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Abstract

The BaF molecule, the subject of this work, possesses several exceptional properties,
which make it an extremely useful tool in the quest to understand a
Rydberg electron e- molecular ion-core energy and angular momentum exchange. The
BaF molecule, like other alkaline earth monohalides, has a very simple zero-order
electronic structure: two closed shell atomic ions, Ba2+ and F, and one Rydberg electron.
Due to the doubly closed shell molecular ion-core, the entire electronic structure of BaF
can be derived from the interaction of the single Rydberg electron with the molecular
core. As a result, all observed electronic states of the BaF molecule, including the ground
state, X2 + , are members of one of the 10 core-penetrating Rydberg series or one of the
infinite number of core-nonpenetrating Rydberg series. The conceptual simplicity of the
zero-order electronic structure is accompanied by the great complexity of interchannel
interactions. The different IX channels are mixed by an -uncoupling interaction,
electrostatic/core-penetration interactions, and a spin-orbit interaction. The -uncoupling
interaction has been studied in the past by several authors and is well understood. The
electrostatic/penetration -mixing interactions have also been studied previously.
However, in the BaF molecule, these interactions are several hundred times stronger than
in a typical diatomic molecule for which Rydberg structure has been systematically
investigated. In addition, in the BaF molecule, spin-orbit interactions cannot be neglected
even for high-n* Rydberg states. The BaF molecule possesses also an extremely rare
between diatomic molecules property, its dissociation limit is much higher than the
ionization potential.

In order to thoroughly characterize the electronic structure of the BaF molecule
3 types of experiments were performed: (1) fluorescence detected optical-optical double
resonance spectroscopy with the C2rI3/2 intermediate state (high-n* Rydberg states),
(2) fluorescence-detected optical-optical double resonance spectroscopy with the B2Z+

intermediate state (low-n* Rydberg states), and (3) ionization-detected optical-optical
double resonance spectroscopy with the C2r3,/2 intermediate state (v=l autoionizing
Rydberg states). Several thousand spectral lines, belonging to more than a hundred new
electronic states have been recorded, measured, and assigned. All of the observed
Rydberg states have been organized into ten core-penetrating Rydberg series (four 2 +,

three 2H, two 2A, and one 2c) and two (incomplete) series of nonpenetrating complexes
(g- and h-complexes). Most of the states have been fitted to an effective Hamiltonian
matrix model and molecular constants are reported. The formation of a series of

5



s-p-d-f-g--h supercomplexes has been discussed. Different models for the
supercomplexes have been analyzed. Autoionization rates, quantum defects, and the
derivative of the quantum defect with respect to internuclear distance have been
discussed. Several programs for data analysis and computer simulations have been
developed.

Thesis Supervisor: Dr. Robert W. Field
Title: Professor of Chemistry
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1. Introduction.

The spectroscopy of Rydberg states of the hydrogen atom played a crucial role in the

birth of quantum mechanics. Even today, the Rydberg spectroscopy of atoms and

molecules continues to be an important tool for gaining a deeper understanding of the

physical properties of matter. An especially attractive feature of Rydberg spectroscopy is

that long and sometimes complicated series of states, called Rydberg series, in atoms and

molecules can be related to the electronic structure of the hydrogen atom by a minor

modification of the well known Rydberg formula

End. = IP n- 2 n-l-n*, (1.1)
(n- z)

where IP is the ionization potential of the atom or molecule, 91 is the universal (weakly

mass dependent) Rydberg constant, n is the principal quantum number, and tlx is a

quantum defect, which in addition to an explicit dependence on and X can also be a

slowly varying function of energy. The quantum defects, tl, which are zero for the

hydrogen atom, encode all information needed to describe the electronic structure and

dynamics of Rydberg states of any atom or molecule. For low-l states, in which the

Rydberg electron can penetrate inside an atomic or molecular ion-core, penetrating

states, quantum defects parametrize in a simple way the very complicated interaction of

the Rydberg electron with the multi-electron, multi-nucleus ion-core. For high-l states, in

which the Rydberg electron is kept outside the ion-core by centrifugal forces,

nonpenetrating states, the quantum defects contain information about the long-range

electrostatic properties of the ion-core as well as dynamic Rydberg electron <- ion core

energy and angular momentum exchange processes.

Until recently, Rydberg spectroscopy of molecules could be considered as a simple

extension of atomic Rydberg spectroscopy in the sense that the angular momentum

quantum number, 1, which is generally not conserved in molecules, even at relatively low-

n* could be treated as a nominally conserved quantity. The well characterized molecular

1-mixing processes have been generally restricted to strong s-dd and weak p-f
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interactions. Therefore most aspects of the theory developed for atomic Rydberg states

were also applicable to molecules.

Rydberg states in the alkaline-earth monohalides, studied for the past 6 years in

Professor Field's lab at MIT, introduce completely new challenges. The common feature

of all molecules in this group is the very high polarity of the molecular ion-core. For the

BaF molecule, which is the subject of this work, the molecular ion-core dipole and

quadrupole moments in the center-of-mass coordinate system are especially large. The

high polarity of the molecular ion-core induces strong -mixing among the 1<6 states. All

of these states must be treated together as s-p-d-f-g-h supercomplexes. Within such a

supercomplex, the s, p, and d states are very strongly core-penetrating and they have

core-precursors (core states with the same value as the Rydberg state), the f states are

strongly core-penetrating but do not have core-precursors, and the g and h states can be

considered as core-nonpenetrating. In the non-rotating molecule, because of the

cylindrical symmetry about the internuclear axis, the angular momentum projection on

the internuclear axis, , is a conserved quantum number, thus the s-p-d-f-g-h

supercomplex factors into smaller A-blocks. A non-rotating diatomic molecule can be

best described in the prolate spheroidal coordinate system. However, once the molecule

starts rotating, the spherical coordinate system with its z axis defined to be along the

rotation axis, which is perpendicular to the internuclear axis of a 1Z+ ion-core, is the

coordinate system of choice. The -uncoupling interaction term of the rotational

Hamiltonian mixes the different A-blocks. For molecules containing atoms from the first

few rows of the periodic table, as energy increases, the spin of the Rydberg electron

uncouples from the internuclear axis, a new (+/-) Kronig symmetry emerges, and the A-

mixed supercomplex Hamiltonian factors into (+/-) - symmetry blocks. This is the case

for CaF, the other molecule most extensively studied in Field's group. In the BaF

molecule, however, the spin-orbit interaction is very strong and spin effects cannot be

disregarded. The (+/-) Kronig symmetry factorization is incomplete. Analysis of the

complete s-p-d-f-g-h supercomplex is required.
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In this project, several thousand lines have been recorded and measured. More than

one hundred newly observed electronic Rydberg states have been characterized and

organized into Rydberg series. All 10 core-penetrating series have been completely

characterized as well as an extensive but incomplete data on g and h states and

fragmentary data on i states has been collected. Many small, local perturbations have

been analyzed. The global structure and dynamics (autoionization) of the Rydberg states

of the BaF molecule can be understood by analyzing all of the supercomplexes in order

from the lowest energy, where they are relatively simple, to higher energy (n*> 15), where

they are very complicated.
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2. Experiments.

In order to thoroughly characterize the electronic structure of the Rydberg states of

barium monofluoride, 3 types of experiments were performed:

1. fluorescence-detected optical-optical double resonance spectroscopy, with the

v=O C2r13/2 state as an intermediate

2. fluorescence-detected optical-optical double resonance spectroscopy, with the

v=O B 2 + state as an intermediate

3. mass-selected, ion-detected, optical-optical double resonance spectroscopy,

with the v=O C2rI3/2 state as an intermediate.

The first and the second sets of experiments were done in Professor R. W. Field's

laboratory at MIT and the third one in Professor D. Y. Chen's laboratory at Tsinghua

University, Beijing, P. R. China in collaboration with Dr. Ma Hui in the Fall of 1993.

The double resonance experiments at both MIT and Tsinghua University were

preceded by single-laser studies of the C2 I-X2Z + and B2z+-X2Z+ transitions in order to

characterize the v=0 C 2i 3/2 and v=0 B2Y+ intermediate states.

2.1 Fluorescence - Detected Optical - Optical Double Resonance Spectroscopy.

A schematic for fluorescence-detected optical-optical double resonance applied to the

BaF molecule is presented in Figure 1. For clarity, only selected electronic states above

30000 cm-' are shown. The pump laser (Spectra Physics, PDL-1) selectively populates

individual rotational levels of the v=0 C2ri3,2 or v=0 B2Z+ vibronic states. As the probe

laser (Lambda Physik, FL3002E) is scanned, an OODR spectrum is recorded by detecting

direct or cascade fluorescence from Rydberg states down to the X2Z+ ground state. Both

dye lasers are pumped by the second or third harmonic of the same Nd:YAG laser

(Quanta Ray, DCR-2A, 10 Hz) and operated most of the time with intracavity etalons

(pump laser bandwidth <0.05 cm', probe laser bandwidth <0.03 cm-'). The energy of

laser pulses is kept low enough to avoid power broadening the spectra. For the highest

observed Rydberg states the probe laser energy does not exceed 500 g J/pulse and is much
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Figure 1: Fluorescence-Detected Optical Optical Double Resonance of BaF. Only
selected states are drawn above 30000 cm-l. Two schemes of excitation, via B2 + and
C2T3/2 as the intermediate states, are shown.
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lower for low and intermediate Rydberg states. Both pump and probe laser beams are

expanded and their effective diameter in the reaction region is limited to 1 inch by the

size of the input window. The experimental setup for the fluorescence detected OODR

experiments is presented in Figure 2.

I

4:

... 6 - : .W ..._<~~~~~~~~~~~~~~~~~~~~ ·
-\ __ 5- ?

/

T
12

/

Figure 2: Fluorescence-Detected OODR - Experimental Setup

Both pump electronic transitions used in OODR experiments (C2 I-X2 + and

B2 +-X2 +) are extremely congested due to the similarity of rotational and vibrational

constants in the upper and lower electronic states as well as a very rich isotope structure

(5 isotopic species of Ba observable). For this reason, only levels with rotational quantum

number J > 6.5 forf symmetry and J 14.5 for e symmetry can be selectively populated

in the v=O C2113,2 intermediate state. The v=0 C2lI3/2 state is used as an intermediate in

OODR experiments on Rydberg states in the region of 4.4 < n* < 14.3. Lower Rydberg

states in the region of 3.88 < n* < 4.14 (31460-32340 cm l) are studied via the v=0 B2 +

intermediate state. Since the Rydberg states in this low energy region are rather widely

separated and their structure is well understood (Hund's cases (a) and (b)), it is

24
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convenient to pump R 1lee and R22ff bandheads of the (0,0) B2z+-X2' + transition with the

pump laser operated in broadband mode (bandwidth 0.3 cm'), thus simultaneously

populating multiple rotational levels of a selected vibronic state. In this way, most of the

levels, both e- and f-symmetry, with rotational quantum numbers in the range of

2.5 < J < 60.5 in the v=0 B2Y+ state are accessed.

Barium monofluoride molecules are produced in a high temperature oven by resistive

heating of BaF2 powder with a small amount of boron powder in a graphite crucible

(R. D. Mathis) sitting in a tungsten basket (R. D. Mathis). A single load of BaF 2 (-30 g)

is sufficient for about 6-8 hours of operation. The oven is slowly (-30-40 minutes) heated

up and, during normal operation, the power of the heater current do not exceed 255 W

(4.4 V and 58 A, 60 Hz AC). The maximum power is applied when the high-n* (n*413-

14) states are studied. The transition probabilities for the probe transition and the UV

fluorescence are relatively low in that case and a high number density of the BaF

molecules is required. The oven is bright yellow in that case. On the other hand, in

experiments on the low Rydbergs states (n*z4) the power of the heater current is kept

low (the oven is brown red) because the transition probabilities for the probe and UV

fluorescence transitions are large and we get good signal-to-noise ratio even with a low

number density of the BaF molecules. Flowing argon, at a pressure of about 200 mTorr,

carries BaF molecules to the excitation region and cools them rotationally and

vibrationally down to approximately 500 K. The translational temperature, as estimated

from the linewidths of the pump transition, FWHM=0.05 cm-', (see Figure 5) using

AX Av _ /8kln2T T(K)A = AV T 7.162.- 7 T(K) (2.1)
X v c2 m ¥ m(amu)

appears to be lower than 200 K. This is impossible for a high temperature oven system,

even assuming thermal equilibrium with the -300 K walls of the apparatus. However, this

translational temperature can be explained, as follows. The pump laser beam is

perpendicular to the axis of the gas (BaF + Ar) flow. The gas flows in a cone defined by

diameters of the opening in the oven cover and the pump system inlet (see Figure 3). The
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observed in the spectra Doppler broadening is determined by the velocity component,

Figure 3: Organized gas flow in the high temperature oven.

v 1=222 m/s at FWHM=0.05 cm-', parallel to the laser beam or perpendicular to the axis

of the organized gas flow. The velocity is related to the translational temperature by

v = 2kT (2.2)

where k is Boltzmann constant, T is temperature, and m mass. Assuming that the gas

flow is nonturbulent and using simple trigonometry we calculate the average velocity of

the gas, v=700 m/s and the translational temperature Ttra,,=500 K, which is consistent

with our estimate for the rotational and vibrational temperature. Fluorescence from the

intermediate state is detected by a photomultiplier tube (Hamamatsu, R928) equipped

with a narrow band (5 nm) interference filter centered at 500 nm. UV fluorescence from

Rydberg states is detected by a solar blind photomultiplier tube (Hamamatsu, R166)

through a solar blind broadband interference filter (Oriel, centered at 290 nm, 65% peak
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transmission). In those scans when the C2fH-X 2 + detection scheme is employed, a

narrow band (5 nm) interference filter centered at 500 nm is used instead of the solar

blind broadband interference filter. The signal from the PMT is gated and integrated by a

boxcar (Stanford Research Systems, SR250) and recorded by a PC AT computer. The

format of the data files is described in detail by Ernest Friedman-Hill in his PhD thesis .

For UV detection, the opening of the gate coincided with the probe laser pulse (no delay)

and a typical gate width was 100 ns. For A>1 high Rydberg states, however, the gate

width was set significantly wider, up to 500 ns.* Simultaneously with the Rydberg

spectrum, an 12 fluorescence excitation spectrum is recorded, for absolute frequency

calibration (0.01-0.02 cm-'). The signal and reference channels are usually averaged over

5-10 laser shots per point. Low resolution scans are carried out with a step size of

AX=0.002 nm. In high resolution scans, various step sizes in the range of

Av=0.008-0.012 cm '1 were used.

2.2 Ionization-Detected Optical - Optical Double Resonance Spectroscopy.

In the ionization-detected experiment the pump laser (Lambda Physik, FL3002EC)

selectively populates individual rotational levels, 6.5f J 11.5f, of the v=0 C2 i3/2

vibronic state. The probe laser (Lambda Physik, FL3002E) excites Rydberg states in the

vicinity ((IPO-60) cm-' to (IPO+420) cm-')) of the v=0 ionization limit (IPo=38745 cm-').

Transition moments from a low-i Rydberg state (n*l) down to the ground state and
other low-energy states scale approximately as (n*)3 /2 , thus, neglecting the dependence of
Einstein spontaneous emission coefficients on transition frequency, the radiative lifetime
of Rydberg states scales, to the a approximation, as n*3. The radiative lifetime of the C2I
state is -25 ns (n*=2.42). The n*-scaling rule predicts, for Rydberg states at n*=13, a
radiative lifetime of about 4 jis. States with A>1 cannot fluoresce directly to the X2Y+
ground state. They must first cascade to lower lying 2H and 2+ Rydberg states, and these
in turn can decay by spontaneous fluorescence to the ground state. States with A>1 can
also acquire some transition moment to the X2Z+ state from nearby 2+ and 2H states via
I-mixing processes. For the highest detected v=0 Rydberg states at n*,14, UV photons
were observed on the oscilloscope at delays up to -5 ~ps or longer after the double
resonance excitation pulses.
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Both dye lasers are pumped by the same XeCl laser (Lambda Physik, EMG202MSC,

20 Hz) and are operated with intracavity etalons (bandwidths <0.05 cm'l).

A BaF molecular beam is produced in a resistively heated high temperature oven. The

oven, which I designed and built with Dr. Ma Hui, consists (see Figure 4) of a 3 inch

long, 10 mm outside diameter graphite crucible surrounded by tantalum (100 Cpm) and

ceramic (1 mm) tubes. The top of the crucible is closed by a graphite cap with a 0.8 mm

hole in the middle. The walls of the graphite crucible are 1 mm thick, except for the top

15 mm, where they are reduced to 0.5 mm thickness. The smaller thickness, thus higher

resistance, of the top part of the crucible allows for a higher temperature in this region

and prevents the 0.08 mm hole from clogging. The crucible is loaded with barium powder

(1.5 g, bottom layer) and barium difluoride (8 g, top layer). The bottom part of the

crucible is not shielded (by the tantalum and ceramic tubes) to keep it cooler, since the

melting point of barium (998 K) is significantly lower than the melting point of barium

difluoride (1553 K). The crucible is isolated from the body of the chamber by boron

nitride spacers. Boron nitride spacers also separate the tantalum screen from the crucible.

The oven is slowly (-40-60 minutes) heated up and operated at a steady temperature of

about 1400 K. The temperature is calculated from the Doppler shift of Ba lines. If the

oven is not overheated accidentally, a single load can last for several days of operation.

The effusive beam of BaF is excited by counter-propagating pump and probe laser beams.

Initially, we tried a setup with the molecular beam perpendicular to the laser beam.

However, this scheme failed because of the development in the dye laser beams of

longitudinal cavity modes and mode commutations. The problems are attributed to the

relatively long (-28 ns) pump pulse duration of the XeCl laser. The optical length of the

oscillator cavity in the Lambda Physik FL3002 laser is 130 cm. Thus, the 28 ns pulse

length allows for -16 round trips of the laser light in the oscillator cavity, which is

sufficient to develop well defined longitudinal cavity modes. These longitudinal modes

are separated by 0.017 cm ' (Av=0.5c/l, where c is the speed of light), thus three of them

can oscillate within the laser beam bandwidth of -0.05 cm-'. Lasing can randomly

develop in any of these modes. Since the natural linewidth (Doppler free, in
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perpendicular beams configuration) of the C2_-X2+ transition is only -0.0012 cm l , the

excitation probability for this transition by one of the commuting longitudinal modes is

extremely small.. The colinear molecular and laser beams setup eliminated this problem

by taking advantage of some Doppler broadening in the molecular beam. The total

pressure in the chamber is about 2*10-6 - 4*10-6 Torr.

Rydberg states above the v=0 ionization limit autoionize and the resulting BaF+ ions

are extracted at about 6 inches above the crucible by an electric field pulse of 250-

400 V/cm, switched on 200-250 ns after the probe laser pulse, and kept on for several jis,

mass selected (138BaF+) by a time-of-flight mass spectrometer and detected by a set of

microchannel plates (Institute of High Energy Physics, Beijing). Below the v=0

ionization limit, BaF+ ions are produced by field-ionization of the Rydberg states. The

time-of-flight for an ion of mass m is given by

t= 1,I1 , (2.3)
,/2ZdE

where 1 is the distance between the ionization region and the detector (in cm), Z is charge

of the ion, d is the distance between electrodes (in cm), and E is the electric field applied

between electrodes (V/cm). For 138BaF+ the time-of-flight was 12 p.s. The mass

resolution, related to the time-of-flight by,

Am = 2m At (2.4)
t

was limited in our experiment to Am=l amu by the minimum gate of the integrator of

At=38 ns. The mass resolution was sufficient to resolve BaF isotopomers. The signal

from the microchannel plates is amplified by a fast amplifier (ORTEC 555), integrated by

a gated integrator (homemade, LSAD Laboratory, Tsinghua University), digitized by a

charge-digital converter (QDC, Institute of High Energy Physics, Beijing), and recorded

by a PC computer. Simultaneously with the BaF+ ion signal, the 12 probe laser

fluorescence excitation signal is recorded. The ion and reference signals are averaged

over 10-20 laser shots per point. Scans are carried out with a step size of Avt0.01 cm'.
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BaF molecular beam source
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Figure 4: High temperature molecular beam source used in ionization-detected,
mass-selected optical-optical double resonance experiments on the BaF molecule.
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2.3 Intermediate states: B2+ and C2f.

Prior to this project, the electronic structure of the BaF molecule was studied by

several groups. Results of new studies of electronic states below 30000 cm 'l, as well as a

summary of earlier data on the BaF molecule, were recently published by Effantin and

others 2. They recorded an extensive set of Fourier-transform emission spectra and

rotationally analyzed 24 bands in 10 systems with rotational quantum number extending

up to J=130.5. The resolution of their experimental system was about 0.027 cm' l. The

2 electronic states which we considered as possible intermediates in our OODR studies,

B2E+ and C2I, were analyzed in detail by them and their effective molecular constants

were published. Those constants were used to simulate the spectra of the B2Z+-X2Z+ and

C2H-X2Z+ transitions. The computed spectra were used to rotationally and vibrationally

assign our single-laser experimental spectra. Due to the rather low ionization potential of

the BaF molecule and the specific characteristics of the available apparatus, only the B2E+

and C2I states could be chosen as intermediate states for our OODR experiments.

20186.0 20186.5 20187.0 20187.5

transition frequency (cm-1)

Figure 5: Fragment of the R2f branch () of the (0,0) C2zI3/2-X2y+ band. Lines with
J"<5.5 are obstructed by the (1,1) C2nI32-X2 Y+ transition bandhead. Unmarked lines
belong to the (1,1) and (2,2) C2rI3,-X2 + bands.

The C2II state is conveniently located approximately halfway between the ground state

and the ionization limit. It was therefore used as an intermediate for roughly 95% of our

OODR scans. By pumping in the (0,0) C2yH-X2 + band, we were able to access J=6.5 (via
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the R2f(5.5) line) as the lowest rotational level off-symmetry (see Figure 5) and J=14.5

(via the SR21e/(1 3.5) line) as the lowest rotational level of e-symmetry. Lower-J lines were

obstructed by very congested bandheads. This initially posed some problems. In order to

conclusively assign our double resonance spectra, it became necessary to obtain spectra

for several consecutive J-values, in some cases up to at least J=20.5 for both e and f

symmetries. Later, however, this apparent over-completeness of our data set proved

valuable when it became possible to pick out multiple, low-J, core-penetrating- core-

nonpenetrating perturbations.

Ernest Friedman-Hill, PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1992.

2 C. Effantin, A. Bernard, J. D'Incan, G. Wannous, J. Verges, and R. F. Barrow, Mol.

Phys. 70(5), 735-745 (1990).
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3. Spectra and their assignments.

More than 3000 spectral lines are recorded in the 3 series of experiments. Virtually all

of the spectra are calibrated against a simultaneously recorded 12 fluorescence excitation

spectrum.' The precision of the calibration (better than 0.01 cm') was limited primarily

by the resolution element (scanning step size). The few remaining broadband scans are

calibrated using the optogalvanic effect in a uranium hollow-cathode lamp. 2 Spectral

measurements and calibration were done using the IBMPLOT program written by Ernest

Friedman-Hill and described in detail in his PhD thesis3. Rotational assignments of

sometimes very complicated spectra are greatly simplified by a good understanding of the

pump transitions and the nature of the OODR technique itself. Vibrational assignment of

the fluorescence-detected data is greatly simplified by the Ba isotope effect. Finally,

systematic observation of a repeated pattern of electronic states over a range of several

units of the principal quantum number followed by an examination of the effective

molecular constants of these states allows for an unambiguous grouping of Rydberg

states into Rydberg series.

3.1 Term value matching.

By exciting a selected, well understood, rotation-vibration transition with the pump

laser, the quantum numbers and symmetry of each intermediate level are well known

a priori. The symmetry/rotational assignment of each Rydberg level can be summarized

as follows. A one-photon probe transition allows only for a AJ=0,+1 change of the

rotational quantum number. The e/f symmetry of the upper level reached via a P line

(AJ=-1) or an R line (AJ=+1) is the same as that of the intermediate level; the e/f

symmetry of an upper level reached via a Q line (AJ=0) is opposite (see Figure 6). Term

values for the unknown Rydberg levels are calculated for each scan (probe transition

energy + term value of the intermediate state) (see with the total linewidth of 0.06(1)

cm-l and the laser bandwidth of 0.05(1) cm-1, the autoionization broadening is

0.03(3) cm-1. This observation is in agreement with the value of the quantum defect

derivative, <0.08 A-i, obtained from intrachannel perturbation.
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i S. Gerstenkorn and P. Luc, Atlas du spectre d'absorption de la molecule d'iode, CNRS,
Paris, 1978.

2 B. A. Palmer, R. A. Keller, and R. Engleman, Jr., An Atlas of Uranium Emission
Intensities in a Hollow Cathode Discharge., LA-825 1-MS, Informal Report, Los
Alamos Scientific Laboratory, 1980.

3 Ernest Friedman-Hill, PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1992.
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e - Appendix A for the listing of term values
f 2,1 _ 2+_

X/ ' of the intermediate v=O B + and

l/ !, lv=O C2 113/2 state rotational levels). Different

i lfa/ God scans are compared and Rydberg levels with

/ i.~ identical term values are identified. For

~,Qef , Qwexample, the P(J+I) and R(J-1) lines out of

e_ 1 two intermediate levels of the same e/f

symmetry terminate in a common Rydberg
e 
d ___ ____*____ J rotational level. Also P(J+1) and Q(J) lines

e ------ _+ out of opposite e/f symmetry intermediate
f J- levels terminate in a common Rydberg

Figure 6: Level diagram illustrating rovibronic level. This is a combination-
how different probe transitions lead to
a common Rydberg level. difference based method of a type that has

been known in spectroscopy for many

years.' Its combination with OODR is especially powerful. For data obtained via the B2Z+

intermediate state, when bandheads are pumped, such simple and unambiguous rotational

labeling is not present. In that case, second combination differences, A2F(J)=F(J+1)-F(J-

1) are calculated for the intermediate state, branches are picked out and the J numbering

of observed probe transitions is varied until the experimental A2F(J)=P(J+l)-R(J-1)

values approximately coincide with the theoretical ones. In order to speed up such an

assignment procedure and verify its consistency, rotationally selective pumping is also

occasionally applied; J=4.5 and J=55.5 are simultaneously pumped via a (blended)

R22(3.5)+R 22(54.5) line. Most of the reported Rydberg term values are calculated via

multiple experimental paths. Such redundancy provided an extra protection against

calibration or scan errors and incorrect assignments.

3.2 Isotope effect.

Natural barium has 7 appreciably abundant isotopes. Five of these are observed in our

fluorescence detected spectra: 138BaF (71.7%), 137BaF (11.3%), 136BaF (7.8%),
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13
8BaF 13 5 BaF (6.6%), 13 4BaF (2.4%) (see Figure

a G2Z+ - B2 (1, ), J'=32.5f
7). The pump transitions (Av=O) are

isotopically unselective and the probe

transitions terminating on v>O Rydberg

F states exhibit diagnostically useful isotope

17470.00 17470.50 17471.00 17471.50 splittings. Both rotational and vibrational
transition frequency cm 'r

Figure 7: Isotope structure of the R(31.5) constants depend on the molecular

(1,0) GE + - B25+ line.(1,0) G ,+ - B ,+~ line. reduced mass, but, except for Av=O bands,

the vibrational isotope effect dominates in the range of rotational quantum numbers

observed in our experiments. Thus, for assignment purposes, the rotational isotope effect

can be neglected. Assuming typical values of vibrational constants for the Rydberg (')

and intermediate C213/2 states("), c'e= 5 3 4 cm ' and o"e=4 61 cm respectively, and

neglecting the rotational contribution, we calculate the isotope shift between the 138BaF

and 37BaF lines as 0.02 cm l for a (0,0) band, 0.25 cm l for (1,0), and 0.49 cm l for (2,0)

etc. Comparing the calculated intervals against observed spectra makes absolute

vibrational assignments in most cases straightforward. One should, however, be aware of

large changes of isotope shifts in the spectra of high-n* states. Some of the isotope shifts

we observe are even twice as large as those calculated above.

Such an isotope shift technique is not used for the ionization-detected spectra since

only the main 138BaF isotopomer spectrum is recorded. Vibrational assignment in that

case is accomplished by comparing the structure of an ion-detected spectrum with the

v=0 manifold of fluorescence-detected spectra. The appearence (quantum defects,

spectral patterns) of same-n* different-v (vibrational quantum number) supercomplexes

are similar as long as the vibrational quantum numbers of the 2 manifolds do not differ

significantly. In our case, n* 13 supercomplexes in v=0 (fluorescence detection) and v=l

(ionization detection) were compared and this enabled us to assign the v=l spectra with

confidence.
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3.3 Patterns in spectra.

Reappearance of characteristic patterns in Rydberg spectra is often crucial for the

correct assignment of a spectrum. A A-assignment in the energy region where states

belong to case (a) or case (b) can be made based on simple counting of lines. In our

experiments with the C2 3,/2 intermediate state (which is properly described by the case

(a') coupling scheme) we expected to see 2Z, 2n, and 2A Rydberg states. In fact, we

observed four 2Z+ series, three 2n, two 2A, and (unexpectedly, from n* - 9 and higher)

one 2(D series. 2Z + states appear in the spectrum as a pattern of 3 lines (see Figure 8) with

two of them very close to each other and even sometimes overlapping each other, and one

standing well apart. The case (a) or intermediate case (a) - case (b) 2rI states show two

strong lines (P and R) for each spin-orbit component (Figure 8) and, but only for low J, a

third very weak Q line approximately in the middle between P and R lines. For case (b)

21H states we see a 4-line pattern, 0-, P-, Q-, and R-form lines (with a 2ri 3/2 intermediate

state). At low n*, the P- and R-form lines are usually stronger than 0- and Q-form lines.

For case (a), or intermediate case (a) - case (b) 2A states we see a 6 line pattern (Figure 8),

3 lines for each spin-orbit component. The middle line (Q) in both triads is significantly

stronger than the 2 others. For case (b) 2A states a 4 line pattern is observed. It differs,

however, from the 2H case (b) pattern since the 2 middle lines are very strong and the 0-

form line is weak, or even very weak. 2(I) states appear in our spectra as case (b) states.

They borrow intensity from 2A states so their appearance is very similar to the 2A states.

They can, however, be distinguished from 2A states by very small spin-orbit and

A-doubling splittings. The absolutely conclusive method of the first lines in rotational

branches cannot be applied here because the lowest intermediate J is 6.5, thus both 2(I)

and 2A states appear as complete 4-line patterns.

If we go up in energy, the -uncoupling interaction mixes different A states. Relative

intensities change and eventually some of the branches completely disappear. The simple

patterns described above slowly become more and more complicated. But even in this

high-n* region, certain regularities in the spectrum exist. For a A1=+1 (f-complex-d2 rt)

transition, for example, our computer simulation shows that P branches of the high
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energy components and R branches of the low energy components of a f-complex are

strong. In BaF, I is not a good quantum number. However, since the intermediate state,

C2H3,2 is of mixed p and d characters and the states observed at high-n* have significant

f or d characters (especially 2cI and 2A states), the above propensity rule is valid to a large

extent. Thus, in the n*&16 supercomplex, the Q-form and R-form branches of the

15.862D and 16.942A states are very intense while the O-form and P-form branches are

weak or even unobserved. At the same time, the O-form and P-form branches of the

16.042H and 16.242Z+ states are strong and R-form and Q-form branches are weak. This

propensity rule played a very important role in understanding our high-n* spectra.

If we look at the spectrum systematically from the very low energy region up, we

notice that not only do single state patterns appear (although gradually modified) again

and again, but also that repeated larger scale structures emerge. By following these

"supercomplex" structures and by understanding their evolution as the energy increases,

we were able to assign even very complicated spectra in the region where single state

patterns have vanished. Supercomplex patterns can also be compared for different

(preferably Av=1) vibrational quantum number manifolds and apparent structure (patterns

of quantum defects) similarities allow one to simply transfer assignments from one

manifold to the other.
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2H, 2A, and 2E+ patterns, Jint=8.5f

4

4 - v=3 6.45 2H3n

* - v=2 7.232 A3 2

v - v=2 7.232Asa

4 - v=2 7.242+

P2

V 1PQ p

R

I 4

37722 - 37727

37722 37727 37732 37737 37742 37747

Rydberg state energy (in cm-')

Figure 8: Typical spectral patterns for 2Z+, and case(a) 2 and 2A states. The 2E+

state shown here has unusually large splitting between PQ and P lines. Most
unmarked lines belong to other isotopomers. The spectrum was recorded via the
J=8.5fv=0 C2H 3/2 intermediate level.

3.4 Rydberg series.

Rotationally and vibrationally assigned spectra are fitted to an effective Hamiltonian.

Effective molecular constants for each electronic state are obtained. Electronic states,

both newly observed and previously known, are organized into Rydberg series. Series

membership is determined based on the similarity (approximate n*-independence) of

quantum defects, =(n-n*) mod 1. Rydberg state electronic energies are described by a

modified Rydberg formula

E= IP- 9
(n*)2

(3.1)

where IP is the ionization potential, IPBaF=3 87 4 5 (1) cm', 91 is the mass-corrected

Rydberg constant, BaF=109 736 .93 cm', and n* is the effective (noninteger) principal

quantum number. The initially unknown IP is varied until the observed electronic states

can be grouped into series (satisfying Eq. 3.1) with quantum defects approximately equal

within each series. 2 As one can see in Figure 16, for n*>4.5, the quantum defects are
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approximately constant within each of the 10 observed core-penetrating series. Also, the

fine structure constant (spin-orbit, spin-rotation, A-doubling) scaling relationships (see

Berg et al.3) are very useful in the process of arranging Rydberg states into series. Two of

the relationships, spin-orbit and spin-rotation n*-scaling, proved especially useful in this

project. The spin-orbit constant is predicted to scale as n* '3 , so A*n*3 should be

approximately constant for a given Rydberg series. Also, the spin-rotation constant (y) is

expected to be constant within a particular 2+ Rydberg series.

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic
Molecules. Malabar, Florida: Krieger, 1989.

2 Z. J. Jakubek, N. A. Harris, R. W. Field, J. A. Gardner, E. Murad, Journal of Chemical
Physics, 100 (1), 622-627 (1994).

3 J. M. Berg, J. E. Murphy, N. A. Harris, and R. W. Field, Phys. Rev A 48, 3012 (1993).
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4. Single state and isolated supercomplex Hamiltonians.

