact that the features of the
concentration field over time are far more distinct for low diffusivities - thus allowing for a sharper
estimate.
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Figure 7-18: AP II: Possibility region R(M*)
(0.4, 3.08, 0.42).
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for (a) p* = (0.06,3.08,0.42) and (b) p4 =

We shortly return to the sensitivity with respect to the measurement error. Given the true
parameter p* = (0.1, 3.05, 0.35), we solve the inverse problem and plot the enclosing ellipsoid for
Eexp = 0.5% and eexp = 1.0% in Figure 7-19(a) and (b), respectively. As noticed before, the
uncertainty in determining the actual source location (p4, pa) increases of course. However, the
influence of the error on the accuracy of the diffusivity estimate, pi, is considerably larger. The
maximum possible deviation from the true diffusivity is close to 30%.

Finally, we recall that the allowable range of the source location, QPS, is fairly small compared to
the whole domain Q. The reason we cannot handle a source whose location varies significantly over
the domain is certainly related to (i) the small diffusivities, i.e., convection plays a very important
role in the solution; and (ii) the very complex flow field, i.e., only a slight difference in the source
location can result in very different dispersion patterns. Thus, in the present example the limiting
factor is the dimension of the reduced-basis space, N, and not the dimension M of the nonaffine
function approximation for the source term. If we were to increase the size of QPS, the increase in
M will probably be tolerable, whereas the increase in N may be prohibitive. However, there may
be other cases, e.g., different flow fields and/or higher diffusivities, where the size of M becomes
important.
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Chapter 8

Application to Optimal Control

8.1 Introduction

In Chapter 7 we introduced a robust parameter estimation technique for systems governed by
parabolic partial differential equations and successfully applied the proposed method to several
numerical examples. The efficient and reliable solution of the partial-differential-equation-induced
input-output relationship - afforded through the reduced-basis method and associated a posteriori
error estimation introduced in earlier chapter - was the basis for our approach. Besides the
characterization context there are several other classes of applications which require repeated and
often real-time evaluation of input-output relationships. One of these applications, and also the
one we consider in this chapter, is optimal control [24].

To begin, we shortly review the optimal control formulation and introduce the reduced-basis
approximation into the solution of the problem. As a specific example we then consider the startup
control of a welding process. We in fact combine the optimal control formulation with the tools
developed in Chapter 7, thus pursuing an integrated estimation-control framework: first, we esti-
mate the unknown system parameters; and second, given the parameter estimates, we solve for the
optimal control input to obtain the desired system behavior.

8.2 Optimal Control Problem

Optimal control problems arise in many engineering applications when a known desired behavior
is to be imposed on a dynamical system. The problem is usually cast in an optimization setting:
a cost functional containing the control and state (or output) histories is set up to quantify the
performance and controller trade-off. The optimal control input is then found from minimizing
this cost function subject to the governing equations, and possibly constraints on the control and
output, being satisfied. A variety of methods have been successfully applied to solve optimal control
problems [24]: Riccati equations, shooting methods, control parametrization, sequential quadratic
programming, and also general gradient methods such as steepest descent, Newton-Raphson, or
conjugate gradient techniques. However, while Riccati equations are limited to only small state
dimensions, all of the other techniques usually involve an iterative optimization process.

The solution of optimal control problems thus requires repeated and often real-time evaluation
of input-output relationships. If the dynamics are described by partial differential equations, the
cost quickly becomes prohibitively large [34, 45, 57, 781, and hence reduced-order models are often
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employed. Applications of reduced-order models in optimal control range from fluid flow [47, 48,
49, 95], to hyperthermia treatment [65, 66] to thermal processing of semiconductors [82] and canned
foods [10].

8.2.1 Formulation

We consider here two formulations for the optimal control problem. We start with the standard
Linear-Quadratic-Regulator (LQR) problem. Defining u = [u(tl) u(t 2) ... u(tK)]T c K, the
(discrete-time) quadratic cost functional to be minimized is given by

JQW; P) = 2 (s(p, K) - Sd t)) WT (s(P, tK) - d (t))

+ s k) sd(tk) TW ( , tk) -sd(tk1 + (tk) U~ } > , (8.1)+2 1:~ (SVI J/t d8

k=1

where s(/1, tK) and sd(tK) are the actual and desired outputs, u(tk), V k e K is the control input,
and WT, WR, and Wu, are symmetric positive (semi-)definite weighting matrices influencing the
trade-off between tracking performance and controller cost. The first term penalizes the deviation of
the output from the desired output sd(tK) at the final time; the second term penalizes the deviation
of the output from the desired trajectory sd(tk) during the time interval of interest; and the last
term reflects the cost of the control action. Note that we use the notation J(!; A) to explicitly
signify the dependence of the cost function on the parameter p through the output s(p, tk).

The optimal control input, u* (tk), V k E K, is then found by minimizing J(u; p) subject to the
initial conditions and the governing equations, (say) (4.3) and (4.4); constraints on the control input
itself, such as non-negativity requirements, may also be present. We can thus state the problem as:
Given a p C D, u*(tk), V k E K, is the solution of

min J(u; P) (8.2)
uEIRK

S.t. (4.3), (4.4) (say)
ULB U(tk) U UUB, V k e K.

Here, ULB and - UUB are the lower and upper bound on the control input, respectively. The LQR
formulation results in a set of linear stationarity conditions and is therefore the most common
set-up for optimal control problems.

We now consider a different formulation of the optimal control problem that leads to a linear
programming problem. Again, our goal is to track a desired output history, sd(tk). To this end,
we minimize the maximum deviation from the desired output trajectory, i.e., maxkEK s(p, tk) -

Sd (p, tk) , subject to the governing equations, and possibly constraints on the control input. This
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problem can be written as: Given a c E D, u*(tk), V k E K, is the solution of

min y (8.3)
yEIR

UEG RK

1s(/_, tk) - sd (A, tk) < -y, V k e K
s.t. (4.3), (4.4) (say)

ULB U(tk) UUB, Vk E K.

We recover the linear programming formulation by simply replacing Is(pt, tk) - sd(z, tk) -y with
the two constraints s(p, tk) - sd(A, tk) < -y and -s(/, tk) + sd(A, tk) < -y. Note that we do not

penalize the total control energy spent in this formulation. However, we may additionally include

a term of the form ZK Iu(tk) into the cost function, which can again be reformulated as a linear

programming problem [21].

So far we have assumed that the input parameter p is (exactly) known before we attempt to

solve the optimal control problem. Unfortunately, this may not always be the case. In Chapter 7 we

introduced a robust parameter estimation procedure which accounts for measurement and modeling

errors in the form of a possibility region R(p) - R(p) contains all (in the probabilistic sense)
parameters which satisfy the constraints of the problem. In such a case we do not know /p exactly,

but only that p E R(p). We may explicitly introduce this uncertainty into the optimal control

problem and pursue the min-max formulation u* (t) = arg minue]K maxE7) J (; p) subject to

the constraints stated in (8.2). We can also follow a similar approach for the linear programming

problem (8.3). There may, of course, be an issue concerning computational feasibility: we saw in

the last chapter that we can solve (7.8) for the initial center, p1c, very fast. However, constructing

the possibility region R(p) requires more effort. Depending on the problem at hand, solving (8.2)

using the estimated parameter value may be sufficient and the only choice concerning computational

efficiency. If the robust solution is crucial and the computation of R(p) is fast enough, on the other

hand, following the robust approach is preferable.

Finally, we note that a design exercise may result in a similar problem formulation. The

parameters are now design variables that can be chosen by the user, e.g., the location of controllers

or sensors, and our goal is to minimize J(u; M) over all jt E D, where D is the admissible design

space.

8.2.2 Optimization Procedure

We state the optimal control problems (8.2) and (8.3) in the last section in terms of the truth

approximation y(p, tk) and s(p, tk). Although solution techniques tailored to partial-differential-

equation-constrained optimal control problems have been developed [78], they are computationally

expensive and thus real-time performance is hard to achieve. We therefore employ the reduced-

basis method in the statement and solution of the problem and replace the truth approximation

y(p, tk) (and s(pL, tk)) by their reduced-basis approximations yN(M, tk) (and sN(P, tk)) in (8.1), (8.2)
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and (8.3); e.g., we have

JN(U; sN(ptK) - sd(tK) T WT (SN(PtK) - Sd(tK))
K

+ 2 (SN (Ptk) - Sd tk)T WR (SN(P,tk) Sd(tk u(tk)wu u(tk) . (8.4)
k=1

Since we do not aim at developing new techniques for solving optimal control problems in this
thesis, we pursue a straightforward "impulse approach" for their solution similar to the one in [17].
We already remarked in Section 4.2.3 that the solution of any LTI system can be written as the
convolution of the impulse response with the control input. This property is also the basis and justi-
fication for constructing the reduced-basis approximation with an impulse approach: it is sufficient
that the reduced-basis subspace approximates well the (parameter-dependent) impulse response
to obtain good approximation properties for all possible control input histories. As in (4.14), the
output of any LTI system can be written as

k

S(p, tk) g ,tk-j+) U(t), Vk C K, (8.5)
j=1

where g8 (p, tk) is the output for a unit impulse control input u(tk) = 61k, V k C K. Similarly,
we obtain SN(/_, tk) _ 1 Ngs(t, tk-j+1) U(tJ), V k G K, where g'(p, tk) is the solution of (4.17)

and (4.110) for u(tk) = 61k, V k E K. Defining -N(J() = [SN(A, t 1) SN(A, t 2 ) ... SN(p,tK)IT and

u [u(tl) u(t 2 ) . .. u(tK)] we can write the input-output relationship as

28N(I) - !N(P) U, (8.6)

where the matrix GN( ) E RKxK is lower-triangular and contains the impulse response g (p, tk)
Vk C K. Note that G(p) depends on p and thus has to be evaluated online for every new parameter
value p.

