
Gapless Color Superconductivity

by

Christoforos N. Kouvaris

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 2005 iiJuu4 e 2 kJ

© Massachusetts Institute of Technology 2005. All rights reserved.

Author ...............................................
Department of Physics

April 15, 2005

J

Certified by ........................................ ..... .
Krishna Rajagopal

Professor
- Thesis Supervisor

Accepted by.........................................................
Thomas Greytak

Chairman, Department Committee on Graduate Students

MASSiCHUSETS INSTITUTE 
OF TECHNOLOGY

JUN O 7 REC'D

UBRARIES-



-~ as - _·



Gapless Color Superconductivity

by

Christoforos N. Kouvaris

Submitted to the Department of Physics
on April 15, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
In this thesis, we propose and investigate the "Gapless Color-Flavor Locked" (gCFL)
phase, a possible new phase of dense and cold quark matter. At high enough densities,
quarks interact with each other and form pairs similarly to electrons in superconduc-
tors. This phenomenon in the case of quark matter is called Color Superconductiv-
ity. Color superconducting matter must be electrically and color neutral, because
otherwise there are huge energy costs, due to the charges. At asymptotically high
densities, equal numbers of up, down, and strange quarks make the system neutral,
all the quarks pair, and the quark matter is in the Color-Flavor-Locked phase. At
intermediate densities however, the strange quark mass changes the number densities
of the quarks and this makes the CFL phase unstable. The gCFL phase emerges as a
result of the strange quark mass effect and the neutrality conditions. The gCFL phase
has gapless modes and non-zero electron density, unlike CFL. These new properties of
gCFL have significant astrophysical implications. The interior of neutron stars might
have densities at the regime where gCFL dominates. If this is the case, we argue
that gCFL will change significantly the cooling of such a star, keeping it hot, even
for late times. Also in this thesis we explore the rest of the phase diagram of neutral
quark matter at high density as a function of temperature and strange quark mass.
We investigate how zero temperature superconducting phases evolve if we heat the
system. We derive the phase diagram of dense quark matter using a Nambu-Jona-
Lasinio (NJL) model, that might be a good guide for understanding the QCD phase
diagram.
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Chapter 1

Introduction

Ancient greek philosophers believed that matter is made of four elements: yata

(earth), u'8p (water), &]p (air) and rup (fire). This was the first attempt to an-

swer the question of what matter is made of. Ever since, the same question has

intrigued natural scientists for thousands of years. Our understanding of matter has

increased dramatically as physics progressed. In the last hundred years both theo-

retical and experimental developments have brought us closer to an answer of this

question.

Nowadays we know that there are four fundamental forces in nature: the strong

force (responsible for keeping the nucleus of the atoms bound), the weak force (re-

sponsible for the radiation of radioactive elements), the electromagnetic force and the

gravitational force. A huge effort has been put in from physicists in order to describe

all the fundamental forces in a unified way. Currently, the strong, the weak, and

the electromagnetic forces are described by the Standard Model. In this picture, the

strong force is of vital importance for our understanding of matter. We know that an

atom is composed of a nucleus and electrons. The nucleus is composed of hadrons,

which consist of quarks. The strong force is a short range force applied among the

quarks and is responsible for keeping the nucleus bound. The modern theory that de-

scribes the strong force is called Quantum Chromodynamics (QCD). QCD describes

the interactions among quarks mediated by the so-called gluons.

The acceptance of QCD as the proper theory for the description of the strong
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interactions was not easy. There was a revolution of experimental discoveries as well

as theoretical progress that gave some insight into this difficult problem. Experiments

showed that although it is very hard to break the bonds among the quarks in the

nucleus, in high energy collisions between hadrons, quarks interact as almost free

particles. This is related to the most important feature of QCD, asymptotic freedom

[1, 2]. In contrast with all the other forces and everyday experience, the strong

coupling gets stronger at large distances, rather than short distances. Equivalently,

as the energy of the interaction increases, the coupling of the force decreases. On the

other hand if we decrease the energy the strength of the interaction becomes large

and this is the reason why the quarks are tightly bound inside hadrons and why free

quarks have not been observed so far.

This thesis will focus on the study of QCD at high density and low temperature.

It addresses the question of what happens to nuclear matter if it is placed under

extreme pressure. Although this is to date impossible to achieve in a laboratory,

nature has provided the arena for a study like this. The "physical" laboratory is

called neutron stars which are extremely dense and compact objects. They are formed

during supernova explosions and have attracted interest from a large community

among astrophysicists.

Because dense matter corresponds to high baryon chemical potential p and the

relevant energy is high, we are able to do calculations in high density QCD even at

relatively low temperature. Due to asymptotic freedom the coupling in this regime is

small and this suggests that perturbative methods can be used. However, this picture

of QCD in high density turns out to be incorrect. The reason is that perturbation

theory around the naive ground state (free quarks Fermi surfaces) encounters infrared

divergences. As a result the naive ground state is not the true ground state of QCD

in high density [3-6].

This type of instability has been faced before in the context of solid state physics.

Particularly, similar problems were overcome before in the theory of superconduc-

tivity. In this case BCS (Bardeen, Cooper and Schrieffer) [7] showed that even

weak attractive interactions between the electrons change the ground state drasti-
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cally. These attractions are mediated by phonons and as a result the electrons form

so-called Cooper pairs and the photons acquire a mass (Meissner effect). The charged

excitations obtain energy gaps which are responsible for the removal of the infrared

problems of perturbation theory.

In high density QCD, the phenomenon of Color Superconductivity is more com-

plicated because instead of electrons we have quarks coming in different flavors and

colors. However, in some sense it is simpler than the electron superconductivity.

This is because the attractive channel between the electrons is a complicated force

mediated by lattice vibrations (phonons). On the other hand in Color Superconduc-

tivity the attractive channel is a direct one gluon exchange antisymmetric in color (3

channel).

In Section 1.1, we discuss the structure of the phase diagram of QCD. We show

which regions can be explored by theory and experiments and how color supercon-

ductivity fits in the "big picture". Section 1.2 focuses on color superconductivity

at asymptotically high density. In particular we review the basic aspects of the

Color-Flavor-Locked phase (CFL). In Section 1.3 we give a preview of what follows

in Chapters 2, 3 and 4. We indicate the problems of the CFL phase in lower den-

sities and how a new phase, the Gapless Color-Flavor-Locked (gCFL) phase takes

over. In Section 1.4 we mention alternatives to the gapless phase such as Crystalline

Superconductivity (LOFF) and spin-1 superconductors.

1.1 Phase Diagram of QCD

In recent years a lot of effort has been devoted to the exploration of the phase diagram

of QCD. Figure 1-1 shows the phase diagram of QCD as a function of temperature

and baryon chemical potential. The hadronic gas phase lies at low baryonic chem-

ical potential and low temperature. In this regime the coupling is very strong and

the quarks are confined inside the hadrons. Let's focus now on the horizontal axis

(chemical potential). If we increase the potential there is a first order phase transition

between hadron gas and hadron liquid. The first order phase transition terminates at

17



a second order critical point at a temperature of about 10 MeV [8]. Nuclei are droplets

of the hadron liquid phase and therefore lie on the right of the phase transition.

If we increase the chemical potential even more, we enter in the regime of color

superconductivity [3-6, 9-15]. In this regime the nuclei have been squeezed together

and a description in terms of quark degrees of freedom is needed. Although the phase

transition between the hadron liquid phase and the superconducting phases is be-

lieved to be first order [5, 6, 16-19], it is very difficult to know exactly what phase

takes over from the hadron liquid, because analytical, numerical and experimental

methods to date fail to provide us with a reliable answer. It is hard to probe this

regime of the phase diagram analytically because of the large coupling constant of

the strong force that eliminates perturbative techniques. Similarly, a non-zero chem-

ical potential creates problems for lattice QCD methods (the so called sign problem).

Once the chemical potential is non-zero, the fermionic path integral measure is not

positive definite due to explicit breaking of time reversal symmetry and the Monte

Carlo methods used in lattice fail. Until now, lattice methods are only valid in regimes

that have chemical potential much smaller than the temperature [20-22]. Moreover,

this region is accessible to experiments only at very low densities (relative to the

temperature). In RHIC (Relativistic Heavy Ion Collider) and CERN experiments,

heavy ions and/or protons collide at very high energy. The system during the col-

lision is in a high density, but the temperature of the system is much larger than

the baryon chemical potential (there is no Fermi surface), and hence it would be ex-

tremely difficult, if not impossible, to probe the color superconducting phases. The

only information about this part of the phase diagram might come from astrophysi-

cal observations. This is because neutron stars have low temperatures compared to

their densities. Their temperature should be of the order 10-100 keV. Where exactly

neutrons stars lie in the phase diagram is not known. The density of a neutron star

varies as a function of its radius and it is still an open question if any part of the star

is in a color superconducting phase [23].

At even higher densities the gapless color flavor locked phase (gCFL) takes over

[24, 25]. However, as we shall see in Chapters 2 and 3, there is a possibility that

18
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Neutron Stars

Figure 1-1: Schematic Phase Diagram of QCD: Temperature versus Baryon Chemical
Potential t.

the regime of gCFL may be extended to lower densities and therefore gCFL can be

the phase that takes over from the hadronic liquid phase. The gCFL phase, and its

astrophysical implications, will be the main subject of study of this thesis. Although

perturbative QCD is still not reliable in densities where gCFL appears, analytical

calculations with, for example, a Nambu-Jona-Lasinio (NJL) model are possible.

At asymptotically high densities, the energetically favored phase is the Color-Flavor-

Locked phase (CFL) [10]. The gCFL-CFL transition is a second order phase transition

at zero temperature and a smooth cross over for non-zero temperature [26, 27].

Now consider moving along the vertical axis of the phase diagram. We start from

the hadron gas phase again but we increase the temperature this time. At very high

temperature the quarks are deconfined and form a quark-gluon plasma (QGP) [28-

31]. Lattice simulations are applicable in this regime, and it has been shown that

the transition between hadron gas and QGP takes place at a temperature of about

170 MeV [32, 33]. For low chemical potential, the transition is a smooth cross over,
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but there are indications that at higher chemical potential the transition is of first

order ending at a tricritical point [16, 17]. This part of the phase diagram is explored

by RHIC. In this experiment heavy nuclei collide with large energies. During the

collision the system enters the QGP phase and rapidly thermalizes. As the system

expands, the temperature falls, and it re-enters the hadron gas phase. This part of the

phase diagram is interesting from the point of view of particle physics and cosmology

because the universe was created at very high temperature and as a function of time

dropped vertically, going from QGP to the hadron gas phase.

1.2 Color-Flavor-Locked Phase

At asymptotically high densities the QCD coupling g(/) is small. The masses of

the up, down and strange quarks can be neglected, since they are much smaller

than the baryon chemical potential It. Actually, as we shall show in Chapter 2, the

relevant quantity that must be small is M2/Az << 1, with A\ denoting the gap

parameter. We have only three flavors (up, down and strange), because the other

three quarks (charm, bottom and top) have very large masses so we can safely ignore

them. As we mentioned earlier, in cold quark matter Fermi surfaces are unstable,

if there is an attractive channel. In the case of QCD, single gluon exchange in the

color antisymmetric 3 channel is attractive. Quarks that live on the Fermi surface

can scatter with equal and opposite momenta (back to back) and as a result they can

form Cooper pairs. Even if the coupling is arbitrarily weak, the infinite degeneracy

of quarks with equal and opposite momenta in the Fermi surface renders the surface

unstable to the formation of a condensate of quark Cooper pairs. The quark quasi-

particles that interact with the condensate acquire an energy gap and all the gauge

bosons that do not break the symmetry of the new ground state obtain effective

Meisner masses [11, 34-36].

Since the attractive channel is the , we expect the dominant condensate to be

antisymmetric in color. There are several renormalization group calculations done

in QCD, starting from asymptotically high energies and running to lower energies

20
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towards the Fermi surfaces [37]. Generally speaking, if a coupling goes to infinity

before reaching the Fermi surface energy level, it implies that there is an infrared

instability and a condensate in this channel is formed.

Although the renormalization group method is an appropriate and sophisticated

way to determine possible condensates, it is not very difficult to guess the dominant

condensate at high density with simple physical arguments. From the analysis above

we expect the condensate to be antisymmetric in color. The diquark condensate is

forced to be antisymmetric according to Pauli's principle. The above reasoning leaves

us with two possibilities. We can have a condensate either antisymmetric in flavor

and spin, or symmetric in flavor and spin. The latter case corresponds to a condensate

with spin-1 and thus it breaks the rotational invariance. Heuristically, the favored

ground state is the one that leaves a maximal symmetry group of the ground state. A

zero spin condensate allows quarks from the whole Fermi surface to pair and therefore

this condensate should be more favored. Finally, instantons favor a condensate that

does not violate parity invariance. Using these simple arguments, we can write down

the condensate

(i a C75?/)b ) AE1abl +A2 c62 ab2-+ A3 E03 Cab3 (1.1)

The greek indices are color indices while the latin indices denote flavor. At asymp-

totically high density the three flavors (up, down and strange) are on equal footing

and therefore A\l = A2 = A3 . From the Levi-Civiti symbols it is easy to justify the

name of the CFL phase. We can rewrite the symbols as

e (o EabF =6 ba (1.2)a -b b a

In this form it is apparent that flavor and color rotations are locked, because the

Kronecker delta functions link color and flavor indices. These condensates transform

nontrivially under separate color and flavor transformations. Neither color trans-

formations nor flavor transformations separately are valid symmetries of the ground

state. However, the delta functions do remain invariant if we simultaneously rotate
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both color and flavor. Thus these symmetries are locked together. We can also see

that a condensate like this corresponds to a phase with the lowest free energy because

it allows pairing among all nine quarks, so the energy benefit from the formation of

Cooper pairs is maximal [10]. However this is not the only condensate; it has been

proven that the 3 channel induces a non-zero condensate in the color 6 channel. This

channel is repulsive and does not break any new symmetry. Therefore, it is very small

compared to the dominant 3 [38].

The type of condensate (1.1) is not new to physics. In the B phase of He3, the

ground state is not invariant under rotations of the spin or the orbital angular mo-

mentum. However, it is invariant under simultaneous rotations of spin and orbital

angular momentum. In other words, spin and orbital angular momenta are locked. In

the particle physics context, electroweak theory is another example of the same phe-

nomenon. In this case, the Higgs bosons qba acquires a non zero vacuum expectation

value (by) = uJ1 and condenses, breaking spontaneously the original symmetry of the

Lagrangian. The ground state is not invariant under SU(2) and U(1) hypercharge

rotations separately. It is invariant under locked rotations, which represent rotations

of the U(1) electromagnetism. The example with the most striking similarity is chiral

symmetry breaking in the QCD vacuum. The chiral group breaks spontaneously to

a diagonal group where left and right rotations are locked. The Goldstone bosons of

the theory are the pions, the kaons, and the particles.

The symmetry breaking pattern in CFL is:

SU(3)L x SU(3)R x SU(3), x U(1)B -+ SU(3)L+R+C x Z2 (1.3)

Two condensates are formed, one involving left handed quarks and the other involv-

ing right handed quarks. In the first condensate left rotations are locked with color

rotations and in the second condensate right rotations are locked with color rotations.

This means that the ground state is invariant under simultaneous rotations of left,

right and color. This is the meaning of the subscript (L + R + c). The discrete

group Z2 just states the fact that the condensate is invariant if both quark fields

22
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are multiplied by -1. The initial chiral, color and baryon group breaks down spon-

taneously to a diagonal SU(3), where left, and color rotations as well as right and

color rotations are locked. In addition the baryon number group is also spontaneously

broken. This might seem strange, but it has been encountered in superfluidity where

the atom number group is broken and superconductivity where the lepton number

group is broken. This broken quantum symmetry has to do with the easy transport

of quantum numbers inside the sample of superconducting matter. As in the vacuum,

the U(1)A axial symmetry is explicitly broken by instantons. The instanton interac-

tion is represented by a 6-fermion interaction in three flavor QCD. In high density

a 6-fermion interaction is irrelevant as we approach the Fermi surface, suggesting

that the instantons are suppressed. Practically, the ' is not going to be a massless

Goldstone boson, but due to the smallness of the instanton contribution, the r7' will

be very light.

Consider now the spectrum of the CFL phase. What we have to remember is

that the spontaneous symmetry breaking of a global symmetry gives rise to Gold-

stone bosons, but for a gauge symmetry that breaks down, the Goldstone bosons are

"eaten", giving mass to the gauge bosons. This is the Higgs-Anderson mechanism.

From (1.3) we can count the initial number of generators. In total we have 25 gen-

erators (16 for the chiral group, 8 for the color group and for the U(1)B). The CFL

ground state has 8 unbroken generators (coming from the diagonal SU(3) group).

That means that we have 17 degrees of freedom. Eight of them are "eaten" by the

gluons giving mass to them [10]. To be more accurate, there is one linear combination

of a gluon and the photon that remains massless, whereas the 8 orthogonal combi-

nations are massive. We shall talk about this in the next paragraph. The other 9

degrees of freedom correspond to the 8 Goldstone bosons: pions, kaons, and r/. The

CFL condensate may rotate within the manifold describing these mesons [39-41] and

the true ground state might include condensed bosons. The superfluidity mode is

due to the U(1)B spontaneous symmetry breaking and it remains massless even once

quark masses are taken into account. Therefore this Goldstone boson plays a crucial

role in many low energy properties of the CFL phase, for example in its viscosity
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[42, 43], specific heat and neutrino opacity.

Now we return to the question of the massless gauge boson. The U(1)EM electro-

magnetism is a subgroup of the chiral SU(3)L x SU(3)R, that is gauged. After the

symmetry breaking there is a subgroup that respects the symmetry of the conden-

sate and includes the generator of electromagnetism. Apparently, electromagnetism

is spontaneously broken. This is because if we perform a U(1)EM rotation, the con-

densate does not remain invariant. We can see that the condensate has pairs between

up and down as well as between down and strange. These two combinations have

different overall electric charge. We can find what combination of electric and color

charges is preserved by the condensate. It is the Q = Q + T, where Q is the electric

charge and T is a color charge,

211
Q = diag(, -, -3) in flavor u, d, s space, (1.4)

3'3' 3 2 ~~~~~~~~~~~~~1.4)211
T = diag(- 3, 3, 3) in color r, g, b space. (1.5)

The Q charge of all the Cooper pairs of the condensate is zero by construction. This

means that Q acting on the ground state gives zero. So, there is a a U(1)Q symmetry

that leaves the ground state invariant, and thus this symmetry is unbroken. The

gauge boson A that corresponds to this symmetry is massless. We can find the

massless boson by considering the covariant derivative of the condensate

D,(qaq) = (_ + eQA, + gTG,)(qaqb), (1.6)

where AI and G. are the photon and the relevant gluon. If we expand the kinetic

term D(qcq)]2 we can find the massive and massless bosons. The two bosons are

the massive

Ax , = -sin e 0A, + cosaoG, (1.7)

and the massless

- gat, + s(eGt )A- gA//e + eg = cos a0A u + sin a0GM. (1.8)77e 2 +g2
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This is analogous to the electroweak symmetry breaking where the SU(2) x U(1)y

breaks spontaneously to the U(1)EM. The photon remains massless and is a linear

combination of the hypercharge boson and the W3 boson, whereas the orthogonal

combination corresponds to the massive Z particle. In this analogy, the Weinberg

angle that denotes the mixing between the W3 and Y is the analogue of the ca in

CFL, that denotes the mixing between the gluon and the photon.

So far we mentioned only the renormalization group methods for doing calculations

in color superconductivity. There are also other methods such as variational and

diagrammatic [34]. Without trying to present them in detail,we shall mention the

very basic principles. In the variational methods, first used in [7], we try to guess

the ground state, meaning that we attempt to construct the wavefunction of the

ground state and minimize the free energy with respect to the parameters of our

model. This has been done successfully in the 2SC phase where the strange quark is

ignored due to its large mass and there is pairing only between up and down quarks.

The ground state is described by a wavefunction of quarks that fill the Fermi surface

and Cooper pairs with equal and opposite momenta. The minimization of the free

energy determines how many Cooper pairs we have. The diagrammatic method is

in a sense a different form of the variational method. It was originally suggested

by Bogoliubov [44] and Valatin [45] in a different context of physics and it involves

making a mean-field theory ansatz for the form of the condensate with appropriate

symmetries. The Hamiltonian is rewritten in a way that its dependence on the ansatz

parameters is manifest, and finally from the minimization of the free energy, we obtain

and solve a self-consistent gap equation for the free parameters of the ansatz. This

approach is usually easier to implement technically when the ansatz is complicated,

but it is not as transparent as the variational method. This is the method that we

use in the calculations presented in Chapters 2 and 3.
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1.3 Gapless Color-Flavor-Locked Phase

So far we discussed what happens in the case of asymptotically high density quark

matter. However, neutron stars may or may not be at high enough densities to

contain CFL matter. Therefore a very fundamental question that the reader might

ask is what happens if we reduce the density. The first problem that we encounter

is that it is not possible to rely on QCD weak coupling techniques. Once we start

reducing the density, the quarks of the Fermi surface have energies that correspond

to a coupling g(p) close to one or larger than one, and it is meaningless to use weak

coupling expansion. The other problem we face is that the mass of the strange quark

becomes important. Although the masses of the up and down quarks can still be

ignored since they are a few MeVs, the strange quark has a mass that should be

around 90-150 MeV. At intermedate densities with a baryon chemical potential of

order 500 MeV, having a strange quark mass Ms of order 150 MeV suggests that we

cannot ignore the effect of Ms. As M8 is much larger than the masses of up and down

quarks, it becomes more difficult to make strange quarks comparable to up and down.

On the other hand, the electric charges of up, down and strange sum up to zero. If

we want to have overall electric neutrality in the bulk matter, the net electric charge

coming from the quarks and the electrons has to be zero.

It is instructive to talk first about what happens in the unpaired quark matter. At

asymptotically high density, the masses of all the three quarks are negligible. Their

number densities are the same and by having equal numbers of up, down and strange

quarks we preserve electric neutrality and therefore there is no need for electrons.

At intermediate densities however, we have fewer strange quarks, due to their large

mass. In order to balance the excess positive charge coming from the up quarks, we

need a non-zero electron density. The chemical potentials for the quarks are

2 1
Izu = + l/e, d =/s =- /e (1.9)

where A is the electron chemical potential having assumed weak equilibration. The
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corresponding Fermi momenta are

PFde = Pude, P = /2 --
PF Au~~~~~d~~e7 PF ~~~(1. 10)

The number densities of the quarks and the electron is given by

=13 1(2 Mg2,3/2 1 3
Ns,d s = 2,d M2)3/2, e = 3 (1.11)~~Ns~ =2 A( , N~2s = 37r2Pe.

Now we can impose electric neutrality. This means that the sum of all the charges

should be zero
2 1 1

-Nu -Nd - -N - Ne = 0. (1.12)
3 3 3

If we combine the last two equations and expand to leading order in Ms, we can see

that in order to have neutral matter on should have non-zero electron density with a

Pe = M2/(4p). Finally we can rewrite the Fermi momenta of the quarks as

M2
p: =__ --

pd = + Ms2 + M 2

5M (1.13)=PF- 6-PFI = P PF12/ 4/t

Figure 1-2 shows the Fermi momenta of the quarks and the electrons as a function

of Ms. The separation between up, down and strange is equidistant to leading order

and equal to M2/4p. As we increase M. or equivalently as we decrease the split

among the Fermi surfaces of the quarks becomes larger.

Now let's consider color superconducting matter. Again at asymptotically high

densities, where we have CFL matter, the number densities of the three quarks are

the same, since they are on an equal footing. As we reduce the density, or equivalently

as we go to non-zero M8, the main danger for the BCS pairing is to have quarks with

different Fermi surfaces. As we explained previously, the Cooper pairs come from the

degeneracy of quarks on the Fermi surface that scatter back to back with equal and
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Figure 1-2: The Fermi momenta of the electrons and of the up, down and strange
quarks, as a function of Ms, in electrically neutral unpaired quark matter.

opposite momenta. A non-zero Ms lowers the Fermi surface of the strange quarks,

making it hard for the Cooper pairs to exist [46]. In the CFL we have pairings among

ru-gd-bs, bu-rs, gs-bd and rd-gu, where the first letter denotes color and the second

flavor. The pairing between rd-gu is not affected by the strange quark mass and

therefore there are more red and green quarks, than blue. In order to maintain color

neutrality, a negative /s is needed, where A8 is a color electrostatic chemical potential

coupled to the color charge T8 = diag(1, 1,-2)/3 (in color space: red, green, blue) of

the SU(3) gauge group. This 8 decreases the difference between the Fermi surfaces

of gs and bd as well of bu and rs, making the pairing more favorable. However, as we

shall explain extensively in Chapter 2, this cannot continue for arbitrarily large values

of Ms. There is a simple argument to see why CFL breaks down in lower densities.

Consider the gs-bd pair. We shall see in Chapter 2 that at non-zero Ms the difference

in their Fermi surfaces is Pbd - Pgs = Mi/I. A Cooper pair lowers the free energy of

the system by 2A\, where A is the energy gap. As long as 2A is larger than M,2/p, the

system can always give energy M,/2I to a gs quark in order to be able to pair with a
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bd and lowers the free energy by 2A. Therefore we expect that when M,/,2 > 2, the

BCS pairing is not energetically favored. This is exactly what we have found using

an NJL model analysis. If we exceed the critical value of the inequality, we have a

new phase at zero temperature, the Gapless Color-Flavor-Locked phase (gCFL).

The unique properties of this phase will be explored in the following chapters and

will be the main focus of this thesis. The most important difference between CFL and

gCFL is that in gCFL (unlike CFL) there are gapless dispersion relations. This has

significant consequences for the phenomenological properties of the gCFL matter. In

addition, a non-zero electron density makes the gCFL a conductor unlike CFL which

is a insulator. In both the CFL phase and the gCFL phase, once we take into account

the explicit breaking introduced by the strange quark mass and electromagnetism, the

unbroken symmetry is reduced from the diagonal SU(3)L+R+c to U(1) x U(1) [47].

The last U(1) corresponds to "color + flavor hypercharge" and may be spontaneously

broken by meson condensation [41). The gapless CFL phase has the same symmetry

as the CFL phase, and it will therefore be interesting to investigate the possibility of

meson condensation in the gCFL phase. The effective theory for the Goldstone bosons

alone will have the same form as in the CFL phase, albeit with new contributions to

their masses coming from the differences between the values of the three A?. And,

furthermore, the gapless quasiparticles must be included in the low energy effective

theory.

1.4 Phases at Lower Densities

From asymptotically high density, if we start reducing the chemical potential we

go from CFL to gCFL. If we continue lowering the chemical potential, the strange

quark mass separates the Fermi surfaces even further. There are several interesting

possibilities of pairing in this case, provided the hadronic phase has not taken over.

Until now, there is no definite answer about what exactly happens in this regime.

This is because we are far from the regime where QCD perturbative techniques are

applicable.
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There are two most probable scenarios at lower densities. The first one is a spin-1

superconductor and the second is crystalline superconductivity (LOFF). Although

we are not going to analyze these possibilities in this thesis, we shall mention their

basic principles. As we decrease the chemical potential, Ms becomes more and more

important. The effect of M8 is to split the Fermi surfaces of the different flavor quarks.

If the difference of the Fermi surfaces is large, the only option of conventional pairing

is to have Cooper pairs of the same flavor. The condensate is symmetric in flavor and

antisymmetric in color because the attractive channel is the 3 . This means that the

condensate should be symmetric in spin. The condensate has spin one and therefore

breaks rotational and Lorentz invariance. The relevant spin-1 condensates have been

studied extensively [9, 48-53]. The phase with the lowest free energy among the

spin-1 superconductors is the Color-Spin-Locked (CSL) phase [50]. Similarly to CFL,

the CSL condensate locks the rotations of spin and color. The symmetry breaking

pattern of CSL phase is

SU(3)colo x SO(3)j -+ SO(3)coo,.+j (1.14)

Weak coupling calculations showed that the gaps are of the order of keV, extrapolating

to lower densities. The gaps are much smaller than the ones of the CFL phase.

The second possibility for lower densities is to have a LOFF phase. The crystalline

phase (LOFF) was first proposed by Larkin, Ovchinnikov, Fulde and Ferrell as a

mechanism for electron pairing in suprconductors with a Zeeman splitting between

spin-up and spin-down Fermi surfaces [54, 55]. The idea of the LOFF phase is that

when there is a mismatch in the Fermi surfaces, Cooper pairs may have non-zero total

momentum. We mentioned that in BCS the Cooper pairs have zero total momentum

and are formed from back-to-back scattering between quarks on the Fermi surface.