4.1 Hamiltonian for a one-electron molecule.

The Hamiltonian for a one-electron molecule can be written as

H = Ho + Hr + Hfs + He. (4.1)

H0 is an electronic (diagonal in all quantum numbers) and vibrational Hamiltonian. Hr is

a rotational Hamiltonian. It can be written as (in the molecular-ion-core-center-of-mass

coordinate system)

Hr= B(r) R 2 , (4.2)

where R is the operator corresponding to molecular ion-core rotation,

R = J - s - , (4.3)

and J is the total angular momentum of the molecule, s is the spin of the Rydberg

electron (also the total spin of the molecule), and is the orbital angular momentum of the

Rydberg electron (and the total orbital angular momentum of the molecule). B(r) is a

function of the internuclear distance, r, and depends also on the reduced mass, j, of the

molecule. In spectroscopic units (cm-')

h 1B(r):
8007c 2 c r 2

(=16.857630/(gir 2) amu A2 cml). Substituting R = Rx + Ry (since Rz = 0) into Eq. 4.2 we

have

H r = B(r) [(Jx - S - Ix)2 + (Jy - Sy - ly)2]

= B(r) [Jx2 + Sx2 + 1x2 - 2Jsx 2Jx + 2sxlx + y2 + 2 _ 2Jysy- 2Jyly + 2syly]

= B(r) [(j2_ z2) (s2 _ S 2) + (12 _ z2) (J+l + Jl +) - (J+s + Js ) I (s+i + Sl+)],

(4.4)
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where

J = Jx + iJy,

1 = x± ily,

sL = sx - isy. (4.5)

The HfS term in Eq. 4.1 is the fine-structure Hamiltonian,

Hfs = Hso + Hsr,

where HSo is the spin-orbit Hamiltonian, given below by a phenomenological expression,

Hso = A(r) IPs = A(r) [lzsz + ½2(1+s + Is+)], (4.6)

and Hsr is the spin-rotation Hamiltonian,

Hsr = y(r) Res = y(r) (J - s - I)os

= y(r) [Jzsz - lzsz - s2 + /2(J+s + Js + ) - '/2(1+s + I-s+)]. (4.7)

The last term in Eq. 4.1, Hel, describes the long-range electrostatic plus core-

penetration interaction between the ion-core and the Rydberg electron. Electronic

Hamiltonian, Hel, which can be written in a general form as

He- = + IL KkO (r e,)Yk0(, (P) (4.8)
k=O 2k

where Yk(O,(p) is a spherical harmonic and KkO(re) is a radial electrostatic/penetration

operator, will be extensively discussed in Section 4.6.1.

Substituting (4.4), (4.6), and (4.7) into (4.1) one obtains

H = Ho + B(r) [(J2 _ Jz2) + (S2 - S 2 ) +(12 _ 12)] + A(r) 1sz + y(r) [Jzsz - Is - s ] (4.9a)

- B(r) (J+' + J1+) (4.9b)

- [B(r) - '/2y(r)] (J+s- + Js+ ) (4.9c)

+ [B(r) + V2A(r) - /2y(r)] (I+s' + Is +) (4.9d)

+ Hel. (4.9e)
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4.2 Non-symmetrized Hund's case (a) basis.

As a basis set to evaluate the Hamiltonian we choose Hund's case (a) (non-

symmetrized) basis functions,

In*J QMs a l;re;v>=in*l > s >lJQM>lv>. (4.10)

The separation of the Hund's case (a) basis functions into electronic orbital, electronic

spin, rotational, and vibrational parts, as in Eq. 4.10, can be done only for molecules with

one or two valence electrons. The diagonal matrix elements of the Hamiltonian (4.9a), in

the given basis, are

E0 =< n*JQ Ms a 1 vl HI n* J Ms a 1 v>

= <B(r)> [J(Jl+ )-Q2+s(s+ 1)- 2+1(1+ 1)-2] + <A(r)> ha + <y(r)>(Qa-ka-s(s+ 1))

(4.11)

where*

<B(r)> = < n* JQ Ms a v I B(r) n* JQ Ms a l x v > = Bn*.x;v(r), (4.12a)

<A(r)>=<n*JQ Ms lXv A(r) I n*JQ Ms lv>=An*,x;v(r), (4.12b)

and

<y(r)>=<n*JQMsacl v y(r) I n*JQMsacl.v>=ynlx;v(r). (4.12c)

There are also four kinds of off-diagonal matrix elements: -uncoupling (4.9b),

s-uncoupling (plus off-diagonal spin-rotation) (4.9c), l-s-coupling (plus off-diagonal

spin-orbit) (4.9d), and electrostatic/penetration (4.9e). The -uncoupling term (4.9b)

connects states with AX=AQ-- l and Aa=O, the s-uncoupling term (4.9c) connects states

with AX=0 and A=+l, the I-s-coupling term (4.9d) connects states with Ak=+l and

AQ=0, and the electrostatic/penetration term connects terms with Ak=0, Aa=0, AQ=0,

and Al• 0. Explicitly evaluating the off-diagonal matrix elements, we get for the

1-uncoupling term:

For simplicity we use abbreviated notation for matrix elements. By definition <X> is
a matrix element of an operator X between two state vectors, which are described in the
text.
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<B(r) (J+l- + Jl+)> = Bn*n*"xx ;v(r) [J(J+l) - 'Q" ]'/ [1(1+1)- '" ]/; (4.13a)

for the s-uncoupling term:

< [B(r) - /2y(r)] (J+s- + J-s+) > = [Bn,,* ;v(r) -/2Yn,,x;v(r)] [ J(J+1)- lQ " ]'2; (4.13b)

for the I-s-coupling term:

< [B(r) + /2A(r) - /27] (+s + I-s+) > =

= [Bn'n" '" ;v(r) + /2Ann,, l'" ;v(r) - /2Yn'n*" 'n " ;v(r)] [ 1(1+1)- 'X" ]/, (4.13c)

and for the electrostatic/penetration term (due to cylindrical symmetry of a molecule

( I kYk0 = (n*' l KkO nk*o l)(-1) /(21' + )(21" + 1)( 0 k0 l i 0 

(4.13d)

4.3 Symmetrized Hund's case (a) basis.

Rovibronic levels are classified as + or - according to their parity. The parity describes

the behavior of the total wavefunction of the molecule under the operation of inversion, I,

of the laboratory-fixed Cartesian coordinates of all particles. A rovibronic level is called

+, or even, when its total wavefunction is invariant under the operation of space

inversion, and -, or odd, when the wavefunction changes sign.' In order to define

symmetrized wavefunctions we first consider the transformation properties of non-

symmetrized wavefunctions under the reflection operation, av. Choosing the phase

convention of Condon and Shortley 2 for a one-electron molecule,

cav I n* J Q Ms a 1 X; rel; v > = (-1) l+'l-+s+J- n* J - Ms -5 1 -; r; v >,

or, since o+X=Q, is integer, and Q and s are half-integer,

av I n* J Q Ms a l k; rXl; v > = (-1) J I n* J -Q Ms -l 1 -; rl; v >.
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Next we can define symmetrized basis functions as

In* IAO; JQM; re; v > In*Jsl; re; v> ± (-1S In*J-.s-al-k; rel; v>}. (4.14a)

The symmetrized basis functions defined in this way alternate between even and odd

with J. Using an alternative e/f labeling scheme3 , e/f symmetrized basis functions are

described independently of J as

In * 1 2s+lAn; J2M; rel; v ()> = i{I n JdQsalk; rel; v> + In* J-Qs-l-X; rel; v>}, (4.14b)

where A=kl and Q=lQl.Thus,

av I n* 2S+lAn; JQ M; rel; v () > = + I n* 1 2S+' A; J M; re; v (e) >.

In the basis set of e/f functions, the matrix of the Hamiltonian factors into two blocks, e

andf. For simplicity, the symmetrized basis functions will be written hereafter as

In*1 2S+lAn; J; re; v (ef) > = 2A () > (4.15)

and we will remember that they also depend on n *, 1, J, and v.

In the e/f symmetrized basis, the matrix elements are the same as those given by

Eqs. 4.11 and 4.1.3a-d (where now A>0 and Q>O), except for matrix elements involving

2E+ states, which now depend on the e/f label. They are:

<2+ (ef)IHI 2z+ (e)> = <B(r)> [ (J+/)2 + + ( +1) (+/)] - /2<(r)> [1 + (r+/2)], (4.16)

and

<2.+ (ef)lH /, (ef)> = <B(r)>(J+/2)[l(l+ 1)]'+<[B(r)+2A(r)-/2y(r)]> [I(l 1)]'. (4.17)

4.4 Isolated state matrix elements in Hund's case (a) basis.

When a single, isolated state is being fitted, all of its interactions with other nearby

and remote states are taken into account by a Van Vleck transformation 4. As a result, in
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addition to the parameters introduced in the previous section, rotationless energy (T),

rotational (B), spin-orbit (A), and spin-rotation (y) constants, additional effective

parameters are introduced, a centrifugal distortion contribution to each of the above

parameters (except for T), A-doubling constants (p, q), centrifugal distortion

contributions to A-doubling constants, etc.

Matrix elements for the Hamiltonian of an isolated state were calculated by several

authors 56 78 9
. The matrix elements used in our single state fits are presented below. The

upper/lower sign is for e/f levels and x-=J+/2.

<2 2+IH2+>

< 2 II 121H 12 1-l/ 2>

< 2 nI3/21H12
l 3 /2>

<2 n,, 2 1HI2 rI3/ 2>

<2 A3/ 2 jH12A3/2>

<2 A512 1HI2A5 /2 >

<2A3/2 1H 2 A5/2 >

<2,5/2JH125/2>

<2I7/21H 12lI,7/2>

<2(5/21H12)27/2>

= T + Byx(x T 1) - Dzx 2(x 1)2 _ /y( l T- x) - /2yD(l -T x)J(J+ 1),

= Tn - /An + Bnx2 - Dn(x4 + X2 + 1) - ADnX2 + /2p(l T x) + ½qr2(1 T X)2 ,

= Tn + /2Ar + BlX 2 - 2) - D(X 4 _ 3X2 + 3) - AD(x2 - 2) + 2qr(X2 - 1)2,

= - Bri(X2 - 1)1/2 + 2D(x 2 - 1)3/2 _ 1/4pX2 - 1)1/2 -_ /q1 T x)(x 2 - 1)/2,

= TA - A + BA(X2 - 2) - Dax 2( X2 - 3) - ADA(X2 - 2) + '/2A(x2 - 1)x + 2qA(x 2-1)x,

= T + A + B(X2 - 6) - D(x 4 - 1 lx2 + 3 2) - ADA(X2 - 6),

= - Ba( 2 4)1/2 + 2D(X _ 4)3/2 ± /2q(X2 - )x(x2 - 4) 1/2,

= T, - 3/2A + B(X 2 - 6) - D ,(X4 - 11 x2 + 27),

= T, + 3/2A, + B(x 2 - 12) - D -(x
4 - 23X2 + 135),

= - B,(x 2 _ 9)/2 + 2D,(x 2 - 9)3/2.

The matrix elements 4.18 - 4.27 differ from those developed in Sections 4.2 and 4.3 by

inclusion of the B[1(1+1) - X2] term into the TA constant. Such a change is dictated by the

fact that 1 is not a good quantum number in a molecule and, in a single state fit, must be

treated as an adjustable parameter.

4.5 Matrix elements in the Hund's case (b) basis.

With increasing n*, the spin of a Rydberg electron gradually uncouples from the

internuclear axis and core-penetrating states can be well described by the Hund's case (b)

coupling scheme. The total angular momentum without spin, N=J-s, is conserved in such

a case and N is a good quantum number. In the BaF molecule, unlike most others for
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which Rydberg states have been studied, the spin-orbit interaction is very strong and spin

effects do not disappear, even at n* as high as 10. For example, the spin-orbit constant for

the 9.232A state, as fitted from the spectra, is A=1.229(24) cm' l (see Table 14). In spite of

this, it is very advantageous to perform an initial supercomplex analysis in the case (b)

basis because, due to an extra symmetry, the size of matrices can be significantly reduced.

For example, the size of the isolated s-p-d-f-g-h supercomplex matrix in the case (a)

basis is 36 for both e- and f-symmetry levels. In the case (b) basis, however, the matrix

factors into 2 smaller ones, one of the size of 15 for "-" Kronig symmetry levels and the

other of size 21 for "+" symmetry levels. The "+/-" Kronig symmetry of states is related

to the behavior of the electronic wavefunction (without the spin part) under reflection in a

plane containing the internuclear axis. If the wavefunction does not change, a state is

classified as "+", and if the wavefunction changes sign a state is called "-". For

one-electron molecule, 2 states are always of "+" symmetry, and this Kronig symmetry

is denoted by a "+" superscript. Higher-A states can be of both "+" or "-" symmetry.

A practical method of verifying the Kronig symmetry of a particular level of a A>O state

is to compare its J, N, parity and (elJ) labels with levels of a 2Z+ state. If a A>O level

exists with the same (J, N, parity (elf)) set as for a 2+ state, the level of the A>0 state

belongs to the "+" symmetry component, A+, otherwise to the "-" symmetry component,

A-. Let us consider two levels of the C2rI3/2 states used in our experiments as

intermediates: J=6.5fand J=14.5e. The J=6.5flevel is characterized by the following set

of quantum numbers (J=6.5, N=7, parity -,f label). A level described by the same set of

quantum numbers also exists for the 2+ state, thus the J=6.5flevel of the C2 13,2 state has

"+" Kronig symmetry. The J=14.5e level is characterized by (J=14.5, N=15, parity +, e

label) and an analogous level does not exist for a 2Y+ state, thus it has "-" Kronig

symmetry. It is also very useful to remember the related rotational selection rules: P- and

R-form lines connect levels with the same Kronig symmetry, while 0- and Q-form lines

connect those of opposite symmetry.

Substituting N=J-s in Eq. 4.3, the rotational Hamiltonian can be written as

Hrot= B(r) (N - 1) = B(r) [(N2 -Nz 2 ) + (12 _ 12) - (N+I + N-1+)]. (4.28)
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The symmetrized case(b) basis functions are defined for A>O as

IAJNA±> = 2-(11lAJNA> ±+ -AJN-A>) (4.29)

and for A=O

IIOJNO>. (4.30)

The diagonal matrix elements of the rotational Hamiltonian can be calculated as

<IAJNAIHIIAJNA> = <B(r)> [ N(N+1) + 1(1+1) - 2A2 ] (4.31)

and the off-diagonal matrix elements as

2<IAJNAIHI A+ JNA+l>=< B(r) > -A2 N(N + 1) - A(A + 1) J( + 1)- A(A + 1).

(4.32)

When spin-orbit interaction cannot be neglected, as in the case of the BaF molecule,

the spin-orbit Hamiltonian has to be added to the total Hamiltonian of the molecule. The

spin-orbit interaction can mix the "+" and "-" Kronig symmetries, thus the isolated

s-p-d-f-g-h supercomplex matrix is again of the size of 36. However, since spin-orbit

splittings in the BaF molecule are smaller than electronic splittings (Hund's case (a)

rather than Hund's case (c) at low-n*) the matrix can be written as "almost" block-

diagonal in the Kronig symmetry. As N increases, the off-block-diagonal matrix elements

become less and less important and at some N, which, for a particular molecule, depends

on experimental precision, can be neglected. Like before, the spin-orbit Hamiltonian is

given by (see Eq. 4.6)

Hso = A(r) Ios = A(r) lzsz + /2A(r) (I+s- + s+), (4.33)

where the first term is diagonal in A and the second term produces matrix elements off-

diagonal in A. Now, when spin-orbit interaction is included in the total Hamiltonian, N is

not a rigorously good quantum number anymore. The both terms of the spin-orbit
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Hamiltonian (Eq. 4.33) can produce matrix elements both diagonal and off-diagonal in N

(but diagonal in J).

The first term, A(r)lsz, which is diagonal in A (A=X), can be rewritten as

A(r) Izsz = A(r) As = A(r) Alls + A(r) Al s, (4.34)

where A is the component of the angular momentum of the Rydberg electron (and total

angular momentum of the molecule) along the internuclear axis and All and Al are

components of A, parallel and perpendicular to the N vector, respectively. The first term

of Eq. 4.34 produces matrix elements diagonal in the N quantum number and the second

term off-diagonal. The matrix elements of the spin-orbit Hamiltonian in Hund's case (b)

have been discussed by Kovacs' ° and matrix elements for some special cases have been

given. The spin-orbit matrix elements diagonal in A can be calculated as

<AJNAIHlAJNA> = <A(r)> A2 J(J + 1) - N(N + 1) - S(S + 1)
2N(N + 1)

and

<lAJNAIHIAJN+l A> =

A(r))A [(N + 1)2 - A2 ][(J + N + 1)(J + N + 2)- S(S + 1)][S(S + 1)- (J- N)(J - N- 1)]

2(N + 1)/(2N + 1)(2N + 3)

(4.36)

The matrix elements off-diagonal in A are

<IAJNAIHIIA+1 .JNA+ 1> =

=Ar)) 2 l(+ 1) A(A N + 1) /(N A)(N + A + 1) N(N + 1) +S(S+ )J(J + 1)
(A(r) - 4N(N + 1)

(4.37)

and
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<IAJNAIHIIA+l JN+1 A+I> = 2 ( +I) - A(A+) x

x I[(J + N + 1)(J + N + 2) - S(S + 1)][S(S + 1)-(J - N)(J - N - 1)](N + A + 1)(N + A + 2)
16(N + 1)2 (2N + 1)(2N + 3)

(4.38)

It was previously mentioned that in the BaF molecule the spin-orbit splittings are

nonnegligible even at high-n* Rydberg states. Below, we will estimate the N value, at

which the spin-orbit effects can be neglected at given experimental precision (0.01 cm'l).

Let us first consider the spin-orbit matrix element diagonal in N and A (Eq. 4.35).

Substituting J=N+Y2 into Eq. 4.35 we get

1
<lAJNAIHIlAJNA> =(A(r))A 2 2(N 1) (4.39)

In the particular case of the 9.232A state, A=1.229 cm 'l and A=2, assuming experimental

precision equal 0.01 cm l we estimate that the spin-orbit matrix element given by

Eq. 4.39 can be neglected for N>245, thus well beyond our experimental range of N. We

can also consider the off-diagonal in N matrix element (Eq. 4.36) and estimate the N

value at which term value shifts due to this matrix elements are smaller than experimental

precision. Substituting J=N+1/2 into Eq. 4.36 we get

5 <AJAH~AN l(N+1) 2-4Hso=<lAJNA H1IAJN+l A>= 2(A(r))A N +1 (4.40)

The splitting between rotational terms with the same value of J quantum number and N

different by 1 can be calculated as

AE=T(N+1)-T(N)=2B(N+ 1). (4.41)

Using Eqs. 4.40 and 4.41 we can calculate the energy shifts due to the off-diagonal spin-

orbit matrix element as

-= (2 2 + HsO (4.42)
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Substituting Eqs. 4.40 and 4.41 into 4.42 we calculate that at N=160 the energy shifts due

to the off-diagonal spin-orbit matrix element can be neglected at experimental precision

0.01 cm'I.

The above analysis clearly shows that, in the BaF molecule, the spin-orbit effects are

nonnegligible even at n*;9-10. The effects at intermediate and high-n* are, however,

small enough that Hund case (b) basis function can be used to evaluate matrix elements

of the Hamiltonian.

4.6 Models for core-nonpenetrating states of diatomic molecules.

4.6.1 Long-range model in spherical coordinates.

In Section 4.1 we introduced the electrostatic/penetration Hamiltonian, Hel, describing

the interaction of a Rydberg electron with the molecular ion-core. Models utilizing this

kind of Hamiltonian, so called long-range models, have been successfully applied in the

analysis of core-nonpenetrating states first, by Jungen and Miescher' , forf-complexes of

the NO molecule and later by others 12 to various molecules. The model is based on the

assumption that the charge distribution of a molecular ion-core does not differ

appreciably from spherical, thus -mixing interactions due to core nonsphericity can be

treated in a perturbative way. The model treats a Rydberg electron-molecular core

interaction as an electrostatic interaction. Such an assumption is well justified for core-

nonpenetrating states, for which there is no spatial overlap between the orbitals of a

Rydberg electron and those of the core electrons. Further, we will attempt to modify the

Hel model so it could also be used with weakly-penetrating states.

We assume now, that a Rydberg electron interacts electrostatically with a molecular

core, for which the charge distribution is p(r), and we allow for core-penetration. The

electrostatic/penetration Hamiltonian, Hel, can, thus be defined as

He = p(r) I d3r (4.43)

Using the well known expansion
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1 4n t r
re 4r2 k+l rk' Ym (r)km(re,) (4.44)

Ire - k 2k 1 r> m--k

where r< and r, are the smaller and larger of r and rl, and making the assumption that

outside the molecular core* (r>rcore) the core charge distribution, p(r), is zero, Hel can be

rewritten as

Hei = 4C t 2k + .\r p(r) r-+He = 2k+1 kore p(r) YkO (i)d 3r . (4.45)
k=0 r>

In the above expression, the summation over m collapsed due to the cylindrical

symmetry of the molecule. Substituting r and rel for r< and r> and considering 2 possible

cases, the Eq. ( takes the form

He ' = 2k+ 1YkO(Rel) KkO(rel) (4.46)

where

/ min(rd ,rcor) roea

Kk(re) = 2k + p(r)rd3r k+ + J p(r) Y 0(r) d3r re. (4.47)fk ~~~~0 rel min(r ,rcore )

For core-nonpenetrating states min(rel, rcore)=rcore, thus the second term in the sum above

is zero. Recognizing the first integral as a familiar expression for a 2k-pole electrostatic

moment, electrostatic/penetration Hamiltonian, Hel, for core-nonpenetrating states is

Hnonpen. 41 (4.48)
el p = 2k + kO ( el

k+l (448)

where the multipole moments are defined as

* There is no strict definition of rcore. For the purpose of a multipole expansion in the
BaF+ center-of-mass coordinate system, rcore can be taken as the sum of the ionic radius of
Ba2+ and twice the ionic radius of F-, rcore = rBa++2*rF- " 4 A (in BaF, the center-of-mass is
located about 0.1 2 re from Ba2+ , so one can almost say that the F- ion rotates around the
Ba2+ ion).
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Qko = + p(r)r ) dr. (4.49)
0

The long-range models utilize spherical harmonics and hydrogenic radial

wavefunctions (or hydrogenic wavefunction modified for non-integer n*) to evaluate

corrections to the hydrogenic energies due to the multipole moments and polarizabilities

of the molecular core. Calculations are done in a spherical coordinate system with the

origin located at the center-of-mass of the molecule. An attempt to apply this kind of

model to highly polar diatomic molecules like BaF must fail. The strong asymmetry of

the charge distribution of the molecular ion-core leads, in the center-of-mass coordinate

system, to a slowly converging multipole expansion with very large dipole, quadrupole

and higher electric multipole moments. Assuming, for simplicity, a 2-point charge model

for the BaF+ ion-core (+2 charge on the Ba2+ closed shell ion and -1 charge on the F

closed shell ion), one can calculate BaF+ multipole moments in the center-of-mass

coordinate system (Table 1). The values are extremely large, significantly larger than for

any molecule for which this kind of model has been previously applied.

Table 1: The lowest multipole moments of BaF+ (2-point
charge model) in the center-of-mass coordinate system.

I 2'-moment [aul

1 dipole -4.41

2 quadrupole -11.48

3 octupole -41.45

4 hexadecapole -142.34

To see the scale of the problem one can compare the BaF+ quadrupole moment of

-11.48 au to the almost 20 times smaller quadrupole moment of the NO+ ion

(0.59(5) au)"l . But it is primarily the dipole moment of -4.41 au or 11.2 D which makes

the multipole model (with the multipole expansion in the center-of-mass coordinate

system) inapplicable for the BaF molecule. Inapplicability is related to the fact that off-

diagonal matrix elements of the long-range interaction calculated in the spherical basis
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are comparable or, in some cases, even larger than the spacing of the A-states. We

illustrate this by calculating diagonal and off-diagonal long-range interaction matrix

elements for the 2 states of the n*= 1 supercomplex with quantum number in the

range of 3-6, in a spherical coordinate system, using modified hydrogenic wavefunctions

and multipole moments from the 2-point charge model. The results are presented below.

f2 g2Q) h2(I i2(F

f 2() -14.8 5.08 0.06
g2(D 5.08 -8.58 1.35 0.02
h2(D 0.06 1.35 -2.8 0.04
i2(F 0.02 0.04 -2.4

Note: The term value of 37838.08 cm'l is subtracted from the
diagonal matrix elements.

In the calculation we used a quantum defect of 0.86 for the f, 0.02 for the g, and 0.0 for

the h and i states. For the /f-4g 2 (D and g2c-h 2 () interactions, the Al=1 matrix elements

are especially large. A similar calculation can be done for lower-A states, for which the

off-diagonal matrix elements are even more significant.

4.6.2 Core-penetration effects.

Continuing the evaluation of the electrostatic/penetration Hamiltonian, we will discuss

some of the core-penetration effects. Reorganizing the first integral in the expression for

KkO(rel), Eq. (), as follows

4n( I r 1 r1o
KkO(rel) = 2k (r)r ( kYr)) dr k+Il k+l

rel min(rd,r.o) (4.50)

rc 1

r+ J p(r) k, Yk(r)d r rermin(rel i,rcoe )

and combining the second and the third integrals
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4F r 1 r.. r (· rk kK ( ) Sk+ It f lJp(r)r kykO(i) dr r+ i p(r)( rk+ rek+ Yko(i) dKkrn(re core r k+ l dI

(4.51)

we can write KkO(re, ) as a sum of 2 terms

KkO(rel) = k+l Qko + WkO(rel), (4.52)
el

where

rk
WkO (re,) = k+ 2k p(r) rkl Yk+l () dr)r (4.53)

min(re,,ro) r elI

is the penetration operator (functional).

The penetration operator just derived, Eq. (4.53), describes, however, only one kind

of penetration effect: increase of the effective charge of the molecular core for rel<rcore. In

the general case of a penetration interaction of a Rydberg electron with a molecular core,

two additional effects must be taken into account: exchange interaction between Rydberg

and molecular core electrons and the possible nonorthogonality of the Rydberg and core

electron wavefunctions. These effects, together with the Coulomb interaction considered

above, are treated by pseudopotential theory' 3. The core pseudopotential, Uco°re, consists

of a local Coulomb potential (considered in Hel), and nonlocal parts, the exchange and the

orthogonalization terms. The exchange interaction and the additional Coulomb attraction

are of the same order of magnitude' 4 and both lower the energy, thus also n*. The

orthogonalization term, which ensures orthogonality between the Rydberg and core

electron orbitals, can be described by the Phillips-Kleinman term as

V/ z = (En't - Ei t )1lX; i)(lk; i. (4.54)

The Phillips-Kleinman term is always repulsive, since the energy of the Rydberg state,

En,/., is greater than the energy of the core electrons, Ei,x. We can also see, that this term
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is zero for Rydberg orbitals which have no core precursor* 15 (fand higher-i states in the

BaF molecule). The exchange and extra Coulomb attraction terms disappear only for

nonpenetrating states.

For the heteronuclear molecules with the large asymmetry of core charge distribution,

like in the alkaline earth monohalides, the effective (pseudo)potential in the case of core-

penetrating states is highly nonlocal. The electrostatic/penetration Hamiltonian, Hei,

described above does not contain a nonlocal part, thus, when applied to weakly

penetrating states it does not properly treat exchange corrections. We can modify it

assuming a more general, nonlocal form of the penetration operator, to get

H 2k+1 Kk. (4.55)
k=e penetration operator is defined now as the difference between the Rydberg

The core penetration operator is defined now as the difference between the Rydberg

electron - molecular core interaction operator (electrostatic/penetration operator) and the

long-range interaction operator between the Rydberg electron and the molecular core

treated as a structureless object with electric multipole moments equal to those of the real

core

Wk (re,) = Ko(re,) - YkO() rek+l QkO. (4.56)

Penetration effects and their relevance to the BaF molecule will be further discussed later.

4.6.3 Watson's model for dipolar diatomic molecules.

Watson' 6 , who recognized the importance of the effects of a large molecular core dipole

moment on Rydberg structure, considered a simple model of a hydrogen atom with a

Core precursors of the Rydberg orbitals are defined as occupied core orbitals with the
same value of 1. In the case of alkaline earth monohalides these are core orbitals of the
alkaline earth atomic ion. For most of the molecules core penetrating Rydberg orbitals
also have core precursors. In the BaF molecule, however, f states are core penetrating, but
f orbitals (for example /DI) have no core precursors. Similarly, core penetrating d states
in the CaF molecule have no core precursors.
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point dipole moment. He pointed out that, in long-range models, a dipole moment term is

often omitted because first-order energetic effects of a dipole moment are zero. However,

its first-order effects on wavefunctions can be very significant, and in this way affecting

energetic structure, intensities and other molecular properties. Even if Watson's model is

strictly correct in the limit of a small dipole moment it provides a lot of insight into

effects of a core dipole on the properties of Rydberg states.

Let us consider a zero-order wavefunction as

I n/)) = n/)l 1).

The correction to the zero-order wavefunction due to the core dipole moment, according

to Watson, is

nl), =Inl) C,, I l' ) ,

where

C -CQ0 (4.57)
+l/ =-, (+l + 1) (21+ )(21 + 3) 

Thus, the core dipole moment, Qlo0, mixes the angular part of the nlX wavefunction with

wavefunctions of 11 states leaving the radial part unchanged. Using the corrected

wavefunctions, the second-order correction to the Rydberg state energy (in cm' l) can be

calculated as

E(2) = Q2 01)- (4.58)
n. =l (n*)3 (21 + 3)(21 + 1)(21- 1)1(1 + 1)

Watson also noticed that the second-order energy corrections due to the core dipole

moment equal Q1o, are the same as the first-order corrections due to the core quadrupole

moment equal Q20=-(Qo) 2
. Now, it is straightforward to generalize the Eq. (4.58) for the

case when the molecular core also possesses a quadrupole moment, Q20. The generalized

energy correction is now
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E(2)= ( Q2 o)4 491 [l( l + 1)32] (4.59)
(n*) 3 (21 + 3)(21 + 1)(21 - 1)1(1+ 1)

The A-splitting is, thus, determined by (Q 0 - Q20) which for the BaF molecule (Q2 0 <0)

is extremely large (30.9 au). For high-n* states, by comparing the energy corrections,

Eq. (4.59), with the term linear in in an expansion of the Rydberg formula near

integer-n* (pnlx=O), we can obtain quantum defect corrections, pnlx, as

2 - Q20) 2 [( + 1 - 32l (4.60)
gn = -(Q0 - Q20 ) (21 + 3)(21 + 1)(21 - 1)1(1 + 1) (4.60)

Watson also discussed the dependence of the dipole and quadrupole moments on the

choice of the coordinate system. Since the total charge of the molecular ion-core is

nonzero (Z=1), the values of all multipole moments, except for the monopole, depend on

the choice of coordinate system. Let us consider two coordinate systems separated by Az,

with the dipole and quadrupole moments defined as (Q10,Q20 ) and (Q' 10, Q'20),

respectively. The following relations describe the effect of the change of origin of the

coordinate system

Q'lo = Q0 - Az (4.61)

and

Q'20 = Q20 - 2Q 10Az + (Az)2 . (4.62)

These origin dependences of Q10, and Q20 led Watson to the idea of an isotope effect

induced by the origin dependence of the core dipole moment. This conclusion is,

however, incorrect. We can guess that the reason for arriving at the wrong conclusion is

that he considered only dipole corrections to the energy. If both dipole and quadrupole

corrections are considered together, as in Eq 4.59, we can verify that even if dipole and

quadrupole moments depend separately on the choice of origin, the value of

(Q20 - Q2 0)is invariant with respect to the change of coordinate system. Assuming so,

we substitute Eqs. 4.61 and 4.62 into (Q2 - Q20) obtaining
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(Q; - Q0 )= (Q0 -Az)2 - 2Qz + (z)) = (Q0 -Q20),

which proves that there is no dipole (or quadrupole) related isotope effect. It also means

that the energy of a molecular state cannot depend on the choice of coordinate system.

4.6.4 Long-range model in prolate spheroidal coordinate system.

The long-range kind of model can be applied to polar molecules by using the prolate

spheroidal coordinate system, which is more natural for such systems. Such a coordinate

system has been applied in the past to a variety of one-electron, two-center problems.

Recently, Harris and Jungenl 7 used it in their multichannel quantum defect theory

calculations of the electronic structure of the CaF molecule. Hadinger and others' 18

reviewed various methods used to solve the Schr6dinger equation and proposed an

efficient computational technique to obtain simultaneously eigenvalues and

eigenfunctions of the one-electron two-center problem.

e

Figure 9: Simple model of BaF+ and definition of the spheroidal coordinate system.

The prolate spheroidal coordinates (, rl, (p) are defined (see Figure 9) in terms of

distances from two foci, A and B, and the separation of foci, R, as
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4 = (rA + rB)/R 1 < , < oo

l = (rA- rB)/R -1 < 1 < 1 (4.64)

(P 0<(p <27.

The BaF+ molecular ion-core can be well described as two closed shell atomic ions, Ba2 '

and F'. The 2 foci, A and B, of the spheroidal coordinate system are chosen at the Ba and

F nuclei, respectively. The charge distribution of the molecular ion-core is represented by

pA(r'A) and pB(r'B). The electrostatic interactions in the 3 particle system are given as

_____ _ , p(r ) d ,r f+' p(rA)p(r) r'dr'
rA-r d r + I d r + | d3rAd B (4.65)

The third term, in a fiozen core approximation, for core-nonpenetrating states, can be

assumed to be independent of electronic state, thus can be included in the total energy.

The Rydberg electron in the core-nonpenetrating state can change charge distribution in

the core by inducing core polarization. The molecular ion-core is composed of two closed

shell atomic ions, so the Rydberg electron induced core polarization is expected to be

negligible in a zero order approximation. The energetic effects due to the third term can,

thus, be treated in a perturbative way later. Now, we can concentrate on V0 defined as the

sum of the first and second terms. Using a multipole expansion for the charge

distributions pA(rA) and pB(rB) in spherical coordinate systems centered on A and B,

respectively, the Vo term can be expressed asV E Y AmA (O, APA) YBm ( B )
i A=01 Am A +A+ B + 1 (QB)IBmB rl B+

'A=
0

MA~-IA A rA 'B=
0

MB=-'B B

(4.66)

where

(QA)AmA =YIAmA rlA P(r )d3r, (4.67)

and

(QB)BmB = YImB r B P(rB)d rB . (4.68)
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Writing the monopole terms explicitly, the potential VO can be expressed as a sum of a

Coulomb two-center potential, Vc , and a perturbation potential, Vpert. Now, we have

V = ZA + ZB (4.69)
rA rB

and

47r YlAm(OA,(PA) 47 iYm (YB'M qBPB)
Vpert ' 2 + ) r'' 21+ 1 (Q 21B + rB (4.70)

A A B

where the summation over m collapses due to the cylindrical symmetry of the problem

and the summation over 1 now starts from 1. The Schr6dinger equation with the

zero-order Hamiltonian including the Coulomb two-center potential, Vc, is separable in

the spheroidal coordinate system and can be solved iteratively using, for example, the

method described by Hadinger and others' . (See Section 5.2 for the description of the

computer program and Appendix B for source code listing). Solution of the two-center

Coulomb problem produces 3 eigenvalues: total energy, E, spheroidal separation constant

(a function of angular momentum), A, and the projection of the electron angular

momentum on the z axis, , as well as an eigenfunction, T, expressed as a product

'T = M(rlq)A(), (4.71)

where

M(r,p) = ei e-Pna kPk (rl) (4.72)
k=k

and

A() = (-2 - 1)I2eeP(I) CkL +k (2p(, -1)). (4.73)
k=O

The "angular" functions, M(r,qp), are expressed in terms of Legendre polynomials,

Pk (rl), and the "radial" functions, A(4), are expressed in terms of Laguerre polynomials

LkX+k (2p(4 - 1)). The parameter p is a function of energy and internuclear distance, R,

and is defined as

p = L/2R(2(IP - E)) '2. (4.74)
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Once we calculate two-center energies and wavefunctions we can calculate corrections to

the energies due to the higher multipole moments, which are localized on the 2 atomic

ions, Ba2+ and F. The lowest-order corrections come from the dipole and quadrupole

moments of the Ba2+ and F' ions. One may notice at this point that these multipole

moments of atomic ions, expressed in spherical coordinate systems centered on their

respective nuclei, are much smaller than the total multipole moments of the molecule

expressed in the center-of-mass coordinate system. They, however, still can be quite large

as either ion is subjected to the very large electric field of its counter-ion. As a result, off-

diagonal long-range interaction matrix elements should now be much smaller than the

energy separations between zero-order states and a perturbative treatment of these

electrostatic interactions should be justified.

