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Abstract
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Chapter 1

Introduction

While the standard model has been very successful in describing most of the results of

the experiments that we observe with the current generation of particle accelerators, it

doesn't give us a "unified" description of the universe and a microscopic description

of gravity. There is a strong evidence that the couplings present in the standard

model, electromagnetic, nuclear weak and nuclear strong, should all unify at an energy

of about 1016 Gev. It is also thought that the gravitational force becomes equally

important at an energy of about 1019 Gev. String theory should give an explanation

of what happens at energies above the unification scale of the standard model and

it should be considered as the best candidate for a microscopic theory of gravity.

Moreover, even if string theory turns out to be wrong, it is still the only consistent

model of quantum gravity, and its study has to be considered useful if we want to

understand new features of gravity at a microscopic level.

Given that, since the mid-1990's people have been considering string theory as

the best candidate for a theory unifying the four fundamental forces existing in na-

ture. A big virtue of the theory is that all its formulations are related by duality

transformations and are thought to be just different vacua of the same theory, M-

theory. However, the theory has the big disadvantage of having an enormous number

of vacua. The question that arises is: "How do we pick up the correct vacuum"?

We may think to find a string vacuum that corresponds to the standard model vac-

uum, but what about the huge number of other vacua? It seems that a completely
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background independent formulation of the theory is needed to answer this question.

Since the early days people thought that string field theory (SFT) was the best

way to formulate a background independent string theory. According to that theory

the string's wave function has to be quantized and a Lagrangian whose Feynman

rules reproduce the scattering amplitudes of the first quantized theory has to be

constructed. In the 1980's people worked a lot to formulate such a theory using

the BRST approach [1]-[4]. In 1984 Witten [5] constructed for the open string a

covariant cubic SFT based on the Chern-Simons action. While Witten's Open String

Field Theory (OSFT) is described in a simple abstract language, the subject is very

complicated and practical computations are not easily performed. Moreover, the

supersymmetric version of the theory [6]-[8] was found to have problems from picture-

changing operators and from having a nonpolynomial action. For these reasons OSFT

was restricted to the bosonic case, which however suffers from having a non stable

perturbative vacuum. Despite the fact that there was a large amount of work done in

SFT in the early 90's, people couldn't get a satisfactory insight in to non-perturbative

physics and started to lose interest in the subject.

Research on the subject stalled until 1999, when Sen [9] realized that OSFT could

be used to understand the decay of unstable D-branes . The 26-dimensional bosonic

string has, both in the open and the closed case, a tachyon in its spectrum indicating

that the ususal perturbative vacuum of these theories is unstable. Sen pointed out

that the system in the open string case is unstable and will decay into the true

vacuum2 . Sen made the three following conjectures:

1. The effective potential for the tachyon mode has a minimum, and the difference

in energy between the perturbative vacuum and the minimum of the potential cancels

the mass of the 25-dimensional space filling D-brane.

2. In the minimum of the potential there are no open string excitations. This is

1Strings can have various kinds of boundary conditions. For example closed strings have periodic
boundary conditions (the string comes back onto itself). Open strings can have two different kinds of
boundary conditions called Neumann and Dirichlet boundary conditions. With Dirichlet boundary
conditions the endpoint is fixed to move only on some manifold and this manifold is called a D-brane.

2 The same thing is happening in the standard model where at the perturbative vacuum we have
a negative mass-squared field. This just tells us that the stable vacuum is at the minimum of the
potential involving that field.
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so because we expect that at the true vacuum the brane has decayed and only closed

string excitations are present.

3. There should be lump solutions of the tachyon potential which correspond to

lower dimensional branes.

OSFT turns out to be a good laboratory for checking these conjectures and we

clearly see a new nonperturbative application of SFT. Already in 1987 Kostelecky and

Samuel [10] observed that the tachyon effective potential has a minimum, and that,

like in the Standard Model, the true vacuum is not the naive perturbative vacuum.

However, at that time people were not thinking in terms of branes and their work

wasn't that much considered.

In their paper Kostelecky and Samuel introduced the notion of level truncation

to calculate the effective action at zero momenta (effective potential) for the tachyon.

They truncate the cubic OSFT action by setting to zero all the fields that have a

mass greater than some value, some cutoff to which we can refer as the level. In this

way there are only a finite number of fields and it becomes possible to calculate the

effective action. We can think about the calculated effective action as a function of

the level, and usually results converge quite fast to their asymptotic values. In chapter

2 we use level truncation to calculate the effective action for the massless field present

in cubic OSFT, the gauge field, and we get the first few terms in the expansion of the

Born-Infeld action3 in powers of the field strength tensor plus (covariant) derivative

corrections.

While SFT involves an infinite number of space-time fields, most of these fields

have masses of the order of the Planck scale and it makes sense to see what is the

effective theory which has only the low energy modes, massless modes, as degrees of

freedom. By integrating out the massive fields, we arrive at an effective action for

3 The Born-Infeld action was first obtained in string theory in 1985 by Fradkin and Tseytlin [11]
when they were calculating the low energy effective action for the abelian massless vector field using
string's world-sheet methods. The lagrangian looks like:

ldet(Jv + 4F), (1.1)

where F,, is the usual field strength tensor. In the abelian case derivative corrections to this action
are well defined and they consist of derivative of powers of the field strength tensor.
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a finite number of massless fields. In the case of the open string this leads to an

action for the massless gauge field that we compute term-by-term using the level-

truncation approximation in SFT. It is natural to expect that the effective action we

compute for the massless vector field will take the form of the Born-Infeld action,

including higher-derivative terms. Indeed, we show that this is the case, although

some care must be taken in making this connection. In fact, this action has a gauge

invariance which agrees with the usual Yang-Mills gauge invariance to leading order,

but which has higher-order corrections arising from the string field star product 4 .

A field redefinition analogous to the Seiberg-Witten map5 [12, 13] is necessary to

get a field which transforms in the usual fashion [14, 15]. Early work deriving the

Born-Infeld action from string theory used world-sheet calculations that were on-

shell calculations [11, 16, 17, 18]. In our work we start with cubic OSFT, which is

a manifestly off-shell formalism. The resulting effective action is therefore also an

off-shell action.

Background independent OSFT [19]-[22] is the other main approach used to study

off-shell phenomena in string theory. Background independent OSFT has been useful

for finding the classical tachyon potential energy functional and the leading deriva-

tive terms in the tachyon effective action [23]-[25]. It is formulated as a problem in

boundary conformal field theory. One begins with the tree-level partition function of

open-string theory where the two-dimensional world-sheet swept out by the string has

the topology of a disk. An interaction in the boundary of the string's world-sheet with

arbitrary operators is added. If only the tachyon field is added then the resulting 2-

dimensional field theory is super-renormalizable by power counting. Renormalization

fixed points, which correspond to conformal field theories, are solutions of classical

equations of motion and should be viewed as the solutions of classical string field

4As we will discuss later, in OSFT an associative product between string field is defined to
construct the action. This action posses a complicated nonlinear gauge symmetry constructed with
this star product. Treating all the massive fields classically, i.e. solving their equation of motion in
terms of the gauge fields, we arrive at a complicated nonlinear gauge transformation for the vector
field.

5 Seiberg and Witten have argued that certain noncommutative gauge theories are equivalent to
commutative ones and that there exists a map between the two. The name of the map is Seiberg-
Witten map.
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theory. Witten and Shatashvili [19, 21] have argued that these equations of motion

come from an action which can be derived from the disk partition function Z. More

precisely, the effective action for a generic coupling constant g (which can be iden-

tified with the tachyon, the gauge or any other field that correspond to excitations

of the open bosonic string) is related to the renormalized partition function of open

string theory on the disk, Z(gi), through

S = (1 i ) Z(gi) (1.2)

where pi is the beta-function of the coupling gi.

In chapter 3 we compute the non-linear P-function for the tachyon field up to the

third order in powers of the field and to any order in derivatives of the field. From

this we show that the solutions of the RG fixed point equations on the 2-dimensional

world-sheet swept-out by the string generate the three and four-point open bosonic

string scattering amplitudes involving tachyons and we construct the effective action

for the tachyon field. Then, with the same renormalization prescription, we compute 

to the leading orders in derivatives but to any power of the tachyon field and we show

that the corresponding action coincides with the one found in [23]-[25]. Knowledge

of the non-linear tachyon 0-function is very important also for another reason. The

solutions of the equation fT = 0, T superscript stands for tachyon, give the conformal

fixed points, the backgrounds that are consistent with the string dynamics. In the

case of slowly varying tachyon profiles, we show that the equations of motion for the

Witten-Shatashvili action, WS, can be made identical to the RG fixed point equation

OT = 0.

An important aspect of the open string tachyon which is not yet fully understood

is the dynamical process through which the tachyon rolls from the unstable vacuum

to the stable vacuum. A review of previous work on this problem is given in [26].

Computations using background states, RG flow analysis [27], and background string

field theory (BSFT) [19]- [22] show that the tachyon should monotonically roll toward

the true vacuum, but should not arrive at the true vacuum in finite time [28]-[35].

14
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In BSFT variables, where the tachyon T goes to T -+ oo in the stable vacuum, the

time-dependence of the tachyon field goes as T(t) = et. This dynamics is intuitively

fairly transparent 6, and follows from the fact that et is a marginal boundary operator

[36, 37, 38, 28, 35]. Other approaches to understanding the rolling tachyon from

a variety of viewpoints including DBI-type actions [39]-[42], S-branes and timelike

Liouville theory [43]-[47], matrix models [48]-[53], and fermionic boundary CFT [54]

lead to a similar picture of the time dynamics of the tachyon.

In CSFT, on the other hand, the rolling tachyon dynamics appears much more

complicated. In [55], Moeller and Zwiebach used level truncation to analyze the

time dependence of the tachyon. They found that at low levels of truncation, the

tachyon rolls well past the minimum of the potential, then turns around and begins

to oscillate. It was further argued by Fujita and Hata in [56] that such oscillations are

a natural consequence of the form of the CSFT equations of motion, which include

an exponential of time derivatives acting on the tachyon field.

These two apparently completely different pictures of the tachyon dynamics raise

an obvious puzzle. Which picture is correct? Does the tachyon converge monotoni-

cally to the true vacuum, or does it undergo wild oscillations? Is there a problem with

the BSFT approach? Does the CSFT analysis break down for some reason such as a

branch point singularity at a finite value of t? Does the dynamics in CSFT behave

better when higher-level states are included? Is CSFT an incomplete formulation of

the theory?

In chapter 4 we resolve this puzzle. We carry out a systematic level-truncation

analysis of the tachyon dynamics for a particular solution in CSFT. We compute the

trajectory as a power series in et at various levels of truncation. We show that indeed

the dynamics in CSFT has wild oscillations. We find, however, that the trajectory

is well-defined in the sense that increasing the level of truncation in CSFT and the

number of terms retained in the power series in et rapidly leads to a convergent

tachyon trajectory in any fixed range of t. We reconcile this apparent discrepancy

6The tachyon potential in the open bosonic string case is e-T(1 + T), and it has a minimum at
T = oo.
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with the results of BSFT by demonstrating that a field redefinition which takes the

CSFT action to the BSFT action also maps the wildly oscillating CSFT solution to

the well-behaved BSFT exponential solution.
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Chapter 2

Effective action for the massless

field from cubic open string field

theory

In this chapter, we discuss our work with I. Sigalov and W. Taylor [57]. We compute

the leading terms in the tree-level effective action for the massless fields of the bosonic

open string by integrating out all massive fields. In both the abelian and nonabelian

theories, field redefinitions make it possible to express the effective action in terms of

the conventional field strength.

2.1 Introduction

An important feature of SFT, which allows it to transcend the usual limitations of

local quantum field theories, is its essential nonlocality. SFT is a theory which can be

defined with reference to a particular background in terms of an infinite number of

space-time fields, with highly nonlocal interactions. The nonlocality of SFT is similar

in spirit to that of noncommutative field theories which have been the subject of

much recent work [58], but in SFT the nonlocality is much more extreme. In order to

understand how string theory encodes a quantum theory of gravity at short distance

scales, where geometry becomes poorly defined, it is clearly essential to achieve a

17



better understanding of the nonlocal features of string theory.

Integrating out the massive fields present in OSFT, we obtain an effective action

for the massless fields. In the case of a closed string field theory, performing such an in-

tegration would give an effective action for the usual multiplet of gravity/supergravity

fields. This action will, however, have a complicated nonlocal structure which will

appear through an infinite family of higher-derivative terms in the effective action.

In the case of the open string, integrating out the massive fields leads to an action for

the massless gauge field. Again, this action is highly nonlocal and contains an infinite

number of higher-derivative terms. This nonlocal action for the massless gauge field

in the bosonic open string theory is the subject of this paper. By explicitly integrat-

ing out all massive fields in Witten's open string field theory (including the tachyon),

we arrive at an effective action for the massless open string vector field. We compute

this effective action term-by-term using the level-truncation approximation in string

field theory, which gives us a very accurate approximation to each term in the action.

We expect that the effective action we compute for the massless vector field will

take the form of the Born-Infeld action, including higher-derivative terms. Indeed,

we show that this is the case, although some care must be taken in making this

connection. Early work deriving the Born-Infeld action from string theory [11, 16]

used world-sheet methods [17, 18]. More recently, in the context of the supersym-

metric nonabelian gauge field action, other approaches, such as n-symmetry and the

existence of supersymmetric solutions, have been used to constrain the form of the

action (see [59] for a recent discussion and further references). In this work we take

a different approach. We start with string field theory, which is a manifestly off-shell

formalism. Our resulting effective action is therefore also an off-shell action. This

action has a gauge invariance which agrees with the usual Yang-Mills gauge invari-

ance to leading order, but which has higher-order corrections arising from the string

field star product. A field redefinition analogous to the Seiberg-Witten map [12, 13]

is necessary to get a field which transforms in the usual fashion [14, 15]. We identify

the leading terms in this transformation and show that after performing the field re-

definition our action indeed takes the Born-Infeld form in the abelian theory. In the

18



nonabelian theory, there is an additional subtlety, which was previously encountered

in related contexts in [14, 15]. Extra terms appear in the form of the gauge trans-

formation which cannot be removed by a field redefinition. These additional terms,

however, are trivial and can be dropped, after which the standard form of gauge in-

variance can be restored by a field redefinition. This leads to an effective action in

the nonabelian theory which takes the form of the nonabelian Born-Infeld action plus

derivative correction terms.

It may seem surprising that we integrate out the tachyon as well as the fields in

the theory with positive mass squared. This is, however, what is implicitly done in

previous work such as [11, 16] where the Born-Infeld action is derived from bosonic

string theory. The abelian Born-Infeld action can similarly be derived from recent

proposals for the coupled tachyon-vector field action [60, 61, 62, 63] by solving the

equation of motion for the tachyon at the top of the hill. In the supersymmetric theory,

of course, there is no tachyon on a BPS brane, so the supersymmetric Born-Infeld

action should be derivable from a supersymmetric open string field theory by only

integrating out massive fields. Physically, integrating out the tachyon corresponds

to considering fluctuations of the D-brane in stable directions, while the tachyon

stays balanced at the top of its potential hill. While open string loops may give rise

to problems in the effective theory [64], at the classical level the resulting action is

well-defined and provides us with an interesting model in which to understand the

nonlocality of the Born-Infeld action. The classical effective action we derive here

must reproduce all on-shell tree-level scattering amplitudes of massless vector fields

in bosonic open string theory. To find a sensible action which includes quantum

corrections, it is probably necessary to consider the analogue of the calculation in

this paper in the supersymmetric theory, where there is no closed string tachyon.

The structure of this chapter is as follows: In Section 2.2 we review the formalism

of string field theory, set notation and make some brief comments regarding the

Born-Infeld action. In Section 2.3 we introduce the tools needed to calculate terms

in the effective action of the massless fields. Section 2.4 contains a calculation of the

effective action for all terms in the Yang-Mills action. Section 2.5 extends the analysis
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to include the next terms in the Born-Infeld action in the abelian case and Section

2.6 does the same for the nonabelian analogue of the Born-Infeld action. Section

2.7 contains concluding remarks. Some useful properties of the Neumann matrices

appearing in the 3-string vertex of Witten's string field theory are included in the

Appendix.

2.2 Review of formalism

Subsection 2.2.1 summarizes our notation and the basics of string field theory. In

subsection 2.2.2 we review the method of [65] for computing terms in the effective

action. The last subsection, 2.2.3, contains a brief discussion of the Born-Infeld action.

2.2.1 Basics of string field theory

In this subsection we review the basics of Witten's open string field theory [5]. For fur-

ther background information see the reviews [66, 67, 68, 69]. The degrees of freedom

of string field theory (SFT) are functionals 'I[x(o); c(u), b(or)] of the string configura-

tion x"(a) and the ghost and antighost fields c(a) and b(a) on the string at a fixed

time. String functionals can be expressed in terms of string Fock space states, just

as functions in L2 (R) can be expressed as linear combinations of harmonic oscilla-

tor eigenstates. The Fock module of a single string of momentum p is obtained by

the action of the matter, ghost and antighost oscillators on the (ghost number one)

highest weight vector Ip). The action of the raising and lowering oscillators on p) is

defined by the creation/annihilation conditions and commutation relations

an>l IP) = O, [a, an] =r m,n

pI k) =k l k), (2.1)

bn>O IP) = O, {bm, C-n} = m,n,

Cn>l IP) = 0.

20
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Hermitian conjugation is defined by ait = a, bt = b_-, c= c-n. The single-string- an -- t -

Fock space is then spanned by the set of all vectors IX) = ... anan ... bk2bk ... C12cl2C IP)

with ni, ki < 0 and i < O. String fields of ghost number 1 can be expressed as linear

combinations of such states Ix) with equal number of b's and c's, integrated over

momentum.

)= Jd26p ((p) + A,.(p) a 1 - ia (p)blco + B,,(p)a lal +...) p) . (2.2)

The Fock space vacuum 10) that we use is related to the SL(2, R) invariant vacuum

11) by 10) = cl l1). Note that 10) is a Grassmann odd object, so that we should

change the sign of our expression whenever we interchange 10) with a Grassmann odd

variable. The bilinear inner product between the states in the Fock space is defined

by the commutation relations and

(kl co Ip) = (27r)26 (k + p). (2.3)

The SFT action can be written as

S =-2 (V21 A QB) - § (V31 40X (2.4)
2 3

where IV,) e '7n. This action is invariant under the gauge transformation

6 1) = QB IA) + g((, Al V3) - (A, 1> V3)) (2.5)

with A a string field gauge parameter at ghost number 0. Explicit oscillator repre-

sentations of (V21 and (V3 1 are given by [70, 71, 72, 73]

(V21 = d 26 p (pl(1)®(_pl(2)(c(1)+c(2))exp (a(1 ). C-a (2) - b( 1) C(2) - b( ) C c(2))

(2.6)
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and

(V3 1 = r J 7 (d26P (p(i)ci)) 6(E P)
i=1

(r) r Vr a() p(r)V a(s) + (r)rp(r) b(r) xrs (s)x exp, 2 a - a~s) - p 0 . .a~s) + 2P _0 - b (2.7)

where all inner products denoted by · indicate summation from 1 to oo except in

b X, where the summation includes the index 0. The contracted Lorentz indices

in a and p, are omitted. Cmn = (-l)ndmn is the BPZ conjugation matrix. The

matrix elements Vm, and Xn are called Neumann coefficients. Explicit expressions

for the Neumann coefficients and some relevant properties of these coefficients are

summarized in the Appendix. The normalization constant JV is defined by

I 39/ 2

Af = exp(-2 E Vor0) =26 (2.8)
r

so that the on-shell three-tachyon amplitude is given by 2g. We use units where

Ot = 1.

2.2.2 Calculation of effective action

String field theory can be thought of as a (nonlocal) field theory of the infinite number

of fields that appear as coefficients in the oscillator expansion (2.2). In this paper,

we are interested in integrating out all massive fields at tree level. This can be done

using standard perturbative field theory methods. Recently an efficient method of

performing sums over intermediate particles in Feynman graphs was proposed in [65].

We briefly review this approach here; an alternative approach to such computations

has been studied recently in [74].

In this paper, while we include the massless auxiliary field a appearing in the

expansion (2.2) as an external state in Feynman diagrams, all the massive fields we

22



integrate out are contained in the Feynman-Siegel gauge string field satisfying

bo I) = 0, (2.9)

This means that intermediate states in the tree diagrams we consider do not have

a co in their oscillator expansion. For such states, the propagator can be written in

terms of a Schwinger parameter T as

bo 0

=ob0 dT e -OLO (2.10)

In string field theory, the Schwinger parameters can be interpreted as moduli for the

Riemann surface associated with a given diagram [68, 75, 76, 77, 78].

In field theory one computes amplitudes by contracting vertices with external

states and propagators. Using the quadratic and cubic vertices (2.6), (2.7) and the

propagator (2.10) we can do same in string field theory. To write down the contri-

bution to the effective action arising from a particular Feynman graph we include a

vertex (V31 E I*3 for each vertex of the graph and a vertex IV2) for each internal

edge. The propagator (2.10) can be incorporated into the quadratic vertex through'

IP) = - dT e (l -p2 ) V2 (2.13)

where in the modified vertex V2(T)) the ghost zero modes co are canceled by the bo

1Consider the tachyon propagator as an example. We contract co Pl) and co IP2) with (PI to get

(PIcO pl)co p2) = -A dre(_P)6(pl +p P2) = - +P2) (2.11)

This formula assumes that both momenta are incoming. Setting P1 = -p2 = p and using the metric
with (-, +, +, ..., +) signature we have

1 11 1~~~~~~~~~ ~(2.12)
p2 +f mr-= p a2 - i - m2

thus (2.11) is indeed the correct propagator for the scalar particle of mass m2 = -1.
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in (2.10) and the matrix Cmn is replaced by

Cmn(T) = e-m(_l) m ~m. (2.14)

With these conventions, any term in the effective action can be computed by con-

tracting the three-vertices from the corresponding Feynman diagram on the left with

factors of IP) and low-energy fields on the right (or vice-versa, with IV3)'s on the right

and (Pl's on the left). Because the resulting expression integrates out all Feynman-

Siegel gauge fields along interior edges, we must remove the contribution from the

intermediate massless vector field by hand when we are computing the effective ac-

tion for the massless fields. Note that in [65], a slightly different method was used

from that just described; there the propagator was incorporated into the three-vertex

rather than the two-vertex. Both methods are equivalent; we use the method just

described for convenience.

States of the form

exp (A. at + atS at) p) (2.15)

are called squeezed states. The vertex V3) and the propagator IP ) are (linear com-

binations of) squeezed states and thus are readily amenable to computations. The

inner product of two squeezed states is given by [79]

(0 exp(A a + a-S a)exp(. p-at + at V. at) 10)

= Det(1 - S. V)-/ 2exp[A (1 - VS)-' · IL
1 1

+ A.(1-V-S)- V - A+ - . S .(1 - V- S )-v . ] (2.16)
2 2

and (neglecting ghost zero-modes)

(01 exp(b Ab - A . c - b S c)exp(bt 1 b + A, b Ct + bt V. ct ) 10)

= Det (1 -S V)exp[-A, -(1 - V S)-l b - I-c . (1-S -V) 1. Ab

+ ±Ac' (1 -V-S) - 1 .V. *Ab+ -,c c S-(1 -V-S)-l' Ib]. (2.17)
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Using these expressions, the combination of three-vertices and propagators associated

with any Feynman diagram can be simply rewritten as an integral over modular

(Schwinger) parameters of a closed form expression in terms of the infinite matrices

Vnm, Xnm, Cnm(rT). The schematic form of these integrals is

((V3 )(IP))i. ( i/ dT) Det(1 - C)

X ((O| - iexp at .s-a t+ p . at+ bt. U ct'+P ct+bt b) (2.18)

where C, k, V are matrices with blocks of the form C, X, V arranged according to

the combinatorial structure of the diagram. The matrix C and the squeezed state

coefficients S, U, P, Lb, c depend implicitly on the modular parameters Ti.

