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ABSTRACT 

 

This thesis addresses the problem of verifying the equivalence of two circuits, one or 
both of which have undergone register retiming as well as logic resynthesis. The aim of 
the thesis is to improve the ability of Formality, an equivalence checking tool written at 
Synopsys, to handle retimed circuits. At the beginning of this project Formality already 
had an implementation of peripheral retiming, an algorithm that can handle a large set of 
retimed circuits. In this thesis, I explain the performance, usability and special case 
coverage problems found in the original implementation. I review other retiming 
verification algorithms and conclude that none of them would perform satisfactorily in 
Formality. Finally, I explain the modifications made to peripheral retiming in order to 
solve some of the identified issues and propose partial solutions for the problems that 
have not been solved yet.  
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1. Introduction 
 
This thesis addresses the problem of verifying the equivalence of two circuits, one or 

both of which have undergone register retiming as well as logic resynthesis. The aim of the 
thesis is to improve the ability of Formality to handle retimed circuits.  

 
Formality is an equivalence checking tool written at Synopsys that takes as input two 

digital designs and proves or disproves their functional equivalence. To accomplish this task 
without having to perform sequential verification, Formality first finds a one-to-one 
matching between the registers in the two designs and then carries out combinational 
verification of the logic between them. This approach works when the changes between the 
two designs do not span across registers.  

 
However, Synopsys’ Design Compiler and other synthesis tools have been improving 

their capabilities to handle register retiming. Register retiming is a circuit optimization 
technique that aims to shorten the clock cycle or reduce circuit area by moving registers 
forward or backward in a circuit design. Unlike most circuit optimization techniques, the 
changes made by retiming span across register boundaries, thus confusing the register 
matching algorithms. The purpose of register retiming in Formality is to rearrange the 
registers in such a way that Formality’s matching algorithms can identify matching registers.  

 
Prior to the beginning of this project, Formality already included an algorithm that could 

handle a large set of retimed circuits. However, there was room for improvement both in 
terms of performance and the ability to handle certain special cases. The aim of this thesis 
project was to identify and implement ways to improve the algorithm.  

 
In the rest of this thesis, I first give some background on Formality and combinational 

verification. After that, I explain register retiming and Formality’s retiming algorithm. After 
comparing the algorithm to other retiming verification algorithms, I conclude that the one 
used by Formality is the one that is best suited to Formality’s needs. Finally, I explain the 
modifications we made to the algorithm as part of this project and the improvements we 
achieved.  

 
2. Formality 

 
Synopsys is an EDA (Electronic Design Automation) company whose product line 

ranges from logic synthesis and verification tools to layout tools. These tools are designed to 
work together to facilitate a unified design flow. One of Synopsys' products is Formality, an 
equivalence checking tool that uses formal verification methods to prove or disprove the 
functional equivalence of two circuit designs.  

A circuit usually undergoes many transformations as it evolves from a high-level 
description in a register transfer level language such as Verilog or VHDL to a gate-level 
design. Many of the steps in this process are carried out automatically by synthesis software. 
Formality’s role in the design cycle is to ensure that no bugs were introduced into the circuit 
during any of these steps. Formality’s ability to perform RTL-to-RTL, RTL-to-gate and gate-
to-gate verification makes it applicable to many stages of the design cycle. 
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Formality takes as input two versions of a circuit designs. The first version is the reference 
design, a “golden design” which is assumed to meet the design specification. The second 
design is called the implementation design. In most cases, the implementation design is obtained 
by applying a series of synthesis or optimization steps to the reference design. Formality’s 
goal is to prove or disprove the functional equivalence of these two designs. Two circuits are 
functionally equivalent if for every input sequence there exists an initial state for registers in 
each of the designs such that both designs produce identical output sequences.  

As part of Synopsys’ suite of tools, Formality must be able to successfully verify any 
operation done by Synopsys’ Design Compiler (DC). DC is a logic synthesis tool that 
translates a circuit from a register transfer level (RTL) description to a gate-level description 
and performs logic optimization. Previously, Formality’s retiming algorithm was sufficiently 
powerful to support most of DC’s retiming operations. However, DC has recently enhanced 
its register retiming capabilities, and as a result Formality now must be able to verify a wider 
range of retimed designs.  

The next section explains Formality’s verification flow and why retiming poses a 
challenge to combinational verification tools.  
  
