View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

DETECTING BUFFER OVERFLOWS USING TESTCASE
SYNTHESIS AND CODE INSTRUMENTATION

by
MICHAEL A. ZHIVICH

S.B., Electrical Engineering and Computer Science (2004)
Massachusetts Institute of Technology

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2005

(© Massachusetts Institute of Technology 2005. All rights reserved.

AL NOT .
Department of Electrical Engineering and Computer Science
May 19, 2005

Certified Dy ... o
Richard Lippmann

Senior Scientist, MIT Lincoln Laboratory

Thesis Supervisor

Accepted Dy ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

https://core.ac.uk/display/4397457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Detecting Buffer Overflows Using Testcase Synthesis and Code
Instrumentation
by
Michael A. Zhivich

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The research presented in this thesis aims to improve existing approaches to dynamic buffer
overflow detection by developing a system that utilizes code instrumentation and adap-
tive test case synthesis to find buffer overflows and corresponding failure-inducing inputs
automatically. An evaluation of seven modern dynamic buffer overflow detection tools de-
termined that C Range Error Detector (CRED) is capable of providing fine-grained buffer
access information necessary for the creation of this system. CRED was also selected be-
cause of its ability to provide comprehensive error reports and compile complex programs
with reasonable performance overhead. CRED was extended to provide appropriate code
instrumentation for the adaptive testing system, which also includes a test case synthe-
sizer that uses data perturbation techniques on legal inputs to produce new test cases, and
an analytical module that evaluates the effectiveness of these test cases. Using informa-
tion provided by code instrumentation in further test case generation creates a feedback
loop that enables a focused exploration of the input space and faster buffer overflow detec-
tion. Applying the adaptive testing system to jabberd, a Jabber Instant Messaging server,
demonstrates its effectiveness in finding buffer overflows and its advantages over existing
dynamic testing systems. Adaptive test case synthesis using CRED to provide buffer access
information for feedback discovered 6 buffer overflows in jabberd using only 53 messages,
while dynamic testing using random messages generated from a protocol description found
only 4 overflows after sending 10,000 messages.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory

Acknowledgments

I am indebted to many people without whom this work would not be possible. First and
foremost, I would like to thank my advisor, Richard Lippmann, for his guidance, suggestions
and constructive criticism throughout this project. I would also like to thank Tim Leek
for all his contributions to this work, including the real exploit evaluation of dynamic
buffer overflow detection tools and modifications to the PCFG random message generator
and CRED-HW compiler. Without Tim’s contributions and technical expertise, building
an adaptive testing system would have been very difficult. I would like to thank Misha
Zitser for developing a thorough classification of buffer overflows and providing the test
corpus from his thesis, which was an invaluable part of the evaluation of dynamic buffer
overflow detection tools. I would also like to thank Rob Cunningham, Graham Baker,
Kendra Kratkiewicz, Chris Scott and all the folks in Group 62 at the Lincoln Laboratory,
with whom I have had many interesting discussions, and who have made my experience at
Lincoln so rewarding.

Last, but certainly not least, I would like to thank my family and friends for their
encouragement and support throughout this time — I would not have made it here without
you, and I give you my heartfelt thanks.

Contents

1 Introduction
1.1 Cost of Software Failures. oL
1.2 Types of Vulnerabilities in Software
1.3 Buffer Overflows — A Persistent Vulnerability
1.4 Approaches to Buffer Overflow Prevention
1.5 Goals of this Thesis

2 Exploiting Buffer Overflows
2.1 Memory Layout of a Process
2.2 Arbitrary Code Execution o oL
2.2.1 Imjecting Code
2.2.2 Changing Code Pointer Directly
2.2.3 Changing Code Pointer Indirectly
2.3 Logic-based Attacks
2.4 Unauthorized Access to Information
2.5 Classifying Buffer Overflows
2.5.1 Access Pattern
2.5.2 Access Type
2.5.3 Sizeof Overflow
2.54 Location L

3 Approaches to Buffer Overflow Detection
3.1 Security Policies and Code Reviews
3.2 Language Approach
3.3 Safe C Libraries e

13
13
15
16
16
19

21
21
23
23
24
24
25
26
26
27
27
27
28

3.4 Operating System Extensions 32

3.5 Static Analysis L 32
3.6 Runtime Buffer Overflow Detection 33
3.6.1 Compiler-based Code Instrumentation 33
3.6.2 Executable Monitoring L 35
3.7 Software Fault Injection oL 37
3.8 Mini-simulation with Random Messages 37
3.9 An Adaptive Testing System 38
Evaluating Dynamic Buffer Overflow Detection Tools 39
4.1 Dynamic Buffer Overflow Detection Tools 40
4.1.1 Executable Monitoring Tools 40
4.1.2 Compiler-based Tools 41
4.1.3 Common Limitations of Compiler-based Tools 44
4.2 Variable-overflow Testsuite Evaluation 45
4.2.1 Test Procedure 45
4.2.2 Sample Analysis 46
4.2.3 Variable-overflow Testsuite Results 50
4.3 Artificial Exploit Evaluation L. 52
4.3.1 Test Procedure 53
4.3.2 Artificial Exploit Results 53
4.4 Real Exploit Evaluation o . 53
4.4.1 Test Procedure 54
4.4.2 Real Exploit Results oo 55
4.5 Performance Overheado 55
4.6 Discussion Yl
Dynamic Testing with Code Instrumentation 59
5.1 Dynamic Testing Architecture L. 60
5.1.1 Code Instrumentation 61
5.1.2 Tester and Random Message Generator 61
5.1.3 Process Monitor 62
5.2 Random Message Generation 63

5.2.1 HMM Random Message Generator 63

5.2.2 PCFG Random Message Generator 64
5.3 Evaluating Dynamic Testing 66
5.3.1 Jabber Instant Messaging Server 66
5.3.2 Test Environment Lo 68
5.3.3 Test Procedure 69
534 TestResults. 71
5.4 Discussiono e 73
Adaptive Test Case Synthesis 75
6.1 Dynamic Testing with Feedback 75
6.2 Message Database 76
6.3 Test Case Generator 78
6.3.1 Tokenizing Messageso 79
6.3.2 Mutating Tokens 80
6.4 Feedback Loop 81
6.4.1 CRED-HW Instrumentation. 81
6.4.2 Buffer Access Signature Analysis 82
6.5 Static Analysis Module. 84
6.5.1 CIL: C Intermediate Language 86
6.5.2 Source Analysis with CIL 86
6.5.3 Literalsin jabberd 87
6.6 Evaluating Adaptive Testing System 87
6.6.1 Test Environment oL 87
6.6.2 Test Procedure L 88
6.6.3 Sample Test Run 90
6.6.4 Test Results. 93
6.7 Discussion e 96
Future Work 99
7.1 Tokenizing Messages 99
7.2 Token Mutations e 100
7.3 Buffer Instances. e 100

Conclusions 103

8.1 Required Instrumentation, 103
8.2 Generating Test Cases 104
8.3 Advantages of the Adaptive Testing Approach 105
HMM Description 107
PCFG Description 123
CRED Error Messages 127
PCFG Messages 129
Feedback Messages 135
Literals Found in jabberd 141

List of Figures

1-1

4-7

5-1
5-2
5-3

6-1
6-2
6-3
6-4
6-5

6-7

Cumulative Exploits in Commonly Used Server Software 17
Memory Layout of a Process 22
Example of Discrete Overflow Test Case 46
Stack Layout for Discrete Buffer Overflow Example 48
Results for Discrete Buffer Overflow Example 48
Example of Continuous Overflow Test Case 49
Stack Layout for Continuous Buffer Overflow Example 51
Results for Continuous Buffer Overflow Example 51
Summary of Results for Variable-overflow Testsuite 52
System Architecture for Dynamic Testing with Code Instrumentation . .. 60
Typical Jabber Server Deployment 67
Architecture of jabberd Lo 69
A Typical Jabber IM Message o 70
System Architecture for Adaptive Testing 7
Test Case Generator Architecture 78
A Legal Jabber IM Message 89
A Malformed Jabber IM Message 90
Buffer Access Signature for Original Message 91
Buffer Access Signature for Mutated Message 91
Difference in Buffer Access Signatures 92

10

List of Tables

4.1 Summary of Tool Characteristics 41
4.2 Summary of Results for Real Exploit Testsuite 54
4.3 Instrumentation Overhead for Commonly Used Programs 56
5.1 Control Characters in Jabber Messages 71
5.2 Overflows Detected in Grammar-based Testing 72
6.1 CRED-HW Buffer Access Info Fields 82
6.2 Aggregate Buffer Statistics Fields 83
6.3 Fields in the objects Table 85
6.4 Fields in the stats Table 85
6.5 Fields in the affected objects Table 85
6.6 Literals Found in jabberd L. 88
6.7 Buffers with Changed max high Statistic 92
6.8 Targetable Buffers o 93
6.9 Overflows Detected using Adaptive Testing with Legal Message 94
6.10 Overflows Detected using Adaptive Testing with Malformed Message 94

11

12

Chapter 1

Introduction

The use of computers and software has become essentially ubiquitous in modern society.
Making a call on a mobile phone, using an ATM, providing electricity — almost everything
in modern life directly or indirectly is supported by computers running software. Such broad
reliance on software requires it to be secure and reliable — if it were not, the results could
be catastrophic. While failures experienced by consumer electronics, such as a mobile phone
rebooting because of a fault, are hardly disastrous, a failure in a mission-critical system can
become life-threatening very quickly. For example, if control software in a nuclear power
plant crashes or sends the wrong control signals, an explosion or reactor meltdown could
occur and cause serious casualties in addition to lasting environmental damage. While such
scenarios may seem far-fetched, other incidents, such as online fraud and identity theft,
are affecting people every day because vulnerabilities in software enable crackers to obtain
this information. Thus, finding and fixing vulnerabilities in software is necessary to avert

potential disasters and utilize the full potential of available technology.

1.1 Cost of Software Failures

While significant resources are already invested to test software and find mistakes, errors
still exist in deployed code and result in very serious, if not catastrophic situations. A buffer
overflow was partly responsible for the blackout experienced by the Northeast in August
of 2003. Due to a software error that was caused by abnormal conditions, the supervisory
system failed to update the data on displays and notify operators of a serious strain on the

physical infrastructure that triggered a collapse. The fault lay dormant in the software for

13

a number of years, and was only revealed under abnormal circumstances [19]. This service
outage affected 50,000,000 people in the US and Canada and caused damage estimated at
7-10 billions of dollars [11, 42]. While not a security failure, this incident demonstrates that

vulnerabilities exist even in mission-critical software.

Another major outage of a public service occurred in January of 1990 within the tele-
phone network owned by AT&T. A failure of a single node triggered an error in the failure-
recovery routine of 114 other nodes that provided long distance service, thus bringing the
entire network down. The culprit was an incorrectly used break command in an if block
nested inside a switch statement. The resulting outage lasted nine hours and affected an
estimated 60,000 people. AT&T estimated lost revenue to be approximately 60 million
dollars; however, this estimate does not include lost revenue of businesses that relied on the

telephone network and were affected by the outage [5].

Many recent software faults have been exploited via cyber-attacks. In particular, popular
targets are buffer overflows that exist in software providing web services. Most recently,
worms such as Blaster and CodeRed overloaded and brought down corporate networks by
rapidly infecting a large number of computers. The spread of the infection generated so
much traffic that some networks were rendered completely unusable. Blaster exploited a
buffer overflow in Microsoft’s RPC service, while CodeRed exploited a buffer overflow in ITS
indexing service [6, 7]. The cost of lost productivity and necessary repairs due to Blaster
has been estimated at 300-500 million dollars, and the estimated cost of CodeRed exceeds
1.2 billion dollars [33, 53].

Exploiting faults in software results in huge financial losses for businesses, loss of pri-
vacy for consumers, and substantial amount of time and effort wasted by both trying to
repair the damage. Currently, the only method of preventing exploitation of these faults
is patching them as soon as the vulnerability is known and software developers can fix the
problem. Unfortunately, patching is not an efficient or practical method of addressing this
issue. For some companies, especially those whose business centers around e-commerce
(like Amazon.com or Ebay), taking servers offline to perform updates is very expensive,
and doing so every month is impractical. In addition, only faults that are discovered by
well-meaning security experts get patched quickly. Faults discovered by malicious hackers
may be exploited for a long time before the exploits are noticed and software developers

are alerted to the problem.

14

1.2 Types of Vulnerabilities in Software

In order to discuss different types of software vulnerabilities, it is useful to establish some
terminology. A software fault or error is a mistake that a programmer has made while
creating the program or an unintended consequence of interaction between several programs
running together. A vulnerability is a fault that can be exploited to make a program perform
actions that its creator has not intended. An exploit is an input or sequence of actions that
uses a vulnerability to obtain higher privileges on a computer system, execute arbitrary
code or perform some other action that the program being attacked was not intended to do

under these circumstances.

The previous section described several incidents relating to faults in software. While
many different kinds of software faults can lead to devastating consequences, not all software
faults are security vulnerabilities. Many different types of errors can occur in a program,
including buffer overflows, race conditions, dangling pointers, integer overflows and under-
flows, divide by zero errors, truncation errors, failures to reduce privileges, time of check
to time of use errors, etc. The list is seemingly endless. While it is difficult for a software
developer to ensure that none of these bugs creep into the program, it is even harder to test
for these conditions automatically. Some faults, such as the one that caused the August
2003 blackout, occur under very obscure conditions and are triggered by input sequences
that are very unlikely. Since testing all possible inputs is frequently impractical, such inputs
are likely not explored during testing. Some faults, such as race conditions, are very hard

to replicate, and may often appear as Heisenbugs'.

Certain kinds of faults can be exploited by a malicious person to take over the computer
system and inflict damage on a usually unsuspecting victim. Although many different kinds
of faults can be exploited, buffer overflows appear to be a recurring target for attacks on
today’s Internet. Attacks are also becoming more complicated, using buffer overflows as

stepping stones to obtaining higher privileges and taking control of machines.

'Heisenbugs are named after Heisenberg’s Uncertainty Principle. A Heisenbug disappears or alters its
behavior when an attempt is made to prove or isolate it [58].

15

1.3 Buffer Overflows — A Persistent Vulnerability

Today’s server software is under constant scrutiny and attack, whether for fun or for profit.
Figure 1-1 shows the cumulative number of exploits found in commonly used server software,
such as IIS, BIND, Apache, sendmail, and wu-ftpd. The data comes from the NIST
ICAT database [37], and includes exploits across all versions of the software. Exploits
are plotted according to the date they have been recorded in the ICAT database. The
arrows indicate appearances of major worms, such as Lion, CodeRed and Welchia. As the
data demonstrates, new vulnerabilities are still found, even in code that has been used and
tested for years. A recent analysis by Rescorla agrees with this observation, as it shows that
vulnerabilities continue to be discovered at a constant rate in many types of software [48].

Buffer overflows enable a large fraction of exploits targeted at today’s software. Such
exploits range from arbitrary code execution on the victim’s computer to denial of service
(DoS) attacks. During 2004, NIST recorded 889 vulnerabilities in its ICAT database, of
which 75% are remotely exploitable. NIST further reports that 21% of the remotely ex-
ploitable vulnerabilities are due to buffer overflows. Over the past three years, the fraction
of remotely exploitable vulnerabilities ranged from 75% to 80%, and buffer overflows con-
stituted 21%-22% of these vulnerabilities [38]. These statistics show that buffer overflows
comprise a significant fraction of existing vulnerabilities and that new buffer overflow vul-
nerabilities are still being discovered. Detecting and eliminating buffer overflows would thus

make existing software far more secure.

1.4 Approaches to Buffer Overflow Prevention

The most desirable solution is, of course, to write perfect software. Since humans are
imperfect, the next best solution is to find and eliminate faults in software before it is
deployed. Even as stated, the problem is very difficult and, arguably, undecidable. However,
extensive testing and validating of software before deployment decreases the chance that a
fault will be found in production and require patching of a running system.

Available solutions that try to address the problem of software faults apply at different
stages of software development. Some approaches try to standardize and regulate how the
software is written, what language and libraries are used, etc. Such policy approaches

help create better software by formalizing the development process, requiring code reviews

16

Cumulative Exploits in Commonly Used Server Software
16 — - - - —— R

— . .
Welchia > 1S
14 L Gaobot |
BIND
12 |-
Apache
£ 10 i
I CodeRed
S Sendmail
S 8r .
i Lion |
£
[$)

0 ‘\‘\“\“\““\“‘\“\“\“\ .
01/96 01/97 01/98 01/99 01/00 01/01 01/02 01/03 01/04 01/05

Exploit Date in ICAT Database

Figure 1-1: Cumulative exploits in commonly used server software. FEzploits across all
versions of server software are plotted against the date they were recorded in the ICAT
database [37]. Arrows indicate appearances of major worms.

and organizing programmers’ efforts. However, such policies are often difficult to enforce
due to deadlines, insufficient training or lack of proper incentives for the developers. This
approach does not protect from all errors, as programmers performing the code reviews are
not perfect either; however, it is a useful and necessary component to creating robust and

secure software.

The opposite extreme of the available approaches are ones that try to foil exploits at
runtime. Few are successful at creating an environment where all exploits can be stopped,
since many exploits rely on actions that the program is technically allowed to take (though
usually under different circumstances). Such tools range from compiler-based instrumenta-
tion to executable monitoring and operating system extensions. All such approaches come
with performance overhead; furthermore, more comprehensive protection results in heavier
additional computational overhead. Thus, sophisticated protection of this sort is rarely
used in production systems, since performance, not security, is more critical to company

revenues.

An attractive and more realistic approach exists in-between. While developers will
unavoidably create imperfect software, many of the mistakes can be found and fixed in the

testing stage, before the product is deployed and vulnerabilities can be exploited. NIST

17

reports that the annual cost to the US economy due to software errors is estimated at
60 billion dollars; however, the cost could be reduced by over a third through improved
software testing [36]. Furthermore, the cost of fixing a defect once software has been released
in production is estimated to be up to 15 times more than the cost of the corresponding
fix during the testing phase [57]. While unit-testing and creating integration tests is a
responsibility that software developers must assume, it is generally very difficult and time-
consuming. In addition, schedules and deadlines usually leave little time for testing, and
time allocated for Quality Assurance (QA) is often cut first when the project is behind

schedule.

An attractive testing approach is an automated system that can analyze source code,
synthesize test cases and then run tests on the program. While test cases verifying function-
ality have to be created by developers, testing robustness can, to some extent, be performed
automatically. Such tests include verifying program’s ability to handle malformed inputs
and its response to large volume of inputs. Several products have been developed that
statically analyze software source to find patterns that correspond to faults. Even better
analyzers can verify, in some cases, that accesses to a particular buffer do not exceed the up-
per bound, regardless of the input. However, these analyses are very computation-intensive,
and the tools frequently do not scale to large programs, where it is much harder to find

faults.

An alternative to statically analyzing software is dynamic testing. The source code can
be instrumented at the time of compilation and then tested on automatically-generated test
cases. There are thus two challenges to the dynamic testing approach — finding the right
granularity of instrumentation for the source code and generating inputs that trigger the
latent faults. Current state of the art dynamic testing systems, such as the one developed in
the PROTOS project at University of Oulu [28], use randomly-generated test cases based on
an attribute grammar that describes the protocol of program inputs. The PROTOS system
has been particularly effective in finding buffer overflows in open source server software,

which is widely deployed on many systems comprising today’s Internet.

18

1.5 Goals of this Thesis

The goal of this thesis is to improve on the state of the art in dynamic testing and create
a system that offers faster and more comprehensive buffer overflow detection. To achieve
this, methods for instrumenting executables and automatically synthesizing test cases are

investigated. Specifically, this thesis aims to do the following:

e Evaluate capabilities of modern dynamic buffer overflow detection tools and select a

tool to provide code instrumentation for subsequent system development,

e Develop a system that uses code instrumentation to improve the random message

testing approach developed by the PROTOS project,

e Design and build an adaptive testing system that uses code instrumentation and
feedback in test case generation to enable more efficient and comprehensive buffer

overflow detection.

19

20

Chapter 2

Exploiting Buffer Overflows

Before discussing the tools and approaches available for buffer overflow detection, it is useful
to understand attacks that have been used to exploit vulnerabilities stemming from buffer
overflows. This chapter provides some background information about memory layout of

processes and offers a brief overview of different types of buffer overflow attacks.

2.1 Memory Layout of a Process

In order to understand how buffer overflow exploits work, it is important to know the
memory layout of a process. The particular details described in this chapter pertain to
Unix/Linux processes, and while some details may be different, the memory layout of pro-
cesses on Windows is not fundamentally different.

Figure 2-1 presents a diagram of different memory regions in a running program. The
lower memory addresses are shown on the bottom while the higher addresses are on the
top. The memory for a process is divided into five different segments — text, data, bss, heap
and stack. The tert segment contains the assembly instructions that are executed by the
processor. This memory segment is usually mapped read-only, as the program should not
need to modify its own instructions. The data segment contains global and static variables
that have been initialized to some non-zero value in the program code. The bss segment
contains all other, uninitialized, global and static variables. Both of these segments are
mapped read-write into the memory space of a process.

The heap memory region is grown dynamically to accommodate requests of the program.

Memory is requested via calls tomalloc, realloc or calloc and then released by using free

21

32

2
Stack Pointer
(esp) Environment variables, . .
Return Instruction Pointers (IP), direction of
Saved Frame Pointers (FP), stack
. Function arguments, rowth
Frame Pointer Local function variables 9
(ebp) stack
direction of
Dynamically allocated memory heap
growth
heap
Uninitialized global
and
static variables bss
Initialized global
and
static variables data
Instruction o
Pointer —— Program Text (assembly code) direction of
(eip) code
0 text execution

Figure 2-1: Memory layout of a process. This diagram shows different memory segments of
a process. The text segment is mapped read-only into the process memory space, while all
other segments are mapped read-write. The instruction, stack and frame pointers include
the names of x86 registers that store these values.

when the memory is no longer needed. As shown, the heap memory region starts in lower
address space and expands up as necessary. The stack segment is used for environment
variables, function arguments, local variables and keeping record of the execution path.
Whenever a function is called, a new stack frame is pushed onto the stack, containing the
address of the instruction to which the process should return once the execution of the
function is completed, as well as the value of the frame pointer that points to beginning
of the stack frame currently in use. As shown, the stack starts at a high memory address
(0xC0000000 for Linux systems) and expands downwards as necessary. Both heap and stack

memory regions are mapped read-write into the memory space of a process.

The diagram also shows the typical contents of three registers that affect program ex-
ecution. The instruction pointer (the eip register on x86) determines which instruction is
executed. In general, it contains some address in the text segment of the program, though

some Linux signal handlers have been known to put code in the stack segment and then

22

redirect the eip to point to the stack segment. The stack pointer (the esp register on
x86) determines the next free memory location on the stack. It always points to the stack
segment. The frame pointer (ebp register on x86) determines the location of the current
stack frame. It always points to the stack segment as well. While not strictly necessary,
the frame pointer is frequently used in calculating addresses of local variables on the stack.
Since ebp always points to the location of the saved ebp from the previous stack frame,

frame pointers can be used to determine the call chain that is stored on the stack.

2.2 Arbitrary Code Execution

Arbitrary code execution is one of the most severe consequences of an exploit, since the
attacker can execute any code (usually a shell) with the privileges of the process that has
been exploited. Frequently, such an attack is used as a stepping stone in obtaining higher
privileges, since most remotely accessible processes, such as webservers, do not run as root.
However, there are many exploits available to increase the privilege level from local user to
root, thus giving the attacker full control of the compromised computer. Thus, the attacker
can read and change sensitive files, modify permissions and install backdoors.

Two steps are needed to achieve this result, and there are multiple methods of completing
each of these steps. First, the attacker needs to inject the code to be executed (usually
assembly code for the system call execve("/bin/sh")). Then, he needs to change a code

pointer so that it points to the injected code and then arrange for the code pointer to be used.

2.2.1 Injecting Code

The code is typically injected when the program copies some outside input into a buffer.
Thus, the attack code could be residing in a request packet from the network, in an envi-
ronment variable, or in a carefully-crafted file. The code is typically very short (only 46
bytes are needed to execute a shell), and thus fits into even a reasonably small buffer. For
simple attacks, such as the “stack-smashing” attack [1], the attack code is inserted into the
buffer that is being overflowed to change the code pointer. However, this is not necessary
— attack code can be inserted into any buffer in the program, as long as the attacker knows
the memory address of the beginning of the attack code. This address is then inserted into

a changed code pointer, as described below.

23

2.2.2 Changing Code Pointer Directly

A variety of code pointers are targeted by attackers in order to change the execution path
to contain injected code. Frequent targets include the return instruction pointer (IP) that
is saved on the stack and function pointers that are frequently used by programs that need
a way to describe handlers for different events. A direct way of changing code pointers is
via a continuous overflow of a buffer located in the same memory region as the target code
pointer. A continuous overflow is defined as an access pattern that consists of accesses to
several consecutive elements in the buffer, including one or more bytes outside the boundary
of the buffer. Such overflows frequently result from using string or I/O functions, such as
gets or strcpy, as these functions copy consecutive bytes from the input stream or another
buffer (respectively) into the target buffer. If the input is too long or the source buffer
is larger than the destination buffer, then the destination buffer will be overflowed — the
program will write memory that has not been allocated for use as part of this buffer.

As discussed above, the values for return instruction pointers are saved in the stack
segment of process memory. Thus, stack buffers are often targeted, since an overflow in a
stack buffer would enable an attacker to change the return IP to a desired value. Function
pointers can be stored on the stack, on the heap or in the data or bss segments. An overflow
in a buffer in the appropriate segment is needed to overwrite a function pointer. In addition,
buffers are filled “up” — from low memory address to high memory address. Thus, in order
to overwrite a return IP or a function pointer, an attacker needs to find a buffer that is

stored lower in memory than the target of the attack.

2.2.3 Changing Code Pointer Indirectly

It is not necessary to find a buffer that can be overflowed continuously until the target code
pointer is reached. Frequently, it is sufficient to find an overflow that allows the attacker
to change some pointer in the program. For example, a 4-byte overflow is sufficient to
change a pointer that is stored above a stack buffer in memory to contain the address of
the return IP on the stack. If the attacker can also control the value written to memory
when the overwritten pointer is used, then the return IP can be changed indirectly, without

a continuous overflow.

24

Sometimes it is possible to use a single write to change a code pointer. Buffers are fre-
quently aliased and accessed through pointers by using offsets. If this offset is miscalculated,
the write can access memory outside of the buffer bounds. Often, such offset is controlled
by some property of the input, such as length of a token or position of some delimiter in the
input. The attacker can thus control the value of the offset and overwrite the code pointer
with the desired value. This is an example of a discrete overflow — a single access outside
the buffer bounds that is calculated via an offset from an in-bounds pointer.

Another target of discrete overflows is the saved frame pointer. A fake stack frame can
be created by an attacker elsewhere, and the saved frame pointer changed to point to this
stack frame. If the fake stack frame is created on the stack, its location is likely very close
to that of the real stack frame, and thus only a single byte of the saved frame pointer needs
to change to point it to the fake stack frame. This can be accomplished with a discrete
overflow. Upon return from the current function, the program will use the fake stack frame
that contains a return IP pointing to injected code, thus giving the attacker control of the
program when the next return instruction is executed.

Another frequent attack target is a longjump buffer. This buffer is used to change
program flow without using the stack. A setjump command sets up such a buffer, containing
a saved frame pointer and a return IP, much like a stack frame. A longjump command can
then use this buffer to change the execution path and jump to the location in the program
specified by such buffer. It is a convenient target as an attacker can modify the values of
return IP or saved frame pointer to hijack the process. Such buffers are frequently stored
on the stack, and the necessary values could be changed by either a discrete or a continuous

overflow.

2.3 Logic-based Attacks

Another class of attacks focuses on changing program flow by altering variables that control
the logic of the program. While such attacks usually do not result in arbitrary code exe-
cution, they frequently allow an attacker to raise his privilege level or perform some other
action the program is not intended to do. For example, if a buffer with an exploitable over-
flow is located close to a flag that specifies access permissions, the attacker can overflow the

buffer and change his permissions. Alternatively, suppose that a program writes to a file,

25

whose filename is stored next to a buffer that an attacker can overflow. If the program is
running as root, then by changing the filename to ¢ ¢/etc/passwd’’ and providing appro-
priate input the attacker can create an account for himself on the target system. A famous
logic-based attack was used in the Morris worm, that exploited sendmail by turning on its
debug mode, thus making it execute commands on the worm’s behalf [51]. Logic attacks
are possible in any memory region that can contain a buffer, and while they are not as

common as some other attacks, they are equally dangerous.

2.4 Unauthorized Access to Information

Many attacks are designed to give an attacker control or higher privilege level on the target
system, and they require an existence of an exploitable overflow that allows the attacker
to write something to memory. However, read overflows can also be exploited to gain
unauthorized access to information. Suppose that printf is used to print a buffer that has
not been properly null-terminated. Then, printf will continue printing from memory until
it encounters a NULL byte. If such an exploitable buffer is stored next to a cryptographic
key, for example, the attacker will have gained very sensitive information. Since many string
and I/0 functions in the standard C library do not ensure null-termination of buffers, this
exploit may sometimes occur with an appropriate input.

For performance reasons, programmers generally do not clear memory before they release
it, so many memory locations in the heap (and stack) regions still store contents of previously
used buffers. If a buffer with an exploitable read overflow exists nearby, an attacker can
use it to gain potentially sensitive information. Such an attack was recently discovered in
Google’s popular Gmail service — if an e-mail containing a malformed address was sent, the
program displayed a large chunk of memory that was stored nearby, frequently including

other people’s e-mails, which could have contained confidential information [43].