It directly follows from (8.6) and (8.4) that JN(u; A) can be written as

JN (1; A) = 1U H(p) _k + b (p) u + c(A) (8.7)

Here, H(fL) E IRKxK is a parameter-dependent matrix containing the impulse response, b(p) E RK
is a parameter-dependent vector containing the impulse response and information regarding the
desired trajectory, and c(p) is a scalar containing only information regarding the desired trajectory.
We then solve the optimization problem

min 1 uT H(p) 11 + bT (p) 1k + c(p) (8.8)
UCRK 2

s.t. ULB u(tk) UUB, V k c K,

for the optimal control input u*(tk), V k E K.
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Similarly, invoking (8.6) we can write the linear programming problem as

min (8.9)
G R

G u+- d e
s.t. -_G U+sd <-e

ULB U(tk) U UUB, V k K.

where sd = [sd(t 1) sd(t 2 ) ... sd(tK)T E ]RK and e = [1 1 ... ] E RK. We note, however, that

using the impulse approach (8.6) to recast the optimal control problem is only efficient for the linear
programming problem (8.9); in the LQR case the computational cost to form H(p) is O(K 3 /3) and
is thus only efficient for K very small.

We shortly remark on the possibility to extend the previous discussion and consider Model
Predictive Control (MPC), also referred to as receding horizon control or moving horizon control [3,
67, 70, 92, 96]. In MPC, the optimal control problem defined over a very long (infinite) time period,
is essentially split into a series of short term (finite) horizon optimal control problems. The optimal
control input or feedback law is not computed once offline for the entire time period, instead a
series finite horizon optimal control problems is solved repeatedly online for the consecutive time
periods using the current state of the plant as the initial condition. In contrast to an open-loop
optimal control law, MPC can therefore react to perturbations in the system parameters, in effect
"closing the loop" of the control implementation. However, for MPC to be applicable, the plant
dynamics have to be sufficiently "slow" compared to the time required to solve the optimal control
problem so as to permit the implementation. Reduced-order models thus lend themselves ideally
to Model Predictive Control.

8.3 AP IV: Control of Welding Quality

We now turn to the welding application introduced in Section 1.1.1. The equation governing the
temperature distribution in the joint-section is the unsteady convection-diffusion equation (1.19)
with initial condition (1.20). The heat input from the welding torch is modelled as a Gaussian
distribution centered at the torch position xT = (3.5, 1), given by

qw(x; p) = 2 e 1 2 +(x2-) 2 )/(24), (8.10)

where qw is the efficiency and o-, is the distribution parameter. We use the notation qw(.; A)
to signify the dependence on the parameter y = (p1, p2) (w, Uw) E D C RP 2 , where D =

[0.1, 0.4] x [0.15, 0.65] [112].
We shall make the following two assumptions. First, we assume that we are interested in

achieving a fixed desired weld pool depth dw,d = 0.5. In [111, 112], the temperature distribution is
searched for the isotherm corresponding to the melting temperature to deduce the pool depth dw.
However, searching the isotherms requires knowledge of the truth approximation state y(p, tk), Vk c
K and the computational cost thus scales with the dimension K of the truth approximation. The
basic premise for the computational efficiency of the reduced-basis method is the K-independent
computational complexity in the online stage - we should therefore avoid the isotherm search. To
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this end, we introduce a "fictitious" output, 83, at the desired weld pool depth, dw,d, measuring
the average temperature over a small domain. We then simply require this temperature output to
be equal to the melting temperature, i.e., s3 (p, tk) = s* 1, V k c K. We then guarantee that
the melting isotherm reaches the desired depth. In Figure 8-1 we show a sketch of the joint-section
with the torch position and the three outputs, the two measurements si and S2 on the bottom of
the workpiece and the additional output 83. Note that we place the output S3 downwind of the
welding torch because of the convective term. We also note that we may consider several different
desired weld pool depths by simply introducing a "fictitious" output at each desired depth level.

Pe =vLcK

1 N 83

0.5 ----------------- r

1.5 3.5 5
81 82

Figure 8-1: AP IV: Control of welding quality.

Our second assumption is related to the control input. In actual practice, the welding process
can be controlled through the velocity of the torch, Pe, and the total heat input, u(t). Here, we
consider only the total heat input, u(t), as the single control input and assume that the velocity is
fixed, Pe = 6 1. We restrict our attention to this case because controlling the velocity would result
in a nonlinear - or more precisely, bilinear - control law and our impulse approach to construct
the reduced-basis approximation would not be valid.

The domain Q, a typical point in which is (Xi, X2 ), is given by Q = [0, 5] x [0, 1]. We shall
assume that the temperature is equal to ambient temperature on T D, and that the remaining
boundaries, rN, are insulated. The time-discrete weak form of the governing equation (1.19) for
the temperature T(p, t') e Y is (B.2) (we use Crank-Nicolson for the time integration) with initial
condition T(p,t0 ) = 0, where Y C ye ={vv E H 1 (Q),v =01PD is a linear finite element
truth approximation subspace of dimension K = 3720. The bilinear and linear forms are given by
m(w,v) f wv, aCD(w,v) f Vw- Vv + f v (U - Vw) + . fQ v w (V -U), and b(v; q,(x; M))
fQ qw(x; M) v, where U = [Pe 0] and qw(x; p) is defined in (8.10). We note that a and m do not
depend on the parameter, and that the parameter dependence of b(v; g(x; 1L)) is nonaffine - we
hence require the theory developed in Chapter 5. We also define the inner products (w, v)x =
m(w, v) and (w, v)y = f9 Vw - Vv; we may thus choose &a = 1. The outputs sq(P, tk), 1 <
q 3, are given by sq(,tk) __ q 1 fQaq v, 1 < q 3, where Q,1 = [3.16,3.29] x [0, 0.07],
Q82 = [4,4.12] x [0, 0.07], and Q, = [1.42, 1.58] x [0.47,0.53]. We shall consider the time interval

I= [0, 2] 2 and a timestep At = 2 E-2; we thus have K = 100.

'We could, of course, consider Pe as a parameter and construct a reduced-basis approximation for a certain velocity
range. The desired velocity can then be chosen at the beginning of the welding process.

2Note that the time is also non-dimensionalized here. The time interval I = [0, 2] corresponds to a "real" time
interval from 0 to 10 sec.
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We plot in Figure 8-2 the temperature distribution T(p, tk) and corresponding isotherms for

p = (0.3, 0.4) at three different discrete timesteps for u(tk) = 10, Vk C K. Because of the convective

term the isotherms are shifted to the left from the torch position. The shape of the isotherms also

justifies our choice for the location of the output s3.

t=25At

t=50 At

t=25At

t50 At

t 75 A tt = 75 At

Figure 8-2: AP IV: Temperature distribution T(A, tk) and isotherms for [L = (0.3, 0.4) at t = t 25 , t 50 ,
and t 75 .

8.3.1 Reduced-Basis Approximation

We first consider the approximation to the nonaffine function qw(x; p) defined in (8.10). We note
that the nonaffine parameter dependence of qw(x; 1L) is only due to p2. We could thus include only

[12 in the definition of q, and consider Ipi separately. Nevertheless, here we chose to define qw to be

a function of both parameters. 3 We choose for E9 a deterministic grid of 41 x 41 parameter points

over 'D and we choose (pI, 41) = (0.4,0.15). Next, we pursue the empirical interpolation method

of Section 2.4 (using the L (Q)-norm) to construct S9 , WM9, TM, and BM, 1 < M < Mmx, for

Mmax = 17.
We next generate the sample set SN" and associated reduced basis space WN according to the

adaptive sampling procedure described in Section 4.5 with M = Mmax for the nonaffine function

3Note that we could even treat pi implicitly by including it in the control input u(t).
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approximation. We construct the reduced-basis approximation here using the impulse approach
- since the system is LTI, it is sufficient that the reduced-basis subspace approximates well the
parameter-dependent impulse response. This fact is crucial for applying our method to optimal
control problems, because the optimal control input is not known in advance. We initialize the
procedure with py = (0.1, 0.4) and tk = lAt and set the desired error tolerance (for the relative
error in the energy norm) to Ctol,min = 1 E-4. We sample on a parameter test sample EF C (D)
of size 400 (a regular 20 x 20 grid); we require Nmax = 54 basis functions to obtain the desired
accuracy.

We note that we do not pursue the primal-dual formulation here. The numerical results for the
output errors and output bounds are obtained using the simple bound defined in Proposition 16.

To begin, we present convergence results for the nonaffine function approximation. We present
in Table 8.1 *,max, pM, AM, iM, and XM as a function of M (see Section 2.4.3 for the definitions
of these quantities; here B~est is a test sample of size 225). We observe that the maximum error
E* converges very rapidly with M; that the Lebesgue constant provides a reasonably sharpM max
measure of the interpolation-induced error; that the error estimator effectivity is reasonably close
to unity (recall that tM(p) eM(p), 1 < M <_ Mmax). The reason that Mmax is fairly small here

is because qw(x; p) is only nonaffine in /12 as mentioned previously.

