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ABSTRACT

The viscosity and surface tension of liquid metals are important properties,
both from a scientific and a technological point of view. Conventional
techniques involve contact with the liquid whose properties are being
measured, resulting in contamination and making undercooling impossible.
For these reasons electromagnetic levitation was used to position, heat, and
deform the samples in a containerless fashion. In order to eliminate the
turbulent fluid flow inherent in earthbound levitation experiments to make
viscosity measurement possible and determine the effect of magnetic fields
on surface tension measurements, the experiments were performed in
microgravity as part of the IML-2 Space Shuttle mission in July 1994. In order
to rationally plan these experiments, a substantial mathematical modeling
effort was performed. We have developed a computational methodology and
calculated the levitation forces, stirring forces, and deformation of the sample
through the solution of Maxwell's electromagnetic field equations and the
Navier-Stokes equations for fluid flow with due allowance for a boundary
condition of normal stress continuity at the free surface. The temperature
distribution in a levitated droplet has also been calculated through the
solution of the differential thermal energy balance equation including the
power induced in the sample and heat lost from the surface by radiation and
conduction. These predictive calculations were essential for both the
planning of the experiments and for the replanning of experimental runs
during the actual Space Shuttle mission. The results of surface tension
measurements for three different materials made aboard the Space Shuttle
are also presented.
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CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This research program was undertaken with the goal of using the unique
attributes of microgravity to measure the viscosity and surface tension of

liquid metals in the superheated and undercooled states. Because of the need

to operate in an efficient manner, mathematical models are being
increasingly used to predict behavior and intelligently control industrial
materials processing operations. The accuracy of the results produced by such
mathematical models is limited by the accuracy of thermophysical property

data such as the viscosity and surface tension. The property database for

liquid metals in the superheated and undercooled states is incomplete and

the conventional measurement techniques are not entirely satisfactory,
providing motivation for the development and execution of the microgravity

experiments.

The thermophysical properties were measured in a containerless fashion

with the oscillating drop technique by using electromagnetic levitation. In

order to be able to rationally plan the experiments to be performed on the

IML-2 Space Shuttle mission in July 1994, a substantial mathematical

modeling effort was performed. These predictive calculations were essential

for both the planning of the experiments and for the re-planning of
experimental runs during the actual Space Shuttle mission [1].

Mathematical modeling is becoming increasingly common in materials
processing to obtain a quantitative understanding of the phenomena that
govern materials processing operations. Microgravity, or Space Shuttle,
experimentation represents a specific case in point; the very high cost of the

Space Shuttle flights, the very limited flight opportunities that are available,

the tight resources in the Spacelab, and a justifiably skeptical public clearly

mandate that these experiments be very precisely planned and that all
possible opportunities for mathematical modeling be fully exploited [1].
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The contents of this thesis detail the methodology and results of the
mathematical modeling effort conducted for the design of a series of Space
Shuttle experiments. The major achievement of the work is that we were
able to perform the first very accurate surface tension measurements on
liquid metals that did not require the used of correction formulae. The fact
that we were able to successfully perform these experiments in space with an
apparatus that had never previously been used in a Spacelab mission
illustrates the strength of the mathematical modeling effort.

The main contributions in the field of process modeling described in this
thesis are:

(1) Improvement of a code to calculate the electromagnetic field and
forces in an axisymmetric droplet of arbitrary cross-section

(2) Development of a model of the free surface shape of a levitated

droplet involving re-calculation of the magnetic pressure distribution as the

shape changed
(3) Development of a model of the free surface shape of a levitated

droplet that simultaneously considers the internal electromagnetically-driven
fluid flow

(4) Development of a model of the heat transfer in a levitated
droplet considering the spatially-varying induced power and heat losses at the
surface

The mathematical models detailed in this thesis were in large part developed

for and applied to the particular electromagnetic levitation device used to
perform the microgravity experiments. In addition to being useful for
determining the optimal parameter set to run the experiments performed
with the TEMPUS EML, the models developed are already being applied to

the design of the next generation of EMLs, which may be used to perform
thermophysical property measurements aboard the Space Station.

There are is also the potential for this work to make a significant contribution
to the optimization and development of industrial processes. The techniques
developed for modeling the behavior of levitation-melted metallic droplets
could also be readily adapted to tackling a broad range of problems where the
surfaces of molten metals are being shaped, deformed, or simply held in
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position through the application of electromagnetic forces; some current
applications of these techniques include electromagnetic casting,
electromagnetic dams in near net shape casting applications, and the moldless
melting of titanium. While major advances are being made in the
application of electromagnetic theory to advancing our understanding of
these systems, it is possible that the techniques described here could find
applications in these areas as well [1].

1.2 VISCOSITY AND SURFACE TENSION

Surface tension is defined thermodynamically as the surface free energy
required to create a surface of given area and has units of J/m 2. The dynamic
definition views the surface as a membrane that exists under a uniform
tension, and the surface tension is regarded as the force required to stretch
this membrane by a given distance. In this case the surface tension has the SI
units of N/m, which is equivalent to the units of the surface free energy [2-3].

Viscosity is a measure of a fluid's resistance to applied motion. The
Newtonian definition of viscosity is that it is the constant of proportionality
between the shear force exerted per unit area and the velocity gradient in the
fluid. On a microscopic level, viscosity is a measure of the friction among

atoms within a fluid [3].

The surface tension and viscosity of fluids are important properties, both
from a scientific and a technological point of view [4]. Interest in the viscosity
and the surface tension of molten metals and alloys stems both from scientific
considerations, because understanding these properties is essential to
validating the theories of the liquid state, and from practical considerations,
such as their applications in processing, chemical, and metallurgical
industries [5].

Surface tension and viscosity are critical in casting, molding, and crystal
growth operations such as in preparing turbine blades for jet engines [6]. In

smelting and refining operations, the surface tension is a key parameter in
phenomena such as gas absorption, nucleation of gas bubbles, nucleation and
growth of non-metallic inclusions, and slag/metal reactions. Other
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metallurgical processes such as casting, brazing, sintering, zone refining, and

fiber formation are also greatly influenced by the surface tension of the liquid

metal being processed [3]. The surface tension is also interesting for

technological reasons because it strongly influences the processing behavior

of molten metals. Through doping with surface-active substances such as

sulfur, oxygen, selenium, and tellurium the surface tension of liquid metals

can be altered, which can create better properties upon welding, soldering, and

casting [2].

Viscosity plays an important role in the solution of quantitative problems in

fluid flow behavior and the kinetics of reactions in metallurgical processes.

For example, the viscosity of a liquid metal is a main factor in determining

the speed at which small gas bubbles and non-metallic inclusions rise
through it [3]. In undercooled metals and, in particular, in glass-forming

systems, the viscosity changes by 14 orders of magnitude in a temperature

range of approximately 500 K between melting and glass temperature. For

high undercooling the viscosity reduces the nucleation rate I drastically

because it is inversely proportional to the viscosity [7], as seen from the

relationship [8]

I 1 lexp[, (1.1)

!.tj L 3kT(AG,,)

where YSL is the solid-liquid interfacial energy, k is Boltzmann's constant, T is

the Kelvin temperature, and AGv is the difference in free energies per unit

volume of solid and liquid. The reduced nucleation rate makes it possible to

produce metallic glasses, materials with amorphous structures, at high

undercooling [9].

The surface tension and the viscosity also influence fluid flow processes in

the melt. Marangoni convection is driven along the melt surface by gradients

in the surface tension. The dimensionless number associated with this
phenomenon is the Marangoni number [8]
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Ma = T y (1.2)
cp AT

where VTj is the magnitude of the temperature gradient, L is the

characteristic length, dy/dT is the rate of change surface tension with respect
to temperature, and a is the thermal diffusivity of the melt. Control of
Marangoni convection in the melt is important in such processes as welding
and single crystal growth [2].

With the advent of powerful mathematical modeling techniques for
metallurgical phenomena, there is renewed interest in reliable data on the
physical properties of liquid metals. Presently, the knowledge and accuracy of
these data are the limiting factors in the models [10]. Egry et al. [4] used

expressions developed by Fowler [11] and Born and Green [12] to derive a
simple relation between the surface tension y and the viscosity g of a pure
liquid. They argued that such a relation exists because the surface tension and
the viscosity relate to the same microscopic process. When additional surface
is created, the surface atoms are displaced with respect to each other, and work
must be done against their pair potential. Egry et al. demonstrated that the
integrals in the expressions derived by Fowler and Born and Green were
equal and, by forming the ratio y/l, obtained the relationship

y 1 5 kT (1.3)

where k is Boltzmann's constant, T is the Kelvin temperature, and m is the
atomic mass.

Egry et al. checked the validity of this relationship by compiling published
data for some liquid metals and found that the error was less than 20%, which
is about the accuracy of the input data, over a general temperature range of

300 K around the melting point. The relationship developed by Egry has been
found by several researchers and works remarkably well for noble and
transition metals near their melting points [13]. Egry et al. indicated that the
striking feature of their results was that the experimental data seemed to obey
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the linear relationship between y/p. and T1/2 very well. This was thought to
be surprising because the generally accepted formulae for the temperature
dependence of the surface tension and viscosity for liquid metals at
temperatures above the melting point

r(T) = y(T)+(dy / dT)(T-T ) (1.4)
(T) = .oe 'r (1.5)

where Tm is the melting temperature, .0o is the pre-exponential, A is the
activation energy, and R is the gas constant, would yield an essentially
Arrhenius-type temperature behavior for yy/. Egry et al. suggested that their
findings could be taken as an argument to support recent mode-coupling
theories that predict a power-law behavior of the viscosity at moderate
undercoolings [4].

A great deal of research has been done in constructing models of the liquid

state, but the viscosity of molten metals has defied predictions from first
principles due to inadequate understanding. Most of the currently available
theories draw parallels either with solid-like and/or gas-like behavior, and
none has been entirely successful. In addition, all models currently in use

rely on empirical or semi-empirical formulations rather than proven theory

[5].

Numerous relationships have been developed to depict the temperature
dependence of the viscosity of liquid metals. Many have been used
successfully over narrow ranges of temperature. Chhabra and Sheth [5]
discussed and compared three widely-used models under extensive ranges of

temperature. These models are summarized in Table 1.1. The Arrhenius

equation for viscosity gives excellent fit to the data over a limited
temperature range, but significant departures have also been reported.
Hildebrand's free volume theory envisions that the fluid flow is simply
governed by the extent of free space available. The relationship has been

shown to accurately describe the temperature dependence of the viscosity of a
wide range of materials including molten metals. Based on a quasi-crystalline
model of the liquid state, Andrade proposed an expression for the viscosity of

liquid metals that has been found by many investigators to fit experimental
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data for liquid metals with a high degree of accuracy. Chhabra and Sheth
concluded that the Arrhenius and the Andrade equations were virtually
indistinguishable, whereas the Hildebrand fluidity model yielded slightly
poorer results, but was thought to be more appropriate for the interpolation
of data. They concluded that is was not yet possible to choose one particular
predictive equation as the equation because the deviations between the actual
and calculated values are well within the limits of experimental uncertainty.

Battezzati and Greer [14] compiled a large body of published data on the

viscosity of liquid metals and alloys. With the exception of liquids showing
strong association and good glass-formers, they found that the melting-point
viscosity is described well by the Andrade formula and that the temperature
dependence of the viscosity above the melting point in Arrhenius. They also
asserted that for glass-forming systems the temperature dependence of the
viscosity is best fitted by the empirical Vogel-Fulcher-Tammann equation.
This model is also summarized in Table 1.1.

The measurement of thermophysical properties of liquid metals is an active

field of research. However, almost all existing data concern the liquid state
above the melting temperature. Information on the temperature dependence

of viscosity and surface tension of liquid metals in the undercooled regime is
not available to date and it would complement existing data on liquid metals
at and above their melting point. Data on thermophysical properties of
undercooled metallic melts is very poor, largely because standard invasive
measurement techniques usually induce nucleation of the stable solid phase,
making it extremely difficult to work with this metastable state. There are
also experimental difficulties posed by the high degree of chemical reactivity

of these melts [7].

The surface tensions of most liquid metals have been measured, but due to

the aforementioned difficulties in measurement, there is much scatter among
the available data [15]. According to Iida and Guthrie [3], mercury is the only
metal whose surface tension is accurately known. The surface tensions of
liquid metals, particularly those with high melting points and/or those which
are chemically reactive, have yet to be established. For example, surface
tension data for liquid iron still exhibit considerable scatter, as indicated in
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Figure 1.1. In general the surface tension values for liquid metals near their
melting points tends to increase over a period of years, presumably
approaching their true values. This is supported by the fact that the extent of
scatter, which is attributed mainly to reduced impurities and surface
contamination, decreases with time. Reviews have been given by Keene [16]
for iron and its binary alloys and by Nogi et al. [17] for transition metals.

Published surface tension data for the undercooled state of pure Fe, Ni, and
Au were found to be linear extrapolations of the data obtained for the liquid
phase. Mills et al. [18] measured surface tension values for undercoolings of
up to 300 K for nickel and found that the temperature dependence of the
surface tension in the undercooled state appeared to be identical with that
recorded for the liquid phase. This was also found to be the case for
measurements with iron and gold. Values of the surface tension and its
temperature dependence obtained in the investigation performed by
Sauerland et al. [19] for Fe, Ni, and Au were in good agreement with the
results obtained by conventional techniques. Although this suggested that
contamination of the samples in conventional methods from metal/ceramic
reactions was not large for these metals, this may not be the case for more
reactive metals such as Si or Ti.

Numerous experimental measurements of liquid metal viscosities have been
made, but accurate and reliable data have been difficult to obtain. As can be
seen in Figure 1.2, which shows experimental viscosity data for liquid iron,
discrepancies as large as thirty to fifty per cent exist between the experimental
results of different researchers. A major reason for large discrepancies among
viscosity data obtained using the oscillating-vessel method, which has been
used most extensively for liquid metals and alloys, is the result of
approximations in the working formulae used to calculate the viscosity of the
liquid from the observed damping of oscillations and dimensions of the
apparatus. Additional difficulties in obtaining reliable viscosity data for
liquid metals are the same as for the surface tension--high reactivity of liquid
metals and the technical difficulty of taking precise measurements at high
temperatures [3].
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1.3 ELECTROMAGNETIC LEVITATION

Electromagnetic processing of materials can be utilized to process electrically-
conducting materials in a clean containerless environment. Electromagnetic
fields are used to control the shape of a body of molten metal through
magnetic pressure on the free surface in processes such as vertical continuous
casting, the cold crucible technique, and in making thin films of molten
metal. Application of electromagnetic fields is also used in such diverse
processes as driving fluid flow and fluid flow suppression (electromagnetic
valves), as a non-intrusive velocity sensor, and as an alternative to
mechanical stirring [20].

Levitation melting has been part of the process metallurgist's repertoire for
several decades. In this process a metallic droplet, usually 5-10 mm in
diameter, is suspended by electromagnetic forces generated by the passage of a
radio-frequency current through induction coils which are located above and
below the droplet. The electromagnetic (Lorentz) force is generated by the
interaction of the currents that are induced in the droplet with the applied
magnetic field. The irrotational component of the electromagnetic force
provides the lifting force, while the rotational component provides stirring
and internal fluid flow if the sample is molten. The induced current also

provides Joule heating through Ohmic losses, hence the commonly-used
term "levitation melting".

The electromagnetic levitation technique is a widespread method for
containerless processing of liquid metals. A major advantage of the method
is the avoidance of sample contamination through the use of high-purity
processing gas and contact-free measuring techniques. Work with very
reactive molten metals is thereby possible without concern for falsification of
measured results due to chemical reaction with the crucible material. A
further advantage comes from the avoidance of heterogeneous nucleation on

container walls, making it possible to work in the metastable regime of
undercooled melts [2].
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1.4 PROPERTY MEASUREMENTS USING LEVITATION

Surface tension measurements have traditionally been performed using the
sessile-drop and pendant-drop techniques, both of which are based on the
determination of the non-spherical equilibrium shapes of drops due to
surface tension and gravity [21]. These techniques are based on the
measurement of the shape or size of a droplet that is located on a substrate or

suspended on a wire. The surface tension is then determined from the

numerical solution of a differential equation expressing a force balance at the
free surface of the sessile drop. In the maximum bubble pressure method the

pressure needed to make bubbles against the surface tension in the melt is

measured. In all of these conventional methods, the melt is always in contact

with a substrate, which presents the following disadvantages [2]:

(1) Because of the high chemical reactivity of metals at high
temperatures, contamination of the sample surface by the substrate is
virtually impossible to avoid.

(2) Investigation of undercooled melts is impossible because the

substrate serves as a nucleation site for solidification.

(3) Evaluation of the measured data requires knowledge of the
density, but reliable density data currently exist only for common low-
melting-point metals and their alloys [3].

In addition, the precision of measurements made using the sessile drop and

pendant drop methods are limited by the accuracy and reproducibility in
reading the coordinates of the drop profile [22]. A list of the conventional

surface tension measurement techniques, summarized from a
comprehensive account by Iida and Guthrie [3], is given in Table 1.2.

There are few suitable techniques for determination of the viscosity of liquid

metals and alloys because of their low viscosities, high chemical reactivities,

and high melting points. According to Iida and Guthrie [3], it is very difficult

to state definitely the accuracy of viscosity measurements for liquid metals

and errors range from one per cent to twenty per cent for all but a few metals.

As a result, there are not many well-established data for liquid metal
viscosities.
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Conventional measurement techniques, including the oscillating-vessel
method and the oscillating-plate method, use observation of the oscillations
of a vessel containing the fluid of interest about a vertical axis. A list of these
techniques, condensed from Iida and Guthrie, is given in Table 1.3. In
addition to the mathematical difficulty of solving the differential equation of
motion for the system, the contact of the liquid metal with a container
presents the same problems as do conventional surface tension measurement

techniques [3].

In 1971 Fraser et al. [23] developed a method to measure the surface tension of
liquid metals in a containerless fashion, the oscillating drop technique using
electromagnetic levitation. Further developments were made by Soda et al.
[24], Keene et al. [25], and Egry et al. [8]. In this technique, the oscillations of a
levitated droplet about its equilibrium shape are observed. The restoring
force for surface oscillations is the surface tension, which can be related to the
frequency of the oscillations [26]. In the levitated drop technique the solid

sample is placed in a high-frequency, inhomogeneous magnetic field which is
chosen in such a way that it simultaneously melts the sample by induction
and compensates for gravity through the applied Lorentz force [15,19].

This method has the advantage of eliminating persistent sources of
contamination which arise through the use of substrates and/or capillary
tubes associated with the sessile drop, the capillary rise, and the maximum
bubble pressure methods [3]. It avoids any contact with a crucible and thus
reduces not only systematic errors due to surface contamination but also
allows deep undercooling of the liquid metal [27].

Surface tensions of metals are markedly dependent on the concentrations of
surface-active elements such as the group VI elements, 0, S, Se, and Te. For
example, 50 ppm O causes a 30% increase in the surface tension of iron. With
conventional methods the reaction of the liquid metal with oxide ceramic
containers leads to oxygen contamination of the melt and subsequently to low
values for the surface tension. Since the levitated drop method eliminates
this source of contamination, it obviously has distinct advantages over
conventional methods of measuring surface tension [18].
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There has been some skepticism about the results obtained by the levitated

drop method since this method tends to yield higher values for the surface

tension than those from conventional techniques. Although some authors
have attributed this to the better purity of the sample's surface, it may also be
a systematic error due to the presence of the electromagnetic levitation field.
This field produces a magnetic pressure at the surface and leads to an
apparent increase of the surface tension. Measurements were carried out at
two establishments, the German Aerospace Research Establishment (DLR) in
Cologne, Germany, and the National Physical Laboratory (NPL) in
Teddington, England, in order to investigate the effects of variations in the
magnetic field and the sample weight on surface tension values with the
intention of presenting an improved evaluation scheme that would
eliminate this false magnetic pressure effect. Corrections for the effect of

magnetic pressure on the apparent surface tension obtained using a relation

derived by Cummings and Blackburn [28] gave surface tension values which

were independent of sample mass and in agreement with values derived by
conventional techniques [19]. Their work demonstrated that the levitated
drop method could produce very accurate results and would be the preferred
method for determining the surface tensions of reactive metals [15].

1.5 OSCILLATION OF A FREELY-FLOATING DROPLET

Viscosity and surface tension can be measured by exciting and detecting
surface oscillations of a levitated droplet [29]. The theory of oscillations of

viscous spheroids is a classical problem in hydrodynamics which has received

considerable attention over the years. The surface tension of the sample is

related to the oscillation frequency, and the viscosity is related to the damping
of the oscillations [29].