2.2.3 The effective vector field action and Born-Infeld

In this subsection we describe how the effective action for the vector field is determined

from SFT and we discuss the Born-Infeld action [80] which describes the leading terms

in this effective action. For a more detailed review of the Born-Infeld action, see [81]

As discussed in subsection 2.1, the string field theory action is a space-time action

for an infinite set of fields, including the massless fields A,,(x) and c(x). This action

has a very large gauge symmetry, given by (2.5). We wish to compute an effective

action for A,(x) which has a single gauge invariance, corresponding at leading order

to the usual Yang-Mills gauge invariance. We compute this effective action in several

steps. First, we use Feynman-Siegel gauge (2.9) for all massive fields in the theory.

This leaves a single gauge invariance, under which A, and sa have linear components

in their gauge transformation rules. This partial gauge fixing is described more pre-

cisely in section 2.5.2. Following this partial gauge fixing, all massive fields in the

theory, including the tachyon, can be integrated out using the method described in

the previous subsection, giving an effective action

S[A, (x), a(x)] (2.19)
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depending on A, and a. We can then further integrate out the field a, which has no

kinetic term, to derive the desired effective action

S[A,(x)]. (2.20)

The action (2.20) still has a gauge invariance, which at leading order agrees with the

Yang-Mills gauge invariance

JA,(x) = &~A(x) - igyM[A,r(x), A(x)] + ... (2.21)

The problem of computing the effective action for the massless gauge field in open

string theory is an old problem, and has been addressed in many other ways in past

literature. Most methods used in the past for calculating the effective vector field

action have used world-sheet methods. While the string field theory approach we use

here has the advantage that it is a completely off-shell formalism, as just discussed the

resulting action has a nonstandard gauge invariance [15]. In world-sheet approaches

to this computation, the vector field has the standard gauge transformation rule

(2.21) with no further corrections. A general theorem [82] states that there are no

deformations of the Yang-Mills gauge invariance which cannot be taken to the usual

Yang-Mills gauge invariance by a field redefinition. In accord with this theorem, we

identify in this paper field redefinitions which take the massless vector field A m in the

SFT effective action (2.20) to a gauge field A, with the usual gauge invariance. We

write the resulting action as

S[A,,(x)]. (2.22)

This action, written in terms of a conventional gauge field, can be compared to

previous results on the effective action for the open string massless vector field.

Because the mass-shell condition for the vector field A,(p) in Fourier space is

p2 = 0, we can perform a sensible expansion of the action (2.20) as a double expansion
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in p and A. We write this expansion as

00 00

s[Am] =E E SAn (2.23)
n=2 k=O

where S[k] contains the contribution from all terms of the form kAn . A similar

expansion can be done for S, and we similarly denote by k]An the sum of the terms

in S of the form akomAn.

Because the action [A] is a function of a gauge field with conventional gauge

transformation rules, this action can be written in a gauge invariant fashion; i.e. in

terms of the gauge covariant derivative D, = 0~ - igyM[A, ] and the field strength

F,. For the abelian theory, D,, is just a,, and there is a natural double expansion of

S in terms of p and F. It was shown in [11, 16] that in the abelian theory the set of

terms in S which depend only on F, with no additional factors of p (i.e., the terms

in §[?) take the Born-Infeld form (dropping hats)

SBI = - (2 )2 J dxv-det (E, + 2rgyMF ,) (2.24)

where

vv = CA - OA, (2.25)

is the gauge-invariant field strength. Using log (detM) = tr (log(M)) we can expand

in F to get

SBI =(2 ) J dx + (2rgyM)2d F4
(21rgyM)4 ( Fv, Fat Fte 1 (F,,F') )+ . (2.26)

8 A 4 

We expect that after the appropriate field redefinition, the result we calculate from

string field theory for the effective vector field action (2.20) should contain as a leading

part at each power of A terms of the form (2.26), as well as higher-derivative terms

of the form &n+kAn with k > 0. We show in section 5 that this is indeed the case.
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The nonabelian theory is more complicated. In the nonabelian theory we must

include covariant derivatives, whose commutators mix with field strengths through

relations such as

[D,, Dv]Fx, = [F,,, Fxa]. (2.27)

In this case, there is no systematic double expansion in powers of D and F. It

was pointed out by Tseytlin in [83] that when F is taken to be constant, and both

commutators [F, F] and covariant derivatives of field strengths DF are taken to be

negligible, the nonabelian structure of the theory is irrelevant. In this case, the

action reduces to the Born-Infeld form (2.24), where the ordering ambiguity arising

from the matrix nature of the field strength F is resolved by the symmetrized trace

(STr) prescription whereby all possible orderings of the F's are averaged over. While

this observation is correct, it seems that the symmetrized trace formulation of the

nonabelian Born-Infeld action misses much of the important physics of the full vector

field effective action. In particular, this simplification of the action gives the wrong

spectrum around certain background fields, including those which are T-dual to simple

intersecting brane configurations [84, 85, 86, 87]. It seems that the only systematic

way to deal with the nonabelian vector field action is to include all terms of order Fn

at once, counting D at order F1 / 2. The first few terms in the nonabelian vector field

action for the bosonic theory were computed in [88, 89, 90]. The terms in the action

up to F4 are given by

s~-·-=/ I 1 F2 2iYm Tr (F3)+(2r'M) STr (F4 ISnonabelian = [ T F- 2 + r (F 3 ) + (T 4 (F 2) +
(2.28)

In section 6, we show that the effective action we derive from string field theory agrees

with (2.28) up to order F3 after the appropriate field redefinition.

2.3 Computing the effective action

In this section we develop some tools for calculating low-order terms in the effective

action for the massless fields by integrating out all massive fields. Section 2.3.1
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describes a general approach to computing the generating functions for terms in the

effective action and gives explicit expressions for the generating functions of cubic

and quartic terms. Section 2.3.2 contains a general derivation of the quartic terms in

the effective action for the massless fields. Section 2.3.3 describes the method we use

to numerically approximate the coefficients in the action.

2.3.1 Generating functions for terms in the effective action

A convenient way of calculating SFT diagrams is to first compute the off-shell ampli-

tude with generic external coherent states

IG) = exp (Jm-,,am - b-,jbm + JcmC-m) I) (2.29)

where the index m runs from 1 to oo in Jm and ,Jbm and from 0 to oo in Jcm.

Let 2M(pi J, Jbi, ,ci; 1 < i < M) be the sum of all connected tree-level diagrams

with M external states IGi). M is a generating function for all tree-level off-shell

M-point amplitudes and can be used to calculate all terms we are interested in in

the effective action. Suppose that we are interested in a term in the effective action

whose j'th field (j) .... N(p) is associated with the Fock space state

I| am bk,clq Ip) (2.30)
m,n,q

We can obtain the associated off-shell amplitude by acting on QM with the corre-

sponding differential operator for each j

jdp'(J) pN(P) a a a (2.3)mnq m..m , q (2.31)

and setting Ji, ,7j, and ffj to 0. Thus, all the terms in the effective action which we

are interested in can be obtained from Q2M.

When we calculate a certain diagram with external states Gi) by applying for-

mulae (2.16) and (2.17) for inner products of coherent and squeezed states the result
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has the general form

Nprop

gM = (Epr) I dTeF(p, T)
£=1

x exp (2 JmAm,(T) J j -*Pi"Ai "f..J +_ p PiJ(T)pj + ghosts) . (2.32)(2J rnA~n(T)J~ PZ/~rn( Om TJ ±pJL'

A remarkable feature is that (2.32) depends on the sources Ji, Jj, Jj only through

the exponent of a quadratic form. Wick's theorem is helpful in writing the derivatives

of the exponential in an efficient way. Indeed, the theorem basically reads

M 1

I aJ exp (2mi imn J | = Sum over all contraction products (2.33)

where the sum is taken over all pairwise contractions, with the contraction between

(n, i) and (m, j) carrying the factor Mijm.

Note that QM includes contributions from all the intermediate fields in Feynman-

Siegel gauge. To compute the effective action for A, we must project out the contri-

bution from intermediate A 's.

Three-point generating function

Here we illustrate the idea sketched above with the simple example of the three-point

generating function. This generating function provides us with an efficient method

of computing the coefficients of the SFT action and the SFT gauge transformation.

Plugging G ) , 1 < i < 3 into the cubic vertex (2.7) and using (2.16), (2.17) to

evaluate the inner products we find

-f 6(E~)exp r-rs nS _n rs~ I.r V;' - r JX nr q 7). (2.34)- 3p (rp _ 2 2JmVmn n cmX mnjbn
r

As an illustration of how this generating function can be used consider the three-

tachyon term in the effective action. The external tachyon state is f dp o(p) Ip). The

three-tachyon vertex is obtained from (2.34) by simple integration over momenta and
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No differentiations are necessary in this case. The three-

tachyon term in the action is then

-9- (V1 0, 0, 0) = g 1
33 6(EP) H dprt(pr)exp (

S r

0(x) = exp (-I V 02
2 00 ) O(x). (2.36)

For on-shell tachyons, a2 o(x) = -+(x), so that we have

-9 (V31 0, 0, 0) = -AreVoo o' dxb(x)3 =
3 3

-9 f dxo(x)3.
3

(2.37)

The normalization constant cancels so that the on-shell three-tachyon amplitude is

just 2g, in agreement with conventions used here and in [91].

Four-point generating function

Now let us consider the generating function for all quartic off-shell amplitudes (see

Figure 2-1). The amplitude Q 4 after contracting all indices can be written as

4 =f 0 d e(l-(Pl+P2) 2 ) ('2
2 J

JR(1, 2)) R(3, 4))

IR(i, j))(k) = (Gil (Gil IV3)(ijk)

Applying (2.16), (2.17) to the inner products in (2.39) we get

JR(1, 2)) = exp( p UOtp - U. J + 12Jm U1,nJn
2 2

a(3) U-33 a (3)+ (J Ua3 - pUa3)a ra - J f 7-mp mn - midmni on -n cm mn bn

b(3 _ 3, J, , X , 3 (3) X33 2
+- tJ-m mn bn cm enCto mn -)no _P P
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3 I dX q(X) 3

(2.35)

where

(2.38)

(2.39)

(2.40)

setting the sources to .



Here a, /, E 1, 2 and

u=" (Vrs -vo3 V_ +V33VorS 1£3sArn - vs
vmmn

(2.41)

Using (2.16), (2.17) one more time to evaluate the inner products in (2.38) we obtain

Q = 2 6(pi) J0 dre' Det (- _ 1
0 \ V(1-2)13J

p i Qij ', 1 -p +)exp ooPiiQ - 'j .Ii Pjn j+ _ " i , -Z

Here i, j E 1, 2, 3, 4. the matrices V and X are defined by

Vn = e2 Vmne 2l Xmn = e- 2Xmne 2 .

The matrices Qij and Qij are defined through the tilded matrices Qij and Qij

~e 27rij nQQmn = e 2r Q 3= e Q 2ine 2wherenmatrices Q and Q are defined through V, U X

where the tilded matrices Q and Q are defined through V, , 

1-V2

(C ( -3_2 icus 3)mn

1 X2

+ 60m6OnT,
Qa!a' = -kXo3 1 C3a'

1 _ X2

with a, , E 1, 2; a', ' E 3, 4. The matrix U includes zero modes while V does not,

so one has to understand UV in (2.45) as a product of U, where the first column is

dropped, and V. Similarly VU is the product of V and U with the first row of U

omitted.

The matrices Qij are not all independent for different i and j. The four-point

amplitude is invariant under the twist transformation of either of the two vertices

as well as under the interchange of the two (see Figure 2-1). In addition the whole
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Figure 2-1: Twists T, T' and reflection R are symmetries of the amplitude.

block matrix Qin has been defined in such a way that it is symmetric under the

simultaneous exchange of i with j and m with n. Algebraically, we can use properties

(A.7a, A.7b, A.7c) of Neumann coefficients to show that the matrices Qij satisfy

(Qa/)T = Qa, CQ6C = Q3-a 3-P Qa = Qa+2 P+2

(Qa'1')T = Qp',', CQa'l'C = Q7-a' 7-' Qa'' = Q'-2 '-2, (2.46)

(Qa,')T = Qa', CQa'C = Q3-a 7-a', Qaa' = Qa+2 a'-2

The analogous relations are satisfied by ghost matrices Q.

Note that we still have some freedom in the definition of the zero modes of the

matter matrices Q. Due to the momentum conserving delta function we can add to

the exponent in the integrand of (2.42) any expression proportional to EPi. To fix

this freedom we require that after the addition of such a term the new matrices Q

satisfy Qo = Q = 0. This gives

0= Q - - Qon = Qon- (2.47)and -j 20
and Qmn - Qmn for m, n > 0. The addition of any term proportional to E Pi corre-

sponds in coordinate space to the addition of a total derivative. In coordinate space

we have essentially integrated by parts the terms a9'0,1... ,n (x) and "j b1 ...P -...A (x)

thus fixing the freedom of integration by parts.
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To summarize, we have rewritten 04 in terms of Q's as

Q4 = ( ) dreTDet 2 -p t (1 - V2)1]
[1 i -ij 'lz _ , I I xexp +PJoo1-QJQ -qi JT J .(2.48)2 /I 001 1A On~~ ~ ~~

There are only three independent matrices Q. For later use we find it convenient to

denote the independent Q's by A= Q12, B = Ql3, C = Q14. Then the matrix QJ

can be written as

0

(-l) m+nAmn
mn

Bmn

(-1) m +nCmn

Amn

0

Cmn

(-l) m +nBmn

Bmn

(-l) m+nCn

0

(-1) m +nAmn

Cmn

(- 1)m+Bmn

Amn

0

In the next section we derive off-shell amplitudes for the massless fields by differen-

tiating Q 4. The generating function Q4 defined in (2.48) and supplemented with the

definition of the matrices V, .X, Q, Q given in (2.41), (2.43), (2.44), (2.45), (2.47)

and (2.49) provides us with all information about the four-point tree-level off-shell

amplitudes.

2.3.2 Effective action for massless fields

In this subsection we compute explicit expressions for the general quartic off-shell

amplitudes of the massless fields, including derivatives to all orders. Our notation for

the massless fields is, as in (2.2),

'massiess) = ddp (A, (p)ai - ia(p)bljco) IP) (2.50)
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External states with AA and ao in the k'th Fock space are inserted using

DA,k = [dpA(p) a and Didap JPPP aJ n , Jk= - and D d (aJ jk I-O

(2.51)

We can compute all quartic terms in the effective action S[A,, a] by computing quartic

off-shell amplitudes for the massless fields by acting on Q4 with DA and Do. First

consider the quartic term with four external A's. The relevant off-shell amplitude

is given by ni4 DAii Q4 where Q4 is given in (2.48) and DAi is given in (2.51).

Performing the differentiations we get

SA4 = 1 92 dpib (pl + p2 p3 + p4 ) A"' (pi)A2 (p2)Aa3 (p3 )A 4 (p4)
i

I (-' V2)13) (A4 + dA + A44)exp ( pl i2ij52 

Here 1ZA4, 2A4, I44 are defined by

0 = A1 1 E Qilii2 i34

ii ij

22A4 =4 1 ili2Qi3jl Pi4j2 1 2 (2.53)
A 4 , Q11 10 Q10 'zi3F.i4il'i2

ii#ij

4 =Q1lQjQ3kQ4l opi i pi 

Other amplitudes with a's and A's all have the same pattern as (2.52). The amplitude

with one a and three A's is obtained by replacing A4l (pi') in formula (2.52) with

ia(pi') and the sum of 2Ai42'4 with the sum of

A3 = 2 E Ql Ql Q 2iiQl i4k i23 ~i~ -- ' 2 Z 1 ~11 ~~10 Pi 4 Pi 2 1 3
ii3ij

_T3A3-- 6 Q ~ililQi2ji3ki41 kl (2.54)
A3= Z 1 010 10 pq1 P pi2P 3 4 (2.54)

ii ij
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The amplitude with two A's and two a's is obtained by replacing A,,, (pi')Ai (pi2)

with -a(pi) (pi2) and the sum of ZA'42'4 with the sum of

o 1 Z (Qilil Q i2i2 _ Qii 2
Qi

2il)Qi3i4
1T0 2A2 = 04 1 (Q1i 7i

2
- QA Q 0 1% )Q1 kQ7.~i3p(li4 5

iiAij

_E2 _ ( vQCili1Qi2i2 _ ili2ri2il )Qi3kQi41k (255)
>2A2 - 4 E, ( ol ol lo H3PIA4' (2.55)

iisij

It is straightforward to write down the analogous expressions for the terms of order

a3A and a4. However, as we shall see later, it is possible to extract all the information

about the coefficients in the expansion of the effective action for AI in powers of field

strength up to F4 from the terms of order A4 , A3a, and A2a 2.

The off-shell amplitudes (2.52), (2.53), (2.54) and (2.55) include contributions

from the intermediate gauge field. To compute the quartic terms in the effective

action we must subtract, if nonzero, the amplitude with intermediate A,. In the

case of the abelian theory this amplitude vanishes due to the twist symmetry. In the

nonabelian case, however, the amplitude with intermediate A, is nonzero. The level

truncation method in the next section makes it easy to subtract this contribution at

the stage of numerical computation.

As in (2.23), we expand the effective action in powers of p. As an example of a

particular term appearing in this expansion, let us consider the space-time indepen-

dent (zero-derivative) term of (2.52). In the abelian case there is only one such term:

AAAA " . The coefficient of this term is

= 1 A2 g2 de T' Det ((1 2)13) (A + B + C (2.56)

where the matrices A, B and C are those in (2.49). In the nonabelian case there are

two terms, Tr (A,AAVA " ) and Tr (A,A,,AAA"), which differ in the order of gauge

fields. The coefficients of these terms are obtained by keeping A21 + C21 and B 2

terms in (2.56) respectively.
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2.3.3 Level truncation

Formula (2.56) and analogous formulae for the coefficients of other terms in the ef-

fective action contain integrals over complicated functions of infinite-dimensional ma-

trices. Even after truncating the matrices to finite size, these integrals are rather

difficult to compute. To get numerical values for the terms in the effective action, we

need a good method for approximately evaluating integrals of the form (2.56). In this

subsection we describe the method we use to approximate these integrals. For the

four-point functions, which are the main focus of the computations in this paper, the

method we use is equivalent to truncating the summation over intermediate fields at

finite field level. Because the computation is carried out in the oscillator formalism,

however, the complexity of the computation only grows polynomially in the field level

cutoff.

Tree diagrams with four external fields have a single internal propagator with

Schwinger parameter r. It is convenient to do a change of variables

of = eat. (2.57)

We then truncate all matrices to size L x L and expand the integrand in powers of a

up to aM-2, dropping all terms of higher order in a. We denote this approximation

scheme by L, M}. The an term of the series contains the contribution from all

intermediate fields at level k = n + 2, so in this approximation scheme we are keeping

all oscillators a<L in the string field expansion, and all intermediate particles in

the diagram of mass m2 < M - 1. We will use the approximation scheme L, L}

throughout this paper. This approximation really imposes only one restriction- the

limit on the mass of the intermediate particle. It is perhaps useful to compare the

approximation scheme we are using here with those used in previous work on related

problems. In [65] analogous integrals were computed by numerical integration. This

corresponds to {L, oo} truncation. In earlier papers on level truncation in string field

theory, such as [92, 93, 94] and many others, the (L, M) truncation scheme was used,

in which fields of mass up to L - 1 and interaction vertices with total mass of fields
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in the vertex up to M - 3 are kept. Our L, L} truncation scheme is equivalent to

the (L, L + 2) truncation scheme by that definition.

To explicitly see how the a expansion works let us write the expansion in a of a

generic integrand and take the integral term by term

1o co Cn(pi)
j1cp2 c (p)ay =E C (2.58)

n=O n=O

Here p = Pi +P2 = p3 +P4 is the intermediate momentum. This is the expansion of the

amplitude into poles corresponding to the contributions of (open string) intermediate

particles of fixed level. We can clearly see that dropping higher powers of a in the

expansion means dropping the contribution of very massive particles. We also see that

to subtract the contribution from the intermediate fields Al and ca we can simply omit

the term cl(p)aP2- 1 in (2.58).

While the Taylor expansion of the integrand might seem difficult, it is in fact

quite straightforward. We notice that VrT, and Xrs are both of order a. Therefore

we can simply expand the integrand in powers of matrices V and X. For example,

the determinant of the matter Neumann coefficients is

Det(1- V2 )-13 = exp (-13 Tr Log(1 - V)). (2.59)

Looking again at (2.52) we notice that the only matrix series' that we will need are

Log(1 - V2) for the determinant (and the analogue for X) and 1/(1 - V2 ) for Qij.

Computation of these series is straightforward.

It is also easy to estimate how computation time grows with L and M. The

most time consuming part of the Taylor expansion in a is the matrix multiplication.

Recall that V is an L x L matrix whose coefficients are proportional to an at leading

order. Elements of Vk are polynomials in a with M terms. To construct a series a +

alV +.-'-'' + aMVM + O(aM+1) we need M matrix multiplications 1/k V. Each matrix

multiplication consists of L3 multiplications of its elements. Each multiplication of the

elements has on the average M/2 multiplications of monomials. The total complexity
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therefore grows as L3 M2 .

The method just described allows us to compute approximate coefficients in the

effective action at any particular finite level of truncation. In [65], it was found

empirically that the level truncation calculation gives approximate results for finite

on-shell and off-shell amplitudes with errors which go as a power series in 1/L. Based

on this observation, we can perform a least-squares fit on a finite set of level truncation

data for a particular term in the effective action to attain a highly accurate estimate

of the coefficient of that term. We use this method to compute coefficients of terms

in the effective action which are quartic in A throughout the remainder of this paper.

2.4 The Yang-Mills action

In this section we assemble the Yang-Mills action, picking the appropriate terms from

the two, three and four-point Green functions. We write the Yang-Mills action as

SYM 1 dd xTr(-2 ,AAV + 2+ 1

+ igyM,,Av[AP, Av] + A A]M[A, , , A]). (2.60)

In section 2.4.1 we consider the quadratic terms of the Yang-Mills action. In section

2.4.2 we consider the cubic terms and identify the Yang-Mills coupling constant gyM

in terms of the SFT (three tachyon) coupling constant g. This provides us with

the expected value for the quartic term. In section 2.4.3 we present the results of a

numerical calculation of the (space-time independent) quartic terms and verify that

we indeed get the Yang-Mills action.

