
A Design Tool Architecture for the Rapid Evaluation of Product

Design Tradeoffs in an Internet-based System Modeling Environment

by

Jacob Wronski

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering OF TECHNOLOGY

at the JUN 16 2005
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005 LIBRARIES

@ Massachusetts Institute of Technology, 2005. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part.

A uthor

Certified by.........................

Esther and

Accepted by

Chairman, Depai

Depar(e t of Mechanical Engineering
May 1, 2005

David R. Wallace
Harold E. Edgerton Associate Professor

Thesis Supervisor

Lallit Anand

rtment Committee on Graduate Students

BARKER

2

A Design Tool Architecture for the Rapid Evaluation of Product Design Tradeoffs in

an Internet-based System Modeling Environment

by

Jacob Wronski

Submitted to the Department of Mechanical Engineering
on May 1, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

This thesis presents a computer-aided design tool for the rapid evaluation of design tradeoffs in an

integrated product modeling environment. The goal of this work is to provide product development

organizations with better means of exploring product design spaces so as to identify promising de-

sign candidates early in the concept generation phase. Ultimately, such practices would streamline

the product development process.

The proposed design tool is made up of two key components: an optimization engine, and the Dis-

tributed Object-based Modeling Environment. This modeling environment is part of an ongoing

research initiative at the Computer-Aided Design Lab. The optimization engine consists of a multi-

objective evolutionary algorithm developed at the Ecole Polytechnique F6d6rale de Lausanne.

The first part of this thesis provides a comprehensive survey of all topics relevant to this work.

Traditional product development is discussed along with some of the challenges inherent in this

process. Integrated modeling tools are surveyed. Finally, a variety of optimization methods and

algorithms are discussed, along with a review of commercially available optimization packages.

The second part discusses the developed design tool and the implications of this work on traditional

product development. After a detailed description of the optimization algorithm, use of the design

tool is illustrated with a trivial design example. Enabled by this work, a new "target-driven" design

approach is introduced. In this approach, individuals select optimal tradeoffs between competing

design objectives and use them, as design targets, to configure the integrated product model so as

to achieve best-overall product performance. Validation of this design approach is done through

the design of a hybrid PV-diesel energy system for two different applications. It is shown that

the design tool effectively evaluates design tradeoffs and allows for the rapid derivation of optimal

design alternatives.

Thesis Supervisor: David R. Wallace
Title: Esther and Harold E. Edgerton Associate Professor

3

4

Acknowledgments

First, I would like to thank The Center for Innovation in Product Development who, through their

generosity, have made this research possible. Also, I would like to acknowledge the Ford Motor

Company for providing context for this work.

I would especially like to thank my advisor, Professor David Wallace. First, for his generosity in

welcoming me to his lab and for the wonderful opportunities this experience has provided me with.

Second, for his approachability and willingness to help with ideas, which made significant contri-

butions to this work. Thank you.

To all my lab-mates. I would like to express my sincerest gratitude to Elaine Yang for her help

in implementing some of the ideas discussed in this work. Also, to: Amy Banzaert, Qing Cao,

Twiggy Chan, lason Chatzakis, Charles Dumont, Bill Fienup, Renu Fondeker, Sangmok Kim, Barry

Kudrowitz, Wei Mao, Sittha Sukkasi, and Keith Thoresz. You were all a valuable part of my educa-

tion at MIT.

To all my friends outside of my lab, for all the wonderful distractions you've provided me with.

Especially, I would like to thank Joanna Gyory. For your kindness, encouragement ... and for mak-

ing sure that I ate well while working on this paper. I am truly blessed and honoured to have your

friendship.

Finally, I would like to thank my family. To my parents, Andrzej and Maria Wronski, none of this

would have ever been possible, had it not been for your love, encouragment and support! I will

forever be grateful for everything you've done for me. And to my brother and sister, for your great

sense of humour, which has kept me sane through some of the more difficult times.

5

6

Contents

Abstract 3

Acknowledgements 5

Contents 9

List of Figures 12

List of Tables 13

1 Introduction 15

1.1 Motivation . 15

1.2 About this Thesis . 16

1.2.1 Chapter Two: Background . 16

1.2.2 Chapter Three: The Queuing Multi-Objective Optimizer 17

1.2.3 Chapter Four: Target-Driven Design . 17

1.2.4 Chapter Five: Application . 18

2 Background 19

2.1 Introduction . 19

2.2 Product Development . 19

2.2.1 Terminology . 20

2.2.2 The Product Development Process . 20

2.2.3 Challenges Facing Product Development Organizations 22

2.3 Design Tools For Integrated Product Modeling . 24

2.3.1 Collaboration-Oriented Design Tools . 24

7

2.3.2 DOME (Distributed Object-based Modeling Environment) .

2.4 Optimization Methods and Algorithms

2.4.1 Definition of an Optimization Problem

2.4.2 Dynamic Programming Techniques

2.4.3 Linear Optimization Techniques

2.4.4 Non-Linear or Calculus-Based Techniques

2.4.5 Enumerative Techniques

2.4.6 Heuristic Techniques .

2.5 Multidisciplinary Optimization .

2.5.1 Formal MDO Methods .

2.5.2 Commercial Applications Providing MDO Services

2.6 Sum m ary .

3 The Queuing Multi-Objective Optimizer

3.1 Introduction

3.2 Criteria For Algorithm Selection

3.3 Design Features of the Queuing Multi-Objective Optimizer

3.4 The Queuing Multi-Objective Optimizer

3.4.1 Assignment of Parameter Values

3.4.2 Evaluation of Objective Functions

3.4.3 Grouping .

3.4.4 Ranking .

3.4.5 Parent Selection .

3.4.6 Thinning .

3.5 Parallelism in the Queuing Multi-Objective Optimizer

3.6 Sum m ary .

4 Target-Driven Design

4.1 Introduction.......

4.2 The Tube-Bundle Design Scenario

4.2.1 The "Heat Transfer Engineer" Expert

4.2.2 The "External Part Supplier" Expert

4.2.3 The Design Scenario .

8

26

27

27

29

30

31

33

33

41

41

44

45

47

47

47

48

50

50

52

52

54

55

56

56

57

59

59

60

60

60

61

4.3 Using the DOME-enabled Optimization Tool 63

4.3.1 Building an Optimization Model . 63

4.3.2 Publishing an Optimization Model on a DOME Server 69

4.3.3 Running Optimization Model Simulations 70

4.3.4 Evaluating Design Tradeoffs . 72

4.4 Flow of Information Between QMOO and DOME 75

4.4.1 The DOME Evaluator Object . 75

4.4.2 The DOME Monitor Object . 77

4.5 Implications of Target Driven Design for Product Development 78

4.6 Summary . 79

5 Application 83

5.1 Introduction . 83

5.2 Design of a Hybrid PV-Diesel Energy System . 84

5.2.1 Background . 84

5.2.2 Design Scenario Description . 85

5.2.3 Constituent Design Models . 85

5.2.4 Optimization of the Design Scenario . 87

5.2.5 Results . 89

5.2.6 Target-Driven Design Examples . 91

5.3 Summary . 100

6 Conclusion 103

6.1 Summary . 103

6.2 Future Work . 105

6.3 Final Words . 106

A Pseudo-Code for the Evaluator and Monitor Communication Objects 107

A. 1 The Evaluator Object . 108

A.2 The Monitor Object . 111

B Hybrid PV-Diesel Energy System Decision Variable Plots 113

9

10

List of Figures

2-1 The generic product development process. 20

2-2 A DOME-native volume simulation. 27

2-3 Subscription to a DOME-native volume simulation. 28

3-1 QMOO: Life of an individual. 51

3-2 QMOO: Exploring the full range of the POF. 54

3-3 QMOO: Preservation of "tail regions". 55

4-1 DOME-native cooling performance model. 61

4-2 EXCELTM-native tube fabrication cost model. 62

4-3 Subscribing to the cooling performance and tube fabrication cost models. 64

4-4 Integration of the cooling performance and tube fabrication cost models. 65

4-5 Graphical representation of the integration in the tube-bundle design scenario. . . . 66

4-6 Definition of design variables and design objectives. 67

4-7 Optimization tool configuration panel. 68

4-8 Optimization tool interfaces. 70

4-9 Optimization tool interfaces. 71

4-10 Tube-bundle design scenario Pareto fronts. 73

4-11 Selecting the target design objectives for the tube-bundle design scenario. 74

4-12 Flow of information between QMOO and DOME. 76

5-1 Integration of the individual models in the hybrid energy system design scenario. . 87

5-2 Configuration panel of the hybrid PV-diesel energy system optimization. 89

5-3 Graphical interface to the hybrid PV-diesel energy system optimization simulation. 91

5-4 The final population of the hybrid energy system design scenario in objective space:

net electricity cost vs. total CO2 emission . 92

11

5-5 The final population of the hybrid energy system design scenario in objective space:

net electricity production efficiency vs. net electricity cost 93

5-6 The final population of the hybrid energy system design scenario in objective space:

net electricity production efficiency vs. total CO2 emission 94

5-7 Individuals interacting with the hybrid energy system optimization service. 96

5-8 Using optimal tradeoffs as design targets for the design of a hybrid energy system

for a private resort application. 97

5-9 Using the net electricity cost vs. total CO2 emission optimal tradeoffs curve to

initially improve the design of a hybrid energy system for the governmental subsidy

program application. 99

5-10 Using the net electricity cost vs. electricity production efficiency optimal tradeoffs

curve to set the final design for the government subsidy program application. . . . 100

12

List of Tables

4.1 Description of models and expertise in the tube-bundle design scenario. 60

4.2 Contrast between the traditional engineering approach to concept development, and

the optimization tool-enabled approach. Concept development stages adopted from

Ulrich and Eppinger [72]. 80

5.1 Input values to the individual models in the hybrid PV-diesel energy system design

scenario, taken from [70]. 86

5.2 Independent design variables and their lower/upper limits. 88

5.3 Design objectives and how each is to be optimized. 88

5.4 Initial and final design of the hybrid energy system - optimized for the private island

resort application. Units for each respective parameter are given in Figure 5-3.

Improved design objectives are indicated in bold. 98

5.5 Initial and final design of the hybrid energy system - optimized for the government

subsidy program application. Units for each respective parameter are given in Fig-

ure 5-3. Improved design objectives are indicated in bold. 99

13

14

Chapter 1

Introduction

1.1 Motivation

Product development firms seek to produce better performing products while reducing the time-to-

market and costly design, build, test and refine cycles [77]. To achieve these objectives, various

design tools and strategies are employed to accurately define the most promising concepts early in

the design process. However, it has been observed that many computational tools are incapable of

adapting to the dynamic and evolving nature of most product development environments and thus,

the prediction of product performance early in the design process becomes a difficult task.

Organizations widely recognize the need for tools that facilitate the evaluation of integrated product

performance. Thorough exploration of design alternatives early in the concept development phase

reduces the likelihood that the development team will stumble on a superior design later on in the

development process or that a competitor will introduce a similar product with dramatically better

performance [72]. In practice, barriers such as system complexity and size, heterogeneous nature of

subsystem models, and accessibility to models or expertise due to logistical and proprietary issues,

greatly prohibit this approach [63]. Consequently, the evaluation of a single design candidate can

take up to months to complete.

The multi-disciplinary nature of most product development teams presents a second challenge in

product development, namely the management of design trade-offs in a way that maximizes the

success of the product. For example, an airplane can be made lighter, but doing so will probably

increase its manufacturing cost. Team members often approach such conflicts with a selfish attitude,

15

wishing to optimize the design objectives reflecting their own area of expertise. Clearly, this is not

an acceptable approach and a better method of negotiating design tradeoffs, so as to improve the

overall product performance, is needed.

To facilitate a better design approach, a design tool has been developed to rapidly evaluate and elu-

cidate optimal design tradeoffs in an integrated product system model. This design tool is built into

the Distributed Object-based Modeling Environment (DOME) and employs a heuristic optimization

algorithm called QMOO [46]. Using the integration capabilities of DOME, the evaluation time of

a single design candidate can be significantly reduced [77]. Furthermore, since the design tools

employs an evolutionary algorithm to explore the design space of the product, the search for new

product configurations is directed, where each new design candidate is "better" than its predeces-

sors.

This thesis introduces a new design approach enabled by the design tool developed in this work.

Members of a product development team can readily evaluate and obtain a graphical representation

of the optimal tradeoffs of any integrated product model in the DOME framework. Furthermore,

individuals can select a set of optimal design tradeoffs and use it to configure the integrated product

model. The optimal design tradeoffs become the design targets for the design objectives of interest

and the product system model seamlessly configures itself to satisfy these target values. "Target-

driven" design and its validation in the field of product development is the main focus of this thesis.

1.2 About this Thesis

1.2.1 Chapter Two: Background

This chapter presents background topics relevant to the design tool and methodologies introduced

in this work. First, the generic product development process is described and definitions of related

terminology are provided. Throughout this discussion, the author presents a number of challenges,

which product development organizations must overcome if they are to be successful. Next, a sur-

vey of existing integrated design tools is presented with emphasis on DOME. DOME is the design

framework for which the optimization tool, presented in this thesis, is developed. It was chosen

for its adaptability and flexible architecture, allowing design tools to be readily implemented in

its platform. Subsequently, various optimization methods and algorithms are reviewed to provide

16

background for the optimization engine employed by the design tool in this work. Discussed opti-

mization methods include: dynamic programming, linear optimization, calculus-based, enumerative

and heuristic search techniques. Finally, existing design tools with multi-disciplinary optimization

capabilities are discussed and compared to the tool developed in this work.

1.2.2 Chapter Three: The Queuing Multi-Objective Optimizer

Chapter 3 presents QMOO, a multi-objective, evolutionary algorithm developed by Leyland [46].

Initially, reasons for selecting QMOO as the optimization engine are presented. Next, the design

features of QMOO are discussed. QMOO is a robust, steady-state, parallel, multi-objective opti-

mizer, with an asynchronous architecture that makes it quite suitable for the computation environ-

ment of DOME. Following an overview of its design features, the algorithm itself is discussed in

detail. Topics discussed include: assignment of parameter values, evaluation of objective functions,

grouping, ranking, parent selection and thinning. Finally, design features of QMOO that allow it to

run optimization problems in parallel are reviewed.

1.2.3 Chapter Four: Target-Driven Design

This chapter introduces a more effective, target-driven, approach to product design. First, a trivial

design example of a tube-bundle heat exchanger is presented. Next, the optimization tool devel-

oped in this work is discussed in detail. Using the design example, the author illustrates how a

designer may use this tool to build an optimization model, publish it on a live Internet server, run

its underlying simulation and evaluate its results. Next, the communication interface between the

optimization engine, QMOO, and DOME is discussed. The DOME evaluator data object is respon-

sible for sending parameter values from QMOO to an integration model in DOME, and receiving

objective function values from the integration model so that they may be assigned to individuals

and managed by QMOO. The DOME monitor is responsible for passing information about the op-

timization solution to the designer running the simulation. Finally, implications of this work on

the traditional product development process are discussed. In short, the optimization tool enables

product development teams to effectively run a high number of "what-if" scenarios on a product

system model. Furthermore, it rapidly evaluates and elucidates design tradeoffs, allowing the team

to negotiate them in a way that is optimal with respect to the overall performance of the product.

17

1.2.4 Chapter Five: Application

The optimization tool has been applied to an engineering problem to validate target-driven design.

This problem has been developed and studied extensively by other researchers at the CADLab. In

this design scenario, the optimization tool was applied successfully and proved to be a valuable tool

when assessing the performance tradeoffs between different design configurations.

The problem was originally proposed by Sukkasi [70] as part of the Alternative Energy Design

Toolkit and deals with the design of a hybrid PV-diesel energy system. Such energy systems offer

an alternative source of electricity for remote locations far from established utility grids. The PV

array in the system can deliver clean electricity, but at a high capital cost. Alternatively, the diesel

engine delivers inexpensive electricity, but it also taxing on the environment. The optimization con-

sists of finding a number of design configurations, which produce electricity at minimum cost and

impact to the environment, and then evaluating the tradeoffs between different designs.

18

Chapter 2

Background

2.1 Introduction

To properly introduce the design analysis tool developed in this work, and its implications on the

traditional product development process, several relevant topics must first be discussed. Traditional

product development process and its inherent challenges will be presented. Integrated design tools,

including DOME, intended for better management and streamlining of the product development

process, will be explored. The discussion will then review the more theoretical topic of optimization

algorithms, to provide relevant background to the design analysis tool presented in later chapters.

Finally, multidisciplinary optimization tools, similar to the one developed in this work, will be

reviewed.

2.2 Product Development

This section will provide an in-depth understanding of the product development process. First, a

number of definitions, used throughout this work, will be presented. Next, a generic product devel-

opment process will be introduced. Finally, challenges encountered by design teams during product

development will be presented.

Chapter 4 will present a design tool, developed in this work, which empowers product development

teams to effectively overcome common problems (see §2.2.3) encountered in product development

projects.

19

2.2.1 Terminology

A product in this work refers to any engineered, discrete and physical object that can be sold by

an enterprise to its customers. Examples of products include kitchen appliances, sail boats, or

portable computers. Product development (or design) is the sequence of steps or activities, which

an enterprise employs to conceive, design, and commercialize a product [72]. Products are often

developed by multidisciplinary teams with unique areas of expertise reflecting the nature of the

product. They represent product development organizations and the present discussion will focus

on product development in this context.

2.2.2 The Product Development Process

Product development is the process of transforming a particular costumer need to a final product or

service that addresses that need [4]. It is an interdisciplinary activity requiring contributions from

all functions of an organization including design, manufacturing, and product marketing. Product

development is commonly viewed as an iterative design-build-test cycle driven by monetary and

time constraints imposed by project management on the development team. Many generic variants

of this process have been presented in literature: Ulrich and Eppinger [72], Hyman [38], Eggert [24],

Cagan and Vogel [9]. Figure 2-1 illustrates one example, namely the spiral product development

process, reproduced from Ulrich and Eppinger [72].

Plnig y De op et Syt vl Detail Design Ima .o. ..

Mission Concept System Spec Critical Design Production
Approval Review Review Review Approval

Figure 2-1: Process flow diagram for a generic product development process. Ulrich and Eppinger
[72] (p. 23).

Product development begins with project planning, an activity often referred to as phase zero since

it precedes project approval and launch of the actual product development process [72]. This phase

begins with an assessment of current technology, social trends, and economic trends for the purpose

of identifying product opportunities. The output of the planning phase is a mission statement, which

includes business goals, target-market for the product and anticipated challenges that will guide the

development effort.

20

The next phase, concept development, begins with the identification of customer needs. This task is

not trivial and a product developed without a good understanding of the customer will not succeed.

Customers often express their preferences by describing a solution concept or an implementation

approach for example, a customer might say, "I would like it to be electrically operated". A de-

signer must be able to filter through such user input and obtain a need statement that is expressed in

terms, independent of a particular technological solution [72]. One example of a successful product

addressing a set of user needs without any preconceived hypothesis about the technology to address

that need is the iMacrcomputer developed by AppleTM[9]. Designers and engineers understood

that consumers were tired of the simple and dull gray desktop computers on the market. Making the

iMacTMcomputer transparent and translucent and introducing candy colours was an instant success.

For the first 139 days from its debut, an iMact sold at the rate of four a minute, every hour, of every

day'.

Customer needs are generally expressed in the "language of the customer" [72]. While they do

provide knowledge about issues of interest to the customer, they provide little guidance about how

to design the actual product. Designers must effectively translate the customer needs into product

target specifications a precise description of what the product has to do. Target specifications are

used during the concept development phase to evaluate the relative quality of generated concepts.

The concept generation phase can be one of the most creative and rewarding activities for a prod-

uct development team. It involves a mix of creative problem solving, benchmarking of competitive

products, consulting with external experts and the systematic evaluation of various concepts through

physical prototypes or analytical models. Typically, a development team will generate hundreds of

concepts of which one will be selected for detailed design. The result of the concept development

phase is a revised and detailed list of final specifications of what the product must do.

Once a design concept has been selected and final product specifications are in place, detailed de-

sign takes place. At the system level, product architecture is defined and the product is fragmented

into its subsystems and components. The geometry, materials, and tolerances of all components

in the product are specified. Process plans for fabrication and assembly of the product are devel-

1"Yum./Apple iMac", Innovation, Fall, 1999, p.76.

21

oped. CAD tools are used frequently to describe product geometry. Design teams often approach

this phase with a "design for X" (DFX) methodology, where X may correspond to one of many

criteria, such as manufacturability, environment or robustness. This often leads to competing design

objectives. For example, designers often consider the cost of manufacturing a product versus its

environmental impact. Such design tradeoffs are not trivial to resolve.

The testing and refinement phase involves the construction and evaluation of multiple pre-production

versions of the product. Alpha and Beta prototypes of the final design are often employed at this

stage to answer questions about performance and reliability.

Production ramp-up is the final phase of the product development process. At this stage, the product

is entirely fabricated using the intended production system, work force is trained, and any remain-

ing problems in the production process are quickly resolved. The product development process ends

when the product is launched to the consumer market.

For a more comprehensive discussion of product development, the reader is referred to Ulrich and

Eppinger [72].

2.2.3 Challenges Facing Product Development Organizations

Development of successful products is a difficult task. The size and scope of most product devel-

opment projects creates a number of challenges for collaborative engineering in a multidisciplinary

environment. This section will focus on two specific ones: (i) creating an integrated product model,

and (ii) resolving design tradeoffs during product development.

