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Abstract
In this thesis I present a microscopic model for the high-To cuprates, and analyze the
phase diagram predicted by this model. The model is based on the t-J Hamiltonian,
which describes the physics of a single copper-oxide plane. An important feature of
the t-J model is that close to half filling the motion of the electrons is controlled by
the empty sites in the system. This leads to spin-charge separation, which I take
into account using the slave-boson formalism. In this approach the electrons are split
into spinons and holons, which carry, respectively, the spin and the charge degrees of
freedom of the electrons. Superconductivity will occur when the spinons form Cooper
pairs and the bosons are Bose condensed.

I first analyze the model in the mean-field approximation. Novel flux phases are
found at low doping, indicating that the system tries to simulate a Nel ordered state
to minimize its magnetic energy. At intermediate doping the mean-field analysis pre-
dicts a superconducting gap with a d-wave symmetry.7 A drawback of the mean-field
analysis is that it grossly overestimates the superconducting transition temperature,
especially at low doping.

One can improve on the mean-field results by including a fluctuating gauge field in
the analysis. This gauge field mediates the interactions between the spinons and the
holons, which are strongly coupled. I show in Chapter 3 that the fluctuating gauge
field suppresses the tendency of the holons to Bose condense.8 In order to obtain
this result I developed a new technique based on a summation over Feynman paths
which is a very convenient approach in the strong-coupling limit t > J.

Chapter 4 focuses on the pair-breaking effects of the gauge field, which can be
analyzed by studying the contribution of the gauge field to the total free energy. I show
that there is a significant reduction of free energy due to gauge field fluctuations, which

7 M.U. Ubbens and P.A. Lee, Phys. Rev. B 46, 8434 (1992).
8 M.U. Ubbens, P.A. Lee, and N. Nagaosa, Phys. Rev. B 48, 13762 (1993).
9 M.U. Ubbens and P.A. Lee, submitted to Phys. Rev. B (1993).



is partly lost when a gap opens up in the spinon excitation spectrum.1 0 At low doping
this cost of free energy prevents the system from going into a superconducting state.
At higher doping the pair-breaking effects of the gauge field become less important,
and as a result superconductivity can survive in an intermediate range of doping
0.05 <x < 0.35. An important consequence of this analysis is that for a single CuO2
plane the spin-gap phase is completely destroyed by gauge-field fluctuations.

In Chapter 5 a model for two coupled CuO2 planes is presented, to explain the
spin-gap phase in multi-layered materials such as YBa2Cu306 6.11 This model uses
the t-J Hamiltonian to describe each CuO2 plane, with an additional antiferromag-
netic inter-plane interaction coupling the two planes. I show that the presence of
antiferromagnetic correlations strongly enhances the pairing between spinons on ad-
jacent CuO2 planes. 12 I propose that the spin-gap phase in multi-layered cuprates
is due to enhanced inter-plane pairing, described by an inter-plane order parameter
A±(rij) = (f (T1 ) ( 2) - f()f(2)) I argue that the gauge field, which is very effective in
destroying the in-plane order parameter All, is less effective in destroying the inter-
plane order parameter A1 . I use this model to calculate the NMR-relaxation rate, the
echo-decay rate, and the Knight shift. The numerical results are in good agreement
with the experimental data on YBa2Cu30 6. 6.

Thesis Supervisor: Patrick A. Lee
Title: William & Emma Rogers Professor of Physics

"0 M.U. Ubbens and P.A. Lee, to appear in Phys. Rev. B (1994).
'1 M.U. Ubbens and P.A. Lee, submitted to Phys. Rev. Lett. (1993).
12M.U. Ubbens and P.A. Lee, M.I.T. preprint (1993).



Acknowledgements

It has been a great pleasure to work with my advisor, Patrick Lee, whose experience

and insight in the field of condensed matter physics was invaluable for the progress of

my research. Whenever I was temporarily stuck on a minor problem, or was anxious

to show some new results, Patrick was always there to discuss my work and give

suggestions on how to move on. The enthusiasm he showed for my work was greatly

appreaciated, especially at times when my progress was slow.

Special thanks go to Naoto Nagaosa, who was a postdoc at M.I.T. during my first

two years as a graduate student. His ideas got me started on several projects, and I

enjoyed his clear explanations during many fruitful conversations.

I am grateful to my past and present officemates Jari Kinaret, Michael Faas, Mitya

Chklovskii, Bruce Normand and Hyunwoo Lee, for creating a pleasant atmosphere

to work in, and for the daily conversations about life, physics, and everything in

between.

I also wish to express my gratitude to Pieter Klaassen, Lars Schade, Timo Smit,

Herre van der Zant, Jordina Vidal, Alexis Falicov, Susie Glass, Leslie Young, Paul

Starkis, Katya Burns, Mike Peterson, Andreas Kussmaul and Reiko Oda. Thanks to

these friends, and many others who I failed to mention here, my stay in Boston has

been a very enjoyable and memorable period of my life, that I will undoubtedly look

back upon with a smile.

Finally, I wish to thank my parents for encouraging a scientific career, and for

their continuing love and support during my stay in the United States.

4



Contents

List of Figures

1 High-To superconductivity

1.1 History of the high-T, cuprates ...........

1.2 The phase diagram of the high-T, superconductors

1.3 The material structure of cuprates ..........

1.4 How to model a CuO2 plane? ............

1.5 The t-J model .

1.6 Spin-charge separation.

1.7 The phase diagram of spinons and holons ......

1.8 Outline of this thesis .................

2 Flux phases in the t-J model

2.1 Introduction.

2.2 Hartree-Fock-Bogoliubov decomposition

2.3 Flux phases.

2.4 Phase diagram.

2.5 Conclusions ..................

3 Path-integral analysis of bosons interacting

3.1 Introduction. .................

3.2 The gauge-field model.

3.3 Annealed versus quenched averaging ....

3.4 The single-particle partition function ....

with a

. . . .

. . . .

. . . .

. . . .

13

13

14

17

20

22

25

27

30

33

33

34

36

38

42

gauge

. . .

. . .

. . .

. . .

field 44

..... .. 44

..... .. 46

..... .. 49

..... .. 53
5

12

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

............................

..............

..............



3.5 Response to an external field .......................

3.6 Discussion .................................

4 The superconducting phase diagram in the gauge-field description

of the t-J model

4.1 Introduction.

4.2 The role of gauge-field fluctuations in the t-J model .........

4.3 The gauge-field contribution to F(Ao) in the presence of a gap ....

4.3.1 The propagator at T - 0 .....................

4.3.2 The propagator for A0 < T .............

4.4 Numerical analysis of Fgauge(Ao)..............

4.5 Conclusions ..........................

. . 92

. . 94

. . 98

5 Spin-gap formation in bi-layer cuprates due to enhanced

pairing

5.1 Introduction.

5.2 RPA analysis of two coupled CuO2 planes .........

5.3 Inter-plane pairing.

5.4 Numerical analysis of inter-plane pairing ..........

5.5 Pair-breaking effects of the gauge field ...........

5.6 NMR-relaxation rates .

5.7 Discussion ...........................

inter-layer

100

... . . . 100

... . . . 103

... . . . 110

... . . . 114

... . . . 119

... . . . 123

... . . . 130

A Decoupling of Si · Sj

B Diagonalization of HMF

C Calculation of Pret

135

138

140

6

63

70

73

73

75

85

89



List of Figures

1-1 The phase diagram of La2 Sr2_,CuO4 measured by Keimer et al. [5]. 15

1-2 The chemical structure of La2CuO 4 .................... 18

1-3 The chemical structure of T12Ba 2Can_lCunO 2n+ 3+, for n = 1, 2, 3. . . 19

1-4 The structure of a single CuO 2 plane ................... 20

1-5 The Fermi surface of the t-J model close to half filling. ........ 24

1-6 The t-J model in the slave-boson approach. On each site there is either

a spinon or a holon. ............................. 26

1-7 A qualitative phase diagram of the t-J model, based on the pairing

transition of the spinons and the Bose condensation of the holons. .. 28

2-1 The symmetry of the order parameters Xij and Aij ........... 37

2-2 The global phase diagram for t/J = 0.5. For 6 <0.6 the gap A has a

d-wave symmetry. For 6 <0.12 staggered-flux phases become favorable. 39

2-3 Phase diagram for t/J = 0.5. For 6<0.12 staggered-flux phases be-

come energetically favorable. For 6 <0.06 a r-flux phase becomes sta-

ble. The shaded area represents the hysteresis of a first-order transition

between the d-wave-pairing state and the flux-phase region ....... 40

2-4 Phase diagram for t/J = 2. Comparison with the phase diagram for

t/J = 0.5 shows that for larger values of t/J the whole phase dia-

gram gets pushed towards lower values of 6. The staggered-flux phase

region still extends to 6 0.02, but the r-flux region is only stable

for 6<0.002. For 6 > 0.02 there is a continuous transition from the

d-wave-pairing state to the flux-phase region ............... 41

7



2-5 The onset of the staggered-flux phase and the 7r-flux phase as a function

of t/J. The onset of the staggered-flux phase is inversely proportional

to t/J: 6c1 - 0.08J/ t ........................... . . 42

3-1 Fig. (a) shows the unaveraged diagram for a response function, where the

wavy lines denote the gauge field. A quenched average over the gauge field

means that the wavy lines have to be connected in all possible ways, as

shown in Fig. (b). This does not include diagrams with internal boson

loops, like the one shown in Fig. (c). ................... 52

3-2 A certain class of diagrams with internal boson loops can be included in

the quenched average, by including strings of boson bubbles in the gauge

field propagator, as shown in Fig. (a). This is equivalent to replacing XF

by X = XF + XB- Similarly one should also include these strings of boson

bubbles in the response function to an external field, as is shown in Fig.

(b). The gauge field now screens the external field, and one obtains the

Ioffe-Larkin rule Xphy = XF1 .XB1 ..................... 53

3-3 Fig. (a) shows the typical boson-path in a strongly fluctuating gauge

field. At short time-scales < the bosons follow random walks. At

longer time-scales r > To the typical path retraces itself, to minimize

the total area of the path. Fig. (b) is obtained by "stretching" the

coarse-grained reference path. ...................... 55

3-4 Three different approximations for the boson susceptibility XB(T) for

a fixed boson density nB = 0.1 and t/J = 1. The dashed line is the

quenched susceptibility XQ(T) oc (gT) - 1. The solid line is the self-

consistent XSC(T). Below a crossover temperature TBE the susceptibil-

ity XSc diverges exponentially, analogous to the non-interacting value

X° (dash-dotted line). Notice that due to gauge field fluctuations the

crossover temperature is strongly suppressed, TBE << TE. ...... . 68

8



3-5 The (inverse) boson susceptibility XSC(T)-1 for various values of t/J

at a fixed density nB = 0.1. At high temperatures XSC(T)-1 is linear

in T, with a slope proportional to t/J, and an intercept independent of

t/J. Below TBE 0.08 TBE one enters the weak-coupling regime, and

XSC(T)- 1 decays exponentially. Note that TBE is reduced by a factor

of - 12 compared to TBE. ........................ 69

4-1 A schematic mean-field phase diagram of the t-J model. The mean-

field pairing line (dotted) and the Bose-condensation line (solid) divide

the phase diagram into four regions. Region I is a Fermi-liquid phase,

region II is the spin-gap phase, region III is the superconducting phase,

and region IV is the strange metal phase. ............... 76

4-2 The phase-diagram of the t-J model for t/J = 3 using a mean-field ex-

pression for the susceptibility X° . The self-consistent dissipative model

XS C produces a phase diagram that is essentially indistinguishable. The

line denoted by black diamonds is our best guess of the correct phase

boundary within this model. For x <0.05 superconductivity vanishes

completely, which is directly related to the fact that the gauge field

becomes unstable against flux phases at low doping. ......... 78

4-3 The phase-diagram of the t-J model for t/J = 3, using the dissipative

model for the susceptibility XS . The solid line for Tc(x) uses T = 0

expressions for the propagator Fp (v), while the dashed line is obtained

by expanding Im IIF(V) and Re IIF(v) in A2. Note that in this phase

diagram the transition temperature Tc(x) is much lower than in Fig.

4-2. .................................... 79

9



4-4 The boson susceptibility XB(T) for three different models for a doping

x = 0.07. The fact that XB(T) increases rapidly at low temperatures

indicates that the bosons effectively condense into a superfluid state

below a certain crossover temperature. The dotted line is the mean-

field value X°, the dashed line represents the dissipative model for

XdiSS and the solid line is the self-consistent dissipative XSC . In the

absence of a full theory XS c is a reasonable guess for the behavior of

the susceptibility XB(T) .................... . ..... 82

4-5 This figure shows Im HF(v) at T = 0 for A'/A = 1, 0.3, -0.3 and

-1. Notice that there is no absorption for v < AI + IA'!. For v >

IAl + A'J it depends on the relative sign of A and A' whether ImIIF(v)

is enhanced or suppressed by the gap. ................. 90

4-6 This figure shows ReIIF(v) at T = 0 for A'/A = i, 0.3, -0.3 and -1.

Similar to the case of Im IIF(v) it depends on the relative sign of A

and A' whether Re IIF(v) is positive or negative. ............ 91

4-7 This figure shows A0 0 (z), the gap at T = 0. By comparing this to

T,(x) in Figs. 4-2 and 4-3 we find that the ratio 2Aoo/Tc is approx-

imately 3 if one uses the mean-field X (or the self-consistent xSc),

and approximately 8 if one uses the dissipative Xsdi. This should be

compared to the mean-field d-wave value of 2A00/Tc _- 2.6. ..... 97

5-1 The renormalized susceptibility XRPA(q) in the RPA approximation.

The wavy line denotes the in-plane exchange sn ) Sn ), and the jagged

line denotes the inter-plane exchange Sn) S ) . ............ 106

5-2 The effective in-plane coupling Jlff(q) (left axis) and the effective inter-

plane coupling Jff(q) (right axis) for various values of the doping x.

Close to the AF instability at xc = 0.08, Jlff(q) and Jff(q) have strong

incommensurate peaks at QAF - (7r, r + 0.19) .............. 109

10



5-3 The pairing order parameter A±(r) for x = 0.085. Due to the an-

tiferromagnetic correlations A± (r) decays over a correlation length of

approximately 3-4 lattice spacings. Also notice that A± (r) is relatively

strong along the diagonals r = -ry. This implies that in momentum

space Al(k) is enhanced around the diamond-shaped Fermi surface. . 115

5-4 A contour plot of the gap A±(k) for x = 0.085 and Jo = 0.2 Jo0. The

diamond-like Fermi surface is indicated by the black dotted line. Notice

that the gap Al(k) has an extended s-wave symmetry, with peaks at

the four corners k = (r, 0) and k = (0, fir), and without nodes. .. 116

5-5 The inter-plane gap A(k) around the Fermi surface for x = 0.085,

x = 0.09 and x = 0.10. The gap A±(k) has an extended s-wave

symmetry, and is anisotropic around the Fermi surface, with peaks

at the corners. For higher doping the amplitude of the gap decreases

rapidly, and the anisotropy almost disappears .............. 117

5-6 A logaritmic plot of the gap A'ax at the corner of the Fermi surface

as a function of the inter-plane coupling constant (Jo)-l, assuming

that the effective coupling is given by Jff(r) =- IJL exp(-r/ro). The

straight lines show that Aax depends exponentially on (O)-l. Notice

that for ro = 3 the slope of the line is 2.7 times smaller than for ro - 0.118

5-7 The diagrams for the gauge field propagators HII(q) and Hnl(q). The

indices n and n' indicate plane 1 or plane 2 (and n n'). In Sec.

5.5 we show that the in-phase propagator II+ = IIll + HII becomes

massive when an inter-plane gap Al opens up, while the out-of-phase

propagator II_ = IIll - II remains massless. ............... 120

5-8 The NMR-relaxation rate (TT) - 1 on the copper and the oxygen sites

for two values of the scattering rate F. This calculation uses a BCS-

like temperature dependence for the spin-gap A±(T). The Hebard-

Schlichter peak gets less pronounced when F increases. ........ 127

11



5-9 The NMR-relaxation rate (T 1T)- 1 on the copper and the oxygen sites,

using a pseudo-gap A±(T) which has a finite tail for T > TO, as is

shown in the inset. The main difference with Fig. 5-8 is that the

Hebard-Schlichter peak gets smeared out over a wider range of tem-

perature ................................... 128

5-10 The echo-decay rate T,-1 as a function of temperature for two values of

the scattering rate F. The dashed lines assume a BCS-like temperature

dependence of the spin-gap A± (T), and the solid lines assume a pseudo-

gap behavior. . . . . . . . . . . . . . .. . . . . . . . . 129

5-11 The Knight shift as a function of temperature. The dashed line assumes

a BCS-like temperature dependence of the spin-gap AI1 (T), and the

solid line assumes a pseudo-gap behavior. The Knight shift decays

exponentially when T < A±(T) . . . . . . . . . . . . . . . . . . . 130

5-12 A schematic phase diagram for bi-layer cuprates. We predict that

the spin-gap phase is due to inter-layer fermion pairing, enhanced by

antiferromagnetic correlations. Below the superconducting transition

(thick solid line) the s-wave inter-plane pairing and the d-wave in-plane

pairing coexist. . . . . . . . . . .. . . ........... 133

C-1 The exponent 7' as a function of a = 2R/N/ /~r/M. This exponent

modifies the enhancement of the density of states near the band edge. 142

12



Chapter 1

High-Tc superconductivity

1.1 History of the high-T, cuprates

Once in a while the physics community is stirred by a major discovery that creates

an important new field of research. The discovery of high-temperature superconduc-

tivity will undoubtedly be remembered as one of those events. It all started in 1986,

when Bednorz and Miller reported the discovery of a new material that remained

superconducting at a much higher temperature than any other material known at

that time [1]. Their material was a layered ceramic, La2CuO4 doped with Ba, which

appeared to be superconducting below a critical temperature of about 30 Kelvin. It

quickly became clear that this new material was an example of a much larger class of

so-called copper oxides or cuprates with similar properties. The most striking feature

of these cuprates was their unusually high superconducting transition temperature.

This discovery started a frantic race to find similar materials with higher and higher

transition temperatures. This race involved material scientists to grow these compli-

cated compounds, experimental physicists to carry out measurements, and theoretical

physicists trying to understand the very abnormal behavior of these cuprates.

The first few years the progress on the materials side was quite impressive [2].

Regularly new cuprates were discovered with higher and higher transition temper-

atures, mostly by replacing certain elements in the compounds by other elements.

An important breakthrough was reached in 1987 with the discovery of YBa 2Cu30 7,

13



which has a Tc of 92 K. This discovery made it possible to obtain superconductivity

above the boiling point of liquid nitrogen, which is at 77 K. Because of the low cost

of liquid nitrogen, this opened a whole new field of applications.

In that period the hopes were high that much higher transition temperatures were

going to be reached in the near future, and people even talked about superconduc-

tivity at room temperature. In 1988 a Tc of 125 K was attained with the thallium

compound T12Ba 2Ca 2Cu 30 10 [3], but for many years it appeared to be impossible

to push the transition temperature any higher than that. Recently, in June 1993,

the highest T was pushed slightly higher to 135 K with the mercury compound

HgBa2Ca[_lCuO2,++. [4].
Although the highest reported Tc has hardly increased during the last few years,

there has been significant improvement in better preparation of the compounds.

Larger and purer single crystals have become available, as well as greatly improved

epitaxial films. The availability of these large and pure single crystals is important

for experimental physicists, in order to get clean results about the interesting physical

properties of the cuprates. At this moment, seven years after the discovery of the

high-T, cuprates, there is a rather complete picture of the physical properties of these

materials. However, there is no consensus yet among theorists what is the correct

microscopic model that explains the physics of these materials, although there is a

reasonably good understanding of what are the main ingredients of this puzzle.

1.2 The phase diagram of the high-T, supercon-

ductors

The enormous interest in the cuprates since their discovery in 1986 was initiated

by their unusually high superconducting transition temperature. However, the high

superconducting transition temperature of the cuprates is just one of the unusual

physical properties of these materials. These unusual properties are best illustrated

by the phase diagram for La2_SrCuO 4 in Fig. 1-1, calculated by Keimer et al [5].

This phase diagram for La2_,SrCuO 4 is characteristic for all the high-T, cuprates.

14



La2 x Srx CuO4 Phase diagram

Keimer et al,

300- _ PRB 46 (1992)
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Figure 1-1: The phase diagram of La2Sr2-_CuO 4 measured by Keimer et al. [5].
At very low doping this material is an antiferromagnetic insulator, with a long-range
Neel ordering. For slightly higher doping the material becomes metallic, with very
unusual properties. Superconductivity survives in an intermediate range of doping
0.05 < x< 0.3. The optimum Tc is at approximately 40 K.

In the undoped case the parent compound La2CuO 4 is an insulator with anti-

ferromagnetic (N6el) ordering. The physical properties change dramatically if one

dopes the material with strontium, which amounts to replacing some La atoms by

Sr atoms in the crystal structure. Fig. 1-1 shows that for a small amount of doping

the long-range Nel ordering disappears, but the system remains an insulator. For

higher doping the system becomes metallic. By lowering the temperature the system

becomes eventually superconducting. Notice that superconductivity only survives in

an intermediate range of doping 0.05<x<0.3. The optimum T, for La2_,SrCuO 4

is at approximately 40 K. Although much higher transition temperatures have been

achieved for other high-T, cuprates, a T, of 40 K is already much higher than what

one could possibly expect for a normal metal. In normal metals superconductivity

15



has never been observed above 23 K, and for most metals the transition temperature

remains well below 10 K.

Except for the unusually high transition temperature, the properties of the super-

conducting state are quite similar to that of a conventional superconductor. Many

physicists nowadays agree that the "normal-state" properties of the cuprates are much

more unusual than the properties of the superconducting state. At very high doping

(x > 0.25) the cuprates are still reasonably well described by the Fermi-liquid theory

for normal metals. But if one lowers the doping further and further, the cuprates start

to behave stranger and stranger in the "normal" state. Below follow a few examples

of irregularities of the cuprates in the normal state at low doping.

* The in-plane resistivity Pab is almost exactly proportional to T, from the tran-

sition temperature up to 500 K.

* The Hall-effect has an unusual temperature dependence. The Hall resistance RH

increases with decreasing temperature, and the Hall angle varies like -1 - T2.

* Their are indications for a gap in the spin-excitation spectrum, which remains

visible well above T,.

It is widely believed that the unusual properties of the normal state are directly

related to the high superconducting transition temperature of the cuprates.

In addition to the Neel transition and the superconducting transition, Fig. 1-1 also

shows a phase transition between an orthorhombic phase and a tetragonal phase. This

structural phase transition is characteristic for La2CuO 4, but this transition will in

general be different (or not exist at all) for other high-T, compounds. This structural

phase transition is not important for the understanding of the physical properties of

the cuprates, and we will therefore not discuss this transition any further.

Perhaps one of the most surprising aspects of the high-T, cuprates is that the

phase diagram is qualitatively the same for all the different compounds. The exact

value of the transition temperature might vary strongly from compound to compound,

but for all the high-T, cuprates one observes an insulating Nel phase at very low

16



(loping (x < 0.015), and a superconducting phase at an intermediate range of doping

0.05 < x < 0.3. This general behavior of the cuprates is somewhat surprising, because

at first glance the different high-To compounds seem to have very different chemical

compositions. Clearly there must be some kind of unifying feature that controls the

physics of the whole class of high-T cuprates. It was known from the very beginning

that all these compounds have one feature in common, namely the two-dimensional

CuO2 planes that are present in all the high-T, materials. Considering that this is

the only similarity between all the different high-T, compounds, it was understood

early on that these CuO2 planes must be responsible for the unusual physics of the

high-To cuprates.

In the next section we will show a few examples of how the structure of some of

the high-T, cuprates looks like, and how the CuO2 planes are built into the structure.

1.3 The material structure of cuprates

The high-Tc cuprates can have widely varying chemical compositions, but they all

have in common that they have a layered structure that contains two-dimensional

CuO2 planes. In Figs. reflco.fig and 1-3 we show a few examples of the structure of

some selected high-Tc cuprates:

(a). La2CuO4, the compound that started high-To superconductivity. By replacing

20 % of the La atoms by Sr atoms one can reach an optimum Tc of 38 K.

(b). T12Ba2Can_lCunO 2n+3+, for n = 1,2,3. This family of compounds has an

optimum T, of, respectively, 80 K, 108 K and 125 K for n = 1, 2, 3. The last

compound was until recently the record holder, with the highest T, of all known

materials.

The two-dimensional CuO2 planes are the horizontal planes bisecting the octahedra in

Figs. 1-2 and 1-3, and the horizontal planes at the basis of the pyramids. The oxygen

atoms are on the vertices of these octahedra and pyramids. The other elements (La,

Sr, T1, Ca, Ba, etc.) are located on planes between the CuO2 layers. The current
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+ =0
* = Cu
o =La

Figure 1-2: The chemical structure of La2CuO 4. The CuO 2 planes are the hor-
izontal planes bisecting the octahedra. The oxygen atoms are on the vertices of
these octahedra. If one dopes this material with strontium a small percentage of
La3+ atoms gets replaced by Sr2 + atoms. This has the effect of creating holes in the
CuO 2 planes.

understanding is that this structure between the CuO2 layers merely acts as a charge

reservoir, whose main role is to influence the charge density within the CuO2 layers. If

by means of doping one modifies the chemical composition of these charge reservoirs,

one alters the charge density in the CuO2 planes, which consequently changes the

electronic properties of the material. In La2CuO4 this can be achieved by replacing

a La3+ atom by a Sr2 + atom. The Sr2+ atom has a different valency than the La3 +

atom, and therefore "sucks" an electron out of the nearby CuO2 plane. This means

that a hole is created in a CuO2 plane if one dopes La2CuO4 with a Sr atom. As

was shown in the phase diagram in the previous section, the physical properties of

La2_,SrCuO 4 strongly depend on the amount x of Sr doping.

In order to derive a microscopic theory for the high-T cuprates we will from now

on focus on the CuO2 planes, because that is the only common feature of the whole

class of high-T cuprates. We will derive a model for a single CuO 2 plane, assuming

that the role of the chemical elements between the CuO2 planes is only to fix a certain

density of electrons in this CuO2 plane. In the next few chapters we use this model for

a single CuO2 plane to calculate the superconducting phase diagram for the high-T

cuprates. Only in the last chapter we will also consider the coupling between adjacent
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n=1 n=2 n=3
T, = 80 K T = 108 K T = 125K

Figure 1-3: The chemical structure of Tl 2Ba2Caa-1CunO 2.+ 3+ for n = 1, 2, 3. The
CuO2 planes are the horizontal planes bisecting the octahedra and the horizontal
planes at the basis of the pyramids. The oxygen atoms are on the vertices of these
octahedra and pyramids. Note that for n = 2 and n = 3 there are several CuO2
planes close together in each unit cell.

CuO 2 planes. The motivation for this is that there is clear experimental evidence that

the properties of single-layer materials are qualitatively different from the properties

of multi-layer materials, that have two or more CuO2 planes close together in each

unit cell. One of the differences is that the superconducting transition temperature

tends to increase if there are several CuO 2 planes in a unit cell. This is illustrated

by the three thallium structures in Fig. 1-3. The transition temperatures of these

three structures are respectively 80 K, 108 K and 125 K for n = 1, 2 and 3 CuO 2

planes per unit cell. This indicates that the interaction between nearby CuO2 planes

enhances superconductivity. Another difference is that in multi-layer cuprates such

as YBa2Cu3 06.6 one observes a (pseudo) spin gap in the excitation spectrum of the

electrons. This spin gap, which is absent in single-layer materials, is observed at

low doping, and survives well above the superconducting transition temperature. A
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Figure 1-4: The structure of a single CuO 2 plane, which is a square lattice with Cu
atoms on the vertices and O atoms on the bonds. By focusing on the electron in the
hybridized d-p band, this reduces to the model on the right, which has one electron
per unit cell, with a strong antiferromagnetic superexchange interaction between
neighboring sites.

possible mechanism for this spin-gap phase will be discussed in Chapter 5, where we

study a system of two coupled CuO2 layers.