However, in LOFF there is pairing between a quark with momentum p and a quark

with momentum -p + 2q. The direction of the momentum q is chosen spontaneously,

and its magnitude has to be equal to the mismatch of the two Fermi surfaces. Of

course it is expected that such a pairing cannot exploit the whole Fermi surface,
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but has a restricted phase space. The pairing is forbidden in the so-called "blocking

regions" and it exists only in ring type regions. Since the LOFF Cooper pairs have

non-zero total momentum, we expect that the condensate varies in space like a plane

wave

(+(x)+(x)) Ae2 qx . (1.15)

Rotational symmetry is broken because we choose a direction for the momentum q. In

addition translational invariance is also broken because of the space dependence of the

condensate. Crystalline color superconductivity has been studied in simplified models

with pairing between two quarks species whose Fermi momenta are pushed apart by

a chemical potential difference or a mass difference [56-59]. A LOFF condensate does

not have to be a monochromatic plane wave as in the last equation, but in the more

general case, it could be a superposition of single plane waves with different q's. This

has been investigated within the Landau-Ginzburg approximation in [60]. At this

point only two flavor LOFF models have been studied. A three flavor LOFF phase

remains to be constructed and compared with the other phases.

In Chapter 2, which follows Refs. [24, 25, 61], we analyze gCFL at length.We

study the disruption of the CFL phase at intermediate densities due to the strange

quark mass and how as a result of this, gCFL emerges. In Chapter 2 we work strictly

at zero temperature, treating the effect of the strange quark mass as a shift in the

chemical potential. We study extensively the most important properties of the gCFL

phase: the non-zero electron density and the gapless modes. We also explain why

the gapless modes appear naturally, once we impose neutrality. We compare the free

energy of the gCFL phase with that of other phases (homogeneous and mixed) and

we argue that gCFL is a strong candidate for moderate densities.

In Chapter 3, which follows Ref. [26], we derive a schematic phase diagram of dense

matter, using the same model as in Chapter 2 (NJL). However in this chapter we allow

the temperature to be non-zero and we do not make the chemical potential shift

approximation for the strange quark mass effect. We find several superconducting

phases as a function of the chemical potential and the temperature, and describe the
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way they are connected in the phase diagram. In addition, we show how calculations

done near the critical temperature at high densities, within the Ginzburg-Landau

approximation, are consistent with our phase diagram.

In Chapter 4, which follows Ref. [62], we analyze probably the most important

astrophysical implication of the gCFL phase. We show that if gCFL matter is present

in the interior of a neutron star, it changes significantly the heat capacity and the

neutrino emissivity of the star. We present how a toy star with gCFL matter cools

and we argue that the effect of gCFL matter is to keep an old star warm, contrary to

all other models of stars with quark matter. Therefore at the end of this thesis, we

propose a unique and potentially observable signature of gCFL quark matter.
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Chapter 2

Gapless Color-Flavor Locked Phase

2.1 Introduction

As mentioned in Chapter 1, we expect that matter at sufficiently high densities and/or

temperatures will consist of almost-free quarks and gluons. However, over the last

few years it has become clear that there is a rich and varied landscape of phases lying

between these asymptotic regimes and the familiar hadronic phase at low temperature

and density. In the region where the temperature is low and the density is high

enough that hadrons are crushed into quark matter, there is a whole family of "color

superconducting" phases [34-36, 63, 64]. The essence of color superconductivity is

quark pairing, driven by the BCS mechanism, which operates when there exists an

attractive interaction between fermions at a Fermi surface. The QCD quark-quark

interaction is strong, and is attractive in many channels, so we expect cold dense

quark matter to generically exhibit color superconductivity. Moreover, quarks, unlike

electrons, have color and flavor as well as spin degrees of freedom, so many different

patterns of pairing are possible. This leads us to expect a rich phase structure in

matter beyond nuclear density.

In the previous chapter we argued that at asymptotic densities, where the up,

down and strange quarks can be treated on an equal footing and the potentially

disruptive strange quark mass can be neglected, quark matter is in the color-flavor

locked (CFL) phase, in which quarks of all three colors and all three flavors form
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Cooper pairs [10]. However, just as RHIC is teaching us about the properties of the

hot but far from asymptotically hot quark-gluon plasma [65-68] we should expect

that if neutron star cores are made of color superconducting quark matter, they may

not reach the densities at which CFL predominates. In this chapter, we study the

form of color superconducting quark matter that is the "next phase down in density".

We begin in the CFL phase at asymptotic density, imagine reducing the density, and

assume that CFL pairing is disrupted by the heaviness of the strange quark before

color superconducting quark matter is superseded by the hadronic phase. Upon

making this assumption, we ask what form the disruption takes and what are the

properties of the resulting phase of dense, but not asymptotically dense, matter.

To describe quark matter as may exist in the cores of compact stars, we consider

quark chemical potentials /, of order 500 MeV at most. The strange quark mass M8

must then be included: it is expected to be density dependent, lying between the

current mass 100 MeV and the vacuum constituent quark mass 500 MeV. In

bulk matter, as is relevant for compact stars where we are interested in kilometer-scale

volumes, we must furthermore require electromagnetic and color neutrality [46, 69]

(possibly via mixing of oppositely-charged phases) and allow for equilibration under

the weak interaction. All these factors work to pull apart the Fermi momenta of

the different quark species, imposing an energy cost on the cross-species pairing that

characterizes color-flavor locking. At the highest densities we expect CFL pairing,

but as the density decreases the combination of nonzero M8 and the constraints

of neutrality put greater and greater stress on cross-species pairing, and we expect

transitions to other pairing patterns.

In this chapter we study the first of these transitions, and work exclusively at

zero temperature, which is a reasonable approximation in the interior of a neutron

star that is more than a few seconds old. Nonzero temperature adds interesting new

facets to the analysis. This will be the main scope of Chapter 3. We argue that the

CFL phase will first give way, via a continuous phase transition, to a new phase with

gapless fermions that we call gapless CFL (gCFL) [24, 25, 61]. The transition occurs

when M2/p 2, where A is the pairing gap parameter. We shall show that the
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gCFL phase has two gapless modes and nonzero electron density. Although it has

the same symmetries as the CFL phase, gapless CFL matter is a conductor whereas

CFL quark matter is a dielectric insulator.

2.1.1 (Gapless) CFL Pairing Ansatz

To study the response of the CFL phase to a non-negligible strange quark mass, we

use the pairing ansatz (1.1)

(a C 5 b') ' A1E Ebl + A2E',2Eab2 + A3aEEab3 (2.1)

Here 0a is a quark of color a = (r, g, b) and flavor a = (u, d, s); the condensate is a

Lorentz scalar, antisymmetric in Dirac indices, antisymmetric in color (the channel

with the strongest attraction between quarks), and consequently antisymmetric in

flavor. The gap parameters Al, A2 and A3 describe down-strange, up-strange and

up-down Cooper pairs, respectively. They describe a 9 x 9 matrix in color-flavor space

that, in the basis (ru, gd, bs, rd, gu, rs, bu, gs, bd), takes the form

K

0 A3 A 2 0

A3 0 /A1 0

A 2 A1 0 0

000 0
0 0 0 -A 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

-A 3 0

0 0

0 0

0 -A 2

0 0

0 0

0

0

0

0

0

-/A2

0

0

0

0

0

0

0

0

0

0

0

-A 1

0

0

0

0

0

0

0

-A 1

0 /

(2.2)

We see that (rd, gu), (bu, rs) and (gs, bd) quarks pair with gap parameters A1 , A2

and A3 respectively, while the (ru, gd, bs) quarks pair among each other involving all

the A's. The most important physics that we are leaving out by making this ansatz

is pairing in which the Cooper pairs are symmetric in color, and therefore also in
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flavor. Diquark condensates of this form break no new symmetries, and therefore

must arise in the CFL phase [10, 38]. However because the QCD interaction is repul-

sive between quarks that are symmetric in color, these condensates are numerically

insignificant [10, 27, 38]. To find which phases occur in realistic quark matter, we

must take into account the strange quark mass and equilibration under the weak

interaction, and impose neutrality under the color and electromagnetic gauge sym-

metries. The arguments that favor (2.1) are unaffected by these considerations, but

there is no reason for the gap parameters to be equal once M8 $ 0. Much previous

work [38, 46, 70-73] compared color-flavor-locked (CFL) phase (favored in the limit

Ms -+ 0 or - oo), the two-flavor (2SC) phase (favored in the limit M - oo), and

unpaired quark matter. We shall give a model-independent argument in Section 2.1.3,

however, that when the CFL phase is disrupted, it cannot give way to either 2SC or

unpaired quark matter. Above a critical M~/,u, we shall show that the CFL phase

is replaced by a new gapless CFL (gCFL) phase, not by 2SC quark matter. The

defining (and eponymous) properties of the gapless CFL phase arise in its dispersion

relations, not in its pattern of gap parameters. However, it is useful for orientation

to list the patterns of gap parameters for all the phases we shall discuss:

A3 -A2 A--A CFL CFL (2.3)
A3 > 0, A1 =A 2 =0 (gapless) 2SC (2.4)

A2 > 0, A1 =A 3 =0 2SCus (2.5)

A3 > A2 > A1 > 0 gapless CFL. (2.6)

The 2SCus phase, which was introduced in Ref. [46], must be analyzed for com-

pleteness because it and the 2SC phase have the same free energy when Ms = 0,

and to leading order in MS if their respective nonzero gap parameters have the same

value [46]. However, we shall show in Section 2.3.4 that the 2SCus phase is never

favored, and never gapless.

In the remainder of this chapter we construct the free energies and solve the gap

equations for the CFL, gapless CFL, 2SC, gapless 2SC [74, 75], and 2SCus phases
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in an NJL model. We show in detail how the CFL-+gCFL transition occurs and

detail the properties of the gCFL phase. The gCFL phase is a Q-conductor with

a nonzero electron density, and these electrons and the gapless quark quasiparticles

make the low energy effective theory of the gapless CFL phase and, consequently,

its astrophysical properties qualitatively different from that of the CFL phase, even

though its U(1) symmetries are the same. Both gapless quasiparticles have quadratic

dispersion relations at the quantum critical point. For values of Ms2/, above the

quantum critical point, one branch has conventional linear dispersion relations while

the other branch remains quadratic, up to tiny corrections. In order to evaluate

the range of M,//I above the critical point within which the gCFL phase remains

favored, we construct the 2SC and 2SCus phases and reproduce the 2SC-+g2SC

transition of Refs.[74, 75], here in neutral 3-flavor quark matter, and show that in

this context gCFL has a lower free energy than (g)2SC(us). We do not complete the

study of mixed phase alternatives, but we do eliminate all the most straightforward

possibilities everywhere in the gCFL regime in M /ut except very close to its upper

end, where gCFL, g2SC and unpaired quark matter have comparable free energies.

At such large values of M/2/l, however, our pairing ansatz is not sufficiently general

to describe all the possibilities, as we discuss in the concluding section of this chapter.

Before turning to the model analysis, which we detail in Section 2.2 and whose results

we present in Section 2.3, we conclude this introduction with a model-independent

discussion of color and electric neutrality in QCD and with the model-independent

argument of Ref. [24].

2.1.2 Color and Electric Neutrality in QCD

Stable bulk matter must be neutral under all gauged charges, whether they are sponta-

neously broken or not. Otherwise, the net charge density would create large electric

fields, making the energy non-extensive. In the case of the electromagnetic gauge

symmetry, this simply requires zero charge density. In the case of the color gauge

symmetry, the formal requirement is that a chunk of quark matter should be a color

singlet, i.e., its wavefunction should be invariant under a general color gauge trans-
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formation. Color neutrality, meaning equality in the numbers of red, green, and

blue quarks, is a less stringent constraint. A color singlet state is also color neutral,

whereas the opposite is not necessarily true. However it has been shown that the

projection of a color neutral state onto a color singlet state costs no extra free energy

in the thermodynamic limit [76]. Analyzing the consequences of the requirement of

color neutrality therefore suffices for our purposes.

In nature, electric and color neutrality are enforced by the dynamics of the elec-

tromagnetic and QCD gauge fields, whose zeroth components serve as chemical po-

tentials which take on values that enforce neutrality [46, 77]. Since we are limiting

ourselves to color neutrality and not color singletness we have to consider only the

U(1) x U(1) diagonal subgroup of the color gauge group. This subgroup is generated

by the diagonal generators T3 = diag(, -1, 0) and T8 = diag( 1 , 3, - 2) of the SU(3)

gauge group. Electromagnetism is generated by Q = diag(, -, -) in flavor space

(u, d, s). The zeroth components of the respective gauge fields serve as chemical

potentials P3 and P8 coupled to T3 and T8 charges, and as an electrostatic potential

/De coupled to the negative electric charge Q. (We make this last choice so that e > 0

corresponds to a density of electrons, not positrons.) The dynamics of the gauge

potentials then require that the charge densities, which are the derivatives of the free

energy with respect to the chemical potentials, must vanish:

Q= =o
tOpe

T3 =--- = 0 (2.7)
~38 0

OftsT8=-- = 0
088

A generic diquark condensate will be neither electrically nor color neutral, so it

will spontaneously break these gauge symmetries. However it may be neutral under

a linear combination of electromagnetism and color. Indeed, any condensate of the

form (2.1) is neutral with respect to the "rotated electromagnetism" generated by Q =

Q-T3-T8, so U(1) is never broken. This means that the corresponding gauge boson
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(the "Q-photon"), a mixture of the ordinary photon and one of the gluons, remains

massless. In both the CFL and gCFL phases, the rest of the SU(3)coior x U(1)Q

gauge group is spontaneously broken, meaning that the combination of the photon

and gluons orthogonal to the Q-photon, and all the other gluons, become massive by

the Higgs mechanism.

In an NJL model with fermions but no gauge fields, as we shall employ after

pursuing model-independent arguments as far as we can, one has to introduce the

chemical potentials e, /P3 and 8 "by hand" in order to enforce color and electric

neutrality in the same way that gauge field dynamics does in QCD [46].

2.1.3 Where does CFL pairing become unstable?

We conclude this introduction with a model-independent argument that determines

the density at which the CFL phase becomes unstable. The gap equations for the

three A's will turn out to be coupled, but we can, for example, analyze the effect of a

specified A1 on the gs and bd quarks without reference to the other quarks. It turns

out that gs-bd pairing is the first to break down, and this instability is what catalyzes

the CFL-+gCFL transition.

The leading effect of Ms is like a shift in the chemical potential of the strange

quarks, so the bd and gs quarks feel "effective chemical potentials" Leff = - 28 and

ef t i 2
eff =/ + In the CFL phase, color neutrality requires /l8 =-M~/2, a

result that is model-independent to leading order in M/ 1i2 [46, 72]. This result can

be understood as arising because CFL pairing itself enforces equality in the number of

rd and gu quarks, in the number of bu and rs quarks, and in the number of gs and bd

quarks [78], but in order to achieve neutrality the number density of (rd, gu) quarks

must be reduced relative to that of the (bu, rs) and (gs, bd) quarks, and this requires

a negative /8. Because of the negative /18, /1- gff = t/ in the CFL phase. The

CFL phase will be stable as long as the pairing makes it energetically favorable to

maintain equality of the bd and gs Fermi momenta, despite their differing effective

chemical potentials [78]. It becomes unstable when the energy gained from turning a

gs quark near the common Fermi momentum into a bd quark (namely Mi/,2) exceeds
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the cost in lost pairing energy 21. Hence, the CFL phase is stable when [24]

< 2CFL (2.8)

For lower density, i.e. larger M,2/, the CFL phase must be replaced by some new

phase with unpaired bd quarks. One might naively expect this phase to be either

neutral unpaired quark matter or neutral 2SC quark matter, but it is known that

these have higher free energy than CFL for M/, 1 i < 4 ACFL [46, 72], so this new

phase, which must have the same free energy as CFL at the critical M2/pI = 2 CFL,

must be something else. In view of its properties that are discussed in detail in Section

2.3, we call it gapless CFL (gCFL).

2.2 Model and Approximations

We are interested in physics at non-asymptotic densities, and therefore cannot use

weak-coupling methods. We are interested in physics at zero temperature and high

density, at which the fermion sign problem is acute and the current methods of lattice

QCD can therefore not be employed. For this reason, we need to introduce a model in

which the interaction between quarks is simplified, while still respecting the symme-

tries of QCD, and in which the effects of Ms, e, 3 and P8 on CFL pairing can all be

investigated. The natural choice is to model the interactions between quarks using a

point-like four-fermion interaction, which we shall take to have the quantum numbers

of single-gluon exchange. We work in Euclidean space. Our partition function Z and

free energy density Q are then defined by

Z = e- PV = A DJ Th0 exp ( £(x)d4x)

(2.9)

L(x) = (i ±£ -

where the fields live in a box of volume V and Euclidean time length / = 1/T, and

= zy4. The interaction vertex has the color, flavor, and spin structure of the QCD
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gluon-quark coupling, FA = %T A . The mass matrix M = diag(0, 0, Ms) in flavor

space. The chemical potential , is a diagonal color-flavor matrix depending on A,

pUe, Pt3 and / 8 . The normalization of the four-fermion coupling 3G/8 is as in the first

paper in Ref. [34-36, 63, 64]. In real QCD the ultraviolet modes decouple because

of asymptotic freedom, but in the NJL model we have to add this feature by hand,

through a UV momentum cutoff A in the momentum integrals. The model therefore

has two parameters, the four-fermion coupling G and the three-momentum cutoff A,

but it is more useful to parameterize the interaction in terms of a physical quantity,

namely the CFL gap parameter at Ms = 0 at a reference chemical potential that we

shall take to be 500 MeV. We shall call this reference gap A0. We have checked that

if we vary the cutoff A by 20% while simultaneously varying the bare coupling G so

as to keep A0 fixed, then our results change by a few percent at most. All the results

that we present are for A = 800 MeV and for a coupling strength chosen such that

A0 = 25 MeV.

We now sketch the derivation of the free energy Q obtained from the Lagrangian

(2.9) upon making the ansatz (2.1) for the diquark condensate and working in the

mean field approximation. More sophisticated derivations exist in the literature [34-

36, 63, 64], but since we are assuming that the only condensate is of the form (2.1)

we simply Fierz transform the interaction to yield products of terms that appear in

(2.1), and discard all the other terms that arise in the Fierz transformed interaction

which would anyway vanish after making the mean field approximation. This yields

Gt -- (P T )( TPr/), (2.10)

where

(P,)" = CY5e"6E'i7j, (no sum over ) (2.11)

and P,7 = 7y4Pty 4. The index r/ labels the pairing channel: r = 1,2, and 3 corre-

spond to d-s pairing, u-s pairing, and u-d pairing. The overall coefficient in (2.10)

is the product of the 3G/8 in (2.9) and factors of-1, 4/3, and -1/2 from Fierz

transformations in Dirac, color and flavor space, respectively.
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Next, for each channel we introduce a complex scalar field q0, whose expectation

value will be A,, the strength of the pairing in the channel, and bosonize the

four-fermion interaction via a Hubbard-Stratonovich transformation. The interaction

Lagrangian then becomes

rint = 2 + I(I T Pq ) - G (2.12)

where here and henceforth repeated it's are summed and where it is understood that

we are now integrating over the q,7 as well as p and p in the functional integral (2.9).

The functional integral is now quadratic in the quark fields, so the fermionic function

integral can be performed. Since there are terms in the action that can violate quark

number, we must use Nambu-Gorkov spinors

( =T( ) ( (~ )p(p)) (2.13)

k ?(-p)/

and the full Lagrange density becomes

1S-1 q~;q1n

1 -S __ qt (2.14)
2 T G

where the inverse full propagator is

S_1(p) = P + M (2.15)
V~~~~ pn, (~ M)T 

We now integrate over the fermionic fields to obtain the effective potential for the

scalar fields. We also make the mean-field approximation, neglecting fluctuations in

the scalar fields and setting X, to its expectation value A. The result is

Z = [DetS (TnP) exp (2.16)
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and hence

Q= -TE 3 1 Trlog( S-(iwn'p)) + 7 X (2.17)
27w 2 T1+ 

where wn = (2n- 1)7rT are the Matsubara frequencies. We do the Matsubara sum-

mation using the identity

TEln ( neT2) = 1e + 2Tln(l + e-/T) . (2.18)
n

In the limit of zero temperature only the first term from the right hand side survives,

leading to the result

-= 4r2 2Ep2 eIj(p) dp
4w2 (2.19)

121r 2 '+1 ( + A2 + A2) _

where the electron contribution is included, and ej(p) are the dispersion relations of

the quasiquarks, i.e. the values of the energy at which the propagator diverges:

detS-l(iej(p),p) = 0 . (2.20)

S- 1 is a 72 x 72 matrix, but because what occurs in the identity (2.18) is the combina-

tion W2+E2, the sum in (2.19) is understood to run over 36 roots. (This can be seen as

removing the doubling of degrees of freedom introduced by using the Nambu-Gorkov

formalism.) In the specific cases where our general ansatz becomes 2SC or CFL pair-

ing, our expression (2.19) for the free energy, and in particular the coefficient of the

A2 term, agrees with the expressions obtained by other methods [34-36, 63, 64] that

do not involve Fierz transformations.

In our numerical evaluation, we omit the antiparticle modes (although in Chapter

3 we include them): exciting them costs of order 2p and they therefore do not play

an important role in the physics. This is discussed in more detail below. Neglecting

the antiparticles leaves us with only 18 roots of (2.20) to sum over in (2.19). These

correspond to 9 different dispersion relations describing the quasiparticles of differing
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color and flavor, each doubly degenerate due to spin.

A stable, neutral phase must minimize the free energy (2.19) with respect to

variation of the three gap parameters A1l, A2, A3, meaning it must satisfy

= -0 a 2 = 0, = , (2.21)
09A1 0A2 09A3

and it must satisfy the three neutrality conditions (2.7). The gap equations (2.21)

and neutrality equations (2.7) form a system of six coupled integral equations with

unknowns the three gap parameters and 3, 18 and /e.

We must now find the dispersion relations ej(p), determined by the zeroes of

det S-1 which is specified by (2.20), (2.15) with 0q, replaced by A,, and (2.11), then

evaluate the free energy Q using (2.19), and then solve the six simultaneous equations

(2.7) and (2.21). Before carrying this calculation through, however, we first make a

number of simplifying approximations within the expression for det S- 1 .

1. We neglect contributions to the condensate that are symmetric in color and

flavor: these are known to be present and small [10, 27, 38].

2. We treat the up and down quarks as massless, which is a legitimate approxi-

mation in the high density regime, and we treat the constituent strange quark

mass Ms as a parameter, rather than solving for an (s) condensate. The latter

approximation should be improved upon, along the lines of Ref. [72].

3. We incorporate MS only via its leading effect, namely as a shift -M2/21 in

the chemical potential for the strange quarks. This approximation neglects the

difference between the strange and light quark Fermi velocities, whose effects

are known in other contexts to be small [791. The approximation is controlled by

the smallness of M2/ 1
2. For this reason, in all the results that we plot we shall

work at = 500 MeV and choose a coupling such that the CFL gap at M8 = 0 is

A0 = 25 MeV. We expect the CFL pairing to break down near M2 2/A 0, and

choosing A0 = /i/20 ensures that this occurs where M,2/p2 - 1/10, meaning

that we can trust our results well into the gapless CFL phase. If, instead, we

choose a larger A0, as in Ref. [27], we find that our results become markedly
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more A-dependent, which is a good diagnostic for model-dependence.

4. We work to leading nontrivial order in A1 , A2 , A3 , fie, 13 and 18. This should

be a good approximation, as all these quantities are small compared to A.

5. We neglect the anti-particles. This simplifies the numerics by discarding phys-

ically unimportant degrees of freedom, but one must be cautious with this

truncation. It introduces cutoff-dependent terms in our free energy, including

some that depend on the chemical potential and therefore introduce cutoff-

dependence in the corresponding charges. For our purposes this is not impor-

tant, firstly because we always present free energy differences relative to neutral

unpaired quark matter, and secondly because we only care about electric and

color charges that have zero trace over all fermion species, and for these the

cutoff dependence cancels out. However, a non-traceless charge like baryon

number would have an incorrect cutoff-dependent value when calculated in this

approximation.

6. We ignore meson condensation in both the CFL and gCFL phases.

We expect that these approximations have quantitative effects, but none preclude a

qualitative understanding of the new phase we shall describe.

We now give the explicit expression for det S-1 , after having implemented the ap-

proximations above. As described in section 2.1.1 we use a color-flavor basis in which

the gap matrix (2.2) is conveniently block-diagonal. Since the chemical potential and

mass are diagonal in color and flavor, the full inverse propagator (2.15) is then also

block-diagonal in color-flavor space. This means we can break the determinant in

equation (2.20) into four more manageable pieces:

detS-l(po,p) = DrUDdDrsDgs . (2.22)
gu bu bd 1

bs /
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We find that the 2 x 2 determinants are

Drd = 16h 4 ((brd--ipO)(_gu -p + ipo) + A2)
gu

((Pd - P + iPo)(gu - p -- ipo) + A2),

Drs = 16t ((/trs - P - iPO) (Pbu ipo ) ) (2.23)
bu p)+A) (2.23)

((Ps - P + iPO)(Ibu -p - ipo) ± \2),

Dgs = 16/,t4((lbd-p -ipo)(pgs -p + ipo) + A2)
bd

((Pbd - P + iP)(lgs - -- ipo) + 2)

and the 3 x 3 determinant is

Dru a(2/p)6( b(de- A\2)(cf _ A\2) _ cdfA2
bs +dA2A2 - def A2 + f AiA2 )

+(2f_)6( A\2(deA\2 - 4A/2A2 + efA]) (2.24)

+c(dA4 + fA2A2)

+b(eA\2A\ + c(A2A2 - deA2 - efA2)))

where for compactness we assign

a ru - p + ipo

b = -/tru + P + ipo

c P -/~ -ipoC ~gd-~p ~+ ~po ~(2.25)
d -lgd + p + 'ipo

e /bs -p + ipo

f -b - s + P + ipo

and where we have dropped the superscript on the "effective quark chemical poten-
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tials", given by
eff 2

Pru P- §-e + / 3 + [8,
3 2 3

effs = L + - -

ed = + /3 H + -e + 18,

eff = 2 1 1+

rsff = p- + ~/ 3 + §ft8

ef = 23 2 neff=Pbsf = fi+ 1 Pe - IP8 + .2 ([8M2, p )

eff=

rbd = e + e- 38 .

These expressions explicitly show how we treat the strange quark mass as a shift in

the chemical potential of the strange quarks. In evaluating these determinants, we

have extensively used the identity

det( ) = det(A) det(D - CA- B)
C D

for the determinant of a block matrix.

The numerical task is now explicit. We find the quasiparticle dispersion relations

e(p) by finding the zeros of (2.22), viewed as a polynomial in po. We then perform the

integral in (2.19) numerically, and obtain Q. We evaluate the partial derivatives of the

free energy required in the neutrality conditions (2.7) and the gap equations (2.21)

numerically as finite differences, with differences 0.1 MeV in the relevant chemical

potential or gap parameter.

As a check, we have also done the calculation of Q and its partial derivatives

by evaluating both the p and p0 integrals numerically, never writing the latter as a

Matsubara sum. In this alternative calculation, we were able to evaluate the partial
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derivatives in (2.7) and (2.21) analytically.

The Q that we obtain is cutoff dependent, but its partial derivatives (2.7) and

(2.21) are insensitive to variations in A in the sense described above, namely as long

as the coupling is changed to keep A0 fixed upon variation in A, and as long as A

is kept well above M. Furthermore, we are only ever interested in free energy differ-

ences between phases. When we evaluate the differences between the Q for unpaired,

(g)CFL, and (g)2SC quark matter, we find that all such free energy differences are

insensitive to the cutoff, as they should be since these differences all reflect physics

near the Fermi surfaces. Because we are only interested in free energy differences,

in evaluating Q we make the numerical integral better behaved by subtracting the

appropriate expression for neutral unpaired quark matter within the integrand.

