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Abstract

This dissertation describes the design and evaluation of the Fast, Flexible Forward-
ing system (F3), a distributed system for disseminating information to networked
subscribers. It examines existing subscription approaches, proposes F3 as an alter-
native to these approaches, and presents results from comparisons of F3 and other
subscription approaches.

Existing subscription approaches examined in the dissertation fall into three cat-
egories: unicast, single-identifier multicast, and content-based multicast systems.
Careful examination of these approaches suggests that none is able to support com-
plex subscription requests from large numbers of subscribers at high data rates.

F3, the systems proposed as an alternative, shares many features with other mul-
ticast systems. Like many multicast systems, for example, F3 uses an overlay network
of routers to distribute messages to subscribers. F3 differs from other systems, how-
ever, in its use of preprocessors to analyze messages before routing begins. Prepro-
cessors carry out analyses of the relationships between subscription topics, and store
the results in special content graph data-structures. Preprocessors share the results
of their analyses by distributing content graphs to routers in the F3 network. Using
content graphs, F3 routers can determine the relationships between subscriptions and
notifications more efficiently than in previous approaches.

Four studies compared performance of F3 and competing subscription systems. In
the four studies, subscription systems handled such tasks as disseminating baseball
scores, distributing traffic alerts, and disseminating generic subscriptions formatted
as attribute-value pairs. The four studies examined system performance in both
simulated network environments and on a working router. Performance characteristics
examined in the studies included size of forwarding tables and processing speeds at
routers.

Results from these experiments showed that F3 does not overproduce messages,
as do unicast systems. F3 also outperformed single-identifier multicast systems in
such areas as message production, table size, and subscription overhead. The most
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significant finding of the studies, however, was that F3 processing speed surpassed the

speed of a state-of-the-art content-based system by orders of magnitude in scenarios

with large numbers of subscribers. Overall, these results suggest that F3 is a promising

development in the area of Internet subscription systems.

Thesis Supervisor: David Clark

Title: Senior Research Scientist
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You're the top! You're the Colosseum,

You're the top! You're the Louvre Museum,

You're a melody from a symphony by Strauss,

You're a Bendel bonnet, a Shakespeare sonnet,

You're Mickey Mouse.

-From "You're the Top"

Music and lyrics by Cole Porter
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Chapter 1

Introduction

The Internet is, among other things, the greatest information warehouse ever built.

But information is not meant just for storage on warehouse shelves. To be useful,
information must get into people's hands and heads, and it must often get there

very quickly. Investors need to know immediately when stock market prices begin

to tumble. Researchers need to know right away when relevant research findings are

released. Everyone needs to know when threatening weather is on the way. Informa-

tion on such topics makes its way to the Internet very quickly, but the information

gets into the hands of users much more slowly. The Internet does not send out alerts.,
and users have to find new Internet information by themselves.

The Internet provides some tools to help users find what they need. Users can

employ search engines like Google to dig deep into the Internet warehouse. They can

bookmark relevant Web pages to make future lookups easier. They can use canned

queries to automate their queries even more, and they can schedule these queries

to run periodically. But use of such tools do not alert users to the arrival of new

information on the Internet. To catch new information as it is created, user-initiated

queries would have to run almost continuously, and such queries would be highly

inefficient. Continuous queries by millions of Internet users would clog the network

with redundant queries and responses.

Researchers have for nearly a decade been looking for a better way to change the

Internet from an information warehouse to an information clearinghouse. The mech-

anisms that they are developing can be grouped together under the heading Internet

subscription systems. Put simply, a subscription system is a communication mech-

anism for delivering information from information providers to subscribers over the

network. Subscribers first sign up to receive information on topics that are important

to them. When an information provider submits new information to the subscription
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system, the information is automatically distributed to the appropriate subscribers.

Internet subscription systems are thus designed to give subscribers exactly the infor-

mation they need as quickly as easily possible.

Developers began using subscription systems to handle communications in net-

worked applications almost two decades ago. Early developers approached subscrip-

tion systems from a variety of vantage points, and they gave their subscription devices

a variety of names. In 1998 a workshop held at the University of California at Irvine,

the Workshop on Internet-Scale Event-Notification (or WISEN), gave some focus to

these disparate efforts. The workshop was one of the first occasions when researchers

from around the world convened to discuss their shared interests in subscription sys-

tems, and it gave the field its first widely used name, wide-area event notification.

More important, the workshop provided taxonomies of relevant systems, presented a

bibliography of references, and focused attention on the significant problem of extend-

ing event notification to global scale systems. The workshop thus became a milestone

in the development of subscription systems.

The next phase in the development of Internet subscription systems began when

commercial firms jumped onto the event notification bandwagon and began developing

what they called publish subscribe systems. Microsoft began work on its Scribe

and Herald systems [49, 9] ; IBM developed Gryphon [14]; and AT&T developed

READY [24]. Publish-subscribe systems were specifically designed to publish HTML

and XML text documents, but the high-profile work of major technology companies

brought a new identity to the area. The terms publish-subscribe (or pub-sub, for

short) all but replaced the term event notification as the name for the area.

Today, many leading technology firms have Internet subscription systems under

development. Commercial systems already in use include Talarian Products' Smart

Sockets and TIBCO's Rendezvous [59]. Academic centers working on the develop-

ment of Internet subscription systems include the University of Colorado's Software

Engineering Research Laboratory [13] and the Distributed Systems group at the Uni-

versity of Cambridge Computer Laboratory [44]. Academic interest in these systems

is not restricted to a single field. One is just as likely to find articles on subscription

systems in the proceedings of SIGSOFT as one is to find them in PODC, Middleware,

SOSP, or SIGCOMM.

In addition, several organizations are now using Internet subscription systems to

send information to subscribers. For example, the Major League Baseball website

sends breaking baseball news [35]; Google and the New York Times provide news

updates by email [58, 22]; businesses use TIBCO [59] servers to subscribe to inventory
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updates; and brokerage firms such as ScottTrade provide streaming, real-time stock

market quotes [50]. These applications are probably just a hint of things to come.

Users should soon be able to pull up news pages that contain the latest news on topics

of their own choice, for example. Like current television news channels, the pages can

include streaming video announcement on the stock-market, sports, weather, traffic,

and text news. Unlike television news, the content of these pages can be completely

customized. The weather reports will be for a specific user's geographic area; the

traffic alerts will relate to her route to work; the sports reports will be on her favorite

teams and players; the news topics will relate to her interests; and the stock market

prices will be on stocks that she is tracking.

The Internet subscription systems available or under development today can be

divided into three broad categories. Unicast systems transmit notifications directly

to subscribers over the Internet's existing mechanisms. Unicast systems are common-

place in today's commercial world. The email news updates sent out by Google and

the New York Times, for example, use a unicast routing system. Single-identifier mul-

ticast systems send messages to discrete message channels to which customers with

identical interests subscribe. Single-identifier multicast systems seem especially well-

suited for distribution of on-line entertainment events. An entertainment provider

can route a streaming video of an event to all subscribers subsumed under a sin-

gle Internet address. The most popular current approach to subscription systems,

called content-based multicast systems, forward messages based on the text content

of the messages. Content-based systems rely heavily on intelligent routers that parse

message content and use the results of such analysis to forward messages.

None of these systems may be adequate for large, complex applications in which

millions of users sign up for notices using complex, overlapping subscription cate-

gories. Unicast systems can easily clog network routers with numerous copies of the

same message [17]. With small numbers of subscribers, the problem of redundancy

may be manageable, but with global scale systems, the problems can become over-

whelming. Single-identifier multicast systems cannot handle complex and evolving

subscription categories efficiently [1]. And content-based systems take a long time

to process notification messages. Studies have shown that the amount of time that

it takes a content-based router to match a notification with its subscriptions grows

linearly with the number of subscriptions in its table [2]. As a result, the development

of efficient matching algorithms for content-based systems has become a hot topic of

research [2, 46, 6, 43, 3, 12].

What is needed is an alternative system that overcomes the problems of unicast,
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single-identifier multicast, and content-based multicast systems. This thesis describes

the development and evaluation of such a system. The Fast, Flexible Forwarding Sys-

tem (or F3) is designed specifically for large-scale, complex applications, and it uses

distributed multicast mechanisms to support such applications. Applications that

use F3 must pass messages through preprocessors before submitting the messages

to the F3 network. These preprocessors identify relationships between messages,

and encode them in data-structures called content graphs. Using content graphs,

routers are able to match subscriptions with notifications efficiently without reading

the application-level contents of messages. Using this approach, F3 is able to sup-

port complex, application-level interfaces without using complex, application-level

machinery within the network itself.

This thesis also examines performance of F3, single-identifier, and content-based

routing systems in a series of simulations. The scenarios used in the simulations

involve three tasks: sports announcements, traffic alerts, and generic attribute-value

notifications. These results show that the amount of time that it takes F3 to match

subscriptions with notifications grows logarithmically, rather than linearly, with the

number of entries in its table. However, it takes slightly longer to set up subscriptions

in F3 than in other systems. Overall, these results suggest that F3 is a promising

development in the area of Internet subscription systems.

The rest of this thesis presents the F3 subscription system in further detail. Chap-

ter 2 describes the central problem addressed by this thesis, the design of Internet

subscription systems, and analyzes previous approaches to these systems. Chapter 3

describes an alternative solution to this problem, the F3 architecture. Chapter 4

evaluates F3, both theoretically as well as through experimental comparisons to other

systems. Chapter 5 puts F3 in the context of related work in subscription systems.

Finally, Chapter 6 discusses future directions for work in this area and Chapter 7

concludes.
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Chapter 2

Background of the Problem

A variety of Internet services now use subscription systems to forward information

to interested parties. The Rebecca subscription system supports on-line trading [39].

Xfilter disseminates XML news documents [3]. DEEDS helps networked participants

conference between remote sites [18]. Gryphon delivers scores for sports events such

as the US Tennis Open and the Olympics [14]. Varied as these applications are, they

provide only a hint of the range of subscription applications that we can expect to

see in the future.

Can a single subscription system support a full range of Internet applications?

What would an adequate subscription system look like? The main purpose of this

chapter is to answer such questions. The chapter first looks at types of applications

that can be helped by subscription systems. It then sets up criteria that subscription

systems must meet to support these applications. The final section of the chapter

uses research findings to determine how well current subscription systems meet these

criteria.

2.1 Applications of Subscription Systems

One of the reasons that there has been fervent interest in subscription systems recently

is that scientists have identified so many applications that may benefit from their

eventual deployment. Examples of such applications include:

* Remote monitoring. These applications gather data from remote sites for imme-

diate transmission to distant users. Examples of remote monitoring applications

include a banking system that monitors a fleet of ATM machines; a traffic alert

system; on-line auctions; web-log (or "blog") updates; intrusion detection sys-
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tems; emergency alert systems; schedule services for planes, trains, and buses;

monitors of gas pipelines and electric grids, and weather alert services.

" Distributed data repositories. These repositories store multiple copies of the

same data, and one of the key challenges in managing these repositories is

keeping all sets of the same data consistent. Using a subscription system, each

repository holding a dataset can notify other holders of the set whenever a

change in a particular piece of data occurs. Digital libraries, HTML document

caches, and software distribution mirrors are all examples of distributed data

repositories.

* Business applications. Businesses use a variety of applications to track their

operations. Examples of business information that might be distributed through

a subscription system include inventory updates and supply-chain data.

* Multimedia applications. A wide-area, shared whiteboard is an example of an

interactive, multimedia application that might use a subscription system to

share information. Users in different geographic areas can share their ideas on a

wide-area whiteboard just as simply as they can when working together on the

same whiteboard in a single room. A subscription system can help propagate

any change made by a user to all other sites. Other examples of multimedia

applications that could use subscription systems are massively multiplayer on-

line games and on-line entertainment events.

These are just a few of the applications that may benefit from subscription systems.

In fact, a subscription system can help any networked application whose operations

are driven by the occurrence of unpredictable events.

2.1.1 Application Characteristics

This simple taxonomy provided above suggests that a subscription system infras-

tructure must support service providers with very different needs and requirements.

Consider, for example, two remote monitoring systems: an intrusion detection system

and a traffic alert system. An intrusion detector might request notifications about

a small number of discrete locations. Subscriptions for traffic alerts might cover

complex and overlapping traffic routes. Table 2.1 further illustrates dimensions in

which subscription services vary and services that fall at the opposite ends of these

dimensions.
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Characteristic Extremes
Subscription A subscriber to an intrusion de- A subscriber to a traffic alert
complexity tection system might request no- system can request notifications

tifications about a handful of con- from a complex list of overlapping
ditions. traffic routes.

Data format A document repository system A shared whiteboard applica-
may distribute HTML documents tion may distribute multimedia,

graphical data
Message size A location-tracking system can A camera sensor might need to

fit an notification into a single, use multiple messages to carry a
MTU-sized message. single notification.

Reliability A stock-market ticker may be An intrusion-detection system
able to tolerate the loss of an oc- may not be able to tolerate the
casional message. loss of even one message.

Privacy An airline gives the general public A patient gives only her doctor
access to flight schedule updates. access to medical updates.

Geographic range Subscribers to a building evacu- Subscribers to an electronic auc-
ation alert are often limited to a tion system may span an entire
specific office or organization. country.

Delays Subscribers to AP news an- A system that automatically re-
nouncements can tolerate seconds sponds to virus detection notifi-
of delay. cations may only be able to toler-

ate milliseconds of delays.
Frequency A ticket sales event may occur Radio broadcast events occur

only once. continuously.
Number of users Only one or two people may sub- Hundreds of thousands of users

scribe to a particular car's alarm. may to subscribe to a particular
news update.

Table 2.1: Characteristics of subscription system applications.
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2.2 Evaluation Criteria

Based on the examples provided in Table 2.1, it is clear that future subscription

systems must be able to support a wide variety of application characteristics. It is

possible to group the characteristics provided in Table 2.1 under three broad criteria:

flexibility, efficiency, and analytic ability. Flexibility refers to the ability of the system

to support services with varying characteristics. Efficiency is the ability of a system

to function economically. Analytic ability is the ability of the system to analyze

relationships among categories of subscriptions and notifications.

A flexible subscription system adapts easily to different and changing needs of

users and providers. A flexible system would adapt to each of the following:

" Multiple data formats. The system would support a variety of data formats. For

example, it would support both public, uncompressed text data and private,

compressed, audio-stream data.

" Varying reliability requirements. The system would support both reliable deliv-

ery notifications and less reliable notifications.

" Changing user needs. The system would adjust easily to changing user needs.

For example, a content provider could change the names of subscription cate-

gories without having to make major revisions throughout the network.

Flexibility is thus a broad requirement. Subscription systems that have this quality

would not only support a variety of subscription services but the services would evolve

and grow naturally without a major overhaul of the services.

An efficient subscription system would operate with little or no waste of system

resources. There are several costs that are important to consider:

" Traffic loads. The system should deliver messages without creating excessive

amounts of traffic in the network.

" Forwarding times. Routers should be able to direct messages efficiently from

incoming links to outgoing links.

* Storage requirements. The amount of storage required to maintain subscription

should not be excessive.

If the cost of a system is excessive, no one will use it, no matter how attractive the

system is in other respects.
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A system with analytic ability can analyze relationships within and between sub-

scription and notification topics. An analytic system can tell when a single notification

is relevant to multiple subscription categories so that the system can ensure that each

subscriber receives only one notification when an event occurs. Systems without an-

alytic ability cannot perform the necessary analyses and can flood a user's computer

with duplicate notices on the same event.

2.3 Subscription System Fundamentals

Figure 2-1 depicts the fundamental elements that characterize most subscription sub-

scription systems. Subscribers, shown at the bottom of (a), submit requests for

information updates to the subscription system in the form of subscription messages.

Information providers, shown at the top of the figure, provide these information up-

dates in the form of notification messages.

Subscribers and information providers interact with the subscription system through

the subscription system's interface. This interface dictates the services that sub-

scribers and information providers can request from the subscription system. Sub-

scription services typically include such basic activities as subscribing, notifying, and

unsubscribing. Services may also include requesting different qualities of service, such

as reliable versus less reliable delivery.

Between subscribers and information providers lies the Internet and the subscrip-

tion system itself. Subscription systems use a topology of one or more event routers

to disseminate updates from notification sources to appropriate subscribers. Event

routers are sometimes called brokers or servers in the literature.

Multi-router subscription systems, also called multicast subscription systems, typ-

ically use an overlay network of dissemination trees to distribute messages to sub-

scribers. In such systems, each router typically maintains two separate tables, a

routing table and a notification forwarding table, as depicted in Figure 2-1 (b). A

system's routing table specifies what route messages should take to reach a particular

destination in the network. Most subscription systems use standard approaches to

routing, such as shortest-path first routing [381, to create these tables. It is important

to note that routing tables do not store information about subscriptions, or which

messages should be sent to particular destinations in the network. Routing tables

only indicate how these destinations may be reached through the router topology.

Routers store information about subscriptions in notification forwarding tables,

also depicted in Figure 2-1 (b). Forwarding tables indicate which router interfaces
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Symbol=INTL

Figure 2-1: Overall subscription system architecture (a) and the architecture of an
individual router (b).
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Figure 2-2: Unicast subscription systems. A single router handles all subscriptions
and notifications. All messages are sent to and from the router using the existing
unicast infrastructure.

should receive copies of particular notifications. When a router receives a notification

message, it checks the notification message against entries in its forwarding table.

When it finds a match, it receives a list of neighbors to which the message should be

forwarded. It then sends a copy of the notification to each of these neighbors. The

algorithm that a particular subscription system uses to store subscriptions and match

notifications to subscriptions is called its forwarding algorithm.

2.4 Evaluation of Current Approaches

2.4.1 Unicast Systems

Unicast subscription systems are commonplace in today's commercial world. Ebay

sends email notices to customers who ask to be notified about selected auction items.

Amazon sends email notices to customers whose reading preferences are inferred from

earlier purchases. Google and the New York Times send email alerts on news top-

ics of interest to subscribers. And interest in unicast subscription systems may be

growing. Several research groups are now working to develop general purpose tools to

help unicast subscription providers. Relevant tools include HTTP-push systems [47],

early Corba Event-Systems [34], Le Subscribe [46], Xfilter [3], Elvin4 [51], Keryx [8],
GEM [36], and Yeast [31].

In the unicast approach, subscribers send messages directly to a single information

provider, and the provider enters the subscriptions into a central subscription router,
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sometimes also called a server or broker. This approach is depicted in Figure 2-

2. Publishers send information for publication to the same central router. Upon

receiving an item for publication, the provider looks up the topic of the publication

in its database and locates the addresses of all subscribers who are interested in the

topic. The provider then sends a copy of the publication directly to the Internet

address of each subscriber. All of these transactions are handled on the Internet's

existing unicast structure.

A recent proposal is to use virtual servers, composed of a cluster of individual

servers, to handle unicast distribution of notifications. TIBCO and JEDI are examples

of unicast systems that use this approach [59, 16]. The goal here is to reduce network

delays that can easily develop with unicast messaging by distributing the workload

of forwarding among several servers. Even though TIBCO and JEDI use multiple,

distributed servers, these systems should still be considered as unicast approaches

because their distributed servers are all located within a local area network. It should

also be noted that network delays are not usually a significant concern in local area

networks.

Unicast subscription systems are appealing because they use a simple, relatively

mature technology. They easily meet two of the three criteria for sound Internet

subscription systems. First, unicast services can be highly flexible. Unicast pro-

tocols support a wide array of features, such as congestion-control, reliability, and

privacy, and when subscription services change and grow, an information provider

needs to make changes only on a central server, not on special event routers dis-

tributed throughout the Internet. Second, unicast service providers can carry out

complex analyses of subscriptions and notification topics in its database. Ensuring

that each subscriber receives only one copy of a given notification is a simple operation

in most database management systems. Overall, the only factor limiting analyses of

subscription requests and flexibility of services in unicast systems is the ingenuity of

the software designers who write database management systems for central servers.

Several researchers have noted, however, that unicast systems have one crucial

failing [17, 5]. When a single notification must be delivered to a large number of

subscribers, these systems can be inefficient and wasteful of resources. A stock-market

system that sends real-time quotes to millions of users, for example, can easily clog the

network with notification messages. Clogged messages are costly in terms of network

bandwidth and delays. Overall, it is hard to envision a unicast system that would

efficiently distribute real-time information to millions or hundreds of millions of users.

Unicast systems must distribute as many copies of a message as there are subscribers
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Figure 2-3: Single-identifier forwarding systems. All subscription and notification
messages carry a single identifier. Forwarding tables map identifiers to router neigh-
bors.

to the topic of the message. Sending millions of copies of a message through the

network seems especially wasteful when one considers that each link in the network

need carry only a single copy for the message to reach all subscribers.

2.4.2 S ingle- Identifier Multicast Systems

Network engineers originally developed IP multicast to support multimedia applica-

tions that deliver time-sensitive content to large numbers of subscribers. Internet

television and radio are good examples of IP multicast applications. In IP multicast,

routers typically set up overlay topologies of dissemination trees to send content from

providers to subscribers, as depicted in Figure 2-3. Subscribers interested in a par-

ticular multimedia event send their subscriptions to the provider. When the provider

is ready to broadcast the event to subscribers, it addresses each packet to a single IP

multicast address, also called a channel. Upon receiving a packet, a router looks up

the multicast address in its forwarding table and then forwards the packet based on

the information it finds. Eventually the content reaches all appropriate subscribers.

Theoretically, an IP multicast system can send only a single copy of a publication

over any link in a network while disseminating the publication to millions of users.
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Several Internet Subscription Systems have been proposed that build on the IP

multicast model of communication. Examples of such systems include TIBCO [59],

early versions of the Gryphon system [41], Herald [9], i3 [55], and Scribe [49]. These

systems differ in many respects, including whether they operate in the Internet or in

an overlay network or whether they use peer-to-peer networking in their topologies.

They are all classified as single-identifier forwarding systems based on one trait they

have in common. In each system, each notification carries a single, numeric identifier,

and routers use these identifiers to forward messages.

Single-identifier subscription systems are able to support two kinds of interfaces:

subject-based (or topic-based) and content-based interfaces. In a system that offers a

subject-based interface, subscribers request information on a single subject, such as

"stocks." Providers also place each notification into a single category, and a subscrip-

tion matches a notification when the two subjects match. A subject-based interface

can be built on top of a single-identifier forwarding system by mapping an individual

subject onto a unique multicast identifier.