2.4.1 Quadratic terms

The quadratic term in the action for massless fields, calculated from (2.4), and (2.6)

is

SA2 = Jdd /Tr(-AvAv a2 + O2/aa,A'). (2.61)
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Completing the square in a and integrating the term (A) 2 by parts we obtain

SA2,= ddxTr (-OAV A + 2AAA+- B2) (2.62)

where we denote

B = - ; A" . (2.63)

Eliminating a using the leading-order equation of motion, B = 0, leads to the

quadratic terms in (2.60). Subleading terms in the equation of motion for a lead

to higher-order terms in the effective action, to which we return in the following

sections.

2.4.2 Cubic terms

The cubic terms in the action for the massless fields are obtained by differentiating

(2.34). The terms cubic in A are given by

SA3 = Ag3 JdPi(EPj) Tr(A,)(pl)A,(P 2)Ax(p3)) exp rrpr)3 2
x ((rlApr'LVrlVll 2 + AXprVVr2Vll3 + r 7VprAVr 3Vl 2 )(7101 }11 ' 011 01 011

+ Pr V1PsV01 PtAV t13). (2.64)

To compare with the Yang-Mills action we perform a Fourier transform and use the

properties of the Neumann coefficients to combine similar terms. We then get

SA3 = -ifg /dx Tr11 v01Lv (ajAV[A, AV)

+ 3(Vo ) + (Vl2) , aA,a1 0aVA,) (2.65)

where, following the notation introduced in (2.36), we have

Al = exp(-_2O lOl 2 )A ,. (2.66)
2,0
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To reproduce the cubic terms in the Yang-Mills action, we are interested in the

terms in (2.65) of order A 3. The remaining terms and the terms coming from the

expansion of the exponential of derivatives contribute to higher-order terms in the

effective action, which we discuss later. The cubic terms in the action involving the

a field are

SAQ2 = -igVrl2 \ (Xo2) 2 dx Tr(AH [&a,, &]), (2.67)

SA2 = o3 = 0.

SA2,, vanishes because Xl = 0, and S,3 is zero because [a,a] = 0. After a is

eliminated using its equation of motion, (2.67) first contributes terms at order 03 A3.

The first line of (2.65) contributes to the cubic piece of the F2 term. Substituting

the explicit values of the Neumann coefficients:

V0l0
1 = -log(27/16), VA2 = 16/27, (2.68)

V0112 = -2x/2/3v, X01 = 4/(3v'3).

we write the lowest-derivative term of (2.65) as

AS1] =i ddxTr (,,A,[Al, A']) . (2.69)

We can now predict the value of the quartic amplitude at zero momentum. From

(2.60) and (2.69) we see that the Yang-Mills constant is related to the SFT coupling

constant by

gYM = 1 (2.70)

This is the same relation between the gauge boson and tachyon couplings as the one

given in formula (6.5.14) of Polchinski [91]. We expect the nonderivative part of the

quartic term in the effective action to add to the quadratic and cubic terms to form
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the full Yang-Mills action, so that

S=t] YM [A,A , ]2 . (2.71)

2.4.3 Quartic terms

As we have just seen, to get the full Yang-Mills action the quartic terms in the effective

action at p = 0 must take the form (2.71). We write the nonderivative part of the

SFT quartic effective action as

S[4 = g2 dx y+T(AA) + .aTr[A,,A" (2.72)
J 4

We can use the method described in section 2.3.3 to numerically approximate the

coefficients y+ and -y_ in level truncation. In the limit L -+ oo we expect that y+ -+ 0

and that y- -+ gM/g 2 = 1/2. As follows from formula (2.56) and the comment

below it y± are given by:

+ = Af2 / erdr Det ) ( 1
( A21 B + + C

1)

y_ =J 2 j edT Det (I- B 1
' (2.73)

We have calculated these integrals including contributions from the first 100 levels.

We have found that as the level L increases the coefficients y+ and -y_ indeed con-

verge to their expected values2. The leading term in the deviation decays as 1/L as

expected. Figure 2-2 shows the graphs of y±(L) vs L.

Table 2.1 explicitly lists the results from the first 10 levels. At level 100 we get

a+ = 0.0037, -y_ = 0.4992 which is within 0.5% of the expected values. One can

improve precision even more by doing a least-squares fit of y±(L) with an expansion

in powers of 1/L with indeterminate coefficients. The contributions to 'y± from the

even and odd level fields are oscillatory. Thus, the fit for only even or only odd levels

2In [95] there is an analytic proof of this result
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Figure 2-2: Deviation of the coefficients of quartic terms in the effective action from the expected
values, as a function of the level of truncation L. The coefficient -y+ is shown with crosses and
y- 1/2 is shown with stars. The curves given by fitting with a power series in 1/L are graphed in
both cases.

Level 7+ (n) y-(n) y(n) -
0 -0.844 0 -0.500
2 -0.200 0.592 0.092
3 -0.200 0.417 -0.083
4 -0.097 0.504 0.004
5 -0.097 0.468 -0.032
6 -0.063 0.495 -0.005
7 -0.063 0.483 -0.017
8 -0.047 0.494 -0.006
9 -0.047 0.487 -0.013
10 -0.037 0.494 -0.006

Table 2.1: Coefficients of the constant quartic terms in the action for the first 10 levels.
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works much better. The least-squares fit for the last 25 even levels gives

+(L) 0.35807 0.0091 1.6 15
%y(L) ~ -5 -10- s - LT3 + -L L3 L4

1 1-8 0.0795838 0.1212 1.02 1.24
-2(L) - 2 -10 -8 - - - - +'" (2.74)
2 L L3 L4

We see that when L -+ oo the fitted values of -y± are in agreement with the Yang-Mills

quartic term to 7 digits of precision3 .

The calculations we have described so far provide convincing evidence that the

SFT effective action for A, reproduces the nonabelian Yang-Mills action. This is en-

couraging in several respects. First, it shows that our method of computing Feynman

diagrams in SFT is working well. Second, the agreement with on-shell calculations is

another direct confirmation that cubic SFT provides a correct off-shell generalization

of bosonic string theory. Third, it encourages us to extend these calculations further

to get more information about the full effective action of A,.

2.5 The abelian Born-Infeld action

In this section we consider the abelian theory, and compute terms in the effective

action which go beyond the leading Yang-Mills action computed in the previous sec-

tion. As discussed in Section 2.3, we expect that the effective vector field theory

computed from string field theory should be equivalent under a field redefinition to a

theory whose leading terms at each order in A take the Born-Infeld form (2.26). In

this section we give evidence that this is indeed the case. In the abelian theory, the

terms at order A3 vanish identically, so the quartic terms are the first ones of interest

beyond the quadratic Yang-Mills action. In subsection 2.5.1 we use our results on

the general quartic term from 2.3.2 to explicitly compute the terms in the effective

action at order 02A4 . We find that these terms are nonvanishing. We find, however,

3Note that in [96], an earlier attempt was made to calculate the coefficients 7y+ from SFT. The
results in that paper are incorrect; the error made there was that odd-level fields, which do not
contribute in the abelian action due to twist symmetry, were neglected. As these fields do contribute
in the nonabelian theory, the result for - obtained in [96] had the wrong numerical value. Our
calculation here automatically includes odd-level fields, and reproduces correctly the expected value.

44

_.__ I



that the gauge invariance of the effective action constrains the terms at this order to

live on a one-parameter family of terms related through field redefinitions, and that

the terms we find are generated from the Yang-Mills terms F2 with an appropriate

field redefinition. We discuss general issues of field redefinition and gauge invariance

in subsection 2.5.2; this discussion gives us a framework with which to analyze more

complicated terms in the effective action. In subsection 2.5.3 we analyze terms of the

form d4A 4, and show that these terms indeed take the form predicted by the Born-

Infeld action after the appropriate field redefinition. In subsection 2.5.4 we consider

higher-order terms with no derivatives, and give evidence that terms of order (A A) n

vanish up to n = 5 in the string field theory effective action.

2.5.1 Terms of the form 02A4

In the abelian theory, all terms in the Born-Infeld action have the same number of

fields and derivatives. If we assume that the effective action for AI calculated in SFT

directly matches the Born-Infeld action (plus higher-order derivative corrections) we

would expect the 02 A4 terms in the expansion of the effective action to vanish. The

most general form of the quartic terms with two derivatives is parameterized as 4

SA4 = g2 J d26 x(clAA ,Ao9,Av + c2AIAV,&A + c3AAaOAa'1AA

+ c4A,AvOVA,,O"AA + c5A,,A,AdOO'A ' + c6A,A ,AVOvA'). (2.75)

When o is eliminated from the massless effective action S using the equation of

motion, we might then expect that all coefficients cn in the resulting action (2.75)

should vanish. Let us now compute these terms explicitly. From (2.62) and (2.67)

we see that the equation of motion for o in the effective theory of the massless fields

4Recall that in section 2.3.1 we fixed the integration by parts freedom by integrating by parts all
terms with 92 Ax and a * A. Formula (2.75) gives the most general combination of terms with four
A's and two derivatives that do not have 82Ax and a . A.
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reads (in the abelian theory)

1
= a'A, + O((A, a)3). (2.76)

The coefficients c1 ,..., c 6 thus get contributions from the two-derivative term of

(2.52), the one-derivative term of (2.54) and the zero-derivative term of (2.55). We

first consider the contribution from the four-gauge boson amplitude (2.52). All the

expressions for these contributions, which we denote (6 ci)A4, are of the form

(Jci)A4 = 2X2 0 dre' Det (1) P,2A4,i(A, B, C). (2.77)

Here PO2A4,i are polynomials in the elements of the matrices A, B and C which were

defined in (2.49). It is straightforward to derive expressions for the polynomials P82A4,i

from (2.52) and (2.53), so we just give the result here

P82A4,1 - -2(AlAoo + B21 Boo + Boo + CCoo),

P2A4,2 = -2 (A21 (Boo + Coo)+ B 1 (A0 o + Co + C2
1(Aoo + Boo)),

P02A4,3 = 2(A 1 (Bo0 + C120) - B1 (A2o + C20) + C11(A 20 + B 0)), (2.78)

P92A4,4 = 4(AulAlo(Blo + Clo) - BllB1 o(Ao + C10) + C11C1o(A10 + Bo1 )),

P92A4,5 = 4(A 1BloClo - B 11A 1oC1o + C11AloB 1o),

P82A4,6 = 2(A11A 0 - B1 2Bo + C11C20).

The terms in the effective action S which contain a's and contribute to S[A] at order

02A4 can similarly be computed from (2.54) and (2.55) and are given by

[1]3 + S[A2 = 2 Jd26x (oaA,AvOY,Av + a2iaA ,AA' + a3aAAI) (2.79)
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where the coefficients ai are given by

POaA3,1 = 4Q" (A1 (Bo1 + C1 0) - B1 1(Alo + C10) + Cll(Blo + A 1o)),

PaA3, = 4Q1 (AuA1 o - B11B1o + CllC 1o), (2.80)

PA,2A2 = 2((Q (Q)2)Al- ((Q)- (Q3) 2 )BI 1 + ((Qll) 2 - (Ql 2)C)¢.

Computation of the integrals up to level 100 and using a least-squares fit gives us

(6C1)A4 -- 2.1513026, (6C4)A4 , 0.9132288, al -0.4673613,

(6C2)A4 M -4.3026050, (5 C5)A4 - -2.0134501, a2 ~ 0.2171165, (2.81)

( 6C3)A4 . -2.0134501, (6 C6)A4 1.4633393, aS3 1.6829758.

Elimination of o with (2.76) gives

cl -2.1513026, c4 4.302605,

c2 -4.302605, C5 ~ 0, (2.82)

C3 0, c6 2.1513026.

These coefficients are not zero, so that the SFT effective action does not reproduce the

abelian Born-Infeld action in a straightforward manner. Thus, we need to consider a

field redefinition to put the effective action into the usual Born-Infeld form. To under-

stand how this field redefinition works, it is useful to study the gauge transformation

in the effective theory. Without directly computing this gauge transformation, we

can write the general form that the transformation must take; the leading terms can

be parameterized as

5A = 0,A + gM(,qA 2 A + .2Av.AVA'

+ 3A,,"AAA + 4Ao. AA + A5A,Aa"A) + O( 3A2 A). (2.83)

The action (2.75) must be invariant under this gauge transformation. This gauge
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invariance imposes a number of a priori restrictions on the coefficients ci, qi. When we

vary the F2 term in the effective action (2.60) the nonlinear part of (2.83) generates

3 A3A terms. Gauge invariance requires that these terms cancel the terms arising

from the linear gauge transformation of the 02A4 terms in (2.75). This cancellation

gives homogeneous linear equations for the parameters ci and i. The general solution

of these equations depends on one free parameter y:

C1 = -C6 = -7, 1 = -7,

C2 - C4 = -27, = -2y, (2.84)

C3 = C = 0, 2 = 3 = 4 = 0.

The coefficients ci calculated above satisfy these relations to 7 digits of precision.

From the numerical values of the ci's, we find

y 2.1513026 i 0.0000005. (2.85)

We have thus found that the 02A 4 terms in the effective vector field action derived

from SFT lie on a one-parameter family of possible combinations of terms which have a

gauge invariance of the desired form. We can identify the degree of freedom associated

with this parameter as arising from the existence of a family of field transformations

with nontrivial terms at order A3

A, = A, + g2yA 2A,, (2.86)

We can use this field redefinition to relate a field A with the standard gauge trans-

formation 6A, = OA to a field A transforming under (2.83) with q and 7 satisfying
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(2.84). Indeed, plugging this change of variables into

JAM= A, (2.87)

SBI = J dxF2O(F3).

gives (2.83) and (2.75) with ci, i satisfying (2.84).

We have thus found that nonvanishing 02A4 terms arise in the vector field effective

action derived from SFT, but that these terms can be removed by a field redefinition.

We would like to emphasize that the logic of this subsection relies upon using the fact

that the effective vector field theory has a gauge invariance. The existence of this

invariance constrains the action sufficiently that we can identify a field redefinition

that puts the gauge transformation into standard form, without knowing in advance

the explicit form of the gauge invariance in the effective theory. Knowing the field

redefinition, however, in turn allows us to identify this gauge invariance explicitly.

This interplay between field redefinitions and gauge invariance plays a key role in

understanding higher-order terms in the effective action, which we explore further in

the following subsection.

2.5.2 Gauge invariance and field redefinitions

In this subsection we discuss some aspects of the ideas of gauge invariance and field

redefinitions in more detail. In the previous subsection, we determined a piece of the

field redefinition relating the vector field A in the effective action derived from string

field theory to the gauge field A in the Born-Infeld action by using the existence of

a gauge invariance in the effective theory. The rationale for the existence of the field

transformation from A to A can be understood based on the general theorem of the

rigidity of the Yang-Mills gauge transformation [82, 97]. This theorem states that any

deformation of the Yang-Mills gauge invariance can be mapped to the standard gauge

invariance through a field redefinition. At the classical level this field redefinition can
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be expressed as

AH = A,(A),

= A(A, A). (2.88)

This theorem explains, for example, why noncommutative Yang-Mills theory, which

has a complicated gauge invariance involving the noncommutative star product, can

be mapped through the Seiberg-Witten map (field redefinition) to a gauge theory

written in terms of a gauge field with standard transformation rules [12, 98]. Since

in string field theory the parameter a' (which we have set to unity) parameterizes

the deformation of the standard gauge transformation of A,, the theorem states that

some field redefinition exists which takes the effective vector field theory arising from

SFT to a theory which can be written in terms of the field strength F,v and covariant

derivative D, of a gauge field A, with the standard transformation rule5 .

There are two ways in which we can make use of this theorem. Given the explicit

expression for the effective action from SFT, one can assume that such a transforma-

tion exists, write the most general covariant action at the order of interest, and find a

field redefinition which takes this to the effective action computed in SFT. Applying

this approach, for example, to the 02A4 terms discussed in the previous subsection,

we would start with the covariant action F2, multiplied by an unknown overall co-

efficient C, write the field redefinition (2.86) in terms of the unknown 7, plug in the

field redefinition, and match with the effective action (2.75), which would allow us to

fix y and ¢ = -1/4.

A more direct approach can be used when we have an explicit expression for the

gauge invariance of the effective theory. In this case we can simply try to construct

a field redefinition which relates this invariance to the usual Yang-Mills gauge in-

variance. When finding the field redefinition relating the deformed and undeformed

theories, however, a further subtlety arises, which was previously encountered in re-

lated situations [14, 15]. Namely, there exists for any theory a class of trivial gauge

5In odd dimensions there would also be a possibility of Chern-Simons terms
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invariances. Consider a theory with fields Xi and action S(0i). This theory has trivial

gauge transformations of the form

we = -/i. In ed (2.89)

where ,ij = -ji. Indeed, the variation of the action under this transformation is

6S = =ij , , = O. These transformations are called trivial because they do not cor-

respond to a constraint in the Hamiltonian picture. The conserved charges associated

with trivial transformations are identically zero. In comparing the gauge invariance

of the effective action S[A] to that of the Born-Infeld action, we need to keep in mind

the possibility that the gauge invariances are not necessarily simply related by a field

redefinition, but that the invariance of the effective theory may include additional

terms of the form (2.89). In considering this possibility, we can make use of a theo-

rem (theorem 3.1 of [99]), which states that under suitable regularity assumptions on

the functions 5s any gauge transformation that vanishes on shell can be written in

the form (2.89). Thus, when identifying the field redefinition transforming the effec-

tive vector field A to the gauge field A, we allow for the possible addition of trivial

terms.

The benefit of the first method described above for determining the field redefi-

nition is that we do not need to know the explicit form of the gauge transformation.

Once the field redefinition is known we can find the gauge transformation law in the

effective theory of As up to trivial terms by plugging the field redefinition into the

standard gauge transformation law of AA,. In the explicit example of 02A4 terms

considered in the previous subsection we determined that the gauge transformation

of the vector field A, is given by

6A, = A- gyMy(A 2 ,A - 2A,,A,OaA) (2.90)

plus possible trivial terms which we did not consider. We have found the numerical

value of -y in (2.85). If we had been able to directly compute this gauge transformation

law, finding the field redefinition (2.86) would have been trivial. Unfortunately, as

51



we shall see in a moment, the procedure for computing the higher-order terms in the

gauge invariance of the effective theory is complicated to implement, which makes

the second method less practical in general for determining the field redefinition. We

can, however, at least compute the terms in the gauge invariance which are of order

AA directly from the definition (2.5). Thus, for these terms the second method just

outlined for computing the field redefinition can be used. We use this method in

section 2.6.1 to compute the field redefinition including terms at order 1A2 and 82A

in the nonabelian theory.

Let us note that the field redefinition that makes the gauge transformation stan-

dard is not unique. There is a class of field redefinitions that preserves the gauge

structure and mass-shell condition

A,= A, + T, (F) + Dj (A),

' = A + d¢(.au). (2.91)

In this field redefinition T,, (F) depends on A,, only through the covariant field strength

and its covariant derivatives. The term ¢ is a trivial (pure gauge) field redefinition,

which is essentially a gauge transformation with parameter (A). The resulting am-

biguity in the effective Lagrangian has a field theory interpretation based on the

equivalence theorem [100]. According to this theorem, different Lagrangians give the

same S-matrix elements if they are related by a change of variables in which both

fields have the same gauge variation and satisfy the same mass-shell condition.

Let us now describe briefly how the different forms of gauge invariance arise in the

world-sheet and string field theory approaches to computing the vector field action.

We primarily carry out this discussion in the context of the abelian theory, although

similar arguments can be made in the nonabelian case. In a world-sheet sigma model

calculation one introduces the boundary interaction term

J A dX dT. (2.92)
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This term is explicitly invariant under

A, I Al, + ,A. (2.93)

Provided that one can find a systematic method of calculation that respects this

gauge invariance, the resulting effective action will possess this gauge invariance as

well. This is the reason calculations such as those in [11, 16] give an effective action

with the usual gauge invariance.

In the cubic SFT calculation, on the other hand, the gauge invariance is much more

complicated. The original theory has an infinite number of gauge invariances, given by

(2.5). We have fixed all but one of these gauge symmetries; the remaining symmetry

comes from a gauge transformation that may change the field a, but which keeps all

other auxiliary fields at zero. A direct construction of this gauge transformation in

the effective theory of A, is rather complicated, but can be described perturbatively

in three steps:

1. Make an SFT gauge transformation (in the full theory with an infinite number

of fields) with the parameter

A') = A(x)b_ 10). (2.94)

This gauge transformation transforms a and A, as

6A, = ,A + igM(' '' ),

6a = V 2 A + igyM(.'''..), (2.95)

and transforms all fields in the theory in a computable fashion.

2. The gauge transformation A') takes us away from the gauge slice we have fixed

by generating fields associated with states containing co at all higher levels.

We now have to make a second gauge transformation with a parameter A"(A))

that will restore our gauge of choice. The order of magnitude of the auxiliary
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fields we have generated at higher levels is O(gA(I). Therefore IA"(A)) is of

order gA(D. Since we already used the gauge parameter at level zero, we will

choose A") to have nonvanishing components only for massive modes. Then

this gauge transformation does not change the massless fields linearly, so the

contribution to the gauge transformation at the massless level will be of order

O(g2A4 2). The gauge transformation generated by IA"(A)) can be computed as

a perturbative expansion in g. Combining this with our original gauge transfor-

mation generated by A') gives us a new gauge transformation which transforms

the massless fields linearly according to (2.95), but which also keeps us in our

chosen gauge slice.

3. In the third step we eliminate all the fields besides A, using the classical equa-

tions of motion. The SFT equations of motion are

QB I1) = -g(), IV3). (2.96)

The BRST operator preserves the level of fields; therefore, the solutions for

massive fields and a in terms of A, will be of the form

I,...,t,,~ = O(gA 2), (2.97)

a= v A + O(gA2 ) (2.98)

where /1b,, en is a generic massive field. Using these EOM to eliminate the

massive fields and a in the gauge transformation of A, will give terms of order

O(g2A 2).

To summarize, the gauge transformation in the effective theory for A, is of the

form

6A, = t, A + RI,(A, A), (2.99)

where R, is a specific function of A and A at order g2A2 A, which can in principle be
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computed using the method just described. In the nonabelian theory, there will also

be terms at order gAA arising directly from the original gauge transformation A);

these terms are less complicated and can be computed directly from the cubic string

field vertex.

In this subsection, we have discussed two approaches to computing the field re-

definition which takes us from the effective action S[A] to a covariant action written

in terms of the gauge field A, which should have the form of the Born-Infeld action

plus derivative corrections. In the following sections we use these two approaches to

check that various higher-order terms in the SFT effective action indeed agree with

known terms in the Born-Infeld action, in both the abelian and nonabelian theories.

2.5.3 Terms of the form 04A4

The goal of this subsection is to verify that after an appropriate field redefinition

the 04 A4 terms in the abelian effective action derived from SFT transform into the

F4 _ (/F2 )2 terms of the Born-Infeld action (including the correct constant factor of

(2'gr9yM)2 /8). To demonstrate this, we use the first method discussed in the previous

subsection. Since the total number of 04 A4 terms is large we restrict attention to a

subset of terms: namely those terms where indices on derivatives are all contracted

together. These terms are independent from other terms at the same order in the

effective action. By virtue of the equations of motion (2.76) the diagrams with a do

not contribute to these terms. This significant simplification is the reason why we

choose to concentrate on these terms. Although we only compute a subset of the

possible terms in the effective action, however, we find that these terms are sufficient

to fix both coefficients in the Born-Infeld action at order F4 .