The need to develop integrated models to predict the performance of a product during development

is widely recognized. Computer simulations would allow design teams to run a high number of

relatively inexpensive, "what-if" scenarios to determine the final product configuration. Thorough

exploration of design alternatives early in the concept development phase will reduce the likeli-

hood that the team will stumble upon a superior concept later in the development process or that a

competitor will introduce a product with dramatically better performance [72]. In practice, compre-

hensive product system modeling has been deemed infeasible [72]. Cutkosky et al. [20] identified a

number of specific issues: (i) the size, complexity, and evolving nature of a product prohibits a com-

22

plete product model definition, (ii) members of a design team often work with different tools, data

management systems and representations, and (iii) logistical and proprietary issues make global

data unavailable. As a result, a single design scenario takes weeks, sometimes months, to evaluate

[77]. Product development teams often employ design-of-experiments (DOE) techniques [49, 30],

which can minimize the number of experiments required to explore the design space of the product.2

While this approach is effective, tools that allow development teams to evaluate the product system

performance remain highly attractive. Cagan and Vogel [9] summarize this point succinctly:

If used correctly, [integrated product development] will significantly reduce down-

stream development problems in parts integration, manufacturing quality, and missed

opportunities in style and features of the product.

Rigid product integration defines the interactions between participants and tools globally in a top-

down manner. Such an approach has a significant downside, as it slows the organization's ability to

change rapidly and be innovative, because the cost and complexity of redefining the global interac-

tion model is prohibitive [77]. A variety of integrated design tools will be discussed in §2.3.

Product development organizations often encounter design tradeoffs - inverse relationships between

two specifications that are inherent in the selected product concept. For example, a design team

working on a bicycle frame charged with the task of decreasing its mass is able to accomplish this

task, but only with a more expensive material, such as aluminum instead of steel. Team members

often approach such conflicts with a biased view, wishing to optimize design objectives that reflect

their own area of expertise. Resolving such tradeoffs in a multidisciplinary development project is

the most difficult part [72].

Existing integrated product modeling environments will be presented next. Chapter 4 will present a

design tool developed for the DOME simulation environment, which facilitates the rapid elucidation

and evaluation of optimal design tradeoffs, thus addressing the design challenges presented in this

discussion.

2DOE methods stem from robust design theory. For a more detailed discussion on this subject, the reader is referred

to Phadke [59].

23

2.3 Design Tools For Integrated Product Modeling

Integrated product development environments offer a streamlined development process, accelerat-

ing the time to market and improving product quality [63]. These driving forces are encouraging

research teams and commercial enterprises to develop engineering tools that can facilitate this de-

velopment approach. This section will provide an overview of existing environments that allow

for design collaboration and knowledge sharing in a multidisciplinary product development orga-

nization. Greater detail will be afforded to the Distributed Object-based Modeling Environment

(DOME), since the design tool introduced in this work was developed for this environment.

2.3.1 Collaboration-Oriented Design Tools

The SHARE project [71] is aimed to support design engineers or teams by allowing them to gather,

organize, re-access and communicate design information over computer networks to establish a

"shared understanding" of the design and development process. NEXT-LINK [58] incorporate

agents to coordinate design decisions affected by specifications and constraints. Case and Lu [12]

developed a software tool to support collaborative engineering design by treating interactions as

a process of discourse. The model captures design commitments as opinions subject to review

by other designers. Agents are also used to identify conflicts between designers and to negotiate

their resolution. The Electronic Design Notebook, developed by Lewis and Singh [45], is an in-

teractive electronic document, which maintains the look and feel of an engineering document to

provide an integrated user interface for computer programs, design studies, planning documents,

and databases. Bliznakov et al. [5] propose a design information system, which allows design-

ers in a large virtual organization to indicate the status of tasks assigned to each designer or team

so that other designers can follow their progress. This distributed information system is managed

by a central database. Hardwick and Spooner [34] propose an information infrastructure archi-

tecture that enhances collaboration between design and manufacturing firms. This collaboration

tool uses the WWW for information sharing and the STEP standard [52] for product modeling.

N-dim is a computer-based collaborative design environment for capturing, organizing and sharing

data [78]. It allows participants to define information types that capture the relation between data

or models. A computer-based design system DICE, developed by Sriram and Logcher [69], pro-

vides a shared workspace where multiple designers work in separate engineering disciplines. DICE

(Distributed and Integrated Environment for Computer-aided Engineering) implements an object-

24

oriented databases management system with a global control mechanism to resolve coordination

and communication problems in product development projects. The design rationale provided dur-

ing the product development process is also used for resolving design conflicts [57, 56]. Xiaojuan

et al. [79] are developing iShare, an Internet-based middle-ware and collaboration technology with

applications in integrated modeling.

A number of design tools, which facilitate integrated product development, are available commer-

cially. FIPER®(The Federated Intelligent Product Environment), developed by Engineous Soft-

wareTM, provides organizations with a design infrastructure for process integration and enterprise-

wide product optimization 3. FIPER@implements a central control system, which manages work-

flow, job dispatching and execution, and interactions with third-party applications. Although the

models may be distributed, they are not federated. ModelCenter@is a system integration pack-

age developed by Phoenix IntegrationTM. 4 It implements a central "scheduler", which determines

the model execution process based on a user pre-defined workflow. AML@, developed by Tech-

noSoftTM, is an object-oriented, knowledge-based engineering modeling framework. AML imple-

ments a demand-driven system solving mechanism. Given a new model state, only those models

that are dependent on the change will be re-solved so that a new, consistent, system state may be

obtained. This ensures the efficient use of computational resources. CO@, developed by Oculus

TechnologiesTM, is an ad-hoc, peer-to-peer system integration tool5 . CO integrates creates dynamic

links between third party applications and propagates parameter value changes across those links.

CO does not support any type of solving mechanism.

The different systems discussed here employ a wide variety of architectures, data models and com-

munications technologies, but all rely on some form of a consolidated, explicit description of the

complete integrated system model. This approach may work well for small systems, but becomes a

formidable task for large-scale product development projects. The following section will discuss an

integrated product-modeling environment that employs an emergent system integration approach,

inspired by the World Wide Web.

3 www.engineous.com
4 www.phoenix-int.com
5 www.oculustech.com

25

2.3.2 DOME (Distributed Object-based Modeling Environment)

The DOME integrated modeling environment was developed at the MIT Computer-Aided Design

Laboratory (CADLab) to facilitate the creation of design models that can rapidly predict integrated

product performance [53, 54]. The DOME framework asserts that multidisciplinary problems can

be decomposed into modular sub-problems [63]. Modularity distributes knowledge and responsi-

bility among members of a product development team [72]. Individuals create design models based

on their area of expertise, and make them accessible over the Internet. Individuals can also define

relationships between their simulation services and the services of other simulations available on the

Internet. The resultant service exchange network becomes an emergent, distributed product system

model capable of predicting the integrated behaviour of a design alternative [63].

Simulation services are models that represent elements of a complete product system. The un-

derlying simulation can be a third-party application, such as Excel@, Matlab@, CATIA@, or a

DOME-native mathematical model. Participants that build a model (see Figure 2-2), define para-

metric inputs, which drive the simulation, and parametric outputs, which are the simulation results.

Input-output relationships, and other implementation details about the simulation are hidden from

the subscribing user, respecting proprietary issues in a product development project.

Model owners are able to define and publish parametrically operable interfaces to their simulation

on the Internet. Outside users are then able to interact with the underlying simulation through this

interface. Figure 2-3 illustrates the procedure that an outside user would follow to interact with the

volume service simulation described above.

To build integrated simulations, participants define relationships between design models in a declar-

ative fashion, which does not require knowledge about the global view of the system integration or

the sequence in which the relationships should be executed. Each simulation generates and provides

a causal map in its interface that relates inputs to outputs. This causal map has enough information

to understand parameter changes caused by external sources, and is able to coordinate solving of

the interface in an efficient manner. This distributed solving architecture can be referred to as fed-

erated - models inter-operate at a global level, but maintain control at a local level. This ensures

that computational efficiency is not sacrificed and the ability to detect degenerate causal structures

is not lost in the emergent simulation environment. Most of all, this approach does not require the

definition of a central workflow model to coordinate the solving of all relationships in the integrated

26

* 0Dome Model: Volume Calculation Service

name Vokme Calculation Semce r log

Length 2. 10000000 centimeter Length
Width 1 20000000 centimeter Width

Height 0400000000 centineter Height
Volume 1.00800000 cubic centimeter Volume

nput - Otwt Relation Volume =LeNgtheidteHeight

Length 2.0000d00 centiviter Length
Width 1.20000000 centimeter Width
Height 0.400000od centimeter Height

'7 utpUtS

Volume 100W80000 cubic centimeter Volume

Figure 2-2: DOME-native model. This trivial service simulation calculates part volume.

model. The integrated system is able to emerge and evolve rapidly [76].

2.4 Optimization Methods and Algorithms

Numerical optimization techniques, when carefully applied, are an effective tool in engineering

design. Many approaches to optimization exist, and can be grouped into five, broad categories:

(i) dynamic programming, (ii) linear, (iii) non-linear or calculus-based, (iv) enumerative, and (v)

heuristic 6 [31]. A comparative study will reveal that each method is unique, and suitable for a

particular set of design problems. This section will review each optimization technique with fo-

cus on its application to real-world engineering problems. However, before proceeding with this

discussion, a formal definition of an optimization problem will be presented.

2.4.1 Definition of an Optimization Problem

A definition of a single-objective optimization problem (SOP) is provided by Vanderplaats [74].

6Goldberg identified the fifth optimization method as random. We will however focus on heuristic search techniques,
a subset of random search techniques.

27

pft~wor DOME

fdesaent s e td tp Seri oi e vuleallotiono sevc.

(tat

DOME interface that the design participant must use to interact with the underlying simulation.

In mathematical terms, a SOP minimizes the objective function f(x) where x is an n-

dimensional vector x = (x1 ,. . xn) from some design space S.

Or, in general,

minimize: f(x) (2.1)

hx)=0x, k=1,...,m (2.4)

Equations (2.2) and (2.3) define the inequality and equality constraints, respectively.

Equation (2.4) defines the lower and upper limits of the search space for each decision

variable.

28

Therefore, given a design vector with n decision variables, one would like to find a set of values,

within the specified range, such that they yield the minimum possible value off(x), while satisfying

all constraints imposed on the problem.

Van Veldhuizen and Lamont [73] provide a similar definition for a multi-objective optimization

problem (MOP) - the difference being that the goal is to minimize, not one objective function, but

an n-dimensional vector of objectives F(x). In a MOP, the desired result is a set of solutions, which

illustrate the optimal tradeoffs between design objectives.

2.4.2 Dynamic Programming Techniques

This method is most useful in design problems configured in stages, and whose design can be char-

acterized as a sequence of design decisions made in each stage. The technique can be applied to any

optimum design problem for a system with n stages that requires a design decision at each stage i.

The design decision at each stage transforms the condition, or state, of the system entering stage i

into an outgoing state that serves as the entering state for the next stage i + 1.

The first step in formulating a dynamic programming problem is establishing a design objective

(the system state) to be optimized. Although generally not applicable to multi-objective design

problems, weighting could be applied to transform a multi-objective problem into a single-objective

problem based on some measure of importance. Decision variables must also be selected. Finally,

constraints are applied to the decision variables and the optimization problem is fully defined.

The optimization analysis involves stepping forward (or backward) through the system, and at each

stage in the system calculating the design objective for all available decision variables. Design con-

figuration that results in the best performance, as measured by the objective function, is selected at

each stage and becomes the input for the subsequent stage. This process is repeated until the final

stage of the design system is reached.

Dynamic programming is a useful engineering tool in operations research the study of optimal

resource allocation. One example of its application is the planning of transmission line routes in the

power industry, where one is often concerned with minimizing the cost of transmission lines.

29

2.4.3 Linear Optimization Techniques

This widely studied class of optimization problems involves inequality constraints, which consist of

both an objective function U and a set of constraints that are linear functions of the design variables.

Mathematical formulation of the linear programming problem is taken from Hyman [38]:

Minimize (or maximize) the linear objective function U(x) where x is an n-dimensional

decisions variable vector x=(x1,...,xn) from some universe S, subject to m constraints.

Or, in general,

n

minimize: U(x) = kizi (2.5)
i=1

n

subject to: aijxi < rj, j = ,.. (2.6)
i=1

xi > 0 (2.7)

In the above expression, aij and ki are constants presumed to have known values in any

particular problem. Also, the standard form of linear programming problems requires

that the design variables be non-negative, as noted by equation (2.7).

7In linear programming problems, the optimal solutions occur at the "vertices" of a design space

Therefore, instead of looking at an infinite number of possible solutions, one only has to evaluate

the objective function at the corner points of the design space to discover the optimum. This has

great significance on the development of an efficient linear programming algorithm.

The Simplex algorithm is a popular linear programming approach. To begin the analysis, an ap-

propriate corner point is selected and the objective function is evaluated at that point. Next, the

algorithm moves along a pre-determined edge of the polygon until a vertex is reached, and the ob-

jective function is evaluated at that point. The most efficient strategy is to move along an edge for

which the objective function increases most rapidly. The algorithm continues to move from vertex

to vertex until a maximum (or minimum) for the objective function is found.

Linear programming is limited to single-objective, linear engineering problems, for which the de-

sign objective and constraints can be written in mathematical form. The optimal allocation of man-

7For a formal proof, the reader is referred to Gottfried and Weisman [33]

30

ufacturing resources in a plant is one application. However, most engineering problems of interest

are not linear, and even fewer can be formulated in mathematical terms. Algorithms, such as the

Sequential Linear Programming (SLP) technique developed by Kelley [40], use Taylor-series expan-

sion to approximate non-linear problems as piece-wise linear. This approach requires an advanced

understanding of the design space of the engineering problem at hand, and should only be used with

caution. For a more detailed description of linear programming algorithms, the reader is referred to

[15].

2.4.4 Non-Linear or Calculus-Based Techniques

Calculus-based techniques use derivatives of the objective function, to obtain the optimal system

state8 . They can be subdivided into two main classes: (i) direct methods, and (ii) indirect methods

[31].

Direct methods are applied to unconstrained optimization problems. They seek local optima by

hopping on the objective function and moving in the direction related to the local gradient. This

is simply the notion of hill climbing - to find the local best, climb the function in the steepest

direction. Calculus dictates that one can expect to find the minimum or maximum of a function

at a point where the gradient of the function is null. The earliest gradient algorithm known is the

steepest descent method developed by Cauchy [13] in 1847. This simple algorithm is written as

follows:

Data: x0 c R"

Step 0: set i= 0

Step 1: compute the search direction

hi = -Vf (Xi)

stop if Vf (xi) = 0

Step 2: compute the step size A

Step 3: set

Xi+1=xi +Ahi

replace i by i+1 and go to Step 1

8Many practical parameter spaces have little respect for the notion of a derivative and the smoothness this implies -
immediately the shortcomings of this method present themselves.

31

Determining the appropriate step size is perhaps the most difficult task. A small step size will result

in a laborious method in reaching the function minimum, while a large step size will result in the

problem minimum being missed completely. For this reason, the steepest descent method will sel-

dom converge to a design space minimum. Newtons method [51] uses first and second derivatives to

construct a quadratic approximation of an objective function at a specific point. This approximated

function is then minimized, and the decision variables at the minimum value are used as the starting

point for the next iteration. This method performs better than the steepest gradient method if the

initial point is chosen close to the optimal value. The conjugate gradient method, first proposed

by Hestenes [35] in 1952, is an improvement of the steepest descent method. This method uses a

combination of the local gradient, and the gradient of the previous iteration, to determine the new

direction of motion. Other, more powerful, calculus-based methods for unconstrained optimization

are known as Quasi-Newton Methods. The DFP algorithm, developed by Davidon [21] and Fletcher

and Powell [28], and the BFGS algorithm, developed independently by Broyden [7], Fletcher [27],

Goldfarb [32] and Shanno [64] are both quasi-Newton methods. Chong and Zak [15], provide a

detailed review of both algorithms.

Indirect methods are suitable for constrained optimization problems. They seek local optima by

solving the usually nonlinear set of equations resulting from setting the gradient of the objective

function equal to zero [31]. In constrained optimization problems, an optimum design variable vec-

tor minimizes the objective function while satisfying all design constraints. Penalty and barrier

methods treat the optimization problem as unconstrained, and assign penalties to the objective func-

tion to limit constraint violations. Carrol and Johnson [11] introduced an interesting penalty function

method, which has been developed extensively by Fiacco and McCormick [26] into the Sequential

Unconstrained Minimization Technique (SUMT). Sequential Quadratic Programming (SQP) [55]

was developed in the 1970s and is considered to be the most efficient gradient-based optimization

technique. The method involves creating a quadratic approximation to the Lagrange-Newton for-

mulation of the optimization problem and a linear approximation to the problem constraints. These

equations are then solved using quadratic programming techniques until some termination criteria

are reached. Method of Feasible Directions is a calculus-based optimization technique proposed

Vanderplaats [74] in 1984. The optimization begins with a point in the feasible design region (no

active or violated constraints), and moves in the direction of steepest descent. Conjugate direction

or variable metric techniques are used on the objective function until a constraint is encountered.

32

At the constraint boundary, the algorithm must find a usable-feasible direction, where a usable di-

rection is one that reduces the objective and a feasible direction is one that either follows or moves

inside a constraint boundary. This requires that a system of equations be solved numerically until

some termination criteria is reached. Numerous other constrained optimization algorithms exist, in-

cluding the Augment Lagrange Multiplier (ALM), the Genralized Reduced Gradient (GRG) and the

Mixed Integer Programming methods, as examples. Vanderplaats [74] describes these techniques in

detail.

Calculus-based optimization techniques have two inherent shortcomings. First, they are local in

scope - the optima they seek are the best in a neighbourhood of the current point. For example, in

a multimodal design space, using a gradient-based method and starting the search closer to a lower

peak will cause the algorithm to completely miss the higher peak. Second, calculus-based methods

depend on the existence of derivatives. Practical design spaces are fraught with discontinuities

and vast multimodal, noisy search spaces. As a result, calculus-based techniques are insufficiently

robust and require a high level of understanding of the design problem to which they are applied.

Use of such techniques should be left to the most experienced designers.

2.4.5 Enumerative Techniques

Enumerative optimization techniques are fairly straightforward. Given a finite search space, or a

discretized infinite search space, the search algorithm evaluates the objective function at every point

in the space, one at a time. Although this type of "trial-and-error" search is common in engineering

practice, many practical design spaces are simply too large making this method inefficient. How-

ever, given infinite time, the enumerative search technique is guaranteed to locate the optimum

points in the types of design spaces discussed above.

2.4.6 Heuristic Techniques

Heuristic optimization methods employ "self-educating" techniques to effectively explore the pa-

rameter design space. They are self-educating because with subsequent iterations, they select design

vector configurations, which result in the improved performance of the objective function. In the

long run, they can be expected to do no better than enumerative schemes, but they far more efficient

and practical to implement. However, in practice the best configuration of a given problem instance

is seldom required. More realistically, an acceptable configuration should be produced with rea-

33

sonably limited computer resources. This section will present two of the most popular heuristic

search techniques: (i) simulated annealing, and (ii) evolutionary algorithms. The evolutionary al-

gorithms technique can be implemented with population-based algorithms. Unlike gradient-based

search techniques, which present a single optimum design point, population-based algorithms can

present the decision maker with a set of optimal designs, which illustrate the interesting regions of

the design model.

Simulated Annealing

Krikpatrick et al. [44] introduced the concept of optimization by simulated annealing in 1983. De-

rived from statistical mechanics, it is a heuristic technique that mathematically mirrors the cooling

of a material to a state of minimum energy. Jilla and de Weck [39] use the following analogy to

describe this process:

If a liquid material (i.e. metal) cools and anneals too quickly, then the material will

solidify into a sub-optimal configuration. If the liquid material cools slowly, the crys-

tals within the material will solidify optimally into a state of minimum energy (i.e.

ground state). This ground state corresponds to the minimum of the cost function in an

optimization problem.

Returning to optimization, simulated annealing is the process of varying a set of independent design

parameters to minimize the energy state (or value) of a given objective function, subject to some

annealing schedule (or termination criterion). Krikpatrick et al. [44] discuss four key elements that a

formulated problem must exhibit in order to be suitable for optimization using simulated annealing.

First, one must define a vector of independent parameters, which will represent the state (or config-

uration) of the design inside the parameter space. Second, a random generator must be implemented

to explore the neighbourhoods around existing individuals. New design points are generated by per-

turbing existing individuals in one or more of the given design parameters - also called degrees of

freedom. The number of design parameters allowed to undergo random perturbations must be care-

fully considered. If the entire design vector is allowed to change, the simulated annealing search

degenerates to a random search. The other extreme - only one parameter is allowed to change,

will result in constrictive neighbourhoods, lack of diversity and limited exploration of the decision

variable space. The third element that must be defined is a quantitative objective function. If the

34

problem of interest requires the optimization of multiple design objectives, weighting factors can

be used to aggregate all of the objectives into a single objective function. The fourth element to be

defined is an annealing schedule, or termination criterion. A common cooling schedule is to reduce

the system temperature by a constant fraction with every generation. For example, if the system

begins with a temperature of 1000, and continues at a reduction rate of 95% with each perturbation,

the algorithm will run for approximately 100 generations. The system temperature also plays an im-

portant role in the preservation of diversity during the optimization process. This will be discussed

shortly.