2.5 Classifying Buffer Overflows

As discussed in previous sections, different classes of attacks can be used to exploit buffer
overflows. The characteristics of a buffer overflow determine which attack can be leveraged
against it, and how successful such an attack will be. This section summarizes some of these

properties in an attempt to classify different kinds of buffer overflows. A more thorough

26

taxonomy of buffer overflows with corresponding examples can be found in [62]. The prop-
erties of buffer overflows discussed here will prove important in constructing test cases for

the evaluation of dynamic buffer overflow detection tools, which is presented in Chapter 4.

2.5.1 Access Pattern

The access pattern describes whether a buffer overflow is continuous or discrete. A contin-
uwous overflow results in modification or exposure of several consecutive bytes outside the
buffer boundary, and is achieved by consecutively accessing buffer elements and running
past the upper bound. Such overflows are present in “stack-smashing” attacks, and attacks
that utilize string functions. A discrete overflow usually results in a single access to memory
outside the buffer bounds, due to a miscalculation of an offset from an in-bounds pointer.
This kind of overflow can be used in logic-based attacks or attacks that modify a pointer,

since changing a single byte of a pointer can be sufficient to exploit it.

2.5.2 Access Type

The access type describes whether a buffer overflow is a read or a write overflow. While write
overflows give an attacker more control over the program that is executing, read overflows
are also dangerous, as they can compromise sensitive information. Read overflows are also
much more difficult to detect — since write overflows modify memory, an attacker must
be very careful, as any mistake can cause program state to become corrupted, crashing the
program and thus exposing the attack. Many read overflows will go completely undetected,

as they do not corrupt program state.

2.5.3 Size of Overflow

The size of an overflow is likewise important in determining potential damage. Unfortu-
nately, even off-by-one overflows can be exploitable, so miscalculating the buffer size by one
byte may lead to serious consequences. Small overflows are much harder to detect than
large overflows, since program state corruption may not be obvious — the goal of a small
overflow may be to overwrite some internal variable resulting in a logic-based attack. Very
large read and write overflows are easily detectable, as they will generate a segmentation
fault — eventually the overflow will try to access memory beyond the boundary of the

current memory page, and the operating system will report this error. However, the size of

27

a memory page on a modern Linux system is 4096 bytes, so a very large overflow is needed

to trigger this behavior.

2.5.4 Location

Buffers can exist in four different memory regions — stack, heap, data and bss. As discussed
above, different memory regions serve to separate memory segments designed for different
purposes. The buffers in the stack memory segment are more likely targets for attacks,
since overwriting return IP or function pointers on the stack is very attractive. However,
depending on the location of the target code pointer or variable controlling program flow,

a buffer in any of the above memory locations can potentially be used in an exploit.

28

Chapter 3

Approaches to Buffer Overflow

Detection

Various methods for finding and preventing buffer overflows have been developed, including
policy techniques, such as enforcing secure coding practices and mandating the use of safe
languages, halting exploits via operating system extensions, statically analyzing source code
to find potential overflows and detecting buffer overflows at runtime [13]. Each approach
has its advantages; however, each also suffers from limitations. This chapter discusses some
of the available approaches and highlights their strengths and weaknesses. It also presents
motivation for an adaptive testing approach that improves the dynamic testing method by

mitigating some of its limitations.

3.1 Security Policies and Code Reviews

Due to a large number of security vulnerabilities in software many companies have devoted
extensive resources to ensuring security. Considerable time and effort is expended on im-
plementing and enforcing secure coding procedures, following proper software development
cycle and conducting code reviews. Microsoft has recently announced its renewed focus on
security and claims to have performed a large-scale review of its Windows codebase as part
of its Trustworthy Computing initiative [31]. This code review involved up to 8,500 devel-
opers and lasted several months [45]. However, bugs remain in Windows code, as evidenced
by security patches for Windows Server 2003, released after the security review [30]. This

anecdote demonstrates that it is very difficult to verify by inspection that a complex piece

29

of software contains no faults, and thus code reviews, no matter how thorough, will miss
bugs. While policies and procedures encouraging secure coding and proper development
practices aid in developing secure software, they cannot replace testing or guarantee the

security of resulting code.

3.2 Language Approach

An alternative that guarantees absence of buffer overflows is writing code in a “safe” lan-
guage. Languages such as Java provide built-in bounds checking for arrays and buffers, and
thus programs written in Java are immune to buffer overflows, forgoing errors in JVM im-
plementation. However, large legacy codebases have been written in C; furthermore, many
developers are opposed to switching to a different language, commonly citing worse perfor-
mance as the reason. Efforts have been made to create languages based on C that provide
similar capabilities. CCured [35] and Cyclone [25] are good examples of such languages.

CCured works by executing a source to source transformation of C code and then com-
piling the resulting code with gcc. CCured performs a static analysis to determine pointer
types (SAFE, SEQ or WILD). Instrumentation based on pointer type is inserted into the re-
sulting source code whenever CCured cannot statically verify that the pointer will always
be within the bounds of the buffer. This instrumentation changes pointer representation,
so code compiled with CCured cannot interoperate easily with code compiled with gcc
— wrapper functions are needed to add or remove metadata used by the instrumentation
whenever an object passes between instrumented and uninstrumented code. Since CCured
compiler cannot handle large programs, the developer may be required to re-write or anno-
tate 2-3% of the code in order to enable CCured to perform the necessary transformations.
At runtime, the resulting executable performs bounds-checking and terminates program
with an error message if a buffer access violation has been detected.

Cyclone is a dialect of C that has been developed to provide bounds-checking for C-like
programs. Like CCured, it uses a combination of static and dynamic analysis to determine
pointer types and only instruments pointers that require it. In order to make proper bounds
information available at runtime, Cyclone changes C’s representation of pointers to include
additional information, such as bounds within which a pointer is legal. A major disadvan-

tage of Cyclone is that existing C code needs to be ported to the Cyclone language before it

30

can be compiled with the Cyclone compiler. In order to convert the code, a developer is re-
quired to rewrite about 10% of the code, inserting special Cyclone commands. Furthermore,

Cyclone differs enough from C that some C programmers may be reluctant to use it [25].

The main disadvantage of such safe languages is that they tend to be slower than C,
and provide less control to the programmer. Another concern is the difficulty of translating
the large amount of legacy code still in use today that has been written in C into a safe
language. A good example is sendmail, in which multiple buffer overflows have been found
over the years [37]. The effort to translate such programs into a safe language would be
immense and the cost unacceptable. Some programs, such as CCured, aim for an automatic
source to source transformation of C into a safe language; however, they generally require

programmer intervention and fail to run successfully on large programs.

3.3 Safe C Libraries

A large class of overflows resulting in exploits is enabled by unsafe C library functions. Many
functions in the C library are written to provide fast performance and relegate the responsi-
bility of calculating appropriate buffer bounds to the programmer. Frequently, programmers
miscalculate these bounds or else do not realize that the library function can overflow the
buffer. Several alternative libraries, that claim to provide a “safe” implementation of func-
tions in the C library have been developed; some are discussed here. Libsafe [2, 3, 54] is
a dynamically loaded library that intercepts calls to functions in glibc that are considered
dangerous. These routines include strcpy, strcat, getwd, gets, scanf, realpath,
sprintf and others. The call to one of these routines is replaced with a wrapper function
that attempts to compute the maximum size for each local buffer. The size of a buffer is
computed as the distance from the start of the buffer to the saved frame pointer above it.
If the size limitation allows it, the intercepted function is executed normally; otherwise,
the program is terminated, thus turning a buffer overflow into a denial of service attack.
Although Libsafe protects against a stack-smashing attack, it does not prevent overwriting
of local variables, which can be used to change a code pointer indirectly. This method also
fails if the executable has been compiled with ~-fomit-frame-pointer option, as the frame
pointer is no longer saved on the stack. This option is frequently enabled during compilation

to increase performance in the resulting executable.

31

Libverify [3] is an enhancement of Libsafe. During each function call, the return address
is copied onto a special “canary stack” stored on the heap. When the function returns,
the return address on the stack is compared to the address on the “canary stack” — if
the two match, the program is allowed to proceed; otherwise, the program is terminated
and an alert is issued. Libverify protects against a larger class of attacks than Libsafe;
however, attacks using function pointers still remain undetected and lack of protection for

the “canary stack” on the heap is a major limitation.

3.4 Operating System Extensions

Various methods for thwarting exploits based on buffer overflows using operating system
extensions have been proposed and deployed. A commonly-used tactic is runtime random-
ization of stack location and C library entry points [8]. This method does not prevent the
overflow from occurring; however, it effectively converts the attack into denial of service.
Since attacks that overwrite code pointers need to use an absolute address, randomizing
stack location and C library entry points makes it very difficult for the attacker to guess the
correct address value to change a code pointer. Thus, the guess will likely be incorrect, and
the program will segfault when it tries to execute some random memory as instructions.
The advantage of this method is that it is very lightweight and completely transparent to
the program being executed; however, buffer overflows are not prevented, so any attack that

does not rely on changing code pointers will still succeed.

3.5 Static Analysis

Static analysis seems like an attractive approach, since little additional effort from the
programmer is needed to analyze code — the code is examined automatically and no test
cases are required. Misha Zitser evaluated the capabilities and effectiveness of five modern
static analysis tools, including both commercial (PolySpace C Verifier) and open source
(ARCHER, BOON, SPLINT, UNO) products [52, 18, 22, 56, 60]. The tools were tested
using historic versions of wu-ftp, bind and sendmail that contained real-world vulnerabil-
ities [62]. The study found that none of the tools could process the entire source code of
these programs; thus, model programs containing the buffer overflow vulnerabilities were

extracted from the source of the full programs.

32

Two tests were performed on the resulting model programs, which were several hundred
lines in size. Each static analysis tool was first executed on the model program containing
the vulnerability, and a detection was recorded if the tool correctly identified the vulnerabil-
ity. A patch was then applied to fix the vulnerability, such that no buffer overflow existed in
the model program. Each static analysis tool was then executed on the resulting program,
and a false alarm was recorded if the tool still indicated that the vulnerability existed.

The study found that most static analysis tools have a very low detection rate. PolySpace
C Verifier and SPLINT had a higher detection rate, but also suffered from a high false alarm
rate. Combined with the tools’ inability to handle the entire source of the programs, these

characteristics make static analysis an impractical method for detecting buffer overflows [62].

3.6 Runtime Buffer Overflow Detection

A different approach to mitigating the problem of buffer overflows is to stop the attacks that
exploit them at runtime. Such tools either use instrumentation inserted into the executable
at compile time or monitor the binary executable itself to determine when an out-of-bounds
access has occurred. By stopping the attack in its tracks, these tools convert the attack

into a denial of service.

3.6.1 Compiler-based Code Instrumentation

Some of the runtime buffer overflow detection tools work by inserting appropriate instru-
mentation at compile time. The instrumentation depends on the particular approach and

the attacks the tool is trying to prevent.

Stack-smashing Protection

StackGuard [12] and ProPolice [17] take a similar approach to protecting an executable
against a stack-smashing attack. During compilation, the prologue and epilogue of each
function call is modified so that a “canary” value is inserted between the stack frame,
which contains saved return IP and frame pointer, and local variables. Upon return from
a function, this value is checked to ensure that it has not changed; if it has, there must
have been an overflow attack that could have damaged the return IP — thus, the program

is terminated with an error. StackGuard provides more sophisticated options, including

33

a terminator canary (consisting of four bytes — NULL, ‘\r’, ‘\n’, EOF). Such a canary
provides better protection when the buffer is overflowed using a string library function, as
these bytes serve as termination characters. By default, a random value picked at compile
time is used for the “canary.”

A major limitation of this approach is that only continuous overflows that overwrite the
canary on the stack are detected. Many other indirect attacks can still change the value of
the return IP. ProPolice tries to mitigate this problem by rearranging local variables such
that character stack buffers are directly below the canary value. While this method helps
prevent some indirect stack attacks, it does not protect any heap buffers. Read overflows

and underflows also remain undetected.

Fine-grained Bounds Checking

TinyCC [4] and CRED [50] both provide fine-grained bounds checking based on the “referent
object” approach, developed by Jones and Kelly [26]. As buffers are created in the program,
they are added to an object tree. For each pointer operation, the instrumentation first
finds the object to which the pointer currently refers in the object tree. The operation is
considered illegal if it references memory or results in a pointer outside said object. When
an illegal operation is detected, the program is halted. TinyCC is a small and fast C
compiler that uses a re-implementation of Jones and Kelly code; however, it is much more
limited than gcc and provides no error messages upon an access violation — the program
simply segfaults. CRED, on the other hand, is built upon Jones and Kelly code, which is a
patch to gce. Thus, CRED is able to compile almost all programs that gcc can handle. In
addition, CRED adheres to a less strict interpretation of the C standard and allows illegal
pointers to be used in pointer arithmetic and conditionals, while making sure that they
are not dereferenced. This treatment of out-of-bounds pointers significantly increases the
number of real world programs that can be compiled with this instrumentation, as many
programs use out-of-bounds pointers in testing for termination conditions.

An interesting approach to mitigating buffer overflows via fine-grained bounds checking
has been developed by Martin Rinard, as part of failure-oblivious computing [49]. Instead
of halting program execution when an out-of-bounds access has been detected, a program
compiled with the failure-oblivious compiler will instead ignore the access and proceed as if

nothing has happened. This approach prevents damage to program state that occurs due

34

to out-of-bounds writes and thus keeps the program from crashing or performing actions it
is not intended to do. Instrumentation likewise detects out-of-bounds reads and generates
some value to return — for example, returning NULL will stop read overflows originating in
string functions. The paper discusses several other values that may drive the program back
into a correct execution path. This compiler is implemented as an extension to CRED and
thus also uses “referent object” approach.

Insure++ [44] is a commercial product that also provides fine-grained bounds checking
capabilities. The product is closed-source so little is known about its internal workings.
According to its manual, Insure examines source code and inserts instrumentation to check
for memory corruption, memory leaks, memory allocation errors and pointer errors, among
other things. The resulting code is executed and errors are reported when they occur.

The main limitation of all these tools is that an overflow within a structure is not rec-
ognized until the border of the structure has been reached. CRED is capable of detecting
overflows within structures correctly, but only when structure members are accessed directly
— if an access is made through an alias pointer, CRED will detect the overflow only when
it reaches the border of the structure. These tools also cannot detect overflows within unin-
strumented library functions. These issues are common to all compiler-based approaches,
and are discussed further in Section 4.1.3. TinyCC seems to have some incorrect wrappers
for library functions and cannot handle large programs, which is a significant drawback.
Another limitation of TinyCC is that no error messages are provided — the program sim-
ply terminates with a segmentation fault. Insure’s major flaw is the performance slowdown

that it imposes on executables — some programs run up to 250 times slower.

3.6.2 Executable Monitoring

Another method of detecting and preventing buffer overflows at runtime is through ex-
ecutable monitoring. Chaperon [44] is an executable monitor that is part of the Insure
toolset from Parasoft, and Valgrind [27] is an open-source project aimed at helping devel-
opers find buffer overflows and prevent memory leaks. Tools such as Chaperon and Valgrind
wrap the executable directly and monitor calls to malloc and free, thus building a map of
heap memory in use by the program. Buffer accesses can then be checked for validity using

this memory map.

35

There are several limitations to this approach. Since no functions are explicitly called to
allocate and deallocate stack memory, these tools can monitor memory accesses on the stack
only at a very coarse-grained level, and will not detect many attacks exploiting stack buffers.
Another limitation is the large performance overhead imposed by these tools. Since Valgrind
simulates program execution on a virtual x86 processor, testing is 25-50 times slower than

gcc.

Program shepherding [29] is an approach that determines all entry and exit points of each
function, and ensures that only those entry and exit points are used during execution. Thus,
an attacker cannot inject code and jump to it by changing a code pointer — this will be
noticed as an unspecified exit point and the program will be halted. Like operating system
approaches discussed in Section 3.4, this method is transparent to the program running
on the system. However, it is much more heavy-weight and incurs higher performance
overhead. In addition, attacks that do not rely on changing code pointers will still succeed,

as they do not change entry and exit points of a function.

A similar approach is used by StackShield [55]. One of the security models supported by
this tool is a Global Return Stack. Return IP for each function that is entered is stored on a
separate stack, and the return pointer is compared with the stored value when the function
call is completed. If the values match, the execution proceeds as intended; however, if the
values do not match, the value on the return stack is used as the return address. Thus,
the program is guided back to its intended path. This approach detects attacks that try to
overwrite the return IP or provide a fake stack frame. However, this method does not stop

logic-based attacks or attacks based on overwriting a function pointer.

Another security model offered by StackShield is Return Change Check. Under this
model a single global variable is used to store the return IP of the currently executing
function, and upon exit the return IP saved on the stack is compared to the one saved in
this variable. If they do not match, the program is halted and an error message is displayed.
This security model also tries to protect function pointers by making the assumption that
all function pointers should point into the text segment of the program. If the program tries
to follow a function pointer that points to some other memory segment, it is halted and an
alert is raised. While this method does not prevent logic-based attacks from proceeding, it
makes attacking the system more difficult. Another limitation of this approach is that read

overflows are not detected.

36

3.7 Software Fault Injection

A popular approach for testing program robustness is a dynamic analysis technique focused
on injecting faults into software execution. This technique creates anomalous situations by
injecting faults at program interfaces. These faults may force a particular program module
to stop responding or start providing invalid or malformed data to other modules. By
observing system behavior under such anomalous conditions, certain inherent vulnerabilities
can be discovered. Tools such as FIST [21] and Fuzz [32] have been used to perform such
testing, with some promising results.

The main drawback of software fault injection is that it requires considerable developer
intervention and effort. The code must be manually prepared for testing and the developer
needs to analyze the output of each test case reporting a system crash to determine where
the error has occurred. Automating program execution with fault injection is also difficult,

as the program is likely to crash or hang due to inserted faults.

3.8 Mini-simulation with Random Messages

An interesting dynamic testing approach has been developed at the University of Oulu,
Finland. As part of the PROTOS project [28], researchers developed a mini-simulation
system for functional testing. PROTOS tests applications that use standard protocols,
such as HTTP, TCP, SNMP, etc; however, if a protocol grammar is provided, PROTOS
can test an arbitrary application. Source code for the application is not necessary, as
PROTOS works by testing executables directly. An attribute grammar is used to describe
the protocol, and this description is used by the tester to automatically generate a large
number of anomalous and normal test cases. The application under test is then executed
on each input, and abnormal behavior, such as crashing or hanging is reported. Making the
tests fully automatic is difficult, as the application being tested may need to be restarted.
PROTOS has been used to test different applications including HTTP browsers, an LDAP
server and SNMP agents and management stations. Of the 49 different product versions
that were tested, 40 were found vulnerable to at least a denial-of-service attack.

While mini-simulation presents an automatic approach for finding buffer overflows, the
method used to detect overflows is very coarse. Many small overflows will not cause a

segfault and will thus be missed by the tool; however, these can still be exploited to alter

37

program logic and change code pointers, as discussed in Chapter 2. Most read overflows are
not detected either, as they do not trigger a segfault unless they access memory outside a
valid page. In addition, no information is provided to the developer about where the error
occurred.

Another disadvantage of using the mini-simulation approach is that a revealing input
that triggers the overflow is required; however, the input space for a program is generally
very large. While the attribute grammar provides the mini-simulation system with a way to
generate malformed inputs, it has no knowledge of how to generate revealing inputs. Thus,

the input space is explored randomly and focusing on particular code paths is not possible.

3.9 An Adaptive Testing System

The mini-simulation system described above appears to be the most comprehensive tool
available today for testing program robustness. In order to improve on this approach, the
remainder of this thesis presents research aimed at mitigating the limitations of the mini-
simulation approach. Some of the limitations can be addressed by instrumenting source code
for the application to provide fine-grained bounds-checking capabilities. An instrumented
executable will detect more buffer overflows and provide the developer with information
necessary to locate the overflow. Chapter 4 presents an evaluation of modern dynamic
buffer overflow detection tools, which could be used for this purpose. Chapter 5 describes
a modified mini-simulation system that makes use of an instrumented executable in testing
programs with random messages.

A partial solution to the problem of finding revealing inputs is a feedback loop that will
allow the tester to make use of information about buffer access patterns in the executable.
If such information were available, the tester could correlate the mutations in the input with
variations in the buffer access pattern, and thus evaluate the effectiveness of a particular
mutation. Then, the search through the input space can be directed by observing the
changes in the access pattern and generating inputs that will bring the buffer closer to
overflow. This method is explored as part of the adaptive test case synthesis, presented in

Chapter 6.

38

Chapter 4

Evaluating Dynamic Buffer

Overflow Detection Tools

This chapter is a minor extension of a paper entitled “Dynamic Buffer Overflow Detection”
by Michael Zhivich, Tim Leek and Richard Lippmann [61]. This paper has been submitted
to the 2005 Symposium on the Foundations of Software Engineering. Section 4.4 describing
Tim Leek’s evaluation of dynamic buffer overflow detection tools on model programs appears
in this paper, and has been included here to maintain continuity.

In order to develop an approach that builds on the state of the art in dynamic testing, it
is necessary to have the ability to detect buffer overflows of all sizes and in all memory seg-
ments. The resulting system should be able to handle large, complex programs and support
developer-defined extensions. This chapter focuses on evaluating the effectiveness of current
dynamic buffer overflow detection tools with the above goals in mind. A similar evaluation
has been conducted by Wilander et al. [59], but it focused on a limited number of artificial
exploits which only targeted buffers on the stack and in the bss section of the program. Our
evaluation reviews a wider range of tools and approaches to dynamic buffer overflow detec-
tion and contains a more comprehensive test corpus, including Wilander’s artificial exploits.

The test corpus consists of three different testsuites. Section 4.2 presents the results
for variable-overflow testsuite, which consists of 55 small test cases with variable amounts
overflow, specifically designed to test each tool’s ability to detect small and large overflows
in different memory regions. Section 4.3 describes the results for artificial exploit testsuite,
which consists of 18 artificial exploits from Wilander’s evaluation [59] that utilize buffer
overflows to produce a shell. Section 4.4 presents the results for 14 model programs con-

taining remotely exploitable buffer overflows extracted from bind, wu-ftpd and sendmail.

39

The chapter is organized as follows: Section 4.1 presents an overview of the tools tested
in this evaluation, Sections 4.2 — 4.4 present a description and results for three different test-
suites, Section 4.5 describes performance overhead incurred by the tools in this evaluation,

and Section 4.6 summarizes and discusses our findings.

4.1 Dynamic Buffer Overflow Detection Tools

This evaluation tests modern runtime buffer overflow detection tools including those that
insert instrumentation at compile-time and others that wrap the binary executable directly.
This section presents a short description of each tool, focusing on its strengths and weak-
nesses.

A summary of tool characteristics is presented in Table 4.1. A tool is considered to
include fine-grained bounds checking if it can detect small (off-by-one) overflows. A tool
compiles large programs if it can be used as a drop-in replacement for gcc and no changes to
source code are needed to build the executable; however, minimal changes to the makefile
are acceptable. The error report time specifies whether the error report is generated when
the error occurs or when the program terminates. Since program state is likely to become
corrupted during an overflow, continuing execution after the first error may result in in-
correct errors being reported. Instrumentation may also be corrupted, causing failures in
error checking and reporting. If a tool can protect the program state by intercepting out-
of-bounds writes before they happen and discarding them, reporting errors at termination

may provide a more complete error summary.

4.1.1 Executable Monitoring Tools

Chaperon [44] is part of the commercial Insure toolset from Parasoft. Chaperon works
directly with binary executables and thus can be used when source code is not available.
It intercepts calls to malloc and free and checks heap accesses for validity. It also detects
memory leaks and read-before-write errors.

One limitation of Chaperon is that fine-grained bounds checking is provided only for
heap buffers. Monitoring of buffers on the stack is very coarse. Some overflows are reported
incorrectly because instrumentation can become corrupted by overflows. Like all products

in the Insure toolset, it is closed-source which makes extensions difficult.

40

Tool Version | OS Requires | Open Fine- Compiles Error Re-
Source Source grained Large port Time
Bounds Programs
Checking
Wait for || N/A Any No Yes No Yes Termination
segfault
GCC 3.3.2 Linux No Yes No Yes Termination
Chaperon 2.0 Linux No No No* Yes Occurrence
Valgrind 2.0.0 Linux No Yes No* Yes Termination
CCured 1.2.1 Linux Yes Yes Yes No Occurrence
CRED 3.3.2 Linux Yes Yes Yes Yes Occurrence
Insure++ 6.1.3 Linux Yes No Yes Yes Occurrence
ProPolice 2.9.5 Linux Yes Yes No Yes Termination
TinyCC 0.9.20 Linux Yes Yes Yes No Termination

Table 4.1: Summary of tool characteristics. (* = fine-grained bounds checking on heap only)

Valgrind [27] is an open-source alternative to Chaperon. It simulates code execution on
a virtual x86 processor, and like Chaperon, intercepts calls to malloc and free that allow
for fine-grained buffer overflow detection on the heap. After the program in simulation
crashes, the error is reported and the simulator exits gracefully.

Like Chaperon, Valgrind suffers from coarse stack monitoring. Also, testing is very slow

(25 — 50 times slower than gcc [27]), since the execution is simulated on a virtual processor.

4.1.2 Compiler-based Tools

CCured [35] works by performing static analysis to determine the type of each pointer
(SAFE, SEQ, or WILD). SAFE pointers can be dereferenced, but are not subject to pointer
arithmetic or type casts. SEQ pointers can be used in pointer arithmetic, but cannot be
cast to other pointer types, while WILD pointers can be used in a cast. Each pointer is
instrumented to carry appropriate metadata at runtime - SEQ pointers include upper and
lower bounds of the array they reference, and WILD pointers carry type tags. Appropriate
checks are inserted into the executable based on pointer type. SAFE pointers are cheapest
since they require only a NULL check, while WILD pointers are the most expensive, since they
require type verification at runtime.

The main disadvantage of CCured is that the programmer may be required to annotate
the code to help CCured determine pointer types in complex programs. Since CCured
requires pointers to carry metadata, wrappers are needed to strip metadata from pointers

when they pass to uninstrumented code and create metadata when pointers are received

41

from uninstrumented code. While wrappers for commonly-used C library functions are
provided with CCured, the developer will have to create wrappers to interoperate with other
uninstrumented code. These wrappers introduce another source of mistakes, as wrappers
for sscanf and fscanf were incorrect in the version of CCured tested in this evaluation;

however, they appear to be fixed in the currently-available version (v1.3.2).

C Range Error Detector (CRED) [50] has been developed by Ruwase and Lam, and
builds on the Jones and Kelly “referent object” approach [26]. An object tree, containing
the memory range occupied by all objects (i.e. arrays, structs and unions) in the program,
is maintained during execution. When an object is created, it is added to the tree and when
it is destroyed or goes out of scope, it is removed from the tree. All operations that involve
pointers first locate the “referent object” — an object in the tree to which the pointer cur-
rently refers. A pointer operation is considered illegal if it results in a pointer or references
memory outside said “referent object.” CRED’s major improvement is adhering to a more
relaxed definition of the C standard — out-of-bounds pointers are allowed in pointer arith-
metic. That is, an out-of-bounds pointer can be used in a comparison or to calculate and ac-
cess an in-bounds address. This addition fixes several programs that generated false alarms
when compiled with Jones and Kelly’s compiler, as pointers are frequently tested against an
out-of-bounds pointer to determine a termination condition. CRED does not change the rep-

resentation of pointers, and thus instrumented code can interoperate with unchecked code.

The two main limitations of CRED are unchecked accesses within library functions and
treatment of structs and arrays as single memory blocks. The former issue is partially
mitigated through wrappers of C library functions. The latter is a fundamental issue with
the C standard, as casting from a struct pointer to a char pointer is allowed. When type
information is readily available at compile time, CRED detects overflows that overwrite
other members within the struct; however, when a struct member is aliased through a type
cast, the overflow remains undetected until the boundary of the structure is reached. These

problems are common to all compiler-based tools, and are described further in Section 4.1.3.

Another gcc extension is mudflap [16], which is part of the gee 4.0 release. Like CRED,
mudflap inserts instrumentation at compile time by modifying the gcc abstract syntax tree
to make calls to 1ibmudflap whenever a pointer dereference occurs. At runtime, mudflap
builds an object tree that includes all valid objects, such as arrays, structs and unions. This

object tree is used during pointer dereference to determine whether the pointer is trying to

42

access memory that has been allocated. If no object exists at the memory location that the
pointer is trying to access, the access is declared illegal and an alert is issued. Mudflap also
protects a number of C library functions through wrappers that try to ensure that buffer
bounds will not be overstepped.

Unlike CRED, mudflap does not use the “referent object” approach — that is, pointer
arithmetic that transforms a pointer to one object into a pointer to another is allowed by
mudflap. This limitation will result in mudflap allowing adjacent variables to be overwritten
by an overflow. Some attempts are made to separate objects by inserting padding, so that
continuous overflows between objects will be detected; however, this is not always possible —
function arguments and structure members are assumed to be adjacent by uninstrumented
code. Furthermore, discrete overflows that overwrite a valid memory area will also be
missed. Although mudflap wraps a larger set of C library functions than CRED, the wrapper
approach is in general an error-prone and incomplete solution. Since the source code for
gce 4.0 beta that included mudflap became available after this evaluation was completed,
no formal evaluation of mudflap is included in this thesis.

Insure++ [44] is a commercial product from Parasoft and is closed-source, so we do
not know about its internal workings. Insure+-+ examines source code and inserts instru-
mentation to check for memory corruption, memory leaks, memory allocation errors and
pointer errors, among other things. The resulting code is executed and errors are reported
when they occur.