1.4 How to model a CuO2 plane?

A copper-oxide plane consists of a square lattice with copper atoms on the vertices

and oxygen atoms between adjacent Cu atoms. This is shown in Fig. 1-4. We can

simplify this electronic system by focusing only on the electron states that lie close

to the Fermi level. In this case these states correspond to the 3d orbital on the

Cu atom and the 2p orbital on the O atom. Because of their closeness in energy the

d2 _y2 orbital and the p, orbital are strongly mixed, leading to a hybridized d-p band.

The electrons in this d-p band are usually identified with the Cu sites. Due to the

strong hybrization between the electron states on the Cu atoms and the O atoms the

electrons in this band can easily hop from one site to the next.

One might wonder what is so special about Cu and O atoms, and whether the

same story can also hold for two-dimensional planes that consists of other atoms.

There are two features of the CuO2 planes that are very characteristic for Cu and O

atoms. First the 3d,_y,2 band of the Cu atom is very flat, and second the 3dz2_y2
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band and the 2p, band are very close in energy, which leads to strong hybridization.

This will in general not be true for two-dimensional planes that consist of other atoms.

After this simplification we have reduced the system to an effective model of

electrons on a square lattice, on which the electrons can hop from one site to the

next. Perhaps the most popular Hamiltonian to describe this system is the so-called

Hubbard Hamiltonian, given by

H = -t E (ctca + c.c.) + U E niTnil, (1.1)
(i,j) i

where nia = ctcia is the number operator of electrons ct with spin on site i.

The first term in the Hubbard Hamiltonian is a kinetic term that indicates that the

electrons like to hop from site to site. The second term is a potential term due to

the Coulomb repulsion. This term tells us that the system pays a big energy U if a

particular site is occupied by two electrons at the same time.

Another popular Hamiltonian to describe a CuO 2 plane is the so-called t-J Hamil-

tonian, given by

H = -t (cj + c.c.) + J (Si -Sj -ninj) (1.2)
(ij) (ij)

where Si = ciao,'acip is the spin operator of the electron on site i. The first term

in Eq. (1.2) is again the kinetic hopping term. The second term indicates that it is

favorable for the spins to have an antiferromagnetic orientation. For the t-J model

there is the additional constraint that it is not allowed that any site is double occupied.

In the limit t > J (or U > t), which is the appropriate limit for the high-To cuprates,

the t-J model and the Hubbard model become equivalent, if one choses J = 4t2 /U.

The Hubbard model, the t-J model, and variations of these two models are the

most widely used starting points in efforts to develop a microscopic theory for the

high-T, cuprates. In order to describe the cuprates accurately, typical values for U, t
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and J are

U 5 eV;

t 0.4 eV; (1.3)

J 0.12 eV.

These values are obtained by comparing the low energy spectrum of the Hubbard

model and the t-J model with the actual energy spectrum of a CuO2 plane.

Both the Hubbard model and the t-J model are difficult to deal with for the values

of the parameters given in Eq. (1.3). In the case of the Hubbard model it is impossible

to use standard perturbation theory, because of the large value of U, while in case of

the t-J model it is hard to deal with the constraint of no double occupancy. In this

thesis we will focus exclusively on the t-J model, which is somewhat easier to analyze

than the Hubbard model. In Chapter 5 we will generalize the t-J model somewhat

to take the coupling between adjacent CuO2 planes into account, which is important

in multi-layer systems such as YBCO.

1.5 The t-J model

The t-J model, which was introduced in section 1.4 as a model for a single CuO2 plane,

is one of the most widely used microscopic models for high-T, superconductivity. The

purpose of this section is to give the reader a better understanding of the basic

properties of the t-J model, before we dive into a more detailed analysis in the next

few chapters.

The t-J model is a model for electrons on a two-dimensional square lattice, whose

dynamics are described by the Hamiltonian in Eq. (1.2). This Hamiltonian is under

the important constraint that no site is allowed to be double occupied. We will first

consider the t-J model in the important case of half filling, i.e. when there is on

average one electron per site. Because of the constraint of no double occupancy this

implies that there is exactly one electron on each site. In the absence of empty sites
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the electrons do not have any opportunity to move around, and thus we are dealing

with an insulator that consists of quantum spins pinned on a lattice. Clearly the

hopping term in Eq. (1.2) becomes irrelevant, and at half filling the Hamiltonian

therefore reduces to the Heisenberg Hamiltonian

H =J Si Si. (1.4)
(i, j)

It is well known that below the Nel temperature TN this Hamiltonian describes an

insulator with long-range antiferromagnetic order. Experiments indeed show that the

undoped cuprates are Nel ordered below a certain temperature. For La2CuO 4 this

Nel temperature is at TN(O) - 325K.

The situation changes drastically away from half filling, i.e. when the system

contains a small amount of holes. The phase diagram for La2_SrCuO 4 in Fig. 1-

1 shows that the Noel temperature TN(x) decreases rapidly if one dopes La2CuO 4

with a small amount of strontium atoms. At a Sr concentration of x _ 0.015 the

long-range antiferromagnetic order has disappeared completely. We will now use t-

J model to explain this behavior qualitatively. In the language of the t-J model

doping means that a certain amount of electrons have been removed, so that there

are on average 1 - x electrons per site, while a fraction of x sites is unoccupied. It is

clear that the empty sites control the dynamics of the electrons, because an electron

can only hop to an adjacent site if that particular site is one of the few sites that

is unoccupied. The kinetic term in the t-J Hamiltonian favors these empty sites to

move around. However, the empty sites can not move around freely in a backround of

antiferromagnetically ordered spins, because every time an empty site changes places

with an electron, it leaves behind an electron whose spin is pointing in the wrong

direction. This creates a string of overturned spins, which costs a lot of energy [6].

When the system is sufficiently close to half filling, i.e. when there are very few empty

sites, the antiferromagnetic order prevails, and the system remains in the Nel-ordered

phase. This phase describes an insulator, because the Nel order prevents the empty

sites from moving around freely.
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Figure 1-5: The Fermi surface of the t-J model for various values of the doping z.
At half filling the Fermi surface is a diamond with sharp corners, and the density of
states diverges at these corners. Note that at half filling there is perfect nesting of
the Fermi surface over the wave vector QAF = (7r, 7r). For larger doping the nesting
properties of the Fermi surface become less and less pronounced.

Surprisingly enough this result is exactly the opposite of what one would expect

from bandtheory. According to bandtheory the system should be a metal, because

close to half filling there is a large Fermi surface, as is shown if Fig. 1-5. This is

the usual argument to distinguish a metal from an insulator. The reason why this

simple band-theory argument is not valid is due to the fact that it does not take the

constraint of no double occupancy into account. This constraint played a crucial role

in the arguments given above why the system is in reality an insulator close to half

filling. This system, which has a Fermi surface but is still an insulator, is sometimes

called a doped Mott insulator, emphasizing that the mechanism that is responsible

for the insulating properties has nothing to do with band theory, but is more closely

related to the mechanism originally proposed by Mott.

If one increases the doping above a certain value the long-range antiferromagnetic

order disappears, but the system remains an insulator due to strong short-ranged

antiferromagnetic correlations. If one increases the doping even further the system

becomes eventually metallic, which is called the Mott-insulator transition. This is

the regime we will focus on in this thesis, because this regime contains the supercon-
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ducting phase at sufficiently low temperatures.

Until now our description of the physics of the t-J model has been very qualitative,

emphasizing the importance of the empty sites for the transport properties. In the

next section we will discuss a mathematical trick that puts these qualitative arguments

on. a solid basis.

1.6 Spin-charge separation

From the qualitative arguments in the previous section we learned that due to the

constraint of no double occupancy the empty sites are very important for the transport

properties of the t-J model. Clearly any succesful analysis of the t-J model has to pay

special attention to these empty sites. Fortunately there exists a mathematical trick,

called the slave-boson formalism, which allows us to keep track of the empty sites by

treating them as independent particles. These new objects are called "slave-bosons"

in this formalism. Mathematically one simply replaces the original electron operator

cto by the product ft bi, where ft is a fermion operator that carries the spin of the

electron, and bi is a boson operator that corresponds with the empty sites, and that

carries the charge of the electron. This leads to the Hamiltonian

H = -t E (fibibfja + c.c.) + J (Si -Sj-4ninj)
(ij)a (ij)

+ iAi(fit fi, + bbi - 1), (1.5)
i

where the field Ai is a Lagrange multiplier field that one has to integrate over to

enforce the local constraint that f tfi, + bibi = 1 at each site i. This constraint

means that at every site there is either a fermion or a boson, but not both. The

corresponding picture is shown in Fig. 1-6.

Notice that this approach leads to spin-charge separation, because the spin and

the charge degrees of freedom of the electron are now carried by different particles,

fit and bt, which are often called "spinons" and "holons". Spin-charge separation is

a convenient concept to explain certain unusual properties of the high-Tc cuprates.
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Figure 1-6: The t-J model in the slave-boson approach. The physical electrons are
split into "spinons" and "holons". On each site there is either a spinon or a holon.
The spinons carry the spin degrees of freedom and the holons, which correspond to
the empty sites in the original t-J model, carry the charge degrees of freedom. Close
to half filling the dynamics is controlled by the holons.

For example, it can explain why experiments that probe the transport properties of

the electrons, such as the conductivity or the Hall effect, indicate that there is only a

small number of charge carriers, roughly proportional to the number of empty sites.

This is naturally explained by noting that the holons are the charge carriers in the

problem, and not the spinons. On the other hand, angular-resolved photo-emission

experiments show a large Fermi surface, which is easily explained by identifying the

experimental results with the Fermi surface of the spinons.

Although it is convenient to think in terms of spinons and holons, one has to keep

in mind that they are mathematical objects, that can not exist outside a CuO2 plane.

To explain this we will make a few remarks about gauge invariance. The Hamiltonian

in Eq. (1.5) is manifestly gauge invariant under the local gauge transformation

'jo ) eifi fja; (1.6)

bj , ei bj.

The only observable quantities are quantities that are invariant under this local gauge

transformation. Clearly the spinons and holons are objects that are not gauge invari-

ant, and can therefore never be measured in physical experiments. On the other

hand, the product fbi, which corresponds to the physical electron, remains gauge

invariant. Considering that there exists a local gauge symmetry in the Hamiltonian in
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Eq. (1.5), it is not surprising that a gauge field will appear in a more detailed analysis

of this model. How this gauge field is introduced, and what are its properties, will be

discussed in Chapters 3 and 4.

We would like to remark that one can also chose to work in the so-called slave-

fermion formalism. In that approach the spinons are bosons with a spin index, and

the holons are fermions that carry a charge but no spin. The slave-fermion approach

is a good starting point at very low doping (x < 0.04), while the slave-boson approach

is more appropriate at intermediate doping.

1.7 The phase diagram of spinons and holons

We will now explain some of the qualitative features of the phase diagram of the

cuprates, using the concept of spin-charge separation. The underlying idea is to

identify the various regimes that are observed in the high-To cuprates with the phase

transitions of the spinons and the holons.

Let us discuss the different phase transitions that the spinons and the holons

can undergo. The spinons obey Fermi statistics, so they will form Cooper pairs at

sufficiently low temperatures, due to the antiferromagnetic spin interaction which

creates an attractive interaction in the Cooper channel. This transition is indicated

by the solid line in Fig. 1-7, which is a qualitative phase diagram in the doping-

temperature plane. The transition temperature Tp(x) decreases as a function of

doping, because the antiferromagnetic interaction is strongest close to half filling.

The holons on the other hand obey boson statistics, and will therefore Bose condense

at low temperatures. This is indicated by the dashed line in Fig. 1-7. Note that the

Bose-condensation temperature TBE(X) is proportional to the density of holons x.

The pairing transition line Tp(x) and the Bose-condensation line TBE(X) divide

the phase diagram in Fig. 1-7 in four regions, and each region will have a very different

physical properties. We are most familiar with the regime T < TBE(X), because in

that regime the physical electrons can be directly identified with the spinons. The

reason for this is that for T < TBE(X) the holons are Bose condensed, and can therefore
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Figure 1-7: A qualitative phase diagram of the t-J model, based on spin-charge
separation. The solid line is the pairing transition temperature, below which the
spinons form Cooper pairs. The dashed line is the Bose-condensation temperature,
below which the holons condense into a superfluid state. These two transition lines
divide the phase diagram into four regimes: a Fermi-liquid phase, a superconducting
phase, a strange-metal phase, and a spin-gap phase.

be treated as c-numbers instead of operators. In other words, the electron creation

operator c = ft Ybi can be replaced by

c= = fitbi const. x ft . (1.7)

This means that for T < TBE(x) the pairing transition temperature Tp(x) coincides

with the superconducting transition temperature TC(x) of the physical electrons. For

T > Tp(x) the system behaves like a normal metal, while for T < Tp(x) the system

behaves like a conventional superconductor.

The properties of the system are more unusual for T > TBE(X), i.e. when the

bosons are not condensed yet. In that case we cannot simply identify the physical

electrons with the spinons anymore. Instead the electrons are composite particles,

made up of spinons and holons that strongly interact with each other. The spinons will

not behave like a Fermi liquid anymore, because the holons provide a soft scattering
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mechanism, altering the lifetime of the quasi particles. Due to the presence of low

lying excitations one can expect a whole variety of unusual phenomena. This region is

commonly referred to as the strange metal phase. An interesting consequence of the

presence of non-condensed holons is that the pairing transition temperature Tp(x)

does not correspond with the superconducting transition anymore. This is easily

understood by considering the superconducting order parameter

A*.= (C t t Ctct)ij ,TcT - ci T)

= (ftTfjt - fjt )(b ibj) (1.8)

To obtain a finite superconducting gap Aij it is not sufficient that (fitft) is nonzero;

the expectation value (bi) has to be nonzero as well. This creates the interesting

possibility of having a state in which the spinons form Cooper pairs, i.e. (ftft) 0,

while the system is not superconducting. This state has the feature that physical

quantities which probe the spin degrees of freedom of the system, such as NMR

relaxation rates and the Knight shift, will show a (pseudo) spin gap below a certain

energy scale. This pseudo gap will not show up in the conductivity, or in other

transport properties which are controlled by the holons. This very unusual phase is

commonly referred to as the spin-gap phase.

Summarizing, the picture of spin-charge separation leads to the following four

phases:

1. Normal metal: T < TBE(x) and T > Tp(x);

2. Superconductor: T < TBE(x) and T < Tp(x);

3. Strange metal: T > TBE(X) and T > Tp(x);

4. Spin-gap phase: T > TBE(x) and T < Tp(x).

These four phases are indeed observed in experimental studies of the high-T, cuprates.

The spin-gap phase is somewhat controversial, because it is only observed in multi-

layer cuprates such as YBCO, but not in single-layer materials such as LaSrCuO.
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We will explain in Chapter 4 why the spin-gap phase is not observed in single-layer

materials. In Chapter 5 we present a model that shows that the spin-gap phase in

multi-layer materials can be explained by the formation of Cooper pairs of spinons

on nearby CuO2 planes.

1.8 Outline of this thesis

The goal of this thesis is to explain the superconducting phase diagram of the high-Tc

cuprates, using a microscopic model based on the t-J Hamiltonian. As explained in

Sec. 1.7, this essentially boils down to determining the pairing transition tempera-

ture T,(x) of the spinons, and the Bose-condensation temperature TBE of the holons.

Determining these two transition lines is the central theme of this thesis. Each of the

next four chapters deals with a different piece of this puzzle. In the final two chapters

we are able to put all these pieces together, to obtain a theoretical phase diagram

that agrees very well with the experimental phase diagram.

In Chapter 2 we start by analyzing the t-J model in the mean-field approximation

[7], which is a logical starting point to obtain a qualitative understanding of the model.

Within this approximation it is relatively straightforward to obtain the transition

temperatures Tp(x) and TBE. A drawback of the mean-field approximation is that

Tp(x) and TBE are much higher than the actual transition temperatures measured in

experiments. This shows that the mean-field approximation is an over-simplification,

which does not fully capture the physics of the high-Tc cuprates. The reason for this

is that there is a very strong interaction between the spinons and the holons, because

every time a spinon hops from one site to the next, a holon has to hop in the opposite

direction. This feature, which is due to the local constraint of no double occupancy,

is completely missed in the mean-field approximation.

In Chapter 3 and 4 we go beyond the mean-field approximation, by including a

gauge field in the analysis, which takes Gaussian fluctuations around the mean-field

result into account. The role of the gauge field is to mediate the strong interactions

between the spinons and the holons. The picture that we have in mind is that one
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can view the t-J model as a system of spinons and holons, that continuously scatter

off a fluctuating gauge field. This gauge field is massless, and therefore creates a soft

scattering mechanism for the spinons and the holons, which will significantly alter

the properties of these particles.

Chapter 3 deals with the question of how the gauge field influences the behavior of

the holons [8, 9]. We show that for the relevant parameters of the t-J model this is a

strongly correlated problem, which cannot be treated with the standard perturbative

methods. Instead we express the partition function in terms of closed Feynman paths,

which turns out to be a very convenient method in the strong-coupling limit. In

the strong-coupling limit the gauge field destroys the phase coherence of the holons,

thereby suppressing the tendency of the holons to condense. The signature of this

is that the diamagnetic susceptibility is strongly suppressed, and diverges at a much

lower temperature than before. This temperature can be identified with the Bose-

condensation temperature of the holons.

Chapter 4 focuses on the effect that the gauge field has on the pairing of the

spinons [10]. The gauge field is strongly pair-breaking, because it acts as a large

fluctuating magnetic field. Using the analogy with a magnetic field, it is not surprising

that the gauge field suppresses the formation of Cooper pairs. The phase diagram

that we obtain after taking the pair-breaking effects of the gauge field into account

agrees very well with the experimental phase diagram of single-layer materials such

as La2_SrCuO 4. One of the most important conclusions of this analysis is that the

fluctuating gauge field completely destroys the spin-gap phase. This agrees with the

experimental evidence that there is no spin-gap phase in La2_,SrCuO 4.

In Chapter 5 we study a model for two coupled CuO2 planes, in order to explain

the different behavior of single-layer cuprates and multi-layer cuprates [12]. Measure-

ments of the NMR relaxation rate and the Knight shift, which are quantities that

probe the spin degrees of freedom of the material, indicate that multi-layer cuprates

such as YBCO have a spin-gap in their excitation spectrum. The main objective of

Chapter 5 is to present a microscopic model that is able to explain why this spin gap

exists in underdoped YBa2Cu3O 6.6, but not in La2_SrCuO 4. We propose that the
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spin gap is due to pairing between spinons on adjacent CuO2 planes, which is sig-

nificantly enhanced by the antiferromagnetic correlations between spins on adjacent

CuO2 planes. Using this model we are able to calculate the NMR relaxation rates on

the 63Cu and the 170 sites, the Knight shift and the spin-echo decay rate as a function

of temperature. Our numerical results are in good agreement with the experimental

data on YBa2Cu306.6.

Chapters 2-5 were originally written as four separate articles, which over the last

few years have been submitted to Physical Review B [7, 9, 10, 12]. Each chapter is

self-contained, and can be read separately from the rest of the thesis.
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Chapter 2

Flux phases in the t-J model

2.1 Introduction

Since the discovery of the copper oxide superconductors there is a renewed interest in

strongly correlated electronic systems. The t-J model is one of the proposed models

that might describe the essential physics of those materials [13].

Several schemes have been used to develop a mean-field theory for the t-J model,

and many phases have been suggested to be energetically favorable away from half

filling.

Generally a mean-field theory arises from decoupling the Hamiltonian either in

the particle-hole channel (fitf - (fitfj)) or in the particle-particle channel (fitfj

(fitfj))

The early mean-field theories assumed a uniform (or s-wave) pairing state [13, 14,

15]. Kotliar and Liu however showed that a d-wave-pairing state has a higher pairing-

gap transition temperature, and is energetically favored over an s-wave-pairing state

[16, 17]. Affleck and Marston took a different approach by enlarging the unit cell for

the particle-hole order parameter (fit fi,), while ignoring particle-particle correlations.

They found that for low doping a lower ground-state energy is achieved by taking a

7r-flux phase for the particle-hole order parameter. [18, 19]. At half filling this phase

is equivalent to the s + id phase of Kotliar [16], due to a local gauge invariance at

half filling [20]. A similar s + id phase was also considered by Ye and Sachdev, in
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their recent study of a 3-band model [21]. Other states that occur at low doping are

dimerized states [18, 19, 22, 23] and commensurate-flux phases [24, 25, 26]. However,

away from half-filling both the dimerized states and the commensurate flux phases

are only stable for small values of t/J (t/J < 1).

A generalization of r-flux phase was proposed by Zhang [27], who combined the

d-wave-pairing state with a staggered-flux phase for the particle-hole order parameter.

The aim of this paper is to see how these different phases fit together at finite

temperatures. Most of the numerical work so far has dealt with the zero temperature

ground state [28, 29]. In particular, we would like to know how the r-flux phase is

connected to the uniform phase and the d-wave-pairing state. We will focus on a tem-

perature range in the vicinity of the pairing-gap transition temperature. We compare

the free energies of a class of phases that includes Zhang's staggered-flux phases and

Kotliar's mixed phase. However, we exclude dimerized phases and commensurate

flux phases, which is motivated by the numerical work cited above, that away from

half-filling these phases are only feasible for t/J < 1. The experimental values of t and

J for copper oxides give t/J -, 3.

We find numerically that for 6 < 0.08J/t, a staggered-flux phase is favored over

the d-wave-pairing state close to the pairing-gap transition temperature. We present

a phase diagram that shows how at finite temperatures the staggered-flux phase

interpolates in between a r-flux phase and the uniform phase. The occurrence of flux

phases strongly suppresses the pairing-gap transition temperature.

In Appendix A we discuss a recipe that describes how to decouple the t-J model

into its different channels, using Hubbard-Stratonovich fields.

2.2 Hartree-Fock-Bogoliubov decomposition

We use the slave-boson formalism and write the t-J model as [17]

H = -t (ftfjbbi+c.c.) + J (Si Sj - ninj)
(i,j) (i,j)
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-Ho E ffi + i Ai(fiofi, + bbi - 1), (2.1)
i i

where Si = fitao,fja. The corresponding quantum partition function, Z = f D[f, b, A]

exp(-S), is a functional integral over a fermion field fi,, a bosonic field bi to keep track

of the empty sites, and a real field Ai to enforce the local constraint ftfi, + btbi = 1

at each site i.

The usual way to derive a mean-field theory for the Hamiltonian (2.1) is by decou-

pling the Hamiltonian either in the particle-hole channel or the particle-particle chan-

nel. This leads to mean-field order parameters Xij = (fitfji) or Aij = (fit fj-filfjt)

There is however a significant amount of freedom in choosing combinations of both

order parameters. The SU(2) symmetry of the Hamiltonian at half filling suggests to

treat both order parameters on the same footing [17, 20].

In Appendix A we discuss a recipe how to decouple the four-fermion term Si · Sj

into a combination of different channels, using 3 sets of Hubbard-Stratonovich fields.

This leads to the following identity:

3

Ce-J ( Si S OSS c II dXjidXjidA *idAji n dPike j, (2.2)
(i,j) i k=l

Aji = 8 [Ixji + -yji -i(fjtfi,) - c.c. + ni
8 [Ixj ' 12 +1 %12- 

-Aj(fjTfi - fjlfjT) - c.c.] (2.3)

2 [jpil Pi ( fj) 
k=1

The hopping term t fitfjbbi can be taken into account by replacing Xji(fjtfi,)

by X* (fjtfi,+ 8t btbi). In addition to the hopping term this modification also leads to

four-boson terms of the form bbjbtbi. In principle one needs an additional auxiliary

field to decouple these terms. However, these four-boson terms give only a small

contribution close to half filling, and at the mean-field level we can replace these

terms by (btbi)bjb}, and incorporate them into the bosonic chemical potential term.
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Putting everything together the decoupled Hamiltonian now becomes

H Z E Xjil I2 - xj*i(fjitfi, + b jbi) - c.c. + ni
(i,j)

-j%,i(fjti- fjlft) - c.c.] + i [I (f.J fi)] (2.4)
(ij) k=l

-L o fitl,fi - i E Ai(fitfio + bbi - ).
i i

A mean-field theory is achieved by replacing the fields Xij, Aij, pi and Ai by their

saddlepoint values. We put pMF = (Si) = 0. The field iAMF will be interpreted

as the chemical potential Pb of the bosons. The effective chemical potential of the

fermions is (p - P0 +/Ib - 3J/4. Our final result for HMF is identical to the mean-field

Hamiltonian used by Kotliar and Liu [17], except for the way we incorporated the

hopping term into the order parameter Xij.

2.3 Flux phases

Several forms of Xij and Aij have been suggested to give a minimum of the free

energy. The simplest phases are the uniform phase (Xij = X, Aij = A for all bonds

(i,j)) and the d-wave phase (Xij = X, Aj = = A, + if ij 1I, - if ij II ) [16, 17].

Other suggested phases are mixed phases [16, 22], dimerized phases [18, 19, 22, 23]

and several flux phases [18, 19, 24, 25, 26, 27].

Excluding dimerized phases, we parametrize Xij and Aij by

Xij = Xe iOij, Aij = AeiTij (2.5)

(0ij -,ji, rij = 'ji).

We are interested in studying a class of phases, that satisfies the following criteria:

(a) the class should include Zhang's staggered flux phases and Kotliar's mixed phases;

(b) Xij and Aij should be treated on the same footing.

Before discussing a simple class of phases that satisfies these criteria, it is impor-

tant to note that many choices of Xij and Aij are equivalent, due to the local gauge
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Figure 2-1: We doubled the unit cell for Xij, to allow the possibility of a flux around
a plaquette. Xij is given a phase ±0, depending on whether ij goes along or against
the arrow on the bond. Modulo gauge transformations, this is the most general
parametrization of xesij with a double unit cell. Aij is given a phase ±r, depending
on whether the bond (i, j) is in the or the P direction. As a result Xij has a
staggered-flux of 40, and Aij has a "flux" of 4r.

transformation f -t fi ei ' i, Xij Xijei ' i-i ` j and Aij - Aije i1i+i~j. The only

gauge invariant property of Xij is its flux through a plaquette (i.e., Oij + Ojk + Okl + Oli)

[18, 19]. The simplest way to allow the possibility of a nonzero flux is to double the

unit cell for Xij. The most general parametrization of Xij with a double unit cell,

modulo gauge transformations, is

Xij - Xe i ( if ij along or against arrow) (2.6)

(see Fig. 2-1). This is the same parametrization of Xij as used by Zhang [27].

Similarly, the only gauge invariant quantity for Aij is the "flux" per plaquette

ij - rjk + rkt - ri A single unit cell is sufficient to give Aij a nonzero "flux". This

leads to the parametrization:

Aij = Ae±i ( if ij , - if ij || y). (2.7)

This choice of Aij ensures that our class of phases includes Kotliar's mixed phases, and

that Xij and Aij are treated on the same footing. Note that Xij has a staggered-flux

of 40 around each plaquette, while Aij has a "flux" of 4r.