The simulated annealing algorithm is presented below:

Step 1: choose a random individual (Fi), select the initial system temperature and outline

the cooling (i.e. annealing) schedule

Step 2: evaluate the system energy (i.e. objective function) of the optimization model

E(Fi)

Step 3: perturb the current individual in one or more degrees of freedom to obtain a neigh-

bouring individual (Fi+ 1)

Step 4: evaluate the system energy of the new individual E(Pi+1)

Step 5: if E(Fi+1) < E('i), Fi+1 is the new current solution

Step 6: if E(Fi+1) > E(Fi), then accept Fri- as the new current solution with a proba-

bility e(-/T) where A = E(Fi+1) - E(Fi)

Step 7: reduce the system temperature according to the cooling schedule

Step 8: terminate the algorithm when the termination criterion has been reached

The reason for accepting an inferior solution (step 6) is to prevent the algorithm from getting trapped

in a local optimum. The probability of accepting an inferior solution is dependent on two parame-

ters: (i) the system energy difference (A) between two neighbours, and (ii) the system temperature.

Therefore, the probability of moving to a worse solution with the hope of escaping a local minimum

decreases over time as the system cools. Finally, there are many items one may tailor within the al-

gorithm to affect its performance, including initial system temperature, cooling schedule, and DOF

within a neighbourhood.

Evolutionary Algorithms

35

Evolutionary algorithms (EAs) are optimization techniques inspired by organic evolution observed

amongst living organisms. In evolution, genetic variability from generation to generation signif-

icantly affects the probability that a given individual will survive and produce offspring. Natural

selection, the mechanism of evolution, exerts survival pressure on the population and ensures that

only individuals with favourable genotypes are able to reproduce successfully [60]. This process

is commonly referred to as survival of the fittest. Likewise, in an EA, a population of individuals

is evolved toward the solution of an optimization problem by undergoing a number of operations,

which produce new individuals and remove existing ones [46].

An individual is a possible solution to an optimization problem. It contains a design vector x, which

represents where the individual lies in the decision variable space, and also information about its

degree of optimality, usually assessed via the design objective function.

The population evolves towards better solutions by creating progeny superior in fitness to their par-

ents, and removing individuals from the population found to be lacking.

New individuals are added to the population by crossover operations. Crossover involves selecting

two (or more) individuals from a population and creating a child (or children) that in some way

resembles its parents, much like sexual reproduction. A good implementation of an EA will use a

selection scheme with bias towards better parts of the population, much like a breeder of roses will

choose individuals best fitting his or her goals, to be parents for the next generation. Mutation is an

important operator, which takes an individual and modifies some of its parameters, much like the

natural mutation of the genetic code of an organism. In an EA, the role of mutation is to ensure

preservation of diversity - the spread of the population in the search space. Mutation operators,

however, must be used cautiously. Too little mutation will lead to loss of diversity in the popula-

tion resulting in the algorithm converging quickly to a narrow region of the design space, and thus

getting trapped in some local optima. Too much mutation will decrease the population convergence

rate, thus causing the population to explore a wide region of the design space at the expense of

computational time.

Removal of individuals from the population is dependent on the structure of the EA. In generational

EAs, the population is processed a generation at a time, where a number of children equal to the size

36

of the population is generated, and used to entirely replace the existing population. In elitist EAs,

a few of the fittest individuals in the population are retained from generation to generation, acting

as a marker of the best performance of the algorithm thus far. These individuals also contribute to

the overall convergence of the algorithm by having more children. In steady-state EAs, individuals

are added and removed from the population as necessary and very often the criteria for removal of

points results in some measure of elitism.

The basic overview of EAs thus complete, the discussion will now focus on each step of the algo-

rithm in greater detail. In its most general form, an EA will follow the following steps:

Step 1: define a decision variable encoding - decoding scheme

Step 2: define a "fitness" function F

Step 3: initialize a population of individuals in some search space S

Step 4: generate a number of new individuals and add them to the population

Step 5: remove a number of individuals from the population, which are inferior in terms of

the fitness function F

Step 6: continue until some termination criterion is reached

Encoding is used extensively in one family of EAs, namely genetic algorithms. It involves 'coding'

all of the individual's decision variables into a different alphabetical representation, usually binary.

The crossover and mutation operators then work directly on this new representation. Thus a mu-

tation operator would choose whether or not to change a particular bit, and a crossover operator

would choose individual bits from each parent. Decoding is the reverse process of encoding, where

decision variables are translated back to their natural form. Binary encoding of decision variables

presents a number of issues. First, the number of bits used for the representation of a real variable

must be carefully chosen so as to ensure sufficient resolution of the problem's optima. Secondly,

representation of integers is difficult in problems where the feasible range is not a power of 2, and

requires that the integers be over specified (i.e. using more bits than is necessary). Another draw-

back of encoding variables to bits is apparent in the mutation operator. Since mutation works at the

bit level, a good parent with a value of 1 (a binary encoding of 000001) is as likely to produce a

child with a value of 33 (100001) as 0 (000000), although common-sense assumptions about the

location of optima would suggest that 0 is a stronger individual than 33. A further problem is that

it is extremely difficult to get from a value of 31 (011111) to a value of 32 (100000) by mutation

37

since too many bits have to be changed. Alander and Lampinen [1] compared a 'real-coded' GA

with a 'binary-coded' one on an optimization of an internal combustion engine valve cam. They

conclude that while the two algorithms showed non difference in terms of function evaluations re-

quired for convergence, the time needed to encode and decode the binary representation, doubled

the elapsed time for an optimization, from three to six hours. Furthermore, it has been observed

that the closer the genotype representation matches the respective phenotype, the more effective

the EA is at traversing the decision variable space. The algorithm developed by Leyland [46], and

implemented in this work, uses real-value representation of all decision variables.

The next step in the implementation of an EA is to define a "fitness" function for the optimiza-

tion problem. The fitness function will be evaluated for each individual to determine how well it

performs in the population. Fitness may be a direct mapping to the individual's objective function

value, or it may be modified in some way so that selection not only prefers individuals with low ob-

jective function values, but also preserves other characteristics of the population such as diversity.

Since EAs do not have an explicit method for handling optimization constraints, the fitness function

may be assigned this task by penalizing individuals that violate constraints, thus making them less

desirable.

Once the fitness function has been defined, the algorithm is ready to start optimizing. An initial

population of individuals is created, and their fitness scores are calculated. After all processing (i.e.

ranking, sorting) has been performed on the current population, individuals are selected from the

population for mating. A number of parent selection techniques are available for this task. In the

roulette wheel selection method [31], each solution in a population has a slice of a roulette wheel.

Better solutions have proportionately larger sections of the wheel and therefore there is a greater

chance they will be selected. If one wants to individuals to become parents, the wheel is spun twice

[14]. Restricted tournament selection picks two or more individuals from a population and uses

a tournament strategy to select the strongest amongst them [37]. Other, less stochastic, methods

include selection by rank and selection by fitness. In selection by rank, a member of a population

with a rank k will have a probability of being selected proportional to its rank,

Pk C 1 (2.8)

In selection by fitness, an individual will have a probability of becoming a parent equal to its fitness

38

normalized over the sum of the fitness of the entire population,

P k oc(2.9)

While non-stochastic methods provide faster convergence to a solution, they have the inherent dis-

advantage of not preserving diversity and therefore have no guarantee that the final solution is in

fact optimum. Finally, elitism, although not really a strategy, is where the best individuals in the

population become parents of the next generation.

Crossover operators are used on selected parents to create new individuals. They can operate on

their real-value or binary-encoded representation. Many operators have been created for EAs, some

of which will now be discussed. Single point crossover is one of the oldest methods and operates on

individuals in their binary representation [31]. It involves uniformly selecting an integer position k

along a binary string (the individual) at random between] and the string length less one, [1, 1 - 1].

Two new strings (or individuals) are created by swapping all the characters between positions k+1

and 1 inclusively. Path relinking, a binary operator, creates a sequence of children between a set

of parents P1 and P2, where the first child is a neighbour of P1 and each subsequent child is a

neighbour of the previous child, with the last child also being a neighbour of parent P2. In real vari-

able uniform crossover [2], a "child" may take a real value for a particular parameter from either

of its parents. Blend crossover, first proposed by Eschelman and Schaffer [25], takes two parents

and creates a new individual in a hypercube surrounding the two parents. Linear crossover is a real

variable operator where the child is placed on a line between two parents. Back [2] named this oper-

ator 'generalized intermediate combination' and provides a detailed description. Simulated binary

crossover operates on real variables and gives similar results to those that would be obtained if the

parents were binary encoded and binary single crossover was performed. Deb and Agrawal [23]

discuss this operator in detail. Once a new individual has been created, it can join the population

immediately or it can undergo mutation on its variables prior to joining.

The purpose of the mutation operator is to preserve population diversity. Too little mutation leads

to a loss in population diversity and the increased risk of the optimization solution getting trapped

in some local optima. While frequent use of the mutation operator results in slower convergence of

the population to an optimum solution, since it undermines the selection of fittest individuals. In

binary encoded variable representations, mutation involves the flipping of a single bit from 0 to 1

39

or 1 to 0. Mutation rate, Pm, is used to express the probability that an individual will undergo mu-

tation. A number of traditional global and local mutation operators exist, and the reader is referred

to Goldberg [31] for a detailed discussion of such operators. QMOO, the algorithm implemented

in this work, uses three different mutation operators on a variable's real-value representation. The

reader is referred to Leyland [46] for a detailed description of each one. Having one (or more) of its

decision variables undergo mutation, an individual is then ready to join the main population.

Individuals with some measure of their fitness are added to the main population, while individuals

found to be inferior are removed from the population. The process of creating new individuals,

evaluating their fitness, mating them, and adding or removing them from the main population is

repeated many times until some termination criteria is reached. During this process, the population

naturally evolves to a set of optimum solutions to the design problem at hand. Popular criteria used

in algorithm termination are: (i) some critical number of objective function evaluations, (ii) mean

deviation in performance of individuals in the population falls below some specified threshold (i.e.

genetic diversity in population is low), (iii) stagnation - marginal improvements in fitness of indi-

viduals from one generation to the next, and (iv) some particular solution in the design space has

been reached.

EAs have a number of advantages over other optimization techniques. First, EAs are extremely

robust and rely little on the existence of derivatives in the design space. This makes them especially

suitable for real-world engineering problems, which have design spaces fraught with discontinuities

and multiple nodes. Second, EAs are stochastic in nature and require little information about the

problem they are optimizing. This makes EAs suitable for a wide range of optimization problems.

Finally, EAs such as QMOO, the algorithm implemented in this thesis, can be designed to handle

optimization problems with multiple design objectives. For a complete review of multi-objective

evolutionary algorithms, the reader is referred to Coello Coello [16; 17] and Deb [22].

One disadvantage of EAs is that they can be computationally intensive, especially when used on

multi-objective optimization problems with a large population size.

Introduction of the fundamentals of EAs is now complete. In literature, EAs are further subdi-

vided into three families: (i) Evolution Strategies, (ii) Evolution Programming, and (iii) Genetic

40

Algorithms. Evolution Strategies (ES) were developed by Schwefel [62] in 1964-1965. Evolution

Programming (EP) was developed by Fogel [29] in the early 1960's as a method of designing state

machines for predicting sequences of symbols. Genetic Algorithms (GA) are the last, and probably

best known, of the three families of EAs. The modern concept of the GA is based on work done by

Holland [36] in the early 1960's, and later by Goldberg [31]. For a comprehensive review of each

family, the reader is referred to the respective authors.

2.5 Multidisciplinary Optimization

Large-scale product development projects present a set of complex, often conflicting, design re-

quirements, which require the use of formal and structured approaches to design analysis and opti-

mization [43]. Simulation based design involving integration tools, and multidisciplinary optimiza-

tion (MDO) procedures in conjunction with well established CAD and CAE tools provide for such

structured approached to product design. System integration tools were discussed in §2.3, while the

present discussion will focus on the topic of MDO.

Sobieszczanski-Sobieski [65] provides a formal definition of MDO:

Multidisciplinary Design Optimization (MDO) embodies a set of methodologies which

provide a means of coordinating efforts and possibly conflicting recommendations of

various disciplinary design teams with well-established analytical tools and expertise.

MDO involves multiple disciplines, engineering, business and program management,

often with multiple, competing objectives. These disciplines may just be analysis

codes, which contain a body of physical principles, or, in addition, they may posses

some intelligent decision-making capabilities.

This section will present a number of formal MDO methods. Also, existing commercial MDO

packages will be reviewed, which provide services similar to the optimization tool developed in this

work.

2.5.1 Formal MDO Methods

Formal MDO methods are intended for synthesis of generic, multidisciplinary engineering sys-

tems, such as an aircraft or an automotive vehicle, whose design is governed by multiple disciplines

41

[67, 3]. The key concept behind these MDO methods is a decomposition of the design task into

subtasks performed independently in each of the modules, and a system-level or coordination task

giving rise to a two-level optimization [42]. Several MDO methods will now be discussed.

All-in-One Method

The all-in-one method, also referred to as Multidisciplinary Feasibility (MDF) in Cramer et al. [19],

is the most common approach to MDO problems. In this method, a vector of design variables x is

provided to the coupled system of disciplines and a complete multidisciplinary analysis is performed

with the value of x to obtain the system output variable U(x), which is then used in evaluating the

objective function F(x, U(x)) and the constraints g(x, U(x)).

The optimization problem becomes:

minimize: F(x, U(x))

subject to: gi(x, U(x)) < 0,

xi Xi < X',

(2.10)

(2.11)

(2.12)

Individual Discipline Feasible (IDF) Method

The IDF method allows the optimizer to drive individual discipline models to multidisciplinary

optimality by controlling the interdisciplinary coupling variables. Variables that represent commu-

nication, or coupling, between different design models are treated as optimization variables and are

in fact indistinguishable from design variables from the point of view of an optimizer solving a

single design model.

Using the IDF formulation, the optimization problem becomes:

minimize: F(Xd, U(X))

subject to: gi(Xd, U(X)) < 0,

C(X) = X,

X < Xi < Xi,

w.r.t. X (Xd, X,)

where p 0

k 1. n

42

(2.13)

(2.14)

(2.15)

(2.16)

i = 1, . .. , 1, x E S

In the above formulation, Xd is a set of design variables and X, is the set of interdisciplinary

coupling variables. C is referred to as the interdisciplinary constraint. For a detailed description of

this MDO method the reader is referred to Cramer et al. [19].

Collaborative Optimization (CO)

The CO formulation is intended for solving MDO problems with loose couplings between analyses

with individually large dimensions. It is a two-level hierarchical scheme for MDO, with the top

level being the system optimizer that optimizes on the multidisciplinary variables while minimizing

the system design objective. There are also optimizers at the individual discipline level, and they

attempt to minimize, in a least square sense, the discrepancy between individual discipline design

variables, and their system level values, while minimizing the design function of that subsystem.

For a detailed discussion of this method, the reader is referred to Braun and Kroo [6].

Concurrent Sub Space Optimization (CSSO)

CSSO, introduced by Sobieszcznski-Sobieski [68], is a non-hierarchic system optimization algo-

rithm that optimizes decomposed subspaces concurrently, followed by a coordination procedure

for directing system convergence and resolving subspace conflicts. This corresponds to common

design practice where individual design teams optimize their local component designs, while inter-

disciplinary compromises are made at the system integration level.

For a detailed discussion of this method, the reader is referred to the original work.

Bi-Level Integrated System Synthesis (BLISS)

The BLISS method, introduced by Sobieszczanski-Sobieski et al. [66], uses a gradient-guided path

to reach the improved system design, alternating between the set of disciplinary problems and the

system level design space. The general system optimization problem is decomposed into a set of

local optimization dealing with a large number of local design variables and a system level op-

timization dealing with a relatively small number of global variables. Solution to a system level

43

problem is obtained using either (i) the optimum sensitivity derivatives of the local variables with

respect to the system level design variables and the Lagrange multipliers of the constraints obtained

at the solution of the disciplinary optimizations, or (ii) a response surface constructed using either

the system analysis solutions or the subsystem optimum solutions.

A detailed description of this method is included in the reference mentioned above.

2.5.2 Commercial Applications Providing MDO Services

All engineered and manufactured systems, such as automotive vehicles or aircrafts, experience var-

ious interactions between the different components in the system. Taking advantage of these inter-

actions is the mark of a good design, but understanding them is a difficult task. Advances in high

performance computing, have made MDO methods popular engineering tools used for this task.

Today, a number of independent software vendors, provide system integration tools with MDO

problem solving capabilities. This section will present several, commercially available, MDO pack-

ages9 .

iSightTM

iSightTM, developed by Engineous SoftwareTMIO, is a comprehensive design integration tool offer-

ing an extensive list of optimization techniques and algorithms. It uses a procedural workflow to

integrate design models, to express what solving needs to be performed, and in what order [10]. The

problem solving mechanism is a centralized controller, which dispatches work items in some pre-

determined order. iSightTMoffers a variety of deterministic and stochastic optimization algorithms.

It can also be used as a plugin to other third party applications, such as ExcelTMor MatlabTM.

ModelCenterTM

ModelCenterTM, developed by Pheonix IntegrationTM il, is a system integration tool with MDO

capabilities. Models from third party applications communicate with each other through soft-

9A complete list of existing MDO products can be found at: http://www.sgi.com/industries/manufacturing/mdo/

'0 Company website: http://www.engineous.com/index.htm
"Company website: http://www.phoenix-int.com/

44

ware wrappers, which convert model inputs and outputs into a standard format for the Model-

CenterTMintegration environment. The ModelCenterTM"Scheduler" serves as a central controller,

which determines the execution process based on some pre-defined workflow [10]. ModelCen-

terTMsupports a variety of optimization algorithms.

Adaptive Modeling Language (AML) TM

AML is a knowledge-based engineering modeling framework developed by TechnosoftTM1 2 . Key

features of AML include dependancy tracking, demand-driven calculations, run-time model modifi-

cation and collaborative engineering [75]. The demand-driven calculation approach dictates that for

a given change in some variable, only calculations dependent on that parameter will be performed,

but the entire model will not be re-solved [10]. This is an effective approach when the models are

large and take a long time to compute.

AMOptTMis a suite of tools for performing optimization and probabilistic design studies within

the AML application. AMOptTMincludes a variety of deterministic and stochastic optimization

algorithms, including: (i) multi-objective genetic algorithms, (ii) sequential quadratic programming

(SQP), and the (iii) Nelder-Mead simplex method. AMOpt TMcan also perform DOE, Monte Carlo

simulations and analyses using the response surface methodology (RSM).

2.6 Summary

Product development is the process of transforming a particular costumer need to a final product

or service that addresses that need. It is a multidisciplinary activity requiring coordination from

all functions of an organization. The size and scope of most product development projects poses a

number of challenges, which make this a difficult task. Two specific challenges have been identi-

fied in this work: (i) the ability to create an integrated product model, and (ii) the ability to resolve

design tradeoffs during product development.

To address the first challenge, research teams and commercial enterprises often employ commer-

cial software packages that allow for some level of integrated product modeling. If successful,

45

12Company website: http://www.technosoft.com/

such tools offer a streamlined development process, accelerating the time to market and improving

product quality. A number of product integration tools have been discussed in this chapter, in-

cluding tools for data sharing, task management, collaborative engineering and conflict resolution.

Although the integration tools employ a wide variety of architectures, data models and communica-

tion technologies; they all rely on some form of a consolidated, explicit description of the complete

integrated system model. DOME, an integrated modeling environment developed at the MIT CAD-

Lab, does not require an explicit system definition of a central workflow model the solving of all

relationships in the integrated system model. Distributed models inter-operate at a global level, but

maintain control at a local level. This architecture allows the system to emerge and evolve rapidly.

Numerical optimization techniques can be an effective tool in resolving conflicting design objec-

tives during product development. Several optimization techniques were presented in this section,

including dynamic programming, linear optimization, calculus-based, enumerative and heuristic.

Discussion of heuristic algorithms focused on two types: simulated annealing and evolutionary.

The latter was discussed in greater detail, since the algorithm implemented in this work is evolu-

tionary.

MDO frameworks extend numerical optimization theory to provide a structured approach to design

analysis and optimization. They empower designers to better understand complex, often conflict-

ing, design requirements so that optimal design tradeoffs can be made. Many approaches to MDO

have been developed and some have been discussed in this section. With advances in high per-

formance computing, many independent software vendors are developing MDO packages capable

of successfully evaluating complex engineering systems. Several commercial MDO packages have

been reviewed in this section.

The generic product development process and various system integration environments have now

been introduced. Also, numerical optimization and its implications on multidisciplinary design

havef been discussed. The next chapter will present QMOO, a multi-objective evolutionary algo-

rithm, developed by Leyland [46] and employed in the target-driven design tool developed in this

work.

46

Chapter 3

The Queuing Multi-Objective Optimizer

3.1 Introduction

The queuing multi-objective optimizer (QMOO) was developed by Leyland [46], at the Laboratoire

dEnergetique Industrielle at the Ecole Polytechnique Federale De Lausanne. Initially developed for

optimizing energy system problems, QMOO was employed to develop the target-driven design tool

because it best suited the DOME computational environment. This section will describe QMOO

in detail. First, the criteria that were considered in selecting an optimization algorithm will be pre-

sented. Next, important design features of QMOO will be summarized, which have had a profound

influence on the algorithms design. The discussion will then extend to describe the QMOO algo-

rithm and its approach to problem optimization. Finally, the topic of parallelism in QMOO will be

introduced.