Insure’s major fault is its performance overhead, resulting in slowdown of up to 250 as
compared to gce. Like all tools, Insure’s other limitation stems from the C standard, as
it treats structs and arrays as single memory blocks. Since the product is closed-source,
extensions are difficult.

ProPolice [17] is similar to StackGuard [12], and outperformed it on artificial ex-
ploits [59]. It works by inserting a “canary” value between the local variables and the stack
frame whenever a function is called. It also inserts appropriate code to check that the “ca-
nary” is unaltered upon return from this function. The “canary” value is picked randomly
at compile time, and extra care is taken to reorder local variables such that pointers are
stored lower in memory than stack buffers.

The “canary” approach provides protection against the classic “stack smashing at-

tack” [1]. It does not protect against overflows on the stack that consist of a single out-

43

of-bounds write at some offset from the buffer, or against overflows on the heap. Since
ProPolice only notices the error when the “canary” has changed, it does not detect read
overflows or underflows. The version of ProPolice tested during this evaluation protected
only functions that contained a character buffer, thus leaving overflows in buffers of other
types undetected; this problem has been fixed in currently-available versions by including

-fstack-protector-all flag that forces a “canary” to be inserted for each function call.

Tiny C compiler (TinyCC) [4] is a small and fast C compiler developed by Fabrice
Bellard. TinyCC works by inserting code to check buffer accesses at compile time; however,
the representation of pointers is unchanged, so code compiled with TinyCC can interoperate
with unchecked code compiled with gcc. Like CRED, TinyCC utilizes the “referent object”

approach [26], but without CRED’s improvements.

While TinyCC provides fine-grained bounds checking on buffer accesses, it is much more
limited than gcc in its capabilities. It failed to compile large programs such as Apache with
the default makefile. It also does not detect read overflows, and terminates with a segfault

whenever an overflow is encountered, without providing an error report.

4.1.3 Common Limitations of Compiler-based Tools

There are two issues that appear in all of the compiler-based tools — unchecked accesses
within library functions and treatment of structs and arrays as single memory blocks. The
former problem is partially mitigated by creating wrappers for C library functions or com-
pletely reimplementing them. Creating these wrappers is error-prone, and many functions

(such as File 1/0) cannot be wrapped.

The latter problem is a fundamental issue with the C standard of addressing memory
in arrays and structs. According to the C standard, a pointer to any object type can be
cast to a pointer to any other object type. The result is defined by implementation, unless
the original pointer is suitably aligned to use as a resultant pointer [46]. This allows the
program to re-interpret the boundaries between struct members or array elements; thus, the
only way to handle the situation correctly is to treat structs and arrays as single memory
objects. Unfortunately, overflowing a buffer inside a struct can be exploited in a variety of
attacks, as the same struct may contain a number of exploitable targets, such as a function

pointer, a pointer to a longjmp buffer or a flag that controls some aspect of program flow.

44

4.2 Variable-overflow Testsuite Evaluation

The wvariable-overflow testsuite evaluation is the first in the series of three evaluations
included in this chapter. This testsuite is a collection of 55 small C programs that contain
buffer overflows and underflows, adapted from Misha Zitser’s evaluation of static analysis
tools [62]. Each test case contains either a discrete or a continuous overflow. A discrete
buffer overflow is defined as an out-of-bounds write that results from a single buffer access,
which may affect up to 8 bytes of memory, depending on buffer type. A continuous buffer
overflow is defined as an overflow resulting from multiple consecutive writes, one or more of
which is out-of-bounds. Such an overflow may affect an arbitrary amount of memory (up
to 4096 bytes in this testsuite), depending on buffer type and length of overflow.

Each test case in the variable-overflow testsuite contains a 200-element buffer. The
overflow amount is controlled at runtime via a command-line parameter and ranges from 0
to 4096 bytes. Many characteristics of buffer overflows vary. Buffers differ in type (char,
int, float, func *, char *) and location (stack, heap, data, bss). Some are in containers
(struct, array, union, array of structs) and elements are accessed in a variety of ways (index,
pointer, function, array, linear and non-linear expression). Some test cases include runtime
dependencies caused by file I/O and reading from environment variables. Several common
C library functions ((f)gets, (fs)scanf, fread, fwrite, sprintf, str(n)cpy, str(n)cat,

and memcpy) are also used in test cases.

4.2.1 Test Procedure

Each test case was compiled with each tool, when required, and then executed with overflows
ranging from 0 to 4096 bytes. A 0-byte overflow is used to verify a lack of false alarms,
while the others test the tool’s ability to detect small and large overflows. The size of a
memory page on the Linux system used for testing is 4096 bytes, so an overflow of this size
ensures a read or write off the stack page, which should segfault if not caught properly.
Whenever the test required it, an appropriately sized file, input stream or environment
variable was provided by the testing script. There are three possible outcomes of a test. A
detection signifies that the tool recognized the overflow and returned an error message. A
segfault indicates an illegal read or write (or an overflow detection in TinyCC). Finally, a

miss signifies that the program returned as if no overflow occurred.

45

Table 4.1 describes the versions of tools tested in our evaluation. All tests were per-
formed on a Red Hat Linux release 9 (Shrike) system with dual 2.66GHz Xeon CPUs. The
standard Red Hat Linux kernel was modified to ensure that the location of the stack with
respect to stacktop address (0xC0000000) remained unchanged between executions. This

modification was necessary to ensure consistent segfault behavior due to large overflows.

4.2.2 Sample Analysis

This section presents a sample analysis of results for a discrete and a continuous buffer
overflow. Only results for gce, ProPolice and CRED are discussed for these sample test
cases. Each test case is compiled with the appropriate tool, and then executed for overflows
ranging from 0 to 4096 bytes. The goal of this analysis is to demonstrate how the variable-

overflow testsuite exposes weaknesses of different tools.

Discrete Overflow

For a discrete overflow, consider a test case shown in Figure 4-1 that includes a single

out-of-bounds write at an adjustable index.

1 #define BUFF_SIZE 200

2

3 int main(int argc, char xxargv) {

4 char buf[BUFF_SIZE];

5 int delta = atoi(argv[l]);

6

7 buf [BUFFSIZE — 1 + delta] = ’a’;
8

9 return 0;

10 }

Figure 4-1: Example of discrete overflow test case

Figure 4-3 presents the stack layout for this test case, as well as results for gcc, ProPolice
and CRED. The “canary” is only present on the stack in executables compiled with ProPo-
lice. Both gcc and CRED leave 16 bytes to save registers, which is not strictly necessary
since main is a top-level function. ProPolice has a tighter stack layout and does not leave
the space for saved registers. The graph shows the outcome of the test case for each amount
of overflow, ranging from 1 to 4096 bytes. The outcome is one of detection, miss or segfault,

as discussed in Section 4.2.1. For each integer amount of overflow in bytes, a detection is

46

indicated by an upward bar at the corresponding location, a miss is indicated by a hash
mark on the line through the middle of the graph and a segfault is indicated by a downward
bar.

Since compiling the program with gcc offers no protection, none of the overflows are
detected. Overflows of 21-24 bytes correspond to overwriting the return instruction pointer
(IP), as shown on the stack diagram. In most cases, the segfault behavior is caused by the
program attempting to execute code at some invalid address, since one of the bytes of the
return IP has been overwritten with ‘a’ (0x61). It is possible that changing one byte in the
return IP results in a valid address and some unintended code is executed; however, the end
result for all such test cases in this evaluation is a segfault. For large overflows, the write
tries to access memory that is beyond the page boundary (above the stacktop address of
0xC0000000), which also causes a segfault.

ProPolice does not perform much better. It detects the first four overflows, since the
program is modifying the “canary” value. However, for discrete overflows larger than 4
bytes, the “canary” is unchanged, and the overflow remains undetected. Overflows of 5-
8 bytes correspond to overwriting the saved frame pointer (FP), and overflows of 9-12
bytes correspond to overwriting the return IP, as shown on the stack diagram. Both are
exploitable, and neither is detected. For large overflows, the behavior of the executable
compiled with ProPolice is identical to that of one compiled with gcc.

CRED performs much better due to fine-grained bounds checking and “referent object”
approach. The address for each write is checked with respect to the intended object, so all
overflows are detected and the program is terminated before the write takes place. Since
the address of the write is checked before executing it, there is no segfault behavior for very

large overflows.

Continuous Overflow

A slightly more complicated test case is presented in Figure 4-4. The target buffer is enclosed
in a struct, and a continuous overflow occurs inside the strcpy function.

Figure 4-6 presents the stack layout for this test case, as well as results for gcc, ProPolice
and CRED. As with the discrete test case, the “canary” is only present in the ProPolice
executable and 16 bytes for saved registers only appear in executables compiled with gcc

and CRED. The graph likewise shows the outcome of the test case for each amount of

47

Stack top

(page
boundary)
argv Direction
of stack
Frame arge growth
Pointer
Return IP
(ebp)
Saved FP
[ProPolice Canary]
[Saved Regs]
buf[196..199]
Stack Y
Pointer
buf[0..3
(esp) [©-3]
delta

Figure 4-2: Stack layout for discrete buffer overflow example. The example consists of a
single out-of-bounds write (see Figure 4-1 for source code). ProPolice “canary” is present
only in the ProPolice test case, and saved registers appear only in GCC and CRED test
cases.

detected T ; .
missed
GCC
segfault - . . Ll . . L , , L
1 10 100 1000
detected T ; .
missed
ProPolice
segfault L A L \) Ll
1 10 100 1000
detected
missed
CRED
segfault L . . - . A L \) Ll
1 10 Overflow (bytes) 100 1000

Figure 4-3: Results for discrete buffer overflow example. The example consists of a single
out-of-bounds write (see Figure 4-1 for source code). Results are shown for ProPolice, GCC

and CRED.

48

1 #define BUFF_SIZE 200

2

3 // generates null—terminated heap buffer
4 char xgenerate_buffer (int size);
5

6 typedef struct {

7 char buf[BUFF_SIZE |;

8 int val;

9 } my_struct;

10

11 int main(int argc, char xxargv) {
12 my._struct m;

13 char *bufB;

14 int delta = atoi(argv[1l]);

15 bufB = generate_buffer (BUFF.SIZE + delta);
16 assert (bufB != NULL) ;

17

18 strepy (m. buf, bufB);

19

20 return 0;

21 }

Figure 4-4: Example of continuous overflow test case

overflow, ranging from 1 to 4096 bytes. As before, for each amount of overflow in bytes,
detection is represented by an upward bar, a miss is shown by a hash mark on the middle
line and a segfault is indicated by a downward bar.

The program compiled with gcc gives no indication that an overflow is occurring until
part of the return instruction pointer (IP) is overwritten. Since the return IP is also over-
written for all larger overflows, they all result in a segfault. Similar to the discrete case, very
large overflows cause a segfault by referencing memory beyond the stack page boundary.

This test case is essentially the classic “stack smashing” attack, so ProPolice performs
well. It detects most of the overflows, since they modify the “canary” value. The first
overflows of size 14 bytes correspond to overwriting the integer member of the struct
(m.val), and they remain undetected, since the “canary” is placed above the struct in
memory. Large overflows reveal another limitation of ProPolice — since the “canary” value
is checked only when returning from a function, a large overflow may cause a segfault before
it is detected.

CRED detects all overflows that reference memory outside of the struct. As discussed
in Section 4.1.3, CRED treats all members of the struct as belonging to a single object.

This limitation allows overwriting of m.val to remain undetected. There seems to be no

49

simple fix for this issue that would not create false alarms, as arbitrary casts between object

pointers are allowed by the C standard [46].

4.2.3 Variable-overflow Testsuite Results

This section presents a summary of the results obtained with the variable-overflow testsuite.
The graph in Figure 4-7 shows the fraction of test cases in the variable-overflow testsuite with
a non-miss (detection or segfault) outcome for each amount of overflow. Higher fractions
represents better performance. All test cases, with the exception of the 4 underflow test
cases, are included on this graph even though the proportional composition of the testsuite
is not representative of existing exploits. Nonetheless, the graph gives a good indication of
tool performance. Fine-grained bounds checking tools are highlighted by the “fine-grained”
box at the top of the graph.

The top performing tools are Insure++, CCured and CRED, which can detect small and
large overflows in different memory locations. TinyCC also performs well on both heap and
stack-based overflows, while ProPolice only detects continuous overflows and small discrete
overflows on the stack. Since the proportion of stack-based overflows is larger than that of
heap-based overflows in our testsuite, ProPolice is shown to have a relatively high fraction
of detections. Chaperon and Valgrind follow the same shape as gcc, since these tools only
provide fine-grained detection of overflows on the heap. This ability accounts for their

separation from gcc on the graph.

As the graph demonstrates, only tools with fine-grained bounds checking, such as In-
sure++, CCured and CRED are able to detect small overflows, including off-by-one over-
flows, which can still be exploitable. For tools with coarse stack monitoring, a large increase
in detections/segfaults occurs at the overflow of 21 bytes, which corresponds to overwriting
the return instruction pointer. The drop after the next 4 bytes corresponds to the discrete
overflow test cases, as they no longer cause a segfault behavior. ProPolice exhibits the
same behavior for overflows of 9-12 bytes due to a slightly different stack layout. Tools
with fine-grained bounds checking also perform better in detecting discrete overflows and
thus do not exhibit these fluctuations. For very large overflows, all tools either detect the
overflow or segfault, which results in fraction of non-miss results close to 1, as shown on

the far right side of the graph.

50

Stack top

(page
boundary)
|-
Ll

argv
Frame arge Direction
Pointer of stack
(ebp) Return IP growth

Saved FP
[ProPolice Canary]
[Saved Regs]
m.val
m.buf[196..199]
m Y
struct
m.buff0..3]

bufB

delta
Stack
Pointer
(esp)

Figure 4-5: Stack layout for continuous buffer overflow example. This example consists of
a single out-of-bounds write (see Figure 4-4 for source code). ProPolice “canary” is present
only in the ProPolice test case, and saved registers appear only in GCC and CRED test
cases.

detected T T —T v v — . . —

missed t + + A

segfault L
1 10 100 1000

T | ““““““““““V“NHH‘
missed [+ + —t

ProPolice

segfault L 1 1
1 10 100 1000

detected

missed -+ t T “““““““““W“NHH‘

segfault L 1 |
1 10 overflow (bytes) 100 1000

Figure 4-6: Results for continuous buffer overflow example. This example consists of a single
out-of-bounds write (see Figure 4-4 for source code). Results are shown for ProPolice, GCC
and CRED.

fine-grained

OE) 1 Insure++ —
O [Il
o g CCured 4— —
3 _CRED B f

08 |- / I .
2 ’ TinyCC / Imm! \ | — l
c | J
S roPolice I
S 06 i R
E=
2
7]
& 04 -
o
[}
L
5 02} //—vJv -
< Chaperon
B Valgrind /—\/J
S 0 / |
- Gee

1 s s P s s P L L P
1 10 100 1000

Overflow (bytes)

Figure 4-7: Summary of results for variable-overflow testsuite. The graph shows combined
fraction of detections and segfaults vs the amount of overflow in bytes. A box highlights
tools with fine-grained bounds checking capabilities.

4.3 Artificial Exploit Evaluation

The artificial exploit testsuite is the second in the series of three evaluations presented in
this chapter. The test cases in the artificial exploit testsuite are adapted from Wilander’s
evaluation of dynamic buffer overflow detection tools [59]. Unlike the variable-overflow
testsuite, these test cases actually exploit the buffer overflow to produce a shell. The goal
of this evaluation is to test each tool’s ability to detect or prevent an exploit based on a
buffer overflow.

The artificial exploit testsuite consists of 18 test cases, each of which uses a 16-element
long buffer located either on the stack or in the bss section. The attacks target different
elements of the program that allow for change of control flow. A classic “stack smashing”
attack overwrites the return instruction pointer (IP) to point to assembly code that produces
a shell once the current function returns. Another attack overwrites the saved frame pointer
(FP) to point to a carefully crafted stack frame that includes a return IP that changes
program flow. Other attacks target function pointers, and longjmp buffers to spawn a
shell. Each target is overwritten either directly (by overflowing the buffer all the way to the
target) or indirectly (by overflowing the buffer to change a pointer, which is then used to

change the target).

92

4.3.1 Test Procedure

The artificial exploit test cases were compiled and executed with each tool. The result
is one of four possible outcomes — prevented, indicating that the attack has been halted
and an error message is printed, detected, signifying that an error message is printed, but
the attack is not stopped, segfault, indicating either a detection (in TinyCC) or an illegal
memory access, and miss, indicating that the attack succeeded and resulted in a spawned

shell.

4.3.2 Artificial Exploit Results

In Wilander’s artificial exploits, the tools with fine-grained bounds checking prevented all
the exploits. ProPolice was able to prevent some attacks due to rearranging of local variables
such that function pointers were protected. Chaperon and Valgrind detected 28% and 11%
of attacks, respectively, allowing the rest to proceed. Overall, only fine-grained bounds
checking tools were able to reliably prevent the attacks.

These results are consistent with the results from the variable-overflow testsuite. Most
of these attacks involve a continuous write that overflows a buffer, which was tested by the
variable-overflow testsuite. Using a long buffer makes the attacks harder to detect for some

tools, such as ProPolice, since it only protects functions with char buffers.

4.4 Real Exploit Evaluation

As noted at the beginning of this chapter, the work described in this section has been per-
formed by Tim Leek. The text is replicated for continuity from “Dynamic Buffer Overflow
Detection” by Michael Zhivich, Tim Leek and Richard Lippmann [61]. This paper has been
submitted to FSE 2005.

Previously, we evaluated the ability of a variety of tools employing static analysis to
detect buffer overflows [63]. These tools ranged from simple lexical analyzers to abstract
interpreters [52, 18, 22, 56, 60]. We chose to test these tools against fourteen historic
vulnerabilities in the popular Internet servers bind, sendmail, and wu-ftpd. Many of
the detectors were unable to process the entire source for these programs. We thus created
models of a few hundred lines that reproduced most of the complexity present in the original.
Further, for each model, we created a patched copy in which we verified that the overflow

did not exist for a test input that triggered the error in the unpatched version. In that

93

H Chaperon \ Valgrind \ CCured \ CRED \ gce \ Insure

ProPolice \ TinyCC ‘

bl d d d d
b2 d d d d
b3 d d d d d d
b4 df df d d d df d df
f1 d d d d
f2 d df df d
£3 d d d d
sl d d d d
s2 d d df d
s3 d d d
s4 d d d
s5 d d d df d d
s6 df d d
s7 d d d d d d
P(det) 0.14 0.29 0.93 0.86 | 043 | 0.71 0.21 0.93
P(fa) 0.07 0.07 0.07 0.07 0 0.29 0 0.07

Table 4.2: Dynamic buffer overflow detection in 14 models of real vulnerabilities in open
There are four bind models (b1-b4), three wu-ftpd models (f1-£3), and
seven sendmail models (s1-s7). A ‘d’indicates a tool detected a historic overflow, while an
‘f” means the tool generated a false alarm on the patched version. P(det) and P(fa) are the
fraction of model programs for which a tool signals a detection or false alarm, respectively.

source server code.

evaluation, we found that current static analysis tools either missed too many of these
vulnerable buffer overflows or signaled too many false alarms to be useful. Here, we report
results for seven dynamic overflow detectors on that same set of fourteen models of historic
vulnerabilities. This provides a prediction of their performance on real overflows that occur

in open-source servers.

4.4.1 Test Procedure

During testing, each unpatched model program was compiled with the tool (if necessary)
and executed on an input that is known to trigger the overflow. A detection signifies that
the tool reported an overflow, while a miss indicates that the program executed as if no
overflow occurred. A patched version of the model program was then executed on the
same input. A false alarm was recorded if the instrumented program still reported a buffer

overflow.

o4

4.4.2 Real Exploit Results

Table 4.2 gives the results of this evaluation, which agree well with those on the variable-
overflow testsuite. Three of the dynamic overflow detectors that provide fine-grained bounds
checking, CCured, CRED, and TinyCC, work extremely well, detecting about 90% of the
overflows whilst raising only one false alarm each. The commercial program Insure, which
also checks bounds violations rigorously, fares somewhat worse with both fewer detections
and more false alarms. Notice that misses and false alarms for these tools are errors in the
implementation, and are in no way a fundamental limitation of dynamic approaches. For
example, in the case of CRED the misses are due to an incorrect memcpy wrapper; there
are no misses once this wrapper is corrected. The CRED false alarm is the result of overly
aggressive string length checks included in the wrappers for string manipulation functions
such as strchr. None of the tools are given credit for a segmentation fault as a signal of
buffer overflow (except TinyCC and gcc as this is the only signal provided). This is why,
for instance, ProPolice appears to perform worse than gcc. As a final comment, it is worth
considering the performance of gcc alone. If provided with the right input, the program
itself detects almost half of these real overflows, indicating that input generation may be a

fruitful area of future research.

4.5 Performance Overhead

The goals of the performance overhead evaluation are two-fold. Omne is to quantify the
slowdown caused by using dynamic buffer overflow detection tools instead of gcc when
executing some commonly used programs. The other is to test each tool’s ability to compile
and monitor a complex program. In addition, this evaluation shows whether the tool can
be used as a drop-in replacement for gcc, without requiring changes to the source code.
Minimal modifications to the makefile are allowed, however, to accommodate the necessary
options for the compilation process.

Our evaluation tests overhead on two common utility programs (gzip and tar), an
encryption library (OpenSSL) and a webserver (Apache). For OpenSSL and tar, the testsuites
included in the distribution were used. The test for gzip consisted of compressing a tar
archive of the source code package for glibc (around 17MB in size). The test for Apache

consisted of downloading a 6MB file 1,000 times on a loopback connection. The overhead

95

was determined by timing the execution using time and comparing it to executing the test
when the program is compiled with gcc. The results are summarized in Table 4.3. Programs

compiled with gce executed the tests in 7.2s (gzip), 5.0s (tar), 16.9s (OpenSSL) and 38.8s

(Apache).
’ Tool H gzip ‘ tar ‘ OpenSSL ‘ Apache ‘

Chaperon 75.6 61.8

Valgrind 18.6 | 73.1 44.8

CCured

CRED 16.6 1.4 29.3 1.1
Insure++ || 2504 | 4.7 116.6

ProPolice 1.2] 1.0 1.1 1.0
TinyCC

Table 4.3: Instrumentation overhead for commonly used programs. The overhead is pre-
sented as a multiple of gcc execution time. The blank entries indicate that the program could
not be compiled or executed with the corresponding tool.

Compiling and running Apache presented the most problems. Chaperon requires a
separate license for multi-threaded programs, so we were unable to evaluate its overhead.
Valgrind claims to support multi-threaded programs but failed to run due to a missing
library. Insure++ failed on the configuration step of the makefile and thus was unable to
compile Apache. CCured likewise failed at configuration, while TinyCC failed in parsing
one of the source files during the compilation step.

The performance overhead results demonstrate some important limitations of dynamic
buffer overflow detection tools. Insure++ is among the best performers on the variable-
overflow testsuite; however, it incurs very high overhead. CCured and TinyCC, which per-
formed well on both the variable-overflow testsuite and the model programs, cannot compile
these programs without modifications to source code. CCured requires the programmer to
annotate sections of the source code to resolve constraints involving what the tools considers
“bad casts,” while TinyCC includes a C parser that is likely incomplete or incorrect.

While CRED incurs large overhead on programs that involve many buffer manipulations,
it has the smallest overhead for a fine-grained bounds checking tool. CRED can be used
as a drop-in replacement for gcc, as it requires no changes to the source code in order to
compile these programs. Only minimal changes to the makefile were required in order to

enable bounds-checking and turn off optimizations.

o6

4.6 Discussion

The three top-performing tools in our evaluation are Insure4++, CCured and CRED. In-
sure++ performs well on test cases, but not on model programs. It adds a large performance
overhead and the closed-source nature of the tool inhibits extensions. CCured shows a high
detection rate and is open-source; however, it requires rewriting 1-2% of code to compile
complicated programs [10]. CRED also offers a high detection rate, and it is open-source,
easily extensible and has fairly low performance overhead (10% slowdown for simple Apache
loopback test). Its main disadvantage is not detecting overflows in library functions com-
piled without bounds-checking.

As this study demonstrates, several features are crucial to the success of a dynamic buffer
overflow detection tool. Memory monitoring must be done on a fine-grained basis, as this
is the only way to ensure that discrete writes and off-by-one overflows are caught. Buffer
overflows in library functions, especially file I/O, often go undetected. Some tools solve
this problem by creating wrappers for library functions, which is a difficult and tedious
task. Recompiling libraries with the bounds-checking tool may be a better alternative,
even if it should entail a significant slowdown. FError reporting is likewise essential in
determining the cause of the problem because segfaults alone provide little information.
Since instrumentation and messages can get corrupted by large overflows, the error should
be reported immediately after the overflow occurs.

Of all the tools surveyed, CRED shows the most promise as a part of a comprehensive
dynamic testing solution. It offers fine-grained bounds checking, provides comprehensive
error reports, compiles large programs and incurs reasonable performance overhead. It is
also open-source and thus easily extensible. CRED is likewise useful for regression testing
to find latent buffer overflows and for determining the cause of segfault behavior. For these
reasons, CRED is used to provide code instrumentation to detect buffer overflows in the

dynamic testing and adaptive testing systems presented in the following chapters.

o7

o8

Chapter 5

Dynamic Testing with Code

Instrumentation

As discussed in Chapter 3, several systems have been developed to test software automat-
ically. The state of the art system in mini-simulation and automatic software testing has
been developed at the University of Oulu, Finland as part of the PROTOS project [28]. This
system utilizes an attribute grammar based on BNF to describe possible inputs, including
deviations from the protocol, such as invalid checksums or misplaced elements. Random
inputs are then created by a generator based on this grammar. The program is executed
on resulting inputs, and overflow is detected by observing whether the program is hung or

has segfaulted.

A major shortcoming of the PROTOS approach is the use of segfaults for buffer overflow
detection. Small write overflows and most read overflows do not cause a segfault, and, as
discussed in Chapter 2, even small overflows can be exploited; thus, the PROTOS system
may miss important overflows that can enable attacks. Another disadvantage of using seg-
faults as an indicator of an overflow is lack of information about the error that has occurred.
Segfaults merely indicate that an attempt has been made to access memory that does not
belong to the process. They provide no information about where in the program the error
has occurred, which is necessary to correct the fault. While such information can also be

obtained from a core dump, extracting it is a much more difficult and tedious process.

99

Server
C Source
Code

CRED
C Compiler

Protocol

Description
buffer
CRED = access
violations
Random L Test -
Message e Tester Message Server
Generator |<¢— Response —— - logs

Command
Status

Process
Monitor

Figure 5-1: System architecture for dynamic testing with code instrumentation. Thick black
arrows indicate the movement of data through the system. Dashed lines indicate control flow.

To improve on the results of the PROTOS system, the new approach developed in this
thesis uses compiler-based code instrumentation that provides fine-grained bounds checking
to determine whether an overflow has occurred. In addition, two alternative methods for

generating random messages are explored.

5.1 Dynamic Testing Architecture

Figure 5-1 presents the architecture of a testing system that uses random messages and code
instrumentation to detect buffer overflows. This architecture has been developed for testing
server software that accepts input messages; however, it could be easily adapted to test
other kinds of software. The source code for the server is compiled using the CRED compiler
and test messages are provided by the random message generator. The tester module is
responsible for coordinating message generation and test case execution. A process monitor
is used by the tester to restart the server if it should be terminated by instrumentation due
to a detected overflow or quit unexpectedly for some other reason. Each of the modules in

this diagram is described further in the following sections.

60

5.1.1 Code Instrumentation

As demonstrated in the evaluation presented in Chapter 4, CRED is capable of providing
fine-grained buffer overflow detection in all memory areas. It is also capable of compiling
large programs, which is essential in order to provide code instrumentation for server soft-
ware. Using CRED to provide buffer overflow detection promises to yield more complete
results than those obtained in the PROTOS project, as buffer overflow detection of the re-
sulting system is much more fine-grained. CRED likewise addresses another problem posed
by using segfaults for overflow detection — it provides detailed information about where
the overflow has occurred, including the file and line of the instruction causing an overflow
as well as the location of the object’s creation. Such information makes it easier for the
developer to locate and fix mistakes.

One of the disadvantages of using CRED as a compiler is that tests will experience a
slowdown due to the performance overhead caused by checking each buffer access. However,
as discussed in Chapter 4, such overhead, while at times significant, is an acceptable price
for a much more comprehensive monitoring of memory accesses. Another disadvantage of
this method is that source code is required for testing; however, this is necessary for fine-
grained buffer overflow detection, and this system is designed for use by developers of the

program under test.

5.1.2 Tester and Random Message Generator

The tester module is responsible for coordinating production and execution of test cases on
the server. It emulates a client that understands the server’s protocol to set up a session (if
it is required), sends test messages to the server, and handles server shutdowns and session
terminations. The tester accepts configuration options that specify timeouts, number of
tests to be executed, and a seed for the random message generator. The seed is needed to
make test runs repeatable and deterministic. The tester also can keep track of statistics
for each test run, including the time for message processing, number of messages sent per
session, number of sessions, etc.

The random message generator accepts a protocol description and a seed and generates
messages that conform to the given protocol description. Such description should include

deviations from the standard protocol accepted by the server in order to generate messages

61

that will stress robustness and error-handling capabilities of the server. The message gen-
eration can be done online during the testing or offline, since the parameters of a test do
not change during a test run. Random message generators developed for this system are

described in Section 5.2.