By going to Fourier space, and using a Bogoliubov transformation, HMF can be
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brought to the diagonal form (see Appendix B, cf. [27])

1Hff = N(y ±+ A) + E 'Ek8(cak - Pks/3 s) + EQkrksr ks (2.8)
k,s=1 k,s=+l

where ak, and p,, are fermion fields, and rks is a bosonic field. ZE denotes a sum

over half of the Brioullin zone and J' - 3/4J sets the energy scale. In units of J' the

eigenvalues Eks and QkS are

Ek. = V/(-f + SXk)2 + A2 ) (2.9)
(2.9)

fQk = -- b-- 2xQk,

where we defined

k -/7 cos29 + ;2 sin29, (2.10)
(2.10)

'Pk = /7kcos2r+ ; o ksin2r

(?k = cos k, + cos ky and Yok = cos k - cos ky).

It is nice to check from the energyspectrum (2.9) that at half filling (i.e., f = 0)

the order parameters X and A are indeed treated equivalently.

For a given temperature T and doping 6 = 1- E fitfi, = E bbib, the phase will

be favored that gives the lowest free energy

F = -2Ty ncosh(PEk8/2) + TE'ln( - e- Qk°)
ks ks

-Nb(p -l b) + N(X 2 + A 2). (2.11)

2.4 Phase diagram

Numerical analysis shows that the lowest free energy is generally given by = 7r/2,

except for very high doping (6 >0.5). In the vicinity of 6 0.5 and at sufficiently

low temperatures r continuously rotates from = ir/2 (i.e., d-wave-pairing) to r = 0

(i.e., s-wave-pairing) (see Fig. 2-2).

Physically a doping 6> 0.5 is not of very much interest, so from now on we will

only consider r = r/2 which corresponds to a d-wave symmetry for Aij.
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0.05

0 0.2 0.4 0.6 0.8
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Figure 2-2: Global phase diagram for t/J = 0.5. Below the thick solid line a pairing
gap A opens. For 6 0.6 this gap has a d-wave symmetry (r = r/2), but for 6 0.6
it has an s-wave symmetry ( = 0). In between, at 6 - 0.6, we have mixed phases,
where r rotates continuously from r = ir/2 to r = 0. Closer to half filling, for
6<0.12, staggered-flux phases become favorable. See Fig. 2-3 for a more detailed
phase diagram.

Minimizing F with respect to X, A and 0 one obtains the self-consistency equations

1.c~I Es 2t 1
= _ I SG [Ek tanh(PEk./2) + 2et 1 

2N k, Ek, ef n l - 1

A= Z A E_., tanh(3Ek/2), (2.12)

sin2 E k 2 [Eks tanh(PEk,/2) +
N k sG Ek. efa, -

(Cks = -If + SXyk). The chemical potentials fLf and Itb are determined by 6 =

N A' e/E tanh(/3E/2) = k Z'(eOP - 1)-i. Without the bosonic terms it is straight-

forward to show that the above equations cannot hold simultaneously if both A y4 0

and sin20 $ 0 (see Zhang [27]). However, due to the presence of the bosonic terms

this is not necessarily true anymore.

Fig. 2-3 shows the phase diagram in the (6, T) plane for t/J = 0.5. The different

phases were found numerically by first minimizing the free energy directly with re-
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Figure 2-3: Phase diagram for t/J = 0.5. Below the thick solid line the d-wave-
pairing state is stable. Hcwever, for 6 < 0.12 (left of the shaded area) staggered-flux
phases become energetically favorable. For 6<0.06 a 7r-flux phase becomes stable.
The shaded area represents the hysteresis of a first-order transition between the
d-wave-pairing state and the flux-phase region.

spect to X, A and 0, and then using the self-consistency equations to find the phase

boundaries more accurately.

For 6 > 0.12 the standard d-wave-pairing state (i.e., 0 = 0 and A > 0) is favored at

sufficiently low temperatures. But for lower doping (staggered) flux phases with 0 0

and A = 0 are favored over the d-wave-pairing state, which leads to a suppression of

the temperature below which a pairing gap opens.

The staggered-flux phase region has the shape of a triangle, which at intermediate

temperatures extends from 6 0.06 to 6 - 0.12. If one decreases in this region,

0 rotates continuously from 0 to 7r/4. Below 6 - 0.06 a r-flux phase with 0 = 7r/4

becomes stable. This ir-flux phase has a flux of exactly r around each plaquette, and

was previously considered by Affleck and Marston [18, 19].

If one decreases the temperature there is a first-order transition from the (stag-

gered) flux-phase region (with 0 > 0 and A = 0) to the d-wave region (with 0 = 0

and A > 0). Characteristic for a first-order transition one observes hysteresis in a
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Figure 2-4: Phase diagram for t/J = 2. Comparison with the phase diagram for
t/J = 0.5 shows that for larger values of t/J the whole phase diagram gets pushed
towards lower values of b. The staggered-flux phase region still extends to 6 - 0.02,
but the 7r-flux region is only stable for 6 < 0.002. Note that the shaded area, which
represents a first-order transition, ends at (, T) = (0.02, 0.18). For 6 > 0.02 there is
a continuous transition from the d-wave-pairing state to the flux-phase region. The
dotted line represents the threshold, at which 0 is rotated all the way to 0.

small wedge around the transition line. Within this wedge one can in principle find

a solution of the self-consistency equations with both > 0 and A > 0, but this

solution does not correspond to a local minimum of the free energy.

For higher values of the hopping parameter t the entire phase diagram is pushed

to lower values of 6 (see Fig. 2-4 for t/J = 2). While the staggered-flux phase region

still extends to an appreciable value of 6S<0.02, the 7r-flux phase is only stable for

very small doping (6 < 0.002). This is consistent with the observations of Affleck and

Marston that for t/J > 1 the flux phase does not exists away from half filling [18, 19].

Furthermore note that, in constrast to Fig. 2-3, the first-order transition line

between the staggered-flux phase and the d-wave-pairing phase does not extend all

the way to the d-wave transition line anymore. Instead, Fig. 2-4 shows a small strip

where a continuous rotation takes place from = finite to 0 = 0, while A increases

continuously from 0 to its d-wave-pairing value.
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Figure 2-5: Onset of the flux phases. The solid linc represents the maximum
doping ,cl to which the staggered-flux phase region extends. Note that cl decreases
inversely proportional with t/J: 6cl1 0.08J/t. The dashed line represents the
maximum doping 6,2 at which the r-flux phase becomes unstable. Remark that 6C2
decreases much more rapidly than 6, 1.

Fig. 2-5 shows how far the staggered-flux phase region and the r-flux-phase region

extend as a function of t/J. More specifically, the solid line shows the value of el

at which the d-wave-pairing state becomes unstable against a staggered-flux phase in

the limit of A -+ 0. One sees that ,1l decreases quite slowly with t/J: 6,1 0.08J/t.

In contrast, the r-flux phase loses its stability much more rapidly (dashed line).

2.5 Conclusions

We showed that at finite temperatures the r-flux phase, which is stable at low doping,

is connected to the uniform phase via a staggered-flux phase region. In this region the

flux per plaquette decreases continuously from 7r to 0 if one increases the doping 6. A

first-order transition line separates the staggered-flux phase from the d-wave-pairing

state, which is more stable at lower temperatures. This pairing-gap transition line

drops to T = 0 for 6 - 0, hence even at the mean-field level the pairing-gap transition
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temperature vanishes at half filling.
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Chapter 3

Path-integral analysis of bosons

interacting with a gauge field

3.1 Introduction

The discovery of the high-T, cuprates has brought a renewed interest in strongly-

correlated systems in two dimensions. It has been suggested that the cuprates are

examples of so-called doped Mott insulators. The physics of a Mott insulator is that

while according to band theory it appears to be metal with a Fermi surface, it still

remains an insulator due to the fact that electrons cannot move without creating a

double occupied site. Upon doping the transport properties are controlled by the

few empty sites in the system. The simplest models that are believed to capture

this physics are the Hubbard model and the t-J model [13, 15], and both models

have been studied extensively. Because of the importance of the empty sites for

the transport properties, it is convenient to consider these empty sites as fictitious

particles called "holons", that can hop around on the lattice by changing places with

fermions. For the t-J model one can show that this picture naturally leads to an

effective theory of fermions and bosons interacting with a fluctuating gauge field

[23, 31, 32, 33, 34, 35, 36, 37].

The fermionic part of this effective action is reasonably well understood. The

gauge field acts as a fluctuating electromagnetic field, and provides a soft scattering
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mechanism for the fermions. The remaining degrees of freedom, the bosons interacting

with a gauge field, are not as well understood. In the absence of the gauge field

the bosons would condense into a superfluid state at a transition temperature TOE _

4 rnBt, which is a very high temperature at any finite doping n of interest. One expects

that a fluctuating gauge field tends to destroy the phase coherence of the bosons, and

thereby suppress the Bose-condensation temperature to a much lower temperature

TBE < TOE. It has been proposed that this Bose-condensation temperature appears

in the phase diagram of the high-Tc cuprates as the transition line that separates

the superconducting phase from the spin-gap phase [34, 35]. Another importance

of the Bose-condensation temperature is that for T >TBE the fluctuating gauge field

destroys superconducting order parameter, so that at low doping the superconducting

transition is controlled by TBE [10].

Several attempts have been made to analyze this suppression of the Bose-condensation

temperature TBE. Diagrammatic techniques are complicated by the well-known fact

that all diagrams with an internal gauge field line diverge [38], although these diver-

gences should disappear if the object that one calculates is a gauge-invariant physical

quantity [35]. Ioffe and Kalmeyer for example showed in a high-temperature calcula-

tion of the diamagnetic susceptibility that all divergences cancel each other to fourth

order in perturbation theory [39]. They showed that the gauge-field corrections lower

the susceptibility, which is an indication for the suppression of Bose condensation

by the gauge field. Unfortunately their perturbative results become unreliable when

T approaches TBE [39]. A somewhat similar approach was taken by Kuboki [40],

who calculated the suppression of Bose condensation by including the lowest-order

gauge-field correction self-consistently in the total free energy. Higher order gauge-

field corrections can be included by means of a perturbative renormalization-group

analysis of the gauge field model [8]. The problem of these perturbative approaches

is that it is inherently a perturbation around the weak-coupling limit t << J, while in

reality we are more interested in the strong-coupling limit t > J.

A completely different approach was taken by Wheatley et al. They used a path-

integral formulation of the gauge field model, and showed that after averaging over
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the gauge field one effectively generates a long-range retarded self interaction in the

boson action [41, 42, 43]. To analyze this model they made the drastic approximation

of replacing this complicated retarded interaction by a much simpler dissipative term.

This simplified model could be solved exactly.

We will follow this path-integral approach in this paper, without making the

drastic approximation mentioned above. We will argue that thanks to the interac-

tion with the gauge field the path integral will be dominated by almost self-retracing

paths [35, 36]. By focusing on these special paths we are able to evaluate the parti-

tion function, find an expression for the density of states, and calculate the diamag-

netic susceptibilty. We would like to emphasize that in contrast to the perturbative

methods mentioned above that are only appropriate in the weak-coupling limit, this

path-integral approach takes the strong-coupling limit as its starting point.

3.2 The gauge-field model

In this section we would like to show how an effective action of bosons interacting

with a gauge field can be derived from the t-J model. This is a standard derivation,

and we refer to other articles for a more lengthy discussion of this derivation [23, 31,

32, 33, 34, 35].

The original t-J model is a system of electrons on a square lattice. Close to half

filling the transport properties are controlled by the empty sites, due to the constraint

that no site can be double occupied. Our goal is therefore to derive an effective theory,

that has the empty sites as its degrees of freedom. This can be achieved using the

slave-boson approach in which one keeps track of the empty sites by putting a fictitious

boson on every empty site. The local constraint is then satisfied by requiring that on

every site there is exactly one particle, either a fermion or a boson. This leads to the

Hamiltonian

3- = -t Z (fi ±bibtfj, + c.c.) + J E (Si Sj-1 ni )
(i,j~a (ij)
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+ i iAi(fit fi, + bbi - 1), (3.1)
i

where Si = 2f apafjfi and ni = Ea fit fi, · The field Ai is a Lagrange-multiplier field,

that enforces the local constraint bb i + fit fin = 1. The fermion operator fit carries

the spin of the original electron, while the boson bi carries the charge [7, 15, 17].

The hopping term and the spin-spin interaction term can be decoupled using a

Hubbard-Stratonovich transformation. At the mean-field level the Hubbard-Stratonovich

field, that we denote by ij, is equal to ~ij = (fitfj, + 8t/3J bibj) [7]. One obtains the

gauge-field model from Eq. (3.1) if one takes phase fluctuations of the field ij into

account, by writing ~ij = ~eiai j . The field aij is a gauge field, because the Hamiltonian

(3.1) is invariant under the local gauge transformation [23]

f i fiaeii

bi ~ biei' (3.2)

aij - aij + Oi - i

The field Ai can be considered as the time component of the gauge field, but we will

ignore this field from now on.

We finally obtain an effective action for the bosons interacting with the gauge

field, by integrating over the fermionic degrees of freedom. This leads to the effective

action

S = d d2r [-tbt(V. +ia)2 b + bt(a -IB)b+ (btb)2]

T E H cy (q, iVn)aq aq3 (3.3)

We will chose to work in the Coulomb gauge V -a = 0, in which case the gauge-

field propagator is purely transverse, II(q, ivn) = (a3 - qqP/q 2)IIF(q, ivn). The

transverse propagator HF(q) has the form

IF(q, ivn) = Fq + F(q)V.n/q. (3.4)
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For the t-J model XF is actually negative for doping x < 0.5 [10]. However, one can

argue that for the total gauge-field propagator (which is obtained by integrating over

the bosons as well), XF should be replaced by X = XF + XB. The gauge field is stable

as long as the sum XF + XB remains positive.

In this paper we will use the static approximation for the gauge field propagator

(i.e. iv, = 0), which is an excellent approximation above the Bose-condensation

temperature TBE. In the static approximation we can use the simple correlator

(aqa_q) = T/(xq 2 ). In terms of the gauge invariant flux h = V x a this can be

written as (h(x)h(O)) = T/XS(x).

In the following sections we will take the boson action in Eq. (3.3) as our starting

point, without the short-range repulsion term in the first bracket. We would like

to remark that one has to restore this repulsion term if one wants to obtain a true

superfluid state [8]. We will furthermore assume that the coupling to the gauge field

has a given value, i.e. we will write

(h(x)h(O)) = gTM6(x), (3.5)

where g (MX) -1 is the dimensionless coupling constant of the gauge field, and M

is the boson mass, which sets the energy scale. For the t-J model one has M -1 2~t

and XF (127rmF)-1 - UJ/127r, so that the coupling constant g is approximately

g 24Irt/J. For the high-T, cuprates one has typically t/J - 3, and thus one clearly

has to deal with the strong-coupling limit g > 1.

A problem of the effective action in Eq. (3.3) is that ordinary perturbation works

very poorly. All diagrams with an internal gauge-field line diverge [38], which makes it

hard to use standard diagrammatic techniques. Moreover, even if one is able to cancel

all the divergences, one still faces the problem that higher orders diagrams in the

perturbation expansion become equally important if t > J. This is illustrated by the

work of Ioffe and Kalmeyer, who showed in an explicit calculation of the diamagnetic

susceptibility that the divergences cancel each other to fourth order in the coupling

constant [39]. They found a significant correction to the susceptibility due to the
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gauge-field interaction, but they emphasized that the results become unreliable when

T approaches TBE, in which case higher order corrections cannot be ignored anymore.

A similar result was obtained from a renormalization group analysis of the gauge-field

model [8]. This approach has the advantage that one avoids all divergences, but again

the perturbation expansion breaks down for t > J.

A more promising way to deal with the problem of bosons interacting with a gauge

field is to use Feynman's path-integral formulation [31, 35, 36, 41, 43]. This has the

advantage that one can deal with the strong-coupling limit directly, by focusing on

the boson paths that are most important in the path integral, instead of perturbing

around the non-interacting limit. We will argue that in the strong-coupling limit the

path integral is dominated by the almost self-retracing paths.

3.3 Annealed versus quenched averaging

Our goal is to calculate the free energy corresponding to the action in Eq. (3.3). This

action can be written as S = SB[b, a] + SG[a], where

SB[b, a] = j dTd2r [ bt(Vr, + a)2b + bt( ° - iaB)b (3.6)

is the action of non-interacting bosons moving in a fixed gauge-field configuration

{a}, and SG[a] is the action of the gauge field itself. In order to find the free energy

F = -T log Z we have to calculate the partition function Z, which is defined by

Z J Da e -sG[a] J D[b, bt]e- SB[ba]

= fDa e-SG[a]e-FB[a] (3.7)

Zo (e-PF [a])a,

where Z = f Sa exp(-SG[a]) is a constant. The last line in Eq. (3.7) indicates that

Z is an annealed average of the boson partition function over all possible gauge-field

configurations.
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Let us first consider exp(-P3FB [a]). This is the partition function of non-interacting

bosons subject to a fixed gauge-field configuration, which can be written in terms of

a summation over Feynman paths [44]. This is a sum over all trajectories x,(r), with

n = 1,..., N and 0 < r < L, that satisfy the condition that the set of end points

{xn (p)} is a permutation of the set of begin points {x (0)}. Following Wheatley [42],

a set of m permutating particles in imaginary time P can also be classified as a single

particle in imaginary time m3, satisfying x(O) = x(m,3). If we denote the number of

m-cycles by nm and sum over all sets {nm}, we obtain the expression

oo en-mp nn

e-FB [a] - nm!mm [z a)(m)] (3.8)
{fn,n} m=1l

where

Z{a} (U) L2 j DX()e f- dr *(r)2 -i f a()dl (39)
Zf a) (U = L ()=x(r) Dx()e- 2 (3.9)

is the partition function of a single particle in imaginary time u moving in a gauge-

field configuration {a}, and L2 denotes the total system size. At high temperatures

the sum is dominated by short loops (m = 1) which do not overlap each other. As

the temperature is lowered long loops proliferate, and Bose condensation occurs.

Next we consider the average over {a}. This is difficult to do, because the phase

factor exp(-i j a(l) dl) in Eq. (3.9) depends on the projected area of the paths onto

real space, and when the projected areas in the various terms in Eq. (3.8) overlap

the gauge-field average becomes hopelessly entangled. However, if the overlap of the

projected areas is ignored, each factor Z{a} in Eq. (3.8) can be averaged separately,

and we obtain

(e_ FB[a] } 1 (em z (m/) n (3.10)
{fl} M= n ! m

where z(u) = (z{a}(u))a is the ensemble average of a single particle with a periodicity

u in imaginary time. The sum in Eq. (3.10) is easily done, and we obtain Z

Zo exp(-3F), where
= - 00 emS E mi3 z(m). (3.11)

Next we show that the approximation of ignoring overlapping loops corresponds to
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the approximation of replacing the annealed average over the gauge field in Eq. (3.7)

by a quenched average. Let us again consider the free energy FB[a] of the bosons,

corresponding to the action SB[b,a] in Eq. (3.6). Because SB[b,a] is quadratic in

the boson field we can in principle diagonalize this action for any given gauge-field

configuration {a}, so that the free energy FB[a] can be written as

FB[a] = L2T J deNa(6) log(l - e-(E )), (3.12)

where Na(e) is the density of states of the exact eigenstates of a particle moving in a

fixed gauge-field configuration {a}. A quenched average is defined as an average over

the free energy instead of an average over the partition function. This means that

the quenched free energy can be written as

FQ = (FB[a])a

- L2T J deN(e) log(1 - e-(-)), (3.13)

where N(e) = (Na(e))a is the average density of states. Upon expanding the logarithm

in Eq. (3.13) we find
ems

FQ = - m z(m ), (3.14)
m=1 ml

where

z(u) = L 2 JdeN(E)e - (3.15)

is the average partition function of a single particle at a temperature u-1. Comparing

Eq. (3.11) with Eq. (3.14) we see that Eq. (3.11) is just the path integral representation

of the same quantity. We conclude that F and FQ are identical. We would like to

emphasize that unlike the annealed problem, the quenched average problem only

requires the knowledge of the average single particle partition function (z(m3))a,

which we will discuss in the next section.

How good is the approximation of replacing the annealed problem by the quenched

problem? We expect this approximation to be good when the boson loops are iso-

lated, which will be the case at temperatures above the physical Bose-condensation
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Figure 3-1: Fig. (a) shows the unaveraged diagram for a response function, where
the wavy lines denote the gauge field. A quenched average over the gauge field means
that the wavy lines have to be connected in all possible ways, as shown in Fig. (b).
This does not include diagrams with internal boson loops, like the one shown in Fig.
(c).

temperature TBE, which we expect will be reduced relative to the non-interacting

crossover temperature ToE = 2rnB/M. As we will see in the next section, the most

important boson loops are almost retracing, so that the loop area is relatively small.

This will help to reduce the overlap between loops. Thus if our goal is to approach

TBE from above and estimate the suppression of TBE, the quenched averaging is a

reasonable approximation.

It is also useful to discuss which diagrams are included and excluded in the ap-

proximation scheme. Consider the diagrammatic calculation of a response function.

The unaveraged diagram is shown in Fig. 3-1(a), where the wavy lines represent the

gauge field. Quenched averaging corresponds to connecting the wavy lines in all pos-

sible ways, as shown in Fig. 3-1(b), and assigning the static gauge-field propagator

(xq2)- l to each wavy line. The diagrams that are excluded are those which involve

closed boson loops, for example the diagram in Fig. 3-1(c) is not included. We can

partially correct for this by including boson bubbles in the gauge-field propagator in

a self-consistent way, as is shown in Fig. 3-2(a). This is equivalent to replacing the

susceptibility XF by X = XF + XB. We will briefly discuss this scheme at the end of

Sec. 3.5. In the same way we can also include boson bubbles in the response function,

which is shown in Fig. 3-2(b). The crosses at the end denote an external field, and

the double wavy line denotes the renormalized gauge-field propagator, which is given

by a string of bubbles in Fig. 3-2(a). These RPA diagrams describe the screening

of the external field by the gauge-field fluctuations, which is allowed in the annealed
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(a) = + *+ c + ......
(b) O-- = ----.. + ,

Figure 3-2: A certain class of diagrams with internal boson loops can be included
in the quenched average, by including strings of boson bubbles in the gauge field
propagator, as shown in Fig. (a). This is equivalent to replacing XF by X = XF + XB.

Similarly one should also include these strings of boson bubbles in the response
function to an external field, as is shown in Fig. (b). The gauge field now screens
the external field, and one obtains the Ioffe-Larkin rule Xphy = XF + XB .

problem but not in the quenched problem. The RPA approximation produces the

Ioffe-Larkin rule for the physical susceptibility [23]

-1 - 1 + -1 (3.16)Xpy = XF 1 XB 1 . (3.16)

In the quenched problem the RPA bubbles are not included (cf. Figs. 3-1(b) and (c)),

so in that case one finds that the susceptibility of an external field is simply equal to

XB. Thus the quenched approximation may provide a good estimate for XB, which

we can then sustitute in Eq. (3.16) to obtain the annealed Xphy.

3.4 The single-particle partition function

The single-particle partition function z(u) can be written as a path integral over all

closed paths x(r) in imaginary time 0 < r < u, where u = m3, and m is the length

of a boson cycle. If the total system size is denoted by L2 we obtain

z(u) L 1 ,Dx(Tr)e- f d 2[(r)]e-i, (3.17)

= fi a(l) dl, (3.18)

where i( is the flux of the gauge field through the loop x(r). To find (z(u)), we have

to average (e-i)a over the gauge field a. Using that according to Eq. (3.5) the gauge
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field is correlated as (h(x)h(O)) = gTM6(x), where hi = V x a, one obtains

(e- i ) = e- (~ ) = e TM [area] (3.19)

Wheatley and Schofield pointed out that the area in the exponent is the Amperean

area of the loop x(r) [43]. For a simple area that does not fold over itself the Amperean

area is equal to the Euclidean area of the loop, but if the loop folds over itself the

area that is traversed twice should be counted four times. A closed expression for this

Amperean area is given by [41, 43]

[area] = /f dr dr' log Ir - r'j. (3.20)

The problem is now reduced to bosons that interact with themselves, according to

the area cost given by Eqs. (3.19) and (3.20). Note that this is a long-range retarded

self-interaction, because the area depends on the whole history of the loop x(r).

To evaluate the path integral in Eq. (3.17) we would like to know how the typical

path in this path integral behaves. For g = 0 we would be dealing with a gas of

non-interacting bosons, in which case the typical path of a boson is a random walk.

Random walks have the property that there is no typical time scale or lenght scale

(except for the overall time scale u), in the sense that if one takes a random walk and

rescales time by a factor b and lengths by a factor v/s, one ends up with a random

walk that looks very much like the original random walk.

For g > 1 the typical path will look very different. Paths with a large area are very

costly according to Eq. (3.19), so the dominant paths will be self-retracing paths that

have a relatively small area. However, at very short time scales the bosons will still

behave like free bosons that follow random walks, because the area cost only starts

to be relevant at longer time and length scales. This introduces a new time scale r

in the problem: for time scales r << r we can treat the bosons as free particles, while

for r > r we have to use a retracing path approximation.

This picture suggests to coarse grain the path integral by dividing the time [0, u]

into short intervals of length , denoted by Ij = [rj, rj+l], where rj = jro. After
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(a)

(b)
A

YJ 

X 5 X 6

Figure 3-3: Fig. (a) shows the typical boson-path in a strongly fluctuating gauge
field. At short time-scales r < ro the bosons follow random walks, denoted by the
straight segments. At longer time-scales r > Tr the typical path retraces itself, to
minimize the total area of the path. Fig. (b) is obtained by "stretching" the coarse-
grained reference path in Fig. (a), which does not change the area of the path. This
allows us to decouple the xj and yj coordinates and to rewrite the problem as a
one-dimensional quantum-mechanics problem.

coarse graining the typical path looks like the path in Fig. 3-3(a). In this figure

the straight segments represent the random walks in the short time-intervals Ij. At

longer time scales r > Tr the path in Fig. 3-3(a) behaves like a retracing path.

The partition function z(u) can now approximately be written as an integral over all

possible positions xj = x(rj) at the discrete times rj (j = 1, 2,.. ., N - 1), which are

the endpoints of the segments in Fig. 3-3(a). This gives

N-1 N-1
z(u) = L2 fJ d2xj H p(Xj, xj+)e - gTMA[X()] (3.21)

j=l j=o0

where A[x(T)] is the Amp6rean area of the polyhedron [xO,x1, ... ,xN] with x0 =

XN = 0. The density matrix p(xj,xj+1) is the contribution from the interval r E Ij,

represented by the straight segments in Fig. 3-3(a). Recall that r, was chosen such

that for time scales r < T the paths behave like random walks. We can therefore
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make the approximation of replacing p(xj, xj+) by the free particle expression [44]

pD(r, ) = Jx(= 2 e 2 (3.22)

where r = xj+l - xj. To evaluate z(u) in Eq. (3.21) we notice that for g > 1 the dom-

inant contribution comes from polyhedrons that have a small area, i.e. polyhedrons

that are almost self-retracing, like the polyhedron in Fig. 3-3(a). We define the broken

line [xo, x1, ... , x,] (with r < N) as the outgoing path, and the line [x,, x,+,.... XN]

as the retracing path. The outgoing and retracing path have typically the same length,

so we will always assume that the return time is exactly at TN/2 = u/2. We will use

the outgoing path as a reference path, and measure the coordinates of the retracing

points xj (j > N/2) relative to this reference path. If the retracing path follows the

reference path very closely, we can "stretch" the reference path to a straight line,

and the return path will look like the path shown in Fig. 3-3(b). We can now label

the coarse-grained return path by the coordinates xj along the reference path and yj

perpendicular to the reference path. Note that the result will depend on the total

length R = j rj I of the coarse-grained reference path, but not on the shape of the

path. Thus R is an essential parameter in our theory, which depends on r, and we

will later in this section discuss how R is determined.