The solutions of the system of gap and neutrality equations depend on three

parameters: , Ms and A0. Our purpose is to understand the effect of Ms on CFL

pairing, and these effects are controlled by the relative size of M,//a and the gap

parameters Ai, whose overall magnitude is set by A0. It is therefore better to think of

the three parameters in the problem as ,t, M,2// and A0. In compact stars, pu increases

and Ms presumably decreases, meaning that M,2// decreases as one approaches the

center of the star. For simplicity, we set the overall energy scale in our calculation by

fixing p = 500 MeV, which is reasonable for the center of a neutron star, and vary

M, in order to vary M,/,2. We have confirmed that as long as we choose a A0 that

is small enough that the transition (2.8) occurs where M~/i/ 2 corrections are under

control, this transition occurs very close to M,2/p - 2A, where A is gap parameter on

the CFL side of the transition. The authors of Ref. [27] have confirmed that this result

continues to be valid even for A0 as large as 100 MeV, where the approximations are

not as well controlled. We quote results only for A0 = 25 MeV, which is within the

plausible range of values that A0 may take in nature [34-36, 63, 64] and for which our

calculation is clearly under control. Although we have obtained our results by varying

Ms at fixed A, we typically quote results in terms of the important combination M/ 1p.
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2.3 Results

2.3.1 Domain where gCFL is favored

In Figs. 2-1 and 2-2, we show the gap parameters and chemical potentials as a function

of M2/1u, for A0 = 25 MeV. Fig. 2-3 shows the free energy. We see a continuous phase

transition occurring at a critical Msc that, in our model calculation with p = 500 MeV,

lies between M8 = 153 MeV and M8 = 154 MeV, i.e. at (M/lp)C _ 47.1 MeV. This

agrees exceedingly well with the expected value 2A from Eq. (2.8), since on the CFL

side of the transition A1 = A2 = A3 = 23.5 MeV. For M2/p < (M/p)c, the CFL

phase is favored, with all three gaps equal to each other within our approximations.

If we improve upon our approximate treatment of M, we expect A1 = A2 with these

gap parameters slightly smaller than A3, because A1 and A 2 describe pairing between

quarks with differing Fermi velocities, an effect of M, that we are neglecting because

it is known to be small in other contexts [79]. (Indeed, it proves to be a few percent

effect as we shall see in Chapter 3.)

For M2/u < (M~2/p)c our results agree with the small-M, expansion of Ref. [46],

where 3 /=ue = 0 and /s =-M2/(2p) and the free energy is

3tL4 3M, 2 1 - 12 log(M8/ 2 u) M4
neutral 47r2 47r2 327r2

CFL

3A 2 A2

7r 2

neutral + 3M -48A 2 p (2.27)
167r 2

unpaired

As the density decreases (i.e. as Mi2/p increases) through the CFL-+gCFL tran-

sition, the gap parameters split apart, with A3 increasing slightly and A2 and A1

dropping significantly, with Al dropping faster than A2.

We have verified that M2/pA is the relevant dimensionless quantity by changing

the coupling strength, i.e. picking a different A0 (gap at Ms = 0). The critical point

(M8
2/y)c changes as predicted by (2.8). Furthermore we checked the robustness of
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Figure 2-1: Gap parameters A3 , A 2 , and /A1 as a function of M2/I for = 500 MeV,
in a model where A0 = 25 MeV (see text). At M2/Ip - 47.1 MeV (vertical dotted line)
there is a continuous phase transition between the CFL phase and a phase that we
shall identify below as the gapless CFL phase. We find gapless CFL phase solutions
up to M2/1 i - 144 MeV. But, we shall see in Fig. 2-3 that above M2/1 - 130 MeV
(which we denote here with a vertical dash-dotted line) unpaired quark matter has a
lower free energy than the gapless CFL phase.

our results upon variation of the cutoff A, observing changes of only a few percent in

the value of M2/!uA at the transition upon changing A by up to 20% while keeping

A\0 fixed. However, if the CFL phase is augmented by a K°-condensate [41, 80], the

CFL-±gCFL transition is delayed to a value of M2/1 that is higher by a factor of

4/3 [81] or less [80].

Fig. 2-3 confirms that the slope of the free energy is continuous at the CFL/gCFL

transition, indicating that it is not first order. We have not determined the or-

der of the transition, because evaluating higher derivatives of the free energy with

respect to M2/p is not numerically feasible. The most physically relevant order pa-

rameter is the electron density ne pe , which is of course equal in magnitude to

the electric charge density of the quarks. This increases above the transition like

ne ,- [(M/ p )- (M2/t,)C]3, which would suggest a fourth order phase transition.
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Figure 2-2: Chemical potentials , A3 and 8 as a function of M,/ 1 in the CFL/gCFL
phase for the same parameters as in Fig. 2-1. The effects of electrons on the free energy
have been included in the calculation, as will be discussed in more detail below. We
see that the gapless CFL phase has De > 0, meaning that it has a nonzero density of
electrons. Perhaps the most physically relevant order parameter for the CFL/gCFL
phase transition is the electron number density ne - 3.

This argument neglects the small electron mass and, furthermore, it neglects the fact

that, as we shall see in Eq. (2.32), there is also a nonzero number density of neu-

tral unpaired quark quasiparticles that grows like [(M//p) - (M/p)] 1 /2. Although

because these unpaired quasiparticles are neutral they are less important phenomeno-

logically, this does suggest that the transition is second order, as in the analysis of

Ref. [82].

If we had used a simpler ansatz in which the gap parameters were constrained to

one value A =- A1 = A 2 = A3, then the CFL phase would have remained artificially

stable above the critical value of Mi2/p. From Eq. (2.27), its free energy would be

higher than that of gCFL, rising to equality with that of unpaired quark matter at a

value of M2/p around 90 MeV. (The precise value depends on how the common A

changes with M8 .)

Of course, we actually used the more general ansatz (2.1) that allows the A's
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Figure 2-3: Free energy of the CFL/gCFL phase, relative to that of neutral nonin-
teracting quark matter and that of the 2SC/g2SC and 2SCus phases, discussed in
Section 2.3.4. There is a CFL-+gCFL transition at (M,2/p)C - 47.1 MeV, (vertical
dotted line), at which the free energy and its slope are continuous, indicating that
the transition is not first order. If we neglect the possibility of other phases (for ex-
ample g2SC) we would conclude from this figure that there is a first order transition
gCFL-+unpaired at M2/ -_ 130 MeV (vertical dash-dotted line).

to differ. We found that the CFL phase becomes unstable and is replaced by the

gCFL phase, in which the gaps have very different values, so the simplified analysis of

Ref. [46] does not apply. The free energy of the gCFL phase crosses that of unpaired

quark matter at M2/p - 130 MeV. This phase transition is first order, and we are

able to follow the metastable gCFL phase up to M,/2 = 144 MeV where, as we shall

explain below, it ceases to be a solution.

2.3.2 The nature of the gCFL phase

Up to this point we have not justified our use of the name "gapless CFL" for the new

phase that replaces the CFL phase at M2//p > 2A. We have given model-independent

arguments to expect that it will contain unpaired bd quarks, but now we describe its

properties in more detail. In calculating the free energy (2.19) of the Cooper-paired
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Figure 2-4: Dispersion relations at Mi2/I = 80 MeV (with /t and A0 as in previous
figures) for the quasiparticles that are linear combinations of gs and bd quarks (dashed
lines) and for the quasiparticles that are linear combinations of bu and rs quarks (solid
lines). There are gapless gs-bd modes at pbd = 469.8 MeV and pbd = 509.5 MeV,
which are the boundaries of the "blocking" [56, 57] or "breached pairing" [85] region
wherein there are unpaired bd quarks and no gs quarks. One bu-rs mode is gapless
at p = 475.6 MeV with an almost exactly quadratic dispersion relation that we shall
discuss below.

quark matter we automatically obtain the quasiquark dispersion relations (2.20), so

we can see what gapless modes exist. These modes are important because, at the

temperatures T keV characteristic of neutron stars, only the lightest modes will

contribute to transport properties.

In Fig. 2-4 we show the dispersion relations for the rs-bu and gs-bd 2 x 2 blocks in

the quasiquark propagator, at M,/2u = 80 MeV. We see immediately that there are

gapless modes in both blocks, justifying our name for this phase. Before moving on to

a detailed discussion of the physical properties of the gCFL phase, we should note that

the phenomenon of gapless superconductivity is well known, at least theoretically. It

was first suggested by Sarma [83] who worked in a context much like our gs-bd block

in isolation, and found that the gapless superconducting phase is never stable. Alford,
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Figure 2-5: Dispersion relations at M2/ft = 80 MeV for the two quasiparticles that
are linear combinations of rd and gu quarks (dashed and dotted), and for the three
quasiparticles that are linear combinations of ru, gd and bs quarks (solid). These five
quark quasiparticles all have gaps throughout the CFL and gCFL phases.

Berges and Rajagopal found a metastable gapless color superconducting phase in Ref.

[84], but this phase was neither electrically nor color neutral. The key observation

was made by Shovkovy and Huang [74], who discovered that when the constraints of

electric and color neutrality are imposed on the 2SC phase in two-flavor QCD, there

are regions of parameter space where a gapless color superconducting phase is stable.

Following their nomenclature (they described a "gapless 2SC phase") we refer to the

phase that we find above Mf as the "gapless color-flavor locked phase" [24].

Gapless two-flavor color superconductivity was also studied in Ref. [85], building

upon prior work done in a cold atom context [86]. These authors analyzed pairing

between a heavy and a light quark, akin to gs and bd, in the case in which the gs

quarks are nonrelativistic. They find that a gapless phase (they describe the blocking

region as a region in which pairing is "breached") is stable if the relative density of

the two species is held fixed.

Note that in our three-flavor calculation, both the gap equations (2.21) and the
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neutrality conditions (2.7) couple all nine quarks. Although the single particle dis-

persion relations can be analyzed for the gs and bd quarks in isolation, and are

qualitatively similar to those obtained in Refs. [74, 85] in a two-flavor setting, the im-

plications of neutrality are more subtle in our three-flavor context as we shall explain

below.

Each of the dispersion relations in Figs. 2-4 and 2-5 describes an excitation with

well-defined Q, although the sign of Q changes at momenta where the dispersion

relation is gapless. Beginning with an example with no gap, the upper solid curve in

Fig. 2-4 describes excitations that are linear combinations of rs particles and bu holes,

both with Q = -1. The lower dashed curve in Fig. 2-4 has clearly visible momenta

pbd and pbd where it is gapless, so we use this as an example of "sign change" even

though it describes Q = 0 quasiparticles: to the left of pd, it describes gs-holes with a

very small admixture of bd particles; to the right of pd, it describes bd particles with

a very small admixture of gs holes; but, between pbd and pbd it describes excitations

that are superpositions of bd holes and gs particles.

In the CFL phase, once we take into account the explicit symmetry breaking in-

troduced by the strange quark mass and electromagnetism, the unbroken symmetry

is reduced from the diagonal SU(3)L+R+c to U(1)Q x U(1) [47]. The last U(1) corre-

sponds to "color + flavor hypercharge" and may be spontaneously broken by meson

condensation [41]. The gapless CFL phase has the same symmetry as the CFL phase,

and it will therefore be interesting to investigate the possibility of meson condensation

in the gCFL phase. The effective theory for the Goldstone bosons alone will have

the same form as in the CFL phase, albeit with new contributions to their masses

coming from the differences between the values of the three A2. And, furthermore,

the gapless quasiparticles must be included in the low energy effective theory.

Dispersion relations, gapless modes, and neutrality

As will soon become clear, the 3 x 3 block in the pairing pattern (2.2) plays a minor

role: its quasiparticles are always gapped, so we mainly discuss the three 2 x 2 blocks.

In general, when two species of massless quarks undergo s-wave pairing with gap
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parameter A, the dispersion relations of the two resulting quasiparticles are

E(p) = 6 M± (p-_ )2 + 2 1 (2.28)

where the individual chemical potentials of the quarks are ± 6,i. As long as the

chemical potentials pulling the two species apart are not too strong, Cooper pairing

occurs at all momenta:

pairing criterion: 16/II < A . (2.29)

However when this condition is violated there are gapless (E = 0) modes at momenta

Pgapless = V 6M2 ,- A2 (2.30)

and there is no pairing in the "blocking" or "breached pairing" region between these

momenta [56, 57, 74, 85, 86]. (The identification of the boundaries of a blocking region

with locations in momentum space where a dispersion relation is gapless is discussed

with considerable care in Ref. [57], which considers a more complicated setting in

which rotational symmetry is spontaneously broken and the blocking regions are not

spherically symmetric. Such blocking regions were analyzed previously in Ref. [56].)

The pairing criterion (2.29) can be interpreted as saying that the free energy cost 2A

of breaking a Cooper pair of two quarks a and b is greater than the free energy 261

gained by emptying the a state and filling the b state (assuming that 61 pushes the

energy of the a quark up and the b quark down) [78]. In the blocking region, we find

unpaired b quarks and no a quarks.

We wish now to apply these ideas to the 2 x 2 pairing blocks in three-flavor

quark matter, first in the CFL phase. As described above, neutrality is imposed via

chemical potentials Ae, 13, As, and in the CFL phase the leading effect of the strange

quark mass is an additional effective chemical potential -M2/2p for the strange

quarks. The splittings of the various pairs are then as given in the middle column of

Table 2.1.

Electrons will play a crucial role in understanding the gCFL phase, but it is
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quark pair 6beff teff in
electronless CFL

rd-gu 2 (Ie + I3) e

rs-bu (e + + 8 - M 2/ A) e- eMs/ 

gs-bd13 -( - 8 + M2/P) M2/2/

Table 2.1: Chemical potential splittings for the 2 x 2 pairing blocks. (6 /eff and
[, which is not tabulated, are defined in each row such that the effective chemical
potentials of the two quarks that pair are FLt + 61eff.) The middle column gives 6 /leff
for general values of the chemical potentials /le, P3 and /-s. In the last column, it is
understood that as e is varied, 3 and /8 "follow it" in such a way that varying ,Ue
corresponds to varying ,, tracking degenerate Q-neutral solutions for electron-less
CFL quark matter.

fruitful initially to consider matter consisting only of quarks, which we can do by

sending the electron mass to infinity. In the absence of electrons, at each M 2/,u there

is a plateau in the free energy of neutral CFL (or gCFL) solutions: if we vary the

chemical potential that couples to Q charge,

~~=-g(He + 3 + 8) = (2.31)

while keeping constant the gap parameters Ai and the two orthogonal combinations

of chemical potentials, then over a range of the free energy does not change and

we have a family of neutral stable solutions to the gap equations. This indicates

that, in the absence of electrons, both the CFL and gCFL phases are Q-insulators.

On this plateau, all Q-charged quasiparticles remain gapped: (2.29) is obeyed for

the (rd, gu) and (rs, bu) 2 x 2 quark pairing blocks. At the edges of the plateau,

some Q-charged quasiparticles become gapless, the material ceases to be Q-neutral,

DlQ/QU/ /= 0, and the free energy is no longer independent of changes in ,Q. The

range of that defines the plateau is therefore the band gap for the CFL/gCFL

insulator. In Fig. 2-6 we show the unpairing lines for each 2 x 2 quark pairing block.

The rd-gu line and the rs-bu line bound the plateau region. Although the vertical axis

is labelled "e", it actually corresponds to variation in /I~, since we varied (e, a3, U8)

by a multiple of (1, 1, 2). In the CFL phase, this corresponds to keeping /3 = le and
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Figure 2-6: Unpairing lines for the same parameters as used in Fig. 2-1. If electrons
are neglected, then the upper and lower curves bound the region of I-e where neutral
solutions to the gap equations are found. These solutions are all Q-insulators. Taking
electrons into account, the correct solution is the dashed line: in the CFL phase
1e = 0, while the gCFL phase corresponds to values of e below but very close to the
rs-bu unpairing line. gCFL is a Q-conductor both because of the nonzero electron
density and because of the ungapped Q-charged rs-bu quasiparticles.

I8 (= lte- M2/p) while varying te.

We see that (g)CFL matter exists in a wedge, between the rd-gu unpairing line

and the rs-bu unpairing line. From Table 2.1 we can see that the bd-gs-unpairing

line is vertical because the bd and gs quasiparticles are Q-neutral, so their splitting

depends only on M2/1 and not on . This unpairing line has a different character

than the other two. Rather than bounding the band-gap within which solutions are

found, it separates the CFL and gCFL phases. CFL is stable only up to a critical

value of M2/1 , where the the gs-bd pairs break.

At the lower (rs-bu-unpairing) line, pu is large enough that the bu and rs quarks,

which have Q = +1 and Q = -1 respectively and which pair with gap parameter

A2, no longer pair completely: it is energetically favorable to create a new blocking

region of unpaired bu quarks. At this Q-electrostatic potential, the CFL Q-insulator

breaks down, unpaired bu quarks with Q = +1 are created, the free energy is no
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longer M,~-independent, and in fact the neutrality conditions and gap equations are

no longer satisfied.

At the upper (rd-gu-unpairing) line, p,~ is so low that the rd and gu quarks,

which have Q = -1 and Q = +1 respectively and which pair with gap parameter A3,

no longer pair completely, and it is energetically favorable to create a new blocking

region of unpaired rd quarks, and once again no solution is found.

At M2/p = 143 MeV, which is so large that the gapless CFL phase is anyway

already metastable with respect to unpaired quark matter, the two boundaries cross,

meaning that no gapless CFL solution can be found.

So, in the absence of electrons, we can find stable solutions of the gap and neu-

trality equations everywhere between the rs-bu and rd-gu curves in Fig. 2-6. To the

left of the gs-bd unpairing line this is the CFL phase, a Q-insulator with no gap-

less quasiquark modes. To the right of that line we have the gCFL phase, again a

Q-insulator, in which all Q-charged modes are gapped, but there are Q = 0 gapless

quasiparticles.

We now restore the electrons, setting their mass to zero. In the CFL region, the

system is forced to He = 0 (dashed line in Fig. 2-6) [78]. However, at the transition

point to gCFL, where the gs-bd pairs break, we find that the neutrality requirement

forces us over the line where rs-bu pairs also begin to break. The result is that as

M/,1u increases further, the system maintains neutrality by staying close to the rs-

bu-unpairing line, where there is a narrow blocking region in which there are unpaired

bu quarks. Their charge is cancelled by a small density of electrons. We analyze this

quantitatively below.

We see that real-world gCFL quark matter is a conductor of Q charge, since it has

gapless Q-charged quark modes, as well as electrons. The rd and gu quarks, which

are insensitive to the strange quark mass, remain robustly paired and the Q-neutral

bd and gs quarks develop a large blocking region as the system moves far beyond

their unpairing line. The neutrality requirement naturally keeps the system close to

the rs-bu-unpairing line, following the dashed line in Fig. 2-6, so these quarks have a

very narrow blocking region and an almost quadratic dispersion relation (see below).
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Although U(1)Q is unbroken in the gapless CFL phase, the presence of electrons and

unpaired bu quarks makes this phase a Q-conductor. This is in contrast to the CFL

phase, which is a Q-insulator with no gapless quasiquarks and no electrons.

The gapless quark quasiparticles occur in the gs-bd and rs-bu sectors. Since these

will have a dramatic effect on transport properties, we now discuss them in greater

depth.

The gs-bd sector

In a typical part of the gCFL phase space, the Q-neutral gs-bd sector is well past

its unpairing line, and there is a large blocking region between momenta pbd and pbd

at which there are gapless excitations, as shown in Fig. 2-4. In the blocking region

pbd < p < pd there are bd quarks but no gs quarks, and thus no pairing. We have

confirmed this by direct evaluation of the difference between the number density of

bd and gs quarks, showing this to be equal to the volume of the blocking region in

momentum space.

Note that even though there is no pairing in the ground state in the blocking re-

gion, the dispersion relations are not trivial. Because the states obtained via the two

different single particle excitations that are possible (adding a gs quark or removing a

bd quark) mix via the A1 condensate, the two dispersion relations exhibit an "avoided

crossing" between pbd and p2d. If we neglect the mixing among the excitations intro-

duced by A1 , the gapless excitations just above (below) pbd are bd quarks (holes) and

those just above (below) pbd are gs quarks (holes).

It may seem coincidental that the value of M2/p at which the CFL phase becomes

gapless is the same as the value at which A1 and A2 separate in Fig. 2-1. Although

we do not see a profound reason for this, it is certainly not a coincidence. The

CFL-+gCFL transition is triggered by the instability of the CFL phase that occurs

when a gs-bd quasiparticle dispersion relation goes gapless, indicating the instability

towards gs-bd unpairing and the opening up of a blocking region in momentum space,

filled with unpaired bd quarks and with no gs-bd pairing. Consequently, one of the

terms in the /A1 gap equation - that corresponding to the gs-bd block - is reduced in
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magnitude because its integrand vanishes within the blocking region. This reduction

in the support of the Al\ gap equation integrand causes lA to drop.

The "thickness" of the bd blocking region can be considered an order parameter

for gCFL: for M2/, below the critical value there is no blocking region. Just above

the critical value we can use the results of table 2.1 and (2.30) to show that

P2 Pi "'1 (2.32)bd bd ^l/2 (Ms (M, )2 ) / (

typical behavior for a second order phase transition. Because we are analyzing a zero

temperature quantum phase transition, the long wavelength physics at the critical

point is 4-dimensional rather than 3-dimensional as at a finite temperature transition.

The rs-bu sector

As discussed above, the gCFL phase remains neutral by crossing the rs-bu unpairing

line, and developing enough unpaired bu quarks to cancel the Q charge of the elec-

trons. The electrons contribute (-4/12wr 2) to the free energy, so Q-neutrality can

be maintained as long as

3_ '4 _ (pbu)3 _ (pbU)3n- e bu = w2 (2.33)
ne -37i. 2 - 7r 7~u-

where pbu and pbu bound the blocking region of unpaired bu quarks. The condition

(2.33) implies that
3

(pbu _ p) = e (2.34)

where i is the average of pbu and pbu. At M2/i = 80 MeV, where lie = 14.6 MeV at

the lower curve in Fig. 2-6, this implies (pbu - pt) = 0.0046 MeV! Indeed, in Fig. 2-4

the separation between pu and pb2u is invisible, and the dispersion relation appears

to be quadratic about a single gapless point. To resolve the separation between pi

and p, we did calculations assuming 200 and 500 "flavors" of massless electrons.

In these cases, (pbu _ pbu) 1 MeV and - 3 MeV, in very good agreement with

the above argument. Returning to our world with its single electron species, because
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(pbu - p'u) is so small, the value of Ue at the true Q(-neutral solution is very close to

that given by the lower curve in Fig. 2-6. And, the gaps are very close to those found

in a calculation done in the absence of electrons.

From Eq. (2.28), the maximum in the quasiparticle energy between the two gapless

momenta is Emax = -- A 1, so from (2.30) we can express this in terms of the width of

the blocking region: 4(1lJpi + A)Ema, = (P2-pl) 2 . For the rs-bu quarks, the blocking

region is always very narrow, so Ema,, (pb -pb) 2/(8A 2) which from (2.34) is a small

fraction of an electron volt at M 2 / p = 80 MeV. Thus, at any astrophysically relevant

temperature, the rs-bu dispersion relation can be treated as quadratic about a single

momentum at which it is gapless. Indeed, even at M2/[u = 130 MeV where the gapless

CFL phase ceases to be the ground state, Se = 40.3 MeV, (pb2u _ pb) 0.1 MeV

and the peak of the dispersion relation between pbu and pbu is at about 50 eV. The

requirement of Q-neutrality naturally forces this dispersion relation to be very close

to quadratic, without requiring fine tuning to a critical point.

The rd-gu sector and the 3 x 3 ru-gd-bs block

In Fig. 2-5 we show the dispersion relations for the quasiparticles in the rd-gu sector.

One of these becomes gapless at the upper boundary of the wedge in Fig. 2-6, but

we have seen that in the presence of electrons, the neutral gapless CFL solution is

never near this upper boundary. Therefore, these dispersion relations are always

gapped, as in the figure. In Fig. 2-5 we also show the dispersion relations for the

three quasiparticles from the 3 x 3 block. These quasiparticles carry zero Q charge

and they always have nonzero gap. Their smallest gap becomes very small near the

rightmost tip of the gCFL wedge region in Fig. 2-6, but is always greater than MeV

in the region in which gCFL is favored.

2.3.3 The gCFL Free Energy Function

In the previous subsection, we have used the dispersion relations to delineate the

unpairing lines which bound the ranges in p, where, in the absence of electrons,

62



Q-insulator solutions are to be found and which separate the CFL and gCFL phases.

Here, we sketch the behavior of the free energy Q in the vicinity of solutions to the

gap and neutrality equations, and see how this behavior changes at the unpairing

lines.

In Fig. 2-7 we study the free energy in the vicinity of a gapless CFL solution not

far above the CFL--gCFL transition. We have neglected electrons in making this

plot; the change from including them would be invisible on the scale of the plot. We

plot the free energy upon variation of gap parameters while keeping i's fixed (dashed

curves in Fig. 2-7), and we also plot the "neutral free energy" (solid curves) obtained

by varying gap parameters about the solution while solving the neutrality conditions

anew for each value of the gap parameters. We see that the solution is a minimum of

the neutral free energy, confirming that we have succeeded in finding a stable neutral

solution. However, the solution is not at a minimum of the free energy upon variation

of the gap parameters while keeping 's fixed.

We see in the top panel of Fig. 2-7 that the solution is found at a local maximum

of the dashed curve describing variation of A1l at fixed 's. Shovkovy and Huang

described similar behavior in the gapless 2SC case in Refs. [74, 75], and suggested

that this is a characteristic of gapless superconductivity. We find this not to be the

case: deep in the gCFL phase, at M,/,u = 80 MeV rather than the M,/Hi = 51.2 MeV

of Fig. 2-7, we find that the gCFL solution is a local minimum of both the dashed

and the solid curves in the analogue of the top panel of Fig. 2-7. That is, we find an

onset of the behavior seen in the top panel of Fig. 2-7 as we cross the CFL-+gCFL

transition, namely the gs-bd unpairing line: as a gs-bd blocking region begins to open

up, the solution goes from being a local minimum of the dashed curve to being a local

maximum. However, we find that the dashed curve does not persist in this shape as

the gs-bd blocking region expands. The onset of gaplessness is characterized by a

dashed curve as in the top panel of Fig. 2-7, but gaplessness itself need not be.

In the middle panel of Fig. 2-7, we find that the solution is at a point of inflection

with respect to variation of A2 at fixed 's. We find that the gCFL solutions at all

values of M2/1 U above (M./,i), are at points of inflection of this sort. This arises
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Figure 2-7: These figures show the free energy in the vicinity of the gapless CFL
solution for M2/p = 51.2 MeV. In each panel, the dashed curve is obtained by varying
one of the gap parameters (A1 in the top panel, A\2 in the middle; A3 in the bottom)
while keeping the other parameters fixed. The free energies are measured relative to
that of the solution. The solid curve in each panel depicts the "neutral free energy",
obtained by varying one gap parameter, keeping the other gap parameters fixed, and
solving the neutrality conditions anew for each point on the solid curve.
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Figure 2-8: Same as the middle panel of Fig. 2-7, except that /e has been increased
by 2 MeV while changing 3 and /18 so as to make this a shift in /Q. This means
that, neglecting electrons, we are now exploring the change of the free energy and the
neutral free energy upon variation of A2 about a gCFL solution that is in the interior
of the wedge in Fig 2-6, rather than at its bottom boundary.

because a gCFL solution is forced by the neutrality constraint to be very close to the

bu-rs unpairing line. In Fig. 2-8 we replot the middle panel of Fig. 2-7 after increasing

,le by 2 MeV while varying 3 and 8 so that only Q changes. This means that we

have taken a 2 MeV step upwards in Fig. 2-6, away from the bu-rs unpairing line.

And, we see that the solution is now a minimum with respect to variation of A2 at

fixed p's. The point of inflection has resolved itself into a minimum and a maximum,

with the solution at the minimum. Thus, the point of inflection in the dashed curve

does indeed occur at the bu-rs unpairing line.

Note that at M2/p = 80 MeV, once we have taken an upward step away from

the bu-rs unpairing line in Fig. 2-6, obtaining the analogue of Fig. 2-8, the gapless

CFL phase solution is now a local minimum of both the dashed and solid curves for

variation in the Al, A2 and A3 directions.

If we take a step in the "wrong direction" in Fig. 2-6, downwards from the bu-rs

unpairing line, the point of inflection in the middle panel of Fig. 2-7 vanishes and the

65



dashed curve becomes monotonically increasing, indicating that there is no solution

to the A2 gap equation to be found at these values of the 's. In the presence of

electrons, the neutrality conditions are satisfied just below the bu-rs unpairing line

in Fig. 2-6, and the dependence of the free energy on A2 is slightly modified so that

the point of inflection in the middle panel of Fig. 2-7 occurs where the neutrality

conditions are satisfied. We have confirmed this in calculations done with 200 and

500 species of electrons; with a single species as in the real world, the changes in

Fig. 2-7 are invisible on the scales of the plot.

Finally, with respect to variation of A3, the solution is a local minimum of the

dashed curve in the lower panel of Fig. 2-7. However, we have verified that if we

move sufficiently upwards in Fig. 2-6 as to run into the rd-gu unpairing line, then

the dashed curve in the lower panel exhibits a point of inflection (while that in the

middle panel has a robust minimum.)

2.3.4 (Gapless) 2SC and 2SCus

In this subsection, we discuss the properties of phases in which only two of the three

flavors pair. These cannot compete with the CFL and gCFL phases at low values of

M~2/u, but could conceivably become important at larger values (lower densities).