3.2 Criteria For Algorithm Selection

To effectively optimize a DOME-enabled system model of any product, the optimization algorithm

should account for and be able to handle the following scenarios:

- Since designers often use non-trivial CAE tools (ex. FEA) to assess the performance of a

product, the optimization algorithm must be able to handle non-linear and discontinuous sys-

tem models. Discontinuities in the optimal surface present serious problems for conventional

optimization techniques, such as gradient-based searches. As a result, a heuristic optimization

algorithm was preferred.

47

" Given that a designer will most likely measure the performance of a product design based

on more than one design objective, the optimization algorithm must be able to handle multi-

objective problems.

" Engineers often make use of complicated non-linear models that take minutes, sometimes

hours of computation to solve. Given that the optimization algorithm will encounter objective

functions that will take a long time to evaluate, the algorithm should be designed with an

architecture that lends itself to parallelism. Parallelism will be discussed in later chapters.

The QMOO algorithm was selected for the target-driven design tool because it satisfied all of the

criteria mentioned above. Furthermore, the algorithm was tested for convergence to the Pareto-

Optimal Front (POF), and it was found to perform better than existing algorithms [46]. QMOOs

rapid and robust convergence can be attributed to its strong elitism and a number of innovative

features, such as tail preservation and the evolutionary operator choice mechanism. These and other

features of the QMOO algorithm will be described in the following section. For a detailed discussion

of QMOOs performance, the test approach and test problems, the reader is referred to Chapter 5 of

Leyland [46].

3.3 Design Features of the Queuing Multi-Objective Optimizer

This section will discuss a number of important design features that have had large influence on the

QMOO algorithm described in the next section. Implementation of these design features was driven

by the goal of creating an optimization algorithm that can provide rapid and robust convergence to

as many local optima as possible [46].

Important design features of QMOO are:

* Steady state. QMOO is a steady-state evolutionary algorithm. This means that the population

created by this algorithm has no generational structure. Individuals are added to the popula-

tion in a process that is completely separate from their removal and there is no formal control

of population size.

" Elitism. QMOO is an extremely elitist algorithm. This means that it has a single population,

which contains only the best individuals found so far. The advantage of this approach is that

48

the algorithm converges rapidly, however the disadvantage is that it poses problems for the

preservation of diversity and could limit the algorithms ability to explore the design space by

converging on some local optima. This diversity preservation problem lead to some interest-

ing developments to ensure that the algorithm remained elitist. The most significant of these

efforts is the dividing of the population into groups.

Grouping. QMOO preserves diversity by dividing the population into groups in the parameter

design space, and then letting each group evolve independently. Groups do not compete, but

occasionally individuals can be created by breeding between groups. Grouping of the pop-

ulation from time to time can be a time consuming task and this must be allowed for in the

QMOO algorithm. The author argues that QMOO was designed for optimization of problems,

where the objective function can take seconds, sometimes minutes, to solve. Therefore, any

complex analysis of the population that can reduce the number of objective function evalua-

tions needed for convergence is probably worthwhile.

- Multi-Objective Optimization. QMOO implements Pareto-based multi-objective optimiza-

tion. This requires the use of computationally expensive population ranking algorithms to

determine which individuals are non-dominated, and therefore Pareto-optimal. QMOO uses

non-dominated sorting.

* Asynchronous architecture. QMOO is implements a parallel architecture that is asynchronous.

Leyland [46] describes two problems with synchronous parallel algorithms. First, all the com-

puters in a network stop at the end of each generation and wait for the master computer to

create the next generation. In a multi-objective problem, this implies that a considerable

amount of time will be spent ranking the population. Second, if the objective function takes a

variable amount of time to evaluator or all the computers do no run at the same speed, much

time can be wasted at the end of each generation by waiting. The asynchronous approach

eliminates both of these problems.

All of these design features lead to the development of a unique optimization algorithm, suitable for

the DOME target-driven design tool. The following section will describe the QMOO algorithm in

more detail. This discussion is a summary of a detailed description presented in Leyland [46].

49

3.4 The Queuing Multi-Objective Optimizer

QMOO is an evolutionary algorithm with a queue-based architecture. This means that the algo-

rithm treats members of a population as independent entities that undergo a number of processes

before they can become a solution. The queue-based architecture implies that the algorithm does not

operate on the entire population in generations, but stores individuals in queues for each process.

Individuals are taken off the queue and processed as needed. The processes that a member of a

population must go through, or the life of an individual, are broadly illustrated in Figure 3-1. In the

original work, the author discusses many variants of QMOO; the variant discussed here includes

complex population analyses techniques such as grouping and ranking. This variant is intended for

optimization problems where the objective function takes seconds, sometimes minutes, to solve thus

making these complex population analysis techniques justifiable.

Each process in Figure 3-1 will now be discussed.

3.4.1 Assignment of Parameter Values

The main loop in QMOO creates an individual and stores it in a queue where it waits to be assigned.

When the assignment process is ready, it takes the individual off the queue and assigns it parameter

values. If the algorithm is in its initialization phase, parameter values are chosen at random within

the allowed ranges. If initialization of the algorithm is complete, parameter values are assigned by

crossover and mutation operators.

The assignment algorithm is detailed in Leyland [46], and will not be described here. However,

two features of the assignment algorithm are worth mentioning here. Firstly, individuals are chosen

for assignment by selecting the group first, and then the individual inside it. This ensures that all

groups converge at the same rate, independent of the population size inside any given group. Sec-

ondly, after an individual has been assigned its parameter values, a check is made whether it has

the same parameter values as any of its parents. Implementing a duplicate detection mechanism is

worthwhile for two reasons: (i) in the case where evaluation of an objective function takes a long

time, it saves valuable processor time and (ii) it prevents the loss of diversity by not allowing two (or

more) individuals to occupy the same point in the decision variable space. In QMOO, two identical

points will not exist in the main population at the same time.

50

The 'ma
individua

Paramete
ind ividual

put on

If grouping of individuals
depends on objctve function

val ues, the individuals are
queued for evaluation.

The indivdual's objective function
values are evaluated.

Grouping

Evaluation

Creation
in process' creates a new

I and puts it on a queue to
be assigned.

Assignment
r values are assigned to the

The individual can then be
a queue for evaluation or

grouping.

OR

j
If grouping of individuals
does not depend on
objective function values,
the individuals are queued
for grouping.

Grouping

The individual is ass ned to a group
and evolves in is group.

lEvauation

Ranking
The individual is ranked and becomes

a 'full member' of the population.

The individual is removed if found to
be lacking.

The individual can become a parent
of oher individuals.

Figure 3-1: The different processes that an individual must go through before it can join the "main

population".

51

QMOO implements a unique evolutionary process to aid in the selection of operators used in assign-

ing parameter values to newly born individuals. This process, named evolutionary operator choice

(EOC), allows the choice of combination or mutation operator to evolve with the population. The

premise of EOC is that if individuals are generating successful children using a particular operator,

those children should continue to use that operator. The success of a child is measured by how long

that child remains in the population, thus operators producing non-dominated children will be pre-

ferred by the EOC. One has to be cautious when using this approach. Using an operator that causes

a population to converge rapidly can lead to diversity problems and limited exploration of the POF.

Leyland [46] describes EOC in detail.

Effective mutation operators are of utmost importance in maintaining population diversity. The

mutation operators in QMOO were designed to work with EOC. There are three operators in total:

(i) normal mutation, (ii) uniform mutation and (iii) global mutation. The operators are described in

detail in Leyland [46].

3.4.2 Evaluation of Objective Functions

The QMOO algorithm requires little information about the objective function it is evaluating. As

far as QMOO is concerned, the objective function is a complete black box. Decision variable values

are passed into it, and objective function values return back to QMOO. Evaluation of the objective

function values is trivial. Furthermore, since the individuals needing objective function evaluation

are stored in a queue, the algorithm can easily be configured to run optimization function evaluations

in parallel.

3.4.3 Grouping

The purpose of using grouping in QMOO is two-fold: (i) to find multiple local optima in the model

design space, and (ii) to effectively preserve population diversity. A designer would like to find

as many local optima as possible because they represent the most interesting regions of the model.

Preservation of diversity is critical in an elitist algorithm, such as QMOO, because it may lead to a

more robust convergence resulting in a better approximation of the POE.

52

In QMOO, the population is grouped in decision variable or design objective space. To preserve

diversity, the groups evolve as (almost) entirely separate populations, without competing with each

other. However, groups can interbreed and the population is re-analyzed frequently to re-assign

individuals to different groups, merge groups, or create new ones.

The grouping algorithm gives groups, not individuals, equal opportunity to breed. This is to en-

sure that all of them can converge at a similar rate. If individuals were to be given equals chances to

breed, it is likely that at some point one group would become larger than the others, evolving quicker

and, due to its larger population, breeding more often. Once the non-dominated set of individuals

in this large group reaches the POF, fewer individuals in this group will be added in each generation

only because they manage to squeeze between two other, top-ranked points in the group. This pro-

cess will add computationally expensive resolution to the non-dominated set where it is not needed.

Concurrently, smaller groups will receive less computational resources to converge towards some

other optima, which would give the designer much more valuable information about the model. For

this reason, the grouping algorithm in QMOO gives the same number of breeding opportunities to

each group.

Individuals are grouped into clusters using fuzzy c-means clustering (FCM). This technique at-

tempts to minimize the distance from each individual to the center of its cluster. It does this in two

ways: (i) by moving the centers of the clusters and (ii) by moving points from cluster to cluster.

The clustering is fuzzy because points are not assigned exclusively to a specific cluster, but instead

have a percentage of membership in each cluster. For example, a point lying in the middle of some

cluster may be 95% member of that cluster, and a few percent member of every other cluster. The

author chose to use FCM in the QMOO algorithm because it is quick and performs well. For a more

detailed description of FCM the reader is referred to Leyland [46].

Grouping of a population leads to the preservation of its diversity, or the preservation of individuals

that are not themselves optimal, but contain valuable information about the design objective space.

This leads to a slower solution, but improves the likelihood that the population will discover more

regions of the model that would be of interest to the designer. Grouping should only be used in

situations where it improves the robustness of a solution, i.e. leads to the discovery of as many

interesting regions of the model design space as possible. If this is not the case, grouping will only

53

result in a slow solution to the optimization problem and should not be used.

3.4.4 Ranking

Ranking is used to determine which individuals in a given population are the fittest. In QMOO, the

ranking process is responsible for ranking members of a single group and requires only a list of ob-

jective function values for each individual in that group. The ranking algorithm, and the particular

dominance matrix used to sort individuals, is described in detail by Leyland [46]. This section will

focus on one particular process managed by the ranking algorithm, namely, tail preservation.

Tail preservation is a technique used to explore single POFs. When the population is entirely non-

dominated (i.e. has a high number of first-rank individuals), it is difficult for inferior (i.e. second,

third, -ranked) individuals to enter the final population. Given that the non-dominated set will likely

converge to a section of the POF, as in Figure 3-2, some second-ranked individuals will fall in the

tail region of the non-dominated set. These points represent valuable information about how to find

the remaining parts of the POE. Tail preservation identifies these important individuals and keeps

them in the population to explore the full span of the POF

0

0

0
0 0

0

000
o 0

%b 0 0

Figure 3-2: Dominated individuals (un-filled points) contain valuable information about the full
range of the POE.

Tail boxes are defined at the ends of the NDS (Figure 3-3) and have 5% of its linear dimensions.

54

Individuals that are not in the first rank are examined to see if they fall into the tail regions. Typically,

the tail box region contains one or two individuals, which is not so large that time is wasted on sub-

optimal points. The tail regions are ranked in exactly the same way as the non-dominated set,

except that for each region, one of the objective directions has been reversed. For example, for the

box on the lower right, the fittest individuals would have a minimum value on the vertical axis and

a maximum value on the horizontal axis. These nested optimization problems results in a robust

population convergence that covers more of the POF

0

0 0

0 0 0
40 0

.0 0 0

Figure 3-3: Preservation of "tail regions". Individuals in the boxes at the ends of the NDSS are
preserved, and ranked preferring "left and up" (left box) and "right and down" (right box) [46].

QMOO currently supports tail preservation for two objectives only. In two-objective space, the tail

regions can be easily defined with boxes. Extending this to optimization problems with more than

two objectives presents some complications as tail regions become awkward to define.

3.4.5 Parent Selection

QMOO implements a parent selection method that is based on the rank of an individual in the cur-

rent group. Higher ranked parents are preferred, but this can be turned off completely using a tuning

parameter. According to the author, this method was chosen for its versatility, rather than any theo-

retical reason, and will be discussed below.

55

When the population contains several ranks of individuals, the proportion of each rank in the pop-

ulation and the cumulative probability of an individual being in rank n or better are calculated. If

no preference to rank is desired, a random number is chosen from a uniform distribution between

0 and 1, the corresponding rank is chosen and a random individual is chosen from that rank. If the

random number is raised to a power greater than 1 before choosing the rank, parent preference can

be controlled by the exponent.

3.4.6 Thinning

QMOO is an elitist algorithm and will therefore spend much of its time with an entirely non-

dominated population. When the algorithm reaches this phase, ranking of individuals can no longer

be used to provide selection pressure and the size of the group (and population) can grow unchecked.

To ensure that the algorithm can still perform well, some of the non-dominated individuals from the

group must be removed (i.e., the group must be thinned out). Individuals best suited for thinning,

are those that offer little information about the form of the POF (i.e., individuals in crowded regions

of the NDS) or individuals that are far from the POF.

Two thinning techniques were developed in QMOO and both maintain selection pressure in the

population, and provide even coverage of the POF. The first method, dominated volume thinning,

removes individuals that add the least to the volume dominated by the NDS. The concept of non-

dominated volume was introduced by Zitzler [80] and is a measure of the performance of an al-

gorithm the larger the volume dominated by the NDS generated by the algorithm, the better the

algorithm. The second method, quadratic thinning, chooses a subset of the NDS and fits a least-

squares quadratic through this subset. Individuals dominated by the quadratic become candidates

for removal. The choice of the subset over which to interpolate and of which individuals dominated

by the quadratic to remove are made such that the group, or population provides an even coverage

of the POF Dominated volume thinning and quadratic thinning are discussed in detail in Leyland

[46].

3.5 Parallelism in the Queuing Multi-Objective Optimizer

The queue-based algorithmic structure of QMOO makes its parallelism quite flexible. Instead of an

individual having its objective function evaluated immediately after it has been assigned its decision

56

variables, the individual is put on a queue of individuals waiting to be evaluated. Any number of

available slave computers can pick an individual off the end of a queue, evaluate it, and return the

individual, which now has an objective function value, back to the master computer. This is the

flexible queue-based approach to parallelization in QMOO.

Running an optimization in parallel fashion over a network of computers requires that the algorithm

be able to handle a number of possible complications, such as network latency, computers of dif-

ferent speeds or crashing of simulations. The parallel architecture in QMOO attempts to alleviate

these potential problems with the following approach:

- Network latency. Each slave processor keeps its own queue of individuals to be evaluated.

This is to ensure that while an individual is being transferred, the processor can being the next

individual in its queue.

- Shutting down slave computers. The master computer checks to that the slave computers are

returning individuals passed to them. If the slave computer is not responding, it assumes that

the slave computer has been shut off and the individuals waiting to be evaluated are passed to

other processors.

" Computer crashes. If the individual is passed to a slave computer more than three times and

never returns with the objective function evaluated, the master assumes that this individual is

causing the slave to crash and the individual is marked as infeasible.

Experiments with parallelism in QMOO, performed by Leyland [46], showed that solving large

problems using this approach reduced the elapsed time by a factor of about four on a network of

six computers. The author also experimented with parallelizing ranking and grouping, however it

was noted that due to high network latency this had very little effect on the performance of the

algorithm. The author proposes that dedicating a computer to perform each specific task could

remedy this problem. However, this was not experimented with.

3.6 Summary

QMOO is a multi-objective optimizer and is the optimization engine of the DOME-enabled target-

driven design tool. Its efficient, queue-based design and suitability for design objectives that take a

57

long time to evaluate, fits well with the DOME computational environment.

Early in the development of the target-driven design tool, a number of optimization algorithm re-

quirements were identified. The algorithm must be able to optimize non-linear, even discontinuous,

system models. The algorithm must be a multi-objective optimizer empowering designers to eluci-

date and evaluate design tradeoffs. Finally, given that in large-scale system models design objectives

can take a long time to evaluate, the optimization algorithm should support parallelization. QMOO,

the algorithm selected for this work, satisfies all of the above requirements.

QMOO is a steady state, multi-objective, evolutionary optimizer developed at LENI for optimizing

energy problems. QMOO is also an extremely elitist algorithm, which means that it has a single,

non-generational, population that contains only the best individuals found so far. The advantage

of this approach is rapid convergence. However, having only the best individuals in the population

leads to problems with diversity preservation. Two techniques have been developed to overcome

this obstacle. The first technique, clustering of the population into groups, is intended to provide

robust convergence to multiple local optima. The second mechanism, tail preservation, is meant to

improve the exploration of single Pareto-optimal frontiers. Finally, QMOO uses a unique operator,

termed the Evolutionary Operator Choice (EOC), for creating new individuals in the problem. EOC

means that the best operator for a given problem will be used without any input or tuning from the

user.

The queue-based architecture of QMOO makes it quite flexible towards parallelism. QMOOs asyn-

chronous parallel architecture results in an efficient use of computational resources, when delegating

objective function evaluations to slave computers across a network. Finally, the algorithm design

accounts for a number of potentially problematic scenarios: (i) network latency, (ii) shutting down

of slave computers, and (iii) computer crashes.

The introduction of the QMOO algorithm thus complete, the discussion will now proceed to intro-

duce the DOME-enabled optimization tool that makes use of it. The following chapter will also

discuss how this design tool empowers decision makers to practice a target-driven design approach.

58

Chapter 4

Target-Driven Design

4.1 Introduction

This chapter will describe the DOME-enabled target-driven design tool, developed in this work,

which empowers designers to practice an efficient, target-driven engineering design approach. The

target-driven design tool is essentially an optimization tool and combines the seamless integration

capabilities of DOME with evolutionary optimization techniques, discussed in Chapter 3, to rapidly

explore the design space of a product system model and to present the decision maker with an initial

set of design candidates, or points on the Pareto-optimal frontier, that best satisfy the specified de-

sign objectives. The decision maker can then pick a point on the Pareto-optimal frontier and set the

state of the entire integrated product model to reflect the optimal target configuration of the design

objectives under examination. This process is illustrated in Figure 4-11.

The discussion in this chapter will begin by introducing a trivial design example, the tube-bundle

design scenario. Next, this design scenario will be used to demonstrate the use of the optimization

tool. Subsequently, the inner workings of the optimization tool will be explored focusing on the

communication mechanism between DOME and the optimization engine discussed in Chapter 3.

Finally, the implications of the optimization tool on the generic engineering design process will be

discussed.

59

4.2 The Tube-Bundle Design Scenario

The design scenario is an in-house heat-transfer engineer collaborating with an external parts sup-

plier to determine the optimal tube geometry for a tube-bundle heat exchanger. The engineer is

considering two competing design objectives: (i) cooling performance and (ii) cost of fabricating

the tube. Since the two objectives are competing, it is impossible to improve the cooling perfor-

mance of the tube without making it more expensive to fabricate. Scenario participants and their

service models are summarized in Table 4.1.

Design Expert Service Model Modeling Software

Heat-Transfer Engineer -Modifies geometric properties DOME-native model
-Selects tubing material
-Sets temperature conditions
-Calculates cooling performance

External Part Supplier -Modifies geometric properties EXCELTMspreadsheet
-Selects tubing material
-Calculates cost of tube fabrication

Table 4.1: Description of models and expertise in the tube-bundle design scenario.

4.2.1 The "Heat Transfer Engineer" Expert

The heat-transfer engineer is an expert at modeling cooling performance of heat exchanger compo-

nents. For this scenario, heat transfer in the tube is modeled using Fouriers Law assuming steady,

one-dimensional conduction [48]. Figure 4-1 shows a screen image of the DOME-native model

created by the engineer for this purpose. The owner of this model allows individuals, subscribing

to this heat transfer analysis through the model interface shown in Figure 4-1, to vary the geomet-

ric dimensions and material properties of the tube, and the operating temperature conditions. The

output of the model to the interface is the amount of heat conducted through the tube.

4.2.2 The "External Part Supplier" Expert

The external part supplier provides material and fabrication cost services for tubing components.

Figure 4-2 shows a screen image of an EXCELTMspreadsheet model created for this purpose. The

60

* 9 Dome Model: Cooling Performance Calculation

tune Ca-song Par omneCeaic ato

- V

SRadius Outer 8.000 r mi meer
SRaIs Inner 2 00000000 fealBinetr

Th5 as Csinductstvc50000000 watt per mter pe.
L9 nth 0.250000000 meter
Inside Tomsperature 50 evin
Outside Tatpeature 323 Kelvin

5 Cskva Pedneanoasne 0 0 watt

- * Coning Peamoranea Caklaj HeatTransfea C2 14159Tneima..

RadieTOut s0CODDOW Minteter
Radius_ Inner 2.,0000OD militur
Th5 matCotdidtatly 105.000EXXI watt per MMter Pe

Laath 0.25QDDOW aeter

iside, Temperaure 350 Kelvin

Ouns deTenperatne 323 Keign

Outputs
SHoatTranisie 458 9001077 Wat

P5ckin VoPea ne 50.2654400 cuic c lnlmeter

* TubeV sC n Voim -3.14159'(Radis_aOuur"2_

RdsasOuer 8.00000000 mriesiatar

R"dUs~inhm 2.0000"00 mimtar
Langth 0.250000000 Meter
SOu. aatsa

IVooume 50,2654400 crbccentimater

(a)

Figure 4-1: (a) DOME-native model for cooling performance calculations in cylindrical tubes, and
(b) a DOME custom graphical user interface used to interact with the model.

model requires geometry inputs and material specifications to calculate the total tube fabrication

cost. The back-end cost equation is formulated such that, for the interval considered, the cost of

fabricating the tube is inversely proportional to its wall thickness. This does not have any theoretical

or practical basis, it only satisfies the condition that the two design objectives, cooling performance

and fabrication cost, are competing against each other.