With content-based interfaces, subscribers request notifications based on their con-

tent, often in the form of attribute-value pairs, such as "Type=Baseball," "Game=Cubs

vs. Marlins, Date=October 20." A subscription matches a notification when the con-

tent of the notification matches the content of the subscription. The advantage of

a content-based interface over a subject-based interface is its fine-grained filtering of

notifications. Although some researchers originally argued that single-identifier sys-

tems cannot support content-based interfaces, researchers at IBM have shown that it

is possible [41]. The basic idea behind IBM's content-based system is that it assigns

each content-based subscription to a single-identifier channel. When a subscriber sub-

mits a content-based subscription to this system, it instead submits a subscription for

the identifier corresponding to the original subscription. Likewise, when a notification

source sends out a notification, it sends the notification to each of the channels that

match the notification.

Single-identifier multicast systems also meet two out of the three criteria for sound

Internet subscription systems. First, single-identifier multicast systems offer users and

providers a good deal of flexibility. These systems can disseminate data in virtually

any format, and several algorithms are available for disseminating messages securely

and reliably with these systems [21, 29, 37, 26]. In addition, changes in message

format are not a problem in single-identifier multicast systems. Providers can make

such changes without modifying network routers. Second, single-identifier multicast

systems operate efficiently. The cost of forwarding a message in such systems is
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Figure 2-4: The IP Multicast channelization problem.

comparable to the cost of forwarding a message in a unicast system. In order to

retrieve the list of interfaces to which a notification should be forwarded, a multicast

router simply needs to look up a fixed-length integer address in a hash table.

Single-identifier multicast systems have problems, however, handling subscriptions

on overlapping topics. The problem is often referred to as the IP multicast channel-

ization problem. It occurs when subscribers request information from overlapping

subscription categories, as illustrated in Figure 2-4. For example, three subscription

categories currently available from the New York Times News Tracker are: "Baseball,"

"New York," and "Boston." If the News Tracker were to disseminate notifications for

these categories using only three multicast identifiers, subscribers with interests in

two or more of the categories would receive multiple notices when a news story was

relevant to all three categories. Note that this problem exists in both subject-based

and content-based versions of single-identifier multicast systems.

The News Tracker could solve this problem by assigning a separate multicast

identifier to each of the seven disjoint sub-categories covered by the three larger

categories. To eliminate all duplication, however, applications would need 0(2 ")

multicast identifiers to disseminate n categories of notifications. Moreover, if the

news tracker added another overlapping category, for example "Baseball Trades,"

subscribers would have to change their existing subscriptions to a new set of disjoint

sub-categories. The News Tracker could try to optimize its use of multicast identifiers

by assigning identifiers to only the most active, stable news categories. Unfortunately,

this optimization problem has been shown to be NP-hard [1].
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2.4.3 Content-Based Multicast Systems

Content-based multicast systems have recently become a hot topic in network re-

search [11, 14, 45, 44, 39]. These systems resemble single-identifier multicast systems

in many respects. Content-based and single-identifier systems, for example, use the

same approaches to topology-formation and routing. Both systems are able to sup-

port a content-based interface, where subscriptions and notifications are expressed

as attribute-value pairs. Content-based multicast systems, however, were designed to

disseminate text documents, whereas single-identifier multicast systems were designed

originally to disseminate multimedia information. Content-based systems therefore

forward messages based on message text, rather than relying on a single-identifier

that must be attached to each message.

Figure 2-5 depicts a typical content-based multicast architecture. Applications

interact with a content-based system through a content-based interface. Unlike a

single-identifier system, where content-based subscriptions and notifications must be

mapped to individual identifiers before entering the network, in a content-based sys-

tem, these messages are passed to routers unmodified. When a content-based router

receives a notification, it checks the attributes and values of the notification against

the subscriptions it has received, and it forwards the notification to the appropriate

subscribers based on the results, as depicted in Figure 2-6. Current content-based
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Matches Notification

Category=Baseball Category=Baseball
Red Sox = True American League=True
Yankees = True Red Sox=True

Yankees=True
Category=Baseball Yankees Score=1
Red Sox = True Red Sox Score=3

Category=Baseball Category=-Baseball
American League=True American League=True

. National League=True

Category=Baseball . Dtroit=True
National League=True DetoistoScrue=

Houston Score=3

Figure 2-6: Content-based subscriptions and notifications formatted as attribute-
value pairs.

forwarding systems include SIENA [11], Gryphon [14], PreCache [45] Hermes [44],
and Rebecca [39].

Content-based forwarding systems get high marks on one of the three criteria

laid out in the beginning of this section. These systems provide strong support for

analysis of relationships between subscription and notification topics. By imposing

structure on messages, content-based systems make it possible for routers to match

complex, overlapping subscriptions with notifications while avoiding the IP multicast

channelization problem. But content-based forwarding systems are less successful in

the areas of flexibility and efficiency.

Flexibility

Reliable protocols. One weakness of content-based forwarding systems is the

problem of implementing reliable, end-to-end protocols in such systems. In a typ-

ical reliable protocol, message senders attach sequence numbers to each message that

they send out. Receivers then keep track of the message sequence numbers that they

have received. If they notice that a particular sequence number is missing, they flag

the message as lost and attempt to recover the data.

Unfortunately, this technique does not work in a content-based forwarding system.

Figure 2-7 illustrates the problem. In this figure, there are two subscribers, one

subscribed to Red Sox related news and one subscribed to all baseball news. The

sender sends out three messages, one about a Red Sox game, one about a Cubs game,
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a) Notification
Source
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Forwarding Table

Subscription Next-Hop

Category=Baseball A

Category=Baseball B
Red Sox=True

Subscriber A Subscriber B

This subscriber is This subscriber is
subscribed to all baseball subscribed to only
announcements. Red Sox announcements.

b) Notification
Notification Sequence Number=1
Source Category=Baseball

Red Sox=True
News="Pedro injured."

Router
Forwarding Table

Notification Subscription Next-Hop Notification
Sequence Number=1 Category=Baseball A Sequence Number=1
category=Baseball Category=Baseball
Red Sox=True |Category=Baseball B Red Sox=True
News="Pedro injured.. Red Sox=True News="Pedro injured."

Subscriber A Subscriber B
Last seq. no. = 1 Last seq. no. = 1

The source sends out a notification relating to the Red Sox.
c) Notification The message is received by both A and B.

Notification Sequence Number=2
Source Category=Baseball

Team=Chicago Cubs
News="Sosa injured."

Router
Forwarding Table

Notification Subscription Next-Hop
Sequence Number=2 Category=Baseball A
Category=Baseball
Team=Chicago Cubs Category=Baseball B
News="Sosa injured." Red Sox=True

Subscriber A Subscriber B
Last seq. no. = 2 Last seq. no. = I

The source sends out a notification relating to the Chicago Cubs.
The message is received by only A.

d) Notification
Notification Sequence Number=3
Source Category=Baseball

Red Sox=True
News="Pedro recovers."

Router
Forwarding Table

Notification Subscription Next-Hop Notification
Sequence Number=3 Category=Baseball A Sequence Number=3
Category=Baseball Category=Baseball
Red Sox=True Category=Baseball B Red Sox=True
News="Pedro recovers.. Red Sox=True News="Pedro recovers."

Subscriber A Subscriber B Error! The last sequence
Last seq. no. = 3 Last seq. no. = 3 number was 2.

The source sends out a notification relating to the Red Sox.
The message is received by both A and B. However, Subscriber B
detects a message loss, because it never received message 2.

Figure 2-7:
systems.

The problem with message loss detection in content-based forwarding
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and another message relating to the Red Sox. It assigns each of these messages a

sequence number. The system correctly does not send the Cubs message to the Red

Sox subscriber. However, the Red Sox subscriber detects the message as a loss because

it is missing a sequence number.

The question of how to perform loss detection in these systems has not been

previously addressed in the literature. A system that used reliable links between

routers would only partially solve this problem. Though the links in the network

would not lose messages, the routers themselves could lose messages due to failures

or changes in the topology of the network. In general, the problem with end-to-end

loss detection in a content-based routing system is that it is difficult for subscribers

to differentiate between lost messages and messages that have been filtered out by

routers.

New Services. Flexibility also emerges as an issue when subscription providers

wish to modify and change their services. For example, current content-based routing

systems can only match attribute-values for a few types, such as strings and integers.

Subscribers to a network monitoring system may require information about IP net-

works, however. Augmenting a content-based system to match IP addresses with

subnet masks would entail adding new machinery to every router in the subscription

system, even though only one set of applications required it.

Other examples of application-level features that one might want to add to a

content-based routing system are message encryption and compression. If message

contents are encrypted or compressed, then every single router in the subscription

system must be able to decrypt and decompress the message in order to forward it [48].

Aside from the obvious privacy concerns this approach raises, it adds significantly to

the complexity of such a system. In general, the cost of maintaining content-based

systems will be high because application-level features must be replicated on all the

routers at which forwarding decisions are made. Unless the majority of applications

requested a specific new feature, it is unlikely that the extra machinery for supporting

the feature would ever be deployed.

Efficiency

Formatting costs. Content-based multicast systems are well-suited to applications

that deal with data already structured using text-based, attribute-value pairs, but

many applications do not handle such data. To use these systems, providers would
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a) Subscription Notification

Category=Weather Category=Weather
City=Cambridge City=Cambridge, Boston, Medford...

State=MA Portsmouth, Concord, Exeter...
Portland, Kennebunk, Wells....

State = MA, NH, ME

b) Subscription Notification
Category=Weather Category=Weather
Region = Cambridge, Middlesex County, Region=Eastern MA,

Northwestern Boston Suburbs, South Eastern NH,
Northern Boston Suburbs, South Eastern ME
Boston area,
Eastern Central MA,
Eastern MA, MA,
Eastern New England,
New England

Figure 2-8: The attribute-value format can lead to long messages. To the left, a

subscriber subscribes to weather alerts for Cambridge, MA. To the right, a notifier

sends out a weather alert for parts of New England.

have to impose an attribute-value, text-based structure on their data, which can

produce long, costly messages as a result. Figure 2-8 illustrates the problem. In this

example, a subscriber requests weather alerts for Cambridge, MA, and the weather

service issues a storm alert for parts of New England, including Cambridge. Part (a)

and part (b) of Figure 2-8 illustrate two ways in which subscribers and the weather

service can format their messages using attribute-value pairs. If each subscription

specifies the name of a single city of interest, then the notification must list all cities

covered by the storm, as illustrated in (a). Alternately, if the notification lists only

the regions affected by the storm, then the subscription must list all possible regions

containing the city of interest, as illustrated in (b).

The length of these unwieldy messages can affect system performance. First, these

long messages take up a significant amount of space in notification forwarding tables.

Second, as Gruber and his colleagues have shown, the longer the message, the longer

it will take a content-based router to process the message [24].

Application-level processing costs. Compared to single-identifier multicast routers,

content-based routers spend a significant amount of time performing application-level

tasks. Whenever a content-based router receives a message, it must read the entire

message. It must then parse application-level text expressions, check syntax, and

possibly support other language features, such as type-checking and regular expres-

sion matching. In some cases, content-based routers spend more than half their time

performing these application-level tasks [24, 53].
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Matching complexity. Perhaps the most troubling aspect of content-based rout-

ing systems is the time that it takes to match notifications with subscriptions in these

systems. Studies have shown that the amount of time that it takes many content-

based routers to match a subscription with a notification grows linearly with the

number of subscriptions it has received [43, 3, 6, 12, 21. In other words, the more

subscriptions the router has received, the longer it takes to process each notification.

One of the main reasons for using multicast systems over unicast systems is to

reduce delays caused by excessive network traffic. Content-based multicast systems

do not require excessive network traffic. If content-based routers take much more

time to process notifications, however, one might question whether there is any cost

advantage in using content-based multicast. For example, it takes some content-

based multicast systems 100 milliseconds to process a single message. An equivalent

unicast system might have to process 100 such messages, but it would take less than a

millisecond to process them all. In this case, the unicast system is not only faster, but

it requires no new infrastructure to deploy. The problem of notification processing

time is sufficiently challenging that the development of efficient matching algorithms

for content-based systems has now become a hot topic of research [2, 46, 6, 43, 3, 121.

2.4.4 Summary

Though it is clear that many applications need to disseminate time-critical data to

large numbers of users, it is not clear that either single-identifier or content-based

multicast adequately achieve this goal. Single-identifier addresses do not seem rich

enough to express the complex relationships that exist between real-world subscription

categories. Content-based multicast systems, which support application-level features

at the router-level, are able to handle complex subscription relationships. However,

content-based systems must sacrifice features such as multiple data formats, privacy,

evolvability, and efficiency.
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Chapter 3

The F3 Subscription System

F3 is an alternative to the subscription systems described in the preceding chapter.

Like content-based routing systems, F3 is a mnulticast subscription system designed

to handle complex subscription requests. Three features, however, distinguish F3

from content-based systems: subs cription-time processing, which decreases notifica-

tion processing times; preprocessors, which analyze incoming messages and attach

routing information to them; and content graph headers, which F3 routers use in

making forwarding decisions. This chapter gives the rationale behind these three

features and also provides a detailed description of F3 architecture.

3.1 Subscription-Time Processing

A major weakness of content-based routing systems, described in the preceding chap-

ter, is the relatively large amount of time that routers take to process notification

messages. One way to reduce the time that routers take to process notifications is

to perform extra processing steps when subscriptions arrive. For example, current

content-based routing systems, such as SIENA, would perform more efficiently if they

tested incoming subscriptions for equality. Figure 3-1 depicts results gathered from

a SIENA content-based router in an experiment in which different numbers of sub-

scribers signed up to receive messages on the same topic. As this figure illustrates, the

time it takes the SIENA router to process a single notification grows linearly with the

number of subscriptions it has received, even though all subscriptions are identical.

This is because a router adds a record to its forwarding table each time a subscription

arrives in SIENA. The router adds the record whether or not the new subscription is

identical to subscriptions the router has already received. As a consequence, the size
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of the forwarding table grows linearly with the number of subscriptions received. On

receipt of a notification, the router must then check the contents of the notification

against each record in the table.

Processing time per notification (sec/notification)

.6
SIENA

.5

'-' .4
0

E

.53

CD
0
0

0
0 200k 400k 600k 800k 1M

Number of subscriptions received

Figure 3-1: SIENA notification time versus number of subscriptions received. In this

experiment, all subscribers subscribe to the same notification.

The router would function more efficiently if it tested incoming subscriptions for

equality before notifications arrived. In the above example, identity checking would

keep the number of entries in the forwarding table to one, no matter how many

subscriptions for the same topic were received. The time it would take the router to

process subscriptions would increase, because the router would have to check each

subscription for equality with previous entries in the table. However, the time it

would take the router to process these notifications would remain constant, rather

than growing linearly.

Testing subscriptions for equality is just one way to reduce the amount of work

that routers do when they receive notifications. A router might also sort attributes

within each subscription, sort the subscriptions themselves, or create an index for

quickly accessing entries in the table. Gough and Smith have shown that sorting

content-based predicates at subscription time can, for example, significantly improve

notification processing performance [23].

A system that sorts, analyzes, or indexes subscription requests will process sub-

scriptions more slowly than current content-based routing systems do. However, the
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extra time spent in subscription processing will reduce notification processing times.

This is because subscribers will usually receive a number of notifications for each

subscription request they submit.

3.2 Preprocessing

When a message travels through a content-based network, the network routers per-

form certain application-level tasks on the message over and over again in order to

make routing decisions. The routing process is illustrated in Figure 3-2 (a). When

a message enters a content-based system, it is passed to a router. The router parses

the message. It then identifies attributes, attribute-types, values, and operators such

as =, <, *, and so on. The router next formats this parsed information into an in-

ternal data-structure, usually optimized for efficient lookup in a multi-dimensional

table. Once the router locates the data structure in its forwarding table, it passes

the message along to one or more neighboring routers. The receiving routers then

repeat the same process: They parse the message, identify features for forwarding,

convert the features to a data-structure, look up the structure in table, and finally

forward the message. Only the last two steps are essential router functions. The

other steps-text parsing, identifying features for forwarding, and converting message

features to data-structures-are application-level steps. Furthermore, unlike the last

two forwarding steps, these steps produce the same result at every router along the

network path.

An alternative to the content-based approach is depicted in Figure 3-2 (b). Here

applications first submit messages to a special preprocessor outside of the network.

The preprocessor accepts notification and subscription messages as input, performs

all application-level processing steps, and produces formatted forwarding informa-

tion as output. The preprocessor attaches the forwarding information to the headers

of messages, and the formatted information serves as the sole basis for forwarding

within the subscription system. Some applications may preprocess messages immedi-

ately before submitting them to the subscription system, and others may preprocess

messages long in advance.

The idea of using a preprocessor in subscription systems is not a new one. An early

version of the Gryphon system [6, 42], developed at IBM, also used a preprocessor to

map content-based subscriptions, formatted as attribute-value pairs, to IP multicast

identifiers. Because the problem of mapping subscriptions to IP multicast identifiers

is inherently NP-hard [1], this early version of Gryphon used heuristics and advance
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knowledge of subscription patterns to send notifications to subscribers. As a result,

early Gryphon subscribers received false positives, or notifications that they had not

requested. The Gryphon system has since moved away from this approach, however,

and now uses content-based forwarding to disseminate notifications.

Though Gryphon no longer uses a preprocessor-based approach, such an approach

is worth re-evaluating for two important reasons. First, preprocessors make subscrip-

tion systems more flexible. With preprocessing, subscription services can expand their

offerings to include such features as encryption, compression, and new attribute-types

without making changes at all network routers. All the necessary changes can be made

to a subscription service's preprocessors. Second, preprocessors increase the efficiency

of the subscription system. With preprocessors, application-level analyses are com-

pleted once before the message begins traveling through the network and do not have

to be repeated at every step along the message's path. Routers in the network are

left to focus on the simple task of forwarding messages, greatly simplifying their de-

sign and making them more efficient. In general, preprocessors push the complexity

of processing application-level information to the network endpoints and out of the

network itself.
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Notification Content
Subscription System

Router Router receives
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Application-level Parse application-level
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Extract forwarding
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Format forwarding
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Forwarding information
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Figure 3-2: Content-based routers perform redundant tasks at every hop in the net-
work (a). Using preprocessors, the subscription system can avoid redundant steps
(b).
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3.3 Content Graph Headers

How much information do routers need to forward messages to other routers? De-

signers of subscription systems have given very different answers to this question.

Single-identifier multicast systems make forwarding decisions based on the limited

information contained in a single address. Content-based systems make forwarding

decisions based on their analysis of the full text of a message. Each of these ap-

proaches has its shortcomings. The information in single-identifier systems is too

limited, and single-identifier systems run into crippling problems with complex, over-

lapping subscription problems. At the other extreme, content-based systems can put

an intolerable burden on network resources because they require extensive analyses

of message text at each router. F3 represents a compromise between single-identifier

headers, which contain too little information, and content-based messages, which

contain too much.

F3 rests on a simple observation about routing: The only information that a router

needs to have to forward complex, overlapping notifications is information on overlap

among subscriptions it receives. Routers do not need information about the contents

of notifications. Instead, routers need to know only whether incoming notifications

are covered by subscriptions it has already received. That is, routers do not need to

infer from the content of Notification B (e.g., the latest price of Intel stock) that the

notice is relevant to Subscription A (e.g., a request for prices of technology stocks).

The routers need to know only that the topic of Notification B is relevant to the topic

of Subscription A.

The relationships among any set of items can be represented in a content graph,

and content graphs can therefore be used to show how topics relate to one another

in any subscription system. Formally, a content graph is a directed, acyclic graph, or

digraph that represents the partial-ordering between subscriptions. Each node in the

graph represents a set of items. Each edge in the graph represents the relationship

between two of these sets. Content graphs maintain the following invariant: If the

set of items represented by Node A is a superset of the set of streams represented by

Node B, then there exists a path in the graph from Node A to Node B.

Figure 3-3 (a) illustrates how a set of baseball topics might be arranged into a

partial-ordering. Each node in the graph represents a subscription topic, such as

"Category=Baseball" or "Team= Boston." Nodes at the top of the figure represent

the most general topics, and nodes at the bottom represent specific categories. An

arrow that points from one subscription topic in the figure to another indicates that
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Figure 3-3: A partial-ordering of baseball announcement labels (a) and their corre-

sponding content graph (b).

the first subscription topic covers a superset of notifications of the other. Figure 3-3

(b) depicts a content graph of the announcements. The application-level information

about each topic has been removed and replaced with a unique identifier. The iden-

tifiers themselves are not meaningful; they can be rearranged or replaced with any

other set of identifiers. All that matters is that the relationships among topics are

preserved. Routers can make correct decisions about routing from this information

about interrelationships alone.

A subscription system that uses content graph headers can support subscription

services with a variety of application-level interfaces. These include:

" Content-based interfaces. As the example depicted in Figure 3-4 suggestions,

preprocessors can use a simple set of rules to can automatically order attribute-

value pairs [10], and this ordering can be used to sort subscriptions into content

graphs.

" Numeric range expressions. Numeric range expressions can be partially ordered

into a graph.

" Keyword ontologies. As the example depicted in Figure 3-3 illustrates, a hierar-

chical categorization of message labels can be directly translated into a content

graph.

" Object-oriented interfaces. Using an object-oriented interface, preprocessors
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1 Cate o =Baseball

2 Category=Baseball 3 Category=Baseball
American League=true National Lea ue=true
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New York=true Detroit=true Pittsburgh=true

Houston=true

Figure 3-4: A partial-ordering of baseball subscriptions expressed as attribute-value

pairs.

would assign nodes in a content graph to classes in an object-oriented hierar-

chy [19, 20]. Programs would then use the hierarchy to classify each message

before submitting the message to the network.

Application-defined interfaces. Applications can define their own functions for

sorting subscription data. For example, an application could define a function

to sort subscriptions containing calendar dates or geographic data.

There are some subscription relationships that cannot be represented with content

graph edges. For example, graph edges do not represent partially-overlapping rela-

tionships between subscriptions. Furthermore, if the relationships between subscrip-

tions change dynamically-sometimes one subscription covers another subscription

and at other times it does not-then these subscriptions should not be represented

as a graph. Nor can content graphs be used to represent the relationships between

"active subscriptions", where each subscription is an executable program. In addi-

tion, the cost of representing subscription topics as a graph may just be too high

in some circumstances. For example, though it is theoretically possible for prepro-

cessors to arrange subscriptions containing regular expressions into a content graph,

the computational complexity of doing so may be prohibitive. In all these examples,

the content graphs corresponding to subscriptions would be completely flat, without

edges to represent static relationships between subscriptions.
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One feature of content graphs, however, make them very appealing: routers can

use them to process complex notifications efficiently. The next chapter of this the-

sis provides documentation for the claim that content-graph forwarding systems can

handle overlapping notification categories without the high memory or bandwidth

requirements of single-identifier systems. It also documents the claim that content-

graph systems process messages more efficiently than content-based forwarding sys-

tems do.
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3.4 F3 System Architecture

Like other multicast subscription systems, F3 consists of an overlay topology of

routers, which forward messages on the basis of information stored in forwarding

tables. Unlike forwarding tables in other systems, F3 forwarding tables contain con-

tent graph data, which they receive from preprocessors. The rest of this section

describes elements of F3 architecture in detail.