Table 8.1: AP IV: E*M,max, pM, AM, iM, and ;'M as a function of M.

We now turn to the convergence results and error bounds for the reduced-basis approximation.
In Figure 8-3(a) and (b) we plot, as a function of N and M, the maximum relative error in the
energy norm cNMmxre1 and the maximum relative error bound A, x here ,is

energy ~ re N , ,mx,rel;hee 6N ,M,max,rel
the maximum over ETest of flle(,tK, / y pK) and AMmaxrel is the maximum over ETest
of AN,M(IItK)I Iy(IlytK)II1, where ETest e (D) 22 1 is a an input sample of size 225 (a 15 x 15

random grid), and p= arg maxpsI y~p, tK)111. We observe the typical behavior in the error
and error bound convergence curves. Also, the separation points of the asymptotes are different for

M,max,rel AN,M,maxrel; to obtain the best possible error bounds we should base our choice
NM~max~relon the ANMmaxrel curves.

In Table 8.2 we present, as a function of N and M, EN,M ,max,rel ,nd the average
effectivity 77, where T is the average over ETest x R of ANM(wt k y k) - yNCUtk) Here,

we select the (N, M) combinations from Figure 8-3 which roughly correspond to the separation
points. We note that the effectivities for the bound of the energy norm error are very good.

We next present in Tables 8.3, 8.4, and 8.5 the maximum relative output error EN,M,max,re1'
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M &Mmax PM AM 1M XM

2 8.34 E -02 0.57 1.12 0.86 1.22
4 1.32 E-02 0.48 2.61 0.79 2.41
6 5.29 E-04 0.51 3.57 0.26 3.27
8 1.10 E-04 0.56 2.86 0.73 4.92

10 6.24 E-06 0.51 5.63 0.87 6.00
12 3.53E-07 0.36 3.62 0.58 7.17
14 3.81 E -08 0.32 5.98 0.50 8.36
16 2.72 E-08 0.22 6.92 0.32 8.57
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Figure 8-3: AP IV: (a) Maximum relative error in the energy norm and (b) error bound.

Table 8.2: AP IV: Convergence rate and effectivities as a function of N and M.
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20 6 9.05 E -03 1.83E-02 2.00
30 8 3.02 E -03 5.60 E -03 1.96
40 10 3.97 E -04 7.55 E -04 1.85
50 10 8.01 E-05 1.35 E-04 1.67
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the maximum relative output bound A'M,max,re, and the average effectivity -i7,M as a function

of N and M for outputs 1, 2, and 3, respectively. Here, EMmax,re1 is the maximum over ETest

of is(pt(p)) - sN(p, t())/smax, NMmaxre1 is the maximum over Erest of A,M( ,tK) Smax

and 71 is the average over ETest of A"M- sNM(p(I))I, where t7 7 (fi)

arg maxtk R Is(ptk) - SN(P,tk)I and smax - maxtkEg maXpEETest IS ,tk)1. The error in all three

outputs converges approximately at the same rate. The magnitude of the output effectivities is

similar to the previous numerical examples and is still acceptable for the simple output bound. We

require N = 45 -50 and M = 10 to obtain an accuracy in the output bounds of approximately 1%.

N M N,M,maxrel 'N,M,max,rel II~
10 4 2.82E-01 3.15 E + 01 102

20 6 1.72E-02 7.39E-01 58.3
30 8 2.63 E-03 2.26 E -01 58.4

40 10 2.57 E -04 3.04 E -02 104

50 10 1.07E-04 5.44 E -03 59.3

Table 8.3: AP IV: Maximum relative output error, output bound, and effectivities for output 1.

Table 8.4: AP IV: Maximum relative output error, output bound, and effectivities for output 2.

Table 8.5: AP IV: Maximum relative output error, output bound, and effectivities for output 3.

Finally, in Table 8.6 we present, as a function of N and M, the online computational times

to calculate SN,M(A, tk) and AsM p, tk), V k e K. The values are normalized with respect to

the computational time for the direct calculation of the truth approximation output s(p, tk)

f(y(p, tk)), V k C K. The computational savings for N = 50 and M = 10 are approximately a

factor of 280. Although we do not employ the primal-dual formulation here, the computational

savings are considerable because of the very fast convergence - and hence fairly small N - of our

reduced-basis approximation.
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N M EsN,M,max,rel , 2iNM
10 4 4.OOE-01 6.53 E +01 126
20 6 2.68 E -02 1.53 E + 00 41.3

30 8 7.80 E -03 4.68E-01 56.0
40 10 5.24 E -04 6.31 E -02 39.5
50 10 2.23 E -04 1.13 E -02 27.9

N M N,M,max,rel N,Mmax,re, 21NsMe

10 4 1.01 E -01 2.12 E +01 165
20 6 6.18 E-03 4.96 E -01 51.0
30 8 1.37E-03 1.52 E -01 103
40 10 3.48 E -04 2.04 E -02 130

50 10 4.88 E -05 3.65 E -03 79.9



Table 8.6: AP IV: Online computational times (normalized with respect to the time to solve for

s(M, tk), V k e K).

8.3.2 Estimation of Weld Pool Depth

Our goal is the in-process control of the weld pool depth dw to the desired value dw,d. However,
the pool depth depends on the unknown parameter M through the temperature distribution in the
joint-section. We thus have to estimate the parameter y first before we can proceed and control
d,. To this end, we split the estimation-control process into the following series of problems solved
in consecutive time intervals:

1. For t c a, = {tO, . . . , tki }: The welding process is started with a nominal control input un(tk)
and temperature measurements, z1 (tk) and z 2 (tk), are taken at several discrete points in time
at the two measurement points at the bottom of the plate.

2. For t C 12 =- {tki,... ,tk2}: Given the measured temperatures, we solve the inverse problem
for the parameter estimate p1c (and the possibility region 7R(p*)).

3. For t E 13 =- {tk2,. .. ,tk3 }: Given the parameter estimate pac, we solve the optimal control
problem for the time interval 14 = {tk3,... , t4} with the estimated output s3 (IC, t) as
initial condition.

4. For t C 14 = {tk3,. . . k4}: We apply the optimal control input u*(tk) to the welding process.

We note that the finite element "truth" approximation with a specific true parameter value p*
serves as our "real-world" welding process. We obtain the temperature measurements zi(tk) and

z 2 (tk) in step 1 by adding noise to the truth approximation outputs s1 (pL*, tk) and s 2 (A*, tk). In
step 4 we apply the optimal control input u*(tk) to the truth approximation and check whether we
obtain the desired temperature, s* = 1, in the output s3 (A*, tk)

We start with step 1 and 2: we shall assume that the true parameter value is given by P*
(0.34,0.46) and that temperature is measured for 11 = {t.,... t10} at the discrete timesteps K =

{2,4,6,8, 10} (this corresponds to a sampling frequency of approximately 5 Hz). Based on our
discussion in the last section we choose N = 50 and M = 10 for the reduced-basis approximation.

We present a sample solution of the parameter estimation procedure in Figure 8-4. We assume
that Eexp = 1.0% and solve (7.8) for [Ic: we obtain pic = (0.339,0.462) after 3 iterations in 1.29
sec '. We need 233 forward solutions and a total of 35.0 sec. to generate the boundary points A2*
(here, A0 = 20' and AMR = 1 E -5). Finally, we solve (7.12) for the enclosing ellipse.

4All timing results presented are obtained on an Intel 750 MHz Pentium III processor running MATLAB 6.5.
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N M SN,M (p, t), V k E K A 8, (p, tk), V k E K s(p, tk), Vk C K
10 4 3.81 E -04 1.44 E -03 1
20 6 5.72 E -04 1.56E-03 1
30 8 7.70 E -04 1.72 E -03 1
40 10 1.06E-03 2.04 E -03 1
50 10 1.43E-03 2.16 E -03 1
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Figure 8-4: AP IV: Possibility region R(p) for L* = (0.34,0.46).

We also investigate the sensitivity of the parameter estimate with respect to measurement and
modeling errors. We present in Figures 8-5 and 8-6 the enclosing ellipses as a function of Eexp (for
N = 50 and M = 10) and as a function of N and M (for Eexp = 0.5%), respectively. Again, smaller
measurement and modeling errors result in a smaller possibility region R(pu*). We observe that we
could decrease N to 40 without incurring a severe loss in the accuracy of the parameter estimate.

In actual practice, we should not wait until all measurements are available before we start the
parameter estimation process. In fact, the time intervals E, and 12 may overlap: since solving (7.8)
is an iterative process, we can continuously add measurements into the solution process as they
become available. We test this approach by starting the iterative solution of (7.8) with only the
first two measurements, K = {2, 4}. After each iteration of the Levenberg-Marquardt Algorithm
we include the next measurement into the solution process. We obtain [tc = (0.339, 0.463) after
only 3 iterations and 1.25 sec. We thus reduced the total time to obtain the parameter estimate
/tic by 0.6 sec., i.e., the time to take 3 measurements at a sampling rate of 5 Hz.

8.3.3 Control of Weld Pool Depth

Given the solution of the parameter estimation procedure, we can now turn to the optimal control
problem. Since the construction of the possibility region 1Z(ji*) takes a considerable amount of time,
we do not consider the min-max problem discussed at the end of Section 8.2.1 for the in-process
control. Instead, we simply use pic as our estimate for the true parameter [* and solve the optimal
control problem given [Ic. We only present results here for the LQR problem (8.8) with WU = 1,
WT = 1 E + 4, and WR = 1 E+ 6; we solve (8.8) using the quadprog routine from MATLAB.