4.2.3 The Design Scenario

The heat transfer engineer must collaborate with the external part supplier to optimize the overall

tube design, balancing cooling performance and cost of fabrication. This requires some form of

61

manageteg

RadaOases r an Radis Outer

Riade slInna a d n

Langth, and Lenth

nsnda Taseme ars

Interface Coolttg Perfonnetace Caltlation, for Cooing Performance Calculation

Ha& Treaf. Simulbton Foe Cytinddcal Tubg

T" a a ttface lo a mod sretal an, wish calotates t"e heat sans4r n a cyisaidal obe. This twfae ,Cwreauiaes
wtl a DOWE-naatae modul T"s model asouames tatu iseat transfr ns-Cc pranrily by sternly "aeaaaflsadseat atoeat.
Tha user of tis sitrfae a gie permsstitAn t. nodly t.-e tuba gacasary. Osae amd otstde mkoeato, asd materatl

Note' taeats tranrsfo, t& f0aoaratb mten of omaf ta Tckssesn

adot tanamn

Outer Radius Inner Radius G atms Peata
her Rass 2 0

G(uttRadts 50 mm

LQ".gm. C 25m

Lsength20I ! egu M I!aelspeta
0,nSet atera Ty 53161. aatWgtsPtsted

TttemlsrasaastC nd 0 oaK

O Aswdi T)epal6 350 K

Oaaltsa Teaeatare 323

Het Trasfer 31312 W

(b)

TubingCostModelAs

- A * E

Thermal Fluid Management - Cost of
3

4
S Stsp 1 Select a heat exchanger component

- Step 1 - -

11 Sbap 2i Material selection for given heat exchanger component

12

14 Step 2 3 3161 tr-Hlg4 POistied
16

i1
is Tubio Specilifation

20 Inner Diameter 4.00 millimeter

21O uter Diameter .+ 0 -)illieter

2Z 0D Tolerance (+/-) 0.10 milmee
24 Max. psi @ 72F 3200.00 psi
24 Temperature Min -425.00 F Rewdt
25:Temperature Max 1600.00 F
26 Bendable Yes

27 Flareable Yes -
29 1
29 Additiwnol Mat.ral Attr.but..
301

NStronci overall corrosion resistance. Total

33'Select *englh of bo.

3Lt
36 L...qU, of tube: 0.25 mee

391

40
42

40'
49

44

4S
46

(a

(b)

Figure 4-2: (a) EXCELTM-native model for calculating the tube fabrication cost (per 1000 pieces),
and (b) a DOME custom graphical user interface used to interact with the model.

model integration between the two experts, so that the engineer is able to identify design alternatives

that perform well against both, local design objectives and those defined by the part supplier. Senin

et al. [63] state that in a traditional design environment, obtaining such an integrated view, for just

one design alternative, is at best very time consuming to coordinate and resolve. At worst, obtaining

an integrated system view for making global tradeoffs is deemed intractable and decisions are left

to intuition. Clearly such an unintegrated product model will not lend itself well to the exploration

of many design alternatives.

62

FJ

Material Catalog

Inerac awia~o oS akltin frFbrc~i ostlatiltO9

n~am fab* t (aphical Vnco*o Cuator GU

isuetal and Pilanufactuttig Cost MI~def ftir Heal Exchanger TubkVt Cilriporionts

Tis "wfwa r 9ktl sta e ad
rhariufacht~ COat of tt~bmig IN a tuo# bwifti t'M
exchanpot U. o It01 isi ~acaar ehIto o9y
gaieUKy & as Wa ats Me tiky maitul typ The
0w party uppIla*n b td fth, rface #b an EXCEL
soreadshatt whkt' caiskiii the tottt cost of etaicalng
a t" with the Specied configuratkn.

NoW thnmWad kZa ae ddi to etrude od Wie
thtpy Wlrlr we M t transfo app*camo , t*0y wt0
expeMNAev W0 4fbnata

Gotwry ConfXaraticn:

utrRadin: 5 0 mmW
L4"&, of TuoeDZ.

ootaelaW 5*Ct*n:

Sasct mrkiet ti 8 1p lraH POid

hftadaw Pmt. Cec

OCttM0Mobupet

Totaulost o - - --wo

oot oR* *uw g 90 0e

Lgdhcum4o. 02n

4.3 Using the DOME-enabled Optimization Tool

This section will describe the optimization tool developed to facilitate the rapid elucidation and

evaluation of design tradeoffs, which are key elements of the target-driven design approach. The

discussion will focus on four processes that constitute the target-driven design approach: (i) building

an optimization model, (ii) publishing that model on a DOME server, (iii) running a published model

to obtain a Pareto-optimal set of solutions, and (iv) evaluating design tradeoffs and picking a target

design. To help clarify, the tube-bundle design scenario will be used throughout the discussion.

4.3.1 Building an Optimization Model

The building of an optimization model can be summarized in a four-stage process. First, the model

builder creates an integrated product model in the form of a DOME integration project. Next, the

model builder defines a set of design variables and objectives, which are parameter objects spe-

cific to the optimization tool and correspond to integration project inputs and outputs, respectively.

The third stage involves configuring the optimization model and tuning the optimization algorithm.

In the final stage, the model builder creates any number of model interface objects. Once these

interfaces are published on a DOME server, individual can readily subscribe to them and run the

underlying simulations.

Publishing model services on DOME servers will be discussed in §4.3.2.

Creating a DOME Integration Project

The first step in building an optimization model is to create a DOME integration project, which

connects all of the individual sub-models through user-defined inter-relationships to form a prod-

uct system model. Figure 4-3, the heat transfer engineer is adding two resources to the integration

project: (i) a heat transfer calculation model published on a local DOME server, and (ii) a remote

tube-costing model published, in a different geographical location, at the part suppliers site. Next,

the heat transfer engineer must subscribe to the services provided by each model through one of the

available model interfaces. The engineer will interact with the models through these subscriptions.

Figure 4-4 shows the heat transfer engineer creating an integration model and subscribing to an

63

uld1Opthslnt Ildt ffccolufc rt 0M1fl, Tools ! Wndows Help

In greton mwTdel

esNsrces aVAsTyb in vrojctl

Coaf*g Parimmance Cacuiaton

Cooft PFdomuoce Cakc

w a ebricatkin Coot CalcAtion
Fatrcatotn Cost Calctiateo -

Fabricat.n Cost Caoulation

keatiolsn modet in propt L -bb
] O wat exchangt ,tvdes/ccst mo eis/Fablcatioe Cost Calu __Users * W

P os modeto
F*W 4 ioo CostCem*W. vor2 Fatirtittion cost modedforhat exc gaW.

(a)

(b)

(c)

Figure 4-3: (a) DOME project integration panel with two model resources added to it. (b) Adding
a local 'Cooling Performance Calculation' resource located on the heat transfer engineer's DOME
model server. (c) Adding a remote 'Fabrication Cost Model' resource located on the part supplier's
DOME model server.

interface object in each of the added resource models. Once all of the relevant sub-models have

been obtained (resource models) or created (integration models), the model builder is faced with the

seamless task of inter-relating the individual services to create an integrated product model.

In the tube-bundle design scenario, the heat transfer engineer would like to determine the optimal

tube geometry that will maximize cooling performance and minimize fabrication cost. Upon inspec-

tion of the two model interface services, it is evident that both of the model calculations are driven

by the same three geometric inputs: inner radius, outer radius, and length of tube. The engineer

decides to integrate the two models by mapping both sets of model inputs to a newly created set of

real number objects. This new set of real number objects is now driving both models, and therefore

becomes the set of inputs for the integrated system.

64

Sudrd Op" bt~tion F0eoed M el Windows Help D

OamO# T~* ub .oune D.,snT aieK Anal's esa

,5O~N5 U154~.5 - P1777

CoPngPsormnance Calculaimn

I Cong Pdbr00n0 e Calcuboon

I ,bratn cost C&YaIcno

Olino

0 f 9 Heat Transr and fabrkaon Cost Intagurato sub

*Fabricaficn Cost CaxwP foand nni w F0 Coing Perfrmance Calculation

0~ FabrIcal CCst CalculatIon

Heat Trasfe and Fatwkiation CboT ,14C.

5*11W HGat~oI rast ad~gsaO Cost 05gIawot *5s5ag*0log

(a)

(b)

Cocric MW oe U Rodoi 4 s0 oos0M Cclakoit'

10 o 05wr RatOs S.OUOOO s mroeter

0 Lan& 0.250000000 fetor

Prk %Per Cb0 C0ft1&ts0.500M0 dor pot CAk C

AI S 3W4 Demily 7900,OMW0 kiogam ONr CUNL
V C** anPdrfwnc Ca fmm trk omance Coicuatitn

1* Roan owte, 8.000DDW0 mfllimntw
SRaAAu Inner 2.0D000000 11il11mntor

$ LOnb o 012500 0 00K
side Twiptturo 35i0 Kokin

cwing fPsdormnco 0.0 Wait

* Tho codu.teay 15.0000000 at pmr mor p
PaekA0 VaKwo 50.2654400 cbi:i Ctotm

(c)

Figure 4-4: (a) The heat transfer engineer is creating an integration model 'Cooling Performance
and Fabrication Cost Integration', which will contain the integrated product system model. (b) The
engineer is subscribing to each model service through its available interface (high lighted in blue).
(c) Expanded view of the integration model, showing the subscribed interface objects and the real
number services exposed within them.

Figure 4-5 illustrates this integration with a block diagram where inputs to the models represent

decision variables and outputs represent design objectives.

Defining Design Variables and Objectives

The second step in building an optimization model is to define design variables and objectives that

the optimization algorithm will use to interact with the model (this interaction will be discussed in

detail later in this chapter). Design variables are selected by the user, and they can be any inputs to

the DOME integration project. During a solving iteration, the optimization engine will assign a real

65

Iinnr Radius

Outer Radius

Length

Length

Outer Radius

Inner Radius

e

0 OO a

Q$

e

0*

(,.,,,

K) ***.

(~*...

Lc e C oJ Fabrication Cost

DOME Integration MleI

DOME Mcdel

(b)

Caxing Perfrmnince

' CFabriation Cost

*4) C XAIIIa Pii "nnan

Figure 4-5: (a) Block diagram of the individual DOME service objects in the tube-bundle design
scenario, showing model inputs and outputs. Note that both models have the same inputs driving
the outputs (b) Inputs of each model have been mapped to a third set of parameter objects. The
individual models are now integrated.

value to each input parameter object so that the integration project can be solved and new output pa-

rameter objects can be obtained. Variable objects have upper and lower limits, and the optimization

engine cannot assign values outside of those limits. Design objectives, also selected by the user, are

outputs of the integrated product model. The optimization engine will attempt to minimize or max-

imize the real values of these objects. In its current form, the optimization tool is only capable of

supporting real-value parameter objects. This restriction is imposed by the optimization algorithm,

discussed in §3.4, and its future versions should support discrete and discontinuous variables.

Returning to the discussion of the tube-bundle design scenario, the heat transfer engineer may be

66

interested in studying how different geometry configurations perform with respect to fabrication

cost and cooling performance. To proceed with this analysis, the engineer must create the necessary

decision variable objects and map them to the relevant dimension inputs in the integrated model, in

this case outer radius and length. Furthermore, the engineer must also create two design objective

parameter objects and map them to the two outputs, fabrication cost and cooling performance. This

process is illustrated in Figure 4-6.

0mn c o pin 0P Orm iza o Cd F br co un Co44 ThO0 TradeofAfooyso os ssoo Og

0.. . Outa Ramo 60O000000meor 5.000. mh, &000 mbm Oums0 Radis

&A bkst~qoO torlact AO T"M SS V w0000 Help *Lst
SLongm 0,250000. M96f 0.200.. m*W 0.300- motor Lamm

04m0 Cmotsg Pmfmnse 00 PO't , 00 boo

clea set .on r

1; Fawks"M owl CAotCluao

W II30 e 'iy 00 0000 m ra pso er Osol Ob

Oulwo RdO. 6.00000000 mlssotme Outl R-As0nt

0L 0Dt 025000M mm Lenth

*OsCoFin Pdkr. nc C 0000000 mI~oolnPern eo ua o oogw~~~o+ b
*0010446404 r 600000000 nm 04nee 00..4 mFZa

Lmsg nt 00"L75 - - g:pon~o Ft To2045o0fad m0U0P0IMWO4 Rac m 40000 OiiOO O OMtm 04 R k s " Vt a

uWRng S.0DsooM OWN"d '"9rf Cancefom O W a nd faarcototCbtT deoff ntysidrmn

Rodos Ovoo 2.00000000 TIV10400$e 0Irk" Rad FabOkllonsCOe 942,09457500 0441405wm Fa0t 0 COM

L-oi 01200000000 00054 L-5gth Cw Pwkmvc 0.0 wad nosknas Co0gP.0000460

I440e TorWnpatroo 350 K. 0

OuiAid TamperkV4r 323 KO~n
1qCOWol %FM W!Wmss 2 0.0 W5f

4 Thnmw Codluttwy 15.0000000 w.0 pm 'or twp

1 Poking Vo"4 s 602654400 CL"s carkbrrwar

(a) - -03 d68f 40 O~000

(c)

Figure 4-6: (a) Integration model showing two subscription objects and three parameter objects (red
icons), the heat transfer engineer has highlighted two parameter objects and is about to map them
to the design objectives. (b) 'Outer Radius' and 'Length' have been defined as design variables. (c)
'Cooling Performance' and 'Fabrication Cost' have been added and mapped to the design objectives
panel.

Configuring The Optimization Algorithm

The configuration panel of the optimization tool is shown in Figure 4-7 and each of the tuning

67

parameters is discussed below:

0 Optimization Cooling Performance and Fabrication Cost Tradeoff Analysis

name: Cooling Peformance and Fabrication Cost Tradeoff Analysis message kg

name
V 4 system confIguration

platform: MAC OSX

v 4 algornthm
17,13me Q.M.0.O.

w 4 algorathm configuration
, population size: 100 knlividua

I percentage of unranked popubaton 0450000000 percent

* number of evaluations: 1000 individual

proqet design varae design olbectties -eftem4doctomenta

close

Figure 4-7: Screen shot of the configuration panel for the tube-bundle cooling performance and
fabrication cost tradeoff analysis.

- Platform. Specifies which platform the model will be published on (ex. Mac OS XD).

" Algorithm name. Currently, the optimization tool only supports the QMOO algorithm. It is

expected that more algorithms will be added in the future.

* Population size. The number of individuals to be stored in the algorithms main population

at any given time. According to Leyland [46], the optimal population size for QMOO is

approximately 90 individuals.

e Percentage of Unranked Population. The percentage of population, which will be made up of

dominated individuals. This tuning parameter is useful in preserving diversity and exploring

multiple local optima.

- Number of Evaluations. The number of evaluations to be performed on the objective function

before the algorithm terminates itself.

68

One of the development goals of the optimization tool was to have as few model tuning parameters

as possible. Implementing the optimization tool in such manner made it intuitive and easy to use,

requiring little knowledge about evolutionary optimization techniques.

Creating Interfaces to Optimization Models

Once published on a DOME server, interface objects allow individuals, with appropriate user per-

missions, to access and run the underlying optimization services. Multiple interfaces can be created

for a single model, and many users can interrogate a single interface concurrently. Also, simulation

services can be subscribed to collaboratively, where multiple users interact with the same instance

of a DOME optimization model object. Finally, optimization interface objects, like DOME model

objects, support custom graphical user interfaces.

The process of creating an optimization tool interface is fairly simple, requiring only that model

owner use simple add-and-map techniques to add variable and objective parameter objects to each

interface. Each interface has its own configuration panel where the model owner can set use-

privileges for the interface before it is published. These privileges include: (i) allowing users to

set variable search limits, (ii) allowing users to activate/inactive design variables and objectives,

(iii) setting the maximum number of objectives that a service subscriber can run an optimization

problem with at any given moment, (iv) and the solution update interval. Figure 4-8 shows a screen

shot of an interface object created by the heat transfer engineer in the tube-bundle design scenario.

The description of building optimization models thus complete, the next section will discuss pub-

lishing of models on web-accessible DOME servers.

4.3.2 Publishing an Optimization Model on a DOME Server

A comprehensive graphical user interface has been developed to guide users through the process

of publishing optimization models on DOME servers. The process is quite trivial and will not be

presented here; only the issue of user permissions will be briefly discussed. Model owners deciding

to publish their optimization model on a DOME server have complete control over who will be

allowed to access the models interface objects, underlying integration project, and resources inside

the project. This is to accommodate tight collaboration and secure sharing of intellectual property,

69

which was identified as a functional requirement stemming from interactions with industrial part-

ners.

With an overview of publishing optimization models complete, the discussion now turns to running

a published model to obtain a Pareto-optimal set of designs.

0 0 0 Inttfrmace Coaong ros tm cfan Fa broto otTaef nlr
varrbne

* -mb _____

IV Oftsida i. 6.00000000 mdetott

9 tNV0~ 0 2000000 mete.

9 Fabcan Cost 942.04575 doter

(a)

oulfioesPA&oo6.000," R.trmtst Soo9mo r.6.o m Moeo i te am s Rad0A i
Len0 m.25000Ms metr t 00MM motr 0tt60000 0mtvr L-V

- - -oe C looog era fo eaoocint Cotsttos Cst na tdte: etfo oi

FaiconCost 9------

9 d &s g ooto stst s wowo00 e :

(b) a " . t.WtWEO a b

rm w mbrof otobectoes: 2 cbjscto

'V 4 M 00 t c0n44r05

(c)

Figure 4-8: (a) Interface manager displays a list of all interface objects belonging to this optimiza-

tion model. (b) Definition panel groups design variables and design objectives. In this interface,
the heat transfer engineer created an optimization problem with two variables (outside radius and

length) and two objectives (cooling performance and fabrication cost). (c) Configuration panel al-

lows the heat transfer to set use privileges if other individuals will be allowed to subscribe to the

interface object.

4.3.3 Running Optimization Model Simulations

Running optimization model simulations is a simple process. This section will describe the process

using the tube-bundle design scenario example. A discussion of the simulation results will follow.

70

The next section will use the tube-bundle design scenario to demonstrate how the simulation results

can be used to set the state of the integrated product model to some selected target design.

Once the optimization model is published on a DOME server, individuals can access the underlying

simulation through an interface object via the web. Figure 4-9 shows the heat transfer engineer

accessing the optimization model created to evaluate tradeoffs between cooling performance and

fabrication cost.

nn Bols View 8 aao Wlndows He p Run

~i4 I,,ttdaresSVahg

I Prw'te

W~It rfgrd fa- C- T-rdtiof AoIy, TradS, Armss

wvt. i t l Run75 dfA ay Vw______HlR

(a))

Fiu- 4-9: (e- t ni

th tb-bnleotiiato mdl.() 9h egieer is 6Opening he OCmet interfae becttoru

Figrne -:od)Tel sheatiotrane eineerdalogged sintoy oa thegOMEa serer ainowfce h opn

timization engine, discussed in Chapter 3, controls the execution of the model simulation throughout

this process. Initially, it will configure the optimization problem with the tuning parameters spec-

71

ified by the model builder. Two important tuning parameters are population size and number of

evaluations. Next, the optimization engine will create the initial population and will randomly as-

sign it design variable values that fall within the specified upper and lower limits. Each individual

will then be evaluated and the resulting design objective values will be assigned to it. If the indi-

viduals are found to be lacking, they are removed from the population, otherwise they join the main

population to become parents of new individuals (see Figure 3-1). Crossover and mutation oper-

ators, discussed in §3.4, are used to assign design variable values to new offspring. This process

is repeated until the termination criterion is reached, which is specified by the model builder via a

tuning parameter.

While the algorithm is executing the model simulation, the interface counts the number of times

that the underlying integration project has been evaluated. When some user specified number of

evaluations has been reached, the optimization engine will output the current state of the population

to the interface for the model subscriber to review. The mechanisms responsible for this will be

discussed in detail in §4.4. Figure 4-10 shows the heat transfer engineer receiving results from the

optimization tradeoff analysis. The population is displayed in two instances, at 100 evaluations, and

at 1000 evaluations where a significant improvement in the convergence of the population to the

POF can be observed. This result was obtained with a population of 100 individuals.

Although the optimization tool developed in this work supports optimization of models with more

than two design objectives, the results visualization method does not. Current development efforts

include implementation of surface visualization techniques for more than two design objectives.

4.3.4 Evaluating Design Tradeoffs

The result of running an optimization simulation is a characterization of all the interesting regions

of the integrated product model. Individuals running optimization services are presented with a

family of Pareto-optimal design candidates, where each candidate represents different performance

in each of the design objectives under consideration. Design candidates are Pareto-optimal when

they do not dominate each other (i.e. a selected individual does not perform better than any of the

other individuals in the set in every design objective).