Notification sources obtain Notification Notificationcontent-graph headers from Message Source
preprocessors. These headers
are attached to messages and
submitted to F3.

Content-graph Content-Graph
Notification
Header Preprocessor

Message

F3 Subscription System

F3 uses an overlay network of
dissemination trees to propagate
notifications to subscribers.

Routers use content graphs Router

to store subscriptions and
disseminate notifications. 31P

Content-graph Content-Graph
Subscription Preprocessor
Header

Subscription Subscriber SL
Message pr

Rendezvous Point

Router
1

4 1

31

Content-graph
Notification
I-4nrdpr

Router

4 1

31P

Subscriber

bscribers obtain
eprocessors and

Subscriber Subscriber

content-graph headers from
submit these headers to F3.

Figure 3-5: F3 system architecture.
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3.4.1 Topology

a) Rendezvous Point A

Router B Router R RouterT

Router C Route

b) Rendezvous Point A

Router B Router R Router T

Rendezvous Next-Hop - - - - Rendezvous Next-Hop --- Rendezvous Next-Hop
Point Point Point

A A A B A R

A I

Router C Router S

Rendezvous Next-Hop Rendezvous Next-Hop
Point Point

A B A R

Figure 3-6: F3 dissemination trees. Messages flow downstream, away from the ren-
dezvous point (a). Rendezvous forwarding table entries point upstream, toward the
rendezvous point (b).

Like routers in other multicast systems [9, 55, 49, 44], F3 overlay routers are ar-

ranged into dissemination trees. Each dissemination tree is rooted at a single node,

called a rendezvous point, which is identified by a unique address. Figure 3-6 il-

lustrates a dissemination tree and its place in the F3 architecture. Each router in

the overlay network maintains a special forwarding table, called its rendezvous for-

warding table. The rendezvous forwarding table indicates the next hop on the path

to a rendezvous point. In terms of the dissemination tree topology, entries in the

rendezvous forwarding table point up the dissemination tree toward the rendezvous

point, as illustrated in Figure 3-6. Notification messages flow down the dissemination

tree, away from the rendezvous point.

3.4.2 Namespaces

Each rendezvous point in the F3 system is automatically allocated a namespace, and

the address of the rendezvous point, also called the namespace ID, is used to identify

the namespace. The content graph identifiers within a namespace are called node IDs.
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These node IDs must be unique within the namespace, but two different namespaces

may contain the same node IDs. The administrator for a given rendezvous point also

manages its namespace. This administrator allocates node IDs to applications, and

provides the preprocessors that analyze incoming messages. F3 routers do not handle

any of these tasks.

3.4.3 Forwarding

One of the features that sets F3 apart from other systems is its use of content graphs

to forward notifications. There are a number of ways to use content graphs in a

forwarding algorithm, however. This section first presents a simple approach to for-

warding using content graphs. It then presents successive refinements on this basic

approach, and finally presents the forwarding algorithm used by F3.

Content-List Forwarding. Content-list forwarding is the simplest way to use con-

tent graphs in a subscription system. Figure 3-7 describes the preprocessor algorithm

for content-list forwarding. For the purpose of this discussion, we assume that a sin-

gle, central preprocessor stores the entire content graph for its namespace and handles

all preprocessing for the namespace. A later section discusses other ways in which

preprocessors may be designed. When a subscription arrives at the preprocessor,

the preprocessor finds the node in its graph that exactly matches the subscription.

It finds the identifier, or node ID, associated with that subscription in the content

graph, and returns this node ID to the subscriber. When the preprocessor receives a

notification, it finds all the nodes belonging to the superset graph for the notification.

The superset graph for the notification consists of all the nodes in the graph that

cover the notification. It adds a list of all the node IDs in the superset graph to the

header of the message and returns the message to the subscriber. This approach is

called content-list forwarding because the preprocessor appends a list to the header of

each notification, listing all the content graph identifiers that match the notification.

Figure 3-8 describes the algorithm for setting up subscriptions and forwarding

notifications using content lists at a router. In content-list forwarding, routers do not

actually store any information about the structure of graphs. When a router receives

a subscription from one of its neighbors, it finds the node ID corresponding to the

subscription in its local table. In F3, a router's neighbor may be a subscriber or it may

be another router in the F3 topology. It then makes a note that notifications matching

the given node ID should be forwarded to the given neighbor. If the router has
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never received a subscription for the node ID before, it also forwards the subscription

upstream toward the rendezvous point for that subscription. When a router receives

a notification, it finds all of the nodes specified in the header of the message in its

table. If the router has received a subscription to any of these nodes from one if its

neighbors, the router forwards a single copy of the notification to that neighbor.

Figure 3-9 illustrates how these algorithms work in the context of baseball noti-

fications. In part (a) of the figure, the preprocessor assigns each subscription topic

a unique, integer identifier. When a router receives a subscription, the router reads

the identifier in the subscription header, and adds to its forwarding table an entry

corresponding to that identifier, as depicted in (b) and (c). When a preprocessor

receives a notification, as in (d), it creates a header that lists all the nodes in the

graph that match the notification. Finally, when a content-list forwarder receives a

notification, it checks all of the identifiers listed in the header of each message. If one

of its neighbors has subscribed to a topic associated with any of these identifiers, the

router forwards a copy of the message to that neighbor, as depicted in (e) and (f).

Figure 3-10 further illustrates how these algorithms work in a network with multiple

routers.

Content-list forwarding is appealing because of its simplicity. With this approach,

routers do not have to maintain any structural information about content graphs-only

preprocessors do. The main drawback of content-list forwarding is that content lists

may have to contain many identifiers, one identifier for every subscription category

that fits a given message. When a message is represented by many identifiers, it will

take a correspondingly long time for a router to process the message.

Routers that store graphs. If routers store content graph information, it is possi-

ble to reduce notification-processing times by simplifying the headers of notifications

that carry many node IDs. A router can determine from a content graph, for exam-

ple, that an entire list of identifiers is subsumed by a single node ID. When a router

receives a notification marked with a particular node ID, the router can infer that all

the ancestors of this node also match the notification.

Figure 3-11 describes the algorithm that preprocessors use in this modified ap-

proach. When a preprocessor receives a notification, it returns a set of the lowest

nodes in the graph that match the subscription. This set maintains the following

invariants: a) all the nodes in the set match the notification and b) no node in the

set is an ancestor of any other node. This set may contain multiple nodes (e.g. in the

case where a notification is covered by multiple subscriptions, and the subscriptions
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do not completely cover each other).
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PreprocessSubscription(subscription s)
Let t be the namespace for this preprocessor
Find the node v in graph Gt that exactly matches s

Return v and t

PreprocessNotification (notification n)
Let t be the namespace for this preprocessor
Find the set of nodes V {vi . } in graph G that cover n

Return V

Figure 3-7: The content-list preprocessing algorithm.

AddSubscription(subscription s, neighbor i)
Let v be the node indicated in the header of s

Let t be the namespace indicated in the header of s
Lookup v in local table
If v is not found, insert v in table for namespace t
Add i to subscription list, i4, for u
If v's subscription list was previously empty,

Forward s toward the rendezvous point for namespace t

RouteNotification(notification n)
Let V be the set of nodes indicated in the header of n
Let t be the namespace indicated in the header of n
Let I be an initially empty set of neighbors
Foreach node v in V

Add all neighbors in the subscription list for v, iv, to I
Foreach neighbor i in I

Forward a copy of n to neighbor i

Figure 3-8: The content-list forwarding algorithm.
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Preprocessor for Namespace A
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Subscription
Team=Red Sox 4 Boston Seattle 10 Detroit 15- Houston | Pit

Subscription Header - - - 31 Boston vs. Seattle Detroit vs. Houston Houston vs. Pi

Namnespace ID: A
Node ID: 4

Subscribers first submit subscriptions to preprocessors, which return the node ID
corresponding to the subscription.

b) Router C C)
Table for Namnespace A

Node ID Neighbor
31 IF

Subscription
Namespace ID: A
Node ID: 4

| usrber F |Subscriber G|

The subscriber submits the preprocessed
subscription to a router.

Router C
Table for Namespace A

Node ID Neighbor Subscription
31 F Namespace ID: A
4 G Node ID: 4

I Subscriber F Subscriber G:|

The router updates its forwarding table
with the new subscription and forwards the
message toward the rendezvous point.

d)
Preprocessor for Namespace A

Notification Baseball 1
Boston vs. Seattl - --- American League 2 National League 3

4 Boston ..- Seattle 10 Detroit 15-- Houston . Pittsburgh

Notification-Header F 31 Boston vs. Seattle Detroit vs. Houston Houston vs. Pittsburgh 468
Namespace ID: A
Node tDs: 31,4,10,2,1

The notification source submits the notification to a preprocessor, which returns a list
of all the notification IDs that match the notification.

e) f)
Notification-Header From the rendezvous point
Namespace ID: A Notification-Header
Node IlDs: 31,4 102 1 Router C Namespace ID: A

Table for Namespace A Node Ds: 314 10 21
Node ID Neighbor

31 F S

4 G

r Subscriber FD I Subscriber G | Sbs9

The notification source submits the notification
along with the header to the rendezvous point,
and the message is disseminated by routers.

From the rendezvous point
I ~Notificatic

Router C Namespa
Table for Namespace A Node IDs

Node ID Neighbor
31 F
4 G

criber F L Subscriber G

The router looks up all the identifiers in the notification
header, and forwards the message to the appropriate
subscribers.

Figure 3-9: An example of content-list forwarding.
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Router C
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31 F
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The subscriber submits the preprocessed
subscription to a router.

c)

Notification
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Node ID Neighbor
1 B
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10 B
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Router B Naesp
Table for Namespace A Node ID:

Node ID Neighbor
1 D
10 D
31 C
4 C

Subscriber DSubscript

Router C Namespa
Table for Namespace A Node ID:

Node ID Neighbor
31 F
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ESubscriber F I Subscriber G:|

Each router adds an entry to its table for the
subscription and forwards the subscription upstream.

Rendezvous-Point
for Namespace A

Table for Namespace A

Node ID Neighbor
1 B
2 B Notificaion-Header
10 B Namespace ID: A
31 B Node IDs: 314102 1
4 B -

Router B
Table for Namespace A

-Header Node ID Neighbor
e ID: A 1 D Notification-Header
314101 10 D Namespace ID: A

31 C Node IDs: 31,4 102 1
4 C

I Subscriber D T _
Router C

Table for Namespace A
-Header Node ID Neighbor Notification-Header
e ID: A 31 F Namespace ID: A
31 4102 1 4 G Node Ds: 31 10 1

Subscriberscriber

Each router looks up all the identifiers in the notification header, and forwards the notification
to the appropriate neighbors until the notification reaches the correct subscribers.

Figure 3-10: An example of content-list forwarding with multiple routers.
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Figure 3-12 describes the algorithm for forwarding messages with content graph

data. For the purposes of this discussion, it is assumed that every router maintains a

copy of the entire content graph. Later sections of this chapter will provide more detail

on ways in which routers obtain and store portions of graph data. Routers process

subscriptions almost exactly as they do in content list systems. When the router

receives a notification in a content graph approach, however, it uses the structure of

the graph to forward the notification. Specifically, the router finds the superset graph

of all the nodes indicated in the header of the notification. If one of the router's

neighbors holds a subscription to a node in the superset graph, the router forwards a

copy of the notification to that neighbor.

Figure 3-13 illustrates how this algorithm handles baseball announcements. Pre-

processors return a single identifier for each subscription message; the identifier cor-

responds to the subscription in the content graph, as depicted in (a). When a, router

receives a subscription message from a neighbor, it looks up the node ID contained

in the message, and adds a subscription for that neighbor to its graph, as depicted

in (b) and (c). When a preprocessor receives a notification, it creates a header that

identifies the lowest node in the graph that matches the notification, as depicted in

(d). Finally, when a router receives a notification message, it finds the node in its

content graph corresponding to the message. It also traverses the graph to find all

of the node's ancestors. If any of the router's neighbors hold a subscription to a

topic represented by one of these nodes, the router forwards a copy of the message

to that neighbor, as depicted in (e) and (f). Figure 3-14 further illustrates how these

algorithms work in a network with multiple routers.

One advantage of this approach over a content-list approach is its shorter no-

tification headers. However, routers that use this approach must store additional

information about the structure of graphs. Both approaches take about the same

amount of time to process notifications. In both approaches, the amount of work

that the router performs when it receives a notification depends on the number of

nodes in the graph that match the notification.
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PreprocessSubscription(subscription s)
Let t be the namespace for this preprocessor
Find the node v in graph G that exactly matches s
Return v and t

PreprocessNotification(notification n)
Let t be the namespace for this preprocessor
Let V be the lowest nodes in Gt that cover n
Return V and t

Figure 3-11: The preprocessor algorithm for routers that store graphs.

AddSubscription(subscription s, neighbor i)
Let v be the node indicated in the header of s
Let t be the namespace indicated in the header of s
Add i to subscription list, iv, for v in graph Gt
If subscription list for v was previously empty

Forward s toward the rendezvous point for namespace t

Forward Notification(notification n)
Let V be the set of nodes indicated in the header of n
Let t be the namespace indicated in the header of n
Let I be an initially empty set of neighbors
Find all the ancestor nodes AV for nodes V in graph Gt
Foreach node a in Av + V

Add all neighbors in the subscription list for a, ia, to I
Foreach neighbor i in I

Forward a copy of n to neighbor i

Figure 3-12: The forwarding algorithm for routers that store graphs.
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a)

Subscription
SoxAmerican League 2 National League 3

4| Boston --. Seattle |10 Detroit 15-- | Houston | - Pittsburgh

Subscription Header . 31 Boston vs. Seattle Detroit _. ouston Houston vs. Pitsburgh
Namespace ID: A
Node ID: 4Pb

Subscribers first submit subscriptions to preprocessors, which return the notification-Id
corresponding to the subscription.

c)

Subscription Header
Namespace ID: A
Node ID: 4

riber G | Subscriber F Subscriber G

The router updates its table with the
subscription.

d)
Preprocessor for Namespace A

Baseball 1
Notification
Boston vs. Seattl - American League 2 National League 3

4 Boston . Seattle 10 Detroit 15-- | Houston |-- Pittsburgh

Notification- Header . 31 Boston vs Seattle Detroit vs. Houston Houston vs. Pitsburgh 468

Node ID: 31c1

The notification source submits the notification to a preprocessor, which returns the lowest nodes
in the graph that match the subscription..

e)
Notification-Header
Namespace ID: A
Node ID: 31 From the rendezvous point

Router C
Table for Namespace A[

1 Notif ica
Names

S2 3 N ode 1

4 10 15 .. 30

31 F 468

E Subscriber F |Subscriber G |
The notification source submits the notification
along with the header to the rendezvous point,
and the message is disseminated by routers.

f)

From the rendezvous point

Router C
Table for Namespace A

2 3

4 10 15 .. 30

31 F 468

Subscriber F I Subscriber G

The router finds the specified nodes in its graph
and traverses the graph upward
to find subscribers.

Figure 3-13: An example of a system where routers store graphs.
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Preprocessor for Namespace A
I Baseball 1

30

468

Router C
Table for Namespace A

23
410 15 .. 3031 F 

468

b)

Sub scriberF

Router C
Table for Namespace A

2 3

4 G 10 15 .. 30

31 F 468

The subscriber submits the preprocessed
subscription to a router.

|Subsc

tion -Hea d er
pa ce IDU: A
D):31

Notification-Header
Namnespace ID: A
Node ID: 31



a) Rendezvous-Point b) Rendezvous-Point
for Namespace A for Namespace A

Table for Namespace A Table for Namespace A
1 B 1 B

2 B 3 2 B 3

4~B 10 B 15 .. 304 10 B 15 .. 30 4B 1NB 1 .3
31 BN 468 31 B 468

Subscription
Router C Router C Namespace ID: A

Table for Namespace A Table for Namespace A Node ID: 4
1 D 1 D

23 42 3

44 10 D 15 .. 30 4 C 10 D1 15 .. 30

31 C 468 31 C 468

Subscriber D -Subscriber D _
Router C Router C Subscription

Table for Namespace A Table for Namespace A Namespace ID: A
1 1 Node ID: 4

2 3 2 3

4 10 15 .. 30 * Subscription 4 G 10 15 .. 30

31 F 468 Namespace ID: A 31 F 468Node ID: 4 ______________

ubscriber F SubscrI iber F|| Subscriber G |

The subscriber submits the preprocessed Each router adds an entry to its table for the
subscription to a router. subscription and forwards the subscription upstream.

c) Rendezvous-Point
for Namespace A

Table for Namespace A
1B

2 B 3 Notification-Header

B Namespace ID: A4 B 10 B 15 .. 30 Node ID: 31

31 B 468

Router C
Table for Namespace A

1 D

Notification-Header a 2  3
Namespace ID: A 2otification-Header
Node ID: 31 C Namespace ID: A

4 C 1 D 15.. 3 Node ID: 31
31 C46

Subscriber D

Table for Namespace A
1

Notification-Header 2 3 Notification-Header
Namespace ID: A 4 G 10 15 .. 30 Namespace ID: A
Node ID: 31 [ O48 Node I D: 31,

31 F 4I

Subscriber F _ | Subscriber G

Each router looks up the node IDs in the notification header. It forwards the notification to a
neighbor if that neighbor is subscribed to the given nodes or any of their ancestors.

Figure 3-14: An example of a multiple router system where router store graphs.
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Minimal graphs. Routers would be more efficient if their forwarding tables con-

tained only information that was necessary for correct forwarding. The router in

Figure 3-13 (b) maintains a large table. The table contains information for all the

nodes in the content graph, even though the router has received a subscription re-

quest for only one of the topics represented in this graph. This not only wastes router

storage space, but it slows router performance. The router will waste time processing

graph nodes that do not correspond to subscriptions. Routers would be more efficient

if they maintained graph information for only those subscriptions that they actually

received.

Figure 3-15 illustrates an algorithm for forwarding messages using minimal graph

information. The algorithm for preprocessors is the same as before. This algorithm

assumes that routers have obtained information about a graph's structure. Specific

methods for sending such information to routers will be discussed later. When the

router in Figure 3-15 receives a notification, it finds the superset graph for the notifi-

cation, just as before. It collects a list of neighbors that hold subscriptions to nodes

in the superset graph, and it forwards a copy of the notification to those neighbors.

When a neighbor does not hold a subscription to one of the nodes listed in the notifi-

cation header, the router changes the notification header of the message. Specifically,

it finds the lowest set of nodes in the superset graph for which the neighbor holds a

subscription. The router then changes the header of the notification to specify this

set of nodes. If the router did not change the header of the message, the downstream

neighbor would receive notifications for node IDs for which it had no subscribers.

Figure 3-16 illustrates how these algorithms work in the context of baseball sub-

scriptions. In this example, we assume that routers start with the appropriate graph

information for their subscription area. When the router receives a subscription, as

depicted in (b) and (c), it adds the subscription to its forwarding table and adds

graph information to the table corresponding to that node. When the router receives

a notification, as depicted in (e) and (f), the router again finds the node in its graph

corresponding to the notification. The router forwards a copy of the notification to

subscribers of the given node or of any of the node's ancestors. In part (f), the router

changes the node ID in the header of the notification. If the router forwarded a

message marked with Node ID 31 to Subscriber G in this example, the subscriber

would drop the message because it signed up for Node ID 31. The router therefore

changes the node ID in the header of the notification to be 4, which corresponds to

G's original subscription. Figure 3-17 further illustrates how these algorithms work

in a network with multiple routers.
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This approach limits the number of routers that must be updated when graph

nodes are added to a content graph. When a new content graph node is added to a

particular namespace, only the rendezvous point for that namespace must be updated

immediately. Routers in the network do not need to be updated with new graph

information. This is because routers store graph information only for subscriptions

that they have received. Only when a router receives a subscription for a new graph

node does it retrieve graph information about that node from the rendezvous point.

Section 3.4.6, which discusses how routers receive graph information, elaborates on

this topic.

AddSubscription(subscription s, neighbor i)
Let v be the node indicated in the header of s
Let t be the namespace indicated in the header of s
If v is not yet in Gt, get graph information for v and insert v into graph G
Add i to subscription list, iv, for v
If v had no previous subscribers,

Forward s toward the rendezvous point for namespace t

ForwardNotification(notification n)
Let V be the set of nodes indicated in the header of n
Let t be the namespace indicated in the header of n
Let I be an initially empty set of neighbors
Let H be an initially empty set of notification headers
Find the set of ancestor nodes AV for nodes V in graph Gt
Foreach node a in Av + V, perform a bottom-up, breadth-first graph-traversal

Add the subscriber list for a, i,, to I
Foreach neighbor i indicated in subscriber list for a, la

Let hi be the header for neighbor i in H
If a has no descendants in hi, add a to the header hi

Foreach neighbor i in I

Forward a copy of n to neighbor i, replacing the header with hi

Figure 3-15: The forwarding algorithm for routers that minimize graphs.
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a)

Subscription American League 2 NationalLeague

Teamn=Red Sox ~ 4| Boston - Sete |10 Detroit 15-- |Houston |rg

Subscription Header 31 rBoston vs. Seatt-e Detroit vs. Houston Houston vs. Pittsburgh

Namespace ID: A
Node ID: 4

Subscribers first submit subscriptions to preprocessors, which retum the notification-Id
corresponding to the subscription.

Router C

Table for Namespace A

G

er F

I Subscriber F | |Subscriber G

The router adds the subscription to its table. It
also adds edges to the forwarding table that
correspond to the original content graph.

b) Router C c)

Table for Namespace A

31 F
Subscription Head
Namespace ID: A
Node ID: 4

Subscriber F ! | Subscriber G |1

The subscriber submits the preprocessed
subscription to a router The router
forwarding table only contains
graph information for subscriptions that it
has previously received.

d)
Prep

Notification American Leagu
Boston vs. Seatti 10

4| Boston ... Seattle |10
Notification-Header 31 Boston vs. Seattle
Namespace ID: A
Node ID: 31

e)

Notification-Header
Namespace ID A From the rendezvous point From the rendezvous point

Router C Router C

Table for Namespace A Notification-Header Table for Namespace A Notification-Header
Namjespace ID: A Namespace ID: A

4 G Kld r-AlG

31 F F

f Subscriber F r |Subscriber G r Subscriber F Subscriber G |

The notification source submits the notification
along with the header to the rendezvous point,
and the message is disseminated by routers.