Accepting this picture of a retracing coarse-grained path, the partition function

in Eq. (3.21) can now be written as

N/2

z(u) L J fi d2rj PD(RTO, r) pr et(/2, R). (3.23)
j=l

In this expression D is the density matrix for free bosons in two dimensions, coming

from the outgoing path, and pret(u/2, R) is the density matrix for the retracing path

from R = ,j rjI to R = 0. We now discuss the calculation of pret(u/2, R). This

calculation is quite similar to a calculation in a recent paper by Altshuler and Ioffe

[45], who considered the propagation of a fermion in the presence of a fluctuating

static gauge field. They evaluated the average of the gauge-invariant Green function
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(4'(r, r)Tt(0, 0)) exp(i f a - dl), where the phase factor is evaluated along a classical

straight path connecting r to the origin. Our approach is to adopt some of their ideas,

with the reference path in Fig. 3-3(b) playing the role of the classical straight path.

However, the fermion problem has the additional simplifying feature that the particle

moves with the Fermi velocity along the classical path, so that the contribution along

the classical path can easily be factored out and evaluated. In the present problem our

approach is based on the notion that the evolution of the coarse-grained coordinates

xj can be described approximately by a constant velocity v,, which can be determined

self-consistently. The evaluation of the motion along the reference path must then be

done with some care to be consistent with this notion.

The area of the path, on the other hand, depends mainly on the yj coordinates,

and can be approximated by

R N-1

A N- ' lYjl (3.24)
N/2 j=N/2+1

With this approximation we can still decouple the xj and yj integrations, and hence

we can write Pret in Eq. (3.23) as

Pret(U/2, R) = pret(u/2, R)pryet(U/2, R). (3.25)

The calculation of pet is the most interesting, because PYet contains the area cost of

the gauge field. According to Eqs. (3.21)-(3.23) Pet is given by

N-1 N-1
epet(u/2, R) = J H dyj n- dyJp°D(0, Yj+I - yj)e - g TMA/ 2 (3.26)

j=N/2+1 j=N/2

We will do the yj integrations by taking the continuum limit, and transforming the

problem into a one-dimensional quantum-mechanics problem, similar to the problem

analyzed by Altshuler and Ioffe [45]. Taking the continuum limit means that we

replace the broken line in Fig. 3-3(b) by a smooth, continuous path. In the continuum
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limit pYet can be written as

pr~t(u/2, R) = ()=(u/2) Dy(r) exp {- dr [ + ] } (3.27)

It is easy to see that the second term in the exponent in Eq. (3.27) corresponds to

the area cost of the path if we define

1
a = -gTMv,, (3.28)

2

where v, = R/(u/2) plays the role of the Fermi velocity in the Altshuler-Ioffe problem.

Finding Pet is equivalent to solving a 1D quantum mechanics problem, because Pyet

can be written as [44]

Pyet(r) = (y = Ole- ly = 0) = E (°)12e' rE, (3.29)
n

where En and pn (y) are the eigenvalues and eigenfunctions of the 1D Hamiltonian

_1 2+ lIyl (3.30)
2M 9y2

The eigenfunctions are proportional to the Airy functions

(on(Y) oc Ai ((2Mc)1/3jy - r*En), (3.31)

where r, = (2M/a2)1/3 and the eigenvalues En are the zeros of the functions Ai(-r,En)

and Ai'(-r,En). Note that for g > 1 one has r, << u, so that we can approximate

Pet(r) in Eq. (3.29) by only using the lowest eigenvalue E = c/r,, where c -- 1.019

is the first zero of Ai'(-x). This gives the simple expression

Pret(u/2) oc -cu/2r. (3.32)

To obtain Pret in Eq. (3.25) we have to capture the physics that the motion is a

random walk for r < r. Furthermore, the set {xj} should be ordered as shown in
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Fig. 3-3(b), to be consistent with the concept of having a nearly retracing path. A

reasonable approximation to Pet is to sum over all paths with the restriction that

0 < XN-1 < ... < xN/2 = R. Relabeling each integration variable XN-n by x, one

can then write

Prt (u/2, R) - jo dxN/ 2+l '.. J dx2 dxl

P1D(T, X1)POD(rT, 2 - X1 ) .. PD(r, R - XN/2+1). (3.33)

This integral is evaluated approximately in the limit of N large. The details are

shown in the Appendix, and the result is (cf. Eq. (C.6))

prt(u/2, R) cX p1D(u/2, R) u)0 e-, (3.34)

where according to Eq. (C.7) y' - 0.144 and c' - 0.086. Note that the if the restriction

of xj < xj+l was not made, pre(u/2, R) would simply be equal to the non-interacting

diffusion propagator pOD(u/2, R), and the exponent -y' would be equal to 0. Not

making this restriction would clearly overestimate the entropy of the return path.

Now we can substitute Eqs. (3.32) and (3.34) into Eq. (3.23), and perform the

rj integrations. These integrations are still not simple, because Pret(E rjr) contains

the variables rj as well, and hence the integrations are not simple Gaussians. The

simplest way to find an approximation for the integrals is by replacing Pret(R) by

Pret((R)) self-consistently, where R = E rjl is the coarse-grained pathlength of the

reference path. Each of the d2rj integrals is then exactly equal to 1, and for (R) we

will take the root mean square

2= 2rTO (3.35)
(Rs) =E2 (rj RMS = 2 r V M'

Substituting Eqs. (3.32) and (3.34) into the expression for z(u) in Eq. (3.23) we obtain

Z(U) - L2pret (/2, (R)) prYet /2,2, (R)) (3.36)
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ML2 (U) + e-M(R)2/u-c'u/,-c/2T . (3.37)
U

What remains is to determine the cross-over time scale Ar, that separates the

random walk limit from the retracing path limit. Our criterion to determine r is to

require that the typical "vertical" deviation Ytyp from the reference path is equal to

the typical "horizontal" length jxj - j+1l of each segment. This criterion for r is

consistent with the assumptions made about how the typical path behaves at different

time scales. Indeed, for short time scales 1r- r' < ro the vertical deviation becomes

much larger than the length Ix(r) - x(7r') of the segment, which indicates that the

path behaves like a random walk. For long time scales r - ' > Tr the vertical

deviation is much smaller than I1(r) - x(r') , so that at long time scales the retracing

path approximation is appropriate.

The functional form of the eigenfunction o,,n(Y) in Eq. (3.31) immediately tells us

the typical deviation Ytyp from the reference path:

ytyp (2Ma) - 1/3 . (3.38)

Recall that a = gTMR/u (cf. Eq. (3.28)), and R is given by Eq. (3.35). Setting Ytyp

equal to zXj+1 - jl = F/TM gives

gT (3.39)gT

This shows that our picture is only valid for g > 1, because for g < 1 the number

of segments u/)r becomes smaller than 1 for u = 3. It is also worth pointing out

that R - /gu/ Pu/M > u/M, i.e. for g >1 the coarse-grained path length R is

much greater than the RMS diameter of the random walk shown in Fig. 3-3(a). Using

expression (3.39) for -r we can express a and T, in terms of r: a = M/r3 and

r, = 2. Substituting this into Eq. (3.37) we obtain the following simple expression
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for the single-particle partition function:

z(u) Oc e (3.40)
U TO

The exponent 7 is equal to 1/2 + y' - ' 0.644. According to Eq. (3.37) the numerical

constant is approximately by = c' + (1 + c)/4 - 0.591, using c _ 1.019 and

c' 0.086. This is clearly only a crude estimate for , because we made several

approximations to derive this result. For instance, we replaced R by its root mean

square average (R), which affects the value of a.

The expression in Eq. (3.40) displays two striking differences compared to the

partition function zo(u) = M/(27ru) for free bosons. First z(u) is suppressed by an

exponential factor exp(-au/,r), and second z(u) has a pre-factor that varies like

t -1 + instead of u- l . We will show that these two differences will modify the density

of states by shifting the band edge to e0 = a/r) and by enhancing the density of states

near the new band edge.

We will now determine the density of states N(e) using Eq. (3.15), which states

that N(e) is the inverse Laplace transform of the single-particle partition function

z(u)/L 2 . Using the expression for z(u) in Eq. (3.40) we can invert Eq. (3.15), which

gives

N(e) oc [( - eo)] (3.41)

The shift e0 = c/r in the band edge is due to the exponential factor exp(-au/rO) in

z(u), and can easily be incorporated as a shift in the chemical potential = /o - e0.

Note that thanks to the shift in the band edge the bare chemical potential t0 can

be positive, what is not allowed for free bosons. The enhancement of N(e) at the

band edge is due to the fact that z(u) in Eq. (3.40) has a pre-factor that varies like

u- +t instead of u- '. We remark that in Wheatley's treatment, who replaced the

gauge field fluctuations with a coupling to a heat bath, the exponent 7 was equal to

1, leading to a -function singularity in the density of states at the band edge [42].

Clearly that approximation overestimates the effect of the gauge field fluctuations.

The enhancement of the density of states N(e) has important consequences for
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the density equation

e(E-/Po) 1 o (rE')'Y e ( ' - A) - 1 '

It is instructive to compare this expression with the density equation for free bosons.

For free bosons one has No(e) = M/27r, which leads to a chemical potential of the form

= T log(1 - e-TE/T), where TBE = 2 rnB/M. This implies that for T << TBOE the

only way to accomodate a high density of bosons is to make the chemical potential

exponentially small: '" -Texp(-T/TBE). Having a chemical potential that is

orders of magnitude smaller than any other energy scale in the problem is a somewhat

awkward situation, and it is well-known that in the case of free bosons a small short-

range repulsion is sufficient to create a superfluid state below a Bose-condensation

temperature TBE - 2rnB/M [8, 46, 47].

The situation is clearly very different in Eq. (3.42), where the gauge field interac-

tion has introduced a singularity in the density of states at the band edge. This means

that one can easily accomodate a high density of bosons, without having to make the

chemical potential exponentially small. Bose condensation might still survive if there

is a short-range repulsion between the bosons, but the strong enhancement of the

density of states indicates that the transition will occur at a much lower temperature

TBE << TE. Our approximation of the density of states is not accurate enough to

produce band tail states, which are states that correspond to an exponentially small

density of states at low energies. According to a Lifshitz argument band tail states

should be present due to unlikely voids in the gauge field configuration. These band

tail states are localized and cause problems if bosons are allowed to condense into

them. However, they are not expected to be important if hard-core repulsion is taken

into account.

An important physical quantity that can be used to characterize the condensation

of the bosons into a superfluid state is the diamagnetic susceptibility. In the weak-

62



coupling limit the boson susceptibility is given by

X = 24 (eE/T1), (3.43)

where TBE = 2rn/M. For T < TBE the susceptibility X diverges exponentially,

and TBE can therefore be identified as the crossover temperature below which the

bosons start to behave like a superfluid. We will show in the next section that in the

strong-coupling limit one obtains a very different expression for XB, that increases

much slower below TBE, indicating that Bose condensation is suppressed.

3.5 Response to an external field

In this section we will couple the system to an external magnetic field Hi = V x A,

and calculate the diamagnetic susceptibility XB = L-20 2 F/0H 2 . In a quenched

random gauge field we can again express the free energy FQ(/3, H) in terms of the

single-particle partition function z(u, H) (with u = m3), averaged over the gauge

field, similar to Eq. (3.14):

em t
FQ(/3, H)= -T E m (z(mp, H))a. (3.44)

The susceptibility XB = L-202FQ/0H 2 is determined by solving the two equations

1 emus a2z
XB = - Lr O H2' (3.45)L m=- 1m m 2;

1 00

nB = 2 E z(m)e m '. (3.46)

Eq. (3.46) is the density equation nB = -L-29FQ/Oy, which determines the chemical

potential .

The path-integral expression for z(u, H) is identical to the expression for z(u) in

Eq. (3.9), except that due to the external field there is an additional factor exp(-i f A.

dl) in the integrand. This means that the total flux 'I through a loop is now given
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by:

4= a.dl+ JA dl. (3.47)

The external gauge field A is chosen such that Hi = V x A. Remark that for a

constant external field H the contribution of this field to the flux 4 is simply equal to

H times the oriented area of the loop. After averaging over the gauge field the total

area cost of a closed loop is therefore equal to

1
-gTM x [Amp6rean area] + iH x [oriented area]. (3.48)
2

We will first give a qualitative estimate of XB = 02F/OH 2 . Due to the second

term in Eq. (3.48), the single-particle partition function can be expanded in H2 as

z(u,H) - z(u)[1 - H 2 (A'2)] for H2 - 0, where A' is the oriented area of a path.

The average (A'2) can be estimated by dividing the retracing path into N = u/r,

segments, which gives (A'2) _ N(A2), where A0 is the area of a single segment. A

single segment behaves like a random path, so (A2) - (Tr/M) 2 . This implies that

(A'2) _ N(r/M) 2 . Substituting N = uTo and r' = (gT) - 1 gives (A'2) _ u/(gTM 2),

so that
02Z U

= (A'2)Zz(u) z(u). (3.49)
OH2 gTM 2

Substituting this expression into Eq. (3.45), one notices that the factor u = m/3

in Eq. (3.49) cancels m,3 in the denominator of Eq. (3.45), so that Eqs. (3.45) and

(3.46) become proportional to each other. This immediately gives us the result XB

nB/(gTM2).

We will now calculate z(u, H) more accurately, using the same approach as in Sec.

3.4. We again introduce a time scale T such that the paths are retracing for time

scales r > Ar, and behave like random walks for time scales r < Ar. Just like in Sec.

3.4 we can define a reference path and a retracing path, and analogous to Eq. (3.36)

we can derive that z(u, H) can be written as

z(u, H) '- L2pret (u/2, (R)) PYet (u/2, (R), H) . (3.50)
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The dependence on H is contained entirely in pYet (u/2, H). To calculate this quantity

we will again use the trick of rewriting the problem as a 1D quantum mechanics

problem (see Eq. (3.27)), but now the 1D Hamiltonian is replaced by

1 02
W- = + alyl + iHvy. (3.51)2M Oy2

Notice that in the last term y does not have absolute value bars, because the last

term measures the oriented area of the loop. The eigenfunctions of ' can still be

expressed in terms of Airy functions (cf. Eq. (3.31)):

n(Y) oc Ai ((2Ma±)1/3y - r±En), (3.52)

where r± = (2M/a2)1 /3 , a = a : iv.H, and ± denotes the sign of y. The eigen-

functions En are found by requiring that fn (y) and A' (y) are continuous at y = 0,

which gives the transcendental equation

Ai'(-r+E) Ai'(-rEn) (353)
Ai(-,r+En) Ai(-rE,) '

For u/r) > 1 it is sufficient to focus on the lowest eigenvalue Eo(H) of this equation.

In the limit H -+ 0 the solution of Eq. (3.53) can be written as

E0(H) - E() =CH (VH), (354)
.= CH , (3.54)Eo (0) a

where CH - 0.218 is a numerical constant. Substituting this into Eq. (3.29) we obtain

Pret(u/2, H) O exp -, 1 CH (3.55)

This implies that
re__t CCHUU

' 9Prt 2 H ~o -~ CCHU ( )2 Pret (3.56)

A similar equation has to hold for z(u, H), because prYet is the only part of z(u, H)

that depends on H. Expressing r, and v,l/a in terms of Ar4 , as explained after Eq.
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(3.39), we obtain

0a2 = 2CCHM2 Z(U). (3.57)
9H2 H=O M2

Using this equation, which relates 02z/0H 2 to z(u), we can now express the diamag-

netic susceptibility in terms of the density:

1 - em" s 0 2z
XB = -L E

Lrn- m/3 OH2

= 2ccHM2BL2 E z(mp/)e' (3.58)
M=1

nB /T CCH TE
gM2 7r gMT'

If we substitute g = 1/(xM) with X _ XF, this result is identical to the expression

for XB derived by Wheatley et al. [43], except that the numerical factor here (i.e.,

cCH/Tr - 0.071) is somewhat smaller. Also note that Eq. (3.58) is similar to the qual-

itative expression for XB that we derived after Eq. (3.49). We will refer to the result

in Eq. (3.58) as XQ, where the superscript Q denotes that this is the susceptibility of

the quenched problem. Now compare the result XQ 0.07 TBE/(gMT) in Eq. (3.58)

to the non-interacting expression XB 0 TBE/(247rMT) in Eq. (3.43) for T > TOE. The

conclusion is that at high temperatures XQ is reduced by a factor of 0.2 g compared

to X ° .B

We will now discuss the self-consistency of the expression for XQ in Eq. (3.58).

In the self-consistent scheme discussed at the end of Sec. 3.3 we argued that XF has

to be replaced by X = XF + XB, in order to include a class of diagrams that are not

included in the quenched problem, but should be included in the annealed problem.

At high temperatures this does not change the results much, because XB < XF

for T > TBE. Let us now consider what happens at lower temperatures, when XB

becomes of the same order as XF. In that case g - (MXF) - 1 has to be replaced by

9 = M-1(XF + XB) -i, so that the right-hand side of Eq. (3.58) becomes a function
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of XB as well. Solving this equation gives

XB=( -- XF. (3.59)

According to this equation XB blows up at a finite temperature

TBE = CCHTOE - 0.071 TBOE, (3.60)

which we interpret as the Bose-condensation temperature. The fact that XB in Eq.

(3.59) diverges at TBE indicates that the validity of Eqs. (3.58) and (3.59) breaks down

for T<TBE. The reason for this is that Eq. (3.58) was derived under the assumption

that < u, or equivalently that g = (XM) - l > 1. This is a valid assumption as

long as X is much smaller than M - 1, i.e. when T > TBE. However, when T approaches

TBE, the susceptibility XB(T) increases so rapidly, that the assumption g > 1 breaks

down, and thus Eqs. (3.58) and (3.59) are not valid anymore. To obtain an expression

for XB we then have to consider the opposite limit u < r, which is equivalent to g 1

for u = /3. For u < r the retracing behavior of the boson paths disappears, and

instead the paths are random walks at all time scales, so that we should recover

the non-interacting limit. In order to calculate XB self-consistently we have to find

explicit expressions for z(u) and 02z/&H 2 that are valid in both limits u > r (strong

coupling) and u < ro (weak coupling). We therefore define a time scale u, which is

proportional to wr, that separates the two limits:

KL'24 ( , e- /' for u > u; (3.61)
(UN 27ru ro (3.61)

L2 M for u < uc;

_2 ( HU-ccHU z(u) for u > u; (3.62)
z -2CCHM2 (3.62)

212M2 Z(U) for u < uc.

For u > u these expressions are identical to Eqs. (3.40) and (3.58), while for u < u¢

they are equal to the well-known non-interacting expressions for z(u) and 02 z/0H 2 .

The parameters uc and K have to be determined self-consistently, so that z(u) and

67



0.20

0.15

2 0.10

0.05

n no
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

temperature T/TBE

Figure 3-4: Three different approximations for the boson susceptibility XB(T) for
a fixed boson density nB = 0.1, using XFM = (247rt/J) -1 and t/J = 1. The
dashed line is the quenched susceptibility XQ(T) oc (gT)-l, which we derived in Eq.
(3.58). The solid line is the self-consistent xSC(T), which we obtained by solving Eqs.
(3.45) and (3.46) numerically. For high temperatures XSC approaches the dashed
line, because in that case XB is small and can be ignored compared to XF. Below a
crossover temperature TBE the susceptibility XS C diverges exponentially, analogous
to the non-interacting value X° (dash-dotted line). Notice that due to gauge field
fluctuations the crossover temperature is strongly suppressed, TBE < TE.

02z/&H2 are continuous at u = uc. This gives

u = (24ccH) '% 5.331 T; (3.63)

K =(r)f -e '/ *- 7.925.

We can now substitute Eqs. (3.61)-(3.63) into the two Eqs. (3.45) and (3.46) that

determine XB and Ht. Notice that in contrast to Eq. (3.58), XB and nB are not directly

proportional to each other anymore. We remark that XB also enters the right-hand

side of the Eqs. (3.45) and (3.46) via X = XF + XB

We solved Eqs. (3.45) and (3.46) numerically at the density nB = 0.1, using

XFM = (247rt/J) -1 . In Fig. 3-4 we show our results for t/J = 1. The solid line

denotes the self-consistent Xs C. Notice that at high temperatures XSC(T) approaches

the dashed line, which corresponds to the quenched XQ(T) in Eq. (3.58). For lowL~l~ Ur~IU I~C)VVl~I ~ll31Vll3 V LC UClLIU B\ 1 1lIly \.Bj
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Figure 3-5: The (inverse) boson susceptibility XSC(T) - 1 for various values of t/J
at a fixed density nB = 0.1, using XFM = (247rt/J)- '. The results were obtained
by solving Eqs. (3.45) and (3.46) numerically, using an expression for the partition
function z(u) that is valid in both the strong-coupling and the weak-coupling limit.
At high temperatures XSC(T) - 1 is linear in T, with a slope proportional to t/J, and
an intercept independent of t/J. Below TBE - 0.08TBE one enters the weak-coupling
regime, and XSC(T)- 1 decays exponentially. Note that TBE is reduced by a factor
of 12 compared to ToBE.

temperatures XC (T) diverges exponentially, and behaves similar to the mean-field

susceptibility XB (T) in Eq. (3.43), except that the crossover temperature TBE, at

which XB XF, is significantly reduced. In Fig. 3-5 we show how the behavior of XSC

changes for different values of t/J. At high temperatures X-1 is linear in T, with a

slope proportional to t/J, and an intercept at a finite temperature T _ 0.07TBE. This

corresponds very well with the expression for XB in Eq. (3.59). At lower temperatures

XB1 decays exponentially. According to Fig. 3-5 the crossover temperature between

the two regimes is at approximately TBE - 0.08 TOE. These results remain almost

the same if one repeats the analysis at a different density, keeping in mind that

TBOE = 2rnB/M scales linearly with the boson density nB. The main difference is

that at a higher density XB(T) diverges more quickly below TBE.
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3.6 Discussion

In this paper we analyzed an effective action of bosons moving in a fluctuating gauge

field, using a path-integral approach. The effective action was obtained from the

t-J model by averaging over the fermionic degrees of freedom. The advantage of

using path integrals is that the interaction with the gauge field can be taken into

account by associating an area cost to every closed path in the path integral. The

fluctuating gauge field favors loops with a small area, which allows us to focus on

self-retracing paths. This is a very appealing approach, because by focusing on self-

retracing paths we essentially take the strong-coupling limit as our starting point,

which is not possible if one uses standard diagrammatic techniques.

To find the partition function one in principle has to calculate an annealed average

over the gauge field. We approximated this annealed average by a quenched average,

in which case the total free energy can be written in terms of the single-particle

partition function, averaged over the gauge field. The difference between a quenched

and an annealed average is that a quenched average treats all boson loops as being

independent, while in reality two or more boson loops can overlap. We believe that

the quenched problem is a good approximation of the annealed problem for T > TBE,

because in that case the probability that boson loops overlap is small. For T < TBE

the typical size of a loop increases, and one has to deal with a system of tangled loops.

In that case the quenched problem and the annealed problem become very different.

An important aspect of our derivation of the partition function was the observation

that there is a crossover time scale r = (gT)-l, that distinguishes random-walk

behavior from retracing-path behavior. At short time scales r < r the bosons do not

really feel the presence of the gauge field, and the bosons essentially follow random

walks. At longer time scales r > r the bosons realize that it is costly to form loops

with a large area, so they try to retrace themselves to minimize the area cost. Note

that g > 1 is equivalent to P > r, which means that in the strong-coupling limit

the paths are indeed self retracing.

One of the main consequences of the retracing-path approximation is the effect
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on the density of states. We found that the band edge is shifted, which allows the

chemical potential to become positive. More importantly there is an enhancement of

the density of states near the band edge. This suppresses Bose condensation, because

due to this enhancement of the density of states one can accomodate a higher density

of bosons in the system.

An important signature for Bose condensation is provided by the boson suscepti-

bility XB. For non-interacting bosons it is well-known that XB diverges exponentially

below a crossover temperature TBOE 2rnB/M. In other words, even though there is

no true superfluid state, for all practical purposes the bosons still behave as if they

were condensed, which is indicated by XB > 1/(24IrM). One can therefore argue

that the equation XB = 9(1/(247rM)) determines a crossover temperature between a

normal state and a (pseudo) superfluid state.

We calculated the susceptibility using our path-integral approach, by analyzing

the effect that an external magnetic field has on the single-particle partition function.

Because of the fact that the typical area of a closed loop is suppressed by the gauge

field, one expects that the diamagnetic susceptibility, which is related to the area of

loops, will be quite small in the strong-coupling limit. We indeed found that above the

Bose-condensation temperature the susceptibility XB is a factor 0.2g smaller than the

non-interacting expression X° , and has the functional form XQ 0.44 nB/(gTM 2 ). It

is interesting to note that in the strong-coupling limit our expression for XB is similar

to the expression derived by Wheatley et al, even though they analyzed a different

model, in which the gauge field interaction was replaced by a simple dissipative term.

They obtained a somewhat different expression for the density of states, but the

expression for XB was the same as ours. This is due to the fact that the susceptibility

X.B can be directly related to the density of bosons, independent of the details of the

density of states.

The expression XQ(T) - (gT) - ' is only valid above the Bose-condensation tem-

p)erature TBE. At lower temperatures one has to include XB in the total gauge-field

susceptibility X = XF + XB to obtain self-consistent results. This implies that the

dimensionless coupling constant g = (XM) - 1 decreases rapidly, and at sufficiently
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low temperatures one approaches the weak-coupling limit g << 1. Thus one expects

that at low temperatures the strong-coupling result XB - (gT)-l breaks down. In-

stead one has to solve a more complicated set of coupled equations to determine

a self-consistent susceptibility Xsc. We solved this numerically using an expression

for z(u, H) that is valid in both the strong-coupling limit u > r and in the weak-

coupling limit u << r. We showed that below TBE the self-consistent Xs c does not

vary like 1/T anymore, but instead diverges exponentially below a crossover temper-

ature TBE - 0.08 TBE. This crossover temperature corresponds to the situation when

XB - XF- We conclude that the bosons still condense into a superfluid state, but due

to the fluctuating gauge field this happens at a reduced temperature TBE 0.08 TBE.
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Chapter 4

The superconducting phase

diagram in the gauge-field

description of the t-J model

4.1 Introduction

I)ue to an intense effort by many researchers the unusual properties of the high-T,

copper-oxides are now quite well documented. In the normal state the copper-oxides

seem to be an example of a strongly correlated electronic system, which cannot be

described by conventional Fermi-liquid theory. One of the unusual normal-state prop-

erties is the resistivity, which is proportional to temperature over a large range of

temperature. The superconducting state is in some sense less unusual than the nor-

mal state, because in many respects it behaves like a BCS superconductor, but with

an unusual pairing mechanism. The onset of superconductivity occurs at tempera-

tures that are so high, that the pairing between electrons cannot be solely due to

phonons. Moreover, microwave measurements of the quasi-particle contribution to

the conductivity have shown that the scattering rate decreases strongly below T,,

which is inconsistent with a scattering mechanism due to phonons [48]. It is therefore

more likely that the pairing mechanism has an unconvential origin, which could be

magnetism. This is further supported by experimental reports of gapless excitations
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[48, 49, 50, 51, 52], and even evidence for a d-wave symmetry of the order parameter

[53]. Another peculiar aspect of the superconducting state is that it only occurs in

an intermediate rage of doping of 0.05 x < 0.3, but disappears when the doping is

too small or too big.