The dipole corrections (see Section 4.2 for a general expression for multipole

corrections in spherical coordinate system) to the two-center Coulomb energies are

T1 (QA)Io 2 + (QB)O - T) (475)
rA rB

or, expressed in spheroidal coordinates, where

rA = /2R(4 + rl) and rB = /2R( - ), (4.76)

and

cos0A and cosO0= 1-r (4.77)

they take the form

41 1+r + (QAB)10 r (4.78)
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5. Computer programs.

5.1 Implementation of Hellmann-Feynman theorem in LSQ fitter.

In any experimental work, a least-squares optimization routine, used to fit a

parametrized model to experimental data, is usually of major importance. Field's group

fitter, LSQ, has been used in the group for 21 years. Several improvements have been

made in the past. Now it is time for a major update. We made two kinds of important

changes. First of all, the Hellmann-Feynman theorem' has been applied to calculate

derivatives with respect to fitted parameters, replacing the traditional method of finite

differences. Second, several parts of the LSQ fitter have been rewritten in order to speed

up execution, make the program more user-friendly, and update it to modem technology.

The full description of the program may be found in the PhD thesis of Ernest Friedman-

Hill2. Below, we will only comment on changes we made to the program.

The most common method of calculating derivatives in any nonlinear optimization

problem is by approximating them as ratios of finite differences. Each fitted parameter is

varied sequentially and the change of the dependent variable is calculated. This method

requires p+l numerical matrix diagonalizations, where p is the number of optimized

parameters. Numerical matrix diagonalizations are usually the most time-consuming parts
3

of any optimization program and their cost is, in the most general case, proportional to n3,

where n is a size of a matrix. When a model involves many adjustable parameters and

large dimension matrices must be numerically diagonalized, the fitter execution time may

be unacceptably long. In a specific, but also a typical and very common case in the field

of molecular spectroscopy, when a model can be written in a pseudolinear form, the

Hellmann-Feynman theorem can be applied to significantly speed up LSQ fitter

execution time. Then, for a p-parameter model, only a single (instead of p+1) numerical

matrix diagonalization is required to compute a full set of derivatives.

The model is considered pseudolinear if it is possible to write a total Hamiltonian as
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H= Xm = Xmax , (5.1)
m=1 m=, am

where Xm are fitted parameters and Hm are matrices. With the total Hamiltonian given by

Eq. 5.1, one can take advantage of the Hellmann-Feynman theorem

(U XE, (5.2)

where E are eigenvalues of the total Hamiltonian, H, and U is a unitary matrix that

diagonalizes H. Many commercial data analysis packages utilize the Hellmann-Feynman

theorem. However, they usually require that analytical forms of the aH/aXm derivatives

be supplied.

Field's group fitter is composed of 2 parts: the main, universal part, LSQ, and the

model part, MATRIX. The latter must be written by a user for a particular problem.

Requiring analytical expressions for the derivatives would substantially increase the

programming work each time a new problem is to be solved, which is precisely what we

wanted to avoid. Luckily, there is a simple method of calculating the derivatives,

aH/aXm, even if analytical expressions have not been supplied. One can easily notice that

when we set Xm;k=O and Xk=l in Eq. 5.1 and evaluate the matrix of the total

Hamiltonian (using subroutine MATRIX) we actually obtain Hm=aH/aXm. Having

calculated the matrices, obtaining E/OXm derivatives from the Hellmann-Feynman

theorem (Eq. 5.2) is straightforward. To implement the Hellmann-Feynman theorem, the

subroutine LEVEL (in LSQ) has been completely rewritten. However, its outside

appearance ( parameters, common blocks etc.) is unchanged.

Summarizing, the procedure of obtaining the OEi/aXk derivatives is as follows. With

initial values of parameters, Xm, the full matrix of the total Hamiltonian is evaluated and

numerically diagonalized. The unitary matrix U is obtained. Now, every fitted parameter,

in turn, is set to 1, while all others are set to 0, and the set of aH/aXm matrices is

calculated. Finally, the aWH/Xm matrices are transformed using the already known unitary

matrices U (Eq. 5.2). Thus, for every fitted parameter a numerical matrix diagonalization
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is replaced by two matrix multiplications (Eq. 5.2). In test runs, the optimized fitter with a

5-parameter model and a 3x3 Hamiltonian matrix ran more than 50% faster. We have not,

however, performed formal tests using problems with larger sets of parameters and larger

matrix sizes for which time savings are expected to increase dramatically.

The LSQ fitter was originally written more than 30 years ago when computers were

slow and little RAM memory was available. To overcome the shortage of memory some

of the intermediate results had to be temporarily stored on tapes or disks. In modem

times, when desktop computers are routinely equipped with 8MB (or more) of RAM

memory, temporary storage of intermediate results is in most spectroscopic applications,

unnecessary. Accordingly, all of the fragments of LSQ dealing with intermediate data

storage have been rewritten. Whenever possible, algorithms have been changed to avoid

the use of temporary storage, otherwise matrices have been enlarged or new ones added

to accommodate intermediate data.

Another obsolete part of LSQ was character-based plotting of Yexp-Ycal (subroutine

PLOT). This option has been eliminated. The empty subroutine PLOT has been, however

retained for future applications. (In the present project, the fitter has been compiled for

use under Microsoft Windows 3.1 and all graphic data presentation has been handled by

Microsoft Excel 5.0.)

All of these programming changes have been described in the LSQ header and

extensively commented in the program body. The alterations have not changed the

structure of input and output files, except for replacing NUC (nuclear spin) in real*8

format by Jmin (minimum (or minimum - 0.5) rotational quantum number) in integer*4

format.

5.2 Electronic energy of nonpenetrating states in prolate spheroidal coordinates.

The TOCENTER program calculates electronic energies of core-nonpenetrating states

for the one-electron, two-center problem. The program code is based on an algorithm

described by Hadinger et al.3. It handles input data interactively. The following quantities

must be supplied: total charges on center A and center B in a.u.; ionization potential in
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cmi ; lowest n*, 1, and X to be calculated; highest n*, 1, and X to be calculated; and

intercenter (internuclear) distance in a.u. The following quantities are printed out in order

for each calculated state in the output file, TOCENTER.OUT: and X; maximum number

of expansion terms of wavefunctions (radial and angular), Km, A, and p parameters;

calculated energy (in cm '') and n*; and expansion coefficients listed in three columns, k,

ak/ao, and Ck/C0. The second output file, TOEXCEL.DAT, prepares results for graphic

presentation (by Microsoft Excel in the present case). Four quantities, 1, X, A, and p, are

printed in space-separated columns in ASCII format.

For the radial solution of the problem, we used the Hylleraas' functions. They are not

orthogonal, however, their advantage compared to others is that they lead to three-term

(instead of five-term for others) recurrence relationships. For the angular solution, the

Baber and Hass6's functions have been used. They also lead to three-term recurrence

relationships. A three-term recurrence relationship, arising from a second-order

differential equation, results in two solutions, dominant and subdominant. Only the

dominant one, which leads to a divergent wavefunction, can be calculated via forward

method. The subdominant solution, which leads to a convergent wavefunction, must be

calculated using the backward method. Using Killingbeck's method and Miller's

algorithm (see Ref. 3 for detailed description), one can obtain both eigenvalues, A, the

angular momentum parameter, and p, the energy parameter, and also convergent

eigenfunctions. Both A and p parameters are varied until the pair (Anlx, Pna) is found, for

which: (1) radial and angular functions, satisfying radial and angular Schrodinger

equations in prolate spheroidal coordinate systems, converge, (2) the convergence is

stable with respect to small variations of A and p, and (3) required precision of A and p is

achieved.

5.3 Electronic energy of nonpenetrating states in spherical coordinates.

Electronic energies of nonpenetrating states are calculated in spherical coordinate

system using multipole moments supplied, or calculated from 2-point-charge model and

hydrogenic wavefunctions modified for non-integer n* and 1. Such a modification of
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hydrogenic wavefunctions is necessary in order to deal with weakly penetrating states or

large electrostatic splittings. The hydrogenic wavefunction for states with non-zero

quantum defects are expressed in terms of hypergeometric functions and calculated using

recurrence formulas.

Two programs using hydrogenic wavefunctions have been written, RADIAL, which

calculates radial matrix elements of r to any power and BAFSPEC, which calculates

energies and electrostatic interaction matrix elements for core-nonpenetrating states in

BaF (or any other polar molecule).

H61lne Lefebvre-Brion and Robert W. Field, Perturbations in the Spectra of Diatomic
Molecules, Academic Press (1986) (and references therein).

2 Ernest Friedman-Hill, PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1992.

3 G. Hadinger, M. Aubert-Fr6con, and G. Hadinger, J. Phys. B: At. Mol. Opt. Phys. 22,

697-712 (1989).
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6. Single state fits.

Multidigit molecular constants were certainly not the primary goal of this project.

However, as a first step in the assembly and analysis of this global data set for BaF we

performed, whenever possible, very careful single, or isolated state fits. This should be

considered as one of the necessary steps in the process of assigning or verifying the

assignment of spectra. These fits also provided a basis for locating weak perturbations

which contain information critical to the ultimate big picture. The expected n*-scaling of

molecular constants and (the expected n*-independence of the quantum defects) helped

us to organize the observed states into Rydberg series.

6.1 Experimental data with the B2Z+ state as an intermediate.

The information about states in the region 31460 - 32400 cm ' t (3.88<n*<4.16) was

necessary for us to connect the higher energy regions of Rydberg series unambiguously

down to their valence terminus states. The relatively large changes in n* mod 1 that occur

near the terminus tell us about the n*-invariant inner part of the Rydberg orbital which

dominates the e7/nuclear energy and angular momentum exchange. Our initial attempt to

include previously observed states ' 2 into Rydberg series revealed that some of those

states could possibly be misassign in literature. We actually verified that the G2Z+ state,

previously reported by Singh and Mohan', had been incorrectly assigned vibrationally.

The I2y+ state, which Singh and Mohan observed at low resolution, was absent from our

spectra and we suspect belongs to a species other than BaF.

For (0,0) bands, our 0.01 cm-' resolution is not sufficient to fully resolve isotope

structure. The lighter isotopomer transitions are observed as a tail at the high energy side

of the main isotopomer line. For Ave0 bands, isotope structure (up to 5 Ba isotopes) is

easily observed. We rotationally analyzed, however, transitions of at most 2 isotopomers

for each band, with the exception of the (1, 0)G2z + - B2Z band, for which four

isotopomer transitions were analyzed.
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Figure 10: Spectrum in the 31950-32400 cm'l region obtained via the B2E+ state as
an intermediate. Upper trace: C2y1 - X2 + fluorescence detected; lower trace:
direct fluorescence from Rydberg states down to the ground state is detected.

In Figure 10, examples of low resolution scans of the same energy region are shown.

The lower trace shows the spectrum recorded by detecting direct UV fluorescence from

Rydberg states down to the ground state. The upper trace presents the spectrum obtained

by monitoring cascade fluorescence (Xc500 nm) from the C2lI state down to the ground

state. The spectrum in the upper trace is significantly more complex. After an excitation

by the pump and probe laser pulses, Rydberg states fluoresce to lower lying states. The

probability of spontaneous emission is given3 by the Einstein coefficient

Aj= ii12 [16 3/(3ho)] = 3.137*10 '7 Iij 2vi .3 [s'l]. (6.1)

The vij3 factor would suggest that fluorescence down to the ground state should be most

efficient. However, the transition dipole moment from a Rydberg state to the ground

state, ,u,, may not be favorable. The excitation/deexcitation in such a case is a 3-step
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process, X--B->Ry--X. In each of these steps a photon carries one unit of angular

momentum, so in order to conserve angular momentum: (1) c=1xl, (2) Ry=lC±1 =lX,

lx2, and (3) lX=lRy±I=lXI1, x±3 . In an atom (with being a good quantum number) the

total probability of such a 3-step process would be zero. In a molecule, due to -mixing,

the total transition probability is usually not zero, but small. It can be large only for

selected, mixed-1 states. In the case of a 4-step process, X-B-Ry->C- X, mixing

restrictions are relaxed and many more states can be observed. The 4-step process also

increases the probability of observing weakly- or non-penetrating states which overlap

with a cascade intermediate state (because of its large n*) much better than with the

relatively compact ground state.

Table 2: Molecular constants for the B 2 + state (in cm- l) (see text).

'3 8BaF (a) 138BaF (b) 137BaF (b) 136BaF (b) 135BaF (b)

Bo 0.20719933(32) 0.2072181 (23) 0.20740149 0.20758740 0.20777560

D0 *106 0.19055 (18) 0.19861 (19) 0.19901265 0.19937025 0.19973257

Y0 -0.262941 (22) -0.262858 (47) -0.26311715 -0.26335346 -0.26359267

o* 106 -0.203 (16) -0.241 (11) -0.241 -0.241 -0.241

Note: (a) this work, (b) from Ref. 1.

For the main isotopomer ( 38BaF) data we perform a global fit of all transitions

observed via the B2Z+ state (except for the K2ri,, - B2Z+ transition) and the B2 + state

molecular constants are treated as adjustable parameters (see Table 2). A simultaneous fit

of the B2Z+ and Rydberg 2Z+ state molecular constants, despite strong correlations

between fit parameters, is possible due to inclusion in the fit of correlation-breaking

transitions to 2nI and 2A Rydberg states. For other isotopomers, the B2Z+ state molecular

constants are held fixed in our fits. Their values are calculated from the molecular

constants of the 38BaF B2Z+ state' using isotope relationships4 (see Table 2). The

wavenumbers and assignments of all measured lines are shown in Appendix D.
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6.1.1 G2E+ and H2E+ states.

The G2 + and H2 + states were first observed in low resolution by Fowlers in

absorption and later by Singh and Mohan 2 in emission. They observed and vibrationally

analyzed several bands of the G - X and H - X systems. Our first attempts to include the

G and H states into Rydberg series strongly suggested that one of these states, most likely

G2 ', might have been incorrectly assigned or calibrated. A similar conclusion could be

drawn from our ligand field calculations 6. The G state's quantum defect could not be

fitted into any of the 2+ Rydberg series.

In order to resolve this discrepancy we recorded and rotationally analyzed large sets of

data for the G - B and H - B systems:

G2E+ B2E+

H2Z+_ B2E+

Table 3: Molecular constal

the v=O H2E+ state (cml).

'38 BaF

T0 ,0 17566.075

Bo 0.23031590

Do*106 0.15407

Yo*102 -0.4957

YDO*106 0.790

presented in this work are

N=0 v=0 X2E+ level.

(0,0)

(1,0)

(2,0)

(0,0)

no isotope structure detected

138BaF, 137BaF, 136BaF, and 135BaF

13 8BaF and 13 7 BaF

no isotope structure detected.

rts for The isotope analysis allowed us to conclusively

assign vibrational quantum numbers. The

molecular constants obtained in our fits are

(1) presented in Table 3 for the H2E+ state and in

(85) Table 4 for the G2E+ state. Taking the term value

(41) of the v=0 B2E+ state, TB.x=14040.163(1), from

(65) Ref. 1, we calculate the electronic term values for

(39) the G and H states, T=30969.714(4) cm' l and

TH= 3 1606.237(4) cm' l. All of the term values

calculated with respect to the zero of energy set at the
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Table 4: Effective molecular constants for the G2Z+ state (in cm4).

G2E + - B2 + 138BaF 137BaF 136BaF 135BaF

(0, 0) To,o 16929. 552 (1)

Bo 0.2297413 (13)

Do*106 0.16755 (99)

yo*102 0.9778 (80)

YDO*106 0.289 (73)

(1, 0) T1,o 17436.742 (1) 17436.937 (7) 17437.187 (12) 17437.379(22)

B1 0.2289101 (14) 0.229187 (19) 0.229330 (31) 0.229562 (55)

D1 *106 0.1601 (12) 0.198 (10) 0.180 (20) 0.163 (32)

y*102 0.7237 (81) 0.756 (20) 0.690 (26) 0.814 (54)

YD1*106 -0.056 (82)

(2, 0) T 2,0 17944.782 (1) 17945.213 (5)

B 2 0.22754565(73) 0.2277235(85)

D2*106 0.14186 (27) 0.1525 (20)

y2*102 0.2386 (58) 0.244 (15)

YD2*106 0.783 (30)

6.1.2 New 2rI and 2A states.

In addition to the G2 + and H2F+ states, in the region of 31460 - 32400 cm l

(3.88<n*<4.16), we observed several new states, K2,1/2 (v=0), J2I (v=0), and

3.942A (v=l) (see Figure 10). Recently, Effantin et al 7 found a group of two 2 states,

We suggest the following convention for labeling newly observed states and Rydberg
series. Each Rydberg series is labeled by the fractional part of the asymptotic value of the
effective principal quantum number, n*. For example, 0.882Z+ specifies the series of 2Z+
states with (n* mod 1);0.88. If the newly observed state belongs to some Rydberg series,
it is labeled by a real number with 2 digits after the decimal point. The fractional part is
the Rydberg series label and the integer part is the integer part of the actual n* i.e. int(n*).
Those lowest Rydberg states for which the quantum defects are significantly (>0.02)
different from the asymptotic quantum defect for the series are labeled by letters.
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E'211/2 at 27323 cm' l, E' 2 I3/2 at 27456 cm'l, and E"2
1 1/2 at 27302 cm' t, in the n*x3

region, which is 1 unit of n* below the region we have investigated here. The Q=/2

assignment for the observed component of the E" state was based on the absence of a Q

branch in the E" - A2I,,/2 transition and the presence of appreciable A-doublet splitting,

approximately linear in (J+1/2). Effantin et al8 were, however, unable to locate the 2I3,/2

component of the E" state. The problem of the missing E"2HI32 state is puzzling to us,

since at higher energy (n*>6), we observe both Q components of the 2H states which

belong to the same Rydberg series as the E" state. At n*;4, however, we also observe

only the 211/2 component of the E" state.

Both the K2l 1/2 and J2 1l states reveal no isotope structure, thus they are assigned as

v=O levels. The 3.942A state, weak and partially obstructed by the J2 H state, shows an

isotope splitting on the order of 0.25 cml', which is characteristic for a v=l upper state.

The J 2I state is a textbook example of a Hund' s case (a) 2H state, and its assignment and

fitting presented no problem.

The 3.942A state is a near case (b) state, but its small spin-orbit splitting is still

resolvable. In order to obtain unbiased estimates of spin-orbit and A-doubling constants,

only 0- and R-form lines were included in the fit. The P- and Q-form lines are doublets

with unresolved splittings and, as one can see in Appendix D, including them in the fit

would introduce systematic errors.

The fact that we were able to detect the 3.942A state in this experiment also requires

some explanation. The intermediate state was a 2Z+ state, so a transition to a 2A state

would be forbidden by the AA=0,±1 selection rule. However, as we know from the

studies of the 5d-complex by Bernard et al9, the B 2 + state has significant 2I1/ 2 character

which is acquired by interaction with the A 2I state. This admixture of 2 character into

the B2Y+ state is the primary source of the 3.942A - B2Y+ transition intensity. Another

possible, although less likely, explanation for some of the intensity of the 3.942A - B2 +

transition is mixing of the 3.942A state with the j2r state, which would then be the

transition intensity provider for the 3.942A - B2 + transition. Molecular constants of the

J2IH and 3.942A states are presented in Table 5. The K2111,2 state has not been fitted yet
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since the rotational assignment for the e-symmetry levels is inconclusive due to

insufficient experimental data.

Table 5: Molecular constants

J 2, v=0

T 18257.755

B 0.22952183

D*106 0.16249

A 57.196

AD*103 -0.34842

P -0.132248

PD 0.6561*10'

q -0.8351*10-3

qn 0.3562*10 7

for the v=O J2 and v=1 3.942A states.

3.94 2 A, v=1

(1) 18212.033 (1)

(51) 0.2293711 (16)

(39) 0.1636 (13)

(1) 0.651 (13)

(53) -0.0974 (16)

(47) 0.117*10-5 (18)

(39)

(10)

(74)

-0.195*10- 7 (24)

6.1.3 New 2+ states.

Two 2+ states at 32110 cm -l and 32166 cm' l were not initially included in any of the

Rydberg series. These states have isotope splittings of 0.17cm'l and 0.19cm1',

respectively. Even if the splittings are significantly smaller than predicted for Av=l

transitions, both states have initially been assigned to the v=l quantum number. The

32166 2I + state is located 560 cml above the v=O H2YE+ state, thus at least 25-30 cm ' l too

high in energy to be considered as v=l H2 + . The 32110 2+ state is separated from the

v=O H2Z+ , state by about 503.7 cm ' , which is comparable to AG,/2=507.2 cm ' for the

G21+ state. Both states have effective B values (see Table 6 and Table 7) slightly larger

than one would expect for the v=1 H2Y+ level. The negative value of the D constant for

the 32166 21+ state indicates that this state experiences a J-dependent interaction from

some lower lying state, but the positive value of the y constant suggests that the dominant

interaction comes from a 2 112/2 state at higher energy. However, the value of the y

constant is small and it is impossible to use it to locate a single 21/ 2 perturber.
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Table 6: Molecular constants for the 32166 2Z+ state (in cm-').

138 BaF L3 7BaF

Tlo 18126.130 (1) 18126.320 (9)

B1 0.2333893 (17) 0.233614 (28)

D1*106 -0.1897 (15) -0.162 (22)

yl*102 0.800 (10) 0.852 (69)

'yD*105 0.572 (11) 0.48 (11)

Table 7: Molecular constants for
the 32110 2 + state (in cm'l).

13 8 BaF

Tl,o 18069.746 (1)

Bl 0.2364933 (17)

D1*106 0.9391 (12)

yl*10 1 0.306 (10)

7yD1*0 s -0.2144 (94)

The 32110 2Z+ state has a very large and positive

effective D constant, which suggests that this

state experiences a strong interaction from

above. This conclusion suggests that these two

2E+ states interact strongly with each other. Such

a possibility was tested in a separate fit for these

two states interacting with each other. The B 2Z+

state molecular constants were held fixed at

values obtained in an all-state fit (see Table 2).

The off-diagonal (interaction) matrix element, h- 2, was treated as an adjustable

parameter. The 2-state fit, as one can see in Table 8, does not solve the problem of

peculiar values for the D parameter.

Table 8: Fit results for 32166 2+ and 32110

32166 2E+

2E+ interacting states (in cm-').

32110 2E+

T 18116.086 (2) 18079.782 (2)

B 0.2325525 (25) 0.2373767 (25)

D*106 -0.4095 (21) 1.2141 (19)

y*101 0.0575 (15) 0.3499 (15)

hl, 2 21.570 (2)

76



6.2 Fluorescence detected spectra recorded via the C2 13/ 2 intermediate state.

The largest set of experimental data in this project was obtained by pumping the

C2FI3/2- X2Y+ (0, 0) transition. As was mentioned previously, the C2I state has been

carefully studied by Effantin and coworkers'. Since the structure of our data set (one

spin-orbit component, shorter branches etc.) did not allow for more accurate

determination of the C2FI state molecular constants, we decided to convert all of the

observed Rydberg - C2FI3/2 transitions to term values of the upper state using the Effantin

et al. term values for the v=O C2FI3/2 state. Working exclusively with Rydberg state term

values proved both more effective and more convenient than working with transition

frequencies.

This part of the data set can be divided into two parts. Lower Rydberg states up to

n*;8.5 exhibit little -uncoupling and can be conveniently described by Hund's case (a)

or (b). Above n*p8.5, the -uncoupling interaction becomes more important and the

Rydberg states must be treated as members of supercomplexes, even if at low-J most of

the states follow the Hund's case (b) coupling scheme. For most of the states observed in

the fluorescence-detected experiment with the C213/2 intermediate state we performed

isolated state fits. The fit results and detailed discussion of the data are presented below.

6.2.1 Core-penetrating 22+ Rydberg series.

In the BaF spectrum we identified 4 core-penetrating 25+ Rydberg series: 0.882Z+ ,

0.762E+, 0.2424 '., and 0.082E+ . The 0.88 2Z+ series is the strongest of them and very well

documented up to the highest energies studied here. We observed altogether 11 members

of the 0.882Z+ series. The lowest member of the series is the D'2 E+ state, previously

studied at low resolution by Singh and Mohan 2 and high resolution (1-0 band) by

Barrow et al. .0. The second lowest member is the H2Z+ state, described in Section 6. 1.1.

Other members of this series, up to n*z13.88, are discussed below. The results of the

isolated state fits are presented in Table 9 (molecular constants) and in Appendix D (term

values and line assignments).
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Table 9: Effective molecular constant (in cm- ') for the 0.8822+ series.

T B y*101 YD*103

D' 2Z+ 26245.0 0.2264

H 2Y+ 31606.238 0.23031590 -0.04957 0.000790

4.88 2E+ 34163.039 (6) 0.231262 (20) -0.1230 (68)

5.88 2 + 35575.814 (4) 0.233574 (37) 0.2932 (73) 0.1571 (72)

6.88 2Z+ 36424.552 (2) 0.232245 (21) -0.2303 (38) 0.0192 (40)

7.88 2Z+ 36976.545 (4) 0.231904 (34) -0.2817 (66) 0.0197 (67)

8.88 22+ 37351.215 (3) 0.232152 (12) -0.1619 (36)

9.882Z + 37619.761 (4) 0.234144 (32) -0.2312 (74) 0.0514 (53)

10.88 2E+ 37816.745 (2) 0.232307 (9) -0.1776 (25) 0.0094 (11)

11.88 2Z+ 37967.246 (6) 0.231392 (77) -0.2090 (140)

12.88 2Z+ 38083.247 (3) 0.232513 (30) -0.1748 (59) 0.0236 (59)

13.88 2X+ 38175.496 (2) 0.232519 (30) -0.1573 (50)

v=1 4.8822+ 34689.057(30) 0.230122 (51) -0.412 (12)

v=3 4.882Z+ 35736.274 (3) 0.229354 (11) -0.4948 (33)

v=2 6.882Y+ 37488.301(30) 0.231756 (59) -0.376 (17)

v=1 7.882E+ 37510.482(30) 0.237086 (144) -0.486 (27)

Note: The centrifugal distortion constant is held fixed at 0.16*10 6 cm1

We intended to use the same set of adjustable molecular constants for all members of a

given Rydberg series. Most of the states in the 0.8822+ series are fitted to the four-

effective-parameter model (rotationless term value (T), rotational constant (B), spin-

rotation constant (y), and the centrifugal correction to the spin-rotation constant (yD)),

with the centrifugal distortion constant, D, held fixed at the value of 0.16*10-6 cm '1.

However, for the 4.882 +, 8.882 + , 11.882Z+, and 13.8822+ states, the fitted values of the

YD constant were statistically indistinguishable from zero. Including YD in the set of fit

parameters did not significantly alter the values of the three other parameters.
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Higher members of the 0.882+ series are affected by an extremely weak, local

perturbation with a core-nonpenetrating state. Other, stronger perturbations, by v>O

vibrational levels, are also observed. The effect of the perturbations by members of higher

vibrational manifolds can be best seen (Figure 11), in the plot of (n* mod 1) vs n* for the

0.882E+ series, as deviations from a smooth curve.
0.93

0.88 2E+ series The v=O 7.88 2 + state at 36976.545(4) cm-' interacts
0.92 i I

with the v=l 6.88 2+ state at 36958.0(5) cm . This
0.91 L
_0.91 Ckind of interaction is called an intrachannel

0.90 ~ perturbation . The observed n* of the 7.882 + state,

0.89 i 7.8774, is higher by 0.0027 than the value estimated

0.88 0· from the n* values of adjacent members of this

X · series, which are believed not to be affected by
0.87 L- ___

2 4 6 8 10 12 14 perturbations. Such an n* shift is equivalent to a
n*

AT=1.23 cm4 shift of the rotationless energy of the
Figure 11: n* mod 1 vs n* plot

for 0.88 2Z+ series. (x's mark 7.882Z+ state. If we assume that the v=l 6.882 + state

deperturbed positions of the is shifted down in energy (also by 1.23 cm ' ) we can
states, see text).

calculate AG,/2=534.6(5) cm' l for the 6.882Z+ state.

Using second-order perturbation theory we can estimate the interaction matrix element

from the energy shift and the energy separation of the two interacting states. The

interaction matrix element (in cm-' if AT, T, and T2 are in cm') is given by

H1i2=(AT*(T1-T2)) '/ . For a given lA Rydberg series, the potential energy curves of all

states (at sufficiently high n*) are very simmilar and nearly parallel to the potential curve

of the molecular-ion. Following Mulliken ll, the potential curve for an n*lA state can be

expressed as

U(R) = U+ (R)- (n (R))2 (6.2)

Since ip(R) is a slowly changing function of internuclear distance, R, it can be replaced by

a truncated Taylor expansion about the equilibrium internuclear distance of the molecular

ion. Keeping only linear term, the potential curve can be approximated as
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U(R) = U +(R) 91 291 d(R- R ). (6.3)
(n*)2 (n*)3 dR6

Now, we can calculate an interaction matrix element between 2 wavefunctions of the

states (n'* and n"*) belonging to the same Rydberg series, but different vibrational

manifolds as

H,_2= (n,,)32291 dg 2 (n*) 3 (n"*) 3 / 2 dR R . (6.4

In the harmonic approximation, the interaction matrix element takes the form4

291 10 10(di>) h / v+ , (6.5)
H- 2 = (n,*)3/2 (n,,*) 3/2 0dR 007c (6.5)

where 91 is the Rydberg constant (cm'l), h is Planck's constant (Jos), c is the speed of

light (m/s), m is the reduced mass (kg), co is vibrational frequency (cm'l), 1p is a quantum

defect, and R is the internuclear distance (A), or

H-2 =- (nt*)31/2 (n"*)3/2 dR R

where m is in (amu) and all constants are replaced by the numerical factor. In the

harmonic approximation the only nonzero matrix elements are for Av=l. Now,

combining the 2 equations for the interaction matrix element, we calculate the absolute

value of the first derivative of the quantum defect with respect to the internuclear distance

as equal to 0.23(1) A' l.

The 9.882Z+ state is very strongly perturbed above J=12.5, thus in the isolated state fit

only lines with J<13.5 were used. One of the perturbers (weak) is a core-nonpenetrating

state. This perturbation of the 9.8825+ state will be discussed later. The second perturber

(strong) is an unidentified state belonging to a v>0 vibrational manifold, possibly

v=2 7.08 2+ . The isotope shift of the perturber could not be observed here for vibrational

quantum number assignment because of poor S/N ratio. In addition, the v=0 9.8821+ state
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is perturbed by the v=1 8.082E+ state, which is located at slightly lower energy. This

interaction is primarily responsible for the deviation of n* by about 0.0024 observed for

v=O 9.8825+ state in Figure 11.

The v=0 10.882 + state seems be free of strong perturbations by higher vibrational

levels and the weak perturbation by a core-nonpenetrating state strongly affects only one

e (J=14.5) and onef(J=13.5) level. For the 11.88 2 + state and higher states of this series,

at J>10.5 an interaction with the 0.942A series becomes important, thus only levels with

J<10.5 are included in single state fits.

In the second 2Z+ series, 0.76 2Z, we observed four new states. The three lowest

members of this series are the ground state, X 2+, the D 2+, and the G2y+ states discussed

in Section 6.1.1.. In addition to these states, we observed 4.762 + , 5.762Z+ , 6.762 + , and

8.7625+ . The 4.762 + and 8.762Z+ states are observed only in their v=l vibrational levels

and the v=0 term values are calculated assuming oe=53 5 cm l' and oeXe=2 cm-'. The

molecular constants of the states in this series are given in Table 10. The centrifugal

distortion constant, D, is held fixed in the fits at 0.16*10-6 cm l. The centrifugal

correction to the spin-rotation constant is not included in the fit. The v=l1 8.7622+ state is

perturbed at N=6 by another state with very large effective B value, most likely the

v=O 11.08 + state, with which it was initially confused 1 . The fitted molecular constants,
2 +

B and y, clearly show, that the state must be properly be labeled as v=l 8.76 2.

Table 10: Effective molecular constants (in cm 'l) for the 0.762Y+ series.

T B y*10 l

X 25+ 0.000 0.2159509 (22) 0.027246 (61)

D 2Z+ 24176.608 (1) 0.2274137 (22) 0.07130 (25)

G 2E+ 30969.715 (2) 0.2297413 (13) 0.09778 (80)

4.76 2Y+ 33899. (2)

5.76 25+ 35441.255 (3) 0.231107 (15) 0.1243 (37)

6.76 2Z+ 36347.557 (4) 0.231261 (35) 0.1231 (67)

8.76 22+ 37317. (1)

v=1, 4.76 2Y + 34434.216 (10) 0.234521 (48) 0.119 (11)
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v=2, 6.76 2y+ 37411.827 (6) 0.229475 (40) 0.3289 (97)

v=1, 8.76 2Y+ 37852.357 (4) 0.231127 (30) 0.1918 (71)

Note: The centrifugal distortion constant is held fixed at 0.16*10 -6 cm-l for all states

except X2Y+, D2 , and G2+ . The italicized term values for the 4.762E+ and 8.762E
states are obtained from the term values for the v=1 levels using AGI/2=535 cm'l .

The lowest observed member of the 0.08 2 + series, the 32110 2Z+ state, the valence

precursor of which has not yet been observed, is discussed in Section 6.1.3. We observed

and analyzed 5 new members of the 0.082X+ series. The strangely large values of the B

36558.6 , reduced term value plot

36558.4 L 7.08 * 
E

- 36558.2 0
+ I
Z, 36558.0 Z

i 36557.8 ! 
36557.6 0 o 0

36557.4 0 0o

36557.2 N(N+1

0 50 100 150 200 250 300 350

Figure 12: Reduced term value plot for the 7.08 2Z+ state;
solid circles - e levels, open diamonds -f levels.

and D molecular constants are characteristic features of all members of this series. Since

the effective centrifugal distortion constant, D, is very large for this series, D had to be

treated as an adjustable parameter in isolated state fits. The reduced term value plot for

one of the members of this series, the 7.082E+ state, is shown in Figure 12. The effective

molecular constants are presented in Table 11. The fitted values for the B and D

molecular constants clearly have no mechanical meaning and possible reasons for this

will be discussed later. The v=0 10.082 + and the 11.082E+ states were only observed as

the perturbers of the v=1 8.232A and v=1 8.762E+ states, respectively, and their
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rotationless term values were estimated from only few extra lines.

Table 11: Effective molecular constants (in cm1 ) for the states of the 0.082Z+ series.

T B D*104 y*101 YD*1 0 3

4.08 2+ 32119.568 (17) 0.2397508(23 0.006037(18) 0.3590 (14)

5.08 2E+ 34486.563 (6) 0.246529 (56) 0.0857 (42) 0.449 (12)

6.08 2+ 35774.744 (2) 0.256864 (24) 0.1358 (26) 0.5238 (42)

7.08 2E+ 36557.301 (9) 0.266616(58) 0.1807 (26) 0.336 (16) 0.1671(78)

10.08 2Y.+ 37666.1 (1)

11.08 2 X+ 37852.2 (5)

v=1 6.08 2 + 36310.013 (3) 0.256607 (32) 0.1856 (37) 0.5923 (55)

v=l 7.082Z+ 37094.651 (4) 0.267325 (44) 0.2773 (49) 0.2679 (78) 0.1313(94)

Note: The italicized term values were estimated from extra lines at the perturbations
v=0 10.082Z+ - v=1 8.232A and v=0 11.082Z+ - v=l 8.762Z+.