The router finds the given node in its graph and
traverses the graph upward to find subscribers.
The router changes each header to reflect the
original subscription

Figure 3-16: An example of a system that minimizes content graphs.
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Preprocessor for Namespace A

Baseball 1

30

]468

rocessor for Namespace A

FBasebal7 L1
2 National League 3

Detroit 15-- Houston Pittsburgh 30

Detroit vs. Houston Houston vs. Pittsburgh 468

The notification source submits the notification to a preprocessor, which returns the lowest
nodes in the graph that match the subscription.

f)



a)

4

I Subscriber D -

| ubscriber F
The subs
subscripti

c)

Rendezvous-Point b) Rendezvous-Point
for Namespace A for Namespace A

Table for Namespace A Table for Namespace A
1 B 1 B

2 B 3 2 B 3

10 B 15 .. 30 4 B 10 B 15 .. 30

31 BN 468 31 B46

Subscription
Router C Router C Namespace ID: A

Table for Namespace A Table for Namespace A Node ID: 4

1 D 1 D

10 D 4 C 10 D

31 C 31 C

m lSubscriber D
Router C Router C Subscription

Table for Namespace A Table for Namespace A Namespace ID: A
Node 10: 4

31 F

F Subscription F

Node I D: 4

SSubscriberF G
criber submits the preprocessed Each router adds an entry to its table for the subscription
on to a router. and forwards the subscription upstream. Each router adds

edges to the graph that correspond to the new subscription.

Rendezvous-Point
for Namespace A

Table for Namespace A
1 B

2 B 3 Notification-Header

4 B 10 B 15 . 30 Node lD:31
31 B 468

Router C
Table for Namespace A

10D
Notification-Header> 
Namespace ID: A 4 C 10 D Na naer
Node ID: 10 Namnespace I D: A

Node ID: 31
3 C

~1rC
SubscriberD Router C

Table for Namespace A

G

Notification-Header Notification-Header
Namespace ID: A F Namespace ID: A

1Nod 1: 4

I Sbsriber F ]

Each router looks up the node IDs in the notification header. It forwards the notification to a neighbor
if that neighbor is subscribed to the given nodes or any of their ancestors. It also changes the node
IDs listed in the header of each notification to correspond to the original subscription.

Figure 3-17: An example of a multiple router system that minimizes content graphs.
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F3 forwarding. Routers can also reduce notification processing times by determin-

ing forwarding information when subscription requests arrive at the routers. In the

content-graph algorithms described so far, routers find information about superset

graphs when they receive notifications for particular sets of node IDs, and they use

this information in forwarding the notifications. In the F3 forwarding algorithm, on

the other hand, each router pre-computes as much forwarding information as it can

when it first receives a subscription.

In the F3 forwarding algorithm, each node in the router's graph is annotated with

output labels. Each output label contains pre-computed information that the router

would normally gather while processing notifications. Each output label indicates

two things. First, it indicates which neighbors should receive copies of a notification

marked with the given node ID. Second, it indicates what the headers of outgoing

notifications should contain. Output labels obey the following rules:

* If neighbor i holds a subscription to node v in the graph, then the output label,

Ovi, for node v and i is v.

* If neighbor i does not hold a subscription to node v in the graph, then the

output label, ovj, specifies the lowest nodes in the supergraph for v for which i

holds a subscription.

The first algorithm in Figure 3-18 specifies the steps that F3 routers take to set up

subscriptions using output labels. When a router in this figure receives a subscription

for a given neighbor, i, it finds the node in its graph that matches the subscription

node, V, and adds the subscription to v, as before. Next, the router checks the output

labels of v's descendants to see whether they are affected by the new subscription.

The router first finds the current output labels for v, o,,i and then finds the set of

all of v's descendants, the set Dv. For each descendant, d, in D., the router checks

the descendant's current output labels, Od,i. If none of the nodes listed in Od,i is in

v's descendant set, DV, then the router adds a new output label to d's output labels,

Od,i, for v and i. It also removes all of v's output labels, ovj, from od,i. Finally, the

router changes the output labels for v and i to indicate a single node, v. Figure 3-19

provides an example of how a graph's output labels change as a series of subscriptions

are added to the graph.

The second algorithm in Figure 3-18 specifies the steps that F3 routers take to

forward notifications. When the router receives a notification, it finds the correspond-

ing output labels for each of the nodes in the header of the notification. Specifically,

for each node in the header of the notification, v, and each neighbor, i, the router
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finds the output label osj. It creates a header for neighbor i, hi, by adding the nodes

in o,, to hi. Once the router has finished processing all the output labels for the

given nodes, the router processes all of the headers that it has created. If the router

has a header, hi, for one of its neighbors, i, it forwards a copy of the notification to

neighbor i with the header hi.

Figure 3-20 illustrates how the F3 algorithm works with baseball announcements.

In Figure 3-20 (b), the router starts with a single subscription from Subscriber F

for Node ID 31. When the router subsequently receives a second subscription from

Subscriber G for Node ID 4, depicted in (c), it adds an output label for Node ID 4 to

its graph. This output label indicates that Subscriber G should receive notifications

for Node ID 4, and that the header of the notification should be marked with Node ID

4. The router also traverses the descendants of the given node. For each descendant,

it checks to see whether an output label for the given subscriber exists and, if not, it

creates the output label as before. In this example, the router adds an output label

to Node ID 31, indicating that Subscriber G should receive copies of this notification,

and that the notification should be marked with Node ID 4.

When the router subsequently receives a notification, as depicted in Figure 3-20

(e) and (f), it finds the given node ID in its content graph. Instead of traversing the

graph, the router looks at the output labels annotated on the given node. For each

output label, it creates a copy of the notification, modifies the notification header

as indicated by the label, and forwards a copy of the notification to the specified

subscriber. Figure 3-21 further illustrates how the F3 algorithm works in a network

with multiple routers.

F3 forwarding tables can be slightly larger than forwarding tables in other content-

graph forwarding systems because F3 graph nodes are annotated with extra subscrip-

tion information. F3 routers also process subscriptions somewhat more slowly than

other content-graph systems do. The longer subscription-processing times are usually

offset by much quicker notification-processing times in F3.
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AddSubscription(subscription s, neighbor i)
Let v be the node indicated in the header of s
Let t be the namespace indicated in the header of s
If v is not yet in graph Gt, get graph information for v and insert v into graph Gt
If i is not on the subscription list for v, iv, add i
AdjustDescendantLabelsIfNecessary(v,i,t)
If v had no previous subscribers

Forward s toward the rendezvous point for namespace t

AdjustDescendantLabelsIfNecessary(node v, neighbor i, namespace t)
Let o,, be the output labels for node v, neighbor i

Let Dv be the set of all descendants for node v in graph Gt
Foreach node d in Dv

Let od,i be the output labels for descendant d, neighbor i
If node of the nodes in Od,i is in the set of v's descendants, D,

Subtract ovj from Od,i
Add v to Od,i

Set ovj to contain the node v

Forward Notification (notification n)

Let V be the set of nodes indicated in the header of n
Let t be the namespace indicated in the header of n
Let I be an initially empty set of neighbors
Let H be an initially empty set of notification headers
Foreach node v in V

Add the subscriber list for v, iv, to I
Foreach neighbor i indicated in subscriber list for v, i,

Let hi be the notification header for neighbor i

Let ovi be the set of output labels for node v and neighbor i
Add o,,i to hi

Foreach neighbor i in I

Forward a copy of n to neighbor i, replacing the header with hi

Figure 3-18: The F3 forwarding algorithm.
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a) 31 G(31)

Initially, the graph has one subscription
for Neighbor G for node 31.

b) LI4I I F(4) F subscribes to 4

31 F(4),G(31)

Neighbor F subscribes to node 4. The
router adds a label to node 31, indicating
that messages matching 31 should be sent
to Neighbor F, marked with Node ID 4.

c) 1 F(1) F subscribes to 1

| 4 | F(4)

31 F(4),G(31)

Neighbor F subscribes to node 1. Because all of node
1's descendants already have labels for Neighbor F, the
router does not add any labels to these descendants.

1 F(1)

4 F(4) 10 F(1),H(10)

31 F(4),G(31),H(10)

H subscribes to 10

Neighbor H subscribes to node 10. The router first adds node 10 to the graph and
updates the labels for the new node by adding a label for Neighbor F with Node ID 1.
The router then adds a label to node 10 for H. Finally, the router adds a label to node
31, indicating that messages matching 31 should be sent to Neighbor H, marked with
Node ID 10.

1 F(1)

H subscribes to 4 F(4),H(4) F(1),H(10)

31 F(4),G(31),H(4,10)

Neighbor H subscribes to node 4. The router adds a label to node 31,
indicating that messages matching 31 should be sent to neighbor H, marked
with Node ID 4. When the router receives a message marked with Node ID
31, it will send the message to Neighbors F, G, and H. Note that the
message that the router sends to Neighbor H will be marked with two node
IDs, 4 and 10.

3-19: How a graph's output labels change as subscriptions are added to the
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a)

Subscriptio
SuRbc Sox i -p - American League 2 National League 3

4H Boston - Seattle 10 Detroit 15-- Houston Pittsburgh 30

Subscription Header 31 Boston vs. Seattle Detroit vs. Houston Houston vs. Pittsburgh 4
Namespace ID: A
Node ID: 4

Subscribers first submit subscriptions to preprocessors, which return the notification-Id
corresponding to the subscription.

b) Router C c)

Table for Namespace A

31 F(31)

Subscription Header
Namespace ID: A
Node ID: 4

Subscriber F | Subscriber G 

The subscriber submits the preprocessed
subscription to a router. The router
forwarding table only contains graph
information for subscriptions that it has
previously received.

Router C

Table for Namespace A

G(4)

F(31), G(4)

| Subscriber Fj | Subscriber G |

The router adds the subscription to its table. It adds
edges to the forwarding table corresponding to the
original content graph. The router traverses the graph
downward, and modifies the output labels
of descendants, as necessary. Output-labels indicate
which interface a notification should go to and what the
header should look like.

d)
Preprocessor for Namespace A

SBaseball L1Notificatioan il
Boston vs. Seattl -- Ancan League 2 National League 3

4 Boston Seattle 10 Detroit 15.. Houston Pittsburgh

Notification-Header - 31 Boaton vs. Seattle Detroit vs. Houston Houston vs. Pittsburgh 468
Namespace ID: A
Node ID: 31

The notification source submits the notification to a preprocessor, which returns the lowest nodes
in the graph that match the subscription..

e) f)
Notification-Header
Namespace ID: A From the rendezvous point

Router C

Table for Namespace A Notification-Header
Namespace ID: A

G(4) Node ID: 31

3SbF(31),G(4) e

Subscriber F |Subscriber G I r Subscri

The notification source submits the
notification along with the header to a
router.

From the rendezvous point

\
Router C

Table for Namespace A Notificat
Namesp

G(4) Node ID

F(31),G(4)

ber F Subscriber G

ion-Header
ace ID: A
: 4

The router finds the given node in its graph. it does not
traverse the graph. It outputs a copy of the message to the
listed subscribers. he router uses the given output-labels to
change the header of the notification.

Figure 3-20: An example of F3 forwarding.
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a) Rendezvous-Point
for Namespace A

Table for Namespace A
P B(1)

2 B'2) 
3I 

U

31B(31) 4]

Router C
Table for Namespace A

1 D(1)

10 D(10)

31 C(31),D(10)

Subscriber D
Router C

Table for Namespace A

31 F(31)

Subscrip
Namesp
Node ID:

| Subscrib F I Subscriber G -1

The subscriber submits the preprocessed
subscription to a router.

C)

b) Rendezvous-Point
for Namespace A

Table for Namespace A
I B(1)

2 B(2) 3

4 (2) 10 B(1 0) 15 30

31 B(31) 468

I -Subscription
Router C Namespace ID: A

Table for Namespace A Node ID: 4

1 D(1)

4 C(4),D(1) 10 D(10)

31 C(31),D(10)
A

| ubscriber 0
Router C Subscription

Table for Namespace A Namespace ID: A
Node ID: 4

G(4)

tion 31F(31),G(4)
ace ID: A
4

Suber F | Subriber G
Each router adds an entry to its table for the subscription,
updates the output labels, and forwards the subscription
upstream.

Rendezvous-Point
for Namespace A

Table for Namespace A
1 B(1)

2 B(2) 3 Notification-Header

4 2) 10 B(10) 15 30 Namespace ID: A
Node ID: 31

31 NB(31) 468

Router C
Table for Namespace A

1 D(1)
Notification-Header
Namespace ID: A 4 C(4),D(1) 10 D(10) Notification-Header
Node ID: 10 Namespace ID: A

31 C(31),D(10)

Subscriber D I Router C
Table for Namespace A

G(4)

Notification-Header Notification-Header
Namespace ID: A F(31),G(4) Namespace ID: A
Node ID: 31 Node ID: 4

F Subscriber F | Subscriber G

Each router looks up the node IDs in the notification header. If one of the router's neighbors is listed
in the output labels for the node, the router forwards a copy of the notification to that node, changing
the label as indicated by the label.

Figure 3-21: An example of a F3 forwarding using multiple routers.
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3.4.4 Preprocessors

F3 preprocessors take message content as input and produce content graph node

identifiers as output. These preprocessors are not part of the F3 network proper.

Administrators for each namespace are responsible for setting up preprocessors to

provide identifiers. Administrators are also responsible for maintaining consistency

between the content graphs used by preprocessors and the content graphs used at

rendezvous points.

Though the specific needs of an application will determine its preprocessor design,

there are three aspects of preprocessor design that are worth discussing. The first

is the number of physical processors that make up the preprocessor. A centralized

preprocessor is a single preprocessor through which all subscriptions and notifica-

tions must pass. Centralized preprocessors are appealing because of their simple

design. The problem with using a centralized preprocessor is that the preprocessor

may become a bottleneck in the system because all messages must pass through the

preprocessor. A distributed system uses multiple, distributed processors. These pre-

processors may be co-located within a local area network or they may be scattered

around the wide area network. In the extreme case, each subscriber and notification

source would run a dedicated preprocessor for its namespace on its local machine.

The advantage of the distributed approach is that a number of preprocessors share a

load that would otherwise fall on a single preprocessor. The disadvantage with mul-

tiple preprocessors comes when the structure of the graph is changed for any reason.

This is because it is more difficult to coordinate changes to the graph among multiple

processors than it is with a single processor.

The second aspect of preprocessor design that is worth discussing is the method of

content graph generation. A static preprocessor generates its entire content graph be-

fore it receives any subscription messages. Static preprocessors can process messages

relatively quickly, because they do not spend time creating graph nodes in response to

these messages. There are certain applications that cannot use a static preprocessor.

For example, for an attribute-value application with a hundred possible attributes and

values, the number of possible subscriptions would be 100100. For such applications,

it makes sense to use a dynamic preprocessor. A dynamic preprocessor generates

its content graph in response to the subscription messages it receives. For example,

in Figure 3-3, if the preprocessor received a new subscription for "Boston OR New

York", the preprocessor would insert a new node into the graph ; the node would be

a child of "American League" subscriptions and a parent of both "New York" and
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"Boston" subscriptions, as depicted in Figure 3-22. The preprocessor would create

a new identifier for the subscription and return this identifier to the subscriber. As

mentioned previously, the preprocessor must also ensure that changes to the graph

are sent to the appropriate rendezvous point in the network. The advantage of such

dynamic preprocessors is that they have to maintain content graph nodes only for

existing subscriptions. The disadvantage of dynamic preprocessors is that they must

potentially sort and insert the subscriptions they receive. They can therefore take

more time to process subscriptions than static preprocessors.

It is important to note that a preprocessor can share some combination of the

above traits. Some preprocessors may retrieve statically generated content graph iden-

tifiers from a locally stored table. A centralized preprocessor may use web pages to

elicit dynamic subscription information from subscribers. It is even possible, though

more challenging, for a distributed preprocessor to generate graphs dynamically in

response to subscription requests. So long as the administrator for the namespace

ensures that the preprocessor graphs and the rendezvous point graph are kept con-

sistent, any of these preprocessor designs will work with F3.

.ategory=Baseball
kmerican League=true
Boston=true OR New York = true)

1 | Category=Baseball|

2Category=Baseball 3Category=Baseball

J1 American League=true National League=true

ategory=Baseball
469 merican League=true

Boston=true OR New York= true)

ICategory=Baseball Category=Baseball Category=Baseball Category=-Baseball Category=-Baseball
4 American League=true 10 American League=true 14 American League=true 20 National League=true 30 National League=true

Boston=true I -"INew York=tru e Detroit=true lHouston=true .." Pittsburgh=true

Category=Baseball Category=Baseball Category=Baseball
3American League=true 20American League=true 48National League=true
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Figure 3-22: Dynamic preprocessors take new subscriptions and insert them into
graphs on-the-fly. Here, the preprocessor inserts a new subscription for "Boston or
New York" into the content graph.
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Forwarding-Table for Namespace A
Hash-table

Node ID Descriptor Node-descriptor for Node 10

1 - -1Parents 11

4 - - -4 - - 10 Subscribers : D (Last resub = Wed Oct 20 10:510:01 2004)
Output-labels: D(10), E(1)

10 * - --- Last resub ack: Wed Oct 20 10:00:04 2004

31 0 ----- ---------- 31 Node-descriptors store information about the structure

The hash-table provides quick of the graph as well as subscription information.

access to individual node-descriptors.

Figure 3-23: An F3 notification forwarding table.

3.4.5 Notification Forwarding Tables

Each F3 router maintains a forwarding table for each namespace. These forwarding

tables are perhaps the key element in F3 functioning; they play a central role in almost

every F3 activity. Figure 3-23 illustrates a typical table. The central component of

the table is a content graph in which nodes are represented by node-descriptors. Each

node-descriptor contains several pieces of information:

" Pointers to the parents and children of the node in the content graph. Together,

the pointers in all node-descriptors make up the structure of the content graph.

" A list of downstream neighbors requesting notification messages for a given

node. Along with each neighbor's name is a timestamp, which gives the last time

the router received a resubscription request from the neighbor. This timestamp

is used to determine when a downstream neighbor has dropped a subscription.

" A list of output labels for the node. When a router receives a notification for

a particular node ID, it uses these output labels to determine which neighbors

should receive a copy of the notification. Each output label includes two things:

the name of a neighbor to whom the notification should be sent and the node

IDs that should be included in the notification header for that neighbor.

" A timestamp that indicates the last time that the router received a resubscrip-

tion acknowledgment from the router's upstream neighbor. This timestamp is

used to determine when an upstream neighbor has dropped a subscription.

The forwarding table also contains a hash-table, as illustrated at the right of Figure 3-

23. This hash-table maps node IDs to node-descriptors in the content graph. Routers
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use this hash-table to quickly look up node-descriptors in the content graph.

3.4.6 Graph Setup

Each F3 rendezvous point maintains a copy of the content graph for its identifier

namespace. These content graphs may be static representations of a subscription

topic area, input by the namespace administrator initially and changed only when the

administrator undertakes a major revision of the subscription service. Or the content

graphs may change and grow as subscribers make new requests for new subscription

topics. Whatever methods a namespace administrator uses to construct the content

graphs, it is the administrator's responsibility to ensure that an up-to-date copy of

the graph is always available at the namespace rendezvous point.

When F3 routers receive subscriptions, they send requests for content graph infor-

mation upstream toward the relevant rendezvous points. The rendezvous points, in

turn, send information about content graphs downstream to routers. The algorithm

that routers use to request and disseminate graph information is given in Figure 3-

24. When a router receives a subscription request for a node that is not already in

its graph, it adds the node to a list of nodes that are pending graph information.

It then forwards the subscription to its upstream neighbor, requesting information

about the node. If a router receives a subscription that requests graph information

from one of its neighbors, and it also has no information about the node, it will prop-

agate the request upstream toward the rendezvous point. It will also make a note

that any information it receives should eventually be sent downstream. When the

router is ready to send information about the node to one of its neighbors, it finds

the appropriate parent and child nodes for that node and neighbor in the graph. The

parents of the node are the lowest ancestors of the node to which the neighbor has

subscribed. Likewise, the children of the node are the highest descendants of the node

to which the neighbor has subscribed. The router then sends a graph-setup message

to the neighbor, specifying the parents and children of the node. Upon receiving a

graph-setup message, a router adds the node to its graph with edges to the specified

parents and children. Finally, it adds any pending subscriptions to the node using

the standard procedure for adding subscriptions to the graph.

Figure 3-25 illustrates an example of this process. In Figure 3-25 (a), Router

C has only one subscription recorded in its forwarding table at the beginning; the

subscription is for messages on the topic marked with Node ID 31 of Rendezvous

Point A. Router C then receives a subscription from Subscriber G for messages on

73



the topic marked with Node ID 4 of this namespace. As depicted in (b), Router C

makes a new entry in its forwarding table for Node ID 4 and forwards the subscription

upstream. Because C lacks additional information about Node ID 4, it also sets a

flag on the forwarded subscription and makes a note in its forwarding table that this

information is pending. When Router B receives the subscription, it takes the same

steps that Router C took, until the subscription finally reaches Rendezvous Point A.

When Rendezvous Point A receives the subscription, it sends downstream a graph-

setup message that contains the requested edge information. This process is depicted

in (c). The message first reaches Router B; the message gives this router the parent-

and child-edges that it should add to Node ID 4 in its graph. Upon receiving this

message, B adds the edge information to its table, updates its output labels for Node

ID 4, and marks the node as no longer pending. Router B then sends a message to

Router C, indicating the edges that it should add to its graph for Node ID 4. Router

C updates its graph and the process is complete.

It is important to note that F3 could use other methods to disseminate graph

information to routers. Subscribers could, for example, obtain content graph in-

formation from preprocessors and then distribute this information to routers along

with their subscription messages. The advantage of this particular approach is clear;

when a new node is added to the content graph for a particular namespace, only

the rendezvous point for that namespace must be immediately updated. Routers in

the network do not have to be updated because they only store graph information

for subscriptions that they have previously received. When routers on the path to

the rendezvous point receive a subscription for the new graph node, they propagate

requests upstream for information about the node's graph, as described above. The

rendezvous point then propagates graph information about the node back down the

path to the subscriber, and all the routers along the path then update their tables.
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AddSubscription(subscription s, neighbor i)
Let v be the node indicated in the header of s
Let t be the namespace indicated in the header of s
If v is not yet in graph Gt

Add v to list of nodes that is pending graph information
Add a subscription for i to node v,

If the subscription is marked "graph-request"
Make a note that i is "graph-request-pending" on v

Send a subscription for v upstream, marked "graph-request"
else

If the subscription is marked "graph-request", SendGraphSetup(v,i,t)
Continue with subscription algorithm as before...