Once presented with the results, the decision maker is empowered to explore all of the interesting

72

0 optimaton PAosoos Cooding Pormance and fabacalo ost Tr a ydsAn CS1

b(b)

700

050

$50 0

0 5 10 15 2d 2S 106 350 "00 4500 5M 50 8W0 OW5 741 7 50 0050WO00

(a)

perfomanc, buthighfabria tion Rsts to rght etfot adsain wit Tlow fabrsicaincsbtpo

in ot grph. abrcaio coti acltd e 00tbs

70

.00

650

5M

1 5

0 0$ 000 10C 200 250 3W0 300 400 450 500t 50 E0 00 00 700 &3 70 00 9W0 0

(b)

Figure 4-10: (a) The tube-bundle optimization problem after 100 evaluations, showing individuals

dispersed around the design objective space. (b) The same optimization problem after 1000 evalu-

ations. Individuals have converged to the Pareto-Optimal frontier. From designs with best cooling

performance, but high fabrication cost (top right) to designs with low fabrication cost, but poor cool-

ing performance (bottom left). Red dots indicate non-dominated individuals (or optimal solutions)
in both graphs. Fabrication cost is calculated per 1000 tubes.

regions of a model, gain insight into the systems behaviour, evaluate tradeoffs between the presented

designs and select a favourable design candidate to derive the final state of the product system model.

In the tube-bundle design scenario, the heat transfer engineer is presented with a population of de-

sign candidates ranging from designs with excellent cooling performance, but high fabrication cost,

to designs with low fabrication cost, but poor cooling performance (see Figure 4- 10). Immediately,

a number of interesting observations can be made about the behaviour of the system. First, there

is quasi-linear region of the model where the sensitivity of cooling performance to changes in fab-

rication cost is low. For example, a fabrication cost increase of 1,500% ($0.05/tube to $0.80/tube)

73

corresponds to a cooling performance increase of only 36% (550W to 750W). Secondly, for a tube

with a fabrication cost below $0.05, there is a sharp decrease in its cooling performance. Finally,

there is a region in the model (fabrication cost >$0.80) where the cooling performance appears to be

increasing quadratically with increasing fabrication cost. The engineer considers tradeoffs between

different designs and selects a particular design point on the POF to be the initial starting design for

the tube. The design variables corresponding to the selected design targets are then passed into the

integration project so that a complete, and parametrically consistent, system state can be derived.

Figure 4-11 provides a screen image of this process.

(c)

Figure 4-11: (a) The heat transfer engineer selects target values for the two design objectives. (b)
Target values of the design objectives and corresponding design variables (inputs to the integration
project) are passed to the optimization model interface. (c) The input design variables that corre-
spond to the target design objectives are also passed to the integration project interface to derive a
new, parametrically-consistent state of the system model.

This use of the optimization tool in the tube-bundle design scenario is an example of a target-driven

design approach. The heat transfer engineer used the optimization tool to elucidate and evaluate

74

system model tradeoffs and then selected a favourable set of design objectives (i.e. design targets)

as a starting point. Selected design targets were then passed to the integration project interface to

derive all other published information about the integrated product model. An alternative, trial-and-

error approach, would have the engineer changing the values of the inputs to the simulation until

a favourable set of design objectives was revealed through the calculation. Both approaches to the

engineering design process will be further examined in §4.5.

4.4 Flow of Information Between QMOO and DOME

Communication between QMOO, the core of the optimization engine, and an integrated product

model in DOME is illustrated in Figure 4-12. During an optimization simulation, information is

passed from the optimization algorithm, to the integration project and back (Figure 4-12a). Since

QMOO has no knowledge about the solving mechanisms of DOME, a custom DOME evaluator

object had to be written to make communication between QMOO and DOME possible. A second

communication pathway, between QMOO and a client interface object, is shown in Figure 4-12b.

The DOME monitor object takes a snapshot of the population at some user-specified, number of

individual evaluations, and sends that data through the interface to the client. Both, the DOME

evaluator and monitor objects were developed in this work will now be discussed in detail.

A third object, also created in this work, is responsible for tuning the optimization algorithm. Its

primary role is to translate information entered in the model configuration panel, discussed in §4.3.1.

Tuning parameters include: number of evaluations, population size and percentage of dominated

individuals in the main population. This configuration object could also allow the model builder

to select different mutation and crossover operators, clustering methods, and ranking techniques.

However, the author of this work felt that exposing too many algorithm-tuning parameters would

make the optimization tool difficult to use. Furthermore, modifying these tuning parameters during

the development of this tool had little effect on the performance of the algorithm.

4.4.1 The DOME Evaluator Object

The evaluator object allows QMOO to communicate with a DOME-native optimization model and

carries out two important functions. First, it reads the DOME-native optimization model and ex-

tracts information required by QMOO to completely define the optimization problem. This informa-

75

F

(a)

User Interface

QMOO AIgorithm

Points To PLo4 DOME Monitor

(b)

Figure 4-12: (a) A 'DOME Evaluator' object serves as a communication bridge between QMOO
and DOME. Variables are generated by QMOO and passed into the DOME integration project as
inputs. The project is solved and the calculated results are returned to QMOO as design objectives
via the 'DOME Evaluator'. (b) At some interval of evaluations, QMOO will pass a 'snap-shot'
of the entire population to a 'DOME Monitor' object. The 'DOME Monitor' notifies the client
interface object that a population is ready for viewing, which the client interface then displays.

76

QMOO AIgorithm

Design ObjectivIe

DOME Integrated
P tut Model

Model Outputs

PtJmlatkjn,

tion includes the number, and data type, of all decision variables and design objectives. The second

function of the evaluator object is to manage the flow of data values throughout the execution of an

optimization problem.

When an individual is being evaluated, the evaluator object must match each of its design variables

with a corresponding input to the integration project inside the optimization model. Design vari-

able values are then copied to the input parameters of the integration project and the model starts

solving. When the model solving is finished and the project outputs are ready, a map inside the

evaluator object is used to find an optimization model design objective for each corresponding in-

tegration project output. The parameter value of the integration project output is then copied to the

design objective parameter and modified, depending on whether the objective is to be maximized

or minimized. If no outputs are returned by the project, likely since one or more of the models

inside it have crashed, the individual is marked as unfeasible and removed from the population. In

both cases, QMOO is notified that the evaluation of the individual is complete, and the individual is

queued for subsequent processes or removed from the population.

The pseudo code of the DOME evaluator object is included in Appendix A.

4.4.2 The DOME Monitor Object

As mentioned before, the DOME monitor object is charged with the task of sending the current

population of individuals in an optimization problem, to a client interface object for visualization.

The interface user is then able to interact with the published optimization model.

The working mechanism of the monitor object is trivial and requires only one tuning parameter,

which is the client-side population update interval. During the execution of an optimization, the

number of individuals evaluated for their design objective values is counted. When this number

reaches the update interval value, the monitor object is called and its main process is executed in

two parts. First, the client side visualization plots are reset so that the new version of the population

may be plotted. Next, the current state of each living individual in the population is plotted. This

includes sorting the individuals into dominated and non-dominated sets. After the monitor object

has finished plotting each member of the population, it waits until the next update cycle.

77

The pseudo code of the DOME monitor object is included in Appendix A.

4.5 Implications of Target Driven Design for Product Development

The optimization tool developed in this work provides an alternative approach to the traditional en-

gineering design process. Specifically, it addresses two practical design challenges at the concept

development stage: (i) integrated assessment, and (ii) tradeoff driven design process. Integrated

assessment allows product development teams to more effectively explore the design space of a

product, run a higher number of "what-if" scenarios, and identify a promising design candidate

early in the process. In tradeoff driven design, teams can specific a set of optimal tradeoffs and then

see what configurations yields them, rather than guessing a design configuration using a 'trial-and-

error' approach and observing its effect on the design objectives. These implications will now be

discussed in detail.

First, the size and scope of most product development projects severely prohibit a thorough explo-

ration of all potential design candidates and the selection of a promising starting design. Ulrich

and Eppinger [72] state that the goal of concept generation is to thoroughly explore the space of

product concepts that may address the customer needs. Wallace et al. [77] observed, through inter-

actions with industrial research partners, that evaluation of a single design candidate took months

to complete, resulting in only 20 design cycles occurring on average. Using the DOME simulation

environment, the same design cycles required only 20 seconds to 1 day, depending on the type of

changes and quality of analysis.

The optimization tool allows individuals subscribing to optimization model services to run many

more improvement cycles on the product system model while still reducing product development

time. Furthermore, the use of heuristic evolutionary algorithms ensures that exploration of the de-

sign space is directed. Each new potential design candidate will perform better in the specified

design objectives than its predecessors. Combining the seamless integration capabilities of DOME

with the directed search techniques of evolutionary algorithms empowers designers to effectively

explore the design space of a product.

The second design challenge is the issue of design tradeoffs in product development projects. Ulrich

78

and Eppinger [72] state that one of the most difficult aspects of product development is recognizing,

understanding, and managing such tradeoffs in a way that maximizes the success of the product.

This is especially true in multi-disciplinary product development teams comprised of individuals in

different geographical locations with unique areas of expertise. In such an environment, obtaining

an integrated system view is difficult and decisions about global tradeoffs are often left to intuition

[63].

The optimization tool implements a multi-objective optimizer that facilitates the rapid elucidation

and evaluation of design tradeoffs. Using Pareto optimality, the optimization tool is able to generate

the optimal tradeoffs curve. This curve represents a family of points (or designs) that represents

optimal tradeoffs between the design objectives under evaluation. Moving from one design point

on the curve to any other point will make the performance of at least one design objective worse.

Having this set of Pareto-optimal designs, the decision maker can then select the optimal tradeoff

configuration to derive the design of the entire product system (see §4.3.4).

For the reasons discussed above, the design tool developed in this work, offers product development

organizations an alternative approach to concept development. Decision makers are empowered to:

(i) create a digital product system model, (ii) explore a high number of potential design candidates,

(iii) evaluate optimal design tradeoffs between a few best candidates, and (iv) select a starting target

design that best performs under the specified design objectives. Once a complete concept design is

obtained, the product development team can proceed to subsequent prototype building and testing

stages.

Table 4.2 provides a comparison between the proposed approach to concept development and the

traditional trial-and-error approach presented in Chapter 2.

4.6 Summary

The optimization tool presented in this chapter was developed for the DOME modeling environ-

ment to facilitate the rapid elucidation and evaluation of design tradeoffs in a product development

project. Individuals can use this design tool to identify design candidates that perform extremely

well in terms of the modeled design objectives, early in the design process.

79

Target-Driven Process

Generation of concepts.

Selection of concepts.

Testing of conepts.

-Difficult to obtain
integrated system view,
results in only a few design
concepts being generated.

-Design candidates are
generated in an ad-hoc
fashion with a 'trial-and-
error' approach.

-Local design experts
make intuitive guesses
about the behaviour of
the system and select
(what appears to be) the
best design candidate.

-Design experts spend
considerable time
coordinating information
to evaluate a selected
design concept against
any number of
(potentially multi-
disciplinary) design
objectives.

-DOME-enabled system
integration allows design cycles
to take minutes, as opposed
to days, to be evaluated.

-As a result a large number
of design candidates can
be generated.

-Evolutionary algorithms
provide a smart design
space exploration
technique.

-A set of optimal design
candidates is presented to
the decision maker.

-Global tradeoffs are
presented to the decision
maker on Pareto-optimal
frontiers.

-Designers are empowered
to select 'design targets'
from the computed
optimal design tradeoffs.

-Selections are then used to
quickly synchronized the
complete product system
model to derive the
selected design.

80

Table 4.2: Contrast between the traditional engineering approach to concept development, and the
optimization tool-enabled approach. Concept development stages adopted from Ulrich and Ep-
pinger [72].

Stage Traditional Process

To help clarify the formal description of the optimization tool, a trivial design scenario was intro-

duced. It involved an in-house heat transfer engineer collaborating with an external part supplier to

derive an optimal tube geometry design while balancing two competing design objectives: cooling

performance and fabrication cost. The heat transfer engineer used a DOME-native model object to

model the cooling performance of a tube. The external part supplier used a third-party application,

EXCELTM, to provide the fabrication cost services. Both experts published their services on web-

accessible DOME servers.

Four aspects of the optimization tool were illustrated using the tube bundle design scenario. They

are: (i) building an optimization simulation, (ii) publishing that simulation service on a web-

accessible DOME server, (iii) running a published model to obtain a Pareto-optimal set of solutions,

and (iv) evaluating optimal design tradeoffs and selecting target designs for subsequent design pro-

cesses. The notion of selecting design targets to derive a particular system design is being referred

to as the target-driven design approach.

To make information transfer between the optimization engine (QMOO) and DOME compatible,

a number of custom objects had to be implemented. The DOME evaluator object is responsible

for managing the flow of parameter data between the optimization algorithm and the DOME inte-

gration project during the execution of a simulation. The DOME monitor object is responsible for

displaying the results of an optimization simulation to a remote or local interface client. Finally, a

configuration object was implemented and its role is to simply tune the optimization algorithm (ex.

population size, number of evaluations before termination).

The optimization tool developed in this work has significant implications on the traditional engi-

neering design approach. Seamless integration of models and services allows product development

organizations to explore a large number of potential candidates in the early concept development

stage. The use of heuristic optimization techniques ensures that the search is directed and that each

newly discovered design candidate is better than its predecessors. Another benefit of this design

tool is its ability to explore design tradeoffs between the specified design objectives. Decision mak-

ers can readily evaluate an entire population of optimal performance tradeoffs on a Pareto-optimal

curve, select a promising candidate, and derive the complete system model design.

81

The introduction of the optimization tool and the target-driven design approach it facilitates is now

complete. The next chapter describes a validation study of the target-driven design approach.

82

Chapter 5

Application

5.1 Introduction

To validate the target-driven design approach, a real-world engineering design scenario will now be

presented. It is a multi-objective design problem, of a hybrid energy system for delivering electricity

using a diesel engine generator and a photo-voltaic (PV) array. The design models that constitute

this optimization problem were originally developed by Sukkasi [70] as part of an Alternative En-

ergy Design Toolkit created for the modeling environment, DOME, discussed in §2.3.2.

In the original work, this multi-objective design problem was "optimized" using the following

methodology. First, the problem was decomposed into an equivalent number of single-objective

optimization problems - in this case five. Next, the performance of each design objective was ana-

lyzed using crude response surface techniques1 , where the design objective was plotted as a function

of the two decision variables at regular intervals throughout the design space. Finally, a design was

chosen, which performed best under the most critical design objective and any subsequent tradeoffs

between competing design objectives were resolved by considering how well the proposed design

meets the original performance goals.

While the approach outlined above is effective in the design and optimization of a hybrid PV-diesel

engine system, it has two important limitations when extended to most engineering applications.

First, information about the performance of each design objective was obtained using an enumera-

For a detailed description of response surface methodologies, the reader is referred to Myers and Montgomery [50].

83

tive search technique. Although this "trial-and-error" technique worked well in this design scenario,

its use in most practical engineering problems is limited for reasons discussed in §2.4.5. Secondly,

design tradeoffs were resolved by manual analysis of individual objective function surface plots,

without any tools for elucidating such tradeoffs between the objectives. This method may prove to

be difficult for more complicated optimization problems with many design objectives.

The optimization tool developed in this work will be used on the hybrid energy-system design

scenario to illustrate how it facilitates the effective elucidation and evaluation of design tradeoffs in

multi-objective design problems. Although this design problem has been first introduced in [70],

its optimization using a multi-objective optimizer, and the discussion of the results in the context of

target-driven design, are original to this work.

5.2 Design of a Hybrid PV-Diesel Energy System

The discussion of the design scenario presented in this section will begin with background and prob-

lem description. Next, the constituent design models used in the scenario will be briefly mentioned,

followed by a discussion of their integration architecture with the optimization engine. Subse-

quently, the results of the optimization problem will be presented and discussed. Finally, the present

design scenario will be used to illustrate how it empowers designers to practice a target-driven, as

opposed to a "trial-and-error", design approach.

5.2.1 Background

In remote villages far from established utility grids, electric energy is often supplied by diesel engine

generators or local hydroelectric plants. However, diesel engine generators cannot be considered as

a long-term solution because of CO2 emissions, the price inflation of fuel, and the increasing penalty

cost due to environmental protection policies adopted by many countries [8, 61]. Alternatively, PV

arrays offer an environmentally-friendly method of supplying electric energy. Unlike in the case of

diesel engines, the initial energy invested in the production of a PV array is recovered completely

during its operation - when the PV array generates electricity without emitting any pollutants2

This makes PV arrays the preferred technology for supplying energy. However, they are more ex-

2The length of time it takes to completely recover all of the energy invested during the production phase of a PV array
is known as the energy payback period [47].

84

pensive to produce than diesel engine generators, which has thus far prohibited their widespread use.

Increasing diesel fuel prices along with the high cost of transporting fuel to remote locations are

making hybrid PV-diesel generation systems competitive with diesel-only generation [18]. In a hy-

brid PV-diesel energy system, a PV array is used in addition to a diesel engine to generate electricity.

To a designer of such a system, the PV array is an expensive method of providing environmentally-

friendly electricity, while the diesel engine provides inexpensive electricity, but is taxing on the

environment. Therefore, to design this system one must negotiate tradeoffs between two competing

design objectives - environmental impact versus cost of the hybrid system.

5.2.2 Design Scenario Description

This design scenario is assumed to take place on a remote island in southern Thailand with a system

operation period of 20 years [70]. The amount of electricity generated by each component corre-

sponds to the specified PV load fraction - a design parameter, ranging from 0 to 1, which specifies

how much of the total load is to be delivered by the PV. A second design parameter, number of

diesel operating hours, specifies the number of hours the diesel engine is to operate each day. The

design objectives are the system's capital cost, life-cycle cost, net electricity cost, CO 2 emission,

and electricity production efficiency.

The hybrid energy system will be designed for two different applications: (i) for generating electric-

ity at a private island resort, and (ii) for providing affordable electricity to the island's inhabitants.

Each application has its own set of prioritized design objectives, which will be discussed in detail

in §5.2.6.

5.2.3 Constituent Design Models

The design models used in this design scenario came out of the Alternative Energy Design Toolkit

developed by Sukkasi [70]. They are:

" PV system load breakdown

- PV system life-cycle costing

" Engine-generator system life-cycle costing

85

- Simplified PV module and battery energy analysis

- Simplified diesel generator energy analysis

" CO2 emissions from electricity generating systems

The critical input values to these design models are shown in Table 5.1. For a detailed discussion of

the individual design models, the complete set of input values and how these values were decided

upon, the reader is referred to [70].

Design Model

PV load breakdown

Input Parameter Description_

net daily load
day time load
sufficient solar irradiance
battery charge efficiency
battery discharge efficiency
minimum allowed state-of-charge

Parameter Value

4071 Wh
37% of net load
13.5 h/day
0.8
0.95
0.7

Engine-generator / PV
life-cycle costing

PV energy

discount rate
excess inflation rate

PV array lifetime
battery lifetime

3000 RPM engine lifetime
1500 RPM engine lifetime
diesel fuel heating value

fuel consumption
manufacturing of PV array
manufacturing of battery
manufacturing of diesel engine

6000 h
10000 h
10.08 kWh/l

2.45 kg/l
0.267 t/kW-yr
0.062 t/kW-yr
0.069 t/kW-yr

Table 5.1: Input values to the
scenario, taken from [70].

individual models in the hybrid PV-diesel energy system design

Integration of the individuals design models is illustrated in Figure 5-1. Inputs to the system model

are the PV load fraction and the number of diesel engine operation hours. They are used by the

DOME integration model to calculate all required input parameters to the models inside the integra-

tion - namely, the PV rated and operating power, and the diesel engine rated and operating power.

86

0.1
0.0

20 yr
5 yr

Diesel energy

CO 2 emission

The outputs of the integration are the total life-cycle cost, net electricity cost, total CO2 emissions,

net electricity production efficiency and the total capital cost.

DOME Inltegration Mode

PY operating %r

total Ete-eyele coSt

-Mnet eleet.*icy codt

Wototal C02 emnissikons

totI aepital cost

net electricity
production eflklency

Figure 5-1: Integration of the individual simulation models in the hybrid PV-diesel energy system
design scenario. Connections are made declaratively and the directions of information flow are
determined by solving mechanisms within DOME. (Reproduced from Sukkasi [70], pg. 110)

5.2.4 Optimization of the Design Scenario

The hybrid PV-diesel energy system design scenario is a multi-objective optimization problem with

two independent design variables and five design objectives. The two design variables and their

lower/upper limits are shown in Table 5.2. Initially, a range of 0 to 1 was used for the PV load

fraction. However, this lead to the optimization problem crashing whenever the algorithm evaluated

the design objectives at either extreme - due to a division by zero in the PV power calculations. For

similar reasons, a valid range had to be selected for the second design variable.

The five design objectives are shown in Table 5.3, along with whether a given design objective is

87

K
PV load

diesel load

die wl pratd pwr

difsel rated power

Design Variable Limits

PV load fraction 0.05 to 0.95
daily hours of diesel operation 1 to 24

Table 5.2: Independent design variables and their lower/upper limits.

to be minimized or maximized. Some of the design objectives will compete against each other -

forcing the system designer to resolve tradeoffs between them. For example, the total CO2 emissions

can only be minimized if more of the load is supplied by the PV system, however this will result in

a design with a higher net electricity cost and total capital cost. As mentioned earlier, in practice

such design tradeoffs are difficult to elucidate and can only be resolved after careful consideration

of the original application for which the system was intended. The design tradeoffs of this system

will be discussed in section §5.2.5.

Design Objective Direction of Optimization

total life-cycle cost minimized
net electricity cost minimized
total CO 2 emission minimized

net electricity production efficiency maximized
total capital cost minimized

Table 5.3: Design objectives and how each is to be optimized.