5.1.3 Process Monitor

The PROTOS system required a process monitor because the program under test was likely
to become unstable if an overflow were discovered. In a favorable case, the program would
segfault; however, it could also hang waiting for something to happen or go into an infinite
loop. In these cases, a process monitor was used to shutdown and restart the server. Since
CRED is used for buffer overflow detection in the system presented here, program corruption
is less likely, and an overflow will result in a graceful termination of the program. However,
some messages may cause the server to shutdown abnormally, which necessitates having
facilities that allow the server to be automatically restarted. Another reason for creating a
process monitor is test performance, as the timeouts used by the testing script to wait for
an answer from the server can be greatly reduced, since another mechanism is available to

determine whether the server is running.

The process monitor is implemented as a Perl script that sets up the proper environment
variables and spawns the server process (or multiple processes if the server requires more
than one process). The process monitor accepts commands from the tester module over a
socket, allowing the tester to query server status and issue commands to start and shutdown
the server. Communicating over a socket enables the server and process monitor to run on a
separate computer from the tester and message generator, which can be useful if the server
or message generator require extensive resources. The server process is controlled by the
process monitor through signals — a SIGKILL is sent to the server to terminate it, and
the process monitor receives SIGCHLD whenever the server process terminates. In order to
determine server status, the process monitor calls kill 0 with the server’s PID. While this
does not send any signals, it does verify whether the PID is valid, thus indicating whether

the server is still running.

62

5.2 Random Message Generation

As discussed in Chapter 3, a system that uses dynamic testing requires a revealing input
that will trigger the overflow in order for the overflow to be detected. Generating random
messages is one of the techniques available for exploring the input space of a program and
exercising its ability to process different inputs. This method is particularly attractive
for large input spaces when enumerating all possible inputs is not feasible. Furthermore,
protocol descriptions for random message generators enable the developer to choose which
portions of the input space will be explored randomly and which portions will be fixed.
This makes it possible to focus on particular parts of the program under test; however, it
requires a good understanding of code paths as well as additional effort on the part of the
developer to create such protocol descriptions. Two different methods of describing and
generating random messages are discussed in this section: a Hidden Markov Model (HMM)

and Probabilistic Context Free Grammar (PCFG).

5.2.1 HMM Random Message Generator

The Hidden Markov Model (HMM) random message generator is based on the concept
that input messages are a sequence of string tokens. Generating these messages can be
described by an HMM [47], in which each state produces a token that will appear in the
message, and state transitions determine the order in which such tokens appear. Each state
contains a multinomial model that defines a discrete probability distribution over tokens,
one of which is picked at runtime. Tokens are specified by a character set that describes
their composition, a length, and a generator function.

The HMM random message generator used in this project was implemented in Perl. A
description of the HMM is written in XML for easy readability and parsing. An example
HMM description and an explanation of the syntax can be found in Appendix A. The
HMM description defines states that contain a multinomial probability distribution over
tokens, state transitions that specify source and destination states as well as the probability
of the transition and a start state distribution that defines a probability of starting in a
particular state. A token description specifies its length, a character set that determines its

composition and a name of the generator function.

63

At runtime, the generator picks a start state according to the probability distribution
specified by start state distribution. A token is picked according to the distribution in that
state and generated using the specified generation function. The charset specified for this
token is used for the token’s composition, and the length determines how many characters
the token will contain. The length can be a constant, or can be specified as a stop probabil-
ity. Using a stop probability leads to a geometric distribution of lengths, since the average
length of the string generated with stop probability p is %. Once the token is constructed, the
message generator determines whether the current state is an end state (a state with no out-
going transitions). If it is, the entire message has been constructed. Otherwise, a transition
to the next state is made according to the specified distribution, and the process repeats.

One of the main advantages of this approach is that paths through the message generator
are easy to visualize, as an HMM description lends itself easily to a graphical representation.
Another advantage is that token generators are defined as Perl functions, thus allowing for
arbitrary division of the message into tokens, since complexity can be shifted between the
XML description and Perl generator functions. This makes it possible to isolate different
sections of the input message and create arbitrarily complex test cases using Perl generators.

Due to implementation in Perl, the HMM random message generator is somewhat slow.
Creating a detailed HMM description is also rather tedious, since XML is a verbose language.
Because the HMM definition is not hierarchical, elements may need to be repeated, making
the description redundant in some cases; this problem is somewhat mitigated by utilizing
XML entities that enable insertion of replacement XML code in documents. However, these
limitations apply more to the implementation of the HMM random message generator than

to the approach in general.

5.2.2 PCFG Random Message (Generator

An alternative method of describing a protocol for random message generation is a Proba-
bilistic Context Free Grammar (PCFG). Such a grammar can be based on a BNF description
of the protocol used by the server for communication. BNF provides a concise hierarchical
description of the protocol, and although it is generally used to validate messages against
the protocol, it can also be used to generate messages. The probabilistic nature of this
grammar manifests itself in assigning probabilities to the choices and options presented by

the BNF protocol description.

64

The PCFG description consists of productions that define a hierarchical structure of
elements that are concatenated together. An example PCFG and an explanation of the
syntax can be found in Appendix B. PCFG descriptions utilize the following constructs to

describe the protocol:

start A starting production that defines the root of the BNF tree.
terminal A node consisting of literal characters that will appear in the final output.
non-terminal A node consisting of a concatenation of terminals or other non-terminals

choice A production may indicate that one of the terminals or non-terminals from the
given list should be chosen by separating the list with a vertical bar (). The discrete
probability for choosing each option is provided as part of the PCFG description.

option Enclosing a terminal or non-terminal in square brackets ([]) makes the item op-
tional. A probability of exercising this option is specified as part of PCFG description.

one-or-more Enclosing a terminal or non-terminal in curly braces ({}) specifies that it
should be repeated. The number of occurrences is distributed according to a normal
distribution, the mean and variance for which are specified as part of the PCFG.

The PCFG generator works by starting at the start production, and instantiating its
elements, subject to repetition and option rules and corresponding probabilities. For each
element, the generator finds the production where the element appears on the left-hand
side, replaces it with the right-hand side of the production, and instantiates the resulting
elements, again following repetition rules with appropriate probabilities. The process con-
tinues recursively until all non-terminals have been expanded into literal characters, which
are concatenated together to create the resulting message.

The PCFG generator used in this project is based on a generator developed by Berke
Durak to create random messages based on a BNF [15]. This generator was implemented
in OCaml, and required extensions to support PCFG descriptions. Tim Leek kindly volun-
teered his time and expertise to make it work. The resulting generator accepts a description
of the protocol in an extended BNF format, with probabilities for choices or options provided
on the line after the production that uses them. Productions define different components
of the input message and can be arbitrarily detailed. Unlike the HMM description, all
the complexity of the message is described in the PCFG format, as the random message

generator does not provide facilities for specifying token generators in OCaml; however, the

65

hierarchical structure of PCFG allows for a more concise specification than the XML format
used for HMM descriptions.

The advantage of using the PCFG generator is that a BNF description of the protocol
for the server under test often already exists, and a PCFG can be obtained by assigning
desired probabilities and other appropriate parameters to different choices and repetitions.
A disadvantage of both the PCFG and the HMM approaches, is that semantic dependencies
between message parts that are present in human-readable protocol descriptions are lost
during the translation. For example, a BNF can specify that len is an integer and str is a
string, but it has no simple facility to specify that len is actually the length of str. Thus,
messages generated by both the PCFG and the HMM random message generators may not

be semantically correct, though they will be syntactically correct.

5.3 Evaluating Dynamic Testing

As mentioned before, servers face a larger share of scrutiny and attacks, since they usually
represent targets that contain information of interest to crackers or present a financial asset
to the victim. The technologies discussed in this thesis are thus geared towards helping
developers create more secure server software. The dynamic testing approach presented in
this chapter was evaluated using an implementation of Jabber Instant Messaging server.
The server, testing platform and evaluation results are described in detail in the remainder

of the section.

5.3.1 Jabber Instant Messaging Server

The server tested in this evaluation is a C implementation of Jabber Instant Messaging
Server, jabberd-2s03 [39]. Jabber is an open instant messaging protocol based on XML
streams, that “enables any two entities on the Internet to exchange messages, presence
and other structured information in close to real time” [20]. Jabber offers several key
advantages over other instant messaging systems — the protocols are free, open, public and
have been approved by the Internet Engineering Task Force [23], the structure of the service
is decentralized, and XML allows for extensible and flexible messaging.

A typical Jabber server deployment is shown in Figure 5-2. Rectangular boxes repre-

sent servers, while rounded tags represent users. Lines with black filled arrows show the

66

\

Jabber Client L Jabber Server Jabber Client
(bob@jabber.org/laptop) - (jabber.org) (alice@jabber.org/pda)

A

A\
Jabber Client P Jabber Server
(carol@foo.com/bar) - (foo.com)
Foreign IM Client

I (JoeAIMUser)

\4

Foreign IM
Gateway

Foreign IM Server
(oscar.aol.com)

Figure 5-2: Typical Jabber server deployment. Rectangular bozes represent servers, while
rounded tags represent users. The diamond bor represents a gateway that translates mes-
sages between Jabber and a proprietary messaging format. Arrows show the flow of messages
between servers and clients.

movement of Jabber messages, while lines with unfilled arrows show the flow of messages
in some foreign instant messaging protocol. As demonstrated in the diagram, each user is
affiliated with some Jabber server, to which he connects in order to send messages. These
messages can be sent to Jabber users connected to another server via server-to-server com-
munication. In order to communicate with users of other instant messaging systems, such
as AIM [41] or Yahoo! Messenger [24], gateways that translate between Jabber and foreign
instant messaging protocols have been created. While such gateways are not part of the

Jabber server, they are available as third-party software.

Jabber uses a scheme that is very similar to e-mail to locate and identify its users. Each
client has a Jabber ID (JID) that has the form of user@host/resource. The host identifies
the Jabber server onto which the user logs on (that server stores the user’s authentication
information and contact list). The resource makes it possible to differentiate multiple
connections from the same user — for example, one may be logged in from a desktop in the
office and from a laptop in the conference room simultaneously. A priority system exists
to notify the server where the messages are to be forwarded if the user is logged in from
multiple locations. Having multiple decentralized servers allows Jabber to be scalable, since
no single server needs to bear the brunt of storing authentication information and processing
messages for all users. In addition, this design makes it possible for a company to run an

internal Jabber server and keep that traffic confidential while still allowing employees to

67

carry on conversations with outside Jabber users.

Both humans and computer programs can use Jabber services to exchange messages,
and gateways have been built to allow Jabber IM to interact with other IM services that
may have proprietary protocols. Most of the complexity for processing Jabber messages is
relegated to the server, which allows for easy creation of light-weight clients. Such clients
exist for almost any platform in a variety of languages. Since the server is the complex
component implemented in C, it is well suited for buffer overflow testing.

Figure 5-3 presents the architecture of the jabberd server. MySQL database and the
Foreign IM Gateway are shown in the diagram for completeness, but are not included in
jabberd server. While the intricate details are not important for the purposes of this
evaluation, it is worthwhile noting that the server is designed in a scalable manner: it
consists of five different processes that exchange information over TCP connections; thus,
each process can run on a separate computer to distribute the load. Each of the processes

is responsible for a different part of message processing:

router The router process is the backbone of the jabberd server. It accepts connections
from other server components and passes XML packets between appropriate compo-
nents.

s2s The server to server component handles communications with external servers. It
passes packets between other components and external servers, and also performs
dialback to authenticate remote Jabber servers.

resolver The resolver process acts in support of s2s component. It resolves hostnames as
part of dialback authentication.

sm The session manager component implements the bulk of instant messaging features,
including message passing, presence information, rosters and subscriptions. This com-
ponent connects to the authentication/data package to provide persistent data storage.

c2s The client to server module interacts with the Jabber client and passes packets to sm
through the router. It also handles client authentication and registration.

5.3.2 Test Environment

The grammar-based dynamic testing environment for jabberd is implemented according
to the architecture shown in Figure 5-1. The messages are generated from a protocol
description by a random message generator, such as the HMM or PCFG generators discussed

in this chapter. The tester coordinates sending these messages to jabberd and restarting the

68

Client to Server | Serverto Server
(c2s) o (s2s)
A
\4
Authentication/Data Router < Resolver
Package (router) P (resolver)

Foreign IM
Gateway

MySQL Session Manager
(sm)

Figure 5-3: Architecture of jabberd. MySQL and Foreign IM Gateway are not part of the
jabberd server

server if necessary. Code instrumentation is provided by the CRED C compiler that inserts
code to check for bounds violations and halt the program should a buffer access violation
occur. In addition, CRED provides bounds error reports that inform the developer about
the location of the error. The process monitor is used to facilitate automatic server restarts
and status reporting.

As mentioned before, jabberd consists of five different processes; however, it was tested
as a single server through the interface presented to a Jabber client. The process monitor was
responsible for setting up the appropriate environment for each of the jabberd’s processes
and starting them up in the proper order so that all connections could be made. Each process
had a slightly different environment that allowed CRED to log buffer access violations into a
separate file for each process. The messages, server logs and CRED buffer access violations
were stored on the file system during these tests. All processes, including the tester and
jabberd processes, ran on the same computer, though, as mentioned before, the components
communicate via TCP sockets and thus could be distributed among different hosts. The
computer used in testing is a dual 2.66GHz Xeon CPU machine running Red Hat Linux
release 9 (Shrike).

5.3.3 Test Procedure

The Jabber server was compiled with CRED C compiler, and the executable was tested using

the framework shown in Figure 5-1. Protocol descriptions for both PCFG and HMM random

69

<message
to=’alice@swordfish.ll.mit.edu/resource’
from=’bob@swordfish.1ll.mit.edu/test’
id=’12345">
<thread>
1234567890
</thread>
<subject>
This is a sample subject.
</subject>
<body>
This is a sample body.
</body>
</message>

Figure 5-4: A typical Jabber IM message. Sender, recipient and message id are specified
as attributes of the <message/> XML element. The <thread/> element is used by Jabber
clients to group messages, while contents of <subject/> and <body/> XML elements are
presented to the user.

message generators were constructed to generate messages that were slightly malformed in
various ways. A typical Jabber IM message is shown in Figure 5-4. Some examples of
messages created by the PCFG random message generator can be found in Appendix D.
From reading the protocol description of Jabber messages and XML documents, the
characters listed in Table 5.1 were found to be important in separating different elements
of the message. These delimiters will be referred to as control characters throughout the
remaining discussion. The protocol descriptions for HMM and PCFG generators were de-

signed with this knowledge in mind to perform the following tests:

length test The messages used in this test adhered to the correct protocol grammar;
however, the lengths of all value strings were distributed normally with mean of 1024
and variance of 1024, treating negative values as 0. The mean and variance values
were chosen to produce messages that can overflow buffers of 1024 and 2048 bytes.

missing/wrong control characters test The messages used in this test were similar
to those in the length test; however, control characters were sometimes missing or
incorrect.

missing/duplicated attributes test The messages used in this test were similar to those
in the length test; however, some XML attributes were either missing or duplicated.

The goal of these tests was to explore various error conditions that may occur in the

Jabber server. The length test checks for proper bounds calculations for buffers used to parse

70

Control Function

Character

< Opens start and end XML tags

> Closes start and end XML tags

space Separates tag attribute-value pairs

= Separates tag attributes and values

’ Encloses values of tag attributes

@ Separates user and host portions of JID

/ Separates host and resource portions of JID
(also used in opening end XML tag)

Table 5.1: Control characters in Jabber messages. The angle brackets delineate XML mes-
sage elements, spaces separate attribute key-value pairs of XML elements. The ‘@Q’ and ’/’
characters are used to separate different portions of JID.

the input. The missing/wrong control characters test checks for possible type confusion due
to a wrong interpretation of some element. The missing/duplicated attributes test checks
for server behavior when encountering an unexpected token or not receiving a token that
was expected.

A single PCFG and an equivalent HMM description were created to generate the mes-
sages for all three tests. The HMM and PCFG protocol descriptions used in these tests are
shown in Appendix A and Appendix B, respectively. The PCFG description is 60 lines long
and consists of 39 productions, whereas the HMM description is 492 lines long and contains
59 states and 105 state transitions.

Using these protocol descriptions 10,000 messages were generated and then sent to the
jabberd server. Whenever a bounds error was reported or the server quit for some other
reason, the process monitor was used to restart the server, and the tester continued sending
messages. The log files generated by CRED were then examined to determine whether
buffer access violations occurred during the test. The corresponding messages that caused
these violations were then recovered from tester logs. For each overflow found, the message
causing the overflow was then sent to a jabberd server compiled with gcc to determine

whether it causes the program to segfault or hang without CRED instrumentation.

5.3.4 Test Results

The overflows revealed by grammar-based testing are shown in Table 5.2. The table details
the location of the access violation, the location of buffer creation and the memory area

where it is stored. All this information is obtained directly from CRED instrumentation,

71

Process | Access Object | Created at | Storage | Type | Message | Detected
Violation Count by Seg-
fault
s2s main.c: 129 | secret | main.c: 65 stack write | 1 No
sm jid.c: 103 str jid.c: 81 stack write | 18 Yes
sm jid.c: 115 str jid.c: 81 stack write | 26 No
sm jid.c: 127 str jid.c: 81 stack write | 14 Yes

Table 5.2: Overflows detected in grammar-based testing. Message count shows the number
of times the overflow was found during 10,000 message test run. The overflow is “detected
by segfault” if a version of jabberd compiled with gcc segfaults on the message that causes
this overflow.

with no further developer effort required. The actual error messages generated by CRED
are presented in Appendix C. The messages causing these overflows can be found in Ap-
pendix D. The table also lists the results of sending these messages to a jabberd server
compiled with gcc. The message count field in the table shows the number of times a par-
ticular overflow was found during the 10,000 message test run that lasted approximately 35
minutes.

The overflow in s2s occurs during parsing of the configuration file at startup because
of a programmer error — a NULL string terminator is written to secret[40], which is a
40-byte character array. Such an off-by-one overflow would not have been found without
CRED instrumentation. The other three overflows are write overflows in a stack buffer that
occur in the sm process during parsing of Jabber ID (JID). These overflows are triggered
when the user, host or resource portions of the JID are larger than the str scratch buffer
into which they are copied using strcpy.

It is worthwhile to note that the overflows were discovered using messages that consist
of well-formed XML elements. While the protocol descriptions were designed to produce
slightly malformed XML messages, all messages consisting of malformed XML were rejected
by jabberd’s XML parser before any processing of their contents would take place. This
shows that the Expat XML parser [9] used by jabberd is reasonably robust. It also demon-
strates that messages that exhibit large deviations from the protocol will likely be dropped
early in message parsing and will not reveal overflows hidden in further program paths.

The write overflows that occur during parsing of JID affect a buffer on the stack, and
could potentially be exploited in a “stack-smashing” attack to run arbitrary code on the

Jabber server. Alternatively, this vulnerability can be used to mount a denial of service

72

attack. The only mitigating factor is that the user is required to authenticate himself and
start a session before being able to send these messages; however, many public servers allow
any user to register.

Sending messages that cause overflows discovered by CRED to a gce-compiled version of
jabberd server produced some interesting results. The message that triggers the overflow at
jid.c: 115 did not cause a segfault in the uninstrumented version of jabberd, and thus
would have been missed by the PROTOS system. While the messages that discovered the
other two overflows triggered segfault behavior in the uninstrumented server, alternative
messages could be constructed that produce the overflow but do not trigger segfault behav-
ior. While all three overflows found in jid.c are detectable with an uninstrumented server,
this test shows that they could be missed even if a message that produces the overflow is
generated. A system that uses code instrumentation will recognize the overflows in such
scenarios and will also find small overflows, such as the one in main.c, that do not generate
a segfault.

Although not intended as a stress-test of the Jabber server, the grammar-based testing
approach found several inconsistencies in jabberd internal structures that were not found
when only a single message was sent to the server. Some of these inconsistencies manifested
themselves in the server shutting down due to a failed assert statement inside jabberd
code, while others just caused jabberd to exit mysteriously. Both of these mistakes enable
a malicious user to perform a denial of service attack that causes the server to shutdown
by sending a carefully-constructed sequence of messages. Though such an attack is not
as dangerous as execution of malicious code on the system, it can nonetheless result in
loss of revenue and productivity if the Jabber server is used in production systems that

communicate via XML messages.

5.4 Discussion

Dynamic testing using code instrumentation and random messages has proved to be a
useful technique in finding buffer overflows. Instrumenting the executable with fine-grained
bounds checking enables much better buffer overflow detection than relying on segfaults.
This instrumentation possesses an additional benefit of providing the developer with the

information needed to isolate the problem. The automatic testing process is likewise an

73

advantage, since the developer need not create test cases or actively participate during the
test.

However, there are some disadvantages to this approach as well. The protocol descrip-
tions for random message generators had to be written by hand, since Jabber protocol
description is described as an XML schema, which is not directly useful to either genera-
tor. The HMM description was particularly cumbersome to create, as it includes 59 states
and 105 state transitions. Converting Jabber XML schema to the HMM description took
about a week of effort. The HMM random message generator would be more useful for a
protocol with shallow hierarchy or one where the order of message elements is particularly
important for testing, as an HMM description supports fine-grained control of transitions
between elements. Porting the Jabber protocol description to PCFG was significantly easier
since it allows for deeply hierarchical structures, but still involved some challenges, as XML
schemas allow for slightly different constructs than BNF's. The resulting grammar consists
of 39 productions and took about two days to create. A PCFG is considerably less complex
in structure than an HMM description for this protocol and can be easily created from
BNF-type grammars that are frequently used to describe communications protocols.

Another shortcoming of the grammar-based dynamic testing approach is the lack of
direction in exploring the input space. While random messages may provide a good repre-
sentation of messages described by the protocol, the number of messages needed to cover
the input space may be large. Since there is no feedback about which buffers are being
affected by these messages, the bulk of the message corpus could be testing and finding the
same overflow, instead of shifting attention to the less explored sections of the input space.

Such direction and focus in the search would make the testing process much more efficient.

74

Chapter 6

Adaptive Test Case Synthesis

As demonstrated in Chapter 5, using code instrumentation in dynamic testing with random
messages makes the process more efficient; however, the resulting approach still suffers from
lack of direction in exploring the input space. Adaptive test case synthesis aims to mitigate
this problem by using code instrumentation to provide feedback about test case effectiveness
to the test case generator. With appropriate modifications, CRED can provide information
about all buffer accesses that occur at runtime, and this knowledge can be used by the
tester in constructing the next test case to drive the buffer closer to potential overflow.
The adaptive testing system presented in this chapter also explores a different method of
generating test cases that relies on a database of captured traffic and techniques similar to
data perturbation [40]. Simple static analysis of the source code is used to extract possible
delimiting characters, which are used by the tester to parse the message into tokens that can
be mutated automatically, without developer’s involvement. These improvements result in
a system that exhibits a more focused search over the inputs, uses fewer messages to find

buffer overflows and requires less developer effort to use.

6.1 Dynamic Testing with Feedback

The overall architecture of a system utilizing adaptive test case synthesis for testing servers
is shown in Figure 6-1. The bold filled arrows indicate the feedback loop in testing —
messages are sent from the tester to the server, code instrumentation built into the server
generates buffer access statistics, which are collected, stored in the database, and made

available to the tester for analysis. The tester uses a database of messages that consists of

75

traffic captured at a deployed server. Alternatively, this message database can be populated
by randomly generated messages. Static analysis module provides information needed to
parse messages into tokens by finding control characters — character literals that appear
in source code and are likely to delimit fields in the input. A modified CRED compiler
(CRED-HW), discussed in Section 6.4.1, produces an instrumented executable that allows
for collection of buffer access statistics, which are used to guide the tester in selecting further
inputs.

The adaptive testing system uses the following algorithm:

1. Select a message from the database.

2. Send the message to the server.

3. Record the buffer access signature for unaltered message. This step creates
the control buffer access signature — some subset or function of information about
buffer accesses.

4. Parse message into tokens. This step utilizes control characters obtained by static
analysis, as described in Section 6.5.

5. For each token:

Mutate token. Some possible mutations are described in Section 6.3.2.
Reassemble the test message and send it to the server.
Record the buffer access signature for the test message.

Compare signatures of the original and test messages. Find targetable
buffers — buffers that are affected by the change introduced into the test mes-
sage. Some metrics for finding such buffers are described in Section 6.4.2.

(e) If such buffers exist, then for all such buffers:

i. Create a token that can potentially overflow a target buffer. Cre-
ating such tokens is discussed in Section 6.4.2.

ii. Send resulting message to the server. CRED will report a buffer over-
flow if one occurs.

Otherwise, move on to the next token.

6.2 Message Database

The test case generator uses message mutation to explore the input space, and thus requires
a corpus of messages. There are several different ways of obtaining such a message database,
depending on resources and information available to the developer. Captured traffic can be

used as a basis for mutation by the test case generator. Alternatively, random messages can

76

Server

C Source
Code
\ \ 4
Static Analysis g%ﬁa’;‘le\’\i
Control
Characters
buffer
CRED_HW = access
stats
— e Test Message mmfi
Message Tester Server
Database l«¢—— Response — logs
Command

Status Database

Process
Monitor

Figure 6-1: System architecture for adaptive testing. Thick solid lines show the feedback
loop. Control flow is shown by lines with unfilled arrowheads.

be automatically generated if some description of the protocol is provided. The approaches
are not entirely equivalent, however, as each plays a role in determining the way the input

space is explored.

Collecting the messages at a deployed server is a simple way to populate the message
database. It requires the least knowledge and effort, since creating a description of the
protocol is not necessary. Captured traffic is also a good representation of messages the
server is likely to encounter when deployed. However, mutating such messages without
knowing the protocol will not explore code paths for message types not present in the
trace. This can be a serious disadvantage if the typical traffic includes only several of many

message types allowed under the protocol, as most problems lurk in rarely-used cases.

Another method of obtaining a message database is to use one of the random message
generators, such as those described in the previous chapter. However, using these genera-
tors requires a developer to create the appropriate protocol description, which is not needed
for captured traffic. The resulting messages will likely be semantically incorrect, and may
even be syntactically incorrect, depending on the complexity level of protocol and the corre-

sponding description. Using a random generator may be helpful, though, if a traffic capture

77

Control
Characters

1 1 _|
! . | 1+ » o©
! Token Thin Server 1
> ; %)
—— | 25 Mutator Client \ @
Message ! = <:— s
Database ' 29 A X =
I =R :
! 1
! 1
' Buffer Access Process Monitor !
! Analysis Module Client \
[I
1
! I j iTeSter |
__ 1
From Database To
Process
Monitor

Figure 6-2: Test case generator architecture. Data flow is shown by lines with black filled
arrowheads. Control flow is shown by lines with unfilled arrowheads.

only reveals a limited number of different message types. In the interests of simplicity, cap-
tured traffic is used to populate the message database during the evaluation of the adaptive

testing system, as described in Section 6.6.

6.3 Test Case Generator

The test case generator works on a principle that is similar to data perturbation as described
by Offutt in [40]. However, the test case generator presented here is both simpler and more
flexible in what it tests — the message is split into tokens using control characters as
delimiters. Thus, no structure is imposed on the resulting messages unlike Offutt’s method,
where created messages consist of well-formed XML. While the approach presented here
results in less “intelligent” testing, it provides a much more simple and flexible system.
Treating every token as a string allows the test case generator to explore type confusion in
the server under test, though testing extreme limits of different types is not possible without
knowing the protocol description.

Figure 6-2 presents the architecture of the test case generator. The test case generator
utilizes control characters obtained from static analysis (as described in Section 6.5) in
addition to feedback information from code instrumentation to mutate sample messages into

test messages that target different buffers in the program. During a test run, a message

78

is selected from the database and passed through the message tokenizer that parses the
message into tokens using control characters as delimiters. The resulting tokens are mutated
inside the token mutator to produce test messages that are sent to the server under test.
The feedback loop provides information about buffer accesses, which is processed inside the
buffer access analysis module. The differences observed in buffer access signatures between
the original and the mutated message are used by the token mutator for further input
generation. The message tokenizer and token mutator modules are discussed in greater
detail in this section, while the buffer access analysis module is described in Section 6.4.2.

Additional facilities are used by the tester to communicate with the server under test
and to shutdown or restart the server. The thin server client communicates with the server
by emulating a client that understands the server’s protocol. This may be necessary if a
session needs to be established before test messages can be sent. The process monitor client
is used to send commands to the process monitor to inquire about server status or to restart

or shutdown the server.

6.3.1 Tokenizing Messages

Tokenizing messages provides more fine-grained control over which buffer is targeted. If
mutations were made to the message as a whole, it would likely be very difficult for the
tester to understand how particular mutations affect different buffers. By tokenizing the
message, the problem is reduced to determining changes in the buffer access signature due to
changes in a particular token. This technique is especially useful when the tester can parse
the message into the same tokens as the program under test; however, such an approach is
also useful if the parsing is approximately correct.

If the protocol grammar is known, then the tester can parse the message according to
the grammar. The advantage of such parsing is that the tester would be able to perform
mutations that are semantically intelligent (on some level). The disadvantage of this ap-
proach is that parsing messages according to a grammar is rather difficult; in addition, it
requires the developer to write a more complicated test case generator. Another downside
is that violations of the protocol syntax will not be explored, as such parsing enforces a
strict format on the message.

A simpler approach to tokenizing messages is simply to use the control characters ob-

tained through static analysis as delimiters of the input message. While parsing in this

79

manner is hardly semantically intelligent, it is likely to produce syntactically correct inter-
pretation of the message, which still allows intelligent mutations of the input. No knowledge
of the protocol grammar is needed for this kind of parsing, and it is flexible enough to al-
low creation of messages that may violate the protocol syntax, thus testing this aspect of
message parsing on the server as well. The main disadvantage of this approach is that the
tester has no knowledge of semantic significance of message parts. Since this approach is
simpler and requires less developer effort to use, it has been selected as the parsing method

during evaluation of the adaptive testing system, described in Section 6.6.