SendGraphSetup(node v, neighbor i, namespace t)
Let P be the empty set of parent nodes for v
Let Av be the set of all ancestors for node v in graph Gt
Foreach node a in Av

Add a to P if i is subscribed to a and a has no descendants in Av
Let C be the empty set of child nodes for v

Let Dv be the set of all descendants for node v in graph Gt
Foreach node d in Dv

Add d to C if i is subscribed to c and c has no ancestors in Dv
Send a Graph-setup message downstream, containing v, t, P, and C

ReceiveGraphSetup(node v, namespace t, parents P, children C)
Find v in the list of nodes pending graph information
Add v to graph Gt
Add P to the parent list for v
Add C to the child list for c
For all neighbors i subscribed to v

AddSubscription(v,i)
If i is marked "graph-request-pending" on v

Send Gra phSetu p(v4,it)
Remove all marks from v

Figure 3-24: The algorithm that F3 routers use to set up graphs.
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b)

Router B
Table for Namespace A

1 D(1)

0D(10)

31C(31),D(10)

Subscriber D

Router C
Table for Namespace A

F31F(31)

Subscription

Subscriber F Subscriber G Namespace ID: A
Node ID: 4

The subscriber submits a subscription for a new
node ID. Because the router does not have any
subscriptions for this node ID, it does not maintain
graph information about the node.

c)

Router B
Table for Namespace A

W C(4),D(1) 10 D(10)

31 C(31),D(10)

Subscriber 0 Router C
Table for Namespace A

G(4)

F(31),G(4)

Suciberf F Sbsriber G

Subscriber 0 Router C Sub
Table for Namespace A Nan

Nod
G(4) Req
Edges pending

31 F(31)

briber FuriberG

Rendezvous Point A

1 1)

2 B() 3

4 10 B(10) .. 3

31 B(31) 467

Routers on the path to the Rendezvous Point add
subscriptions to their tables and request edge
information about the new node ID.

Graph-setup
Namespace ID: A
Node ID: 4
Parents: 1
Children: 31

Graph-setup
Namespace 10: A

Jode ID: 4
Children: 31

Routers send graph-setup messages in response to edge requests.
Upon receiving a graph-setup message, each router updates its
content-graph and corresponding output-labels.

Figure 3-25: How routers obtain graph information from rendezvous points.
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3.4.7 Resubscription

F3 uses periodic resubscription and subscription acknowledgment to ensure consis-

tency of state in all routers. Figure 3-27 illustrates this process. The subscriber

or router that maintains subscriptions for a particular rendezvous point periodically

sends a resubscription message upstream toward the rendezvous point, as depicted

in (a). This resubscription message identifies the nodes in the graph for which the

router maintains an active subscription. When the upstream router receives the re-

subscription message, it looks for nodes in its graph that correspond to the message,

and the router updates the resubscription timestamps for the neighbor.

Routers also send periodic resubscription acknowledgments downstream, as de-

picted in Figure 3-27 (b). If a router maintains an active subscription for a down-

stream neighbor, it will send a resubscription acknowledgment message to that neigh-

bor. This will identify all the nodes in the router's graph for which the neighbor

currently holds subscriptions. When the downstream neighbor receives one of these

messages, it looks for the nodes in its graph that correspond to the message identifier,

and updates the resubscription-acknowledgment timestamps for the given neighbor.

SendResubscription(namespace t)
Let V be the set of all active nodes in graph G
Send a resubscription message upstream containing V

ReceiveResubscription(neighbor i, nodes V, namespace t)
Foreach node v in V

Update the resubscription timestamp for subscriber i on node v in graph Gt

SendResubscriptionAcknowledgment(namespace t)
Foreach neighbor i

Let Ki be the set of all nodes to which neighbor i is subscribed in Gt
Send a resubscription acknowledgment to i containing Ki

ReceiveResubscriptionAcknowledgment(nodes K, namespace t)
Foreach node k in K

Update the resubscription acknowledgment timestamp for node k in graph G

Figure 3-26: The resubscription algorithm.
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a)

Toward Rendezous Point A

Router C Resubscribe
Table for Namespace A Namespace ID: A

Node IDs: 4,31
4 G(4)

31 F(31),G(4)

Resubscribe Resubscribe
Namespace ID: A Namespace ID: A
Node IDs: 31 Node IDs: 4

Subscriber F ubscriber GI

Subscribers and routers periodically send resubscription
messages upstream. If a router does not receive a
resubscription within a certain timeout period, it assumes
that the subscription has been dropped.

b) Resubscribe-Ack
Namespace ID: A
Node IDs: 4,31

Router C
Table for Namespace A

4 G(4)

31F(31),G(4)

Resubscribe-Ack Resubscribe-Ack
Namespace ID: A Namespace ID: A
Node IDs: 31 Node IDs: 4

Subscriber F Subscriber G

Routers periodically send resubscription
acknowledgments downstream. If a router or
subscriber does not receive an acknowledgment
within a specific timeout period, it assumes that the
subscription has been lost.

Figure 3-27: An example of resubscription in F3.

PeriodicCheckGraph(namespace t)
Foreach node v in graph Gt

If the resubscription acknowledgment timestamp has expired,
mark the upstream subscription to v as interrupted.

Foreach neighbor i in the subscription list i, for v
If the resubscription timestamp for i has expired,

mark the downstream subscription to v from i as interrupted.

Figure 3-28: The algorithm that routers use to check subscriptions periodically.

Routers periodically check their graphs to determine whether any subscriptions

have expired. For each node in each graph, each router checks to see whether a

downstream subscriber has sent a resubscription message recently. If a neighbor has

not sent a resubscription message recently, the router considers the subscription to

be interrupted. The router also checks each node in the graph to see whether the

upstream neighbor has sent a resubscription-acknowledgment recently. Again, if the

router has not received an acknowledgment recently, it will consider the subscription

to be interrupted. If F3 cannot recover an interrupted subscription, it will drop the

subscription.
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3.4.8 Unsubscription

To remove a subscription from F3, a subscriber must submit an unsubscription mes-

sage to the same router that it used to create the subscription. Figure 3-29 presents

the detailed algorithm. Each unsubscription message must contain the same node IDs

and namespace ID that was contained in the original subscription. When the router

receives the unsubscription message, it locates in its content graph the nodes specified

in the message, and it removes the subscription from those nodes. The router also

fixes the labels for these nodes and the nodes of any descendants, if necessary. If

the router finds that any nodes listed in the unsubscription message have no more

subscribers, the router marks the node for removal from its graph. It also sends an

unsubscription message that identifies these nodes to its upstream neighbor. The

upstream neighbor continues the same process. Figure 3-30 illustrates this process

for baseball notifications.

RemoveSubscription(subscription s, neighbor i)
Let t be the namespace indicated in the header of s
Foreach node v indicated in the header of s

Remove i from subscription list, iv, for v
Let D, be the set of all descendants for node v in graph G

Foreach node d in Dv + v, perform a top-down, breadth-first traversal
Let 0 d,i be the set of output labels for node d and neighbor i
If v is in the set Od,i, remove v from Od,i then MergeParentLabels(d,i)

MergeParentLabels(node v, neighbor i)

Foreach parent p of node v

Let op,j be the set of output labels for node p and neighbor i
Add op,j to ovj

Figure 3-29: The unsubscription algorithm.

3.4.9 End-to-End Message Loss Detection

One advantage of F3 over content-based multicast systems is that F3 applications

can detect lost messages using sequence numbers. Figures 3-31 and 3-32 illustrate

one approach to such loss-detection. The rendezvous point first annotates each node

in its content graph with sequence numbers, as illustrated in Figure 3-31. Before a

subscriber submits a subscription to F3, it first sends a message to the rendezvous

point, identifying the node ID for that subscription, as shown in (a). The rendezvous
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Toward Rendezous Point A

a) b)

Router C Router C Unsubscribe

Table for Namespace A Table for Namespace A Namespace ID: A
Node IDs: 4

G(4)4

31 F(31),G(4) F(31)

Unsubscribe
Namespace ID: A

Subscriber F Subscriber GI Node lDs: 4 Subscriber FG

The router receives an unsubscription message from G. The router removes the subscription from its
table, updates its output labels, and forwards
the unsubscription message upstream, if necesasry.

Figure 3-30: An example of unsubscription in F3.

point sends back a message that lists the sequence number for the node ID, as well

as the sequence numbers for all of the node's ancestors. The subscriber stores these

node IDs and their corresponding sequence numbers in a local table, as shown in (b).

When the rendezvous point receives a notification message, it finds the lowest

node in its graph that matches the message, as depicted in Figure 3-32 (a). The

router at the rendezvous point then increments the sequence number on the relevant

nodes. The router attaches a sequence number header to the message, listing this

node and its corresponding sequence number. Finally, the router attaches a standard

F3 notification header onto the notification message and submits the message to F3.

F3 then forwards the notification to the appropriate subscribers, as depicted in

Figure 3-32 (b). F3 reads F3 headers in order to forward notification but does not

read the sequence number headers. Upon receiving a notification, each subscriber

strips off the F3 header and reads the sequence number header of the message. It

checks the sequence number for the given node ID against its local table. If the

subscriber detects a break in the sequence numbers for any given identifier, it marks

the message as lost and attempts to recover the message. Otherwise, the subscriber

simply updates the sequence numbers in its local table.

It is important to note that the above approach is an end-to-end algorithm for loss

detection. F3 routers do not participate in the detection of message losses or recovery

from these losses. The purpose of presenting this algorithm here is to illustrate the

important difference between F3 and content-based systems. Unlike content-based

forwarding systems, F3 is compatible with loss detection algorithms that use sequence

numbers.
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Rendezvous-Point A
S q. No.: 33

2 N. No.: 2833

S No.: 25 10 d'qlNo.: 2531 B(1)46 48

Seq. No.: 24 -

Request Seq. No.
Namespace ID: A

Internet Routing
Infrastructure

Subscriber F
Request Seq. No.
Namespace ID: A
Node ID: 4

The subscriber sends a request for sequence numbers directly
to the rendezvous point using the standard Internet routing
infrastructure.

Rendezvous-Point A

1 q No.: 33

2 B. No. 28 3

q No.: 25 10 eq.)No. 25

31 8(31)46 48
Seq. No.: 24

Sequence Numbers
Node ID Seq No

4 2
31

Internet Routing
Infrastructure

Sequence Numbers
Node ID Seq. No.

4 25

Subscriber F 31 24

Sequence Numbers o
Node ID Seq. No.

4 25
31 24

The rendezvous point maintains sequence numbers for every
node ini ts graph. Upon receiving the request, the rendezvous
point sends a table directly back to the subscriber. This table
specifies the sequence number for the requested node, as
well as the sequence numbers for that node's descendants. The
subscriber stores a copy of the table it receives.

Figure 3-31: An approach to sequence numbering in F3. The subscriber first sends
a request for sequence numbers directly to the rendezvous point directly through the
Internet (a). The rendezvous point maintains sequence numbers for every node in
its graph. Upon receiving the request, the rendezvous point sends a table directly
back to the subscriber (b). This table specifies the sequence number for the requested
node, as well as the sequence numbers for that node's descendants. The subscriber
stores a copy of the table it receives.
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Rendezvous-Point A
1 B(1)

Seq. No.: 33

2 <B(1)Seq. No.: 28

4 B(4) w 10 B(1 0) ...
Seq. No. :25 Seq. No.: 25

31 B(31) .. 467 468
Seq. No.: 24

F3 Routing
Infrastructure

Subscriber F

Sequence Numbers
Node ID Seq. No. 1

4 25 Subscription
31 24 Namespace ID: A

Node ID: 4

Rendezvous-Point A
1B(1)

Seq. No.: 33

2 .~c No. 283

Seq .No 25 10 0 No.: 25Sq.No.: 28

31 B(31) 467 48
Seq. No.: 25

Notification Message
Note-ids: 31
Seq. No. 24

2ext: "Pedro Injured"
F3 Routing
Infrastructure

| Notification Message
Note-Ids. 31

Subscriber F Seq. No.: 24

Sequence Numbers ext: "Ped ro Injured"
Node ID Seq. No.

4 25
31 24

Figure 3-32: An approach to loss-detection in F3. The subscriber first submits a sub-
scription to F3, and F3 sets up the subscription as before (a). When the rendezvous
point receives a notification message, it adds a header to the message, indicating the
sequence numbers of the node IDs in the message header (b). It also increments the
sequence numbers of the node IDs in its table. F3 then delivers the message to the
appropriate subscribers as before. Subscribers detect losses by noting gaps in the
sequence numbers they receive.
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3.5 Current status of F3

3.5.1 ns Simulator

A simulated version of F3 was constructed as part of this dissertation project. This

version of F3 runs on the ns simulator [52]. Developed as a variant of the Real

network simulator in 1989, ns has evolved into a public-domain simulator that is

widely used in network research. Maintained and updated by a large user base and a

small group of developers at the Information Sciences Institute at the University of

Southern California, it supports simulation of TCP, routing, and multicast protocols

over wide and wireless networks.

Three simulated applications were also developed to run in the nsenvironment.

These applications disseminate three types of announcements, including baseball no-

tices, traffic announcements, and messages formatted using attribute-value pairs.

These simulated applications have been used for comparisons of the performance

of F3 to other systems in network topologies of 1200 nodes [32], which are presented

in the next chapter.

3.5.2 Router Software

A working version of the F3 router software was also implemented as part of this

dissertation project. The router software currently runs on a standard PC in the Linux

operating environment. It is implemented in C++, and comprises approximately 6000

lines of code. There are four basic modules that make up an F3 router:

" Routing daemon. The routing daemon executes the main control loop of the

F3 router. It sets up network connections to neighboring routers and listens for

messages from these neighbors. When the routing daemon receives a message,

it passes the message to the F3 state machine module for processing.

" F3 state machine. The F3 state machine implements the core functionality of

the F3 router. The state machine processes all incoming messages as described

previously in this chapter. It also manages all the state associated with the

router. This state includes a routing table and multiple notification forwarding

tables.

" Routing table. The F3 routing table stores information about the F3 network

topology. F3 routing tables are currently configured through static configuration

files.
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* Notification forwarding table. Each notification forwarding table stores content

graph information for a single namespace in the F3 network. Notification for-

warding tables provide an neighbor for constructing graphs, traversing graphs,

traversing them, storing subscriptions, and removing them. Notification for-

warding tables also provide an neighbor for managing a graph's output labels.

The F3 router software currently runs as a user process. A version of F3 running

within the Click modular router environment is also under development [30].

3.5.3 Preprocessor Software

Two preprocessors have been developed for F3 and others are under development. The

first is an extensible preprocessor written in C++ and runs on a single processor. The

preprocessor creates content graphs dynamically, adding new nodes to its graph as

it receives subscriptions. The base preprocessor manages generic SubscriptionObject

C++ objects. SubscriptionObjects are objects that provide a core set of functions

for manipulating subscriptions and creating graphs. First, they provide functions for

converting formatted message data into SubscriptionObjects. Second, they provide

functions for testing their relationships to other SubscriptionObjects. Using these

functions, the base preprocessor can sort SubscriptionObjects into a partially-ordered

content graph.

Programmers can extend the functionality of this base preprocessor by creating

new kinds of SubscriptionObjects. For example, a programmer could define a new

class of SubscriptionObject, called a NumericRangeObject, for preprocessing numeric

range expressions. To define this new class, the programmer would have to define

functions for converting formatted message data into NumericRangeObjects. The

programmer would also have to define functions for testing the relationships between

NumericRangeObjects.

This base preprocessor has been extended to create an attribute-value prepro-

cessor. This preprocessor takes subscriptions and notifications formatted as XML

attribute-value pairs and produces F3 message headers as output. With this pre-

processor, applications can access the F3 system through the same attribute-value

neighbors that are provided in content-based routing system. To implement this pre-

processor, a new class of SubscriptionObject, called an AttributeValueObject, was

defined. AttributeValueObjects use the Xerces XML parser, implemented by Apache,

to convert XML message data into AttributeValueObjects.
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3.5.4 RSS News Dissemination Service

An actual news dissemination service also currently operates on F3. This news service

disseminates news updates from a variety of news sources, including the BBC. The

news stories submitted to F3 are formatted in RSS, a standardized XML grammar

for news announcements. Using the RSS grammar, a news publisher can specify the

title, story description, and URL associated with an individual news announcement.

F3 uses a modified version of RSS in which publishers can also specify the general

topic areas-such as "Business" or "Arts"-associated with each announcement.

Subscribers reach the dissemination service through the F3 news player, an inter-

active web page that is implemented as a Macromedia Flash program. Figure 3-33

provides a screenshot of the news player's subscription page. On this page, sub-

scribers can sign up to receive updates on a variety of topics from a news source.

The news player then formats the subscription as an RSS template and sends the

subscription to a remote preprocessor, which is specifically designed to handle RSS

news announcements. The preprocessor processes the subscription and returns the

appropriate F3 header to the news player. The news player then submits the pre-

processed subscription to a nearby F3 router, and F3 sets up the subscription as

described previously.

When an F3 news source publishes a story, it submits the story to the same

preprocessor described above. This preprocessor returns the appropriate header to

the F3 news source, the news provider appends this header to the story, and submits

the entire message to F3 for distribution to the appropriate news players. When a

news player receives the story, it updates its notification page with the new story.

Figure 3-34 contains a screenshot of the news player notification page. The news

player also pops up a small newsgram window containing the headline and summary

of the story. A popup newsgram appears at the bottom right-hand side of Figure 3-34.
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Mon Mar 111:12:16 GMT-05002OD4
Category: Status
Subscription successful. Subsequent headlines will appear in pop-up
newsgrams on your screen. To see a log of previous headlines, click on
View Headlines', above.

Figure 3-33: Screenshot of the F3 news player subscription page.
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Figure 3-34: Screenshot of the F3 news player notification page
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Chapter 4

Experimental Studies

How well does F3 actually perform? Does it process subscriptions and notifications

as quickly as competing systems do? Does it overload the network with unnecessary

traffic? What factors affect its performance? What performance measures best show

its strengths and weaknesses? This chapter presents results from four studies designed

to answer such questions. Studies 1 through 3 directly compared performance of F3

and competing subscription systems. Study 4 compared performance of F3 and a

modified version of F3. A theoretical study of these results is provided in Appendix A.

4.1 Study 1

It is well-known that unicast and multicast subscription systems can flood networks

with multiple copies of the same messages. My goal in carrying out this study was to

examine F3 message production and, more specifically, to compare F3 network traffic

to traffic in unicast and multicast systems. To make the necessary comparisons, I set

up a simulated network and made observations on traffic in unicast, multicast, and

F3 systems in varying conditions.

4.1.1 Method

The simulator used in this study was the ns network simulator [52]. The simulations

were carried out on a 1200-node, transit-stub network created using the GT-ITM

topology generator.
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Subscription Systems

This study compared performance of four approaches: one unicast approach, two

single-identifier multicast approaches, and F3.

9 Unicast. Subscribers send subscription requests directly to a notification source.

The notification makes a copy of the notification for each of the relevant sub-

scribers and addresses each copy with the subscriber's Internet address. The

notification is forwarded to the subscriber using the standard unicast routing

mechanisms.

e Single-identifier multicast with overlapping identifiers, or overlapping ID multi-

cast. When a subscriber signs up for a category of notices, the service attaches

a single predetermined identifier to the subscription. Identical subscription top-

ics receive the same identifier, and different subscription topics receive different

identifiers, even when a new subscription used overlaps or is a subset or superset

of an existing category. The identifiers do not convey anything about interre-

lationships among subscription categories. Figure 4-1 provides an example of

this type of multicast system. A subscription for results on all Red Sox games

would receive one identifier; a subscription for results on both Red Sox and

Tigers games would receive another identifier; a subscription for results on any

baseball game would receive still another. Notifications (e.g., the score for a

Red Sox vs. Tigers game) would carry only a single identifier. When a notifica-

tion was relevant to more than one topic (as in the example in Figure 4-1), the

source would have to generate multiple copies of the notification, one for each

subscription topic.

9 Multicast with disjunctive identifiers, or disjunctive ID multicast. In applica-

tions running on these multicast systems, the subscription area is first broken

into disjoint subcategories, and each subcategory is assigned a unique identi-

fier. When a subscriber submits a subscription, the subscription service must

identify all disjoint subcategories that are covered by the subscription. Each

subscription is then represented by a string of subcategory identifiers. Each

notice, however, carries a single identifier that indicates the topic of the no-

tification. An example of this type of system appears in Figure 4-2. In the

example, a subscriber has signed up for notifications on all game results. The

subscription is translated by the subscription service into a string of identifiers
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that cover all possible baseball games. Each notification carries only a, single

identifier that specifies results for a particular game.

e F3. This system is described fully in Chapter 3. Figure 3-20 illustrates the

forwarding-algorithm used by this system.

Though neither of the single-identifier multicast approaches simulated is very sophis-

ticated, in both approaches, both approaches are able to assign identifiers to the topic

space. Recall that the general problem of selecting an optimal set of identifiers for a

single-identifier multicast system is NP-hard [1].

Subscription Header Header Notification

Baseball 1 Boston vs. Detroit
Boston vs. Detroit 12Boston vs. Detroit
Boston __ames Boston vs. Detroit 
New York ames 1

Subscriptions contain only one identifier. Notifications must
be duplicated, one for every matching subscription category.

Figure 4-1: Baseball messages and their corresponding headers using a single identifier
for each overlapping subscription category.

Subscription Header Header Notification

Baseball 1,2,3.......5 12 Boston vs. Detroit

-Boston vs. Detroit MI

Boston games] 122,123.1
New York ames 110122,...,134

Notification topics are divided into dispint categories and assigned uniqe
identifiers. Subscriptions specify all matching notification identifiers.

Figure 4-2: Baseball messages and their corresponding headers using a single identifier
for each disjunctive subscription category.

Simulation Scenarios

Three scenarios were developed for this study. In each, a subscriber at each node of

the network signed up for notifications from a single source, and the network source

sent back relevant notifications in response. Due to memory requirements of the

simulation software, the three simulations were small in terms of numbers of number
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of subscribers. The scale of the simulations is adequate, however, for revealing the

real differences in performance of unicast, multicast, and F3 systems.

The first scenario modeled performance of a baseball-news service. Subscribers

in the simulated service were randomly assigned baseball teams to follow. Total

number of teams in the league was 30, and 40% of subscribers were assigned one

team to follow; 50% were assigned two teams; and 10% were assigned all teams. Each

notification from the source covered a game between a specific pair of teams, and all

pairs were equally likely to be the subject of a notification.