The radius of a spherical droplet undergoes damped oscillations of the form
[26]

Rx (6, ,t) - cos(2rv,. t)e-r""'P- (cos ) cos[m(O - o)] (1.6)

where n is the index of the fundamental oscillation modes, m is the index of
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one of the 2n-1 possible modes (Iml< n), 0 is the angle with respect to the
symmetry axis, is the azimuthal angle, Vn,m and rn,m are the frequency and

damping constant for the given mode, P' is an associated Legendre function,
and 0o is an arbitrary symmetry direction [21].

Lord Rayleigh calculated the frequencies of small-amplitude oscillations of an
inviscid spherical liquid droplet of mass m due to surface tension y. The
relationship between the frequency of mode n and the surface tension is
given by [30]

v, = n(n- )(n + 2) (1.7)
m

Due to the spherical symmetry of the droplet considered in his derivation,
Rayleigh predicted a complete degeneration of the states, whereby oscillation
mode n has exactly 2n+1 possible oscillation modes with the same frequency.
Equation 1.7 was confirmed by Lamb [31], who calculated the influence of
"small" viscosity on the oscillations. He concluded that the oscillation
frequencies were not changed and that a damping of the oscillations appeared.
The damping constant is given by

r, = (n - 1)(2n + 1) (1.8)
R2p

where R is the radius of the spherical droplet.

There is only one oscillation mode corresponding to the index n=O. For m=O

Ro.o(8, ,t) = ao(t) (1.9)

This oscillation mode consists of isotropic expansion or contraction of the
sphere and is known as the "breathing mode". Because of the conservation of
volume associated with incompressible fluids, this oscillation mode is not
observed in the case of liquid metal droplets.
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For the index n=1 the three possible distortions of the sphere correspond to
the indices m = -1, 0, +1. The expressions for the shape for each mode are
given by

R 0(, 4,t) = a0 + a 0(t)cos 0 (1.10)

R.+1 (G,, t) = ao + a, +, (t) sin Ocost (1.11)

R_,(- , t) = ao + a_,(t)sinsinsin (1.12)

By considering the expressions for the Cartesian coordinates x, y, and z in
spherical coordinates

z = rcos0 (1.13)

x = rsin cost (1.14)

y = rsin Osin 0 (1.15)

it can be realized that the distortions expressed mathematically in Equations
1.10-1.12 represent movement of the entire sample in each of the coordinate
directions and are therefore translational oscillations.

There are five possible deformations of a sphere for the index n=2. In all cases

the equilibrium shape is a sphere. The expressions for the droplet shape in

the cases of m = -2, -1, 0, +1, +2 are given by

R2o(0,, t)= ao + a20,(t)(3cos 2 -) (1.16)

h.x( 0, t) = ao + 3a2,(t)sin Ocoscos p (1.17)

l2, (, , t) = ao + 3a2._(t)sin Ocos Osin p (1.18)

R2.+2(0, , t) = a0 + 3a2+2(t) sin2 Ocos(20) (1.19)

R2._2(0, O,t) = a0 + 3a._2 (t) sin2 sin(20) (1.20)

In one half-period of the n=2, m=0 mode the sample expands in the z-
direction and contracts at the equator, and in the other half-period the sample

contracts in the z-direction and expands at the equator. The main
characteristic of this mode is that it is perfectly symmetric to the z-axis. The

top view of the projection of this mode is fully axisymmetric and each plane
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through the z-axis in the side view is a mirror plane. The plane
perpendicular to the z-axis, which passes through the center of mass, is also a
mirror plane.

The n=2, m=+1 and n=2, m=-1 modes are nicknamed the "peanut modes" or

the "tumbling modes" because from the side view the droplet swings back

and forth between the diagonals. This mode is not symmetric with respect to

the z-axis. In the top view the projection has no rotational symmetry, while
in the side view only the x-z plane is a mirror plane.

Like the n=2, m=O mode, the n=2, m=+2 and n=2, m=-2 modes are symmetric
with respect to the z-axis. In the top view of the sample there is no rotational
symmetry, but in the side view the x-z and y-z planes are mirror planes. In
particular, the z-axis is a mirror axis for every side view of the sample [2].

From Equation 1.7 it can be seen that the surface tension y is related to the
minimum possible natural oscillation frequency v (mode n=2) by the
expression

3) ,= 2v- (1.21)
. 8

The viscosity of the melt is related to the oscillation amplitude decay
constant r for the mode n=2 through the expression

.U = R 2pr 2 (1.22)
5

For a non-rotating spherical droplet, the n=2 modes are five-fold degenerate.

If the equilibrium shape is not spherical but still axisymmetric and the sample

does not rotate, the frequencies depend on I m I only, and the spectrum has
three peaks which correspond to m = 0, +1, +2 [21]. For the case of small
axisymmetric deviations from a spherical shape Cummings and Blackburn
[28] derived expressions for the oscillation frequencies of n=2 modes m=O,
m=+l, and m=+2
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V20 = vR(1- 0.67582 - 2.176E,) (1.23)

2., = VR (1 -0.337962 + 1.4507E4) (1.24)

V2,, = v,(1 + 0.6758e 2 - 0.3627 4,) (1.25)

where VR is the Rayleigh frequency, which can be obtained by setting n=2 in
Equation 1.7 [2]. The terms 2 and £4 are coefficients in the series of spherical
harmonics used to fit the curve that describes the shape of the levitated
droplet, which is given by [32]

R(O) = R( 1 + I eY. ()) (1.26)

According to Cummings and Blackburn, for observations of the droplet down
the z-axis ("side view"), the intensity of the n=2, m=0 and n=2, m=+2 modes
will be greater than that for the n=2, m=+1 modes. They also predicted that
the spacings between the three bands in the frequency spectrum are in the
ratio of 3:1 when the deformation of the droplet has only a second-spherical-
harmonic (Y2°) component. From Equations 1.23-1.25 it can be calculated that
for a purely second-spherical-harmonic extent of deformation of 10%, as was
approximately the case in the microgravity experiment, the maximum
frequency shift relative to the undistorted sphere is about 10.7%.

A rotating and/or non-axisymmetric sample exhibits all five peaks,
corresponding to modes m=-2, -1, 0, +1, and +2 [21]. In practice the rotational
symmetry of the magnetic field is not perfect because it is impossible to
produce perfectly symmetric coils. The resulting inhomogeneity of the
magnetic field and the fact that the sample shape is not spherical create
additional external forces on the sample that can lead to sample rotation.
Busse [33] derived a simple formula for the splitting of oscillation modes in a
rotating inviscid incompressible fluid caused by sample rotations to first order
in the rotational frequency Ql. According to Busse, rotation influences only
m * 0 modes, as seen from the relation

V = v° +--- (1.27)
2 221
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where v. is the oscillation frequency considering rotation of the sample.
Equation 1.27 predicts that the splitting of the oscillation frequencies is
symmetric, with the difference in frequency between the frequency in the case
of no rotation and that considering rotation depending on the rotational
frequency and the index of the oscillation mode [2].

In order to determine the correct Rayleigh frequency, which is needed to
calculate the surface tension from the measured oscillation frequencies,
Cummings and Blackburn [28] and Suryanarayana and Bayazitoglu [34] have
developed summation rules and corrections to account for the magnetic field.
Cummings and Blackburn have calculated the effect of asphericity, gravity,
magnetic field, and sample rotation on the frequency of the n=2 modes of an
incompressible and inviscid droplet. The main result of their calculation is
that the frequency of the fundamental n=2 mode is split into up to five
sidebands.

In order to derive an expression for the Rayleigh frequency in terms of the
surface and translational oscillation frequencies that would account for the
magnetic field, Cummings and Blackburn assumed that the z-component of

the magnetic field strength varied linearly with z. Based on the equation
derived by Egry and Sauerland [13] from the work of Cummings and
Blackburn, the correction formula

v =.(v2v + 2 v + 2v)- 1.9v -1.92 x 10 4 () (1.28)

allows the corresponding Rayleigh frequency to be evaluated from the
observed frequencies of the fundamental and translational modes.
Subtraction of the terms including the mean-square translational frequency

= 3 (2 v ,, + v ) (1. 29)

accounts for the apparent increase in surface tension due to the action of the
applied magnetic field. The magnetic field correction in the formula
presented by Cummings and Blackburn has two effects. It eliminates a false
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mass dependence of the surface tension inherent in previous results obtained

by the oscillating drop technique, and it reduces the absolute value of the

surface tension [13].

If the field strength is chosen correctly, there is an equilibrium point along the

symmetry axis at which the Lorentz force cancels the gravitational force

exactly. This is the equilibrium position of the droplet. In an electromagnetic

quadrupole field, the droplet experiences a restoring force as soon as it

deviates from its equilibrium position. This leads to translational oscillations

of the droplet as a whole, that is, to the appearance of the n=l mode [19].

Rayleigh's approach does not account for translational (n=l) oscillations

because such a distortion is connected to movement of the center of gravity of

the sphere, which comes from an external potential rather than surface

tension and is not considered in Rayleigh's Lagrange formulation. In order to

derive an expression for the frequency of n=l oscillation modes, Rayleigh's

approach must be extended. This is done by introducing a potential energy

term that corresponds to the restoring force with spring constant k into the

Lagrange formulation [2]. For a sample of mass m the oscillation frequency vl

is given by [21]

v = - (1.30)

The spring constant k is proportional to the magnitude of the gradient of the

electromagnetic force field. When the magnetic field varies linearly in the z-

direction, the translational frequency in that direction will always be exactly

twice that of the translations in the x- and y-directions [28].

Bratz and Egry [35] derived a correction formula to account for the effect of

gravity the electromagnetic field on the damping of the n=2 oscillation modes

in an axisymmetric droplet. The corrections for individual n=2 modes are on

the order of 5-10%, but the important result was that the average damping

constant for the n=2 oscillation modes is the same as that derived by Lamb

[31].
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1.6 NEED FOR MICROGRAVITY

Surface tension measurements made with the oscillating drop technique
using electromagnetic levitation can be improved by performing the
experiments in a microgravity environment. Residual accelerations aboard
the Space Shuttle are on the order of one thousand to one hundred thousand
times less than the magnitude of gravitational acceleration on the earth,
therefore, much weaker electromagnetic fields are necessary. This offers three
primary benefits to surface tension measurements.

(1) The sample remains nearly spherical, which greatly facilitates
the analysis of the oscillations. As discussed above, non-sphericity results in
splitting of the n=2 oscillation modes, which complicates the analysis.

(2) The magnetic pressure on the surface of the sample, which leads

to an apparent increase in the surface tension and has often been neglected in
surface tension measurements made using the oscillating drop technique, is
reduced.

(3) The induced currents in the sample are reduced, which makes it
possible to minimize the heat induced in the sample, thereby making
processing in ultra-high vacuum and at lower temperatures feasible [7,21].

Microgravity is necessary for the performance of viscosity measurements
using the oscillating drop technique. The need to operate in a microgravity

environment can be justified by the consideration that under earthbound
conditions, quite strong electromagnetic lifting forces are needed to overcome
gravity; under these conditions the stirring forces are also strong and result in
turbulent or transitional fluid flow within the droplet. Turbulence makes the
measurement of the viscosity impossible because momentum transfer and
the decay of the oscillations are then governed by the turbulent eddies rather
than by the molecular viscosity. Furthermore, the minimization of the
magnetic positioning fields made possible by experimentation in
microgravity greatly reduces the magnetic damping of oscillations which
dominates viscous damping in ground-based experiments [7].
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1.7 TEMPUS CONTAINERLESS PROCESSING FACILITY

The experiments run to measure the viscosity and surface tension at various
temperatures in the stable liquid and undercooled liquid states were
conducted using TEMPUS (Tiegelfreies Elektromagnetisches Prozessieren
Unter Schwerelosigkeit), the electromagnetic containerless processing facility.

TEMPUS uses electromagnetic levitation for containerless positioning and
heating of metal samples and can be used under microgravity conditions.
Schematic sketches of the TEMPUS facility and the coil geometry are shown

in Figures 1.3(a) and 1.3(b), respectively. TEMPUS was designed to process 8
mm and 10 mm diameter spherical metal samples within two sets of
induction coils. The outer (positioning) coils, which operate at a frequency of
about 140 kHz and create a quadrupole magnetic field, illustrated in Figure

1.4(a), position the sample. The inner (heating) coils, which operate at a

frequency of about 400 kHz and create a dipole magnetic field, illustrated in

Figure 1.4(b), provide most of the thermal energy to the sample through
induction (Joule) heating [36].

By switching off or reducing the heating field, the power input into the

sample can be greatly reduced, thereby allowing undercooling without forced
gas cooling of the sample. In addition, a short voltage pulse through the

heating coil can be used to excite the surface oscillations. Most metals can be
positioned against 0.01 go and heated up to 25000 C with only 1.5 kW.

TEMPUS is equipped with a two-color pyrometer measuring between 300 and

25000C with a sampling rate of 1 MHz. Two video cameras (standard CCIR

monochrome) offer top and side views of the sample. The facility can operate

under inert purified gas atmosphere (Ar, He) and ultra-high vacuum (10-9
mbar) [21].

TEMPUS was built by Dornier, a company based in Friedrichshafen, Germany,
under contract from DARA, the German space agency. Some of the hardware
and software in TEMPUS were designed based on the inputs of the eight
teams of investigators, including our team, but the Space Shuttle experiments

were essentially performed using an apparatus that we did not build. As a
result, a significant part of our work prior to the mission was the
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determination of the set of parameters which configured the generic main
process flow for the performance of our particular experiments. The
parameter set included such variables as the emissivity for temperature
measurement, inert gas pressure, heating and positioning coil voltages,
heating times, maximum and minimum allowable sample temperatures, and
heating coil pulse voltage and duration. This preparation consisted of the
mathematical modeling effort detailed in this thesis and experimentation
with the Development Model of TEMPUS at the Microgravity User Support

Centre in Cologne, Germany.

In the experiment, the solid sample was introduced from below into the space

within the coils. The positioning coils were turned on first, and once the
sample rested in a stable position, the heating coils were turned on to melt
the sample and bring it to a predetermined, desired temperature above the
melting point. The current through the heating coils was then substantially
reduced to allow the sample to cool for a predetermined amount of time. The

sample was squeezed and deformed by applying a significantly higher current

through the heating coils for 0.1 s. After the heating coil was switched off
again, the damped oscillations of the droplet were observed and recorded on

video for a period of 5 s, during which time the sample continued to cool by
conduction to the surrounding inert gas and by radiation. The pulsing and
observation procedure was repeated until the droplet solidified in order to
obtain thermophysical property measurements over a temperature range
which would include temperatures in both the superheated and undercooled
states [1].

1.8 MATHEMATICAL MODELING

Because TEMPUS is not able to levitate and process samples under
earthbound conditions, the amount of experimental preparation for the Space
Shuttle experiments was greatly limited. For this reason, a comprehensive
mathematical modeling effort was essential. Electromagnetic levitation of

liquid metals presents three coupled problems--the determination of the
magnetic field, the unknown free surface shape, and the internal fluid
motion [37].
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The first mathematical descriptions of this method, based on the theory of

Okress [38] and Rony [39], depended on the assumption that the external
magnetic field in the area of the sample only varies slightly. The expressions
for the time-averaged force and time-averaged absorbed power that they
derived are only applicable when the diameter of the sample is small
compared to the dimensions of the coil system [2].

The exact description of the force and absorbed power of a metal sample in an
alternating magnetic field involves solution of the quasistatic Maxwell
equations with infinite series expansions. With this type of solution the
induced eddy currents and the time-averaged levitation force and absorbed
power distributions can be calculated [2]. Lohoefer [40-41] developed analytical
expressions for the total power absorption and forces produced in an
electromagnetically-levitated metal sphere. El-Kaddah and Szekely [42]
presented a mathematical representation for the electromagnetic force field,
fluid flow field, and temperature field in a levitation-melted metal droplet.

Sneyd and Moffatt [37] attempted to solve the coupled problem for two-

dimensional liquid metal cylinders, but only in situations where one of the

three phenomena could be neglected. Mestel [43] treated the coupled problem
for the single-frequency case by considering cases in which one of the three
phenomena could be neglected. Gagnoud, Etay, and Garnier [44] presented

two iterative methods for computing the equilibrium free surface shape, one
based on satisfying a stress equilibrium condition at the free surface, the other
based on energy minimization, but both of these methods considered only the
surface of the droplet and ignored the interior. El-Kaddah and Acosta-
Gonzalez [45] presented a mathematical model for the coupled problem of

determination of the electromagnetic force field and free surface shape, but

also neglected the interior. Gagnoud and Leclercq [46] decoupled the velocity
field and the equilibrium free surface shape.

Zong, Li, and Szekely [47] combined a numerical technique for calculating the

electromagnetic force field with a commercial fluid flow package to calculate
the steady-state melt velocities. Zong, Li, and Szekely [48] subsequently
presented results describing the transient evolution of the velocity and

34



temperature fields in a sample levitated in the TEMPUS EML after the
application of the heating coil pulse.

Numerical studies of cases involving arbitrary viscosity and small-amplitude
oscillations [49], small-to-moderate inviscid oscillations [50], large-amplitude
inviscid oscillations [51], and large-amplitude oscillations [52] have been
performed.

The mathematical modeling effort that we used to rationally plan the
successful Space Shuttle experiments addressed the following issues:

(i) calculation of the lifting and stirring forces and power
dissipation from first principles

(ii) calculation of the internal fluid flow fields
(iii) calculation of the sample deformation when the squeezing force

is applied
(iv) calculation of the transient development of the temperature

fields within the sample, as affected by power dissipation and heat transfer to
the surroundings

As the subsequent chapters will show, the modeling effort was vital to our
ability to plan and replan the successful experiments performed during the
IML-2 Space Shuttle mission. In addition to the fundamental significance of

the research, the computational methodology and tools developed to model

the electromagnetic fields and forces, internal fluid flow, free surface shape,
and heat transfer of samples processed in TEMPUS is readily applicable to
emerging electromagnetic materials processing operations [20].

1.9 HISTORY AND ACHIEVEMENTS OF THE PROJECT

The funding for this project began in February 1990, but the conception of the

experiment and initial preparation began several years before that. The
author of the thesis first became involved in this project in January 1988
through the Undergraduate Research Opportunities Program (UROP) at MIT,
initially performing a literature search to confirm the feasibility of measuring

the surface tension and viscosity of molten metals through the oscillating
drop technique.
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In addition to the mathematical modeling effort performed at MIT, the
preparation for the Space Shuttle experiment involved work with NASA and

cooperation with the various parties involved with TEMPUS, including
members from NASA, DARA, Dornier, MUSC, and the other Principal
Investigator (PI) teams, a group including about forty people from the United
States and Germany. The eight PIs, their affiliations, and the experiments are
listed in Table 1.4.

Throughout the project we have collaborated most closely with Prof. Ivan
Egry and his research group at the German Aerospace Research Establishment
(DLR) in Cologne, Germany. Members of each research group have spent
significant periods of time in the laboratories of the other group. The author
of the thesis had the opportunity to spend two months at DLR in the summer
of 1990 working on the development of image processing techniques for the
evaluation of the oscillations of levitated molten metal droplets. Through
practice with the German members of the TEMPUS team and study at MIT, it
was possible for the author to communicate entirely in German during the
month in the fall of 1994 spent at DLR evaluating the data obtained from the
Space Shuttle experiments.

In May 1994 the author had the opportunity to participate in experiments

with the Development Model of TEMPUS aboard NASA's KC-135 parabolic
flight aircraft, which provides about twenty seconds of low-gravity conditions

for each parabolic maneuver. In addition to gaining valuable knowledge
about the behavior of the levitated samples and the apparatus in a reduced
gravity environment prior to the IML-2 mission, the author had the chance
to experience weightlessness with the astronauts who would be conducting
the TEMPUS experiments aboard the Space Shuttle Columbia.

The experiments took place from July 8 to July 23, 1994, aboard the Space
Shuttle Columbia as part of the Spacelab IML-2 (Second International
Microgravity Laboratory) mission. During that time we monitored our
experiments from the Payload Operations Command Center (POCC) at
NASA's Marshall Space Flight Center in Huntsville, Alabama. From there,
we telecommanded our experiments and coordinated experimental runs with
the other TEMPUS PI teams [53].
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Collaboration among the scientists assembled at the POCC was an especially
gratifying aspect of the trip. From the very beginning, the PI teams combined
their efforts and resources to maximize the science output of the mission. In
particular, we shared samples and performed experiments of different types
on the same sample. During the mission, this spirit of cooperation was vital
to overcoming the problems that we encountered. The two primary
problems faced were heavy contamination of the samples, which greatly
limited the amount of undercooling that could be attained, and sample
instability, as off-center positioning of the samples due to imperfect
electromagnetic field alignment caused many of the molten samples to
collide with the surrounding sample cage. leading to premature termination
of many experiments [54].