2.1 Formality’s Verification Strategy 

Formality uses combinational verification techniques to carry out the equivalence proof. 
To see how Formality transforms the verification of a sequential circuit into a combinational 
problem, consider the Mealy model of a sequential circuit shown in Figure 1 [1, page 85]. 
Every sequential circuit can be thought of as being composed of a register bank with one 
data input and one data output per each register, and a block of combinational logic with m 
primary inputs, n primary outputs, p inputs coming from the p registers and p outputs that 
serve as inputs to the registers. To verify equivalence of two of these circuits, we first try to 
find a one-to-one correspondence between the registers in the two designs and between the 
primary inputs and outputs of the two designs. If such a correspondence is found, it is 
sufficient to prove the equivalence of the combinational logic connecting all of these 
matched components in order to prove the equivalence of the entire circuits. This is a very 
important simplification because simulating a circuit as a finite state machine is very 
expensive. 

 

Combinational
       Logic

Register Bank 
with p registers

m  inputs n outputs

 
Figure 1: Mealy model of sequential circuits 
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However, this method is applicable only when the registers in the two designs can be 
matched. Register retiming changes the number, names and location of the registers in the 
circuit, thereby eliminating the one-to-one correspondence between the registers in the two 
designs. Therefore, algorithms for verification of retimed circuits must either not require 
register matching, or must somehow modify the circuit to enable the registers to be matched.  

 
Figure 2 summarizes how register retiming fits into Formality’s verification flow. 

Formality supports the concept of hierarchical verification, where components of a design, 
called cells, may themselves be complex circuit designs. To use Formality on a retimed 
design, the user must specify which cell in which design has been retimed, using the 
following command:  

 
set_parameter –retimed i:/TOP/add32 
 

The retimed cell could be the top-level design, or a cell further down the hierarchy. 
Formality calls the retiming algorithm on both the retimed cell and the cell that matches it in 
the other design; therefore, it is necessary to match the cells in the reference and 
implementation design prior to carrying out register retiming. After the cells have been 
matched, Formality prepares the appropriate cells for retiming by “flattening” them, which 
means recursively substituting each cell within the retimed cell with its lower-lever 
description, until the entire retimed cell is described using only primitive components such 
as gates and registers. After this step, Formality calls the register retiming algorithm on each 
of the two cells, and then proceeds with regular matching and verification.  

 Figure 2: Formality verification flow with retiming 

 
Verification

Matching of 
Cells 

Flattening 
of retimed 
cells 

Register 
Retiming 

Matching of 
inputs, outputs 
and registers  

 
The next section gives an overview of register retiming and some of the subtleties 

involved.  
 
 

3. Register Retiming 
 
Register retiming is a circuit optimization technique that moves registers forward or 

backward across combinational elements in a circuit. The aim of this procedure is to shorten 
the clock cycle or reduce circuit area.  

 
3.1 Basics of Register retiming  

There are two basic types of register retiming: Forward retiming and backward retiming. 
Forward retiming refers to removing a fixed number of registers from each input or a gate 
and inserting the same number of registers at the output. Conversely, in backward retiming 
we remove a fixed number of registers from the output of a gate and insert the same number 
of registers in front of each input [2].  
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Let us first consider an example of forward retiming in a circuit with simple edge-
triggered flip-flops. In the first part of figure 3, each input of the OR gate is driven by a q-
pin of a register. Furthermore, both of these registers have identical clock signals. Therefore, 
it is possible to remove one register from each input of the OR gate and instead insert one 
register on the output. Notice that the two registers in the original version became one 
register in the retimed version; therefore, the new circuit has a smaller area. Even more 
importantly, if we resynthesize the logic of the retimed circuit, it is possible to eliminate the 
first two gates, thereby making the circuit even smaller.  

 Figure 3: Forward Retiming 
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1. Before Retiming 2.After Retiming

3.After Resynthesis

 
Conversely, in backward retiming, a register is deleted from all the direct fanouts of a 

gate and a new register is inserted in front of every input of the gate. Figure 4 illustrates this 
concept and also shows how retiming can be used to shorten the clock cycle. Notice that 
before retiming, the critical path of the circuit in Figure 4 went through three gates, whereas 
after retiming, this path has been shortened to two gates. This allows us to increase the clock 
speed. 
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Figure 4: Backward retiming 
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In the next section, I present a more formal definition of retiming. 