The second scenario modeled performance of a traffic alert system that covered

a single highway with 20 exits. Subscribers were assigned alerts on sections of the

highway between two randomly selected exits (e.g., Exits 12 through 14), and each

notification was relevant to a randomly selected stretch of highway (e.g., congestion

between Exits 5 through 12). Put another way, each subscription and notification

contained 20 possible attributes (one for each exit) and two values (selected or not).
A notification was relevant to a subscription when it covered any portion of highway

specified in the subscription. This scenario is of particular interest because traffic

subscriptions contain numeric range expressions, which can produce relatively deep

graphs. In this scenario, the maximum depth of the graph is 20, or the total number

of possible exits. Figure 4-3 depicts an example of a content graph for traffic alerts.

The third scenario modeled performance of a generic subscription service that

responded to subscriptions formatted as attribute-value pairs. Each subscription

consisted of five attributes, each with four possible values. Values were randomly

assigned to subscriptions, and the values had the same probabilities of occurrence.

Individual attributes could also contain a wildcard. The probability of occurrence of

a wildcard as the value of an attribute was .3. Notifications also consisted of four

attributes, each of which had four possible values. Probability of occurrence of any

specific value was .3. The probability that a given attribute would appear in a noti-

fication was .7. This scenario closely resembles those used in measuring performance

of such attribute-value systems as SIENA, READY, Gryphon, LeSubscribe, and Xfil-

ter [12, 24, 2, 46, 3]. Figure 4-4 depicts an example of a content graph for generic

attribute-value pairs with two attributes and two values.

For each scenario, the source sent out 1000 notifications. Routers in the network

distributed these notifications using a shortest-path dissemination tree. The simu-

lations did not contain any network losses or queuing delays. Each scenario ran 20

times using the same topology, each time with a different, random notification source.

Characteristics of the three scenarios are summarized in Table 4.1.
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Exits= 1-4

Exits=1- Exits=2-4

Exits=1 -2 Exits=2-3 Exits=3-4

Exits=1 I Eits=2 Exits=3 Exits-4

Figure 4-3: An example of a content graph for traffic alerts covering four highway
exits.

Attribute1 l
Attribute2=*

Attributel =A Attributel = B Attributel = A Attributel = B
Attribute2 = A Attribute2 = A Attribute2 = A Attribute2 = B

Attribute1 A Attribute1 = B Attribute1 = A Attribute1 = B
Attribute2 = A] Attribute2 = A Attribute2 = B Attribute

Figure 4-4: A content graph for generic attribute-value pairs with two attributes and
two values.

Performance Measures

Four outcomes were measured in this study: (a) number of notifications per link; (b)

number of identifiers stored per routing table; (c) number of identifiers contained in

each subscription header, and (d) number of identifiers contained in each notification

header. The results were tabulated in two ways: average results on each measure

for the whole network and average result for the most heavily loaded router in the

network.

4.1.2 Results

The results of this study appear in Table 4.2. The pattern of results is similar at typi-

cal router and heavily loaded routers, but performance differences of the systems were

more pronounced at heavily loaded routers. The problems of unicast and multicast

systems were also apparent with each simulation scenario, but the traffic simulation

brought out the problems of unicast and multicast systems most clearly.

The top panel of the table contains results on notifications per link. It is clear
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that unicast systems overloaded the system with notifications. At typical routers,

unicast systems produced between 2 and 5 times as much traffic as F3 produced.

At heavily loaded routers, the amount of traffic for unicast systems was between 4

and 130 times as much as for F3. Overlapping-Id multicast systems also produced

too many unnecessary messages, as much traffic 3 times as many messages as F3 at

typical routers and as much as 60 times as many at heavily loaded routers.

The next panel of the table contains results on the number of identifiers per

subscription. Overlapping-Id multicast and F3 contained only one identifier on each

subscription, whereas disjunctive ID multicast contained long strings of identifiers

on subscription messages. On the third panel of the table, which contains results

on number of identifiers per table, the results for disjunctive ID multicast are again

anomalous. Disjunctive ID tables have far more identifiers than other systems do at

both typical and heavily loaded routers.

The final panel of the table contains results on identifiers per notification. The

multicast systems contained only one identifier per notification-as required by defini-

tion. F3 produced more identifiers per notification, but it is notable that the number

of identifiers in F3 was also very small.

4.1.3 Conclusions

The simulations in Study 1 were small in scale, but they were large enough to show

the crippling weaknesses of unicast and overlapping ID multicast systems. Even

in simulations with a small number of subscription topics and a small number of

subscribers, unicast and overlapping ID multicast systems produced far too many

messages. Only one conclusion can be drawn. In larger applications with millions

of subscribers, these systems would flood a network with unnecessary and redundant

messages. Redundant messages are costly in terms of network bandwidth and delays.

Because performance improvements of an order of magnitude are possible, no further

consideration will be given to unicast and overlapping ID multicast systems in the

remaining studies in this chapter.

The performance of disjunctive ID multicast systems was more acceptable. This

system did not produce redundant copies of messages, as unicast and overlapping ID

multicast methods did. One possible concern about disjunctive ID multicast, however,

is the length of the identifier strings in subscriptions. In the simple scenarios used in

this study, the identifiers were between 20 and 120 times as long as the identifiers in

other systems. The length of the identifiers was not unmanageable, however, in these

94



small-scale simulations. Further study is needed to determine whether the length of

identifiers might be a serious problem in large-scale applications.

The performance of F3 in these small-scale simulations was very good. F3 did

not produce redundant copies of messages, and it did not attach long strings of

identifiers to subscriptions. Identifiers on notifications were longer in F3 than in

other systems. However, the identifiers were still very short. Further study of F3

performance definitely seemed warranted.

Characteristic Baseball Traffic Att. Val.
S The maximum number of subscribers per router 1200 1200 1200
i The maximum number of interfaces per router 6 6 6
N The total number of possible subscription topics 465 190 3125
d The maximum depth of the graph 3 20 5
e The maximum degree of a node in the graph 29 20 5

Table 4.1: Characteristics of 3 scenarios used in Study 1.
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Most Heavily

Typical Router Loaded Router

Format Baseball Traffic Att. Val. Baseball Traffic Att. Val.
Notifications per link

Unicast 909.1 3105.1 100.1 66,560.6 128,336.2 3898.2

Overlapping-Id 312.7 1870.0 85.3 1299.8 61,423.5 3543.9
Disjunctive ID 245.5 619.5 52.7 1000.0 1000.0 1000.0

F3 245.5 619.5 52.7 1000.0 1000.0 1000.0
Ids per subscription

Overlapping-Id 1.0 1.0 1.0 1.0 1.0 1.0

Disjunctive ID 50.8 118.4 21.8 50.7 118.5 22.0

F3 1.0 1.0 1.0 1.0 1.0 1.0
Ids per table

Overlapping-Id 4.5 3.9 16.9 361.2 187.6 955.4

Disjunctive ID 103.6 145.8 183.4 465.0 210.0 3102.5
F3 4.5 3.9 16.9 361.2 187.6 955.4

Ids per notification

Overlapping-Id 1.0 1.0 1.0 1.0 1.0 1.0
Disjunctive ID 1.0 1.0 1.0 1.0 1.0 1.0

F3 1.0 1.5 1.3 1.2 4.2 3.7

Table 4.2: Performance of 4 Internet Subscription Systems under Three Simulation

Conditions
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4.2 Study 2

My goal in carrying out this study was to determine whether F3 works more quickly

than competing systems do. Slow processing times are a known weakness of content-

based subscription systems, and network engineers have recently been working to

improve these processing times. It seemed especially important therefore to compare

the performance of F3 and content-based systems. Slow processing times may also

be a problem in disjunctive ID multicast systems, so I also included disjunctive ID

systems in this study.

4.2.1 Method

A working router was implemented in C++. The router ran on the RedHat Linux

8.0 operating system on a 2.8 GHz Intel processor with 1.2 GB of memory. F3 and

disjunctive ID multicast systems were measured on this router. Version 1.6.8 of the

SIENA fast-forwarding software was obtained from the University of Colorado [40],

and it was run on the same platform and hardware for this study.

Subscription Systems

The three subscription systems studied in this experiment were F3, disjunctive ID

multicast, and the SIENA content-based forwarding approach [13, 12]. SIENA, which

uses a fast-forwarding algorithm to match attribute-value subscriptions to notifica-

tions, is one of the oldest and best known content-based forwarding systems. Its

performance is representative of the current state-of-the-art in content-based for-

warding systems [12], and its published performance is comparable to those used in

other content-based forwarding systems, such as Le Subscribe [43, 46], Xfilter[3], and

READY [24]. It is also the only one of these systems whose software is publicly

available for experimentation. This study did not examine unicast and overlapping

ID systems because Study 1 established the crippling weakness of these systems in

large and complex applications.

Simulation scenarios

The three scenarios developed for Study 1 were used in this study. Because this study

included 1 million, rather than 1000, subscribers, the complexity of each scenario was

accordingly increased for the study. In the fist scenario subscribers could select from

100 baseball teams, rather than the 30 teams available in the previous study. In
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the second study, subscribers could request traffic alerts for a highway system of 60

exits, rather than 20. This scenario was of particular interest for investigating F3's

performance in handling deep graphs created by numeric range expressions. In this

case, the graph had a height of 60. Finally, in the third scenario, subscribers could

request notifications with 6, rather than 5, attributes and values.

In each scenario, a source sent out sent out 1000 notifications. Subscription pro-

cessing times were measured continually at a single router (with ten neighboring

routers) as the number of subscribers increased from 1 to 1 million. Performance time

was also measured when the router was forwarding the notifications to subscribers.

Each subscription was forwarded to the router from another router randomly cho-

sen from a group of four neighboring routers. Each scenario was run 20 times, and

in each repetition of a scenario, subscriptions were forwarded to the target router

from randomly chosen, neighboring routers. Characteristics of the three scenarios are

summarized in Table 4.3.

Performance Measures

Three outcomes were measured in this study: (a) the size of the forwarding table, (b)

the total time that it took the router to process subscriptions, and (c) the total time

for processing notifications.

4.2.2 Results

Table 4.4 shows subscription- and notification-processing times and table sizes for the

three simulations run with 1 million subscribers in the system. The top panel of the

table contains results on table size. The results show that the content-based SIENA

system produces much larger table sizes than disjunctive ID and F3 systems do. In

fact, the forwarding tables set up by SIENA in the three scenarios were enormous. For

the traffic alert simulation, for example, SIENA's forwarding table occupied 439 MB

of memory, whereas the F3 forwarding table occupied only 471.1 KB. In other words,

SIENA's forwarding table was approximately 1000 times the size of the forwarding

table of F3.

The middle panel of the table contains results on per-subscription processing

times. The results show that disjunctive ID systems take large amounts of time

to process subscriptions. For the baseball problem, for example, disjunctive ID time-

requirements were about 100 times as large as the time-requirements of F3. Subscrip-

tion processing times for F3 and SIENA were similar.
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The bottom panel of the table contains results on per-notification processing times.

The results for disjunctive ID and F3 systems are similar, and they are strikingly dif-

ferent from the results for SIENA. The long processing times for SIENA messages un-

doubtedly result from the enormous size of SIENA forwarding tables. The difference

in processing times for SIENA and other systems is staggering: For the attribute-value

problem, F3 required more thar three seconds per notification, whereas F3 required

less than 10 microseconds per notification. The ratio of the two processing times is

almost 300,000 to 1.

Figures 4-5- 4-7 illustrates how each measurement grew with the number of sub-

scriptions received by each router. As the graphs at the left side of Figure 4-5 il-

lustrate, the size of the SIENA forwarding table grows approximately linearly as the

number of subscribers increases from 1 to 1 million. This linear growth is very dif-

ferent from the growth in table sizes for F3 and disjunctive ID systems. The pattern

of growth for these systems can be seen in the panels at the right side of the figure.

These panels present a magnified view nearly of portions of the panels at the left.

The magnified views show that the growth in size of tables in F3 and disjunctive ID

systems stops long before one million subscriptions are reached. In the attribute value

simulation, for example, growth in table size slows at about 100,000 subscriptions.

There are only 15,625 unique subscriptions in this simulation, and a router that has

received 100,000 subscriptions has entered every possible subscription in its forward-

ing tables. SIENA forwarding tables, however, continue to grow long after growth of

other forwarding tables stops. This example illustrates the general point that SIENA

tables continue to grow, even when no new, unique subscriptions are being added to

SIENA forwarding tables.

Figure 4-6 illustrates patterns of growth in per-subscription processing time. The

patterns can be seen most clearly in the magnified views presented in the panels at the

right of the figure. Particularly notable are changes in subscription processing time

for disjunctive ID systems and F3. The per-subscriber processing time for disjunctive

ID systems spikes with a relatively small number of subscribers and ultimately drops

to dramatically low levels. The factors that produce this curve are not hard to under-

stand. Subscriptions in disjunctive ID systems can contain many identifiers; a single

attribute-value subscription with all wildcards, for example, expands to a subscrip-

tion of 56 = 15, 625 disjunctive identifiers. Routers in disjunctive systems fill up their

forwarding tables with identifiers after receiving a thousand or so subscriptions, and

they do not have to make many entries for subsequent subscribers. The total cost of

inserting ten thousand subscribers and a million subscribers is roughly the same, and
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therefore the per-subscriber cost decreases with the number of subscribers.

The cost of processing subscriptions is higher for the F3 forwarding system than

for SIENA. This is because F3 does a lot of initial work to set up content graphs. Once

content graphs are set up for initial subscribers, it takes F3 much less time to process

subsequent subscriptions. These results also show that the amount of time that it

takes F3 to process subscriptions depends upon the characteristics of the graph. The

baseball scenario involves the shallowest graphs, and F3 processes subscriptons in

this scenario very quickly. The traffic scenario involves the deepest graphs, and F3

processes subscriptions in this scenario more slowly. Even in this scenario, where

the graph has a depth of 60, the maximum amount of time it takes F3 to process

subscriptions is less than a disjunctive Id system. For large numbers of subscribers,

the extra time that F3 needs for handling subscriptions is significantly less than the

time needed by disjunctive ID systems.

As the graphs at the left side of Figure 4-7 illustrate, per-notification processing

times for SIENA increase linearly with increases in the number of subscriptions in

the system. This linear growth is very different from the growth in per-notification

processing time for F3 and disjunctive ID systems. However, the linear growth is

very similar to the growth in size of forwarding tables in SIENA with increasing sub-

scriptions. The similarity in growth for the two measures is undoubtedly related.

Processing times grow at a staggering rate in SIENA with increasing subscription

bases because table sizes increase dizzyingly with increases in the subscription base.

These results are consistent with previous studies that show that notification pro-

cessing times for content-based forwarding systems grow linearly with the number of

subscriptions in the system [12, 6, 3, 43, 46]. In contrast, the time that it takes F3

or disjunctive ID system to process notifications grows logarithmically as number of

subscriptions in the system increase.

4.2.3 Conclusions

The bottom line is that the F3 forwarding system avoids the pitfalls of content-

based and disjunctive ID systems. Although F3 processes subscriptions more slowly

than SIENA does, F3 subscription processing is faster than subscription processing

in disjunctive ID systems. Most important, F3 processes notifications quickly, even

when there are many subscriptions in the system. In this respect, F3 contrasts sharply

with content-based systems. Content-based systems process notifications quickly only

when there are a few subscriptions in the subscription base. With many subscriptions,
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notification processing proceeds at a snail's pace in content-based systems.

Characteristic Baseball Traffic Att. Val.
S The number of subscribers 1-iM 1-iM 1-AM
i The number of interfaces 10 10 10
N The maximum number of subscription topics 5151 1830 15,625
d The maximum depth of the graph 3 60 6
e The maximum degree of a node in the graph 99 60 6
m The maximum number of attributes per message 2 60 6
a The number of possible attributes 101 60 6
v The number of possible values 2 2 5

Table 4.3: Characteristics of 3 scenarios used in Study 2.

System Baseball Traffic Att. Val.
Table size (kB)

SIENA 54,384.92 439,536.4 76,859.3

Disjunctive ID 1322.9 472.7 4004.2
F3 1356.7 471.1 4532.7
Processing time per subscription (usec/subscription)

SIENA 3.9 28.4 14.7
Disjunctive ID 826.0 1481.2 290.7
F3 5.5 78.7 138.0

Processing time per notification (usec/notification)
SIENA 18,668.0 1,678,498.2 3,037,973.0

Disjunctive ID 19.9 14.9 27.5
F3 10.4 10.3 10.8

Table 4.4: Performance of 3 subscription
subscribers

systems forwarding notices to a million
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4.3 Study 3

Is the performance of F3 marginally superior to the performance of disjunctive ID

systems, or is F3 greatly superior to disjunctive ID systems? Study 2 established

that F3 outperformed disjunctive ID systems in one important area: subscription

processing. But the size of gain available from F3 varied with scenario. For baseball

and traffic alerts, F3 improved performance by more than an order or magnitude. In

the generic attribute-value simulation, performance improvement was more modest.

This study was designed as a follow up of Study 2. It examined subscription

processing times for F3 and disjunctive ID systems systematically. I varied the com-

plexity of subscription topics and observed the effects of this variation on processing

times of both F3 and disjunctive ID systems.

4.3.1 Method

The two subscription systems compared in this study were F3 and disjunctive ID

multicast systems. These two systems were implemented on the working router de-

veloped for Study 2. Implemented in C++, the router ran on a RedHat Linux 8.0

operating system on a 2.8 GHz Intel processor with 1.2 GB of memory.

Simulation scenario

The simulation used in this study was similar to the generic attribute-value simulation

used in Studies 1 and 2. The simulation modeled performance of a subscription service

that responded to subscriptions formatted as attribute-value pairs. In Studies 1 and

2, the number of attributes used in this scenario was set at six and the number of

values was set to five. In this study, the number of attributes varied between 7 and

10 in the experimental conditions. The number of values per attribute was set to

3 in all conditions. Values were randomly assigned to subscriptions, and all values

were equally likely to occur. Individual attributes could also contain a wildcard. The

probability of occurrence of a wildcard as an attribute-value was .3. Characteristics

of this scenarios are summarized in Table 4.5.

Performance Measures

The three outcomes measured in this study were the same as those in Study 2: (a)

the size of the forwarding table, (b) the total time that it took the router to process

subscriptions, and (c) the total time for processing notifications.
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4.3.2 Results

Figure 4-8 shows change in subscription-processing time, notification-processing time,

and table size as a function of number of subscription attributes. These results are

also summarized in Table 4.6. Each of the panels of Figure 4-8 shows increasingly

divergent performance as the number of attributes increases from 7 to 10. In the top

panel, forwarding table sizes grow from 500 KB to nearly 5000 KB for disjunctive

ID systems, whereas the size of F3 forwarding tables remains constant at about 200

KB as number of attributes increases. The curves in the middle panel of the figure

show results for per-subscription processing. The growth in subscription processing

time is similar to the growth in table size for both disjunctive ID systems and F3.

Subscription times rise sharply for disjunctive ID systems as subscription attributes

increase; per-subscription processing times drop slightly for F3. With 10 subscription

attributes, per-subscription processing times for disjunctive ID systems are more than

20 times the size of F3 times. The bottom panel of the figure gives per-notification

processing times. The figure shows that per-notification processing time increases for

disjunctive ID systems, whereas it decreases for F3.

The decreased efficiency of disjunctive ID systems with increases in subscription

complexity is not hard to understand. In disjunctive ID systems, the total number

of identifiers in a given subscription increases exponentially with the number of at-

tributes in the subscription. Specifically, when a subscription contains n attributes,

a single, wild-card subscription expands to 3' disjoint identifiers. All 3' identifiers

must be inserted into the disjunctive ID table, and therefore the size of the disjunc-

tive ID forwarding table grows exponentially with the number of attributes in the

subscriptions. In contrast, the size of the F3 forwarding table remains constant. This

is because the size of an F3 forwarding table depends primarily on the number of

unique subscriptions in the table. This number is a constant in these experiments.

The long identifier lists in disjunctive ID systems affect subscription processing

times. Because the number of disjoint identifiers per subscription grows exponentially

with linear growth in the number of attributes, the time it takes disjunctive ID systems

to process identifiers also grows exponentially with linear increases in number of

attributes. In contrast, the amount of per-subscription processing time for F3 actually

decreases with increases in the number of attributes. This decrease in per-subscription

processing time is due to the decrease in subscription overlap with increasing numbers

of attributes and a constant number of subscriptions. The less subscriptions overlap,

the fewer edges in a graph, and the less time it takes F3 to process each subscription.
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Finally, per-notification processing times increase for disjunctive ID systems but

decrease for F3 with increases in the number of attributes per subscription. The

increase in processing times for disjunctive ID systems is due to the exponential

growth of table sizes with growth in attributes. The time it takes F3 to process

notifications actually decrease with the number of attributes in each subscription.

This decrease in processing time occurs because of a decreasing subscription overlap

with decreasing numbers of attributes per subscription. As the number of attributes

increases, each notification is destined for fewer subscribers, and it takes F3 less and

less time to process each subscription.

4.3.3 Conclusion

This study showed that simulation conditions can affect simulation results. With sim-

ple subscription areas, disjunctive ID systems may seem competitive with F3. When

subscription areas become more complex, however, the performance of disjunctive

ID systems begins to deteriorate. Forwarding tables expand to enormous lengths,

subscription processing becomes sluggish, and notification processing deteriorates. In

contrast, F3 processing continues to be efficient as subscription areas become more

complex. Its tables remain small, its subscription processing continues to be efficient,

and it continues to process notifications quickly.
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S The number of subscribers 1000

r The number of interfaces 10

N The number of possible subscription topics 47-41

d The depth of the graph 7-10
e The degree of a node in the graph 3
m The number of attributes per message 7-10

a The number of possible attributes 7-10

* The number of possible values 3

Table 4.5: Characteristics of scenario with varying numbers of attributes.

Subscription Attributes
System 7 8 1 9 10

Size of Forwarding Table (kB)
Disjunctive ID 414.8 911.1 2235.2 4249.9

F3 142.6 132.7 127.2 120.0
Subscription Processing Time (usec/subscription)
Disjunctive ID 165.3 308.6 516.0 932.3
F3 67.3 37.8 31.0 24.6
Notification Processing Time (usec/notification)

Disjunctive ID 11.3 12.9 14.0 14.8
F3 6.4 5.1 4.7 3.9

Table 4.6: Performance of F3 and disjunctive ID systems when forwarding notices.

The subscriptions in this scenario correspond to subscriptions with varying attributes.
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Figure 4-8: Performance of F3 and disjunctive ID systems when forwarding notices.
The subscriptions in this scenario correspond to subscriptions with varying attributes.
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4.4 Study 4

How important are content graphs to a subscription system like F3? Would F3 per-

form adequately if its message headers did not include content-graph representations

of relevant subscription topics but instead contained only an unordered list of the

relevant topics? This study provided empirical answers to these questions. The

study examined performance of a modified version of F3 in which notification head-

ers contained no information about interrelationships among subscription topics. My

purpose in carrying out this study was to determine the importance of content graphs

for efficient functioning of subscription system like F3.