6.3.2 Mutating Tokens

In the data perturbation model described by Offutt in [40], each token was recognized as
belonging to some type, such as integer, string, float, etc. The mutations then utilized the
knowledge of the type to change the token into extreme values — the integers were changed
to MAX_INT and strings of maximum allowable length were generated. Since the parsing
used by the test case generator does not determine token types, all tokens are treated as
strings. Thus, the test case generator can only alter two things — token composition and
token length. In the interests of a proof-of-concept system, only changes in token length
have been explored; token composition was kept the same.

There are two separate functions of token mutation. During the first test run, the goal
is to alter the original message slightly and observe corresponding changes in the buffer
access signature. Perturbing the input in this manner allows the tester to determine which
buffers can be targeted by making changes to a particular token. The other function of
token mutation is to create overflow test cases. Once the targetable buffers are known,
the information obtained from code instrumentation is used to create a test case that can
potentially overflow the target buffer. Because the overflow test cases are tailored specifically
to each target buffer, changing the length of each token to some maximum allowable value,
as done in [40], is not directly useful in this kind of testing.

Other simple token mutations can also be used to test the robustness of the server. For
example, a token may be removed from the message or the control characters enclosing the
token could be swapped. While the proof-of-concept system does not perform these mu-
tations, they can be easily applied by populating the message database with appropriately

mutated messages, and then using the existing adaptive testing system.

80

6.4 Feedback Loop

The feedback loop is an integral part of the adaptive testing system. It is used to make the
information obtained during test case execution available to the test case generator. Source
code for the server is compiled with a modified C compiler to produce an executable with
instrumentation that keeps track of information about buffer accesses. This information is
analyzed and used by the test case generator to decide what input mutation should occur
next. Searching the input space in this manner is more efficient and faster than sending
random messages to the server and relying on segfaults to indicate an overflow, a technique
used by the PROTOS project [28]. This section describes the buffer access information

provided by the instrumentation and its analysis.

6.4.1 CRED-HW Instrumentation

Source code instrumentation is necessary to gather additional information about buffer
accesses within the program. It is likely that any single input will not cause an overflow,
and thus provides the test case generator with no additional information about what kinds
of inputs to generate. However, adding instrumentation that shows the depth of access for
each buffer provides the necessary information to correlate certain properties of the inputs
to buffer access depth. Such instrumentation should not change the execution flow of the
program, though it will incur additional overhead.

As determined in the evaluation of dynamic buffer overflow detection tools presented in
Chapter 4, CRED is well-suited to provide the desired information. The bounds-checking
code in CRED has been extended to keep track of low water mark and high water mark
information about all buffers, that is, the minimum and maximum accesses to a buffer from
its creation until it goes out of scope. These modifications were performed by Tim Leek
and Kendra Kratkiewicz for a related project. The modified version of CRED is referred to
as CRED-HW (for High Water marks) throughout the remaining discussion.

CRED-HW has two modes of operation — trace and summary. Under trace mode,
CRED-HW prints out a line for each buffer access providing identifying information for the
buffer, the depth of the access, and a timestamp whenever an access to a buffer occurs.
Using this information, a complete timeseries of accesses for any buffer can be constructed.

In the summary mode of operation, CRED-HW keeps track of buffer accesses, but only

81

’ Field \ Description
name The name of the object
file The file where the object is created
line The line where the object is created
size Total size of the object in bytes
elt_size The size of elements in bytes
nume-elts Number of elements in this object
min The minimum index accessed in this object
max The maximum index accessed in this object
storage Memory location of the object (i.e. stack, heap or bss)
mem_addr | The object’s address in memory

Table 6.1: Buffer access info fields provided by CRED-HW.

prints out a summary when the object is destroyed or goes out of scope. The information
about each buffer available in summary mode is presented in Table 6.1.

This buffer access information is logged during program execution and then transfered
into a database for easy access and analysis. Since running a large program or executing a
test for a long time generates large quantities of buffer access information, CRED-HW has
been created with the ability to log either to a file or to a named pipe. In the latter case,
another process can be setup to read from the named pipe, analyze data as necessary and

discard it, so that large quantities of storage are not needed.

6.4.2 Buffer Access Signature Analysis

Buffer access analysis module in the tester makes use of the information provided by CRED-
HW and works to aggregate it for easier analysis. The raw data is examined, and a table is
constructed for each object, which is uniquely identified by name, file, and line. Table 6.2
shows the fields present in this table.

The aggregation occurs inside a Perl script that reads a log file generated by CRED-HW.
The stats are then loaded into a MySQL database for further analysis. Three tables are set
up in MySQL — the objects table describes different buffers or objects encountered by the
program, the stats table describes the access statistics for each object in each test run, and
affected_objects lists the objects affected by a particular token (along with the token that
affects them). The tester then uses this information to create test cases that will potentially

overflow affected objects. Complete fields in each table are listed in Tables 6.3, 6.4, and 6.5.

82

Field \ Description

name The name of the object

file The file where the object is created

line The line where the object is created

size_low The lowest (over all lives) total size of the object in bytes
size_high The highest (over all lives) total size of the object in bytes
elt_size The size of elements in bytes

num._elts Number of elements in this object

lives Number of times the object was created

total_accesses | Total number of accesses to this object

min_low The lowest (over all lives) minimum access to this object
man_high The highest (over all lives) minimum access to this object
maz_low The lowest (over all lives) maximum access to this object
maz_high The highest (over all lives) maximum access to this object
storage Memory location of the object (i.e. stack, heap or bss)
mem_addr The object’s address in memory

Table 6.2: Aggregate buffer statistics fields. This table is created from buffer access infor-
mation provided by CRED-HW.

An object is considered to be affected by a mutation if some statistic or a function of
statistics for this object changes when some token is mutated. The affected_objects table
is populated with objects and corresponding tokens that affect their statistics during the
analysis phase. Different metrics could be used to determine which objects are affected;
however, such metrics should be appropriate to the mutations that are performed by the
tester. For the proof-of-concept system evaluated in this thesis, the chosen metric was the
max_high statistic. Since the tester mutates messages by making them slightly longer, an
increase in max_high statistic would indicate that the buffer is being accessed deeper than
before and thus is affected by the mutation.

However, while this metric shows a correlation between token length and buffer access
depth, it does not indicate whether the buffer could potentially be overflowed. For example,
many buffers are dynamically allocated to the needed size. In this case, the maz_high statis-
tic will increase, but increasing the token size will not bring the buffer closer to overflow,
as a larger buffer will be allocated. However, there are more interesting statistics, such as
size_high - max_high - 1, which reflects the amount of unused memory in a buffer. If the
value of this statistic decreases with mutation, then increasing the length of the token brings
the buffer closer to overflow, so further mutation with appropriately-sized token should be

attempted.

83

The size of the token to be used in the overflow message is determined by assuming a lin-
ear correlation between increase in max_high and the increase in token length. Nevertheless,
the corresponding length increase may not be one-to-one, as some character representations
use multiple bytes per character. Since maz_high is measured in bytes and the token length
is measured in characters, it is necessary to determine a conversion factor that can be used
in the linear prediction of token length that will produce an overflow. The size of the

overflow token (in characters) is calculated as follows:

len1 — leng

lenover flow = { X (size_highy — maz_high; — 1)J +leny +1

mazx_high; — max_highg

In the formula above, len refers to length of the token in characters, max_high is the
maximum access offset in bytes, and size_high is the largest size of the object in bytes.

The variables with subscript 0 refer to the original message, whereas ones with subscript

char
byte

leni—leng
max_high1—max_hig

1 refer to the mutated test message. The fraction

7o represents the
conversion factor, which is likely not an integer. The (size_highy — max_highy — 1) factor
represents the number of unused bytes in the buffer — since maxz_high; is an index (in
bytes), the adjustment of -1 is necessary. The conversion is floored to ensure that the
resulting overflow is the smallest possible, and one extra character is added at the end to
produce this overflow. The token with resulting length of lengyer fiow is then used to test
whether the buffer can be exploited with an off-by-one byte (or, if a single character is

stored in x bytes, off-by-x bytes) overflow.

6.5 Static Analysis Module

Many mistakes resulting in buffer overflows occur when parsing an input stream. Different
parts of the input stream are delineated by special character literals that separate different
fields or values. Often, such characters are used in conditionals or loops within the program
source or otherwise determine, directly or indirectly, the control flow of the program. Static
analysis module in the adaptive testing system is used to find these control characters —
character literals that appear in conditionals or loops within the source code. The static
analysis module employed in the adaptive testing system uses C Intermediate Language
(CIL) to parse the source code and perform analysis on appropriate parts. The process is

described in more detail below.

84

Field

\ Description ‘

object_i

d Unique id for this object

process_name | Name of the process which uses this object

object_name Name of the object

file File where the object is created
line Line where the object is created
storage Memory storage type
Table 6.3: Fields in the objects table.
Field \ Description
object_id | Unique id for this object
testrun The number of the testrun
size_low | The smallest size (over all lives) in bytes
size_high | The largest size (over all lives) in bytes
lives Number of lives
min_low | The lowest minimum access (over all lives) as an offset
min_high | The highest minimum access (over all lives) as an offset
max_low | The lowest maximum access (over all lives) as an offset
max_high | The highest maximum access (over all lives) as an offset
Table 6.4: Fields in the stats table
’ Field \ Description
object_id Unique id for this object
testrun The number of the testrun
token The string token affecting this buffer
token_index | The index of the token in the original message

Table 6.5: Fields in the affected_objects table.

85

6.5.1 CIL: C Intermediate Language

C Intermediate Language (CIL) [34] is a language for analysis and transformation of C pro-
grams. CIL offers a source-to-source transformation of C programs by parsing the C syntax
and breaking down certain complicated C constructs into simpler ones. In CIL, all looping
constructs are reduced to a single form, syntactic sugar such as “->” is eliminated, type
declarations are separated from code, and scopes within function bodies are flattened, with
appropriate alpha-renaming of variables. By converting source code to this intermediate
representation, CIL disambiguates C syntax, such that memory accesses through pointers

are represented differently than those via offsets.

CIL syntax has three basic concepts: an expression, an instruction and a statement.
An expression represents functional computation without side effects or control flow. An
instruction represents side effects, including assignments, function calls and embedded as-
sembly instructions, but no local (intraprocedural) control flow. Finally, a statement is
used to capture control flow of the program. In addition to these constructs, CIL contains
other forms of representation for type declarations. Transforming C code into this simpler
language makes many kinds of static analysis easier, since there are fewer constructs which

present a more unified view of the program.

6.5.2 Source Analysis with CIL

In addition to parsing C code, CIL provides hooks for programmer-defined modules to per-
form analysis on the parsed source code and transform it if necessary. Such a module could
be used to locate character literals embedded in conditional statements or otherwise in-
volved in changing control flow of the program. Performing CIL analysis and modifications
using the existing build process is made simple by a Perl script called cilly that can be
used as a drop-in replacement for gcc. In order to perform CIL analysis, all invocations
of gcc, ar and 14 inside the makefile are changed to cilly, which emulates the appro-
priate utility in the make process. As the source code is parsed into CIL, cilly invokes
registered user-defined modules and allows them to traverse the code tree, performing arbi-
trary analysis or modifications. Once the execution of modules is complete, the code tree is

translated back into C source and passed to the appropriate program for further processing.

86

Tim Leek created a CIL module to extract literals from C source code for a related
project and has kindly agreed to allow its use in the research presented here. This CIL
module examines statements that change control flow, such as if-statements and loops,
looking for literals embedded in the code. Literals that are found by the module are split
into several categories — integer literals, float literals, character literals and string literals.
Fach group is then printed sorted by the number of occurrences of each literal in the source
code. For the purposes of message parsing character literals are of most interest, as they are
likely to delimit fields within the input message, thus controlling how far different buffers

are filled.

6.5.3 Literals in jabberd

Section 6.6 describes an evaluation of the adaptive testing system using the Jabber Instant
Messaging server. The static analysis module was used as part of the jabberd build envi-
ronment to collect character literals that appear in the source code. The most commonly
occurring character literals are presented in Table 6.6, along with the corresponding number
of occurrences in source code. The complete list of 46 character literals found in jabberd
source can be found in Appendix F. It is interesting to note that all the literals from Ta-
ble 5.1, which detailed different field delimiters in Jabber messages, are present in Table 6.6.
It is therefore likely that message parsing that occurs within the test case generator will be

very similar to the one occurring inside jabberd, as desired for adaptive testing.

6.6 Evaluating Adaptive Testing System

In order to compare the adaptive testing system to the grammar-based dynamic testing
approach presented in Chapter 5, the new system is also evaluated using the Jabber Instant
Messaging server, described in Section 5.3.1. The goal of this evaluation is to determine
whether the feedback loop improves the behavior observed in the evaluation of grammar-

based testing with code instrumentation.

6.6.1 Test Environment

The test environment for the adaptive testing system is setup as shown in Figure 6-1. Test

messages are generated by mutating sample captured traffic messages from the database.

87

Literal \ Number of Occurrences

\000 54
= 5
[4
space 4
/ 3
\n 3
< 3
> 3
) 3
’ 3
, 2
? 2
& 2
(2
: 2
e 2

Table 6.6: Literals found in jabberd. A complete listing is included in Appendix F

CRED-HW provides code instrumentation that records buffer access statistics for each
buffer in addition to reporting any access violations. As before, a process monitor is used to
restart jabberd when necessary. During tests jabberd is treated as a single entity, and all
processes, including the tester and all jabberd processes run on the same computer. The
machine used in this testing is a dual 2.66GHz Xeon CPU desktop, running Red Hat Linux
release 9 (Shrike).

The major difference in the testing environment from the evaluation presented in the
previous chapter is the use of a database to store CRED-HW buffer access statistics. This
addition is necessary to make the information easily available to the tester module for anal-
ysis. Since jabberd uses a MySQL server to store authentication and contacts information,

it was convenient to use the same server to store CRED-HW buffer access information.

6.6.2 Test Procedure

The Jabber server was compiled with CRED-HW compiler, and the executable was tested
using the framework shown in Figure 6-1. A copy of the source code for jabberd was
passed through the static analysis module to extract control characters that are presented
in Appendix F. A file containing these characters was provided to the test case generator,
thus enabling it to parse messages into tokens by using control characters as delimiters. The

adaptive testing system then followed the steps outlined in Section 6.1 to mutate all non-

88

<message
to=’alice@swordfish.ll.mit.edu/resource’
from=’bob@swordfish.1l.mit.edu/test’
id=’12345">
<thread>
threadl thread2 thread3
</thread>
<subject>
subjectl subject2 subject3
</subject>
<body>
bodyl body2 body3
</body>
</message>

Figure 6-3: A legal Jabber IM message.

delimiter tokens, determine affected buffers and attempt to overflow them with a mutated
message.

Token mutations consisted purely of length mutations, while keeping token composition
the same. This was achieved by creating a histogram of characters in the original token and
using this histogram as a probability distribution to pick new characters when an increase in
length was needed. After recording a control buffer access signature by sending the original
message to the server, a test message was generated by increasing the length of the token
under test by 10 characters. The new test message was then sent to the server to determine
affected objects, for which potential overflow messages were then constructed according to
the formula in Section 6.4.2.

The message database consisted of a two sample messages: a legal message, shown in
Figure 6-3 and a malformed message, shown in Figure 6-4. The legal message adheres
to the protocol syntactically and semantically — it was obtained from captured traffic
on a local Jabber server. The malformed message was created by hand from the legal
message; however, it could easily have been generated by a random message generator with
an appropriate protocol description.

Mutating tokens of the legal message explores the common path of messages through
the server and tests whether the bounds of all buffers containing message contents have
been correctly calculated. Mutating tokens of the malformed message tests type confusion
in the server. Since the ‘@’ and ¢/’ control characters in the recipient’s JID are reordered,

parsing the JID may proceed incorrectly. Performing length mutations on tokens from this

89

<message
to=’/alice@swordfish.1ll.mit.eduresource’
from=’bob@swordfish.1l.mit.edu/test’
id=>12345">
<thread>
threadl thread2 thread3
</thread>
<subject>
subjectl subject2 subject3
</subject>
<body>
bodyl body2 body3
</body>
</message>

Figure 6-4: A malformed Jabber IM message. The ‘@’ and ¢/’ delimiters have been
misordered in the recipient’s JID.

malformed message may create accesses to different buffers or through different code paths
that could be vulnerable. Both tests are designed to find small overflows.

Another distinction from the evaluation in Chapter 5 is that jabberd was restarted after
each message. The restarts were necessary to ensure that the initial state of the server was
the same for each test run, since a buffer access pattern was observed in order to discern
the effect of a mutation. As in the previous evaluation, the messages causing the overflow
were sent to a gcc-compiled version of jabberd to determine whether such a message would

be detectable without CRED’s instrumentation.

6.6.3 Sample Test Run

This section presents a sample test run of the adaptive testing system for a particular token
of the legal message, shown in Figure 6-3. First, the original message is sent to the server
and the corresponding buffer access signature is recorded in the database. Figure 6-5 shows
the desired metric (size_high — max_high — 1) for all 789 objects that were accessed during
processing of the original message. Bars for most dynamically allocated objects have the
height of zero on this graph, as generally the size of the data is used to determine the
amount of memory that is allocated; thus, the entire buffer is accessed.

The sample test run focuses on changes to the host portion of the recipient’s JID. The
original value is ¢ ‘swordfish.ll.mit.edu’’; the tester increases its length by 10 charac-
ters while keeping the token composition the same, thus replacing the original value with

‘‘swordfish.ll.mit.edudfw..i.wdo’’. The test message is then sent to the server and

90

100000 [

Test Run with Original Message

10000 |-

1000 |

100

Unused Buffer Memory (bytes)

10

100

200

300

400
Buffer ID

500

600

Figure 6-5: Buffer access signature for the original message.
signature to which buffer access signatures generated by test messages are compared.

Test Run with Mutated Message

700

800

This serves as a control

100000

10000 |

1000 |

100

Unused Buffer Memory (bytes)

10

100

200

300

400
Buffer ID

500

600

700

800

Figure 6-6: Buffer access signature for a mutated message. For this mutated message, the

host part of the recipient’s JID is increased by 10 characters.

91

Buffers Affected by Host Token Mutation
100 ; ;

Change in Unused Buffer Memory (bytes)
=
o
T
|

100 200 300 400 500 600 700 800
Buffer ID

Figure 6-7: Difference in buffer access signatures between the original and mutated mes-
sages.

Object Name | Process Name | File

Line \ Storage

malloc sm jid.c 175 heap
malloc sm nfke.c 360 heap
malloc sm nfkc.c 471 heap
malloc sm nfke.c 778 heap
realloc sm stringprep.c | 375 heap
str sm jid.c 81 stack
malloc router jid.c 175 heap
malloc router nfke.c 360 heap
malloc router nfkc.c 471 heap
malloc router nfke.c 778 heap
realloc router stringprep.c | 375 heap
str router jid.c 81 stack

Table 6.7: Buffers with changed max_high statistic. This table shows all buffers for which
maz_high statistic changed between the original and mutated message test runs.

92

Object Name | Process Name \ File \ Line \ Storage

str sm jid.c | 81 stack
str router jid.c | 81 stack

Table 6.8: Targetable buffers. For these buffers the value of size_high - maz_high decreased
due to the token mutation.

the corresponding buffer access signature is collected. The resulting buffer access signature
is shown in Figure 6-6. When the test signature is compared to the original, the buffers
shown in Table 6.8 are determined as targetable. As a comparison, Table 6.7 lists all buffers
for which maz_high is larger in the test signature than in the original signature. It is worth
noting that most of those buffers are dynamically allocated and completely filled; thus,
targeting these buffers is likely to be fruitless.

The target buffers belong to the same piece of utility code that parses the JID; how-
ever, the buffers exist in different processes, so they are considered different objects. The
remaining space in each buffer is 994, which is 10 bytes smaller than during the original
test run; thus, each character is recorded as one byte. This could be different, especially if
the characters are converted to another character set, such as Unicode. The total length of
the token is computed to be 1025 characters, which requires generation of additional 995
characters to concatenate to the existing hostname.

The potential overflow message is generated for each buffer and sent to the jabberd
server. Both messages find an overflow in jid.c, line 115 (see Appendix C); however,
both times the overflow is observed in the sm process, even though one of the target buffers
is in the router process. This is due to the data flow through the jabberd server. The sm
process receives the message first and parses it; since the host section of the JID is too large,
there is a buffer overflow and CRED shuts the server down. However, if no overflow exists,
the message is forwarded to the router. Thus, both buffers show up as being targetable,

but only one of the overflows can actually be exploited.

6.6.4 Test Results

The overflows found by adaptive testing using a legal message are shown in Table 6.9, while
the ones found using a malformed message are shown in Table 6.10. The tables list the
process and line of code where the access violation occurred, the name of the object, location

of its creation and its storage type. The message count column shows the number of times

93

Process | Access Object | Created at | Storage | Type | Message | Detected
Violation Count by Seg-
fault
s2s main.c: 129 | secret | main.c: 65 stack write | 1 No
sm jid.c: 103 str jid.c: 81 stack write | 1 No
sm jid.c: 115 str jid.c: 81 stack write | 3 No
sm jid.c: 127 str jid.c: 81 stack write | 2 No

Table 6.9: Overflows detected using adaptive testing with a legal message. Message count
shows the number of times the overflow was found during the 53 message test run. The
overflow is “detected by segfault” if a version of jabberd compiled with gcc segfaults on the
message that causes this overflow.

Process | Access Object | Created at | Storage | Type | Message | Detected
Violation Count by Seg-
fault
s2s main.c: 129 | secret main.c: 65 stack write | 1 No
router jid.c: 103 str jid.c: 81 stack write | 2 No
sm jid.c: 127 str jid.c: 81 stack write | 3 No
sm jid.c: 173 realloc | nad.c: 79 heap read 14 No

Table 6.10: Overflows detected using adaptive testing with malformed message. Message
count shows the number of times the overflow was found during the 39 message test run.
The overflow is “detected by segfault” if a version of jabberd compiled with gcc segfaults
on the message that causes this overflow.

this overflow was detected during the test. The actual error messages for these overflows are
presented in Appendix C, and the corresponding overflow-causing messages can be found

in Appendix E.

Using the adaptive testing system with a legal message reveals the same overflows that
were found during dynamic testing with code instrumentation, described in Chapter 5.
A discussion of these overflows can be found in Section 5.3.4. There are, however, some
differences in the results that are due to employing a feedback loop and adaptive test case
synthesis. The duration of the test was only 6.5 minutes, which is 5.3 times shorter than the
length of the grammar-based test. This speed increase was possible because the entire test
consisted of sending only 53 messages, much fewer than 10,000 messages used in the random
message test. Since token mutation was explored in a systematic manner, there was little
overlap — only one message was created to test each overflow. Since JID parsing occurs
twice for each message (once for the sender and again for the recipient), these overflows have

been found more than once. However, it is possible to keep a cache of buffers that have

94

been already explored and thus only generate one message for each potential buffer overflow.
Such an extension for random message testing could not be done easily, as buffers affected
by each message are not known, and processing of the same input is explored multiple times.

This demonstrates that the adaptive testing system makes more efficient use of messages.

Another interesting feature of these results is that none of the messages constructed
to overflow different buffers generated a segfault when sent to a gcc-compiled version of
jabberd. This demonstrates that the technique used in adaptive testing is effective for
finding small overflows that may be exploitable but would be missed by a dynamic testing

system without code instrumentation.

Using the adaptive testing system with a malformed message reveals another overflow,
that was not found during grammar-based random message testing. While the protocol
descriptions were designed to generate such malformed messages, it is possible that some
other mutation also occurred in this kind of message, and thus this overflow was not found.
Since the adaptive testing approach uses a systematic method of mutating tokens, changes
are considered one at a time, which helps to find errors in the source code. The new
overflow in jid.c, line 173 is a read overflow in the heap buffer. Another error found by
the adaptive testing system with a malformed message is a NULL pointer dereference, that
occurs during a strcmp in jid.c, line 281. Causing this error results in immediate denial
of service attack, as a gcc-compiled version of jabberd will segfault. While these errors
cannot be exploited for arbitrary code execution, they could be used to generate a denial of
service attack on the server. Such attacks are still very costly for production systems and

companies that rely on e-commerce.

Another difference between the adaptive testing results for a legal message and for a
malformed message is the location of the jid.c, 103 overflow. When using a malformed
message, the access violation occurs within the router process, instead of the sm process.
While this particular piece of source code is shared between the two processes, finding this
overflow shows that a different code path has been explored by using a malformed message

and generating test inputs in a systematic way.

95

6.7 Discussion

The evaluation results show that the adaptive test case generation approach discussed in
this chapter improves on the results of dynamic testing with random messages. Using code
instrumentation and a feedback loop provides direction for exploring the input space and
results in much fewer messages necessary to find an overflow. Since mutations are explored
systematically, using the information obtained from code instrumentation, the overflow
messages are created to target particular buffers. The resulting messages can find even
small overflows that would not be detected by dynamic testing without code instrumenta-
tion. The data perturbation approach makes the adaptive testing system easy to use, as
no protocol description needs to be created to generate test messages. The use of static
analysis automates finding character literals that are used to parse messages into tokens,
thus minimizing developer involvement in the process. In addition, this approach to tok-
enizing messages allows for more flexible testing, since resulting test messages do not have

to adhere strictly to the protocol.

The proof-of-concept implementation of the adaptive testing system described in this
chapter considered only length increases of non-delimiter tokens as mutation tests. How-
ever, the adaptive test case generation approach is quite general, and any number of tests
and metrics can be used to evaluate server response to different error conditions. Con-
sidering more complicated functions of buffer access statistics may yield a more complete
understanding of program behavior and thus allow for more intelligent testing. In addition,
the system could be used for a limited version of dynamic taint analysis by determining

which buffers are affected by certain input mutations.

The adaptive testing system is, of course, not without some disadvantages. While using
captured traffic in the message database is an attractive approach because of its simplicity,
the messages are likely to represent only a subset of the protocol, and thus some code paths
and buffers will remain untested, since no other protocol description is provided to the
tester. The adaptive testing approach also requires that the environment remain the same
between the test run with the original message and the test run with the mutated message,
as only in that case will comparing buffer access signatures be meaningful. However, it
may be quite difficult to ensure that the environment does not change — the program may

perform some actions based on the output of a random generator, system time or response

96

from the DNS server. Controlling such external dependencies is very difficult and may
require building a virtual environment for the program under test.

Another possible limitation of the adaptive testing system is speed. While a more
effective search over the input space drastically reduces the number of messages needed to
find the overflows, the adaptive testing system requires that the server is restarted after
each message, which results in large overhead. While only 53 messages were sent during
the test run of the adaptive testing system, the test took 6.5 minutes, which corresponds to
a message rate of 8.15 messages per minute. During the grammar-based test run, however,
messages were sent at a rate of 290 messages per minute. In addition to server restarts,
the increase in overhead is also caused by the extra data processing and additional code
instrumentation.

Further development and evaluation of this approach are necessary to build a testing
system that will utilize the full potential of this method. Some limitations of the current
system and suggestions for further development are discussed in Chapter 7. However, even
in its proof-of-concept implementation, the ideas of code instrumentation and feedback
improve on the results of the dynamic testing with random messages and demonstrate a

valuable testing framework.

97

98

Chapter 7

Future Work

The adaptive testing system implementation described in Chapter 6 is a prototype that
uses simple ideas for tokenizing messages, mutating tokens and analyzing buffer access
information. Even with these simple ideas the system succeeded in finding buffer overflows
in jabberd server. However, improvements can be made in all these areas to create a system
that will more fully utilize the potential of adaptive test case synthesis. This chapter details
some of the limitations of the existing implementation and suggests modifications to the

adaptive testing system that may enable it to perform better in detecting buffer overflows.

7.1 Tokenizing Messages

The existing proof-of-concept adaptive system implementation splits the message into tokens
by using character literals found in the source code as delimiters. While such approach is
very simple to implement, it is likely that parsing the message in this way is inexact, and
results in the tester misinterpreting token bounds. Such ad-hoc parsing also precludes the
tester from learning about hierarchical constructs or other dependencies that are likely
present in the message. If instead a protocol description were provided by the developer,
the tester would be able to gain new insight into how the message is segmented into tokens
inside the server, and thus would be able to produce better test cases. Alternative mutations,
such as changing the scope of different elements could also be explored automatically if such

knowledge were available to the tester.

99

7.2 Token Mutations

For simplicity, only length mutations were explored as part of the adaptive testing system
presented in this thesis. However, more complex mutations may lead to a better exploration
of the program’s ability to handle different inputs and will likely find more overflows. A
simple extension of the existing system could perform type recognition for each token, thus
assigning types such as int, float, date, time or string to each token. Once such types are
assigned, the perturbations of the token value would be based on its type, instead of treating
each token as a string. This approach would allow for more intelligent mutations that may
explore different code paths in the server.

Alternative tests could also be conducted to explore more complex relationships between
inputs and buffer access statistics. For example, integer tokens could specify the length or
the number of elements in the following token. This correlation would be reflected in a
changing buffer size or different number of instantiations. Once such relationship is estab-
lished, it could also be used to drive the affected buffer closer to overflow. With knowledge
of the protocol description, even more complicated test cases utilizing semantic dependen-
cies between message elements could be constructed automatically. This would result in
more intelligent automatic testing and provide a more thorough test of server’s robustness.
More development and testing is needed to evaluate effectiveness and applicability of these
approaches.