We shall assume that the nominal input is un(tk) = 30, 1 < k < k3 , and that the control input
is bounded from below and above by ULB = 25 < u(tk) 5 UUB = 50, V k E K, i.e., there exist a
minimum and maximum limit for the heat input from the welding torch. Note that we solve the
optimal control problem during the time interval 13 and apply the optimal control law during the
time interval 4. Since the state of the system at the beginning of 14 (at the discrete time tk3)
serves as the initial condition for the optimal control problem, we need to predict the time frame
necessary for solving the optimal control problem. To begin, we simply choose k3 = 30 and confirm
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Figure 8-5: AP IV: Possibility region 7Z(p*) for p* = (0.34,0.46) as a function of Cexp.
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afterwards if our choice is justified. We also assume that the control horizon is tk4 - t 100 ; the
period actively controlled is thus 4 {to t 100} (corresponding to the time period from 3 to
10 sec.).

To begin, we consider the case with a 1% error in the temperature measurements for the pa-
rameter estimation. At the end of the last section we obtained the estimate, Pic = (0.339,0.463),
for the true parameter value, u* = (0.34, 0.46), after 1.25 sec. Since we started the parameter esti-
mation procedure after the second measurement was taken, this corresponds to p1c being available
1.65 sec. after the welding process is started. Also, the discrete timestep k3 = 30 corresponds to a
real time of 3 sec. - we thus need to solve the optimal control problem within 1.35 sec.

Given s* = 1 and pic = (0.339, 0.463), we solve the LQR optimal control problem: in Figure 8-7
we present the optimal control input u* (tk), the output s 3 (P*, tk) obtained from applying u*(tk)
to the truth finite element approximation, and the deviation from the desired temperature 1s3 -
83(/-*, tk)|. Here, we have assumed that the sampling frequency for the control input is fs = 10 Hz.
Note that the control input is set to the nominal value U"(tk) for the first three seconds - during
this time the parameter estimation and optimal control problem are solved. We observe that
approximately 2 seconds after the controller starts the error in the output remains at less than 1%
for the remainder of the controlled time interval. We also note that the control input turns off one
second before the final time: this is an "artifact" of the thermal inertia of the system as well as the
location of the "fictitious" output 83 downwind of the heat source.

The time to solve for the optimal control input is approximately 3 seconds - with our current
implementation we cannot reach the required solution time of 1.35 sec. One option to satisfy the
time constraint is, of course, to consider a shorter time interval. Another option, and the one we
pursue here, is to presume a smaller sampling frequency, fs, for updating the control input. This
results in a smaller number of unknowns in the optimization and thus a faster solution time. In
Figure 8-8(a) and (b) we present the optimal control input u*(tk), the output s3(tz*, tk), and the
output error 1s3 - s3(*, tk) for fs = 5 Hz and fs = 2 Hz, respectively. We note that the error
level is very similar despite the lower sampling frequencies. The solution time, however, decreases
to approximately 1.8 sec. for fs = 5 Hz and to 1.0 sec. for fs = 2 Hz. We can thus achieve the
required solution time for f = 2 Hz without a serious detriment to the tracking performance.

We next consider two more test cases with increasingly larger measurement errors Eexp during
the parameter estimation procedure. In general, a larger measurement error results in a poorer
parameter estimate and we thus expect the steady-state error of the controlled output to be larger.
We first solve the parameter estimation problem with Eexp = 2% and Eexp = 5% and obtain tic =
(0.339, 0.466) and pic = (0.334,0.473), respectively. The solution time is approximately 1.25 sec.
in both cases. Given the parameter estimates, we solve the optimal control problem for fs = 5 Hz
and fs = 2 Hz. The results are presented in Figures 8-9 and 8-10. We observe that difference in
the output error is very small for Eexp = 1% and eexp = 2% (note that the parameter estimates are
very similar). The output error for eexp = 5%, on the other hand, is now above one percent due to
the larger error in the parameter estimate pIc.

Finally, we note that the approach presented here can be considered as the first step in a model
predictive control framework. Once the optimal control problem is solved and implemented, we
repeat the estimation-control process: we first take new measurements and update the parameter
estimate accordingly; given the updated parameter estimate, we solve the optimal control problem
for the next upcoming time interval. Proceeding in this fashion, we can obtain a sampling period for
the parameter estimation and control update of approximately 3 seconds. The controller can thus
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s 3 (P*, tk)1, for pic = (0.334, 0.473), Eexp = 5% and (a) f0 = 5 Hz, (b) fs = 2 Hz

216



react to disturbances and changes in the system parameters. However, as mentioned previously,
the variation of the system parameters has to be slow compared to the time to solve the inverse
and optimal control problems.
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Chapter 9

Concluding Remarks

9.1 Summary

The main goal of this thesis is the development of reduced-basis methods for problems governed by
parametrized parabolic partial differential equations. The essential components are (i) rapidly con-
vergent reduced-basis approximations - Galerkin projection onto a space WN spanned by solutions
of the governing partial differential equation at N selected points in parameter-time space; (ii) a
posteriori error estimation - relaxations of the error-residual equation that provide inexpensive
bounds for the error in the outputs of interest; and (iii) offline-online computational procedures -
methods which decouple the generation and projection stages of the approximation process. The
operation count for the on-line stage - in which, given a new parameter value, we calculate the
output of interest and associated error bound - depends only on N (typically very small) and the
parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid
evaluations required in the context of parameter estimation, design, optimization, and real-time
control.

Many model-order reduction techniques for time-dependent linear and nonlinear systems are
proposed in the literature. However, almost all of these techniques consider time the only variable
and do not accommodate parametric variation nor a posteriori error estimation. In the reduced-
basis method, we simply treat time as an additional, albeit special, parameter. Instead of generating
a reduced-order model for a particular time-varying system, we create a model valid for general
parametric families of systems. Our results show that we obtain good approximation properties for
all parameters in the admissible domain.

We also improve and extend on earlier work on reduced-basis methods for parabolic problems
in several directions: we rigorously treat (i) temporal forcing/control inputs that are not known
a priori, and (ii) outputs that are also (scalar) functions of time. We develop a new a posteriori
error estimation procedure that provides rigorous bounds for the error in the energy norm and
in the output at all (discrete) timesteps. This generalization allows us to treat a wider class of
applications and pursue a more rational way of constructing the parameter-time sample set - our
"greedy" adaptive procedure optimally selects the samples and thus helps avoid ill-conditioning
of the reduced-order model. The procedure performs very well in practice and sometimes results
in non-obvious parameter samples that would be hard to predict. Furthermore, we propose an
impulse approach to construct the basis for LTI systems - especially important for optimal control
applications.
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We propose adjoint procedures in the context of problems with affine parameter dependence.
The primal-dual formulation results in a square effect of the output estimate and output bound
convergence. Despite the additional cost due to the solution of the dual problem, the overall compu-
tational efficiency for certain problems may increase considerably as compared to a "primal-only"
approach. However, the primal-dual formulation is less advantageous when considering problems
with either many outputs or a large number of timesteps - one such example being the pollution
problem discussed several times.

In Chapter 4 the assumption of affine parameter dependence is critical for computational ef-
ficiency. Unfortunately, it is also rather limiting: the pollution problem (with a varying source
location) and the welding problem both display a nonaffine parameter dependence. We treat these
problems in Chapter 5, where we introduce a collateral reduced-basis approximation for the non-
affine terms and employ an empirical interpolation method to calculate the coefficients for the
nonaffine approximation. We also introduce a posteriori error bounds and offline-online compu-
tational decompositions which retain the online I- independence; although our error bounds are
rigorous only under certain conditions on the nonaffine function approximation, we observe in the
numerical results that our methods perform well even if these conditions are not met. Nevertheless,
we have to carefully choose the approximation order N and M of the reduced-basis and nonaffine
function approximation, respectively.

We also consider certain classes of nonlinear parabolic problems in Chapter 6. The treatment
of the nonlinear case is similar to the nonaffine case in that we now employ the empirical inter-
polation method to approximate the nonlinear term. Here, it is difficult to generate an explicit
affine approximation of the nonlinear term since the field variable is not known in advance. The
greedy adaptive sampling procedure ensures good approximation properties, but is very (maybe
prohibitively) expensive in the nonlinear case. We also propose a posteriori error estimation pro-
cedures and offline-online decompositions which are valid even in the presence of highly nonlinear
terms. As a specific example in the class of reaction-diffusion equations we consider the self-ignition
of a coal stockpile. Although we do not have error bounds available for this problem, our results
show that the reduced-basis method performs very well in approximating and capturing the highly
nonlinear behavior.

Finally, we integrate the reduced-basis method into two representative applications requiring
repeated and rapid evaluation of input-output relationships: robust parameter estimation in Chap-
ter 7 and optimal control in Chapter 8. The examples presented in these chapters, and the numerical
tests performed throughout this thesis, demonstrate the applicability, effectivity, and efficiency of
our proposed method. We rigorously and efficiently quantify the uncertainty due to measurement
and reduced-basis modeling errors in inverse problems - we can thus pursue a real-time and ro-
bust parameter estimation procedure which would have been intractable with conventional finite
element methods. Furthermore, we can consider in-process (optimal) control of certain engineering
problems, which is of special interest in the model predictive control framework.