All of the TEMPUS experiments pertaining to thermophysical property
measurements were performed jointly by the Szekely and Egry groups. Prior
to the mission experiments on noble metals Au and Cu, the alloy AuCu, and
Ni had been planned. The experiments on Au and AuCu were performed
successfully based on the preparation before the mission, much of which was
based on the knowledge gained from the mathematical modeling effort. A
successful experiment was also conducted on a ZrNi sample previously used
by one of the other PI teams for heat capacity measurements. The experiment
was entirely planned during the mission based on the experience and
teamwork of the two groups.

At the time of the submission of this thesis, surface tension values for Au,
AuCu, and ZrNi had been obtained, and plots of surface tension vs.
temperature in the superheated state were generated. These results appear in
Chapter 6. The results agree very well with available data and theoretical
predictions and suggested that microgravity experimentation is the optimal
platform for thermophysical property measurements.

Viscosity results had not yet been attained, due to the time necessary to perfect
the data evaluation technique. Preliminary results suggested that the
damping of the oscillations was an order of magnitude greater than what
should have come from the molecular viscosity. The source of this result
was being investigated, but it is possible that the brief heating coil pulses used
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to squeeze the molten samples induced transitional or turbulent fluid flow in
the samples, which would account for the enhanced damping.

An unexpected side result also obtained from the ZrNi experiment was the
suggestion of a phenomenon known as dynamic nucleation. In order to
excite oscillations from which the properties could be measured, brief current
pulses were applied to the molten sample. In many cycles during the ZrNi
experiment, the first current pulse in the undercooled state coincided with
the onset of nucleation (solidification), indicating that the current pulses may
have triggered nucleation without any contact with the sample. More
analysis is required to confirm the occurrence of this phenomenon, but it

seems that we have proven the existence of this effect [54].

The overall program was very successful, especially in light of the fact that
IML-2 was the first Space Shuttle mission for the experimental apparatus
TEMPUS. The success of the experiment is a testimony to the power of

mathematical modeling, which made it possible to properly plan key aspects

of the experiment and to re-plan experiments during the mission in response

to the problems that were faced. The very accurate surface tension results

show that the Space Shuttle provides the optimal environment for high-
quality thermophysical property measurements. The work leading up to the
mission, participating in testing of TEMPUS in microgravity on KC-135
parabolic flights, and commanding experiments from the NASA Payload
Operations Command Center during the mission was truly a once-in-a-
lifetime experience.

1.10 ORGANIZATION

Each of the following five chapters details one portion of the mathematical
modeling effort. It is intended that each chapter can stand on its own and that
each can be useful without reading the entire thesis from beginning to end. It
is hoped that this will be useful to readers with interest in a particular aspect

of the work presented.

In Chapter 2 we discuss the modifications made to an existing code used to

calculate the electromagnetic fields and forces and power dissipated in an
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axisymmetric sample. The formulation and results of the normal stress
balance model, a mathematical model developed to calculate the equilibrium
free surface shape effected by the brief squeezing pulse, are detailed in Chapter
3. In Chapter 4 we present the results of free surface shape and heat transfer
calculations intended to assess the effects of the squeezing pulse on various
samples. In Chapter 5 we discuss the formulation and results of the
electromagnetically-driven flow model, which was used to simultaneously
calculate the internal fluid flow field and free surface shape. In Chapter 6 we
describe the series of IML-2 Space Shuttle experiments performed in July 1994,
in particular, the results of the surface tension measurements. Concluding
remarks and recommendations for continuing the work described in
Chapters 1-6 are presented in Chapter 7.

Chapter 3, with minor differences, has been published, with co-authors S.
Sauerland, J. Szekely, and I. Egry, in the proceedings of the symposium
Containerless Processing: Techniques and Applications, which was held at
the 1993 TMS Annual Meeting. Chapter 5, with minor differences, has been
published, with co-author J. Szekely, in the proceedings of the symposium
Experimental Methods for Microgravity Materials Science, which was held at
the 1994 TMS Annual Meeting. Chapters 4 and 6 will be submitted for
publication in refereed journals.
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Figure 1.1 Surface tension values for liquid iron near its melting
point as a function of year. From Iida and Guthrie [2], p. 113. Methods
of surface tension measurement: o Sessile drop, Maximum bubble
pressure, A Pendant drop, v Oscillating drop, * Drop weight. Data
from Allen (1972b); Murarka, Lu, and Hamielec (1975); Kawai and
Mori (1979); Ogino, Nogi, and Yamase (1980).
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Figure 1.2 Viscosity of liquid iron, as determined by a number of
workers. From Iida and Guthrie [2], p. 168. - Values obtained by
workers in the USSR. (1) Arsentiev et al., (2) Barfield and Kitchener,
(3) Nobohatskii et al., (4) Romanov and Kochegarov, (5) Samarin, (6)
Ogino et al., (7) Ogino et al., (8) Nakanishi et al., (9) Vatolin et al., (10)
Frohberg and Cakici, (11) Cavalier, (12) Saito and Watanabe, (13) Lucas,
(14) Kawai et al., (15) Thiele, (16) Avaliani et al., (17) Wen Li-shi and
Arsentiev, (18) Schenck et al., (19) Frohberg and Weber, (20) Narita and
Onoe, (21) Krieger and Trenkler. (after Iida and Morita 1980).
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Figure 1.4 Sketch of (a) quadrupole magnetic field produced by
TEMPUS positioning coils and (b) dipole magnetic field produced by
TEMPUS heating coils. Figures provided by G. Lohoefer.
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Table 1.1 Widely-used models for viscosity of liquid metals
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Model Equation for Viscosity Adjustable Parameters
Arrhenius = 2

# = A xp-
(RTT

Hildebrand V_ 2
= B(V - V)

Andrade A C 2
T = A exp 

Vogel-Fulcher- ( D 3
Tammann = Aexp ) _



Table 1.2 Conventional surface tension measurement techniques
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Method Notes
Sessile Drop Most extensively used for liquid metals and

alloys, mathematical treatment and
equipment relatively simple, difficult to
completely eliminate contamination

Maximum Bubble Pressure Frequently used for liquid metals and
alloys, particularly suitable for metals
which are very sensitive to surface
contamination, correction factor needed in
data analysis

Pendant Drop Sometimes used for high-Tm refractory
metals, not suitable for determining
temperature variation of surface tension,
similar to sessile drop method

Drop Weight Sometimes used for high-Tm refractory
metals, not suitable for determining
temperature variation of surface tension,
great care must be taken not to shake drops
during experiment

Maximum Drop Pressure Free of theoretical uncertainty, used for
highly-reactive, low-Tm metals, limited to
about 1000 K because of difficulties
associated with design of equipment for
high temperatures

Capillary Rise Used for some low-Tm metals, not
commonly used for liquid metals, simple
theory but requires an exact knowledge of
contact angles



Table 1.3 Conventional viscosity measurement techniques

50

Method Notes
Oscillating-vessel Most frequently used for elevated

temperatures, simple apparatus and closed
vessel, difficulty in solving equation of
motion for system leads to large errors

Capillary Reliable for low-Tm (below 1400 K) metals,
usually for relative, rather than absolute,
measurements, simple procedure

Rotational Application to liquid metals difficult
because of technical difficulty, simple
mathematical analysis

Oscillating-plate Has been used for liquid iron, unsuitable
for measurements with low-viscosity liquid
metal, construction and operation simple



Table 1.4 Principal Investigators (PIs) and experiments on TEMPUS IML-2
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PI Affiliation Experiment
R. Bayuzick Vanderbilt U. Effects of Nucleation by Containerless

Processing
I. Egry DLR Viscosity and Surface Tension of

Undercooled Metallic Melts
H. Fecht TU Berlin Thermodynamics and Glass Formation of

Undercooled Metallic Melts
M. Flemings MIT Alloy Undercooling Experiments
D. Herlach DLR Non-Equilibrium Solidification of Deeply

Undercooled Melts
W. Johnson Caltech Thermophysical Properties of Metallic

Glasses and Undercooled Alloys
J. Szekely MIT Measurement of the Viscosity and Surface

Tension of Undercooled Melts and
Supporting MHD Calculations

K. Urban KFA Juelich Structure and Solidification of Deeply
Undercooled Melts of Quasicrystal-Forming
Alloys



CHAPTER 2

ELECTROMAGNETIC CALCULATIONS

2.1 INTRODUCTION

In order to intelligently design the Space Shuttle experiments utilizing the
TEMPUS electromagnetic levitation device, the development and testing of a
code that could be used to calculate the lifting, positioning, stirring, and
shaping forces and power absorbed by the sample was essential. Analytical
closed-form expressions for the lifting force and power absorptions in
levitated samples exist, but these solutions are confined to spherical samples
and do not provide information about the local values of the forces or power
absorbed, which are needed for any models of the internal fluid flow and heat
transfer in the samples [1].

The electromagnetics code is used in subsequent chapters of this thesis, in
other words, in every aspect of the mathematical modeling effort. The
magnetic pressure distribution was recalculated as the free surface shape
changed in each iteration of the model used to calculate the shape of levitated
liquid metal droplets in Chapter 3. The spatial distribution of the Joule
heating in levitated droplets was used in Chapter 4 to model the heat transfer
in droplets during and after the application of heating coil pulses. The spatial
distribution of electromagnetic (Lorentz) forces was used as the body force
term in the numerical solution of the Navier-Stokes equations the calculate
the electromagnetically-driven fluid flow pattern and free surface shape in
Chapter 5.

The program used to calculate the electromagnetic phenomena has been
developed by various members of the Materials Process Modeling Group over
a number of years. The method of mutual inductances (also known as the
coupled circuit or volume integral method), with a coordinate
transformation method that allows for efficient treatment of axisymmetric
bodies of arbitrary cross section, is used to calculate the distribution of induced
currents in the sample. The coordinate transformation also makes it possible
to accurately model cases with a broad range of skin depth-to-sample radius
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ratio. The work which is specific to this thesis is the improvement of the
formulae used to calculate the mutual inductances and self inductances and
testing of the code.

2.2 ANALYTICAL CALCULATIONS

Calculation of the characteristic times of the system is a useful first step to
understanding which physical processes are dominant [2]. The
electroquasistatic charge relaxation time is given by [2]

.= o (2.1)
a.,

where e0 is the electrical permittivity and ael is the electrical conductivity of
the material. The magnetoquasistatic magnetic diffusion time is given by [2]

= a.L 2 (2.2)

where go is the magnetic permeability and L is the characteristic length,
which in this case is the radius of the droplet. The electromagnetic wave
transit time is the geometric mean of the charge relaxation and magnetic

diffusion times [2]

r = ~, (2.3)

The characteristic times re, Tm, and Tem are approximately 10-18 s, 10-4 s, and

10-11 s, respectively. Comparison of the reciprocals of these times with the

applied frequency for typical metals indicates that the magnetoquasistatic
(MQS) laws apply for samples processed in TEMPUS. The applied
frequencies, which are greater than 105 Hz, are greater than the reciprocal of
the magnetic diffusion time and less than the electromagnetic wave transit
time.

The MQS form of Maxwell's equations is given by [2]
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VxH=J (2.4)

~V·, B= O (2.5)

VxE (2.6)
dt

where H is the magnetic field intensity, J is the current density, B is the
magnetic flux density, and E is the electric field intensity.

For a system excited sinusoidally at the angular frequency co [3], the shielding
parameter indicates the degree to which the conducting material resists
diffusion of the magnetic field. The shielding parameter, which is equal to
the ratio of the characteristic time for magnetic diffusion m to the

characteristic dynamical time for the applied field X = 1/co, is given by [3]

R,. = , o,, oWL (2.7)

For samples processed in TEMPUS, this parameter is of order 102 , indicating
that the conductors are largely able to resist diffusion of the applied field in
TEMPUS.

The electromagnetic skin depth

a = 'Xlo~,O2 (2.8)

quantifies the distance into a conducting material that an applied magnetic
field of angular frequency o diffuses. This distance is called a "skin" depth

because the currents induced in the conducting material to create a magnetic

field to oppose the external magnetic field are concentrated in a region near
the surface of the material, a phenomenon known as the "skin effect". The
ratio of electromagnetic skin depth to the characteristic length (droplet radius)
indicates the portion of the droplet that is exposed to significant
electromagnetic phenomena. For the samples processed in TEMPUS, the skin
depth is on the order of 10% of the droplet radius, indicating, like the value of
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the shielding parameter, that the applied field is shielded from much of the
interior of the droplet.

The magnetic Reynolds number is analogous to the Reynolds number in
fluid mechanics in that the magnetic Reynolds number indicates whether the
magnetic field distribution is largely determined by convection or diffusion in
the electrically-conducting fluid. The magnetic Reynolds number, equal to
the ratio of the characteristic time for convection conv to the characteristic
time for magnetic field diffusion mn, is given by [3]

Re. = 'r =o,UL (2.9)

where U is the characteristic velocity. At the end of the TEMPUS heating coil
pulse, when the magnitude of the fluid velocity is greatest, the magnetic
Reynolds number is still less than 0.01. This indicates that the internal fluid
flow does not influence the magnetic field distribution, making it possible to
neglect fluid flow in electromagnetic calculations.

2.3 METHOD OF MUTUAL INDUCTANCES

The distributions of induced current density J and magnetic flux density B
for a given coil geometry, coil current, sample shape, and sample properties
can be calculated in two different ways. Rather than starting with the
differential Maxwell's equations, solving for the magnetic field, then
computing the induced current, the method of mutual inductances is used.
In this technique the axisymmetric droplet is discretized into a set of annular

elemental circuits and one solves for the induced current flowing through
each circuit [1,4-5]. It is assumed that the current flowing through each circuit
is constant across the cross-section of the circuit.

As can be seen in Equation 2.5, the magnetic flux density B is divergenceless
and can therefore be expressed in terms of a vector potential A, as given by [2]

B=VxA (2.10)
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The vector potential at the position can be expressed by a superposition law.
The applied current travels only in the ¢-direction and there are no
ferromagnetic materials, therefore [2]

A,(r)= J )dvF) - (2.11)

where the primed quantities indicate the current source and the unprimed
quantities indicate the point of observation, the position .

Omitting the coordinate ¢, the vector potential in a given elemental circuit,
indicated by position , comes from induced current flowing through the N
elemental circuits (including the one being considered) and from the applied
current in the M induction coils. For a given coil frequency, the vector
potential in circuit i is then given by [1,4,6]

iAfft ) 4 cJlSd Sdl,)i + Idk r } (2.12)

where Jj is the current density in circuit j, dSj and dlj are the differential area

and line elements for circuit j, rij is the distance between circuits i and j, Ik is

the applied current in coil k, dlk is the differential line element for coil k, and

rik is the distance between circuit i and coil k.

The current density in circuit i can be expressed in phasor and complex
notation as

J = Jo expj(wot- a) = JR + jJi (2.13)

where Jo is the amplitude, is the angular frequency of the applied current, a
is the phase, R and I denote the real and imaginary parts of the current
density, and j is the imaginary number x1.
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Using Ohm's Law, Faraday's Law (Equation 2.6), and the definition of vector
potential, the current density can be expressed in terms of the vector potential
as

dA,
Jo= a,,E, = -us, -9 #(2.14)

dt 

Expressing the vector potential in phasor notation and omitting
coordinate 1 yields

-a,' = -jcrw,,4A
'dt

Using Equations 2.13-2.15,

JR + jJil = -jR,oAR + croA,'

(2.15)

(2.16)

Equating the real and imaginary parts of Equation 2.16 yields the equations

AIR =-- Ji

Ai' = -JR

(2.17)

(2.18)

Equation 2.12 can be separated into two equations, which account for the real

and imaginary parts of the vector potential

AR 
4r a, cj sj

JdS dl M IR'd 1
r: k=1 rC ik J

A * 4 dl +lSubsing . k=EqJtn ri

Substituting Equations 2.17 and 2.18 into Equations 2.19 and 2.20 gives

(2.19)

(2.20)
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1= Po - JS + 1id (2.21)
a,,o ' 47r = r J

' 4R = - S, +I (2.22)

Taking the line integrals of Equations 2.21 and 2.22 over the curve Ci, the
length of circuit i, yields the equations

1 -c' Jidl!. = 4° 1 dl+ l~ + IJjdj dl I'd (2.23)

Because the current density is taken to be constant across the cross section of a
given circuit and the order the integration over Ci and summation can be
interchanged,J 1,i I; /4 0 C')4i i r~o t i dltdl; + .2

1i '_~lT'/,R (A\/. ~Lo r did!M Idd-. Jdl,= J(' ) CRdi (2.26)
<a.1 ) Jc; =, } 4- , ,, r=1

The terms on the right hand sides of Equations 2.25 and 2.26 include
Neumann's fcircuit and the order mutual inductances between circuits i and j and
between circuits i and k [7]

ci;l, j ,' 0 (2.27)o dldl, A)" 

I, 4ZicA+k ri (2.28)

Rearranging and expressing the current density in terms of current (J=I/A),

58



N M

= -O) (IRM o RM
j=1 k=1

N

= O=IM,
j=1

(2.29)

(2.30)
M

+ cOIk'M
k=1

The resistance of a circuit is expressed as [8]

L

',JA
(2.31)

The current flowing in a given elemental circuit is constant around the
circulation loop, therefore,

N

I'R= - IRM..
j=1

N

IjRR = (jl
j=1

M

t=1

MI.jj + o'M
k=

From basic electromagnetic theory [2], the magnetic flux · from the current

source is the sum of the products of inductance and current through each
induction coil, therefore,

N

R + M MIR = _-R (2.34)
j=l
NRjIR - oM Ml;J. = o.A' (2.35)
j=l

Changing the indices i and j in Equation 2.34 to indices m and n yields

N

RI.' +_ M.I. = -oOR (2.36)

Solving for ImI,

I. = -- I M.IR, )R (2.37)
, =1 
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Changing indices m and n to j and i and using the fact that Mji=Mij,

I' @= - °MIR _ OR (2.38)

Substitution of Equation 2.38 into Equation 2.35 yields

0R1 8 -Mi{_- M IR _-D] = aR )' (2.39)
_1 _ _ j i=, R j

Rearranging terms,

[R + 2 Uii MJIR = oo ' _ 2 (R (2.40)
j=l ,j i=l j=l Rj

The equation can be expressed as a matrix equation

[R + X]I = C (2.41)

where R is the diagonal matrix of resistances of the elemental circuits, X is the
full matrix containing the self and mutual inductances, I is the vector (Nxl
matrix) of unknown currents through the elemental circuits, and C is the
vector of applied sources from the induction coils.

By calculating the terms in matrices R, X, and C, and multiplying the inverse

of the sum of the matrices R and X by the vector C, the induced current in

each elemental circuit for a given applied frequency can be determined. To
find the total induced current for all applied frequencies the induced current
in that circuit for each frequency is summed. Dividing the induced current by

the cross-sectional area for each circuit yields the induced current density
distribution J.
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2.4 IMPROVEMENTS TO METHOD

Maxwell's formula for the mutual inductance M12 between two coaxial
current loops [9],

=[I 2( - kK(k) 2 E(k)] (2.42)

k=2 r2 (2.43)

where rl and r2 are the radii of the loops, d is the perpendicular distance
between the planes containing the loops, and K(k) and E(k) are the complete
elliptic integrals of the first and second kind to modulus k, assumes that the
cross section of the current loops is circular. This was the formula used in the
original version of the code.

As can be seen in Figure 2.1, the cross section of the annular circuit elements
is better approximated by a rectangle than by a circle. To calculate the mutual

inductance between circuits of rectangular cross section, Lyle's method was

used [10]. By this method each rectangular element was replaced with two
representative locations called filaments at which Maxwell's formula could
be applied [5]. These locations are given by the expressions below.

For an element such as element A in Figure 2.2, in which the element is
longer in the axial than in the radial direction,

r = r2 = a,1 + 24a24)

ZAl = ZA +/3 (2.45)

zA2 = ZA -/ (2.46)

2p_= - CA (2.47)
12

where distances rA, rA2, aA, bA, CA, and 5 are illustrated in Figure 2.2.