The adaptive testing system would also benefit from the use of a more systematic learn-
ing algorithm than the existing ad-hoc approach. For example, applying a gradient descent
algorithm to the size_high - max_high metric may lead to discovery of more affected buffers
and buffer overflows. Currently, the system uses a simple mutation to probe for affected
buffers, which is only performed once. Likewise, only a single attempt is made at overflow-
ing an affected buffer. Using a gradient descent algorithm would enable a more systematic
exploration of the relationship between input tokens and affected buffers and may result in

discovery of additional overflows.

7.3 Buffer Instances

The current implementation of the adaptive testing system uses only aggregate statistics

about buffer accesses; however, aggregating data results in lost information that may enable

100

the system to perform better. As described in Section 6.4.1, CRED-HW is capable of
providing detailed information about each buffer access. The problem lies in aggregating
this information correctly — that is, in providing each buffer with a unique identity. For
example, if a function is called multiple times, a local buffer will be instantiated multiple
times. Under the existing aggregation scheme, buffer access information from all such
“lives” of a buffer is collected together. This can present a problem — suppose that the
same scratch buffer is used for a short token during one function call and a long token during
another. The use of this buffer by the short token may be “masked” — the min_low and
max_high statistics will correspond to the use of this buffer by the long token, provided that
the difference in length is larger than the change in the short token due to test mutation.
Worse yet, the aggregate buffer access statistics may be mixing together information from
different lives of the buffer, thus presenting the tester with a distorted picture.

This problem appears particularly often in dynamically allocated buffers. Since dy-
namically allocated buffers usually grow in size with the size of the token, maz_high and
size_high reflect only statistics about the longest token that used this buffer, thus masking
uses by other tokens. It would thus be more useful if buffer access statistics were collected
separately for each buffer instance, that is, each instantiation of the buffer would be treated
as a different object for the purposes of the analysis. The analysis module would be able to
use this extra information to determine better correlation between tokens and buffers. How-
ever, the number of objects and size of the corresponding database tables would significantly

increase, thus slowing down testing even further.

101

102

Chapter 8

Conclusions

This thesis explored the use of code instrumentation and feedback in test case synthesis for
dynamic buffer overflow detection. Such methods have been shown to be more effective than
existing approaches at directing the search through the input space, finding a revealing input
and detecting the overflows when they occur. A proof-of-concept adaptive testing system
has demonstrated that combining dynamic testing with information about buffer accesses
obtained through code instrumentation can be used to build a comprehensive testing frame-
work to detect buffer overflows. Important points discovered during the research involved

in designing, implementing and evaluating this system are summarized in this chapter.

8.1 Required Instrumentation

Effectively searching through the input space would not be possible without feedback that
provides information about buffer access patterns associated with a particular input. Such
feedback, in turn, would not be possible without a fine-grained bounds-checking tool. As
discussed in Section 4.6, fine-grained memory monitoring is key to detecting small buffer
overflows, which can still be exploited to give the attacker control of the victim’s system.
It is likewise essential that the tool providing instrumentation reports errors at the time
of occurrence. This allows the tool to provide accurate information about the error that has
occurred, and also preserves as much program state as possible. Reporting the error at the
time of program termination may produce an incorrect result and direct the developer to
the wrong location in the source code. In addition, altering program state in this manner

can have very undesirable consequences.

103

Another important feature of a dynamic buffer overflow detection tool is ability to detect
overflows in library functions. Since many overflows occur within different string or I/O
functions provided by the C library, it is necessary to be able to detect these overflows.
As discussed in Chapter 4, many tools take a wrapper approach to detecting overflows in
library functions; however, writing wrappers is tedious and error-prone. A better solution
would involve compiling the C library with the tool to enable buffer overflow detection
within the library. However, this solution would result in a performance penalty, due to the

overhead created by the instrumentation.

Perhaps the biggest hurdle observed during the evaluation of dynamic buffer overflow
detection tools was compiling large complicated programs. Since it is nearly impossible
to perform an effective code review of a large complex program, it is essential that an
automatic technique, such as the adaptive testing approach or dynamic testing, is used to
evaluate the program’s robustness. This, in turn, requires that the dynamic buffer overflow
detector used in such a system can compile complex programs without incurring a large
performance overhead. As discussed in Chapter 4, CRED meets these requirements, and it
has been extended for use in grammar-based dynamic testing and adaptive testing system

implementations included in this project.

8.2 Generating Test Cases

While dynamic testing methods solve the problem of false alarms that render static analysis
methods impractical, they present another problem — finding an input that will trigger the
buffer overflow. Since the input space is generally very large, enumerating all possible
inputs is rarely practical. One approach to exploring the input space is random message
generation. This approach requires a protocol description, and two such random message
generators were discussed in Chapter 5. With proper protocol descriptions, these generators
can create test cases that probe different parts of the input space to test the robustness of
the program. However, without feedback the resulting system lacks direction in its search
over inputs and may find the same overflow multiple times. In addition, even with fine-
grained bounds-checking instrumentation, the testing framework can only determine when
an overflow has actually occurred, and may miss an overflow because its input test case was

just a byte too short.

104

8.3 Advantages of the Adaptive Testing Approach

The adaptive testing approach offers a solution to the problems described above. It utilizes
a feedback loop to direct the search through the input space, as information about buffer
access patterns is made available to the test case generator. The adaptive testing system
is also easier to use as it mutates messages collected by capturing traffic and thus does
not require a developer to create a protocol description or generate test cases manually.
Because of feedback, the adaptive testing system focuses on particular buffers and can
design test cases that target particular parts of the program. In addition, the adaptive
testing approach uses information from static analysis of the source code to provide some
(albeit limited) understanding of the message, which allows for more intelligent parsing and
token mutations. These features make the adaptive testing approach a more comprehensive
testing system, which remains practical and easy to use. Once combined with improvements
described in Chapter 7, the adaptive testing approach promises to become a flexible and

comprehensive solution for automatic buffer overflow detection before deployment.

105

106

Appendix A

HMM Description

This appendix presents the HMM description used by the random message generator to
create test messages for Jabber Instant Messaging server. As discussed in Chapter 5, the
HMM description consists of the following elements:

state Each state is described by a <state/> XML element. A unique name is specified for
each state as an attribute. Each state contains a multinomial probability distribution
over tokens.

token Each token is described by a <token/> XML element. A name, that is unique within
a state, is specified for each token as an attribute. The charset and prob attributes
specify the composition of the token and its probability of occurrence. Tokens are
produced by generator functions specified by the generator element.

generator The token generator function call is described by a <generator/> XML el-
ement. The appropriate arguments to the generator functions appear enclosed in
<arg/> XML tags. The first argument to any generator is the name of the character
set of the enclosing token. In the current implementation, the following generators
exist:

constant Accepts a string argument and returns it verbatim.

gen_constlen_str Accepts a number specifying the length of the string to be gener-
ated. Characters are picked from the provided charset.

gen_varlen_str Accepts a number specifying a stop probability. This generator pro-
duces strings with lengths that are distributed geometrically. Characters are
picked from the provided charset.

gen_jid Accepts a number specifying a stop probability. Generates three strings using
gen_varlen_str, and returns str1@str2/str3 as a randomly generated JID.

state-trans Each state transition is described by a <state-trans/> XML element. The
source and destination states are specified as from and to attributes, respectively. The
prob attribute specifies the probability of following this transition.

start-state Each starting state is specified by a <start-state/> XML element. It includes
the name of the starting state and a corresponding prob attribute.

107

charset The character set is specified by a <charset/> XML element. It defines a discrete
probability distribution over symbols. It includes a unique name attribute.

symbol A symbol is described by a <symbol/> XML element. It specifies a literal character
and the probability with which this character should appear.

The probability attribute is optional; if it is not specified, all elements in the affected
probability distribution are equally likely. The entities defined at the beginning of the HMM
description provide a mechanism for mitigating some cases of redundancy. All references to
&ent-name; are replaced with the contents of the entity with name ent-name; however, no
parameterization is possible — the replacement XML appears verbatim at the beginning of
the description. Some elements are separated by blank lines to increase readability.

108

10

20

30

40

50

<?xml version="1.0"7>
<DOCTYPE test—config
[
<!ENTITY open—ab—token
"<token name=’open—ab’ charset="open—ab’>
<generator func=’gen_constlen_str’>
<arg>l</arg>
</generator>
</token>">

<!ENTITY close —ab—token
?<token name=’close—ab’ charset="close—ab’>
<generator func=’gen_constlen_str >
<arg>l</arg>
</generator>
</token>">

<!ENTITY quote—token
"<token name=’quote’ charset="quote’>
<generator func=’gen_constlen_str’ >
<arg>l</arg>
</generator>
</token>">

<!ENTITY slash —token
"<token name=’slash ’ charset=’'slash’>
<generator func=’gen_constlen_str’>
<arg>l</arg>
</generator>
</token>">
1>

<test —config>
<state—machine name=’message ">

<!— Empty message states —>
<state name=’emsg—open—ab '>&open—ab—token ;</state>

<state name=’emsg—tag—name’'>
<token name=’tag-—name’>
<generator func=’constant’>
<arg>message</arg>
</generator>
</token>
</state>

<state name=’emsg—attrib—to’>
<token name=’to—valid’ prob=’0.9’>
<generator func=’constant >
<arg> to='</arg>
</generator>
</token>
<token name=’to—no—equals—quote’ prob=’0.1">

109

60

70

80

90

100

<generator func=’constant’'><arg> to</arg></generator>
</token>
<token name=’to—no—quote’ prob=’0.1">

<generator func=’constant ’'><arg> to=</arg></generator>
</token>
<token name=’to—no—equals’ prob=’0.1">

<generator func=’constant >

<arg> to'</arg>

</generator>

</token>
</state>

<state name=’emsg—attrib—-to—val ’>
<token name=’jid ">
<generator func=’gen_jid '><arg>0.05</arg></generator>
</token>
<token name=’alice >
<generator func=’constant >
<arg>alice@swordfish .1l .mit.edu/test</arg>
</generator>
</token>
<token name=’bob >
<generator func=’constant >
<arg>bob@swordfish. 1]l . mit.edu/test</arg>
</generator>
</token>
</state>

<state name=’emsg—attrib—to—end—quote >"e—token ;</state>

<state name=’emsg—attrib —from >
<token name=’from—valid’ prob=’0.9 >
<generator func=’constant >
<arg> from='</arg>
</generator>
</token>
<token name=’from—no—equals—quote’ prob=’0.1">
<generator func=’constant ’'><arg> from</arg></generator>
</token>
<token name=’from-no—quote’ prob="0.1">
<generator func=’constant '><arg> from=</arg></generator>
</token>
<token name=’from—no—equals’ prob=’0.1">
<generator func=’constant >
<arg> from'</arg>
</generator>
</token>
</state>

<state name=’emsg—attrib—from—val >
<token name=’jid >
<generator func=’gen_jid ><arg>0.05</arg></generator>
</token>
<token name=’alice >

110

110

120

130

140

150

160

<generator func=’constant >
<arg>alice@swordfish .1l .mit.edu/test</arg>
</generator>
</token>
<token name=’bob’>
<generator func=’constant >
<arg>bob@swordfish. 1]l . mit.edu/test</arg>
</generator>
</token>

</state>

<state name=’'emsg—attrib —from—end—quote >"e—token;</state>

<state name='emsg—attrib—type’'>

<token name=’type—valid’ prob=’0.9 ">
<generator func=’constant >
<arg> type='</arg>
</generator>
</token>
<token name=’type—no—equals—quote’ prob=’0.1">
<generator func=’constant ’'><arg> type</arg></generator>
</token>
<token name=’type—nmo—quote’ prob="0.1">
<generator func=’constant '><arg> type=</arg></generator>
</token>
<token name=’type—no—equals’ prob=’0.1">
<generator func=’constant >
<arg> type'</arg>
</generator>
</token>

</state>

<state name=’emsg—attrib—type—val’>

<token name=’chat >

<generator func=’constant ’'><arg>chat</arg></generator>
</token>
<token name=’error >

<generator func=’constant ><arg>error</arg></generator>
</token>
<token name=’'groupchat >

<generator func=’constant '><arg>groupchat</arg></generator>
</token>
<token name=’headline >

<generator func=’constant ><arg>headline</arg></generator>
</token>
<token name=’normal >

<generator func=’constant’'> <arg>normal</arg> </generator>
</token>

</state>
<state name=’emsg—attrib—type—end—quote >"e—token;</state>

<state name=’emsg—attrib—id >

111

<token name=’id—valid’ prob=’0.9’>
<generator func=’constant >
<arg> id='</arg>
</generator>
</token>
<token name=’id—no—equals—quote’ prob=’0.1">
<generator func=’constant ><arg> id</arg></generator>
170 </token>
<token name=’id—mno—quote’ prob=’0.1">
<generator func=’constant ><arg> id=</arg></generator>
</token>
<token name=’id—no—equals’ prob=’0.1">
<generator func=’constant >
<arg> id'</arg>

</generator>
</token>
</state>
180
<state name=’emsg—attrib—id—val >
<token name=’id’ charset="numeric ’>
<generator func=’gen_varlen_str ’>
<arg>0.05</arg>
</generator>
</token>
</state>
<state name='emsg—attrib—id—end—quote ">"e—token;</state>
190
<state name=’emsg—close—slash '>&slash—token;</state>
<state name=’emsg—close —ab '>&close —ab—token;</state>
<!— Empty message paths —>
<state—trans from=’emsg—attrib—to’ to=’emsg—attrib—to—val’/>
<state—trans from=’emsg—attrib—to—val’
to="emsg—attrib —to—end—quote ’/>
200 <state—trans from=’emsg—attrib—from’
to="emsg—attrib —from—val’/>
<state—trans from=’emsg—attrib—from—val’
to="emsg—attrib —from—end—quote ' />
<state—trans from=’emsg—attrib—type’
to="emsg—attrib —type—val’/>
<state—trans from=’emsg—attrib—type—val’
to="emsg—attrib —type—end—quote ’/>
210 <state—trans from=’emsg—attrib—id’ to=’emsg—attrib—id—val’/>

<state—trans from=’emsg—attrib—id—val’
to="emsg—attrib —id—end—quote ’ />

<state—trans from=’emsg—open—ab’ to=’emsg—tag-—name’/>

<state—trans from=’emsg—tag—name’
to="emsg—attrib—to’ prob="0.24"/>

112

220

230

240

250

260

270

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

from=’emsg—tag—name’
to="emsg—attrib—from’ prob=’0.24"/>
from=’"emsg—tag—name’
to="emsg—attrib—type’ prob=’0.24"/>
from=’emsg—tag—name’
to="emsg—attrib—id’ prob="0.24"/>
from=’"emsg—tag—name’

to="emsg—close —slash’ prob="0.04"/>

from=’emsg—attrib —to—end—quote’
to="emsg—attrib—from’ prob=’0.16"/>
from=’emsg—attrib —to—end—quote’
to="emsg—attrib—type’ prob="0.16"/>
from="emsg—attrib —to—end—quote’
to="emsg—attrib—id’> prob="0.16"/>
from="emsg—attrib —to—end—quote’
to="emsg—attrib—to’ prob='0.02"/>
from=’emsg—attrib —to—end—quote’
to="emsg—close —slash’ prob="0.50"/>

from=’emsg—attrib —from—end—quote’
to="emsg—attrib—to’ prob="0.16"/>
from="emsg—attrib —from—end—quote’
to=’"emsg—attrib—type’ prob="0.16"/>
from="emsg—attrib —from—end—quote’
to="emsg—attrib—id’ prob="0.16"/>
from="emsg—attrib —from—end—quote’
to="emsg—attrib—from’ prob=’0.02"/>
from="emsg—attrib —from—end—quote’
to="emsg—close—slash’ prob="0.50"/>

from=’emsg—attrib —type—end—quote’
to="emsg—attrib—to’ prob=’0.16"/>
from=’emsg—attrib —type—end—quote’
to="emsg—attrib—from’ prob="0.16"/>
from=’emsg—attrib —type—end—quote’
to="emsg—attrib—id’ prob="0.16"/>
from=’"emsg—attrib —type—end—quote’
to="emsg—attrib—type’ prob=’0.02"/>
from=’emsg—attrib —type—end—quote’
to="emsg—close—slash’ prob="0.50"/>

from="emsg—attrib —id—end—quote’
to="emsg—attrib—to’ prob=’0.16"/>
from="emsg—attrib —id—end—quote’
to="emsg—attrib—type’ prob="0.16"/>
from="emsg—attrib —id—end—quote’
to="emsg—attrib —from’ prob=’0.16"/>
from="emsg—attrib —id—end—quote’
to="emsg—attrib—id’ prob="0.02"/>
from="emsg—attrib —id—end—quote’
to="emsg—close—slash’ prob="0.50"/>

from="emsg—close —slash’ to=’emsg—close—ab’/>

113

<l— Normal message states —>
<state name=’norm—msg—open—ab >&open—ab—token ;</state>

<state name=’norm—msg—tag—name’'>
<token name=’tag—mname’>
<generator func=’constant ><arg>message</arg></generator>
</token>
280 </state>

<state name=’norm—msg—attrib—to >
<token name=’'to—valid’ prob=’0.9 >
<generator func=’constant >
<arg> to='</arg>

</generator>
</token>
<token name=’to—no—equals—quote’ prob="0.1">
290 <generator func=’constant '><arg> to</arg></generator>
</token>

<token name=’to—no—quote’ prob="0.1">

<generator func=’constant ><arg> to=</arg></generator>
</token>
<token name=’to—no—equals’ prob="0.1">

<generator func=’constant >

<arg> to'</arg>

</generator>

</token>
300 </state>

<state name=’norm—msg—attrib—-to—val’>
<token name=’jid >
<generator func=’gen_jid ><arg>0.05</arg></generator>
</token>
<token name=’alice >
<generator func=’constant >
<arg>alice@swordfish .1l .mit.edu/test</arg>
</generator>
310 </token>
<token name=’bob >
<generator func=’constant >
<arg>bob@swordfish. 1l .mit.edu/test</arg>
</generator>
</token>
</state>

<state name=’norm—msg—attrib —to—end—quote >
"e—token ;
320 </state>

<state name=’norm—msg—attrib—from ’>

<token name=’'from—valid’ prob="0.9 >
<generator func=’constant >

114

330

340

350

360

370

<arg> from='</arg>
</generator>
</token>
<token name=’from-no—equals—quote’ prob=’'0.1">
<generator func=’constant ’'><arg> from</arg></generator>
</token>
<token name=’from—mno—quote’ prob=’0.1">
<generator func=’constant ><arg> from=</arg></generator>
</token>
<token name=’from—no—equals’ prob=’0.1">
<generator func=’constant >
<arg> fromé'</arg>
</generator>
</token>

</state>

<state name=’norm—msg—attrib—from—val >

<token name=’jid >
<generator func=’gen_jid ><arg>0.05</arg></generator>
</token>
<token name=’alice ">
<generator func=’constant >
<arg>alice@swordfish .1l .mit.edu/test</arg>
</generator>
</token>
<token name=’bob’>
<generator func=’constant’>
<arg>bob@swordfish. 1l .mit.edu/test</arg>
</generator>
</token>

</state>

<state name=’norm—msg—attrib —from—end—quote >

"e—token ;

</state>

<state name=’norm—msg—attrib—type’>

<token name=’type—valid’ prob=’0.9 ">
<generator func=’constant’>
<arg> type='</arg>
</generator>
</token>
<token name=’type—no—equals—quote’ prob=’0.1">
<generator func=’constant ><arg> type</arg></generator>
</token>
<token name=’type—no—quote’ prob="0.1">
<generator func=’constant ’'><arg> type=</arg></generator>
</token>
<token name=’type—no—equals’ prob=’0.1">
<generator func=’constant’>
<arg> type'</arg>
</generator>
</token>

115

</state>
380
<state name=’norm—msg—attrib—type—val >
<token name=’chat ’>
<generator func=’constant '><arg>chat</arg></generator>
</token>
<token name=’error >
<generator func=’constant ><arg>error</arg></generator>
</token>
<token name=’groupchat ’>
<generator func=’constant ’'><arg>groupchat</arg></generator>
390 </token>
<token name=’headline >
<generator func=’constant ><arg>headline</arg></generator>
</token>
<token name=’normal >
<generator func=’constant’'><arg>normal</arg></generator>
</token>
</state>

<state name=’norm—msg—attrib—type—end—quote >
400 "e—token ;
</state>

<state name=’norm—msg—attrib—id ">
<token name=’id—valid’ prob=’0.9">
<generator func=’constant’>
<arg> id='</arg>

</generator>
</token>
<token name=’id—mno—equals—quote’ prob="0.1">
410 <generator func=’constant '><arg> id</arg></generator>
</token>

<token name=’id—mno—quote’ prob="0.1">

<generator func=’constant ><arg> id=</arg></generator>
</token>
<token name=’id—no—equals’ prob=’0.1">

<generator func=’constant >

<arg> id'</arg>

</generator>

</token>
420 </state>

<state name=’norm—msg—attrib—id—val’>

<token name=’id’ charset="numeric’>

<generator func=’gen_varlen_str >
<arg>0.05</arg>

</generator>
</token>
</state>
430 <state name='norm—msg—attrib—id—end—quote >
"e—token ;
</state>

116

440

450

460

470

480

<state name=’norm-msg—close—ab '>&close—ab—token;</state>

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<!— Normal Message paths —>

from="norm—msg—attrib—to’
to="norm—msg—attrib —to—val’/>
from="norm—msg—attrib —to—val’
to="norm—msg—attrib —to—end—quote ’/>

from="norm—msg—attrib —from’
to="norm—msg—attrib —from—val’/>
from="norm—msg—attrib —from—val’
to="norm-msg—attrib —from—end—quote ’/>

from="norm—msg—attrib —type’
to="norm—msg—attrib —type—val’/>
from="norm—msg—attrib —type—val’
to="norm—msg—attrib —type—end—quote ’ />

from="norm—msg—attrib —id’
to="norm—msg—attrib—id—val’/>
from="norm—msg—attrib —id—val’
to="norm—msg—attrib —id—end—quote ’/>

from="norm—msg—open—ab’ to=’norm—msg—tag-name’/>

from=’"norm—msg—tag—name’
to="norm—msg—attrib—to’ prob=’0.24"/>
from=’"norm—msg—tag—name’
to="norm—-msg—attrib —from’ prob="0.24"/>
from=’"norm—msg—tag—name’
to="norm—msg—attrib —type’ prob=’0.24"/>
from="norm—msg—tag—name’
to="norm—msg—attrib—id’ prob='0.24"/>
from=’"norm—msg—tag—name’
to="norm—msg—close —slash’ prob="0.04"/>

from="norm—msg—attrib —to—end—quote’
to="norm—msg—attrib —from’ prob='0.16"/>
from="norm—msg—attrib —to—end—quote’
to="norm—msg—attrib—type’ prob="0.16"/>
from="norm—msg—attrib —to—end—quote’
to="norm—msg—attrib—id’ prob=’0.16"/>
from="norm—msg—attrib —to—end—quote’
to="norm—msg—attrib—to’ prob=’0.02"/>
from="norm—msg—attrib —to—end—quote’
to="norm—msg—close —slash’ prob="0.50"/>

from="norm—msg—attrib —from—end—quote’
to="norm—msg—attrib—to’ prob='0.16"/>
from="norm—msg—attrib —from—end—quote’
to="norm—msg—attrib—type’ prob='0.16"/>
from="norm—msg—attrib —from—end—quote’
to="norm—msg—attrib—id’ prob="0.16"/>
from="norm—msg—attrib —from—end—quote’

117

490

500

510

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

<state—trans

to="norm—msg—attrib —from’ prob="0.02"/>
from="norm—msg—attrib —from—end—quote’
to="norm—msg—close —slash’ prob="0.50"/>

from="norm—msg—attrib —type—end—quote’
to="norm—msg—attrib—to’ prob=’0.16"/>
from="norm—msg—attrib —type—end—quote’
to="norm—msg—attrib —from’ prob='0.16"/>
from="norm—msg—attrib —type—end—quote’
to="norm—msg—attrib—id’ prob="0.16"/>
from="norm—msg—attrib —type—end—quote’
to="norm—msg—attrib —type’ prob='0.02"/>
from="norm—msg—attrib —type—end—quote’
to="norm—msg—close —slash’ prob="0.50"/>

from="norm—msg—attrib —id—end—quote’
to="norm—msg—attrib—to’ prob='0.16"/>
from="norm—msg—attrib —id—end—quote’
to="norm—msg—attrib—type’ prob='0.16"/>
from="norm—msg—attrib —id —end—quote’
to="norm—msg—attrib—from’ prob='0.16"/>
from="norm—msg—attrib —id —end—quote’
to="norm—msg—attrib—id’ prob=’0.02"/>
from="norm—msg—attrib —id —end—quote’
to="norm—msg—close —ab’ prob="0.50"/>

<!— Message elements —>

<!— Body —>
<state name=’elt —body—start—open—ab >&open—ab—token ;</state>

<state name=’elt —body—start—tag—mame’>
<token name=’body >
520 <generator func=’constant ><arg>body</arg></generator>
</token>
</state>

<state name=’elt —body—start—close—ab ’>&close —ab—token ;</state>

<state name=’elt —body—content >
<token name=’short—string’ charset="alpha—numeric’>
<generator func=’gen_varlen_str ’>
<arg>0.01</arg>
530 </generator>
</token>
<token name=’long—string’ charset="alpha—numeric’>
<generator func=’gen_varlen_str ’>
<arg>0.001</arg>
</generator>
</token>
</state>

<state name=’elt —body—end—open—ab '>&open—ab—token ;</state>
540

118

<state name=’elt —body—end—slash >&slash—token;</state>

<state name=’elt —body—end—tag—name >
<token name=’body ">
<generator func=’constant '><arg>body</arg></generator>
</token>
</state>

<state name=’elt —body—end—close —ab '>&close —ab—token ;</state >
550
<!— Body paths —>
<state—trans from=’elt —body—start—open—ab’
to="elt —body—start —tag—name’ />
<state—trans from=’elt —body—start—tag—name’
to="elt —body—start —close—ab’/>
<state—trans from=’elt —body—start—close—ab’
to="elt —body—content ’/>
<state—trans from=’elt —body—content’
to="elt —body—end—open—ab ’ />
560 <state—trans from=’elt —body—end—open—ab’
to=’elt —body—end—slash ’/>
<state—trans from=’elt —body—end—slash’
to="elt —body—end—tag—name’ />
<state—trans from=’elt —body—end—tag—name’
to="elt —body—end—close —ab’/>

<state—trans from=’elt —body—end—close—ab’
to="elt —subject —start —open—ab’ prob='0.28"/>
<state—trans from=’'elt —body—end—close—ab’
570 to="elt —thread—start —open—ab’ prob="0.28"/>
<state—trans from=’elt —body—end—close—ab’
to="elt —body—start —open—ab’ prob="0.04"/>
<state—trans from=’elt —body—end—close —ab’
to="norm—msg—end—open—ab’ prob="0.4"/>

<l— Subject —>
<state name=’elt —subject—start —open—ab’'>
&open—ab—token ;

</state>
580
<state name=’elt —subject—start —tag—mame’>
<token name=’subject >
<generator func=’constant ’'><arg>subject</arg></generator>
</token>
</state>
<state name=’elt —subject—start—close—ab’>
&close —ab—token ;
</state>
590

<state name=’elt —subject—content >
<token name=’short—string’ charset="alpha—numeric’>
<generator func=’gen_varlen_str >
<arg>0.01</arg>

119

</generator>

</token>

<token name=’long-—string’ charset="alpha—numeric’>
<generator func=’gen_varlen_str >

<arg>0.001</arg>
600 </generator>
</token>
</state>

<state name=’elt —subject —end—open—ab '>&open—ab—token ;</state >
<state name=’elt —subject—end—slash >&slash —token ;</state>

<state name=’elt —subject —end—tag—mame >
<token name=’subject >
610 <generator func=’constant '><arg>subject</arg></generator>
</token>
</state>

<state name=’elt —subject —end—close —ab’>
&close —ab—token ;
</state>

<l— Subject paths —>

620 <state—trans from=’elt —subject—start —open—ab’
to="elt —subject —start —tag—mame’/>
<state—trans from=’elt —subject—start —tag—mame’
to="elt —subject —start —close —ab’ />
<state—trans from=’elt —subject—start—close—ab’
to="elt —subject —content ’ />
<state—trans from=’elt —subject —content’
to="elt —subject —end—open—ab ’/>
<state—trans from=’elt —subject —end—open—ab’
to="elt —subject —end—slash ’/>
630 <state—trans from=’elt —subject—end—slash’
to="elt —subject —end—tag-—name’ />
<state—trans from=’elt —subject —end—tag—name’
to="elt —subject —end—close —ab’/>

<state—trans from=’elt —subject —end—close —ab’
to="elt —body—start —open—ab’ prob='0.28"/>
<state—trans from=’elt —subject —end—close —ab’
to="elt —thread—start —open—ab’ prob='0.28"/>
<state—trans from=’elt —subject —end—close —ab’
640 to="elt —subject —start —open—ab’ prob='0.04"/>
<state—trans from=’elt —subject —end—close —ab’
to="norm—msg—end—open—ab’ prob='0.4"/>

<!— Thread —>
<state name=’elt —thread—start—open—ab ’>&open—ab—token;</state>

<state name=’elt —thread—start—tag—mame’ >
<token name=’thread ’>

120

<generator func=’constant ’'><arg>thread</arg></generator>
650 </token>
</state>

<state name=’elt —thread—start—close—ab’>
&close —ab—token ;
</state>

<state name=’elt —thread—content >
<token name=’nmtoken’ charset="numeric >
<generator func=’gen_varlen_str >
660 <arg>0.05</arg>
</generator>
</token>
</state>

<state name=’elt —thread —end—open—ab '>&open—ab—token ;</state>
<state name=’elt —thread—end—slash >&slash —token ;</state>

<state name=’elt —thread —end—tag-—mame’ >

670 <token name=’thread’>
<generator func=’constant ><arg>thread</arg></generator>
</token>
</state>

<state name=’elt —thread —end—close —ab >&close —ab—token;</state>
<!— Thread paths —>

<state—trans from=’elt —thread—start—open—ab’
680 to="elt —thread —start —tag—mame’/>
<state—trans from=’elt —thread—start—tag—name’
to="elt —thread—start —close—ab’/>
<state—trans from=’elt —thread—start—close—ab’
to="elt —thread—content ’/>
<state—trans from=’elt —thread—content’
to="elt —thread —end—open—ab’/>
<state—trans from=’elt —thread —end—open—ab’
to="elt —thread —end—slash ’/>
<state—trans from=’elt —thread—end—slash’
690 to="elt —thread —end—tag—name’/>
<state—trans from=’elt —thread —end—tag—name’
to="elt —thread —end—close —ab’/>

<state—trans from=’elt —thread—end—close—ab’

to="elt —body—start —open—ab’ prob='0.28"/>
<state—trans from=’elt —thread—end—close—ab’

to="elt —subject —start —open—ab’ prob='0.28"/>
<state—trans from=’elt —thread—end—close —ab’

to="elt —thread —start —open—ab’ prob='0.04"/>

700 <state—trans from=’elt —thread—end—close—ab’
to="norm—msg—end—open—ab’ prob='0.4"/>

121

<!— Normal message close tag —>
<state name=’norm—msg—end—open—ab >&open—ab—token ;</state>
<state name=’'norm—msg—end—slash >&slash—token;</state>

<state name=’norm—msg—end—tag—name >

710 <token name=’message >
<generator func=’constant ><arg>message</arg></generator>
</token>
</state>

<state name=’norm-—msg—end—close —ab '>&close —ab—token ;</state>

<state—trans from=’norm—msg—end—open—ab’
to="norm—msg—end—slash ’/>
<state—trans from="norm—msg—end—slash’
720 to="norm—msg—end—tag—name’ />
<state—trans from=’norm—msg—end—tag—name’
to="norm—msg—end—close —ab’ />

<!— Start state distribution —>
<start —state—dist >
<start—state name=’emsg—open—ab’ prob=’0.25"/>
<start —state name=’norm—msg—open—ab’ prob=’0.75"/>
</start—state—dist >

730 </state —machine>
<l— Character sets —>
<charset name=’slash >
<symbol name=’/’ prob='0.9"/>
<symbol name="" prob="0.1"/>

</charset >

<charset name=’open—ab >

740 <symbol name='<’ prob='0.9"/>
<symbol name=’’ prob=’0.1"/>
</charset >

<charset name=’close—ab’>
<symbol name='>" prob='0.9"/>
<symbol name=’’ prob=’0.1"/>
</charset >

<charset name=’quote ">

750 <symbol name='"’ prob=’0.9"/>
<symbol name=’’ prob=’0.1"/>
</charset >

</test—config>

122

Appendix B

PCFG Description

This appendix presents the PCFG description used by the random message generator to
create test messages for the Jabber Instant Messaging server. As discussed in Chapter 5,
the PCFG desription consists of productions that define non-terminals in terms of literals
or other non-terminals. The name of the non-terminal appears on the left side of the ‘-->°
production symbol and its definition is on the right. All elements in the definition are
instantiated, subject to choice and repetition rules and probabilities, then concatenated
together to create an instantiation of the non-terminal. The elements in quotes are literals
defining actual characters that appear in the output.