The Fermi momenta in cold unpaired quark matter are ordered PFd > PFU > PFs,

since the strange quark mass tends to decrease the strange quark Fermi momentum,

and the down quark Fermi momentum then increases to preserve neutrality. Thus,

the likely two-flavor pairings in cold three-flavor quark matter are u-d pairing (i.e.

2SC, with gap parameter A3 > 0 and A1 = A2 = 0) and u-s pairing (i.e. 2SCus, with

gap parameter A2 > 0 and A1 = A3 = 0).

Calculation

In order to find a two-flavor pairing solution, we need only solve four equations (one

gap and the three neutrality equations). The other two gap equations are auto-

matically satisfied upon setting the relevant gaps to zero. Using the same coupling
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Figure 2-9: Gap parameters in 3-flavor quark matter for the 2SC phase (A3) and the
2SCus phase (A 2 ). In each case the other two gaps are zero. The 2SC phase becomes
gapless (g2SC) at M2/1 > 113 MeV and ceases to exist at M2/p ; 130 MeV, and its
free energy is always lower than that of unpaired quark matter (Fig. 2-3). The 2SCus
phase becomes unfavored relative to unpaired quark matter at MS2/ > 99 MeV, and
ceases to exist at M2/p ~ 103 MeV, without ever becoming gapless.

strength as in our investigation of the gCFL phase (A0 = 25 MeV) and working at

the same value of p = 500 MeV, the nonzero gaps at M2/p = 0 are A3 = 31 MeV

in the 2SC phase and A2 = 31 MeV in the 2SCus phase. As we increase Ms2/p, as

long as we do not enter a gapless phase the gaps decrease slowly and the simplified

analysis of the 2SC and 2SCus phases in Ref. [46] should be a good guide. We do

indeed find that our results are well approximated by P3 = 8 = 0 and pe = M2/2t

in the 2SC phase and ,e = P3 = 1P8 = 0 in the 2SCus phase, with a free energy given

by

Q -~~~~~~~ 4- 16AP 2

neutral - neutral + s 167w2 (2.35)
2SC/2SCus unpaired

with Ai given by A3 in the 2SC phase and A2 in the 2SCus phase, as predicted in

Ref. [46]. The free energy of the 2SCus phase is higher than that of the 2SC phase

because A2 decreases more rapidly with M2/p in the 2SCus phase than A3 does in
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the 2SC phase. This cannot be discovered by the methods of Ref. [46], in which these

two phases were treated as degenerate.

Our results for the gap parameters are shown in Fig. 2-9 and for the free energies

in Fig. 2-3. As in our other figures, we vary Ms keeping tz fixed at 500 MeV.

2SC/g2SC Results

We find a neutral 2SC solution at low M,/ 1p, with four gapped quasiparticles. At

M,2/ 113 MeV two of these quasiparticles become gapless, with blocking regions

within which there are unpaired rd and gd quarks, and there is a continuous transition

to the gapless 2SC (g2SC) phase. (Gapless 2SC was introduced in two-flavor quark

matter in Refs. [74, 75].) The gap parameter then decreases rapidly until it reaches

zero at M2/ 130 MeV and the solution ceases to exist.

As is clear from Fig. 2-3, 2SC/g2SC always has lower free energy than unpaired

quark matter, and usually has higher free energy than CFL/gCFL. However, we find

a tiny window of M2/1 t less than MeV wide, very close to 130 MeV, in which

the gapless 2SC phase has lower free energy than gCFL. In this regime, the one

nonzero gap in the g2SC phase is almost zero whereas all three gaps are nonzero in

the gCFL phase. This indicates that the fact that the gCFL free energy crosses that

of unpaired quark matter almost at the same point where the g2SC and unpaired

free energies come together is a nongeneric feature of our model. Taken literally, our

calculation predicts that as M,2// increases, gCFL is supplanted by g2SC which is

then almost immediately supplanted by unpaired quark matter. However, as we shall

see in Chapter 3, treating the effects of Ms more accurately than we have may shut

the tiny g2SC window completely. In contrast, treating Ms as a chemical potential

shift, as we have in this chapter, but using A0 = 100 MeV appears to open a wide

g2SC window [27], but this occurs in a regime where Ms - p and so this result is not

trustworthy. Also, as we discuss in the next section, a more general ansatz is required

once one is at a sufficiently large M,2/p that the free energy of the gCFL phase is

close to that of unpaired quark matter, since there are other possible pairing patterns

that likely become favorable.
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Finally, it is interesting to note that the 2SC solution in three-flavor quark matter

differs from its two-flavor version, which requires a large ue for neutrality given that

there are no strange quarks present to carry negative charge. In three-flavor quark

matter, we find that at M8 = 0 there is a small positive Ale and a small negative

18 = -e in the 2SC phase. This happens because the pairing of ru, rd, gu and gd

quarks increases their number density. This contributes a positive electric charge and

excess redness/greenness, which is compensated by a small positive Ae and a negative

Pu8. As we increase M,/,i, the small A8 remains approximately unaffected whereas

the small 1e due to pairing is rapidly swamped by the larger contribution of order

M2/2p that compensates for the lack of strange quarks.

2SCus results

We find a neutral 2SCus solution, with a gap A2 that decreases with increasing

M2/y as shown in Fig. 2-9. This solution only exists for M,/2 < 103 MeV, and has

a higher free energy than that of neutral unpaired quark matter for M2/ > 99 MeV

(see Fig. 2-3). It is always unfavored relative to the CFL/gCFL phase.

It is striking that two-flavor u-s pairing, unlike the two-flavor u-d pairing discussed

above, has no gapless phase. In our calculations, we find that at M2/M > 103 MeV,

when the 2SCus phase becomes unstable to unpairing (i.e. when 6 Leff in the u-s sector,

line 2 of table 2.1, becomes as large as A 2), there is no neutral solution with a smaller

value of A2 (other than unpaired quark matter). We do find such a "gapless 2SCus"

solution in a range of M2/1p below 103 MeV, with A2 smaller than that in the 2SC

solution at the same M2/1p, but the g2SCus solution is unstable: it is a local maximum

of the neutral free energy as a function of A2. (In a figure like Fig. 2-7 this g2SCus

solution would be at a local maximum of the solid curve.) At Mi2/p = 103 MeV,

the g2SCus solution (local maximum) meets the 2SCus solution (local minimum)

at an inflection point of the neutral free energy, and for M2/1 > 103 MeV neither

2SCus nor g2SCus solutions exist. Unlike the gapless 2SC phase [74, 75] and the

gapless CFL phase [24], which are rendered stable by the constraint of neutrality,

the gapless 2SCus phase remains unstable. This is presumably because u-s paired
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phases are very close to being neutral anyway (only very small values of Pe, 3, P 8

are required to achieve neutrality [46]), so the constraint does not change the physics

much. This can be summarized by saying that the 2SCus phase behaves analogously

to that studied by Sarma [83], even after neutrality constraints are imposed.

2.3.5 Mixed Phase Alternatives

. r% .
6IIZ

(a) [i (b) i
Figure 2-10: Schematic illustration of conditions for the occurrence of mixed phases.
Free energy Q for two phases A and B is shown as a function of some chemical
potential pi. Charge Qi = -Q/aui is given by the slope. Squares mark the neutral
points. Panel (a): at the neutral point for each phase, the other phase has lower
free energy, so there is a point (black dot) where the two phases can coexist with
the same pressure and opposite charge, with lower free energy than either neutral
phase. Depending on Coulomb and surface energy costs, a mixed phase may exist
there. Panel (b): phase B has higher free energy than phase A at the point where A
is neutral. At no point do the two phases coexist with opposite charge, so no mixed
phase is possible.

Up to this point, the phases we have discussed have been locally neutral with

respect to all gauge charges. However, it is well known that neutrality can also be

achieved in an averaged sense, by charge separation into a mixture of two oppositely

charged phases. This is shown schematically in Fig. 2-10, which shows generic free

energy curves Q(pi) for two phases A and B. The free energy must be a concave

function of the chemical potential, since increasing pi increases the charge Qi =

-OQ/Opi. There are then two possible situations. In one Fig. 2-10(b) there is no
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coexistence point and hence no mixed phase is possible. In the other Fig. 2-10(a)

there is a coexistence point of oppositely-charged phases, and its free energy is lower

than that of either neutral phase, so if Coulomb and surface energy costs are low

enough then a neutral mixed phase will be free-energetically preferred over either

homogeneous neutral phase.

We now consider possible gCFL+unpaired mixed phases. (Note that for (M2/) >

(M,/1) a CFL+unpaired mixture is not possible because there is no CFL solution,

charged or neutral.) For the unpaired and gCFL phases, the free energies are of the

form shown in Fig. 2-0la. At the values of (e, s3, /A8) that make one phase neutral,

the other phase has lower free energy. Thus there is a value of (e, /13, 18) "between"

that for neutral gCFL and that for neutral unpaired quark matter, where the two

can coexist with opposite color and electric charge density. However, a mixed phase

is not favored in this case because each component would have net color charge, and

color is a gauge symmetry with a strong coupling constant, so this mixed phase would

pay a huge price in color-Coulomb energy. (For similar arguments applied to systems

with no gauge symmetries, where the initial conclusion that a mixed phase is favored

is the correct one, see Refs. [87, 88].)

It is then natural to ask whether one could construct a gCFL+unpaired mixed

phase whose components are electrically charged, but color neutral. This avoids the

large color-Coulomb energy cost of mixed phases with colored components. Such

mixed phases have recently been constructed in two-flavor quark matter, with un-

paired and 2SC components [89]. There is still some color electric field (and color-

charged boundary layers) at the interfaces where the color chemical potentials change

rapidly as one travels from one component to the other, analogous to the charged

boundary layers and ordinary electric field at the CFL/nuclear interface constructed

in Ref. [90], but Ref. [89] finds that the 2SC + unpaired mixed phase does occur in

two-flavor quark matter. However, for color neutral unpaired and gCFL phases, we

have found that the situation is typically that of Fig. 2-10(b): the free energy of color

neutral, but electrically charged, unpaired quark matter is typically higher than the

free energy of color-neutral gCFL, at the value of le where color-neutral gCFL is
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electrically neutral. Hence there is no value of ge at which oppositely charged phases

can coexist. We have found that this is true for all values of M/,1 except for a range

of a few MeV just below M~/,/ = 130 MeV, where the neutral gCFL and neutral

unpaired free energies cross. There, a mixed phase may arise, although it may be

superseded by other more favorable possibilities.

We now examine some other possibilities for mixed phases. In the case of a

possible 2SC+2SCus mixed phase, we find the situation of Fig 2-10(a): a neutral

mixed phase exists. However, its free energy is higher than that of gCFL even before

electrostatic and surface energy costs are included. At M2/,u = 80 MeV, it has

Q = -14.93 x 106 MeV4, vs. QgCFL = -18.01 x 106 MeV4. (These free energies are

both measured relative to that of neutral unpaired quark matter.) We have checked

that a neutral 2SC+2SCus mixed phase is also free-energetically unfavored relative

to homogeneous gCFL at M,/,2 = 51.2 MeV, which is just above the CFL--gCFL

transition.

In the case of a gCFL+2SCus mixed phase, we find that the Me dependence of the

free energies of these two phases is as in Fig 2-10(b), so a mixed phase is not possible.

We have verified this at M2/p = 51.2 MeV and 80 MeV.

Finally we investigate the possibility of a gCFL+2SC phase. At M//p -= 51.2 MeV

we find the situation of Fig. 2-10(b), so no mixed phase is possible. At M2/ =

80 MeV, the free-energy dependence is of the type shown in Fig. 2-10(a), so a mixed

phase is possible, and since gCFL itself is one of the components its free energy is

necessarily lower than that of neutral gCFL. However, QgCFL(Ue) depends very weakly

on e: the QgCFL(A) parabola is very shallow. This suppresses the mixed phase in

two ways. (i) the free energy of the mixed phase is only lower than that of neutral

gCFL by a very small margin (0.0012 x 106 MeV4 at M,/ = 80 MeV), so there is

very little chance that it will survive once electrostatic and surface costs are included;

(ii) The charge density of gCFL, proportional to 'fQ/i, is very small so the mixed

phase must be dominantly gCFL, with a tiny admixture of 2SC, to achieve neutrality.

It is known that such highly asymmetric mixed phases have the highest electrostatic

energy costs[90].

72

�



We have not eliminated all conceivable mixed phase constructions, involving mix-

tures of all possible phases. However, over most of the gCFL regime there can be no

mixed phase constructed from gCFL and unpaired quark matter, or gCFL and 2SC,

or gCFL and 2SCus, or 2SC and 2SCus.

2.4 Concluding Remarks and Open Questions

The gapless CFL phase seems sufficiently well-motivated as a possible component

of compact stars to warrant further study of its low energy properties and its phe-

nomenological consequences: it is the phase that supplants the asymptotic CFL phase

as a function of decreasing density, and compact stars are certainly far from asymp-

totically dense.

The low energy effective theory of the gCFL phase must incorporate the gapless

fermionic quasiparticles with quadratic dispersion relations, which have number den-

sities -'/-f 2T/7 and dominate the low temperature specific heat, the gapless quarks

with linear dispersion relations, with number densities _ I 2 T, and the electron ex-

citations, with number density /l2T. In contrast, the (pseudo-)Goldstone bosons

present in both the CFL and gCFL phases have number densities at most -- T 3.

This means the gCFL phase has very different phenomenology from CFL. As we shall

show in Chapter 4, the cooling of a compact star with a gCFL core is particularly

interesting because neutrino emission requires conversion between quasiparticles with

linear and quadratic dispersion relations. We shall argue that in a star with CFL,

gCFL and nuclear volume fractions, the gCFL shell will dominate the total heat ca-

pacity and the total neutrino emissivity, and that the presence of gCFL matter in

the star has phenomenological implications. It will be also interesting to work out

the magnetic field response of the gCFL phase, since the gauge boson propagators

will be affected both by the gapless quasiparticles (all nine gauge bosons) and by the

condensate (Meissner effect for eight out of nine.) Finally, we have left the study of

possible meson condensation in the gapless CFL phase to future work.

Although we have studied the gCFL phase in a model, all of the qualitative prop-
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erties of this phase that we have focussed on appear robust. We have also offered

a model-independent argument for the instability that causes the transition, and for

the location of the transition. We have used our model to show that the gCFL phase

is favored over the two-flavor-pairing phases (2SC, g2SC, and 2SCus) throughout al-

most all of the regime where the gCFL phase is favored over unpaired quark matter.

It remains a possibility, however, that the CFL gap is large enough that baryonic

matter supplants the CFL phase before M2/ > 2. Assuming that the gCFL phase

does replace the CFL phase, it is also possible that gaps are small enough that a

third phase of quark matter could supplant the gCFL phase at still lower density,

before the transition to baryonic matter. We do not trust our analysis to determine

this third phase. Perhaps it is a mixed phase of some sort, although we have ruled

out the straightforward possibilities. Perhaps it is the gapless 2SC phase [74, 75],

as the literal application of our model would suggest. We should stress, in addition,

that our model relies upon a pairing ansatz designed to study the instability of the

CFL phase, and hence well-suited to the study of the gCFL phase. Determining

what phase comes after gCFL almost certainly requires a more general ansatz. For

example, perhaps weak pairing between quarks with the same flavor plays a role

once gCFL is superseded [52], or perhaps it is the crystalline color superconducting

phase [56, 57, 60, 79, 91] that takes over from gapless CFL at lower densities. (Other

possibilities have also been suggested [92].)

Recent developments [91] make the crystalline color superconducting phase look

like the most viable contender for the "third-from-densest phase". Previous work [60]

had suggested that the face-centered-cubic crystal structure was sufficiently favorable

that its free energy could be competitive with that of BCS pairing over a wide range

of parameter space, but because these indications came from a Ginzburg-Landau

calculation pushed beyond its regime of validity, quantitative results were not possible.

The results of Ref. [91] suggest that a crystalline phase involving pairing of only two

flavors is favored over the unpaired phase by - 0.2,/2Lsc/7r 2 at M,/2 4A2sc.

Here, A.2SC is the gap parameter in the 2SC phase at M, = 0, which is 31 MeV with

the parameter values we have used in all our figures. This suggests that if we were to
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generalize our pairing ansatz to allow the crystalline phase as a possibility, it would

take over from gCFL at M2/z - 120 MeV, or even somewhat lower if the three-

flavor crystalline phase, which no one has yet constructed, is more favorable than

the two-flavor version. Furthermore, the authors of Ref. [91] find that the crystalline

phase persists until a first order crystalline-+unpaired transition at M2/p - 7.5A 2sc,

hence over a very wide range of densities. If analysis of three-flavor crystalline color

superconductivity supports these estimates, we will not have to worry about the

resolution of the puzzles and possible mixed phases associated with the confluence of

the free energies for the gCFL, g2SC and unpaired phases near M2/p - 130 MeV in

Fig. 2-3. By that density the crystalline phase will already be robustly ensconced on

the phase diagram.
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Chapter 3

Heating (Gapless) Color-Flavor

Locked Quark Matter

3.1 Overview

In Chapter 2 we showed that at zero temperature the CFL phase breaks down as we

reduce the density and a new phase (gCFL) emerges. In particular, we argued that as

we go to lower densities and M, becomes significant relatively to the baryon chemical

potential, the CFL stops to exist. A mismatch in the Fermi surfaces of the different

quarks drives this transition. The emergence of gCFL is dictated by the neutrality

conditions and the minimazation of the free energy. However we treated the effect

of the strange quark mass M as a shift in the chemical potential of the strange

quarks. In this chapter we treat the effect of Ms without making this approximation.

As we shall show, our approximation in Chapter 2 is fully justified. Furthermore,

in the previous chapter we restricted our analysis to zero temperature. The main

goal in this chapter is to map the phase diagram of neutral dense quark matter at

nonzero temperature, answering the question of what phases and phase transitions

result when CFL or gCFL quark matter is heated. In the case of CFL quark matter

with strange quark mass MS = 0, this question has been answered in Ref. [93]. In

this most symmetric setting, there is a single phase transition at a temperature TCCFL

below which there is CFL pairing and above which there is no pairing. In mean field
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theory,
e'YTCFL = 23-A 0 , (3.1)
r7

where A0 is the CFL gap parameter at T = 0, estimated to be of order 10 to

100 MeV. [34-36, 63, 64] The enhancement of Tc/A 0 by a factor of 21/3 over the

standard BCS value (which our results confirm) originates in the fact that in the

CFL phase with MS = 0 there are eight fermionic quasiparticles with gap A0 and

one with gap 2A0 [93]. As at any phase transition at which a superconducting order

parameter melts, gauge field fluctuations that are neglected in mean field theory can

elevate TC and render the transition first order [94]. Because the gauge coupling in

QCD is strong, these effects are significant [95, 96]. They have been evaluated to date

only at MS = 0 [95, 96]. Once MS # 0, the mean field analysis alone becomes rather

involved and we shall therefore leave the inclusion of fluctuations to future work.

To see why MS - 0 results in an intricate phase diagram at nonzero temperature,

we must recall the pairing ansatz that we used in the previous chapter

( Xa 5C'~ -b Ai El E fabl + A 2 ea2 Eab2 + A 3E 3 eab3 (3.2)

As we mentioned before the gap parameters Al, A2 and A3 describe down-strange,

up-strange and up-down Cooper pairs, respectively. At T = 0, we argued that there

is an insulator-metal transition at M/p I_ 2A1, at which the CFL insulator with

A3 - A 2 = A1 is replaced by the gapless CFL metal, which has A 3 > A2 > A1 >

0 [24, 25]. (If the CFL phase is augmented by a K°-condensate [41], the CFL-+gCFL

transition is delayed to MS2/p _ 8A1/3 [81]). An analogous zero temperature metal

insulator transition has been analyzed in Ref. [82].

At MS = 0, A1 = A2 = A3 = ACFL, and ACFL decreases from A0 at T = 0 to

0 at TcFL. As soon as Ms - 0, however, we can expect that A1, A2 and A3 do not

all vanish at the same temperature. This expectation is evident for the gCFL phase,

which has A3 > A2 > A1 > 0 already at T = 0. We shall see that it also applies to

the CFL phase with M 0.

The distinction between an insulator and a metal is sharp only at T = 0. At
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any nonzero temperature, there will be some nonzero density of thermally excited

fermionic quasiparticles, some of which are charged. This means that the CFL-*gCFL

"transition" should be a crossover at any nonzero temperature [27]. The CFL phase

at T = 0 with Ms 0 has fermionic quasiparticles with opposite charges whose

excitation energies differ. This means that upon heating this phase, the chemical

potentials needed to maintain neutrality are not the same as at zero temperature.

Adjusting the chemical potentials feeds back into the gap equations for Al, A2 and

A3 differently, and these gap parameters can therefore have different T-dependence.

If we start in the CFL phase at T = 0, heat, then increase M~2// above that for the

zero temperature CFL-+gCFL transition, and then cool back to T = 0 we can go

from CFL to gCFL without ever crossing a phase boundary. We illustrate this by

showing an example phase diagram in Fig. 3-1.

The purpose of this chapter is to derive and understand the phase diagram of

Fig. 3-1. We shall present the model and approximations that we use in Section 3.2.

We follow the conventions for naming phases used in previous literature:

A1 , /A2, /A3 0 (g)CFL

Al1 =0, A2 , A 3 0 uSC

A2 = , A1 , A3 0 dSC

A1 = A2 =0, A3 # 0 (g)2SC

A 1 = A2 = A3 = 0 UQM,

with "UQM" meaning unpaired quark matter. The origin of the remaining names is

that in the 2SC phase, only quarks of two flavors and two colors pair, whereas in the

uSC (or dSC) phase, all u (or all d) quarks pair [97]. All these phases except (g)CFL

may be augmented by spin-1 condensates that pair quarks of the same flavor, but

these inevitably lead to gaps that are much smaller than those we shall consider [52]

and so we shall neglect these modifications to the 2SC, uSC and dSC phases. The

phase diagram features three lines denoting second order phase transitions at which

Al, A2 or A3 vanish. At M = 0, all three gaps vanish at the same temperature

79



15

5

0
(s

iCP v-- I
2

Ms /lu [MeV]

Figure 3-1: Phase diagram of dense neutral quark matter in the (M2/p, T) plane.
Only the solid curves represent phase transitions. The thin solid curves denote mean
field second order phase transitions at which A1 or A2 or A3 vanish. Two of these
lines cross at the circle, which we call a "doubly critical" point. The heavy solid
line is a first order phase transition that ends at a tricritical point denoted by the
diamond. The dashed curves indicate locations where, as M2/ly is increased, new
gapless modes appear. At any nonzero temperature, however, there is no physical
distinction between a phase with truly gapless modes and one in which the same
modes have excitation energies of order T. The dashed curves therefore have physical
significance only where they cross T = 0. In this phase diagram, this occurs only
at the triangle, which denotes the zero temperature CFL-+gCFL transition, which
is a quantum critical point. The dotted line separates the A1 > A2 and A 2 > Al
regions. This phase diagram is drawn for p = 500 MeV, with M8 and T varying, and
with the quark-quark interaction strength fixed and chosen such that the CFL gap
is A0 = 25 MeV at T = 0. We shall describe the model and approximations within
which this phase diagram has been obtained in Section 3.2, and describe the results
summarized by this diagram in Sections 3.3 and 3.4.
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but at generic values of Ms, there are three distinct transition temperatures. Two

of these lines cross at a point denoted by the circle: at this "doubly critical point",

A1 and A2 vanish at the same temperature. The phase diagram is intricate, and one

natural question is to what extent its features are generic. We address this by varying

parameters, as we shall discuss in Sections 3.3 and 3.4. We shall find that the physics

at large M./,1 , where we find a first order phase transition in Fig. 3-1, is not generic,

changing qualitatively for larger values of A0 . We find that the shape of the second

order phase boundaries separating the CFL, dSC, uSC and 2SC phases is generic, as

is the existence of the doubly critical point.

Physics in the vicinity of any of these phase transitions can be analyzed using a

Ginzburg-Landau approximation, in which the relevant A or A's are taken to be small.

This analysis has been performed at MS = 0 in Refs. [69, 95, 98] and at small but

nonzero Ms in Ref. [97]. We shall show in Section 3.6 that our numerical results for the

three phase transition lines at small M/,U/AO are in quantitative agreement with the

Ginzburg-Landau approximation, and shall show that the ratios of coefficients in the

Ginzburg-Landau potential that we obtain in our model agree quite well with those

obtained in full QCD at higher densities. At small M2//aAo, the region of the phase

diagram where the Ginzburg-Landau analysis applies near To, A2 vanishes at a lower

critical temperature than A1 . In heating gCFL quark matter, however, we expect A1

to vanish first because it is already much smaller at T = 0. Our model analysis can

be extended to larger Ms and smaller T than the Ginzburg-Landau analysis, allowing

us to see how the phase diagram fits together, consistent with this expectation.

A phase diagram similar to ours was obtained previously in Ref. [27], but our

results differ in a crucial, qualitative respect at low M./,u, where we believe that our

results are robust: the authors of Ref. [27] found that Al always vanishes at a lower

temperature than A2, meaning that there is no dSC region on their phase diagram.

This also disagrees with the Ginzburg-Landau analysis 1. We shall detail our approx-

imations in Section 3.2, but we note already here that whereas in Refs. [24, 25, 27]

1We have learned from them in private communications that the authors of Ref. [27] now find an
ordering of phase transitions in agreement with our results and the Ginzburg-Landau analysis.
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Ms was assumed to be much smaller than ji, we do not make such an approximation.

This likely explains the differences between our results and those of Ref. [27] at large

M2/p.

Although not associated with a phase transition, it is interesting to ask how the

CFL phase ceases to be an insulator as it is heated. This must happen, given the phase

diagram that we and the authors of Ref. [27] find, but how? At small T, the number

density of charged quark quasiparticles in the CFL phase is exponentially small. Be-

cause of the interplay between Ms $ 0 and the constraints of neutrality, the excitation

energies of oppositely charged quasiparticles are not the same and these thermally

excited quasiparticles have a net charge which must be balanced by a nonzero elec-

tron density of order e, where tle is the electron chemical potential. Because the

quasiparticle densities are proportional to the quark Fermi surface area - , where

Pl > (2e, we show that Pe ceases to be exponentially suppressed - rising rapidly to

1e- M2/4 - in an insulator-metal crossover that occurs in a narrow, and quite

low, range of temperatures. We describe this crossover analytically in Section 3.5.

There are other charged excitations in the CFL phase, namely the pseudo-Nambu-

Goldstone bosons, coming from the breaking of chiral symmetries. These bosons

acquire masses [10, 34-36, 47, 63, 64, 99-101] and furthermore the CFL condensate

may rotate in the K°-direction within the manifold describing these mesons [41]. We

neglect the possibility of K°-condensation throughout. We shall see in Section 3.5.1

that this corresponds to assuming that the instanton contribution to the K ° mass is

comparable to A0 [101, 102], which is likely the case for all but the largest A0 that

we consider. We must also consider the thermally excited pseudo-Nambu-Goldstone

bosons, but we show in Section 3.5.1 that their effects are negligible.

In Section 3.2 we detail our model and approximations, stressing also those ap-

proximations used in Chapter 2 that we have not made. In Section 3.3, we review

results at T = 0. In Section 3.4, we present our results at T 0, analyzing the

phase diagram in Fig. 3-1 and that for other values of A0 . In Section 3.5, we an-

alyze the insulator-metal crossover that occurs when the CFL phase is heated. In

Section 3.6, we make the connection between our work and the Ginzburg-Landau
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analysis quantitative. We conclude in Section 3.7.

3.2 Model and Approximations

3.2.1 A Model for the Thermodynamic Potential

We are interested in physics at non-asymptotic densities, and we cannot use weak-

coupling methods. Therefore, in this chapter we shall use the same Nambu-Jona-

Lasinio (NJL) and the same pairing ansatz as in Chapter 2. The partition function

and the free energy are defined by (2.9). The derivation of the free energy follows

the steps from (2.9) to (2.18). However in this chapter we are going to consider

non-zero temperature. In addition we make fewer approximations and we consider

several coupling strengths for the 4-point interaction. If we denote the CFL gap at

MS = T = 0 by A0, we consider three different coupling strengths that correspond to

A0 = 25, 40,100 MeV. If we perform the Matsubara summation in (2.17), using the

identity (2.18), the free energy can be written as

Q -4 2 dpp2 Z{ ej(p)+2Tln(1 + e- ei (P)I/T)

I (A2__ 2_[_ A2 ) _ 4 e2T 2 77r2T4
+ G(2A+A2)_IL (3.3)+ G 1+ 2\~~ 3 127r2 6 180 '

where the electron contribution for T $ 0 has been included. The functions ej(p)

are the dispersion relations for the fermionic quasiparticles. They are not explicitly

T-dependent, but they do depend on the A's and it's which are T-dependent. As

we mentioned before the quasiquark dispersion relations ej(p) are the values of the

energy at which the propagator diverges,

det S-l (-iej (p),p) = . (3.4)
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Here, the inverse propagator S-l is the 72 x 72 matrix

S-~p) ( I + ~ - M1AS-1(p) (s+ M ( M/ )T) (3.5)

that acts on Nambu-Gor'kov spinors

( 7T(-p) (9(P) ()). (3.6)

The sum in (3.3) is understood to run over 36 roots, because the Nambu-Gor'kov for-

malism has artificially made each e jl doubly degenerate. There is a further (physical)

degeneracy coming from spin, meaning that there are only 18 distinct dispersion rela-

tions to be found. The free energy of any solution to the gap equations obtained from

this mean field free energy is the same as that obtained from the Cornwall-Jackiw-

Tomboulis effective potential [103], with the mean field approximation implemented

via keeping the double bubble diagram and dropping all other 2PI diagrams.