61



For an element such as element B in Figure 2.2, in which the element is
longer in the radial than in the axial direction,

r3 = (1 24a ) + (2.48)

rB = a( 1 24a (2.49)

ZB3 = ZB4 = ZB (2.50)

52=C -b (2.51)
12

where rB3, rB4, aB, bB, cB, and 6 are illustrated in Figure 2.2.

As an example, the mutual inductance between elements A and B is given by

M =M3 + M14 + M + M (2.52)
4

where M13 is the mutual inductance between filament 1 in element A and
filament 3 in filament B. M14, M23, and M24 are similarly defined, and all are
found using Maxwell's formula for the mutual inductance between two
coaxial circles, given in Equation 2.42.

Lyle's method was further adapted to account for the fact that the sides of the

approximately rectangular elements were not always oriented parallel and
perpendicular to the axis of symmetry (z-axis). In the case of an element like

A, Equations 2.44-2.47 become

rA = aA 1+ 2 4 a +/sin (2.53)

rA2 = aA (1 +24a)-Psin (2.54)

ZA = ZA + COSO (2.55)

ZA2 = ZA -PCOS (2.56)
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where 0 is the angle of declination (O < 0 < ;I) from the positive z-axis in

spherical coordinates for the given element. In the case of an element like B,
Equations 2.48-2.51 become

r83 = a 1 + 24a + Scos6 (2.57)

r4, = as 1+ 24a 6- cosO (2.58)

ZB3 = z - 8sin 0 (2.59)

4, = z + sin 0 (2.60)

In the original version of the code, the self inductance of an elemental circuit

was calculated using the formula for a circular wire loop. For a non-
ferromagnetic wire of cross-sectional radius R with ring radius a [9],

L ,(In 8a - 1.75) (2.61)

As were the mutual inductances, the formula for the self inductances in the
modified code was changed to account for the approximately rectangular cross

section of the annular circuit elements. The self inductance of a rectangular
conductor is given by [11]

L~p~a In 2+ (2.62)L = pita[ln 8R 1 + 16a2) ( 62 )] (2.62)16 16a2

where a is now the mean radius of the rectangular conductor and R is the

geometrical mean distance of the cross section of the conductor. For cross
section dimensions b and c, R is defined by [11]

1 C2 1 b 2 c 2c -1 b 2b 1 c 25lnR = ln _ l l+-+ c- 2 -n - I + 3tan -+ --tan -+-(2.63)
612 c2 6 2

C b2 3b c 3c b 12

Note that Equation 2.63 is symmetric in b and c. Substituting Equation 2.62

and 2.63 for Equation 2.61 in the calculation of the self inductance is an
important improvement because the self inductances largely determine the
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matrix of inductances in the matrix equation, Equation 2.41, used to solve for
the unknown induced currents.

2.5 CALCULATION OF ELECTROMAGNETIC QUANTITIES

Equations 2.17 and 2.18 have been used to calculate the real and imaginary

parts of the vector potential A from the induced current density , and
Equation 2.10 has been used to calculate the distribution of magnetic flux
density B from the vector potential. For multiple frequencies, the total
induced current density and magnetic flux density are summed from the
components calculated for each frequency. Because the induced current
density and magnetic flux density are sinusoidal functions of time, the phase
and amplitude of each field at a given location can be represented by a

complex amplitude. The induced current and magnetic flux densities can be
written as [2]

J = ReJe" (2.64)

B = ReBej (2.65)

where Re indicates the real part of a complex quantity.

The applied current in the induction coils travels in the azimuthal, or 4-
direction, therefore, the complex vector J only has the one complex scalar

component ,. Considering Ampere's Law, Equation 2.4, the applied current

in the -direction induces a magnetic flux density vector field with

components in the r- and 0-directions. The complex vector B then has

complex scalar components B, and B. Using the time average theorem [2],

the time-averaged Lorentz force and power absorption per unit volume are
given by

F(r, 0) J xBdt = ReJ x B (2.66)

1 = JJ 1 2J(
Q(r,e)1 ,.--J- dt= Re (2.67)

ar all a., 2 '.
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where is the period of the applied alternating current and an asterisk
designates the complex conjugate. Integration of the Lorentz force and power
absorption per unit volume over the volume of the sample yield the total
time-averaged lifting force and power absorbed.

2.6 RESULTS

In order to confirm the accuracy of the results obtained from the
electromagnetics code, the classical problem of a "flux ball" consisting of a
sphere with windings on its surface that have uniform turns density with
respect to the z-axis was used. This lossless sphere problem was selected
because the magnetic field intensity produced inside a properly wound
spherical coil has the important property of being uniform [2]. This would
provide a clear indication of whether the results produced by the code were
accurate. To approximate the DC field problem presented by Haus and
Melcher [2], the electrical conductivity of the sample and the coil frequency in
the set of input parameters for the code were selected so that the
electromagnetic skin depth would be much larger than the radius of the
sphere. In this limit the applied field nearly completely penetrates the sphere.

The graphical results of the calculations are shown in Figure 2.3. As can be
seen, the magnetic flux density B at all points within the sphere is directed
upward, and the magnitude is uniform throughout. The magnitude of the
vectors is within 1% of the theoretical value for the given case. Note that
because axisymmetric samples and rotationally symmetric coils are
considered, the computational domain consists of a semicircle.

Lohoefer [12] presented an analytical solution for the total power absorption
of a spherical sample in a rotationally symmetric coil system. The time-
averaged total power absorbed is given by

Q 2R. XH,(q.) (I2 , +2y8. cos(, -a .)I,I/,) (2.68)

where
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H,(q.) = 4q (2.69)
k=1 4q4+ xt,k2.

q =R (2.70)

I 2+1) (R ) sinG .(cos,,) (2.71)
- l(l + 1) "1R)

where Rs and Rn are the radii of the sample and coil, s is the electrical
conductivity of the sample, n and n' are indices for different coils, 6 with two
indices is the Kronecker delta, o is the angular frequency, 8n is the skin depth,
given by Equation 2.8, for coil n, an is the phase of the current through coil n,
x indicates the zeroes of the spherical Bessel function, k and are summation
indices, In is the applied current in coil n, On is the angle of declination from
the z-axis for the position of coil n, and P is the associated Legendre
polynomial.

This analytical solution was used to compare the accuracy of calculations of

the induced current density distribution J made using Maxwell's formula for
current loops of circular cross section and that of calculations made using the
improved technique involving Lyle's method for rectangular conductors.
The total Joule heating in a nickel sphere levitated in a conical coil
arrangement was calculated using the two different versions of the code and

compared with the value obtained using Lohoefer's analytical formula. With

each version of the code, various numbers of mesh elements were used in

order to investigate grid sensitivity. The calculations were performed with a
DEC VAX 3100.

The calculated power absorbed (Joule heating), percentage error from the
value obtained using Lohoefer's formula, and CPU time required for the
calculation are presented in Table 2.1. As can be seen, the percentage error
obtained using the old version of the code is not alarmingly high, but is
clearly not negligible. The accuracy obtained using the version of the code
with the improvements described above is markedly better, even when the
grid is relatively coarse, as illustrated by the 0.3% error obtained with the
10x10 grid. Moreover, the calculation of the induced current distribution,
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Joule heating, magnetic field distribution, and electromagnetic force
distribution using the improved code and the 10x10 grid required less than
one minute, while a calculation using the old code yielding comparable
accuracy (0.5%) required a 40x40 grid and more than twelve hours of CPU
time.

The old version of the code requires such a fine grid in order to substantially
reduce the percentage error because only when the mesh is very fine does the

cross sectional shape of the circuit element approximate the circular shape
that use of Maxwell's formulas for the mutual inductance and self
inductance assumes. The improved version of the code using Lyle's method

considers the circuit elements to be approximately rectangular in shape,
therefore, excellent accuracy is obtained with both coarse and fine meshes.

Once the accuracy of the computational methodology had been confirmed, we

calculated the distributions of magnetic flux density and electromagnetic
forces in samples levitated in conical and cylindrical coil arrangements. The
conical coil geometry used to levitate a copper sample at the German
Aerospace Research Establishment (DLR) is illustrated in Figure 2.4. It can be

seen that the six lower coil windings, which supply the current that levitates
the sample, are 1800 out of phase with the two upper windings, which simply
provide a cap to prevent the sample from escaping from the coil
arrangement.

The magnetic flux density distribution calculated for the actual shape
obtained in the experiments is shown in Figure 2.5. The magnitude of the
magnetic flux density vectors is greatest at the surface and decays
exponentially with normal distance into the sample, as would be expected
from the fact that the skin depth is 13.08% of the radius of the unperturbed
droplet. The magnitude of the magnetic flux density within the droplet is
much higher in the bottom half of the droplet, with a maximum value of
about 0.05 T for the applied current of 310 A, because of the six lower coil
windings below the center of mass of the sample, which is at about z=0, and

the fact that these windings are closer to the sample than are the upper
windings. The vectors are oriented almost entirely tangential to the free

surface because the high electrical conductivity of the copper sample almost
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entirely eliminates the normal component of the applied field. The vectors
are directed downward because the applied current in the lower windings is
directed out of the plane of the paper along the right side of the droplet.

The distribution of electromagnetic forces P calculated in the same sample is
shown in Figure 2.6. As with the magnetic flux density, the magnitude is
greatest at the surface and in the lower half of the droplet, with a maximum
value of about 2x106 N/m 3 . The vectors are in the inward direction normal
to the free surface of the droplet. As given in Equation 2.64, the
electromagnetic force is mathematically expressed as the cross product of the
induced current density and the magnetic flux density. The induced current
in the right hemisphere of the droplet travels in the direction opposite to that
of the applied current, into the plane of the paper (positive ¢-direction). This
interacts with the magnetic flux density traveling in the positive -direction
to produce the force in the negative r-direction, the inward normal direction.
The location along the free surface where the magnitude of the force is
greatest corresponds to the stagnation point between recirculation loops in
the fluid flow pattern. The location of the longest vector in Figure 2.6 can be
seen to correspond to the location of the flow separation in the calculated
velocity profile shown in Figure 5.3.

The coil geometry of the TEMPUS electromagnetic levitation device, which

can only levitate samples in microgravity, is shown in Figure 2.7. The eight

outer coil windings, which are called the positioning coils, create a
quadrupole magnetic field to hold the sample in a stable position. This is
accomplished by using applied current in the upper positioning coil windings
that is 1800 out of phase with the current in the lower positioning coil
windings. The four inner coil windings, which are called the heating coils,
create a dipole magnetic field.

The results of calculations of the magnetic flux density distribution produced

by the TEMPUS positioning coils in a spherical sample of copper are shown in
Figure 2.8. The magnitude is again seen to be greatest at the surface, with a
maximum value of about 0.02 T for a positioning coil current of 185 A
(control voltage of 6 V), and decrease exponentially with normal distance into
the sample. The magnitude can be seen to be zero at the equator of the
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sample, where the magnetic fields produced by the upper and lower
positioning coil windings cancel each other. The magnetic flux density is
again tangential to the surface of the sample due to the high electrical
conductivity of copper. The vectors in the upper half of the sample travel in
the negative 0-direction, while the vectors in the lower half can be seen to
point in the positive 0-direction. These results are correct for applied current
traveling in the positive 4-direction in the upper positioning coils and in the
negative 4-direction in the lower positioning coils.

The results of calculations of the magnetic flux density distribution produced

by the TEMPUS heating coils in the same spherical sample of copper are

shown in Figure 2.9. The magnitude is greatest at the surface, with a

maximum value of about 0.045 T for a heating coil current of 179 A (control
voltage of 5 V), and decrease exponentially with normal distance into the
sample. The magnitude can be seen to be highest at the equator of the

sample, which is the part of the sample which is closest to the heating coils.
The magnetic flux density is again tangential to the surface of the sample due

to the high electrical conductivity of copper. The vectors throughout the

sample point in the negative -direction due to the current applied in the
positive ¢-direction.

The calculation of the distribution of electromagnetic forces produced by the

TEMPUS heating and positioning coils, with approximately the same applied
current in each, is shown graphically in Figure 2.10. Because the magnetic
fields produced by the upper and lower positioning coils cancel each other,

the magnetic field produced by the heating coils is dominant. The magnitude

of the forces is greatest at the surface and at the equator, with a maximum

value of about 2.5x106 N/m 3 , due to maximum magnetic field strength at the

location closest to the heating coils. Once again the applied current in the

positive -direction interacts with the magnetic flux density traveling in the

positive 0-direction to produce the force in the negative r-direction, the
inward normal direction. In this case the maximum force at the equator

would cause the fluid flow pattern of samples levitated in TEMPUS in
microgravity to be characterized by two symmetrical recirculation loops.
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Figure 2.1 Discretization of droplet domain, showing exponential
grid point distribution and rectangular cross section of annular circuit
elements.
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Figure 2.2 Illustration of geometrical parameters used in Lyle's
method for calculating mutual inductances between rectangular coils.
From [11].
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Figure 2.3 Magnetic flux density distribution calculated for test caseof the "flux ball", a sphere with windings on its surface that haveuniform turns density with respect to the z-axis.
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Figure 2.4 Conical coil arrangement used to levitate copper sample at
German Aerospace Research Establishment (DLR).
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Figure 2.5 Magnetic flux density distribution calculated for actual
shape of copper droplet levitated in DLR conical coil arrangement.
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Figure 2.6 Electromagnetic force distribution calculated for actual
shape of copper droplet levitated in DLR conical coil arrangement.
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Figure 2.7 Schematic diagram of coil geometry of TEMPUS electro-
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Inner four coils are heating coils and outer eight coils are positioning
coils. Figure provided by I. Egry et al.
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Figure 2.8 Magnetic flux density distribution calculated for spherical
sample of copper in TEMPUS positioning coil field.
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Figure 2.9 Magnetic flux density distribution calculated for spherical
sample of copper in TEMPUS heating coil field.
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Figure 2.10 Electromagnetic force distribution calculated for spherical
sample of copper in TEMPUS positioning and heating coil fields.
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Table 2.1 Comparison of versions of code used to calculate
Joule heating in Ni sphere

Method Grid I Power (W) I Error (%) CPU time
Analytical j N/A 74.5651 N/A N/A

Old 10x10 69.9387 6.2 0:18.88
Old 15x15 72.2163 3.1 2:02.27
Old 20x20 73.1557 1.9 9:50.60

Old 40x40 74.1787 0.5 12:08:52.13

New 1OxlO 74.3502 0.3 0:36.60
New 20x20 74.4876 0.1 14:56.12
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CHAPTER 3

ON THE SHAPE OF LIQUID METAL DROPLETS
IN ELECTROMAGNETIC LEVITATION EXPERIMENTS

ABSTRACT

We present calculations and measurements on the shape of liquid metal
droplets in electromagnetic levitation experiments. A normal stress balance
model was developed to predict the shapes of liquid metal droplets that will
be obtained in a microgravity experiment to measure the viscosity and surface
tension of undercooled metals. This model was tested by calculating the
droplet shapes in containerless experiments conducted to determine the
surface tension of liquid metals. The computational results of the
mathematical model are compared with the results of ground-based
experiments for two different metals. The importance of the ratio of
electromagnetic skin depth-to-droplet radius to the accuracy of the
mathematical model is discussed. As an example of an application, the
influence of the shape on the splitting of the surface oscillation modes of
levitated liquid metal droplets is discussed.

3.1 INTRODUCTION

In recent years electromagnetic levitation has become both a widely-used
experimental technique and an important part of the field of materials
processing. Levitation of liquid metal droplets provides a clean, containerless

environment that makes it possible to perform high-precision experiments
and process reactive metals with high melting points.

Electromagnetic levitation provides the opportunity to perform experiments
on undercooled liquid metals in such areas as the study of nucleation and
recalescence and measurement of thermophysical properties such as heat
capacity, surface tension, and viscosity. The behavior of undercooled melts
has both fundamental and practical interest. Undercooled melts are now
being processed in technologies such as near net shape casting and rapid
solidification. This requires increased knowledge about the melt-solid phase
transition and the temperature dependence of thermophysical properties [1].
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For most thermophysical property measurements, the shape of the liquid
metal droplet must be known for the interpretation of the results. This is one
reason why it is desirable to have the ability to predict these shapes for a given
coil geometry, applied current, and sample material. Development of a
mathematical model of the shape of liquid metal droplets in electromagnetic
levitation experiments also makes it possible to optimize the experiment
parameters in order to achieve desired sample shapes and positions.

The surface tension and viscosity of selected undercooled metals will be
measured in a microgravity experiment during the NASA IML-2 mission,
which is scheduled to fly in 1994. The TEMPUS system is the electromagnetic
levitation device that will be used to position and excite oscillations in the
liquid metal droplets. A schematic sketch of the TEMPUS system is provided
in Figure 3.1. Prediction of the sample shapes that will occur in the flight
experiment will enable the precise measurement of thermophysical
properties. A comparison of experimentally-determined and calculated
shapes for two different metals is presented. This paper is designed to be a
report on our progress in modeling the shape of levitated metal droplets, and
discusses how we are addressing the complex issues involved.

3.2 FORMULATION AND COMPUTATIONAL METHODOLOGY

The two major computational tasks associated with modeling the
equilibrium shape of an electromagnetically-levitated molten metal droplet
are calculation of the magnetic field distribution in the droplet and
calculation of the shape, which is determined by equilibrium of the
component of stress normal to the surface of the droplet.

(i) Electromagnetic calculations

The magnetic field distribution in the levitated droplet is calculated using the
method of mutual inductances presented by, among others, El-Kaddah and
Szekely [3] and Zong et al. [4]. The axisymmetric levitated droplet is
discretized into a set of annular electrical circuits through which induced
current flows. Once the induced current distribution is calculated, the
distribution of magnetic flux density can be calculated by taking the curl of the
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distribution of vector potential, or by using the Biot-Savart law. Use of the
Biot-Savart Law is preferable because it utilizes numerical integration as
opposed to numerical differentiation, which is prone to numerical errors.
The Biot-Savart Law was used in the calculations that provided the results
presented here. This represents an improvement over the previous model.

The discretization of the droplet domain and the shape of the cross section of
the annular circuits can be seen in Figure 3.2. Also visible is the exponential
distribution of grid points used to better represent the distribution of
magnetic flux density, which decays exponentially from the magnitude at the
surface with distance into the droplet. In this paper an important
modification to the calculation of mutual inductances between each pair of
annular circuit elements, which have an approximately rectangular cross
section, is made.

Maxwell's formula for the mutual inductance between two coaxial wires
assumes that the cross section of the wires is circular. Following Dudley and
Burke [5] and Burke et al. [6], Lyle's method is used to replace the
approximately rectangular circuit elements with two representative locations
at which Maxwell's formula can be applied. The mutual inductance between
a pair of rectangular circuit elements is then found by averaging the mutual
inductances calculated with Maxwell's formula at these locations. The
method was further adapted to account for the fact that the sides of the
approximately rectangular cross sections were not always oriented parallel
and perpendicular to the axis of symmetry, as can be seen in Figure 3.2.
Furthermore, a formula from Burke et al. [6] is used to calculate the self-
inductance of the annular circuit elements of approximately rectangular cross
section.

(ii) Free surface shape calculations

There are two self-consistent methods by which the equilibrium shape of an
electromagnetically-levitated molten metal droplet has been modeled. The
equilibrium shape is calculated either by balancing the normal stresses at each
point on the free surface (known as the local method) [2,7-9] or by minimizing
the total energy of the system (global method) [8,10-15].
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Both models assume that the electromagnetic skin depth

6= ,2 o= (3.1)

which characterizes the distance into the droplet of electrical conductivity a
that the external magnetic field of frequency v can penetrate, is much smaller
than the radius of the droplet, allowing the conclusion that internal fluid
flow does not influence the free surface shape and can be ignored. In the case
of very thin skin depth, the molten metal droplet behaves like a perfect
conductor into which the magnetic field would not penetrate and in which
no fluid flow would be driven.

In other words, it is assumed either that the flow is inviscid ( = O0) or non-

existent ( = 6). Either one of these assumptions is sufficient to eliminate the
normal viscous stress from the free surface boundary condition.

Differences between the two modeling approaches largely concern the rate of
convergence to the equilibrium shape. According to Bhamidipati and El-
Kaddah [16], in the energy minimization technique, the displacement of the
melt free surface from non-equilibrium to equilibrium shape is precisely
defined in terms of the derivative of the variational statement of the energy
functional of the system, thus ensuring rapid convergence. The local stress

balance method, though simpler to implement, relies on arbitrary choice of

displacement, and requires more iterations to obtain a converged solution.

(a) Normal stress balance method (Local method)

This method is the technique most frequently used in developing
mathematical models of electromagnetic shaping operations, such as the
shape of the meniscus in electromagnetic casting [16-22].