 
 
3.2 Formalizing the Problem 

To simplify the handling of the circuit, we use notation developed by Leiserson et. al in 
[3]. As shown in Figure 5, each circuit can be represented as a directed graph G = (V, E), 
where each combinational element, each primary input and each primary output corresponds 
to a node v and each connection between two elements translates to an edge e(u,v). Each 
edge has a weight w(e) ≥ 0 which represents the number of sequential elements on that 
connection. We use the term isomorphic circuits to denote a pair of circuits whose graphs are 
isomorphic if we ignore edge weights. This is the case when the only differences between the 
two circuits are caused by register retiming; in other words, neither of the two circuits 
underwent logic resynthesis or any further optimization after register retiming. 

 
 
 
 
 
 
 
 
 

SL
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CLK

Q
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CLK

Q

G1
G2

G3

I1

I3

I2 O1
G3

G2

G1

O1

I1

I2

I3

1

0

1

0

00

0

Figure 5: Representing a circuit as a graph 

 
A “retiming” of the graph is an assignment of integers r(v) for each vertex v such that for 

each edge e(u,v), 
 

w’(e) = w(e) + r(v) – r(u); 
w’(e) ≥ 0 

 
Where the new set of weights, w’(e), represents the new locations of the registers after 

retiming.  
Intuitively, r(v) represents the number of latches shifted backward through element v (from 
the outputs to the inputs) as a result of the retiming. There are usually additional constraints 
on the weights imposed by clock period requirements and combinational delays. This system 
of equations and constraints is an integer linear program for which there exist efficient 
algorithms.  
 
3.3 Register Classes 

Until now the discussion has been restricted to D flip-flops. For the rest of this thesis, 
consider a register with the following signals: 

 
D:  synchronous data 
Q: output 
CLK: clock 
SL: synchronous load, also known as load enable 
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AL: asynchronous load 
AD: asynchronous data (loaded when AL is set to 1 – level-sensitive) 
 
This general sequential element can be made into a simple edge-triggered flip-flop, an 

edge-triggered flip-flop with a load-enable signal or a level-sensitive latch simply by setting 
the unnecessary signals to the appropriate constant values.  

 
To take the additional control signals into account, we define the term “register class” as 

a set of sequential elements that have functionally equivalent clock, AL and SL signals. This 
allows us to formulate the following rule: a set of registers can only be moved across a 
combinational element if all of the registers belong to the same register class. Figure 6 
illustrates why this restriction is necessary. Consider the case where we have an OR gate with 
a register on each if its inputs, and at time t R1's enable signal is set to 0 and R2's enable 
signal is 1. If we tried to retime these registers across the OR gate, we would not be able to 
find a value for SL of the new register that would preserve the behavior of the original 
circuit because no such value exists. 

SL

SD

CLK

Q

SL

SD

CLK

Q

Before Retiming

1

0

SL

SD

CLK

Q

After Retiming

?

 

Figure 6: Registers must belong to the same class in order to be retimed 

 
3.4 Reset State 

 Another issue we must consider is reset state. Many circuits include an external 
asynchronous load input to reset the registers to a known initial state when the circuit is 
switched on. After every retiming operation, it is necessary to compute the reset state of the 
new register so that the new circuit behaves equivalently to the old one after being reset. For 
forward retiming, the reset state of the new register(s) is computed by simulating the reset 
state forward across the gate. For backward retiming, however, it is not always possible to 
find an equivalent reset state. Consider the example shown in Figure 7. No combination of 
AD values for the two retimed registers can make each of the fanouts of the OR gate have a 
different value after one clock tick. 
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Figure 7: No reset state 

 
This section explained how register retiming works and what it is used for. In the next few 
sections, I talk about how to verify circuits that have been retimed. Although some of the 
verification algorithms have the word “retiming” in them, they are not algorithms that 
optimize circuits using register retiming; rather, they somehow “undo” the retiming so the 
circuits can be verified.  
 
 
4. Peripheral Retiming 
 

To carry out the “register retiming” step in the flowchart of Figure 2, Formality uses an 
algorithm called peripheral retiming [4]. The original version of this algorithm moves all 
registers to the periphery of the circuit, that is, stacks all registers in the circuit at either the 
primary inputs or primary outputs. The algorithm can be summarized as follows: 

 
1. Mark all registers inside sequential loops as fixed 
2. Retime all non-fixed registers as far forward as possible 
3. For all non-fixed registers that did not reach the output,  

         retime them as far backward as possible 
4. While there are non-peripheral non-fixed registers left,  

i. Duplicate their input logic cones 
ii. Retime them backward as far as possible 

 
An example of how this algorithm works is shown in Figure 8. In part a), the top register 

is marked as fixed and will not be retimed; the bottom register is retimed forward. In part b) 
we see that the top copy of the bottom register did not reach the output; therefore, in part c) 
its input logic is duplicated and in part d) the register is retimed backward to the inputs of 
the circuit.  