The terms we are interested in have the general form

S.a)4 = 
2 J d26 ((A,\a1AA) 2 + d2,A aA AA,a"A'

+ d3AA,,,AAaA,a"A"A ' + d4a1A,\A&,AAAo.I"A"

+ d5AxAXa&A,,aOi"A + d6Ax,,AAA&"A). (2.100)
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The coefficients for these terms in the effective action are given by

d= 2 de T Det (1 ( )1 - V P' (A BC) (2.101)

with

p( 4 ) - p(4 )- A2 0 C2lC2 2
5- 11 00 = 11u00 + 11 00v

p(4) = p(4)= A1 2 + o +C 1 (A 0 + C00) + C+ (A + B )2 

P(4 = 4A 1 Aoo (Boo + Coo) + 4B21 Boo (Aoo + Coo) + 4C2lCoo (Aoo + Boo), (2.102)

P(4 ) = 4A2B 00 C0oo + 4B 21AooCoo + 4C2lA ooB oo.

Computation of the integrals gives us

d1 = d5 W 3.14707539, d3 M 18.51562023,

d2 = d6 M 2.96365920, d4 0.99251621. (2.103)

To match these coefficients with the BI action we need to write the general field

redefinition to order 2A 3 (again, keeping only terms with all derivatives contracted)

A, = A, + g2(yA2A, + alA,,AO2A + a2A2 2A,

+ a3A,xA,XAA ' + a4AxAA,a'AA'). (2.104)

Using the general theorem quoted in the previous subsection, we know that there is a

field redefinition relating the action containing the terms (2.100) to a covariant action

written in terms of a conventional field strength F. The coefficients of F2 and F3 are

already fixed, so the most generic action up to F4 is

Tr dx(-F2 + g2 (aF4 + b(F2)2) + O((6)). (2.105)

We plug the change of variables (2.104) into this equation and collect d4A 4 terms
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with derivatives contracted together:

2 J| d26r((ai - a3 + 4b)(9AAAA) 2

+ (al + 2a02 - Oe4 + 2a)d,AxAOvAXA&Ac,OvAa

+ (4ac1 + 4a2 - 2 3 - ac4)AA AadOpAaOIvA

+ (2a1 + 2a 2 - a4),9,AAaOAAAA"AA

+ a2AAA AaOvAaO'O9A + alA, OOvAAAlDaOtvAO).

(2.106)

The assumption that (2.100) can be written as (2.106) translates into a system of

linear equations for a, b and l,... a4 with the right hand side given by dl,... d6.

This system is non-degenerate and has a unique solution

al = d6 2.9636592,

a 2 = d5 3.1470754,

Ca3 = (-d 3 + d4 + 2d5 + 2d6) ~ -2.6508174,
2

a 4 - -d 4 + 2d5 + 2d6 ~ 11.2289530, (2.107)

1
a = (d 2 - d4 + d6) ~ 2.4674011,

2

b = I(2dl - d3 + d4 + 2d5) ~ -0.6168503.
8

This determines the coefficients a and b in the effective action (2.105) to 8 digits of

precision. These values agree precisely with those that we expect from the Born-Infeld

action, which are given by

2

a = -- 2.4674011,

b =-0.6168502. (2.108)2
b = 16 -0.6168502. (2.108)

Thus, we see that after a field redefinition, the effective vector theory derived from

string field theory agrees with Born-Infeld to order F4 , and correctly fixes the coeffi-
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cients of both terms at that order. This calculation could in principle be continued

to compute higher-derivative corrections to the Born-Infeld action of the form 06A4

and higher, but we do not pursue such calculations further here.

Note that, assuming we know that the Born-Infeld action takes the form

SBI = -T dx-det (rv+T 2 Fv). (2.109)

with undetermined D-brane tension, we can fix T = 1/(27ra'gyM)2 from the coeffi-

cients at F2 and F4 . We may thus think of the calculations done so far as providing

another way to determine the D-brane tension from SFT.

2.5.4 Terms of the form A2,

In the preceding discussion we have focused on terms in the effective action which

are at most quartic in the vector field A,. It is clearly of interest to extend this

discussion to terms of higher order in A. A complete analysis of higher-order terms,

including all momentum dependence, involves considerable additional computation.

We have initiated analysis of higher-order terms by considering the simplest class of

such terms: those with no momentum dependence. As for the quartic terms of the

form (APA) 2 discussed in Section 4.2, we expect that all terms in the effective action

of the form

(AIA,) (2.110)

should vanish identically when all diagrams are considered. In this subsection we

consider terms of the form (2.110). We find good numerical evidence that these

terms indeed vanish, up to terms of the form A10 .

In Section 4.2 we found strong numerical evidence that the term (2.110) vanishes

for n = 2 by showing that the coefficient + in (2.72) approaches 0 in the level-

truncation approximation. This A4 term involves only one possible diagram. As n

increases, the number of diagrams involved in computing A2n increases exponentially,

and the complexity of each diagram also increases, so that the primary method used
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in this paper becomes difficult to implement. To study the terms (2.110) we have

used a somewhat different method, in which we directly truncate the theory by only

including fields up to a fixed total oscillator level, and then computing the cubic terms

for each of the fields below the desired level. This was the original method of level

truncation used in [92] to compute the tachyon 4-point function, and in later work

[93, 94] on level truncation on the problem of tachyon condensation. As discussed

in Section 3.3, the method we are using for explicitly calculating the quartic terms

in the action involves truncating on the level of the intermediate state in the 4-point

diagram, so that the two methods give the same answers. While level truncation on

oscillators is very efficient for computing low-order diagrams at high level, however,

level truncation on fields is more efficient for computing high-order diagrams at low

level.

In [94], a recursive approach was used to calculate coefficients of d'n in the effective

tachyon potential from string field theory using level truncation on fields. Given a

cubic potential

V = dij' i/j + E gtijk /i'j'/k (2.111)
i,j i,j,k

for a finite number of fields i, i = 1,..., N at p = 0, the effective action for a = bl

when all other fields are integrated out is given by

00 1
Vef(a) = v n-l (2112)

n=2

where v represents the summation over all graphs with n external a edges and a

single external i, with no internal a's. The v's satisfy the recursion relations

v1 = 61
n-

n 2 E dij tjkl VmVnm (2.113)
m=l
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where dij is the inverse matrix to dij and

i , i = 1 and n > 1
vn = { (2.114)

Vn , otherwise

has been defined to project out internal a edges.

We have used these relations to compute the effective action for A, at p = 0. We

computed all quadratic and cubic interactions between fields up to level 8 associated

with states which are scalars in 25 of the space-time dimensions and which include an

arbitrary number of matter oscillators a2_5. Plugging the resulting quadratic and cubic

coefficients into the recursion relations (2.113) allows us to compute the coefficients

c2n = v2n_l/2n in the effective action for the gauge field A,

00

E-c2fng(AA)n (2.115)
n=l

for small values of n . We have computed these coefficients up to n = 7 at different

levels of field truncation up to L = 8. The results of this computation are given in

Table 2.2 up to n = 5, including the predicted value at L = oo from a 1/L fit to the

data at levels 2, 4, 6 and 8. The results in Table 2.2 indicate that, as expected, all

ILevel c4 C6 ]cs8 c1O 

2 0.200 1.883 6.954 28.65
4 0.097 1.029 6.542 37.49
6 0.063 0.689 5.287 37.62
8 0.046 0.517 4.325 34.18

00o 0.001 1 0.014 J -0.229 f 1.959]

Table 2.2: Coefficients of A2" at various levels of truncation

coefficients c2n will vanish when the level is taken to infinity. The initial contribution

at level 2 is canceled to within 0.6% for terms A4 , within 0.8% for terms A6, within

4% for terms A8, and within 7% for terms A10. It is an impressive success of the

level-truncation method that for c1o, the cancellation predicted by the 1/L expansion

is so good, given that the coefficients computed in level truncation increase until level
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L = 8. We have also computed the coefficients for larger values of n, but for n > 5

the numerics are less compelling. Indeed, the approximations to the coefficients c12

and beyond continue to grow up to level 8. We expect that a good prediction of the

cancellation of these higher-order terms would require going to higher level.

The results found here indicate that the method of level truncation in string field

theory seems robust enough to correctly compute higher-order terms in the vector

field effective action. Computing terms with derivatives at order A6 and beyond

would require some additional work, but it seems that a reasonably efficient computer

program should be able to do quite well at computing these terms, even to fairly high

powers of A.

2.6 The nonabelian Born-Infeld action

We now consider the theory with a nonabelian gauge group. As we discussed in

section 2.2.3, the first term beyond the Yang-Mills action in the nonabelian analogue

of the Born-Infeld action has the form Tr F3 . As in the previous section, we expect

that a field redefinition is necessary to get this term from the effective nonabelian

vector field theory derived from SFT. In this section we compute the terms in the

effective vector field theory to orders 3A3 and 02 A4, and we verify that after a field

redefinition these terms reproduce the corresponding pieces of the F3 term, with the

correct coefficients. In section 2.6.1 we analyze 03A3 terms, and in subsection 2.6.2

we consider the 02A4 terms.

2.6.1 0 3A3 terms

In section 2.4.2 we showed that the terms of the form A3 in the nonabelian SFT

effective action for A contribute to the F2 term after a field redefinition. We now

consider terms at order 03 A3 . Recall from (2.65) and (2.67) that the full effective
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action for a and A at this order is given by

S(A+,)3 [A, oa] = igyM dx Tr (6 (xA aA-AA- aAA va,,A)

-o,~i.A, ai] + il, O'AjI] + A' [o,,; ) (2.16)

where A, = exp(-V 1O1 2 )A, and similarly for &. After eliminating a from (2.116)

using the equation of motion obtained from (2.61) and integrating by parts to remove

terms containing OA, we find that the complete set of terms at order 93A3 is given

by

s[3 [A] = i9YM J dx Tr ( (aOAAL,,AAvAA -O aOAaAvOA x)

2V 1 ( ,Ava[At, Av] + 1,Av [92Am, A"] + i,Av[Am, A"])). (2.117)

Note that unlike the quartic terms in A, our expressions for these terms are exact.

Let us now consider the possible terms that we can get after the field redefinition

to the field A with standard gauge transformation rules. Following the analysis of

[90], we write the most general covariant action to order F3 (keeping D at order F1/2

as discussed above)

-. P2 + igyMaF3 + Xbapa tl )V + 0(F4), (2.118)
4

where

D, = , - igyM[A, ,. ]. (2.119)

The action (2.118) is not invariant under field redefinitions which keep the gauge

invariance unchanged. Under the field redefinition

A' = A, + vDF"7. (2.120)A~~~~~~M
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we have

a' = a,

X' = X - v. (2.121)

Thus, the coefficient a is defined unambiguously, while X can be set to any chosen

value by a field redefinition.

Just as we have an exact formula for the cubic terms in the SFT action, we can

also compute the gauge transformation rule exactly to quadratic order in A using

(2.5). After some calculation, we find that the gauge variation for A, to order A 2A is

given by (before integrating out a)

6A, = IA - igyM ([A,, A], - [A, O"A] + [AV, O,A],+

-[DB, A]*--[B,OjA]*). (2.122)

where B = a - !O,,AM as in section 2.4.1. The commutators are taken with respect

to the product

f(x) * g(x) = f(x)e-voo1 (2+t+'2)g(x). (2.123)

The equation of motion for a at leading order is simply B = 0. Eliminating a we

therefore have

A = ,A - igyM ([A,, A] + [A, ,A>,] + [AV, a0aA],*). (2.124)

We are interested in considering the terms at order a2AA in this gauge variation.

Recall that in section 2.5.2 we observed that the gauge transformation may include

extra trivial terms which vanish on shell. Since the leading term in the equation of

motion for A arises at order 92A, it is possible that (2.124) may contain a term of

the form

6A, = p [A, 82At, - , A] + O(AA2) (2.125)
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in addition to a part which can be transformed into the standard nonabelian gauge

variation through a field redefinition. Thus, we wish to consider the one-parameter

family of gauge transformations

6A = a,A - igyM([A,, A] - Vol[ 2A,, A]

- VO'Ol[dvA, OVA] - Vol'o[A, 02 ] + p [, a
2 A - * O. A] + O(AA 2, Ad 4A)), (2.126)

where p is an as-yet undetermined constant. We now need to show, following the

second method discussed in subsection 2.5.2, that there exists a field redefinition which

takes a field A with action (2.117) and a gauge transformation of the form (2.126) to

a gauge field A with an action of the form (2.118) and the standard nonabelian gauge

transformation rule.

The leading terms in the field redefinition can be parameterized as

A = A, + va 9t A + v 292A, + igyM(v 3 [A, 9,A] + v4[A,,, a . A] + v[OaA, A']),

A = A + v 6 92A + igYM(v7[9 . A, A] + vs[Ao, aA]). (2.127)

The coefficient vl can be chosen arbitrarily through a gauge transformation, so we

simply choose vl = -v 2 . The requirement that the RHS of (2.127) varied with (2.126)

and rewritten in terms of A, A gives the standard transformation law for A, A up to

terms of order O(A 2 ) gives a system of linear equations with solutions depending

on one free parameter v.

V2 = -V1 V, p= o01o

V3 = 1- oo + v, V6 = 0,

V4 = -V01 lo + v, v7 = V0101, (2.128)

v5 = -V,11 + 2v, v8 = 1VO 

It is easy to see that the parameter v generates the field redefinition (2.120). For
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simplicity, we set v = 0. The field redefinition is then given by

A= A- igYM ((Vo - 1)[A,,O ,Aa ] + Volo [A,,O 9 A] + Vo[ol[aA,,A]) . (2.129)

We can now plug in the field redefinition (2.129) into the action (2.118) and compare

with the a3A3 term in the SFT effective action (2.117). We find agreement when the

coefficients in (2.118) are given by

2
a -= X = 0. (2.130)

Thus, we have shown that the terms of order 03A3 in the effective nonabelian vector

field action derived from SFT are in complete agreement with the first nontrivial term

in the nonabelian analogue of the Born-Infeld theory, including the overall constant.

Note that while the coefficient of a agrees with that in (2.28), the condition X = 0

followed directly from our choice v = 0; other choices of v would lead to other values

of X, which would be equivalent under the field redefinition (2.120).

2.6.2 2A4 terms

In the abelian theory, the 02A 4 terms disappear after the field redefinition. In the

nonabelian case, however, the term proportional to F3 contains terms of the form

02A4. In this subsection, we show that these terms are correctly reproduced by

string field theory after the appropriate field redefinition. Just as in section 2.5.3,

for simplicity we shall concentrate on the 02A4 terms where the Lorentz indices on

derivatives are contracted together.

The terms of interest in the effective nonabelian vector field action can be written

in the form

S[ 2] = d26x (fieaAPAaOAAV + f2 AA + 
+ f4 Il ALaAA'"Av aAv + f+Af6 aAA A,,) (2.131),

+ f4a,,,9A'A,Av + f.50,A9,AaOA,,At'A + f6a,,A,,A,.Av (2.131)
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where the coefficients fi will be determined below. The coefficients of the terms in

the field redefinition which are linear and quadratic in A were fixed in the previous

subsection. The relevant terms in the field redefinition for computing the terms we

are interested in here are generic terms of order A3 with no derivatives, as well as

those from (2.129) that do not have i,'s contracted with A,'s. Keeping only these

terms we can parametrize the field redefinition as

A, = Al, + igyM(1 V 2 )[A , ,A] + gyM (plAA,A +p 2A2A ,+p 3AA 2). (2.132)

In the abelian case this formula reduces to (2.86) with pi + P2 + p3 = 2y. Plugging

this field redefinition into the action

SA = r E 4 + 3 gyf3 + (F4)) (2.133)

and collecting d2A4 terms with indices on derivatives contracted together we get

gYM Jdx [(Vo1 - - p3),,A,AaA,,A v - (P2 + P3 + Volol),AAA vA voAA
1

+ (Voll - 1 - p2)A,a'aAAvO"Av - (P2 + p3)O,A,daoA"AvAv
2

+ (2- 2pl),A,9aA"A v - pi,AA,,AAA,,]. (2.134)

Comparing (2.134) and (2.131) we can write the unknown coefficients in the field

redefinition in terms of the fi's through

1
P = -f6, P2 = P3 f4. (2.135)

We also find a set of constraints on the fi's which we expect the values computed

from the SFT calculation to satisfy, namely

fl - f4 = -1 + o, 0 f2 - f4 = -V01, f5 - 2f6 = 2. (2.136)
2 2
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On the string field theory side the coefficients fi are given by

i A 2 d're' Det (( 2)3) Po2A4,i(A, B, C) (2.137)

where, in complete analogy with the previous examples, the polynomials Pa2A4,i de-

rived from (2.52) and (2.53) have the form

PO2A4,1 = -2(A21Boo + C 1 Boo),

Po2A4,2 =-4(A21Coo + C121 Aoo),

P2A4,3 = -2(A2 1 Boo + C 1 Boo),,3 1 U00T 11 o

P92A4,4 -4 (A211Aoo + C2
1 oo00),

P02A4,5 = -4B 1l (Aoo + Coo),

P02A4,6 = -4B 1Boo.

Numerical computation of the integrals gives

fi ~ -2.2827697,

f2 ~ -1.5190433,

f3 M -2.2827697,

f4 -2.0422916,

f5 -2.5206270,

f6 M -2.2603135.

As one can easily check, the relations (2.136) are satisfied with high accuracy. This

verifies that the 02A4 terms we have computed in the effective vector field action are

in agreement with the F3 term in the nonabelian analogue of the Born-Infeld action.

2.7 Summary

In this section we have computed the effective action for the massless open string

vector field by integrating out all other fields in Witten's cubic open bosonic string

field theory. We have calculated the leading terms in the off-shell action S[A] for the

massless vector field A,, which we have transformed using a field redefinition into an

action S[A] for a gauge field A which transforms under the standard gauge transfor-

mation rules. For the abelian theory, we have shown that the resulting action agrees

with the Born-Infeld action to order F4, and that zero-momentum terms vanish to
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order A10. For the nonabelian theory, we have shown agreement with the nonabelian

effective vector field action previously computed by world-sheet methods to order F3 .

These results demonstrate that string field theory provides a systematic approach to

computing the effective action for massless string fields. In principle, the calculation

in this paper could be continued to determine higher-derivative corrections to the

abelian Born-Infeld action and higher-order terms in the nonabelian theory.

As we have seen in this section, comparing the string field theory effective action to

the effective gauge theory action computed using world-sheet methods is complicated

by the fact that the fields defined in SFT are related through a nontrivial field redef-

inition to the fields defined through world-sheet methods. In particular, the massless

vector field in SFT has a nonstandard gauge invariance, which is only related to

the usual Yang-Mills gauge invariance through a complicated field redefinition. This

is a similar situation to that encountered in noncommutative gauge theories, where

the gauge field in the noncommutative theory-whose gauge transformation rule is

nonstandard and involves the noncommutative star product-is related to a gauge

field with conventional transformation rules through the Seiberg-Witten map. In the

case of noncommutative Yang-Mills theories, the structure of the field redefinition is

closely related to the structure of the gauge-invariant observables of the theory, which

in that case are given by open Wilson lines [101]. A related construction appeared

in [102], where a field redefinition was used to construct matrix objects transforming

naturally under the D4-brane gauge field in a matrix theory of DO-branes and D4-

branes. An important outstanding problem in string field theory is to attain a better

understanding of the observables of the theory (some progress in this direction was

made in [103, 104]). It seems likely that the problem of finding the field redefinition

between SFT and world-sheet fields is related to the problem of understanding the

proper observables for open string field theory.
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Chapter 3

Scattering amplitudes and effective

actions from the tachyon

non-linear -function

In this chapter, following the work with V. Forini, G. Grignani, M. Orselli and G.

Nardelli [105], we compute the non-linear tachyon ,i-function of the open bosonic

string theory at tree-level. We construct the Witten-Shatashvili (WS) space-time

effective action S and prove that it has a very simple universal form in terms of the

renormalized tachyon field.

3.1 Introduction

Considering the two-dimensional field theory on the world-sheet , by classical power-

counting the tachyon field T(X) has dimension one and is a relevant operator. If

T(X) is the only interaction, the field theory is perturbatively super-renormalizable.

If T(X) and the other fields are adjusted so that the sigma model that they define

is at an infrared fixed point of the renormalization group (RG), these background

fields are a solution of the classical equations of motion of string theory. The effective

action for a generic coupling constant gi (which is identified to any field corresponding

to on of the open bosonic string excitations) is related to the renormalized partition
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function of open string theory on the disk, Z(gi), through

S= (1_5 i 6 Z(gi) (3.1)

where pi is the beta-function' of the coupling gi. Note that (3.1) fixes the additive

ambiguity in S by requiring that at RG fixed points g*, in which Pi(g*) = 0,

S(g*) = Z(g*) . (3.2)

The derivative of the action S with respect to the coupling constant gi must be related

to the -function through a metric according to

OS
- -/3Gij(g) (3.3)

Gij should be a non-degenerate metric, otherwise there would be an extra zero which

could not be interpreted as a conformal field theory on the world sheet. Eq.(3.3)

indicates that the RG flow is actually a gradient flow. The prescription (3.1) provides

a definition of the metric Gij in the space of couplings.

The -functions appearing in (3.1) are in general non-linear functions of the cou-

plings gi. When the linear parts of the i (i.e the anomalous dimensions Ai of the

corresponding coupling) satisfy a so called "resonant condition", the non linear parts

of the P-function cannot be removed by a coordinate redefinition in the space of cou-

plings [22]. Such resonant condition is nothing but the mass-shell condition so that,

near the mass-shell, the P-functions are necessarily non-linear.

However, when the resonant condition does not hold, a possible choice of coordi-

nates on the space of string fields is one in which the P-functions are exactly linear.

This choice can always be made locally [24] and is well suited to studying processes

which are far off-shell, such as tachyon condensation. These coordinates, however,

become singular when the components of the string field (e.g. T(X), A,(X) etc.)

'In this paper the # function is positive for relevant perturbations. In some other papers on the
subject[24] the opposite conventions are used.
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go on-shell. These coordinates can be used to construct, for example, the tachyon

effective potential, but become singular when one tries to derive an effective action

which reproduces the on-shell amplitudes. In particular, if the Veneziano amplitude

needs to emerge from the tachyon effective action it is necessary to consider the whole

non-linear ,-function in (3.1). A complete renormalization of the theory in fact makes

the -function non-linear in T(X) [106] so that, since the vanishing of the /-function

is the field equation for T, these nonlinear terms describe tachyon scattering. One of

the goal of this paper is to construct non-linear expressions for the -functions which

are valid away from the RG fixed point. With these expressions for the non-linear

tachyon -function we shall construct the Witten-Shatashvili (WS) space-time action

(3.1). We shall prove that (3.1) has the following very simple form in the coupling

space coordinates in which the tachyon -function is non-linear

S=Kd26X [1-TR(X) + T(X)] ,(3.4)

where TR is the renormalized tachyon field and K is a constant related to the D25-

brane tension. This formula is universal as it does not depend on how many couplings

are switched on. Eq. (3.4) arises from the expression that links the renormalized

tachyon field to the partition function that appears in (3.1), namely Z = K f d26 X(1-

TR). TR is then a non-linear function of the bare coupling T and in these coordinates

the -function is non-linear. When couplings other than the tachyon are introduced

in Z, T will depend on them so that S will provide the space-time effective action

also for these couplings.