At equilibrium the net normal stress at all points along the free surface is
zero. The normal component of the stress balance is given by
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(p-p)+T - l 1 (3.2)

Before considering the shape determination algorithm, it is useful to consider
how the various physical phenomena contribute to the normal stress balance
by examining the terms in Equation 3.2.

(1) Fluid pressure

The first term represents the difference between the pressure p and the
atmospheric pressure. The contribution to the pressure due to gravity at any
point in the droplet depends on the pressure at the top of the sample, the
depth of the point, and the specific weight (pg) of the fluid [23]. Pressure
always acts from the liquid in the direction normal to a surface [23], therefore,
the pressure exerts a normal force per unit area on the surface in the outward
direction.

(2) Magnetic pressure

The second term is the normal stress component of the Maxwell stress tensor,
representing the force per unit area exerted by the external magnetic field on
the surface. Using index notation, the Maxwell stress tensor for
incompressible and electrically linear media is given by [17]

T, = HH H- - HHk (3.3)

where is the magnetic permeability, Hi is the ith component of the
magnetic field intensity, and ij is the Kronecker delta. Using the summation

convention and the fact that B = /fH for the materials being studied, setting i
and j equal to the normal coordinate n yields the magnetic pressure. The
magnetic pressure only depends on the tangential component of the magnetic
field because there is no component of magnetic field normal to the surface in
the small skin depth approximation. In terms of the magnetic flux density,
the magnetic pressure is [4]
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nB2
p, T: - (3.4)

2#°

where B, is the root-mean-square of the tangential component of the time-

dependent magnetic flux density. For the case of the copper droplet levitated
in the DLR conical coil arrangement considered in Section 2.6 and to be
considered here, the maximum value of the magnetic pressure is about 1000
Pa for a magnetic flux density magnitude of about 0.05 T.

(3) Surface tension surface force density

The final term in the normal stress balance represents the surface force
density due to surface tension [17]. The surface tension of the droplet is y, and
the two principal radii of curvature of the surface R and R2 are defined as
positive for the outward-bulging surface [24]. The formulas used to calculate
the principal radii of curvature in axisymmetric spherical coordinates are
presented in [2]. The effect of surface tension at a given point is directed
inward and normal to the surface.

The pressure contributes a normal force per unit area outward from the
surface, while the magnetic pressure and surface tension surface force density
exert an inward normal force per unit area.

The equilibrium free surface shape is calculated as follows [2,4]:

(i) The magnetic flux density distribution inside the droplet is calculated
using the method of mutual inductances and the Biot-Savart law, as described
above, for the initial shape, a sphere.

(ii) The magnetic pressure and surface tension surface force density are
calculated at a finite number of points on the surface. From these
contributions, a stress imbalance at each of these points is calculated. Based
on the algebraic sign conventions used above, this value will be negative at
all points on the surface. (Note that this value will vary along the surface
until the free surface shape which satisfies the equilibrium condition,
Equation 3.2, is found.)
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(iii) The surface-area weighted average stress imbalance for the surface is
then calculated, after which the difference from this weighted average at each
point on the surface is calculated. The difference will be positive at some
points and negative at others. If the value is negative, this indicates that the
magnitude of the stress imbalance at that point is greater than the magnitude
of the weighted average stress imbalance, and the point should be moved
inward (toward the center of the droplet).

(iv) Each point on the surface is moved in the radial direction along a line

of constant angle (sometimes called a spine) by an amount proportional to the

difference between the stress imbalance and the surface-area weighted average
at that point. This ensures that the volume of the droplet will be conserved.
A new shape is determined by these displacements of the surface.

(v) The sum of the squares of the differences between the stress imbalance
and the weighted average at all points along the surface is calculated as an

indicator of how much the current free surface shape deviates from the
equilibrium shape. A sum of squares is used to prevent positive and negative
values from canceling each other and falsely suggesting that equilibrium has

been achieved. When this sum of squares is less than a critical value, the

equilibrium shape has been found to within a given tolerance. If this

condition is not satisfied, then the procedure is repeated.

The results presented in this paper were obtained using the normal stress
balance method.

(b) Energy minimization (Global method)

The equilibrium shape of the free surface, resulting from a balance among
magnetic pressure, surface tension, and gravity forces, is governed by the
equation [11]

B 2

2o + ?K + pgz = const. (3.5)
2~u0
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where B is the root-mean-square magnitude of the local magnetic field, and K
is the sum of the principal radii of curvature of the droplet.

An energy functional for the variational technique is defined which
represents the total energy of the system. For droplet domain Q and free
surface boundary dQ, the energy functional is [11]

B 2

- = 3 -dV+ + ff Jjpgzdv (3.6)

In order to minimize the total energy with respect to the constant volume
constraint on the droplet, a new functional using the Lagrange multiplier is
defined. It is given by [12]

V(A) = () - A JJdv (3.7)

where x is expressed as [12]

A_ u = Jla(2p )(3.8)
JJs

Using the global method, the equilibrium free surface shape is calculated as
follows [8]:

(i) The magnetic flux density distribution at the surface of the droplet is

calculated by considering elements at the surface and the region outside the
droplet, which is made possible by the assumption of small or zero skin
depth. The initial shape is a sphere.
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(ii) The magnetic energy, surface energy, and gravitational energy are
calculated along a.

(iii) The Lagrange multiplier for the surface is calculated using Equation 3.8.
Note that X is the surface-area weighted average free energy for the surface,
and is completely analogous to the surface-area weighted stress imbalance
calculated in step (iii) of the normal stress balance method above.

(iv) The displacement of the surface effected reduces Vr(Q) with magnitude

determined by an adjustable coefficient that permits rapid convergence.

(v) If the derivative of the functional with respect to the domain, d / Q,
is not sufficiently small, then the procedure is repeated.

3.3 EXPERIMENTAL WORK

The experiments were performed on pure nickel and copper droplets
(Johnson Matthey, 99.99%) with mass of approximately 1 g. A detailed
description of the levitation facility at DLR is given in [25]. A conical coil
arrangement that provided stable levitation of the droplets was used. A
sketch of the coil geometry, as well as the strength of the external magnetic

field and magnetic field gradient on the symmetry axis of the coils for a peak
applied current of Io = 405 A, which was used in the case of the nickel sample,

is shown in Figure 3.3.

The RF-generator was operated at a frequency of 333 kHz. The peak applied

coil currents were 405 A, in the case of nickel, and 310 A, in the case of copper.
The samples were convectively cooled by He gas. Non-contact temperature

measurement was performed with a standard two-color ratio pyrometer.

Experiments with nickel and copper droplets were performed in the same
way. The droplet was levitated with the coil current given above. During
levitation, the translational oscillation frequencies and the surface oscillation
frequencies were measured using a method explained in [26] and [27]. The

samples were then rapidly solidified by cooling with He gas. The volume
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change upon solidification was assumed to be isotropic and, therefore, shape-

preserving. Figure 3.4 shows a picture of a sample processed in this way.
Next to this is a shape measured from a projection onto a grid and a fit of
spherical harmonics

R( ) = Ro(l + ,Y,(v)) (3. 9)

at the contour is shown to give an image of the distortion from spherical

shape.

In order to eliminate the effect of "frozen-in" oscillations on the shape of the
rapidly-solidified droplet, the mean values of measurements made on many
levitated and solidified droplets were used to determine the experimentally-

determined equilibrium shape. The measured coefficients of the spherical

harmonics E, (with errors Ae,) are listed in Table 3.1.

An important application of the knowledge of the distortion of a levitated
droplet is the influence on the surface oscillation modes of levitated droplets.
In the oscillating drop technique, the frequencies of the surface oscillations
are used to determine the surface tension of liquid metals. Due to gravity and

a lack of spherical symmetry, the fundamental oscillation mode is split into a

number of modes, each with its own frequency. The measurements then
yield spectra with multiple peaks, with a maximum of five. Cummings et al.

[28] and Suryanarayana et al. [29] have recently calculated the effect of

distortion of the sample from a spherical shape on individual frequencies.
According to Cummings [28] the frequencies of the five modes are expressed

in terms of the Rayleigh frequency R = 48y/ 3m as

v20 = v(1- -0.6758e 2 - 2.1760E,)

V2,,, = vR(1 - 0.3379e 2 + 1. 4507E,)

v,2. = vR(1 + 0.6758E2- 0. 3627E4 ) (3.10)
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with the coefficients El defined in Equation 3.9. Both groups indicated that
assignment of-the modes is essential to obtaining precise results in the
measurement of surface tension by this technique.

These results have been experimentally verified by Sauerland et al. [27] using
digital image processing methods. Table 3.2 shows the good agreement
between the splitting of the modes for the nickel sample in Figure 3.4 as
predicted by Equation 3.10 and the measured oscillation frequencies.

To summarize, there is significant interest in having a tool to predict the
deformation of droplets in levitation experiments because it would allow
them to apply the theories of Cummings et al. and Suryanarayana et al.
directly. This would enable prediction of the mode splitting that would
result, facilitating assignment of oscillation modes and increasing the
precision of surface tension measurements.

3.4 COMPUTED RESULTS

The equilibrium free surface shapes of molten liquid copper and nickel
droplets were calculated using the input parameters listed in Table 3.3, which
correspond to the experimental conditions described above. Plots of the
experimentally-determined shape, indicated by a solid line, and the calculated

shape, indicated by a dashed line, are provided for copper and nickel in
Figures 3.5 and 3.6, respectively. In each figure the dotted line represents the

shape of a sphere of equal volume.

From the figures it can be seen that the calculated shapes agree quite well with
the experimentally-determined shapes, but it is important to realize that the
visual comparison is quite flattering because the deformation of the droplet is
relatively small. In each case the calculated shape correctly depicts the
teardrop shape produced due to gravity in samples levitated under
earthbound conditions.
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3.5 DISCUSSION

The ability to predict, through mathematical modeling, the equilibrium free
surface shape of electromagnetically-levitated droplets is important to the
performance of surface tension measurements by the oscillating drop
technique. This is quite a substantial undertaking due to the coupling of
many complex phenomena, principally electromagnetic phenomena, free
surface phenomena, and internal fluid flow.

In the normal stress balance model presented here, the small skin depth
approximation was used in order to calculate the free surface shape of the
sample by considering only the surface and neglecting the interior of the
droplet. The ideal case for this model would then involve a sample of
infinite conductivity (zero skin depth). However, in the cases of the copper
and nickel droplets considered here, the skin depth is 13.08% of the radius for
the copper droplet, and 25.55% of the radius for the nickel droplet. Both of
these thereby constitute a deviation from the ideal case for this model.

This helps to interpret the results shown in Figures 3.5 and 3.6. In both cases,

the calculated shape is less deformed than the experimentally-determined
shape. The reason for this is that, since the sample has finite conductivity
(and a nonzero skin depth to droplet radius ratio), there is some penetration
of the field into the interior of the droplet. As a result, the magnitude of the
magnetic pressure, calculated from the magnitude of magnetic flux density at

the surface provides a lower bound estimate of the deforming effect of the
magnetic field. A consideration of the skin depth-to-radius ratios for the two

cases predicts the result that the calculated shape matches the experimental
shape better in the case of copper than in the case of nickel.

Figures 3.5 and 3.6 show that the normal stress balance model provides a good
estimate of the equilibrium free surface shape of levitated metal droplets. In
order to achieve even better agreement, the computed results herein suggest
that, when the ratio of skin depth to sample radius is not negligible, the
interior of the sample must be considered. This finding is also useful for
modeling the shapes of electromagnetically-shaped liquid metals in general.
In order to model the free surface shape of a large pool of molten metal
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subjected to electromagnetic forces, consideration of the surface is sufficient,
however, in cases where the sample dimensions are small, as is often the case
with meniscus control, the interior of the droplet must be considered.
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Figure 3.2 Discretization of droplet domain, showing exponential
grid point distribution and rectangular cross section of annular circuit
elements.
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Figure 3.4 Fit of spherical harmonics to experimental shape.
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Table 3.1 Expansion coefficients of R(V) for fit of
experimental shape with spherical harmonics

1 El Ael

0 3.545 0.007
1 0.088 0.006
2 0.141 0.006
3 -0.048 0.005
4 0.015 0.006
5 -0.004 0.006

Table 3.2 Comparison of experimental and theoretical
splitting of oscillation modes

Mode n=2 v2,0/VR v2,±l/VR v2,±2/VR
Experimental 0.928 0.979 1.057
Theoretical 0.914 0.974 1.089

Table 3.3 Input parameters used for equilibrium
free surface shape calculations

Parameter Cu Ni
Applied current (A) 310 405
Frequency (kHz) 333 333
Radius of sphere (mm) 2.982 3.11
Elec. cond. (tm)-l 5x106 1.205x106

Density (kg/m 3 ) 8106 8080
Surface tension (N/m) 1.45 1.82
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CHAPTER 4

THE FREE SURFACE SHAPE AND TEMPERATURE
DISTRIBUTION PRODUCED IN LIQUID METAL DROPLETS

BY HEATING COIL PULSES IN THE TEMPUS EML

ABSTRACT

We present the results of analytical and numerical calculations of the free
surface shape and temperature distribution produced in liquid metal droplets
processed in the TEMPUS electromagnetic levitation (EML) facility. The
mathematical models were developed to predict the behavior of liquid metal
droplets in containerless experiments to determine measure thermophysical
properties aboard the Space Shuttle during the IML-2 mission in July 1994.
The normal stress balance model was used to numerically calculate the
equilibrium free surface shape for various samples effected by a number of
induction coil voltages. Analytical and numerical calculations were
performed to model the heat transfer in liquid metal samples during and
following the heating coil pulses. The work illustrates the use of
mathematical modeling in the design of microgravity experiments.

4.1 INTRODUCTION

The purpose of this work was to develop mathematical models that made it
possible to intelligently design a recent Spacelab IML-2 experiment performed
to measure the viscosity and surface tension of undercooled metals. The
experiment was performed in TEMPUS, an electromagnetic containerless
processing facility which provides containerless positioning, heating, and
melting of metallic samples. Thermophysical property measurements were
made using the oscillating drop technique [1]. The surface tension could be

deduced from the frequency of the oscillations [2], and the viscosity could be
determined from the damping constant [3].

Figure 4.1 shows a schematic sketch of TEMPUS. It is seen that there are two
sets of coils, an outer set used for positioning and an inner set employing
higher frequencies to be used both for heating and for deforming the sample
once it is molten. In the performance of an experiment, the sample was
introduced from below into the space within the coils. The positioning coils
were turned on first, and once the sample rested in a stable position, the
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heating coils were turned on to melt the sample and bring it to a
predetermined desired temperature above the melting point. At this point
the heating coil voltage was switched off or reduced and the sample was
allowed to cool. It was then squeezed and deformed by pulsing the inner, or
heating, coils for 0.1 s. After the heating coil voltage was switched off again,
the droplet relaxed to its original shape in an oscillatory fashion. These
damped oscillations were observed and recorded for a period of 5 s, during
which the sample continued to cool. The pulsing and observation procedure
was repeated until the sample solidified in order to obtain thermophysical
property measurements over a temperature range including temperatures in
both the superheated and the undercooled regimes [4].

One of the key design parameters for the experiment was the heating coil
pulse voltage. The normal stress balance model, detailed in [5], was
developed to calculate the equilibrium free surface shape of an axisymmetric
droplet of given material properties and volume produced by induction coils
of arbitrary axisymmetric geometry, peak current, and frequency. As
demonstrated in [5], the model provides a good estimate of the extent of
deformation of liquid metal droplets.

Uhderstanding of the non-uniform temperature distribution produced in a
given droplet by the heating coil pulse was also important to the design of the
experiment. The temperature gradients within a droplet are important for
two major reasons:

(1) Significant temperature gradients along the droplet surface could
induce Marangoni (surface tension-driven) flow. Because of the uncertain
effect of fluid flow within the droplet on thermophysical property
measurements and nucleation and solidification studies, any possible
contribution to the flow field needed to be considered.

(2) In these containerless processing experiments, pyrometry was to
be used to measure the temperature of the sample. Because each pyrometer,
which has either a top or side view of the sample, focused on only a small
area of the sample, it was important to know how well the measured
temperature would represent the temperature of the droplet as a whole and at
various points in the droplet.
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4.2 FORMULATION AND COMPUTATIONAL METHODOLOGY

The two major computational tasks considered here are the calculation of the

equilibrium free surface shape and the internal temperature distribution of
various samples to be flown in TEMPUS as a function of the heating coil
voltage.

(i) Free surface shape calculations

The normal stress balance model was used to calculate the equilibrium free
surface shapes of samples to be processed in TEMPUS as a function of the
heating coil voltage. According to this model, which is explained thoroughly
in [5], the equilibrium shapes are calculated iteratively subject to an
equilibrium condition of zero net normal stress at a number of discrete points
along the free surface. The key feature of this approach is that all of the
phenomena which together determine the droplet shape (hydrostatic
pressure, gravity, magnetic field, and surface tension) are only evaluated at
the droplet surface. In other words, only the surface of the droplet is
considered, while the interior of the droplet is neglected.

This approach therefore makes the assumption that the electromagnetic skin
depth

= (4.1)

which quantifies the distance into a conducting material with electrical
conductivity el that an applied magnetic field of angular frequency co
diffuses, is much smaller than the radius of the droplet. The ratio of
electromagnetic skin depth to the characteristic length (droplet radius)
indicates the portion of the droplet that is subject to significant
electromagnetic forces. For the samples processed in TEMPUS, the skin depth
is on the order of 10% of the droplet radius, indicating that the applied field is
shielded from much of the interior of the droplet. Consequences of this zero
skin depth approximation were discussed in [6] and will be addressed later in
this paper.
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The normal component of the stress balance at the free surface is given by

(P - .)+ P. - + = 0 (4.2)
RsR2 ) (4.2)

The first term represents the difference between the fluid pressure p and the

atmospheric pressure Pa. The second term represents the magnetic pressure

Pm, which depends on the temporal average of the tangential component of
the magnetic flux density. The final term is the pressure due to surface

tension y, where R1 and R2 are the principal radii of curvature [5].

In each iteration the magnetic flux density (and magnetic pressure)
distribution is re-calculated using the method of mutual inductances [7-9] and

the Biot-Savart law. The equilibrium shape is calculated iteratively by radial

movement of discrete points on the surface along spines.

(ii) Heat transfer calculations

The temperature distribution in the droplet throughout the duration of the
heating coil pulse and following it are calculated with the transient thermal

energy balance equation. The governing equation, with internal fluid flow

(convective heat transfer within the droplet) neglected, takes the form

-t= V2T + ',O < t < O.ls (4.3)

dT= aV2T,t> Os (4.4)
dt

where T is the temperature, a and Cp are the thermal diffusivity and heat
capacity of the molten metal droplet, and Q(r,0) is the heat generated in the

droplet per unit volume by induction from the heating coils. The heat
generated in the droplet comes from dissipation of energy from the induced

currents. The time-averaged distribution of induction (Joule) heating per
unit volume is given by [4]
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Q(r,)=- --' dt =-Re (4.5)
Ir all 2 %,

where J is the current density, expressed as in Equation 2.64, l is the period of
the applied alternating current, Re indicates the real part of the complex
quantity, and an asterisk designates the complex conjugate.

Substantial heating occurs only when the higher-frequency, or heating, coils
are on, which is the voltage pulse of the 0.1 s duration. The heat generated by
lower-frequency, or positioning, coils is less than 10% of that generated by the
heating coils are is therefore not considered here. Constant values for the
material properties were used because of the small temperature range being
considered and the weak temperature dependence of the properties.

The boundary condition at the free surface of the droplet expresses heat losses
by conduction to the inert gas surrounding the droplet and by radiation:

-k = (h, + h)(T - T) (4.6)

where ks is the thermal conductivity of the molten metal sample, n is the
curvilinear coordinate normal to the free surface, hcond is the conduction
heat transfer coefficient, hrad is the radiation heat transfer coefficient, and Tc

is the temperature of the water-cooled coils.

Heat is lost by conduction from the hot surface of the droplet through the
inert gas to the water-cooled coils. In order to develop an expression for
hcond, the coils were modeled as a spherical shell surrounding the
approximately-spherical droplet. Calculation of the Fourier number indicates
whether a steady-state approximation for the temperature distribution in the
inert gas is appropriate. The Fourier number represents the ratio of the heat
conduction rate to the rate of thermal energy storage in the gas [10]. The
Fourier number is
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atFo = at (4.7)

where a is the thermal diffusivity of the gas, t is the period of time being
considered, and L is the average distance between the sample surface and the
water-cooled coils. For the atmosphere of very low pressure (2 mbar) Ar gas
used in some of the TEMPUS experiments, the Fourier number is on the
order of 103, indicating that the fast conduction keeps the temperature in the
gas next to the hot sample surface virtually the same as the temperature of
the sample surface at any given time. The fact that there is no lag behind the
changing surface temperature permits a steady-state approximation of the
temperature distribution in the gas.