4.4.1 Method

The working router developed for Studies 2 and 3 was used in this study. Implemented

in C++, the router ran on a RedHat Linux 8.0 operating system on a 2.8 GHz Intel

processor with 1.2 GB of memory.

Subscription systems

The two subscription systems examined in this study were F3 and a modified ver-

sion of F3, called a content-list system. Content-list forwarding was described in

Section 3.4.3 of Chapter 3. Content-list forwarding is a variant of content-graph for-

warding, except that routers do not store edge information indicating the relationship

between subscription identifiers. Whenever a source sends out a notification, it at-

taches a list of identifiers of subscription topics for which the notification is relevant.

A router forwards a copy of the notification to one of its neighbors if that neighbor is

subscribed to any of the identifiers listed in the header of the message. By comparing

the performance of list-based systems to content-graph systems, we can measure the

benefits that graph systems achieve by storing edge information at every router.

Simulation Scenarios

Two scenarios were developed for this study. Both scenarios called for systematic

manipulation of topic overlap in the underlying content graph of the subscription

area. Other aspects of each scenario were held constant. That is, in each condition

of a scenario, number of subscribers, number of attributes, number of values, and

wildcards were set at constant values.
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The first scenario employed content graphs of varying degrees. In this scenario,
there were 1000 subscribers. The number of nodes in the content graph was set at

100. The depth of the graph was set at 5 nodes, but the degree of nodes in the

content graph varied from 1 to 50 in successive simulation trials. Figure 4-9 shows an

example two content graphs used in this scenario. In the top panel, the degree of the

graphs is 1; in the bottom panel, the degree is 2. The characteristics of this scenario

are summarized in Table 4.7.

The second scenario employed content graphs of varying depths. In this scenario,
there were 2000 subscribers. The number of nodes in the content graph was set at

1024. The degree of the graph was set at 2, and the depth varied from 1 to 10

in successive simulation trials. Figure 4-10 depicts two content graphs used in this

scenario, one with a depth of 2 and one with a depth of 3. The characteristics of this

scenario are summarized in Table 4.8.

Performance Measures

For each condition of each scenario, router performance was measured as the router

filled subscriptions with 1000 notifications. The outcomes measured were the same as

the ones measured in Studies 1 through 3: (a) the size of forwarding tables, (b) the

time to process subscriptions; and (c) the time to process notifications. Each scenario

ran 20 times and the results of each scenario were averaged together.

4.4.2 Results

Figures 4-11 shows the relationship between forwarding table size and graph charac-

teristics for F3 and content list systems. The top panel illustrates the relationship

between table size and degree, the bottom panel shows the relationship between table

size and depth. The graphs show that content list table sizes remain constant, inde-

pendent of the subscription complexity. The size of F3 tables are somewhat larger

for F3 than for content list systems, and grow with the complexity of subscriptions.

Figure 4-12 show the relationship between graph characteristics and subscription

processing times. Both panels show that processing times increase with complexity

for F3 but not for content lists. The increase in processing times is especially clear in

the top panel of the figure. With graph degree equal to 10, F3 subscription processing

times are 16 times as high as content-list processing times.

Figure 4-13 presents results on notification processing. Both panels show similar

results. As subscription overlap increases, notification processing time increases. The
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growth in notification processing time is especially striking with increases in depth of

graph. With graphs of depth 10, content-list processing times are 10 times as large

as F3 processing times. The increase in notification times in content-list systems is

due to the greater number of identifiers in content lists with high overlap in topics.

4.4.3 Conclusion

This study showed that performance differences of F3 and content list systems are

a function of the complexity of subscription areas. In small subscription areas with

little ordering of topics, content-list systems perform almost as well as F3 does. In

areas with more topics and more ordering of topics, the picture changes. Content-list

systems take much longer to process each notification, and F3 takes longer to process

subscriptions.
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Degree = 2

a=1,b=1,c=O a=1,b=O,c=1 a=O,b=1,c=1

Figure 4-9: Two graphs in which the degree of each node varies, but all other aspects
of the content graphs remains the same. The graphs depicted have a depth of 2.

S The number of subscribers 1000
r The number of interfaces 10
N The number of subscription topics 100
d The depth of the graph 5
e The degree of a node in the graph 1-10
m The number of attributes per message 100
a The number of possible attributes 100
v The number of possible values 2

Table 4.7: Characteristics of scenario with varying degree.
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a) X >= 1 X>=3 X>=5
X<=2 X<=4 X<=6

X=1 X 2 X =3 X =4 X5 X= 6

X>=1
X <=4

X >= 1 X >= 34

AX>=1 

X>=3
X<=2 X<=4

X=1 X=2 X=3 X=4

X >= 7
X<=8

X=7 X=8

X >= 5
X <= 8

X>=5 X >=7
X<=6 X<=8

X=5 X=6 X=7 X=8

Figure 4-10: Two content graphs where the depth of the graphs vary, but all other

aspects of the content graphs remain the same.

S The number of subscribers 2000

i The number of interfaces 10

N The number of possible subscription topics 516

d The depth of the graph 1-10
e The degree of a node in the graph. 2

m The number of attributes per message 1

a The number of possible attributes 1

* The number of possible values 516

Table 4.8: Characteristics of scenario with varying depth.

114

b)

Depth=2

Depth=3



Subscriptions with Varying Degree

F3-
Content Lists ----

---- ----------- --------------- ------ --- --------- -------- -----

15 F

30

25 I-

20

a

10

5

0
1 2 3 4 5 6 7 8

Degree of graph

9

140

120

100

80

Subscriptions with Varying Depth

F3
Content Lists -- - -

- -- ---------- ----------- ----

60 -

40 -

20 -

0
10 1 2 3 4 5 6 7 8 9

Depth of graph

Figure 4-11:
ing notices.
complexity.

Table size of F3 and
The subscriptions in

content list subscription systems when forward-

this scenario correspond to topics with varying

Subscriptions with Varying Degree

F3
Content Lists ---

--------- -- ---------
-- -- - --- ---

0)

CO

CDn

0

U)

1 2 3 4 5 6 7 8 9 10
Degree of graph

50

45

40

35

30

25

20

15

Subscriptions with Varying Depth

F3
Content Lists

--- - -------- -

10 F

5

0
1 2 3 4 5 6 7 8 9 10

Depth of graph

Figure 4-12: Subscription processing times of F3 and content list subscription systems
when forwarding notices. The subscriptions in this scenario correspond to topics with

varying complexity.

115

10

180

160

140

120

100

80

.2

:3

60

40

20

0

' ' ' ' ' ' ' '

0



Subscriptions with Varying Degree

F3 -

Content Lists ---

1 2 3 4 5 6 7 8 9

Degree of graph

Subscriptions with Varying Depth

250

200 -

150 -

100 -

-e

C

.

C.

50 -

0
10 1 2 3 4 5 6 7 8 9 10

Depth of graph

Figure 4-13: Subscription processing times of F3 and content list subscription systems

when forwarding notices. The subscriptions in this scenario correspond to topics with

varying complexity.

116

140

120 -

100 -

80

-E

0

G

.

0

c

a.)

60

40

F3
Content Lists

--'

20

0 ' ' ' ' ' ' ' '



Chapter 5

Related Work

This chapter describes subscription systems developed during the past decade. Most

of the systems can be classified into three categories: unicast, single-identifier inul-

ticast, and content-based multicast systems. This chapter describes systems in each

of these categories and compares the systems to F3. A few lesser-known systems, in-

cluding type-based, active subscription, and continuous query systems, are harder to

categorize. This chapter describes these systems separately and also compares their

features to features of F3.

5.1 Unicast Systems

In a unicast subscription system, subscribers send messages directly to a single infor-

mation provider, and the provider enters the subscriptions into a central subscription

server. Publishers also send publications to this server. When a server receives a

publication, it looks in its database for addresses of relevant subscribers, and it uses

the existing Internet infrastructure to forward the publication directly to these sub-

scribers.

CORBA and TAO CORBA, a distributed object system, was one of the first

software systems to support event-driven programming. With CORBA's event-driven

interface, CORBA programs can ask to be notified of events produced by CORBA

objects [34]. TAO is a commercial system that was specifically developed to distribute

notifications to CORBA programs. TAO uses a high-performance, centralized server

to distribute these notifications to subscribers in real-time [28].
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GEM, Yeast, and MediaAS GEM, Yeast, and MediaAS are three research sys-

tems that use unicast message dissemination to deliver notifications to subscribers [36,

31, 27]. With these systems, subscribers can sign up to receive notices of both in-

dividual events and sequences of events, also called compound events or composite

events. Yeast provides subscribers with the additional ability to attach event-actions

to their subscriptions. An event-action is an action that a server takes whenever an

event occurs that is relevant for a given subscription.

Web/Email Most Internet information services today use the web and email to

handle subscriptions and notifications. An example of a web/email publish-subscribe

system is the New York Times News Ticker [58]. Subscribers who are interested in

receiving information about certain news topics can go to the New York Times website

to sign up for alerts on news topics of interest. When the New York Times publishes

news on the topic, it sends an email to relevant subscribers to alert them to appearance

of the story. Other information services have set up similar systems on the Internet to

dissemination information on weather, sports, traffic, consumer products, and other

topics. Bulk emails take a long time to travel through the Internet, however, and

like spam, they can clog up mail servers. This limits the utility of these web/email

systems. These systems are ill-suited to delivery of time-critical information to large

numbers of users.

HTTP Several systems have been proposed that use HTTP rather than email to

disseminate notifications. In their proposal for internet-scale event-notification sys-

tems, Rifkin and Khare proposed the use of HTTP as a generic transport mecha-

nism for notifications [47]. The Keryx system also uses HTTP to transport event-

notifications [8]. Keryx applications use an XML-like language, called Transfer Syn-

tax, to subscribe to and publish notifications.

Le Subscribe This is a unicast publish-subscribe system developed at INRIA that

supports a content-based interface [43, 46]. In Le Subscribe, both subscriptions and

notifications are expressed as a series of attribute-value pairs. A single Le Subscribe

router delivers notifications to the correct subscribers by matching the attribute-

value pairs in a given notification with the subscriptions that it has received. Pereira

and his colleagues measured the speed of a Le Subscribe router and found that, like

other content-based systems, Le Subscribe handled notifications sluggishly [46]. Per-

notification processing times grew linearly as the number of subscribers in the system
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increased.

Xfilter Like Le Subscribe, Xfilter is a unicast publish/subscribe system that pro-

vides users with a content-based interface [3]. In Xfilter, subscribers send subscrip-

tions, expressed as Xpath attribute-value pairs, to a single Xfilter router. Notifica-

tions, expressed as XML documents, are sent to a single Xfilter router, which then

delivers the notifications to appropriate subscribers. Altinel and Franklin [3] stud-

ied the performance of an Xfilter router and found that it too handled notifications

slowly. Per-notice processing times for Xfilter, like those for LeSubscribe and content-

based subscription systems, grew linearly as the number of subscriptions in the system

increased.

TIBCO Rendezvous This is a commercial, unicast system specifically designed for

high-speed, robust delivery of notifications to electronic commerce applications [59].

Goals of TIBCO developers included improving fault tolerance and increasing perfor-

mance of subscription services. To achieve these goals TIBCO developers designed

servers that consist of multiple, distributed machines.

JEDI The Java Event-Based Distributed Infrastructure (JEDI) is a publish-subscribe

system for Java programmers [16]. Like Xfilter and Le Subscribe, JEDI subscriptions

and notifications are expressed as a set of attribute-value pairs. Like TIBCO, JEDI

uses multiple servers to distribute the load that would otherwise fall on a single server.

JEDI has been successfully used to implement the OPSS work management system.

Elvin4 Elvin4, developed at the University of Queensland, is one of the few unicast

systems to actively reduce message traffic [51]. In most unicast systems, publishers

send messages to a a centralized server, even when no subscribers have signed up

for notices on an event. Elvin4 the server solves this problem by providing quench

messages to publishers when no subscribers have signed up for event notices.

Unicast systems and F3 Both unicast and F3 provide users with flexible in-

terfaces. Unicast systems can have such interfaces because they employ a simple

centralized architecture. Managers of subscription services can add new features to

their services simply by changing software on a centralized server. F3 provides flexible

interfaces using preprocessors. Like unicast systems, information providers can mod-

ify their interfaces simply by changing preprocessor software at the network edges.
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F3 differs from unicast systems, however, in its ability to provide prompt notifica-

tions to large numbers of subscribers. Unicast systems are not designed to send out

immediate notices to millions of subscribers. F3, which makes forwarding decisions at

distributed routers, keeps message traffic to a minimum and thus avoids the network

clogging that can occur in unicast systems.

5.2 Single-Address Multicast Systems

In a single-identifier multicast system, multiple routers cooperate to distribute noti-

fications from information providers to subscribers. Subscriptions and notifications

carry single, unique numeric identifiers, and routers use these identifiers to forward

messages. The advantage of using a single-identifier multicast system to disseminate

messages is efficiency. Multicast routers forward messages by performing only one

hash-table lookup for one identifier on each message.

Herald Herald is a single-identifier multicast system that uses an overlay network

of routers to disseminate messages to subscribers [9]. In Herald, as in F3, a single

rendezvous point acts as the root of an overlay dissemination tree for each subscription

identifier. Herald is unique in that its rendezvous points may consist of multiple,

replicated servers. This allows Herald to distribute the load that would normally be

placed on a a single rendezvous-point, and it also makes Herald a very robust system.

Though F3 does not currently use multiple servers to implement rendezvous points,

but F3 could be revised to incorporate this feature.

i3 and SCRIBE Like Herald and F3, the Internet Indirection Infrastructure (i3) [55]

and SCRIBE [49] use overlay networks of dissemination trees to disseminate infor-

mation. What makes these systems unique is their use of peer-to-peer networking to

map subscription identifiers to rendezvous-points in the network. With this approach,

each subscription identifier is assigned to a random rendezvous point in the overlay

network, using a uniform hashing function. Whenever these a notification message

arrives with a particular identifier, the system hashes the identifier and forwards the

notification to the correct rendezvous-point in the peer-to-peer network.

Early Gryphon None of the single-identifier systems described so far was designed

to handle the overlap in subscription topics that is common in real-world applications.

Gryphon, developed at IBM, is one of the few single-identifier systems that does this.
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Researchers at IBM were the first to define the IP multicast channelization problem

and to prove that this problem is NP-hard to solve [1]. The early Gryphon system

therefore used heuristics to map subscriptions, expressed as attribute-value pairs,
onto subscription identifiers using preprocessors [6, 42]. Gryphon is also noteworthy

because it is one of the few publish-subscribe systems that has been widely used. It

has been used, for example, to deliver real-time sports scores for the US Tennis Open,
the Ryder cup, The Australian Open, and the Sydney Olympics Internet. Gryphon

has since evolved and instead uses content-based forwarding to forward notifications.

Its current design is described further in Section 5.3.

Single-identifier Multicast Systems and F3 Of the systems described in this

chapter, the early Gryphon system resembles F3 the most. Both systems use prepro-

cessors to translate subscriptions from high-level subscription languages into low-level

formats for forwarding. The low-level formats used in the two systems are different,
however. In Gryphon, the preprocessor produces single identifiers, whereas in F3, the

preprocessor produces content graph identifiers. In addition, the early Gryphon sys-

tem, unlike F3, uses heuristics to assign identifiers to subscriptions and notifications.

This means that Gryphon subscribers may receive false positives, or publications that

they have not requested. It also means that Gryphon requires information about ear-

lier subscription patterns for its heuristics. F3 does not use heuristics in assigning

identifiers. It does not produce false positives, and it does not require information

about earlier subscriptions to forward messages efficiently.

The overall architectural design of F3 and single-identifier multicast systems is

clearly different. Single-identifier multicast routers use simple hash-tables to store

subscriptions. F3 router hash-tables are more complex. Hash-tables in F3 routers

store not only identifiers but also information about interrelationship among identi-

fiers. In addition, records of F3 subscriptions and notifications may contain multiple

identifiers, and so F3 routers may have to perform multiple hash-table lookups to

forward a single notification.

As the empirical results presented in the previous chapter show, these architectural

differences have a significant impact on the cost of these systems. Single-identifier

multicast systems perform poorly in delivering notices with overlapping topics. In

this case, single-identifier multicast systems either use excessive bandwidth or require

large routing tables and incur high subscription costs. Though F3 content graphs are

more complex to maintain, this extra complexity can account for a significant savings

in terms of network bandwidth, table size, and subscription costs.
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5.3 Content-based Multicast Systems

Subscribers to content-based systems submit subscription requests that describe the

content that interests the subscriber. Content-based routers store subscription infor-

mation, and whenever a router receives a notification message, the router checks to

see whether the message is relevant for subscribers in its list. In most content-based

systems, subscriptions and notifications are formatted as attribute-value pairs, which

makes it possible for routers to match notifications systematically with subscriptions.

SIENA SIENA Developed at the University of Colorado, SIENA was one of the

first subscription systems to use content-based forwarding [13, 12]. In SIENA, sub-

scriptions and notifications are expressed as attribute-value pairs. Unlike F3 and

many other multicast systems, SIENA publishers do not first send publications to

a single rendezvous-point. As a result, SIENA subscriptions travel through the net-

work to every potential publisher. Carzaniga and his colleagues found that the time

it takes a SIENA router to forward a notification grows linearly with the number of

subscriptions the router has received [12].

PreCache This is a commercial content-based system that supports subscriptions

and notifications expressed as attribute-value pairs [45, 48]. PreCache routers use a

proprietary, approximate-matching algorithm that achieves constant time and space

complexity with respect to the number of subscriptions received. This means that

PreCache subscribers may receive false positives, or publications that they did not

actually request. The number of false positives that PreCache produces has not been

made publicly available. PreCache resembles F3 in that both systems use prepro-

cessors at the edges of the network to check subscription messages and manage the

subscription namespace.

READY This is a content-based multicast system developed at AT&T [24]. Like

subscriptions and notifications in content-based systems, READY subscriptions and

notifications consist of attribute-value pairs. READY differs from other systems,

including

F3, in its support of reliable service and adaptive routing. Like the GEM, Yeast,

and MediaAs systems described previously, READY subscribers can sign up to receive

sequences of events, also called compound events. Gruber and his colleagues found

that the time it takes a READY router to forward a notification grows linearly with
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the size of the notification.

Hermes Hermes is a content-based routing system developed at the University of

Cambridge [44]. Hermes subscriptions and notifications, like those in other content-

based systems, consist of attribute-value pairs. Like F3, Hermes uses dissemination

trees to disseminate messages. However, in Hermes, all messages contain a special

attribute, called its "type". Hermes assigns a rendezvous-point to each message by

performing a hash on the type of the message. This approach is similar to the ap-

proach used in peer-to-peer networking systems like i3 and SCRIBE.

Gryphon Developed at IBM, Gryphon originally used single-identifier forwarding

to disseminate publications, but Gryphon has over time evolved into a content-based

forwarding approach [14, 61]. Gryphon subscriptions and notifications, like those

in other content-based systems, consist of attribute-value pairs. Gryphon is able to

forward messages faster than other attribute-value systems do. The time it takes a

Gryphon router to forward a notification grows sub-linearly, rather than linearly, with

the number of subscriptions the router has received [2].

Rebecca This is a content-based multicast system developed at the Darmstadt Uni-

versity of Technology [39]. It was developed as part of a larger project on event-based

electronic commerce systems. Like F3, Rebecca is noteworthy because it enables

users to define and support new types. Unlike F3, Rebecca achieves this goal within

the architecture of a content-based routing system. Rebecca routers use an algorithm

that is able to match values of a few base types such as integers and strings. To define

a new value type, such as a Calendar date type, applications must supply Rebecca

routers with a comparison operator for matching Calendar dates. Rebecca also dif-

fers from F3 in that, in F3, these new types would be incorporated to preprocessors,

rather than at routers within the F3 system.

Content-Based Multicast Systems and F3. Content-based systems and F3

are similar in two important respects. First, both types of systems are multicast

systems, that use distributed routers to forward messages to subscribers efficiently.

Second, both types of systems are designed specifically to disseminate information on

overlapping subscription topics. Important similarities between F3 and content-based

systems stop here, however. Features of F3 that are not available in content-based

systems include the following:
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" F3 supports a variety of data formats, from uncompressed text data to private,

compressed, audio-stream data.

" Using F3, it is possible for applications to detect message losses using sequence

numbers.

" Information providers can change subscription formats for their services simply

by modifying preprocessors at the network edge without making modifications

to all the routers in the network.

" In F3, application-level message processing (such as parsing and type-checking)

occurs once at the edge of the network, rather than repeatedly at every router

along a message's path.

" In F3, the time it takes to forward a message does not depend on the length

of message, the number of attributes in the message, or the number of values

in the message. The time it takes a F3 router to forward a notification grows

logarithmically with the number of subscriptions the router has received.

" However, F3 processes subscriptions more slowly than content-based systems

do. Furthermore, the time it takes F3 to process subscriptions depends on the

amount that subscription topics overlap with each other.

5.4 Other Systems

Unicast, single-identifier multicast, and content-based multicast may be the dominant

approaches to subscription systems in use today, but they are not the only approaches

in use or under development. This section describes type-based, active subscription,

and continuous query systems.

5.4.1 Type-based Forwarding

Researchers at the Swiss Federal Institute have developed a subscription system,

called DACE, that is specifically designed to support object-oriented applications [19,

20]. Like other multicast subscription systems, DACE uses a distributed system of

routers to disseminate information to subscribers. DACE, however, uses a technique

called type-based forwarding to disseminate this information. In type-based forward-

ing, subscribers and notifiers classify each message in an object-oriented, Java class
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hierarchy. Routers, in turn, match subscriptions with notifications based upon rela-

tionships in the object-oriented hierarchy. DACE compilers process messages before

they enter the DACE network, transforming theni from complex Java expressions to

simple type skeletons.

DACE resembles F3 in several ways. Both systems use preprocessors to extract

forwarding information from messages. Both format this information using primitive

data-structures rather than application-level formats. In both systems, these data-

structures express the relationships between message categories. Routers in both

systems use these data-structures to forward messages. As the next chapter discusses,
it is, in fact, possible to build an object-oriented interface, like that used in DACE,
on top of the F3 system. The primary difference between these systems and F3 is

that F3 is designed to support a variety of application-level message formats, such

as attribute-value pairs, and not geared toward a specific application language, like

Java.