This multi-objective problem was solved using the optimization tool developed in this work. A

population of one-hundred individuals was used and up to 45% of the population's individuals were

dominated - this was done to help preserve population diversity and to avoid early convergence to

a local optimum. Finally, the algorithm was terminated after one thousand individual evaluations.

The configuration panel of the user interface to this optimization problem is shown in Figure 5-2.

Each individual evaluation took approximately five seconds3 , for a total simulation time of eighty

minutes. The results of the optimization will be presented and discussed in the context of target-

driven design in the following section.

3 simulation was executed on an Apple PowerBookTMwith a 1GHz PowerPC G4, 1MB L3 cache processor and 512

MB of SDRAM memory

88

* 8 8Optimnization., Hybrid Energy System

name Hybrid Energy System message log

value

7 4 system configuration

, platform: MAC OSX

'v 4 algorithm
* name Q.M.O.O

y 4 algoritm configratwn
5 popuaton size: 100 nfivkual
5 percentage of unranked population 0300000000 percent

S number of evaluations: 1000 indidual

project design Variaves desioobjectNes documentatimn

cse

Figure 5-2: Configuration panel of the hybrid PV-diesel energy system optimization. Key algorithm

tuning parameters are the population size (100), percent of unranked individuals (30%) and total

number of evaluations (1000).

5.2.5 Results

The interface used to interact with the underlying optimization simulation is shown in Figure 5-3.

To run the simulation, individuals follow the procedure outlined in §4.3.3. Multiple simulations can

be executed concurrently and users decide which design objectives to evaluate and which to deac-

tivate. Figure 5-4, Figure 5-5 and Figure 5-6 show two-dimensional Pareto curves, which illustrate

optimal tradeoffs between the design objectives. Figure 5-4 shows the total electricity cost increas-

ing with decreasing CO2 emissions. At the leading edge, a hybrid engine system can be designed

with a reduction of 33% in total CO2 emissions, at a cost increase of only 2%. Reductions in CO2

continue to decrease as cost of the system increases. Finally, at the bleeding edge, the cost of the

energy system increases 54% with only a 4% reduction in total CO2 emissions. Figure 5-5 dictates

that an increase in the net electricity production efficiency can only be achieved with an increase

in the net electricity cost - a more efficient hybrid energy system is more expensive to fabricate.

Possible designs range from an energy system with an electricity production efficiency and elec-

tricity cost of 38% and 0.22 $/kW-h, respectively - to an energy system with an efficiency and cost

89

of 69% and 0.36 $/kW-h. Figure 5-6 graphs the relationship between the net electricity production

efficiency and total CO 2 emissions. For most of the graph, the results are intuitive - a more efficient

energy system is expected to convert more of its input energy into useful output energy and should

therefore produce less CO 2 emissions. However, as the insert in Figure 5-6(b) suggests, at efficien-

cies higher than 65%, the two design objectives begin to compete.

The population in each simulation has been plotted in its decision variable space and the graphs are

included in §B. For the minimization of the net electricity cost and total CO2 emission, there are two

clusters of individuals, where each cluster represents designs with best performance in only one of

the specified design objectives. For example, designs located at a PV daily load fraction of 0.05, all

provide electricity at a low cost, but they also emit the highest amounts of CO 2. Individuals located

between the two clusters, represent designs with optimal performance tradeoffs between the two

design objectives. The second optimization problem, namely the minimization of electricity cost

and maximization of electricity production efficiency, showed similar behaviour of the population

in the decision variable space. Interesting behaviour of the population can be noted for the final op-

timization simulation - maximization of the net electricity production efficiency and minimization

of the total CO 2 emission. The population after 100 evaluations is scattered randomly throughout

the design space, but after 1000 evaluations all non-dominated (optimal) individuals converge on a

straight line where the PV load fraction is equal to 95%. This indicates that the two design objec-

tives in this problem have an inverse relationship for only one of the design variables - the daily

diesel operating time. Furthermore, this result was expected as it is known that PV arrays are more

efficient at generating electricity and produce less CO2 emissions than diesel engines. Increasing

the daily diesel operating time reduces the total CO 2 emissions, but it also has the disadvantage of

reducing the electricity production efficiency. This is because the same amount of electricity can

now be delivered over a longer time period, which can be accomplished with a smaller, less pol-

luting, diesel engine. Lastly, the cluster of optimal individuals covering the vertical line (PV load

fraction = 0.95), represents optimal tradeoffs between the two design objectives for different values

of the daily diesel operating time.

The simulation results were used to design a hybrid energy system for the applications discussed

in §5.2.2. These design examples validate the target-driven design methodology and will now be

discussed.

90

0 Trad~~QaAnalysis _____

name: Tradeoff AnalysisDmDft eaaeb

nae value drection actv
S Total C02 Emissions 42641.007 tonn miniie

Capita cost 4.00000000 dolr minrnize

SLie Cycle Cost 2.00000000 dolar mvamre

3 Net Bectricity Cost 5.00000000 dollar per kilowafttour mfnfmrie

9 Net Electricity Efficency 0.230000000 no unit maxize

Figure 5-3: Graphical interface to the hybrid PV-diesel energy system optimization simulation.

5.2.6 Target-Driven Design Examples

Individuals can use the simulation in Figure 5-3, to design a hybrid energy system, which best meets

the performance goals of their particular application. The underlying optimization tool empowers

designer to quickly resolve tradeoffs between competing design objectives, as illustrated with ex-

amples in §5.2.5. In addition, system designers can seamlessly send performance targets for the

design objectives of interest, into the system model, to derive a design that will achieve these tar-

gets. This empowers individuals to deviate from the traditional "trial-and-error" design approach to

a "target-driven" one.

This concept will now be illustrated with the design of a hybrid energy system for two applications:

(i) a private island resort, and (ii) providing affordable electricity to the inhabitants of an island.

In each case, the principle designers interact with a third-party contractor providing the simulation

service in Figure 5-3. However, each principal designer has a unique set of performance targets,

which must be satisfied in order to make the hybrid energy system successful in their respective

91

4iasinva~th

5 Diesel Daily Load 12.0000000 hour 100000000 hour 24.0000000 hou

5 PV Load Fraction 0,600000000 no unit 0.0500000000 no unit 0.950000000 no und

dee gn oijates-

-piiation Resuits: Hybrid Energy ystem Tradeoff Analysis

Net Elacbr Ctt update every: W iru duk evkataons

0.500

0-475

0.450
0.425

0.400 - a

0.275

13.5 14.0 14.5 15.0 15.5

non-domnated rwdidal d

16.0 16.5 17.0 17.5 18.0 4.5 190 19.5 20.0

Total Co2 EVmisson

(a)

0 0 1 Optimization Results Hybrid Energy $ysfem Tradeoff Analysis

0.525
0.500
0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225

no

rh.te4ec~4V ~

13 14 16

n-doufnkated kdviduai

Lpdate every - id IuandN a&Wtw

16 17' 18 0 20 21 22 23 24 25 26

Stotal C02 wmission a

(b)

Figure 5-4: Optimization results of the hybrid energy system design scenario for two competing
design objectives: net electricity cost vs. total CO 2 emission: (a) population after 100 individual
evaluations, and (b) final population after 1000 individual evaluations. Final population of 76.

92

a

* a ~ :~ ~:a:~ a *

em

0

Optimization Results: tybrd Energy System Tradeoff Analysis

net e acUry productuon etft y update wvey: duevatuatos'

0.300 0.325 0.350 0.375 0400 0.425 0.450

no.orrmmnated ndvidua . tsv

docarentemon

(a)

Optimization Results Hybrid Energy System Tradoff Aaysis

70

65

60

40

0.225 0.250 0.275 0.300 0.325 0.350 0.375

rnio-d ated IviuM n;rl i tn

0.400 0.425 0.450 0.475 0.500

Snet esecticty cost

(b3)

Figure 5-5: Optimization results of the hybrid energy system design scenario for two competing de-
sign objectives: net electricity production efficiency vs. net electricity cost: (a) population after 100
individual evaluations, and (b) final population after 1000 individual evaluations. Final population
size of 107.

93

60

55

so

45

40

35

0

* *

- -0- * -

**

* 0*

* a

*

.250 0.275

netI Slctrotty cost

0.475 0.500

*040 00 0/ 4 0

a 0

0

* af 0* a

*0
~ a.r * a

**0 0

*

0 00

rwt 016ctr ety productoon effciWnCY upwate Ivnr nidvdu*a vaknations

Optimization Results: Hybrid Energy System Tradeoff Analysis

Update every: kdilvdu evauatons

65

60

55

so

45.

40

35

1 3.3 14.0 14.5 15.0 5.5 16.0

I nort4dornmated kwki**hcM ~TfhIte4 t.1
18.5 I7.0 7.5 1810 18.5 19.0 19.5 20.0

tj~otalC02esson

#0,0

68

67

66
65

64-

63

62

61

(a)

Qptimization Results Hybr d Enrgy Systemr Tradeoff Analysis

not electricity production effIcIency update every: dvIdlA evx uat on

13.30 13.35 13.40 13.45 13.50 13.55 13.60 13.65 13.70 13.75 13.80 13.85 13.90 13.95 14100 14 05

hO*4nated~d~b ind nted Ndiv i total C02 emisk)

(b)

Figure 5-6: Optimization results of the hybrid energy system design scenario for two competing de-
sign objectives: net electricity production efficiency vs. total CO2 emission: (a) population after 100
individual evaluations, and (b) final population after 1000 individual evaluations. Final population
size of 77.

94

- 4

9

application. Figure 5-7 provides a summary of these interactions.

Generating Electricity at a Private Island Resort

Private island resorts depend on a clean environment to attract tourism. In such an application, it is

reasonable to make the assumption that a successful hybrid energy system would have to provide

clean energy above all. In terms of engineering design objectives, such a system would be designed

for minimum CO 2 emissions. However, a clean system can only be feasible if it is implemented at

a reasonable cost. Therefore, the primary design considerations for this application are to minimize

total CO 2 emissions while keeping the net electricity cost to a minimum. This is a multi-objective

optimization problem with two competing design objectives - the solution to which is shown in

Figure 5-4 and discussed in §5.2.5.

Using a "trial-and-error" approach on the simulation in Figure 5-1, the principle designer may arrive

at a hybrid energy system configuration, which results in the lowest possible CO 2 emissions. This

configuration, termed initial design, is indicated in Figure 5-8, with all the design variables and ob-

jectives summarized in Table 5.4. From the design tradeoffs curve, it is evident that the initial design

lies on the bleeding edge of the curve - where a large increase in electricity cost will pay for only

a minimum reduction in total CO 2 emissions. To improve this design, the principal designer scans

the design objective space and selects a more favourable set of optimal tradeoffs to be passed to

the system model as design targets. The system model inputs corresponding to these design targets

are used to rapidly derive this design. The process is illustrated in Figure 5-8 and the new design,

termedfinal design, is summarized in Table 5.4.

Providing Affordable Electricity to the Island's Inhabitants

Local governments in remote locations may choose to subsidize the purchase of hybrid energy

systems to provide affordable electricity for their constituents. Benefits of such a program would

include reduced environmental impact and improved public health - if the installed systems would

drastically reduce the need for polluting fossil fuels as an energy source. However, to make this

practice sustainable, these systems must be produced cost effectively. Therefore, the primary design

considerations for this application are to minimize the net electricity cost while keeping the total

95

Tiame Tdo#' y

Minimize net
electricity cost,

while considering
C02 emissions
and production

efficiency of
secondary

importance.

A

Daily Diesel Load

PVLoad Fraction

Government Agency
concerned with providing
affordable elecricity for
the island's inhabitants

Minimize total C02
emissions, while
considering system
cost as a secondary
design objective.

Private Island Resort
intetesmod in a source of electricity,

Muich would not pollute
the natural environment

Figure 5-7: Individuals interacting with the hybrid energy system optimization service. Each in-
dividual is designing the system for a different application with a unique set of prioritized design
objectives.

96

. - Dese. - a4 - -12-0000000 hour - 00000000 -o- 24---0000 ho" r

PV Load Fracon 0.6 0000000 no umnt 0.0500000000 no unt 0.050000000 no un4t

21Tow0co n tonne

90 Cmp0aI cost 4,00000000 dottrnWnz

9 Lie Cycle cost 20000000 dr msn

90 Not coctrtst cost SOOOO doarper towatt-tw M*Wnme,

90 Not Etrity Ef~c ioncy 0.23000000Mn thifta~ytz

p~~~ ~ ~ ~ sa ooterye-any bncon ana am

Tradeoff Analysis

D. . & M*

____PTimxa1 On ReSults. Hybrid Energy Systam Tradeoff An*5s

4050 opinat ndividual Wtal C02 emission 13.3434 net u ecitkiy cost: 03882

8.250

10i 1 is 10 N0 2i 22 23 4 2 - 0

(a)

(b~

89013 33666361086560 146400265900
3 2 105?32f322

371?6 5331 331 OPra0w490 0 0819146387501

3488883 00bsdo qwonra 1l~g 06600?43874088 next

(c)

Figure 5-8: (a) Designer selects optimal tradeoffs as design targets. (b) Inputs are passed to the

system model (marked in green). (c) New "optimal" design is derived with the design objectives
circled in red.

97

Parameter Initial Final

Variables:
PV load fraction 0.95 0.95
total daily diesel operation 20.75 4.88

Objectives:
net electricity cost 0.49 0.39
total CO 2 emission 13.29 13.34
capital cost 3948.63 4505.52
life cycle cost 43555.19 17296.40
net electricity efficiency 67.96 68.94

Table 5.4: Initial and final design of the hybrid energy system - optimized for the private island
resort application. Units for each respective parameter are given in Figure 5-3. Improved design
objectives are indicated in bold.

CO2 emissions to a minimum. Furthermore, the energy system should operate at the maximum

electricity production efficiency. Solutions, illustrating tradeoffs between the design objectives,

were presented in Figure 5-4, Figure 5-5, Figure 5-6 and discussed in §5.2.5.

Similar to the previous example, the principle designer for this application may use the simulation in

Figure 5-1 to derive, using a "trial-and-error" approach, a hybrid energy system configuration, which

results in the lowest possible net electricity cost. This initial design is indicated in Figure 5-9 and

summarized in Table 5.5. Although this design produces the least expensive electricity, it is far from

being optimal. The design tradeoff curve in Figure 5-4 indicates that significant reductions in CO2

emissions could be made at only a small increase in electricity cost, and so the principal designer

selects a new set of performance targets, marked intermediate design in Figure 5-9. This newly

proposed design configuration greatly reduces the total CO 2 emissions, however, it still produces

electricity with low efficiency. As a result, the tradeoff curve in Figure 5-10 is used to select a new

set of design targets, which significantly improve the electricity production efficiency and reduce

total CO 2 emissions, while keeping the increase in net electricity cost to a minimum. The final

design is summarized in Table 5.5.

98

Optimization Results: Hybrid Energy System Tradeoff Analysis

update every: W ,drdf&Mevaluatons

CA0.500

0.475
0.450

0425

0.400

0.350

0.325

0.300
0.27n

0.250

0.225

Figure 5-9: Initial and intermediate hybrid energy system designs for the governmental subsidy
program application. Designs are compared based on net electricity cost and total CO2 emissions.

Parameter

Variables:
PV load fraction
total daily diesel operation

Objectives:
net electricity cost
total CO 2 emission
capital cost
life cycle cost
net electricity efficiency

Initial Intermediate

0.05
1

0.22
25.45
6199.31
52044.17
38.54

0.05
2.27

0.23
21.86
4968.56
54055.05
38.54

Final

0.52
1.0

0.30
19.23
6515.03
31197.03
50.19

Table 5.5: Initial and final design of the hybrid energy system - optimized for the government
subsidy program application. Units for each respective parameter are given in Figure 5-3. Improved
design objectives are indicated in bold.

99

*ee0

"roptimal indivdual total C02 emission: 21.8566 net electricity cost: 0.23031
mnted m" totaICO2emission -

0 * *

13 14 is

n-domfnated xvikdUaz

new GiaetriC4t cost

Optimization Results Hybrid Energy System Tradeoff

(Wt efectric y productiom fc* Ty tpdate every: "*dual evaeatmn
70.0
67.5

65.0
62.5
60.0 -
57.5
55,0 oa

$0.0
O

42.5
45.0 [optia individual net electricity cost- 0.2991 net electricity production efficiency: 50.19441

40.0 \

0.225 0.250 0.275 0.300 0.325 0.350 0 375 0.400 0.425 0.450 0.475

noqwdom*tted tnvidua a net electricity cost

close

Figure 5-10: Intermediate and final hybrid energy system designs for the governmental subsidy
program application. Designs are compared based on net electricity production efficiency and elec-
tricity cost.

5.3 Summary

The hybrid PV-diesel energy system design scenario, originally developed by Sukkasi [70], was

used in this section to validate the target-driven design approach. Consisting of six independent

modules, the integrated simulation predicts the total life-cycle cost, net electricity cost, CO2 emis-

sion, capital cost and net electricity production efficiency for a given set of inputs - namely the daily

diesel operation time and PV load fraction. The simulation was optimized, using the tool developed

in this work and discussed in §4.3. The algorithm was configured to a population size of 100 indi-

viduals and a total number of 1000 evaluations. Each individual took approximately 5 seconds to

evaluate. Results of the optimization found optimal design tradeoffs between the following sets of

competing design objectives: (i) net electricity cost vs. total CO 2 emission, (ii) net electricity pro-

duction efficiency vs. net electricity cost, and (iii) net electricity production efficiency vs. total CO2

emission. The results were used to provide optimal design configurations of a hybrid PV-diesel en-

ergy system for two unique applications: (i) a private island resort, and (ii) a governmental subsidy

program for providing affordable electricity. It was shown that using the design tool developed in

100

this work, individuals running simulations can quickly select optimal tradeoffs between competing

design objectives as design targets to the system model to derive a new, and optimal, system model

state. For example, for the private resort application, a set of design targets was chosen that resulted

in a net electricity cost reduction of 20% with only a 1% increase in total CO 2 emission. Similar

results were achieved for the governmental subsidy program application.

101

102

Chapter 6

Conclusion

6.1 Summary

Chapter 2 provides the background for the design tool developed in this work. The discussion is

broken down to four parts. First, an overview of the traditional product development process is

presented. Organizations participating in such an activity face two common challenges: (i) creat-

ing an integrated product model, and (ii) resolving design tradeoffs during product development.

To address the first challenge, a number of integrated product modeling tools have been developed

commercially and in academia. DOME, an integrated product modeling framework used in this

work, was discussed in detail. The tool developed in this work utilizes evolutionary algorithms,

which were discussed in this chapter along with several other optimization algorithms. Finally, an

overview of formal multi-disciplinary optimization methods is provided and several commercially

available packages offering such capabilities are presented.

Chapter 3 provides a detailed discussion of the optimization algorithm, QMOO, which was imple-

mented in the design tool developed in this work. QMOO is an evolutionary algorithm originally

developed for optimizing energy system problems. It has a non-generational population structure,

where individuals are added and removed from the population as needed. The algorithm is elitist

- where its population contains only the best individuals found so far. This approach ensures rapid

convergence, however elitist algorithms may create populations which lack diversity, resulting in

converge to some local optima before fully exploring the problem's design space. To address this

issue, QMOO divides the population into groups in their parameter space and allows each group

to evolve independently. QMOO implements Pareto-based multi-objective optimization and has an

103

asynchronous parallel structure. Asynchronous algorithm structures use computational resources

more effectively and are discussed in chapter 3. QMOO was chosen for its ability to handle dis-

continuous design spaces and multi-objective problems, which are encountered in most practical

engineering problems. Furthermore, the algorithm's architecture lends itself to evaluation of objec-

tive functions in parallel. Although the parallelism feature of the algorithm has not been exploited

by this author, future implementations of this design tool should do so.

Chapter 4 describes the developed design tool and discusses its implications on the traditional prod-

uct development process. A trivial "tube-bundle heat exchanger" design scenario is introduced to

demonstrate the use of this design tool in its four modes: (i) building a model, (ii) publishing a

model on a web-based server, (iii) executing the underlying simulation and, (iv) analyzing its re-

sults. Also discussed, is how the design tool evaluates and resolves design tradeoffs in an integrated

product model. A methodology has been introduced, which allows individuals subscribing to an

interface of an integrated product model to use optimal tradeoffs, between two design objectives, as

design targets to configure that model so as to achieve optimal overall product performance. The

next section of this chapter focuses on the communication architecture between the optimization

tool and its DOME framework. Two Java objects have been developed for this purpose: (i) evalua-

tor, and (ii) monitor. The evaluator object is responsible for passing variable and objective function

information between the optimization engine and the integrated product model. The monitor object,

as the name implies, is responsible for monitoring the simulation and sending information about the

solution to the interface client. The final section of this chapter discusses, in detail, the implications

of this work on traditional approaches to engineering design. In summary, it allows individuals to

run many more design improvement cycles, rapidly evaluating and elucidating design tradeoffs at

each iteration. Through the "target-driven" design approach, individuals can also derive product

model configurations with optimal overall product performance.

In Chapter 5, application of this work to the design of a hybrid PV-diesel energy system is presented.

The integrated system model consisted of six independent modules predicting the total life-cycle

cost, net electricity cost, CO2 emission, capital cost and net electricity production efficiency. Us-

ing the design tool developed in this work, design tradeoffs were studied for the following sets of

competing design objectives: (i) net electricity cost vs. total CO2 emission, (ii) net electricity pro-

duction efficiency vs. net electricity cost, and (iii) net electricity production efficiency vs. total CO 2

104

emission. The results of these studies were used to provide energy systems optimally configured for

two independent applications - a private island resort and a governmental electricity subsidy pro-

gram. This application demonstrates that the developed design tool is effective at resolving design

tradeoffs and deriving system model configurations that maximize the overall product performance.