Many of the microscopic models that have been proposed to describe the properties

of the high-To copper-oxides are based on the two dimensional Hubbard model or the

t-J model [13, 14]. In the case of the t-J model one can obtain a crude approximation

of the onset of superconductivity, by means of a BCS-like mean-field decoupling of the

Hamiltonian. Several mean-field phases have been suggested, and depending on the

doping and temperature different phases can be energetically favored [7, 15, 16, 17,

18, 19, 22, 23, 24, 27]. In general these mean-field phases predict a pairing-transition

temperature of the order of T° - 0.15J close to half-filling, which corresponds to a

temperature of several hundred degrees Kelvin. The reason for this overestimate of

Tc is that a simple mean-field theory ignores fluctuations, which are very important

in a strongly correlated system.

We will take the gauge-field formulation of the t-J model as our starting point,

which goes beyond mean-field theory by including Gaussian fluctuations of a gauge

field [23, 33, 35, 37, 54]. The gauge-field model has been succesful in explaining

some of the normal-state properties, such as the linear resistivity, in the regime above

the Bose-condensation temperature [33, 35, 37]. So far little work has been done on

what the effect is of the gauge field on the superconducting state. This article will

focus on how the interaction with the gauge field can suppress the pairing-transition

temperature to a temperature scale that agrees more with the experimental values

of T < 100K. The main argument for this suppression is that the gauge field in-

troduces an additional term in the free energy [55], which opposes the opening of a

superconducting gap. Our numerical calculations show that this suppression is very

significant, and that in fact superconductivity only survives at an intermediate range

of doping, with a maximum T, at a doping of x 2_ 0.15.
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4.2 The role of gauge-field fluctuations in the t-J

model

In this section we will first give a quick review of how the gauge-field model is derived

from the t-J model. We refer to other papers for a more lengthy discussion of this

derivation [23, 35, 32, 54]. Our starting point is the t-J model on a square lattice

H = -t E cicj + J E (Si Sj -ninj), (4.1)
(ij) (i,j)

where Si = icactacji and ni = Ya C4t ci,. This Hamiltonian is under the important

constraint that no site is double occupied. In order to satisfy this constraint we employ

the slave-boson formalism [56, 57), in which the electron operator c, is replaced by

c! = ft bi. The boson operator bt keeps track of the empty sites, and the fermion

operator fit carries the spin [15, 17]. The constraint of no double occupancy is

satisfied by requiring that bbi + E, fit fi, = 1 at each site i. In order to get a

superconducting state in the slave-boson picture it is not sufficient that the fermions

form Cooper-pairs, but the bosons have to be Bose condensed as well.

The gauge-field model is obtained from Eq. (4.1) by decoupling the hopping term

and the Heisenberg term using Hubbard-Stratonovich fields, and then making the

approximation of only considering fluctuations of the phase of one of these new fields.

Denoting the Hubbard-Stratonovich fields by ij = eiaii and Aij = ±Ao, this leads

to the Hamiltonian [7, 17]

H 1 [3J 4 A2- e-i j (3Jfit fj + 2tbbj - cc)- . - A(fitfjl- filfjT)-c.c.]
(i,j)
8t2

+ 8 btbjb bi - po fitafir - i Ai(fitfi, + bbi1), (4.2)
(i,j) i i

where Ai is a Lagrange-multiplier field that enforces the local constraint bbi + ft fi =

1. The role of the field aij will be discussed later on.

We will first consider the mean-field solution of this Hamiltonian, which corre-
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Figure 4-1: A schematic mean-field phase diagram of the t-J model. Below the
dashed line the uniform RVB-order parameter S is nonzero. The mean-field pairing
line (dotted) and the Bose-condensation line (solid) divide the phase diagram into
four regions. Region I is a Fermi-liquid phase, region II is the spin-gap phase, region
III is the superconducting phase, and region IV is the strange metal phase. In this
paper we argue that the spin-gap phase is destroyed by gauge field fluctuations.

sponds to aij = 0. At the mean-field level iAi = IB plays the role of a chemical

potential for the bosons, and IB is chosen such that the average boson density is

equal to the doping concentration x. The mean-field phase diagram is schematically

shown in Fig. 4-1 [34, 35, 58]. Below the dashed line the uniform RVB-order parame-

ter is nonzero. At a lower temperature, denoted by the dotted line, d-wave pairing

between fermions occurs, i.e. Ai,+j = -Ai,j+ = A0 . Below the solid line the bosons

condense into a superfluid state. According to mean-field theory Bose condensation

occurs at a temperature scale given by TE - 2rx/mB, where 1/mB = 2t~. The

mean-field phase diagram divides naturally into four regions. Region I with (b) Z 0

is a Fermi-liquid phase. Region II with A0 0 but (b) = 0 is called the spin-gap

phase, because an anisotropic gap appears in the fermion spectrum which represents

the spin degrees of freedom. In region III both A0 and (b) are nonzero, so that d-

wave pairing between physical electrons occurs, resulting in a superconducting phase.

Region IV has been called the strange metal phase, because it exhibits some of the

unusual properties of the normal state of the high-T, copper-oxides [34, 35].
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Since fi, and b are fictituous entities, the only true phase boundary is Fig. 4-1 is

the transition to the superconducting state in region III. Nevertheless it is possible

that the other transition lines single broaden to cross-over lines, such that one can still

identify the regions I, II and IV in the phase diagram, characterized by the physical

properties described above. In particular much attention has been paid to the spin-gap

phase, because NMR and susceptibility experiments indicate the appearance of a gap

in the spin excitation spectrum in a temperature range above the superconducting

Tc in underdoped materials. On the other hand, a recent analysis of the data by

Millis and Monien indicated that the spin-gap phase may be absent in simple layer

materials such as La2_xSrCuO 4, and present in double layer materials such as the

YBCO compounds [59]. Thus the identification of the spin-gap phase with region II

is quite uncertain at this point.

A serious difficulty with the schematic mean-field diagram shown in Fig. 4-1 is

that the temperature scale for Bose condensation is much too high, if one uses the

mean-field expression TBE _ 47rtex. Furthermore, close to half-filling (x 0.04) the

d-wave pairing state is unstable to more complicated phases, such as dimerized phases

[18, 19, 23], incommensurate flux phases [24] and staggered flux phases [7, 27]. We

restrict our attention to x 0.04, which is indicated by the shaded region in Figs.

4-2 and 4-3. The dotted line in this phase diagram is the mean-field transition to

a d-wave pairing state. On the same plot the TBE-line would lie entirely inside the

shaded area.

For non-interacting bosons Bose condensation does not really exist is two dimen-

sions, but one can still consider TBE as a cross-over temperature below which the

boson susceptibility diverges exponentially:

XB (esE/T 1). (4.3)
24lrmB

It has been argued that the characteristic temperature scale for the increase in XB

will be strongly suppressed by fluctuations around the mean-field solution [8, 33, 39,

41, 42, 43].
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Figure 4-2: The phase-diagram of the t-J model for t/J = 3 using a mean-field
expression for the susceptibility XB , given by Eq. (4.3). The self-consistent dissipa-
tive model XSC produces a phase diagram that is essentially indistinguishable. The
solid line for Tc(x) uses T = 0 expressions for the propagator IIF() (see Sec. 4.3.1),
while the dashed line is obtained by expanding Im IIF(v) and Re HF(V, ) in A\ (see
Sec. 4.3.2). The first-order jump in A0 at the transition is quite small for x >0.1,
and hence the expansion in small A2 (dashed line) is a good approximation in this
case. For x<0.1 the first-order jump in A0 becomes so large, that the solid line
is more appropriate. The line denoted by black diamonds is our best guess of the
correct phase boundary within this model. For x < 0.05 superconductivity vanishes
completely, which is directly related to the fact that the gauge field becomes unsta-
ble against flux phases for x < 0.04. For x > 0.2 the gauge field becomes so stiff, that
the transition line TC(x) approaches the d-wave BCS value TO(x) (dotted line).
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Figure 4-3: The phase-diagram of the t-J model in the doping-temperature plane
for t/J = 3, using the dissipative model for the susceptibility Xss. The solid line
for Tc(x) uses T = 0 expressions for the propagator IIF(), while the dashed line is
obtained by expanding ImIIF(v) and RefIF(v) in A0. The T = 0 approximation for
the propagator (solid line) is more appropriate, because of the large first-order jump
in A0 at the transition. In the underdoped case the susceptibility XdiSs is relatively
small at the transition, so this model predicts a direct transition from a strange
metal to a superconducting phase. Note that in this phase diagram the transition
temperature Tc(x) is much lower than in Fig. 4-2. This is directly related to the fact
that in the dissipative model Bose condensation occurs at a much lower temperature
than if one uses X ° or XSC (see Fig. 4-4). For large doping x > 0.35 the gauge field
becomes so stiff, that the transition line Tc(x) approaches T(x) (dotted line).
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We will now discuss how fluctuations alter the mean-field results mentioned above.

We will restrict our analysis to Gaussian fluctuations of the phase aij of the RVB-order

parameter ij, which is a massless Goldstone-mode. The field aij is called a gauge

field, because the Hamiltonian (4.2) is invariant under the local gauge transformation

[23]

fi - fiaeii

bi ' bie ioi (4.4)

aij aij + Oi- j

We will chose to work in the Coulomb gauge V a 0, in which case the gauge-

field propagator IIv(q) = ( v- p,p/p 2)II(q) is purely transverse. Here we defined

Ap = 2sinq./2 to take the lattice structure into account. The Lagrange multiplier

field Ai can be considered as the time component of the gauge field [23, 35]. In this

paper we will simply replace iAi by its saddlepoint value IB, which will serve as the

chemical potential of the bosons. The gauge field couples to both the fermions and the

bosons, so one expects that both the d-wave pairing-line and the Bose-condensation

line in Fig. 4-1 will be affected by the fluctuating gauge field [35]. While the main

topic of this paper concerns the coupling of the fermions to the gauge field, this

problem cannot be addressed without considering the coupling of the bosons to the

gauge field as well.

The coupling of the bosons to the gauge field is a strong-coupling problem in

the physically interesting case of t/J > 1, and is therefore difficult to analyze. This

was illustrated by a diagrammatic analysis of Ioffe and Kalmeyer [39], who calcu-

lated the lowest-order gauge-field correction to the diamagnetic susceptibility XB.

They showed that this correction becomes very large if one approaches the Bose-

condensation temperature TE, at which point the perturbative analysis becomes

unreliable. The problem has also been treated by a renormalization group analysis

[8] and by path-integration methods, assuming that ReIl(q) oc q2. It was pointed

out that the fluctuating gauge field tends to reduce the projected area of Feynman
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paths, so that the path-integral is dominated by almost retracing paths [36]. Wheat-

ley and co-workers [41, 42, 43] did a further analysis of the path-integral formulation,

by making the rather drastic approximation of relating the problem to one where the

bosons couple to a dissipative bath. This problem of non-interacting bosons coupled

to a heat bath with a damping time r0 can be solved exactly. For strong coupling,

i.e. for T01 > kBT, the boson susceptibility XB is given by [43]

Tox
XB 2 (4.5)

7rmB

It is tempting to identify r7 1 with the transport scattering rate of the bosons by the

gauge field, which is given in Born approximation by ro-1 - kBT/4mB. If we further

follow Wheatley et al. and replace X by the free fermion expression XF = 1/(127rmF),

we obtain
diss 2XTE
Biss 2XFTBE (4.6)

We will refer to this result as the dissipative model. Note that X ~Ss diverges only as

T- 1, as opposed to the exponential growth of X° given by Eq. (4.3).

We believe that Eq. (4.6) grossly overestimates the effect of the gauge-field fluctu-

ations for at least the following reason. The susceptibility X that controls the strength

of the gauge-field fluctuations is the sum XF + XB, where XB should be treated self-

consistently. Note that this self-consistency is missing in Eq. (4.6), because X was

simply replaced by XF. As XB grows ro- is reduced so that the dissipation crosses

over to the weak-coupling limit, and Eq. (4.5) no longer applies. We have carried out

a self-consistent calculation of XB, where we used the full solution of the susceptibility

valid for arbitrary r0 . The resulting self-consistent XS c is shown in Fig. 4-4. A recent

analysis based on self-retracing Feynman paths yields qualitatively the same results

[9].

The value of Xsc (solid line) lies between (dotted line) and Xdiss (dashed line),

and diverges exponentially below a temperature which is a fraction of TBE. In the

absence of a full theory, we believe that XS c is a reasonable guess of the behavior of

the boson susceptibility, which we can use in the interim. We have to keep in mind
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Figure 4-4: The boson susceptibility XB(T) for three different models for a doping
x = 0.07. The fact that XB(T) increases rapidly at low temperatures indicates
that the bosons effectively condense into a superfluid state below a certain crossover
temperature. The dotted line is the mean-field value XB, given by Eq. (4.3). The
dashed line represents the dissipative model for Xdiss, given by Eq. (4.6), which we
believe grossly overestimates the effectiveness of the gauge field to suppress Bose
condensation. The solid line is the self-consistent dissipative XBC , which takes into
account that a large XB stiffens the gauge field. In the absence of a full theory xSC is
a reasonable guess for the behavior of the susceptibility XB(T). We however believe
that at low doping XSc underestimates the suppression of Bose condensation.

however that at low doping XsC is probably too large, because the self-consistent

dissipative model assumes that IB(q) = XBq2 [43], while in reality HIB(q) levels off

to Ps = /mB for large q. This means that when Ps is small the self-consistent

dissipative model underestimates the gauge-field fluctuations for large regions of q

space, resulting in a susceptibility Xs C that is too large.

In this paper we have carried out the calculation of the phase diagram using

all three different choices for XB. For reasons to be explained below, it turns out

that X and X C yield practically indistinguishable phase boundaries for the onset

of superconductivity. That result is shown in Fig. 4-2. For completeness the phase

boundary using Xdiss is shown in Fig. 4-3.

The main result of this paper is that quantum fluctuations of the gauge field are

very effective in suppressing the pairing between fermions. In fact, the suppression is
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so effective that the spin-gap phase (region II in Fig. 4-1) is destroyed completely, and

only a direct transition to a d-wave pairing state remains. The transition temperature

Tc is reduced compared to the mean-field value TO, and TC vanishes completely at low

doping. The result of our numerical calculation of Tc is shown in Figs. 4-2 and 4-

3. Before going into any technical details, we give a qualitative discussion of the

physics behind this suppression. The coupling of the fermions to the gauge field is

very much analogous to the coupling of electrons to an electromagnetic field, except

that the magnitude of the dimensionless coupling constant is very different. The

dimensionless coupling constant is very small for an electromagnetic gauge field, but

of order unity in the t-J model. It is known that in metals the low-lying excitations

associated with a fluctuating gauge field give rise to a large negative contribution to

the free energy, so that the specific heat in three dimensions varies as T log T [60].

In ordinary metals this is a small effect because it is proportional to v2 /c 2, and has

not yet been observed. This small factor is absent in the t-J model, which makes

these fluctuations very important. In two dimensions the specific heat varies as T2/ 3 ,

implying a free energy term Fgauge proportional to T5 /13. The importance of the gauge-

field contribution to the free energy has been pointed out by Hlubina et al. [55], who

showed that the contribution from the transverse gauge-field fluctuations, together

with the longitudinal gauge-field fluctuations, brings the mean-field free energy much

closer to that given by high temperature expansions. Unlike the transverse mode,

the longitudinal mode does not give rise to singular corrections at low temperatures,

because it is screened. We will therefore ignore the longitudinal contribution to the

free energy in what follows below.

In a pairing state a gap A opens up in the fermion spectrum. This introduces

a gap in the gauge-field excitation spectrum as well, so that gauge-field modes with

frequencies less than 2A do not contribute to the free energy, resulting in a net free

energy cost. We can estimate the free energy cost 6 Fgauge by replacing the temperature

cutoff in Fgauge by A, resulting in Fgauge oc A5/ 3. On the other hand the BCS-like

free energy gain from pairing is proportional to A2, so that Fgauge always dominates,

at least for small enough A. This situation will change when the boson susceptibility
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becomes so large that the bosons effectively condense into a superfluid state. In that

case the gauge field becomes effectively massive, with a stiffness equal to the superfluid

density ps - x of the bosons, due to the Anderson-Higgs mechanism. The gauge field

is then so stiff that Fgauge is no longer dominating, and its role in suppressing fermion

pairing disappears. We expect then a direct transition to a superconducting phase

with d-wave pairing between physical electrons.

This qualitatively explains the phase diagrams shown in Figs. 4-2 and 4-3, which

were obtained by a detailed numerical calculation to be described in the rest of the

paper. We see in Figs. 4-2 and 4-3 that in contrast to the mean-field solution, Tc now

vanishes for sufficiently low doping x 0.05. For larger doping the stiffness of the

gauge field increases and it becomes less effective in suppressing pairing. Therefore

for large doping x >0.2 the transition line To(x) is close to the mean field line T°(x),

as one can see in Figs. 4-2 and 4-3. At low doping the phase diagram now describes

a direct transition from a metallic phase to a superconducting state, by-passing the

spin-gap phase. This implies that we have to look beyond the single layer t-J model

for an explanation of the spin-gap phase in bi-layer materials, in agreement with the

analysis of Millis and Monien mentioned earlier [59]. In the overdoped region x > 0.2

we expect a direct transition from a Fermi-liquid phase, i.e. a phase in which the

bosons are Bose condensed, to a superconducting state.

Another consequence of our numerical analysis is that we expect the transition

to be first-order, with a relatively large jump of A. Of course, in practice the tran-

sition will be rounded off by phase fluctuations of the pairing field Aij, which are

not considered in this analysis. Therefore the calculation presented here should be

considered as a calculation of the mean-field Tc as far as two dimensional fluctuations

in the pairing field Aij are concerned.

In the remainder of this paper we will describe the details of our calculation of

.Fg,,ge and its dependence on A 0. In section 4.3 we derive a formal expression for the

free energy Fgauge(Ao), which will be analyzed in two limiting cases in sections 4.3.1

and 4.3.2. We present our numerical analysis in section 4.4. This numerical analysis

takes several important aspects of the t-J model into account, that we did not discuss

84



so far. For instance, an important role is played by the d-wave symmetry of the gap

function A(k) and the non-spherical Fermi surface. These anisotropies have a large

effect on the free energy Fgauge, and are taken fully into account in our numerical

analysis described in section 4.4.

4.3 The gauge-field contribution to F(A0) in the

presence of a gap

We now present a detailed calculation of the gauge-field contribution to the free energy

in the presence of pairing between the fermions. In the presence of a gauge field

the onset of pairing is still determined by minimizing the total free energy Ftot(A0 ),

analogous to BCS-theory. However, the total free energy will now have a contribution

from the gauge field as well [55]. We note that the free energy is a gauge invariant

quantity, and is free of the singularities that plaque quantities that are not gauge

invariant, such as the fermion Green function [38]. This is why we choose to analyze

Ftt(Ao), rather than a diagrammatic study of the pairing amplitude in the presence

of a gauge field.

We will calculate Ftot(A) using the following procedure. First we integrate over

the matter fields fi, and bi, which leads to an effective action Seff = /3 FMF(AO) +

Sgauge [a], where

FMF(O) 2 + 3J o - 2T () 2 log(cosh(Ek/2T))

+T d 2k 4
+TJ (2-r)2 log(1 - e klT) (4.7)

Sgauge [a] T (2 )2 Hv(q, ivn)aqavq.

The dispersion relations Ek = + A for the fermions and Qk for the bosons are

given by

Qk = 2t~(cos k + cos k) - B;
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3J~
k= 4 (cos k, + cos ky) - F; (4.8)

Ak = Ao(cos k - cos ky).

Finally we obtain the total free energy Ftot(Ao) = FMF(AO) + Fgauge(AO), by inte-

grating over the gauge field in the action Sgauge[a]. By distorting the contour integral

and noting that the analytical continuation of logII(q, iv,) has a branch-cut along

the real axis, one finds that the contribution of the gauge field to the free energy can

be written as

Jd2 q , dv Im H(q, v + i, AO)
Fgauge(AO) (r) -[2nB(v) + 1] arctan Re(q, iv + i5, A 0) (4.9)

where nB(v) = (ev/kBT - 1)-1 is the Bose-occupation number. For A0 = 0, Eq. (4.9)

is equivalent to the expression written down by Hlubina et al. [55]. Notice that while

Hlubina et al. needed a regularization scheme to keep Fgauge finite, we avoided the

infinite constant by taking the analytical continuation iv, - v + i.

The opening of a gap A 0 will mostly affect the fermionic contribution to the

total gauge-field propagator II = IIF + flB. In the normal state 1 IF has the form

IF(q, v) = XFP2 - i/F(q)v/p, where we defined p, = 2 sin q/2 to take the lattice

structure of the t-J model into account. The fermion susceptibility XF is given by

i f d2k 02e/22ekXF =12 (21) 2 k [ky f '(6k) (4.10)

Notice that XF is negative for the t-J model for any doping x<0.5, which indicates

that the uniform phase j = is unstable towards flux phases close to half-filling

[7]. Away from half-filling the uniform phase regains its stability, because the sum

X = XF + XB becomes positive as soon as the density of bosons is sufficiently large.

The damping parameter yF(q) is a finite number which depends on the direction of

q, and for the t-J model close to half-filling yF(q) is small in the (1, 0)-direction, but

strongly enhanced in the (1, l)-direction.

When a gap A0 opens up the propagator IF(q, v) will be modified, which will
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change the free energy Fgauge in Eq. (4.9). The most obvious change in the propagator

is that HF(q = 0) becomes massive with a mass proportional to A0. This is responsible

for the Meissner effect in ordinary superconductors. The effect of this mass term on

the free energy has been discussed earlier by Halperin et al. [61] in the context of a

fluctuating electromagnetic field in a BCS superconductor. Their work was a classical

calculation, based on a Ginzburg-Landau free energy. They argued that this mass

term in ReIIF gives rise to an additional term in the free energy, that is non-analytic in

A2 . This implies that the superconducting transition must be a first-order transition.

We are more interested in the question how the total free energy is influenced by

quantum fluctuations of the gauge field. We therefore need to know how a nonzero

gap modifies the propagator IIF(v) at finite frequencies. We first consider HF(v) in

the normal state, i.e. without a gap. To get a simple estimate of Fgage(A0 = 0) we

consider first for simplicity an isotropic band structure, in which case -nFi(q, v + i6) =

XFq2 - ikFv/q for v < kFq/mF. We further concentrate on the quantum fluctuations

in Eq. (4.9), i.e. v > kBT, so that 2nB + 1 may be replaced by unity. In the normal

state we approximate Fgauge by

Fgauge(AO = - I f d2q fkqF/mF dv arctan kF(
(2r) 2 JkT 2 arctan xq 3 (4.11)

This is a large negative quantity, which is finite because q is restricted to the first

Brioullin zone. We are interested in how this quantity depends on the lower cut-off

kBT in the frequency integral. For small frequencies v < Xk2 the q integration can

we done first, which yields a factor proportional to (kFV/x)2 /3 . The v integration

then yields a large negative term plus a T5 /3 correction due to the lower cut-off at

kBT.

When a gap A opens up both the real and imaginary part of the propagator are

modified, and in general Im HF(v) and Re IF(v) become very complicated functions

of the frequency v, especially when the gap A(k) is anisotropic. Before studying the

general case, we will first consider the simpler case of an isotropic gap at T = 0. In

that case the propagator is modified by the gap as follows.
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* Low-lying gauge-field modes with v < 2A are undamped, i.e. Im IF = 0 for

v < 2A (at T = 0). In ordinary superconductors this is responsible for the

anomalous skin effect [62, 63].

* The real part of F(q, v) is enhanced, which stiffens the gauge field.

We now see that this change in Im IIF(v) and Re HF(v) gives rise to a huge cost

in the free energy. From the discussion following Eq. (4.11) we learned that in the

normal state all gauge-field modes give a negative contribution to the free energy

Fgauge(A = 0). When an isotropic gap A > T opens up the gauge-field modes with

frequencies v < 2A do not contribute to the free energy anymore. The v integral

in Eq. (4.11) is now cut-off by A instead of kBT, so that a free energy cost of A5 /3

results. This free energy cost is in general much larger than the free energy gain

coming from FMF (A), which is proportional to A2. This implies that due to low-lying

gauge-field fluctuations it is not favorable anymore to open up a gap A, and hence

the superconducting transition temperature will be suppressed.

We now turn to the the calculation of Im IIF(v) and Re HF(v) in the general case

of an anisotropic gap A(k) at finite temperatures. The calculation is analogous to

the calculation of the complex conductivity in a BCS superconductor, which was first

performed by Mattis and Bardeen [62, 63], and by Abrikosov and Gorkov [64]. Their

results were originally meant for an s-wave gap A(k) = A, but it is a straightforward

exercise to generalize these expressions to the anisotropic case of a d-wave gap A(k)

[65]. We will do our calculations in the extreme anomalous limit (i.e. 1/q much larger

than the coherence length), which is the appropriate limit in our case. In this limit

one obtains

Im 1-IF (q) vJ X7F(q) 00 ' +IMrIHF(qL/) vF~q) [12 IA'IL' + j-j~b- I&1L'+O(V - IAI - A'!) jjjq 1 I, 1AII- - I-V-

x(f(E)-f(E+v)) E(E + v) + dE (4.12)
[E2 - A2] [(E + v)2 - '2](

Re IIF(q, v) = (q)dE [- E (E + v)+ AA' 1
yq J, L [A2 - E2](E f(E + v)
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+[ 2 _ E2][( E + v) _ AA]' f(-E- v) sign(E + v), (4.13)

where A = A0OPk+q/2 and A' = AOPk-q/2 (k = cosk- cos ky). Here we must

choose k such that k ± q/2 are on the Fermi surface, so that A and A' are completely

determined by q. The lower limit in the first integral in Eq. (4.12) is the maximum

of AI and IA'I - v. Similarly the integrals in Eq. (4.13) are restricted to those values

of E, for which the arguments of the square roots are positive. For A = A' the

Eqs. (4.12) and (4.13) reduce to the expressions given by Mattis and Bardeen [62].

At T = 0 only the last integral in Eq. (4.12) survives, and therefore Im 1nF is only

nonzero for v > A + A'I.

In principle we would like to solve for Fgug(Ao), by combining Eqs. (4.9), (4.12)

and (4.13). However, doing this while taking full account of the anisotropic d-wave

gap and the non-spherical Fermi surface is a complex numerical problem. Instead we

will study two limiting cases for the propagator nF(v, A, A'). We will first consider

the zero temperature limit (i.e. T << A0 ), which is the simplest case to understand

from a physical point of view. We will later consider the opposite limit A0 << T, to

study the possibility of a second-order transition.

4.3.1 The propagator at T = 0

The objective of this section is to give an estimate of Fgauge(Ao), using zero tem-

perature expressions for Im HF(v) and Re HF(v). The dependence of Im HF(v) and

Re HF(v) on the gap A0 at T = 0 is shown in Figs. 4-5 and 4-6, for various values of

A'/A = A(k-q/2)/A(k+q/2). For q -- O one always has A'/A _ 1, and -ImIF(v)

is suppressed for all v, even for v > IA I + I A'I. However for large q it is possible that

AA' < 0, in which case -Im HF(v) is actually enhanced for v > IAl + IA'I. This

is an important point to make, because this means that while scattering processes

that involve a small momentum transfer are pair-breaking, scattering processes with

a large momentum transfer can have exactly the opposite effect. The dependence of

Re HIF(v) on A0 shows a similar behavior (see Fig. 4-6), in the sense that Re HF(v)
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Figure 4-5: This figure shows Im IIF(v) at T = 0 for A'/A = 1, 0.3, -0.3 and -1.
Notice that there is no absorption for v < AL + JA'j. For v > AI + A'j it depends
on the relative sign of A and A' whether ImIIF(v) is enhanced or suppressed by the
gap. The dotted line is the normal state (A = 0) value.

in Eq. (4.13) is positive when AA' > 0 and negative when AA' < 0.