Active Subscription Systems Active subscription systems combine techniques

developed for active networks [56] with subscription systems. In all the subscription

systems discussed thus far, each subscription consists of a template or pattern, and

routers forward notifications by matching these templates with notifications. In an

active subscription system, each subscription is not just a passive template, but an

executable program. It may contain function definitions, variable bindings, mathe-

matical operations, procedural calls, conditional expressions, etc. Each program takes

a notification packet as input and produces a value of yes or no as output. This value

indicates whether the packet matches the subscription or not. The XML filtering

system developed by Snoeren and his colleagues is an example of such a system [53].

The advantage of these systems is that they are much more flexible than their
"passive" counterparts. For example, an active subscription can search a notification

for the phrase Steve Jobs and only forward the notification if it occurs more times

than the phrase Bill Gates. The disadvantage of active subscription systems is that

active subscriptions can require a significant amount of router resources to execute.

In fact, it is theoretically impossible to predict the amount of time or storage a given

active subscription will take to process. It is also theoretically impossible for routers

to sort active subscriptions. As a result, when a router receives a notification, it may

have to check all of the subscriptions it has received against the notification.

An important question to ask is whether it is possible to implement an active

subscription system on top of F3. The answer is both yes and no. As mentioned
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previously, it is impossible for an application to sort active subscriptions statically

into a partially ordered set. However, F3 can support programs where subscriptions

are not statically sorted. In this approach, every active subscription would receive

its own content-graph identifier, and the graph would not contain any edges. When

a preprocessor received a notification, it would pass the notification to all of its

active subscriptions. If a given active subscription indicated a positive match with

the notification, the preprocessor would append the corresponding identifier to the

header of the notification. Though this approach would work in theory, it might put

such a burden on preprocessors as to make it practically infeasible.

a) Subscription System b) Database System

Information Query

Information Query

Information Query

Query Subscription system store Information Database systems store
Query queries in tables. This Information information in tables.
Query table has been optimized Information This table has been optimized

Query so that incoming information Information sothat incoming queries can

Query can be matched quickly against Information be matched as quickly as

Query the queries. Information possible against information.

Figure 5-1: The difference between subscription systems (a) and database systems

(b).

Continuous Query Database Systems Continuous query systems have recently

become a hot topic of research within the database community [15, 33, 57]. Using

a continuous query database, users can request to be notified whenever an item in

a database has been updated. Users of such databases first submit special queries,

called standing queries, to the database. When a database receives a standing query,

it stores the standing query away. Then, when items in the database are updated, the

database checks its standing queries against the updates and notifies users of relevant

changes. Examples of continuous query systems that have been developed recently

include NiagaraCQ [15] and OpenCQ [33].

One might think of a continuous query system as a special kind of subscription

system, where standing queries play the role of subscriptions and database updates

play the role of notifications. There are several differences between subscription sys-
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tems and continuous query systems, however. First, subscription systems encompass

a broad category of mechanisms for disseminating information updates to subscribers.

Subscription systems are relevant to more than just database updates. Second, the

design of current continuous query systems differs significantly from that of existing

subscription systems, including F3. As several researchers have pointed out [60] [3],

subscriptions and notifications typically play opposite roles in subscription systems

and database systems. Figure 5-1 illustrates this difference. Subscription systems

maintain a table of subscription queries, and this table is specifically designed so

that routers can check incoming notifications, against their subscriptions as quickly

as possible. Many subscription systems, like F3, also use multiple, distributed servers

to reduce message traffic in the wide-area Internet. In contrast, a database system

stores information, not queries, in its internal tables. These tables are designed so

that the database applications can respond to incoming queries with the requested

information as quickly as possible. Current database systems are not optimized to

do the reverse, namely to check incoming information against a table of queries. Fur-

thermore, database systems are not designed to reduce network traffic and typically

do not use a topology of distributed servers to decrease traffic.
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Chapter 6

Directions for Future Work

My goal in this project was to develop and evaluate an Internet subscription system

that functions flexibly and efficiently. This dissertation establishes the groundwork for

such a system, but there is still more work that can be done. This chapter describes

ways in which future systems may be built on F3.

6.1 Access control

Subscription systems that control access to system resources have advantages over

systems that do not incorporate access control. First, systems with access control

can support applications that disseminate private data. Second, subscription systems

that provide access control can prevent misuse of system resources. For example,

subscribers can easily attack a system such as SIENA by making repeated requests

for non-existent notifications. Such requests can fill up forwarding tables with bo-

gus entries and slow movement of valid notifications to a standstill. Third, systems

with access control can easily support commercial applications that charge for use of

resources.

F3 currently provides some support for access control. First, F3 notification

sources can encrypt data and prevent unauthorized subscribers from accessing it.

Second, F3 can weed out requests for bogus subscription identifiers. When an F3

router receives a subscription to an unknown identifier, it sends a message to the

rendezvous point for content-graph information on the identifier. The rendezvous

point can easily reject requests for invalid identifiers. Finally, each F3 rendezvous

points can prevent unauthorized notification sources from sending notifications by

maintaining their own access lists and authenticating the sources.
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F3 does not yet prevent unauthorized subscribers from submitting subscription

requests with valid identifiers. When F3 routers receive subscriptions with valid

identifiers, they enter the relevant subscription information into records of their for-

warding tables without checking user authorizations. There are ways to remedy this

problem. F3 could send an access-request message to each rendezvous point whenever

it received a subscription. F3 could also refuse to accept a subscription unless it had

been signed by a trusted preprocessor. More research is needed to determine the best

way to limit access of F3 applications to authorized subscribers.

6.2 New Topologies

The F3 an overlay, dissemination-tree topology is currently manually generated There

are many other ways to generate overlay topologies, however. F3 could use a routing

algorithm, such as the distance-vector algorithm used in OSPF [38], to generate rout-

ing tables. F3 could also use an algorithm designed specifically for overlay networks.

Some algorithms have recently been developed to take into account the properties

of the overlay-such as the delay, reliability, and load of the underlying links [7]. F3

also does not have to use a dissemination tree topology to operate. Other proposed

topologies use redundant routers, network links, and multi-path routing to decrease

load on individual routers and increase system resilience [4, 54]. Although F3 does

not incorporate such algorithms at present, such features can be incorporated into

future versions of F3.

6.3 Faster Attribute-Value Preprocessors

The attribute-value preprocessor now used with F3 uses a simple algorithm for map-

ping attribute-value notifications to content-graph identifiers. When a preprocessor

receives a notification, it starts at the root of the content-graph and performs a

breadth-first search of the graph to find attribute-value pairs that match the notifica-

tion. When the search reaches a node in the graph that does not represent a superset

of the given attribute-value pair, searching stops on that branch of the tree.

This approach works relatively well for balanced graphs whose height equals the

log of the number of leaves in the graph. But the approach works less well when

content graphs are shallow and sparsely connected. When every node in a tree is a

root, for example, this approach amounts to a linear search of all the roots of the
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tree. However, there are several ways to improve this basic preprocessor algorithm:

" The preprocessor could sort all the nodes at every level in the graph by attribute

and value. The preprocessor could then perform a binary search on the nodes

at any given level in order to determine which nodes to search at the next level.

" The preprocessor could build an index, such as those used in a typical database,
to quickly search the subscriptions in a tree. For example, the preprocessor

could index the subscription table using an R-tree, and then use this R-tree to

quickly look up notifications [25].

" The algorithm might incorporate features of fast matching algorithms that have

been developed for content-based routing systems such as SIENA [12], Xfil-

ter [3], and Le Subscribe [43, 46].

" The preprocessor could use an MD5 hash to hash every subscription and notifi-

cation into a unique identifier. In order to look up a notification, the preproces-

sor would simply hash the notification into an identifier. This approach would

work only for applications where notifications exactly matched subscriptions in

the content-graph.

Whatever the approach, it is important to note that improvements to these prepro-

cessors only affect the performance of applications at the edge of the network. They

do not affect the forwarding performance of routers within the F3 system itself.

6.4 New Interfaces

F3 preprocessors currently support both subject-based and content-based interfaces.

But F3 can also support other interfaces. For example, F3 is able to support type-

based interfaces, similar to the DACE system [19, 20]. Applications that use this type

of interface classify messages in terms of an object-oriented type-hierarchy. Before

submitting messages to F3, subscribers using a type-based interface would send the
messages to a special preprocessor, which would use the type-hierarchy to generate

content graphs. Other possible interfaces for F3 include continuous-query databases.

Applications that use continuous-query databases would submit special database re-

quests for notification when particular items in the database change [15, 33, 57]. The

database itself would partially-order these requests using content-graphs. Whenever

an item in a database changed, the database would likewise use content-graphs to clas-

sify the change. One interesting question for future research is how internal database
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indeces, such as R-trees, could be used to index into content-graph structures as

quickly and efficiently as possible.

6.5 Off-line Subscription Processing

The results presented in Chapter 4 show that F3 subscriptions take much longer to

process than F3 notifications. The consequence of this disparity is that F3 routers may

be tied up processing subscriptions when there are urgent notifications to be delivered.

One way to avoid this problem is to use separate processes to handle F3 routing, one

for processing notifications and another for processing subscriptions. These processes

could run on the same machine, with the subscription process scheduled to run at a

lower priority than the notification process. They could also run on different machines,

effectively ending any competition for resources between notification processing and

subscription processing.

6.6 Adaptive Forwarding

Adaptive forwarding algorithms are a promising area development in subscription

systems. An adaptive forwarding algorithm is a forwarding algorithm that uses a

hybrid approach to adapt to changes in network conditions. For example, most

multicast subscription systems use multicast forwarding to deliver notifications, even

when there is only one subscriber in a network. In such a case, it would be much more

efficient to deliver notifications using unicast methods. With adaptive forwarding, F3

might use unicast methods to disseminate notifications when there were only a few

subscribers in a network and multicast methods when there were many subscribers.

F3 might benefit from adaptive forwarding in its storage of content-graphs. When

a content-graph is only a few levels deep, it might be more cost-effective for F3 to

distribute notifications using content-list headers rather than content graph headers.

With an adaptive approach to forwarding, a subscription system could take into

account the efficiencies associated with various forwarding choices.
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Chapter 7

Conclusions

Subscription systems help people retrieve new information from a network automat-

ically, without their having to constantly query the network for updates. With sub-

scription systems, users get exactly the information they need, whenever it becomes

available, and they have to submit only one subscription request to receive the infor-

mation. Examples of possible uses of subscription systems come from all parts of the

digital world: news services, sensor systems, emergency management, business ap-

plications, distributed data repositories, multimedia entertainment, and even online

games.

If subscription systems are ever to play a prominent role on the Internet, however,

they must meet several requirements. First, subscription systems of the future must

be able to support a large population of applications. Subscription services can be

useful in almost any area involving electronic communication. Applications are almost

endless in number. Second, subscription systems of the future must support extremely

diverse applications. Applications involving news services and sensor systems, for

example, are likely to be very different. And third, subscription systems of the future

will have to handle a wide variety of complex subscription requests. Subscribers need

sophisticated mechanisms for requesting and receiving exactly the information that

they need.

This dissertation presented an analysis of previous work on unicast, single-identifier

multicast, and content-based systems. The review of this work suggested that none

of these systems completely meets these requirements. The design of unicast sys-

tems does not take into account the large number of subscribers that subscription

systems must handle. In scenarios with millions of subscribers, unicast systems clog

network links with notification messages. Single-identifier multicast systems are de-

signed specifically to avoid this problem. However, these systems handle complex,
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overlapping subscription categories very poorly. To handle overlapping subscription

categories, single-identifier multicast systems would have to generate impossibly large

routing tables or waste network bandwidth. Finally, content-based multicast systems

have to replicate application-level machinery at every router in a system. As a result,

content-based systems are costly to augment with new features and can be cripplingly

slow in scenarios with large numbers of subscribers.

To overcome these difficulties, this dissertation proposed a novel subscription sys-

tem, the Fast, Flexible, Forwarding system, or F3. Like other multicast subscription

systems, F3 uses an overlay network of routers to distribute messages from informa-

tion providers to subscribers. F3 differs from other approaches, however, in its use of

preprocessors to analyze messages before routing begins. The preprocessors extract

information about relationships between subscription and notification messages, and

they disseminate this information to routers in the form of content graphs. Routers

use the content-graph information to infer relationships between messages and to

forward the messages to appropriate subscribers.

The idea of using preprocessors in subscription systems is not new. Researchers,

however, have often overlooked some important benefits of preprocessing. First, pre-

processors make subscription systems more efficient. This is because preprocessors

ensure that application-level information is processed only once, before routing be-

gins, rather than at every single hop along a message's path. Second, preprocessors

make subscription systems more flexible. Using preprocessors, a subscription system

can forward a variety of application-level messages, using only a single forwarding

mechanism within the subscription system itself. In a sense, preprocessors provide

insulation between F3 and applications. They allow application-level innovation and

subscription-system innovation to occur independently so that neither applications

nor subscription have to shift with the winds of the other's design. Finally, prepro-

cessors help applications safeguard private data. They allow applications to commu-

nicate in a language that is appropriate for applications, and routers to communicate

in a language that is appropriate for routers.

One cannot build a subscription system using preprocessors alone, however. The

subscription system must forward messages, and its forwarding algorithm must be

flexible enough to mesh with different preprocessor designs and efficient enough for

high-speed message delivery. Content-graph forwarding was designed to meet both

requirements. Content-graph forwarding differs both from single-identifier forward-

ing, where routers have too little information about message relationships, and from

content-based forwarding, where routers have too much. With content graph for-
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warding, routers can detect relationships among messages of various types, including

attribute-value pairs, keyword ontologies, and object-oriented type-hierarchies. Be-

cause content graphs represent only relationships among messages, not their application-

level details, F3 can process subscription and notification messages significantly faster

than other systems do.

This dissertation provided experimental results from comparisons of performance

of F3, unicast, single-identifier, and content-based forwarding systems. The results

showed that F3 does not overproduce messages, as do unicast systems and single-

identifier systems with overlapping message topics. Results also showed that F3

generates smaller tables and has lower subscription overhead than single-identifier

systems with disjoint categories. Finally, experimental results also showed clear per-

formance differences between F3 and SIENA, a content-based forwarding system. F3
took longer to process subscriptions than SIENA did for large numbers of subscribers

in three different experimental simulations. F3 also generated much smaller tables

than SIENA did. Most important of all, the time that it took an F3 router to process

notifications exhibited logarithmic growth as the number of subscriptions in its table

grew. As a result, for large numbers of subscribers, F3 processed notifications between

1,000 and 100,000 times faster than SIENA did in the three scenarios studied.

Although this dissertation proposes a promising, new approach to subscription sys-

tems, it describes only the first stage in the development of this approach. Though

F3 was designed to support many kinds of preprocessors, the current implementa-

tion of F3 supports only a single type of preprocessor, which uses a simple algorithm

to process subscriptions formatted as attribute-value pairs. An important task for

the future is development of new preprocessors, with novel interfaces and faster pre-

processing algorithms. F3 also uses content-graph forwarding as its sole means of

forwarding notifications to subscribers. In situations where a variety of factors affect

system performance, a multi-pronged approach to forwarding may be more appropri-

ate. Adaptive forwarding algorithms, which employ different forwarding algorithms

under different conditions, are therefore another promising area for development of
F3.

In conclusion, Internet subscription systems may someday have a revolutionary

impact on Internet communications. But the revolution will require new ideas and

new technologies if it is to succeed. With preprocessors and content-graph data

structures, F3 already provides greater flexibility and speed than other subscription

systems do. F3 is only a small, first step toward the greater leaps that will help us

accomplish this goal.
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Appendix A

Theoretical Evaluation

This chapter describes various aspects of F3's performance in terms of their theoretical

bounds. It also compares F3's performance to that of content-list, disjunctive-Id, and

SIENA.

A.1 Forwarding Table Size

A variety of factors contribute to the performance characteristics of F3. A list of all

possible factors is given in Table A. 1. The size of an F3 forwarding table depends

upon n, the number of unique subscriptions received by the router:

Forwarding Table Size = O(n * Descriptor size)

Each node's descriptor consists of several components, including a list of edges, a list

of direct subscribers to the node, and a list of output-labels for the node:

Descriptor Size = Edges + Subscribers + Output-labels

The number of edges depends directly on e, the degree of the graph and the number

subscribers depends directly on s, the number of subscribed interfaces:

Edges = 0(e)

Subscribers = 0(*S
n

An interface can only appear as an output-label if it is not directly subscribed to

a particular node. Each of these output-labels may include one or more node-Ids.
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The maximum number of node-Ids per output-label is, at most, the width of the

graph. The probability that a node has an output label is proportional to how many

ancestors it has. This yields:

Output-labels = O(Number of labels * Size of label)

Number of labels = O(Subscribed ancestors * Unsubscribed Interfaces)
s

Subscribed ancestors = 0 - * de)

Unsubscribed interfaces = 0 1 - -

Size of label = 0(e)

Together, these equations give:

Zs sdes
Forwarding Table Size = 0( * (e + - + Z- ( -S-

n n n

= O(ne+is+isden _s)
n

When the number of subscriptions per interface is small, or when s < n, then we

expect the size of the forwarding table to grow with:

Forwarding Table Size = 0(ne + isde)

As the number of subscriptions per interface grows large, or as s approaches n, then

the size of each output label is governed by:

Forwarding Table Size = 0(ne + is)

Table A.2 compares the theoretical characteristics of F3 to other systems. Content-

list systems have the smallest forwarding tables of all the systems studied. Content-

graph systems have the next largest tables, differing from content-lists by a factor of

e, the number of edges in the table. Disjunctive-Id systems and content-based sys-

tems have the largest tables. The size of disjunctive-Id tables depends upon the total

number of possible subscription categories, N. The size of a SIENA table depends

upon the total number of subscriptions received, S. If there are few subscription

categories, but many subscribers, one would expect disjunctive-Id systems to have

smaller tables. If there are many subscription categories but few subscribers, one

would expect content-based systems to have larger tables.
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Variable Factor

S The number of subscriptions received.
N The total number of possible unique subscriptions. Subscriptions may

be overlapping.
n The number of unique subscriptions received. Subscriptions may be

overlapping.

i The number of interfaces
s The number of unique subscriptions per interface.
d The depth of the graph
e The degree of a node in the graph

Table A.1: Factors affecting subscription system performance

Characteristic Content-graph Content-list Disjunctive-Id SIENA
O(ne + is) O(n + is) 0(2Ni) O(S)

Table A.2: Theoretical forwarding table sizes of 4 subscription systems.

A.2 Subscription Processing Time

When a router receives a new subscription, it must look up the subscription in the

table. If the subscription is not found, it must add a new subscription to the table.

If the subscription is found, then the router must also label all of the subscribers

descendants. The time it takes to process a subscription is then:

Subscription Time

Table Insertion Time

Label Descendants Time

Number of Descendants

=> Subscription Time

= 0(max(Table Insertion Time, Label Descendants Time))

= 0(log n)

= O(log n) + Number of Descendants * O(log i)

= O(d * e)

= 0(log n + (d * e) logi)

These equations indicate that the shape of a content-graph can play a significant role

in the amount of time that it takes a router to set up subscriptions. If the router

maintains a graph that is wide and deep, than the number of descendants per node

in the graph will be large. In this case, one would expect the time it takes to process

each subscription to depend mostly on d * e, the number of descendants per node in

the graph.

As characterized by Table A.3, content-based systems such as SIENA process
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subscriptions the fastest, in constant time. Content-list systems also process sub-

scriptions. The time it takes content-list systems to process notifications grows log-

arithmically with the size of the forwarding table. Content-graph systems process

subscriptions more slowly. They take a factor of (d * c) more time to process sub-

scriptions than content-list systems. Finally, disjunctive-Id systems take the most

time to process subscriptions. In a disjunctive-Id system, each subscription can con-

tain many identifiers, which grows exponentially with the total number of subscription

topics, N.

Characteristic Content-graph Content-list Disjunctive-Id SIENA

Subscription time 0(logn+delogzi) O(logn + log7i) O(2n) 0(1)

Table A.3: Theoretical subscription processing times of 4 subscription systems.

A.3 Graph Setup Time

When a router receives a graph-setup message, it must add the edges indicated by

the setup message to its graph and fix up the output-labels in the graph. The time

it takes a router to process a graph-setup message is then:

Graph Setup Time = Add Edges Time + Label Descendants Time

Add Edges Time = O(logrn) + 0(e)

Label Descendants Time = 0(log n) + Number of Descendants * 0(log i)

Number of Descendants = 0(d * e)

-> Graph Setup Time = 0(log n + (d * e) log i)

Like subscription messages, the amount of time it takes a router to set up a graph

message depends largely on the shape of the router's content graph.

A.4 Notification Processing Time

When a router receives a notification, it must look up the node-Ids in the notifica-

tion's header, find their output-labels, and output a copy of the notification to the

appropriate interfaces. The time it takes a router to process a notification is then:

Notification Processing Time = Lookup time + Output time

146



Lookup time = O(logn)

Outputtime = 0(i)

- Notification Processing Time = O(log n + i)

As summarized in Table A.4, F3 takes less time to process notifications than all

other systems. The cost of processing a notification in F3 is essentially the cost of

performing a single hash-table lookup. Disjunctive-Id systems, content-list systems,

and content-based systems take more time to process notifications than F3. The

time it takes a disjunctive-Id system to process a notification depends on N, the

total number of possible subscriptions. Content-lists, on the other hand, take a

factor of of d * e longer to process notifications than content graphs. Content-based

systems generally take the most time, where the amount of time it takes to process

the notification grows linearly with the total number of subscriptions received.

Characteristic Content-graph Content-list Disjunctive-Id SIENA
Notification time 0(log n +-i) O(de(log n + i)) O(N + i) O(S)

Table A.4: Theoretical notification processing times of 4 subscription systems.

A.5 Resubscription Processing Time

Every F3 router periodically checks the entries in its table to check for expired sub-

scriptions and to generate resubscription messages. If the number of nodes in the

forwarding table is, n, then the cost of processing a subscription is therefore O(n).

A.6 Unsubscription Processing Time

A router performs three tasks whenever it receives an unsubscription. It removes the

subscription from the node indicated in the unsubscription, it fixes the labels for all

of the node's descendants, and removes the node from the table, if necessary. The

time it takes a router to process an unsubscription is then:

Unsubscription Time = Lookup Time + Label Removal Time +

Graph Deletion Time

Lookup Time = O(log n)
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Label Removal Time

Number of Descendants

Graph Deletion Time

- Unsubscription Time

= Number of Descendants * O(log i)

= O(d * e)

= O(log n) + O(d)

= O(log n + (d * e) log i)

Like subscription and graph-setup messages, the amount of time it takes a router to

set up a graph message depends largely on the shape of the router's content graph.
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