Because of the very low gas pressure, it was also necessary to determine
whether a continuum approach to the steady-state conduction problem was
possible. The Knudsen number

Kn = (4.8)
L

compares the molecular mean free path x with the characteristic length L,
which is again taken to be the average distance between the sample surface
and the coils. Because the Knudsen number is less than 0.05 for the
temperatures of interest, continuum theory is in fact appropriate [11].

The analytical result for radial conduction between concentric spheres is

ODE: (2 0 (4.9)
dr dr 

BCI: T = T,,R = R, (4.10)

BC2: T = T,,R = R (4.11)

Solution: T(r)= T, + R ( R) (T -T) (4.12)
r(R, -R)

Flux: q,.=-k ,R = R (4.13)
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where Ts is the temperature of the sample at its surface, Rs is the radius of the

sample, Tc is the temperature of the coils, Rc is the average radial distance of
the coils from the center of the sample, and kf is the thermal conductivity of
the inert gas. The heat flux at the surface is related to the heat transfer
coefficient by the expression

q = h(T - T,) (4.14)

Using the expression obtained from Equation 4.13, an expression for the
conduction heat transfer coefficient was obtained.

The radiative heat flux from the droplet surface is

qd = ECs,(T - T) (4.15)

where e is the total hemispherical emissivity and SB is the Stefan-
Boltzmann constant. Using Equation 4.14 an expression for the radiation heat
transfer coefficient was obtained.

Calculation of the Biot number provides an immediate sense of the
magnitude of temperature differences within a body undergoing transient
heat conduction. The Biot number represents the ratio of internal thermal

resistance to boundary layer thermal resistance [10], i.e., the ratio of the
resistance to conduction within the concerned body to the resistance to heat
transfer to the surroundings. The Biot number is

Bi = h-L (4.16)
k,

where htot is the total heat transfer coefficient, the sum of the conduction and

radiation heat transfer coefficients shown above, L is the characteristic length
for conduction within the body, and ks is the thermal conductivity of the

conducting body. For samples processed in TEMPUS, the Biot number is on
the order of 0.01, indicating that temperature differences within the sample
are quite small and that a lumped parameter approach can be used to develop

an approximate analytical solution for the droplet temperature.
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By performing a heat balance, we can estimate the temperature of the droplet
during the heating coil pulse by considering that the rate of energy
accumulation in the droplet is equal to the difference between the power
absorbed by induction and the rate of energy lost at the surface. From the
expression

AT Q -(q'°~ + q)A At (4.17)
mC,

where A is the surface area and m is the mass of the droplet, it could be
determined that the average temperature of droplets increases about 1-20C
from the heating coil pulse. The lumped-parameter approach could also be
used to estimate the cooling rate after the heating coils are shut off. From the
first-order differential equation

Cp dT -(h + h,)A(T - T,) (4.18)
dt

the cooling rate of samples processed in TEMPUS was estimated to be on the
order of 100 C/s.

Other considerations:

(1) Forced convection

The time scale for conductive heat transfer under laminar flow conditions is

:, ] (4.19)a

For samples processed in TEMPUS, this time scale is on the order of 1 s.
However, if the flow is turbulent and the momentum transfer involves
laminarization, estimation of the time scale is much more involved. A
lower limit for the time scale can be obtained by using an effective thermal
diffusivity in Equation 4.19 [10]. Using an effective value of the quantities
that is from 10 to 50 times greater than the laminar values yields a conduction
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time scale on the order of 0.01-0.1 s. This time scale is of the same order of
magnitude as the time scale for forced convection

L
,_ = L (4.20)

U

when U is the magnitude of the maximum velocity driven by
electromagnetic forces created by the heating coil pulse.

The Peclet number provides a comparison of heat transfer by forced
convection with heat transfer by conduction within a moving fluid. The
Peclet number

UL
Pe U (4.21)a

varies significantly for samples processed in TEMPUS because of the variable
flow conditions. When the flow becomes turbulent at the end of the 0.1 s
heating coil pulse, the value of the Peclet number is unclear because the
conduction is enhanced by the turbulence along with the convection. In any
case, the electromagnetically-driven flow should cause homogenization of
the temperature distribution within the droplet.

(2) Natural convection

The Rayleigh number

Ra = GrPr = gL3AT (4.22)
va

where 3 and v are the thermal expansion coefficient and the kinematic
viscosity of the molten metal and AT is the maximum temperature difference
within the sample, compares the heat transfer by natural convection with
that by conduction. The Rayleigh number plays the same role in natural
convection as the Peclet number plays in forced convection [10]. Under
microgravity conditions and with the small samples being processed, the
Rayleigh number for samples processed in TEMPUS aboard the Space Shuttle
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is less than 10- 5, indicating that heat transfer by natural convection is
negligible.

(3) Reflected radiation

As stated above, one of the mechanisms of heat transfer from the sample is
radiation. Some of the emitted heat must be reflected off the surrounding
induction coils and absorbed by the sample. In order to assess whether the
absorbed power is significant, view factor and radiosity calculations were
performed. Two different geometrical representations of the coils as
cylindrical bands surrounding the spherical sample, shown in Figure 4.2,
were developed so that view factors could be calculated. The ratio of absorbed
power HB to emitted power WB for the sample is

Be = Fj1 (4.23)

where Fij represents the matrix of view factors and the radiosity, or total heat

flux leaving a surface j, is defined by

B = EjrsT + (1 - Ei)FB (4.24)
k=1

For the samples processed in TEMPUS, the absorbed power was found to be

less than 10% of the emitted power when using either of the geometrical
models, which means that the power absorbed by the sample is not very
significant.

4.3 COMPUTED RESULTS

The equilibrium free surface shapes of molten metal droplets produced by
various heating coil voltages in TEMPUS were calculated using a FORTRAN
program based on the normal stress balance model. The amount of
deformation produced is expressed by the quantity percentage deformation
from a spherical shape, as calculated by the formula
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(z -z,)-2R
%def.= (Zpzb,, x 100% (4.25)

where R is the radius of the undisturbed sphere of equal volume.

The material properties of the samples used as parameters in the free surface
shape calculations were the surface tension, electrical conductivity, and
density of each liquid metal at the melting point. The radius of a sphere of
equal volume was also an input parameter. The values of these parameters
for each of the five samples considered are shown in Table 4.1. Other input
parameters for the calculations were the gravitational acceleration thought to
exist during the Space Shuttle experiment (3x10-3 go), the frequencies of the
positioning coils (148 kHz) and heating coils (388 kHz), as well as the peak
current corresponding to the heating coil voltage for the given case.

The free surface shapes for Cu, Au56Cu44, Au, and Ni samples in the
TEMPUS system with a positioning coil voltage of 6 V and heating coil
voltages of 0 V, 2 V, 3.5 V, and 5 V were calculated. The computational

results for each of the four samples are presented in Figures 4.3-4.6. The
results are summarized in terms of the percentage deformation, as listed in
Table 4.2.

The finite element computational package FIDAP was used to perform the
numerical solution of the transient thermal energy balance subject to the
boundary condition at the free surface. The distribution of power absorbed by
induction was supplied to FIDAP through the user-supplied subroutine
USRSRC for the duration of the heating coil pulse. The conduction and
radiation heat transfer coefficients for each element along the free surface
were re-calculated for each time step in the user-supplied subroutine
USRCNV.

Figures 4.7-4.10 show calculated temperature-time profiles for four samples
subjected to a 3 V heating coil pulse of 0.1 s duration in TEMPUS. The initial
condition used in each case was that of a liquid droplet at its melting
temperature. The temperature was taken to be uniform throughout the
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droplet at t=0 s, the start of the heating coil pulse. The temperature of the
droplet at its center, top, and equator was calculated as a function of time
during and after the heating coil pulse. The results of the analytical solution
shown in Equations 4.17 and 4.18 represent the average temperature of the
sample and provide a confirmation of the sensibility of the numerical results.
The calculated temperature profile at the end of the heating coil pulse for the

nickel droplet is shown in Figure 4.11.

4.4 DISCUSSION

As explained in [5], the ratio of electromagnetic skin depth to droplet radius is
the key parameter to the accuracy of the results obtained from the normal
stress balance model. Because the model implicitly assumed that all
phenomena that affect the equilibrium free surface shape, including the
magnetic field, only need to be considered at the surface, the model is only

exact in the case of a sample with infinite electrical conductivity (zero skin

depth). In the cases considered here, the ratio of skin depth to droplet radius
is nonzero, a point that was considered when the results of the equilibrium
shape calculations were evaluated with the intent of planning the in-flight
experiment.

In both cases presented in [5], the calculated shape was less deformed than the

experimentally-determined shape, with the agreement between calculation
and experiment being better in the case with the smaller skin depth-to-radius
ratio, the case that was closer to "ideal". In the case of a sample with a ratio of

25.55%, the predicted extent of deformation was 7%, while the actual
deformation was 10.5%. In the case of sample with a ratio of 13.08%, which is

larger than that for all but one of the cases considered here, the predicted

extent of deformation was 11%, while the actual extent of deformation was
13%. The skin-depth-to-radius ratios for the samples are given in Table 4.2.

Keeping in mind that the actual deformation will be greater than that
predicted by calculations using the normal stress balance model, the heating

coil voltage needed to effect the desired extent of deformation from a
spherical shape of approximately 10% was sought. The results in Table 4.2
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suggest that a heating coil voltage of 3 V would be sufficient, in the five cases
considered here, to achieve the desired extent of deformation.

Figures 4.7-4.10 illustrate the temperature distribution produced in each
sample by a 3 V heating coil pulse of duration 0.1 s. Due to the concentration
of induced currents in the skin depth region at the equator of the droplet,
where the magnetic field is strongest, the temperature at the equator increases
during the heating coil pulse. At the top of the droplet, less power is induced,
therefore, the temperature increases less strongly or even decreases (as in the
case of Ni) there even during the heating coil pulse. Because of the time
required for heat to be conducted from the center of the droplet to the surface
and the lack of induced power at the center, the temperature there during the
heating coil pulse is always less than that at the equator and greater than that
at the top.

After the heating coil pulse ends, heat is conducted from the hottest area of
the droplet (the equator) to the colder areas (the center and top). The
temperature at the center of the droplet can be seen to increase slightly after
the end of the heating coil pulse due to this temperature homogenization.
After a time on the order of 1 s, the effect of the heating coil pulse has
disappeared and the isotherms within the droplet are concentric spheres.
This is why the temperature at the equator and top of the droplet are nearly
identical and slightly lower than the temperature at the center of the droplet
at any given time.

The largest possible temperature difference within the sample exists at the
end of the heating coil pulse. Without considering convective heat transfer
from the electromagnetically-driven flow in the droplet, the maximum
temperature difference in all cases considered is less than 10C. As stated
above, the fluid flow contributes to homogenization of the temperature
distribution within the droplet, therefore, it can be concluded that the
temperature differences in molten droplets processed in TEMPUS are very
small.

For a spherical droplet the magnitude of the fluid velocity induced by
Marangoni convection has been approximated by [12-13]
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U = Ay (4.26)
8/p

where Ay is the difference in surface tension between the "cold" and "hot"
portions of the droplet. For droplets processed in TEMPUS, because of the
small temperature differences, the magnitude of this velocity is on the order
of 1 cm/s. This result suggests that Marangoni convection is not likely to be
important in this system. In addition, the small temperature differences
within the sample suggest that the temperature measured by the pyrometers
will accurately depict the temperature of the entire droplet when it is molten.
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Figure 4.1 Schematic cut-through of TEMPUS coil geometry
(distances in mm). Inner four coils produce dipole field for heating
and deforming samples. Outer eight coils produce quadrupole for
positioning. Figure provided by I. Egry et al.
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Figure 4.2 Geometrical representations of coils as (a) single heating
coil band and (b) two cylindrical bands composed of coils above and
below sample for view factor and radiosity calculations to compare
absorbed power to emitted power.
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Figure 4.3 Calculated equilibrium free surface shapes of 10 mm
diameter Cu sample levitated in TEMPUS with heating coil voltages of
0 V(solid line), 2 V (dashed line), 3.5 V (dotted line), and 5 V (dashdot
line). Positioning coil voltage is 6 V for all cases. The percentage
deformation for each case appears in Table 4.2.

122

_ L I I I I I



I I I I I I I I I

Figure 4.4 Calculated equilibrium free surface shapes of 8 mm
diameter Au56Cu44 sample levitated in TEMPUS with heating coil
voltages of 0 V (solid line), 2 V (dashed line), 3.5 V (dotted line), and
5 V (dashdot line). Positioning coil voltage is 6 V for all cases). The
percentage deformation for each case appears in Table 4.2.
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Figure 4.5 Calculated equilibrium free surface shapes of 8 mm
diameter Au sample levitated in TEMPUS with heating coil voltages of
O V (solid line), 2 V (dashed line), 3.5 V (dotted line), and 5 V (dashdot
line). Positioning coil voltage is 6 V for all cases. The percentage
deformation for each case appears in Table 4.2.
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Figure 4.6 Calculated equilibrium free surface shapes of 10 mm
diameter Ni sample levitated in TEMPUS with heating coil voltages of
0 V (solid line), 2 V (dashed line), 3.5 V (dashed line), and 5 V (dashdot
line). Positioning coil voltage is 6 V for all cases. The percentage
deformation for each case appears in Table 4.2.
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Calculated T vs. t for Cu with 3 V heating coil pulse of 0.1 s duration
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Figure 4.7 Calculated temperature vs. time profiles at center, top, and
equator of 10 mm diameter Cu sample during and after 3 V heating coil
pulse of 0.1 s duration in TEMPUS. Analytical results provided for
comparison. Maximum temperature difference calculated is 2.190C.
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Calculated T vs. t for AuCu with 3 V heating coil pulse of 0.1 s duration
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Figure 4.8 Calculated temperature vs. time profiles at center, top, and
equator of 8 mm diameter Au56Cu44 sample during and after 3 V
heating coil pulse of 0.1 s duration in TEMPUS. Analytical results
provided for comparison. Maximum temperature difference calculated
is 2.81oC.
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Calculated T vs. t for Au with 3 V heating coil pulse of 0.1 s duration
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Figure 4.9 Calculated temperature vs. time profiles at center, top, and
equator of 8 mm diameter Au sample during and after 3 V heating coil
pulse of 0.1 s duration in TEMPUS. Analytical results provided for
comparison. Maximum temperature difference calculated is 3.250C.
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Figure 4.10 Calculated temperature vs. time profiles at center, top, and
equator of 10 mm diameter Ni sample during and after 3 V heating coil
pulse of 0.1 s duration in TEMPUS. Analytical results provided for
comparison. Maximum temperature difference calculated is 5.590C.
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Calculated T vs. t for Ni with 3 V heating coil pulse of 0.1 s duration
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Figure 4.11 Calculated isotherms in 10 mm Ni sample at end of 3 V
heating coil pulse of 0.1 s duration in TEMPUS. Maximum
temperature is at equator (isotherm J) and minimum temperature is at
top and bottom (isotherm A).
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Table 4.1 Material properties used in calculations

Properties @ Tm Cu Au56Cu44 Au Ni
Melting temp. (C) 1083 910 1064 1453
Surface tension (N/m) 1.285 1.125 1.140 1.778
Electrical cond. (2m)-l 5x10 6 4x10 6 3.2x10 6 1.18x10 6

Density (kg/m 3 ) 7860 15500 17300 7800
Sample radius (m) 0.005 0.004 0.004 0.005

Table 4.2 Calculated equilibrium free surface shapes

Percentage deformation Cu Au56Cu44 Au Ni
Heater voltage = 0 V -0.72% -0.20% -0.18% -0.27%
Heater voltage = 2 V +3.71% +3.48% +3.34% +2.30%
Heater voltage = 3.5 V +11.32% +9.84% +9.45% +7.05%
Heater voltage = 5 V +21.18% +18.19% +17.50% +13.58%
Skin depth/radius X 100% 7.23% 10.10% 11.29% 14.88%
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CHAPTER 5

THE SHAPE OF LIQUID METAL DROPLETS
IN ELECTROMAGNETIC LEVITATION EXPERIMENTS

CONSIDERING INTERNAL FLUID FLOW

ABSTRACT

We present the results and an analysis of calculations of the shape of liquid
metal droplets in electromagnetic levitation experiments. Previously a
mathematical model was developed to predict the behavior of liquid metal
droplets in containerless experiments to determine the surface tension of
liquid metals and microgravity experiments on the IML-2 mission to measure
the viscosity and surface tension of undercooled metals. In the new
mathematical model presented here we consider the electromagnetic forces
distributed throughout the droplet as body forces in the Navier-Stokes
equations which govern fluid flow rather than as a magnetic pressure acting
on the surface of the droplet, as is done in the case of the normal stress
balance model of the droplet shape. The computational results of the
mathematical model are compared with the actual measured shapes of
droplets levitated in ground-based experiments, as well as with the
computational results previously obtained using the normal stress balance
model. The results of the two models are compared and cases for which the
normal stress balance model is sufficient are identified.

5.1 INTRODUCTION

The purpose of this work is to provide mathematical modeling support for

the Spacelab IML-2 mission aimed at the experimental determination of the
viscosity and surface tension of undercooled metals. A key component of this
work is the prediction of the shape of liquid metal droplets in electromagnetic
levitation experiments. A model of the shape of an axisymmetric droplet of
given volume and material properties subject to induction coils of arbitrary
coil geometry, frequency and current was developed in order to determine the
peak current that would effect the desired equilibrium shape. The
development of a mathematical model for the shape of liquid metal droplets
in electromagnetic levitation experiments also makes it possible to achieve
correct interpretation of the experimental results and precise measurement of
thermophysical properties.
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Papers on this topic were presented at the the 1992 and 1993 TMS Annual

Meetings [1-2]. These two papers used the normal stress balance model to
calculate the equilibrium free surface shape of liquid metal droplets in
electromagnetic levitation experiments. In the normal stress balance model
we consider only the surface of the droplet and neglects the interior, thereby
requiring the assumption that the internal fluid flow is either inviscid (=0)

or non-existent ( = 0). The ideal case for this model would then involve a
droplet of infinite conductivity (zero skin depth), in which electromagnetic
forces would not be able to penetrate the droplet and drive fluid flow.

The results of the previously-presented calculations on the shapes of molten
copper and nickel droplets using the normal stress balance model [2] agreed
quite well with the experimentally-determined equilibrium shapes. In both
cases the calculations correctly depicted the teardrop shape produced by the
conical coil arrangement, but underestimated the extent of deformation from
a spherical shape. A consideration of the skin depth-to-droplet radius ratios

for the two cases suggested the result that shapes calculated using the normal
stress balance model match the experimental shape better in the case of
copper than in the case of nickel.

The model presented in this paper constitutes a substantial extension of the
previous work by considering the electromagnetically-driven flow within the
droplet. This is accomplished by solving the Navier-Stokes equations subject

to electromagnetic body forces and a free surface boundary condition.

Fukumoto et al. [3] used an analogous approach to predict the meniscus shape
in an electromagnetic caster. It was found that the results of simulations in
which flow was considered and in those which flow was neglected were
similar in the cases of currents applied at high frequencies. It is well known
that at higher frequencies, the skin depth is reduced, indicating that the
electromagnetic forces driving the flow would be active over a more limited
region.
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5.2 FORMULATION AND COMPUTATIONAL METHODOLOGY

There are two major computational tasks associated with modeling the
equilibrium shape of an electromagnetically-levitated molten metal droplet
through solution of the Navier-Stokes equations with an electromagnetic
force source term and a free surface boundary condition. The distribution of
electromagnetic (Lorentz) forces, which effects deformation of the free surface
(magnetic pressure component) and internal fluid flow (stirring component)
in the droplet, must first be calculated. This distribution of electromagnetic
forces is then used as the body force in the numerical solution of the transient
Navier-Stokes equations. The equilibrium free surface shape of the droplet is
then determined from an analysis of the results of the transient calculations.