We shall evaluate Q numerically, meaning that at every value of the momentum

p we must find the zeros of the inverse propagator. In order to do this numerically,

we follow Ref. [72] and note that it is equivalent and faster to find the eigenvalues of

the "Dirac Hamiltonian density" W(p), which is related to S- 1 by

det S 1 (p4, p) = det [Y4 (ip 4 - 7(p))] , (3.7)

which makes it clear that eigenvalues of W(p) are zeros of S-1. Like S- 1, the Dirac

Hamiltonian W7(p) is a 72 x 72 matrix in color, flavor, spin, and Nambu-Gor'kov space.

This matrix can be decomposed into 4 blocks - three 16 x 16 matrices for the (rd-

gu), (rs-bu) and (gs-bd) pairing sectors, and one 24 x 24 matrix for the (ru-gd-bs)

sector. The absolute values of the eigenvalues are quadruply degenerate due to the

Nambu-Gor'kov doubling and the spin degeneracy.

We have found considerably simpler expressions for the (rd-gu), (rs-bu) and (gs-

bd) sectors. The calculation becomes easier if one adopts a different choice of Nambu-
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Gor'kov basis, i.e. = ((p), C bT(-p))T as in Ref. [71]. Then the Nambu-Gor'kov

and spin degeneracies are manifest, as the 16 x 16 matrix separates into 4 x 4 blocks

with the form

-Ibd P 0 i A1

'H(gs-bd) = P -bd -il 0 (3.8)
0 iA 1 i 9 s+Ms p

-i\ 0 P gs- Ms

for the (gs-bd) sector and likewise for other sectors. Each of the 4 eigenvalues of this

matrix, and of its counterparts for the other sectors, contributes twice (for spin) in

the sum in (3.3). The quark chemical potentials occurring in (3.8) and below are

defined straightforwardly:

ru = - 2/Me + / 3 + 8,3 2 3 

Ygd = + e - - 1 3 + §18,

Pu~bs = 3+e 2LS

pbs rd + §1 e 2 8,

Pr = + ±e '+ P3 + (3P8,3 2 3 
tgu = IL- 2Ie - ~I3 -1 8,3 2 3 ~~~~~~~~~(3.9)
Prs = + Ile- 1 + 8,

2 2 I-bu = - - Ae - 2P,

IA9s = [+ i Me - U3 + 1 8,

3 2 3
Abd -- igr Pe - 2 A8·

In the (ru-gd-bs) sector, we could not find any simple way to make the spin

degeneracy manifest, but the Nambu-Gor'kov degeneracy is manifest as the 24 x 24

matrix separates into 12 x 12 blocks with the form
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'(ru-gd-bs) =

/- u_ v 0 -iAR 0 -iA9 0 0 0 0 0 0 \
p -Pru iA3 0 iA 2 0 0 0 0 0 0 0
0 -iA 3 gd p 0 0 0 -i/A 1 0 0 0 0

iA 3 0 p l'gd 0 0 iA 1 0 0 0 0 0
0 -iA 2 0 0 Ibs+Ms p 0 0 0 -iA1 0 0

iA 2 0 0 0 P lbs-Ms 0 0 iAl 0 0 0
0 0 0 -iA 1 0 0 -Ubs+Ma p 0 0 0 -iA2
o 0 iA1 0 0 0 P -Ibs-Ms 0 0 iA 2 0
o 0 0 0 0 -iAi 0 0 --Pgd P 0 -iA 3
o 0 0 0 iA 1 0 0 0 P -- gd iA 3 0
0 0 0 0 0 0 0 -iA 2 0 -iA 3 Itru P
.... · ~ . *An ' 

\ o U U U a2 U z/x3 U P /ru 

(3.10)

The 12 eigenvalues of this matrix each contribute once in the sum in (3.3). They

occur in degenerate pairs due to spin.

A stable, neutral phase must minimize the free energy (3.3) with respect to vari-

ation of the three gap parameters A1, A 2, A3 , meaning it must satisfy

=0,= 0, 0, (3.11)
aA 2 A

and it must satisfy the three neutrality conditions (2.7). The gap equations (3.11)

and neutrality equations (2.7) form a system of six coupled integral equations with

unknowns the three gap parameters and Pe, A3 and P8s. We have solved these equations

numerically at a grid of values of T and M2/iu. We evaluate Q using (3.3), finding

the ej by determining the eigenvalues of the matrices specified explicitly above. We

evaluate partial derivatives of Q using finite difference methods. (We used three and

five point finite difference evaluations of derivatives, with the interval in the A or u

with respect to which Q is being differentiated taken as 0.04 MeV.) We have worked

entirely with p = 500 MeV, varying M2/u by varying Ms, and have worked at three

values of the coupling G chosen so that AO0, the gap parameter at MS = T = 0, takes

on the values A0 = 25, 40 and 100 MeV.

3.2.2 Approximations made and not made

Having described our calculation in explicit detail, we close this section by enumer-

ating the approximations that we are making, and stressing several that we have not

made.
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We have made the following approximations:

1. We work throughout in a mean field approximation. Gauge field fluctuations

will surely be important, and must be included in future work.

2. We neglect contributions to the condensates that are symmetric in color and

flavor: these are known to be present and small, smaller than the contributions

that we include by at least an order of magnitude [10, 27, 38].

3. We choose light quark masses Mu = Md = 0 and we treat the constituent strange

quark mass MS as a parameter, rather than solving for an (s) condensate.

These approximations should be improved upon, along the lines of Refs. [71, 72].

In future studies in which the (qq) condensates are solved for dynamically, the

six-quark 't Hooft interaction induced by instantons must be included, since it

introduces terms of the form (s) IA3 12 , for example.

4. We ignore meson condensation in both the CFL phase and gCFL phases. We

shall see in Section 3.5.1 that in the CFL phase this means that we are assuming

that the instanton contribution to the K° mass is comparable to or larger than

A0 [101, 102]. Meson condensation in the gCFL phase has yet to be analyzed.

We expect that these approximations have quantitative effects, but none preclude a

qualitative understanding of the phase diagram.

In Chapter 2, we made further simplifying assumptions. We worked only to leading

nontrivial order in A1, A2, A 3, Pe, l 3 and 18. We neglected the effects of antiparticles.

And, most serious, we incorporated MS only via its leading effect, namely as an

effective shift -M,/lU in the chemical potentials of the strange quarks. This limits

the regime of applicability of our results to MS < H. For A0 - 100 MeV, there is

pairing even at MS > and our calculation runs into no difficulties in this regime.

(We shall show some results, even though this likely corresponds to such small A that

in reality the hadronic phase has taken over.) In the next section, we shall present

our T = 0 results. Those with A0 = 25 MeV, as in Chapter 2, are in very good
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agreement with the results of Chapter 2. This provides quantitative evidence for the

validity of the approximations made in Chapter 2 at A0 = 25 MeV.

3.3 Zero temperature results

In this section we shall present the results of our model analysis at T = 0. Here

as in Chapter 2, we set = 500 MeV corresponding to a baryon density about

ten times that in nuclear matter, which is within the range of expectations for the

density at the center of compact stars. In reality, both M8 and A0 vary with t,

and our knowledge of both is uncertain. Our model is by construction well-suited to

study the disruptive effects of M8 on pairing but it is not adequate to fix the density-

dependent values of either M, or A0 quantitatively. In this study, therefore, as in

Refs. [27, 46] and Chapter 2 we treat both M, and A0 simply as parameters. We shall

plot our results versus M/p, rather than versus MS itself, because the strength of the

disruptive effects introduced by the strange quark mass are characterized by M'/ .

For example, the splitting between Fermi surfaces in unpaired quark matter is of

order M2/4 1 , and the CFL-4gCFL transition occurs where M2/p ' 2A1 . Although

we only present results at a single value of A, because the effects of MS are controlled

by M,/2I, and because in reality Ms is itself a decreasing function of P, one can

think of our plots as giving a qualitative description of the effects of varying A, with

high density at small M/s2/ and low density at large Ms/,u. This description is only

qualitative because our plots are each made with some fixed value of A0 , whereas in

reality A0 depends on p.

We begin by choosing the four fermion coupling G so that A0 = 25 MeV, as in

Chapter 2. The solid curves in Fig. 3-2 show the gap parameters as a function of

Ms2/p, and those in Fig. 3-3 show the chemical potentials. These plots are in very

good agreement with Figs. 2-1, and 2-2, indicating that the approximations made in

Chapter 2 that we have dispensed with here, chiefly the small-MS2//2 assumption,

were good approximations for A0 = 25 MeV. For small M/, 1p, we see the CFL phase

with A1 = A2 A 3 . The small difference between A1 = A2 and A3, less than 2%
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Figure 3-2: Gap parameters A1, A2 and A3 as a function of M2/l at T = 0. The
solid curves show the CFL/gCFL solution, with the CFL-+gCFL transition occurring
where M2/p _ 2A1 . There is a first order phase transition between the gCFL phase
and unpaired quark matter at M2/p = 125.3 MeV, denoted by the the thin vertical
line. To the right of this line, the gCFL solution is metastable. We also find a neutral
2SC solution, with A3 given by the dashed curve in the figure, which undergoes a
transition to the gapless 2SC phase of Ref. [74] at M2/p = 112 MeV. However, from
Fig. 3-4 we see that the (g)2SC solution is everywhere metastable, having a larger
free energy than the (g)CFL solution at the same M2/,p.

everywhere within the CFL phase, is an example of an effect that we can see but that

cannot be seen in the small-M2/i u2 approximation in which M8 is approximated as

a shift in the chemical potential for the strange quarks [24, 25]. The CFL-+gCFL

transition occurs at M2/p = 46.8 MeV, which is very close to 2A1, since A1 =

23.2 MeV at M/ 1 P = 46.8 MeV. We see from Fig. 3-3 that [le 0 in the gCFL phase,

indicating a nonzero electron density.

As discussed in detail in Chapter 2, the negative Q-charge of the electrons is

balanced by that of unpaired bu quarks, which have Q = +1, occurring in a narrow
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Figure 3-3: Chemical potentials ue, /13 and 8 as a function of M2/ 1p at T = 0, for
the (g)CFL and (g)2SC solutions of Fig. 3-2. ( 3 = 0 in the (g)2SC solution and so
is not shown.) Beyond the M2/p at which the g2SC solution ends, the dashed curve
shows the chemical potentials (e 0 and 8 = 0) for neutral unpaired quark matter.

shell in momentum space. There is a larger shell in momentum space, whose width

grows with increasing M2/lp in the gCFL phase, within which there are unpaired

bd-quarks. This "blocking region" of momentum space does not contribute in the Al

gap equation, and A1 is consequently driven down. The gap equations and neutrality

conditions are all coupled, and the consequences of the reduction in A1 and the

increase in 1e are manifest in all the curves in Figs. 3-2 and 3-3.

As M/,p increases further, the gCFL solution eventually ceases to exist at M2/ p -

139 MeV. The gCFL solution to the gap equations is a minimum of Q with re-

spect to variation of the A's for M,2/p < 139 MeV, becomes an inflection point at

90

_�1�1_ _ ·



4

c)

r__*.UOa)

6h

~D

m~

0 50 100 150
2

M2/,u [MeV]

Figure 3-4: Free energies of the (g)CFL and (g)2SC solutions of Fig. 3-2 at T = 0,
relative to that of neutral unpaired quark matter.

M2/ = 139 MeV, and for larger M,2/p there is no such solution. This is analyzed

in greater detail in Chapter 2 and Refs. [24, 25]. The fact that the gCFL solution

disappears indicates that there should be some other minimum with lower free energy,

and indeed as shown in Fig. 3-4 we find that a first-order phase transition at which

the gCFL free energy crosses above that of unpaired quark matter has occurred at

M,'/p = 125 MeV, indicated in Fig. 3-2 by the vertical line. In Chapter 2, the first

order phase transition and the termination of the gCFL phase at a point of inflection

of the free energy occur at M,//t = 130 MeV and M/p = 144 MeV respectively.

Therefore, the errors in these quantities introduced by the small-M2/g 2 approxima-

tion, used in Chapter 2 but not here, are about 4% at these values of M2/p. As in

Chapter 2, we find an additional neutral 2SC solution, whose gap parameter A3 and

free energy are shown in Figs. 3-2 and 3-4. At Ms = 0, the 2SC gap is 2/%Ao [34-

36, 63, 64, 104]. For M/p below the 2SC-+g2SC transition at Ms2/p = 112 MeV,
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rd-gu and ru-gd pairing occur at all momenta; above this transition, in the gapless

2SC phase [74, 85], there is a blocking region [56] in momentum space in which one

finds unpaired rd and gd quarks, and A 3 drops precipitously. An analogue of the

g2SC phase [83] (and in fact an analogue of the gCFL phase [84]) were first analyzed

in contexts in which they were metastable, but it was shown in Ref. [74] that the

g2SC phase could be stabilized in two-flavor quark matter by the constraints of neu-

trality. However, we see in Fig. 3-4 that in this three-flavor quark matter setting, the

(g)2SC solution everywhere has a larger free energy than the (g)CFL solution at the

same M,/,1 , and is therefore metastable. The value of M/ 1 at which A3 - 0 in the

g2SC solution is less than 1 MeV below the M]/, at which the gCFL phase becomes

metastable. In contrast, in Chapter 2 the g2SC solution persists to an M2/ that is

less than 1 MeV above that at which the gCFL phase free energy crosses that of un-

paired quark matter. This is the one instance where the small-M2/p 2 approximation

made in Chapter 2 leads one (slightly) astray, as it predicts a (very narrow) M2/p-

window in which the g2SC phase is favored and we find no such window. However,

we shall see below that the physics at values of M,2/[ that are this large compared

to A\0 is anyway not robust, changing qualitatively with increasing A0 .

We now investigate how our zero temperature results change if we vary the

strength of the coupling, and hence A0. In Fig. 3-5, we show the gap parameters

as a function of M2//, with A0 = 40 MeV. We have changed the scale on both the

horizontal and vertical axes by the same factor of 40/25. We see that the CFL-+gCFL

transition again occurs at M2/L 2A1, and that the shape of the curves in the gCFL

region is qualitatively as before, when suitably rescaled. However, at large values of

M 2 / p we now find a g2SC window: the gCFL free energy crosses above that of the

g2SC phase whose gap parameter A3 is also shown in Fig. 3-5 at the vertical line in

the figure, and the g2SC gap vanishes only at a larger M2/p. (We have located the

vertical line by comparing free energies, as we did in Fig. 3-4, but we shall not give

the figure.)

If we reduce A0 from 25 MeV, rather than increasing it, and rescale both axes

of Fig. 3-2 by the same factor by which we reduce A0 , we obtain a figure that looks
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Figure 3-5: Gap parameters for
a stronger interaction than that in
Fig. 3-2, chosen such that A0 =
40 MeV for M = 0. As in Fig. 3-
2, the CFL--gCFL transition occurs
where M2/! _ 2A 1. Here, however,
the gCFL phase becomes metastable
(at the thin vertical line) at a value
of M2/ above which there is a
g2SC solution. There is a first or-
der gCFL--g2SC transition at the thin
vertical line, followed at a larger M2/, u

by a second order transition at which
the g2SC gap A3 vanishes.

2
Ms//. [MeV]

Figure 3-6: Gap parameters for a
still stronger interaction, with A0 =
100 MeV for Ms = 0. As in Fig. 3-
2, the CFL-+gCFL transition occurs
where M2/I 2A1. At M2/i =
375 MeV, A1 vanishes at a second or-
der gCFL-*uSC transition. Then, at
M]2// = 405 MeV, A2 vanishes at a
second order uSC-+2SC transition. At
M2/l = 449 MeV, there is a second
order 2SC-+g2SC transition. And fi-
nally, for M,/21 > 598 MeV, corre-
sponding to Ms > 547 MeV, there are
no more strange quarks present in the
system, as shown explicitly in Fig. 3-
7, and further increase in Ms changes
nothing.
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Figure 3-7: Number densities of quarks with flavors u, d and s (in each case summed
over the three colors) as a function of MS2/p. All parameters are as in Fig. 3-6, with
A = 100 MeV. We see that the number densities are equal only in the CFL phase,
and see that for M2/p > 598 MeV there are no strange quarks present.

qualitatively like Fig. 3-2. We conclude that stronger interaction tends to favor a

g2SC window at large values of M 2 / / , whereas weaker interaction disfavors it. The

boundary between the two cases is at A/0 = 25 MeV in our model.

It is interesting to ask what happens at still larger A0 . We show the gap parame-

ters in our model with A0 = 100 MeV in Fig. 3-6. We see the CFL-+gCFL transition

at Ms2/p = 2A1 once again. The physics at and beyond the large-M2/p boundary

of the gCFL regime is now qualitatively different. This regime corresponds either to

very large values of M, or else to such small values of that the hadronic phase will

likely have taken over, making the right half of this plot somewhat academic. One

reason it is of interest, however, is simply the fact that we can draw it: had we made a

small M2/i 2 approximation as in Chapter 2 and Ref. 27], this regime would be inac-
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cessible. The figure shows a sequence of phases as M,/, is increased above the gCFL

phase: (i) the gCFL phase ends at a second order phase transition at which A - 0,

above which we find a uSC window in which both A2 and A3 remain nonzero; (ii)

next, A2 -+ 0 at a second order phase transition at which the uSC phase is succeeded

by the 2SC phase; (iii) finally, there is a 2SC-+g2SC transition. This sequence of

phases agrees with that found in Ref. [27] at large A0 , in a calculation done using a

small-M2//t 2 approximation pushed beyond its regime of validity. Our present cal-

culation can be extended (within its model context) to arbitrarily large Ms. Indeed,

as can be seen in Fig. 3-7 we find a transition to two-flavor quark matter, with zero

strange quark density, at MS = 547 MeV, corresponding to M2/2 = 598 MeV. Below

this Ms, we find the g2SC phase with unpaired strange quarks. Above this value of

Ms, we have two-flavor g2SC quark matter and further increase in Ms has no effect

on the physics.

As A0 is increased from 40 MeV to 100 MeV, going from Fig. 3-5 to Fig. 3-6,

the first qualitative change to occur is that the gCFL phase ends at a second order

transition at which A - 0, instead of ending at a first order transition. Above this

A0, the phase diagram includes a uSC window separated from the (g)2SC phase by a

first order phase transition. At a somewhat larger A0, this first order phase transition

becomes second order. At a still larger A0 , the interaction is strong enough to have

g2SC pairing in the two flavor quark matter that our model describes for Ms -+ co,

and the physics is as in Fig. 3-6.

3.4 The Phase Diagram at Nonzero Temperature

We now explore the solutions to the gap equations and neutrality conditions at

nonzero temperatures. As in the previous section, we begin with a coupling cho-

sen so that A0 = 25 MeV. The phase diagram for this value of the coupling is given

in Fig. 3-1, to which the reader should refer in this section. We constructed Fig. 3-1

by first making plots of the gap parameters and chemical potentials versus M2/u

at many values of T, and versus T at many values of M/p5. In this Section, we
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Figure 3-8: Gap parameters as a func- Figure 3-9: Chemical potentials as a
tion of M2/p at T = 2 MeV, with all function of M,/2p at T = 2 MeV, with
other parameters as in Fig. 3-2. all other parameters as in Fig. 3-3. At

small M2/lp, Ie and /3 are close to
M2/4p.

present and discuss several of these "sections" of Fig. 3-17 enough to understand the

many features of the phase diagram. We then show phase diagrams for A0 = 40 and

100 MeV.

We start by turning on a small temperature, T = 2 MeV, and seeing how the plots

of gaps and chemical potentials, shown in Figs. 3-8 and 3-9, change from those at

zero temperature, Figs. 3-2 and 3-3. We see many interesting changes already at this

relatively small temperature. The CFL-+gCFL transition seen at zero temperature

in Figs. 3-2 and 3-3 has become completely smooth at T = 2 MeV: there is no sharp

difference between CFL and gCFL at nonzero T. Furthermore, note that the zero

temperature transition from 2SC to g2SC is also washed out. This makes sense: at

T = 2 MeV, it makes no physical difference whether a certain fermionic quasiparticle

is gapless or has a gap that is nonzero but smaller than 2 MeV. So, although in Fig. 3-1

we have shown the values of M,2 / y where quark quasiparticles become gapless within

the CFL, uSC and 2SC phases, these dashed lines have physical significance only

where they intersect T = 0.
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Figure 3-10: Gap parameters as a Figure 3-11: Chemical potentials as a
function of T at M2/p = 15 MeV. function of T at M2/p = 15 MeV.

We see in Fig. 3-8 that A1 vanishes at a second order CFL-+uSC transition at

M2// = 85.1 MeV. Another way to say this is that for M2// < 85.1 MeV, the critical

temperature at which Al vanishes upon heating must be greater than 2 MeV, whereas

for M/, 1 > 85.1 MeV, this critical temperature is less than 2 MeV. As at T = 0,

there is a first order phase transition, denoted in Fig. 3-8 by a thin vertical line, but

here it is a first order phase transition between the uSC phase at Mi2/p < 125 MeV

and the 2SC phase at M/,a > 125 MeV. The 2SC phase ends at a second order phase

transition where A3 -+ 0 at M/2/p = 129 MeV. This means that there is a regime of

M12/y at which there is 2SC pairing at T = 2 MeV, but no pairing at T = 0. We

investigate this further below.

We see in Fig. 3-9 that at small M/, 1u, the chemical potentials pe and /A3 are

both close to M2/4 1p at T = 2 MeV. This is qualitatively different than their zero

temperature behavior /e = 13 = 0. In comparison, /e takes on the value M2/4p

in unpaired quark matter. Thus, already at a temperature of only 2 MeV there is

no sense in which 1e is small. We see that at larger Mi/,2, ue and /13 diverge as

at zero temperature, but they do so smoothly and they diverge from M2/4p, rather

than from 0. Since we have found that the CFL phase has become a metal already
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at T = 2 MeV, it is natural to ask at what temperature the insulator-metal crossover

occurs. We answer this question at M2/p = 15 MeV in Figs. 3-10 and 3-11. The latter

figure shows a rapid insulator to metal crossover occurring between T = 1 MeV and

T = 2 MeV, with , A3 and 8 all changing. We shall discuss this crossover at length

in Section 3.5. It can be understood analytically, and we shall see in Section 3.5 that

the reason that /le takes on the value M2/4 is quite different from that in unpaired

quark matter. Above the crossover, e changes little as T increases further but both

/23 and /.8 decrease in magnitude. This occurs because at larger temperatures the

gap parameters decrease, as seen in Fig. 3-10, and as the gap parameters vanish color

neutrality occurs with 3 = s8 = 0 [97] whereas electrical neutrality still requires a

nonzero e.-

We see in Fig. 3-10 that the gap parameters change little at the low temperatures

at which the CFL phase is undergoing its insulator to metal crossover. Although it is

not really visible in the figure, we find that A2 > Al for 0 < T < 6.28 MeV, and A1 >

A2 at higher temperatures. At T = 16.46 MeV, A2 vanishes at a second order phase

transition and we find the dSC phase. Then, at T = 16.81 MeV, A1 vanishes, yielding

the 2SC phase. The final phase transition, at which A3 vanishes, occurs at T =

17.73 MeV. This ordering of phase transitions is in qualitative agreement with that

found in Ref. [97] using a Ginzburg-Landau approximation, and is in disagreement

with the results of Ref. [27], in which no dSC regime was found. In order to gain

confidence in the accuracy of our calculation and in the existence of the dSC phase,

in Section 3.6 we make a detailed and quantitative comparison between our results

and those obtained via the Ginzburg-Landau approximation.

At larger values of M,/2l, the ordering of phase transitions as a function of in-

creasing temperature changes. For example, if we consider M/21 = 70 MeV, in the

gCFL phase at T = 0 with A1 < A 2 < A3 , we see in Fig. 3-12 that as the temperature

is increased, A1 vanishes first, then A2 and then A3 , meaning that the phase which

intervenes between CFL and 2SC is uSC, not dSC. This order of phase transitions is

unsurprising, given that A1 < A 2 < A 3 at T = 0 in the gCFL phase. All three tran-

sitions are second order transitions in mean field theory. Fig. 3-13 shows the chemical
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Figure 3-12: Gap parameters versus Figure 3-13: Chemical potentials ver-
temperature at M2/i = 70 MeV. sus temperature at M2/1 = 70 MeV.

potentials as a function of increasing temperature at M2/, = 70 MeV. Whereas the

T = 0 CFL phase undergoes an insulator to metal crossover as it is heated, the gCFL

phase is already a metal at T = 0.

In both Figs. 3-10 and 3-12, we see a sequence of three second order phase transi-

tions. The first of these, a transition from the CFL phase to either the dSC or the uSC

phase, is likely not significantly affected by gauge field fluctuations, because the same

gauge symmetries are unbroken (the U(1)Q symmetry) and broken (the other eight

gauge symmetries) on both sides of the transition. It is therefore an interesting ques-

tion for future work to consider the order parameter fluctuations at this transition,

asking whether they render it first order or, if not, determining its universality class.

The two mean field transitions occurring at higher temperatures in Figs. 3-10 and 3-12

will be qualitatively affected by gauge field fluctuations, as at each of them there are

gauge symmetries that are broken on the low temperature side of the transition and

restored above the transition. Gauge field fluctuations will presumably make these

transitions first order, and shift their critical temperatures upward. These effects will

be significant, because the relevant gauge fields are strongly coupled [95, 96].

We have found that at small M/,uP, A 2 vanishes at a lower temperature than Al
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Figure 3-14: Gap parameters versus Figure 3-15: Gap parameters versus
temperature at M,/2i = 130 MeV. Mi/pl at T = 4 MeV.
At this large value of M2/u, both A1
and A2 are zero at all temperatures.
A3 = 0 at T = 0, but this gap param-
eter is nonzero for 2.37MeV < T <
13.08 MeV.

whereas at larger M2/p, these two transitions occur in the opposite order. There

must, therefore, be some M,/t at which both vanish at the same temperature. We

see in Fig. 3-1 that this "doubly critical" point occurs at T = 15.3 MeV and M/,! =

29.4 MeV.

Having followed what happens upon heating the CFL phase at Ms/[l = 15 MeV

and upon heating the gCFL phase at M2/l1 = 70 MeV, in Fig. 3-14 we consider

heating quark matter at M,/u2 -130 MeV, which is unpaired at T = 0. We see

that A3 becomes nonzero at a second order phase transition, and then vanishes at

a higher temperature at a second order phase transition. This behavior has been

described previously [74, 105], and can be understood as follows. At T = 0, the u

and d Fermi surfaces in the unpaired quark matter are too far apart to allow 2SC

pairing. However, as we increase T, we excite u quarks above the u Fermi surface,

and d holes below the d Fermi surface. This smearing of the separated Fermi surfaces

assists u-d pairing, and A3 turns on at a nonzero temperature. Of course, at a still
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higher temperature the A3 condensate melts.

The final slice of the phase diagram of Fig. 3-1 that we shall show explicitly is a plot

of the gap parameters as a function of M]/u at T = 4 MeV, shown in Fig. 3-15. By

comparing this figure with Fig. 3-8, we see qualitative changes in the physics between

I'= 2 MeV and T = 4 MeV: the 2SC phase now takes over from the uSC phase not

via a first order phase transition, but instead via a second order phase transition at

M]2// = 123.2 MeV at which A2 - 0. This means that a line of first order phase

transitions, present at lower temperatures, has turned into a second order transition

at a tricritical point. This tricritical point is shown by a diamond in Fig. 3-1, and is

located between T = 3.9 MeV and T = 4.0 MeV.

The results that we have presented up to this point in this section, plotted in

Figs. 3-8 through 3-15, constitute a description of all of the features at T 5~ 0 depicted

in the phase diagram given in Fig. 3-1. We now ask how this phase diagram changes

as we vary the strength of the interaction, and hence A0 . If we reduce A0 , there are no

qualitative changes as long as we rescale the vertical and horizontal axes of the phase

diagram by the same factor that we reduce A0 . As at T = 0, however, increasing A0

leads to qualitative changes in the phase diagram at large M,2/1u, indicating that the

details of the large M,/2p regions of the phase diagram are not robust predictions of

our model.