The algorithm does not require the circuits to be isomorphic and so it handles designs 
which have been resynthesized after retiming. However, the original algorithm and its 
implementation had several shortcomings. These shortcomings can be broken down into 
three categories: performance, usability, and coverage.  
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Figure 8: An example of peripheral retiming 

 
 
 

4.1 Performance Issues 
Performance issues cause the verification to take a long time or use a lot of memory. 

The peripheral retiming algorithm suffered from two performance issues: 
  

• By moving all registers to the periphery, the algorithm removed all opportunities for 
breaking up the logic cones at register boundaries and thus simplifying the problem. 
As a result, the subsequent combinational verification step was very slow because it 
had to verify the entire circuit as one huge logic cone.  

 
• For a large circuit, the duplication of input logic often made the circuit area grow 

disproportionately. This greatly increased the amount of memory the verification 
consumed, as well as lengthened the verification time.  

 
 

4.2 Usability Issues 
Usability issues make the verification difficult to set up or difficult to debug if it fails. 

The original implementation of peripheral retiming had the following two usability issues:  
 

• The duplication of input logic, apart from slowing down the verification, also made it 
much more difficult to debug a failing verification. When a verification fails, 
Formality displays schematics of both the reference and implementation designs with 
suggestions of where the problem areas might be. However, the excessive logic 
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duplication made it very difficult to relate these schematics to the original design the 
user submitted. 

 
• Formality propagates information about port equivalence only after retiming.  As a 

result, when several input pins on one of the retimed cells were equivalent to each 
other because they either had a common driver outside the retimed cell or because 
their drivers were set to be equivalent on the top level, register retiming did not infer 
this information and the user had to explicitly state all such equivalences in the 
verification setup.  

 
4.3 Coverage Issues 

These are special cases that were either overlooked in the initial implementation effort or 
that are very difficult to solve theoretically. 

 
• It is impossible to retime a register that is part of a cycle to the periphery of the 

circuit. The original algorithm handled this issue by not moving registers inside 
sequential loops at all. This approach worked for cases where none of the loops in 
either the reference or implementation design had been retimed; however, when 
those loops had been retimed, the algorithm failed.  

 
• A special case of the loop problem occurred when a register with an enable signal in 

one of the designs was replaced with a combination of a D-flip flop and a feedback 
multiplexer in the other design. The original code did not handle this case, although 
it could be solved by replacing all D-flip flops with feedback multiplexers by registers 
with an enable signal.  

 
• Backward retiming introduced problems with reset state. While in most cases 

Formality was calculating the reset state correctly, in section 3.4 I showed that there 
are cases when the reset state is impossible to determine.  

 
• The original implementation featured a very simplistic view of register classes. First, 

two registers were considered to be in the same class if and only if each control 
signal was equivalent to the corresponding control signal on the other register. 
However, when clock gating is introduced, two registers can be transparent at the 
same time and thus be in the same class even if the pairwise comparison of their 
control signals does not suggest so.  

 
• Furthermore, two signals were regarded as equivalent only if they had a common 

driver, instead of if they computed the same function.  This proved to be a big 
problem because Formality converts all registers in a design to a canonical form by 
putting a set of gates in front of each register. As a result, two latches were never 
identified as being in the same class. 

 
• Unmatched test outputs caused registers to be retimed to non-equivalent locations. 

The implementation design often has extra outputs inserted whose purpose is to aid 
in testing the circuit. These unmatched outputs often caused situations when a 
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register in one design needed to be retimed backward while a register in the other did 
not. 

 
 
Many of these issues could be handled by reimplementing the relevant part of the 

algorithm. However, some of these problems, such as the loop problem or the logic 
duplication, seemed fundamental enough that I decided to first investigate other retiming 
algorithms to determine whether there existed any other retiming verification algorithms that 
would perform better. The results of this investigation are detailed in the next section.  
 
5. Other retiming verification algorithms 

 
In this section, I review several retiming verification algorithms to determine whether the 

there exists an algorithm that does not suffer from the problems outlined in section 4.  
 
As I have explained in section 2, retiming breaks Formality’s combinational solvers by 

making it impossible to establish a one-to-one matching between the registers in the two 
designs. This suggests two ways one could conceivably solve this problem: 

 
1. Move the registers back to where they were before retiming, or to other locations 

where they can be matched (peripheral retiming falls under this category) 
2. Use sequential verification techniques which do not require register matching  
 
The rest of this section looks at these approaches in turn, outlines the most widely 

known algorithms in each category and explains their advantages and disadvantages.  
 