9.2 Future Work

We conclude by giving some suggestions for future work. In Chapter 4 we presented several numer-
ical results for applying a primal-dual formulation in the reduced-basis context. We observed that
we can obtain a specific desired accuracy for the output estimate and output bound for different
combinations of Npr and Ndu, the dimensions of the primal and dual spaces. The choice of Npr and
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Ndu is, of course, also important for the computational efficiency of the method. An interesting
question is thus to find the "best" relative choice of Npr and Ndu which minimizes the computa-
tional cost for a given desired approximation accuracy. The solution will certainly be different for
every specific problem at hand, but it would be good if a general guideline is found.

On a related issue, we observed that the primal-dual formulation greatly improves the conver-
gence rate of the output estimate and output bound. However, the output effectivities reported
showed that the output bounds are not necessarily sharper as compared to the primal-only ap-
proach. Following the approach in [121], we presented preliminary results that lead to output
effectivities of 0(1) by adding the residual correction term to the output bound instead of improv-
ing the output estimate. Nevertheless, the required dimensions of the primal and dual reduced-basis
approximations to obtain a specific accuracy did not decrease. A hybrid approach, on the other
hand, may result in a smaller Npr and Ndu and improve the computational cost.

In this thesis, we presented adjoint techniques only for affine problems. It would be good to
extend the methods in Chapters 4 and 5 to consider primal-dual formulations for nonaffine problems.
The nonlinear case is far more complicated and certainly requires additional effort (see [121] for
the application of adjoint techniques to reduced-basis approximations of the steady Navier-Stokes
equation).

The extension of the methods presented here to more general nonlinear parabolic problems is
another interesting topic of research. One possibility are problems involving nonlinearity in the
Laplacian, e.g., anisotropic or nonlinear diffusion problems widely used in image processing. The
most interesting choice with the widest applicability is to consider the unsteady Navier-Stokes
equation. Combining the theory developed in [121] and in this thesis might be a first step in this
direction. However, even the theory for nonlinear problems presented here should be improved
upon, especially the extremely high computational cost for the greedy procedure.

Although we applied our method to several real-world problems, the work in this thesis is still
mostly theoretic. Implementing the reduced-basis method in actual practice, e.g., in the "real-
world" control or parameter estimation framework, would prove the real potential of the proposed
method. We also note that in this thesis we only considered problems with up to three parameters,
whereas in real-world problems the number of parameters might be considerably higher. However,
considering problems with 0(10) parameters may vastly reduce the computational savings, since
even for our few-parameter problems N reached up to 200. The question of how the reduced-basis
approximation scales with the dimension of the parameter space is thus also very interesting to
investigate.
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Appendix A

Offline-Online Computational
Procedure

A.1 Reduced-Basis Approximation

We summarize here the reduced-basis approximations and necessary quantities for the dual problem
and the output estimate (for the primal problem, see Section 4.3.3).

For the dual problem we define _FN (p, tk) = ['N 1(, tk)

obtain from (4.18) that
T N2 (A, tk) ... T NNd( (Atk)]T and

(Mau(,t) + At Ad)u / !N (Ak) = Mdu( /)N (,t tk+1),

Qrn"

MNu(#) = (Y) M ,
q=1

V k e K,

Qa

A du yAd=uq,
q=1

with entries

Mdu qMN i 1 < i,j <_ Ndu,max, 1 < q < Qm ;

1 <_ iJ, j Ndu,max, 1 _ q < Qa; and

1 < i < Ndu,max-

Note that I N(I, tK+1) is calculated from Mdu(/) IN(I, tK+1) - Ldxu

Finally, we evaluate the output estimate, V k e K, from

k

SN(I1 tk) - prTY N(/" tk) +At Ell(' tk~'

k'=1

p-r,du()N( k) M pr,du N ,tk N k'-1
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(A.1)

(A.2)

(A.3)

(A.4)

= Mq((idu, du),

= a q((,du, du),

= g(iu), I

x Bdu ([)U(k



where

Mpr'du~i)

A ,du

with entries

= m(( u' (pr),

- a((du Pr),

= b((idu),)

= E(Cipr), I

1 < i < Ndu,max, 1 < Npr,max, 1 < q Qm ;

1 i < Ndu,max, 1 j < Npr,max, 1 < q Qa;

1 < i < Ndu,max, 1 < q < Qb;

1 < i < Nprmax.

The offline-online procedure is described in Section 4.3.3.

A.2 A Posteriori Error Estimation

In this section we discuss the calculation of the primal and dual error bound. For the primal error

bound, we first note from standard duality arguments that

ENpr (A, tk)
RPr (V; ft, tk)

sup
V Y fl)0y

= jj~pr(_,tk)jjY,

where 8pr (,, tk) C Y is given by

(8pr (/_, t), V)Y = Rpr (v; P, tk),

(A.7)

(A.8)

V'v E Y; (A.9)

(A.9) is effectively a Poisson problem for each tk E a.

From (4.21) and the affine assumptions (4.9)-(4.11) it thus follows that dpr(P, tk) satisfies

Qb

(epr tk ), V)Y = 1
q=1

Npr

-n= q9 = (P) yNn(P, ka

q=1

Qrn- 1

+ Eq(1)
q=1
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(A.10)

Qm

= (q (tt) Mgp,du q

q=1

Qa

Eq Ap,du q,

q=1

Qb

= () B uq
q=1

M r'duq

(A.5)

B duqNi

(A.6)

01(p) bq(V) U(tk)

(yNn (p, tk) - yNn (A, t k--) ) g M (pr, V) , V V C y.



It is clear from linear superposition that we can express 6(P, tk) as

Qb

pr(g) S E (P) u(tk)
q=1

Npr

3pr _

n=1
al(,) YNn (A, tk) Ar

+ E mhP)(YNn(#, tk)
q= 1

where we calculate BL E Y, A .E Y, and Mr E Y from

(BqPr V)y

(A ,,rv)y

= bq (v),

= a q((nr, V),

VvEY, 1 q Qb,

VvEY, 1<nl Npr,max, 1 q < Qa,
,n = m((r, ), VvEY, 1 nfl Nprmax, 1 q < Qm,

respectively; note B, A, and M are parameter independent.

From (A.8) and (A.11) it follows that

Qb

- =
q,q'=1

Qb NPr

q=1 n=1

Npr

+ E

fl,n/l~

k k bb
U(tk) u(tk) Aqr ;b

Qa
Su(tk e() YNn (/t, tk APr;ab

b qq/n
q1 =1

QM
+ 5 (#)yNflk) -

q'=1

Qa

qq' ( a (A) yN n P , k N n'(P , )k rnq an

Qrn

+ E ) (~IQ)) q
q,q'=1

(YNn(/,Itk) - Nn Y (Ittk-1 )

X U~n k t~'(,k-1) r'MMn>X (YNn'(IL, t)- YNi' ([P, tk1)Aqn'

Qa Qn
± q e([L) E YU(M tk)a M P) Nn (P, t

q=1 q'=1

X (yNn' (I, Itk) - YNn' (I, tk 1)) A pra
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-- YNfl(I,,tk-1 rn , (A.11)

(A.12)

(A.13)

p'r k 2

/_t#, tk-1) pmb



where the parameter-independent quantities Apr are defined as

(- r, L3pr)y,

-2 (BrIAP,)Y,

_Lp Mp n)Y,

= (Apr , Apr,),
-~ q~ (4MP)Y

(Apqn, MP,)Y ,

= g(M~nMPpr , Ap

1< q,q' Qb;

1 < q < Qb, 1 < q' < Qa, 1 n < Npr,max;

1 < q < Qb, 1 < q' < Qm , 1 < n < Npr,max;

1< q,q' < Qa, 1 I '- Npr,max;

1< q < Qa, 1 q' < Qm, 1 < n, n' < Nprmax;

1< q, q' < Qm , 1 < n, n' < Npr,max.

The computational procedure for the dual error bound follows arguments similar to the primal

error bound presented in (A.7)-(A.11). Thus, we first solve for A n Y, and Mq E Y from

= aq(v, (ndu), Vv C Y, 1 < n < Ndu,max, 1 < q < Qa,

= m(V, (ndu), Vv e Y, 1 < n < Ndu,max, 1 < q < Qm,
(A.15)

respectively, and then evaluate the dual norm from

Ndu Qa

- \~q q' (A) PNn(IItk) 1N('Ctk ) Aduaa

n,n'= q a= 
1 q

Qm
+ e(P) E(t) (Nn(,tk) - 1Nn k+1

q,q'=l

x ( . T k \ - ' \Ak+d u , m m

Qa
+ E

q=1

QM

E (M) q q (/) T Nn (A, tk)

q'=1

X (TNnI (P k) _- 'Nn' (P, t k+1) A uamqnq'n'I (A.16)

where the parameter-independent quantities Adu are defined as

= (Adun, Md"n,)y

= (A(Mdun, Md~un )

/ qq <Qa, 1< n, n' < Ndu,max;

1< q < Qa, 1 q' < Qm, 1 n, n Ndu,max;

1/ q,q' < Qm , 1< n, n' < Ndumax.