Table 12: Effective molecular constants (in cm 'l) for the 0.242Z+ series.

T B Y yD*103

B 25+ 14040.163 (1) 0.2071993 (3) -0.262941(22) -0.000203(16)

E 2Z+

5.24 Z+ 34747.792 (3) 0.233773 (30) -0.18528 (62) 0.0685 (55)

6.24 2Z+ 35923.775 (3) 0.236174 (19) -0.20312 (49) -0.0272 (25)

7.24 2Z+ 36653. (2)

8.24 2Z+ 37130.224 (4) 0.242410 (36) -0.23960 (77) 0.1618 (65)

9.24 2Z+ 37459.844 (3) 0.237742 (33) -0.11935 (55) 0.6297 (75)

10.24 2Z+

v=2 7.24 2Z+ 37720.567 (4) 0.236663 (39) -0.19734 (70) -0.0747 (82)

Note: The centrifugal distortion constant is held fixed at 0.16* 10-6 cm-l for all states
except for the B 2 + and E2E+ states. The italicized term value for the 7.242 + state is
calculated from the term value for the v=2 level, using C0e=539 .8 cm-' and oexe=2 cm' .
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The fourth core-penetrating 2 + series, 0.242E+, has the B2E+ and E21+ states7 as its

lowest members. The third state in this series has not been observed so far. In this project

we observed 6 new states of the 0.242Z+ series. The effective molecular constants