5.1 Algorithms to match retimed registers 
These algorithms fall into two main categories. The first category consists of algorithms 

that work only on isomorphic circuits and use Leiserson and Saxe’s retiming equation [3] to 
move registers in the two circuits to equivalent locations. The second category of algorithms 
consists of variations on peripheral retiming [4]. Because peripheral retiming was already 
explained in detail, I omit it in this section. 
 
5.1.1 Algorithms based on the retiming equation 

Consider two designs, one of which is a retimed version of the other (in other words, no 
modifications except retiming were done on the first design to obtain the second). Recall the 
retiming equation presented in section 3.2:  
 

w’(e) = w(e) + r(v) – r(u), 
w’(e) ≥ 0 

 
or:   r(u) = r(v) + w(e) – w’(e) 

 
We know the values of w(e) and w’(e) from the graphs of the two designs. That means 

that if we can find a set of values r(v) for all vertices v in one of the designs such that the 
retiming equation holds, we have proven that the second design is the result of a retiming 
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transformation performed on the first design. Because retiming does not change 
functionality, this also proves that the circuits are functionally equivalent.  

While this method is simple and many efficient algorithms have been developed to find 
the values of r(v) [5,6], it has the disadvantage of only working when neither of the circuits 
was resynthesized after retiming. This is an unacceptable restriction for Formality.  
 
5.2 Sequential Verification Algorithms 

There are two major techniques to carry out sequential verification: finite state machine 
(FSM) traversal and temporal logic. These algorithms are general enough to work for any 
two sequential circuits and do not take advantage of any retiming invariants. The next two 
sections explain these two techniques. 
 
5.2.1 FSM Traversal 

Any sequential circuit can be thought of as a finite state machine, where the state 
corresponds to the aggregate state of all the registers inside the circuit and the transitions 
between the states are determined by the Boolean logic connecting the registers. In addition, 
each state is associated with an output vector that is simply a vector of all the primary 
outputs.  

Two finite state machines are equivalent if for every sequence of input vectors they 
produce the same sequence of output vectors.   

Given this definition, the simplest way to check FSM equivalence is to exhaustively 
check each reachable state with all possible input vectors to make sure both circuits 
transition to an equivalent next state. Unfortunately, the runtime of this algorithm is 
exponential in both the number of primary inputs and number of registers in the circuits.  

To alleviate this problem, implicit FSM traversal algorithms represent the states of the 
FSM not as bit vectors, but as Boolean functions. More specifically, on each iteration, the 
algorithm computes a Boolean function bk that evaluates to true for all states that can be 
reached in k iterations. This approach shortens the maximum runtime to the sequential 
depth of the FSM (the maximum number steps needed to reach a state, over all states). 
While this is an improvement, in the worst case the sequential depth can still grow 
exponentially with the number of registers. For this reason, FSM traversal is not practical for 
large circuits and has not been widely deployed commercially [1]. 
 
5.2.2 Temporal Logic 

Like FSM traversal, temporal logic is another method for solving general sequential 
circuits and does not rely on any retiming invariants. One algorithm using temporal logic was 
developed by Ranjan et. al. in [7]. The essence of the algorithm lies in treating Boolean 
variables at different instances in time as independent variables. For example, the function 
computed by circuit shown in Figure 9 can be represented by a Boolean function o(t0) = 
a(t0)+a(t-1). 
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CLK

Q

a
o

 
Figure 9: Temporal logic 
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The advantage of temporal logic is that it converts the sequential verification problem 

into a combinational one that can be handled efficiently with Formality’s current 
combinational logic solvers. The disadvantage is that temporal logic is difficult to adapt to all 
the different kinds of registers and to feedback loops with multiple registers. 
 
5.3: Summary  

The ideal retiming verification algorithm would be general enough to work on all retimed 
circuits, yet would still be reasonably fast. Unfortunately, the findings in this previous 
sections show that currently no such algorithm exists. After investigating all the alternatives, 
peripheral retiming appears to be the best compromise between speed and wide applicability.  

Having established that peripheral retiming meets Formality’s needs best, I move on to 
explain how Formality’s implementation of peripheral retiming was modified during this 
project. 
 
 
6. Changes Made to Peripheral Retiming 

 
In section 4 I outlined the various shortcomings of the original implementation of the 

peripheral retiming algorithm. In this section I explain which of these issues have been 
resolved and how.  