(A.17)

Finally, for the contribution due to the error of the dual problem at the final time we first solve

for L*! E Y and M q e Y from

(L*'f, v)x

(Mg , v)x

Vv E Y,
(A.18)

= mq(v, (du), Vv G Y, 1 < n < Ndu,max, 1 < q < Qm,
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A p;mbqq Ti

A 'pr,"aqnq Ti

A pr,am
qnq Ti

(A.14)

(Avuu, V)y

(M un, v)y

E (' tk) 2

Adu,aaqnq'n

A am

dummA qnqj' Ti

= (V),



respectively; we then evaluate the dual norm from

-~f 2 Ndu Qn

E( (p) = A/'V" + E q m(P) XFNn(l, tK+1)
n=1 q=1

Ndu Qm
x 4Ai'm + E cq(p) l!(tK+1 Tfmm

n'=1 q'=1

where the parameter-independent quantities A"'f are defined as

A 'f," = (Lxf,C'P)x;

Aqnf~m -2 (Mq, LY"f)x, 1 q Qm, 1< n < Ndu,max; (A.20)

A (Mx',Mq1f',)x, 1 < q,q' < Qm , 1 < nn' Ndu,max-

The offline-online decomposition is now clear. In the offline stage we first compute the quantities
BPr , Cf, Apr,du, and Mpr,du,qff from (A.12), (A.15), and (A.18) and then evaluate the Apr,du, T f

from (A.14), (A.17), and (A.20); this requires (to leading order) O((Npr,max + Ndu,max)(Qa + Qrn))
expensive "truth" finite element solutions, and O((N2r,max + N ~uma)(QZ + QaQ+n Q)) N-inner
products. In the online stage, given a new parameter value p and associated reduced-basis solutions

MN (,t) and _±N(, tk), we perform the sums (A.13), (A.16), and (A.19) and evaluate the error

bound from

At_ k )2 ( K )2 2
A5U1, t k) - epr , tk' ) E du 'ti, 2 Ndu

As&atk (A~i) I: Np / a a() E" Nd + rnci('
k1= 1 k,=K-k+1

V k E K; (A.21)

it directly follows that the online operation count for A,(p, tk), V k c K, is O(K(N2r + N 2u)(Q2 +
QaQrn + Qm)). Thus, all requisite online calculations are independent of the dimension of the

underlying "truth" finite element space, N.

227



228



Appendix B

Time-Discretization: Crank-Nicolson

B.1 Abstract Formulation

We derived here the results for the Crank-Nicolson time integration scheme corresponding to the
results presented in Chapter 4 for the Euler-Backward scheme. We consider the time interval I
]0, tf] (I [0, tf]) and divide I into K subintervals of equal length At = 9 and define tk _ kAt, 0 <

k < K a and I {t,. . . , tk}; for notational convenience, we also introduce K {1,... , K}.

Again, our results must be stable as At -> 0, K -- > o. We also recall our reference finite element

approximation space Y C ye (c X') of very large dimension V.

B.1.1 Primal Problem

We can now directly state the reference (or "truth") finite element approximation: Given a param-
eter p E D, we evaluate the (single) output s(u, t+) c R from

s(A, tk) - ( Atk)), V k E K, (B.1)

where y([t, tk) E Y, V k E K satisfies

m(y(M, t), v; p) + 5 a(y(p, tk) + y tl1), V;2
At

m(y(p, tk-1), v; A) + 2t b(v; y) (u(tk) + u(tk-)), V v E Y, (B.2)

with initial condition y(y, to) = 0.

B.1.2 Dual Problem

We also introduce a dual problem which evolves backward in time. Invoking the LTI property we can
express the adjoint for the output at time tL, 1 < L < K, as 4,L([, tk) _ qiztK-L+k), 1 < k < L,
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where T (/_, tk) c Y satisfies

m(v, I(y, t k); P) + At a(v, TI(p, tk) + '(ttk+1);1t) m v '(t, tk+1) )
2

V v c Y, V k c K, (B.3)

with final condition

mv (p, tK+1); p)0 f M~, VV G Y. (B.4)

Again, to obtain 'OL(P, tk), 1 < k < L, VL c K, we solve once for QI(p,,tk), V k E K, and then

appropriately shift the result - we do not need to solve K separate dual problems.

B.2 Reduced-Basis Approximation

We now introduce the nested sample sets S r= {= r E D,.. . , J c D}, 1 Npr Npr,max, and
Np 1 pr

{ = {AIu CD,..p, gd4u C D}, 1 Ndu < Ndumax, where A -- (p, tk) and D D x l; note that

the samples must reside in the parameter-time space, D. Here, Npr and Ndu are the dimensions

of the reduced basis space for the primal and dual variables, respectively; in general, SQ - Qdu

and in fact Npr # Nu. We then define the associated nested Lagrangian [85] reduced-basis spaces

Wr = span{(Pr y( Ppr), 1 < n < Npr}, 1 Npr < Npr,max, (B.5)

and
Wd = span{du _p(/du), 1 < n < Ndu}, 1 < Ndu < Ndu,max, (B.6)

where y(nFr) is the solution of (B.2) at time = tk n for =t and T(du) is the solution of (B.3)

at time t =t for du

B.2.1 Formulation

Our reduced-basis approximation YN (p tk) to y(p, tk) is then obtained by a standard Galerkin

projection: given A C D, yN(t, tk) G WP, V k C K satisfies

m(yN(A, tk),V; A) + a(yN(P, tk) + YN(A, tk-1),V;P)
2

m(yN(P, vk-1V) + t b(v;p) (u(tk) +U(tk-1)), Vv CWK, (B.7)

with initial condition YN(p, t0 ) = 0. Similarly, we obtain the reduced-basis approximation PN(t, tk)

E WC to qf (ft, tk) as the solution of

m(v,PN(P,tk); P) + At a(vPN(Attk) + N N(, tk+) P)
m(v k+1); tL), Vv C Wd, V k C K, (B.8)

with final condition
m(vPN (ttK+1); P) = (v), Vv C Wdu. (B.9)
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Finally, we evaluate the output estimate, SN(/1, tk), V k C K, from

k

SN(I, tk) -(yN(p,tk)) + E Rpr(I N(pK-k+k') + N(IP,tK-kk'+±l));Itk') At, (B.10)
k'=1

where

RPr(v; t,tk) = b(v; p) (u(tk)+ u(tk-)) a(yN(p,tk) +yN(PItk -1),V;2 2

1y ,Mv EY, V(k ( K, (B.11)

is the primal residual. Note that here N = (Npr, Nau).

B.2.2 A Priori Convergence Theory

We now consider the rate at which YN(p, tk) converges to y(pu, tk). We first note from (B.2) and (B.7)
that epr (p, tk) - y(, tk) - yN (A, tk) satisfies

m(epr(,, tk), v; p) + A a(epr (,, tk) + epr(, tk-l), v; p) = m(epr(' tk-1), v;),

VV WKr, V k E K, (B.12)

with initial condition epr(A, t0) = y(/, t0) - yN(A, t0 ) = 0 since y(y, to) = yN(p, to) = 0 by as-

sumption. We next let wN(tk) E Wpr be the projection of y([t, tk) with respect to the "m" scalar

product and choose v wN(k) - YN(A, tk) - wN(tk-) _ yN(, tk-) - Pr k + pr k-1) -

(y(p, tk) - WN(tk)) _ (y(,tk-1) - wN (tk-1)) in (B.12). We then obtain

m(epri, tk) - epr(,u tk-1), pr,, tk) pr([, tk-1);P)

+ At a(epr(, tk) - epr(, tk-1), pr, tk) + epr(,L tk-1);t)

=m(epr(,, tk) pr, tk-1), y(tk) _ (twNk + y(,k-1) (tk-1

+ a(eP'(p, t k) -+ ePr(,tk-l1), ,tk) - wN (tk) y(,tk-1 - N k-1

which can be written as

m(ePr, tk) ePr(, tk); ) - epr, tk-) epr(,, tkl); ,)

+ a(epr (,, tk) + epr(, tk-) ,e pr ,k) _ pr, tk-- 1 I)

mn(y (,tk) -W(tk) _ (y([Z,tkl1) -w(tk-1)), y(,ILtk) - N(tk) + y(/1 tl -1w);I
k _e N k k-(- wN (tk ) k -W _L- k-) - (tk-13)

+ Ata(e pr(,,, tk) -+ epr (, tk - 1,L tk) - WN (tk) +YIL k- 1) - WN (tk-1); P), (B.13)
2
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since m(z, y(p, tk) - wN (tk)) - 0, V z C Wpr . We next note that
Npr

a(epr tk) + pr(,, tk-1), y(f, tk) - WN(tk) + y([u, tkl) - wN(tk-1); P)2a
At At
__ a(epr(, tk) + pr(, tk-1), pr(,, tk) + epr(i, tk-1); A)- a(v, v;p)

At

+ a(y(ft,t k) - wN (tk) (fttk-1) - WN(t k-1),

y(p, t k) - wN(tk) + Y(A tk-1) - wN(tk-1); [L)

+ A a(epr(, tk) + pr(,,,tk-1), pr(, tk) + Pr(, tk-);4

At

+_'A a (y(u, tk) - wN(tk) + Y(t tk-) - WN(tk-1),

y(A, tk) - WN(tk) + y(Atk-1) - wN(tk-1); ). (B.14)

From (B.13) and (B.14) it follows that

7m(ePr(,t, tk), -r(tk);A) (,pr(,t, tk), ePr (, tk-); t)
Ater(,, tk) epr(,At, tk1), epr(t, tk) + epr(, tk k');-14

S mn(y(ttk) - wN(t'),y(A,tk) -wN(tk); A)
-n(y(L, tkl) - tN (t), Y(tL tkl1) - w(tkl); AtL)

+t a(y(fttk) - WN (y( t p,tk) -w N(t k-1),

Y(tte tk) - WN(tk) 4 Y(AW tk) - WN (tkB1) At). (B.15)

Summing from k' 1 to k and invoking the coercivity and continuity of a and m we thus obtain

k
amA)~pr(,tk) II ±aa(A) AtE (,pr(A,,tk) +epr(,,,tk'I)) 11

k'=1
k

< E ~inf 'Ya(At) At Ij(y(/t,tk') - WN (tk) + y( It k'-) 1 WN (tk-)) 11Y

__ k)G pr2

+ if {ym(At) Ijy(A,tkwN(tk) 11
W(tk)CWr

WN)Wpr

+a(/_t) At fl1(y(At,tk) -W(tk) + y(ft, tkl) -w(t-))1y}

B .2.3 Offline-Online Computational Procedure

The offline-online computation procedure is by construction very similar to the Euler-Backward time
integration scheme in Section 4.3.3. We therefore only state the matrix form of (B.7) and (B.8)
and summarize the operation count.
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We first express yN(1, tk) and TN(A, tk) as

Npr

YN (P, tk) = Z YNn (, tk) pr,
n=1

Ndu

TN (A, tk =E Nn(, t k) du,

respectively. We then choose as test functions v = (npr 1 n < Npr, for the pr
and v -= (u,1 < n < Ndu, for the dual problem (B.8).