Several constructs exist for repeating or choosing production elements. The vertical bar
(1) separates different choices — only one will be instantiated at runtime. The probabilities
for each choice are specified on the next line, in the same order as the choices. By default, all
choices have equal probabilities. The square brackets ([1) designate the enclosed element
as optional. The probability for instantiating this element is specified on the next line. The
curly braces ({}) signify that the enclosed element should be repeated. The repetition count
is defined by a normal distribution, the mean and variance for which are specified on the
next line. If a negative value is picked from the resulting distribution, it is treated as 0.

Each production in the PCFG description consists of a single line terminated by a
semicolon. The appropriate probabilities or mean and variance values are specified on the
line following the production, in the same order as the elements requiring these parameters.
To increase readability, these values are aligned to the elements that use them, and some
productions are separated by blank lines.

123

10

20

30

40

50

start —> message;

message —> empty—msg | normal—msg;
0.2 0.8

empty—msg —> open—ab ’message’ {space attribute} slash close—ab;
21

normal—-msg —> msg—start—tag element {element} msg—end—tag;

21
msg—start —tag —> open—ab ’message’ {space attribute} close—ab;
21
attribute —> from | to | id | type | lang;
from —> ’from’ equals quote jid quote;
to —> ’to’ equals quote jid quote;
jid —> string at string slash string |
’bob@swordfish.ll.mit.edu/test’ |
’alice@swordfish.ll.mit.edu/test’;
0.8 0.1 0.1
id —> ’id’ equals quote nmtoken quote;
type —> ’type’ equals quote type—val quote;
type—val —> ’chat’ | ’groupchat’ | ’headline’ | ’normal’;
lang —> ’lang’ equals quote xml-lang—id quote;

element —> subject | body | thread;
0.4 0.4 0.2

subject —> subj—start—tag string subj—end—tag;

subj—start —tag —> open—ab ’subject’ [space lang]| close—ab;
0.5

subj—end—tag —> open—ab slash ’subject’ close—ab;

body —> body—start—tag string body—end—tag;

body—start —tag —> open—ab ’body’ [space lang]| close—ab;
0.5

body—end—tag —> open—ab slash ’body’ close—ab;

thread —> thread—start—tag nmtoken thread—end—tag;

thread—start —tag —> open—ab ’thread’ [space lang| close—ab;
0.5

thread —end—tag —> open—ab slash ’thread’ close—ab;

msg—end—tag —> open—ab slash ’message’ close—ab;

xml-lang—id —> char { char };
55

nmtoken —> number { number };
20 2

number —> 0’ ... ’97;

124

60

70

80

string —> short—string | long—string;

0.75 0.25

short—string —> { char };
100 100

long—string —> { char };

1024 1024
char —> ’a’ ... ’z’ YA ’Z? | number |
control—char —> /2 | <’ | >7 | =7 | ’\??
space —> 7’ | ?? | control—char;
0.9 0.05 0.05
slash —> /> | 2> | control—char;
0.9 0.05 0.05
open—ab —> <’ | 7 | control—char;
0.9 0.05 0.05
close—ab —> ’>7 | > | control—char;
0.9 0.05 0.05
equals —> =7 | 2 | control—char;
0.9 0.05 0.05
quote —> ’\?’ | 77 | control—char;
0.9 0.05 0.05
at —> 2@’ | ?? | control—char;

0.9 0.05 0.05

125

126

Appendix C

CRED Error Messages

This appendix presents the error messages that were produced by CRED for the overflows
found by dynamic testing with code instrumentation and random messages described in
Chapter 5, as well as those found by the adaptive testing system described in Chapter 6.
While the length of the overflow varied between different messages during random mes-
sage testing, these error messages illustrate the overflows that were identified in jabberd.
Messages that cause these overflows during dynamic testing with random messages can be
found in Appendix D, while messages created by the adaptive testing system can be found

in Appendix E.
The following overflow occurs in jabberd when the user portion of the Jabber ID (JID)
is too long:

jid.c:103:Bounds error: strcpy with this destination string and size 1045
would overrun the end of the object’s allocated memory.

jid.c:103: Pointer value: Oxbfffe040

jid.c:103: Object ‘str’:

jid.c:103: Address in memory: Oxbfffe040 .. Oxbfffe43f
jid.c:103: Size: 1024 bytes

jid.c:103: Element size: 1 bytes

jid.c:103: Number of elements: 1024

jid.c:103: Created at: jid.c, line 81
jid.c:103: Storage class: stack

The following overflow occurs in jabberd when the host part of the Jabber ID (JID) is
too long:

jid.c:115:Bounds error: strcpy with this destination string and size 1033
would overrun the end of the object’s allocated memory.

jid.c:115: Pointer value: Oxbfffe040

jid.c:115: Object ‘str’:

jid.c:115: Address in memory: Oxbfffe040 .. Oxbfffe43f
jid.c:115: Size: 1024 bytes

jid.c:115: Element size: 1 bytes

jid.c:115: Number of elements: 1024

jid.c:115: Created at: jid.c, line 81
jid.c:115: Storage class: stack

The following overflow occurs in jabberd when the resource part of Jabber ID (JID)
is too long:

127

jid.c:127:Bounds error: strcpy with this destination string and size 1025
would overrun the end of the object’s allocated memory.

jid.c:127: Pointer value: Oxbfffe040

jid.c:127: Object ‘str’:

jid.c:127: Address in memory: Oxbfffe040 .. Oxbfffe43f
jid.c:127: Size: 1024 bytes

jid.c:127: Element size: 1 bytes

jid.c:127: Number of elements: 1024

jid.c:127: Created at: jid.c, line 81
jid.c:127: Storage class: stack

The following error occurs when control characters ’@Q’ and ’/’ are out of order in a JID:

jid.c:173:Bounds error: in strlen, string argument is a string with size 962
overrunning the end of object’s allocated memory.

jid.c:173: Pointer value: 0x81c003f

jid.c:173: O0Object ‘realloc’:

jid.c:173: Address in memory: 0x81c0000 .. 0x81c03ff
jid.c:173: Size: 1024 bytes

jid.c:173: Element size: 1 bytes

jid.c:173: Number of elements: 1024

jid.c:173: Created at: nad.c, line 79
jid.c:173: Storage class: heap

The following overflow occurs at startup of the s2s process and is due to an incorrect
indexing into the array (off-by-one):

main.c:129:Bounds error: array reference (40) outside bounds of the array
main.c:129: Pointer value: Oxbffffbe7

main.c:129: Object ‘secret’:

main.c:129: Address in memory: Oxbffff5c0 .. Oxbffffbe7

main.c:129: Size: 40 bytes

main.c:129: Element size: 1 bytes

main.c:129: Number of elements: 40

main.c:129: Created at: main.c, line 65

main.c:129: Storage class: stack

The following NULL pointer dereference was found in feedback testing with a malformed
message:

jid.c:281:Bounds error: NULL or ILLEGAL stringl argument used in strcmp.
jid.c:281: Pointer value: NULL

128

Appendix D

PCFG Messages

This appendix presents overflow-revealing Jabber messages that were created by the PCFG
random message generator using the grammar shown in Appendix B. The error messages
produced by CRED for each overflow are shown in Appendix C. The version of jabberd
compiled with gcec does not segfault on the overflow occurring at jid.c, line 115, but
segfaults on the others.

The overflow at jid.c:103 is revealed by the following message:

<message

to="QPpjQuimP3uFTthazYolOkpEtpYJcSKw0jjXIe-qHXerf0ShxVGqUHvo7fFh
UkdebSxY1viIiWTkAFYFXFQmgmhRPyILgTi2iTG-nislfmm0SIkNdMaqwy -G
UUgHBKudVBj__hdzuogoOVQoAhDw_CFBxwMxdk jLrQzDgpfE9sGOcvcoD@NV
5 hWwmypwwMrranht JMtXn-SnAoSzQJvtdodCqfUMSF{fpUxhDzCUH1EnDIPDOM
DDWVXZrhGUhVfhpGJ6r jzwOFIDqzYjDCS21INpsYSFwdrHskhZm6TDJMjKGH
PuD_1YQKojYIGjvSBa_QE8cfQC7qfss-sf-zJGnL/skaqhWZefLQgyHKDuAR
YFEvYBAXwIYJrhcMsxZVV1rST-HjjotT_-bgGRIgbdFasxFMiSHoMagTbMeJU
CoWQDUbuLOTruPBRSteY-UKXdgHsIGEF_GtjBOtJAKVWjPiwzcluOWndKmR j
10 1fbqPnmLQCWyhTqDGD_YYyVu-pTzZsfwQDuHMd jRnU8nFzqq-noUokqEAXUv

USpCMmumvKgUCadlinswdiHCk9BXVuyZUr6GkrhiudJaZh’
from=’"DGRsFRUvhoBcI1uKSzRsAnXoQf0DxaBCtBdzRFmCKCNr_FeKWRMWcSifXy
ctjl01lzjgjETFUQYIjFieO7PUpD1YWvvEi6cBuf jmyqyRCVIUciaHAdnWKY
VFMKreBAqLFnlMYpQoheJByLueucjdXpmgGgzbbu-KtDvyKpGyZALvXyzl
15 PAMCL_UMRivaFGEug-mXZGVhzyWVLuIlkvdwD-qlqYj-idELfkVFOCFZXy
eVVOxNTRMZwsGuxoLMJ1cbFAGA7TQqioOwgPhGNnuhj_NhXKkZLmmdTo -gf
m-nAGHrRBkjESX-HdYpTeFpnfuXXRQQJ4tGCIrUCotaVm4HHODepD_ICBc
RU_Yzer5zfOHvrWbDihfOncIjC_Gepj_TdMOtNeelLWASCx1QadYLKGmdgD
JEpWDylUymIG-mSMZGLaIMyxZvqoHkycRkIXbSBkQ_yyBsVNIdctORFovz
20 ZZuvpVsiqNL3YrWOaiVpaEK -whbvTbnhGgl10MdDVQ-gR0xZaqUtgvqVVYU
gBy-C9fEsQYULPbAAaZPeICCN-wclnI_Cjxwuhd_aiXgMLTfcZLUMNNJP -
szttDwXvHZBD_iHtkCywEqXexey _WvwDOVNmHpnF2wFwHtMDKPUK1piWHj
ckWmkGV-XBRQIJrIyXkgclFmGmzDfrvE_FvsS1jxIKtIvRiHvwKUOkLHgx
sB1bzicVjwjKZwdtvcFBlcnkfzmOYdNKrnNEUnl1RXX7iXHnXHpccakqSDp
25 VGMj1nl-jOCdrhLUKSHABP_AueAoLVdJQwjFGMc jwF2gXGpNudPpBCGXUf
vzoFcU_WzKVtAVFoAsWjIv-FhizFcdudpiZSeluibdmJRApRaRBRwCgsHa
OwK-zFoVvEx-rQrr7LAafGANdAJzmbNXCuicgjqvSzXsq-NWAuTzzOCAIRK
jNkZzFUgpEWyG_srIuoh_KeZuVoTCjgFJVDhaJTzEvLXZggw jFQI4YmvWz
ML1BWh-yff0unXtXClaCjhOEsXVzoGvxuDxoxMV_ZRN_KBwDBoaRIHdUBq

129

30 HwUIma8F_RGSErKMYBXr0jtbiQoTjan_iICgYqhEWQhJ1lpnXchDoBezpAt
zdwgPtmHv1iIqO0zwSmwQDrgQudWVGxNaXyDcvMUDUfCnAKwZsIdkTMizz_
hTZMiWCEFbKTpBVjPZtnt -sfZbmJXZIvjoBLHRBJrxMHzixXL-CSHZqcNm
EZpORTjYjIdnpvnnUtrfedeusPLKAUNOUgRyqLOyjx-WIJDVZ-I0cebex—
aUCEdV_aREJThlvbpNseEtCsTGBxCyk jEKeaeJPYVgXf6Fx -YmRHcvdn7J

35 -WnKhmvwnpxnG-BpmZaaWJFmlDopPkrPyUcJ2R6VTNwimAzvRqgkaZHeRMp
060xK_jX-0zx_iTbeKIdpsKXwG-bI_oUKbXx_pstpGW --uyQz-YCNuMhdb
YezXBfCjgKyYHFggwdDYpMwlPlrsvYNk -BupmtO0Ax0JfrLxT-0qWugmANO
EUQtD-uZTRkS-hIvlUxK/rfhjaALcmC-qwvae-YMtWgIHMoCvdhXbMXUdM
dmAnk-1wNhyjMAKbgmIKJIB1BjOwG -kSCxINYGwgINoxUwGmAHmMGfeCLNI

40 CabwVIPGMbt jZBRyXdBCfaXCzdotBhNGmgT jMAxPKgmpWUtnPPracopQry
SAnCfaDAZAubEIQ_uHKJSWGONgqsqtRKpCOpxQvDDnikeidUWCEDeDSdvcK
UFrn-L6qUbaGqWNXuB_cCCpWL-UYUCpyiol’

id=’7432860578003881706901 >
<body lang=’ygJZAueOmN’>
45 N_WnuPnfEycvTznU-bhhmGvjJdEmLDhQqMqVVIwIB4zhFVDHJGbmoXZA—dmzpZ
LvvtwdngoneU—uYYHKolWgUldyvEv_HNhkOJnxKIzSLZjNDudIVpXFRtFRctEf
vvPQPaiXtIurPZgiJXcCHCbOoowL _wbjfUjVMJxkwJcrkPKo_FkNynzknLBvcep
LkgpzkeEFEu rESZ xPpolUQPBiuvJ4RKLGVNYKTcQJpNPIKWOABYMvthvtGutV
rbTxRnxVVFET_YkTnenGrXINsfIsSbGExfbFtVrnQYoSE_WTNi—YHqUDmeziqoH
50 bAkmOGiVpGzjtGmb6qAxgXctiumYh—gugSSRWRgRzz1-XOlgQFeFQxwaCpZqcdi
Uvw—_—SY3SBAYZ7QvQn_BetmKNZuibNzoEqdVLRzrzM _HitrfKLRWIVLzTepeV
RozXfQaMsCaMqiwlt BxKsyQaB—QENwJmNAUd_AdIJYDBeDgFBspHAfHunGDO1F
JuBwzjMCKOTbDJ—fdzkVuEPjuTTgHEQdoku_FehnhxeOEP3eQJf—_GkTxjRrKv
mSq0dMdf9ZynzzJ AWwZeJaNoQry_hcluCBAw7TWX _fuCxVDZnmtP—IsxpJdgBTD
55 vEfXPqGpQZgSsfThbEttEmZosCiMuHNcwiUCZIFwkQFcOzsQA1JOJKvPXJnudiZ
OhuUDG6kxraelUhwGAghb_SrqNRnhJKNzNfYRGBLYr_JCniUQZgGwtbepENseie
EJUiytdkQfRop-zslOIAxDKvTbjZIEhcOJLVrUJDJZ_1LzipnLx6udtjarmyFx
KbGtRACKFKNd-kxmwGgpSITVGzmGLWOgZFED7RXCkBZsSrpIDMP3hKKPBIWMka
SNOSbdnuMwyCFCjGrcRBYlraDGUMTtQjSQIXYDMOuTrpilvBKkUMHLR VuLpErHC
60 gbfOMPhUM—-BEqDempmtVOKWpldlY crQxgjeRRKOxCdZ_rSCUi_feicSjSOjXLT
TpbgKAhTSR—k5w_LqPurEQwv—esXXbHOxDvwZmp_GpES_wMCGuLeMLDosvTMK
Pd_MaXbsbhVfceDzoGgDnRwrubAGNV_oRYPWnuwOIgQIZThqMZnQEUubnvkEvX
—NXvthyj—sEFFctQlqdrXTrbw_zaLgp4rBxRkmjVJWxZwTUBJIU1PkJmexWODC
EK_f
65 </body>
<thread lang=’SzRbmjjxdMrAE’>
959918680265972400148250
</thread>
<thread>
70 987120481243085079916601
</thread>
</message>

The overflow at jid.c:115 is revealed by the following message:

<message

from=’amTrHVDBIPR_DxpIPZKbUupxfAEdLycjmwxLaJT -uMWAdBXdeFvfYuxmQO
AwOpSvxUaeEdwesyRZjQZ-uTKQpJCtYLUKFHmtxAgFDbabNIE2cJzvDokA
v5s1XAZazLzyUoDkih1xSFW7Dgxojh@CBqoHtqYq-wdhOH-pzWRJfak_xu

5 ipeI9cCGSuUFfviULFqijkYkxXunnF_o7vgLNAPKt -soNVIaPXyZpKjQzt
duK-eCoXcxq4XEH1ThVpaue_ 1JFOEvEIvcmCoJZIUQVQCoakqthbr8ulbg
SyDrZNBdUAzOz\ _KlekAzytQlURptyMhqmmGreBZVC_RiXyxmP4wlqFSzw
VeWnDPMV_kMrHU1YKYyyXWvX1GVUtEzkfq BNYYMSWwt(QBLIhvzWBGK_-j
xxzZCM-HOgbKWyxxUXQligAEosuYfXocHagzle jRvNPggujQwQFbCITxTo

130

10 x0n5MVHyWFV_XKbxlyaSMqFJFWihUPCHsaPd-xjp--ucivHdwerXMOLEjM
fqAZnDEeYzmzyWfeBonnuVZUvW51IXYm-QoKnxDgXYR1LCVxemeKecOsVI
WwGRSVHeUHbYAOsz1 jweVHmTAAOWITRSKgXhovCEaN90VQzVrpzNOBmHLc
0fNFMt9yZWKLogbh -uupEJYEPvCTozt7d_VRzF-ZtszrDxclEL_DZbGXiz
dMizTopWDYxJqemReZgxXkjRhutIdZArcavNDPI12FFPfBYs(QSTgUqcJgs

15 yb91V1DLoSsDpYbxw-pzRbpdtgNGcTrlF-qSdCdAtK1iKyJviDPVCrUuzF
SgVSugfKBUaXNDZGRRCdCoGcsPcojDia-AHWVpJvZSN_tPTzDJBHEitbRB
_naTEV-rRJkRhLs1C4SMIrCCsSYGlwn5TPMYI -11zNRktumIShpdHzvUEK
_tOVEXPNghAgUUFulQEknABuG7HX1_YbnrhErVPGUzCPqLUqRHyHbrEaEw
nf8BFJKS1Y_Inj3sQmOcMbwfZoLN-pNpLzeCkwdl jLrEQ8zeNCMphT_Pph

20 nYSQO0X-_vqRITdtn-bH-GvvGiApnkZLBqzVpGKmQKEpzgUhEZCanaJzAup
UjiXaersFQKSpazsadap9d0ONreo45Giac_XqxBrpSqzMghCdoQQas_pxJE
Tgte4-oRMwRFadDBdfocfEr1B_BZPxEL_MnDFbQQjRRmRgCPXX3qKDworM
HpNY1nzIFRRmOeeOrQzmWqFEhB_KzclThdVzWWwKtbftArNmrIkhCCvyAz
ZCxIufKavJaTFDBf -wxho_xcmfj-6CJxs_fTxsV3DFx1ljhbp-AtuUoQXzS

25 sOyAPnb6aWcwXbCiMuzLxe -VXgkOBhyATMdAxWYgSL_cO0zRHTesdNtfrl_
qQUElpjMwSkMb-bSPbIzQrVwAKOAM_9uJuBWfJr02hYhwcOQ7kRi5bCpjQr
BELbqcfqeYpEwPcuFnMl1pBnbrWJGwKIRbcOKEfZhyTjgYHyvnjHxJcxuQYq
VNyEqQrdFCkQpxi-UtPYadfKZEnFK-LncCf0py5DqjNqeJEPNtiyzccZCm
TmQk8q-E-ymsX5iulGyNvgW_CHUeWkOUksvqWknnDXVhCwuQUsPKZRmDmg

30 01ktWeiGGJKogoqga_kLncBItd_SUADiaYxjZpYU-yFhTXryQzjWpcnnFN_
MVWgMLHpz_oBeucPxmidcHkHwdAoRtKXgaPILGtrn_ZvYBPQALkKuVMQEJ
eXa2eU0sUZGnwSexX_bENPZ -yN6JmLDHbb-ZVxWXpENrTRUErodNGiNBee
WYVeDgFPxJtUaBCeRXadF9ShYzwBYEn9tgkdt _VDsKWRVRqn_-pruKzymR
vEIhf juxkwkXjTsENCpWODObSEnYQFTf6ApRuviTcfjY1jO00gJa-jPYXqu

35 HTzpO0qoECCxbUnFJuFEtXSIqWAoDEyezo_xSAdDMESEpDHsdQEucDswnjEJ
aBXZVEJpFnDwCHCY_tdciIzziXzHIWwwESMA7X_XXQXEJdOhQCEpALSI11 -
Ei8CUUYUW_C_wsnzhxvJRxrzC-uWaFxKc-gRKieRYfMMnvmFNf_0j0-QiZ
szNbqYiZvCAFIQtFvf_fwipUe9uDhC’

type=’headline’/>

The overflow at jid.c:127 is revealed by the following message:

<message

from=’BpTeuRVPNBAEQwTeobAvpoRQwBjdXViyKvecwIfnYfKozCsfxZqKDg8uM_
yLRSxzi_NxFaxSZbJoM-GZNNaxuudm-rdsQEQjCsDSHtPxoSgYt1KQDj_f£
BXfDNVFGhzEytvPgVFzzWSWeSMepkCQbtDhfpgFWsnHZIvEQSdiIOWrtMm

5 CH-pmCStPUArsLDOEYgAGKhAbLYAszN3ulwPIBuAnlCdATEDX1jIIU_AFLk
ubE_WaSJXNIyosOM7tbEQuYyLUiixEmVjgpZMZxQI -V-vtxK0tzvLgvmtE
ARLM2uoqJzDJ_pkPDmgaVCantGiwLLNRGeROs -ai3dknaGntgjXUXWMtts
CyFdYbLKZVvarHkJgBQsr_WfnDuMVTTCdpAZhynu_SyxgwSupDz0OmUuZfx
UOIMwfoqecBDUbPQLykWfMtICUmsLaQdjSYjyvazWkG-EgBYBSyndBrKbY

10 q3sHVLLuKDhsJEmucalhkJ1bNbIWt0tQFEde jd11jO0FimUTgFfouxUER -_
YMarsDkNByOg1BW1aVNdDbS - _pcCReAuhyNy_OHToyAjEgNSCVCndIbccV
2UryFGgkcGwfIAzjxIUwLThJApCtBoLZKpq_DQhKUtlqWoiE_KbrcNMhSG
qaOGEwIRtNCJAEMMBPL1P_aWdESgnOa3WdsniVZFaPnyY-rPjbvaBKCk_do
ZEsSilWgXIindbTKGHVBwpngAmmBzABD -ioGPYBkKLiFWULNgHbmgbxyXzJ

15 GeJHOgoLVynGuLWXJYi_Gej_mgMHtrtpnaUNtkUXAevHVMXnSUbrtdvtCE
_6PI0iKhDdpIDZkHErKSlwzYtd-fKtgzNosyK5-ezGdSLbtYV-unFjHVGc
IFP1bxESRjDOVOkDOHFKgObpVgbFViwuBuUUuBXwkXfCzgHzaH4Fhi2k1S
AYWofvyamPsp_rApIEf5VjOed4enJ-ieZkLcuUcfxiKwmrP5gkjJf1vVkdL
vPZEHMrWnhmWC jzMuFICrRfFBwrUyVLCY -VMAxfdagrcaPevlWoEFzcPqr

20 JDyLmQcXMoEYbJTz1fvEOBEeJBUpLVpldMPLpEINHJfXHdaCd -REAzBdgg
t1bzPuN-dEo0-qnqlSpt0BkDTjJ2LSnFGVIVXHPwQRSWBsdk _nVN__szSX
OTfTmUGQLPTvQXIBUPQEZoX0kVKaTLYFAyyilOaonGkBaQQY1ElpZsAAmF