With A0 = 40 MeV, in Fig. 3-16, we see the same three special points as in Fig. 3-

1: a quantum critical point separating the CFL and gCFL phases at T = 0, a doubly

critical point at which the A - 0 and A2 - 0 transitions cross, and a tricritical

point at large M,//u at which a line of first order phase transitions ends. Since both

axes of Fig. 3-16 have been rescaled by 40/25 relative to Fig. 3-1, the two figures

are qualitatively similar: the one qualitative change occurs at large M,/p, where the

g2SC phase extends down to T = 0, as we have already seen in Fig. 3-5. (At T = 0,

there is a sharp distinction between 2SC and g2SC, and in this instance the phase

is g2SC.) The most interesting quantitative change is a change in the slopes of the

A - 0 and A2 -+ 0 transitions on the phase diagram at small M,/, which pushes

the doubly critical point somewhat down in temperature. This effect is more clearly
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Figure 3-16: Phase diagram of dense neutral quark matter in the (Ms/,l, T) plane,
with a coupling chosen such that A0 = 40 MeV. (All parameters except Ao0 are the
same as in Fig. 3-1.) Only phase transitions are shown - the analogues of the dashed
and dotted lines in Fig 3-1 are not given.
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Figure 3-17: Phase diagram of dense neutral quark matter in the (M2/,ui, T) plane,
with a coupling chosen such that A0 = 100 MeV. (All parameters except Ao0 are the
same as in Figs. 3-1 and 3-16.) The two triangles on the T = 0 axis indicate quantum
critical points at which modes become gapless. The first, which separates the CFL
and gCFL phases, is familiar. The second separates 2SC and g2SC phases, as shown
in Fig. 3-6.
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visible at stronger coupling, with A0 = 100 MeV, as shown in Fig. 3-17. We shall

explain this quantitatively in Section 3.6.

With A0 = 100 MeV, in Fig. 3-17, we see further qualitative changes at large

M2/p, corresponding to those at T = 0 shown in Fig. 3-6. Now, the uSC phase

and the 2SC phase both extend to T = 0. And, at T = 0 there is a 2SC regime

separated from g2SC by a quantum critical point, like that separating the CFL and

gCFL phases at T = 0. If we start at T = 0 in the g2SC phase and heat the

system, A3 at first increases, before decreasing at higher temperature, eventually

vanishing at the upper phase transition shown in Fig. 3-17. If we extended the phase

diagram to M2/p -+ c, this critical temperature would become Ms-independent in

the limit. The small remaining Ms-dependence at the largest M,2 / / we show is easily

understood: even though there are no strange quarks present at T = 0 at these large

values of M,, meaning that the T = 0 physics has become M,-independent, strange

quarks can still be excited at nonzero temperature.

As A0 is increased from 40 MeV to 100 MeV, the phase diagram changes contin-

uously from that of Fig. 3-16 to that of Fig. 3-17. First, the uSC phase reaches the

T = 0 axis. Next, the tricritical point indicated by the diamond in Fig. 3-16 retreats

down to T = 0. All the while, the (g)2SC region is extending farther and farther

to the right, eventually to M - oc when the coupling is strong enough to allow ud

pairing even once there are no strange quarks present.

We shall discuss the implications of the phase diagrams that we have found in

the last section of this chapter. First, however, our investigation has raised several

interesting questions that we have been able to address analytically, as we describe

in Sections 3.5 and 3.6.
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3.5 Heating the CFL phase: understanding the in-

sulator to metal crossover

We have seen in Fig. 3-11 that as CFL quark matter is heated, it undergoes a crossover

from an insulator, with e exponentially small, to a metal, with u - M 2/4p. With

-A = 25 MeV and M2/p = 15 MeV as in Fig. 3-11, the crossover occurs between T =

1 MeV and T = 2 MeV. This insulator to metal crossover has been seen previously

in Ref. [27]; our goal here is to understand it analytically.

We see from Fig. 3-10 that the gap parameters change little between T = 1 MeV

and T = 2 MeV, whereas the chemical potentials change dramatically. We shall

explain the variation of the chemical potentials, treating the gap parameters as T-

independent. We note from Fig. 3-11 that during the crossover, le increases from

near 0 to near M2/4p, while P3 increases by the same amount and A8 increases by

half as much. This tells us that the equations,

/3 = I-e, (3.12)

As8 - + 2 (3.13)
= 2p 2'

that hold at zero temperature neutral CFL matter [46], are maintained, and hence

it is the combination ,p of (2.31) that is changing. We recall that at T = 0 the

contribution of the quark matter to the free energy Q is independent of ,u~, and this

"plateau" is only curved by the small contribution of the electrons to the free energy,

of order p4, which favors Pe = 0. Above the crossover we find pe M2/4p, which is on

the plateau but away from the point on the plateau favored by the electron neutrality

condition. In order to understand the crossover, then, there must be thermally excited

Q-charged quasi-particles whose neutrality condition favors me $ 0, and we must see

the curvature of the free energy plateau due to these quasiparticles "take over" from

that due to the electrons. We first show that the CFL quark quasiparticle excitations

have the desired effect, and then in Section 3.5.1 we show that the thermally excited

charged mesonic pseudo-Nambu-Goldstone boson excitations of the CFL phase play
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a negligible role.

The quarks with nonzero Q are the rs and bu which pair with gap parameter

A2, and the rd and gu which pair with gap parameter A3. This means that in the

CFL phase there are two quasiquarks with Q = +1 (one a linear combination of bu

quarks and rs holes; the other a linear combination of gu quarks and rd holes) and

two quasiquarks with Q =-1 (one a linear combination of rs quarks and bu holes;

the other a linear combination of rd quarks and gu holes).

We now evaluate the dispersion relations of these excitations, and estimate the

number density of thermally excited charged quasiquarks. In this Section, we shall

follow Chapter 2 and include the nonzero strange quark mass only via its effect as a

shift in the chemical potentials of the strange quarks. We have seen in Section 3.3

that this is a good approximation in the CFL phase. The dispersion relations of these

four quasiparticles are given by [25]

E(rs-bu)(P) = (_AI- 2-bu)
I1 M 2\~~ 2

42~] +A+ flP-(burs)+ ) + -2

6(rd-gu)(P) = -½(gu-rd) + /(p- (rd-gu))2 + A] (3.14)

where bu-rs - (Ibu + rs)/2 and -lrd-gu - (lrd + /igu)/2. Upon substituting the

definitions (3.9) and the relations (3.12) and (3.13), which are maintained through

the crossover, these become
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( M2\ 2 I(2
E(rs-bu) (P) = + P - 24 + - A+ + 6¾ 

6(rd~gu)(P) = ±Pe + -,+ M2) 2 + A(3.15)

At the temperatures of interest, these excitation energies are all greater than T, and so

only the lowest energy excitation with each Q charge matters the number density

of the higher energy excitations is exponentially smaller. Labeling the quasiparticles

by their Q charge, the excitation energies of the lowest lying charged quasiquarks are

£+1 (p) = (e 2 + - P-M I + 6s ) + 2

-1 (P) = -e + P- t + ) + A2 (3.16)6~~l\P/IeV~PIL J ±Z 3 (3.16)

corresponding to the (rs-bu) quasiquark with Q = +1 and the (rd-gu) quasiquark with

Q = -1. We now evaluate the T-dependent contribution of these quasiquarks to the

free energy Q given by (3.3). Because the quasiquark energies are much larger than the

temperatures of interest, the Boltzmann factors are small, the integral is dominated

by p near the minimum of E(p), and we can use the saddle-point approximation. We

find that, for example, the contribution of the Q = +1 quasiquark to Q2 is given by

- j dp p2T ln(1 + e- ]e+1(P)/T)

- j dp p2T e- e+1(p)I/T

-- 2 f 2Te-+(,)I/T (3.17)
7-2r

where _z- M2/61P. The contribution of the Q = -1 quasiparticle is analogous.
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The contribution of these two quasiparticles to the Q-charge density is then

V/217rAT~p 2 -(A+pe--~42/2jL)/T(Q = +1) 2 e(+ M2/2)/T (3.18)
71.

(Q = -1) - x/2'2e-(A-pe)/T (3.19)
7[2

We have set A3 = A2 A, a good approximation throughout the crossover as shown

in Fig. 3-10. Q-neutrality is a balance between the charge densities of these two quark

quasiparticles and the electrons.

We can now see that what drives the system to Pe 0 is the fact that the lightest

Q = +1 and Q = -1 quark quasiparticles have dispersion relations with different gaps

when M8 $ 0, and consequently contribute charge densities of different magnitudes

when thermally excited. If we attempt to set Pe = 0 at T $ 0, there are more Q = +1

quasiparticles present than Q = -1 quasiparticles, and the system is not neutral. To

achieve neutrality, Pe must be increased as this increases the density of Q = -1

quasiparticles, decreases the density of Q = +1 quasiparticles, and adds electrons,

which have Q =-1. This is described by the neutrality condition

2X/2~'ATfz2--M/)T (M2/4/- -Me
2 A e-2 (A-M2 /4p)/T sinh

r2 ( T

I3 ie 2
_~4 /_ = 0 (3.20)

37r2 3

which we can solve for le(T) if we take A to be T-independent.

Let us now investigate the implications of this result. At very small T, the quark

quasiparticles are exponentially rare, and those with Q =-1 are exponentially rarer

than those with Q = +1. The Q = +1 quasiparticle density is balanced by the

electron density, and e is exponentially small. However, the quasiparticle densities

are proportional to 2 whereas the electron density is not. This means that at the

T at which Pe starts to take off, the quasiparticle Boltzmann factors are still rather

small. Once T is large enough that Pe approaches M2/4p, however, even though

the individual Boltzmann factors continue to rise rapidly as T increases further, the

sinh factor in (3.20) becomes small. Neutrality at this point is primarily a balance
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T [MeV] T [MeV]

Figure 3-18: Comparison between the
analytic results (dashed curves) and
the numerical results (solid curves) for
H
1e as a function of temperature with
A0 = 25 MeV for several values of Ms
in the CFL phase. The analytic re-
sults were obtained from (3.20), and
the numerical results were obtained by
solving the full coupled gap equations
and neutrality conditions, as in previ-
ous Sections. In evaluating ,e from
(3.20) we have taken A to be the av-
erage of A2 and A3 at the midpoint of
the crossover.

Figure 3-19: Comparison between the
analytic estimate for ,e versus T with
and without charged meson contribu-
tions. The solid curve, with no me-
son contributions, is the same as the
Ms = 100 MeV analytic estimate in
Fig. 3-18. The dashed curves include
the contribution of thermally excited
charged pions and kaons, for three val-
ues of the parameter X described in the
text that parameterizes the instanton
contribution to the meson masses.

between the densities of the Q = +1 and Q = -1 quasiparticles, with electrons

cancelling only the small difference between their densities. The result, seen already

in Fig. 3-11 and shown in greater detail in Fig. 3-18 is a crossover in which , is

at first exponentially small, then rises rapidly, and then saturates as it approaches

MI2/4/. We see in Fig. 3-18 that the equation (3.20) for Ae that we have derived,

making approximations as described, gives a very good description of the numerical

solution of the full coupled gap and neutrality equations. This demonstrates that

(3.20) provides us with a good analytic description of the insulator to metal crossover

that CFL quark matter experiences when heated.
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We have set the electron mass to zero in Fig. 3-18 and throughout. Including it

means that it takes a larger p, to achieve a given electron density, pushing all the

curves in Fig. 3-18 very slightly upwards. With an electron mass as in nature, the

effect on the curves is invisible on the scale of the plot.

3.5.1 Contribution of charged mesons

As described in Chapter 2, there are other charged excitations in the CFL phase.

Among the pseudo-Nambu-Goldstone bosons, there are mesons with the quantum

numbers of the lr± and K±. We have neglected the contribution of thermally excited

charged mesons to the charge density in the derivation of (3.20). We now investigate

this approximation.

The dispersion relations of the charged mesons, together with that for the K ° -

meson which we shall also need below, are given by [41, 47, 99-102]

er () = ±Ipe + Vv2p2 + M2

2 

6Ko(P) =- + V/2p2 + M , (3.21)
21 u

where v2 = 1/3 at high density [47]. The meson masses in the CFL phase are given

by

M' = a(M. + Md)Ms + (M + Md)

MK = a(M, + Ms)Md + x(Mu + Ms)

MKo = a(Md + Ms)M. + x(Md + Ms) . (3.22)

Here, a = 32/r 2f2 with f2 = (21- 8log2) u 2/367r2 at high density [47], which

yields a = 0.0175 for A0 = 25 MeV at = 500 MeV. And, X parameterizes the

contribution of U(1)A-breaking instanton effects which generate (qq) condensates and

therefore contributions to meson masses in the CFL phase [100-102], via the 't Hooft
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interaction which contributes couplings of the form A2 (qq). The magnitude of is

not well known, as it depends on the instanton size distribution and instanton form

factors at nonzero density. It has been estimated to lie in the range MeV < X <

100 MeV [101, 102]. In Fig. 3-19, we include the contribution of all four charged

mesons to the Q-charge neutrality condition, determining the density of thermally

excited bosonic quasiparticles from the dispersion relations. The contribution to the

charge density from the K± mesons is

I p 2 I 1
2ir~~~~~~~fdPP2 ~~~~~~~(3.23)27r2 T dp P exp [ K+ () IT]- 1- exp [oK- (p)/T]- 1 (3.23)

and that from the pions is analogous. We then solve for 1e vs. T, taking M, =

100 MeV and Mu = 5 MeV and Md = 10 MeV. We plot the results for X = 1, 2 and

5 MeV in Fig. 3-19.

Adding the charged mesons adds new charge carriers, and so the simplest expec-

tation for their effects is that a smaller ,e will be required in order to neutralize the

imbalance in the fermionic quasiparticle sector. We see in Fig. 3-19 that this expec-

tation is borne out above the crossover, but not below. Above the crossover, we see

that /e is reduced relative to the results we obtained in Fig. 3-18, where we neglected

the mesons. The mesonic contributions get less significant at larger values of X, as

the mesons get heavier. They are already small for X 1 MeV and are negligible by

X = 5 MeV. At low temperatures, and for the smallest values of X, there is another

effect to be understood. The dispersion relations for the K + in (3.21) indicate that

the K+ is easier to excite than the K-. This means that they behave like the quasi-

quarks, in the sense that at a nonzero temperature they contribute a positive Q-charge

density, which must be cancelled. If X is very small, the K+ charge density becomes

significant at such a low temperature that its contribution can only be cancelled by

electrons the Boltzmann factors for all other excitations are still prohibitive. This

means that if X is very small, be initially rises with temperature significantly more

rapidly than in the absence of the mesons. We see this effect clearly in Fig. 3-19 for

X = 1 MeV and still to a small degree for X = 2 MeV. For X = 5 MeV, pe(T) is
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indistinguishable at low temperatures from that in the absence of the mesons.

We can summarize the results in Fig. 3-19 as follows. For X > 2 MeV, the

thermally excited charged mesons have no significant effects at any temperature.

But, if X - 1 MeV, which is at the bottom end of the estimated allowed range

1MeV < X 100 MeV [101, 102], the K + excitations contribute significantly at very

low temperatures.

At much larger temperatures, well above the insulator to metal crossover that we

have analyzed, we come to the various critical temperatures that we have seen in

Section 3.4 and will analyze further in Section 3.6. At these temperatures, at which

gap parameters vanish, it is well understood that the fermionic quasiparticles are the

most important degrees of freedom. What we have shown is that at low temperatures

also, the charged mesons are less important than the charged fermions among the

thermal excitations, as long as X is not very small.

Mesons can nevertheless play an important role if they condense [41]. At T = 0,

the CFL phase is stable against meson condensation as long as eKo > 0 at p = 0. (K ° -

condensation yields the most stringent constraint.) This requires MKo > M4/4 u2,

corresponding to X > Ms3/4P,2. For MS = 100 MeV, as in Fig. 3-19, this requires

X > 1 MeV. We are therefore justified in our neglect of K°-condensation in Fig. 3-19.

If X > 3.6 MeV, there is no K°-condensation in the CFL phase with A0 = 25 MeV for

M2/p < 46.8 MeV, meaning that there is no K°-condensation at T = 0 for all values

of M2/p below the CFL-+gCFL transition. (K°-condensation in the gCFL phase

has yet to be analyzed.) It seems likely that X > 3.6 MeV at accessible densities,

since X is larger at lower densities and the analysis in Ref. [101] which yields the

estimate 1MeV < X < 100 MeV becomes more reliable at higher densities. If the

coupling is stronger, however, K°-condensation becomes more likely. For example,

for A0 = 100 MeV, there is no K°-condensation in the CFL phase only if X > 26 MeV.

If K°-condensation were to occur, it delays the CFL-+gCFL transition, increasing the

M 2 at which it occurs by a factor 4/3 if X = 0 [81]. Further work remains to be done,

for example extending the analysis of Ref. [81] to nonzero X and to the gCFL phase.

Another issue that remains to be investigated is the possibility of 7r- condensation
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at nonzero temperature. We have seen that above the insulator to metal transition,

Pc ~ MS/4p. At zero temperature, this would lead to 7r- condensation if X <

M4/(16p 2(AI + Md)), but this pe only arises at T 0, and nonzero T acts to

stabilize against meson condensation.

Finally, all these issues should be investigated in an expanded model in which the

't Hooft interaction is included from the beginning in the free energy and hence in the

gap and neutrality conditions, and the quark masses are also solved for dynamically.

3.6 The Ginzburg-Landau approximation

In the M2/p -+ 0 limit, the three critical temperatures at which the gap parameters

vanish become one. Near this critical temperature, where all gap parameters are

small, a Ginzburg-Landau approximation can be employed. The Ginzburg-Landau

free energy was analyzed at MS = 0 in Refs. [69, 98], and was extended to small but

nonzero M2/p in Ref. [97]. We wish to compare our results at small but nonzero

M2/p to those obtained in the Ginzburg-Landau approximation, and to compare the

coefficients in the Ginzburg-Landau potential (actually, ratios of coefficients) in our

model to those calculated in QCD at asymptotic densities and thus at weak coupling

in Refs. [69, 97].

The Ginzburg-Landau potential is parameterized as [97]

Q=a (A+A2 +A2)

+ E(A1 + A2) + ½r(-2A12 + A2 + A]) (3.24)

+' 31 ( 2 + 2 + -2)2 + p2 (4 + 4 + a4),

where a = ao(T- Tc)/Tc and where the coefficients and are proportional to M2

and pe respectively and are therefore present only if Ms $ 0. The form of the and

r terms was derived in Ref. [97] for QCD at asymptotic densities. In the Ginzburg-

Landau limit, in which all gap parameters are small, color neutrality occurs with

/3 and 8 vanishingly small [97], and electrical neutrality requires a nonzero , of
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Figure 3-20: Diagrams contributing to the A4 and A2A2 terms in the Ginzburg
Landau potential (3.24).

order Ms2/4a as in unpaired quark matter. At low temperatures, the most important

consequences of Ms and ILe (and also 3 and ) derive from the stress they put on

pairing, as they (seek to) push Fermi momenta apart. Near To, T A. And, we

are working at M2/p << Tc, where the thermal smearing of the Fermi distributions is

much greater than the splittings between Fermi momenta. In this regime, the effects

of M2 or e on the pairing of two quarks do not arise from the splitting between their

Fermi momenta, as this is negligible. The effects of Ms2 or /e arise from the change

in the average Fermi momenta of the two quarks, and hence in the density of states,

that M 2 or se induces. For example, M 2 depresses the average Fermi momenta of u-s

and d-s pairs, but does not affect u-d pairs. This explains the form of the e term in

(3.24). On the other hand, /ue > 0 increases the average Fermi momenta of d-s pairs,

while decreasing that of u-d and u-s pairs. This explains the form of the r] term.

The quartic coefficients 1 and 2 are nonzero at T = T,, meaning that unlike

in the case of the quadratic terms we can safely neglect corrections to the quartic

terms proportional to M 2 and /e [97]. We shall find that (3.24) describes our results

very well, confirming the validity of this approximation. In Ref. [69] it is shown

that the quartic coefficients simplify further in the weak coupling regime, satisfying

1 = 2. This result is valid beyond weak coupling, however, as all that is required

to demonstrate it is the pairing ansatz (2.2) and the mean field approximation. The

quarks in the 2 x 2 blocks contribute through diagrams like the first in Fig. 3-20,

leading to a contribution proportional to A4 + A4 + A4. The quarks in the 3 x 3 block
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contribute through diagrams like both the first and second in Fig. 3-20, leading to a

contribution proportional to A4 + A 4 + A 4 + 2A12A + 2A2A2 + 2A2A]. Adding all

the diagrams, we conclude that 31 = 2

We now wish to confirm that (3.24) correctly describes the Ms-dependent physics

in our model. We do so by extracting the ratio

(--C~~ = ~~~~(3.25)
r/

from our results in three independent ways. If (3.24) is correct -that is if there are

no Ms-dependent terms missed the three extractions of ( should agree. We see in

the phase diagrams of Figs. 3-1, 3-16 and 3-17 that the slopes of the three transition

temperatures (i.e. dTc/d(Ms2/u) at M,/t = 0) are different, with that for the A3 - 0

critical temperature the shallowest and that for the A2 -+ 0 critical temperature the

steepest. The ratios of these slopes can be extracted from the Ginzburg-Landau free

energy Q of (3.24) and are given by

1: (6( - 5): (6( + 4) (3.26)

where we have used li = /l2. We can also read the slopes directly from our phase

diagrams. The A0 = 25 MeV phase diagram of Fig. 3-1 yields the ratios

1:10.1:19.1 (3.27)

which can be used to obtain two independent extractions of (, one from 1 : (6( - 5) =

1: 10.1 and the other from 1: (6( + 4) = 1: 19.1. The two are in perfect agreement,

with both yielding ( 2.52 for A0 = 25 MeV.

A third extraction can be obtained from Fig. 3-21 upon realizing that, according

to (3.24), in the CFL phase where all three gap parameters are nonzero ( is given by

the ratio

a3s ~~~ zx~2- ~(3.28)
A- A2
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Figure 3-21: Gap parameters squared versus T at M8 = 30 MeV, namely M/p =
1.8 MeV. This figure should be compared to the "schematic illustration" given in
Fig. 2 of [97]. We see the three phase transitions separating the CFL, dSC, 2SC and
unpaired phases.

This ratio can be extracted at M2/t = 1.8 MeV from Fig. 3-21. We have done this

extraction at a number values of M2/ and fitted the results as

A2 -+2 12 
3 2= 2.52 + 36.2( ) + 1.02 x 103 (3.29)
1 2 A

which leads us to conclude for the third time that ~ = 2.52 for A0 = 25 MeV. In

(3.29) we have extracted the MS2/ 2 and M4// 4 corrections to the ratio (3.28), in

addition to extracting (. The coefficients we have obtained confirm that these higher

order terms are negligible as long as MS2/2 << T// or, equivalently given (3.1),

M2/p << A0. This indicates yet again that the Ginzburg-Landau free energy (3.24)

provides a good approximation to our results in the regime where it should be valid.

Upon comparing our Fig. 3-21 with the schematic illustration given in Fig. 2 of

Ref. [97], there can already be little doubt that the Ginzburg-Landau potential (3.24)

correctly describes the results that we have obtained by solving the full gap and

neutrality equations numerically, for T T, and for M2/tZ2 < TC/w. The agreement
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between our three extractions of ( makes this point quantitatively.

We can also use Fig. 3-21 to check that our numerical results are consistent with

fl = 2. The Ginzburg-Landau potential (3.24) can first be used to show that in

the CFL (and dSC) phases in Fig. 3-21 the slopes of the lines for the three (two)

nonzero gap parameters are the same. Our results clearly satisfy this. Next, the

Ginzburg-Landau potential (3.24) can be used to show that the ratio of the slopes

of the gap parameters in the CFL phase in Fig. 3-21 to those in the dSC phase is

(21 + 2)/(3/31 + 2), and the ratio of those in the dSC phase to that in the 2SC

phase is (1 -+/2)/(21 + 2). These ratios cannot be extracted very accurately from

Fig. 3-21, given the narrow windows within which the dSC and 2SC phases are found.

However, they are consistent with 3/4 and 2/3, corresponding to /1 = 2.

In Ref. [97], the ratio ¢ is calculated using weak coupling methods, valid at asymp-

totic densities. The weak coupling result is = 2. From our numerical results, we

have found ( = 2.52 at A0 = 25 MeV. We also find = 2.69 at A0 = 40 MeV and

= 3.87 at A0 100 MeV, extracting from the ratio (3.28) as in (3.29). At weak

coupling, ¢ -- 2 and the A2 and A2 lines are equidistant from the A12 line in the CFL

phase region of Fig. 3-21. As the coupling gets stronger, the A12 and A2 lines move

downward/leftward, further away from the A2 line, and the ratio ¢ increases.

Now that we are convinced that the e and terms fully describe the Ms-dependent

physics in our model at small Ms, we calculate and r1, from diagrams like those in

Fig. 3-22.
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After some calculation, the result is

M2 o A 2 1 (p-/u) i (p+/u
e =4-2~ dpp{ (p -/u)2 tanh 2T ) (p+ )2 tanh , 2T

[ -cosh P P )oh] 
2Tc p(p -)+ ) T }

(3.30)

=/e 0A 2{ 1 (P --/ tan
dpp p _ / tanh tnrl=2X2 j dpp2{(p _ )2 2tanh(PjT) -(p +u)2 tanh (2T)

_~~~~~~~~~ 2u
2T(p- u) [ ( )] + Z [cosh (P+)] }[osh P + os

2 ~~Tc 2Tp+ /)
(3.31)

In the weak-coupling limit, T <K /t and the integrals are dominated by p within T,

of /u. In this limit, it is easy to check that ( = e/V = M2/2u/ute, which yields ( = 2

since /eu = M2/4[. At non-infinitesimal coupling, for example taking Ao = 25 MeV

and reading the corresponding T, from Fig. 3-1, we can evaluate and ij. We find

= 2.55 if we use 1le = M2/4p, and if instead we obtain H
1e from our numerical

results, we find ( = 2.52. Taking T, and 1te from our numerical results and evaluating

( using (3.30,3.31) we find ( 2.52, 2.65, 3.84 for A0 = 25, 40, 100 MeV respectively.

From our numerical results, we have found ( 2.52, 2.69, 3.87 at these values of

A0 , extracting ( from the ratio (3.28) as in (3.29). The agreement between these

determinations is a confirmation of the accuracy of our numerical methods.

It is nice to see how quantitatively well the Ginzburg-Landau approximation de-

scribes the physics near T, in our model, as we have demonstrated. Furthermore, the

value of one of the two ratios of coefficients that we have investigated, 1//2 = 1, is

the same in our model and in QCD at asymptotic densities. And, the value of the

other ratio ( = /rj is comparable in our model to its value in QCD at asymptotic

densities for A0 = 25 and 40 MeV, becoming significantly larger only for quite strong

coupling, as at A0 = 100 MeV.
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Figure 3-22: Diagrams contributing to the and r terms in the Ginzburg Landau
potential (3.24).

3.7 Implications and Open Questions

The phase diagrams shown in Figs. 3-1, 3-16 and 3-17 constitute the central results

of this chapter. They could be used in one of two different ways. If future theoretical

advances constrain the /-independent values of A0 and Ms more tightly than at present,

these phase diagrams (and those that interpolate between them for other values of A0 )

could be used to construct the phase diagram of nature. Or, if future astrophysical

observations teach us that the phase diagram of nature must have certain features,

for example must or must not include a certain phase, then the phase diagrams we

have constructed could be used to draw inferences about the magnitudes of A0 and

MA.

In thinking about the future phenomenological use of the phase diagrams that we

have found, their complexity raises concerns. However, in most astrophysical contexts

compact stars have temperatures much less than 1 MeV. At such low temperatures,

which can be thought of as T = 0 in a QCD context, the phase diagrams are more

manageable. We have the CFL phase at asymptotic densities, with the gCFL phase

taking over at lower densities, when < M2/2A. If A0 lies at the large end of its

estimated range 10 MeV< A0 < 100MeV, it seems likely that hadronic matter will

take over from gCFL (or even from CFL) meaning that the complexities that we

have found in our phase diagrams at larger M2/p will likely be superseded by the

transition to the hadronic phase.
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If A0 lies at the lower end of its allowed range, then in Fig. 3-1 we find a straight-

forward transition to "unpaired" quark matter as the density is decreased further and

M2/L increases beyond the gCFL window. If we extend our pairing ansatz, we will

certainly find some pairing in this regime at sufficiently low temperature. For exam-

ple, perhaps weak pairing between quarks with the same flavor plays a role [52, 93],

or perhaps it is the crystalline color superconducting phase [56, 91] that takes over

from gapless CFL at lower densities. Recent developments [91] make the crystalline

color superconducting phase look like the most viable contender [25].