37138 - obtained in isolated state fits are given in

8.242z Y and 8.232 A O Table 12. The 8.24 2+ state's f-symmetry

37136 L o 2ZE+(f component (see Figure 13) is perturbed at
O

o J<8.5 by an unidentified state with a very
37134 L O

O t-pert.
0 o small rotational constant (possibly

~~~O~~~~~~~~~ ~ 2
+37132 2 n v=3 5.882 +). Thus, lines with J=6.5, 7.5,

d9 37130 0I 0 * ° Oand 8.5 inf-symmetry were not included in
i37130 
c O pet the fit. Also the 4 lowest e-symmetry levels

- pert.

37128 * * 2(e) of the 8.242Z+ state are weakly perturbed by

the e-symmetry levels of the 8.232A3/2 state.

37126 L 0 However level shifts could not be detected

______________ * ___ ___ __ @ in the single state fit of the 8.242Z+ state.
37124 ..

0 50 100 150 J(J+I) 200 We will see later that those level shifts are

Figure 13: Reduced term value (in cm-1 ) actually detectable in a single state fit of the

plotted vs J(J+1) for the 8.242C+ and 8.232A state. The largest observed level
8.23 A states. (solid circles for e-
symmetry, open circles forf-symmetry shift is -0.1 cm' . Thus, the 2Z+2 A

levels.) perturbation is very weak. A stronger

Z+_22A perturbation is observed near n*=6.24. It is, however, not so well documented

because most of the data were obtained at low resolution (grating scans).

6.2.2 Core-penetrating 21- Rydberg series.

We observed 3 core-penetrating 2I Rydberg series and their single state analysis

turned out to be very challenging. One of the series, 0.452i, is very short. We actually

found only two new states that belong to this series, the 5.452I3, 2 state and the 6.452 I3/2

state, both in v=1 and v=3 vibrational levels. The series has the C2 H state as its lowest

member, which is the intermediate state in most of our experiments. The second member

of this series is the F2 H state.
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Table 13: Effective molecular constants (in cm- l) for the 0.452H series.

T B A q*10 3

C 2 l 20086.391 (1) 0.2140080 (23) 197.316(1) -0.03912(92)

F 2 H 29471.236 (4) 0.2287458 (25) 57.001(3) -0.00159(41)

5.45 2 I 35043. 7 (5)

6.45 2r 36103.2 (5)

v=1 5.45 2H 35579.797 (4) 0.230441 (40) [14.3] 0.205 (67)

v=3 5.45 2H 36639.936 (4) 0.232570 (46) [14.3] 0.637 (83)

v=l 6.45 2I 36640.724 (10) 0.237601 (113) [8.6] 0.64 (17)

v=3 6.45 2H 37703.819 (19) 0.228934 (23) [8.6] 3.23 (37)

Note: The centrifugal distortion and the A-doubling p parameters were held fixed at
0.16* 10-6 cm and -0.024 cm1 , respectively. The spin-orbit splitting parameter was
held fixed at values calculated from its value for the F2fI state using the A*(n*)3

scaling relationship. The italicized term values (plus 0oe's) for the 5.452 i and 6.452 i
states are calculated from the term values for v=1 and v=3 levels using OeXe=2 cm'.

The intermediate C2H state has a very large spin-orbit splitting, A, compared to the

rotational spacing, 2B(J+1), and it can be properly described by Hund's case (a). Thus, by

pumping rotational levels in the Q=3/2 component, only 213/2 Rydberg states can be

reached by the probe transition. The transition moment to the 2,, 2 states is zero as long

as no mixing with 2fI3/2 occurs. Such mixing for the J-range probed here occurs only if

the spin-orbit splitting is less than 4-5 cm l. As a result, for low-n* 2H Rydberg states,

only the Q)=3/2 component could be observed. It turns out that the spin-orbit splitting in

both 5.452H and 6.452H states is still relatively large and we were able to detect only

Q=3/2 components. The fit results presented in Table 13 were obtained with the A

constant held fixed at values calculated from the spin-orbit constant of the F2H state

using scaling relationships' 3 . Also, the A-doubling p parameter, which is predicted to be

constant within a Rydberg series, was held fixed in our fits at the value obtained for the

F2l state . The fit of the v=l 6.452I state with the spin-orbit parameter held fixed is very

poor. The variance of the fit is 11. The v=3 5.452H and v=l 6.452I levels are separated

from each other by less than 1 cm-', thus despite the Av=2 difference in vibrational
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quantum number they are apparently able to interact strongly. Unfortunately, a two-state

fit is impossible in this case. However, we attempted to estimate the effective spin-orbit

constants for v=3 5.452I and v=1 6.452Il in single state fits. By varying the A parameter

we obtained significantly better fits for both states. The effective spin-orbit constants are

A3=21.427(8) and A=1.704(42) for v=3 5.452[1 and v=l 6.4521H, respectively. The

values are significantly different from ones calculated using scaling relationships (see

Table 13). However, their sum Al+A 3=23.1 cm' l is very close to the sum (22.9 cm' l) of

the spin-orbit parameters (Table 13) predicted using scaling relationships. This agrees

with the hypothesis of the strong 2-state interaction of those states. In a 2-state

interaction, the energy shifts of both interacting states have equal absolute values and

opposite signs. On the other hand, if the spin-orbit separation really were as small as

1.7 cm', we should have seen one of the Q=1/2 components in our spectrum. Despite the

strong interaction between the v=3 5.452I and v=l 6.452FI states, we estimated the v=0

level term values for both states without any deperturbation procedure using oexe=2 cm-'.

The 0.452I series must be further investigated in order to be completely understood.

The two other 211 Rydberg series, 50.0321H and 0.042 , are even more puzzling. The

two lowest states in the 0.042FI series are the A2FI and E'21 states'. The third lowest state

is the j2rI state described in Section 6.1.2. The lowest member of the 0.032I series is the

E"2 I state' and the second one is the K2 I state described in Section 6.1.2. Starting from

n*;5, both series follow each other very closely with quantum defects differing by

approximately 0.01. Both series will be discussed in detail later as members of

supercomplexes.

6.2.3 Core-penetrating 2A Rydberg series.

We have observed two 2A Rydberg series, 0.942A and 0.232A. The lowest member of

the 0.232A series is the A'2A state 9. The second and the third members of the series have

not been observed yet. In this work we report on the next 6 higher states. Two of them,

6.232A and 8.232A (see Figure 13), were mentioned before as the perturbers of the

6.242Z+ and 8.242E+ states. Since the perturbations are very weak, we decided to neglect

them and complete single state fits for the 0.232A series. The effective molecular
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constants are presented in Table 14. The centrifugal distortion constant, D, is held fixed

in the fits at 0.16*10 6 cm l . Due to multiple perturbations, the assignments and fits of the

v=O 7.232A, 9.232A, and 10.232A states must be verified by additional experimental data.

The A'2A state is assigned to the 0.232A series even if its n* mod 1, 0.9861, would

suggest that it belongs to the 0.942A series. The main reason for assigning it to the 0.232A

series is its very large scaled spin-orbit splitting, A*(n*) 3 1619.

Table 14: Effective molecular constants (in cm l) for the 0.23 2A series.

T B A AD*101 p*10 4 q*i0 5

A'2A 10924.289(5) 0.209512 (6) 206.659 (5) 0.00106 (3)

5.232A 34725.019(7) 0.245719 (66) 6.487 (8) 0.13658(66)

6.232A 35919.281(4) 0.236663 (19) 3.841 (5) 0.04201(19) 0.689 (33) -0.233 (12)

7.232A 36650. (2)

8.23 2A 37128.177(3) 0.235859 (27) 1.655 (6) 0.01822(27) 2.508 (82) -1.134 (41)

9.23 2A 37460.89 (1) 0.22260 (14) 1.229(24) -4.25 (61) 135.7 (35)

10.232A 37698.04 (2)

v=2 7.23 2A 37718.219(4) 0.236997 (41) 2.424 (5) 0.06309(41) 2.02 (14) -1.415 (96)

Note: The centrifugal distortion constant, D, was held fixed at 0.16*10-6 cm l . The
italicized term value for the 7.23 2A state is calculated from the term value for the v=2
level using coe=5 4 0 cm' l and coexe=2 cm -l .

The valence terminus of the second 2A series, 0.942A, has not been observed yet. The

second state of this series, 3.942A, is described in Section 6.1.2. States of the 0.942A

series have a very small spin-orbit splitting and, unlike the case of the 0.232A series, the

spin-orbit constant could be fitted for only the few lowest states (see Table 15). Even

though the spin-orbit constant is poorly determined, its value is statistically distinct from

zero in all cases where it was fitted. The states of the 0.942A series are strongly perturbed

by core-nonpenetrating states. At low-n* these perturbations occur at high-J and with

increasing-n* move towards lower-J. Starting from n*=8.94, this type of perturbation

makes isolated state fits meaningless. Only the lowest rotational levels can be used in the

fits. At n*=l 1.94, interaction with members of the 0.882y+ series also becomes important.
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Table 15: Effective molecular constants (in cm- l) for the 0.942A series.

T B A AD*102 p*10 4 q*105

4.94 2A 34255. (5) 0.22888 (41) 0.30 (24)

5.942 A 35634.668 (2) 0.229429 (15) 0.061 (8) 0.196 (45)

6.942A 36466.871 (2) 0.224176 (13) 0.603(25) -0.4119 (13) 0.056 (36) -0.144 (12)

7.942A

8.94 2A 37371.768 (4) 0.224535 (41) 0.032(17) 0.81 (15) -1.437 (70)

9.94 2A 37634.702 (8) 0.221007 (94) 2.96 (36) -3.15 (23)

10.942A 37828.967(3) 0.217747(51) 0.0182 (49) 5.85 (23) -7.11 (12)

11.94 2A 37976.43 (2) 0.21593 (22) -12.29 (57)

12.942A 38090.6 (1)

13.942A 38181.8 (1)

v=1 6.942 A 37001.948 (3) 0.227138 (20) 0.043(13) 0.393 (49) -0.290 (18)

v=1 3.942A 32252.196 (2) 0.229371 (2) 0.651 (13) -0.00974 (16) 0.0117(18) -0.00195(24)

Note: The centrifugal distortion constant, D, is held fixed at 0.16*10- 6 cm' I.

Rotationless term values for the 12.942A and 13.942A states were estimated from Figure
14, since, due to strong perturbations, single state fits were impossible in these cases
(see text).

The spectrum of the 4.942A state could not be properly calibrated, because we did not

record a reference spectrum in that region. We decided to estimate the absolute

wavenumbers using the known offset of the laser calibration. This procedure could

introduce an absolute calibration error as large as 5 cm-'. The internal precision is better

than 0.06 cm' l. Even if spin-orbit parameters are defined very poorly, it is obvious that,

for the 6.942A state, the spin-orbit splitting is significantly larger than for nearby

members of that series (see Table 15). This is most likely due to an interaction with

v=1 6.23 2A (A;3.8 cm-'), which is predicted at 36454 cm' l, only about 12.6 cm-' below

the observed term value of the v=0 6.942A state. From Figure 14 we can estimate the

* We did not look for the v=l 6.232A state. However, in one of the high resolution
scans with the J=6.5fintermediate level, we detected a weak line which could be assigned
as a transition to the J=7.5f Rydberg level (R line). The so far unassigned J=7.5f level
would be located exactly 14 cm l below the J=7.5f level of the v=0 6.94 A state, thus
1.4 cm-' higher than the predicted term value for the v=1 6.232A state.
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Figure 14: n* mod 1 vs n* plot
for 0.94 2A series. (Error bars
present if greater than the radius
of the circle; x denotes
deperturbed values of n* mod 1
as discussed in the text).

unperturbed term value of the v=O 6.942A state at

36465.41 cm ' l. Now from the known shift of the

v=0 6.942A state (-1.41 cm l) and the energy

separation of the unperturbed states (-11.5 cm')

we can estimate (see 6.2.1) the strength of the

interaction, -4.27 cm-', and mixing coefficients,

a=0.950 and =-0.313. The observed v=O 6.942 A

state can be represented now as

16.942A>=a16.942A>O0+316.232 A>0, where 16.942A>o

and 16.232A>o are wavefunctions of the deperturbed

states. The spin-orbit interaction of the observed

6.942A state can, thus, be calculated as

AobS=<6 .9 4 2AlHso16.942A> (6.7)

or

AOb s=&C2o<6.942 ALHs-oI6.942A>o+32 o<6.232 A Hs-o6.23 A>0 +2cP<6.94 2 AjlHs-o6.23 A>O.

(6.8)

The off-diagonal term can be neglected, because of small vibrational overlap between

wavefunctions of the v=O 6.942A and v=l 6.232A states. The estimate of the spin-orbit

interaction, A=0.04 cm-', for the unperturbed v=0O 6.942A state is obtained by scaling the

spin-orbit interaction of the 5.942A state. Now, we have

Aobs 2= C2*0.04 + 2 *3.84 = 0.41 cm' l. (6.9)

The spin-orbit constant estimated here for the v=0O 6.942A state agrees satisfactorily

with the fitted value, 0.603(25) cm-'. Thus, we conclude, that the v=0 6.942 A-v=1 6.232A

interaction is responsible for the anomaly of the spin-orbit splitting in the 6.942A state.

The v=l 6.942A state is perturbed near J=5.5 by a state with a very small effective B

value, probably a component of a core-nonpenetrating supercomplex. The perturbers,
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both e- and f-symmetry levels, are observed between J=5.5 and J=10.5, but only one

level, J=5.5f, is detectably shifted by 0.028 cm' l. The core-nonpenetrating perturber is

probably the same one that, at higher-J, weakly perturbs the (v=O) 0.882Z+ series. It

probably also affects other members of v=0 and v=l manifolds of the 0.942A series below

J=5.5f and J=6.5e, which is the low-J limit of our OODR data, thus we do not observe

those perturbations. A perturbation could be observed for the v=l 6.942A state because

the v=0 7.942A state interacts with the v=l 6.942A state (intrachannel perturbation) and

pushes it slightly to lower energy. The v=0 7.942A state is unobservable, even though it is

predicted (from Figure 14) to lie near the v=1 6.942A state, at 37003.40 cm-'. Since the

v=O 7.942A and v=1 6.942A states interact strongly and are significantly mixed, we

included the v=1 6.942A state in Figure 14 in place of the unobserved v=0 7.942A state.

Since we observe only one member of the interacting pair of states, we can only estimate

an upper bound limit for the interaction matrix element as H,_2=1.45 cm' l (if the first

vibrational quantum AG1/2 of the 6.942A state is equal to 536.53 cm'l). The actual

interaction matrix element is, however, probably significantly smaller, since AG/2 for the

6.942A state is expected to be smaller than 535.5 cm-'. Using the upper bound value of the

interaction matrix element we can estimate, for the v=0 7.942A state, an upper bound on

the absolute value of the quantum defect derivative with respect to internuclear distance,

as we did in Section 6.2.1 for the 7.882 + state, as equal to 0.08 A-'.

6.2.4 Core-penetrating 2(1 Rydberg series.

The 2(D series is observed only above n*=9 where, due to a A-mixing -uncoupling

interaction, 2c) states borrow transition intensity from 2A states. A direct transition from

the intermediate C2rH state to 2I) states is forbidden by the AA=0,±1 selection rule. For

the sake of completeness, we did single state fits for the four 2c) states. However, we used

only terms of 24)D symmetry, because the 2()+ terms are heavily perturbed by core-

nonpenetrating states. The centrifugal distortion constant was held fixed at 0.16*10-6 cmI

and only the rotationless energy and the rotational constant were fitted.
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Table 16: Effective molecular constants (in cm'l) for 0.862(D series.

T B

9.86 2( 37614.734 (8) 0.216186 (22)

10.86 2( 37813.818 (4) 0.210987 (26)

11.86 2D 37964.659 (6) 0.205470 (41)

12.86 2D 38081.562 (8) 0.200431 (90)
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7. Supercomplexes.

7.1 Molecular constant scaling laws and supercomplex formation.

As mentioned previously, 10 core-penetrating Rydberg series were observed in the

BaF molecule. Even if several individual states are missing from this global core-

penetrating picture, we believe we have obtained a complete set of experimental data for

the core-penetrating Rydberg series, which is sufficient to describe all members of all 10

core-nonpenetrating series from n*z6 to oo. In Figure 16 we show a plot of

n* mod 1 vs n* for all 10 series. States belonging to the same Rydberg series are

connected by tie lines. The only exception is the A'2A state which, for clarity, is not

shown connected with the other members of the 0.232A series. Membership in each series

is based on the similarity of quantum defects and the proper scaling behavior of the

molecular constants. Apart from irregular deviations caused by perturbations of the v=O

states by states from higher vibrational manifolds, the n* mod 1 quantities are expected to

be constant within each Rydberg series.

Before we further discuss properties of the Rydberg series, we will briefly review the

basic scaling properties of some of the molecular constants and the possible reasons for

departures from the predicted behavior (see also Berg et al. 13 and Murphy'). A molecule

in a Rydberg state can be regarded as a charged molecular-ion-core with an electron

attached to, but spending most of the time far from the core. Thus, the vibrational, o)e, and

rotational, B, constants of the Rydberg state should be equal to those of the ion-core, oe+

and B+, respectively. This should be strictly true for core-nonpenetrating states. In the

case of core-penetrating states, the Rydberg electron periodically enters the ion-core and

significantly changes the core structure, thus also the vibrational and rotational constants.

For highly polar diatomic molecules like BaF and other alkaline earth monohalides,

the effect of core-penetration by a Rydberg electron on the vibrational and rotational

constants can be described by a simple model. Let the molecular core be represented by

two point charges, +2 and -1, at an internuclear separation of re. We also assume that the
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Rydberg electron avoids the negative ligand (F-) and approaches the positive alkaline

earth ion (Ba2+), thereby lowering the effective charge seen by the ligand by Aq. Aq can

be written as

1
Aq = const'. jl2Tdr = constl (7.1)

where 'T is the Rydberg electronic wavefunction, the innermost lobe amplitude of which

scales as (n*) 3 /2. The penetration of the Rydberg electron into the core leads to an extra

Ba->F repulsive electrostatic interaction. This in turn leads to the internuclear distance

increases and the rotational and vibrational constants decrease relative to those of the

molecular ion. However, since the extra interaction (shielding) goes to zero as (n*)3 ,

even for intermediate-n* Rydberg states, the vibrational and rotational constants should

be close to those of molecular ion.

In the discussion above we assumed that the extra negative charge of the penetrating

Rydberg electron is localized on the Ba2+ ion. If, however, there are 2 states of the same

symmetry and similar energy, for example two 2X+ states, they will interact and form a

pair of complementarily polarized states, one of them polarized away from ligand

(normal polarization), but the other towards the ligand (reverse polarization). An electron

in the reverse-polarized orbital experiences a stronger repulsive interaction with the F

ligand than an electron in the normally polarized one. Thus, reverse polarized states can

be recognized by atypically large n* mod 1 and small vibrational and rotational

constants at low n*-values. As the shielding goes to zero with (n*)3, both normal and

reverse polarization effects on the molecular constants also disappear.

The n*-dependence of the core-penetration effects can be also derived in a more

formal way using a simple harmonic oscillator model introduced by Mulliken' l (see also

Herzberg and Jungen2). The potential curve of a Rydberg state can be related to the

potential curve of the molecular-ion core by

U(R) = U+ (R)- (n (R))2 (7.2)
(n - Cl(R)2 2
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The potentials can be approximated by harmonic oscillators (good approximation for the

lowest vibrational level) as

U(R) = U(Re) + f(R- Re)2 +... (7.3)

and

U+(R) = IP + f + (R- R )2 +.... (7.4)

Using Eqs. 7.3 and 7.4 and expanding p(R) in a Taylor series, Eq. 7.2 takes the form

U(R) = U(Re) + f(R-Re)2 = f+ (R- R) 2 2+ IP (2 3 dR (R-R ). (7.5)
(n*) 2 (n*) 3 dR

Differentiating Eq. 7.5 we obtain an equilibrium internuclear distance for the Rydberg

state,

R R 1 d.
f+ (n*)3 dR (7.6)

Substituting f+ by

f+ 2z2cu mo+2 = 1.4830.10-2 mo 2 (7.7)1018h e e

where p. is a reduced mass in atomic mass units, oe+ is in cm' and f is in cm'l/A2 ,

Eq. 7.6 can be written as

Re = R + + 67.431 1 . (7.8)
mo e2 (n*) 3 dR

Substituting Eq. 7.8 into 7.5, one obtains a corrected expression for the energy of the

Rydberg state

U(Re) = IP 91 67.431 9 1 (7.9)
(n* ) 2 moco2 (n*) 6 dR

The new term in Eq. 7.9 dependent on (n*) 6 lowers the energy, thus also n*, at low n*.

The (n*)' 6 dependence of the energy term is equivalent to an (n*) '3 dependence of the

extra term in n*(R) or Cp(R). One should notice that the extra term in Eq. 7.9 is always

negative, thus the harmonic oscillator model cannot account for the reverse polarization
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induced increase of the energy (and n*) at low n*. From Eq. 6.16, we conclude that the

equilibrium internuclear distance for the Rydberg state is larger or smaller than the

molecular-ion core equilibrium internuclear distance when the quantum defect derivative

is, respectively positive (antibonding contribution from the Rydberg electron) or negative

(bonding contribution from the Rydberg electron). The harmonic oscillator model also

predicts an (n*)'3-dependent correction to the vibrational frequency of the Rydberg state.

For this, however, a term proportional to (R-Re+)2 must be included in the quantum defect

expansion. The corrected Rydberg state force constant will be

f = f - (n') dR (7.10)

Inclusion of the term proportional to (R-Re+)2 in the quantum defect expansion leads to

slightly modified forms for Eqs. 7.6, 7.8, and 7.9. We can obtain the modified forms of

those equations when Coe
+ is replaced by the corrected roe calculated from Eq. 7.10. Using

Eq. 7.7 we can estimate, from Eq. 7.10, a change of the Rydberg state vibrational

frequency as

1 d2~l
(oe = o+ -33.715 d(7.11)

mo + (n*) 3 dR 2

The quantum defect derivatives appear in the equations above as known values on the

right side. They can, however, also be calculated from the observed deviations of the

rotational constant (internuclear distance), energy (n*), or vibrational frequency (force

constant) at low-n*. Later, using the thus obtained quantum defect derivatives, other

molecular properties, like autoionization rates, perturbation matrix elements etc., can be

calculated. From Eq. 7.6, for example, we can calculate

d= 1.4830.10 2 ( n*) m +2 (R, -R+). (7.12)dRe e

Similarly one can estimate the second derivative of the quantum defect from Eqs. 7.10

and 7.7 as
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dRY = 1.4830 10-2 (n*) m(o) 2 _ O (7.13)

We see from Eq. 7.12 that, in order for (dt/dR) to be independent of n*, the difference of

the equilibrium internuclear distances of the Rydberg state and the ground state of the

molecular-ion core, (Re-Re+), must decrease approximately as (n*) '3 . Even for moderately

high-n* Rydberg states, an accurate determination of the true (Re-R +) difference is

virtually impossible. The reasons are: insufficient experimental precision, accidental

Av0O perturbations, I-uncoupling interactions and others. Thus, we cannot apply the

model in the region (Re;Re +) where the harmonic approximation works best. Being

forced to compromise, we estimated (d~p/dR) for some of the series using experimental

data for their 2 lowest members. The agreement of the two values of (dp/dR) for each

series can be treated as a test of correctness of the estimation.

For the 0.082Z+ series -uncoupling is very strong even for the lowest observed

members and we did not attempt to calculate (dp/dR). The lowest observed state of the

0.942A series is v=l 3.942A. From AB, we calculated for this state dp/dR=0.81 A-l, which

is 10 times larger than the upper limit for dp/dRI calculated from the intrachannel

perturbation discussed in Section 6.2.3. For the 4.942A and 5.942A states we calculated

dji/dR=1.8 A`' and 2.8 A-', respectively. The strong variation of the dp./dR with n* for the

0.942A series indicate that even at n* as low as 3.94, the -uncoupling interaction

significantly affects the value of the effective rotational constant. A similar conclusion is

probably also true for the 0.0421 series (see Table 17), for which the dp/dR also strongly

depends on n*. Concluding, we can say that, except for the 0.882y+, the 0.762E+ , the

0.242Z+ , and the 0.452I series, 1-uncoupling interaction cannot be disregarded even at as

low-n* as n*~3-4.
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Table 17: First derivatives of quantum defect with respect to internuclear distance
(in A1') calculated using harmonic oscillator model and experimental quantum
defects and internuclear distances.

0.88 2Y+ 0.762y+ 0.242y+ 0.452FI 0.042-I

D'2X+ 0.526 X2 Z+ 0.200 B2E+ 0.497 C2H 0.644 E' 2FI 0.548
2+ 2 0.526H2 E 0.596 D2Y+ 0.362 E2y+ 0.495 F21I 0.613 J2I1 0.902

Note: First entry in each column is a state name, the second entry is the absolute value of
(d/dR) in A-' derived from B values.
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In Figure 16 one can see that the 0.882E+ state shows, at low n*, an unusually large

increase of n* mod 1 which is typical for a reverse polarized state. In this series, the first

vibrational interval, AGl/2, is known for the 6.882 + (533.87 cm ') and 7.8822+

(533.94 cm- ') states. These values are smaller than AGl/ 2 for the members of other 2E+

series, the 6.762 + state (534.14 cm ') and the 6.082 state (535.27 cm'). As a reference

we can use AG,/2=535.08 cm4 for the 6.942A state since the Rydberg orbital for 2A states

is localized near a plane perpendicular to the internuclear axis and the properties of these

2A states should be only weakly sensitive to the normal/reverse polarization effect. A very

strong argument for the reverse polarization of the 0.8822+ series comes also from the

first derivative of the quantum defect with respect to internuclear distance for the 7.8822+

state, as determined in Section 6.2.1. The value of this derivative, 0.23 (1) A-', is much

larger than the upperbound estimate of the similar quantity for the 7.942A state, 0.08 A- ',

determined in Section 6.2.3. The 0.0321 series is another possible reverse polarized

series. The value of n* mod 1 of its lowest member, E"2rI, is larger than that of the rest of

the series by 0.07.

It was mentioned previously that the rotational constant, B, and n* mod 1 should have

constant values within a Rydberg series, at least for n* higher than some transitional

value. Such an hypothesis seems valid for at least three out of four 22+ core-penetrating

Rydberg series, as is evident in plots of the effective rotational constant vs n* in Figure

15. More careful investigation of those plots reveals, however, that the asymptotic values
2 + 1

are slightly different for various series; 0.2313 cm-' for the 0.76 E, 0.2325 cm l for the

0.882 + , and 0.2377 cm4 for the 0.2422+ state. The effective rotational constant for the

0.082 + series is skyrocketing as n* increases and no asymptotic value can be estimated.

The B value of the 0.082E+ series illustrates in a dramatic way the fact that the second-

order effects neglected (except for centrifugal distortion) in an isolated state

approximation become important and contribute significantly to the effective values of fit

parameters. The second-order interactions of a 2E+ state with remote 2E+ states leads to a

J-dependent energy correction which is parametrized by the centrifugal distortion

constant.
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Let us now consider second-order interactions between a 21+ state and remote 2-

states. These states can be connected by the -uncoupling interaction (2
'

+12, n 31 2 ,
2 + 2 21+ 2[ a 2V+ 2- 1
2E -1/2- r 1l 2 , E -1/22 -/23/2, and 1-coupling (2 and

2Y E,2-2rL 1/2 ). We must consider three operators, H4, H 7, and H 8,

(1) H4=-B(r)[J+l+JI+], (2) H7=+B(r) [I+s'+ls+], and (3) H8=+/2A(r)[ s+lIs+]. Evaluating

the required matrix elements, we get for the second-order corrections to the molecular

constants

A(2)Ei = (2)Ti + A(2)yi(l+x) + A(2)Bix(xl), (7.14)

where x-J+1 and

14(a+)2

A(2)Ti =cj EE , (7.15)
j E i -Ej

(a+ )j B'bjA(2)¥i =-21c j (,) j (7.16)
j E i -Ej

2(B'bj)2A(2)Bi = bj 2 (7.17)

and (a+)j=Ajljlj(+l)) '
2 and bj=(lj(lj+1))2.

It can be shown easily that

1 _ (n*)
=j - Ej 4911A (n*) (7.18)

E i -Ej 49tA (n*)

where (n*) is the average-n* for two interacting states and A(n*) is the difference between

the n*'s of the interacting states. This approximation is accurate to better than 1-2% for

n*>8. It can also be shown that the spin-orbit parameter is proportional to (n*) 3. This

dependence comes from the fact that the spin-orbit operator depends on r 3 and the

wavefunction amplitude scales near the origin as (n*)3/2, thus matrix elements of the

spin-orbit operator scale as (n* n*j)3 /2. Using these scaling rules we can estimate

n*-scaling of the second-order parameters.

The A(2)T term, which is J-independent and contributes to the effective rotationless

energy, decreases as (n*)' 3 and its sign is positive if a dominating interaction comes from

a 21-1 state lower in energy than the 2E+ state and is negative otherwise.
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The n*-independent A(2)7 term contributes to the effective spin-rotation parameter, and

contributions are positive for remote 2H states located at higher energy than the 2I+ state.

The third term, A(2)B, has the same J-dependence as the rotational energy and increases

with the third power of n*. Positive contributions come from interactions with 211 states

below the 2E state in question.

The very large positive A(2)B contribution to the Beff constant for the states of the

0.082Z+ series indicates that the 0.082 + series interacts dominantly with the nearby

0.032Il or 0.0421I series at lower energy. The positive value of the spin-rotation constant,

y, on the other hand suggests that the primary interacting 2H state should be located at

higher energy. This apparent contradiction follows from the fact that we have assumed

that the 2Z+ state interacts with only a single 2H state. Allowing the 2Z+ state to interact

with two (or more) 2 states characterized by different spin-orbit parameters immediately

resolves the paradox. One may notice that Eqs. 6.12 and 6.13 are very similar. They differ

by one factor in each term of the sum. Replacing -(a+)i in 6.12 by (B+bi) leads to 6.13.

Unlike B+, a+ is different for each 211 state interacting with the 2I+ state, thus also the

relative magnitudes of respective terms in both sums are different. This may lead to

different combinations of signs of A(2)y and A(2)B even if the interacting states considered

are the same. For the states of the 0.082Z+ series, the energy interval to the 0.4521l state

on the higher energy side is about 6 times larger than that to the 0.0321- or 0.0421I series

on the lower energy side. This implies that the 0.082Z+ series interacts primarily with a

series at lower energy with a very small spin-orbit splitting.

The three other 2Y+ series do not show such dramatic variations of the effective

B value with n*. Taking, for the rotational constant of the ion-core, B+=0.234 cm', we

notice that the A(2)B corrections are small and negative for the 0.762y+ and 0.882Z+ series

and positive for the 0.242y + series. The positive spin-rotation parameter and the negative

AI2)B correction for states of the 0.7621+ series indicate that this series interacts primarily

with states of the 0.0321I and 0.0421- series at higher energy. The 0.242 + series has

negative A(2)7 and positive A(2)B corrections, therefore it also interacts primarily with the

0.0321- and 0.0421- series. The negative A(2)B corrections for the states of the 0.882Z+
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series show that the 0.032FI and 0.042H series are also the dominant sources of

interaction. However, the negative value of A(2) indicates that also the 0.4521H series is

strongly interacting with the 0.882Z* series.
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Figure 17: n*-variation of the effective spin-rotation constants for the four 2E+

series. Error bars denote 3a uncertainties (when larger than marker size). (x
denotes y value obtained for the 7.082E+ state using the same model as for the
other three members of the 0.08 + series, i.e. YD-O).
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This rather informal analysis leads to the concept of "supercomplexes". We claim that

all core-penetrating series (and, as we will see in the next Section, also core-

nonpenetrating ones) interact and form a series of supercomplexes. Individual

supercomplexes are centered around integer n*'s and the borderline between them can be

drawn somewhere between the 0.4521l and 0.762 + states. The individual

supercomplexes, of course, interact and the negative sign of A(2)y for the 0.8821+ series is

a good demonstration of this. However, the positive sign of the q A-doubling constant for

the 5.452 I and 6.452I states shows that the 0.452I-I series experiences its dominant

interaction from 2E+ series located at lower n* mod 1. The concept of supercomplexes in

BaF can be well visualized by a plot of (n*-nearest integer) vs n*.

It was stated previously that, in the limit of weak (-uncoupling and l-s coupling)

interaction, spin-rotation constants should have an approximately constant value within

each Rydberg series. In Figure 17, we see that the spin-rotation parameter for the 0.762Z+

series apparently approaches an approximately constant value of 0.012 cm-'. The

highest-n* point refers to the v=1 8.762 + state, which is perturbed by the 11.082 + state

that has a much larger spin-rotation splitting. The spin-rotation constant for the 0.882 +

series, after initial oscillations, for higher n* seems be independent of n* and has value of

-0.017 cm 'l. The absolute value of the y parameter for both 0.082Y+ and 0.2421+ series

increases sharply with n*, showing that the assumption of weak inter-supercomplex

interaction is invalid in those cases. The y-value for the 7.082Z+ state, if calculated using

the same model as for the other members of the series (i.e. YD=0), follows the series trend.

The 9.2421+ state is strongly perturbed by the 9.232A state, thus a single state fit is

inappropriate.