With this prescription we shall compute the non-linear -function /T for the

tachyon field up to the third order in powers of the field and to any order in derivatives

of the field. From this we shall show that the solutions of the RG fixed point equations

generate the three and four-point open bosonic string scattering amplitudes involving

tachyons. Then, with the same renormalization prescription, we shall compute PT to

the leading orders in derivatives but to any power of the tachyon field and we shall

show that S coincides with the one-found in [23, 24, 25]. Obviously, S up to the first

71



three powers of T and expanded to the leading order in powers of derivatives can be

obtained from both calculations and the results coincide.

In the case of profiles TR(k) that have support near the on-shell momentum k2 1

the equation pT(k) = 0 can be derived as the equation of motion of an action. We

shall show that this action coincides with the tachyon effective action computed, for

the almost on-shell profiles, form the cubic string field theory up to the fourth power

of the tachyon field.

The knowledge of the non-linear tachyon l-function is very important also for

another reason. The solutions of the equation PT = 0 give the conformal fixed points,

the backgrounds that are consistent with the string dynamics. In the case of slowly

varying tachyon profiles, we shall show that the equations of motion for the WS action

can be made identical to the RG fixed point equation 8T = 0. We shall find solutions

of this equation to which correspond a finite value of the WS action. Being solutions

of the RG equations, these solitons are lower dimensional D-branes for which the

finite value of S provides a quite accurate prediction of the D-brane tension.

We shall also show that the WS action constructed in terms of a linear P-function [107]

is related to the action (3.4) by a field redefinition, and that this field redefinition be-

comes singular on-shell. This is in agreement with the Poincare-Dulac theorem [108]

used in [22] to prove that when the resonant condition holds, namely near the on-

shellness, the P-function has to be non-linear.

3.2 Boundary string field theory

In Witten's construction of open boundary string field theory [19] the space of all

two dimensional worldsheet field theories on the unit disk, which are conformal in

the interior of the disk but have arbitrary boundary interactions, is described by the

world-sheet action

s=so±+1 drv (3.5)

where So is a free action describing an open plus closed conformal background and V

is a general perturbation defined on the disk boundary. We will discuss the twenty six

72

- ------



dimensional bosonic string, for which (3.5) can be expressed in terms of a derivative

expansion (or level expansion) of the form

V = T(X) + A,(X)9,XA + B,,(X)OX~AX + C,(X)X ' + ... (3.6)

Without the perturbation V the boundary conditions on X are OrXIr=li = 0, where

r is the radial variable on the disk.

V is a ghost number zero operator and it is useful to introduce a ghost number

one operator 0 via

V = b_10. (3.7)

We shall consider the simplest case in which ghosts decouple from matter so that, as

in (3.6), V is constructed out of matter fields alone

0 = cV . (3.8)

The space-time string field theory action S is defined through its derivative dS which

is a two point function computed with the worldsheet action (3.5). More generally

one can introduce some basis elements Vi for operators of ghost number 0 so that the

space of boundary perturbations V can be parametrized as

V = gii (3.9)
i

where the coefficients gi are couplings on the world-sheet theory, which are regarded

as fields from the space-time point of view, and 0 = Ei g'i. In this parametrization

the space-time action is defined through its derivatives with respect to the couplings

and has the form

9S K 2'r d 21rd -' (3.10)
Ogi = 2 2-- -,'

where Q is the BRST charge and the correlator is evaluated with the full perturbed

worldsheet action S.

73



If Vi is a conformal primary field of dimension Ai, for O's of the form (3.8), one

has

{Q, cVi} = (1 - /\i)ccVi, (3.11)

so that from (3.10) one gets

OS

gi = -(1 - Aj)gJGij (g) , (3.12)

where

Gij =2K s i sin2( 2 )(V(7) 2j(T))g (3.13)

Eq.(3.12) cannot be true in general, since it does not transform covariantly under

reparametrizations of the space of theories, g -+ fj(gi). Indeed, AiS and Gij trans-

form as tensors, (the latter is the metric on the space of worldsheet theories), but gi

does not.

The correct covariant generalization of (3.12) was given in [21, 22]. The worldsheet

RG defines a natural vector field on the space of theories: the -function i(g), which

transforms as a covariant vector under reparametrizations of gi. The covariant form of

(3.12) is thus (3.3). If we assume that total derivatives inside the correlation function

decouple and that there are no contact terms, it turns out that the -function in (3.1)

is the linear 1-function. This implies that the equations of motion derived from the

action (3.1) are just linear. However, as shown by Shatashvili [21, 22], contact terms

show up in the computation on the world-sheet and cannot be ignored. The point is

that the operator Q, which is constructed out of the BRST operator in the bulk and

should be independent on the couplings because the perturbation is on the boundary,

actually depends on the couplings when the contour integral approaches the boundary

of the disk. A way to fix the structure of the contact terms is to consider that, since

dS is a one-form, the derivative of dS should be zero independently of the choice of

the contact terms that one makes in the computation. This leads to the following
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formula for the vector field in equation (3.1)

pi = (1 - /A)gi + akgj9gk + )klgJgkg +. . .(3.14)

This is an expression for the p-function with all the non-linear terms. According to

the Poincare-Dulac Theorem about vector fields (whose relevance to the -function

related issues was stressed many times by Zamolodchikov [108]) every vector field

can be linearized by an appropriate redefinition of the coordinates up to the resonant

term. In the second order of equation (3.14) the resonance condition is given by

Aj + A k - Ai = 1 . (3.15)

The resonance condition means that the -function cannot be linearized by a coor-

dinate transformation and that all the non-linear terms cannot be removed from the

/3-function equation (3.14). When gi is the tachyon field T(k), the resonant condition

(3.15) corresponds to the mass-shell conditions for three tachyons. We shall prove

in what follows that the WS action S up to the third order in the tachyon fields,

constructed in terms of the linear -function [107], is related to the S made of a

non-linear -function by a field redefinition, but that this field redefinition becomes

singular on-shell.

3.3 Integration over the bulk variables

Let us now restrict ourselves to the specific example of open strings propagating in a

tachyon background. The partition function reads

Z = [dX'(a, r)]exp (-S[X]) , (3.16)

where the action is

sr[x] |drdi7xi.)ax*x(ia)+ , 2T) T(X('r) . (3.17)SIX]= dadr+oX(, aa.X(a, T)+ 2ir T(X317
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Here, the first term in (3.17) is the bulk action and is integrated over the volume

of the unit disk. The second term in (3.17) is integrated on the circle which is the

boundary of the unit disk and describes the interactions. The scalar fields X" have

D components with = 1, ..., D and we shall assume D = 26 in what follows for a

critical string. We are working in a system of units where a' = 1.

We begin with the observation that the bulk excitations can be integrated out of

(3.16) to get an effective non-local field theory which lives on the boundary [109]. To

do this we write the field in the bulk as [110]

X = Xc + Xqu ,

where

02x = 0

and Xj1 approaches the fixed (for now) boundary value of X,

Xd - Xbdry and Xqu - 0 .

Then, in the bulk, the functional measure is dX = dXqu and

S - a - Xqu' +f {1XIid.IXi + T(X) } (3.18)

where we omitted the cl index in the last integral. Then, the integration of Xq,

produces a multiplicative constant in the partition function - the partition function

of the Dirichlet string, which we shall denote K. The kinetic term in the boundary

action is non-local. The absolute value of the derivative operator is defined by the

Fourier transform,

1i6a a(T7 1) = E e'In(--Z')
n

The partition function of the boundary theory is then

Z(J) = K [dX,,]e- S 2r (Xl8IXP+T(x)-J.X) (3.19)
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where we have added a source J(T) so that the path integral can be used as a

generating functional for correlators of the fields X' restricted to the boundary. In

particular, this source will allow us to compute the correlation functions of vertex

operators of open string degrees of freedom. The remaining path integral over the

boundary X"(-r) defines a one-dimensional field theory with non-local kinetic term.

If the tachyon field were absent (T = 0), the further integration over X'(r) would

give a factor which converts the Dirichlet string partition function to the Neumann

string partition function.

3.4 Partition function on the disk and the renor-

malized tachyon field

When only the tachyon field is considered as a boundary perturbation, the Witten-

Shatashvili action is given by

S= (1 I OT Z ) Z (3.20)

where Z is the partition function of the boundary theory on the disk and /T is

the tachyon /3-function. It is useful to introduce a constant source term k for the

zero mode of the X field, the integral over the zero mode variable will just provide

the energy-momentum conservation -function. The partition function (3.19) in the

presence of this constant source reads

Z(k) = K J[dX] & 2 , (3.21)

where X is the zero mode which is defined by

1 =jo ( ~X(T) (3.22)
27-
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In this section we shall expand the exponential in eq.(3.21) in powers of T(X). The

first non-trivial term is

Z(1)(k) =-K J[dX,] dkl o dr-lT(kl)e- 2 ' r do (x'IiOIXM)-iki+ikiX(1-) (3.23)

The functional integral over the non-zero modes of X(r) gives

Z(1) (k) = -K J dX, dklT(kl)e-G2 (3kl- k)X (3.24)

where G(r) is the Green function of the operator i&l[

002Cos n (Tl-Ti - 2)
G(rl - r2) = 2 E en n - log [1 - 2e- cos (r1 - T2) + e- 2c] (3.25)

n=1

and is an ultraviolet cut-off. In all the calculations we shall use the following

prescription for G(r)

- log [csin2 ()] r 7 (3.26)0

-2 loge = 0.

The coefficient c reflects the ambiguity involved in subtracting the divergent terms. Its

value is scheme dependent and should be fixed by some renormalization prescription.

We choose the value c = 4 for later convenience. This arbitrariness was discussed

in [25, 110]. The integrals over the zero-modes in eq.(3.24) give a 26-dimensional

d-function so that

-Z(l)(k) = KT(k)Ek2- (3.27)

and we can identify

TR(k) - T(k)2- = Z() (k) (3.28)K

This equation provides the renormalized coupling TR in terms of the bare coupling T

to the lowest order in perturbation theory. 1 - k2 is the anomalous dimension of the
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tachyon field. The second order term in T is given by

z(2)(k) = K dT1 dT 2

47r 2r
jdkldk 2T(kl)T(k 2) (eiklX(T)eik2x(T2)e-ikf)

Again in (3.29) the integral over the zero modes X' gives just a 26-dimensional 6-

function, (k - kl - k2), and we can perform the integral over the non-zero modes of

X(r) to get

Z(2)j(k) = K JO d1 d2 dkldk2(2)D6 (k - k -k 2 )

exp [- (k2 + k2) G(O) - k1k2G (r - T2)

The integral in (3.30) becomes

(2 ) (k) = K dkldk 2(2r)D (k -k - k2) k+k2-2 T(kl)T(k2)

o; 4d1 d r2 [4sin2 ( - 2 )] k

4,7r 2 2

The integral over the relative variable x = (ri - r2)/2 does not need regularization,

it converges when 1 + 2k1 k2 > 0, providing the result

(2) (k) = K f dkldk2(2wr)Dj (k - - k2) Eki+k-2 T(kl)T(k2) r (1 2klk2)
2 r2 (1+ k1lk2 )

(3.32)

The integrand in (3.32) can be analytically continued also to the region where 1 +

2k1k2 < O, so that the integral can be performed.

To the second order in perturbation theory the renormalized coupling in terms of

the bare coupling reads

TR(k) =
Z 1 (k) + Z(2 ) (k)

K
= k -1 [T(k)1 - dkldk 2(27r)D6 (k - k - k2) T(kl)T(k 2) - ( 1+2kl k2) r (1 + 2kk 2 ) ]

(3.33)
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The third order contribution to the partition function is given by

Z(3)(k) =- ! f dkldk2dk3 (27r)D6 (k - Eki E k) 1-3T(kl)T(k 2 )T(k 3)I(kl, k2, k3),

(3.34)

where I(kl, k2, k3) is the integral

2 2klk 2+2k2k2k3+2klk3 j2r [ 1 -T k1k2

(2r)3 2

[sin 2(T2 - T3 )]k2k3 [sin2 (T1 - T3)]klk3 (3.35)

The complete computation of I(kl, k2, k3) will be given in Appendix B. The result is

given by the completely symmetric formula

r( + al + a2 + a3)r( + 2a)r(1 + 2a2)r(1 + 2a3)
I(a a2, a3) r(1 + al)r(1 + a2)r(1 + a3)r(1 + al + a2)r( + a2 + a3)r(1 + al + a3)

(3.36)

where we have set a1 = k1k2, a2 = k2k3 and a3s = k1k3. The integral (3.35) converges

when 1+al+a 2+a3 > 0, but its result (3.36) can be analytically continued also outside

this convergence region. The result (3.36) is in agreement with the one obtained,

with a different procedure, in [107] but does not coincide with the one provided in

the appendix of ref. [24]. Up to the third order in powers of T and to all orders in ki

the relation between the bare and the renormalized couplings reads

T z((k) + Z(2)(k) + Z(3)(k)
TR(k) = K

2 ~ (TkT ) +ki= F2 (1+ klk2)

e_ [T(k)-2 dkldk2dk()ki T(kl)T(k2)T(k3)(E k ) +·.)
(3.37)

In section 6 we shall use this expression to construct the non-linear /-function.

The renormalized tachyon field can be constructed to all powers of the bare

tachyon field in the case in which the tachyon profile appearing in (3.21) is a slowly
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varying function of X8 . In this case one can consider an expansion of (3.21) in powers

of derivatives of T. To this purpose consider the n-th term in the expansion of (3.21)

in powers of T(X (r)), Z(n)(k). Taking the Fourier transform of the tachyon field and

performing all the contractions of the X(ri) fields, for Z(n)(k) we get

z(n)(k) = K n! -n J dkiT(k)i) i (d27r
i=1 i-1

-i= 2 G(o)-Ei< j ikG(<i-Tj)6 k ki) (3.38)

Note that with our regularization prescription the dependence on the cut-off in (3.38)

comes only from the zero distance propagator G(O) and from the explicit scale de-

pendence of the tachyon field. If the tachyon profile is a slowly varying function of

X we can expand inside the integrand of (3.38) in powers of the momenta ki. The

leading and next to leading terms in this expansion read

Z(n)(k)= K(-1) dki6 k - E ki e- n T(k i)n! i=l i=l i=l
(n n

1 + k 2 log e + Ekikj log ) , (3.39)
i=1 i<j

where the last term comes from the integral over a couple of r variables of the prop-

agator G (i - j), the other integrations over rk k i, j being trivial. Here we have

kept explicit the ambiguity c appearing in the propagator (3.26) to show that the re-

sult greatly simplifies with the choice c = 4. Unless otherwise stated, we shall adopt

this choice throughout the paper. As before, the renormalized tachyon field TR(k) can

be obtained from (3.39) by summing over n from 1 to oo, changing sign and dividing

by K. Taking the Fourier transform of TR(k) with c = 4, to all orders in the bare

tachyon field and to the leading order in derivatives, we get the renormalized tachyon

field TR(X)

TR(X) = 1 - exp {-- [T(X) - AT(X) logE] (3.40)

where A is the Laplacian. Again in section 6 we shall use this expression to compute
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the non-linear tachyon -function.

From eqs.(3.28,3.33,3.37,3.40) it is clear that the general relation between the

renormalized tachyon field TR(X) and the partition function Z _ Z(k = 0) is simply

Z = d6X [1-TR(X)] . (3.41)

This expression is true also when other couplings are present. TR in this case would

be a non linear function also of the other bare couplings but its relation with the

partition function of the theory would always be given by (3.41). We shall prove

eq.(3.41) in the next section.

3.5 Background-field method

The partition function of the boundary theory on the disk in general is given by

Z = K f[dX]e(sO[x]+fo' rV[X(T)]) (3.42)

where So = f d-rX'i&0lXA and V[X(r)] is given in (3.6). Our goal is to determine the

relationship between the renormalized and the bare couplings of the one-dimensional

field theory. To this purpose we shall make use of the background field method [106].

We expand the fields XI around a classical background XA which satisfies the equa-

tions of motion and which varies slowly compared to the cut-off scale,

X = X + YA.

The effective action is Seff[XO] = -logZ[Xo] and the aim of the renormalization

process is to rewrite the local terms of Seff[X0] in terms of renormalized couplings in

such a way that Seff[X] has the same form of the original action

Seff[Xo] = So[Xo] + -VR[Xo()]. (3.43)
local 27r
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Z[Xo] can be conveniently calculated in powers of the boundary interaction V. The

first order for example reads, up to the multiplicative constant K,

j / d |fdkeikXO ([T(k) + A,(k)aT(X + Ye) + B,,(k)9r(Xo + Y)O9(xX + Yv)

+C,(k)a,2(XCO + Y') +...] eik ) (3.44)

The renormalized couplings TR(k) will be given by the opposite of the coefficient of the

term in (3.44) that does not contain XO derivatives. Analogously, the renormalized

A(k) will be determined by the coefficient of OXO', B(k) by the coefficient of

TXO'&Xo' and so on. The second order term in the expansion of Z[Xo] is

j)2r d2, 2rJO dj 7r J dkdk 2 eiklXo(T)+ik2Xo(r2) (e iklY( )+ik2y(T2)

[T(kl) + A,(kl)rTl (XO + Y") + . .. ] [T(k2) + Av(k2)9r2(XKO + yv) +... ]3A45)

An expansion of the background field X0 in powers of its derivatives is required to

determine the coefficients of 1, OTXo, XOarXO, ...,

X0(T2) = X0(7l) + (T2 - rl)OTlXo(Tl) + ... . (3.46)

If we are interested in renormalization of couplings of the form exp[ikXo], namely

in the renormalized tachyon field TR(k), we can disregard the terms in (3.46,3.45)

involving derivatives acting on X 0. For example, at the second order, the only non-

vanishing terms in T and A, contributing to TR are

TR(k) =- -k d 2k2(k-iklY()+ik2Y(T2)

[T(k)T(k 2) + A,(kl)Av(k 2)aOlY'aT2,Yv +...]) , (3.47)

where the correlator does not depend on rl since the propagator (3.26) of X(r) and

its derivatives are periodic functions on the unit circle. It is not difficult to see that
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TR(k) in (3.47) coincides with the opposite of the second order term in the expansion

of the partition function

Z(k) = f[dY]e-(s[Y+i2 2V[Y(r)-ikY (3.48)

in powers of the couplings. Here k is a constant source for the zero mode of the Y

field, YM (3.22). Such a constant source will just provide the -function in (3.47)

that imposes the energy-momentum conservation. This will be true at any order in

the expansion in powers of the coupling fields. Therefore, to all orders in whatever

coupling, the expression for the renormalized tachyon field TR(X) is related to the

partition function Z = Z(k = 0) precisely by (3.41), which is the relation that we

wanted to prove. Note that TR depends not only on the bare tachyon field but also on

the other coupling fields (in particular TR will exists also if one starts from a boundary

interaction that does not contain the bare tachyon). As a consequence, the tachyon

,/ function will contain for example also the gauge field [111], and this is as it should

be, since the solution of the equation fT = 0 will then describe the scattering of a

tachyon by other excitations (e.g. from (3.47) by two vector fields).

3.6 -function

In this section we shall perform a calculation of the non-linear tachyon -function.

The resulting expression will then be used to derive the Witten-Shatashvili action

(3.4,3.20). Following [106], the most general RG equations for a set of couplings gi

can be written as

i dgi + gkg + ... , (3.49)dt = Aig + ajkgig + ?jklgikg +' '

where the scale t is t = -loge, Ai are the anomalous dimensions corresponding to

the couplings gi and there is no summation in the first term on the right-hand side.
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This equation has the solution

9i(t) = eitgi(O)+[e(Aj+k)t - eit] 3 9() (0)+bjk()9(0)9() 
Aj + Ak - Ai

(3.50)

where gi(0) are the bare couplings and

bk(t)gJ(O)gk(O)g (0) = [(Aj + Am - Ai -kl Aj + Ak + -Ai

m2a+ i amA e(Aj+,A+>)t
jm 3k

tAk + Al- Am iJAj + Ak + A - Ai
(m +e(AjA+m-+ Aj(k)gk(+)g(j) . (3.51)

(Aj + Am - Ai) (Ak + A1 -Am)

Let us now consider the case of interest for this paper: open strings propagating

in a tachyon background. In this case the coupling g is the tachyon field T(k).

Then Ai = 1 - k 2 and Aj = 1- k. Comparing the general solution (3.50) with

eq.(3.37) derived in the previous section, we will be able to identify the renormalized

tachyon field in terms of the bare field up to the third order in powers of the field

and to all orders in its derivatives. In the second order term of (3.37) the coefficient

proportional to e t = e1-k2 appearing in (3.49) is absent. This is due to the fact

that the convergence condition for the integral (3.31), 1 + 2klk 2 > 0, implies that

Aj + Ak > Ai so that in the limit t - oo the dominant contribution comes from

e(\ +x k)t. From similar arguments, the first and the second terms of the right-hand

side of (3.51) are negligible compared to the second term, due to the convergence

conditions for the integral I(k 1, k2, k3) computed in the previous section. This is

a general feature of our renormalization procedure. At the n-th order in the bare

coupling in the expansion (3.50), the renormalized coupling will contain only the

term of the form

etEXlAk . (3.52)

This is due to the fact that the integrals over the r's do not need an explicit regu-

lator, rather they can be evaluated in a specific region of the ki variables and then

85



analytically continued. Therefore the only dependence on the cut-off does not come

from such integrals but from the propagators (3.26) evaluated at zero distance.

Comparing our result for the renormalized tachyon field (3.37) with the general

expressions (3.50,3.51), for the coefficients in the expansion (3.49) we find

j 1 r(2 + 2kjk) 6(k - kj - kk)2 rp2(1 + kjkk)

Nl= f dkjdkdkl6(k - kj- kk - k) [2(1 + kjkk + kjkl + kkkl)I(k, kk, k)

r(2 + 2kj kk + 2kjkl)r(1 + 2kkkl) + c(353)
r 2 (1 + kjkk + kjkl)r2(1 + kkkl) )

where I(kj, kk, k1) is given in equation (3.36). The perturbative expression for the

p-function up to the third order in the tachyon field obtained using this procedure

therefore is

T(k) = (1 - )TR(k)- - dkldk2(27)D(k - k - k2)TR(k)TR(k2)( + 2kk)2] r22R1 2P(1 + kxk2)
3! dkldk2dk3(27r)D6(k - k- - k3)TR(k)TR(k 2)TR(k3)

[2(1 + + + k2k3)I(k, k2,k3)- r(2 + 2kk 2 + 2klk3)r(l + k2k3) + cycl)

(3.54)

We have thus succeeded in deriving a -function for tachyon backgrounds which do

not satisfy the linearized on-shell condition. Exactly the same result can be obtained

by taking the derivative of (3.37) (or of the opposite of Z(k)) with respect to the log-

arithm of the cut-off - log e. The result obtained in this way must then be expressed

in terms of the renormalized field by inverting (3.37) and it coincides with (3.54).