We will initially ignore the anisotropy of the gap, which is a valid assumption as

long as the important momenta q are small compared to the size of the Brioullin

zone. The most important feature of Im HF(V, A0) is then that Im HF(v) = 0 for

v < 2A0, so that gauge-field modes with v < 2A0 do not contribute to Fgauge(Ao) in

Eq. (4.9) anymore. A crude estimate of Fgauge(Ao) - Fgauge(0) is therefore given by

the contribution to Fgauge(0) of the "missing" gauge-field modes with v < 2A0. For

T > TBE we can use Re [IF(q) - xq2 , so that we can do the q-integration in Eq. (4.9)

by scaling:

e -Fg u a()hauge (O ) 2o -f coth ( 2T (2 )2 arctan--ot v 7V / xq

2 dv coth (2k/) (7)2/3 (4.14)

(2_5) 2/3

Note that Fgauge(A0 ) A A /3 is non-analytic in , so that the pairing transition must
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Figure 4-6: This figure shows Re HF(v) at T = 0 for A'/A = 1, 0.3, -0.3 and -1.
Similar to the case of Imn F(V) it depends on the relative sign of A and A' whether
Re IIF(v) is positive or negative.

be a first-order transition in this approximation. More importantly, Fgage(Ao)-

Fgauge(O) is always much larger than FMF(AO) for any A0, as long as X - 1/(247rmB)

remains small. This implies that the opening of a gap will never happen for T > TBE.

However, for T < TBE the susceptibility X XB will increase rapidly, which will

lower Fgauge (Ao) in Eq. (4.14) significantly. In fact, if XB becomes much larger than

l/mB = 2t, the approximation Re HB(q) - XBq2 is only valid for very small q.

Instead Re I(q) levels off to Re II(q) m ps for xq2 >ps, where ps - x/mB is the

superfluid density of holons. The fact that Re nB(q) becomes massive below TBE

implies that we cannot assume anymore that the dominant momenta q are small in

the integral (4.9) for Fgage(Ao). That means that for T < TBE the anisotropy of

the d-wave gap A(k) will start to play an important role. This decreases the pair-

breaking effects of the gauge field, because as pointed out in the beginning of this

section, modes with a large momentum q actually favor pairing. The reason for this

is that A(k + q/2) and A(k - q/2) can have opposite signs if q is large enough.

The consequences of this for the phase diagram are that the gauge field suppresses

pairing very strongly at low doping, but for large doping the pair-breaking effects of

the gauge field will be less pronounced, because the gauge field is in that case stiffened
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by a large superfluid density ps.

4.3.2 The propagator for A0 < T

In the previous section we used a zero temperature expression for the gauge-field prop-

agator. The fact that the free energy varied as Fgauge(Ao) ^ A5/3 for T > TBE implied

that the superconducting transition had to be a first-order transition in that approxi-

mation. It is an interesting question whether the transition can become second-order

if we would use a finite temperature expression for ImfIF(v) and ReIIF(v). To address

this question we will assume that A0 < T, and expand the propagator in powers of

A2 by writing II(A0 ) - I1(A0 = 0) + A/OYI/O1A2. We can then use this expansion to

find Fgauge(Ao) for A0 << T. Using Eqs. (4.12) and (4.13) one can show that in the

limit A0 - 0, aIIF/aA2 has the following functional form:

limy0 (q) [n l" i v\1;
lima HF(q, v) = [hR + (4.15)

h () = o d + y)_ [+ - f(V) _ f(xv) + f((1 + x))]; (4.16)

h () = po' tanh () + (o2 + ' 2) (1- tanh2 (2T)) (4.17)

Notice that we have to use a finite temperature expression for aIIF/&A2, because

h1 (v/T) diverges logarithmically for T - 0. For pro' > 0 h and hR are always

positive, but for oo' < 0 h and hR can become negative. This shows explicitly

that scattering processes with a large momentum transfer (for which ,ocp' < 0) are

not necessarily pair-breaking. We will later take this into account in our numerical

calculations, but we will ignore the anisotropy of the gap in the simple estimates that

follow below.

We can now use the expressions for h1 (v/T) and hR(v/T) to evaluate aFgauge 0/A2 ,
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which according to Eq. (4.9) can be written as

_____q f-dv v_ h1(v/T)Re H1 - hR(v/T)Jm H1Fgauge - j d2q fo dv 7F oth (v h(v/TRe -h(v/T)Im )

0 0 (2) 2 JO2r qv 2T (Re I) 2 + (Im ) 2

(4.18)

It is instructive to estimate Fgauge/OA2, assuming that ReII xq 2, which is a valid

assumption above the Bose-condensation temperature TBE. The calculation is similar

to the calculation of Fgauge(Ao) in Eq. (4.14). The q-integration in Eq. (4.18) can

again be done by scaling, and one obtains

&Fgauge O X 4/ - cothv 2T () (4.19)

where h(v/T) is a linear combination of the functions hl(v/T) and hR(v/T) . The

frequency integral in Eq. (4.19) diverges at v -, 0, because hR(v/T) is linear in v/T

for - 0. This implies that a second-order transition is impossible for T > TBE.

We will now analyze Eq. (4.19) for a small finite gap A0. One can repeat the

calculations that led to Eq. (4.19) for a nonzero gap AO < T, by noticing that a

nonzero gap A0 essentially introduces a lower cut-off in the frequency integral in Eq.

(4.19). This cut-off is due to the fact that the expansion in Eq. (4.15) is only valid

for v > 2A, and the expansion clearly breaks down for v < 2A. Using this cut-off

one can now evaluate the frequency integral in Eq. (4.19), which gives

Fgauge a/ 1/3 (4.20)

This is the same functional form for Fgauge(Ao) as obtained in Eq. (4.14), where we

used a zero temperature expression for the propagator HI(v, A0). The conclusion is

again that the superconducting transition has to be first-order for T > TBE.

As before, the arguments that led to aFgauge/OA - Ao 1/3 have to be modified

if a superfluid density Ps develops for T < TBE. If one replaces Re II(q) = xq2 by

Re 11(v) = Ps one finds that the expression for aFgaug/&A2 in Eq. (4.18) converges,

even for A0 - 0. This makes it in principle possible to have a second-order transition
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for T < TBE, if Ps is sufficiently large. Considering that the pair-breaking effect of

the gauge field diminishes as the superfluid density increases, we expect that the first-

order jump of A0 at the transition becomes smaller as Ps increases, and the transition

might become second-order if Ps is sufficiently large.

These arguments assumed that there is a true superfluid state for the holons, i.e.

Re HB(q) = Ps for q - 0. However, we discussed in section 4.2 that the interaction

of the bosons with the gauge field can lead to the dissipative susceptibility XB in

Eq. (4.6), that increases according to a Curie-law XB - 1/T [43], instead of diverging

exponentially below TBE. In that case there is no true superfluid state anymore, which

means that even at low temperatures Re HIB(q) varies like Xq2 for small momenta q.

This implies that Fgauge(Ao) will still vary like A'/3 for a sufficiently small gap A0 .

Therefore we will always find a first-order transition if we use the Curie-like expression

for XB in Eq. (4.6).

4.4 Numerical analysis of Fgauge(Ao)

We did a numerical analysis of Ftot(A0 ), using the expression for Fgauge(A0 ) in Eq.

(4.9), and assuming a d-wave symmetry for the gap A(k). We used mean-field ex-

pressions for the RVB-order parameter , the susceptibility XF and the damping

:parameter yF(q), and we carefully took the diamond-like shape of the Fermi surface

:into account. As mentioned after Eq. (4.10), XF is actually negative for the t-J model

(for doping xr<0.5), and yF(q) is highly anisotropic due to the non-spherical shape

of the Fermi surface. The value of the order parameter ~ depends on x and T, and

decreases rapidly if the doping x becomes very small. We minimized the total free

energy Ftot(Ao) with respect to A0 , and the onset of superconductivity is determined

by the temperature TC at which Ftot(A0 ) has its global minimum at a nonzero value

of A0 .

The most challenging part of this numerical calculation is to find expressions for

][m IIF(v, A, A') and Re HF(v, A, A'), that take into account that the d-wave gap

IA = AO(k+q/2 is anisotropic around the Fermi surface. As pointed out after Eq.
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(4.13) this anisotropy of the gap has the feature that processes with a large momentum

transfer q tend to favor pair-breaking, because AA' can become negative for large q.

The anisotropy of the gap is very important for the numerical values that one obtains

for the suppression of To(x), and can definitely not be ignored. We performed the

numerical calculation in the two limiting cases that we discussed in sections 4.3.1 and

4.3.2. In the first case we used zero temperature expressions for Im IIF(v, A, A') and

Re HF(V, A, A'), which is a good approximation when A0 > T. In the second case

we expanded Im IIF and Re IF in A 2, which is a good approximation when A0 < T.

For v > Al + IA'I we used the functions h(v/T) and hR(v/T) as defined in Eqs.

(4.16) and (4.17). This expansion fails for v < IAl + A'l, in which case we used a

high temperature expression for the propagator instead.

To take the effect of Bose condensation into account we used a parametrization

of Re nB(q), which interpolates between the limits Re nB(q) - XBq2 (for q -- 0) and

Re RiB(q) /mB (for large q). For XB we used the three possibilities discussed in

section 4.2: (i) the mean-field expression X in Eq. (4.3); (ii) the dissipative expression
Xiss in Eq. (4.5); (iii) the self-consistent dissipative xSc shown in Fig. 4-4.

The result of our numerical analysis is shown in the phase diagrams in Fig. 4-2

(using the mean-field XB) and Fig. 4-3 (using the dissipative Xdis). The phase-

diagrams show that T,(x) is indeed strongly suppressed compared to the mean-field

transition temperature T°,(x) (dotted line), especially at low doping. The solid line

represents T(x) if one uses T = 0 expressions for the propagator, as discussed in

section 4.3.1, and the dashed line is the result for T,(x) if one assumes A0 < T, as

discussed in section 4.3.2. These two approximations for the propagator give results

that are qualitatively similar. One has to compare the first-order jump in A0 at T,(x)

with TC(x) itself to decide which approximation is more appropriate.

In Fig. 4-2 the first-order jump in A0 is small for large doping so that the dashed

line is appropriate, whereas for small doping the jump in A0 becomes so large that the

solid line is more appropriate. The line indicated with diamonds, which interpolates

between the dashed line and the solid line, is our best guess of what the correct phase

boundary is. We re-iterate that the need to use two different approximations for the
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propagator (represented by the dashed line and the solid line) is purely technical,

due to the limitation of our computational abilities. Note that the superconducting

transition temperature goes to zero at a finite doping near x = 0.05. This is not too

surprising, because the gauge field becomes unstable towards a flux phase for x 0.04

and hence the strength of the gauge-field fluctuations diverges in the vicinity of this

point. At higher doping the transition temperature To(x) approaches the mean-field

transition line TO(x), because the gauge field becomes very stiff as the superfluid

density Ps - x/mB increases.

When we repeat the calculation using Xs c the result is indistinguishable from Fig.

4-2. The reason is clear from Fig. 4-4 by observing that for x _ 0.07 the self-consistent

XSC is exponentially large for T < 0.2J. Because the phase boundary is at a much lower

temperature, the bosons have essentially Bose condensed at the transition, whether

one uses XB or XSC . This model therefore predicts a Fermi liquid in a temperature

range just above Tc, even in the underdoped case. This aspect of the model may be

in disagreement with experiments, and we believe that this is related to the fact that

in the underdoped case x < 0.1 the self-consistent dissipative model underestimates

the effectiveness of the gauge field to suppress Bose condensation.

For completeness we show in Fig. 4-3 the phase diagram using the dissipative

model Xdss. Note that the suppression of Tc(x) is much larger than in Fig. 4-2. The

first-order jump in A0 is large at the transition, so that the solid line, which uses

the approximation A0 > T, will be close to the correct answer for TC(x). According

to Fig. 4-4, Xdss is still relatively small at the transition temperature for x = 0.07,

so that the dissipative model predicts a direct transition from a strange metal phase

into a superconducting phase at low doping. The fact that in the dissipative model

the gauge field is still massless at T, is the reason why TC(x) is suppressed more

strongly in Fig. 4-3 than in Fig. 4-2. As explained in section 4.2 we believe that

this dissipative model grossly overestimates the effectiveness of the gauge field in

suppressing TC. We therefore think that the phase diagram in Fig. 4-2 is closer to the

truth than the phase diagram in Fig. 4-3. In the underdoped case x < 0.1 the true

answer will lie somewhere in between Fig. 4-2 and Fig. 4-3, because at low doping the
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Figure 4-7: This figure shows Aoo(x), the gap at T = 0. By comparing this to
Tc(x) in Figs. 4-2 and 4-3 we find that the ratio 2Aoo/TC is approximately 3 if one
uses the mean-field XB (or the self-consistent XSC), and approximately 8 if one uses
the dissipative XiSs. This should be compared to the mean-field d-wave value of
2Aoo/T 2.6, which does not include any gauge field fluctuations. We believe
that in the underdoped case the true value of 2Aoo/T¢ is significantly larger than
3, because at low doping the self-consistent Xs c underestimates the effectiveness of
the gauge field to suppress Bose condensation.

self-consistent model underestimates the effectiveness of the gauge field in suppressing

Bose condensation.

As pointed out earlier in section 4.2 the first-order jump in A0 will be rounded

off by phase fluctuations of the pairing field Aij. Taking this in consideration the

interpretation of our numerical results should be that the gap A0 increases very

rapidly below T, much faster than according to BCS theory. Our numerical results

indicate that this rapid increase in A0 will be more pronounced in the underdoped

case xz0.1.

In Fig. 4-7 we show a plot of Aoo(x), where Aoo(x) is the gap at T = 0. Remark

that A0 0(x) is independent of the particular model for XB, because the bosons are

condensed at T = 0 for all three models. As expected the function A00(x) has essen-

tially the same shape as T,(x). We are mostly interested in the ratio 2Aoo(x)/T,(x),

which is a constant according to BCS theory. For a d-wave gap without a gauge field

we find that this ratio to be approximately equal to 2.6. If we include the gauge field

97



this ratio is enhanced, depending on the model that one uses to determine To(x). If

we use the dissipative Xsdi s the ratio is strongly enhanced to 2Aoo/Tc c 8, but if we

use the mean-field )X or the self-consistent Xs C this ratio is only slightly enhanced to

2Aoo/T _ 3. Because we believe that at low doping xs c underestimates the impor-

tance of gauge-field fluctuations, we expect that the correct value of 2Aoo(x)/T,(x)

will be significantly larger than 3 in the underdoped case x < 0.1.

4.5 Conclusions

We analyzed the pair-breaking effects of the gauge field, by studying the contribution

from the gauge field to the total free energy. This contribution Fgauge(Ao) depends

on A0, because a nonzero gap A0 modifies the gauge-field propagator, and therefore

changes the free energy. We showed that Fgauge(A 0 ) A/3 , which implies that

the superconducting transition must be first-order, if one ignores fluctuations in the

pairing field itself.

Our numerical calculations, that took into account that the gap A(k) has a d-wave

symmetry around the Fermi surface, showed that there is indeed a strong suppression

of superconductivity by the gauge field. The value of the boson susceptibility XB,

which indicates whether the holons are condensed or not, played an important role in

the suppression of T¢(x). We used several models for XB, and in all cases we found that

superconductivity only survives in an intermediate range of doping 0.05<x<0.35.

The maximum critical temperature occurs near x = 0.15. These numerical results

are in qualitative agreement with the well-known phase-diagram of the high-Tc copper-

oxides.

One of our predictions is that the experimentally observed "spin-gap phase" can-

not be due to pairing of spinons within the plane, because those Cooper pairs are

broken by the fluctuating gauge field. We also predict that the nature of the su-

perconducting transition is significantly altered by the gauge field, especially in the

underdoped case. The signature for this is that the magnitude of the gap A0 increases

very rapidly below T. Moreover, we expect that in the underdoped case the ratio
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2Aoo/T,, where Aoo is the gap at T = 0, will be significantly larger than what one

would obtain from BCS theory.

Acknowledgements

This work was done in collaboration with Patrick A. Lee [10]. The work was supported

by the NSF through the Material Research Laboratory under Grant No. DMR-90-

22933.

99



Chapter 5

Spin-gap formation in bi-layer

cuprates due to enhanced

inter-layer pairing

5.1 Introduction

Since the early days of high-T¢ superconductivity physicists have focused on the

copper-oxide planes to explain the unusual properties of the high-T, cuprates. A

widely accepted point of view is that the structure between the CuO2 planes can be

considered as a charge reservoir, whose only role is to fix a certain charge density in

the CuO2 planes. Consequently many theoretical models for the cuprates, such as

the t-J model and the Hubbard model, are actually models for a single CuO2 plane,

ignoring the exchange coupling between the layers. This is appropriate for single-layer

:materials such as La2_,Sr.CuO 4, where the inter-layer coupling is frustrated because

the CuO 2 layers are shifted relative to each other. However, this is not the case

for bi-layer materials such as YBCO, because the two CuO2 planes in each bi-layer

-are directly on top of each other, giving rise to an unfrustrated exchange coupling

between the two planes.

Experiments indicate that there is a significant difference between the physical

properties of single-layer materials and the properties of multi-layer materials. For
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instance, it is well known that the superconducting transition temperature is in gen-

eral higher for compounds that have more CuO 2 planes in a unit cell. Another differ-

ence is that in multi-layer materials such as YBa 2Cu306.6 one observes a spin gap in

experiments that probe the spin degrees of freedom of the electrons [66, 67, 68]. This

spin-gap phase is observed at low doping and survives well above the superconducting

transition temperature. According to a recent analysis of the experimental data [59],

the spin-gap phase is only observed in multi-layer materials but not in single-layer

materials. It is then plausible that the spin gap is directly related to the pairing of

electrons on nearby CuO2 planes [59, 69].

Before considering a model for coupled CuO2 planes, we will first briefly discuss

the physics of a single CuO 2 plane. A single CuO2 plane can be described by the t-J

model [13], which has been studied extensively in previous articles using the slave-

boson-gauge field approach [10, 33, 34, 35, 36, 37, 54]. In this approach the physical

electrons are split into fermions and bosons [sometimes called spinons and holons],

that interact which each other via a fluctuating gauge field. The superconducting

phase is the phase in which the fermions have formed Cooper pairs, while the bosons

are Bose condensed at the same time. It was suggested that the spin-gap phase

corresponds to the situation in which the fermions have formed Cooper pairs, but the

bosons are not Bose condensed yet [33, 34, 35, 58, 70]. In a recent article we showed

that this picture is modified significantly by the fluctuating gauge field, which is very

effective in destroying the formation of Cooper pairs at low doping [10]. As a result the

superconducting transition temperature is suppressed at low doping and the spin-gap

phase disappears completely. After including the pair-breaking effects of the gauge

field the superconducting phase diagram that we obtained corresponds very well with

the actual phase diagram of the single-layer high-T cuprates. We conclude that the

two-dimensional t-J model is succesful in explaining the phase diagram of single-layer

cuprates, but is not able to explain certain features of multi-layer materials, such as

the spin-gap phase.

In this paper we consider a model for two coupled CuO 2 planes, where each plane

is described by the two-dimensional t-J model. In addition we include a small antifer-
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romagnetic spin interaction between the two planes of the form Jo S S (2 ) . This

model is similar to a model studied by Millis and Monien [59]. The antiferromagnetic

inter-layer coupling is responsible for the fact that close to half filling the spins on

nearby CuO 2 planes are locked in an antiparallel orientation. Experimentalists have

not been able to determine the exact value of JO, but Tranquada et al. and Shamoto

et al. have reported a lower limit of 8 meV for Jo [66, 68]. Because the inter-plane

coupling is much smaller than the in-plane coupling one would naively expect that the

inter-plane coupling is completely irrelevant for the pairing mechanism of the high-T,

cuprates. We will argue however, that due to strong antiferromagnetic spin correla-

tions the effective inter-plane coupling Jjff(r) is strongly enhanced, and extends over

a coherence length of several lattice spacings. The picture that we have in mind is

that the spins in each plane are correlated in patches that consist of several spins, so

that effectively there is a coupling of correlated patches of spins on adjacent planes.

This is clearly a much stronger coupling than the original coupling of single spins.

The method that we use to take the antiferromagnetic correlation of the spins into

account is the random-phase approximation (RPA).

Our main conclusion is that the enhanced inter-plane coupling Jff(r) leads to

strongly enhanced pairing between fermions on different planes, described by the

inter-plane order parameter A(rij) = (f)() 2- f)i()f(t)). The possibility of inter-

plane pairing has been discussed earlier by Altshuler and Ioffe [69]. We find that due

to the antiferromagnetic spin correlations the order parameter A± (rij) extends over

a coherence length of several lattice spacings. Our calculations show that the inter-

plane gap Al(k) has an extended s-wave symmetry (without nodes), and is peaked

at the corners of the Fermi surface. This should be contrasted to the in-plane gap

An (k), which has a d-wave symmetry with nodes at four points on the Fermi surface.

We propose that the inter-plane gap A±(k) is responsible for the observed spin-

gap phase in multi-layer cuprates, which had been suggested earlier by Millis and

Monien [59]. An objection against their work has been that J is much too small to

explain the spin gap in YBa2 Cu306.6. We avoided this problem with the argument

that at low doping Jff is strongly enhanced by antiferromagnetic correlations. This
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leaves the question why we cannot apply the same argument to create a spin gap using

the in-plane coupling Jff, which is still larger than the inter-plane coupling Jff. This

is partly explained by the fact that Jff is much more enhanced than Jff . However,

for a complete answer we have to go beyond mean-field theory, and discuss the pair-

breaking effects of the gauge field in the t-J model. In a previous paper we showed

that at low doping the in-plane gap AI(k) is destroyed by gauge field fluctuations

[10], so that the in-plane pairing can not give rise to a spin-gap phase. We expect

that the gauge field is less effective in destroying the inter-plane gap Al (k) . This

difference, which will be discussed in greater detail in Sec. 5.5, can be understood as

follows. The pair-breaking effect of a gauge field is related to the question whether or

not a gap A breaks the gauge symmetry in the system. In the case of an in-plane gap

A, (k) the gauge symmetry is completely broken, while in the case of an inter-plane

gap Al(k) there is still a gauge symmetry left in the system, corresponding to a

massless out-of-phase gauge-field mode. As a result the inter-plane gap Al(k) can

survive above the Bose-condensation temperature, explaining the spin-gap phase in

multi-layer cuprates.

5.2 RPA analysis of two coupled CuO2 planes

In this paper we study a system of two coupled CuO2 planes, which is a simple model

for a bi-layer high-To cuprate such as YBCO. We describe each individual plane with

the two-dimensional t-J model, and in addition we include an antiferromagnetic spin

coupling between the electrons on neighboring planes. This gives the Hamiltonian

[66, 59, 71]

H = Ht(1) H + J S1) . S 2) (5.1)

where -t() is the usual t-J Hamiltonian on plane n (n = 1 or 2), and S$n) -

c( )tacn) is the spin operator of the electron c()t at site i on plane n. Notice

that we did not include any inter-layer hopping in the Hamiltonian in Eq. (5.1). We

will return to address this issue in Sec. 5.7. Typical values for the parameters t, Jlo
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and Jo are

t _ 0.4 eV;

JI _ 0.12 eV; (5.2)

Jo > 0.01 eV.

The exact value of the inter-layer exchange Jl is still unknown, but a lower limit of 8

meV has been reported by Tranquada et al. and Shamoto et al. [66, 68]. This lower

limit was obtained by studying the (absence of) optical spin-wave modes in undoped

cuprates in neutron scattering experiments.