The n*-variation of the spin-orbit splitting was examined for the 0.942A and 0.232 A

series. For all states, with the exception of the lowest observed states, the A*(n*)3

quantity seems to take constant values for both series. For the 0.232A series,

A*(n*)3=925 cm' and the value is well determined. Due to large relative uncertainties for

the spin-orbit splitting parameters, it is more difficult to estimate the value of the A*(n*)3

quantity for the 0.942A series. For reference purposes we can take A*(n*)3=15 cm 'l.
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7.2 Core-nonpenetrating complexes.

The most exciting, although unexpected, result of the fluorescence-detected part of the

project was the assembly of a large set of data on core-nonpenetrating Rydberg states. In

Figure 18 it is evident that the electronic structure of the BaF molecule possesses an

interesting feature: the core-penetrating states are clustered near integer-n*. We also

know that, by definition, all core-nonpenetrating states must be even more strongly

clustered near integer-n*. The -uncoupling effects for the core-nonpenetrating states are

expected to be much stronger than for the core-penetrating ones because of the small

energy separations between the rotationless A-states in the nonpenetrating complexes.

Thus, the effective rotational constant for the top and bottom energy components of an nl

nonpenetrating complex are expected to be respectively much larger and smaller than B+.

Such a situation should inevitably lead to multiple avoided crossings between core-

nonpenetrating and core-penetrating states. In the perturbation regions the core-
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nonpenetrating states borrow some core-penetrating character, and this makes their

excitation and detection possible.

In our fluorescence-detected spectra, we observe multiple core-penetrating - core-

nonpenetrating perturbations. The easiest to detect are the strong perturbations in the

0.862(I) and 0.942A series. More difficult to identify is a very weak perturbation in the

0.882E+ series. We also observe extra states in the region just above integer n*.

Conclusive assignments in that region are not yet possible and more experiments are

required.

The systematic perturbations in the 0.942A series are observed for the 8.942A and

higher series members. In Figure 20, three perturbations are evident in the 10.942A state,

two of them, one strong and one very weak, in the 10.942A+ (open circles) component and

one (weak) in the 10.942A- component (solid circles). For the 10.862ci state we observed

one strong perturbation in the 10.862e + component and two very weak in the 10.862 '

component. As we go to the higher-n* members of the 2c) series, additional perturbations

are observed at high-J. The perturbation in the 0.882 + series is very weak and not very

well documented. In the 10.882z+ state we observed only 6 extra lines and the biggest

level shift is -0.1 cm' l. Figure 20 shows the plot of reduced term value vs N(N+1). To

better illustrate the core-penetrating-core-nonpenetrating perturbations we also present in

Figure 21 the reduced term value plot vs J(J+l) for e-symmetry levels. Recall that J,

unlike N, is a rigorously good quantum number. Also the total Hamiltonian is strictly

block-diagonal for e- andf-symmetry levels.
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The appearance of the reduced term value plots, as we follow the three Rydberg series,

is very similar. Corresponding perturbations appear at high-J for low-n* states and move

towards lower-J with increasing n*. This systematic shifting of perturbations is explained

in the ( not included ). As n* increases the difference between the core-penetrating state

energy and the hydrogenic (integer-n*) energy (where all of the core-nonpenetrating

states originate) decreases approximately as (n*) 3. The separation between different core-

penetrating electronic states is much larger than the rotational spacing (Hund's case (a) or

(b)) and the -uncoupling interaction for those states can be neglected. The effective

rotational constant does not change (significantly) with n*. In contrast the core-

nonpenetrating states are described well by Hund's case (d). The rotational spacing is

large relative to the electronic separation (rotationless A-states). The electronic separation

is negligible compared to the 1-uncoupling interaction.
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Figure 21: Reduced term value vs J(J+1) plot for the e-levels of the 10.942A,
10.88 2Z+, and 10.862 states, illustrating core-penetrating-core-nonpenetrating
perturbations.
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The effective rotational constants for the low energy components of the nonpenetrating

complexes are very small and do not change (significantly) with n*. In effect, for

increasing consecutive-n* members of a core-penetrating Rydberg series, the crossings

between core-penetrating and core-nonpenetrating terms occur at lower and lower J.

Eventually, as n* increases, multiple level crossings appear simultaneously at very low-J.

The -uncoupling interaction for the core-penetrating states increases and the "slopes" of

the core-penetrating states become strongly n*-dependent. Eventually, at n*~14, this

picture of perturbations systematically moving to lower J-values breaks down.

7.3 Assignment of core-nonpenetrating perturbers.

Looking at the 10.862) state in Figure 20, one may wonder whether there are

additional systematic perturbations in that state at lower-N (or J) quantum number.

A careful investigation of the reduced term value plot reveals no other systematic level

shifts which would suggest such an additional perturbation. Having in mind that this

observation is limited by the experimental precision, we can assume that the perturbation

in the 10.8624c+ state observed near N=17 (N(N+1)=306) is caused by the extreme, lowest

energy component of the nonpenetrating complexes. To verify such an hypothesis, we

calculated the rotationless energies for the nonpenetrating states using the 2-point charge

model and the prolate spheroidal coordinate system, as described in Section 4.6. The n*'s

of the 1 g and 1 lh states are given in the table below.

2E+ 2n 2 A 2( 2r 2H

1 g 11.0934 11.0738 11.0256 10.9589 10.8807

1 lh 11.0487 11.0432 11.0273 11.0021 10.9690 10.9296

As we can see, all of the g and h core-nonpenetrating states are more compact and do not

extend down to the 10.862t) state. We also know that the actual splittings between A

components should be slightly smaller than those predicted in the model because the

effective charges on the molecular core atomic-ions are smaller than +2 and larger than -
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1, respectively for Ba+2 and F-. Thus, we can rule out the possibility that any components

of any nonpenetrating series lie below the 2 t state.

We can get more information about the perturber of the 2c+ state by analyzing the

effective rotational constant of each perturber. Assuming that the nonpenetrating

perturber is described well by Hund's case (d), its rotational energy can be expressed as

T = B+N+(N++1), (7.19)

where N+=N-£P and 1 =-1,...,1. After substitution for N+, the rotational energy expression

takes the following form

T(N) = B+(N-_Z)(N-£+I) = B+N(N+I) + B+fZ(-1) - 2B+-LN. (7.20)

We can now define the "slope" of the perturber (which is related to the effective

rotational constant) as

AT(N+/2) = T(N+1) - T(N), (7.21)

or

AT(N+Y2) = 2B+(N+1) - 2B+.Z. (7.22)

From experimental data for the 10.862() state, we can estimate, for the core-

nonpenetrating perturber, AT(17.5) 6.03 cm' l. Now, with B+=0.234 cm' we can

calculate _,,xp=5 .12, which indicates that the unknown perturber is the lowest term (1.-5)

of the h-complex. Similarly, for the perturber of the 10.882I+ state at N=14, we find

Zexp=4 .36. This value would suggest the 1-4 component of either the g- or h-complex as

a perturber. The --=4 component of the h-complex has however "-" Kronig symmetry,

thus is ruled out as the unknown perturber of this "+" Kronig symmetry penetrating state.

Note in Figure 20, that the perturber of the 10.882F+ state, in order to have the observed

curvature, must undergo an avoided crossing with additional nonpenetrating term at N-

values near those of the observed perturbation region. A similar analysis can be done for

both "+" and "-" symmetry perturbers of the 10.942A state at N 10-11. These two

perturbers overlap each other at low-N. From the AT(8.5)z2.98 cm'l we calculate
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rexp=2.62. The unknown perturbers could, thus, be the .L2 3 component of the h-complex

for the 10.942A+ state and the L=3 component of the g-complex for the 10.942A- state.

However, Such an analysis is expected to be much less reliable for the internal

components of nonpenetrating complexes.

For the 11.862D state (as for 10.862 state) we can observe a second (strong)

perturbation at high-N in the 2 component. There is also some indication of a second

perturbation in the 2+ component, but the data set is inconclusive in this case.
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Figure 22: Reduced term value vs N(N+1) plot for the 11.862(D, 11.882E+, and
11.942A states, showing multiple perturbations by core-nonpenetrating states. Solid
(open) circles denote levels of +(-) Kronig symmetry.

'J. E. Murphy, Laser Spectroscopic Studies of Rydberg States in Calcium Monofluoride.,
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1992.
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2G. Herzberg and Ch. Jungen, J. Mol.Spectrosc., 41, 425-486 (1972).
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8. Ionization detected spectra via the C2I13/2 intermediate state.

For the states above n*z14, fluorescence to the ground state was so weak that the UV

fluorescence detection scheme could no longer be applied. To obtain spectral information

for higher-n* Rydberg states, the ionization-detection technique had to be applied. We

observed Rydberg states of the v=1 manifold in the range of n* between 13.5 and 31.

Until now, we have analyzed the n*14, n*~15, and n*:16 supercomplexes; the

remaining spectra up to n*L32 remains unanalyzed. Even brief inspection of the

ionization-detected spectra makes it clear that, as for high-n* complexes in the

fluorescence detected spectra, members of the 0.762Z+ , 0.452 l, and 0.082 + series are

missing. This observation suggests that the disappearance of those series from the high-

n* spectra is caused by small transition moments for the probe transition rather than some

detection-related problem.

8.1 v=1 0.86 2(), 0.942A and 0.882Z+ series.

The reduced term value plots for the three analyzed 0.862i) states are presented in

Figure 23. One can see well developed perturbations in both "+" and "-" Kronig

symmetry components. The strong perturbation in the 2cI+ component was previously

discussed in Section 7.2. In Figure 23 an additional weak perturbation is evident in the

"+" symmetry component. This perturbation was not observed in the fluorescence

detected spectra. The perturber is very well developed in the v=l1 14.862) and 13.862(I)

states, but can be also identified in the 15.862c) state. Near the v=1 13.862cD state we can

observe the v=2 9.942A state, which is also perturbed by this new core-nonpenetrating

term. With the v=1 13.8624ci and v=2 9.942A states acting as a "background", we observe

5 extra lines from the core-nonpenetrating perturber. In a manner similar to that discussed

in Section 7.2, we extimate -exp=5.3 for the new perturber. The perturber's very large

"slope" and its very weak interaction with the 2D states indicates that it might be the

extreme, low energy component of the i-complex.
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The 0.882E+ series and the "+" symmetry components of the 0.942A series perturb

each other strongly, as can be seen in the reduced term value plot (Figure 24). A similar

interaction was observed in the fluorescence detected spectra (v=0 manifold) above
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n*11. Here, the avoided crossings are much better developed, especially for the

15.882Z+-15.942A+ interaction.

The terms in Figure 24 are labeled as 2 or 2Z, even if they are mixtures of + or 2X+

and core-nonpenetrating states. Such a labeling system, however, permits us to correlate

the observed terms with low-n* case (a) or case(b) states. It also identifies the source of

the transition intensity in mixed character states.

8.2 Autoionization rates.

The widths of most lines observed in the ionization-detected experiment are

-0.07 cm-', which is comparable to the laser bandwidth. The rather poor S/N ratio makes

it very difficult to detect any possible autoionization broadening. We mentioned

previously that the series that are unobservable in the ionization-detected spectra are the

same ones that disappeared at higher n*'s in the fluorescence-detected spectra. Their

absence is, thus, due to the small transition moment for the pump transition than to strong

autoionization broadening. Upon careful examination of the ionization-detected spectra,

we realized that the 13.882E+ state, which is observed in the fluorescence detected spectra

(v=O) with intensity comparable to the nearby 13.942A and 13.8620D states, is (essentially)

missing from the spectrum. Only two extra lines were observed near the expected

crossing of the 13.882E+ state with the 13.942A+ state (see Figure 24). At higher-n*, we

observe fully developed avoided crossings: 14.882Z+ 14.942A+ and 15.882Z+-15.942A+ .

The 0.882Z+ states reveal autoionization broadening and linewidths that can actually be

measured in the spectra.

In Figure 25 we present two autoionization broadened lines. The experimental data

were fitted to a sum of the Lorentzian profiles. The actual shape of the autoionization +

laser bandwidth-broadened line is correctly described by a Voigt profile. However, since

the total widths of the lines are much larger than the laser bandwidths, autoionization

broadening dominates here and using Lorentzian profiles in the fit does not introduce

significant errors. The best fit linewidths (FWHM) are Fp=0.187(13) cm' and

FQ=0.176(12) cm -l, respectively for P(11.5) and PQ(1 1.5) lines, where uncertainties are
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2 standard deviations. The widths of the P(1 1.5) and PQ(1 1.5) lines are equal within the

experimental precision, thus in further analysis we can use the single value

7=0. 18(2) cm-'. The autoionization width is related to the autoionization lifetime as

F(cml ) = 5.3*10-12/t(s). (8.1)

Thus, we estimate the autoionization lifetime of the v=1 15.882Z+ state as

r=29(3)* 1012-s.

18659.7 18659.9 18660.1 18660.3 18660.5 18660.7 ,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,

18659.7 18659.9 18660.1 18660.3 18660.5 18660.7

probe transition frequency (cm-')

Figure 25: Autoionization broadened P(11.5) and PQ(11 .5) v=l1 15.882Z+ - v=O C2I32
lines. Solid circles denote experimental points. Solid line shows the best fit of the
experimental data to Lorentzian lineshapes. Broken lines show individual
Lorentzian profiles of P and PQ lines.

In Section 6.2.1 we obtained an expression for the intrachannel perturbation

interaction matrix element. Autoionization can also be considered as the intrachannel

interaction of a v-th bound vibrational level with the continuum of the v-1 manifold.

Using Eq. 6.5 and the Golden Rule, we can obtain an expression for the linewidths of

autoionizing states3 ' 2

291 (d) 2 16.8576
F = 2 (n 3 .(V + 1), (8.2)

(n*)3 W 
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where (v+l) is autoionized into the v-continuum. Using the fitted linewidth of the

v=1 15.882 + state, =0.18(2)cm- ', and the above expression, we can calculate the

quantum defect derivative with respect to internuclear distance, dp/dR = 0.53(3) A-'. This

value is in excellent agreement with the derivatives calculated for the 0.8822+ series from

the harmonic oscillator model (see Table 17), 0.526 A- and 0.596 A-'. It, however,

disagrees with the value obtained from the intrachannel perturbation,

v=l 6.882 Z-v=0 7.882z+ , 0.23(1) A-. This disagreement is very puzzling. The likely

explanation is that the 0.882Z+ series mixes, as n* increases, with some other Rydberg

series with a larger value of the quantum defect derivative, and this broadens 0.882E+

states above the first ionization limit. Another possibility would be that the value of the

quantum defect derivatives obtained from analysis of the intrachannel perturbation is to

small by a factor of 2.5. Such a scenario could be possible if there were another 2Z+ state

close to the v=l1 6.882z + and v=0 7.882Z+ states which interacts with them, thus decrease

the energy shift of the v=0 7.882 + . Such a state, v=2 6.242 , has been actually predicted

to be located -15 cm 'l higher in energy than v=0 7.882 + . This state was, however, not

observed.

The other estimation of the quantum defect derivative from an intrachannel

perturbation of the 7.942A state, di/dR<0.08 A-' , seems be supported by the observed

linewidths of the above-ionization-threshold members of the v=1 0.942A series, in

particular the 15.942A state. The 15.942A state undergoes a perturbation with the 15.882Z +

state (see Figure 24, bottom panel). Far from the perturbation region, the 15.942A state

linewidth is smaller than 0.07 cm', while in the center of the perturbation, the linewidths

of both interacting states are -0.14cm-' (see Figure26). When we discussed the

linewidths of the 15.8822+ state above, no correction was applied to the measured

linewidths because the autoionization was by far the dominant line broadening process. In

the case of the 15.942A state, however, with the measured linewidth -0.07 cm ' l, the laser

bandwidth is the main factor determining the observed linewidths, and autoionization

broadening is a smaller contribution. The S/N ratio in this experiment is not good enough

to perform a complete deconvolution of line profiles. One can, however, estimate that
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v=l 15.882E+ ~ v=1 15.942 A 
R branch out of v=0 C2 nI3 J=7.5f

F=0.14 cm '

18666.0 18666.1 18666.2 18666.3 18666.4

J=8.5f

F-=0.10 cm-

,. ,,i, I , , , , , , , , , I _

18666.6 18666.7 18666.8 18666.9 18667.0

J=9.5f

. 1 1 .=0.086 cm1

18667.1 18667.2 18667.3 18667.4 18667.5

J=12.5f

18668.5 18668.6 18668.7 18668.8 18668.9

probe transition frequency (cm '1)

Figure 26: Evolution of the linewidth of the "+" Kronig symmetry branch in the
region of the v=l 15.882z+ v=l 15.942A+ perturbation. (compare to Figure 24,
bottom panel, lowest term)

119



with the total linewidth of 0.06(1) cm'l and the laser bandwidth of 0.05(1) cm-', the

autoionization broadening is 0.03(3) cm'. This observation is in agreement with the

value of the quantum defect derivative, <0.08 A-', obtained from intrachannel

perturbation.
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9. Appendix A.

9.1 Rotational term values for the v=O B2yf state.

J T(e) T(f) J T(e) T(f)

0.5
1.5

2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

10.5

11.5
12.5
13.5

14.5

15.5
16.5
17.5
18.5
19.5
20.5
21.5
22.5
23.5
24.5
25.5
26.5
27.5
28.5
29.5
30.5

14040.163
14040.446
14041.144
14042.255
14043.782
14045.722
14048.077
14050.847
14054.030
14057.628
14061.640
14066.066
14070.907
14076.161
14081.830
14087.912
14094.408
14101.318
14108.642
14116.379
14124.530
14133.094
14142.072
14151.463
14161.266
14171.483
14182.113
14193.155
14204.610
14216.478
14228.758

14040.840
14041.801
14043.175
14044.964
14047.168
14049.786
14052.818
14056.265
14060.125
14064.401
14069.090
14074.193
14079.710
14085.642
14091.987
14098.747
14105.920
14113.506
14121.507
14129.921
14138.748
14147.989
14157.643
14167.710
14178.190
14189.083
14200.389
14212.107
14224.238
14236.782
14249.738

31.5
32.5
33.5
34.5
35.5
36.5
37.5
38.5
39.5
40.5
41.5
42.5
43.5
44.5
45.5
46.5
47.5
48.5
49.5
50.5
51.5
52.5
53.5
54.5
55.5
56.5
57.5
58.5
59.5
60.5
61.5

14241.450
14254.554
14268.070
14281.998
14296.337
14311.088
14326.250
14341.823
14357.807
14374.201
14391.007
14408.222
14425.847
14443.883
14462.328
14481.183
14500.446
14520.119
14540.201
14560.691
14581.589
14602.896
14624.610
14646.732
14669.262
14692.198
14715.541
14739.291
14763.447
14788.009
14812.976

14263.105
14276.885
14291.076
14305.679
14320.694
14336.120
14351.957
14368.205
14384.863
14401.932
14419.412
14437.302
14455.601
14474.311
14493.430
14512.958
14532.895
14553.241
14573.996
14595.160
14616.731
14638.710
14661.097
14683.892
14707.093
14730.701
14754.716
14779.138
14803.965
14829.198
14854.837
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9.2 Rotational term values for the v=O C 2I3/2 state.

J T(e) T(f) J T(e) T(f)

1.5 20185.478 20185.478 21.5 20288.459 20288.458
2.5 20186.552 20186.552 22.5 20298.109 20298.107
3.5 20188.054 20188.054 23.5 20308.187 20308.185
4.5 20189.986 20189.986 24.5 20318.693 20318.691
5.5 20192.347 20192.347 25.5 20329.627 20329.625
6.5 20195.137 20195.137 26.5 20340.988 20340.986
7.5 20198.356 20198.356 27.5 20352.777 20352.775
8.5 20202.004 20202.004 28.5 20364.994 20364.992
9.5 20206.081 20206.081 29.5 20377.638 20377.636

10.5 20210.588 20210.588 30.5 20390.710 20390.707
11.5 20215.523 20215.523 31.5 20404.208 20404.205
12.5 20220.888 20220.888 32.5 20418.133 20418.130
13.5 20226.681 20226.681 33.5 20432.486 20432.482
14.5 20232.903 20232.903 34.5 20447.264 20447.260
15.5 20239.554 20239.554 35.5 20462.470 20462.465
16.5 20246.633 20246.633 36.5 20478.101 20478.096
17.5 20254.142 20254.142 37.5 20494.159 20494.154
18.5 20262.078 20262.078 38.5 20510.643 20510.637
19.5 20270.443 20270.443 39.5 20527.553 20527.547
20.5 20279.237 20279.236 40.5 20544.888 20544.882
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10. Appendix B. Listing of Computer Programs.

10.1 Subroutine LEVEL used with LSQ fitter.

The Subroutine Level written in FORTRAN 77 is part of the least-squares fitter

(LSQ). It has been rewritten in order to utilize the Hellmann-Feynman theorem to

calculate energy derivatives with respect to fitted parameters. It can only be used for

pseudo-linear problems (see Section 5.1).

* SUBROUTINE LEVEL *

SUBROUTINE LEVEL(IE,NDATA,IAMAX)
PARAMETER(NNPAR=40,NNDATA=300,NNHSIZE=56,NNBLOCK=2,NNJMAX=20)
PARAMETER (NNVEC=2)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 SNGL
INTEGER NUMVEC,PRMTRS,IAMAX

C---------------------------------------
c (Zygmunt J. Jakubek, May 1994)
c This subroutine was rewritten
c to make use of Hellmann-Feynman theorem.
C---------------------------------------
C EACH EIGENVECTOR IS MADE UP OF A LINEAR COMBINATION OF BASIS VECTORS.
C THE (COEFFICIENT)**2 FOR EACH BASIS VECTOR IS EQUAL TO THE PERCENTAGE
C OF THAT BASIS VECTOR IN THE EIGENVECTOR. NUMVEC IS THE NUMBER OF
C BASIS VECTORS FOR WHICH YOU WANT THAT PERCENTAGE REPORTED. IT IS SET
C AT THE TOP OF THIS PROGRAM AND NOT CHANGED WITHIN THE BODY AS LONG.
C AS IT IS SMALLER THAN THE DIMENSION OF THE HAMILTONIAN
C NOTE ALSO THAT NUMVEC MUST BE <= THE DIMENSIONS OF EACH
C INDEX OF UF()

INTEGER UP,UI,UF,SRCH,I,K,KK,B
DIMENSION GE(NNDATA),NQ(12),NUM(12,NNDATA),NCVAR(NNPAR),

1 GE2(NNDATA,NNPAR),SLOPES(NNJMAX,NNHSIZE,NNPAR,NNBLOCK),P01(NNPAR)

DIMENSION H(NNHSIZE,NNHSIZE),U(NNHSIZE,NNHSIZE),D(NNHSIZE),
1 TERM(NNJMAX,NNHSIZE,NNBLOCK),SLOP(NNHSIZE,NNPAR)

DIMENSION UI(NNHSIZE) ,SRCH(NNHSIZE) ,UF(NNVEC,2),
1 UP(NNBLOCK,NNJMAX,NNHSIZE,NNVEC,2)

DIMENSION P(NNPAR),MAXP(NNBLOCK),
1 EIGVEC(NNBLOCK,0:100,NNHSIZE,NNHSIZE)

COMMON/BLK1/ P,GE,NUM
COMMON/BLK2/ TERM,MAXP,IBK,JMIN,JMAX,PAR
COMMON/BLK3/ UP
COMMON/BLK5/ GE2,SLOPES,NCVAR

C MAXP(I) IS DIMENSION OF ITH BLOCK OF HAMILTONIAN.
C TERM(J,rank,IP) ARE TERM ENERGIES. 2ST DIM AGREES WITH MAXP(I),
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C 2ND DIM IS JMAX, 3RD DIM CORRESPONDS TO NUMBER OF BLOCKS(IBK).
C ON LAST PASS,LEVEL IS CALLED ONLY WITH IE=1.NUMVEC = NNVEC
C SEE COMMENTS ABOUT NUMVEC ABOVE
C PRMTRS=2*IAMAX+2!!total # of passes thru LEVEL (B compared to this
C following label 10). IAMAX = # of parameters being fit.

C B=B+1 !! counts # of passes thru LEVEL
C

M1=JMAX+1

C ------------------------ J loop
DO 10 I=l,M1
if((i-l).lt.JMIN) goto 10
X=DBLE(I-1)+PAR

C REMEMBER PAR ADDS IN THE .5 FOR HALF INTEGER J

C ------------------------ block # loop-
DO 20 IP=1,IBK
CALL MATRIX(IP,P,H,X,MAXP) !! compute block #IP
DO 21 K=1,NNHSIZE
DO 22 L=1,NNHSIZE

22 U(K,L)=0.DO
21 U(K,K)=l.DO

M2=MAXP(IP)

CALL JMDIAG(H,U,D,M2) !! diagonalize block #IP - return
C eigenvalues (D) and eigenfunctions (U)

c in the lines below up to 110 slopes are calculated using
C Hellmann-Feynman theorem

if(ie.eq.l)then
DO 100 L=1,NNPAR

100 P01(L)=0.OdO
DO 110 L=1,IAMAX
NUMB1=NCVAR(L)
P01(NUMB1)=1.OD0
CALL MATRIX(IP,P01,H,X,MAXP) 1! CALCULATE dH/dP
DO 120 K=1,M2
UHU=0.ODO
DO 130 K=l,M2
HUSUM=0. ODO

DO 140 K2=1,M2
140 HUSUM=HUSUM+H(K1,K2) *U(K2,K)
130 UHU=UHU+U(K1,K)*HUSUM
120 SLOP(K,L)=UHU
110 P01(NUMB1)=0.OD0

endif

C SORTING EIGENVALUES, EIGENVECTORS, AND SLOPES
C ESSENTIALLY SUBROUTINE EIGSRT FROM NUMERICAL RECIPES

DO 1021 II=2,M2
K1=II-1
K=K1
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EL=D (K1)
DO 1040 K2=II,M2
IF(D(K2).LE.EL) GO TO 1040
K=K2
EL=D(K2)

1040 CONTINUE
IF(K.EQ.K1)
D(K)=D(K1)
D (K1) =EL

GO TO 1021

DO 1010 K2=1,M2
EL=U(K2,K1)
U(K2,K1) =U(K2,K)
U(K2,K)=EL

1010 CONTINUE
if (ie.eq. 1) then
DO 1020 K2=1,IAMAX
EL=SLOP (K1, K2)

SLOP(K1,K2)=SLOP(K,K2)
SLOP (K, K2) =EL

1020 CONTINUE
endif

1021 continue

C---------------------------------------
DO 23 L=1,M2 !! eigenfunction loop

* IF (B.NE.PRMTRS) GO TO 26 !! if not on last pass, do not
C load EIGVEC

DO 24 K=1,M2 !! basis function loop
EIGVEC(IP,X+PAR,K,L)=U(K,L) !!place coefficients

(see comments at

index meanings)

in array EIGVEC
label 35 for

24 UI(K)=IFIX(100.*SNGL(U(K,L)**2))
IF (MAXP(IP).LT.NUMVEC) NUMVEC=MAXP(IP)
CALL MAXSORT(M2,UI,SRCH,NUMVEC,UF)
DO 25 K=1,NNVEC
DO 25 KK=1,2

25 UP(IP,I,L,K,KK)=UF(K,KK)
if(ie.eq.l) then

26 DO 27 K=1,IAMAX
27 SLOPES(I,L,K,IP)=SLOP(L,K)

endif
23 TERM(I,L,IP)=D(L)
20 CONTINUE !! to next block
10 CONTINUE ! to next J

**************************************************************

* IF (B.EQ.PRMTRS) THEN
* WRITE(10,35)
*35
* 1

* 1

* 1

* 1

* 1

FORMAT(5X,'EIGENVECTORS FROM LSQ (LEAST SQUARES FITTER
)',/,'STORAGE PATTERN: IP=BLOCK #, I=ROT. QUANTUM #',
/,'L=EIGENVECTOR # (WITHIN BLOCK IP), K=BASIS',
/,'VECTOR # (IN EIGENVECTOR L).',/,
'DATA MUST BE READ FROM THIS FILE AS IT HAS BEEN',
/,'WRITTEN - SEE LEVEL.LIS, LINES ******.',/)

*C
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*90

*70

*85

*80

*65

*60
*

DO 60 IP=1,IBK
WRITE(10,90) 'BLOCK #',IP
FORMAT(//,12X,A7,I2,/)

DO 65 I=jmin,(Mi-l)

X=DFLOAT(I-1)+PAR
DO 80 L=1,MAXP(IP)
WRITE(10,70) X,(EIGVEC(IP,I-1,K,L),K=I,MIN0(5,MAXP(IP)))
IF (MAXP(IP) .GE. 6) THEN

WRITE(10,70) X,(EIGVEC(IP,I-1,K,L),K=6,MAXP(IP))
ENDIF
FORMAT(lX,F4.1,6(5X,F6.2))
CONTINUE
CONTINUE
CONTINUE
CONTINUE
ENDIF

C SET UP TERM VALUES AND DIFFERENCES TO COMPARE WITH INPUT DATA.
DO 50 N=1,NDATA
DO 40 L=1,6

40 NQ(L)=NUM(L,N)
C SECOND STATE TERM VALUE SUBTRACTED FROM FIRST.

IF(NQ(2).EQ.0) THEN
TOP=0.ODO
ELSE
TOP=TERM(NQ((1)+,NQ(2),NQ(3))
if(ie.eq.l)then
DO 45 L=1,IAMAX

45 GE2(N,L)=SLOPES(NQ(1)+1,NQ(2),L,NQ(3))
endif
ENDIF
IF(NQ(5).EQ.0) THEN
BOT=0.DO
ELSE
BOT=TERM(NQ(4)+I,NQ(5),NQ(6))
if (ie.eq.l) then

DO 47 L=1,IAMAX
47 GE2(N,L)=GE2(N,L)-SLOPES(NQ(4)+1,NQ(5),L,NQ(6))

endif
ENDIF

50 GE(N)=TOP-BOT
RETURN
END
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10.2 TOCENTER program for solution of one-electron two-center problem.

**********************************************************************

* program written by Zygmunt J. Jakubek, November 1994 *
* tocent calculates one-electron two-center problem: energies, *
* generalized angular momentum (A) and orbitals *
* for the method description see: *
* G. Hadinger, M. Aubert-Frecon, and G. Hadinger, *
* J. Phys. B: At. Mol. Opt. Phys. 22, 697-712 (1989) *

* and references herein *
* *

program tocent

parameter(maxk=60)
implicit real*8 (a-h,o-z)
integer*2 hO,mO,sO,hsO
dimension F(-l:maxk),DFA(-l:maxk),DFp(-l:maxk),

* G(-l:maxk),DGA(-l:maxk),DGp(-l:maxk),
* al(0:maxk),C(0:maxk)
common /time/ hO,mO,sO,hs0

* input: ZAin, ZBin, enstar, XIP, RABin (a.u.), 1, m,

print *,'input ion charges ZA,ZB in [a.u.]'
read *, ZAin,ZBin

print *,'input ionization potential in [cm-1]'
read *, XIP

print *,'input initial nstar, 1, and lambda'
read *, enstin,l,m
print *,'input final nstar, 1, and lambda'
read *, enstfi, lfin, mfin
print *,'input internuclear distance in [a.u.]'
read *, RABin

open(10,file='tocenter.out',status='unknown')
open(ll,file='toexcel.dat',status='unknown')

Ry = 109737.3177dO ! Rydberg(infinity) in [cm-1]
epsdelA = l.Od-1 ! accuracy of correction to A [a.u.]
epsdelp = 1.0d-4 ! accuracy of correction to p [a.u.]

epsA = 1.0d-1 ! accuracy of A [a.u.]
epsp = l.Od-11 ! accuracy of p [a.u.]

Kstart = 4 ! iteration starts from K=m+Kstart

call gettim(hO,mO,sO,hs)0)
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do 992 lll=l,lfin

xl = dble(lll)

do 991 mmm=lll,mfin,-l

xm = dble(mmm)
enstar = xl + 0.5d0

101 do 1 i= -1,maxk

F(i) = O.OdO

DFA(i) = O.OdO
DFp(i) = O.OdO

G(i) = O.OdO
DGA(i) = O.OdO

DGp(i) = O.OdO
1 continue

do 2 i=0,maxk

al(i) = O.OdO

C(i) = 0.0d0
2 continue

****************************

* - calculating initial values for p and A

pinit = 0.5dO*(ZAin+ZBin)*RABin/enstar

pm = -1.OdO
Ainit = O.OdO
xlx = xl

hrobo = (RABin*(ZAin-ZBin)/2.OdO/pinit)
do 10 i=1,2

hlm = (xlx*xlx-xm*xm)*(hrobo*hrobo-xlx*xlx)/
* (4.0d0*xlx*xlx-l.OdO)
if(xl.ne.0.OdO) Ainit = Ainit+pm*hlm/xlx
xlx=xlx+l.OdO
pm=-pm

10 continue

Ainit=2.OdO*pinit*pinit*(Ainit+0.5d0) - xl*(xl+l.OdO)

* - starting iterations

* no screening!

ZA = ZAin
ZB = ZBin
RAB = RABin
R1 = RAB*(ZA-ZB)

R2 = RAB*(ZA+ZB)

p = pinit
A = Ainit
q = p
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dAold = 0.OdO
dpold = 0.OdO

lastiter = 0

kmax = m + Kstart

30 continue !start of delA iteration until delA changes by < epsdelA

F(kmax) = l.0d0
F(kmax+l) = O.OdO

G(kmax) = l.0d0

G(kmax+l) = O.OdO

DFA(kmax) = O.OdO

DFA(kmax+l) = O.OdO

DFp(kmax) = O.OdO

DFp(kmax+l) = O.OdO

do 40 k=kmax,0,-l

xk = dble(k) ! xk = k
xlx = xm + l.OdO + xk ! xlx = m+k+l
alfa0 = (xlx-xm)*(xlx+xm)*(R1-2.0d0*q*xlx)*(Rl+2.0d0*q*xlx)/
* (4.0d0*xlx*xlx-l.0d0)
alfal = A - q*q + (xlx-l.0d0)*xlx
alfa3 = 8.OdO*q*xlx*xlxlx*lx*xlx-xm*xm)/(4.0d0*xlx*xlx-l.OdO)
xkl = xk+l.OdO ! xkl = k+l
gamaO = xkl*(xkl+xm)*(xkl-R2*0.5dO/p)*(xkl+xm-R2*0.5d0/p)
gamal = A-p*p+R2-(xm+l.0d0)*(p+p+l.0d0-R2*0.5dO/p)-
* 2.OdO*xk*(xk+xm+p+p+l.0d0-R2*0.5dO/p)
gama2 = p+p+(2.OdO*xk+xm+l.OdO)*(2.OdO+R2*0.5d0/p/p)
gama3 = xkl*(xkl+xm)*R2*0.5dO/p/p*(R2/p-2.0dO*xkl-xm)

F(k-l) = -alfal*F(k) - alfao*F(k+l)
DFA(k-1) = -alfal*DFA(k) - alfaO*DFA(k+l) - F(k)
DFp(k-1) = -alfal*DFp(k) - alfaO*DFp(k+l) +

* (p+p)*F(k) + alfa3*F(k+l)
G(k-l) = -gamal*G(k) - gamaO*G(k+l)
DGA(k-1) = -gamal*DGA(k) - gamaO*DGA(k+l) - G(k)
DGp(k-l) = -gamal*DGp(k) - gamaO*DGp(k+l) +
* gama2*G(k) + gama3*G(k+l)

40 continue

if(lastiter.eq.l) goto 50

dell = DFA(-1)*DGp(-1) - DGA(-1)*DFp(-l)
delA = (G(-1)*DFp(-l) - F(-l)*DGp(-l))/dell
delp = (F(-l)*DGA(-1) - G(-1)*DFA(-l))/dell

if(abs(delp).lt.(0.OldO*epsp)) delp=0.OldO*epsp
ddelp = abs((dpold-delp)/delp)

if(ddelp.lt.epsdelp) then
if((abs(delA).lt.epsA).and.(abs(delp).lt.epsp)) lastiter=l
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A = A + delA
p = p + delp
q = p
dAold = O.OdO
dpold = O.OdO
if(lastiter.ne.l) kmax = m+Kstart ! starting with K=m+Kstart
goto 30

else
dAold = delA
dpold = delp
kmax = kmax + 1
if(kmax.gt.45) then
enstar=enstar+0.001dO
goto 101
endif
goto 30

endif

50 continue

roboal = 1.OdO
roboC = 1.OdO
al(0) = F(O)

C(O) = G(O)

do 60 k=l,kmax
xmk = dble(m+k)
roboal = roboal*dble(k)*(R1-2.OdO*q*xmk)/(2.0d0*xmk-l.Od0)
roboC = roboC*dble(k)*(xmk-R2*0.5dO/p)
C(k) = G(k)*roboC

60 al(k) = F(k)*roboal

call exptime(l,l,l,l)
pause

* calculating wavefunctions

*** ******printing results

energy = XIP - 4.0dO*Ry*p*p/RAB/RAB
xxstar = (ZA+ZB)*RAB/2.0dO/p

write(10,*)
write(10,1001) lll,mmm

1001 format(lx,'l=',i3,5x,'m=',i3)
print *,'K=',kmax, ' A=',A, ' p= ',p
write(10,1000) kmax,A,p

1000 format(lx,'K=',i3,5x,'A=',f13.6,4x,'p =',f13.9)

print *,' ','T=',energy, ' n*=',xxstar
write(10,1100) energy,xxstar
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1100 format(lx,lO0x,'T=',flO.3,7x,'n*=',f16.12)
write(10,*)
do 70 k=0,kmax

write(10,1200) k,al(k)/al(0), C(k)/C(O)
70 write( *,1200) k,al(k)/al(0), C(k)/C(O)

1200 format(lx,i4,2f20.10)
write(10,*)

write(11,2000) 1ll1,mmm,A,p

2000 format (lx,i5,4x,i5,4x,f15.8,4x,f15.11)

enstar = enstar + 0.9d0
103 if(enstar.lt. (enstfi)) goto 101

991 continue
992 continue

close (10)

close (1:1)

call winexit
end

subroutine exptime(h,m,s,hs)
integer*2 h,m,s,hs,hO,mO,sO,hsO
common ,/time/ hO,mO,sO,hsO
call gettim(h,m,s,hs)
if(hs.lt.hs0)then
hs=hs+100
s=s-l
endif
hs=hs-hsO
if (s. lt.sO) then
s=s+60
m=m-l
endif
s=s-so
if(m.lt.mO)then
m=m+60
h=h-1
endif
m=m-mO
if(h.lt,.hO) h=h+24
h=h-hO
print *, 'time expired from the start of the program'
print 1000, h,m,s,hs

1000 format(lx,i2.2,':',i2.2,':',i2.2,'.',i2.2)
return
end

131



10.3 Program BAFSPEC for electronic energies of core-nonpenetrating states.

Program BAFSPEC is written in FORTRAN. It is used to calculate electronic energies

of core-nonpenetrating states in spherical coordinate system with origin in the center-of-

mass. Multipole moments can be calculated from the 2-point charge model or supplied by

user. The program requires molecule specific data. The current version is set up for the

BaF molecule.

******** ************************* ***********************************

* program calculates electronic energies of core-nonpenetrating states*
* in spherical coordinate system. *
* multipole moments can be calculated from 2-point charge model or *
* supplied by user *
* this version is for the BaF molecule *
* for other molecules needs molecule-specific data *
* *
* written by Zygmunt J. Jakubek in January 1993 *
***********************************************************************

program bafspec

real*8
real*8
real*8
real*8

rnl,rnll,rnl2,rnlrob,r,dr,rmax,z,ylm,hnlm,hnlms,hpart
dnl,dn2,dll,dl2,dml,dm2,qdefl,qdef2,xr,pi,ryd,IP
radhyp,d9j,sj,tj,gam,hyperll,qmltp
qml (0:12), radint (0:12)

pi = 3.141592653589793d0

ryd = 109737.3156841d0

print *,'IP='
read *,IP
print *,'nl='
read *,nl
print *,11='
read *,11
print *,'quantum defect 1
read *,qdefl
print *,'n2='
read *,n2

print *,112='
read *,12
print *,'quantum defect 2
read *,qdef2
z=1.0d0
print *,'rmax(a.u.)='