I worked on this project with my coworker, Muzaffer Hiraoglu, who implemented the 
changes made to clock gating, described in section 6.4, and the removal of multiplexer loops, 
described in section 6.5. I implemented the rest of the modifications, which includes 
removing test outputs (section 6.1), changing the definition of register pin equivalence 
(section 6.2), and inferring port equivalence (section 6.3). I describe the changes that I 
directly implemented in more detail. 

 
6.1 Removing Test Outputs 

It is common practice in digital circuit design to insert test outputs into the design. The 
purpose of these test outputs is to be able to observe the values of individual registers during 
testing; they have no effect on the functionality of the circuit and may well be present in one 
of the versions of the design and absent in the other.  

Test outputs often used to cause the retiming transformation to fail. To understand why, 
consider Figure 10. Parts a) and b) show two versions of the original circuit, one with a test 
output and one without. Parts c), d) and e) show the result of applying peripheral retiming to 
each version of the circuit. The reference design did not need any modifications because the 
register was already at the output. In the implementation design, the extra logic between the 
register and the test output makes it impossible for the register to reach the test output. 
Therefore, the register is retimed backward, duplicating the OR gate.  

Although the algorithm succeeded in moving all registers to the periphery of the circuit, 
we still cannot match the registers because reference design now has only one register, 
whereas the implementation design has three. Furthermore, the OR gate duplication was 
completely unnecessary, because the test output would be ignored by the verification phase 
anyway. 
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Figure 10: The effect of test outputs on peripheral retiming 

 
 

To fix this problem, we need to somehow make the peripheral retiming algorithm ignore 
the test outputs and all the logic driving them (and not driving any other outputs). 
Unfortunately, there is no way for Formality to automatically identify a test output. One 
potential solution I considered was to treat all unmatched outputs as test outputs; however, 
Figure 10 shows that output port matching occurs only after retiming. Therefore, the user 
needs to provide information about test outputs in the setup. For the example in Figure 10, 
the user would type  

 
set_dont_verify_point i:/TOP/test 
 

to specify that the port “test” is a test output. Formality processes these user settings prior to 
register retiming; therefore, it is possible to obtain a list of points that have been set as don’t-
verify points. To ensure that register retiming ignores test outputs, I modified the flattening 
algorithm. Flattening is done by iterating over the outputs of the cell and flattening each of 
their logic cones. If an output is skipped in this process, that output and any logic driving it 

 16



that does not drive other outputs does not appear in the flat version. Therefore, the solution 
to this problem was to skip the test outputs in the flattening process. 

 
6.2 Changing the definition of equivalence of register pins 

As I explained in section 4, the original implementation of peripheral retiming 
considered two clock or enable signals to be equivalent if and only if they were both driven 
by the same port or logic component. The algorithm was able to skip over buffers and 
inverters; however, if two clock signals were functionally equivalent but driven by different 
gates, they were considered different. Figure 11 illustrates this situation: in all three cases, the 
registers belong to the same class; however, the old implementation considered the registers 
in figure 3-c to be in different classes.  
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Figure 11: Original definition of clock signal equivalence 

 
To solve this issue, I rewrote the function that identifies signal equivalence by using a 

BDD (Binary Decision Diagram) package to compute the logical function the signal 
represents. However, BDDs are expensive to build and computing the BDDs of all clock 
and enable signals every time we are checking the equivalence of two register classes would 
be very inefficient. Therefore, I used the algorithm shown in Figure 12 to check the 
equivalence of two clock or enable pins. 

 
checkPinEquivalence(pin P1, pin P2) { 
 If P1 and P2 are both constant,  

If they have the same constant value, return true; 
If they have different constant values, return false; 

 Else if P1 and P2 have the same driver pin  
  after skipping buffers and inverters, return true; 

 Else find or build and cache BDDs for P1 and P2;  
  If P1 and P2 have the same BDDs, return true; 
   Else return false. 
} 
Figure 12: checkPinEquivalence function pseudocode 
 

 
The BDDs are only computed for non-constant signals that do not have a common 

driver. A single register may be compared to many others to determine which ones are in the 
same class. To avoid recomputing BDDs, the function that recursively builds the BDDs 
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stores the BDD for the output pin of every logic component it encounters. These BDDs are 
stored only for the duration of peripheral retiming.  

If one of the clock or enable signals is driven by a large multiplier, the BDD 
construction algorithm runs out of memory. In this case, the checkPinEquivalence function 
returns False. This could potentially produce a false negative verification result if the pins 
were in fact equivalent. However, it is uncommon for a clock or enable pin to be driven by a 
large multiplier, so failing only in this isolated case is a big improvement over the original 
implementation. 