It then follows from (B.7) that MN (p, tk) = tYN1(A, tk) YN 2((, tk) ... YN
satisfies

(2 M (p) + At Ar(t)) YN (,tk)

(2 MNj (p) - At Ar (A)) yN k1) + At Bk(-I) (U(tk) U(tk-1)),

with initial condition YNn(I, t0 ) = 0, 1 < n < Npr. For the dual problem we

[4NI(IL, tk) T N 2(P, tk) ... -N Ndu ([' tk)T and obtain from (B.8) that

(2 Mu(y) + AtAdy(,L)) ]kN(tt) = (2Mdu(p) - At (d )u /_t , tk+1),

Note that IF'N(I, tK+1) is calculated from Mj "(p) IN(jL, tK+1) - Ldu

Finally, we evaluate the output estimate, V k e K, from

k

imal problem (B.7)

N p(L, tk) ]T C ]Npr

V k c K, (B.18)

define _TN (,, k) -

V k c K, (B.19)

SN(p, tk) = L prT -N(t) + At >I 1 (I(,tK-k+k') +jT K-k+k'+l))

k'=1

x B u() ( (tk) + U (t - ) )d N (yN( tk ' +YN ( ,1 k' -1 )

1 N N ' -)
(B.20)

Note that the quantities MPrdu APr,du BPr,du LPr,du are already defined in A.5.

In the online stage - performed many times, for each new parameter value y - we first assemble
the reduced-basis matrices (4.55), (A.2), and (A.5); this requires O((Np2r+Nd2U+NprNdu)(Qa+Qnm))
operations. We then solve the primal and dual problem for MN (' tk) and ±N(I, tk), respectively;
since the reduced-basis matrices are in general full, the operation count (based on LU factorization
and our LTI assumption) is O(Nyr + Nd1u + K(N2r + N2u)). Finally, given yN (' tk) and N (I', tk)

we evaluate the output estimate SN(I, tk) from (B.20) at a cost of O(2kNprNdu); note that the
calculation of all outputs SN(/,, tk), V k G K, requires O(K(K + 1)NprNdu) operations.
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B.3 A Posteriori Error Estimation

B.3.1 Preliminaries

To begin, we recall the definition of &,(p) : D - R+ in (4.57) and &m(p) : D -* R+ in (4.58) as
lower bounds for the coercivity constants aa(p) and am(p), respectively. As in Section 4.4.1 we
define the dual norm of the primal residual

Npr (, tk) SU RPr(V; [L' t) V k eK (B.21)
VEY _V_ y

and the dual norm of the dual residual

edu (, tk) SUP Rdu(v; /_,tk) ,V k cK, (B.22)
vEY IvIy

where

Rdu (v; tk) -- a(v, TN(P, tk) + 'IN(P, tk+1);)
2

- hm(v,ITN(P, tk) - PN(P, tk+1); P), V E Y, V k E K, (B.23)At

is the dual residual.

We now present and prove the bounding properties for the errors in the primal variable, the dual
variable, and the output estimate for the Crank-Nicolson time integration scheme. Throughout
this section we assume that the "truth" solutions y(p, tk) and p(p,tk) satisfy (B.2) and (B.3),
respectively, and the corresponding reduced-basis approximations yN(p, tk) and TIN(P, tk) satisfy
(B.7) and (B.8), respectively.

B.3.2 Error Bound Formulation

Primal Variable

We obtain the following result for the error in the primal variable.

Proposition 19. Let epr(p, tk) Y([t t') - YN(, tk) be the error in the primal variable and define
the "spatio-temporal" energy norm

v~k)l||p ((y~,tk MVg ik)A

k2

+ ( +v tvtp'1k),+v(vtk'-1k') +v(pv,tk'- 1 ));j) t ) V v e Y. (B.24)

k'=1

The error in the primal variable is then bounded by

ie pr(p, tkhlpcr < pr k), V y e D, V k C K, (B.25)
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where the error bound AV (1,tk) is defined as

At

&a Wt

k 2

k'= 1 r/

(B.26)

and E Npr (M, tk) is the dual norm of the primal residual defined in (B.21).

Proof. We immediately derive from (B.2) and (B.11) that epr(, tk) -- y(, tk) - yN (Y, tk) satisfies

m(epr (,tk), v; p) + a(epr (,,tk) + epr (,k), v; p)2
= m(epr(,, tk-), v; Y) + At RPr (v; /, tk), Vv e Y, Vk c K,

where epr(,, to) = 0 since y(p, t0 ) - yN (U, t0 ) = 0 by assumption. We now choose V = epr (p, tk) +
epr(,, tk-1), and invoke (B.21) to obtain

m(ePr(p, t), epr (, tk); ) - n(epr( tk--),e pr(, tk-

+ A a(epr (,tk) +per(,, tk-1), epr/, tk) + epr(,,tk-1); /Z)
2

At 6pr (/_,tk) ePr( (,tk) + epr(,,tk-1) y, Vk EX. (B.28)

We now apply (4.69) with c =e (p tk) d - epr )+ epr t -) 1y, and p = &a(M) to get

epr (ttk) pr (,tk) + epr(,tk--1) Y

< a() pr
(,tk) 2 + &a (A) pr, tk) pr, tk-1) 124 (lie )+ e rYk-lf~

Combining (B.28) and (B.29), and invoking (4.7) and (4.57), we obtain

m(epr(,, tk), epr(, tk); t -- _(epr( t, tk), ePr(,, tk-); /)

+ At a(}(epr(m, tk) + epr (,,tk--)), (epr (ttk) + epr (,tk-1));

At Ep (, tk)2, Vk K, (B.30)

We now perform the sum from k' = 1 to k and recall that epr(, to) = 0, leading to

m(e pr (,,, tk), epr (, k;L
k

+ At a(!(epr (/, tk') + e pr(,,tk'-)), _(epr(,tk') + pr,,tk'-1l;)

k'=1

At(, t')2

aai)k'=-1
V k e K, (B.31)

which is the result stated in Proposition 19.
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Dual Variable

The treatment of the final condition of the dual problem for the Crank-Nicolson integration scheme

is the same as for the Euler-Backward scheme. We recall from Lemma 7 and (4.74) that

m(edu K+1, du(,,, tK+1); < (A) ANU 2; (B.32)

where A IN (p) is defined in 4.76.

The bounding property for the dual problem is given in the following proposition.

Proposition 20. Let edu(At, tk) - p ( tk) - 9 N(P, tk) be the error in the dual variable and define

|vp }|CN ~k) V~~ (tk tk)P

K 2

+ a(1(v(p, tk') +V (/t, tk+1)), (v(pt, tk) + V([t, tk+1)); At . (B.33)
k'=k

The error in the dual variable is then bounded by

IIIedu /t k) CN IN u du ''k), V p E D , V k EK , ( .4
CN - ~CD VkcIKp, (B.34)

where the error bound A (u k is defined as

t t K

Sdu k a E Ndu k'2Ndu 2 ,(B.35)

k'=k

ande4 (t, tk) is the dual norm of the dual residual defined in (B.22).

Proof. We immediately derive from (B.3) and (B.23) that edu (,t, tk) - l (1j tk) - 'N(P, tk) satisfies

m(v, edu (/,tk);t) + 2 a(v,e du(,tk) +edu ,tk+1);

= m(v, edu(p, tk+1); A) +At Rdu(v; ttk), Vv e Y, V k e K, (B.36)

with final condition m(v, edu ,tK+1);/t) = R'f(v; p), V v E Y. Choosing v = edu(, tk) +

edu tk+1), and invoking (B.22) we obtain

m(edu(Attk), du,,,tk); t) - m(edu(ttk+1),edu,,,tk+l);

+ a(edu(fttk) + edu(,,,tk+l), du(,tk) du k+

2

< At edu ,tk) Iledu( (,tk) + edu (,tk+1) 11y, V k E K. (B.37)

We now apply (4.69) with c = du (,tk), d = fledu(Attk) + edu([ttk+1)IIy, and p = &a([z)2.
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Invoking (4.7) and (4.57), we arrive at

m(edu (,tk), ed(A tk); [) - m(ed( ttk+1), du /,tk+1); t)

+ At a( (edU(,utk) + edu(,tkl)), 1(du(At tk) + du(,,,tk+l));

E (du (,tk) 2 ,

We now perform the sum from k' = k to K and invoke (B.32) to obtain

m(edu g, tk), edu([, tk); /_)
K

+I At a(j(edu tk)
k'=k

V k c K, (B.38)

+ edu (,tk'+1)), 1(edu(,tk) + edu (ttk'+1)); Y)

AtK
Z edu t k' )2 + 2,

&a(Ak) ' Ndu d
V k c K, (B.39)

which is the result stated in Proposition 20. D

Output Bound

Finally, the error bound for the output estimate is given in the following proposition.