At low doping the motion of the electrons on each plane is controlled by the few

empty sites. In order to take this physics into account we will employ the slave-boson

approach, in which the original electron operator ct is replaced by fit bi, where fit is

a fermion operator carrying the spin of the electron, and bi is a boson operator that

keeps track of the empty sites, carrying the charge of the electron [7, 15, 17, 18]. In

the slave-boson approach the t-JIu Hamiltonian takes the form

Htj I = -t (fitabibjfja + c.c.) + Jo E (Si Sj - ninj) (5.3)
~~~~~(ij) ~(i ,j)

where Si = fjt,aOfi, is the spin of the electron on site i.

We will use a Hubbard-Stratonovich transformation to decouple the various terms

in this Hamiltonian. The interaction term Si . Sj can be decoupled in various different

channels. The most common decoupling is in the particle-hole channel by writing

Si Sj =(f -(ninf + 1ni. (5.4)2 3 -%a 4J2o. rinj 4 2

This decoupling gives rise to terms of the form Sijfitfj, in the Hamiltonian, where

~j is a tight-binding like resonating-valence-bond (RVB) order parameter [13]. The

disadvantage of this decoupling is that it does not take the antiferromagnetic corre-

lations of the spins into account explicitly. In order to take the antiferromagnetic
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correlations into account it is more appropriate to keep terms of the form Si Sj in

the Hamiltonian, which can be treated perturbatively to include the effect of the spin

correlations [72]. In order to avoid double counting we write the Hamiltonian in Eq.

(5.3) as

Ht-J = Ht- 2JI + 1J i E (S i . Sj -nin (5.5)
(i,j)

and treat the first term using an RVB mean-field ~ij and the second term using RPA.

This admittedly ad hoc decomposition will affect the numerical factors in our results,

but not the qualitative conclusions. We decouple Htl J l in the particle-hole channel

to obtain

2 [L ij ftfia + 4btb - c.C]
(i j) J1 

4t 2

+ 'b1bjbtb;. (5.6)
1I (i.j)

At this point the analysis is still exact if one integrates over all configurations of

the RVB field ij(T). In the mean-field approximation the field fij is replaced by its

saddlepoint

= j+ btbj) (5.7)

The total Hamiltonian for the fermionic degrees of freedom then takes the form

H = Z ek (fkfk ) + k )tfk2 )) + HI, (5.8)
k

where ek = -- JO (cos kz + cos ky) - pF. The interaction Hamiltonian HI is given by

HI = 2 J.l(rij)S n) Sn')
(i,j),n,n'

= 2! J,¶O(q)S=).S( ? (5.9)
q,n,n'

where J°n(q) = JI(q) = Jl (cosq, + cosqy) and J°n,(q) = J(qz) = J eiqz, and d

denotes the distance between the two planes. It is convenient to write HI explicitly
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Figure 5-1: The renormalized susceptibility XRPA(q) in the RPA approximation.
In each individual bubble the fermion can be either on plane n = 1 or on plane
n' = 2. The wavy line denotes the in-plane exchange S1n) S n), and the jagged line

denotes the inter-plane exchange Sin) S ). We show that due to antiferromagnetic
correlations XRPA(q) has strong incommensurate peaks at q = QAF.

in terms of the fermion operators f(n).
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where (TT)q,n denotes k fk+q/2,TJk-q/2,T'

We will use a random-phase approximation to analyze the antiferromagnetic cor-

relations induced by the terms in HI. We will first calculate the dynamic spin suscep-

tibility x(q) [where q denotes (q, qz, in)], which contains all the information about

spin correlations. Within RPA, XRPA(q) is given by a sum over the strings of bubbles

shown in Fig. 5-1. The susceptibility is actually an 8 by 8 matrix, because at each

vertex of a bubble the fermion can be either on plane 1 or on plane 2, and in addition

there are four possible spin combinations at each vertex (, Li, Tl or If). We can

safely suppress the spin indices, because every power of the 4 by 4 spin matrix in

Eq. (5.10) yields the same matrix again. This leaves us with simple 2 by 2 matrices,

where the index denotes whether the fermion is on plane 1 or 2. The susceptibility is

then given by the matrix sum

XRPA(q) = X°(q) (-1JO(q)X(q )) m , (5.11)
m=O
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where X°(q) is the contribution of a single bubble. The matrix Jo(q) is given by

J (q) Jj(q) 1jO(q) _ J(q) J(q) (5.12)

Evaluating the matrix sum in Eq. (5.11) gives

-1

+ 1 joJ 1 X°J
(_ 0°r1 - 1 0 J J . (5.13)

than 1.Pu gX o1 leads to the inequality

X °-J z+ cos qy) (5.13)(1 + X51I - 1J.,O 12 * '

J - J (cos q, + cos q4

At intermediate doping this inequality is usually satisfied. However, at low doping

X0(q) is enhanced at the nesting vector QAF o (r, r), SO that at sufficiently low

doping the inequality breaks down for q - QAF. This indicates that at low doping

the system becomes unstable against a long-range Nel order with (S) Z: 0.

We analyzed xRPA(q) numerically using the parameters t/J{ = 3 and J°/Jl = 0.2.

We found that for these parameters the AF instability occurs at a doping x _ 0.08.

We are mostly interested in the regime close to the AF instability, i.e. x > 0.08, which

is characterized by strong (incommensurate) peaks in the renormalized susceptibility

xRPA(q) at the nesting vector q = QAF - (7r, 7r ± 2x). This feature of XRPA(q) has

been studied extensively by Tanamoto and co-workers for a generalized t-J model

that included next-nearest neighbor hopping terms to simulate the band structure of

different cuprates [72]. Their analysis was for a single CuO 2 plane, and did therefore

not include any inter-plane interactions. They emphasized that the critical doping

x, at which the AF instability occurs depends strongly on the details of the band
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structure.

The physical susceptibility that one measures in neutron scattering experiments

is proportional to Z,,,,(n'XIn), which gives

RPA Jq) = Jeiqzd. This expression shows that y(qq) has amodulatiohys a function of q with a period /d. The maxima occu at q = (JI j 1 + 1 X k oi (q) - jo) (5.15)Here we used that jO(q,) J qe'Q'd T his expression shows that RPA 

modulation as a function of qz with a period 2rid. The maxima occur at q = r/d

(mod 2r/d) and the minima at q = 0 (mod 2r/d). This modulation is especially

pronounced close to the AF instability with q - QAF. In that case the maxima

can be significantly larger than the minima. This corresponds well with the neutron

scattering experiments of Tranquada et al, who measured X"(QAF, qz) as a function

of q [66]. They indeed observed a modulation of period 2r/d, with maxima at

qz = ±r/d that were approximately twice the value of the minimum at q, = 0.

We will now use the expression for xRPA(q) in Eq. (5.13) to calculate the effective

spin-spin interaction, that we denote by Jff(q) and Jff(q,q). Within RPA the

effective interaction can be written in matrix notation as

eff = JO - JOXRPAJO, (5.16)

where the 2 by 2 matrices Jo and XRPA are given by Eqs. (5.12) and (5.13). Evaluating

the matrix products gives

~J(q)S 1(i + _J 1 XOJ 2

Jeff(q) Jl (q)(1 + X0 (q)) (5.17)
11 (1+ 4XJ'1 (q))2 (1XOJ)2 

Jff(q,q ) = "I ei-X d. (5.18)(1 + ° JX(q))2 -I°)2(1 + X J (q)) 2 (1 X J2 e

Note that Jff always has the form Jff(q, qz) = Jff(q)ei q zd. Close to the AF instability

JTeff(q) and Jff (q) are both strongly peaked at the nesting vector q = QAF, and the

width of this peak is related to the correlation length ro over which the spins are Nel
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Figure 5-2: The effective in-plane coupling Jlff(q) (left axis) and the effective inter-
plane coupling Jlff(q) (right axis) for various values of the doping x. The right axis is
blown up by a factor of 5 in order to show the features of Jlff(q) more clearly. Close
to the AF instability at x = 0.08, Jeff(q) and Jff(q) have strong incommensurate
peaks at QAF - (r, 7r ± 0.19). These peaks fade away at higher dopings x > xc.
Notice that for x - xc the inter-plane coupling Jlff(QAF) is more enhanced than
Jllff(QAF). As a result Jff and Jff become comparable in strength, even though
initially Jo << JI

ordered. Let us first study Eqs. (5.17) and (5.18) in the important limit Jo < J.

In that case Jiff is enhanced by a factor (1 + 1X°J)-', while Jeff is enhanced by

the square of this factor. We conclude that for q _ QAF, Jlff(q) is much stronger

enhanced by antiferromagnetic correlations than Jleff(q). It is interesting to note

however, that Jlff(q) will never exceed IJlff(q)l, assuming that J < J(q)l. In

the limit 4x°(q)(Jl(q)- Jo) -+ -1, Jff approaches Jllff(q), even if Jo was initially

much smaller than J1 This implies that close to the AF instability Jff and Ji7ff are

approximately equal in strength.

We analyzed JTff(q) and Jlff(q) numerically using the parameters t/JI: = 3 and

J°L/Jt = 0.2. We focused in particular on doping slightly above the critical doping

xc - 0.08 at which the AF instability occurs. In Fig. 5-2 we show plots of Jff(q)

and Jff(q) for x = 0.09, x = 0.12 and x = 0.20. The three curves show that

close to the AF instability there are strongly pronounced incommensurate peaks at
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QAF - (r, r ± 2x). By analyzing the width of the peak we find that for x = 0.09 the

correlation length ro is roughly 3 lattice spacings, i.e. ro/a - 3. These peaks fade away

when the doping is much higher than xc. Notice that for x = 0.09, Jff(q) is much

smaller than Jff(q) over most of the Brioullin zone, but close to the incommensurate

peaks Jff(q) is more strongly enhanced than J ff(q), so that the Jff(q) and Jff(q)

become comparable in strength at q _ QAF. This means that the inter-plane coupling

can not be ignored when the spins of the electrons exhibit strong antiferromagnetic

correlations.

5.3 Inter-plane pairing

In the previous section we showed that the inter-plane coupling Jff(q) is strongly

enhanced around q - QAF due to antiferromagnetic correlations. We will now show

that this enhanced coupling leads to inter-plane pairing at a much higher energy scale

than before. The physical picture that we have in mind is that the spins on both

planes form patches of correlated spins, so that the system can create extended Cooper

pairs that consist of patches of spins on one plane that pair up with corresponding

patches of spins on the other plane. This inter-plane pairing is characterized by the

order parameter A±(rij) = ((T1)f(2) - f() f(2))

Consider the Hamiltonian in Eq. (5.8), but with the bare in-plane and inter-plane

couplings J and Jo replaced by the effective couplings Jelff and Jf. Each of these

interaction terms can be written in the form

Jff, (rij) (S ) S( ') - n - nj) =
--1J (rij> (S(n )tf(nl)t (n)tf(n')t (n'),f(n) _ (n)(n)) .19)-Jf )ff(rfjf) (5.19)

2 AT \Jit Jjl - il JjT i-l T JT (5i

The coupling constants J (rij) are the Fourier transforms of the functions Jff(q)

and JYff(q) in Eqs. (5.17) and (5.18). The terms in Eq. (5.19) can be decoupled in

the particle-particle channel by defining a Hubbard-Stratonovich field A-nn) on theU1~~· rUIUI~~LV rWVI~~~ UIIUILLI~~ U U~I~~IIL~ W ~I~UU LU UVLUIVIIV*I~II 1~~U Ili
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bond (i, j), under the condition that Jnn,(rij) > 0. This gives the Hamiltonian

H = Ekf ()tf(k ) 2 Jnne (rij)
k,n (in,jn')

X A/\nn' 2 - nn* ((n) (n') f(n)f(ni)) -c.c.] (5.20)

where the indices n and n' denote plane 1 or 2. The prime in E' denotes that the

sum is only over the bonds (i, j) for which Jn(rij) > 0. This means that for Jlff(rij)

we only include bonds (i, j) with i and j on different sublattices, while for Jff(rij) we

only include bonds (i, j) with i and j on the same sublattice. At the mean-field level

the fields ij are replaced by their saddlepoints, i.e. constant values that minimize

the total free energy. Assuming that -A- = nn' (rij) is real, we can write the

Hamiltonian in momentum space in the matrix form

fki (1) t ek /\ I ° l fkT)

t(1) Ek , 0 a f )t

H = ()t All -ek A 0 -kH -k-j J-kj
k (2) 0 A 1 ek All f,(2)

f (2)tA l A A -E0 A f (2)t

+' [J,ff(r)A,,(r)2 + Jff(r)A±(r)2] , (5.21)
r

where

Ck= -1JV (cosk, + cosky)- ,F; (5.22)

A,,(k) = - cos(k r)J,Iff(r)Al,(r); (5.23)
r

a.(k) = >cos(k r)Ji_(r)A(r). (5.24)

The sum CE denotes a sum over bonds, which means that r and -r should be counted

only once and r = 0 is counted half. The Hamiltonian in Eq. (5.21) can easily be

diagonalized, which gives the quasi-particle energy dispersion

E±(k) = e/ + +(k) (5.25)
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A±(k) = A,(k) 6 AI(k).

The order parameters All(r) and A± (r) are determined by the condition that the free

energy is at a local minimum. The free energy is given by

F = ' [Jeff(r)A,(r)2 + Jeff(r)A±(r)2]
r

d2 k
-2T = (-2)2 log [cosh(E,(k)/2T)] . (5.27)

Putting &F/OA" ' ' (r) = 0 for all A " ' (r), we obtain the following set of self-consistency

equations:

LA,,flf(r)= J d2k cos(k r)n-n (sA (k) tanh ) (5.28)
f C2;fr- E,(k) 2T

This set of self-consistency equations has in general several solutions, depending on

the symmetry that one chooses for the order parameter, i.e. the relative signs of the

order parameters n, (r) on different bonds r. Close to half filling one can find the

most favorable symmetry of the order parameter, by studying the free energy in Eq.

(5.27) in the limit A n,(r) - 0. This gives

F(A) - F(O) = jE [Jff(r)a,, (r)2 + Jlf(r)al(r)2]
r

_ d2ktanh(Ek/2T)-(27)2 [A,,(k)2 + AI(k)2] ek (5.29)

The gain in free energy is largest if all the terms in the expression for An,(k) in

Eqs. (5.23) and (5.24) add constructively for the momenta k that give the largest

contribution to the integral in Eq. (5.29). Close to half filling the momentum integral

in Eq. (5.29) is dominated by the k vectors at the four corners of the Fermi surface,

i.e. the points k = (+r, 0) and k = (0, ±+r), because close to half filling the density

of states diverges at those four points. At the corner k = (r, 0) the gap A,,(k) is
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given by

(r, 0 ) = E](-1)rzJnn(r)A,,,(r) (5.30)

Because the summation E' is only over vectors r for which J,,,(r) is positive, the

terms in Eq. (5.30) add constructively if we let the sign of A,, (r) alternate depending

on whether r, and ry are even or odd. We will measure r, and ry in units of the lattice

constant a. To be more explicit, the gain in free energy is largest if we choose

> 0 for r even and ry odd;

All(r) = < 0 for r odd and ry even; (5.31)

-- 0 for r, + ry even;

> 0 for r and ry even;

Aa(r) = 4 < 0 for r and ry odd; (5.32)

= 0 for r, + ry odd.

Notice that A1 (r,, ry) = -All(ry, r) and Al(r., ry) = +Al(ry, r). This implies that

Al(k) has an extended s-wave symmetry [i.e., A±(k) = Al(kl) for k± = (ky, kr)],

while A11(k) has an extended d-wave symmetry [i.e., Al(k) = -A 1 (k±)]. The prefix

"extended" indicates that A±(k) and Al (k) can be anisotropic around the Fermi

surface, with peaks at the corners (7r, 0) and (0, ±r). This should be contrasted to

a pure s-wave symmetry [A± (k) = constant] or a pure d-wave symmetry [All(k) oc

cos k, - cos ky].

We can now explain why superconductivity is enhanced when the effective coupling

Jeff(r) extends over several lattice spacings. Suppose that Jeff(r) falls off over a

correlation length ro, for example Jeff(r) = Je-/°o. In that case there are of the

order of r2 terms A(r) that add constructively in the expression for the gap A(k) in

Eq. (5.30) for k = (r, 0) or (0, +7r). Therefore the second term in the free energy

in Eq. (5.29), which corresponds to a gain of free enery, is essentially enhanced by a

factor r4 . On the other hand the first term in Eq. (5.29), which corresponds to a cost

of free energy, is only enhanced by a factor r'. We therefore obtain a net gain of free

energy which becomes larger and larger if the correlation length ro increases. As a
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result superconductivity is enhanced. We would like to emphasize that our arguments

for the behavior of Al (k) and A±(k) are only valid close to half filling, and under

the condition that T < J and A(k) < J. These conditions are needed to make sure

that the momentum integrals in Eqs. (5.28) and (5.29) are dominated by the corners

of the Fermi surface. Away from half filling the corners of the Fermi surface become

progressively less important, and therefore superconductivity will not be as strongly

enhanced in that case.

From this point on we will focus on the order parameter A±(r), and ignore All(r).

The motivation for this is twofold. The first reason is that the inter-plane order pa-

rameter Al is more efficient in taking advantage of the antiferromagnetic correlations

than All, which is partly due to the fact that Jlff(q) is stronger peaked at q QAF

than Jff(q), as we explained after Eq. (5.18). But our main motivation for ignoring

All is that the gauge field is very effective in destroying the in-plane gap All(k) at low

doping [10]. This is the region we are interested in, because the spin-gap phase is ob-

served at low doping. We anticipate that the gauge field is less effective in destroying

the inter-plane gap Al(k), which we will discuss in more detail in Sec. 5.5.

5.4 Numerical analysis of inter-plane pairing

The numerical results presented in this section are meant for underdoped cuprates

in the spin-gap phase. Within our model this corresponds to the situation in which

A is finite, but All = 0. We solved the self-consistency equations for Al(r) in Eq.

(5.28), using the RPA-enhanced inter-plane coupling J1ff(r) that we calculated in Sec.

5.2. We performed the calculations at a doping x = 0.085, which is close to the AF

instability at x c_ 0.08. In this calculation we assumed J = 0.2 Jol. For this amount

of doping J1 a(r) falls off over a correlation length of approximately 3 to 4 lattice

spacings, which is quite typical for high-To cuprates in the spin-gap phase.

In Fig. 5-3 we show a plot of (-1)r- Al(r) versus rl for the discrete set of bonds on

which A±(r) is defined, i.e. r + ry is even. Note that A±(r) falls off over a coherence

length of approximately 3 to 4 lattice spacings, and that Al (r) is positive on the
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Figure 5-3: The pairing order parameter A±l(r) for x = 0.085. Due to the antifer-
romagnetic correlations A (r) is also nonzero for r $ 0, and Al(r) decays over a
correlation length of approximately 3-4 lattice spacings. Notice that A±l(r) alter-
nates sign from one sublattice to the next, as indicated by the squares (+A±) and
the diamonds (-iA±). Also notice that A±(r) is relatively strong along the diago-
nals r = ry. This implies that in momentum space A±(k) is enhanced around
the diamond-shaped Fermi surface.

sublattice with r, even [denoted by squares], and negative on the sublattice with r,

odd [denoted by diamonds]. This alternating sign was anticipated in the previous

section in Eq. (5.32). Also notice that IA±(r)l is relatively large on the diagonal

r = (j, j), which means that in momentum space A±(k) will be enhanced along the

diamond defined by k,, ± ky = ±7r.

In Fig. 5-4 we show a two-dimensional plot of A (k) in momentum space. Observe

that Al(k) is indeed enhanced at the Fermi surface, and that Al(k) is especially

large at the four corners of the Fermi surface. This anisotropy of Al (k) is easier

to see in Fig. 5-5, which shows a plot of Al(k) around the Fermi surface for three

different values of doping. Note that A±(k) has an (extended) s-wave symmetry

without nodes, and that the anisotropy of A±(k) is quite pronounced for x = 0.085,

but less pronounced for x = 0.09 and x = 0.10. Let us first look at the results

for x = 0.085 (solid line). At the corners of the Fermi surface the value of A±(k)
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Figure 5-4: A contour plot of the gap Al(k) for x = 0.085 and Jo = 0.2 Jl. The
diamond-like Fermi surface is indicated by the black dotted line. Notice that the gap
Al(k) has an extended s-wave symmetry, with peaks at the four corners k = (7r, 0)
and k = (0, ±f7r), and without nodes. At the corners of the Fermi surface the gap is
approximately A±(k) - 0.032 Jleff - 4 meV. Also notice that A±(k) is significantly
larger at the Fermi surface than in the middle of the Brioullin zone.

is approximately 0.032 Jl - 4 meV. In the middle of the Fermi surface the gap

is approximately two third of this value. We also calculated the pairing transition

temperature Tpo at x = 0.085, which gave the result Tp -_ 0.016Jl, which is of the

order of 20 K. We emphasize that these numbers depend strongly on the specific

values of the parameters in the model, and how close the doping is to the critical

value xc. Although the magnitude of the gap Al(k) is still too small, we believe it is

plausible to identify the spin gap observed in YBa2Cu306.6 with A±(k), and the spin-

gap phase transition with Tp. In Fig. 5-5 we also show Al(k) for a slightly higher

doping x = 0.09 and x = 0.10. Notice that further away from the critical doping

2 = 0.08 the magnitude of Al(k) decreases rapidly, and the anisotropy of A (k)

is less pronounced as well. This result shows that the antiferromagnetic correlations

are essential to make inter-layer pairing possible at a reasonably high energy scale.

In the RPA treatment the antiferromagnetic correlations are tied to the band
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Figure 5-5: The inter-plane gap A(k) around the Fermi surface for x = 0.085,
x = 0.09 and x = 010. The gap A±(k) has an extended s-wave symmetry, and is
anisotropic around the Fermi surface, with peaks at the corners of the Fermi surface,
This anisotropy is quite pronounced for x = 0.085, which is close to the AF instability
at xz = 0.08. At the corners of the Fermi surface the gap is approximately 0.032J1 f 
4 meV for x = 0.085. For higher doping x = 0.09 and x = 0.10 the amplitude of the
gap decreases rapidly, and the anisotropy almost disappears. The conclusion is that
the antiferromagnetic correlations are essential for the enhancement of A±(k).

structure in a way that may not be quantitatively correct. To study the dependence

of the gap A on the correlation length ro and the coupling constant J, we consider

an effective inter-plane pairing parametrized by

JR(r) = J (1_)i+ je- r/ro, (5.33)

where r/a = (i, j), and ro should be interpreted as the correlation length of the

antiferromagnetic correlations. The dependence of the gap on the coupling constant

J0 is shown in Fig. 5-6, which is a logarithmic plot of fmax versus (J)- 1 . We defined

Amax as the value of Al(k) at the corner of the Fermi surface. We did the calculations

for a correlation length ro - 0 [E], ro = 3 [A], and ro = 6 []. The case ro0 0 is

the situation when Jff(r) and A±(r) are only nonzero for r = 0, which corresponds

to a pure s-wave symmetry. Observe that the data points lie on straight lines with
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Figure 5-6: A logaritmic plot of the gap A" a x at the corner of the Fermi surface
as a function of the inter-plane coupling constant (Jo)- 1 . In this calculation we
assumed that the effective coupling is given by Jff(r) = iJ0 exp(-r/ro), and we
fixed the doping at x = 0.09. We performed the calculations for a correlation length
ro = 3 [A] and ro = 6 [V], and compared the results with an "on-site" interaction,
which corresponds with r -* 0 []. The straight lines show that ax depends
exponentially on (JO)-l. The functional form is given in Eq. (5.34). Notice that for
ro = 3 the slope of the line is 2.7 times smaller than for ro -- 0, and that therefore
Aax(ro = 3) > Ajax(ro -- 0). The finite correlation length has the effect of
enhancing Jo by a factor of 2.7.

different slopes. We conclude that ax(k) has the functional form

1.14 Jo1 exp (-1.56 J1oIJo) for ro/a - 0;

max 0.48 J exp (-0.58 J/J ) for ro/a =3; (5.34)

0.41 Jo exp (-0.44 J/J °) for ro/a = 6.

This BCS-like functional form is not surprising, because Al(k) is determined in a

way that is very similar to BCS theory. Notice however that the coefficients Eq.

(5.34) change dramatically when the correlation length ro/a increases from 0 to 3.

For ro/a > 3 these coefficients do not change much anymore, because the system can

only take advantage of very long correlation lengths if there is perfect nesting of the

Fermi surface. This calculation was done at a finite doping x = 0.09, and thus the
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nesting is not perfect. First consider the coefficient in the exponent, which drops from

1.56 to 0.58 when ro/a increases from 0 to 3. The physical explanation for this is that

when patches of spins cooperate to form extended Cooper pairs, J gets effectively

renormalized by a factor which increases with ro/a. This renormalized J is the

coupling constant that enters the exponent in Eq. (5.34), i.e. J - 1=.56JjO - 3Jo for0.58

ro/a = 3. Now consider the prefactor in Eq. (5.34), which is proportional to J. In

BCS theory this prefactor would be equal to the Debye frequency, which provides a

cutoff in the energy integrations. In the calculation that led to Eq. (5.34) there was

no cutoff in the energy integrations, so the Debye frequency is replaced by Jl?, the

overall energy scale. If the correlation length r increases an effective energy cutoff

is introduced, because Al(k) becomes anisotropic with peaks that have a width

proportional to a/ro. Therefore the "Debye frequency" J gets replaced by roughly

(a/ro)Jjl. We would like to mention that this calculation did not take any frequency

dependence of Jeff(q,w) into account. Millis and Monien argued that the frequency

dependence of Jeff(q, w) introduces another cutoff in the energy integrations, of the

order of (a/ro)2 Jlo [59, 73], and is therefore more important than the cutoff provided

by the momentum dependence of eff(q,w). This argument does not modify the

coefficients in the exponents in Eq. (5.34), and thus eff is still strongly enhanced

when the correlation length increases.

5.5 Pair-breaking effects of the gauge field

We have argued in a previous paper that for a single CuO2 plane a fluctuating gauge

field destroys the in-plane pairing order parameter All above the Bose-condensation

temperature TBE [10]. This explains the absence of a spin-gap phase in single-layer

materials. In this section we will argue that the gauge field is not as effective in

destroying the inter-plane order parameter Al, so that the spin-gap can survive in

multi-layer materials.

In the previous sections we discussed a mean-field approximation of the t-J model.

To go beyond mean-field theory we will now introduce a gauge field, that takes a
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Figure 5-7: The diagrams for the gauge field propagators IIll(q) and IIL(q). The
indices n and n' indicate plane 1 or plane 2 (and n 4 n'). The propagator IIl(q) is
only nonzero if there is a coupling between the two planes. In Sec. 5.5 we show that
the in-phase propagator II+ = IIIl + II1 becomes massive when an inter-plane gap
Al opens up, while the out-of-phase propagator II_ = IIl - II1 remains massless.

certain class of fluctuations around the mean-field result into account. The gauge

field is the phase of the RVB-order parameter

( _ c~~eiaij ~(5.35)

where is given by Eq. (5.7). We refer to other papers for a more comprehensive

discussion of the properties of this gauge field aij [10, 23, 33, 34, 35, 54]. In our

model for two CuO 2 planes there are two gauge field modes per unit cell, because

each plane has its own gauge field, denoted by al ) and a ). Suppose that the two

planes are coupled by a nonzero inter-plane order parameter A±, as described by the

Hamiltonian in Eq. (5.21). In that case the two gauge field modes are coupled as

well, and the total gauge field action has the form

S[a] =- (bob - QaQA) ( q A I(g) 1(g) 1 ( aaE(l):(l2 ( q (5.36)
2 q q a(2)- IIz(q) II,,(q) a(2) J

where q denotes (q, iv,) and iv, is a Matsubara frequency. The propagators II, (q) and

fIl(q) are given by the diagrams in Fig. 5-7. Notice that IIl(q) = 0 when A = 0,

because in that case the two planes are uncoupled, and thus the diagram in Fig.

5-7(b) vanishes. The eigenmodes of the action in Eq. (5.36) are the in-phase mode

a) -(a() + a(2))/x/2 and the out-of-phase mode a(-) (a(1 ) -a(2))/x/. We will
Q Q Q Q 
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denote the propagators of these two eigenmodes by II+(q) 1 11(q) i IIl(q).

In order to decide whether the combined effect of the two gauge field modes is

pair breaking or not, one has to calculate the total free energy of each gauge field

mode, and study whether the free energy increases or not when a gap AI opens

up. This is outside the scope of this paper, and we will instead limit ourselves to

qualitative arguments why it is less costly to have an inter-plane gap Al than to

have an in-plane gap All. Our qualitative argument is based on the fact that in the

case of inter-plane pairing one of the two gauge field modes remains massless, while

in the case of in-plane pairing both modes become massive. The fact that a certain

mode becomes massive is generally an indication that this mode is pair breaking.

Evaluating the diagrams in Fig. 5-7 in the presence of an inter-plane gap A±l(k)

gives

i(qiv) C+2Ty.J (2ir)2 \ kq Ok (w"2 + E2 )(w2 + E'2 )' (7)

where iw' = in - ivn; , el = ek±q/2; A, A' = A±(k + q/2); and E = 2 + A2. The

first term in Eq. (5.37) is a constant given by the first diagram in Fig. 5-7(a), which

is equal to

C-2TC/ d2k 2 E, EkC = 2T E (2X) 2 9k 2 Ek + (5.38)

For A = 0 this constant C exactly cancels the second term in Eq. (5.37) for q - 0

and iv, = 0. Thus the gauge field is massless in the normal state. Note that the

functional form of the in-phase propagator HI+(q) is similar to the BCS expression

for the propagator of the electromagnetic gauge field in the presence of a gap [65],

except that the coupling constants are very different. It is very well known that