read *,rmax
print *,'dr(a.u.)='
read *,dr
open(9,file='radorb.dat')
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open(8,file='bafsp.out')
dnl=dble (nl) -qdefl
dn2=dble (n2) -qdef2

dll=dble (11) -qdefl
d12=dble(12)-qdef2

10max=11+12
l0min=abs(11-12)

do 99 10=0,12
qml (10) =qmltp (10)
write(8,1099)10,qml(10)

99 continue

1099 format(lx,i4,fl5.4)
write(8,1099)
write(8,1099)

***+******** ************************************************************

* *

* calculate radial integral <nl,lllr**(-l0+l) n2,12> *
* *

************************************************************

r=O.dO
do 14 10=0,12
radint(10)=0.OdO

14 continue

10 while (r.le.rmax) do

r=r+dr
rnll=radhyp(dnl,dll,z,r)
rnl2=radhyp(dn2,dl2,z,r)
rnlrob=rnll*rnl2

do 15 10=10min,lOmax,2
rnl=rnlrob

do 11 i=1,10+1
rnl=rnl/r

11 continue

radint(10)=radint(10)+rnl
15 continue

end while

do 16 10=10min,lOmax,2
radint(10)=radint (10) *dr

16 continue

do 250 ml=O,min(11,12)
dml=dble (ml)

dm2=dble(m2)
hnlm=O. OdO

hnlms=O. OdO

133



do 200 10=10min,10max,2

* *

* calculating angular integral <ll,mllYl0m0O12m2> *
* *

********************************************************************

xll=real(ll)
x12=real(12)
x10=real(10)
xml=real (ml)
ylm=-dble(2*(ml-2*int(ml/2))-1)*
* sqrt((dble(2*11+1) * (2*12+1)) ) *
* tj(xll,xlO,x12,0.0,0.0,0.0)*
* tj(xll,x10,xl2,-xml,0.0,xml)

*******************************************************************

* *

* calculating matrix element <nl,ll,mllHl0mOn2,12,m2> *
* *

*******************************************************************
hpart=2.0d0*ryd*qml(10)*ylm*radint(10)
hnlm=hnlm+hpart
if (10.ne.O)hnlms=hnlms+hpart
write(8,2000) nl,ll,ml,10,n2,12,ml,hpart

2000 format(lx,'<',i2,',',i2,',',i2,' H ',i2,' ',
* i2,',',i2,',',i2,'> = ',f15.9)

200 continue

write(8,1099)
write(*,1099)
if (ll.eq.12.and.nl.eq.n2) hnlm=IP-hnlm+ryd/(dnl**2)
write(8,2100) nl,ll,ml,n2,12,ml,hnlms
write(8,2100) nl,ll,ml,n2,12,ml,hnlm
write(*,2100) nl,ll,ml,n2,12,ml,hnlm
write(8,1099)
write(8,1099)

250 continue
2100 format(lx,'<',i2,',',i2,',',i2,' H ',

* i2,',',i2,',',i2,'> = ',f15.9)

*******************************************************************

* *

* calculating radial orbitals and saving them in file radorb.dat *
* *

********************************************************************

dr=rmax/3000.OdO
r=O.OdO
while (r.le.rmax) do
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r=r+dr
rnll=radhyp(dnl,dll,z,r)
rnl2=radhyp(dn2,dl2,z,r)
write(9,1000)r,rnll,rnl2
end while

close (9)

close (8)

1000 format (lx,flO.5,2x,fl5.12,2x,fl5.8)

stop
end

real*8 function radhyp(an,al,z,r)
implicit real*8 (a-h,o-z)
pi=3.141592653589793dO
x=2.OdO*z*r/an
coef=sqrt(gamma(an+al+l.OdO)/gamma(an-al)/an/an*z)/
* gamma(2.0dO*al+2.0d0)*exp(-x/2.0d0)*x**(al+l.d0)
alfa=-an+al+l.OdO
beta=2.OdO*al+2.0d0

rnl=-coef*hyperll(alfa,beta,x)
radhyp=rnl
return
end

real*8 function hyperll(a,b,x)
implicit real*8 (a-h,o-z)
eps=l.0d-15
t=0.OdO
c=l.0d0
f=l.0d0
while(abs(c).ge.eps) do
c=c*(a+t)/(b+t)/(t+l.OdO)*x
t=t+l.OdO
f=f+c
end while
hyperll=f
return
end

REAL*8 FUNCTION D9J(Xll,X12,X13,X21,X22,X23,X31,X32,X33)
REAL*8 PROD,SJ,DBLE
D9J=0.DO
DELTA=1.0
Y1=ABS(X21-X32)
Y2=ABS(Xll-X33)
Y3=ABS(X12-X23)
ZJL=AMAX1(Y1,Y2,Y3)
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Y1=X21+X32
Y2=Xll+X33
Y3=X12+X23
ZJU=AMIN1(Yl,Y2,Y3)
IF(ZJU.LE.0.) RETURN
ZSAVE=ZJU
ZJU=AMAX1(ZJU,ZJL)
ZJL=AMIN1(ZSAVE,ZJL)
IF(IFIX(ZJL).NE.IFIX(ZJL+0.5)) DELTA=0.5
ZJ=ZJL-DELTA

10 ZJ=ZJ+DELTA

IF(ZJ.GT.ZJU) GO TO 20

PROD=SJ(Xll,X21,X31,X32,X33,ZJ)
IF(PROD.EQ.0.DO) GO TO 10

PROD=PROD*SJ(X12,X22,X32,X21,ZJ,X23)
IF(PROD.EQ.0.DO) GO TO 10

PROD=PROD*SJ(X13,X23,X33,ZJ,Xll,X12)
IF(PROD.EQ.0.D0) GO TO 10
PROD=DBLE(2.*ZJ+1.)*PROD*(-1.DO) **IFIX(2.*ZJ)

20 D9J=D9J+PROD
IF(ZJ.LT.ZJU) GO TO 10
RETURN
END

SUBROUTINE TRIAD(A,B,C,DNORM,IERR)
REAL*4 VEC(3)
REAL*8 GAM,DELTA,DNORM
VEC (1) =A+B-C
VEC (2)=A-B+C
VEC(3)=-A+B+C
DO 10 I=1,3

IF(VEC(I).LT.0.0.OR.IFIX(VEC(I)).NE.IFIX(VEC(I)+.5)) GO TO 20
10 CONTINUE

DELTA=GAM(VEC(l1))+GAM(VEC(2))+GAM(VEC(3))-GAM(A+B+C+1.)
DNORM=DNORM+0.5D0*DELTA
IERR=0
RETURN

20 DNORM=0.DO
IERR=-1
RETURN
END

DOUBLE PRECISION FUNCTION SJ(Xl,X2,X3,Y1,Y2,Y3)
C

C THIS SUBPROGRAM COMPUTES THE VALUES OF 6-J SYMBOLS FOR ANY SET OF
C POSITIVE REAL ARGUMENTS Xl,X2,X3,Y1,Y2,AND Y3 USING A MODIFIED
C VERSION OF RACAH'S FORMULA FOR THE W-COEFFICIENT.
C DETAILS ARE GIVEN IN THE REFERENCE "THE 3-J AND 6-J SYMBOLS"
C ROTENBERG,METROPOLIS,BIVINS,AND WOOTEN,JR., MIT PRESS 1959.
C
C FUNCTIONS OR SUBROUTINES REQUIRED: TRIAD,GAM,DEXP
C
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REAL*8 DNORM,GAM,DELTA,SUM,DEXP
DIMENSION Z(7)

C

C CHECK FOR AUTOMATIC ZEROES
C VIA TRIANGULAR CONDITIONS
C

C 1. A ZERO VALUE FOR ANY ONE OF THE FOUR TRIADS: (X1,X2,X3),

C (Y1,Y2,X3), (X1,Y2,Y3), AND (Y1,X2,Y3).

C

C 2. A NONINTEGER VALUE FOR ANY ELEMENT OF ANY TRIAD.
C

C THE SUBROUTINE TRIAD(ARG1,ARG2,ARG3,DNORM,IERR)
C RETURNS THE ERROR CODE IERR=-1 IF THE TRIANGULAR
C CONDITIONS ARE NOT SATISFIED (OTHERWISE IERR=0)

SJ=0.DO
DNORM=0.ODO

C TEST TRIAD (X1,X2,X3)
CALL TRIAD(Xl,X2,X3,DNORM,IERR)
IF(IERR.EQ.-1) RETURN

C TEST TRIAD (Xl,Y2,Y3)
CALL TRIAD(Xl,Y2,Y3,DNORM,IERR)
IF(IERR.EQ.-1) RETURN

C TEST TRIAD (Y1,X2,Y3)
CALL TRIAD(Y1,X2,Y3,DNORM,IERR)
IF(IERR..EQ.-1) RETURN

C TEST TRIAD (Y1,Y2,X3)
CALL TRIAD(Y1,Y2,X3,DNORM,IERR)
IF(IERR..EQ.-1) RETURN
Z (1) =Xl+X2+X3

Z(2)=Xl+Y2+Y3
Z (3) =Yl+X2+Y3

Z (4) =Y1+Y2+X3

Z(5)=Xl+X2+Yl+Y2
Z(6)=X2+X3+Y2+Y3
Z(7)=Xl+X3+Yl+Y3
IM=MAXl(Z(1) , Z(2) , Z (3) , Z (4)) +1
IN=MIN1(Z(5) , Z (6) , Z (7)) +1
M=MINO (IM, IN)

N=MAXO (IM, IN)

DO 20 I=M,N
SUM=0. D)

ZZ=FLOAT(I-1)
DO 30 K=1,4

30 SUM=SUM+GAM(ZZ-Z(K))

DO 40 K=5,7
40 SUM=SUM+GAM(Z(K)-ZZ)

SJ=SJ+ (--1l.DO)**(I-l)*DEXP(GAM (ZZ+l.)+DNORM-SUM)
20 CONTINUE

RETURN
END

DOUBLE PRECISION FUNCTION TJ(Xl,X2,XT,XM1,XM2,XMT)
C FUNCTION TO CALCULATE THREE-J SYMBOLS WITH ARGUMENTS J1, J2,
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C J3, M1, M2, M3.

C FUNCTIONS OR SUBROUTINES REQUIRED: GAM,DEXP
REAL*8 NORM,DEM,DEXP,GAM
TJ=0.DO
IF(ABS(XM1).GT.Xl.OR.ABS(XM2).GT.X2) RETURN
IF(ABS(XMT).GT.XT) RETURN
IF(XM1+XM2+XMT.NE.0.0) RETURN
IF(X1+X2-XT.LT.0.0) RETURN
IF(X1-X2+XT.LT.0.0) RETURN
IF(-X1+X2+XT.LT.0.0) RETURN
NORM=GAM(Xl+X2-XT)+GAM(X1-X2+XT)+GAM(-Xl+X2+XT) +GAM(X+XM1)+
1GAM(X1-XM1)+GAM(X2+XM2)+GAM(X2-XM2)+GAM(XT+XMT)+GAM(XT-XMT)-
2GAM(Xl+X2+XT+1.)
NORM=0.5D0*NORM
M=MAX1(X2-XT-XM1,X1-XT+XM2,0.0)+1
N=MIN1(Xl+X2-XT,X1-XM1,X2+XM2)+1
DO 10 I=M,N
Z=FLOAT(I-1)
DEM=GAM(Z) +GAM(Xl+X2-XT-Z)+GAM(X-XM1-Z)+GAM(X2+XM2-Z) +
1GAM(XT-X2+XM1+Z)+GAM(XT-X1-XM2+Z)
L=IFIX(ABS(X1-X2-XMT+Z))
TJ=TJ+DEXP(NORM-DEM)*(-1.DO)**L

10 CONTINUE

RETURN
END

DOUBLE PRECISION FUNCTION GAM(Z)
C COMPUTES THE FUNCTION LOG N! IN DOUBLE PRECISION

DOUBLE PRECISION DLOG,DFLOAT
GAM=0.ODO
M=IFIX(Z)
IF(M .LT. 2) RETURN

DO 10 I=2,M
10 GAM=GAM+DLOG(DFLOAT(I))

RETURN
END

real*8 function qmltp(l)
implicit real*8 (a-h,o-z)
pi=3.141592653589793d0
aO=.529177086d0

.!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* molecule specific segment

re=2.080d0
amet=137.905
alig=18.9984046

********************************

delz=alig/(amet+alig)
rmet=delz*re/aO
rlig=(1.OdO-delz) *re/a
emet=2.OdO
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elig=-1.0do
q=emet*plgndr(1,0,-l.OdO)*rmet**l+elig*plgndr(1,0,1.OdO)*rlig**l
qmltp=q
return
end

real*8 FUNCTION PLGNDR(L,M,X)
implicit real*8 (a-h,o-z)
IF(M.LT.0.OR.M.GT.L.OR.ABS(X).GT.1.)PAUSE 'bad arguments'

PMM=l.dO
IF(M.GT.0) THEN
SOMX2=SQRT((l.dO-X)* (1.d+X))
FACT= 1. d0

DO 11 I=1,M
PMM=-PMM*FACT*SOMX2
FACT=FACT+2.dO

11 CONTINUE

ENDIF
IF(L.EQ.M) THEN
PLGNDR=PMM
ELSE
PMMP1=X*dble(2*M+l)*PMM
IF(L.EQ.M+1) THEN
PLGNDR=PMMP1
ELSE
DO 12 LL=M+2,L
PLL=(X*dble(2*LL-1)*PMMPl-dble(LL+M-1)*PMM)/dble(LL-M)
PMM=PMMP1
PMMP1=PLL

12 CONTINUE
PLGNDR=PLL
ENDIF
ENDIF
RETURN
END
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10.4 Program RADIAL for various radial integrals in hydrogenic problem.

Program RADIAL written in FORTRAN is used to calculate radial integrals in

hydrogenic problem. It allows for nonzero quantum defects and both negative and

positive powers of r.
***********************************************************************

* Zygmunt J. Jakubek - February 1993 *
* program calculates various radial integrals for hydrogenic problems *

program radial

real*8 rnl,rnll,rnl2,intrnl,radial,r,dr,rmax,rmin,z,radhyp
real*8 nfll,nfl2,lfll,lfl2,qdefl,qdef2,pi
common itadd
pi=3.141592653589793dO
print *,'nl='
read *,nfll
print *,'n2='

read *,nf12
print *,'11='
read *,lfll
print *,'12='
read *,lf12
z=l.0d0
print *,'rmax(a.u.)='
read *,rmax
print *,'rmin(a.u.)='
read *,rmin
print *,'dr(a.u.)='
read *,dr
print *,'exponent of operator'
read *,k

c print *,'bates summing correction'
c read *,itadd

open(21,file='radorb.dat')
open(9,file='matelem.dat')

r=rmin
intrnl=0.0d0
kabs=abs(k)
if(k) 10,10,20

10 while (r.le.rmax) do
r=r+dr
rnll=radhyp(nfll,lfll,z,r)
rnl2=radhyp(nfl2,lfl2,z,r)

c rnll=bates(nfll,lfll,r)

c rnl2=bates(nfl2,lfl2,r)
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rnl=rnll*rnl2*dr
do 11 i=l,kabs
rnl=rnl/r

11 continue

intrnl=intrnl+rnl
write(9,1010)r,10000*intrnl
end while
print *,intrnl
goto 111

20 while (r.le.rmax) do
r=r+dr
rnll=radhyp(nfll,lfll,z,r)
rnl2=radhyp(nfl2,lfl2,z,r)

c rnll=bates(nfll,lfll,r)
c rnl2=bates(nfl2,lfl2,r)

rnl=rnll*rnl2*dr
do 21 i=l,kabs
rnl=rnl*r

21 continue

intrnl=intrnl+rnl
write(9,1010)r,10000*intrnl
end while
print *,intrnl

1010 format(lx,f6.3,2x,fl8.11)

111 continue
dr=(rmax-rmin)/3000.OdO
r=rmin
while (r.le.rmax) do
r=r+dr
rnll=radhyp(nfll,lfll,z,r)
rnl2=radhyp(nfl2,lfl2,z,r)

c rnll=bates(nfll,lfll,r)
c rnl2=bates(nfl2,lf12,r)

write(21.,1000)r,rnll,rnl2
end while

100 continue
close (9)

close (21.)

1000 format(lx,flO.5,4(2x,f15.12))
end

real*8 function radhyp(an,al,z,r)
implicit real*8 (a-h,o-z)
pi=3.141592653589793dO
x=2. OdO*z*r/an
coef=sqrt(gamma(an+al+l.OdO)/gamma(an-al)/an/an*z)/
* gamma(2.OdO*al+2.OdO)*exp(-x/2.OdO)*x**(al+.OdO)
alfa=-an+al+l.OdO
beta=2. OdO*al+2. OdO

rnl=-coef*hyperll(alfa,beta,x)
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radhyp=rnl
return
end

real*8 function radial(n,l,z,r)
c
c r must be given in atomic units

c

real*8 r,rho,temp,rnl,lager,z
rho=2.OdO*z*r/dble(n)
111=2*1+1
nl=n-1-1
temp=exp (-rho/2.OdO)*rho**(1+1)*lager(nl, 111, rho)

rnl=-sqrt(dble(z*factrl(nl))/dble(n*n)/(factrl(n+l)))
**temp
radial=rnl
return
end

real*8 function lager(nl,lll,rho)

real*8 h,f,mm,g,rho
h=1.dO
f=l.dO
j=1
mm=dble(lll)

if(nl.eq.O) goto 2

f=l.dO+mm-rho
if(nl.eq.1) goto 2

1 j=j+l

g=f
f=((dble(2*j)+mm-.1.OdO-rho)*g-(dble(j)+mm-1. OdO)*h)/dble(j)
h=g
if(j.lt.nl) goto 1

2 lager=f
end

real*8 function radass(n,l,z,r)
real*8 n,l,z,r,rnl,pi

pi=3.141592653589793dO
rnl=sqrt(sqrt(2.OdO/r/r/r)/n/n/n/pi)*cos(sqrt(8.OdO*r)-.25dO*pi

* -(1+.5dO)*pi)*r
radass=rnl
return
end
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real*8 FUNCTION FACTRL(N)
real*8 a(33)
DATA NTOP,A(1)/0,1.dO/
IF (N.LT.0) THEN
PAUSE 'negative factorial'
ELSE IF (N.LE.NTOP) THEN
FACTRL=A(N+1)
ELSE IF (N.LE.32) THEN
DO 11 J=NTOP+1,N
A(J+1) =dble (J) *A(J)

11 CONTINUE

NTOP=N
FACTRL=A (N+1)
ELSE
FACTRL=EXP(GAMMa(dble(N+1)))
ENDIF
RETURN
END

real*8 FUNCTION BESSJ(N,X)
implicit: real*8 (a-h,o-z)
PARAMETER (IACC=40,BIGNO=l.dlO,BIGNI=l.d-10)
IF(N.LT.2)PAUSE 'bad argument N in BESSJ'
TOX=2.d0/X
IF(X.GT.dble(N))THEN
BJM=BESSJO (X)
BJ=BESSJ1(X)
DO 11 J=l,N-1
BJP=J*TOX*BJ-BJM
BJM=BJ
BJ=BJP

11 CONTINUE

BESSJ=BJ
ELSE
M=2*((N+INT(SQRT(dble(IACC*N))))/2)
BESSJ=0.dO
JSUM=0
SUM=0.dO
BJP=O.d
BJ=l.dO
DO 12 J=M,1,-1
BJM=J*TOX*BJ-BJP
BJP=BJ
BJ=BJM
IF(ABS(BJ) .GT.BIGNO)THEN
BJ=BJ*BIGNI
BJP=BJP*BIGNI
BESSJ=BESSJ*BIGNI
SUM=SUM*BIGNI
ENDIF
IF(JSUM.NE.0)SUM=SUM+BJ
JSUM=1 -JSUM
IF(J.EQ.N)BESSJ=BJP
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12 CONTINUE

SUM=2.dO*SUM-BJ
BESSJ=BESSJ/SUM
ENDIF
RETURN
END

real*8 FUNCTION BESSJO(X)
REAL*8 Y,P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5,RR1,,R2,R3,R4,R5,R6,
* Sl1,S2,S3,S4,S5,S6,x,ax,z,xx
DATA P1,P2,P3,P4,P5/1.DO,-.1098628627D-2,.2734510407D-4,
* -.2073370639D-5,.2093887211D-6/, Q1,Q2,Q3,Q4,Q5/-.1562499995D-1,
* .1430488765D-3,-.6911147651D-5,.7621095161D-6,-.934945152D-7/
DATA R1,R2,R3,R4,R5,R6/57568490574.DO,-13362590354.DO,651619640.7D

*0,

* -11214424.18D0,77392.33017D0,-184.9052456D0/,
* S1,S2,S3,S4,S5,S6/57568490411.DO,1029532985.DO,
* 9494680.718D0,59272.64853D0,267.8532712D0,1.DO/
IF(ABS(X).LT.8.dO)THEN
Y=X**2
BESSJO=(Rl+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))
* /(Sl+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6)))))
ELSE
AX=ABS (X)
Z=8.dO/AX
Y=Z**2
XX=AX-.785398164d0
BESSJO=SQRT(. 636619772d/AX) * (COS(XX) * (Pl+Y*(P2+Y*(P3+Y*(P4+Y
* *P5))))-Z*SIN(XX)*(Q1(Q2+Y*( (Q3+Y*(Q4+Y*Q5)))))
ENDIF
RETURN
END

real*8 FUNCTION BESSJ1(X)
REAL*8 Y,P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5,RR1,,R2,R3,R4,R5,R6,

* S1,S2,S3,S4,S5,S6,x,ax,z,xx
DATA R1,R2,R3,R4,R5,R6/72362614232.DO,-7895059235.DO,242396853.1DO

*

* -2972611.439D0,15704.48260D0,-30.16036606D0/,
* Sl,S2,S3,S4,SS,S6/144725228442.D0,2300535178.DO,
* 18583304.74D0,99447.43394D0,376.9991397D0,1.DO/
DATA P,P2,P3,P4,P5/1.DO,.183105D-2,-.3516396496D-4,.2457520174D-5

* -.240337019D-6/, Q1,Q2,Q3,Q4,Q5/.04687499995D0,-.2002690873D-3
*

* .8449199096D-5,-.88228987D-6,.105787412D-6/
IF(ABS(X) .LT.8.dO)THEN
Y=X**2
BESSJ1=X*(Rl+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6))))
* / (Sl+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6)))))
ELSE
AX=ABS (X)
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Z=8.dO/AX
Y=Z**2
XX=AX-2 .356194491d0
BESSJl=SQRT(. 636619772d/AX) * (COS(XX) * (Pl+Y*(P2+Y*(P3+Y*(P4+Y

* *P5))))-Z*SIN(XX)*(Ql+Y*(Q2+Y*(Q3+Y*(Q4+Y*Q5)))))* *SIGN(l.dO,X)
ENDIF
RETURN
END

real*8 function hyperll(a,b,x)
implicit real*8 (a-h,o-z)
eps=l.Od-15
t=O.OdO
c=l.Od0
f=l. dO

while(abs(c).ge.eps) do
c=c*(a+t)/(b+t)/(t+l.OdO)*x
t=t+l.OdO
f=f+c
end while
hyperll=f
return
end

real*8 function bates(xn,xl,xr)
implicit real*8 (a-h,o-z)
common itadd

at=(2.OdO/xn)**(xn)/dsqrt ( xn*xgamma(xn+xl+l.OdO)*gamma(xn-xl))
bat=at*xr**(xn)
itmax=dint(xn)
do 10 it=l,itmax+itadd
dt=dble(it)
at=at*xn/2.OdO/dt*(xl*(xl+l.OdO)-(xn-dt)*(xn-dt+l.OdO))
batl=at*xr**(xn-dt)
bat=bat+batl

10 continue

bates=bat*dexp(-xr/xn)
return
end
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11. Appendix C.

In isolated state or isolated supercomplex fits, the matrix of a Hamiltonian is of finite

dimension. Interactions between a finite number of states are treated explicitly. All other

interactions, between the selected state or states and other remote states must be taken

into account in some approximate way . Let H be a matrix of the total Hamiltonian in an

infinite basis set composed of 2 classes of basis functions. Class 1 basis functions are the

functions related to the given s-p-d-f-g--h supercomplex states. Class 2 functions are all

other higher-i molecular basis functions. The matrix of the Hamiltonian can be written as

H H=(H H_2) (C.1)

By applying the Van Vleck or contact transformation, the class 1 - class 2 matrix

elements in the transformed matrix can be minimized. The transformation is defined by

TtH T = H t =HI H 1 ) *2 (C.2)

The matrix T can be chosen to minimize H,-2 relative to Hi- 2 without introducing any

mixing between class 1 basis functions.

Let

H = H + H' (C.3)

and

ft = H + A.' + h2H"+ (C.4)

where X is an order-sorting parameter. T is a unitary matrix and can be expressed as

T = eixs (C.5)

where S is a Hermitian matrix. Using the Baker-Hausdorff lemma

e-iXHeiXs=H-iX[S,H]+(i2X2/2!)[S [S,H]]+ ..+((-1 )ninkn/n!)[S,[S,[S,. . .[S,H] .. ..]]] (C.6)
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we can easily compare terms with the same power of X.

k.O: I = HO

k': fi' = H'- i[S,H °]

k 2 : H" = - i[S,H'] - /2[S,[S,H°]]

3 3: "' = (i/6)[S,[S,[S,H 0 ]]] -_ 2[S,[S,H']]

By choosing

Sab = 0

Sap = 

Ea -EiHa'Ea-Ea'

where Roman and Greek indices denote, respectively, class 1 and

possible to make H_ 2 vanish i.e Haa = 0.

The lowest-order interblock matrix elements of ii occur now in

Hi", and neglecting it will be a source of smaller error than if H1

We can estimate what kind of error will be made by assuming H 'a

2 basis functions, it is

the second-order term,

12 would be neglected.

= 0.

Hax = i[(H'S)ac -(SH')aa ] + (SH°S)aa - [(H0SS)aa + (SSH)aa ]

= [H'bSba - SabH'a ] + i[HapSa - SaHa ]
b {

SaH Sya+ SaHcS,, + ESacHSPa + ESacHdSda
,Y ¢,c c,[ c,d

l[(HOSS)aa + (SSH°)a ]

By substituting Sab = 0, Sao = O, H°ab = 0, and Hat = 0, Eq. C.9 simplifies to

H" = i HabSba -i SanpHa ,
b P

or substituting Eq. C.8d

(C.7a)

(C.7b)

(C.7c)

(C.7d)

and

(C.8a)

(C.8b)

(C.8d)

(C.9)

(C.10)
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Hr H' + H ' H

fij = H ba +~Z E (C.11)
aa E Ea E -E E

Thus, neglect of Ha' matrix elements will result in a small error if

H' << Ea - E

Having transformed the total Hamiltonian, we can calculate effective matrix elements

within a selected block, for example the s-p-d-f-g-h supercomplex, as

- - o -, 2 -Hab f= Ha i +ab Hab

= Hb + Hab + i (H Sab - SaaHb) +
a

+ 2i(HSab S.H ) + 2 SH °SPb - 2 E (H acSaSab SSacb 
a a, ac

=E6'a +XHa X2X( HHb + H'H +
a aab ab IYEa -E Ea 

2 Haaaba aHabEa
a 2 (EaEa )(E - EEb)= E + ,H' +2 ( H'a H b + H'Hb aa a - E

(Ea Ea)(E1a Eb) -

Ea ab + Hb +x 2 ' Hib H' 'E
2 Ea E a - E b '

(C.12)

where the first 2 terms can be identified with the matrix elements of the Hamiltonian

defined in Eqs. 4.9, and the third term is the contact transformation correction to the

Hamiltonian. The correction terms can be written for simplicity as

AEab = "HaHabf(Ea,Eb,Ea), (C.13)
a

where

E 2(Ea + Eb)- Ea f(E aEb,E) = (Ea -Ea)(Eb -Ea) aba4)

The H' part of the exact Hamiltonian will be chosen as Htot - Ho0 , thus
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H' = Hr + Hfs + Hei.

Expanding the right-hand-side terms according to Eqs. 4.9 we will get

H' = B(r)[ (2 _J2) + (s2 S ) + (12 1 2)]

+ A(r) Is z

+ y(r) [ Jzs - zs - s2 ]

- B(r) [ J+l- + J-l ]

- B(r) [ J+s- + Js + ]

+ /2y(r) [ J+s- + Js + ]

+ B(r) [ l+s- + l-s+ ]

+ '/ 2A(r) [ I+s + I-s+ ]

- /2y(r) [ I+s+ I-s+ ]

+ W.

(=H,)

(=H 2 )

(=H 3 )

(=H4)

(=H 5 )

(=H6 )

(=H7)

(=H8)

(=H9 )

(=H 10)

(C.15)

When we substitute Eq. C.15 into Eq. C.13 we will get many products of matrix

elements, which can be schematically presented as

(C.16)

where i, j = 1,...,10. Thus, we can rewrite Eq. C. 13 as

AEab = fabaE(Hi)aa(Hj)ab 
a i,j

Let us assume, for example, Hi=Hj=Hl and evaluate the AE in the symmetrized basis set

,H aa 
AH a 'a Eia +1)-Q 2 +s(s+l)-a( 2 +l(1+l)_-2]2I(a IB(r)l [J(J

The generalized sum over a can be replaced by an effective constant, -D,

= (aaB(r)|a) 2

Ea - E-E
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I Hl1ne Lefebvre-Brion and Robert W. Field, Perturbations in the Spectra of Diatomic
Molecules, p. 244, Academic Press (1986).
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12. Appendix D.

12.1 Fluorescence detected OODR via the B2E+ intermediate state: transition

frequencies for the 38BaF molecule.
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The 3 numbers in each column are: J" (B2 +), Rydberg -- B + transition frequency
(in cm'l), and observed minus calculated transition frequency (in 10-3 cm').
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17947.431

17947.443

17948.013

17948.017

17948.632

17948.635

17949.276

17949.282

17949.985

17950.721

17951.519

17953.184

21.5
22.5

23.5
24.5
25.5

26.5

27.5

28.5

29.5

17966.995

17968.477

17969.993

17971.566

17973.174

17974.835

17976.510

17978.231

17980.016

4

1

-8

-2

-1

12

-3

-12

153

13

15

-2

5

-2

4

-9

-6

-7

-6

0

12

6

10

8

11

-6

0

3

-1

15

-8



(0,0) H2Z+ B2Z+

P22ff

2.5 17564.437
3.5 17564.064

4.5 17563.685

5.5 17563.370
6.5 17563.104

20.5 17564.268

21.5 17564.705

22.5 17565.202

23.5 17565.690

24.5 17566.252

25.5 17566.860

26.5 17567.519

27.5 17568.216

28.5 17568.975

29.5 17569.791

30.5 17570.627

31.5 17571.516

32.5 17572.462

33.5 17573.472

34.5 17574.484

35.5 17575.583

36.5 17576.707

37.5 17577.900

38.5 17579.106

39.5 17580.364
40.5 17581.711

41.5 17583.045

42.5 17584.461

43.5 17585.915

44.5 17587.433

53.5 17603.088

54.5 17605.087

55.5 17607.129

-14

18

-3

-5

-5

19

27

48

14

7

0

-3

-15

-11

3

-9

-16

-12

10

-14

3

-2

15

-2

-14

17

-13

-8

-12

1

-14

7

23

3.5

4.5

5.5

6.5

7.5

8.5

12.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

29.5

30.5

31.5

32.5

33.5

34.5

35.5
36.5
37.5

38.5

39.5

40.5

41.5

42.5

43.5

44.5

45.5

46.5

47.5

48.5

49.5

50.5

R 22ff

17568.202

17568.762

17569.362

17570.018

17570.686

17571.430

17574.923

17582.755

17584.053

17585.390

17586.785

17588.236

17589.734

17591.269

17592.849

17594.456

17596.144

17597.840

17599.625

17601.430

17603.276

17605.197

17607.144

17609.160

17611.200

17613.290

17615.414

17617.612

17619.854

17622.112

17624.464

17626.848

17629.277

17631.688

17634.208

17636.713

17639.371

17642.027

17644.712

6

3

-6

-5

-38

-41

-1

10

5

-6

-7

3

13

14

14

-6

9

-15

4

-3

-16

-1

-6

12

7

5

-9

4
14

-6

21

34

44

-10

-2

-56
-3

0

-15

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

29.5

30.5

31.5

PIlee

17565.064 -26

17565.182 7

17565.306 0

17565.481 -3

17565.729 21

17565.977 -1

17566.299 4

17566.656 -2

17567.082 14

17567.514 -10

17568.025 -1

17568.584 9

17569.176 6

17569.817 5

17570.484 -17

17571.228 -8

17572.010 -7

17572.833 -12

17573.716 -4

17574.635 -7

17575.608 -2

17576.640 16

17577.685 -1

17578.785 -9

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

29.5

30.5

Rilee
17572.888 -28

17573.916 -6

17574.971 -3

17576.081 8

17577.247 30

17578.396 -12

17579.631 -14

17580.922 -7

17582.256 -3

17583.635 0

17585.042 -15

17586.517 -9

17588.056 15

17589.619 16

17591.215 4

17592.865 0

17594.571 6

17596.350 38

17598.112 6

17599.961 15

17601.845 13

17603.766 1

17605.738 -6

(1,0) 32166 2Z+ - B2z+
P22ff

2.5 18124.502 -4
3.5 18124.113 -1

4.5 18123.771 -2

5.5 18123.492 7

3.5

4.5

5.5

21.5

R 22ff

18128.327

18128.902

18129.553

18147.075

21

2

8

7

Pnlee

6.5 18125.239

7.5 18125.258

8.5 18125.360

9.5 18125.511

0

-18
-4

5

7.5

8.5

9.5

10.5

Rllee
18132.288

18133.292

18134.387

18135.525

1

-18

1

10

154

-



6.5 18123.248 -2 22.5 18148.619 0 10.5 18125.709 8 11.5 18136.711 14

7.5 18123.062 -5 23.5 18150.223 -1 11.5 18125.958 10 12.5 18137.929 -3

8.5 18122.931 -6 24.5 18151.883 -1 12.5 18126.268 19 13.5 18139.216 -5

17.5 18124.140 0 25.5 18153.585 -14 13.5 18126.606 3 14.5 18140.558 -5

18.5 18124.509 -31 26.5 18155.365 -5 14.5 18127.018 8 15.5 18141.959 0

19.5 18124.979 -14 15.5 18127.471 0 16.5 18143.392 -17

20.5 18125.500 -1 16.5 18127.982 -4 18.5 18146.473 2

21.5 18126.056 -6 17.5 18128.552 -2 19.5 18148.074 -9

22.5 18126.686 9 18.5 18129.179 3 20.5 18149.763 13

23.5 18127.353 6 19.5 18129.825 -28 21.5 18151.484 12

24.5 18128.085 13 20.5 18130.597 13 22.5 18153.224 -24

25.5 18128.873 22 21.5 18131.362 -7 23.5 18155.087 7

26.5 18129.668 -18 22.5 18132.203 -6 24.5 18156.962 -6

27.5 18130.580 5 23.5 18133.106 1 25.5 18158.922 11

28.5 18131.526 5 24.5 18134.057 2 26.5 18160.922 13

29.5 18132.525 4 25.5 18135.072 11 27.5 18162.946 -19

30.5 18133.578 0 26.5 18136.119 -3

31.5 18134.697 6 27.5 18137.232 -8

32.5 18135.863 2 28.5 18138.428 15

33.5 18137.093 6

34.5 18138.376 5

35.5 18139.719 8

36.5 18141.101 -9

37.5 18142.558 -8

38.5 18144.079 -2

39.5 18145.659 5

40.5 18147.266 -20

41.5 18148.992 14

(0,0) 4.132r - B +

P2lee Q21fe R 21e

4.5 18285.925 -23 7.5 18289.885 -8 5.5 18291.570 -9

5.5 18286.079 7 7.5 18289.904 11 6.5 18292.661 -5

6.5 18286.236 -5 8.5 18290.610 1 7.5 18293.773 -25

6.5 18286.248 7 8.5 18290.622 13 9.5 18296.205 10

7.5 18286.431 -24 9.5 18291.366 -3 10.5 18297.468 7

7.5 18286.447 -8 9.5 18291.369 0 11.5 18298.751 -21

8.5 18286.690 -24 10.5 18292.167 -7 11.5 18298.773 1

8.5 18286.725 11 10.5 18292.175 1 13.5 18301.516 -11

9.5 18287.015 -2 11.5 18293.026 4 13.5 18301.517 -10

9.5 18287.020 3 11.5 18293.027 5 14.5 18302.961 -11

10.5 18287.378 13 12.5 18293.909 -7 14.5 18302.979 7

10.5 18287.392 27 12.5 18293.919 3 15.5 18304.450 -12

11.5 18287.752 -5 13.5 18294.863 10 15.5 18304.464 2

11.5 18287.763 6 13.5 18294.871 18 16.5 18305.987 -10

12.5 18288.196 1 14.5 18295.811 -24 16.5 18305.998 1

12.5 18288.199 4 14.5 18295.837 2 17.5 18307.580 3

13.5 18288.664 -13 15.5 18296.863 2 17.5 18307.600 23

13.5 18288.672 -5 15.5 18296.873 12 18.5 18309.200 -2
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14.5 18289.200 -5

14.5 18289.221 16

15.5 18289.772 -5

15.5 18289.777 0

16.5 18290.388 -7

16.5 18290.398 3

17.5 18291.050 -7

18.5 18291.761 -4

18.5 18291.767 2

19.5 18292.510 -7

19.5 18292.516 -1

20.5 18293.291 -24

20.5 18293.336 21

21.5 18294.153 -5

21.5 18294.160 2

22.5 18295.038 -9

22.5 18295.063 16

23.5 18295.978 -3

23.5 18295.998 17

24.5 18296.955 -5

24.5 18296.958 -2

25.5 18297.970 -15

25.5 18297.991 6

26.5 18299.056 1

26.5 18299.057 2

27.5 18300.196 25

28.5 18301.340 7

29.5 18302.551 11

30.5 18303.750 -43

31.5 18305.069 -23

32.5 18306.453 16

P22ff

2.5 18283.800 -1

3.5 18283.159 0

4.5 18282.561 0

5.5 18282.009 1

18.5 18278.869 11

19.5 18278.937 10

20.5 18279.022 -18

20.5 18279.037 -3

21.5 18279.178 -19

21.5 18279.202 5

22.5 18279.392 -7

22.5 18279.402 3

23.5 18279.640 -6

23.5 18279.650 4

24.5 18279.921 -16

24.5 18279.940 3

25.5 18280.265 -7

16.5 18297.939 8

16.5 18297.970 39

17.5 18299.056 11

17.5 18299.057 12

18.5 18300.196 -8

18.5 18300.209 5

19.5 18301.406 -2

19.5 18301.406 -2

20.5 18302.658 3

20.5 18302.661 6

21.5 18303.928 -19

21.5 18303.942 -5

22.5 18305.275 -9

22.5 18305.283 -1

23.5 18306.652 -12

23.5 18306.656 -8

23.5 18306.679 15

24.5 18308.090 1

24.5 18308.102 13

25.5 18309.548 -11

25.5 18309.577 18

26.5 18311.071 -2

26.5 18311.074 1

27.5 18312.607 -25

27.5 18312.611 -21

28.5 18314.244 10

28.5 18314.247 13

29.5 18315.870 -12

29.5 18315.880 -2

30.5 18317.606 32

Q22ef

2.5 18284.942 -6

3.5 18284.748 -17

4.5 18284.614 -13

5.5 18284.525 -8
18.5 18287.386 -4

18.5 18287.398 8

19.5 18287.906 -19

19.5 18287.908 -17

20.5 18288.508 4

20.5 18288.519 15

21.5 18289.116 -13

21.5 18289.122 -7

22.5 18289.793 -7

22.5 18289.799 -1

23.5 18290.519 3

23.5 18290.521 5

24.5 18291.283 6

18.5 18309.211 9

19.5 18310.892 20

19.5 18310.894 22

20.5 18312.607 20

20.5 18312.611 24

21.5 18314.357 9

21.5 18314.367 19

22.5 18316.150 -3

22.5 18316.165 12

23.5 18317.989 -15

24.5 18319.929 29

25.5 18321.859 17

26.5 18323.818 -11

27.5 18325.853 -8

28.5 18327.951 12

29.5 18330.092 29

30.5 18332.235 3

R22 ff

2.5 18286.538 -16

3.5 18286.818 -11

4.5 18287.182 33

5.5 18287.518 4

19.5 18297.259 -6

20.5 18298.266 -27

20.5 18298.277 -16

21.5 18299.369 3

21.5 18299.370 4

22.5 18300.481 -2

22.5 18300.482 -1

23.5 18301.643 -2

23.5 18301.651 6

24.5 18302.845 -6

24.5 18302.865 14

25.5 18304.097 -4

25.5 18304.101 0
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25.5 18280.276 4

26.5 18280.656 4

26.5 18280.664 12

27.5 18281.079 2

27.5 18281.092 15

28.5 18281.549 2

28.5 18281.561 14

29.5 18282.056 -5

29.5 18282.060 -1

30.5 18282.622 2

30.5 18282.638 18

31.5 18283.234 11

31.5 18283.235 12

32.5 18283.870 -1

32.5 18283.872 1

33.5 18284.573 8

33.5 18284.580 15

34.5 18285.308 5

34.5 18285.320 17

35.5 18286.094 8

35.5 18286.097 11

36.5 18286.903 -11

36.5 18286.916 2

37.5 18287.784 -3

37.5 18287.785 -2

38.5 18288.693 -12

38.5 18288.704 -1

39.5 18289.655 -13

39.5 18289.667 -1

40.5 18290.677 1
40.5 18290.680 4
41.5 18291.710 -20
41.5 18291.722 -8

42.5 18292.825 -4

Pilee

3.5 18229.240 -19

4.5 18229.392 -9

5.5 18229.588 2
6.5 18229.825 11

7.5 18230.066 -19

8.5 18230.398 0

8.5 18230.400 2

24.5 18291.284 7

25.5 18292.075 -8

25.5 18292.096 13

26.5 18292.934 -1

26.5 18292.944 9

27.5 18293.826 -7

27.5 18293.836 3
27.5 18293.839 6

28.5 18294.777 1

28.5 18294.785 9

28.5 18294.786 10

29.5 18295.755 -11

29.5 18295.761 -5

29.5 18295.772 6

30.5 18296.801 1

30.5 18296.802 2

30.5 18296.806 6
31.5 18297.865 -16

31.5 18297.874 -7

31.5 18297.885 4

31.5 18297.893 12

32.5 18298.995 -12

32.5 18299.002 -5

32.5 18299.021 14

33.5 18300.176 -4

33.5 18300.185 5

33.5 18300.188 8

34.5 18301.393 -5

34.5 18301.393 -5

34.5 18301.411 13

35.5 18302.661 -1

35.5 18302.664 2

36.5 18303.957 -16

36.5 18303.969 -4

37.5 18305.312 -18

37.5 18305.340 10

38.5 18306.724 -9

39.5 18308.187 5

40.5 18309.661 -16

41.5 18311.213 -6

42.5 18312.789 -19

Qiife

5.5 18231.400 32

6.5 18231.934 13

7.5 18232.535 18
10.5 18234.562 -6

11.5 18235.355 16

11.5 18235.359 20

12.5 18236.138 -15

26.5 18305.392 -4

26.5 18305.401 5

27.5 18306.724 -11

27.5 18306.736 1

28.5 18308.121 3

28.5 18308.129 11

29.5 18309.550 4

29.5 18309.550 4

30.5 18311.024 5

31.5 18312.532 -4

32.5 18314.101 4

33.5 18315.692 -12

34.5 18317.376 21

35.5 18319.060 10

36.5 18320.800 10

37.5 18322.573 -2

38.5 18324.401 -4

39.5 18326.276 -4

40.5 18328.200 1

41.5 18330.173 9

42.5 18332.161 -13

43.5 18334.213 -15

Rllee

4.5 18234.091 -18

6.5 18236.339 -12
7.5 18237.501 -35

8.5 18238.760 -4

9.5 18240.039 4

9.5 18240.053 18

10.5 18241.351 3
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9.5 18230.752 -3

9.5 18230.765 10

10.5 18231.151 -4

10.5 18231.168 13

11.5 18231.600 3

11.5 18231.622 25

12.5 18232.064 -18

12.5 18232.083 1

13.5 18232.595 -15

13.5 18232.629 19

14.5 18233.177 -3

14.5 18233.183 3

15.5 18233.795 1

15.5 18233.818 24

16.5 18234.454 4

16.5 18234.465 15

17.5 18235.130 -18

17.5 18235.147 -1

18.5 18235.866 -24

18.5 18235.878 -12

19.5 18236.666 -8

19.5 18236.671 -3

20.5 18237.501 1

20.5 18237.526 26

21.5 18238.356 -13

21.5 18238.358 -11

22.5 18239.302 21

23.5 18240.239 4

24.5 18241.225 -7

25.5 18242.303 32

26.5 18243.352 -1

27.5 18244.458 -19

28.5 18245.637 -7
29.5 18246.858 5

P12ff

2.5 18226.873 12

3.5 18226.162 13

4.5 18225.503 23

12.5 18221.687 -9
13.5 18221.437 17

12.5 18236.150 -3

13.5 18237.017 5

13.5 18237.018 6

14.5 18237.905 -9

14.5 18237.921 7

15.5 18238.836 -23

15.5 18238.855 -4

16.5 18239.850 1

16.5 18239.854 5

17.5 18240.884 1

17.5 18240.890 7

18.5 18241.966 5

18.5 18241.970 9

19.5 18243.071 -11
19.5 18243.074 -8

20.5 18244.243 -5

20.5 18244.248 0

21.5 18245.443 -15

21.5 18245.458 0

22.5 18246.712 -1

22.5 18246.721 8

23.5 18248.004 -7

23.5 18248.008 -3

24.5 18249.351 -3

24.5 18249.364 10

25.5 18250.732 -9

25.5 18250.739 -2

26.5 18252.179 6

26.5 18252.192 19

27.5 18253.649 0

28.5 18255.143 -27

Q12ef

19.5 18232.118 9

20.5 18232.724 9

21.5 18233.367 4
21.5 18233.373 10
22.5 18234.038 -16

10.5 18241.363 15

11.5 18242.690 -14

11.5 18242.709 5

12.5 18244.090 -13

12.5 18244.104 1

13.5 18245.533 -11

13.5 18245.538 -6

14.5 18247.018 -9

14.5 18247.030 3

15.5 18248.554 0

15.5 18248.556 2

16.5 18250.116 -6

16.5 18250.116 -6

17.5 18251.727 -6

17.5 18251.745 12

18.5 18253.379 -8

18.5 18253.396 9

19.5 18255.061 -22

19.5 18255.112 29

20.5 18256.815 -6

20.5 18256.823 2

21.5 18258.601 -1

21.5 18258.606 4

22.5 18260.419 -6

22.5 18260.427 2

23.5 18262.289 -1

23.5 18262.300 10

24.5 18264.192 -6

24.5 18264.207 9

25.5 18266.138 -10

25.5 18266.156 8

26.5 18268.139 -1

26.5 18268.142 2

27.5 18270.157 -17

27.5 18270.165 -9

28.5 18272.242 -8

28.5 18272.250 0

28.5 18272.251 1

29.5 18274.354 -15

29.5 18274.366 -3

30.5 18276.528 -2

R12ff

2.5 18229.477 5

3.5 18229.698 22

4.5 18229.946 23
18.5 18237.977 22

19.5 18238.882 24
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20.5 18220.707 -8

21.5 18220.779 -11

22.5 18220.903 -7

22.5 18220.909 -1

23.5 18221.063 -12

23.5 18221.077 2

24.5 18221.280 -4

24.5 18221.281 -3

25.5 18221.518 -19

25.5 18221.538 1

26.5 18221.836 1
26.5 18221.841 6
27.5 18222.185 8

27.5 18222.185 8

28.5 18222.564 0

28.5 18222.567 3

29.5 18222.985 -11

29.5 18223.001 5

30.5 18223.454 -19

30.5 18223.463 -10

31.5 18223.992 -3

31.5 18223.994 -1

32.5 18224.541 -20

32.5 18224.553 -8

33.5 18225.178 5

33.5 18225.180 7

34.5 18225.822 -7

34.5 18225.835 6

35.5 18226.533 2

35.5 18226.539 8

36.5 18227.266 -12

36.5 18227.291 13

37.5 18228.074 4

37.5 18228.077 7

38.5 18228.893 -14

38.5 18228.912 5

39.5 18229.785 -5

39.5 18229.802 12

40.5 18230.705 -13

40.5 18230.729 11
41.5 18231.692 0

41.5 18231.708 16

42.5 18232.724 12
42.5 18232.726 14

22.5 18234.050 -4

23.5 18234.779 -8

23.5 18234.781 -6
24.5 18235.551 -12

24.5 18235.567 4

25.5 18236.375 -6

25.5 18236.383 2

26.5 18237.266 25

27.5 18238.149 5

28.5 18239.082 -7

28.5 18239.091 2

29.5 18240.076 -1
29.5 18240.082 5

30.5 18241.098 -9
31.5 18242.181 2

31.5 18242.191 12

32.5 18243.289 -5

32.5 18243.292 -2

33.5 18244.458 7

33.5 18244.469 18

34.5 18245.632 -19

34.5 18245.649 -2

35.5 18246.882 -11
35.5 18246.901 8

36.5 18248.177 0

36.5 18248.185 8
37.5 18249.508 4

37.5 18249.516 12

38.5 18250.864 -9

38.5 18250.865 -8

39.5 18252.269 -15

39.5 18252.273 -11

40.5 18253.734 -4

40.5 18253.734 -4

41.5 18255.235 0

41.5 18255.240 5

42.5 18256.790 16

42.5 18256.798 24
43.5 18258.361 6

20.5 18239.793 -11

21.5 18240.804 9
22.5 18241.827 -3

22.5 18241.831 1

23.5 18242.905 -5

23.5 18242.919 9

24.5 18244.015 -18

24.5 18244.031 -2

25.5 18245.199 -2

25.5 18245.204 3

26.5 18246.402 -12

26.5 18246.424 10

27.5 18247.661 -9

27.5 18247.666 -4

28.5 18248.966 -6

28.5 18248.975 3
29.5 18250.316 -2

29.5 18250.318 0

30.5 18251.695 -13

30.5 18251.703 -5

31.5 18253.125 -19

31.5 18253.141 -3

32.5 18254.605 -19

32.5 18254.625 1

33.5 18256.142 -7
33.5 18256.155 6

34.5 18257.711 -8

34.5 18257.720 1

35.5 18259.320 -13

35.5 18259.329 -4

36.5 18260.991 -2

36.5 18260.992 -1
37.5 18262.702 4

37.5 18262.703 5

38.5 18264.452 5

38.5 18264.470 23
39.5 18266.247 5

39.5 18266.250 8

40.5 18268.080 -3
40.5 18268.085 2

41.5 18269.955 -13

41.5 18269.970 2

42.5 18271.922 23
43.5 18273.875 0

(1,0) 3.95 2A - B2Z+

P12ff

23.5 18199.855 -26

24.5 18199.932 -16

PQ12ef+P22ff

17.5 18208.204 -12

18.5 18208.464 -9

QR 2 ff+Q 22 ef

18.5 18217.145 -35

19.5 18217.949 9

R22ff

23.5 18232.890 11

24.5 18234.333 14
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18200.027 -34

18200.209 -10

18200.427 5

18200.677 7

18200.962 0

18201.289 -12

18201.687 3

18202.125 13

18202.591 5

18203.107 2

18203.679 10

18204.266 -12

18204.926 -7

18205.646 12

18206.391 12

18207.174 3

18207.993 -15

U
Pllee

18210.350 11

18210.430 18

18210.565 35
18210.696 4

18210.899 0
18211.143 -8

18211.447 0

18211.787 -1

18212.176 2

18212.602 -3

18213.078 -2
18213.588 -13

18214.166 0

18214.763 -13

18215.416 -14

18216.157 27

18216.883 9

18217.670 7

18218.499 2
18219.384 8

18220.312 12