 
6.3 Inferring port equivalence 

The next part of this project was identifying clock and enable signal equivalence when 
each signal is driven by a different port, but these ports are in fact equivalent. There are two 
reasons why this could happen: either the ports are driven by the same port (or some other 
component) outside the retimed cell, or they are driven by separate ports but these ports 
have been set equivalent by the user during setup.  

It is very common that a clock port in the reference design corresponds to several clock 
ports in the implementation design. This happens when clock-tree insertion has been done 
on the reference design to balance the load on the clock source. Formality allows the user to 
specify that all the clock ports in the implementation design are equivalent to each other and 
to the one in the reference design by using the set_equivalence or set_user_match command. 
The set_equivalence command is usually used to indicate the equivalence of two ports in the 
same design and Formality processes this information by replacing both ports with a single 
port. The set_user_match command specifies equivalence across designs and helps 
Formality’s matching algorithms establish a correct matching of the inputs and outputs.  

Regardless of which cell is set as retimed, it is usually most convenient for the user to 
specify equivalence or a user match on the top-level design. For example, in Figure 13, the 
user would usually set an equivalence or a user match on the top level ports using one of the 
following commands: 

 
set_equivalence i:/TOP/topCLK1 i:/TOP/topCLK2 i:/TOP/topCLK3 
 
set_user_match r:/topCLK i:/topCLK1 i:/topCLK2 i:/topCLK3 

 
rather than specifying the same properties for the inner CLK, CLK1, CLK2 and CLK3 pins.  

 

 

Top Level Design Top Level Design 
topCLK topCLK1

CLK CLK1 
CLK2 
CLK3 

Retimed 
Design

Retimed 
Design

topCLK2

topCLK3

Reference Design Implementation Design

Figure 13: If a user sets topCLK to be equivalent to topCLK1, topCLK2 and topCLK3, retiming 
must infer that CLK1, CLK2 and CLK3 are equivalent ports 

 18



 
Regardless of whether the equivalence of the clock pins of a register is determined by 

comparing their drivers or by comparing their BDDs, it is necessary to take this user-
supplied information into account. At the time when register retiming is carried out, though, 
Formality has not yet propagated these user-set properties to the inner ports.  

Another case where it is necessary to infer port equivalence is if several ports on the 
retimed cell are in fact driven by the same pin outside the retimed design. This is illustrated 
in Figure 14: the ports CLK1, CLK2 and CLK3 should all be considered equivalent.  
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CLK2 
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Design

Retimed 
Design
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Figure 14: Retiming must infer that CLK1, CLK2 and CLK3 are equivalent ports 
 

To address these issues, I added a function that is called once on each retimed cell prior 
to moving any registers. The function finds equivalence classes of ports using a disjoint set 
data structure with a representative member for each set.  

The function first traverses the logic backward from every port of the retimed cell, 
skipping over buffers and inverters, and for each port finds the pin driving it. If any ports 
have the same driver pin or port, they are put in the same equivalence class. As a second 
step, the function iterates through a list of all port equivalences set by the user using either 
of the commands, and adds these relationships to the disjoint set structure.  

The CheckPinEquivalence function presented in part 3.1 queries this data structure every 
time it encounters a port and replaces the port with its representative member. This way, the 
driver pin comparison or the BDD comparison only ever encounters one port from each 
equivalence class. Note that the port is replaced only in data structures private to register 
retiming; the actual circuit is not modified.  
  
6.4 Clock Gating 

A third issue in register class identification was clock gating. Clock gating is an operation 
where the different register control signals are combined in such a way that the clock signal 
holds a constant value and only lets a rising edge through when the register is enabled. 
Figure 15 shows two registers, one with a gated clock and one without. Although the two 
registers have exactly the same functionality, they do not have equivalent clock signals and 
would be put into different classes by the original algorithm. 

The solution to this problem was to identify registers with gated clock signals and re-wire 
the control logic to the register so as to remove the clock gating. Once the clock gating is 
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removed, a simple pair-wise comparison of the different control signals suffices to determine 
register class equivalence. 
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Figure 15: A circuit with two registers, one with clock gating and the other without 
 
 
6.5 Mux Loops 

A special case of the loop problem that we were able to satisfactorily solve is mux loops. 
In some cases, a register with an enable signal in one design is represented in the other 
design as a D-flip flop with a feedback multiplexer (see Figure 16). This creates a similar 
problem as the one created by test outputs: the presence of a loop in one design and its 
absence in the other causes the two registers to be retimed to different locations and 
Formality’s matching algorithms would have no way of determining that these registers 
match.  