It is interesting to note that all the known conformal tachyon profiles, like eiX°

or cos X i where i is a space index, are solutions of the equation /3T(X) = 0, where

/BT(X) is the Fourier transform of (3.54). These solutions and perturbations around

them have been recently used to construct tachyon effective actions around the on-

shellness [112, 113, 114, 40, 115] and to study the problem of the rolling tachyon

[28, 29, 30, 31, 32, 42, 35].
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That the non-linear a-function (3.54) is the correct one can be shown by solving

the T(k) = 0 equation perturbatively. The solution of this equation will generate

the correct scattering amplitudes of open string theory [106]. This in turn will show

the validity of the general formula (3.41). To the lowest order the equation is (1 -

k2)To(k) = 0, so that the solution To(k) satisfies the linearized on-shell condition. By

writing T(k) = To(k) + T1(k) and substituting into the equation T(k) = 0, to the

next order we find

1 Tf r(k 2)Tl (k) = dkldk 2(2r)DS(k (1 - k2)- To(2 (k 2 /2) (3.55)

The presence of the couplings To in (3.55) sets two of the three ki on-shell. To pick

out the propagator pole corresponding to the third k we set it on-shell too. The

scattering amplitude for three on-shell tachyons is given by the residue of the pole

and is 1/27r with our normalization.

The calculation at the next order proceed in a similar fashion. One sets T(k) =

To(k) + T1 (k) + T2 (k) and finds

T2(k) = -3!(1_) J ldkdkdk3 (k - k - - k3)T()To(k 2)T0(k3)I(k, k2,k3)

21 + ( kikj I(k, k 2,k) r(2 + 2kk 2 + 2kk3)r(1 + 2k2k3) + cycl.:\2 t1 + ki<jj/ L~k, 1)) r2(1 + klk2 + kk3)r2(1 + k2k3)
r(2 + 2klk2 + 2klk3)r(2 + 2k2k3)

-P2(1 + klk2 + klk3)r 2(1 + k2k)[1 - (k2 + k3)2] + cycl. (3.56)

When all the tachyons are on-shell, the last two terms on eq. (3.56) cancel and, as it

should be for consistency, the residue of the pole in k is the scattering amplitude of

four on-shell tachyons. It is given by

r(l + 2klk2)r(1 + 2k2k3)r(1 + 2kk3)
r(1 + kik2)r(1 + k2k3)r(1 + klk3)r(1 + klk2 + kk) + k2(l + k2k3 + k k3)r(l + + kk 2 + klk3) '

(3.57)

where the on-shell condition is 1 + kl k2 + k2 k3 + k1k3 = 0. By means of the on-shell

condition, from the above expression, we recover, up to a normalization constant, the

Veneziano amplitude, the scattering amplitude of four on-shell tachyons. Eq.(3.57)
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in fact becomes

r( + 2kk 2)r(1 + 2k2k3)r(1 + 2klk3) sin(7rkl) sin(7rk2) sin(irk3)
ir

1
= (2 )2 [B (1 + 2klk2, 1 + 2k2k3) + cyc.] , (3.58)

(2ij)2

where B(x, y) is the Euler beta function. The expression between square brackets is

just the Veneziano amplitude. The ambiguity c appearing in the propagator (3.26)

could be kept undetermined throughout the calculations of the scattering amplitudes.

It is not difficult to see that this would just consistently change the normalization of

the on-shell amplitudes.

For tachyon profiles TR(k) supported over near on-shell momentum k2 _- 1, the

equation of motion PT = 0 with PT given in (3.54) becomes

(k) = (1 - k2)TR(k) - (2 7r dkldk2 (k - k - k2)TR(kl)TR(k2)

+ 3!(2r)2] ldk2dk 3k (k - -- k2 - k3)TR(kl)TR(k2)TR(k3)

{[B (1 + 2klk 2, 1 + 2k2k3) + cycl.] + 2r tan(7rklk2 ) tan(7rklk3 ) tan(7rk2 k3)} = 0 .

(3.59)

The coefficients of the quadratic and cubic terms in (3.59) are symmetric with respect

to all the ki and k when these are on the mass-shell. Thus (3.59) can be derived as

the equation of motion of an effective action. Such effective action for near on-shell

tachyons up to the fourth order in powers of the tachyon fields can be derived from

the results of the cubic string field theory. In [65] it was shown that the cubic SFT

reproduces the Veneziano amplitude with great accuracy already at level L = 50.

The tachyon effective action arising from the cubic string field theory for near on

shell tachyon profiles 41I(k) therefore reads

SC = 2lr2T25(21r) D { dk4I)(k)((-k) (1- k2) + f f dki)(ki) ( ki)
2+ ( [B (1+ 2k2 k3 ) + cycl.]

1/4+ i dki(D~ki( j ki [B(1+ 2klk2,1+2k2k3)+cyc ,
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(3.60)

where the tachyon momenta in the fourth order term satisfy

k1 = (0, 1, 0, 0,..., 0) k2 = (0, sin 0, cos , 0,..., ) (3.61)

k3 = (0, - 1, 0, 0,..., 0) k4 = (0, - sin , -cos , 0,..., 0) (3.62)

Since the Veneziano amplitude is completely symmetric in the four momenta ki, it is

not difficult to see that the equation of motion deriving from (3.60) becomes precisely

(3.59) once the simple field rescaling T = 27r4 is performed. Thus the cubic string

field theory for almost on-shell tachyons reproduces the non-linear /T = 0 equation

of motion.

In section 4 we also derived the renormalized tachyon field for the case of a slowly

varying tachyon profile, to all orders in the bare field and to the leading order in

derivatives, eq.(3.40). From this we can easily compute the corresponding 3 function.

The task in this case is much simpler, as we just need to take the derivative of (3.40)

with respect to - log e

(X) = ( ) = -exp (T(X) + AT(X)1 loge '
(3.63)

Then we have to invert the relation (3.40) between TR and T. To the leading order

in derivatives one has

T(X) = -e {[1 + (log 6)A] log(1 - TR(X))} , (3.64)

from which it is clear that the admissible range for TR is -oo00 < TR < 1. Plug-

ging (3.64) into (3.63) we get the non-linear tachyon -function to all powers of the

renormalized tachyon and to the leading order in its derivatives

/T (X) = (1 - TR(X)) [- log (1 - TR(X)) - A log (1 - TR(X))] . (3.65)
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,/T(X) = 0 is the tachyon equation of motion for a slowly varying tachyon profile.

Since in our calculations of the non-linear -function we have always used the

same coordinates in the space of string fields, the two results (3.65) and (3.54) should

coincide when expanded up to the third power of the field and to the leading order

in derivatives, respectively. This is indeed the case and the result in both cases reads

/T(X) = ATR + OTRCOTR + TRITRMTR . (3.66)

It is interesting to compute the /-function also in the case in which the ambiguity

constant c appearing in (3.26) is kept undetermined. TR(k) can be easily obtained

as before from (3.39) without fixing c = 4. By taking the Fourier transform and

by differentiating with respect to - log , the -function expressed in terms of the

renormalized tachyon field TR(X) turns out to be

OT6(X) = =(1 _ATR 1+ log a/ITRo9TR ]
AT(X) = (1- TR) -log(1 -TRT) + -Tr) 2 (3.67)1 -TR '24

In the next section we shall use also this form of the -function to construct the

Witten-Shatashvili action.

3.7 Witten-Shatashvili action

In this section we shall compute the Witten-Shatashvili action. From the simple

expression that relates the partition function to the renormalized tachyon (3.41) it is

easy to deduce a simple and universal form for the WS action of the open bosonic

string theory

= (l- f T) Z[TR] = K dX [1-TR(X) + AT(X)] (3.68)

This can now be computed in both the cases analyzed in the previous sections. We

shall show that the expressions for S that we will obtain are consistent both with the

known results on the tachyon potential [24] and with the expected on-shell behavior.
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Thus a choice of coordinates in the space of couplings in which the tachyon -function

is non-linear allows one to find not only a simple general formula for the WS action,

but provides also a space-time tachyon effective action that describes tachyon physics

from the far-off shell to the near on-shell regions.

Let us start with the evaluation of (3.68) up to the third order in the expansion of

the tachyon field using the non-linear -function (3.54). A similar computation was

done in [24, 107] by means of the linear -function, (k) = (1 - k2) T(k). We shall

later compare the two results. From the renormalized field (3.37) and the p-function

(3.54) we arrive at the following expression for the Witten action

S = K 1- , dk(27rDTRkTR-k) 2I -- Pr2(1_k 2)
+3! dkldk2dk3(2r)DTR(kl)TR(k2)TR(k3)6(kl + k2 + k3)

2 + E kikj I(k 1, k2, k3)- r(l + k2k3)r(2 + 2klk 2 + 2kik3 ) + cycl.L i<j /r 2(1 +k 2k 3) 2( + kk 2 +k1 k3 )
(3.69)

The propagator coming from the quadratic term in (3.69) exhibits the required pole

at k2 = 1. There are however also an infinite number of other zeroes and poles. We

shall show that these are due to the metric in the coupling space appearing in (3.3).

The equations of motion derived from the action (3.69) are

6S -K r(2 - 2k2) (27r)DT(k)
5TR(-k) - k2(1_ k2)
+ dkidk'(27r)) (k, + k' - k) TR(kl)TR(k').

k k(1 - 2kkl)L(2- 2kk' + 2klk')
8 1, ~ 72(1 - kkl)r 2 (1 - kk' + k'kl)

r(1- 2kk')F(2 - 2kkl + 2k'kl) _(1 + 2k'kl)r(2 - 2kk' - 2kk) 3.70)
r2(1 - kk')r2 (1 - kk1 + k'kl) r2(1 + k'kj)r 2(1 - kk' - Ikk)

As we did for the equation PT = 0 in the previous section, by solving these equations

perturbatively it is possible to recover the scattering amplitudes for three on-shell
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tachyons. To the lowest order the equation is

r(2 - 2k2) To(k) = 0 . (3.71)
r2(1 - k2)

At variance with the lowest order solution of PT = 0, there are infinite possible

solutions of (3.71). We choose the solution for which the tachyon field To(k) is on the

mass-shell, which corresponds to a consistent string theory background. This choice

is also a solution of PT = 0 to the lowest order. As we shall show, the other possible

zeroes of (3.71) could be interpreted as zeroes of the metric in the space of couplings

through eq.(3.3). With such a choice of To(k), to the next order we recover the

scattering amplitudes for three on-shell tachyons. By writing T(k) = To(k) + T (k)

and substituting it into (3.70) we find

T (k) = 2r(1 - k2 ) dkldk'(27r)D6(k - k - k')To(kl)To(k')

r(1 - 2kkl)r(2 - 2kk' + 2klk')
{2(1 - k1k + k1k'- kk')I(-k,k 1,k') - r2(1 - kkl)r 2(1 - kk' + k'k1)

r(l - 2kk')r(2 - 2kkl + 2k'kl) _ r( + 2k'kl)r(2 - 2kk' - 2kk1) 3.72)
r2(1 - kk')r2 (1 - kkl + k'kl) r2(1 + k'k)r 2(1 - kk'- kkl) 

Since the two couplings To satisfy the on-shell condition, k and k' are on-shell. To

pick out the propagator pole corresponding to the third k we set it on-shell too.

The scattering amplitude for three on-shell tachyons is given again by the residue of

the pole and with our normalization is (2r)- 1, in precise agreement with the result

obtained in the previous section.

The equations (3.70) must be related to the equation fT = 0 through a metric

GT(k)T(k') as in (3.3), which in this case becomes

=TR(k) - dkGT(k)T(k') (3.73)

The Witten-Shatashvili formulation of string field theory provides a prescription for

the metric GT(k)T(k') which can then be computed explicitly. To the first two orders
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in powers of TR, it is given by

GT(k)T(k =K (27r) Dr(2 - 2k 2 ) 6 (k + k') - K dk (2r)D6 (k +k' + kl) TR(kl)
(1- k2 )r 2(1 - k2) 2 1- k'2

12(1 +kk+kk'+kk')I(kkk') ( + 2kkl)r(2 + 2kk + 2kk)I(k, k- r( kkl')
12(1+ ±kl)r2(1 + k' + k'k1)

r(1 + 2kk')r(2 + 2kkl + 2k'kl) r(l + 2k'kl)r(2 + 2kk' + 2kkl)
r2(1 + kk')r 2(1 + kkl + k'kl) r2(1 + k'kl)r2(1 + kk' + kki)

r(2 + 2k'kl)r(2 + 2kk' + 2kkl) (3.
r2(1 + k'k)r 2(l + kk' + kk1)(l + kk' + kkl) (

The first term in this metric coincides with (3.13) for a conformal primary given

by the tachyon vertex. From (3.74) it is possible to see that the infinite number of

zeroes and poles that the second order term in eq.(3.69) exhibits at k2 = 1 + n and

k2 = 3/2 + n, respectively, is in fact due to the metric. This is true except for the zero

corresponding to the tachyon mass-shell k2 = 1. In fact the metric (3.74) is regular

for k2 = 1. This indicates that the kinetic term in eq.(3.69) exhibits the required zero

at the tachyon mass-shell and the metric (3.74) can be made responsible for the other

extra zeroes and poles. If these zeroes and poles are just an artifact of the expansion

in powers of T, it is an open question. It would be interesting to consider for example

an expansion around k2 = 1 + n to all orders in T and check if in this case one would

still find that the kinetic term exhibits a zero at k2 = 1 + n.

Let us turn now to the cubic term in eq.(3.69). If one or two tachyons are on-shell,

then the cubic term vanishes. This means that any exchange diagram involving the

cubic term vanishes [107]. When all the three tachyons are on-shell, the scattering

amplitude for three on-shell tachyons should arise directly as the coefficient of the

cubic term. However, the cubic term in (3.69) is ill-defined on shell. Nonetheless,

with the most obvious regularization (i.e. by going on-shell symmetrically by giving

to the three tachyons an identical small mass m, k = 1 + m2 and then by taking

the m - 0 limit) one gets a finite result for the scattering amplitude [107]. Recalling

the first of eqs.(3.53) we conclude that this scattering amplitude is (27r)- with our

normalization. Also the cubic term in (3.69) has a sequence of poles at finite distances

from the tachyon mass-shell. This is related to the fact that the set of couplings that
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we have taken into account is not complete. If we get far enough from the tachyon

mass-shell, we run into the poles due to all the other string states which have not

been subtracted.

In the next section we shall compare (3.69) with the corresponding action derived

from the cubic string field theory. Here we would like to show that, by means of a

field redefinition, (3.69) can be rewritten in the form of the WS action obtained from

a linear P-function [107], but that this field redefinition becomes singular on-shell.

The partition function up to the third order in the bare tachyon field is again given

by

Z(k) = K6(k)- K'k 2-1 [T(k)

-2 f dkdk2 (2r)D (k - kl - k2) -(+2kk)T(kl)T(k 2) (1 + 2kk 2)
2J F2 (1 + k1k2)13

+3! dkldk2dk3(27r)D (k - Eki) E 2 (1.+i ki-ki)T(k)Tl)T(k 2 )T(k 3)I(kl k2, k3)

(3.75)

where we have used (3.37). If instead of following the general procedure of ref. [106]

one renormalizes the theory simply by normal ordering, the P-function turns out to

be linear. Thus the renormalized field to all orders in the bare field would just be

OR(k) = T(k)Ek 2 -l, (3.76)

so that P(k) = (1- k2) qR(k). The WS action with a linear -function up to the

third order in the tachyon field then reads

SL=K{1- 1 dk(2r)DR(k)R(-k) r(2 - 2k2)

+. dkdk 2dk3(2r)DR(kl)0R(k 2 )0(k 3) k) 2 ( + kk I(k, k2,k 3)
i=1 i~j=2

(3.77)

in agreement with what found in [107]. If we assume that the fields OR and TR are
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related as follows

OR(k) = TR(k) + dklf (k, kl)TR(kl)TR(k -kl) + , (3.78)

by comparing the cubic terms in (3.69) and (3.77) one finds

[f(k2 + k3, k2) r(2(l kk 2 + 2kk3)) + cycl.]
F2(1 + kk2 + kk 3) .

1 [(lI + 2k2k3) r(2 + 2klk2 + 2klk 3) + cycl (3.79)
2 Lr2(1 + k2k3) r2(1 + kk2 + klk3) ,

so that the solution for f is f (kl + k2, kl) = r(1 + 2klk2)/(2r 2(1 + klk2)) and the

field redefinition becomes

dR(k) = TR(k) + dkldk21(1 ± 2kk 2 ) TR(kl)TR(k 2)6(k- kl -k 2) . (3.80)bR(k) = TR(k) + dkld k 22 2 (1 + k1k 2 )

It is not difficult to see that if we evaluate this relation when the three tachyon fields

are on-shell it becomes singular since f(k, k1 ) has a pole. This is in agreement with the

Poincar6-Dulac theorem [108] used in [22] to prove that when the resonant condition

(3.15) holds, namely near the on-shellness, the -function has to be non-linear. We

showed in fact that the field redefinition that gives from S the WS action constructed

in terms of a linear P-function, SL, becomes singular on-shell.

Let us now turn to the WS action computed in an expansion to the leading order

in derivatives and to all orders in the powers of the tachyon fields. If we keep the

renormalization ambiguity c undetermined, the -function is given in (3.67). Using

(3.4), S then reads

S=K dX(1R-TR) 1-1gl) og( TR ] (3.81)Tn-l
21 4 Ol~T~Tn (3.81)

where -oo < TR < 1. With the field redefinition

1 - TR = e (3.82)

95



S becomes

S = K dXe-T [(log a + log + 1 + T(3.83)

which for c = 4 coincides with the space-time tachyon action found in [23, 24]. In

particular we shall show in the next section that K coincides with the tension of the

D25-brane, K = T25, in agreement with the results of ref. [24]. It is not difficult to

show that (3.83) can be rewritten, by means of a field redefinition, in the form found

in [25] where the renormalization ambiguity was also discussed.

Note that (3.82) is the coordinate transformation in the coupling space that leads

form the non-linear p-function (3.65) to the linear beta function fT = (1+ A)T. The

/-function in fact is a covariant vector in the coupling space and as such it transforms.

We have left the ambiguity c in (3.83) undetermined because we want to show

that it is possible to fix c in such a way that the equation of motion deriving from

(3.83) coincides with the equation /T = 0 with fT given in (3.67). In fact, in terms

of the coordinates (3.82), this equation reads

/T = T + AT + log %,TC T = . (3.84)
2 4

where we have kept into account that /T transforms like a covariant vector in the

space of worldsheet theories. Choosing log(c/4) = -1, eq.(3.84) becomes the equation

of motion of the action (3.83). This is important because if we find finite action

solutions of the equation (3.84), these would be at the same time solutions of the

renormalization group equations and solitons of the tachyon effective action (3.83).

These could then be interpreted as lower dimensional branes. Being solutions of the

renormalization group equations they are interpreted as background consistent with

the string dynamics, being solitons they must describe branes. The finite action

solutions of eq.(3.84) are easy to find

T(X) = -n + (Xi)2 (3.85)
i=1

These codimension n solitons can be interpreted as D(25-n)-branes. 26-n are in fact
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the number of coordinates on which the profile T(X) does not depend. Substituting

the solution (3.85) into the action (3.83) with log(c/4) = -1 we get

S = T25(ev)V 26 .n (3.86)

Comparing this with the expected result T25-nV26-n we derive the following ratio

between the brane tensions

R = T 25 = ( 27r) . (387)

With our notation, a' = 1, the exact tension ratio should be R, = (27r)". Thus R,

differs from the one given in (3.87) by a factor e/v'f = 1.084. It is remarkable that

a small derivatives expansion of the WS action truncated just to the second order

provides a result with the 93% of accuracy. In particular the result (3.87) is much

closer to the exact tension ratio then the one found in [24] with analogous procedure.

The solutions of the equations of motion of the WS action considered in [24] were

not in fact solutions of the equation PT = 0, so that they could not be interpreted

as consistent string backgrounds (this was already noticed by the authors of [24] and

for this reason the exact tension ratio was obtained with a different procedure). The

equations of motion deriving from the WS action are in fact related to the f-function

through (3.3) where the metric should in principle be non-degenerate. However, if the

metric is computed in some approximation, it could be singular and present solutions

that introduce physics beyond that contained in the -functions. The action (3.83)

with log(c/4) = -1 gives an equation of the form (3.3) with the non-degenerate metric

e-T. The solution of this equation can be at the same time a soliton and a conformal

RG fixed point.

In conclusion the general formula (3.4) reproduces all the expected results on

tachyon effective actions both in the far off-shell and in the near on-shell regions.

97



3.8 Summary

In this chapter we have derived some exact results for the non-linear tachyon /?-

function of the open bosonic string theory. We have shown its relevance in the con-

struction of the Witten-Shatashvili bosonic string field theory. When a non-linear

renormalization of the tachyon field is considered [106], the WS action in fact is sim-

ply given by (3.4). This formula has a wide range of validity. It can be applied to

the case in which the tachyon profile is a slowly varying function of the embedding

coordinates of the string to derive the exact tachyon potential and the first derivative

terms of the effective action. Eq. (3.4) holds also when the tachyon coupling T(k)

is small and has support near the mass-shell. For such tachyon profiles we showed

that perturbative solutions of the equation ,6 T = 0 provide the expected scattering

amplitudes of on-shell tachyons.

The explicit form of the WS action constructed from the tachyon non-linear /-

function is in precise agreement with all the conjectures involving tachyon condensa-

tion. In particular its normalization can be fixed either by studying the exact tachyon

potential or by finding the field redefinition that maps the WS action into the effec-

tive tachyon action coming from the cubic string field theory. This field redefinition

is non-singular on-shell only if the normalization constant coincides with the tension

of the D25-brane.

The knowledge of the non-linear tachyon /-function is very important also for

another reason. The solutions of the equation 1 3 T = 0 give the conformal fixed points,

the backgrounds that are consistent with the string dynamics. In the case of slowly

varying tachyon profiles, we showed that the equations of motion for the WS action

can be made identical to the RG fixed point equation /T = 0. This can be done

for a particular choice of the renormalization prescription ambiguity. We have found

soliton solutions of this equation to which correspond a finite value of the WS action.

Being solutions of the RG equations these solitons are lower dimensional D-branes for

which the finite value of S provides a very accurate estimate of the D-brane tension.
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Chapter 4

Tachyon dynamics at tree level in

cubic string field theory

In this chapter, following the work with Ilya Sigalov and Washington Taylor [116],

we give evidence that the rolling tachyon in cubic open string field theory has a

well-defined but wildly oscillatory time-dependent solution. We show that a field

redefinition taking the CSFT effective tachyon action to the analogous boundary

string field theory action takes the oscillatory CSFT solution to the pure exponential

solution et of the BSFT action.