(i) Electromagnetic calculations

The distribution of induced current density (vector field J) in the levitated
droplet is calculated using the method of mutual inductances presented by,
among others, El-Kaddah and Szekely [4], Zong et al. [5], and Dantzig and
Midson [6]. The refinements made for the work presented in this paper are
detailed in [2]. The axisymmetric droplet is discretized into a set of annular
electrical circuits under the implicit assumption that the induced electric
current is constant over the approximately rectangular cross-section of each
circuit. The distribution of magnetic flux density (vector field B) in the
droplet is then calculated from the induced current density distribution and
the applied currents through the induction coils using the Biot-Savart Law.
The distribution of electromagnetic (Lorentz) force is given by

F = J xB (5.1)

and is calculated from the distributions of induced current density and
magnetic flux density.

The discretization of the droplet domain for the calculation of the
electromagnetic phenomena uses an exponential distribution of grid points
in order to better represent the exponential decay from the value at the
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surface with normal distance into the droplet (skin effect). The mutual
inductances are calculated using Lyle's method of equivalent filaments [7-8] to
account for the rectangular cross section of the annular elemental circuits.
The method was further adapted to account for the fact that the sides of the
elements were usually not oriented parallel and perpendicular to the axis of
symmetry.

(ii) Free surface shape calculations

The governing equations for the calculation of the equilibrium free surface
shape are the transient Navier-Stokes equations, which assume an
incompressible Newtonian fluid (constant density and viscosity). Because the
internal fluid flow in liquid metal droplets levitated in ground-based
experiments is turbulent due to the strong electromagnetic forces required for
levitation [4], an effective viscosity is used. The use of such a "zero-equation"

model is by no means exact, but is thought to be a useful first step given the
lack of a turbulence model (including two-equation models such as the k-e
model) that accurately models turbulent flow in a system with both
recirculating flow and a free surface. Given the use of an effective viscosity
which is uniform throughout the volume of the fluid, the Navier-Stokes
equations, expressed as a single vector equation are given by:

p- +-+ p V = -Vp +,Vu +pg + F (5.2)

where ii is the velocity vector field, which represents the internal fluid flow
in the droplet, p is the pressure scalar field, g is the gravitational acceleration

vector, p is the density of the fluid, and Off is the effective viscosity of the

fluid. The effective viscosity is equal to the sum of the laminar (or
molecular) viscosity g and a turbulent viscosity #,.

The Navier-Stokes equations are solved subject to the equation of continuity

and a stress continuity free surface boundary condition. For an
incompressible fluid, the equation of continuity, a statement of mass
conservation, is given by
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V-i =O (5.3)

For axisymmetric geometries, the free surface boundary condition is a balance
of components of stress normal to the free surface [9]:

P-p,. + -'+ 2,u du (5.4)

where the difference between the fluid pressure and the atmospheric pressure

pa is equal to the sum of the pressure due to surface tension and the normal

component of viscous stress at the free surface. In the pressure due to surface
tension, the first term on the right-hand side of the equation, y is the surface
tension of the fluid, and R, and R2 are the principal radii of curvature, defined

as positive for the outward-bulging surface [10]. In the last term of the

Equation 5.4, n represents the curvilinear coordinate normal to the surface.

In static fluids, the Equation 5.4 reduces to Laplace's formula.

Comparison of the form of the free surface boundary condition in Equation
5.4 with that in Equation 3.2 illustrates the principal differences between this

model and the normal stress balance model, which was presented in Chapter
3. The normal component of the jump in Maxwell stress tensor Tnn across

the interface, which is equal to the magnetic pressure pm, appears in Equation

3.2 because the assumption of infinite sample conductivity requires zero
magnetic field inside the droplet, thus a surface current density and a jump in

the Maxwell stress tensor at the interface. Because finite sample conductivity
and electromagnetic body forces are considered in this model, the magnetic
field is continuous across the interface so that there is no surface current and
the Maxwell stress tensor is also continuous across the free surface. As a

result, the Maxwell stress tensor (magnetic pressure) does not appear in
Equation 5.4. The normal component of the viscous stress which appears in
Equation 5.4 had been neglected in Equation 3.2 based on the assumption of
either inviscid or non-existent fluid flow.

The initial condition for each time step is the flow field, pressure field, and

free surface shape calculated for the previous time step. The initial condition
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used for the first time step of the entire solution process is a spherical shape

with no internal fluid flow and a compatible pressure field.

It is customary to recast the differential equations in a dimensionless form.
Non-dimensionalized variables, indicated below by an asterisk, are obtained
by dividing each variable by an appropriate reference quantity having the
correct units. The reference length R is the radius of a spherical droplet of
equal volume and the reference velocity is U. The reference quantities for
time, pressure, and force are derived from the reference length and reference
velocity. The gravitational acceleration vector is non-dimensionalized by

dividing by the magnitude of gravitational acceleration go.

The dimensionless Navier-Stokes vector equation takes the form

at ._r + .= .p + . + ' + (5'5)
dt~' ~Re Fr

where the Reynolds number is defined as

Re =pRU (5.6)

and the Froude number is defined as

U2

Fr = (5.7)
goR

The dimensionless free surface boundary condition takes the form

p -P.= We R+ + 2 e n (5.8)

where the Weber number is defined as

pU2R
We pU-R (5.9)

,
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In addition to facilitating computation, the dimensionless forms of the
equations provide useful physical insight. The dimensionless groups of
system and material parameters present in the dimensionless forms of the
governing equations indicate the relative importance of the key phenomena
present. The Reynolds number Re represents the ratio of inertial forces to
viscous forces, thereby characterizing the nature of the fluid flow within the
droplet. The Froude number Fr represents the ratio of inertial forces to
gravitational forces and indicates the degree to which gravity influences the
fluid flow. The Weber number We represents the ratio of inertial forces to

surface tension and indicates the deformability of the free surface of the liquid

droplet.

The equilibrium free surface shape is calculated as follows:

(i) The electromagnetic (Lorentz) force distribution inside the droplet is
calculated using the method of mutual inductances and the Biot-Savart Law,
as described above, for the initial shape, a sphere.

(ii) The electromagnetic force distribution is then supplied as a source term
in the fluid flow equations of fluid flow to FIDAP, a computational fluid

dynamics package, which numerically solves the non-dimensionalized
Navier-Stokes equations subject to the non-dimensionalized free surface
boundary condition for axisymmetric geometries at a given time step. The

position of the free surface is treated as a degree of freedom at each node on
the free surface. This position degree of freedom is introduced as an
unknown in the global system of unknowns for which FIDAP solves. Using

a Newton-Raphson iteration method, the position of the node on the free
surface and the velocity and pressure field variables at the new nodal position
are the solution of the iterative solution technique when convergence is
attained. Distortion of the finite elements is prevented by constraining the
nodes on the free surface to move along spines, specified lines along which
the nodes are allowed to move subject to the forces acting on the free surface.
[11]

(iii) The flow field, pressure field, and free surface shape are then used as the
initial condition of the following time step.
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(iv) The droplet undergoes translational and surface oscillations, the
amplitudes of which decay through viscous damping. After a sufficiently
long time the oscillations damp out and the steady-state solution (free surface

shape, velocity field, and pressure field) could be obtained. However, because
the computational time required to reach this solution, particularly in the
case of high Reynolds number (low viscosity), is very large, the equilibrium
free surface shape is identified through analysis of the velocity field at each
time step. The equilibrium free surface shape is identified as the droplet
shape for which the velocity field satisfies the kinematic boundary condition

of no component of velocity normal to the free surface, i.e., no flow across the
free surface.

In the calculation of the electromagnetic phenomena, it is assumed that the

internal fluid flow in the droplet does not affect the magnetic field. This
assumption is thought to be permissible because of the low value of the
magnetic Reynolds number that characterizes the system. The
electromagnetic forces throughout the droplet in each time step are
interpolated from the distribution calculated for a spherical shape because of

the considerable computational time that would be required to re-calculate it
at each time step. Once some deformation from the original spherical shape
used in the calculations is obtained, the distribution of forces for the
experimental droplet shape is used. The forces used in each time step are

then interpolated until the equilibrium free surface shape is identified. This
approach is thought to be acceptable because the extent of deformation that

the droplet experiences is sufficiently small, approximately 10% deviation
from a spherical-shape.

5.3 COMPUTED RESULTS

The experiment was performed on a pure nickel droplet (Johnson Matthey,

99.99%) with mass of approximately 1 g at the German Aerospace Research
Establishment in Cologne, Germany. A sketch of the conical coil
arrangement, as well as the magnitude of the external magnetic field and
magnetic field gradient along the symmetry axis of the coils for a peak applied
current of 405 A, as was used in the levitation of the nickel droplet, is shown
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in Figure 5.1. The input parameters for the calculations, listed in Table 5.1,

correspond to the experimental conditions.

The equilibrium free surface shape of the liquid nickel droplet was calculated

using Reynolds numbers of 1, 10, and 25 in order to investigate the influence

of the effective viscosity on the calculated shape. The streamline pattern (left

side), which illustrates the path of fluid particles within the droplet, and
velocity vector field (right side) for the droplet shapes calculated for Reynolds
numbers 1, 10, and 25 are shown in Figures 5.2, 5.3, and 5.4, respectively. In

each case the calculated shape correctly depicts the teardrop shape produced by

the conical coil arrangement required to levitate liquid metal droplets under

earthbound conditions.

The fluid flow field is characterized by a two-loop circulation pattern, as can

be seen in Figures 5.2, 5.3, and 5.4. The flow along the symmetry axis within

the upper circulation loop is toward the top of the droplet and the flow along

the symmetry axis within the lower circulation loop is toward the bottom of

the droplet. The flow pattern illustrates the fact that the steady-state droplet

shape represents an equilibrium between the inertial forces (motion of the

fluid) acting to deform the droplet and the surface tension forces acting to

resist deformation.

As explained above, at equilibrium the droplet shape is such that there is no

flow normal to the free surface. This condition is perfectly satisfied in the

case depicted in Figure 5.3, but a small component of flow normal to the free

surface can be seen in the cases depicted in Figures 5.2 and 5.4. This is a result

of the discrete time steps at which the system of equations are solved. The

kinematic boundary condition is exactly satisfied at the time for which results

are shown in Figure 5.3, while in the cases in Figures 5.2 and 5.4 this

condition is satisfied at a time that occurs between consecutive time steps.

The droplet shape and internal flow field presented as the equilibrium
droplet shape and flow field are those for the time step at which the
kinematic boundary condition is most nearly satisfied.

The calculated droplet shapes are compared with the actual droplet shape
using the quantity percentage deformation, which is given by
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%def.= (z ) --- 2R x100% (5.10)
2R

The percentage deformation for the actual shape, the shape calculated using

the normal stress balance model, and for the shapes calculated using the new

electromagnetically-driven flow model are summarized in Table 5.2. The

magnitude of the maximum velocity in each case using the
electromagnetically-driven flow model is also listed. A visual comparison of

the actual and calculated shapes is provided in Figure 5.5. From Figure 5.5 it

can be seen that the shapes calculated with both models agree quite well with

the experimentally-determined shape, but it is important to realize that the

visual comparison is quite flattering because the deformation of the droplet is

relatively small.

5.4 DISCUSSION

In the normal stress balance model, the free surface shape of the droplet was

calculated by considering only the surface and neglecting the interior of the

droplet. The calculations produced the same teardrop shape as was observed

experimentally, but underestimated the extent of deformation. The reason

for this was that there is some penetration of electromagnetic forces into the

interior of the droplet; the ratio of skin depth-to-droplet radius was nonzero

(25.55% in the case of the nickel droplet) and consideration of the droplet

surface therefore cannot provide a completely accurate model of the droplet

shape.

From the results listed in Table 5.2 it can be seen that the percentage

deformation for all shapes calculated using the electromagnetically-driven

flow model, including that for the case with Re = 1, was higher than that for

the shape calculated using the normal stress balance model. The fact that

consideration of the internal fluid flow yields calculated shapes with a greater

extent of deformation helps explain previous experimental results. During
parabolic flights on a KC-135 airplane intended to test the TEMPUS facility,

which is the electromagnetic levitation facility that will be used on the IML-2
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mission, an FeNi sample was found to deform to a significantly greater extent
than had been expected.

The percentage deformation increased with the value of the Reynolds
number used in the calculations, a logical result given that a higher Reynolds
number corresponds to stronger inertial forces. A comparison of the
percentage deformation for the actual shape with that of the shapes calculated
with the EM-driven flow model indicates that calculation of the actual shape
using that model requires a Reynolds number between 10 and 25. These
Reynolds numbers correspond to ratios of turbulent viscosity to laminar
viscosity of 50 and 20, respectively. Given that the actual shape would be

obtained by calculation with the EM-driven flow model for a value of the
Reynolds number between 10 and 25, the results correspond well with those

obtained by El-Kaddah and Szekely for a liquid iron sphere of mass 1 g [4].
Using the k-E model to calculate the internal turbulent flow, El-Kaddah and
Szekely obtained ratios of turbulent viscosity to laminar viscosity ranging
between 10 and 40. The values of maximum flow velocity obtained with the

EM-driven flow model also compare favorably with the experimental results

of Robertson and Jenkins, who observed a maximum velocity of 10-20 cm/s

for a system similar to that studied by El-Kaddah and Szekely [12].

The results obtained illustrate the need for considering the interior of the
droplet as well as the surface in calculating the droplet shapes in cases where

the electromagnetic forces penetrate the droplet to a significant degree. In
addition to providing a more accurate model of the droplet shape, the EM-

driven flow model provides valuable information about the internal flow
which is important to the performance of thermophysical property
measurements in microgravity experiments.

The methodology that has been developed for modeling the free surface
shape of liquid metal droplets in electromagnetic levitation experiments is
readily applicable to industrial systems involving electromagnetic shaping.
In order to model the free surface shape of a large pool of molten metal
subjected to electromagnetic forces, consideration of the surface is sufficient.
In cases where the ratio of skin depth-to-sample dimensions is larger, as in



meniscus control in electromagnetic casting and electromagnetic shape
control of liquid metal jets, the interior of the droplet must be considered.

The dependence of the calculated equilibrium droplet shape on the value of
the Reynolds number (effective viscosity) used and the lack of an appropriate
turbulence model illustrate the need for direct simulation of turbulent flow
in order to have an exact model of the droplet shape and internal fluid flow.
This need also extends to a host of industrial problems involving turbulent
recirculating flows and free surfaces.
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Figure 5.1 Conical coil arrangement with field strength and gradient
along symmetry axis for peak applied current of Io=405 A.
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Figure 5.2 Streamline pattern (left side) and velocity vector field
(right side) for equilibrium shape of Ni droplet calculated using EM-
driven flow model with Re=1. Magnitude of maximum velocity is 1.39
cm/s and extent of deformation is 7.55%.
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Figure 5.3 Streamline pattern (left side) and velocity vector field
(right side) for equilibrium shape of Ni droplet calculated using EM-
driven flow model with Re=10. Magnitude of maximum velocity is
14.51 cm/s and extent of deformation is 9.13%.
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Figure 5.4 Streamline pattern (left side) and velocity vector field
(right side) for equilibrium shape of Ni droplet calculated using EM-
driven flow model with Re=25. Magnitude of maximum velocity is
25.48 cm/s and extent of deformation is 12.55%.
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Figure 5.5 Comparison of results for Ni droplet shapes.
- Experimentally-determined (10.22% def.)
+++ Normal stress balance model (6.84% def.)
---- EM-driven flow model, Re=1 (7.55% def.)
....... EM-driven flow model, Re=10 (9.13% def.)

EM-driven flow model, Re=25 (12.55% def.)
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Table 5.1 Input parameters for equilibrium free surface shape calculations

Parameter Ni
Applied current (A) 405
Frequency (kHz) 333
Radius of sphere (mm) 3.11
Elec. cond. (m) - 1 1.205x106

Density (kg/m3 ) 8080
Surface tension (N/m) 1.82

Table 5.2 Percentage deformation and magnitude of maximum velocity
for actual and calculated Ni droplet shapes

Case %def. U(max)
Experimental 10.22% N/A
Normal stress balance model 6.84% N/A
EM-driven flow model (Re=1) 7.55% 1.39 cm/s
EM-driven flow model (Re=10) 9.13% 14.51 cm/s
EM-driven flow model (Re=25) 12.55% 25.48 cm/s
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CHAPTER 6

SURFACE TENSION MEASUREMENTS
ON-LIQUID METALS IN MICROGRAVITY

ABSTRACT

The results of surface tension measurements on liquid metals performed in
microgravity aboard the Space Shuttle Columbia are presented. It is shown
that there is excellent agreement between the results obtained and with both
data obtained from experiments performed on the earth and theoretical
predictions. The results show that surface tension measurements made with
the oscillating drop technique using electromagnetic levitation are accurate
and can be improved by performing the experiments in microgravity. A brief
discussion of possible experimental evidence of dynamic nucleation is also
presented.

6.1 INTRODUCTION

Interest in the surface tension of liquid metals and alloys stems both from
scientific considerations, because understanding these properties is essential
to validating theories of the liquid state, and from practical considerations,
such as their applications in processing, chemical, and metallurgical
industries [1]. The surface tension is critical in casting, molding, crystal
growth operations, smelting, and refining, brazing, sintering, zone refining,
and fiber formation [2]. The dependence of surface tension on temperature is
also important because it leads to Marangoni convection, which is
particularly important in such processes as welding and crystal growth [3-4].

With the advent of powerful mathematical modeling techniques for
metallurgical phenomena, there is renewed interest in reliable data on the
physical properties of liquid metals. Presently, the knowledge and accuracy of
these data are the limiting factors in the models [5]. The property database for
liquid metals is incomplete and the conventional measurement techniques
are not entirely satisfactory.

The electromagnetic levitation technique is a widespread method for
containerless processing of liquid metals. A major advantage of the method
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is the avoidance of sample contamination through the use of high-purity
processing gas and contact-free measuring techniques [3]. The oscillating drop

technique involves observation of the oscillations of a levitated droplet about
its equilibrium shape. The restoring force for surface oscillations is the
surface tension, which can be related to the frequency of the oscillations [6].

There has been some skepticism about the results obtained by the oscillating
drop technique because this method tends to yield higher values for the
surface tension than those from conventional methods. Although some
authors have attributed this to the better purity of the sample's surface, it may

also be a systematic error due to the presence of the electromagnetic levitation
field, which 'produces a magnetic pressure at the surface and leads to an
apparent increase of the surface tension. Using a correction formula derived

by Cummings and Blackburn [7], Egry et al. obtained surface tension values

for gold which were independent of sample mass and in agreement with
values derived by conventional techniques [8]. This work demonstrated that

the oscillating drop technique could produce very accurate results and would
be the preferred method for determining the surface tension of reactive
metals [9].

Surface tension measurements made with the oscillating drop technique
using electromagnetic levitation can be improved by performing the
experiments in a microgravity environment. Residual accelerations aboard

the Space Shuttle are on the order of one thousand to one hundred thousand

times less than the magnitude of gravitational acceleration on the earth,
therefore, much weaker electromagnetic fields are necessary. This offers three

primary benefits to surface tension measurements.

(1) The sample remains nearly spherical, which greatly facilitates

the oscillation analysis.
(2) The magnetic pressure on the surface of the sample is reduced.

(3) The induced heat in the sample is reduced, making processing in

ultra-high vacuum and at lower temperatures feasible [10-11].

The experiments were conducted using TEMPUS (Tiegelfreies
Elektrom agnetisches Prozessieren Unter Schwerelosigkeit), the
electromagnetic containerless processing facility. TEMPUS uses
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electromagnetic levitation for containerless positioning and heating of metal
samples and can be used under microgravity conditions. TEMPUS was built
by Dornier, a company based in Friedrichshafen, Germany, under contract
from DARA, the German space agency. Team TEMPUS includes
representatives from NASA, DARA, Dornier, and eight teams of Principal
Investigators from the United States and Germany. The results of the

TEMPUS team are presented in [12].

The experiments took place from July 8 to July 23, 1994, aboard the Space
Shuttle Columbia as part of the Spacelab IML-2 (Second International
Microgravity Laboratory) mission. The experiments were monitored and
telecommanded from the Payload Operations Command Center (POCC) at
NASA Marshall Space Flight Center in Huntsville, Alabama.

In this paper we present experimental results for Au, Au-44 at%. Cu (gold

with 44 atomic per cent copper), and Zr-36 at%. Ni (zirconium with 36 atomic

per cent nickel). Wherever possible comparisons are made with prior
measurements.