6.2 Future Work

A number of additional features should be implemented in the design tool to further improve its

effectiveness and usability.

The first set of tasks would be to improve the overall functionality and robustness of the optimiza-

tion engine used by the analysis tool. Currently, only one multi-objective evolutionary algorithm

has been implemented. Although this is sufficient for a large number of engineering problems,

there are cases where such an algorithm is unsuitable. For example, design problems with a single

objective function. In the future, the tool should support multiple optimization techniques and the

choice of which to use for a particular problem should be left to the user. Furthermore, the current

configuration panel could be enhanced to allow users with an advanced knowledge of optimization

techniques more control in configuring an algorithm for a particular optimization problem. Finally,

at the moment the design tool only supports real variables. In the future, more data types should

be implemented in the design tool to allow for application to a wider range of engineering problems.

In addition, an API for the design tool should be developed to allow interaction with optimization

models through a third party application or a simple Java subroutine. It is envisioned, for example,

that such an API would allow models to be published on the Internet using an appropriate server

technology. Users would then be able to interact with the model interface in a web browser without

having to use the DOME client application. At the time of completion of this paper, work in this

area has been initiated and considerable progress has been made.

The design tool discussed in this work, is the first of its type developed for the DOME framework.

If more analysis tools are to be developed in the future, a general architecture, or recipe, for their

implementation should be in place. The architecture should provide general object templates, which

could be customized or reused for individual tools. Finally, further work should be done in the area

105

of testing and improving the general robustness of this tool as the scale and complexity of integrated

models increases. It is the experience of this author, that integrations involving models from mul-

tiple third-party applications would often crash during a simulation. If the objective functions take

minutes to evaluate, such events can be taxing on computational resources. Therefore, it would be

prudent to have a mechanism, which would allow the user to restart the simulation at exactly the

point where it crashed. Currently, such mechanisms do not exist.

6.3 Final Words

Product development is a difficult task and few organizations are successful at it. Some of the

challenges include a thorough exploration of all design alternatives, as well as the elucidation and

resolution of design tradeoffs. Developing a design tool that would address these challenges was

the mission of this work.

It is the ultimate hope of this author that this work will help product development teams develop

better products.

106

Appendix A

Pseudo-Code for the Evaluator and

Monitor Communication Objects

The Evaluator and Monitor objects are classes that enable communication between DOME and the

optimization engine QMOO. The Evaluator object is used by the optimization engine to "interro-

gate" the integration model, while the Monitor objet is used to pass information about the solution

to the client.

The pseudo code for each object will now be discussed.

107

A.1 The Evaluator Object

public DomeEvaluator(OptimizationRuntime object)

{

assign the optimization runtime object to a member variable of this class

call obtainVariablesAndObjectiveso

}

void obtainVariablesAndObjectives()

{
get a list of all variables in the optimization runtime object

while(list not empty)

{
if(variable in the optimization runtime object is also in the interface object && variable is active)

{
add variable to the list of variables in the evaluator object

}

}
get a list of all objectives in the optimization runtime object

while(list not empty)

{

if(objective in the optimization runtime object is also in the interface object && objective is active)

{

add objective to the list of objectives in the evaluator object

}

}

}

void start(Objectives Map, Variables Map)

{

/* This method is called by the optimization algorithm QMOO, once at the beginning of each

optimization run. By the time this method is called, the objective and variable lists in the evaluator object

108

would have been populated. This method is used by the optimization engine to obtain information about

the number of objectives and the decision variable space. */

in the objectives map, set the number of design objectives

in the variables map, set the number of design variables

for (each design variable)

{

set the data object type

set the upper and lower search limit

}

}

void process(EvaluatorData object)

{

/* This method is called by the optimization algorithm whenever a new individual needs to be evaluated.

It passes a QMOO native EvaluatorData object, which contains information about the individual under

evaluation. */

if(current project thread is null)

{

start new project thread and pass into it, the current individual contained in the EvaluatorData object

}

else

{

if(project thread is done)

{

indicate to the EvaluatorData object that the current individual has been evaluated

set the project thread to null

}

}

}

class ProjectThread

{

109

/*This is the thread in which the integration project is solved to obtain corresponding objective function

values for an individual with a particular design vector configuration. */

public ProjectThread(Individual)

{

assign individual passed in, to the current individual in the project thread object

create project status listener

}

void run()

{
for(each variable in the evaluator variables list)

{
set the input variables to the integration project with the design vector of the current individual

}

run project

}

ProjectStatusListnero

if(integration project is solved)

{

set objective values in current individual

}

}

}

110

A.2 The Monitor Object

public Monitor(OptimizationRuntime object)

{

set optimization runtime object member variable to the current object passed in

}

void go(Monitor object)

{
/*This method is called by the optimization engine at some user-specified number of evaluations interval.*/

from the Monitor object, get current population

while (population size is not 0)

{

send individual to interface client

}

}

111

112

Appendix B

Hybrid PV-Diesel Energy System

Decision Variable Plots

Population of the hybrid pv-diesel energy system optimization problems graphed in the decision

variable space. Graphs appear in the following order of executed simulations:

* net electricity cost vs. total CO 2 emission

- net electricity production efficiency vs. net electricity cost

" net electricity production efficiency vs. total CO 2 emission

In each set of results, the top graph indicates the population after 100 evaluations, while the bottom

graph illustrates the populations after 1000 evaluations.

113

Design Space, Hybrid Energy System Tradeoff Analysis

total daly dsl opero. 5

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

non-don.06ted klvidual dort.d

docwmtatdon

tpdate every: d evidua vaiatons

0.65 0.70 0.75 0.80 0.85 0.00 0.95

pv daly oad fraction

Design Space Hybrid Energy System Tradeoff Analysis

update evey kdividual evaationas

20.0

17.5"

12. 5

7.5.

2.5.

An0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

non-dn*ted kvidua d O t V ai

0.80 0.65 0.70 0.75 0.80 0.85 0.90 0.95

p dalyd fration

docwmntn

X,

114

ess_

22.5

20.0

17.5

15.0

12.5

10.0

7.5

a 9 9
* * aa * a

a
a

a a
9 0 a aat 9 a

a 9

9 a a
9 a a a a

a

a a * 0

* a * 9a a
a 0 a

a 0

9 a. 9 0 09 9

a 9

es es0

5 94

totl a ieesOpwation

ck)se

000

Design Space: Hybrid Energy System Tradeoff

apdate every , MdIvkuat evaatons

0.05 0.10 0.16 0.20 0.25 0.30 0.35 0.40

nom-donkwted ir7iv uh

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0,80 0.85 0.90 0.95

PV Daly Load Fraction

doomnsntatk~n

L~J

Design Space Hybrid Energy System Tradeoff

Load

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

nonr-domkvted xdviduuai uIVnAed u

dowetaon

115

Diesel Daty Load

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

9
- 9 - 9

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

00

* 9
9 9+

.

080

update every: ndwlviduaww evawutionm

Design Space: Hybrid Energy System Tradeoff

DiesI Daly Load

22.5

20.0

15.0

12.5

10.5

7 6

13.0
2. i

update every: ntvdtuatevlnatbons

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.6 0.65 0.70 0.75 0.80 0.85 0.90 0.95

non-domn*td wiruW PV Day LoadFt. W

S0 Design Space Hybrid Energy Sstem Tradeoff

Di4l D Lead update every: ndidu evaluatons

25.0

22.5

20.0

17.5-

12.5

10.0-

7,5

5.0

2.5-

0.15 0.20 0.25 0.30 0.3 AO 5 0.5 0.55 0.80 0.65 0170

non-dofited* uu kin d w

docuwewntatio

0.75 0.80 0.85 0.90 0.95

(uj~eJ

116

088 E

* 9 9 0Sa

9 0
S

S

* * 0 99
9

0
9

9

9 9 9

9 9 9 *
a

* 0

9
0

0

9

9 9* 3
9

* *5a

S I
* 99 5
S

a.
0

* S

9 9 0
* a

.9 1S
I

References

[1] J. Alander and J. Lampinen. Cam Shape Optimisation by Genetic Algorithm. In
D. Quagliarella, J. Pdriaux, C. Polini, and G. Winter, editors, Genetic Algorithms and Evo-
lution Strategies in Engineering and Computer Science, pages 153-174. Wiley, Chichester,
1998.

[2] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York, 1996.

[3] R. J. Balling and J. Sobieszczanski-Sobieski. Optimization of Coupled Systems: A Critical
Overview of Approaches. AIAA Journal, 34(1):617, 1996.

[4] R. Banares-Alcantara. Representing the Engineering Design Process: Two Hypotheses.
Computer-Aided Design, 23(9):595-603, 1991.

[5] P. I. Bliznakov, J. J. Shah, D. K. Jeon, and S. D. Urban. Design Information System Infras-
tructure to Support Collaborative Design in a Large Organization. In Proceedings of ASME
DETC, vol. 1, pages 1-8, Boston, MA, 1995.

[6] R. D. Braun and I. Kroo. Development and Application of the Collaborative Optimization
Architecture in a Multidisciplinary Design Environment. In N. Alexandrov and M. Y. Hussaini,
editors, Multidisciplinary Design Optimization, State of the Art. SIAM, 1997.

[7] C. G. Broyden. Quasi-Newton Methods and their Application to Function Minimization.
Mathematics of Optimization, 21:368-381, 1967.

[8] A. Cabraal, A. M. Cosgrove-Davies, and L. Shaeffer. Accelerating Sustainable Photovoltaic
Market Development. Progr Photovolt. Res. Appl., 6:297-306, 1998.

[9] J. Cagan and C. M. Vogel. Creating Breakthrough Products. Prentice Hall, Englewood Cliffs,
New Jersey, 2002.

[10] Q. Cao and D. R. Walace. Distributed Solving to Support Emergent Behaviour of DOME.
Technical report, MIT CADlab, 2004.

[11] R. K. Carrol and G. E. Johnson. Approximate Equations for the AGMA J-factor. Mechanisms
and Machine Theory, 23(6):449-450, 1960.

[12] M. P. Case and S. C. Y. Lu. Discourse Model for Collaborative Design. Computer-Aided
Design, 28(5):335-345, 1996.

[13] A. Cauchy. Methode gdnerale pour la r6solution des syst6ms d'equations simultandes. Acad.
Sci. Paris, 25:536-538, 1847.

117

[14] L. D. Chambers. Practical Handbook of Genetic Algorithms: Complex Coding Systems Vol-
ume III. CRC Press, Boca Raton, FL, 1999.

[15] E. K. P. Chong and S. H. Zak. An Introduction to Optimization. John Wiley & Sons, New
York, second edition, 2001.

[16] C. A. Coello Coello. A Comprehensive Survey of Evolutionary-Based Multiobjective Op-
timization Techniques. Knowledge and Information Systems, 1(3):269-308, 1999. URL
citeseer.nj .nec.com/coello98comprehensive.html.

[17] C. A. Coello Coello. An Updated Survey of Evolutionary Multiobjective Optimization Tech-
niques: State of the Art and Future Trends. Knowledge and Infbrmation Systems, 1(3), 1999.

[18] S. Colle, S. L. Abreu, and R. Ruther. Economic evaluation and optimization of hybrid
diesel/photovoltaic systems integrated to utility grids. Solar Energy, 76:295-299, 2004.

[19] E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R. Shubin. Problem Formulation
for Multidisciplinary Design Optimization. SIAM Journal on Optimization, 4(4):754-776,
1994.

[20] M. R. Cutkosky, G. Olsen, J. Tenenbaum, and T. Gruber. Collaborative Engineering Based on
Knowledge Sharing Agreements. In Proceedings of the 1994 ASME Database Symposium,
1994. URL http://www.citeseer.ist.psu.edu/olsen94collaborative.
html.

[21] W. C. Davidon. Variance Algorithms for Minimization. Computer Journal, 10:406-410, 1968.

[22] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester,
2001.

[23] K. Deb and R. Agrawal. Simulated Binary Crossover for Continuous Search Space. Com-
plex Systems, 9(2):115-148, 1995. URL citeseer. nj . nec . com/deb9 5simulated.
html.

[24] R. J. Eggert. Engineering Design. Prentice Hall, Englewood Cliffs, New Jersey, 2005.

[25] L. J. Eschelman and J. D. Schaffer. Real-coded genetic algorithms and interval schemata. In
Foundations of Genetic Algorithms 2, pages 187-202. Morgan Kaufmann, San Francisco, CA,
1993.

[26] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Min-
imization Techniques. John Wiley & Sons, New York, 1968.

[27] R. Fletcher. A New Approach to Variable Metric Algorithms. Computer Journal, 13:317-322,
1970.

[28] R. Fletcher and M. J. D. Powell. A Rapidly Convergent Descent Method for Minimization.
Computer Journal, 6:163-168, 1963.

[29] L. J. Fogel. Autonomous Automata. Industrial Research, 4:14-19, 1962.

[30] D. D. Frey, F. Engelhardt, and E. M. Greitzer. A Role for One-Factor-at-a-Time Experimenta-
tion in Parameter Design. Research in Engineering Design, 14:65-74, 2003.

118

[31] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[32] D. Goldfarb. A Family of Variable Metric Methods Derived by Variational Means. Math.
Comput., 24:23-26, 1970.

[33] B. S. Gottfried and J. Weisman. Introduction to Optimization Theory. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1973.

[34] M. Hardwick and D. Spooner. An Information Infrastructure for a Virtual Manufacturing
Enterprise. In Proceedings of Concurrent Engineering: A Global Perspective, pages 417-429,
McLean, VA, 1995.

[35] M. R. Hestenes. Conjugate Direction Methods in Optimization. Springer-Verlag, Heidelberg,
1980.

[36] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 1975.

[37] J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic Algorithm for Mul-
tiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, volume 1, pages 82-
87, Piscataway, New Jersey, 1994. IEEE Service Center. URL citeseer . nj . nec . com/

horn94niched.html.

[38] B. Hyman. Fundamentals of Engineering Design. Prentice Hall, Englewood Cliffs, New
Jersey, 1998.

[39] C. D. Jilla and 0. de Weck. Lecture: Simulated Annealing. 16.888: Multidisciplinary System
Design Optimization (MSDO), March 5th, 2004.

[40] J. E. Kelley. The Cutting Plane Method for Solving Convex Programs. J. SIAM, pages 703-
713, 1960.

[41] J. B. Kim and D. R. Wallace. A Goal-Oriented Design Evaluation Model. In Proceedings of the
1997 ASME Design Engineering Technical Conference, pages 1-9, Sacramento, California,
1997. ASME.

[42] S. Kodiyalam and J. Sobieszczanski-Sobieski. Multidisciplinary design optimization - some
formal methods, framework requirements, and application to vehicle design. Int. J. Vehicle
Design (Special Isssue), pages 3-22, 2001.

[43] S. Kodiyalam, R. J. Yang, L. Gu, and C. H. Tho. Large-scale, multidisciplinary optimization
of a vehicle system in a scalable, high performance computing environment. Technical report,
FORD Research Laboratory, Safety Research and Development Department, 1999.

[44] S. Krikpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220(4593):671-680, 1983.

[45] J. W. Lewis and K. J. Singh. Electronic Design Notebooks (EDN): Technical issues. In
Proceedings of Concurrent Engineering: A Global Perspective, pages 431-436, McLean, VA,
1995.

119

[46] G. Leyland. Multi-Objective Optimization Applied to Industrial Energy Problems. PhD thesis,
Ecole Polytechnique F6ddrale de Lausanne, 2002.

[47] T. Markvart. Solar Electricity. John Wiley & Sons, England, second edition, 2000.

[48] A. F. Mills. Heat Transfer. Prentice Hall, Upper Saddle River, New Jersey, Second edition,
1999.

[49] D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, New York,
2001.

[50] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product

Optimization Using Designed Experiments. John Wiley & Sons, New York, 1995.

[51] S. I. Newton. Universal Arithmetick: or; A Treatise of Arithmetical Composition and Resolu-

tion. J. Senex et al., London, 1720.

[52] J. Owen. STEP - An Introduction. Winchester, 1993.

[53] K. F. Pahng, N. Senin, and D. R. Wallace. Distributed Modeling and Evaluation of Product
Design Problems. Computer-Aided Design, 30(6):411-423, 1998.

[54] K. F. Pahng, N. Senin, and D. R. Wallace. Modeling and Evaluation of Product Design Prob-

lems in a Distributed Design Environment. In Proceedings of ASME DETC'97, Sacramento,
California, 1998.

[55] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design: Modeling and Computation.
Cambridge University Press, Cambridge, UK, Second edition, 2000.

[56] F. Pena-Mora, D. Sriram, and R. Logcher. SHARED DRIMS: SHARED Design
Recommendation-Intent Management System. Enabling Technologies: Infrastructurefor Col-
laborative Enterprises, pages 213-221, 1993.

[57] F. Pena-Mora, D. Sriram, and R. Logcher. Conflict Mitigation System for Collaborative Engi-
neering. EDAM - Special Issue of Concurrent Engineering, 9(2):101-123, 1995.

[58] C. Petrie, M. R. Cutkosky, and H. Park. Design Space Navigation as a Collaborative Aid. In

Proceedings of Third International Conference on Artificial Intelligence in Design, Lausanne,
Switzerland, 1993.

[59] M. S. Phadke. Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

[60] W. K. Purves, D. Sadava, G. H. Orians, and H. C. Heller. Life: The Science ofBiology. Sinauer
Associates, Inc., Sunderland, MA, sixth edition, 2001.

[61] G. Schramm. Accelerating Photovoltaic Production Through Grid Connected Applications in

Developing Countries. In Proceedings of the 28th IEEE Photovoltaic Specialists Conference,
Anchorage, USA, 2000.

[62] H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen Forschung in der

Str6mungstechnik. Diplomarbeit, Technische Universitdt Berlin, 1965.

120

[63] N. Senin, D. R. Wallace, and N. Borland. Distributed Object-based Modeling in Design Sim-
ulation Marketplace. ASME Journal of Mechanical Design, 125:2-13, 2003.

[64] D. F. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization. Math.
Comput., 24:647-656, 1970.

[65] J. Sobieszczanski-Sobieski. Optimization by Decomposition: A Step from Hierarchic to Non-
hierarchic Systems. In N. CP-303 1, editor, Proceedings, 2nd NASA/USAF Symposium on
Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, Virginia, 1988.

[66] J. Sobieszczanski-Sobieski, J. Agte, and J. R. Sandusky. Bi-Level Integrated System Synthe-
sis (BLISS). In Proceedings, 7th AIAA/USAF/NASA/iSSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, Missouri, Steptember, 1998. AIAA.

[67] J. Sobieszczanski-Sobieski and R. T. Haftka. Multidisciplinary Aerospace Design Optimiza-
tion: Survey of Recent Developments. Structural Optimization, 14(1):123, 1997.

[68] J. Sobieszcznski-Sobieski. Optimization by Decomposition: A Step from Hierarchic to Non-
hierarchic Systems. In Proceedings, 2nd NASA/USAF Symposium on Recent Advances in
Multidisciplinary Analysis and Optimization, volume NASA CP-3031, Hampton, Virginia,
1988.

[69] D. Sriram and R. Logcher. The MIT DICE project. IEEE Computer, pages 64-65, 1993.

[70] S. Sukkasi. Alternative Energy Design Toolkit. Master's thesis, Massachusetts Institute of
Technology, 2004.

[71] G. Toye, M. R. Cutkosky, J. Tenenbaum, and J. Glicksman. SHARE: A Methodology and
Environment for Collaborative Product Development. In Proceedings of Second Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 33-47, Morgan-
town, West Virginia, 1993.

[72] K. T. Ulrich and S. D. Eppinger. Product Design and Development. McGraw-Hill, New-York,
Third edition, 2004.

[73] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary Algorithm Test Suites.
In J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and G. B. Lamont, editors, Proceedings of
the 1999 ACM Symposium on Applied Computing, pages 351-357, San Antonio, Texas, 1999.
ACM. URL citeseer.nj .nec.com/david99multiobjective.html.

[74] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design with Appli-
cations. McGraw-Hill, New-York, 1984.

[75] D. E. Veley. Optimization in the Adaptive Modeling Language. AIAA 98-4872, Air Force
Research Laboratory, Structures Division, 1998.

[76] D. Wallace, E. Yang, and N. Senin. Integrated simulation and design synthesis. Technical
report, MIT CADlab, 2003.

[77] D. R. Wallace, S. Abrahamson, N. Senin, and P. Sferro. Integrated Design in a Service Mar-
ketplace. Computer-Aided Design, 32(2):97-107, 2000.

121

[78] A. W. Westerberg, R. Coyne, D. Cuningham, A. Dutoit, E. Gardner, S. Konda, S. Levy,
I. Monarch, R. Patrick, Y. Reich, E. Subrahmanian, M. Terk, and M. Thomas. Distributed
and Collaborative Computer-Aided Environment in Process Engineering Design. In Proceed-
ings of ISPE, 1995.

[79] R. Xiaojuan, P. Zhelong, R. Eigenmann, and Y. C. Hu. Decentralized and Hierarchical Discov-
ery of Software Applications in the iShare Internet Sharing System. In Proceedings of Interna-
tional Conference on Parallel and Distributed Computing Systems, San Francisco, California,
2004.

[80] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimisation: Methods and Applica-
tions. PhD thesis, Eidgen6issiche Technische Hochschule ZUrich, Nov. 1999.

122