4.1 introduction

An unsolved puzzle in string theory is the fate of unstable D-branes and how to de-

scribe their evolution toward stable configurations. It is very important to understand

their time evolution and an intriguing conjecture, the rolling tachyon, was proposed

by Sen [28]. The rolling tachyon has also been applied to cosmology driven by the

tachyon, i.e. the decaying of unstable space filling D-branes describe cosmological

solutions [117, 118]. In the decay process as the tachyon approaches the bottom of

the potential, the energy is constant and the pressure approaches zero. People think

that this form of tachyonic matter may have astrophysical consequences, and they

also think that string field theory can confirm its existence.
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In CSFT the tachyon dynamics appears to be quite complicated. It looks like that

the tachyon rolls past the minimum of the potential, then turns around and begin

to oscillate [55, 56]. This behaviour is completely different from the one observed in

BSFT where the tachyon seems to approach the stable vacuum. In this chapter we

solve this contraddiction carring out a level-truncation analysis for a particular solu-

tion. We show that a complicated field redefinition is necessay to map the solution

from CSFT to the one in BSFT. This qualitative change in behavior through the

field redefinition is possible because the field redefinition relating the tachyon in the

two formulations is nonlocal and includes terms with arbitrarily many time deriva-

tives. Such field redefinitions are generically expected to be necessary when relating

background-independent string field theory degrees of freedom to variables appro-

priate for a particular background [14]. A similar field redefinition involving higher

derivatives was shown in chapter 2 to be necessary to relate the massless vector field

A, of CSFT on a D-brane with the usual gauge field AH appearing in the Yang-Mills

and Born-Infeld actions. Other approaches to the rolling tachyon using CSFT ap-

pear in [119]-[122]; related approaches which have been studied include p-adic SFT

[123, 124], open-closed SFT [125], and vacuum string field theory [126, 127].

This chapter is organized as follows. Section 4.2 describes the general approach

that we use to find the rolling tachyon solution and gives the leading order terms in

the solution explicitly. Section 4.3 describes the results of numerically solving the

equations of motion in level-truncated CSFT. Section 4.4 is dedicated to finding the

leading terms in the field redefinition that relates the effective tachyon actions in

Boundary and Cubic String Field Theory. Section 4.5 contains conclusions and a

discussion of our results. Some technical details regarding our methods of calculation

are relegated to an Appendix.

4.2 Solving the CSFT equations of motion

We are interested in finding a solution to the complete open string field theory equa-

tions of motion. The full CSFT action contains an infinite number of fields, coupled
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through cubic terms which contain exponentials of derivatives. Thus, we have a

nonlocal action in which it is difficult to make sense of an initial value problem.

Nonetheless, we can systematically develop a solution valid for all times by assum-

ing that as t -+ -oo the solution approaches the perturbative vacuum at 0 = 0. In

this limit the equation of motion is the free equation for the tachyon field 6(t) = 0(t),

with solution 0(t) = cet. For t < 0, we can perform a perturbative expansion in

the small parameter et. Fixing the string coupling g, we can always choose et small

enough that this perturbative expansion makes sense. We can then write a solution

as a power series in get. We proceed in this fashion and find that this power series

indeed seems convergent for all t. A related approach was taken in [55, 56]. In these

works, an expansion in cosht was proposed. This allows a one-parameter family of

solutions with 4(0) = 0, but is more technically involved due to the more complicated

structure of coshnt compared with ent. We restrict attention here to the simplest case

of solutions which can be expanded in et, but we expect that a more general class of

solutions can be constructed using this approach.

The infinite number of fields of CSFT represents an additional complication. We

can, however, systematically integrate out any finite set of fields to arrive at an

effective action for the tachyon field which we can then solve using the method just

described. We do this using the level-truncation approximation to CSFT including

fields up to a fixed level. We find that the resulting trajectory +(t) converges well for

fixed t as the level of truncation is increased.

We thus compute the solution (t) with the desired behavior et as t -+ -c in

two steps. In the first step, described in subsection 4.2.1, we compute the tachyon

effective action, eliminating all the other modes using equations of motion. Some

technical details of this calculation are relegated to the Appendix. In the second

step, described in subsection 4.2.2, we write down the equation of motion for the

effective theory. We then solve it perturbatively in powers of g.
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4.2.1 Computing the effective action

We are interested in a spatially homogeneous rolling tachyon solution. One way of

computing such a solution would be to write the equations of motion for the infinite

family of string fields with no spatial tensor indices. Labeling such string fields i

the resulting equations of motion (in the Feynman-Siegel gauge) take the schematic

form

(o, - m)2, (t) = g eVob(,2 ++ i ( (U) =uk( =t (4.1)

where all possible pairs of fields appear on the RHS. Generally, coefficients Ciik mul-

tiplying each term may contain a finite number of derivatives. Plugging in the Ansatz

0(t) = 0o(t) = et + . - with all other fields vanishing at order et it is clear that we

can systematically solve the equations for all fields order by order in et. This is one

way of systematically solving order by order for 0(t).

We will find it convenient to think of the perturbative solution for 0(t) in terms

of an effective action S(0) which arises by integrating out all the massive string fields

at tree level. Perturbatively, we can solve the equations of motion (4.1) for all fields

except q = V0 as power series in 0, by recursively plugging in the equations of motion

for all fields except 0 on the RHS until all that remains is a perturbative expansion

in terms of 0(t) and its derivatives. We have used two approaches to compute the

effective action S(o). One approach is to explicitly use the equations (4.1) for all

fields up to a fixed level. This approach is useful for generating terms to high powers

in g but becomes unwieldy for fields at high levels. The second approach we use is

to compute the effective action as a diagrammatic sum using the level truncation on

oscillator method developed in [65]. This approach is useful for calculating low-order

terms in the effective potential where high-level fields are included. Some details of

this are described in Appendix C.

The leading terms in the tachyon action are the quadratic and cubic terms coming

directly from the CSFT action

S(,) = 2 J dt 0(t) (-t 2 + 1) i(t)- (evo0(t-1)0(t)) +... (4.2)
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where =V01 -log () (4.3)
is the Neumann coefficient for the three tachyon vertex.

Integrating out the massive fields at tree level gives rise to higher-order terms

9203,... with even more complicated derivative structures. The resulting effective

action can be written in terms of the (temporal) Fourier modes (w) of 0(t) as

S(0) = gn E , ] Fdwi (2ir)n6(Zwi) =CSFT(Wl, ,wn)qS(wl) .((wn) (4.4)
n = i

where the functions CSFT(W,... w, Wn) determine the derivative structure of the terms

at order gn-20qn. The quadratic and cubic terms are given as above by

2SFT(wl, w2) = (1 - Wl W2), (4.5)

3 FT(W1, W2, w3) = -2e AV0(w2+±w+u3) (4.6)

One way to obtain the approximate classical effective action for the tachyon field

is to use the equations of motion for a few low level massive fields to eliminate these

fields explicitly from the action. The higher level massive fields are set to zero.

Now let us compute explicitly the quartic term in effective action in level 2 trun-

cation. In case of CSFT of a single D-brane the combined level of fields coupled

by a cubic interaction must be even. For example, there is no vertex coupling two

tachyons (level zero) with the gauge boson (level 1). It follows that there are no

tree level Feynman diagrams with all external tachyons and internal fields of odd

level. Thus, in calculating the tachyonic effective action we may set odd level fields

to 0. Fixing the Feynman-Siegel gauge the only fields involved are the tachyon b and

three level 2 massive fields with m2 = 1: /3, B, and B,,. The terms in the action
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contributing to four-tachyon term in the effective action are

J dt /(Ot2 + 1)/ - B,,(at2 + 1)BL " - B,(t 2+ 1)Bt+

g J dt a,2B + a2 (!Otdt~ - &tq9tq)B + a3
2 + a4 Ott~B°, (4.7)

where f = e 'Vo'(-l)f with V001 = -log(27/16). Other interaction terms involving

level 2 fields, for example P3 or B,,BA would contribute to the effective action at

higher powers of 0. The coefficients al, ... a4 are real numbers and can be expressed

via appropriate matter and ghost Neumann coefficients (see appendix A)

al = -V 0.130946,

a3 = X1 0.407407,

a2 = (V012) 2 t 0.419026,

a4 = -6V122 t 0.628539.

Using the procedure described above we write down the equations of motion for

massive fields, plug them into (4.7) and set = B, = B,, = 0. We then obtain the

quartic term in the tachyonic effective action

9 2e -3V 1% /1 (2ad\(\ (Cwi) exp( - V Wl[w + W+ +wl + W1 + WW + 2 U )

= (2 i)Y(Wi)(e 1 - (W1 + W2)2

(bl + b2 w2(w2 - wl) + b3 wlw4(w2 - Wl)(w4 -w 3) +b4 2 4) (4.9)

where we have denoted

b = 2(13(V1) -

b3 = (V0
12)4

b2 =-V1 

b4 = 18(V 0
2 )2 .

4.2.2 Solving the equations of motion in the effective theory

We now outline the process for solving the equation of motion of the effective theory,

and we compute the first perturbative correction to the free solution. We are inter-

ested in time-dependent solutions which are uniform in spatial directions. Varying
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(4.4) we get an equation of the form

00oo

(0t2- 1) = E gn-lKn(e,... * **f) (4.11)
n=2

where the nonlinear terms of order oYn are denoted by Kn. The specific form of the

K, follow by differentiating (4.4) with respect to 0(t). The functions E, appearing

in (4.4), and thus the corresponding Kn_l's can in principle be explicitly computed

for arbitrary n at any finite level of truncation. In general, Kn will be a complicated

momentum-dependent function of its arguments.

The solution of the linearized equations of motion which goes to 0 as t -- -oo

is (t) = clet. As discussed above, we wish to use perturbation theory to find a

rolling solution which is defined by this asymptotic condition as t -+ -oo. Note that

this asymptotic form places a condition on all derivatives of q in the limit t -+ -oo,

as appropriate for a solution of an equation with an unbounded number of time

derivatives. If we now assume that the full solution can be computed by solving

(4.11) using perturbation theory at least in some region t < ta,,, it can be easily seen

that the successive corrections to the asymptotic solution 01(t) = clet are of the form

n(t) = ce "nt. In other words, to solve the equations of motion using perturbation

theory we expand O(g, t) in powers of g

q(9, t) = 01 (t) + 902(t) + g203(t) + ... (4.12)

where

n (t) = cent. (4.13)

As we will see, our assumption leads to a power series which seems to be convergent

for all t and all g. Note that since gnent = en(t+log(g)), the coupling constant can be

set to 1 by translating the time variable and rescaling 0, so convergence for fixed g

and all t implies convergence for all t and for all g. Plugging (4.12) into (4.11) we
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find

(at - 1) (n2 - 1)cet e = E E Kp(m 1 , l 5m2, qmp). (4.14)
p ml+m2+...mp=n

These equations allow us to solve for c,>1 iteratively in n. Having solved the equations

for c2 ,...,c_-1 we can plug them in via (4.13) on the right hand side of (4.14) to

determine cn.

As an example, let us consider the first correction +2 (t) = c2e2t to the linearized

solution 01(t) = clet. The equation of motion at quadratic order arising from K2 is

(0t2 1)0 = -eVoo(-)(elV (-1))2 (4.15)

Plugging in 01 = clet, 02 = c2e2t we find

(t 1)e2t = -c2leVo(a-1l)(e2VoJ(a-l) et)2 (4.16)

and therefore
3 1 2

c2 =-3eo c1. (4.17)

If we normalize cl = 1 then the solution to order e2t is

64
(t = et 64 e2t +.... (4.18)

243 V3

The quartic interaction term in the effective action would contribute to coefficients

cent with n > 3 with the leading order contribution being c3e3t. From equation

(4.14) we have
-3t

3 e= (2c2K2 (et , e2t) + K3 (et et, et)) . (4.19)

where K3 is obtained by differentiating (4.9) with respect to +(t). Then (4.19) gives

(6 C3)cubic - 0.0021385, (6 C3)quartic - 0.0000492826. (4.20)
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It is quite surprising, that the contribution to c3 from the quartic term in the effective

action is merely 0.2% of the contribution from the cubic term. Adding the contri-

butions we get the rolling solution to second order in perturbation theory in level 2

truncation
64 e2 t

0(t) ' et + 0.002187e3t + .... (4.21)
243 3

4.3 Numerical results

In this section we describe the results of using the level-truncated effective action S[0]

to compute approximate perturbative solutions to the equation of motion through

(4.14). We are testing the convergence of the solution in two respects. In subsection

4.3.1 we check that the solution converges nicely at fixed t when we take into account

more and more terms in a perturbative expansion of the effective action while keeping

the truncation level fixed at L = 2. In subsection 4.3.2 we check that the solution

converges well for fixed t when we keep the order of perturbation theory fixed while

increasing the truncation level.

4.3.1 Convergence of perturbation theory at L = 2

The equation (4.14) allows us to find the successive perturbative contributions to the

solution of the equations of motion, given an explicit expression for the terms in the

effective action. The solution takes the form

q(t) = cent. (4.22)
n

Since all the derivatives of ent are straightforward to compute, as in (4.17), we can

replace these derivatives in any operator through f(at)ent - f(n)ent. This manipu-

lation is justified as long as f does not contain a pole at n.

We have computed the functions =CSFT and the resulting Kn_l's solving the equa-

tion of motion for the level two field up to n = 7. We have used these Kn's to compute

the resulting approximate coefficients c, with n < 6. To compute the coefficient cn
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f(t)

t

Figure 4-1: Solution 0(t) including the first two turnaround points, including fields up to level L =
2. Solid line graphs approximation 0(t) = et+c 2e

2 t. Long dashed plot graphs 0(t) = et+c2 e2 t+c3et.
The approximate solutions computed up to e4t , e5t and e6t are very close in this range of t and are
all represented in short dashed plot. One can see that after going through the first turnaround point
with coordinates (1.27, 1.8) the solution goes down, reaching the second turnaround at around 
(3.9, -81). A function f(O(t)) = sign(q(t)) log(1 + 14(t)1) is graphed to show both turnaround points
clearly on the same scale.

one needs the effective tachyon action computed to order n + 1; higher terms in the

action contribute only to higher order coefficients.

The L = 2 approximation to the solution for the tachyon field is

64 e2 t
0(t) et -2 + 0.002187 e3t -

243 0-
3.9258 10-6 e4t + 4.9407 10-10 e5t + 6.3227 10-12 e6 t. (4.23)

Plotting the result we observe that for small enough t the term et dominates and the

solution decays as et at -oo. Then, as t grows, the second term in (4.23) becomes

important. The solution turns around and +(t) becomes negative, with the major

contribution coming from e2t. Then the next mode, e3t becomes dominating and so

on. The solution <(t) around the first two turnaround points is shown on the figure

4-1.
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Figure 4-2: First turnaround point for the solution in L = 2 truncation scheme. The large plot
shows the approximations with 0 3 (the gray line) and 04 (black solid and dashed lines) terms in the
action taken into account. The smaller plot zooms in on the approximations with 04 (the solid line)
and 0 5 (the dotted line) terms taken into account. The corrections from higher powers of 4 are very
small and the corresponding plots are indistinguishable from the one of the q5 approximation.
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Figure 4-3: Second turnaround point for the solution in L = 2 truncation scheme. The gray line
on the large plot shows the solution computed with the effective action including terms up to 4 .

The black solid and dashed lines represent higher order corrections. On the small plot the solid line
includes 05 corrections, the dotted line includes corrections from 406 term and the dashed line takes
into account the 17 term.
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The positions of the first n turnaround points are quite accurately determined by

taking into account the effective action terms up to n + l . The inclusion of the higher

order terms in the action changes the position of the first n turnaround points only

slightly. Figures 4-2 and 4-3 illustrate the dependence of the position of the first two

turnaround points on the powers of 0 included in effective action. We interpret these

results as strong evidence that, at least for the effective action at truncation level

L = 2, the solution (4.22) is given by a perturbative series in et which converges at

least as far as the second turnaround point, and plausibly for all t.

4.3.2 Convergence of level truncation

From the results of the previous subsection, we have confidence that the first two

points where the tachyon trajectory turns around are well determined by the 4 and

5 terms in the effective action. To check whether these oscillations are truly part

of a well-defined trajectory in the full CSFT, we must check to make sure that the

turnaround points are stable as our level of truncation is increased and the terms in

the effective action are computed more precisely.

We have computed the 04 term in the effective action at levels of truncation up

to L = 16. The results of this computation for the approximate trajectory 0(t) are

shown in Figure 4.3.2, which demonstrates the behavior of the first turnaround point

as we include higher level fields. This computation shows that the first turnaround

point is already determined to within less than 1% by the level L = 2 truncation. We

take this computation as giving strong evidence that this turnaround point is real.

Combining this result with the computation of the previous subsection, we have (to

us) convincing evidence that the perturbative expansion ent for the rolling tachyon

solution is valid well past the first turnaround point, and that the level truncation

procedure converges to a trajectory containing this turnaround point. Extrapolating

the results of this computation, we believe that the qualitative phenomenon of wild

oscillations revealed by the level L = 2 computation is physically correct, and that

more precise calculations at higher level will only shift the positions of the turnaround

points mildly, leaving the qualitative behavior intact.
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Figure 4-4: The figure shows the convergence of the solution around the first turnaround point
as we increase the truncation level. Bottom to top the graphs represent the approximate solutions
computed with the effective action computed up to 04 and truncation level increasing in steps of 2
from L = 2 to L = 16. We observe that the turnaround point is determined quite precisely already
at the level 2. Similar behavior is observed for the second turnaround point.

4.4 Taming the tachyon with a field redefinition

Now that we have confirmed that CSFT gives a well-defined but highly oscillatory

time-dependent solution, we want to understand the physics of this solution. Al-

though the oscillations seem quite unnatural from the point of view of familiar theo-

ries with only quadratic kinetic terms and a potential, the story is much more subtle

in CSFT due to the higher-derivative terms in the action. For example, while the

tachyon field rolls immediately into a region with V(0) > V(O) = 0, the energy of the

perturbative rolling tachyon solution we have found is conserved, as we have verified

by a perturbative calculation of the energy including arbitrary derivative terms, along

the lines of similar calculations in [55].

To understand the apparently odd behavior of the rolling tachyon in CSFT, it is

useful to consider a related story. In [57] we computed the effective action for the

massless vector field on a D-brane in CSFT by integrating out the massive fields. The

resulting action did not take the expected form of a Born-Infeld action, but included

various extra terms with higher derivatives which appeared because the degrees of
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freedom natural to CSFT are not the natural degrees of freedom expected for the

CFT on a D-brane, but are related to those degrees of freedom by a complicated

field redefinition with arbitrary derivative terms. In principle, we expect such a field

redefinition to be necessary any time one wishes to compare string field theory (or any

other background-independent formulation) with CFT computations in any particular

background. The necessity for considering such field redefinitions was previously

discussed in [14, 15].

Thus, to compare the complicated time-dependent trajectory we have found for

CSFT with the marginal et perturbation of the boundary CFT found in [28, 29],

we must relate the degrees of freedom of BSFT and CSFT throw a field redefinition

which can include arbitrary derivative terms. In this section we compute the leading

terms of the field redefinition in the effective field theories for T(O), the tachyon field

in boundary string field theory and 0, the tachyon in cubic string field theory.

The field redefinition can be determined by requiring that the effective actions for

the two theories are mapped into each other. We use the effective tachyonic action

of BSFT computed up to cubic order in [105]; another approach to computing the

BSFT action which may apply more generally was developed in [128]. The BSFT

action is determined via partition function for the boundary SFT and the tachyon's

beta function. Thus the particular shape of the action depends on the renormalization

scheme for the boundary CFT. The BSFT tachyon T is therefore, the renormalized

tachyon with renormalization scheme of [105]. We check, that the field redefinition

maps the rolling tachyon solution T(t) = et to the leading terms in the perturbative

solution q0(t) = et 64 e2t which we have computed in the previous section. The

fact that the field redefinition is nonsingular at T = et is consistent with the anzats

n c'nent for the rolling tachyon solution in CSFT.

In parallel with (4.4) we write the action for the boundary tachyon T as

S(T) 1= 2g ] dw(2 dWi)6(Wi) BSFT(Wl, ... wn)T(wl) .. T(wn) (4.24)
n i= l i

where the functions ,BSFT(W, .-. , w,) define the derivative structure of the term of

112



n'th power in T. The kernel for the quadratic terms is

.SFTw r(2 - 2wlW2)
2 T(W1, W2) = r2(1 -WlW 2 ) (4.25)

where is the Euler gamma function. Denoting al = -w 2w 3, a2 = -Wl W3, a3

-w 2w 3 the kernel for the cubic term can be written as

F (W1, , , w3) = 2(1 + al + a2 + a3)I(wI, w2, w3) + J(w 1, w2, w3) (4.26)

where functions I(al, a2, a3 ) and J(al, a2, a3) are defined by

r(1 + al + a2 + a3)F(l + 2a)r(l + 2a2)r(1 + 2a3)
I(a, 2, 3) = (1l + al)r(1 + a2)r( + a3)r(1 + al + a2)r(1 + al + a3)(1 + a + a + 3)'

J(al, a 3) = + 2a)(2 + 2a2 + 2a3) + cyclic. (4.27)r2(1 + al)r 2(1 + a2 + a3)

We are interested in the field redefinition that relates S(T) with the CSFT action

S() given in (4.4), (4.5), (4.6). A generic field redefinition without explicit time

dependence can be written as

q(wl) = / dw26(l - w2)fi(wl, w2)T(w 2)+

dw2 dw 3 f2(wl, w2, w3)T(w2)T(w3)6(wl - w2 - W3) +... (4.28)

This field redefinition maps the CSFT action to the BSFT action

S(O(T)) = S(T). (4.29)

In order to match the quadratic terms fi must satisfy the equation

2 T(Wl,W2) - f(W1, Wl)fi(w w2)-SF l, 2) 0. (4.30)

In this equation approximate sign means that the left hand side becomes equal to

the right hand side when inserted into f dwl dw2 5(wl + w2)q!(wl)qO(w2) for arbitrary
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q(w)'. Solving equation (4.30) we find

I F(2 + 2w2)
f(w,w) ( w V w F(1 + (4.31)l(W, W)- (W)I + 2r2(1 + W2)'

The analogous equation for f2 is

1 ~BSWT, 1
3BSFT (W, 2, 3) - fi(wl)fi(w 2)f (W 3)ECSFT(wI, W2 , W3 )+

f1(w1)f2(-w, w2, W3)=CSFT(_wl, w). (4.32)

The desired field redefinition must also map the mass-shell states correctly, by keeping

the mass-shell component of any 0(w) intact. In other words the mass-shell compo-

nent of Fourier expansion of 0(t) can only depend on the same mass-shell component

of the Fourier expansion of T(t). This translates to a restriction on f2

f2 (-w, W2, w23) wl=_- = 0. (4.33)

This constraint is crucial for the field redefinition to correctly relate the on-shell

scattering amplitudes for T with those for 5. It also ensures that the solution of the

classical equations of motion for T maps to the solution of the equations of motion

for .