6.2 EXPERIMENTAL

Using the oscillating drop technique, we measured the frequency of
oscillations of levitated droplets about their equilibrium shapes. Lord
Rayleigh calculated the frequencies of small-amplitude oscillations of an
inviscid spherical liquid droplet of mass M due to surface tension y. The

relationship between the frequency of oscillation mode n and the surface
tension is given by [13]

V= n(n-1)(n + 2 ) (6.1)
37r M

The mode n=2 is the fundamental mode of surface oscillations. For
aspherical, rotating droplets, the n=2 mode is shifted and split into five peaks
(m = -2, -1, 0, +1, +2) [4]. In an earthbound experiment on a liquid nickel

droplet performed by Egry et al. [14], such a frequency shift and splitting was

observed. In order to determine the five different frequencies for the n=2
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modes, they developed a method of oscillation detection based on inspection

of certain geometrical parameters by digital image processing. A frequency

sum rule derived by Cummings and Blackburn [7] to obtain the Rayleigh
frequency from the split modes was used in order to calculate the surface

tension from Equation 6.1.

In microgravity, due to the reduced electromagnetic fields needed to position

the samples, it was thought that reduced deformation due to the reduced
magnetic pressure and lesser rotation due to weaker electromagnetic forces

would eliminate the frequency shift and splitting seen in ground-based
experiments. This would offer the benefit of eliminating the need for
correction formulae to calculate the Rayleigh frequency.

A schematic sketch of the experimental arrangement for TEMPUS is shown

in Figure 6.1. The TEMPUS coils were designed to provide independent

control of heating and positioning. By switching off or reduced the voltage in

the heating coils, the power input into the sample can be greatly reduced,

thereby allowing cooling without forced gas cooling of the sample. A more

detailed description of the TEMPUS facility and its subsystems is given in [12].

In the microgravity experiment, the solid sample was introduced from below

into the space within the coils. The positioning coils were turned on first,

and once the sample rested in a stable position, the heating coils were turned

on to melt the sample and bring it to a predetermined, desired temperature

above the melting point. The heating coil control voltage was then

substantially reduced to allow the sample to cool by radiation and by

conduction to the surrounding very-low-pressure Ar gas environment (in

the case of the Au and AuCu samples). The sample was then squeezed and

deformed by applying a heating coil control voltage of amplitude 2-3 V for 0.1

s. After the heating coil control voltage was reduced again, the oscillations of

the droplet were observed and recorded on video for a period of 5 s, during

which time the sample continued to cool.

The pulsing and observation procedure was repeated until the droplet

solidified in order to make surface tension measurements over a large
temperature range. After the droplet solidified, it was reheated, melted,
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cooled, squeezed, and observed as described. This procedure was performed

for as many experiment cycles (heating and cooling) as possible, or until the

sample hit the sample cage, terminating the experiment. In the case of the

gold sample, the heating coil pulse was only applied once in each cycle. A
profile of temperature, heating coil control voltage, and positioning coil
control voltage vs. time for a cycle of the experiment on Zr-36 at.% Ni is
shown in Figure 6.2. Note that only one heating coil pulse is visible because
the 1 Hz data can only show one of every ten pulses of duration 0.1 s.

The oscillating drop was observed from the side by a video camera and
recorded on videotape at a sampling rate of 120 Hz. Because of obstruction

from the heating coils in the horizontal direction and the sample cage wires
in the vertical direction as shown in Figure 6.3, only a portion of the
oscillating sample was visible in each frame. The images were therefore
analyzed for the visible area in each frame. Each group of data points was

taken from the 5 s period between heating coil pulses. Subsequent Fourier
analysis using a 512-point Fast Fourier Transform (FFT) yielded the frequency

spectra. Figure 6.4 shows one such spectrum for the gold-copper sample.

It can be seen from the figure that in the microgravity experiments the
splitting of the n=2 mode that is seen in earthbound experiments did not
occur. The Rayleigh frequency VR in each case was therefore taken to be the

frequency corresponding to the highest peak in the frequency spectrum.
From Equation 6.1, the surface tension value could then be calculated from

the Rayleigh frequency using the equation

3
, = 3 7Mv, (6.2)

8

Using the method described above, we measured the surface tension of liquid

pure gold, the alloy Au-44 at.% Cu, and the eutectic alloy Zr-36 at%. Ni.

Temperature measurement was performed from the top view of the sample

using a two-color broadband pyrometer which was equipped with an InAs
detector and had a sampling rate of 100 Hz.
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6.3 RESULTS

6.3.1 Gold

We measured the surface tension of liquid gold of mass 5.21 g in the

temperature range 1225-1330oC, which corresponds to temperatures 160-2650C
above the melting point. The oscillation amplitudes of the surface
immediately after the heating coil pulses were less than 10%, which means

that application of the linearized theory and use of Equation 6.1 is justified.
The data obtained were fitted to the linear relation

y(T) = y(T,)+(d / dT)(T - T) (6.3)

and are shown in Figure 6.5. The linear fit of the measured surface tension of

liquid gold as a function of the Celsius temperature T, also shown in the

figure, is

Y,. (T) = 1.149 - 0.14. 10-(T - 1064)N / m (6.4)

The filled points on the plot are data points obtained from the microgravity

experiments. The different symbols represent different experiment cycles.
For comparison, data obtained by Sauerland et al. [8] in earthbound levitation

experiments on a gold sample of mass 0.72 g are given. The "1 g-results"

indicate uncorrected surface tension values, and the "1 g-results extrapolated

to 0 g" indicate the surface tension values obtained using the correction

formula of Cummings and Blackburn [7].

6.3.2 Au-44 at.% Cu alloy

The surface tension of liquid Au56Cu44 was measured in the temperature
range 970-10800C using a sample of mass 4.2066 g. The oscillation amplitudes

immediately after the heating coil pulses were less than 10%. Figure 6.6
shows the large number of data points and a regression line corresponding to
Equation 6.3. The temperature dependence of Au56Cu44 is given by

yAc,,(T) = 1.196 - 0.02 10-3(T - 910)N / m (6.5)
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6.3.3 Zr-36 at.% Ni alloy

The surface tension of liquid Zr64Ni36 was measured in the temperature
range 980-11500C, which corresponds to undercooling of AT=300C and heating

1400C above the melting point, using a sample of mass 1.9366 g. The

oscillation amplitudes immediately after the heating coil pulses were less
than 10%. Figure 6.7 shows the data points and a regression line
corresponding to Equation 6.3. The temperature dependence of Zr64Ni3 6,
assuming that the surface tension of the undercooled liquid follows the same

linear dependence on temperature as the superheated liquid, is given by

y,(T) = 1.545 + 0.08 10-3(T - 1010)N / m (6.6)

6.4 DISCUSSION

6.4.1 Results on gold

The linear fit of the data obtained by Sauerland et al. is

y(T) = 1.121 - 0.09 10-3(T- 1064)N / m (6.7)

Figure 6.5 and a comparison of the relations in Equations 6.4 and 6.7 shows

that our values agree very well with the "1 g-results extrapolated to 0 g"
obtained by Sauerland et al. in earthbound experiments. The value of surface
tension at the melting point of 1.149 N/m obtained in this study compares
remarkably well with the mean value for the surface tension of liquid gold
published by Keene in his review article [15], 1.145 N/m. The value of

dy/dT=-0.14x10-3 N/mK obtained from a linear fit of the data obtained in this

study is closer to the mean value of dy/dT given in [15] of -0.20x10-3 N/mK. It

should be noted that the temperature dependence of the surface tension of
liquid gold is relatively weak, which can partially account for the difference in

the temperature coefficient.

The resolution in the frequency spectrum obtained from the FFT of the data

on visible area determines the experimental error. By taking the differential
of Equation 6.2, it can be seen that the error in the value of the surface tension
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Ay from the error in the Rayleigh frequency AVR is given by

Ay= 2yA (6.8)
VR

The error in surface tension, indicated in Figure 6.5 by the error bars on the
points corresponding to the data obtained in the microgravity experiments, is
less than 3% of the surface tension value. There is also a finite error resulting
from the fact that the sample continues to cool during the time that the
sample is oscillating, the data sampling period. However, because of the weak
temperature dependence of the surface tension, this error is less than 1% of
the surface tension value. The experimental error is approximately the same
for all three materials considered here.

6.4.2 Results on Au-44 at.% Cu

As can be seen in Figure 6.6, the addition of Cu to Au increases the surface
tension slightly, but the temperature dependence of the surface tension is
even weaker than it is for pure gold. Au-Cu is a congruent-melting alloy, a
system in which the liquidus and solidus lines go through a minimum. The
composition Au56Cu44 is the composition at which this minimum occurs,
which means that it behaves just like a pure metal; solidification begins and
ends at a constant temperature of 9100C with no change in composition [16].
Because it behaves like a pure metal, the temperature dependence of liquid
Au56Cu44 was modeled using an ideal solution model developed by Gorges et
al. [17]. The relation predicted by the ideal solution model for the
temperature of liquid alloys is given by

y,a(T) = 1.193 - 0.11 103(T - 910)N / m (6.9)

The agreement in the surface tension at the melting point determined
experimentally and calculated with the model is remarkably good. The
temperature coefficients are somewhat different, but both suggest that the
temperature dependence of the surface tension of liquid gold-copper is very
weak.
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The experimental data of Gallois and Lupis [18] for the surface tension of
liquid gold-copper alloys at 11080C suggest a value of approximately 1.12 N/m
at that temperature. The value of 1.192 N/m obtained from the linear fit of
our experimental data at that temperature compares well with the value
obtained by Gallois and Lupis.

6.4.3 Results on Zr-36 at.% Ni

There are no data available on the surface tension of the liquid of this eutectic
alloy. The increase of the surface tension of liquid Zr64Ni36 with increasing

temperature suggested by the linear fit of the data points must be confirmed,
but the temperature dependence is not very strong. Surface analysis of IML-2
samples of pure zirconium processed in TEMPUS indicated that oxygen,
which is surface-active, was present. If this was also true for the Zr6 4Ni3 6

sample, which has not yet been analyzed, this could explain the increase in
surface tension with temperature. It is even possible, given the error bars on
the data points, that the temperature coefficient of the surface tension is
negative, as it is for Au and Au56Cu44.

It should be mentioned that one of the problems faced during the TEMPUS
microgravity experiments was significant sample contamination [12].
However, this problem is thought to not have a large influence on the surface

tension results for gold because of its insensitivity to impurities. Gold is
surface active in copper [18], therefore, the impurities should also not
significantly affect the surface tension results for gold-copper. The solubility
of oxygen in zirconium is high, therefore, impurities may not have affected
the quality of the surface of the zirconium-nickel sample. The surface of the
sample must be analyzed in order to determine this.

6.5 CONCLUSIONS

We have successfully performed measurements of the surface tension of the
melts of a pure metal, a congruent-melting alloy, and a eutectic alloy. The
accuracy of these results was shown by comparison with prior experimental
results. For the first time we have demonstrated the viability of the
oscillating drop technique in the measurement of the surface tension of
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liquid metals. We have also demonstrated the advantages and unique
possibilities offered by microgravity experimentation and the power of
mathematical modeling in planning and replanning very complex processes.

We have shown that the measurement of the surface tension of liquid metals
in microgravity using the oscillating drop technique with electromagnetic
levitation is extremely accurate. The data for gold are in excellent agreement
with those obtained in earthbound experiments and with expected results and
shows that we can eliminate the need for correction formulae to account for
the applied magnetic field by performing the experiments in microgravity.
The agreement between the microgravity data and the corrected data from
earthbound experiments also shows that the correction formula accurately
accounts for the effects of the magnetic field and sample mass. The data for
gold-copper very closely follow the predictions of the ideal solution model for
the surface tension of alloy melts. Data points in the undercooled regime
were obtained for zirconium-nickel and the values are between the surface
tension values for pure zirconium -and pure nickel.

We have demonstrated the ability to perform accurate thermophysical
property measurements with TEMPUS. Furthermore, if TEMPUS is given
another opportunity to fly with a Spacelab mission, the results already
obtained suggest that it will be possible to make accurate measurements of the

surface tension of deeply undercooled metals.

6.6 DYNAMIC NUCLEATION

The coincidence of the 3.5 V (130 A) heating coil pulse and recalescence in
cycle 6 of the Zr64 Ni 3 6 experiment can be seen in Figure 6.2. This
phenomenon occurred during many cycles of the experiment, suggesting that
the pulses may have triggered nucleation without any contact with the
sample. Experimental evidence and theoretical arguments concerning
dynamic nucleation in undercooled liquids does exist [19-21].

One possible explanation for the dynamic nucleation that is presented is a
change in melting temperature ATm with pressure AP, which is quantified by
the Clapeyron equation [20]
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AT, = YAP (6.10)
AH

where AV and AH are the volume and enthalpy changes on melting and T is

the absolute temperature. The pressure required to change the melting point
in liquid metals enough to trigger nucleation is many orders of magnitude
greater than the magnetic pressure of 420 Pa exerted on the undercooled
liquid sample by the 3.5 V heating coil pulse. The publications on the subject

of dynamic nucleation [19-21] suggest that the collapse of small bubbles created
by cavitation in the liquid was responsible for the change in melting point
sufficient to cause nucleation. Frawley and Childs [21] achieved dynamic
nucleation by what they termed acoustical cavitation in undercooled bismuth
with 20,000 cps vibrations.

Given the heating coil frequency of approximately 400 kHz used in TEMPUS,
acoustical cavitation could have caused nucleation in the ZrNi sample.
However, the molten sample is always subject to a positioning coil field of

frequency 144 kHz and a heating coil field of lower magnitude than that
provided by the heating coil pulse. Another important consideration is that
undercoolings of several hundred degrees have been obtained in metal
droplets levitated in AC fields in the same frequency range on earth without
the occurrence of dynamic nucleation. Confirmation of the dynamic
nucleation events during the IML-2 experiment and the possible mechanisms
if the phenomenon did occur require further study.
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Figure 6.1 Schematic sketch of the TEMPUS experimental
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Figure 6.2 Plot of temperature (jagged line), heating coil control
voltage (plot at bottom), and positioning coil control voltage (constant
value of 5000 mV) vs. time for cycle 6 of Zr64Ni3 6 experiment.
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Figure 6.3 Video still of two frames of the side view of the oscillating
Zr64Ni36 droplet. The visible portion of the droplet is flat at the top
and the bottom because of the obstruction provided by the heating
coils. The obstruction from the sample cage wires causes the vertical
lines. The cross hairs come from the camera.
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Figure 6.5 Surface tension data for liquid Au, with linear fit of the
data points. For the purpose of comparison, the "1 g-results" are
uncorrected data obtained by Sauerland et al. [15] in earthbound
levitation experiments. The "1 g-results extrapolated to 0 g" are surface
tension values obtained using the Cummings and Blackburn
correction formula.
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Figure 6.6 Surface tension data for
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Figure 6.7 Surface tension data for liquid Zr64Ni36, with linear fit of
the data points.
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CHAPTER 7

CONCLUDING REMARKS

The most important achievement of this work is the development of a
computational methodology that was used to design a series of successful
Space Shuttle experiments to measure the viscosity and surface tension of
superheated and undercooled melts. Specifically, the following phenomena
have been modeled using both self-developed codes and adapted commercial
software packages:

· Electromagnetic forces and induced power
* Free surface deformation without fluid flow considered
· Free surface deformation considering internal fluid flow
* Heat transfer

Electromagnetic Forces and Induced Power
Calculation of the electromagnetic phenomena in an axisymmetric sample of
arbitrary cross section in a rotationally symmetric coil system made it possible

to calculate the magnetic pressure exerted on the free surface, the lifting and

stirring forces, and the induced power (Joule heating) in the sample. The

accuracy of the formulation was confirmed by comparison of the total lifting

force with experimental results, testing with the case of a spherical coil, the

classical "flux ball", and comparison of the total power induced in a spherical

sample with analytical results. Precise calculation of the local distribution of

electromagnetic quantities had not been done prior to the work presented in
this thesis.

Free Surface Deformation Without Fluid Flow Considered
The mathematical model of the free surface shape considering magnetic
pressure, surface tension, hydrostatic pressure, and gravity at the surface of

the sample was used to determine the heating coil voltage needed to effect the

desired extent of sample deformation. The accuracy of the formulation was

confirmed by comparison of calculated shapes with the shapes of droplets in
earthbound levitation experiments and by the fact that the droplets processed

in microgravity were in fact deformed to the prescribed extent.
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Free Surface Deformation Considering Internal Fluid Flow

In order to improve upon the model of the free surface shape, we developed a
model that considered free surface deformation and internal fluid flow
simultaneously. Because of the difficulty associated with treating the position
of the free surface as an unknown in the solution of the Navier-Stokes
equations to calculate the internal fluid flow field, previous models of the
shape of levitated droplets concentrated on the phenomena at the surface and
neglected the interior. The accuracy of the model of the free surface shape
was confirmed by comparison with the same earthbound experimental
results. It was not possible to quantitatively confirm the calculation of the
internal fluid flow field, but the flow pattern was qualitatively confirmed by
comparison with the path of oxygen particles in a molten iron droplet.

Heat Transfer
The temperature distribution in levitated liquid metal droplets was modeled
by considering the conduction within the sample, the induced power
distributed throughout the sample, and the temperature-dependent heat
losses by radiation and conduction at the surface. With this work it was
possible to confirm that the temperature gradients in the samples processed
in the microgravity experiments would be negligible, assuring the accuracy of
temperature measurement at the sample surface and eliminating concern
about surface tension-driven fluid flow. The accuracy of the model was

confirmed by comparison of the calculated results with relatively simple
analytical calculations.

It is important to reiterate that the mathematical modeling effort culminated
in a successful series of microgravity experiments. Some experiments were
performed successfully based on the extensive preparation and mathematical
modeling before the mission, while other experiments were planned entirely
during the mission based on experience and understanding of the key
phenomena gained from mathematical modeling. At the time of the
submission of this thesis, surface tension values had been obtained and the
possible proof of the phenomenon of dynamic nucleation had been achieved.
While viscosity results had not yet been attained, simulations based on the
mathematical models presented in this thesis were being used as a significant
part of the effort to extract viscosity results from the experiment data.
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A methodology for the rational design of experiments in a microgravity
environment based on mathematical modeling of the levitation forces,
electromagnetically-driven flows, deformation, and heat transfer was
presented in this thesis. Many of the calculations made using the models

developed were validated by ground-based experiments, but the ultimate
confirmation of the usefulness of the models was provided by the successful

Space Shuttle experiments.

The successful microgravity experiments demonstrated the power of
mathematical modeling of materials processes. Mathematical modeling
provides quantitative understanding of the key physical phenomena and is

much less expensive than trial-and-error experimentation. In addition to
facilitating the success of microgravity experiments, the power of
mathematical modeling suggests that it could be used to design experiments

that could be performed on the ground rather than in space. Given the
prohibitive cost of microgravity experiments and the lack of flight
opportunities, mathematical modeling should be used as much as possible to

find ways of performing experiments without going to space.

The techniques developed for modeling the behavior of levitation-melted
metallic droplets could be readily adapted to a broad range of problems where

metallic surfaces are being shaped, deformed, or simply held in position
though the application of electromagnetic forces; some current applications of

these techniques include electromagnetic casting, electromagnetic dams in
near net shape casting operations, and the moldless melting of titanium.
While major advances are being made in the application of electromagnetic

theory to advancing our understanding of these systems, it is possible that the

techniques described here could find applications in these areas as well.

The comprehensive MHD model of the free surface shape and
electromagnetically-driven flow in a levitated droplet is a ready example. A

model which considers only the surface is sufficient to model the free surface
shape when the electromagnetic skin depth is much smaller than the sample

dimensions, as with a large pool of molten metal subjected to electromagnetic

forces. However, in cases where the ratio of skin depth to the sample
dimensions is larger, as in meniscus control in electromagnetic casting and
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electromagnetic shape control of liquid metal jets, the interior of the droplet
must be considered. The ratio of the skin depth to the characteristic length
has been identified as the key parameter in determining when the free surface
shape and the internal fluid flow must be calculated simultaneously.

The most glaring need in the mathematical modeling of electromagnetic
shaping and electromagnetically-driven flow is in the area of turbulence
modeling. In fact, the various zero-equation, two-equation, and other
turbulence models which exist are not appropriate for a recirculating flow
pattern that is bounded entirely by a free surface. In order to be able to
develop fully comprehensive models of the fluid flow, free surface shape, and
heat transfer in electromagnetic levitation experiments and processes
involving electromagnetic shaping, the calculation of the internal fluid flow
pattern is required. Various research groups are working on the simulation
of such complex turbulent flows. Two approaches that are being developed
are large eddy simulations, which still involve averaging over a finite
volume, and direct numerical simulation of turbulence. The Materials
Process Modeling Group, specifically Mr. Robert Hyers and Prof. Szekely, is
developing a solver based on the direct numerical simulation of turbulence.
With the great advances in computation that have been made in the last few
years, such as the emergence of parallel computing, this approach offers great
possibilities.
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