Proposition 21. Let the output of interest, s(p, tk ), and the reduced-basis output estimate, sN(pt, tk),
be given by

s(Ap, tk) (y(A, tk)), Vp E D, Vk C K, (B.40)

k

sN (A, tk) - (N (At, k)) + >: Rpr(_(IN(tt K--k+k) N(,tK-k+k'+1));tk') At,
k'=1

VI p ED, Vk E K,

respectively. The error in the output of interest is then bounded by

(B.41)

1s(, tk) - sN (A, tk) As (Atk),

where the output bound As(p, tk) is defined as

A(, tk) Apr k du ', tK-k+1),and ~ (A, tk and~ (A ,tk aredefndi rosion 19L an 20Nesetiey

Vp c D, Vk c K, (B.42)

(B.43)

an pr t du(,tPNoo To(/beg) and Ad u k) are defined in Propositions 19 and 20, respectively.

Proof. To begin, we recall the definition of the dual problem for the output at time tL, L E K,
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given by

m(v,4 L (Pit'); A) + At(, bL (P, tk) + L (P, tk+1); P) = T(V, L (P, tk+P

with final condition m(v,4OL(,, tL+1); A) = (v), V v G Y.
epr(, tk-1)) in (B.44) and sum from k = 1 to L, to obtain

Vv c Y, (K >)L > k > 1, (B.44)

We now choose v = 1(epr(,tk) +

2E (epr( p, t ) + epr( tk'-1),\ VLQ(,tk') - (I, tk'+);
k'=1

L

+ Y 4 a(epr (, tk') + epr (,tk'- 1),, L (A, t')

k'=1

(B.45)

which can be rewritten in the form

:M (epr (,, tl') - ejr (, t'- 1), tL(p k') + pk'+1

+ At (,pr (,,, t)) + r(,,, -)L (1 , tk') +tk'+

k'=1

=1m(epr tL), L (P, tL+1); /) (B.46)

where we used the fact that ePr(pu, t0 ) 0. We now note from the final condition of the dual

problem that m(ePrI, t ),4,L(ptL+1 pr(L)) to obtain

f (ePr (, tL)) m p k

k'=1

- pr k'-1 P k) + L (P, tk'+1);)

+ S t a (ePr (ft, tk) +e pr (/_tk'1),OL (4, tk/
+E4

k'=1

+ OL (A, tk'+1); A).

We next choose v = I(L (, tk) + L (p, tk+1)) in the error equation for the primal variable, (B.27),

and sum from k = 1 to L, to find

1 L

2 Z m(,pr (,,,t') _- r(_,t' ) L(,t' + OL (A, tk'+1); A)

L At
+ S -- a(ePr (p,tk') + er tk'-),iL(tk) + fL, tk'+);1

k'=1
L

= (I RPr($L(Pt k' ) + L (P ,tk'+ )) tk' ) At.
k'=1
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+ VL (P, tk'+l); /_) = 0.



From (B.47) and (B.48) we thus obtain

pr( L(,k') + OL(A, tk'+)); Ltk') At.
k'=l

f(epr(Ii tL))

L

= S RLr(eJ(,tK-L+k' K-L+k'+1)); Atk') At.

From the definition of s(p, tk) and SN([I, tk), and (B.50) we now obtain

- (epr(,, tk))
k

- Rp IN(JtK-k+k )

k'=1

k

Rpr (_ (,du (,tK-k+k) + du (,tK-k+k'+)); utk') At.
k'=1

Invoking (B.21) and the Cauchy-Schwarz inequality we arrive at

\s(p,tk) - SN(A,tk)

k

< pr Sk) 1 (,du(,, tK-k+k') + du(, tK-k+k'+1))ly t (B.53)
k'=1

< e(pr k' 2
k'=l

1

x ( 1 edu (,,tK-k+k') + du (tK-k+k'+)) 12 At . (B.54)

Let us first bound the second term on the right hand side. From (4.7) and the fact that &a(p) <
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s(IL,tk) - sN(A,tk)

(B.49)

(B.50)

- TN( tK-k+k'1 ));tk') At (B.51)

(B.52)



a(p), V p E D, we obtain

k
ed(A tK-k+k' )±edu (ttK-k+k'+1))12 At

k'=1

a(. (edu (,,tK-k+k') du K-k+k'+
(a p)k'=1

(edu(, tK-k+k') du(,, tK-k+k'+1)); A) At (B.55)

K

E a( (edu(A_, tc) + edu (/tk'+1)),
&a) k'=K-k+1

(edu( k du k'+1)); ) At (B.56)

< (~edu , k) edu k+

&a pk'=K-k+1

1(edu(,, tc) + edu (,tk'+1)); At

+ m(edu tK-k+1), edu(,, tK-k+1); ) (B.57)

&a) (edu K- )2 (B.58)

where the second inequality follows from the coercivity of m(-, .; p) and the last equality from the

definition (B.33) of the I I IuN-norm. Finally, inserting (B.58) into (B.54) and invoking (B.25)
and (B.34), we obtain

s(p, tk) - SN (M, k pr k(t N(u AKk), (B.59)

which is the result stated in Proposition 21.

B.3.3 Offline-Online Computational Procedure

The offline-online computational procedure is very similar to the bound calculation for the Euler-

Backward scheme described in detail in Section A.2. Since the derivation in Section A.2 can easily

be adjusted to the Crank-Nicolson scheme we omit the detailed equations here and only summarize

the operation count.

The computational cost in the offline stage is (to leading order) O((Npr,max+Ndu,max)(Qa-+Qm))
solutions of the underlying "truth" finite element approximation and O((N2r,max u Numax)(Qa +
QaQm + Q2)) K-inner products; the storage requirement is O((N2rmax + N2u,max)(Q2 + QaQm +

Q2)). In the online stage - given a new parameter value A and associated reduced-basis solutions

yN (A' tk) and IN((A, tk), V k E K - the computational cost to evaluate A,(p, tk), V k E K, is

O(K(N2r + N a)(Q~ + QaQm + QM)). Thus, all online calculations needed are independent of K.
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Appendix C

AP I: Delamination (Reference
Domain)

C.1 Reference Domain

The fixed reference domain Q = [0,30] x [0, 11] for pi,ref = 5 (the geometry only depends on
pi and not on p12) of the delamination problem is shown in Figure C-1. We first divide Q into
10 subdomains, Qi, 1 < i < 10. The delamination is indicated by the magenta horizontal line,
rdel, between the domains Q1, Q2 and q5, Q', respectively. We note that we only have to consider
geometric variations, i.e., a stretch in the xi-direction, in regions Q2 , Q1, q7, and Q8; the remaining
regions do not vary with the delamination width Wdel. We also note that the "fictitious" regions
Q6 and Q1o are only introduced for easier reference - the two outputs are defined as the average
temperatures over these regions. The affine mapping does not require a distinction between the
regions Q9 and Q10 and the regions Q5 and Q6, respectively. We assume homogeneous Neumann
boundary conditions on rN and homogeneous Dirichlet boundary conditions on PD-

In ~ 11
n6 r V2

q
-- , - I

it,. I a -----10.5- - -----11

r 3
q

f1o

tI| L r del

0.5 5.5 12 14 15

rN

I'

30

rD

Figure C-1: AP I: Reference domain
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C.2 Affine Decomposition

The affine decomposition resulting from the geometric mapping is given as follows (note that the
output functional, f, does not depend on [t):

Bilinear form m(., .; p): Qm = 3

®()p) =1 m1(w, v) j W V

E ) = tj - 0.5i m 2 (w, v) W V (C.1)

o3 12 - pi (,V
83, 1pAl= m 3(w,v) =w6.5 MfuQW

Bilinear form a(., -; Al): Qa 10

E)(pl) =1 a'(w, v) Vw - VV

P2 a2 (w, v) =ju6u9uQ VWVV

E() = 5 a3 (w,v) jwxvx
ap1l- 0.5 ( )2

Wp) =p12A 0.5 a(w,v) = yVy

e~A) 65 jWY2

.5

9(p) A a7 (w,v) - wxvxa 12 - p, fw (C.2)
12 - 0.5

®2(Al) AlAl-05 a8 (wv) -jw vy

a 6.5 jwxvx

7l() = 2 a(w, v)A2 -t - 0.5 a W V

E)'(p) /pi - 0.5 a8WV V

e80(p) =Al2 1 2 Al a(wv) -- Wy Vy

Linear5 foo 7 Q

E)9) 1 b6.5 a(wV) j v8as =2 2 % - p, f9

12 - pt 1E)10 (A) = 2 l(W, V) = yVya 6.5 jw

Linear form b(f; p): Qb = 3

abi(A) = 1 bl (w, v) = ri~ur4 v dF

E2(/_) = 0.5 b2 (w, v) = v dF (C.3)

E)() - = Al b3 (w, v) = v d'
b A)6.5 r 3
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