The one astrophysical context in which the full complexity of the phase diagrams

that we have analyzed must be faced head-on is the physics of the proto-neutron star

formed during a supernova, and in particular of the propagation of neutrinos therein.

Phenomena encoded in the phase diagrams that we have analyzed could ultimately

result in observable consequences in the time-of-arrival distribution of the neutrinos

detected from a future supernova [102, 106, 107]. The phenomenological implications

of the complexity of the phase diagrams (with many phase transition lines, the dou-

bly critical point, the tricritical point and the insulator to metal transition as the

CFL phase is heated) will have to be thought through in this context. The analytic

treatment of the insulator to metal crossover and the Ginzburg-Landau analysis of

the physics near TC for small M/,pTc that we have presented in Sections 3.5 and 3.6

could prove valuable in this context.

Our analysis leaves many open avenues of investigation that must still be followed

to their conclusions. The effects if gauge field fluctuations must be investigated, as

must those of K°-condensation in the gapless CFL phase. The effects of the 't Hooft

interaction should be included, and the quark masses should be treated as dynamical

condensates to be solved for, rather than as parameters. The pairing ansatz should

be generalized, for example to allow for a comparison between the free energies of the

gapless CFL and crystalline phases in three-flavor QCD.

Finally, the stability of the gapless CFL phase needs to be investigated further,

along the lines of Ref. [108-110]. The authors of Ref. [108] find that in the g2SC

phase, the gluons that correspond to the broken generators of the SU(3)c develop an
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imaginary Meissner mass, which is indication of instability. The authors of Refs. [109,

110] get similar results for the gCFL phase, although with some disagreements. The

g2SC phase might be unstable to a mixed phase of charged components [87], or to

the crystalline color superconducting phase, or to some inhomogeneous phase yet to

be discovered. The gCFL phase, as we showed in Chapter 2 is stable with respect to

mixed phases, except perhaps at the largest values of M 2/
1p where it is found in our

phase diagram. It seems likely that at these large values of M/l the gCFL phase

may anyway be superseded by the crystalline phase [25, 91]. The appearance of the

instability in the gCFL case might reflect the existence of some inhomogeneous phase,

as in 2SC, or even gluon condensation. However, it is not clear that the Meissner

masses in the gCFL phase have been calculated correctly. The calculations of the

Meissner masses of the gluons that exist in the literature so far do not consider the

modification of the neutral solution due to the presence of the gluons. Gluons can

carry non-zero Q charge and therefore it is expected that as they propagate through

the gCFL matter, they change locally the solution. The "blocking" bu quarks and

the electrons (whose Q charge cancelled in the absence of the gluons), now must

have a non-zero net Q charge in order to cancel the Q charge of the gluons.These

readjustments of the gCFL solution in response to a gluonic excitation will contribute

to the effective masses of the gluons, and may remove the instability.
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Chapter 4

Applications in Neutron Stars

It has often been suggested that the core of a neutron star may contain quark matter

in one of the color-superconducting phases. The densest predicted phase on the QCD

phase diagram is the color-flavor locked (CFL) phase, which is a color superconductor

but an electromagnetic insulator [10, 34-36, 63, 64]. The second-densest phase is the

gapless CFL (gCFL) phase of Chapters 2 and 3, which is a conductor with a nonzero

density of electrons [24-27]. It also has gapless quark quasiparticles, one of which

has an almost-quadratic dispersion relation, arising without fine-tuning because it is

enforced by the requirement that the matter be electrically neutral [24, 251. We show

in this chapter that this characteristic feature of the gCFL phase means that if quark

matter in this phase is present in a neutron star, it dominates the heat capacity and

neutrino luminosity, and therefore controls the cooling of the star. At late times this

produces a unique signature, as the large heat capacity keeps the star anomalously

warm. A neutron star that is tens of millions of years old will be an order of magnitude

or more warmer if it contains a region of gCFL quark matter than if it does not.

In any speculation about the phases of matter that occur inside a neutron star,

the main challenge is to provide observable signatures of the presence of these phases.

Since we are proposing such a signature, albeit one that presents significant observa-

tional challenges, we first set the stage with a quick survey of previous proposals.

* Mass-radius relation. If we could measure the mass and radius of several neutron
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stars to a reasonable accuracy, mapping out the mass-radius relationship, we would

have a strong constraint on the equation of state of dense matter. However, although

such measurements would dramatically reduce the current uncertainties in our knowl-

edge of the equation of state of the nuclear matter "mantle" of neutron stars, and

could yield evidence of some sort of exotic phase in the core, they would not provide

specific evidence of the presence of quark matter [111, 112].

* Double pulsar timing. There is a good prospect that the long term analysis of the

recently discovered binary double pulsar [113, 114] may yield a measurement of the

moment of inertia of a neutron star [115]. This would provide information about the

density profile that is complementary to that obtained from a mass-radius relation,

as it would constrain the "compactness" of a star.

* Gravitational waves from collisions. If we could detect gravity waves from neutron

stars spiraling into black holes in binary systems, we could perhaps analyze them for

information about the density profile of the neutron star, in particular the presence

of an interface separating a denser quark core from a less-dense nuclear mantle [90].

* Spinning out a quark matter core. If conditions are "just so", rapidly spinning

oblate neutron stars may not have quark matter in their cores even though more

slowly rotating spherical neutron stars do. This could be detected either by anomalies

in braking indices of stars that are "spinning down" [116] or by anomalous population

statistics of stars that are being "spun up" by accretion [117]. Recent observations

show no sign of such an effect in the histogram of spin-frequencies of stars in the act

of being spun up [118], indicating that if quark matter is present, spinning the star

and making it oblate does not get rid of it. If there is a quark matter core, it must

therefore occupy a reasonable fraction of the star.

* r-modes. A rapidly spinning neutron star will quickly slow down if it is unstable

with respect to bulk flows known as r-modes, which transfer the star's angular mo-

mentum into gravitational radiation. This phenomenon will only occur if damping

is sufficiently small, so it provides a probe of the viscosity of the interior of the star.

Such arguments have been used to rule out the possibility that pulsars are made en-

tirely of CFL quark matter [42], in which viscous damping is negligible [42, 43], but
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their implications for the possibility of CFL quark matter localized within the core of

a neutron star have not yet been analyzed. Since gCFL quark matter is expected to

have a large viscosity, its presence is unlikely to be constrained by r-mode arguments.

* Core glitches. If the third-densest phase on the QCD phase diagram is not nuclear

matter, it must be a form of quark matter with less pairing than in the gCFL phase.

A leading candidate is the crystalline color superconducting phase [56]. If this form

of quark matter occurs within the core of a neutron star, because it is both superfluid

and crystalline it may be a locus for pulsar glitches. This proposal has not yet been

worked out sufficiently quantitatively to determine whether such core glitches are

observable and if so whether they are consistent with (some) observed glitches.

* Direct neutrino detection. Neutrinos have a long mean free path even in nuclear

matter, so they can potentially carry information about the core directly to the outside

world. Not coincidentally, neutrinos are very hard to detect, and the only time

when a neutron star emits enough neutrinos to be detectable on earth is during the

first few seconds after the supernova explosion. The time-of-arrival distribution of

supernova neutrinos could teach us about possible phase transitions to and in quark

matter [106, 119], but analysis of this proposal requires a better understanding of both

the supernova itself and of the properties of quark matter at MeV temperatures, where

the phase diagram of QCD is more baroque than at zero temperature [26, 27].

* Cooling. A much better prospect is the indirect detection of neutrino emission,

which is the dominant heat loss mechanism for the first million years or so, and can

therefore be inferred from measurements of neutron star temperature as a function

of age. Moreover, because both neutrino emission rates and heat capacity generally

rise with density, neutron star cooling is likely to be preferentially sensitive to the

properties of matter in the core of a neutron star.

The qualitative distinction among cooling behaviors that may be discerned from the

measurement of temperatures of stars that are 103-6 years old is between stars in

which direct Urca processes are allowed (which yields a neutrino emissivity e, -

T6), leading to rapid cooling, and stars in which direct Urca processes are forbid-
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den [111, 120-128]. Ordinary nuclear matter is unusual in that its direct Urca pro-

cesses n - p + e + P and p + e - n + v are kinematically forbidden, meaning that

neutrino emission relies upon slower reactions (, - T 8 ). Direct Urca processes are

allowed in sufficiently dense nuclear matter, nuclear matter with nonzero hyperon

density [129], pion condensation [130] or kaon condensation [131], and in all proposed

phases of quark matter except CFL [132, 133]. In the CFL phase, there are no direct

Urca processes because thermally excited quark quasiparticles are exponentially rare.

There are neutrino emission processes involving collective excitations that lead to

v, " T15 [119], but in reality any CFL quark matter within a star will cool by con-

duction, not by neutrino emission [134]. Indeed, because all forms of dense matter are

good thermal conductors, the cooling of a star tends to be dominated by whichever

phase has the highest neutrino emissivity. Hence, the discovery of fast cooling would

only tell us that some part of the star consists of one of the many phases that allow

direct Urca. Discovery of stars that cool slowly would be an indication that they

contain only medium-density nuclear matter and perhaps CFL quark matter.

To date, none of the schemes listed above has provided an unambiguous signature

of the presence of quark matter, although all are the subject of ongoing observational

effort, which in turn drives improvements on the theoretical side. In this chapter,

we argue that recent theoretical advances in our understanding of the properties of

quark matter offer the prospect of an unambiguous detection, if it is possible to

measure the temperatures of neutron stars that are old enough that their cooling is

no longer dominated by neutrino emission. Admittedly, this presents an observational

challenge. However, it is a challenge that has not been closely studied prior to our

work, since all forms of dense matter except gCFL quark matter result in neutron

stars that cool comparably (and very) rapidly in their old age. We show that quark

matter in the gCFL phase keeps aged neutron stars (those significantly older than

a million years) much warmer than is predicted by any other assumed dense matter

physics.

Younger neutron stars containing gCFL quark matter have a faster-than-standard

direct Urca neutrino emissivity e ,,- T55, but this does not lead to faster-than-
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standard-direct-Urca cooling because of the correspondingly enhanced gCFL specific

heat.

In Section 4.1, we introduce the relevant properties of the gapless CFL phase of

quark matter, and in Sections 4.2 and 4.3 we present the calculations of its specific

heat cv and neutrino emissivity e,, respectively. These are our central calculational

results. We do not provide a state-of-the-art calculation of the cooling of a neutron

star containing gCFL quark matter. Instead, in Section 4.4, we provide an introduc-

tion to the physics of neutron star cooling that suffices to illustrate the qualitative

consequences of the quantitative results for the gCFL cv and e,. The astrophysically

inclined reader interested in our results and their implications but not in their deriva-

tion can find cv in Eq. (4.8) and e, in (4.31) and, more conveniently, Fig. 4-2 and

should read the text around these results and then turn to Section 4.4.

4.1 Introduction to the Gapless CFL Phase of Quark

Matter

At any densities that are high enough that nucleons are crushed into quark matter,

the quark matter that results at sufficiently low temperatures is expected to be in

one of a family of color superconducting phases, with Cooper pairing of quarks near

their Fermi surfaces [34-36, 63, 64]. The QCD quark-quark interaction is strong and

is attractive between quarks that are antisymmetric in color. If there is quark mat-

ter in the cores of neutron stars, we therefore expect it to be color superconducting.

The phenomenon persists to asymptotically high densities, where the interaction be-

comes weak and ab initio calculations of properties of color superconducting matter

become rigorous. As we have seen in Chapter 3, the QCD phase diagram exhibits

a rich structure of color superconducting phases as a function of temperature and

density [26, 27, 34-36, 63, 64], but in this chapter we can simplify it by working at

zero temperature. This is reasonable because we will be discussing neutron stars with

temperatures in the keV range, which is orders of magnitude colder than the vari-
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ous critical temperatures at which phase transitions between different quark matter

phases occur.

4.1.1 The CFL phase under stress

At asymptotically high densities, where the up, down and strange quarks can be

treated on an equal footing and the disruptive effects of the strange quark mass can

be neglected, quark matter is in the color-flavor locked (CFL) phase, in which quarks

of all three colors and all three flavors form Cooper pairs [10]. The CFL phase is a

color superconductor but is an electromagnetic insulator, with zero electron density.

In real-world quark matter, as may exist in the cores of compact stars, the density

is not asymptotically high. The quark chemical potential Mu is of order 500 MeV

at most, making it important to include the effects of the strange quark mass M,

which is expected to be density dependent, lying somewhere between the current

mass - 100 MeV and the vacuum constituent quark mass - 500 MeV. To describe

macroscopic regions of quark matter, we must also impose electromagnetic and color

neutrality [46, 69, 135] and allow for equilibration under the weak interactions. The

CFL pairing pattern is antisymmetric in flavor, color, and spin, so it involves pairing

between different flavors. For this reason, the effect of a relatively large Ms, combined

with weak equilibration and the neutrality constraints, is to put a stress on the CFL

pairing pattern: these effects would all act to pull apart the Fermi momenta of the

different flavors by an amount of order Mi2/p in the absence of CFL pairing. (This can

be seen by an analysis of neutral unpaired quark matter in which the Fermi momenta

of the d, u and s quarks are split by _ M2/4ti.) In the CFL phase, Fermi momenta

do not separate [78] but the consequence of the stress is that the excitation energies

of those fermionic quasiparticles whose excitation would serve to ease the stress by

breaking pairs and separating Fermi surfaces is reduced, again by of order MS/2u [24].

When the density becomes low enough, some of the quasiparticles become gapless,

the CFL pairing pattern is disrupted, and we enter the gapless CFL (gCFL) phase,

the second-densest phase on the QCD phase diagram, as we described in detail in

Chapters 2 and 3. Since the strength of the CFL pairing is measured by the gap
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parameter ACFL, and the stress on it is of order M2/p, the CFL pattern "breaks"

and the CFL-+gCFL transition occurs when the density is low enough that M2//

ACFL. Making this argument quantitative results in the prediction of a T = 0 second-

order insulator-metal transition separating the CFL and gCFL phases at M2// 

2 ACFL [24, 25]. An analogous zero temperature metal insulator transition has been

analyzed in Ref. [82]. (If the CFL phase is augmented by a K°-condensate [41, 80],

the CFL-+gCFL transition is delayed to a value of M2/ that is higher by a factor

of 4/3 [81] or less [80].)

4.1.2 The nature of gCFL pairing

In the gCFL phase the pairing is still antisymmetric in flavor as well as color and spin,

so as in CFL there are diquark condensates (gap parameters) Al - (ds), A 2 '- (s),

A 3 - (ud). But unlike the CFL phase, where the gap parameters are very similar,

A1 = A 2 - A3, in gCFL the pairing involving strange quarks is suppressed: very

strongly for (ds), and quite strongly for (us), so that A1 < A2 < A3 , as shown in

Figs. 2-1, 3-2 and 3-5. The result is that while quarks of all three colors and all

three flavors still form Cooper pairs, there are regions of momentum space in which

there is no (ds) pairing, and other (very narrow) regions in which there is no (us)

pairing, and these regions are bounded by momenta at which the relevant fermionic

quasiparticles are gapless.

The gCFL phase is an electromagnetic conductor: unlike the CFL phase, it con-

tains electrons, as discussed in Section 2.3.2. As seen in Figs. 2-2 and 3-3, the

electron chemical potential pe increases as M/ 1p is increased, rising from zero at

the CFL-+gCFL transition to values which are comparable to or even larger than its

typical values in unpaired quark matter, which has /,e _ M2/4/L.

4.1.3 The gCFL domain

To discuss the range of densities over which gCFL is expected to occur, we shall

parametrize the strength of the attractive interaction between quarks by A0 , which
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we define as the value of the CFL gap parameter at MS = 0 in quark matter with

/t = 500 MeV. (We shall quote all numerical results at f = 500 MeV, corresponding

to baryon densities between 8.8 no and 9.1 no depending on the value of A0 that

we choose, where no = 0.17 fm- 3 is the baryon density in nuclear matter.) Because

asymptotic-density calculations are not quantitatively valid at this , A0 is not known

precisely, with estimates ranging from 10 to 100 MeV [34-36, 63, 64].

The gCFL phase extends over a range of M2/ from the continuous CFL-+gCFL

transition at M,// = 2A1 - 2A0 up to a first order phase transition where gCFL gives

way to some phase with even less pairing. In model calculations, this transition occurs

at M,/fp _ 5A0 , although this is only quantitatively determined within particular

models [24-27]. To give a sense of the scales involved, for A0 = 25 MeV and MS =

250 MeV, the gCFL window 2Ao < M/ < 5A corresponds to 320 MeV < , <

800 MeV. At the lower end of this range in (upper end in M2/f) hadronic matter

would be more favorable than any form of quark matter. And, the upper end of

this range in / (lower end in M,/u) corresponds to densities much higher than those

achievable in neutron stars. Hence, with these choices of parameters all the quark

matter within neutron stars would be in the gCFL phase. For larger A0 or smaller Ms,

the gCFL window shifts to lower , and neutron stars with a CFL core surrounded by

a gCFL layer become possible. In reality, both A0 and Ms are -dependent, making

these estimates illustrative only.

4.1.4 Gapless quasiparticles in the gCFL phase

In the CFL phase, all nine fermionic quasiparticles are gapped. In the gCFL phase,

two dispersion relations are gapless, as shown in Fig. 4-1, which is similar to Fig. 2-4.

We label the three quark colors as r,g,b, and make the by now conventional choice

for which colors pair with which flavors in the CFL phase. In this notation one of

the gapless branches describes quasiparticle excitations that are superpositions of bd

particles and gs holes. These excitations are gapless at two momenta pbd and pbd
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1,2 p [MeV]

Figure 4-1: Dispersion relations for quasiquarks with gs-bd pairing (A1 = 3.6 MeV)
and bu-rs pairing (A2 = 18.5 MeV), in the model calculation of Chapters 2 and 3
done at = 500 MeV, M2/p = 100 MeV, with A0 = 25 MeV. We find gapless gs-bd
modes at pbd = 461 MeV and pbd = 512 MeV. One bu-rs mode is gapless with an
almost exactly quadratic dispersion relation. Actually it is gapless at two momenta
pbu and pbu, but these are too close together to be resolved until the temperature drops
below the eV scale, meaning we can treat them as a single zero at pbu = 469 MeV.
The five quark quasiparticles not plotted are all fully gapped in the CFL and gCFL
phases.

shown in Fig. 4-1 and given, as we discussed in Chapter 2, by

l(-gs + itbd) + /[½ (ug2- - A , (4.1)

where [,9s and pbd are determined by the (nontrivial) requirements of color and electric

neutrality. They are defined in Section 2.2, and their values as a function of M2/p

at various A0 can be determined from Figs. 2-2 and 3-3. The gapless excitations

at pbd are predominantly gs, with bd contributing only a small component in the

superposition. Those at pbd are predominantly bd. In Section 4.3 we shall focus on

this dispersion relation in the vicinity of pid, where it takes the form

ebd(P) = bdlP- d1 , (4.2)
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where
A12

vbd [2 (/Jgs- 1bd)] (4.3)

is the Fermi velocity of the gapless quasiparticles. The bd states with momenta

between pbd and pbd are filled, whereas the gs states in this momentum range are

empty. This means that there is no gs-bd pairing in the ground state wave function

in this region of momentum space, although (as the dispersion relations show) there

is still pairing among the excitations. The width pd - pbld of this "blocking region"

wherein pairing is "breached" is zero at the CFL-+gCFL phase transition, and grows

steadily with increasing MS/,2 throughout the gCFL phase. These dispersion relations

behave similarly to those describing the gapless modes in the two-flavor gapless 2SC

phase [74], and in a metastable three-flavor phase discovered in an early analysis in

which the constraints imposed by neutrality were not considered [84].

The physics of the gapless bu-rs dispersion relation is interestingly different. As

above these excitations are gapless at two momenta p bu and pbu given by

2(Abu + rs) 1-rs) - 2 (4.4)

but in this instance [2 (/ib -,rs)] 2
- A2 is very small, making the dispersion relation

in Fig. 4-1 look quadratic with a single zero at pb, = (Abu + rs). For the parameters

of Fig. 4-1, p - pbu = 0.026 MeV and the height of the dispersion relation half way

between these very nearby gapless points is only about 5 eV. Since this is much

smaller than the temperatures that will be of interest to us, we can safely treat the

dispersion relation as quadratic, with a dispersion relation in the vicinity of its gapless

point given approximately by

ebu(P) - 2 2 (4.5)

with the velocity bu, defined analogously to Vbd of (4.3), vanishing at the gapless

point. The gap parameter A 2 and the chemical potentials that determine p b2 are

plotted as functions of M2/p at several values of iAo in Chapters 2 and 3.

132

J

__�__



As described in Section 2.3.2, this near-quadratic dispersion relation is not a result

of fine tuning. It occurs at all p in the gCFL phase, and arises from the fact that bulk

matter must be electrically and color neutral. In both the CFL and gCFL phase, there

is an unbroken gauge symmetry, denoted U(1)<, generated by a linear combination

of the generators of electromagnetic and color symmetry [10]. Among the neutrality

constraints, it is the imposition of Q-neutrality that has the implication of interest.

The quarks in the gCFL phase are almost Q-neutral by themselves, but not quite:

their small excess positive Q( charge is cancelled by a small admixture of electrons,

which have Q = -1. The excess of unpaired bd-quarks, occurring in a broad band of

momenta pld < p < p2d, does not contribute to the Q imbalance because these quarks

have Q = 0. It is the unpaired bu-quarks with pu < p < p that matter, because~~~~~~~~~~~~ 2

they have Q = +1. They contribute a positive Q-charge density of order p2 (pb _-pl),

balanced by the electron number density, of order M4. Since pe << p throughout the

gCFL phase. pu - pbu is forced (by the dynamics of the gauge fields that maintain

neutrality) to remain extremely small, parametrically of order /3/p 2 , throughout the

gCFL phase.

As described above, the dispersion relations for the gs-bd quasiparticles are linear

about their gapless momenta pd and p2d, as in Eq. (4.2), at generic values of M2/p,

in the gCFL phase. However, this dispersion relation is fine-tuned to be quadratic

precisely at the CFL-+gCFL transition, where p d = pbd and the Fermi velocity Vbd =

0. For values of M2/p, that are in the gCFL regime but are close to the CFL-+gCFL

transition, therefore, the simplified linear expression in Eq. (4.2) cannot be used.

Indeed, if we are interested in those excitations with energies of order T or less, the

linear expression in Eq. (4.2) is a good approximation as long as Vbd > 2T/ 1.

And, close enough to the transition that Vbd << V2T// the gs-bd dispersion relation

can be approximated as quadratic, as is appropriate for the bu-rs dispersion relation

throughout the gCFL phase.

The gapless excitations of the gCFL phase whose dispersion relations we have

described determine the specific heat and neutrino emissivity of this phase of matter.

In the next two sections, we calculate these quantities in turn.
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4.2 Specific Heat of Gapless CFL Quark Matter

The specific heat of any phase of matter is essentially a count of the number of possible

excitations with excitation energies of order T or smaller. Precisely, the contribution

of quasiparticle excitations with dispersion relation (p) to the specific heat (heat

capacity per unit volume) at temperature T is given by

Cv = 1(2 )3 (p)dT e(p)IT + 1

2 fd 3p _ _ (4.6)
- T2 (27r)3 (ef(P)/T + 1) (e-e(P)/T + 1) (4.6)

where the prefactor 2 assumes that the quasiparticle is doubly degenerate by virtue

of its spin. Clearly, only those excitations with e < T are important. For the gapless

quasiparticle with quadratic dispersion relation, is near zero for p near pbu and in

this regime the dispersion relation can be approximated as in (4.5). Approximating

the dispersion relation in this way will give us the specific heat in the small T limit,

and so although it is straightforward to obtain an "exact" result upon assuming (4.5),

we simply quote the leading result in the small T limit:

CV = 3(v/'- )() (Pbu2)2 A1/2 T1/2
47r3/2 1,2 2

0.146 (pU) 2 A1/2T1/2 (4.7)

As expected, this is proportional to the number of excitations with energy less than

T, given a quadratic dispersion relation (4.5). For quasiparticles with conventional

linear dispersion relations, namely e(p) = VIP- PFI for some PF and v, the expression

(4.6) yields the familiar cv = 3pFT/v. Hence, the specific heat of the gCFL phase is

given by

Cv = kB [0 146 (pbuc) 2 A1/ 2 (kBT)2 - (pidc) 2 kBT + 3b (p kB] 
~~~(h~C~) 3 [\\B, + 3Vbd kBT + ~3Vbd~(4.8)

(4.8)
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where we have restored factors of h, c and Boltzmann's constant kB and where the

last term comes from the electrons and is negligible because all the quark Fermi

momenta are of order ,p, and ,e < . As long as T < A2, the contribution from

the quasiparticle with quadratic dispersion relation dominates. We shall describe

reasonable values of A2 and T in subsequent sections; it suffices here to say that

A 2 /T is of order hundreds or thousands.

Note that close enough to the CFL-+gCFL transition that vbd < 2T/A1, the

gs-bd dispersion relation cannnot be treated as linear, and the expression (4.8) is

modified. Indeed, if Vbd < 2T/A 1 the gs-bd dispersion relation can be treated as

quadratic, making their contribution to the specific heat comparable to that of the

bu-rs quasiparticles.

The gCFL phase also has light bosonic excitations, for example that associated

with superfluidity, but their contribution to the specific heat is of order T 3 and so can

be neglected. The specific heat may be enhanced by logarithimc corrections analogous

to those in unpaired quark matter [136], but we leave their analysis to future work.

4.3 Neutrino Emissivity of Gapless CFL Quark Mat-

ter

The presence of gapless quark quasiparticles in the gCFL phase raises the possibility

of neutrino emission by direct Urca processes. Because the gapless modes are super-

positions of gs and bd quarks, and bu and rs quarks, and because weak interactions

cannot change the color of a quark, the direct Urca processes that we must consider

are

bd -* bu + e- + v (4.9)

and

bu + e- - bd +v . (4.10)

Momentum conservation in these reactions requires that the momenta of the two

quarks and the electron form a triangle [132, 133]. (The argument is that these
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three fermions must all have energies of order T and hence must all be close to the

momenta at which their dispersion relations are gapless. The neutrinos escape from

the star, and hence have zero Fermi momentum. By energy conservation, the escaping

neutrino therefore has energy, and hence momentum, of order T. This is negligible

compared with the momenta of the other fermions.) Momenta of the two quarks and

the electron satisfying the triangle constraint can only be found if pbu _ pbdf < Pe,

where pbu and pbd are the magnitudes of the momenta at which the bu and bd quarks

are gapless. The only momentum at which gapless quasiparticles with a bu component

are found is pl,2. Gapless bd quarks occur at two momenta. For the parameters in

Fig. 4-1, the electron Fermi momentum is pe = 25.9 MeV, meaning that the triangle

constraint can be satisfied if we choose bd quarks with momenta near pbd, but cannot

be satisfied for those near p2d. Indeed, we find that direct Urca processes involving

the quasiparticles at pb2d are forbidden throughout the gCFL regime of M 2 /
1 y, whereas

those involving quasiparticles at pbd are allowed throughout all of the gCFL regime,

with the available phase space vanishing at the CFL-+gCFL transition and opening

up with increasing M2/1 u.

The calculation of the neutrino emissivity due to direct Urca processes in unpaired

quark matter was first done by Iwamoto in Refs. [132, 133], and we shall follow his

analysis, leaving the calculation of any logarithmic enhancement analogous to that

in unpaired quark matter [137] to future work. There are two essential differences

between Iwamoto's calculation for unpaired quark matter and ours for the gCFL

phase. First, although the quasiparticles near pbd have a conventional linear dispersion

relation bd(P) given in (4.2), as in unpaired quark matter, the quasiparticles near p,2

have a quadratic dispersion relation Ebu(P) given in (4.5). Analogous to its effect on

the specific heat, this unusual dispersion relation increases the available phase space

for the direct Urca reactions by a factor of order A2/T relative to that in the

standard calculation, resulting in a neutrino emissivity , - T 5 5 rather than T6 .

Second, the quasiparticles near pbd and pbu2 with dispersion relations bd and bu arePl1,2wihdsesoreain banebae
not purely bd and bu quarks. They are superpositions of bd and gs quarks, and bu

and rs quarks, respectively. Only the bd and bu components of the quasiparticles
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participate, meaning that the neutrino emissivity is proportional to the probabilities

that each quasiparticle is blue. These probabilities are the squares of the Bogoliubov

coefficients Bb~ and Bbd, specified as follows [10]. Bb,, is given by

Bbu(p) - -1+P1,2 (4.11)
~(p- p12)2 + A22~~~

where pb = ( +/urs) and where A2 is the gap parameter for the pairing between

bu and rs quarks. To simplify the calculation we Taylor expand the coefficient around

pb2 and get1~ ~ ~ ~~~~~()2+P-P,2
Bbu(P) 2 ( 2 (4.12)

The bd Bogoliubov coefficient is given by

Bbd(p)- 2 (1+ (p_ );+ )12 (4.13)

where f = (d + /gs) and where A1 is the gap parameter for the pairing between bd

and gs quarks. Because the dispersion relation is linear, the quarks that contribute

to the emissivity lie in a band about pbd whose width is only of order T, and we shall

replace Bbd(p) by Bbd (pbd). This coefficient can be quite small. For example, with

parameters as in Fig. 4-1, meaning in particular M2/! = 100 MeV, the probability

that the gapless quasiparticles at pbd are in fact bd is only Bbd (pbd) 2 = 0.00479.

We now present the calculation of es,, following Refs. [132, 133]. The transition

rate for the process (4.9) is

W = V(27r) 4 6(4)(Pbd -- p - Pbu - Pe) M2 (4.14)
1I4__ 2El r

where the index i runs over the four species that participate in the interaction. V is

the normalization volume, which will drop out by the end of the calculation, and the
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squared amplitude IM12 is given by

IM12 = 64G COS2 9 c(Pbd Pv)(Pbu Pe) , (4.15)

where we have averaged over the spin of the initial down quark and summed over

the spin of the final up quark. Here, GF is the Fermi constant and 0, is the Cabibbo

angle.

The neutrino emissivity is the rate of energy loss per unit volume due to neutrino

emission. It is obtained by multiplying the transition rate by the neutrino energy and

integrating over the available phase space, weighted by the Bogoliubov coefficients.

The expression can be written as

2= [fHvJ P(2i) EV W n(bd)(1 - n(pbu))(1 - n(pe))Bbu(pbu)2Bbd(p1d)2

(4.16)

Here, the Fermi distribution functions n(pbd)(1 - n(pb.))(1 - n(pe)) state that in

order for the process to occur we have to have an occupied down state and unoccupied

up and electron states. In thermal equilibrium (which is maintained by strong and

electromagnetic processes occurring on timescales much faster than neutrino emission

via weak interactions) the distribution functions are given by

1
n(pi) -p (4.17)

1 + exp xi

where

Xe e e (4.18)
T '

where

Xbd = bd (Pbd) (4.19)
T

with the ± serving in effect to undo the absolute value in (4.2), and where

Xb = Ebu(Pb) (4.20)
T
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with the ± chosen positive for Pbu > P,2 and negative for Pbu < P2. In defining xbd

we have used (4.2), meaning that this derivation is valid at generic values of M21 in

the gCFL regime where vbd > V2T/A, but not close to the CFL-+gCFL transition,

where both the bd and b branches should be treated as quadratic. We shall discuss

this further below. For later use, we also define

X= PV T (4.21)

It is possible to set the calculation up directly in terms of the positive quasiparti-

cle excitation energies, but introducing the ± as we have done allows us to follow

Iwamoto's calculation more closely.

We combine Eqs. (4.14), (4.15), (4.16), (4.17) and multiply by a factor of 2 in order

to include the emissivity due to the second process (4.10), whose contribution proves

to be the same as that above. We write the integration element dpi = pi2dpidQi,

where dQi is the infinitesimal solid angle. The complete expression for the emissivity

then takes the form [132, 133]

G2
e, = 6 8 cos 2 Oc(1 -cOSOue)AB. (4.22)

167r5

Here, A is an angular integral defined as