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

29.5

30.5

31.5

32.5

33.5

34.5

35.5

39.5

40.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5
26.5

27.5

18208.781 6

18209.117 -5

18209.509 -4

18209.936 -13

18210.423 -6

18210.946 -9

18211.491 -34

18212.120 -20

18212.793 -7

18213.491 -14

18214.244 -11

18215.046 -4

18215.846 -43

18216.755 -19

18217.695 -8

18218.681 4

18219.696 -1

18224.207 -18

18225.460 -10

PQllfe+P2ee

18213.523 0

18214.012 3

18214.545 4

18215.114 -3

18215.728 -10

18216.418 14

18217.110 -4

18217.878 9

18218.688 19

18219.527 14

18220.424 22

18221.345 9

18222.325 10

18223.343 5

18224.412 6

18225.500 -18

18226.651 -25
18227.883 5

18229.115 -10

18230.398 -20
18231.750 -4

20.5

21.5

22.5

23.5

24.5

25.5
26.5

27.5

28.5

30.5

31.5

32.5

33.5

34.5

35.5

36.5

37.5

38.5

39.5
40.5

41.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

29.5

18218.793 47

18219.603 7

18220.497 6

18221.437 7

18222.414 -1

18223.463 19

18224.553 35

18225.654 17

18226.794 -7

18229.267 3

18230.535 -28

18231.895 -12

18233.279 -17

18234.710 -20

18236.183 -26

18237.719 -14

18239.284 -19

18240.896 -22

18242.545 -33

18244.277 -7

18246.002 -32

QRI ee+Q21fe

18216.292 21

18217.197 23

18218.137 16

18219.124 11

18220.169 20

18221.269 39

18222.365 10

18223.537 13

18224.750 12

18226.012 16

18227.303 4

18228.654 8

18230.066 28

18231.485 11

18232.975 20

18234.454 -27

18236.038 -13

18237.670 5

18239.302 -22

18241.036 8

18242.769 -7

18244.560 -9

18246.396 -10

18248.305 17

25.5 18235.773 -31

27.5 18238.882 -24

28.5 18240.524 0

30.5 18243.903 9

32.5 18247.454 12

33.5 18249.271 -12

34.5 18251.160 -8

36.5 18255.085 12

37.5 18257.090 -2

38.5 18259.143 -13

6.5

8.5

9.5

10.5

11.5

12.5

16.5

17.5

21.5

23.5

24.5

26.5

27.5

28.5

R21ee

18219.950 6

18222.718 7

18224.178 16

18225.647 -10

18227.205 9

18228.764 -16

18235.555 -5

18237.347 -20

18245.036 -3

18249.148 6

18251.258 -3

18255.666 33

18257.894 8

18260.172 -12
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25.5

26.5

27.5

28.5

29.5

30.5

31.5

32.5

33.5

34.5

35.5

36.5

37.5

38.5

39.5

40.5
41.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5
21.5

22.5
23.5
24.5
25.5
26.5
27.5
28.5



(1,0) 32110 2+- B 2+

P22ff

2.5 18068.090 -16

3.5 18067.726 5

4.5 18067.378 -16

5.5 18067.128 3

6.5 18066.925 10

7.5 18066.768 5

8.5 18066.678 8

17.5 18068.399 -17

18.5 18068.863 -30

19.5 18069.430 3

20.5 18070.028 12

21.5 18070.673 14

22.5 18071.381 23

23.5 18072.106 -4

24.5 18072.919 2

25.5 18073.817 40

26.5 18074.697 7

27.5 18075.649 -6

28.5 18076.674 1

29.5 18077.746 4

30.5 18078.853 -10

31.5 18080.024 -10

32.5 18081.249 -5

33.5 18082.532 7

34.5 18083.828 -16

35.5 18085.199 -12

36.5 18086.589 -37

37.5 18088.072 -16

38.5 18089.599 2

39.5 18091.138 -13

40.5 18092.750 0

41.5 18094.391 -2

42.5 18096.094 14

43.5 18097.821 11

44.5 18099.624 42

R 22ff

3.5 18071.954 8

4.5 18072.564 -1

5.5 18073.243 1

6.5 18073.974 -3

7.5 18074.771 2

8.5 18075.606 -14

9.5 18076.522 -6

10.5 18077.468 -26

22.5 18093.474 11

23.5 18095.161 12

24.5 18096.894 6

25.5 18098.679 0

26.5 18100.534 12

27.5 18102.425 9

Pllee

7.5 18069.080 -6

8.5 18069.221 -6

9.5 18069.419 -8

10.5 18069.673 -11

11.5 18069.997 -3

12.5 18070.392 20

13.5 18070.831 28

14.5 18071.290 0

15.5 18071.834 0

16.5 18072.430 -5

17.5 18073.099 6

18.5 18073.793 -13

19.5 18074.573 -3

20.5 18075.405 4

21.5 18076.304 23

22.5 18077.219 4
23.5 18078.210 5

24.5 18079.254 6

25.5 18080.336 -9

26.5 18081.462 -33

27.5 18082.694 -3

Rlee
9.5 18078.442 5

10.5 18079.632 -6

11.5 18080.947 50

12.5 18082.241 29

13.5 18083.593 9

14.5 18085.033 20

15.5 18086.494 -4

16.5 18088.014 -25

17.5 18089.634 -2

18.5 18091.268 -20

19.5 18092.985 -9

20.5 18094.767 11

21.5 18096.574 2

22.5 18098.439 -2

23.5 18100.369 5

24.5 18102.330 -10

12.2 Fluorescence detected OODR via the B2Z+ intermediate state: transition

frequencies for the 37BaF, 36BaF, and 3SBaF molecules.

137BaF (1, 0) GE - B+

P22ff R22ff Plle Rlee

21.5 17434.760 -15

22.5 17435.177 -7

23.5 17435.634 -3

10.5 17443.685 1

11.5 17444.559 29

21.5 17455.373 -3

17.5 17438.115 2

18.5 17438.565 -10
19.5 17439.089 8

10.5 17445.756 24

11.5 17446.811 6

12.5 17447.922 1
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17436.116 -18

17436.663 -12

17437.255 -4

17437.272 13

17437.888 1

17438.567 9

17439.294 21

17440.041 9

17440.834 -1

17441.683 2

17442.566 -5

17443.484 -21

17444.481 -2

17445.512 8

17446.555 -14

17447.690 13

23.5

26.5
27.5

28.5

29.5

30.5

31.5

31.5

32.5

33.5

34.5

35.5

36.5

17458.080

17462.426

17463.961

17465.562

17467.185

17468.855

17470.571

17470.576

17472.333

17474.131

17475.957

17477.860

17479.787

13

-3

-9

8

3

2

4

9

8

5

-14

1

-3

20.5 17439.623 -7

21.5 17440.233 10

22.5 17440.850 -10

136BaF (1,0) G 2 + - B2 +

P22ff

26.5 17437.492 9

27.5 17438.069 -41

28.5 17438.764 -17

29.5 17439.503 8

30.5 17440.252 -2

32.5 17441.905 3

33.5 17442.777 -14

34.5 17443.717 -8

37.5 17446.780 -10

13 BaF (1, 0) G - B2

P22ff

29.5 17439.718 13

30.5 17440.477 11

31.5 17441.275 3

32.5 17442.141 19

33.5 17442.981 -35

34.5 17443.920 -34

35.5 17444.972 35

37.5 17447.050 15

11.5

23.5

26.5

27.5

28.5

30.5

31.5

31.5

32.5

33.5

34.5

26.5

28.5

29.5

30.5

31.5

31.5

33.5

34.5

R2 2ff

17444.800 20

17458.318 7

17462.681 8

17464.198 -16

17465.803 5

17469.081 -16

17470.817 5

17470.818 6

17472.570 -1

17474.401 28

17476.221 2

Pllee

21.5 17440.440

22.5 17441.083

R2 2ff

17462.883 -18

17466.050 16

17467.671 5

17469.327 -15

17471.059 -3

17471.065 3

17474.642 8
17476.465 -21

-6

2

Pllee

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

Rllee

14.5 17450.515 -12

15.5 17451.765 -8

16.5 17453.057 -5

17.5 17454.398 3

18.5 17455.807 36

19.5 17457.172 -19

20.5 17458.669 15

21.5 17460.153 -8

22.5 17461.698 -14

23.5 17463.319 13

24.5 17464.952 9

25.5 17466.639 15

26.5 17468.348 -1

Rlee
17450.736 -11

17451.996 0

17453.282 -6

17454.635 11

17456.010 7

17457.427 0

17458.900 6

17460.395 -9

17461.959 0

17463.575 18

17465.176 -22

17466.888 4
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24.5

25.5

26.5

26.5

27.5

28.5

29.5

30.5

31.5

32.5

33.5

34.5

35.5

36.5

37.5

38.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

17449.100

17450.281

17451.531

17452.797

17454.144

17455.533

17456.960

17458.431

17459.937

17461.467

17463.070

17464.707

17466.418

17468.101

19

-3

0

-24

-11

1

7

14

12

-9

-1

-2

27
-15

-

=

3



137BaF (2, 0) G 2 +- B2 E+

P22ff

24.5 17943.609 -4

25.5 17944.094 8

27.5 17945.146 -8

34.5 17950.175 -20

35.5 17951.095 15

37.5 17952.976 0

38.5 17953.983 -3

56.5 17979.325 -12

57.5 17981.149 2

58.5 17983.001 1

137

'37BaF (1, 0) 32166 2Z+

P22ff

18.5 18124.714 -9

19.5 18125.186 9
20.5 18125.677 -7

21.5 18126.227 -19

22.5 18126.883 22

23.5 18127.534 2

24.5 18128.275 19

25.5 18129.031 -5

26.5 18129.840 -30

28.5 18131.717 12

29.5 18132.708 2

30.5 18133.754 -8

31.5 18134.871 -4

32.5 18136.054 10

33.5 18137.281 11

34.5 18138.576 23

35.5 18139.894 1

36.5 18141.281 -9

37.5 18142.748 2

38.5 18144.259 0

39.5 18145.816 -15

40.5 18147.465 3

20.5

21.5

22.5

23.5

24.5

25.5

26.5
27.5

28.5

29.5

30.5

31.5

33.5

34.5

35.5

57.5

58.5

59.5

22.5
24.5
25.5
26.5

R2 2ff

17961.710

17962.917

17964.187

17965.493

17966.821

17968.208

17969.622

17971.082

17972.593

17974.120

17975.712

17977.346

17980.696

17982.460

17984.280

18034.199

18036.983

18039.727

R2 2ff

18148.865

18152.074

18153.792

18155.559

8

-3

9

15

3

9

1

-2

5

-13

-7

0

-28

-14

14

11

44

-6

43

-15

-12

-16

22.5

22.5

23.5

23.5

24.5

25.5

26.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

PIee
17948.408

17948.415

17949.016

17949.025

17949.674

17950.399

17951.126

Pllee

18127.219

18127.642

18128.189

18128.727

18129.373

18130.070

18130.785

18131.544

18132.398

18133.292

18134.248

18135.251

18136.311

-8

-1

16

-7

14

13

1

18

-20

13

-18

6

27
11

-15

-1

-2

5

3

2

10.5

11.5

12.5

13.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

24.5

25.5

26.5

27.5

28.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

18.5

19.5

20.5
21.5

22.5

23.5

25.5

26.5

27.5

Rilee

17953.795 7

17954.833 10

17955.894 -5

17957.001 -15

17959.361 -10

17960.608 -2

17961.890 0

17963.200 -10

17964.584 13

17966.001 28

17967.420 4

17968.890 -10

17970.440 16

17971.986 -4

17973.614 18

17975.251 8

17976.925 -6

17978.668 7

Rllee

18135.723 9

18136.908 11

18138.125 -8

18139.440 17

18140.765 -1

18142.150 -13

18143.596 -17

18146.672 -4
18148.295 6

18149.949 -7

18151.686 8

18153.460 5

18155.271 -16

18159.116 0

18161.133 18

18163.159 -10
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12.3 Fluorescence detected OODR via the C2 13/2 intermediate state: term values for

the 0.88 2Z+ Rydberg series.

5.88 2E+, v=O

P2 2 ff R22ff Q12ef

5.5 35585.518 17 7.5 35592.450 -3 6.5 35585.731 -4

7.5 35592.440 -13 9.5 35601.252 -6 8.5 35592.799 1

9.5 35601.259 1 11.5 35611.916 6 10.5 35601.748 1

6.88 2z+, v=O

P22ff R2 2ff PQ12ef

5.5 36434.380 -4 7.5 36441.378 7 6.5 36434.239 -1

6.5 36437.643 -3 8.5 36445.553 -7 7.5 36437.482 1

7.5 36441.380 9 8.5 36441.190 3

9.5 36450.211 -2 10.5 36449.990 -4

OP12ee QR12ee Q22fe

13.5 36466.705 15 15.5 36480.135 -11 14.5 36480.442 11

14.5 36473.165 -20

15.5 36480.178 32

7.88 2z+, =O

P2 2ff R 22ff PQ12ef

6.5 36989.650 10 7.5 36993.336 -26 6.5 36986.196 -7

7.5 36993.372 10 8.5 36997.537 -11 6.5 36986.216 13

8.5 36997.553 5 9.5 37002.216 20 7.5 36989.432 -5

9.5 37002.192 -4 10.5 37007.300 -8 8.5 36993.137 2

10.5 37007.311 3 9.5 36997.293 -4

10.5 37001.916 -7

11.5 37007.021 7

8.88 2Z+, v=O

P22ff R22ff PQ12ef

5.5 37361.024 2 7.5 37368.008 6 6.5 37360.922 5

6.5 37364.285 5 8.5 37372.187 -2 7.5 37364.170 11

7.5 37367.986 -16 9.5 37376.848 9 8.5 37367.864 -1

9.5 37376.829 -10 10.5 37376.659 -10

13.5 37400.079 -3 14.5 37399.860 13

Pl12ee QR12 ee Q22fe

15.5 37406.783 -18 14.5 37407.044 -8

16.5 37414.225 6 15.5 37414.486 0

18.5 37430.445 -2 17.5 37430.758 12

9.88 2+, v=O

P22ff R2 2ff PQ12ef

5.5 37629.675 6 7.5 37636.717 9 6.5 37629.533 0
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7.5

8.5

9.5

10.5

11.5

12.5

37636.699
37640.904
37645.613
37650.766
37656.409
37662.511

-9

-24

-1

-1

23

40

10.88 2z+, v=O

P22ff

5.5 37826.551 -12
5.5 37826.566 3

6.5 37829.800 -23

6.5 37829.819 -4

7.5 37833.534 -14

7.5 37833.550 2

8.5 37837.738 1

9.5 37842.419 29

10.5 37847.513 6

11.5 37853.112 24

12.5 37859.141 8

14.5 37872.620 5

15.5 37880.053 1

9.5

10.5

11.5

13.5

7.5
8.5

9.5

10.5

11.5

12.5

14.5

15.5

16.5

17.5

37645.619
37650.758

37656.379
37668.989

5

-9

-7

-33

R2 2ff

37833.544 -4
37837.730 -7

37842.373 -17

37847.512 5

37853.126 38

37859.139 6

37872.634 19

37880.054 2

37887.935 -17

37896.275 -41

8.5

9.5

10.5

11.5

12.5

13.5

6.5
6.5

7.5

7.5

8.5

8.5

9.5

9.5

10.5

10.5

11.5

12.5

13.5

15.5

16.5

37636.556
37640.735
37645.437
37650.578
37656.193

37662.288

13

-17

7

-1

-4

3

Q12ef

37826.441 -9
37826.464 14

37829.677 -17

37829.681 -13

37833.397 -6

37833.410 7

37837.575 -1

37837.602 26
37842.215 1

37842.218 4
37847.309 -8

37852.894 10

37858.923 6

37872.382 7

37879.804 3

P2ee QR12ee Q22fe

13.5 37858.910 -7 15.5 37872.407 32 14.5 37872.658 43

14.5 37865.379 -34 16.5 37879.810 9 15.5 37880.052 0
15.5 37872.376 1 17.5 37887.677 -14 16.5 37887.948 -4
16.5 37879.807 6 18.5 37896.032 -14 17.5 37896.300 -16

11.88 2+, v=O

P22ff R22 ff Q12ef

5.5 37977.013 -24 7.5 37984.004 5 6.5 37976.878 -23
6.5 37980.286 -1 8.5 37988.183 9 7.5 37980.158 28
7.5 37984.018 19 9.5 37992.794 -18 8.5 37983.837 16
8.5 37988.195 21 9.5 37987.955 -20
9.5 37992.800 -12

12.88 2+, v=O

P22ff R2 2ff PQl2ef

5.5 38093.059 -12 7.5 38100.045 -14 6.5 38092.962 -2

6.5 38096.334 1 8.5 38104.250 0 7.5 38096.218 6
7.5 38100.068 9 9.5 38108.918 13 8.5 38099.918 -7
8.5 38104.267 17 10.5 38114.008 -16 9.5 38104.116 12
9.5 38108.908 3 10.5 38108.739 -10

10.5 38114.021 -3 11.5 38113.860 1
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13.88 2
F+, V=O

P22ff

5.5 38185.310 -7

6.5 38188.577 -2

7.5 38192.318 11

8.5 38196.505 5

R 22ff

7.5 38192.304 -3

8.5 38196.495 -5

p

Q12ef

6.5 38185.221 7

7.5 38188.463 1

8.5 38192.168 -6

9.5 38196.350 -1

4.88 2E+, v=l

P22ff R22ff rQl2ef

5.5 34698.780 -86 7.5 34705.760 -50 6.5 34698.600 2
5.5 34698.820 -46 7.5 34705.800 -10 6.5 34698.650 52

7.5 34705.840 30 7.5 34705.812 2 8.5 34705.510 50

8.5 34709.920 -52 7.5 34705.840 30 9.5 34709.570 -11

10.5 34719.710 33 9.5 34714.600 5 11.5 34719.250 46

9.5 34714.610 15

10.5 34719.690 13

12.5 34731.260 38

UP12ee R 12ee Q22fe

13.5 34730.620 -46 15.5 34744.000 32 14.5 34744.530-76

15.5 34743.960 -8 17.5 34759.190 80 16.5 34759.770 -60

4.88 T, v=3

P22ff R2 2ff rQ12ef

5.5 35746.077 -3 9.5 35761.763 -10 6.5 35745.745 -13

6.5 35749.311 -4 7.5 35748.959 15

7.5 35753.019 10 8.5 35752.563 -26

9.5 35761.771 -2 10.5 35761.254 1

10.5 35766.840 -3 11.5 35766.288 14

11.5 35772.389 18 12.5 35771.766 14

14.5 35791.706 1 15.5 35790.943 5

UP12ee Ree Q22fe

13.5 35777.641 -48 15.5 35790.951 13 14.5 35791.710 5

14.5 35784.077 -8 16.5 35798.241 -9 15.5 35799.072 5

15.5 35790.937 -1 17.5 35806.009 -12 16.5 35806.889 3

16.5 35798.244 -6 18.5 35814.260 11 17.5 35815.148 -16

6.88 E, v=2

P22ff R2 2ff rQ12ef

5.5 37498.120 -46 7.5 37505.160 5 8.5 37504.800 -36

7.5 37505.210 55

UP12ee tR12ee Q22fe

13.5 37530.250 19 15.5 37543.620 -11 14.5 37544.210 -3
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7.88 2E+, v=l

R2 2ffP22ff PQ12ef

5.5 37520.640 30 9.5 37536.830 3 6.5 37520.290 -4

7.5 37527.710 -60 8.5 37527.360 3

5.76 2Z+, V=0

P2 2 ff R2 2ff PQ12ef

5.5 35450.913 -4 7.5 35457.825 -12 6.5 35451.002 4

6.5 35454.145 -1 8.5 35461.988 -3 7.5 35454.245 6

7.5 35457.841 4 8.5 35457.941 -2

9.5 35466.619 13 10.5 35466.735 -1

11.5 35477.222 0 12.5 35477.378 0

13.5 35489.676 -11 14.5 35489.877 10

15.5 35504.008 10 16.5 35504.192 -11

6.76 2y+, =O

P22 ff R 22ff PQ12ef

5.5 36357.226 -1 9.5 36372.940 14 6.5 36357.298 -9

7.5 36364.153 1 10.5 36377.988 -19 8.5 36364.256 0

8.5 36368.315 7 9.5 36368.426 1

9.5 36372.926 0 10.5 36373.060 5

4.76 2y+, V=l

P22ff R 22 ff Q1lef

7.5 34451.060 13 9.5 34459.950 4 8.5 34451.160 11

8.5 34455.230 -32 11.5 34470.730 10 9.5 34455.380 4

9.5 34459.950 4 10.5 34460.060 -11

13.5 34476.970 -1

6.76 2 +, v=2

P22ff R 22 ff rQ12ef

7.5 37428.221 20 6.5 37421.550 -14
8.5 37432.313 -1 8.5 37428.480 0

9.5 37436.872 -15 9.5 37432.639 12

10.5 37437.245 13

11.5 37442.287 -9

14.5 37460.261 21

UP12ee UR12ee Q22fe

13.5 37453.774 -26

14.5 37460.241 1
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8.76 2+, V=l

P22ff R22ff Q12ef

6.5 37865.202 -21 6.5 37862.024 -97

7.5 37868.906 -5 7.5 37865.351 -15

8.5 37873.076 15 8.5 37869.066 -8

9.5 37877.711 38 9.5 37873.259 16

10.5 37882.757 9 11.5 37883.022 54

11.5 37888.276 -8 12.5 37888.527 3

12.5 37894.257 -25 13.5 37894.537 -4

UP12 ee R1ee Q22fe

13.5 37894.545 4
14.5 37901.021 0

15.5 37907.904 -58

5.08 2+, v=O

P2 2ff R22ff Q12ef

7.5 34504.048 -19 7.5 34504.059 -8 6.5 34497.041 4

9.5 34513.342 11 8.5 34504.466 18

11.5 34524.531 9 10.5 34513.799 -3

12.5 34525.071 -11

6.08 2E+, v=O

P2ff R22ff Q12ef

5.5 35785.327 2 7.5 35792.931 -1 6.5 35785.660 -5

6.5 35788.880 4 8.5 35797.499 9 7.5 35789.274 5

7.5 35792.928 -4 8.5 35793.372 -5

8.5 35797.488 -2 9.5 35797.984 -3

9.5 35802.539 -7 10.5 35803.103 7

7.08 2E+, V=O

P22ff R22ff rQ12ef

5.5 36568.298 -31 6.5 36568.587 -6

6.5 36571.961 -47 7.5 36572.361 31

7.5 36576.206 1 8.5 36576.605 12

8.5 36580.871 -44 9.5 36581.401 24

9.5 36586.182 48 10.5 36586.733 53

10.5 36591.906 49 11.5 36592.469 -28
11.5 36598.108 29 12.5 36598.801 -24
12.5 36604.813 19 13.5 36605.599 -59

14.5 36619.633 -46 15.5 36620.797 -24
16.5 36629.141 2

17.5 36637.980 40
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6.08 2+, V=l

P22ff Q12ef

5.5 36320.554 4 7.5 36328.127 1 6.5 36320.931 -4

7.5 36328.121 -5 9.5 36337.689 0 8.5 36328.632 3

7.08 2 E+, =l

P2ff R2 2ff rQ12ef

5.5 37105.719 -3 7.5 37113.605 5 6.5 37105.924 -8

6.5 37109.415 11 7.5 37109.665 5

7.5 37113.598 -2 8.5 37113.914 6

8.5 37118.284 .20 9.5 37118.668 -2

9.5 37123.518 10 10.5 37123.939 -2

5.24 2+, v=0

P22ff R22ff Q12ef

5.5 34758.234 -9 7.5 34765.421 6 6.5 34757.066 9

6.5 34761.596 -2 7.5 34760.229 -8

7.5 34765.414 -1 8.5 34763.894 12

8.5 34769.712 17 9.5 34767.972 -21

9.5 34774.428 -7 10.5 34772.576 7

10.5 34779.626 -9 11.5 34777.611 2

11.5 34785.298 4 12.5 34783.111 0

6.24 2z+, v=O

P22ff R2 2 ff rQ12ef

35934.405 -3

35934.416 8

35937.816 -2

35937.816 -2

35941.686 -.14

35941.702 2

35946.006 -49
35950.786 -98

35950.877 -7

35956.196 11

35961.936 -23

35968.136 -71

35968.198 -9

35974.866 -.61

35982.046 -75

35989.746 -.42

7.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

35941.696 -4

35941.712 12

35946.046 -9

35950.926 42

35956.246 61

35962.036 77

35968.286 79

35974.966 39

35982.176 55

35989.836 48

35997.996 68

36006.626 85

36015.666 39

36025.196 10

6.5

6.5

7.5

7.5

8.5

8.5

9.5

10.5

10.5

11.5

12.5

13.5

13.5

14.5

15.5

16.5

17.5

18.5
19.5

20.5

35933.086 6

35933.088 8

35936.284 1

35936.296 13

35939.957 0

35939.976 19

35944.106 3

35948.724 4

35948.736 16

35953.806 -2

35959.386 19

35965.376 -22

35965.380 -18

35971.896 -3

35978.846 -25

35986.296 -18

35994.156 -71

36002.556 -55

36011.426 -38

36020.796 8

5.5

5.5

6.5

6.5

7.5

7.5

8.5

9.5

9.5

10.5

11.5

12.5

12.5

13.5

14.5

15.5

169

R22ff



P12ee

13.5 35965.426 28

14.5 35971.926 27

15.5 35978.926 55

16.5 35986.356 42
17.5 35994.306 79

18.5 36002.686 75

19.5 36011.566 102

8.24 2+, v=O

P22ff

8.5 37153.184 12

9.5 37158.107 -9

10.5 37163.530 -9

`R12ee

15.5 35978.806 -65

16.5 35986.306 -8

17.5 35994.166 -61

18.5 36002.576 -35

19.5 36011.466 2

20.5 36020.796 8

21.5 36030.716 135

R 22ff

8.5 37153.181 9

9.5 37158.112 -4

10.5 37163.532 -7

12.5 37175.832 9

14.5

15.5

16.5

17.5

18.5

19.5

20.5

6.5

7.5

8.5

9.5

10.5

11.5

Q22fe

35982.176 55

35989.856 68

35997.956 28

36006.556 15

36015.656 29

36025.226 40
36035.296 77

rQ12ef

37139.690 -19

37143.016 20
37146.781 11

37151.026 -8

37155.772 -14

37161.038 9

9.24 2 +, v=O

P22ff R22ff

5.5 37470.166 -2 7.5 37477.329 12

6.5 37473.508 -4 8.5 37481.586 4

7.5 37477.316 -1

8.5 37481.572 -10

Ql2ef

6.5 37469.560

7.5 37472.882

8.5 37476.690

9.5 37480.982

7.24 2 Z+, v=2

P22ff R22 ff Ql2ef

5.5 37731.211 4 7.5 37738.507 -8 6.5 37729.901 -3

6.5 37734.641 17 8.5 37742.884 2 7.5 37733.107 -5

7.5 37738.506 -9 9.5 37747.713 -11 8.5 37736.801 9

8.5 37742.876 -6 10.5 37753.055 13 9.5 37740.942 -2

5.45 2l, V=1

P22ff R22 ff Q22ef

5.5 35594.910 -2 7.5 35601.476 10 6.5 35597.940 -15

7.5 35601.477 11 9.5 35609.896 5 8.5 35605.440 -4

9.5 35609.888 -3 11.5 35620.176 -8 10.5 35614.809 6

5.45 2n, v=3

P2 2ff

5.5 36655.156
6.5 36658.214
7.5 36661.761

8.5 36665.783

21

3

2

3

R22ff

7.5 36661.744 -15

8.5 36665.783 3

Q22ef

6.5 36658.194 -12

7.5 36661.731 -21

8.5 36665.779 9
9.5 36670.273 13

-3

2

4

-3
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9.5 36670.270 -4
10.5 36675.241 1

10.5 36675.218 -3

6.45 2 , =1

P22ff

5.5 36653.312 -.29
6.5 36656.499 -.16
7.5 36660.203 27
8.5 36664.343 19

9.5 36668.974 18

10.5 36674.036 -.38

R 22ff

7.5 36660.222 46
8.5 36664.342 18

9.5 36668.976 20
10.5 36674.039 -35

Q22ef

6.5 36656.438 -71

7.5 36660.197 29
8.5 36664.334 23

9.5 36668.930 -10

6.45 2n, v=3

P22ff R22f Q22ef

5.5 37716.115 -2 7.5 37722.694 3 6.5 37719.162 -8

6.5 37719.171 1 8.5 37726.683 4 7.5 37722.704 13

7.5 37722.683 -8 9.5 37731.135 0 8.5 37726.679 0

8.5 37726.682 3 10.5 37736.055 -2 9.5 37731.129 -5

5.23 2A, v=O

P2 2ff R2 2ff Q22ef

5.5 34738.638 12 7.5 34745.273 14 6.5 34741.725 19

7.5 34745.221 -38 9.5 34753.758 -24 8.5 34749.222 -62

8.5 34749.307 23 10.5 34758.795 44 9.5 34753.793 11

9.5 34753.787 5 10.5 34758.778 27

11.5 34764.165 -27 12.5 34770.101 -3

P 12ff R1 2ff Q12ef

7.5 34732.677 51 6.5 34729.233 16

9.5 34740.769 -41 8.5 34736.432 -58

10.5 34745.566 -19 9.5 34740.840 30

11.5 34750.786 -31 10.5 34745.604 19

13.5 34762.678 27 12.5 34756.511 6

6.23 2A, v=O

P22ff

5.5 35930.322 -29

5.5 35930.380 29
6.5 35933.456 -15

6.5 35933.470 -1

7.5 35937.050 -17

7.5 35937.130 63

8.5 35941.180 42

9.5 35945.647 -36

9.5 35945.700 17

10.5 35950.700 0

7.5

7.5

8.5

8.5

9.5

9.5

10.5

11.5

12.5

13.5

R 22 ff

35937.020 -47
35937.057 -10

35941.100 -38
35941.128 -10

35945.630 -53

35945.646 -37

35950.620 -80

35956.120 -68

35962.090 -56

35968.510 -63

6.5

6.5

7.5

7.5

8.5

8.5

9.5

10.5

10.5

11.5

Q22ef

35933.527
35933.540
35937.120
35937.123

35941.170
35941.195

35945.740
35950.680
35950.773

35956.200

53

66

47
50

21

46

39

-48
45

-30

171



35956.170 -18

35962.093 -53

35962.120 -26

35968.550 -23

35975.420 -46

35982.800 -26

35990.580 -72

35998.910 -31

36007.680 -13

36016.920 12

P2ff

35933.300 100

35937.490 10

35942.260 45

35947.420 14

35953.090 35

35959.210 48

35965.730 1

35972.790 35

35980.260 18

35988.180 -11

35996.640 37

36005.500 23

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

7.5

7.5

8.5

8.5

9.5

9.5

10.5

11.5

11.5

12.5

13.5

14.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

21.5

35975.420 -46

35982.830 4

35990.680 28

35998.990 49

36007.710 17

36016.970 62

36026.670 87

36036.830 112

R 12ff

35929.330 -44

35929.373 -1

35933.204 4

35933.210 10

35937.489 9

35937.510 30

35942.210 -5

35947.380 -26

35947.390 -16

35953.080 25

35959.120 -42

35965.716 -13

35965.780 51

35972.750 -5

35980.230 -12

35988.170 -21

35996.510 -93

36005.410 -67

36014.780 -35

36024.540 -78

12.5

13.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

17.5

18.5

19.5

20.5

35962.230 23

35968.640 -17

35968.678 21

35975.570 -11

35983.000 21

35990.840 -11

35999.090 -106

36007.900 -115

36017.220 -88

36026.970 -105

Q l2ef

35929.350 -48

35933.250 18

35937.580 59

35942.230 -35

35947.460 -6

35953.070 -55

35959.200 -40

35965.820 6

35972.830 -15

35980.330 -5

35988.230 -53

35996.660 -28

36005.570 18

36014.920 47

P2 2ee R22ee Q22fe

13.5 35968.760 103 15.5 35983.050 71 14.5 35975.420 -46

14.5 35975.650 69 16.5 35990.930 79 15.5 35982.770 -56

15.5 35983.030 51 17.5 35999.270 74 16.5 35990.590 -62

16.5 35990.860 9 18.5 36008.100 85 17.5 35998.880 -61

17.5 35999.260 64 19.5 36017.360 52 18.5 36007.660 -33

18.5 36008.040 25 20.5 36027.080 5 19.5 36016.870 -38

19.5 36017.310 2 21.5 36037.340 23 20.5 36026.620 37

P12ee Rl2ee Q12fe

13.5 35959.240 0 15.5 35972.820 -25 14.5 35965.830 101

14.5 35965.770 -44 16.5 35980.250 -85 15.5 35972.830 75

15.5 35972.850 5 17.5 35988.200 -83 16.5 35980.280 38

16.5 35980.350 15 18.5 35996.660 -28 17.5 35988.240 49

17.5 35988.310 27 19.5 36005.510 -42 18.5 35996.650 47

18.5 35996.730 42 20.5 36014.900 27 19.5 36005.520 43

19.5 36005.640 88 21.5 36024.680 28 20.5 36014.860 45
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8.23 2A, v=O

P22ff R22f Q22ef

5.5 37137.445 2 8.5 37148.526 -7 6.5 37140.794 91

6.5 37140.691 22 9.5 37153.147 -18 7.5 37144.489 62

7.5 37144.367 0 10.5 37158.243 -16 8.5 37148.731 99

8.5 37148.523 -10 12.5 37169.843 17 9.5 37153.381 63

9.5 37153.150 .15 10.5 37158.509 25

10.5 37158.268 9 11.5 37164.123 -10

P12ff Rl2ff Q12ef

5.5 37133.871 4 7.5 37140.041 23 6.5 37136.746 -1

6.5 37136.716 3 8.5 37143.803 17 7.5 37140.044 -17

7.5 37140.017 -1 9.5 37148.017 -2 8.5 37143.803 -32

8.5 37143.782 -4 10.5 37152.723 4 9.5 37148.077 8

9.5 37148.017 -2 11.5 37157.869 -18 10.5 37152.769 4

12.5 37163.530 4 11.5 37157.930 9

9.23 2A, v=O

P22ff R22ff Q22ef

6.5 37472.726 2 7.5 37476.335 -39 7.5 37475.948 38

7.5 37476.374 0 8.5 37480.503 -19 8.5 37479.725 -30

8.5 37480.566 44 9.5 37483.990 4

Pl2 ff R12ff Q12ef

6.5 37469.347 -22

7.5 37472.628 17

8.5 37476.374 28

9.5 37480.566 -22

7.23 2A, v=2

P22ff R2 2 ff Q22ef

5.5 37727.956 -16 7.5 37734.721 -3 6.5 37731.176 37

6.5 37731.101 -12 8.5 37738.811 10 7.5 37734.791 20

7.5 37734.711 -13 9.5 37743.334 -6 8.5 37738.869 -13

8.5 37738.790 -11 10.5 37748.346 7 9.5 37743.468 -2

P12ff R1 2ff Ql2ef

6.5 37726.074 11 7.5 37729.358 -2 6.5 37726.070 -16

7.5 37729.370 10 8.5 37733.107 -3 7.5 37729.380 -6

8.5 37733.119 9 9.5 37737.314 -2 8.5 37733.127 -6

10.5 37741.974 -7 9.5 37737.342 12

4.94 2A, v=O

P22ff R22ff Q22ef

7.5 34270.717 -120 6.5 34267.213 46

7.5 34270.890

8.5 34274.972

53

10
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P12ff

5.5 34261.302 -43

6.5 34264.094 13

7.5 34267.356 78

R12ff Q12ef

6.5 34264.042 -39

7.5 34267.327 49

8.5 34270.885 -49

5.94 2 A, v=0

P22ff

5.5 35643.371 5

6.5 35646.578 -2

7.5 35650.251 0

9.5 35658.974 5

14.5 35688.785 6

R 22ff

7.5 35650.249 -2

8.5 35654.382 1

9.5 35658.957 -12

10.5 35664.010 -5

11.5 35669.508 -11

Q22ef

6.5 35646.587 3

7.5 35650.260 3

8.5 35654.392 3

9.5 35658.978 -2

10.5 35664.031 1

P12ff

5.5 35640.634 -17

6.5 35643.410 9
7.5 35646.606 -4

8.5 35650.281 3

9.5 35654.420 15

R12 ff Q12ef

6.5 35643.408 4

7.5 35646.619 5

8.5 35650.271 -13

9.5 35654.414 1

10.5 35659.008 6

15.5 35688.827 -2

6.94 2A, v=O

P22ff

5.5 36475.453 1
6.5 36478.646 -7

7.5 36482.313 5

8.5 36486.403 -13

9.5 36490.971 -9

10.5 36495.942 -56

11.5 36501.453 -17

14.5 36520.620 5

Pt2ff

5.5 36472.905 5

6.5 36475.633 -1
7.5 36478.838 10

2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8.94 A, v=O

P22ff

R22ff

7.5 36482.311

8.5 36486.417

9.5 36490.989

11.5 36501.479

13.5 36513.774

16.5 36535.653

R1 2ff

7.5 36478.838

8.5 36482.482

9.5 36486.595

10.5 36491.156

11.5 36496.194

12.5 36501.658 -
13.5 36507.606 -
16.5 36528.207

R2 2ff

8.5 37391.023 3

9.5 37395.470 -15

Q22ef

3 6.5 36478.674 18

1 7.5 36482.327 14

9 8.5 36486.423 -2

9 9.5 36490.986 -8

-5 10.5 36496.013 -5

4 11.5 36501.499 0
12.5 36507.432 -6
15.5 36528.004 6

Q12ef

10 6.5 36475.629 -2

1 7.5 36478.829 6

3 8.5 36482.478 6

-5 9.5 36486.567 -11

6 10.5 36491.148 8

-15 11.5 36496.128 -30

-10 12.5 36501.617 -15

11 15.5 36520.805 21

Q22ef

6.5 37383.448 -5

7.5 37387.066 7
8.5 37391.146 27
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P12ff

5.5 37377.622 -1

6.5 37380.326 3

7.5 37383.460 -16

9.5 37391.147 0

10.5 37395.684 17
2

9.94 2A, v=O

P22ff

P1 2ff

7.5 37646.238 1

8.5 37649.814 11

10.94 2A, v=0

P22ff

P12ff

5.5 37834.642 -10

6.5 37837.294 2

7.5 37840.397 13

8.5 37843.944 8

9.5 37847.942 -11
2

11.94 2A,v=0

P22ff

R12 ff

R2 2 ff

7.5 37649.659 16

9.5 37657.953 26

10.5 37662.668 -33

R1 2 ff

R2 2ff

7.5 37843.579 -1

R1 2ff

R2 2 ff

10.5 37400.591 -19

11.5 37406.040 -4

Q12ef

6.5 37380.298 3

7.5 37383.410 -16

8.5 37387.002 1

10.5 37395.497 19

11.5 37400.371 -4

Q22ef

6.5 37646.253 7

8.5 37653.816 -26

9.5 37658.333 6

Q12ef

6.5 37643.041 -35

8.5 37649.668 12

9.5 37653.606 15

Q22ef

6.5 37840.402 12

7.5 37843.931 -12

8.5 37847.966 3

Ql2ef

6.5 37837.168 -6

7.5 37840.172 0

8.5 37843.584 2

Q22ef

6.5 37987.763 21

7.5 37991.261 -12

P1 2 ff R1 2ff Q12ef

6.5 37984.476 3

7.5 37987.352 -26

8.5 37990.676 15

6.94 2 A, v=l

P22ff R2 2ff Q22ef

7.5 37017.357 -16

8.5 37021.419 -38

6.5 37013.787 34

7.5 37017.394 1
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16.5 37070.371 3 8.5 37021.503

9.5 37026.034

15.5 37062.928

P12ff R1 2ff Q12ef

5.5 37007.896 28 6.5 37010.589 -1

6.5 37010.585 -8 7.5 37013.772 5

7.5 37013.762 -10 8.5 37017.401 4

8.5 37017.410 3 9.5 37021.493 12

15.5 37055.475 -6

9.86 %2, v=O

Q22fe Q22ef

15.5 37671.562 -18 15.5 37671.638 58

16.5 37678.851 -76 16.5 37678.943 16

17.5 37686.711 5

18.5 37694.930 13

19.5 37703.545 -15

10.86 2 , v=O

P1 2ff Q22ef

5.5 37818.255 6 6.5 37823.731 -3

7.5 37823.741 7 7.5 37827.122 12

8.5 37827.103 -7 8.5 37830.889 -18

9.5 37830.903 -4 9.5 37835.133 6

10.5 37835.126 -1 10.5 37839.784 17

11.5 37839.752 -15 11.5 37844.836 6

12.5 37844.831 1 12.5 37850.288 -26

13.5 37850.314 0 13.5 37856.232 12

14.5 37856.229 9 14.5 37862.577 29

15.5 37869.250 -47
16.5 37876.487 19

11.86 2 ,v=0

Q22ef

7.5 37977.597 -6

8.5 37981.295 -6

9.5 37985.409 -1

10.5 37989.949 19

11.5 37994.867 7

12.5 38000.189 -12

13.5 38005.986 34

14.5 38012.070 -44
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12.86 2 D, v=O

6.5

7.5

8.5

9.5

10.5

Q22ef

38090.998
38094.181

38097.784
38101.790
38106.229

16

-7

-12

-14

17
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13. Appendix E: List of program and data files.

b138_all.dat

b138_all.out

b lines.xls

b_gl-bil .out

b_gl-bil .dat

b_g1-bi2.dat

b_gl 1-bi2.out

b_gl-bi3.dat

b_gl-bi3.out

b_g2-bil .dat

b_g2-bi 1 .out

b l-bil.dat

b l-bil.out

si_588.dat

si_588.out

si_688.dat

si_688.out

si_788.dat

si_788.out

si_888.dat

si_888.out

si_988.dat

si_988.out

si 1088.dat

sil 1088.out

si 1188.dat

sil 1188.out

si 1288.dat

- 138BaF fluorescence detected OODR

- 138BaF fluorescence detected OODR

- list of lines (OODR via B21+): Excel

via B2;+ intermediate: fit input

via B2Y+ intermediate: fit output

5.0 file

- 137BaF (1, 0) G2X+ - B2Z+: fit output

- 137BaF (1, 0) G2z+ - B2Z+: fit input

- 136BaF (1, 0) G2y+ - B2Z+: fit input

- 136BaF (1, 0) G2 + - B2+: fit output

- 35BaF (1, 0) G2 - B2X+: fit input

- 135BaF (1, 0) G2z+ - B2z+: fit output

- 137BaF (2, 0) G2z+ - B2z+: fit input

- 137 BaF (2, 0) G2 + - B2 z+: fit output

- 137 BaF (1, 0) 32166 2+ - B2E+: fit input

- 137 BaF (1, 0) 32166 2y+ - B2z+: fit output

- 5.88

- 5.88

-6.88

-6.88

- 7.88

- 7.88

- 8.88

- 8.88

+, v=0

2Z+, V=0

+, V=0

2+, V=0

2+, V=0

2+, v=0

v, V=

2+, V=0

- 9.88 2Z+, V=0

-9.88 2+, v=0

-10.88 2+,=(
- 10.88 2E+, V=

- 11.88 2E+, v=

- 11.88 2+, V=l

- 12.88 2, v=i

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

) - input file

- output file

3 - input file

- output file

- input file
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si_1288.out

si_1388.dat

si_1388.out

si_488vl.dat

si_488vl.out

si_488v3.dat

si_488v3.out

si_688v2.dat

si_688v2.out

si_788vl.dat

si_788vl.out

si 576.dat

si_576.out

si 676.dat

si 676.out

si 476vl.dat

si 476vl.out

si 676v2.dat

si 676v2.out

si_876vl.dat

si 876vl.out

si 508.dat

si_508.out

si_608.dat

si_608.out

si 708.dat

si_708.out

si 608vl.dat

si_608vl.out

2 +- 12.88 ,v=
2 +- 13.88 +,v=I

-1.88 2, =- 13.88 E ,v=

- 4.88 2 ,

-4.88 2Y,
- 4.88 2E,

- 4.88 2Z,

-6.88 2Z,
- 6.88 2E+,

- 7.88 2E+,

- 7.88 2 +,

- 5.76 2Z+,

v=l

v=l

v=3

v=3

v=2

v=2

v=l

v=l

v=O

- output file

3 - input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- 5.76 2+, v=0 =O- output file

- 6.76 2+, v=0 - input file

- 6.76 2E+, v=O - output file

-4.76 2+, v=1 -input file

- 4.76 2E+, v=1 - output file

- 6.76 2E+, v=2 - input file

- 6.76 2+, v=2 - output file

- 8.76 2E+, v=1 - input file

- 8.76

- 5.08

- 5.08

- 6.08

-6.08

- 7.08

- 7.08

-6.08

-6.08

2 +,

2+,
2 +,

2+,

2 +,

2:+,
2 +,

2+,
2 +,

2 +

v= -

v=O -

v=O -

v=O -

v=O -

v=O -

v=O -

v= -

v= -

output file

input file

output file

input file

output file

input file

output file

input file

output file

179



si_708vl.dat

si_708vl.out

si_524.dat

si_524.out

si_624.dat

si_624.out

si_824.dat

si_824.out

si_924.dat

si_924.out

si_724v2.dat

si_724v2.out

pi_545vl.dat

pi_545vl.out

pi_545v3.dat

pi_545v3.out

pi_645vl.dat

pi_645vl .out

pi_645v3.dat

pi_645v3.out

de_523.dat

de_523.out

de_623.dat

de_623.out

de_823.dat

de_823.out

de_923.dat

de_923.out

de 723v2.dat

- 7.08 2E,

- 7.08 2+,

- 5.24 2+,

- 5.24 2 +,

- 6.24 2 +,

- 6.24 2+,

- 8.24 2Z,

- 8.24 2Z,

- 9.24 2+,

- 9.24 2E+,

- 7.24 ,

- 7.24 2Z+,

- 5.45 2rI,

- 5.45 2r-,

- 5.45 21-,

- 5.45 2-1,
- 6.45 2I,

- 6.45 2-1,

- 6.45 2rI,

- 6.45 2rI,

- 5.23 2A,

- 5.23 2A,

- 6.23 2A,

- 6.23 2A,

- 8.23 2A,

- 8.23 2A,

v=l

v=l

v=O

v=O

v=O

v=O

v=O

v=O

v=O

v=O

v=2

v=2

v=l

v=l

v=3

v=3

v=l

v=l

v=3

v=3

v=O

v=O

v=O

v=O

v=O

v=O

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- input file

- output file

- 9.23 2A, v=0 - input file

- 9.23 2A, v=O - output file

- 7.23 2A, v=2 - input file
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de 723v2.out

de 494.dat

de_494.out

de 594.dat

de_594.out

de_694.dat

de_694.out

de_894.dat

de 894.out

de_994.dat

de_994.out

de_1094.dat

de_1094.out

de 1194.dat

de 1194.out

de_694vl.dat

de_694vl.out

fi_986.dat

fi_986.out

fi 1086.dat

fi 1086.out

fi 1186.dat

fi 1186.out

fi 1286.dat

fi 1286.out

tocenter.for

tocenter.exe

b lines.xls

c lines.xls

- 7.23 2A, v=2 - output file

- 4.94 2A, v=O - input file

- 4.94 2A, v=O - output file

- 5.94 2A, v=O - input file

- 5.94 2A, v=O - output file

- 6.94 2A, v=O - input file

- 6.94 2A, v=O - output file

- 8.94 2A, v=O - input file

- 8.94 2A, v=O - output file

- 9.94 2A, v=O - input file

- 9.94 2A, v=O - output file

- 10.94 2A, v=O - input file

- 10.94 2A, v=O - output file

- 11.94 2A, v=0 - input file

- 11.94 2A, v=O - output file

- 6.94 2A, v=l - input file

- 6.94 2A, v=1 - output file

- 9.86 20, v=O - input file

- 9.86 2 , v= - output file

- 10.86 2(D, v=O - input file

- 10.86 20, v=O - output file

- 11.86 2(, v=O - input file

- 11.86 2(, v=O - output file

- 12.86 20D, v=O - input file

- 12.86 2D, v=0 - output file

- fortran source code for TOCENTER program

- MS DOS executable code for TOCENTER program

- Excel 5 file with data shown in Appendix D, Sections 12.1 and 12.2

- Excel 5 file with data shown in Appendix D, Section 12.3
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bafl O.xls

bafl 1.xls

bafl 2.xls

bafl 3.xls

bafl4.xls

chinal 14.xls

chinal 5.xls

chinal 16.xls

radial.for

radial.exe

bafspec.for

bafspec.exe

lsq.for

thesis.doc

thesis.prn

- Excel 5 file with n*l10 supercomplex data and graphs

- Excel 5 file with n* 1 supercomplex data and graphs

- Excel 5 file with n*z12 supercomplex data and graphs

- Excel 5 file with n* 13 supercomplex data and graphs

- Excel 5 file with n*-14 supercomplex data and graphs

- Excel 5 file with n*;14, v=l supercomplex data and graphs

- Excel 5 file with n*t1 5, v=1 supercomplex data and graphs

- Excel 5 file with n* 16, v=1 supercomplex data and graphs

- fortran source code for the RADIAL program

- MS DOS executable code for the Radial program

- fortran source code for the BAFSPEC program

- MS DOS executable code for the BAFSPEC program

- fortran source code for the least-squares fitter

- this document in MS Word 6.1 format

- this document printed into file, HP 4 printer
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