Equation (4.32) can be simplified be making a substitution

BSFT(Wl, 2, w)/fi(w) - -CSFT(wl, W2, W3)fi(W)f( 2( 3 )
f2(-Wl, W2, W3) - 3 ( W A2(W, W2, W3)=CCSFTW i~Wi)

(4.34)

we obtain a simple equation for A2(wl, w2, w 3)

1
A2(wI, W2, W3) x . (4.35)

1When matching the quadratic terms it implies strict equality but in general it is less restric-
tive. Indeed, considering a discrete analogue it is easy to show that equation MklCkcl = 0 is
equivalent to Mkl + Mik = 0. Consequently, equation Mn ...lkCc ... Cnk = 0 is equivalent to

Za(n,,...,nk) Mo(nl),...,(n.) = 0.
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Thus, we need to find a function A(wl, w 2, w3) on the momentum conservation hy-

perplane -w 1 + w 2 + w 3 = 0, symmetric under exchange of w2 and w3 and satisfying

A 2 (WI, w2, W3 ) + A 2 (w 2, w 3, W1) + A 2 (w 3, Wl, w 2 ) = 1, (4.36)

with the constraint2

A2(wl, w2, w3)JlW=-l = 0. (4.37)

It would be sufficient to consider a discrete case, where W, w 2, w 3 are integers. Indeed,

we can think of the tachyon fields to be obtained by Wick rotation of a periodic field

krot ('), where r = it, that live on the D-brane compactified on a circle. It is easy to

see, that discretized A(wi) given by

1
3, W1,2,3 +i

0, W = ii

A(wI, w 2, W3) = w2 = i, W1,3 7 ii or W3 = i, W 1,2 i (4.38)

1
, W1 =-2i, 2,3 = i or w 1 =-2i, 2,3 =i

1 W1 = 0, w2 = -w3 = i

is a solution to (4.36), (4.37). It is not difficult to generalize the above discussion to

the continuum case.

Let us make a few comments on the field redefinition.

* The expression under the square root in the definition of fi (w) becomes negative

for w2 < -3/2. This means that the field redefinition (4.28) is only well defined

on the subspace (w) with w2 > -3/2. Within this region fi(w) is smooth

without any zeroes or poles. The mass-shell point, w2 = -1 lies within this

region.

2In [105] this constraint was overlooked and a simple expression A(Wl,W2, W3) = ½ have been
used. One can check that this is incorrect on a simple example. Consider mapping the action of
harmonic oscillator to the action of harmonic oscillator plus a cubic potential term _ 3. With the
choice of A that preserves the mass-shell modes one gets a field redefinition that correctly maps the
solution of harmonic oscillator eit to the perturbative solution of unharmonic oscillator eit - e2 it
A naive choice of A gives rise to unwanted additional factor of 1/3.
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* The function A2 represents a universal part of f2 and is independent of the

particular properties of the CSFT and BSFT actions. For example to map the

action of harmonic oscillator to the action of unharmonic oscillator we could

use the same A.

* The term multiplying A2 (wl, w2, w3) in (4.34) has a number of poles. However

it is non-singular in two important cases. The first case was considered in [105]

is when the tachyon fields in both frames T(w 2), T(w 3 ) and (wl) in (4.28) are

on the mass-shell. At this point the two summands in the numerator of (4.34)

cancel and there is no pole at this point. The requirement of this cancelation

was used in [105] to fix the normalization of BSFT action.

The second case is the one of the rolling tachyon. In this case T(w 2) and T(w 3)

are on them mass-shell: W2 = w = -1 and w = w. A potential singularity

is in the term .3BSFT(wl,w 2, w 3 )/fl(W) in the numerator. f(wi) has a zero

at w = -4, but the functions I and J in the numerator have a stronger zero

resulting in a zero at that point.

Finally, we want to check that the field redefinition maps the rolling tachyon solu-

tion of BSFT into the perturbative solution that we have fount in 4.2.2. Plugging the

rolling solution Trolling(t) = et into the field redefinition and computing the numerical

values we obtain
64 e2 t

(t) = et _ 64 + ... (4.39)
243 vf3

which exactly reproduces the leading order terms in the perturbative CSFT solution

found in section 4.2. It seems likely that as we include higher powers of 0 in the field

redefinition we would generate higher powers terms ent in the perturbative solution.

4.5 Summary

In this chapter we have confirmed and expanded on the earlier results of [55] and

[56], which suggested that in CSFT the rolling tachyon oscillates wildly rather than

converging to the stable vacuum. We have shown that the oscillatory trajectory is

116



stable when higher-level fields are included and thus correctly represents the dynam-

ics of CSFT. We have further shown that this dynamics is not in conflict with the

more physically intuitive et dynamics of BSFT by explicitly demonstrating a field

redefinition, including arbitrary derivative terms, which (perturbatively) maps the

CSFT action to the BSFT action and the oscillatory CSFT solution to the et BSFT

solution.

This resolves the outstanding puzzle of the apparently different behaviour of the

rolling tachyon in these two descriptions of the theory. On the one hand, this serves as

further validation of the CSFT framework, which has the added virtue of background-

independence, and which has been shown to include disparate vacua at finite points

in field space. On the other hand, the results of this paper serve as further confir-

mation of the complexity of using the degrees of freedom of CSFT to describe even

simple physics. As noted in previous work, many phenomena which are very easy

to describe with the degrees of freedom natural to CFT, such as marginal deforma-

tions [93], and the low-energy Yang-Mills/Born-Infeld dynamics of D-branes [57] are

extremely obscure in the variables natural to CSFT. This is in some sense possibly

an unavoidable consequence of attempting to work with a background-independent

theory: the degrees of freedom natural to any particular background arise in compli-

cated ways from the underlying degrees of freedom of the background-independent

theory. This problem becomes even more acute in the known formulations of string

field theory, which require a canonical choice of background to expand around, when

attempting to describe the physics of a background far from the original canonical

background choice, such as when describing the physics of the true vacuum using the

CSFT defined around the perturbative vacuum [129, 130]. The complexity of the field

redefinitions needed to relate even simple backgrounds such as the rolling tachyon dis-

cussed in this paper to the natural CFT variables make it clear that powerful new

tools are needed to take string field theory from its current form to a framework

in which relevant physics in a variety of backgrounds can be clearly computed and

interpreted.
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Chapter 5

Conclusions and future directions

OSFT is a powerful tool for studying non-perturbative phenomena and distinct vacua

with different geometrical properties. The theory has the virtue of being background-

independent and needs a map from the set of field variables from one background's

choice to the other. The fact that OSFT's set of variables, which are defined through a

complicated algebraic structure, produce different geometrical backgrounds as differ-

ent solutions of the equations of motion is an important step beyond the perturbative

formulation of string theory. It would be ideal if we could have an off-shell formula-

tion of string/M-theory where the various known vacua arise in terms of a single well

defined set of degrees of freedom.

The downside of using CSFT approach is that its degrees of freedom are rather

complex and to describe simple physics may look complicated. As we have shown

in this work, many phenomena clearly described using conformal field theory degrees

of freedom, such as the low-energy Yang-Mills/Born-Infeld action and the tachyon

dynamics starting at the perturbative vacuum, are unclear in the variable of CSFT.

Again, we think that this is a consequence of trying to approach a problem with a

theory that is background-independent. For example, if we want to study the effective

action for the gauge field from the partition function on the disk, we add a boundary

operator that is manifestly gauge invariant by construction. Clearly, the resulting

effective action has the usual gauge transformation for A, in contrast to the CSFT

case where the gauge field is coupled to the other massive field through a totally
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different gauge symmetry. We remind that situation like this are not unusual, in fact

there are other cases where we need a map that relates the standard set of variables to

the new one. For example in noncommutative gauge theories the gauge field posses a

non-standard gauge transformation which involves a noncommutative product. These

guage variables are related to the standard ones by means of a field redefinition, the

Seiberg-Witten map.

While we have focused in this work on calculations in the bosonic theory, it would

be even more interesting to carry out analogous calculations in the supersymmetric

theory. There are currently several candidates for an open superstring field theory,

including the Berkovits approach [131] and the (modified) cubic Witten approach

[132, 133, 134]. (See [135] for further references and a comparison of these approaches.)

For the abelian gauge field's effective action, a superstring calculation should again

reproduce the Born-Infeld action, including all higher-derivative terms. In the non-

abelian case, it should be possible to compute all the terms in the nonabelian effective

action. It would be also interesting to see if in the supersymmetric case the tachyon

solution happens to show the wild oscillations that we observe in the bosonic case.

The analysis in chapter 2 also has an interesting analogue in the closed string con-

text. Just as the Yang-Mills theory describing a massless gauge field can be extended

to a full stringy effective action involving the Born-Infeld action plus derivative cor-

rections, in the closed string context the Einstein theory of gravity becomes extended

to a stringy effective action containing higher order terms in the curvature. Some

terms in this action have been computed, but they are not yet understood in the

same systematic sense as the abelian Born-Infeld theory. A tree-level computation

in closed string field theory would give an effective action for the multiplet of mass-

less closed string fields, which should in principle be mapped by a field redefinition

to the Einstein action plus higher-curvature terms [14]. Lessons learned about the

nonlocal structure of the effective vector field theory discussed in this work may have

interesting generalizations to these nonlocal extensions of standard gravity theories.

Another direction in which it would be interesting to extend this work is to carry

out an explicit computation of the effective action for the tachyon in an unstable
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brane background, or for the combined tachyon-vector field effective action. Some

progress on the latter problem was made in [15]. Because the mass-shell condition

for the tachyon is p2 = 1, it does not seem to make any sense to consider an effective

action for the tachyon field, analogous to the Born-Infeld action, where terms of higher

order in p are dropped. Indeed, it can be shown that when higher-derivative terms are

dropped, any two actions for the tachyon which keep only terms akqm+k, m > 0, can

be made perturbatively equivalent under a field redefinition (which may, however,

have a finite radius of convergence in p). Nonetheless, a proposal for an effective

tachyon + vector field action of the form

S = V(Q) +/-det(r,, + F, + d00) (5.1)

was given in [61, 62, 63] (see also [60]). Quite a bit of recent work has focused

on this form of the effective action and there seem to be many special properties

for this action with particular forms of the potential function V(0). It would be

very interesting to explicitly construct the tachyon-vector action using the methods

outlined in this work. A particularly compelling question related to this action is that

of closed string radiation during the tachyon decay process. In order to understand

this radiation process, it is necessary to understand back-reaction on the decaying

D-brane [136], which in the open string limit corresponds to the computation of loop

diagrams. Recent work [64] indicates that for the superstring, SFT loop diagrams on

an unstable Dp-brane with p < 7 should be finite, so that it should be possible to

include loop corrections in the effective tachyon action in such a theory. The resulting

effective theory should shed light on the question of closed string radiation from a

decaying D-brane.

The tachyon-vector filed effective action can also be computed in the framework

of BSFT. When other excited string modes are present, say modes of the vector field

A,, the form of the WS action should still be given by (3.4) where the renormalized

tachyon field depends also on the other string couplings. In particular it would be

interesting to apply our renormalization procedure to the other renormalizable case in

120



which the boundary perturbation contains also a vector field. Whether this approach

would help in treating also non-renormalizable interactions it is yet not clear.

The decay of unstable systems of D-branes, pictured as a tachyon field rolling

down a potential toward a stable minimum, can also be addressed in the context of

the boundary string field theory. It involves deforming the world sheet conformal field

theory of the unstable D-brane by a conformal, time dependent tachyon profile. It is

useful then to construct -functions which are valid away from the RG fixed point to

demonstrate that the renormalization flow exists, to draw the RG-trajectories and to

understand where the endpoints of the RG flux are. Thus our approach should reveal

important in studying the physics around a conformal fixed points and in particular

about the time dependent solutions describing rolling tachyons.
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Appendix A

Neumann Coefficients

In this Appendix we give explicit expressions for and properties of the Neumann

coefficients that we use throughout this paper. First we define coefficients An and Bn

by the series expansions

1 + iz 1/3

1 -iz

1 + iz 2/3

I - iz

= EAnz +i Anz",
n even n odd

= EBnzn+iZBnz"n
n even n odd

In terms of An and Bn we define the coefficients N m;S as follows:

rr __ 1

nm 3(n + m)

Nr,(r+l)= 1nm 6(n m)

Nr,+(r-1)- 1
nm 6(n TF m)

(-l)n(AnBm ± BnAm)

0

(-1)n+l (AnBm ± BnAm)

v3 (AnBm : BnAm)

(-1)n+l (AnBm : BnAm)

-{V (AnBm ± BnAm)

m+nE2Z, m

m+n E 2Z+1

m+n E 2Z, rr

m+n E 2Z+ 1

m+nE2Z, mn
m+n E 2Z+ 1
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The coefficients V are then given by

n
Vr= -3(2

nn 3
(-1)n-kA2 - (-1)n An)

k=O

V'(r+:) = V'(r+2)= _ ((_l)n + Vr)

Von = ,/i (Nor + Nr;- S)

n 0,

n 7 0,

n 0,

Vr = - ln(27/16).

The analogous expressions for the ghost Neumann coefficients are

rr 1 {(-1)n+l(BnAm + AnBm)
3(n + m) 0

1 (_1)n (BnAm AnBm)
6(n m) {_/ (BnAm n AnBm)- (n~ :F An m

m+nE2Z, mn
m+n E 2Z+ 1

m+nE2Z, mAn

m+n E 2Z+ 1

1Mnr,(r-1) _ 1
nm 6(n z m)

I(-1)n(BnAm :F AnBm)

{/- (BnAm + AnBm)

m+nE 2Z, mn

m+nE 2Z+1

Observe that the ghost formulae (A.5) are related to matter ones (A.4a) by Am -+

-Bm, Bm -4 Am. The ghost Neumann coefficients are expressed via Jnr as

xns = m (frs + Jr,-s) m $ n, m> O,

(A.6a)

xs =-§(-l)"AB +Xnn 

n(2 ( n-k Ak (-1)2

k=O

-A2) n 0, (A.6b)

2 nn
r s, n 0, (A.6c)

The exponential in the vertex (V31 does not contain Xn0, so we have not included an

expression for this coefficient; alternatively, we can simply define this coefficient to
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m A n, m,n > 0, (A.4a)

(A.4b)

(A.4c)

(A.4d)

(A.4e)

Nr,(r+l)
nm (A.5)

rs V/ (N2s rsV = MnTSNTI-



vanish and include co in the exponential in (V3 1.

Now we describe some algebraic properties satisfied by Vrs and Xr s. Define

Mrs = C = CrCXS . The matrices M and M satisfy symmetry and

cyclicity properties

Mr+ls+l = Mrs,

(MrT)T = Mrs,

CMrsC = Msr,

pMr+ls+l = MrsI

(Mrs)T = Mrs,

CMrsC = Msr.

This reduces the set of independent matter Neumann matrices to M 1l, M1 2, M21 and

similarly for ghosts. These matrices commute and in addition satisfy

M11 + M12 + M21 = -1,

M12M21 = Mll(Mll + 1),
M11 + M12 + M21 = -1,

M.12M21 = M11(11 _- 1).

These relations imply that there is only one independent Neumann matrix.
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Appendix B

Computation of I(k, k2, k3)

In this Appendix we shall compute the integral I(kl, k2, k3) appearing in eq.(3.34)

I(kl,k2,k3) =
2 2kk 2+2k2 k3+2kk 3

(27r)3

[sin2 2 T3 )]

J 27r 71 - 2 \ kik2
dL r d-r2dT3 jsin 2 ( I 2 

k2 k3 [n2 (71r ) ] klk 3

(B.1)

Introducing the variables

71 - T2
X- = 2

2

the integral over r1, T2 and 3 can be written as

4 kk 2
+ k

2 k3+klka+1 02r

27.3 J 2 _ILdx 2

dy [sin2 x]klk2 [sin2 y]klk 3 [sin2 (x + y)]k2k3

With a suitable shift of the integration variables we obtain

4kik2+k2k3+klk3 'r r2k3 2 + y)k2k3
I = k+2 + dx dy [sin x]k2 [sin [sin(x+y)]

4k1 k2+k2k3 sinx]12 [sin y]2klk3 2i(x+y) k 3 [1-e-2i(x+y)] k2k3

k +kk d dy [sin [si F(n - k2k3)r(m - k2 k3) e2i(x+y)(n-m)
dx dy X]2k2 ]2kI n!m!Fr2(-k 2 k3 )

(B.2)
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Integrating over x and y we have

r(n -a3)r(m-a 3)
n!m!r(1 + a, + n - m)r(1 + a - n + m)r(1 + a2 + n - m)r(1 + a2 - n + m)
r(l + 2al)r( + 2a2) I

r2(-a 3 )

where a = k1k2, a2 = k2k3 and a3 = klk3. Shifting m - m - n in the sum over m

we have

00

n,m=O

r(n - a2)r(n + m + a2)r(1 + 2al)r(1 + 2a3)
n!(n + m)!r2(-a2)r( + a, + m)r(1 + a, - m)r(1 + a3+ m)r(1 + a3- m)

00 0 r(n - a2 )r(n + m + a2)r(1 + 2al)r(1 + 2a3)
+ E L. n!(n + m)!r2 (-a2)r(1 + a1 + m)r(1 + a1 - m)r(1 + a3 + m)r(1 + a3 - m)

r 7(1 2a)r(+ 2a 3) 2Fl(-a 2 , -a 2; 1; 1) (B.4)r2(1 + al)r 2(1 ± a3)

where 2F1 (, P; y; z) is the Hypergeometric function. Changing the sign of the integer

m in the second term of the previous equation and noting that

oo n

n=O m=O

nm moo

n=m m=O

we find

00 r(m - a2)r(1 + 2al)r(1 + 2a3)
O =2 r(-a2)r( + al + m)r(l + a -m)r(l + a3 + m)r(1 + a3- m)

2F(m - a2,-a 2;m + 1; 1) - (1+ 2a)(1 + 2a 2F(-, -a2,-a;1;1)
r2 (1 + a,)r 2(1 ± a 3)

(B.5)

It is not difficult to show that the sum over m can be extended to negative values so

that we find

r(1 + 2al)r(1 + 2a2)r(1 + 2a3)
r(1 - al)r(al)r(1 - a2)r(a 2)r(1 - a3)r(a3)

r(m - al)r(m - a2)r(m - a3)00

m=-oo r(1 + m + ai)r(1 + m + a2)r(1 + m + a3)
(B.6)
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The series in the second line of the right-hand side of (B.6) is convergent for 1 + al +

a2 + a3 > 0. To sum over m we use a standard procedure. Consider the path in

Fig.B-1

-N-1/2

i(N+1/2)

-i(N+1/2)

N+1/2

Figure B-1: Path of integration.

Defining

r(m - al)r(m - a2)r(m - a)
r(1 + m + al)r(l + m + a2)r(1 + m + a3)

oo

E f (m)
E=0

we can write
N

7 rcotg7rzf(z)dz = E f(m) + S
J~C m=-N

where S is the sum of the residues of 7rcotg7rzf(z) evaluated in the poles of f(z). In

the limit N -+ oo the left-hand side of the previous equation vanishes reducing S to

c l(1+ al + a2 + a3)
. -

-r( + al)r(l + a2)r(1 + a3)r(1 + al + a2)r(1 + al + a3)r(1 + a2 + a3)
[r3 ~cos2 7al + cycl.] (B.9)

sin 7rain n r(al - a2) sin 7r(al - a3 )

So that I becomes

1(1 + a1 + a2 + a3)r(1 + 2a1)r(1 + 2a2)r(1 + 2a3)
r(l + al)r(l + a2)r(1 + a3)r(1 + al + a2)r(1 + a2 + a3)r(1 + al + a3)
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Appendix C

Perturbative computation of the

effective action for the tachyon

field.

We have used two methods to compute the coefficients in the effective action S[q(t)].

The first method, as described in the main text, consists of solving the equations of

motion for each field perturbatively in 0. The second method consists of computing

the effective action by summing diagrams which can be computed using the method

of level truncation on oscillators. This approach is described in subsection C.1

C.1 Effective action from level truncation on os-

cillators

The classical effective action for the tachyon can be perturbatively computed as a

sum over all tree-level connected Feynman diagrams.

A method for computing such diagrams to high levels of truncation in string field

theory was presented in [65], and used in [71] to compute the effective action for

the massless vector field. Using this method, the contribution of a given Feynman

diagram with n vertices, n - 1 propagators and n + 2 external fields is given by an
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Figure C-i: The first few diagrams contributing to the effective action

integral of the form

6S = J (2dwi)O(wi)6(- wi) J j Det ( )exp (-wiQijwj)
i=l j=1 3

(C.1)

In this formula V and X are n x n block matrices whose blocks are matter and

ghost Neumann coefficients Vrs and Xrs of the cubic string field theory vertex. More

precisely

... 0 Xrlsl

... 0 0X=
... ... ...

0

XT2 2r252

0

... O

... 0
(C.2)

. . ..

. . . xrn $ n

When using level truncation Vrs and XrS become 3L x 3L matrices of real numbers.

The matrix P encodes information about propagators, external states and the graph

structure of the diagram. We define it as

P = KTpK (C.3)
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Here P is a block-diagonal matrix of the form

!
F(Uf) U ... U U ... U

O P( 2) ... 0 0 ... 

... ... ... ... ... O

O 0 ... P(an-3) 0 ... 0

O 0 ... 0 0 ... O

... ... 0 0 ... ...

0 O ... 0 0 0

(C.4)

The diagonal blocks P(ai) correspond to propagators. In the level truncation scheme

the block P(a) of P is the 2L x 2L matrix

P(a)= P12()) (C.5)
0P21 () O

where
a O ... O

0 a 2 ... 0
P12(0r) = P21(0r) = (C.6)

o 0 ... a4

The last n rows and columns of P are filled with zeroes which correspond to ex-

ternal tachyon states. The matrix K is the block permutation matrix that encodes

information on the graph structure of the diagram.

As we can see from the figure C-2 in the case of the 4-point diagram a suitable

permutation is

n= (1 2 3 4 5 6)-+ (3 6 1 2 4 5) (C.7)

130
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2> 3
2

1 2

04

5

3 4 5 6

Figure C-2: To construct the 4 point diagram we label consecutively the edges of vertices on one
hand and propagators and external states on the other. Matrix K corresponds to a permutation
that would glue them in one diagram

which corresponds to

K=

0 0 1 0 0 0

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0

(C.8)

Multiplying matrices we find

Xp = ()11)2, (C.9)

V or+llnV,,=o- 2 , mn +n mn1Xmn = a 2 Xmn.

The contribution from the Feynman diagram with 4 external tachyons is given by,

see subsection 2.3.1,

e - Vo1i) g i 2 /4)2 I 2 [Ir2j)(wj)6(E x )

i=1

I daDet ( 1- (X1 1)2 [(w1+w2) 2 +(w3+w4)2]exp (-WiQiij),
[1 - (11)2]13

(C.11)
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with Qij defined as

Qij = u3 I ll1U33 + U.O1 - f1 + i,j = 1,2 or i,j = 3,4,

(C.12)

1

· ~ (1 ) W11)
(i = 1, 2 and j = 3, 4) or (i = 3,4 and j = 1, 2),

(C.13)

uij = VOO + VOO
u'J = (v° ~' - v ~o - v +V30V,2o - 3

-Vo M

(C.14)
mn

and Cm,, = m(-l)n. Considering only the contribution coming from level 2 fields,

we have to consider only these Neumann coefficents whose powers and products total

oscillator level sum up to 2, i.e. V01, Vl, V02 and Xl, [65]1. Doing so equation (C.11)

simplifies a lot and the integral over the modular parameter reduces to

I du,-I [(i1 +W2)2+(W3+W4)2] (C.15)

Performing this integral it is easy to get the same result as in formula (4.9).

'If we want to calculate the quartic term in the effective action we have to subtract the contri-
bution from the tachyon in the propagator.
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