this propagator becomes massive when a gap opens up, i.e. II+(0, 0) oc A, which is

responsible for the Meissner effect in BCS superconductors.

The out-of-phase mode a(-), on the other hand, has a propagator I_(q) with a

different coherence factor, proportional to CIe'- wW,,n - AA'. One can easily check that

due to the minus sign in the coherence factor the second term in Eq. (5.37) exactly

cancels the constant C in Eq. (5.38) in the limit q -- 0 and iv, = 0, even when
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A $ 0. In other words, the out-of-phase propagator II_(q) remains massless when

an inter-layer gap opens up. The physical reason why the out-of-phase mode a(-)

remains massless is related to gauge invariance. Without pairing the Hamiltonian is

invariant under the local gauge transformation

Ju - e .fil (5.39)
an") ant) n)+ (-") (5.40)

47 , -Pi +3 

A finite gap A generally breaks this gauge invariance, which implies that the gauge

field mode becomes massive. This is usually refered to as the Higgs mechanism. In

order to see what happens to the out-of-phase gauge field mode a(-), we only consider

gauge transformations that satisfy () =- (2). One immediately observes that the

inter-plane order parameter A = (f(1)f(2) - (1)f(2)) is invariant under this class

of gauge transformations. The Higgs mechanism does not apply because the gauge

invariance is not broken, and therefore the out-of-phase gauge field mode a(-) remains

massless.

For a more detailed analysis of the pair-breaking effects of the gauge field modes

a(+) and a(-), one has to study the contribution of the gauge field to the free energy,

given by [10, 55]

F(u)g = T E logII+(q, iv,)
q,vn

q -[2nB(v) + 1] arctan Re Hn(q, v + i6)'

In the normal state the gauge field gives a rather large negative contribution to the free

energy. It has been shown that the free energy from free fermions and bosons is much

too large, and that the negative contribution from the transverse and longitudinal

gauge fluctuations yields a free energy which is in much better agreement with high-

temperature expansions [55].

Let us now ask what happens when a gap opens up in the fermion spectrum. We

can calculate F (+ ) (A) by substituting the propagator IH±(q, v, A) into Eq. (5.41).
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Let us first consider F(+) e(A). For A 0 a gap appears in Im HI+(q,v), elimi-

nating the contribution of modes with v < 2A. For v > 2A, -(Im II+/Re II+) is

still suppressed compared to its normal state value, causing a significant increase in

Fug(/A). It was shown in Ref. [10] that F(+)(A) oc A5/3 if T > TBE. This cost in

free energy is so large that it destroys the possibility of fermion pairing for T > TBE,

therby eliminating the spin-gap phase in single-layer cuprates.

The story is quite different for F(-)g( Again a gap appears in Im I_(q, v),

but for v > 2A the coherence factor in Eq. (5.37) is such that -(Im II_/Re I_)

is actually enhanced [10], which overwhelms the loss of free energy from frequencies

v < 2A. Considering that F(-)g(A) decreases when a gap opens up, we conclude
that the gauge field mode a(-) is pair enhancing. The pair-enhancing nature of a(-)

can also be understood in another way. The fermions on the two planes couple to

the a(-) mode with opposite charge, so that the exchange of an a(-) mode leads to

an attraction, analogous to what happens in the t-t'-J model [31, 75]. In our case

we expect that the effects of the a) and a(-) gauge fluctuations largely cancel each

other, so that the mean-field treatment of inter-plane pairing may be quite reliable.

As a result it is likely that over a certain temperature range the in-plane gap A1,(k)

is completely destroyed by gauge field fluctuations, while the inter-plane gap A±(k)

still survives. This region can be identified with the spin-gap phase.

5.6 NMR-relaxation rates

Experiments on YBa 2Cu306. 6 show that quantities that probe the spin-degrees of

freedom of the system, such as the NMR-relaxation rate, the echo-decay rate, and

the Knight shift, are strongly reduced below a certain crossover temperature. In

this section we will show that our model can reproduce the unusual temperature

dependence of these quantities. The two main ingredients to obtain our results are

the presence of strong antiferromagnetic correlations, and the opening of a spin gap

Al due to the pairing of fermions on adjacent CuO 2 planes. We will mainly focus on

the calculation of the NMR-relaxation rate (T 1T)-', whose temperature dependence
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contains information about both the magnitude of the spin gap and the presence of

antiferromagnetic correlations.

The NMR-relaxation rate is directly related to the susceptibility according to the

formula
1 1 Xpy.(q, w)
1T1--- - -=2 F(q) lim xhs(q)). (5.42)T1T 2l~~i~h F(q) i

The form factor F(q) depends on the direction of the magnetic field, and whether

one probes the copper sites or the oxygen sites. Following Millis et al. and Monien

et al. [76, 77], the form factors are given by

3 363F 1(q) = - [All + 2B(cos q,a + cos qya)]2 + - [A± + 2B(cos q,a + cos qya)]2
8 8
363FL(q) = [Al + 2B(cos q.a + cos qya)]2 (5.43)
4

17 F(q) - 3 C2(1 + cos qa),

where "63" denotes the 63Cu site, and "17" denotes the 170 site. The constants All,

Al and C are approximately equal to [77]

All = -4B,

Al = 0.84B, (5.44)

C = 1.68B,

and B - 40.8 kOe/pB. The main feature of these form factors is that 1 7 F(q) vanishes

at q = (r, 7r), while 63F,(q) has its maximum at q = (r, r). This implies that the

relaxation rate on the copper sites will be strongly enhanced due to antiferromagnetic

correlations, while this enhancement will not be seen in (17 TT)-1.

In order to find (TiT) - 1 we will use the RPA approximation to calculate the

susceptibility Xphys(q, w). Within the RPA approximation one can express XRPA in

terms of the bare susceptibility x°(q, w), similar to the expression in Eq. (5.15). The

only difference is that we now have a finite spin gap A (k) coupling the two planes,

which implies that the bare susceptibility x°(q, w) is now a 2 by 2 matrix instead of a

number. Following the derivation of Eq. (5.15), and replacing X° by a 2 by 2 matrix
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X° at each step, we obtain

[cos2 ( d) sin2( d) X+(q, w), (5.45)1+ J++ 1 + J x-

where

X+ = X0 ° (5.46)

J+ = Jll+J.

[For X+ = X- = X this reduces to the expression in Eq. (5.15).] The susceptibilities

X± are determined by evaluating a single fermion bubble, which gives [65, 78]

d2k [12 f(E') - f(E)
w± (+ i6)q = I(27r)2 2 E-E' + l + iF

2 1-f(E')- f(E)] + [ + i -(w + i)], (5.47)
± E+E'+w+iFJ

where = Ek+q/2, E = Ek-q/2, and E = E2 + A2. The coherence factors 12 and p2

are defined by

(i = ±1 EEA ) (5.48)
p2 = (1 - __A)

In BCS theory one only obtains the "plus" coherence factors 12 and p_ [65]. In our

case the "minus" coherence factors 12 and p2 are due to the fact that the pairing

is between fermions on different planes, which can be in-phase or out-of-phase with

each other.

We included a finite scattering rate F in the expression for X+ [78], in order to

remove a logarithmic singularity in X:(q, w)/w in the limit w - 0. In conventional

superconductors this logarithmic singularity, cut-off by a small scattering rate rF T,

is responsible for the Hebel-Slichter peak in (T 1T)- just below the pairing transition

temperature. For the cuprates it is well-known that there is an anomalously large

scattering rate F, which can be a sizable fraction of the temperature T. Within our

treatment of the t-J model this scattering rate is due to strong gauge-field fluctuations

[35]. The large value of r implies that the Hebel-Slichter peak will be significantly

smaller in the cuprates than in conventional superconductors.
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Before presenting our numerical results, we will first discuss the value of the gap

A±(k) that enters the calculation of x+(q, w). The gap AL has to be quite large

in order to identify Al with the temperature scale below which (T1T)-1 decreases,

which happen at about 150 K for underdoped YBa 2Cu30 66. As was discussed in

Secs. 5.3 and 5.4, the inter-plane gap Al(k) is strongly enhanced by the antiferro-

magnetic correlations in underdoped cuprates. Within our RPA treatment we can

only obtain a sufficiently large value for A(k) if the doping is very close to the critical

doping xz, 0.08 at which the antiferromagnetic instability occurs. However, experi-

ments show that the antiferromagnetic correlations remain rather strong over a wide

range of doping. Unfortunately the RPA approximation is not powerful enough to

capture this physics. We will therefore in this section use a value of Ail that fits the

observed temperature dependence of (T1T)- 1, keeping in mind that the antiferromag-

netic correlations are responibie for such a large value of the gap. Although Al(k)

is anisotropic around the Fermi surface, this anisotropy does not play an important

role in the calculations below. The reason for this is that the expression for (T 1T) -1

is dominated by wave vectors q - QAF, and the integrand for X+(QAF, 0) is only

large when k + QAF and k - QAF are both on the Fermi surface. This condition is

only satisfied when k+ -QAF = ± QAF. Thus we can safely put Al = A1(1QAF) in

the calculation of (T 1T) - l. Notice that it is important that A±(k) has an (extended)

s-wave symmetry, because A (1QAF) would nearly vanish if Al(k) had a d-wave

symmetry.

We will now discuss the temperature dependence of the gap AI1 (T). The most

straightforward approximation would be to assume that AIl is a mean-field order

parameter with a BCS-like temperature dependence. In that case Al(T) = 0 for

T > Tp, and A±l(T) increases with an infinite slope just below Tp, as is shown in the

insert in Fig. 5-8. However, this BCS picture assumes that there is a long coherence

length, so that Al can be interpreted as a long-range order parameter. As was pointed

out by McMillan [79], this is not the appropriate picture if there is a relatively short

coherence length, which is clearly the case for cuprates in the spin-gap phase. If

the coherence length is small the long-range order parameter (Al(r)) vanishes, and
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Figure 5-8: The NMR-relaxation rate (TT) - 1 on the copper and the oxygen sites
for two values of the scattering rate . This calculation uses a BCS-like temper-
ature dependence for the spin-gap A±(T). The Hebard-Schlichter peak gets less
pronounced when r increases. For T > Tp the relaxation rate (63 T1IT)-1 rises when
T decreases, while (17T 1T)- 1 remains constant. This rise in (63T1IT)-1 is due to
antiferromagnetic correlations. Notice that there is a sharp change in behavior for
T < Tp and T > Tp, which is not observed in experiments.

instead one should identify the gap with the local order parameter (IlA±(r)12). Thus

we are not dealing with a true gap, but with a pseudo gap. This implies that there

is not a sharp transition at which the gap disappears, because above the mean-field

transition temperature the local orderparameter (IA±(r) 2) remains nonzero. This

is indicated by the insert in Fig. 5-9, which shows a tail in the pseudo gap Al for

T > Tp. For most purposes this tail in A±(T) is not very important, because it

will be washed out by thermal fluctuations. However, the tail in A1 (T) will have a

significant effect on the Hebel-Slichter peak in (T1T) - 1, which will be smeared out

if the gap Ail(T) is smoothly varying instead of dropping down to zero at T = Tp.

This can explain the absence of a Hebel-Slichter peak for the high-Tc cuprates at the

onset of the spin-gap phase.

In Fig. 5-8 we show plots of the NMR-relaxation rate (T1T) -1 on the copper and

the oxygen sites for various values of the scattering rate F. This calculation assumes
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Figure 5-9: The NMR-relaxation rate (TT)- 1 on the copper and the oxygen sites,
using a pseudo-gap A±(T) which has a finite tail for T > TO, as is shown in the inset.
The main difference with Fig. 5-8 is that the Hebard-Schlichter peak gets smeared
out over a wider range of temperature. As a result (T1T)- 1 varies smoothly as
a function of temperature, which agrees well with measurements on underdoped
YBa 2Cu3 06.6 .

a BCS-like behavior for the gap A±(T), and Tp is chosen to be equal to 0.1J. For

small values of the scattering rate F the Hebel-Slichter peak is quite pronounced, but

the size of this peak gets smaller and smaller when F increases. However, even for a

large value of F one still observes a drastic change in the behavior of (T 1T) - 1 when

T crosses the transition temperature Tp. Also notice that for T > Tp, (63T1T)-1

increases when T decreases, while (17T1T)-1 remains almost constant. The reason

for this difference is that the form factor 63 F(q) is finite at q = (r, 7r), while 17 F(q)

vanishes at q = (r, 7r) according to Eq. (5.43). Therefore only the copper sites can

take full advantage of the enhancement of X"hy.(q, w) for q - QAF, which becomes

stronger and stronger at lower temperatures.

In Fig. 5-9 we again show (T 1T) -1 as a function of temperature, but this time

we assumed that A±(T) has a finite tail for T>Tjp, as is shown in the inset. The

main difference between Figs. 5-8 and 5-9 is that the tail in Ai (T) smears out the

Hebel-Slichter peak. As a result the temperature dependence of (T1T) - 1 in Fig. 5-9 is
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Figure 5-10: The echo-decay rate T2-1 as a function of temperature for two values of
the scattering rate r. The dashed lines assume a BCS-like temperature dependence
of the spin-gap A (T), and the solid lines assume a pseudo-gap behavior. The tail
in the pseudo-gap removes the singular behavior of T2

1 at T = Tp. Changing the
value of r does not have a significant effect on the behavior of T' - 1.

smooth over the entire temperature range, which agrees much better with experiments

than the plots in Fig. 5-8. As explained earlier in this section, we think that a tail in

the pseudo gap A (T) is closer to the truth than a BCS-like behavior of A 1 (T).

We now turn to the calculation of the spin echo-decay rate rate T2-1, which has

been measured experimentally by Takigawa [80]. It is given theoretically by [81]

T2 c Xphys(q, 0)2) (5.49)

In Fig. 5-10 we plot T2-1 versus temperature for various values of the scattering

rate r. Notice that in contrast to Figs. 5-8 and 5-9, introducing a finite r does not

modify T2
-1 significantly. Comparing the solid lines and the dashed lines we see that

a tail in the pseudo-gap A (T) smears out the singular behavior of T21 at T = Tp.

Notice that for T > Tp, the echo-decay rate T7-1 increases upon lowering T, which is

due to antiferromagnetic correlations. This resembles the temperature dependence of
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Figure 5-11: The Knight shift as a function of temperature. In this calculation
we used = 0. The dashed line assumes a BCS-like temperature dependence of
the spin-gap A i(T), and the solid line assumes a pseudo-gap behavior. The Knight
shift decays exponentially when T< A (T).

(63 TT)- in Fig. 5-9. However, for T < T the temperature dependences of (TIT) -1

and T2-1 are very different, because (T1T)- 1 vanishes exponentially for T - 0, while

T2-l remains finite.

For completeness we show in Fig. 5-11 the temperature dependence of the Knight

shift, which is proportional to Xphy(q --+ 0, w = 0). This quantity essentially probes

the density of states around the Fermi surface, and vanishes exponentially when a

spin-gap opens up. We conclude that our calculation of T-l, T2- l and Xphys(0, 0)

exhibits spin-gap behavior qualitatively similar to experiments, and that in order to

explain the onset of the spin gap at 150 K_ 0.1Jil, a spin gap of the order A±l 0.2Jl

is required.

5.7 Discussion

In this paper we studied a model for two CuO2 planes, coupled with a small an-

tiferromagnetic inter-plane interaction J Ei S() S2). This model is relevant for
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multi-layered high-To cuprates, that have two (or more) CuO2 planes in a unit cell.

Using a random-phase approximation we showed that close to half filling the

susceptibility X"RA(q, qz) is strongly peaked at the the nesting vector q - QAF,

due to short-ranged antiferromagnetic correlations of the spins in each plane. Our

expression for XRPA(q, qZ) explains the strong modulations as a function of q that

have been observed in neutron scattering experiments for underdoped cuprates [66].

Within the same RPA analysis we showed that the effective coupling constants Jleff(r)

and Jff(r) are also strongly enhanced by antiferromagnetic correlations. As a result

Jleff(r) and Jff(r) can extend over several lattice spacings. Close to the AF instability

Jlff and Jff become comparable in strength, because J ff(q) is stronger enhanced than

Jeff(q) for q _ QAF.

Due to the fact that the inter-plane coupling Jff(r) is longer ranged, the system

can form Cooper pairs that consist of fermions that are separated by several lattice

spacings, characterized by the order parameter A (r). We solved the self-consistency

equations for the order parameters A±(r), and found that the inter-plane pairing

is indeed strongly enhanced by the antiferromagnetic correlations. An interesting

aspect is that the gap Al(k) has an extended s-wave symmetry without nodes. A

similar treatment of the in-plane pairing would lead to a gap All (k) with an extended

d-wave symmetry with nodes at four points on the Fermi surface. The gap A±(k) is

enhanced close to the Fermi surface, and is in particular large at the corners of the

Fermi surface. How much can we trust the numbers that come out of this calculation?

First of all the value of the gap is quite sensitive on the exact value of the parameters

of the model. One also has to keep in mind that the RPA approximation is a gross

oversimplification when the system is close to an AF instability. We can however

state that our results are in qualitative agreement with the observed spin gap in

underdoped YBa 2Cu30 6. 6.

We propose that the enhanced inter-plane pairing provides a mechanism for the

observed spin-gap phase in multi-layer cuprates. To support this we argued that

the gauge field, which destroys the in-plane gap All in a single CuO2 plane close

to half filling, is less effective in destroying the inter-plane gap Al. The physical
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argument for this is that the out-of-phase mode a(-) = (a(l) - a2))/F2 remains

massless when the inter-plane gap Al(k) opens up. This implies that the gauge

field mode a(-) is not pair breaking. A more detailed calculation in Ref. [10] of the

free energy of a gauge field indicates that the gauge field mode a(-) actually favors

pairing, and will partly cancel the pair-breaking effects of the in-phase gauge field

mode a(+) = (a(l) + a?2))/x'2. The physical consequence of this is that at low doping

the inter-plane gap A (k) can survive at a higher temperature than the in-plane gap

A, (k). This makes it possible that inter-plane pairing is responsible for the observed

spin-gap phase in multi-layer cuprates.

Our model is able to explain the unusual temperature dependence of several phys-

ical quantities that are related to the spin susceptibility. We calculated the NMR-

relaxation rate (T1T) -1, using a value of the inter-plane gap A± that corresponds

with the observed spin gap in underdoped YBa 2Cu306.6. Our numerical result show

that at high temperatures (63TIT)-1 increases when T decreases, while (17TjT)-1 re-

mains almost constant. Below the pairing transition temperature Tp, (63T 1T)-1 and

(17TT)- both decrease rapidly. The Hebel-Slichter peak is reduced by the assump-

tion of a pseudo-gap behavior and the presence of inelastic scattering, presumably

due to gauge field fluctuations. The physical reason why there is a pseudo gap instead

of the usual BCS gap, is because there is a rather short coherence length, so that the

gap should be interpreted as a local order parameter [79], which does not undergo any

sharp transitions.

So far we have ignored any inter-layer hopping of the form tc()t (2). From the

analog of Eq. (5.3) it is clear that ignoring t is reasonable provided that xt < J1 .

If this is violated we expect inter-layer pairing to be suppressed, but we have not

studied this quantitatively. Not enough is known about t and J±, but our guess is

that xt 1 and J are comparable. However, even a small t will lead to coherence

between bosons on the two planes immediately below TBE, SO that the fermion pairing

becomes genuine superconducting pairing between electrons on the two layers.

The possibility of inter-plane pairing has interesting consequences for the sym-

metry of the superconducting gap in bi-layer materials. In Fig. 5-12 we show a
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Figure 5-12: A schematic phase diagram for bi-layer cuprates. We predict that the
spin-gap phase is due to inter-layer fermion pairing, enhanced by antiferromagnetic
correlations. Below the superconducting transition (thick solid line) the s-wave
inter-plane pairing and the d- wave in-plane pairing coexist. We expect that for
underdoped samples Al(k) dominates over All(k), giving rise to a nodeless super-
conducting state, indicated by the shaded region. At higher doping the four nodes
of a d-wave superconductor are split into eight nodes.

schematic phase diagram for these materials, in which the thick solid line denotes

the onset of superconductivity. At low temperatures the in-plane d-wave and the

inter-plane s-wave pairing will co-exist, giving rise to a quasi-particle dispersion

E(k) = ((k) 2 + A+(k)2 )1 /2 , where A±(k) = Al(k) ± AIll(k). If A± is indeed as

large as 150 K, as the experiments seem to indicate, it is likely that for underdoped

materials A > AllI for all k, which implies that the superconducting gap is nodeless.

This is indicated by the shaded region in Fig. 5-12. As doping is increased, Al de-

creases rapidly with the loss of antiferromagnetic correlations, and we crossover to a

superconducting state with nodes. We expect that in fully doped systems the d-wave

order parameter All dominates, but as long as Al remains finite the four nodes for a

conventional d-wave superconductor will be split into eight nodes.
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Appendix A

Decoupling of Si S

We like to discuss a recipe that helps to decide how to decouple the four-fermion term

Si Sj into the different channels [30]. By means of a Hubbard-Stratonovich trans-

formation any four-fermion term fitfifjfj can be decoupled into either "exchange"

terms of the form fitfj, "pairing" terms of the form fifj, or "direct" terms of the

form fitfi. We like to take advantage of the freedom one has in taking combinations

of these three decouplings.

The idea is to write

Si Sj = VE + + D, (A.1)

and to use introduce Hubbard-Stratonovich fields to decouple E, p and D into,

respectively, exchange, pairing and direct terms. The way to determine VE,p,D is to

require that decoupling p + bD into exchange terms will not generate terms already

generated by VE. A similar condition is imposed on D + VE and E + p. These

three conditions can be viewed as self-consistency conditions for the decoupling into

the three terms VE,P,D-

To implement the above recipe, we take E,p,D of the form

3

tEPD ,= CE pD(fi O afip)( Ftf ir) (A.2)
k=O

(a k are Pauli matrices and a° is the identity matrix). We specify a priori that we
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want to end up with a decomposition that contains exchange terms of the specific

form fitfj + ft j and pairing terms of the specific form fiTfj - filfj

We now have to determine the coefficients C PD'k such that the conditions of the

recipe above are satisfied. We take the decoupling into exchange terms as an example.

By commuting fermion fields one can write each VE,P,D as a sum of squares of exchange

terms:

= - (c° + + C3) [(fttfjt + fitfjl)(fjtfit + ftfil)- ni (A.3)

1

2 ( 0 +C1- C2 C3) [(ffitf j - fit fJ)(fjfiT- fil)- ni] (A.4)
1l0 c2

12(C ° - C1 + C2- _ C3) [(fitfJlFt fj)( lfiT- ftTfil)- ni. (A.6)

In order that E decouples into exchange terms of the form t + ft fi we need

(A.4)-(A.6) to vanish. That implies ck = c (k = 1, 2, 3). In order that vp + 0 D does

not generate exchange terms already generated by E, we need (A.3) to vanish for

V = Vp + VD, i.e. c + C = - E=(c + c).

Using the same arguments for the decoupling into pairing terms, we find Cp = -C

and c + c = 3=l(ck + Ck ). Finally remark that Eq. (A.1) gives the relationships

CE + C 0 = O and ± c = 1 (for k = 1, 2, 3). Putting everything together,

the coefficients CE,P,D are determined uniquely:

0 - 3 k 3
CE - 16' CE 16' 

Cp = 1 Cp = k (A.7)

D= 0, C = -8

Having found all coefficients PD, we can now rewrite E,P,D asE,P,D, w ca ow rt VE,p D aS

E -8(fitfjt + flfjI)(jtfiT + fjlfiI) +3 ni,

p = - 8 (ftfj - ftTfjt)(fjTfil - ffiT), (A.8)

D = -'Si Sj
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For self-consistency we need that E + p does not generate any direct terms at the

mean-field level. This is equivalent to (Si) = 0.

The last step is to introduce three Hubbard-Stratonovich fields, to decouple VE,p,D

into quadratic terms. This finally leads to the following decomposition of Si Sj:

3

e-Jibj S ( I dxidxidAjdAji I II dpke , Ai(x,,Pip)i i) (A.9)
(i,j) i k=l

Aj= - (f8- c.c. + ni

-Aj;i(fjTfil- ffjr)- c-c-] (A.10)

2 [ilEP (f fj) 
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Appendix B

Diagonalization of HMF

By going to Fourier space the mean-field version of the Hamiltonian (2.4) can be

written in matrix form:

(B.1)HMF = J'r7tMk/k + J' '(kNkCk
k kI

(EZ denotes a sum over half of the Brioullin zone and J' - 3/4J).

formula

fk+QT

f-tk-Qkl

f-k-Q,1

Ck ( bbk+Q 
bk+Q 

In the above

(B.2)

and Mk and Nk are the matrices [27]:

-Pf - XY'k COs 0

iXPk sin 0

-iXSpk sin 0

--Af + Xk COS 0

Pf + XYk COS 0 -iPk sin 0

iXPk sin 0 Pf - X7k COs 0

--Ib - 2tXk cos 0

2 itXyk sin 0

-2itxpk sin 0

-1- + 2tX7k cos 0
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0

0

0

0

Aak

(B.3)

Mk =

N =



(ak = k cos + ik sin r, k = cos k k + cos ky and cok = cos k, - cos ky). All energies

are written in units of J' - 3/4J.

The matrices Mk and Nk can be diagonalized by means of a Bogoliubov transfor-

mation. This leads to the diagonal Hamiltonian in Eq. (2.8).
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Appendix C

Calculation of pet

In this Appendix we evaluate the expression for pt (u/2, R) in Eq. (3.33). This

expression is different from the non-interacting density matrix p°D(u/2, R) due to the

constraint 0 < x1 < ... < XN/2-1 < R, which lowers the entropy of the particle.

[Note: we renamed the variables XN-n to x,.] We will approximate the integrals in

Eq. (3.33) by calculating successive integrals of the form

Pn+(xn,,+) = j dxnpPlD(Xn, nT,)pD(Xn+l -n TO)

exp(-Mzn j X

2(n+l)i n+l dn n + 1

V27r(nn + 1),roM JO 72 nrO/M

x exp [-2nT/M (Xn n + 1 2]

= PlD(n+l, (n + 1)r) x Fn (+ 1 T ) M

where the correction factor F is defined by

F,(a) = fA ' Y edy 2
-ac n(n+1)

(C.2)

Notice that F(c(a) approaches 1 for a > 1, so that the non-interacting result is

recovered for a 1. The approximation that we make is that we replace the argument

of the correction factor F by its average value, i.e. we replace xn+l/(n + 1) by
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R/(N/2), so that the argument of Fn(a) becomes (a) = 2R/N/ ro/M. After this

replacement F, is independent of the integration variable x,+l, which allows us to

take F, outside the integrals, and to repeat the integral in Eq. (C.1) successively for

n = 1, 2,..., N/2 - 1. This leads to the following approximation for Prt in Eq. (3.33):

N/2-1 2 R

p'et(U/2, R) - p(u/2, R) II n (C.3)
n=1

In the limit N - oo we can obtain an asymptotic expression for pet by using the

following approximation for Fn (a):

F ( ) -J~t+ ey _y2 [1+ 7'(a)] F(a), (C.4)

where in the limit N oo the constants F and y' are given by

F(a) = e-2Y ~

(a) 2F(a)e 2 (C.5)

Substituting Eq. (C.4) into Eq. (C.3), and using that n,(l + y'/n) (N/2) 7', one

obtains

Pretl(U/2, R) poD(u/2, R)N'elN12oF

P1D(U/2 R) (-)' e- c 'U/r (C.6)

where c' - log F. The last two factors in Eq. (C.6) have the following physical

interpretation. The exponential exp(-c'u/7rT) gives rise to a shift in the band edge

of the density of states, which is equivalent to a shift in the chemical potential. The

factor (u/T7)7' is more important, because it modifies the nature of the singularity of

the density of states near the band edge. This is discussed in more detail at the end

of Sec. 3.4. In Fig. C-1 we show a plot of the exponent y' as a function of a, using the

estimate in Eq. (C.5). Notice that for large a the exponent y' vanishes exponentially.
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Figure C-1: The exponent y' as a function of a = 2R/N/v/ r/M. This exponent

modifies the enhancement of the density of states near the band edge. For a 1
one approaches the non-interacting limit, and hence 7' _ 0. In this paper we use
a = 1, so that '' 0.144. This is indicated by the diamond 0 in the figure.

This is not surprising because this corresponds to the situation in which the boson

has very little time to get from 0 to R in imaginary time u, so that the typical path

will be almost straight. That means that the constraint 0 < xz < ... < XN/2-1 < R

is essentially irrelevant, and therefore one should recover the non-interacting result,

i.e. y' = 0. For our choice of R in Eq. (3.35), a is exactly equal to 1, and in that case

y' and c' are approximately

7' - 0.144; (C.7)

c' - 0.086.

This particular value of y' is indicated by the diamond in Fig. C-1.
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