131

25

30

35

40

45

50

55

60

65

70

75

LkOdneFmnwcKgqoEbnxhIDQpwDOHgyrL -£SO0KDegfOnxnAHrcRkWVpxBmd
EbbuDUsI_QJEpfewvO0zr -PcPpKqqOtsIJYPPvgmC5bQySpnbuvUfCZamKp
bQbQMXLjRFyfjfJqR_cxgGbQtITWTBpKSfMZJwnjIVEBEdfdgONVKBgdqo
wC-ebCO-MSTTWcjvguPvQAIYQEUDfWNbvEiRLwxHzRMwZpijjSJJpLpiHE
qgbVZsiQx1FJVJAxQeInbctbRoGPEZVBfvgKOI _YACKrZ1HMPwNiUkMpmo
ktBKmLrpGEOavEniV0_e@C-or jbOUAhDPSawMTQfJ1ZIBsgFSddSiZvEXk
BrNrAjnJeLSifBbBIOPQOqpYLIXjd-TCdx-QI-I0M-oTnndyEBhVW_Drlq
qdD_wekORhn-DGUJxduNgEpPSFIzuehzYFLTf1hsPPjxnHqRCGHAWHnOma
CNGNxwIYseLmJtoAb/hRNpgJG_FCpdHisJxXitVYFuUnNOUtudatIRiNBw
nWulwCaTplkcKoIanPot jMhwpBgWJLulGEHpIkGWjXkksD0OUtGqCSEphnW
PDgLpAC-bNHOPcT’
to="IBxWU-iiYpCowfLakOBRMFTFYHQENXZPHQnkAPGPeHfbzyFEFpLpGMyUhoGW
WHJSeGzgoDPSBKc0a6DcAAhmUEMLi _CTpRpTtIgYHsNBVabeqlZBFFZXwBxk
bnS1jQD-£fSfZbmdYtdERjLhwzXPuZN-0JTfXntCSqtudoWXtS1lijkunWPDRM
mgL1CjtGRYj_GDL_RC@xLSAgOexqVmJOBRCnrnWIlWmab_oIP-qfQYHpuk_y
UFDcIsgYlRHaiwcnosUFc1lKULSODe _FBbxmNkDgmrIY-IxksZaQuGHdHPCRB
J1aTbkIMOCO1lvPvhXtI_9hAESCUgmDUYYxvnosXZwCCQsEn-Zz1WVwGxxzs7
KsXHfTCNanX_nROpOMTSbWGVevTYiKVNdhv7a/zbIswEcqlGsuweWjwajiRo
tuftvZuoVWVBQhyYwvjXBdynEvJcbAdhhxkBVuVFQI1PTrGXpABhzJdMEUG1
aeWVKBS1gUGmBWpa8lFctZFmC1WGZuO0t0k_gs_utcSBvbwSoMFhqSyyIAiXf
RMaIbGCdiscI1NEjx0GDQByScPRwzRsHpiIFFhM21LwEOdqj--GFJFJNFAaU
IUBeDNGtGLFYAmFCScMuyIgmxchnaFrN-PvsdT1YQAVD_AhMHMZ _zzAzlRks
V_qoO0AfXKemSYjKIqQTRqxTVIZT _sc-noJuKZwtwHZNMsKBqsBV_GEuDLDsYT
zYYbylJ03WajxxxsgDl -dMTYYOByKBEWVLCCepLPEBJ1KgxzcutTgluYlsvD
dFuvKZNtpBapZRwPLpIqulcBkSUBYUwNnCfX0YFA6LGbfqRKiotQUwhLhJzS
CVinCFBXvXZWhdtJrXxBzq_RxLRhG1l2Dwod -FLEaEsm-HEVISFCVcmd_bDVX
CAjeUVnjXx1l0YthnzkLuiEqRXHzCBkudDB-YBJvkiPGug_pPjWTAOQYBZr5Q
ZtErHswnFb-qEcrdXsip8gwswx0jbVAuBPZoYXphXk10ONTOwocQZUeMVvRqd
FhKPCqkIjaiZZB-wnxoUsYePhmWtpisjQnMtaluiz1XSmwsYuPddWW-JPyGK
MofknXQrIsyQgX_AKfPikmRGFJIDZXUrKA1qFKItIibjBLiCEQvMdcNKimnYf
fAKRRIIANNWZMz jERt _1PL19Isy0UuYOfEXHJeRB-tBCChnNWGxnEZBuiNXZ
iCEQyUQN--nBbRpMKrsMKesYYBNRhGScSFCCinPJALJNeMWINnWoNud_VajM
dwFCaYBHcAlrnLuHpZHACdRDRRUouo jFVhanurlxD-zGMoQq_a-jUFXSzXkN
wiIgRITs _AtRMKGAdNV-inYxFaHWaDlu-UYKrTFvXMWzmKSdiMBhavHhNWgx
YFyWBLcDVEpHarfuafSttAxJu_XV3XZCoXcjpLXd1PSOGuwVF-FthQ5GIDuC
BFgpqf -PaRfZWyUEFb_RabcUSUlKPS6Eu-SnWolRZgJZmAVelalkWobVIgOr
HGLQLfvTglzHIUZskl --zmAaAUexzf8fFygGVrTnAHPBC-0Uz-bj1SbMd4xH
Kn-dZcKFIlluiHpjvAmfYxKeeCjZcIuZTjso-DdpQabLddWPZZa-KWjfRvqr
vRtxfMOcryCWDRtcaTBT_’
lang=’iPCFiFocL’>
<body>
xqTMhowO _FreKylDJPMvEKRbKYvmajeSsobEvaC_—FKOnqTwtqW—mOL_IpuTOA
mnUKCQZsbGVJAbzwTYOtcjSS_CjczEGpyBa—WepFMuRARNGn
</body>
<body>
YtoYwGTXnZmTsdzWOaHSKFWIMC-JW—wRSBgJFVcZfeSSOIKIGRNXkODYrRIgY
FIViqzQ_Q_-GNYupPWy—bBBalevjXtBpCXxXhsleq YFEauWLIGpS—JqtJXQnYG3
HX6TGpnRzPh5SriLsphbZ—rRk—aKFOoOrBMWgjyoFiNRD—MoVvZibNhwX{fW{Uz
GJyfzyGtAyW—xCIjbOsISEUUMCnESJLDXpOIbOVuUP—usYsvvlCsFrVTLsj—sL
XFzsWrVdJNVIgJIS3SUVzYhKrAtMifvHCMYHYZqrLxRVQrAeASbtMwti_UEQGp
epyNxnJMdDSxInvLCvOAxTqf9qXaWxYqDhZApgUYGYGJTho_AQiebDObuvJsi—
PkcFzIMFjE6Fg6GVnKBlvadilTb_QHkmazEefXIMpdhESgfHKpTBJhGorNICht
TDHMTFuFLwHuaUJsBiKYwjRMwikdOGbfUSPrhBkbxbX1GSoInIUF9RRuJJUINS
0i6FHsRLewnGoPNzp—1UDIUmvHB6iDyQ_al.nUzXUYvMWsctNAjwjlWIJNAUKubk

132

80

85

90

95

100

WhvMaMrvJLjzbDWI-TXBjW8kMDKSAySpnhYntJG—qozZinkbd T —6hYwinyzpOx
DHUnbNpu—IMpGznawGQrIimdMyKKvZBtSwr2EgHSwRrdewrthJr—etnjKZwIrEp
0.KURhrxq_rkCpYdGUpZyuCNBqZt—GweAiKdpmpmwTDZM4ZPGJLhAiwSvEFJJb
UbFJhcu_-MZcliXQcF8idcHQ—TTPGyF _pMzqazAkk3YLaFvpDvBDNXKChPtsfyJ
—HKfUSCFBgnDRtMLtMY1FIvlgzWaPtaEEyEhphXnVWvVSCap_vASmBITBbsLgS
SablqcySmPoKBBIiYBSnRpTw_GqCSCaKHushtpnGFUOWBCALIIVCGhdnuFw8Tg
EwZcljw3nzcQkgVkzvcO0qOHfDpBcecY _hFZeRavmmodZ—icTjOfaOrLKbHoYONN
eT—jmjonxaQHBHP{tQuFdT7sjKUThrOJpqZDDDzPpaYcbODrlkhWNGPseFCGLK
gglSeafibwrTGUo8dSCmBMCjTAHWxhySuh_ytHkewjEDu—c—z_QLCAXtcyvBia
XzrksaveWfUVNmXASIvbAgtdpabvFl 4mHwdSCtBuMNxdieJWHeruLplanEogJ
KIMCO0xXILchSladVKHUskLCDaStDnKeDRRFi—cDWfcwsbva_WcjhfbKpASZAhM
uCepHCdw—jxaRXjxRDsAjw_wwjVpdEaZkoWvNVafDbsJcYQCWukriVHeSncD_G
UPDYKkIkFgVYfFFTcAxNKDP8pPCStR_JiULxizLiRRvflcXmyyattGGWisRVvD
bFmqG—wKuTE-NALFXEDdQPbYtM_WLLyX1dTyQkBRHjGeQV{kMSTjXicMVTlzu_c
vK—oVaGTncHiYnZjCmeKm nC—UgKjmZUZd-TGWIMqRwdoTVekHgceSGHrqtzXe
PIgMZMOM5MdqiQg

</body>

<thread lang=’PYGCWqti’>
3827913068838975594929

</thread>

<subject>
wRpjRupeayXTIsidwdyXbKqEyucWewxYZzRcTqhbmpRVbn_x3xT _txeLtoTReU
zkioRVAAOUOGSd—RV _IAKwlsiPM6kmasFfHIdrTzIFz_dmFTngn—-MayAMxUzqU
iKGBaZHITHIJrodwvGaypq VKKW{IGLXcbemRoMylVsOjzCV

</subject>

</message>

133

134

Appendix E

Feedback Messages

This appendix presents overflow-causing Jabber messages that were created by the adaptive
testing system. The error messages produced by CRED for each overflow are shown in
Appendix C. As mentioned before, a version of jabberd compiled with gcc does not give
any indication of the overflows when given these messages.

The original “captured traffic” message used in the adaptive testing system was:

<message
to=’alice@swordfish.1ll.mit.edu/resource’
from=’bob@swordfish.1ll.mit.edu/test’
id=’12345">
5 <thread>
threadl thread2 thread3
</thread>
<subject>
subjectl subject2 subject3
10 </subject>
<body>
bodyl body2 body3
</body>
</message>

The overflow at jid.c:103 is revealed by the following message:

<message

to=’aliceeelieecieelaaeellileaceiciacaicaeceeaecaeleliiaacalilcil
acelclicicllceeleccecaaiicllaelceaaeeicacllclacciaeeeccaeccl
icaealaciaaciclaeciiaclcilaileecleiellleieaececalalecicaeeac

5 icaelelaeacceaeclecelacaecelaeaccleiilaceaaaiiieiecaiielilee
iececcceiilellcailiiiccileaaliaieaieciiaiealleeeiieeaiclaacl
ecaeieececieilcailciclacalcllicielecaalcccccaiieilleelillcla
leelccaiacaielilaaeilecalicceaaecaiilaiaaeclcelcaaeleeliaecli

10 elicllacaceaieiicailiiaaleilccaieeaaiiiciaaicliillciallaalel
ellaeceeeicceaeacilelicaiicciiiaaaelellilclecieelellcceaaeac
eleeliielceaaecaecillaiciccceeiaaiiaeaelelaccaaaiecccelicciia
iiecaeelciccaiiciccelelilleaaieeaeiiciiicelciaicelilleilcaee

135

15 caceeaeeccaeecelcelecaceaacacccaaceaiileaeliaeliclaiaalalali
aleaellaelcliaieleeiceiiiiaclcalilaialiclclaielcicaeeaeaiecc
lcellacciciicaaciaeaaaeiaeleciiccleicaallcliaaaliilicleciiee
iililleilecllceaclaleaaaiaillicceieecliiceileiaeeeaalciaelcl
ileceaiiieclecciilcaleiiaiaiecileicialacailllcieiaiclieielac

20 iiicececaaeeliielaaellieclcllelaacacaceleeclelcceeaaiellilei
iaaailclaelcclaacaaaaeaialiccleaililcelcaiellciciccaclaaieea
iaalijiaccaiaicaiclaclaeeialliaealillaelilicacicilcelleliliac
eiealieeacaacleeeiliiicacaccalileeieaecaliacaaceeaclaieleaela
lelecciaccaieillllcaeillceeleicliilcaiiaeiceeleceaieacaeeccc

25 aaiailcleicceelclelailliaeleciiaaalieeaaaaceaeiaeecalaeieecaai
icelcelliealeiailelelllccieaelciiclllcelccllaiaeieecllecleel
eiceiliaileacaecealacccacialleiiliiieilllaaaaccallalaeaieell
aeeiccacalacecellcieicellcaiaceieaeeiaiaecceciiaccicaacileii
iaallaiaielecealcciieaaeiealeacceaaiaceiieaacicaacailiiaacei

30 clllaecalaliaiailclaaececlciiaiilicailillliilclaicaclilalcce
ijaieeecacliaiaeccciaceillaceclililaieeielaeililleececalacei
lcciielilceeiaailiieecaiieciealiaaielacciaiicceacieliiaaecace
acececiilecelclllelieclalaciaailaaacicaieelaciciaaaiiicaaeli
eecaalieeaeeceieeilcaaaceileaceecealceaeilecillciacielieeael

35 eleilaiciliceillacicicccl@swordfish.1l.mit.edu/resource’

from=’bob@swordfish.1l.mit.edu/parse_test’
id=’123435">
<thread>
threadl thread2 thread3
40 </thread>
<subject>
subjectl subject2 subject3
</subject>
<body>
45 bodyl body2 body3
</body>
</message>

The overflow at jid.c:115 is revealed by the following message:

<message

to=’alice@swordfish.ll.mit.edu.rds..o0i..iiii.s...si....r.do.oi.s
..... iihi......d.sdf..iw.iro.i...i.ddsd.f..iw..f...hr.ii.i..
hs..f....dif....... h..ds..hw.dfwfis.ddf.si.hi...h...w.h.hfri
5 f..dwifi...iddd.ofhddd.ioddhis...r...fid..did..s.f..d.s.isd.
..owi.s.w..wdw.w..1i...... ii.i...rrird.i..hi.srfd..d.iis.sdd.
.hd..i...d..is.fh..f.r..rd....w.sdriirsdd..s.fd.r.o..s...dfw
rs.d..ird..i..hir..d...rdr....s..r.od.oi..odd.i.iswfs..irhr.
hdid.o.w.idisdd.i.ios...isifd.i...hs...r.rrdwddi.dhwi..di.w.
10w.fos..sw...dwrfw.fsi.s.s.si..i...ow....h.os.fs..rr...di
.d.f.wrd.d.wdd..s.d...ro..srd..d...i..r..wowhii.i.ii..d.hh.f
W.0 ... owi...... rf..... o.swiw..w...dd.ifod.r..i.iifwwfiwdr
W....S8..iods...d.dd.o.w..f.dsr.d.ih..0..diih...orr.s..rdhhwi
.srwihs.fii.sw...h.sd.is.s.dr...fwdo....hddf.orr..dffw.i..s.
15 i.iwrd.r.h.i...o.d..sr...r..s....dfhdsfdowiswh..sssr.do.rd.d
f.so.w.h..s.ridw....hwhdfrod.wid.ds.fh.wif..dsf.i.sw..r.....
r...s.dh.r....s..f...i.fddi..d..ido...idsif..... h.issids.fhr
.r.fdd.io.fs.sfi..... i.s..iihhsw..d.i...iii.dowod.fsisi.d.f.

r.iiod.ofowi.s.hih.../resource’

136

20 from=’bob@swordfish.1ll.mit.edu/parse_test’
id=’123435">
<thread>
threadl thread2 thread3
</thread>
25 <subject>
subjectl subject2 subject3d
</subject>
<body>
bodyl body2 body3
30 </body>
</message>

The overflow at jid.c:127 is revealed by the following message:

<message
to=’alice@swordfish.1ll.mit.edu/resourceeuseorerorursueurueeerrse
Seoeeeoeerreurrsrscurueeeuueuurceoscsreluceeecrreuorroreouecc
SsSrccrceueeeesrrccseeueerruuecrrercreeereeuuecreeurrcuoocece
5 Srreuuceuscsuseursroeeroccerececrosceserreseoroesrooeuescrcu
eroeuerrrureeuceesuUerursorrcrrrurroercesreeooeeooscrrscseuue
rccoseoeouuceorooerrerrcuseosrrcosrrseurreerrosueocecoerceur
OresucCrrrrsorurescoeseuecrcceurusuoeeecreoreocesucCrrsurrrrr
uueesereceeeesuUrcurrusrorcccrurserrcrcrersruousrerecroosoece
10 ueoocusrueroccrecerrscureeeccurrereeresesrrecsceeorusrceceee
rercrocrceressroueserroeuoeeescreusrorrucueecuserorsusrrreee
eorerrcerseeeeesCrrrcuccececoCereeeurrrruuecrocsecorcsrerrso
reeruerrrrrssereooocselucooeoeeururrsrssssesccrsesrreucoereru
rrrorueroroureurrorecereroeroeesrceroescrrrerroereeesrsuesse
15 eerrerrrursoereererrecerrcesorsosrorueeurueeesereercseuoseru
ercccorcueeruroosoeessueocsouseoccecorccesorrcsesrereccuusee
ereueeeruroecoCuueccuecsSrueesuecrsoceorocueosreroeoecuccuroo
ress00rceeselusCCSrsOSruereersreruucesssorrerueorucsrcosurrrs
erruereorsesroeeeeerceerusorcosrrrreoccsureosseeecsrouruersu
20 escrrssrucrrrueosouoeresesesseseulCeuercsrrussececruoseucrrc
rrSrreccerrsoseoeeusesosorrcorrorrcrcesuresurrsoeoeeorsssuue
eocuserrerccereeeecroureceesersueuooursoeeeuuscorerooeuueeus
rroruruuerrrserecuoeresersrroreoerureecoeurcrrscresrouorseur
eeuucooroeureusrusooreoeorsecsoeserrecueuouerrruerorrueuoeru
25 eeeeeesoecrceerossrsrsuceeeerurrurssuorreeuoeeueescuucerrcer
eerececeerserosuoresoreoesuecsSersrererrcrcuocouorssSerrrcrrrr
uocruceroceoeeooreererscreoeocroereorucerurrescrsereeeserosu
sreeerrr’
from=’bob@swordfish.1l.mit.edu/parse_test’
30 id=’123435">
<thread>
threadl thread2 thread3
</thread>
<subject>
35 subjectl subject2 subject3
</subject>
<body>
bodyl body2 body3
</body>
40 </message>

137

The overflow at jid.c:173 is revealed by the following message:

<message

to=’/alicelaeialaecaciccalaleaeliilllllilcalacaeelcceiilecalacecl

10

15

lllcaalaiaclicliilaceeciicilccieeeeaiecicccalccacaieaiclecil
clccccceeilaeceaciiailieaiieacaaialclcceeliaeclcaceiicciiaca
caielceilalliilicaaiaaciellaaililcieceileleailcleicicaiailii
ceeeeiiccleccaicecieccaaeeiiiacilailecaaiacielicleilaaaiaeci
cillaialeaiccileclceieceiiclcelcaeliiliecaeilicaeiaaieelieli
lclclaaiceeailceelaleeliaailieeeeicaliieiacecieailiilialcala
1l1lcaeacieliclelaeacaalealaeilicieiieileclacceaciliclealcac
ciaelallleceeialelclccleacialllclieililaaililleilllaaecaceiae
alalaeacaalaeicilacieiialeliecaieacacecalilcelcicieiiaiieiae
liclacacaealeaeeeiiiiacialcaaealcilleaialilaecalecllieacecal
alcaieiaelaialcllileleecelieleaieaicailaclcaeeiacaiallliicic
icileieaielelacaelcaaliacillliiiaelellcceccaeaiiaeliceaaacia
ciclceiicailaceeccaiiealaccallaacieceiiccclcaleaclcieealciil
ieelcclcleeclclieicelciliaieiclceaiiaeeiieceiaeiilleclaaieic
liaceiileaccilclaaaaeelliiacciciacaiilaallaeieiaeecceceaiaie
aceillcecallclcaaacilcacacecilcieaa@swordfish.11l.mit.edureso

urce’
20 from="bob@swordfish.1ll.mit.edu/parse_test’
id=’123435">
<thread>
threadl thread2 thread3
</thread>
25 <subject>
subjectl subject2 subject3
</subject>
<body>
bodyl body2 body3
30 </body>
</message>

The NULL pointer dereference at jid.c:281 is revealed by the following message:

<message
to=’alice@swordfish.1ll.mit.edu/resource’

from=’/bob@swordfish.11l.mit.eduw...d.i..wsffih..i.ro..i.ii.r..dh
.ofi. ..., Ww.s.isiid..io.d.o.o.w.w.hi..wi.fhrd.ifs..fio.sis

5 is.d...si..dfodsi.dwod.o...f...hf.i.dr.rod...iidw...
.wi.d.s..ds..fi.hrr.ws..s.df.i...wsd.d.ir.r.ddf..w.

.ih..f
..rs..f

dhsi.fd.ssdr.ds.s....d..f.i..d...sdoo.s.hsddihs...d.iiis..
.d...rdrio..d.fio..doo..shr.s...dr.d...... hf..oid..s.d.i..

.hoo.dwdr.di.offh...dsii.d...s.if.s..si...d..oiof..
10 ..df.o.d..dw...... i...s.o..rf..rh.foi.s.swiwsi.h...
.d..fid.hdssfhi....iid.d....s.iiw.f..h.ds..... i.s..

Ww..isd
sw..d.i

.r.o0.s80

hs.o..is...dd..wdssdwfsrrr.rssi.fd..hsss..s..hiih.s.id...r
.i...08i...wd..ow.iw.ssssdifr.o.sdi.rordfdd..di.dh.oi.s.d.
s.s..r..w..d.hs.dwhihh.isd.i..fdsfhh..owddhh.f..h.o0.s.s0.s
15 .id..wd.odhi...w.h.wdis...d....iddh.i..o0ifdhod.if.iwd.s..1i

wsdfisif .h...f.ord.h...d.s.sr..i.rr.hhh..i.i.1i0...

.wddo...

.d.ds.s.rdi..s...... sho..dwwwhii.s..r.h.h...d..w.d..ohf...
..ds.dh.dsrohi.sow.wd....if..... swf.drii..s..fw.difh......
..rssrr.h...si.sdd..sw.iw...dsiwssh..i..s..id.hss.ids..hi’

20 id=>123435">

138

<thread>
threadl thread2 thread3
</thread>
<subject>
25 subjectl subject2 subject3
</subject>
<body>
bodyl body2 body3
</body>
30 </message>

139

140

Appendix F

Literals Found in jabberd

This appendix lists the character literals found in jabberd using the CIL module described
in Section 6.5. These character literals were given to the tester and used to parse messages
into tokens in the adaptive testing system. The table below shows these literals sorted by
the number of occurrences in the source code.

Literal | Number of || Literal | Number of
Occurences Occurences
0x00 54 Ox1A 1
= 5 0xFO 1
| 4 0x03 1
space 4 0xF4 1
/ 3 z 1
\n 3 $ 1
< 3 0xEO 1
> 3 0x1C 1
) 3 OxT7F 1
’ 3 0x06 1
, 2 . 1
? 2 0x16 1
& 2 [1
(2 ; 1
: 2 ! 1
c] 2 { 1
0x01 2] 1
0x80 2 yA 1
a 1 0x02 1
W\ 1 0xC2 1
0x0D 1 \t 1
0x0C 1 1 1
OxED 1 OxEF 1

141

142

Bibliography

1]
[2]

[11]

[12]

[13]

AlephOne. Smashing the stack for fun and profit. Phrack Magazine, 7(47), 1998.

Arash Baratloo, Timothy Tsai, and Navjot Singh. Libsafe: Protecting critical elements
of stacks. Technical report, Bell Labs, Lucent Technologies, 600 Mountain Ave, Murray
Hill, NJ 07974 USA, December 1999.

Arash Baratloo, Timothy Tsai, and Navjot Singh. Transparent run-time defense against
stack smashing attacks. In Proceedings of the USENIX Annual Technical Conference,
June 2000.

Fabrice Bellard. TCC: Tiny C compiler. http://www.tinycc.org, October 2003.

Nikita Borisov. AT&T failure of January 15, 1990.
http://www.cs.berkeley.edu/~nikitab/courses/cs294-8 /hwl.html, April 2005.

CERT. Advisory CA-2001-19 CodeRed worm exploiting buffer overflow in IIS indexing
service dll. http://www.cert.org/advisories/CA-2001-19.html, January 2002.

CERT. Advisory CA-2003-16 buffer overflow in Microsoft RPC.
http://www.cert.org/advisories/CA-2003-16.html, August 2003.

Monica Chew and Dawn Song. Mitigating buffer overflows by operating system ran-
domization. Technical report, Carnegie Mellon University, December 2002.

James Clark. The expat XML parser. http://expat.sourceforge.net, April 2005.

Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. CCured in the real world. In Proceedings of the ACM SIGPLAN 2003 con-
ference on Programming language design and implementation, pages 232-244. ACM
Press, 2003.

ICF Consulting. The economic cost of the blackout: An is-
sue paper on the northeastern blackout, August 14, 2003.
http://www.icfconsulting.com /Markets/Energy /doc_files /blackout-economic-
costs.pdf, August 2003.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the 7th
USENIX Security Conference, pages 63—78, San Antonio, Texas, January 1998.

Crispin Cowan. Software security for open-source systems. IEEFE Security & Privacy,
1(1):38-45, 2003.

143

[14]

[15]

Nelly Delgado, Ann Quiroz Gates, and Steve Roach. A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Transactions on Software Engineering,
30(12):859-872, December 2004.

Berke Durak. Geyik: A random-sentence generator, taking BNF as input.
http://abaababa.ouvaton.org/caml/, October 2004.

Frank Ch. Eigler. Mudflap: Pointer use checking for C/C++. In Proceedings of the
2008 GCC Summit, 2003.

Hiroaki Etoh. GCC extension for protecting applications from stack smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, December 2003.

David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42-51, 2002.

U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003
blackout in the United States and Canada: Causes and recommendations. Technical
report, United States Department of Energy, 1000 Independence Avenue, SW, Wash-
ington, DC 20585, April 2004.

Jabber Software Foundation. Jabber: Open instant messaging and a whole lot more.
http://www.jabber.org/, April 2005.

Anup Ghosh, Tom O’Connor, and Gary McGraw. An automated approach for identi-
fying potential vulnerabilities in software. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 104-114, May 1998.

G.J. Holzmann. Static source code checking for user-defined properties. In Proceedings
of IDPT 2002, Pasadena, CA, USA, June 2002.

IETF. The internet engineering task force. http://www.ietf.org/.
Yahoo! Inc. Yahoo! messenger. http://messenger.yahoo.com/.

Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical Conference, pages
275 — 288, June 2002.

Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. In Automated and Algorithmic Debugging, pages
13-25, 1997.

Nick Nethercote Julian Seward and Jeremy Fitzhardinge. Valgrind: A GPL’d system
for debugging and profiling x86-linux programs. http://valgrind.kde.org, 2004.

Rauli Kaksonen. A functional method for assessing protocol implementation security.
Publication 448, VTT Electronics, Telecommunication Systems, Kaitovayld 1, PO Box
1100, FIN-90571, Oulu, Finland, October 2001.

Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security Symposium, August
2002.

144

[30]

[31]

[32]

[33]

[34]

[44]

[45]

[46]

[47]

Robert Lemos. Security a work in progress for microsoft. CNET News.com, January
2004.

Steve Lipner and Michael Howard. The trustworthy computing security development
lifecycle. In 2004 Annual Computer Security Applications Conference, December 2004.

Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability
of unix utilities. Communications of the ACM, 33(12):32-44, December 1990.

Jim Morrison. Blaster revisited. ACM Queue: Architecting Tommorow’s Computing,
2(4), 2004.

George Necula, Scott McPeak, Shree Rahul, and Westley Weimer. Cil: Intermediate
language and tools for analysis and transformation of ¢ programs. In Lecture Notes in
Computer Science, volume 2304, page 213, January 2002.

George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe retrofitting
of legacy code. In Proceedings of Symposium on Principles of Programming Languages,
pages 128-139, 2002.

NIST. Software errors cost US economy $59.5 billion annually.
http://www.nist.gov /public_affairs/releases/n02-10.htm, June 2002.

NIST. ICAT vulnerability database. http://icat.nist.gov/, February 2005.

NIST. ICAT vulnerability statistics. http://icat.nist.gov/icat.cfm?function=statistics,
February 2005.

Rob Norris. Jabberd project. http://jabberd.jabberstudio.org/2/, March 2005.

Jeff Offutt and Wuzhi Xu. Generating test cases for web services using data perturba-
tion. ACM SIGSOFT Software Engineering Notes, 29(5), 2004.

America Online. AOL instant messenger. http://www.aim.com/.

CBC News Online. CBC news indepth: Power outage.
http://www.cbe.ca/news/background /poweroutage /numbers.html, August 2003.

Ed Oswald. Gmail bug exposes e-mails to hackers.
http://www.betanews.com/article/Gmail_Bug_Exposes_Emails_To_Hackers/1105561408,
January 2005.

Parasoft. Insure4++: Automatic runtime error detection. http://www.parasoft.com,
2004.

Ed Parry. Microsoft official: XP SP1 first product of trustworthy computing. Search-
Win2000.com, September 2002.

P.J. Plauger and Jim Brodie. Standard C. PTR Prentice Hall, Englewood Cliffs, NJ,
1996.

Lawrence Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In IEFE Proceedings, 1989.

145

[48]

[49]

[62]

[63]

Eric Rescorla. Is finding security holes a good idea? IEEE Security & Privacy, 3(1):14—
19, 2005.

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel Roy, and William Beebee.
Enhancing availability and security through failure-oblivious computing. Technical
Report 935, Massachusetts Institute of Technology, 2004.

Olatunji Ruwase and Monica Lam. A practical dynamic buffer overflow detector. In
Proceedings of the 11th Annual Network and Distributed System Security Symposium
(NDSS 2004), February 2003.

Donn Seeley. A tour of the worm. In Proceedings of 1989 Winter Useniz Conference,
pages 287 — 304, January 1989.

PolySpace Technologies. PolySpace C verifier. http://www.polyspace.com/c.htm,
September 2001.

USA Today. The cost of CodeRed. http://www.usatoday.com/tech/news/2001-08-01-
code-red-costs.htm, August 2001.

Timothy Tsai and Navjot Singh. Libsafe project.
http://www.research.avayalabs.com /project /libsafe/.

Vendicator. Stackshield. http://www.angelfire.com/sk/stackshield /index.html.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. In Network and Dis-
tributed System Security Symposium, pages 3—17, San Diego, CA, February 2000.

Watchfire. Ensuring security in the web application development life cycle.
www.watchfire.com/resources/ensuring-security-wdlc.pdf, 2004.

Wikipedia. Heisenbug. http://en.wikipedia.org/wiki/Heisenbug, May 2005.

John Wilander and Mariam Kamkar. A comparison of publicly available tools for
dynamic buffer overflow prevention. In Proceedings of the 10th Network and Distributed
System Security Symposium, pages 149-162, February 2003.

Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive
analysis to detect memory access errors. In Proceedings of the 10th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 327-336. ACM
Press, 2003.

Michael Zhivich, Tim Leek, and Richard Lippmann. Dynamic buffer overflow detection.
Submitted to the 13th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering, September 2005.

Misha Zitser. Securing software: An evaluation of static source code analyzers. Master’s
thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, August 2003.

Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. SIGSOFT Softw. Eng. Notes,
29(6):97-106, 2004.

146