~~~~~~~~~~~~4.)
A (JdQi) Pbd Pbu -Pe) (4.23)

where we have eliminated certain terms that vanish identically upon angular integra-

tion. A is identical to that in Refs. [132, 133] and upon evaluation yields

327r 3

p- d bL. (4.24)

PI Pl,2Mee

where we have taken Pbdl pIaI PM, I b p~ pwhere we have taken Pbd = Pbu = P2, P = e, knowing that these are the

values at which the B integral is dominated. The integral B is defined as
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= f Pbddpbd j bdPbu j PedPe j Pdpvn(Pbd)(1 - n(pbu))(1 - ln(pe))

x T (Xbd - Xi - Xbu - xe) Bbu(pbu)2 Bbd (pd) 2 . (4.25)

Finally, the angle 9ue in (4.22) is the angle between the momentum of the bu-quark

and that of the electron, when the two quark momenta and the electron momentum

are arranged in a momentum conserving triangle. A little trigonometry shows that

Oue = de + Odu where

COS Ode = (pd) 2 + _ (p2 (4.26)
2p Ie

and
COS Odu = (pd) 2 - e + (P1,2)2 (4.27)

2pbdpbu
"1 1,2

Now, all that remains is the evaluation of B.

The integral B is dominated by Pbd near pd, by Pbu near pb~u, and by Pe near pe so

we can pull the factor Pb2dPbPe out of the integrand and replace it by (pbd)2(p bu2)2.

Next, we change variables of integration from the p's to the x's and obtain

]3 bd) 2 / bu ' 2 2 6 B bd (pbd ) 2 dXbd d x dx x
B = (Pbd)2(Pbu2,2T6b 1 dxe dXv j dXbu

12oo Vbd 0oo J 00

x/~ 1 1 1x I- u e bd + 1 ebX + 1 ex + 1
6 (Xbd + Xbu + Xe - XV) (4.28)

where, as in the calculation of the specific heat, the enhanced density of states

dpbu/dxbu = ( 2 T/2 Xbu{) 1/ 2 for the quasiparticle with the quadratic dispersion rela-

tion is crucial. In (4.28) we have made the approximation Bbu(pl 2)2 2 since the

other term in (4.12) leads to a contribution proportional to T6 and we are keeping
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only the leading contribution, proportional to T5 5 . We now rewrite (4.28) as

=-1 (pbd)2(pu)2 1e dxbd dxe dxx dXb
~2V~ ~ 1Vbd00 00 

1 1 1 1
l 1ebd +-l-ebu +1 exe +1l6 (Xbd + Xbu + Xe Xv) , (4.29)V/I ~xu e b + e ~ + e + 1

use the delta function to perform one of the integrations, and then perform the

remaining dimensionless triple integral numerically. The result is

B = 31.18 (pbd)2(pbu 2 )22 T' Bbd( d) 2 (4.30)B = 31-18 ) P,) Pe
Vbd

Combining this with the result (4.24) for A4 and substituting into (4.22) we obtain

the final result for the neutrino emissivity of the gCFL phase

62.36_b b 2____,__ (kBT) 55 v/A2Bbd(pbd) 2

62.36 G cos lc (1- - cos Oue)Pl Pl2e, (4.31)
r5 h1 0 C7 Vbd

where we have restored the factors of h, c and kB. This result is valid as long as

Vbd > 2T/A1, meaning that the gs-bd dispersion relation can be treated as linear

with slope Vbd. At any nonzero temperature, there is a region just on the gCFL side of

the CFL - gCFL transition where this approximation breaks down. Indeed, in the

region so close to the transition that Vbd << v2T/A 1, the gs-bd and bu-rs dispersion

relations can both be treated as quadratic, and an analysis similar to that we have

presented above yields

42.70 G~ 2cos 2 0eV - ~~~ - F - )P~bdP (bdu 
4' 5 hi° 0c (1- cos0ue) plp,21e(kBT) A 2ABbd(d) 2 (4.32)

We shall see below that for temperatures of interest in neutron star physics, this

expression is valid only in a very narrow window of parameter space. It is (4.31) that

is relevant to neutron star phenomenology.

The gCFL emissivity (4.31) can be compared to the neutrino emissivity of nonin-
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teracting quark matter [132, 133]

unpaired _ 457r G cos M2p(kT)6
1680 h10 c4 pF(kBT

(3.6 x 1014 ergcm-3s-1)x (4.33)

, _M//) ( ILl )2 T 
100 MeV 5\107K

where PF - IL is the up quark Fermi momentum and where /e has been replaced by

M2/41p, appropriate for neutral unpaired quark matter. The gCFL emissivity (4.31)

is enhanced by a factor of V/A 2 /T relative to that of noninteracting quark matter,

but the full comparison between the two rates is more involved.

We have obtained our result (4.31) in a form which makes the dependence of e, on

T manifest, but which obscures the dependence on MS and I because A2, Bbd(p d),

e, Vbd, Pbd and pb2 all change with MS and H. The most important p dependence
is sraihtfrwad: bd bu2

is straightforward: 0 Pi,2 " and hence e - . The remaining dependence

on MS and It is dominated by the dependence on M 2/
1

p , which is nontrivial because

A2 , Bbd(pbd), Pe and Vbd and pd_ p d all depend nontrivially on Mi2//. The result

also depends on A0 , through this same set of quantities. The reader who wishes to

obtain numerical values of E, would need numerical values for the gap parameters

and chemical potentials in the gCFL phase given in plots in Chapters 2 and 3, which

are used in the specification of many of the quantities occurring in (4.31). Given all

these implicit dependences, we provide Fig. 4-2 for the convenience of the reader who

wishes to use our result (4.31) for the gCFL neutrino emissivity, for example in order

to calculate its effects on neutron star cooling.

The most important dependences of ev are straightforward: e, - T5' 5 and e v ,2.

All the remaining dependences are best described as dependence on M~/tl and A0 ,

and hence are described by Figure 4-2 which shows ev/T 5' 5 as a function of M,2/p for

two values of A 0 . For each A0 , we see nonzero neutrino emissivity in the corresponding

gCFL regime, with e, negligible at lower M2/p in the CFL phase. We do not plot

ev at values of M./,p that are larger than the gCFL regime, because it is not known

what phase of quark matter would be favored there, with what T-dependence for its
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Figure 4-2: Neutrino emissivity e, of gCFL quark matter from (4.31) divided by
(T/10 7 K)5 5, plotted versus M2/p. The two curves are drawn for two different values
of the strength of the interaction between quarks, corresponding to CFL gap param-
eters A0 = 25 (solid curve) and AO0 = 40 MeV (dashed). The location of the CFL -+
gCFL transitions for AO0 = 25 and 40 MeV are indicated by dots on the horizontal
axis, at Ms/2t = 46.8 and 73.0 MeV respectively. To the left of these dots, c, is negli-
gible in the CFL phase. As discussed in the text we begin the curves a small interval
to the right of the transition, at the M2//I where Vbd = 0.15. (The A0 = 25 MeV
and A0 = 40 MeV curves begin 2.5 MeV and 3.9 MeV to the right of their respective
transitions.) The baryon chemical potential is = 500 MeV, corresponding to a
density about nine times that of ordinary nuclear matter. The effect of changing 
while keeping M/21p and A0 fixed can be approximated by scaling £, with 2.

E£. (Crystalline color superconducting quark matter [56] is a leading candidate for the

third-densest phase on the QCD phase diagram, and its neutrino emissivity has not

been calculated.) Also, at these low densities quark matter may well have already been

superseded by nuclear matter. Note that a reasonable estimate of the range of M/t

of interest to describe possible quark matter in neutron stars is 50 MeV < M2/p <

250 MeV, corresponding roughly to 350 MeV < < 500 MeV and 150 MeV < Ms <

300 MeV. If A0 is large, say A0 = 100 MeV, the curve on Fig. 4-2 shifts far to the

right, and any quark matter that occurs is likely CFL, with negligible c£. We see

from the figure that for A0 = 25 MeV, the highest density quark matter that can be
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reached is likely in the gCFL phase. For intermediate values of /A0 , it is possible to

obtain a CFL core surrounded by a gCFL layer.

The shape of the curves in Fig. 4-2 arises from the combination of many effects.

As M2 / tu increases through the gCFL regime, Ue rises monotonically and (1- cos Oue)

initially rises rapidly as phase space for neutrino emission opens up, and then varies

little. These effects are overwhelmed by the fact that as M2//a increases through

the gCFL regime, 2, 1/Vbd, and the Bogoliubov coefficient Bbd(P bd ) all decrease

monotonically.

Close to the CFL -+ gCFL transition, the most important contribution to the steep

decrease of e, with increasing M2/,p seen in Fig. 4-2 is the factor 1/Vbd occurring in

(4.31), since after all Vbd = 0 at the transition. However, one must recall that the

expression (4.31) plotted in Fig. 2 is only valid for Vbd > 2T/Ax/. Indeed, for any

nonzero T there is a region close to the transition where Vbd < 2T/A 1 and the

emissivity is given by (4.32) with ev - T5, not by (4.31) with e, - T5 5 as plotted in

Fig. 2. In Fig. 4-2, we have begun the gCFL curves at the value of M2//L at which

Vbd = 0.15, meaning that the curves can be trusted as long as T < A1/100 _ A0/100.

(Note that A1 - A0 near the CFL -+ gCFL transition.) For typical neutron star

temperatures of order keV, e8 T5' 5 as given by (4.31) (and the curves of Fig. 4-2

are therefore valid) even closer to the transition than where we stopped the curves in

the Fig 2. The curves can safely be used in neutron star cooling calculations, as we

shall do in Section 4.4.

Further to the right in Fig. 4-2, well away from the transition, Vbd approaches 1

and the factor 1/Vbd ceases to control the shape of the curves. In this regime, the

most important contribution to the decline in e is the rapidly falling Bogoliubov

coefficient: as M2/p increases pbd and pbd in Fig. 4-1 separate and the bd-component

of the gapless quasiparticle at pbd namely Bbd(pbd), drops faster than e rises.

In Section 4.4 we shall sketch the implications of our results for the specific heat

and neutrino emissivity of gCFL quark matter for neutron star cooling. The most

important dependence of ev in this context is its T-dependence. In all plots in Section

4.4, we show two curves, both with M2//iu - 100 MeV, one with A0 = 25 MeV and
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one with A0 = 40 MeV. We choose these values because we see from Fig. 4-2 that

they correspond to a small, but reasonable, and a larger, but still reasonable, value

of ev/T 5 5 . Were we to choose values of parameters that happened to land very close

to the CFL --+ gCFL transition, all the conclusions that we draw in the next section

would become stronger.

4.4 Implications for the Cooling of Neutron Stars

The central results of this chapter are the specific heat and neutrino emissivity, cal-

culated in Sections 4.2 and 4.3. We shall not attempt a state-of-the-art neutron star

cooling calculation here, preferring instead to provide a calculation that is better

thought of as illustrative, not quantitative. The effect that we wish to highlight is

both large and qualitative, arising from the T-dependence of cv and e, and we expect

that even our crude treatment will persuade the reader of its significance.

We analyze the cooling of a "toy star" consisting of a volume of "nuclear matter" at

a constant density 1.5no and a volume of denser quark matter with a constant density

specified by = 500 MeV. As nuclear matter we take an electrically neutral gas of

noninteracting neutrons, protons and electrons in weak equilibrium. We investigate

three different possibilities for the quark matter, all electrically and color neutral

and in weak equilibrium, and all with = 500 MeV and M2/,a = 100 MeV. We

consider two possibilities for quark matter in the gCFL phase, with A0 = 40 MeV

and AO = 25 MeV. And, we consider noninteracting quark matter. These three

options have densities of 9.1, 8.9 and 8.8 times normal nuclear matter density no,

respectively. By treating the quark matter core as having a constant density, our

calculation neglects the possibility of a thin spherical gCFL-CFL interface region,

in which there would be an enhancement in both the specific heat (by a factor of

two, see end of Sect. 4.2) and the neutrino emissivity (see Eq. (4.32)) relative to the

gCFL expressions (4.8) and (4.31) that we shall use. Such a shell would be very thin

because these enhancements occur only within a very narrow window in M2//u, but

a quantitative investigation of how small its effects are is not possible in our "toy
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star calculation". We choose the quark matter and nuclear matter volumes Vqm and

Vnm such that the total mass of the star is 1.4 solar masses. If we set the quark

matter volume to zero, this corresponds to choosing a nuclear matter "star" that is a

sphere with radius R = 12 km. If we include a dense quark matter core with radius

Rcore while keeping the total mass fixed, the star shrinks as we increase Rcore. With

Rcore = 5 km the stellar radius is R = 10 km. A gCFL core with radius 5 km has the

same volume as a gCFL layer extending from r = 4.5 km to r = 6 km. Since such a

layer would surround a CFL quark matter core, and since CFL matter plays no role

in neutron star cooling, the estimates that we quote for Rcore = 5 km can equally

well be taken as a guide to this scenario. Our final toy-model assumption is that

our "star" is a black body. The work that needs to be done to turn our illustrative

"toy star calculation" into a quantitative calculation of neutron star cooling includes

the investigation of realistic density profiles, realistic nuclear matter, and realistic

atmospheres. We defer this, as our calculation suffices to make our qualitative point.

Our "star" loses heat by neutrino emission from its entire volume and by black

body emission of photons from its surface. The heat loss due to neutrino emission is

LV = Vnm 't + VqmEqm (4.34)

The quark matter neutrino emissivity 6 qm is given either by (4.31) or (4.33), depending

on whether we are considering a gCFL core or an unpaired quark matter core. The

nuclear matter emits neutrinos via modified Urca processes like n+X -+ p+ X + e + P,

with X either a neutron or a proton that serves to carry away some recoil momentum,

in order that momentum and energy can both be conserved in the process. The

resulting emissivity is [125, 130]

n2/3 T 8

enm (1.2 x 104 erg cm- 3 s- 1) (n (4.35)
V no ~~~~~~~107 K

In evaluating the nuclear matter and quark matter emissivities, we shall assume that

the entire interior of the star is at a common temperature T. Both nuclear matter
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and quark matter are good conductors of heat, and neutron stars older than a few

years are well approximated as isothermal.

Because Ev T5 5 in the gCFL phase, Lv, will be dominated by neutrino emission

from the gCFL matter, unless the gCFL volume is very small. We include cooling

curves for cores made of "unpaired quark matter" even though this is not expected

to be present on the phase diagram of QCD at neutron star temperatures because

it serves as a representative example of the large class of phases of dense matter in

which c - T6 and cv T. This class includes all quark and nuclear phases that

cool by direct Urca processes, except for gCFL.

The surface of real neutron stars is colder than their interiors, with the tem-

perature gradients occurring only in the outer envelope of the star within of order

100 meters of the surface. The heat transport within this envelope has been ana-

lyzed [138, 139], and the result is well approximated by a phenomenological relation-

ship between the interior temperature T and the surface temperature Tsurface given

by [127, 138, 139]

10 \ 1/4 T 05
Tsurface =-- (0.87 x 10 K) 1 0 14 CM/2) 108K (4.36)

where gs - GNM/R 2 is the surface gravity. This means that the rate of heat loss

from the surface of the star, which for a black body is

La = 41rR2 Ts4urface (4.37)

with a the Stefan-Boltzmann constant, is given by

La = 47rR2 a(0.87 x 106 K) 4 ( 1 01 4 cm / s2) (1 K) (4.38)

We shall use this expression for La, even though we are not treating other aspects

of the problem realistically, because the fact that L - T 2 2 will play an important

qualitative role.
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The cooling of our "star" is described by the differential equation

dT L, + La Vnm&nm + Vqmcqm + L(dT L, + L't V ~~~~~~~~~~~(4.39)
dt VnmCt m + Vqmcqm Vnmc V VqmV ~~~~~n V 2t Vqv

which equates the heat lost ( Ldt) to the change in the heat energy of the star

(, -VcvdT). We have all the ingredients needed to evaluate the right hand side of

this equation in place, with the exception of the specific heat of nuclear matter and

of unpaired quark matter. For a gas of several species of nointeracting fermions, the

specific heat is given by

kB ? F/iC2 + ( )7CV = 3 mc2 (p) 2, (4.40)
i

where the sum runs over all the species. In the case of noninteracting nuclear matter,

the sum runs over i = n, p, e and the Fermi momenta for neutral matter in weak

equilibrium are given by [125]

pnF = (340 MeV) (-)1/3

=P = (60 MV)() (4.41)/fF =Pf no e) ~) /

We are taking non-interacting nuclear matter with density n = 1.5no for the mantle

of our "stars". In the case of neutral unpaired quark matter in weak equilibrium, the

sum on i runs over the nine quarks and the Fermi momenta are independent of color

and are given by [46]

M2PF = + Sl2p

F= u M

5Ms2s = _ 1Ms2p (4.42)

up to corrections of order M4/ M3. We are using matter with / = 500MeV in the core
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Figure 4-3: Solutions to the cooling equation (4.39) for 1.4 solar mass "toy stars" (de-
scribed in the text) of four different compositions. The curves show internal temper-
ature as a function of time. The dot-dashed curve is for a star with radius R = 12 km
made entirely of nuclear matter with a density 1.5n0 , with no quark matter core. The
other three curves describe stars with radii R = 10 km that have quark matter cores
with radii Rcore = 5 km. For all three curves, the quark matter has A = 500 MeV
and M2/p = 100 MeV, with densities _ 9no. For the dotted curve, the quark mat-
ter is noninteracting. For the solid (dashed) curve, it is in the gCFL phase with
A = 25 MeV ( 0 = 40 MeV).

of our "stars".

Fig. 4-3 shows the cooling curves obtained by solving (4.39) for the four toy stars

we have described, plotted on a log-log plot. Each curve has an early time power law

during the period when cooling by neutrino emission dominates, namely the first 105

or so years. At early times, L < L, because L - R 2 whereas L - R3. Because

LV, drops much more rapidly than La as T decreases, at late times LI dominates and

a new power law is seen.

It is easy to see why power law solutions arise. In any temperature regime in

which the numerator and the denominator of the right hand side of (4.39) are each
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Figure 4-4: Same as Fig. 4-3, except that here we plot Tsurface, related to the interior
temperatures plotted in Fig. 4-3 by Eq. (4.36).

dominated by one of their component terms, the cooling equation takes the form

dT
dT -aTP (4.43)

for some p and a. For example, for a star that is made entirely of nuclear matter,

during the epoch when L, > La we have p = 7, coming from L,, - T8 and cOvm - T.

For p > 1, (4.43) has a power-law solution

T= [a(p-1)t] p- (4.44)

There are no arbitrary constants in this solution. We initialize the differential equation

with some temperature To at a time to = 1 year, chosen because by that time the

interior star can reasonably be treated as isothermal. The initial condition To(to) does

not appear in the power law solution: it only affects how the power law solution is

reached, if To(to) does not lie on it. Once the power law solution is reached, the form
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of the solution to the differential equation is independent of the initial condition. We

begin all our plots at t = 1000 years, by which time the solution is on the power law

(4.44) for any reasonable choice of To(to).

During the epoch when L > L, a star made entirely of nuclear matter has

p = 7 and T - t-'/ 6 . For the stars with unpaired quark matter, or gCFL quark

matter, p = 5 and T _ t -1 /4 during this epoch. This explains how similar the three

quark matter core curves are during the first 105 years, and why all three stars with

quark matter cores are colder than the nuclear matter star. Note that the gCFL

quark matter has L - T5' 5 and Cv , T 5, both enhanced by 1/T ° 5 relative to

that of unpaired quark matter, and indeed relative to any phase of nuclear or quark

matter in which direct Urca processes occur that has been considered previously.

But, the effect of these enhancements cancel in the cooling curve during the epoch

when L,, > Lv. There are now a number of indications [140] that some neutron stars

with ages of order 103 to 105 years (presumably the heavier ones, although this is

certainly not demonstrated) are significantly colder than would be expected in the

absence of direct Urca neutrino emission, whereas other (presumably less massive)

stars have temperatures consistent with theoretical cooling curves calculated upon

assuming nuclear matter composition. Were this to be confirmed, the discovery of

direct Urca emission with T t- /4 , instead of the slower T - t-/ 6 , could indicate

the presence of any number of dense matter phases, including gCFL quark matter

but also including nuclear matter leavened with either hyperons, kaons or pions.

At late times, when Ly > Lv all stars except those containing gCFL quark matter

have p = 2.2- = 1.2 because La '. T 2 2 and cv - T, and hence cool with T 

t- 1/0 2 = t -5 . This explains the rapidly dropping temperatures at late times for

the stars without gCFL quark matter in Fig. 4-3. If the volume of gCFL matter is

sufficient (more on this below) it dominates the heat capacity of the star, yielding

p = 2.2-0.5 = 1.7 because cv - T0 5, and hence the star cools with T t- 1/ 0 7 = t - 1 4

at late times. The gCFL matter keeps the aging star warm by virtue of its large heat

capacity.

We show the surface temperatures of our toy stars in Fig. 4-4. It is tempting to
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Figure 4-5: Cooling curves showing the surface temperature of stars with gCFL cores
with A0 = 25 MeV for Rcore = 5 km (solid; same as solid curve in Fig. 4-4), Rcore =
3 km (dashed), Rcore = 1 km (dotted), Rcore = 0 km (dot-dashed; same as dot-dashed
curve in Fig. 4-4).

put data obtained from the observation of real stars on this plot, but we resist the

temptation given that our "stars" are not realistic. The qualitative impact of gCFL

quark matter is, however, clear: stars which are old enough that they cool by photon

emission stay much warmer if they contain a gCFL hot water bottle. In our Fig. 4-4,

which should be taken as illustrative and not yet as a quantitative prediction, the

effect is a full order of magnitude for 107-year old stars, and gets much larger for older

stars, as the cooling curves of all stars except those containing gCFL quark matter

drop rapidly.

In Fig. 4-5, we investigate the dependence of the cooling curves on the volume of

gCFL quark matter present in the core of the star. We see that the "hot water bottle

effect" is present for Rcore = 3 km, but reduced in magnitude. For Rcore = 1 km, no

effect is visible: the effect does occur, but only at even lower temperatures than we

have plotted. (Because its heat capacity is cv To '5, if any gCFL quark matter is

present it will eventually dominate the heat capacity of the entire star, no matter how

small its volume fraction. For Rcore = 1 km, this occurs at temperatures below those
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we have plotted.) Note that what we are referring to as Rcore = 5 km could equally

well describe a star with a shell of gCFL quark matter extending between radii of 4.5

and 6 km.

4.5 Outlook

We hope that our results challenge observers to constrain the temperature of neutron

stars that are 10 million years old or older. Prior to our work, all proposed cooling

curves for these old stars drop so fast into unobservability that there has been little

motivation to make the effort to obtain the best constraints possible on their temper-

atures. Given that we know of isolated neutron stars that are younger than a million

years old and closer than 200 parsecs, it is reasonable to expect that there are 107 -year

old isolated neutron stars closer than 100 parsecs to earth. At first we were concerned

that if such old nearby stars had temperatures of order 105 K, as Fig. 4-4 suggests will

be the case if they contain gCFL hot water bottles, they should already have been

detected. However, initial estimates suggest that they will in fact be quite a challenge

to find, since the peak of a 105 K black body spectrum lies in the far ultraviolet, where

the interstellar medium is opaque, and since they will be quite faint in the accessible

UV and visible wavelengths [141]. Another option, perhaps easier than finding these

stars without knowing where to look, is to study nearby old pulsars, already detected

by their nonthermal emission, and to constrain their thermal emission hence putting

an upper bound on their temperature. This has been done for PSR 0950+08, whose

spin-down age is 1072 years, yielding the bound T < 105.2 K [142]. This limit is quite

promising, as it is close to the curves in Fig. 4-4 describing the cooling of our toy

star with a gCFL core. And, we are confident that we have not thought of the best

way of looking for aging but still warm neutron stars. We are therefore hopeful that

the opportunity to make an unambiguous discovery of the presence of quark matter

within neutron stars or to rule out the presence of gCFL quark matter in the entire

region of the QCD phase diagram sampled by neutron stars will stimulate observers

to rise to the challenge.
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Much theoretical work remains to be done. Interesting microphysical questions

about the gCFL phase remain, and have been enumerated in Refs. [25, 26]. Phases

with some features in common with the gCFL phase can be unstable with respect to

inhomogeneous mixed phases [87], and although the gCFL phase is stable with respect

to all straightforward mixed phase possibilities [25, 61], an exhaustive investigation

has not yet been performed. Perhaps the most interesting open questions are the

possibilities of K°-condensation [80, 81] or gluon condensation [108] in the gCFL

phase. Either could change our quantitative results for its cv and e, but neither is

likely to change their unusual T-dependence: cv -' T °' 5 and e, - T5 5. (Neither K°-

mesons nor gluons [46, 135] would affect the Q-charge balance, which is responsible

for the existence of the gapless quasiparticle with a quadratic dispersion relation in

Fig. 4-1, whose consequence in turn is the unusual T-dependence of the gCFL cv

and eu.) As far as theoretical astrophysical work, our results for cv and e must be

incorporated into calculations of cooling curves for stars with realistic atmospheres

and density profiles before plots like those in Figs. 4-4 and 4-5 can be compared

quantitatively to data. Nonetheless, our conclusion that gCFL quark matter within

a neutron star will keep the star warm in its old age relies only on the unusual T-

dependence of the gCFL specific heat, and is therefore expected to be robust.
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