To solve this problem, the retiming algorithm now analyzes the logic surrounding D-flip 
flops and if it detects a mux loop, it replaces the mux and the D-flip flop with a load-enabled 
register. This load enabled register is then free to move backward or forward, and thus will 
reach the same location as the corresponding register(s) in the other design. 
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Figure 16: The reference design has a mux loop, the implementation has a D-flip flop 

 
 
7. Problems Not Solved 
 
7.1 Logic Duplication  

The second step of the peripheral retiming algorithm, which involves retiming all non-
fixed registers that hadn’t reached the outputs backward as far as possible, causes several 
problems: 
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 - The duplication of the logic cones preventing registers from being pulled back causes the 
circuit to grow disproportionately in size. This slows down the verification, increases 
memory consumption and makes the circuit difficult to debug if verification fails.  
 - The backward retiming step causes problems with reset state. 

 
To solve these issues, we considered modifying the retiming algorithm by eliminating the 

backward retiming stage. The modified peripheral retiming algorithm would go as follows: 
 
1. Mark all registers inside sequential loops as fixed 
2. Retime all non-fixed registers as far forward as possible 

 
In this modified algorithm, most of the registers do not reach the periphery of the 

circuit, but rather stop in front of some gate with unequal numbers of registers on its inputs. 
The fact that not all registers reach the periphery of the circuit would not be a problem if all 
registers stopped in equivalent locations in the two circuits, so that the registers could be 
matched. However, in practice, this property can only be guaranteed in isomorphic circuits.  

 
It is easy to see why the modified algorithm works for isomorphic circuits. Suppose that 

we have two equivalent, isomorphic designs. In both of the designs, each register keeps 
moving forward until it reaches some gate with unequal numbers of registers on its inputs 
that causes it to stop. Suppose that in one of the designs, a particular register r stops at gate 
g. Let g’ be the gate in the other design that is analogous to g. Because the circuits are 
equivalent, there must exist a register r’ in the other design which matches r. We know that r’ 
must be located before g’ because isomorphic circuits are just retimed versions of each other, 
and if r could not be retimed forward past g, then there is no way r’ could have been retimed 
forward past g’. Therefore, r’ must be located somewhere before g’, and when retimed 
forward as far as possible, r’ will stop right before g’, making it easy to match r with r’. 
 

Therefore, the modified algorithm works for isomorphic circuits. However, it 
produces false negatives in some cases when the circuits have been resynthesized after 
retiming. In particular, whenever logic optimization eliminates some of the gates where 
the registers would have otherwise stopped during the forward retiming step, the 
algorithm fails. Figure 17 shows an example of this. We can demonstrate using temporal 
logic that the two circuits in Figure 17 are equivalent: 
 

Reference design:  O = (a·b1 + b1) · c1 = b1 · c1 
Implementation design: O = b1 · c1 

 
However, if forward retiming is applied to both circuits, in the reference design the 

registers stop at the first AND gate and at the OR gate, whereas in the implementation 
design the registers go all the way to the output. This results in each design having a different 
number of registers, making it impossible to match the registers. Once again, this happened 
because the logic optimization step removed gates in the implementation design that would 
have otherwise stopped the registers. 
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Figure 17: A case where forward retiming alone is insufficient. 

 
 

Although the approach of eliminating the backward retiming step looked promising at 
first, we were unable to find a way to handle the problematic cases. Therefore, the 
implemented algorithm still uses backward retiming, with all the associated problems.  
 
7.2 Loops 

Registers inside loops present another difficult problem for peripheral retiming. The 
original implementation did not move these registers at all. This approach worked whenever 
there was no retiming done inside the loop and so the registers were in equivalent positions 
to begin with; however, we found that very frequently the registers in the loops had been 
retimed.  

It is not possible to move a register out of a loop; however, it is possible to move it 
within the loop. Therefore, one approach would be to try to find equivalent locations inside 
the loops. If combinational optimizations in the circuit were done only inside or outside the 
loop and didn’t cross the boundary of the loop, then it is be possible to find a location 
within the loop where the registers would match. One way to do this is to apply forward 
retiming to all registers, including those inside loops. The positions where the loop registers 
eventually stop are equivalent. As is shown in Figure 18, retiming a register forward across a 
loop boundary produces two registers, one that can freely move forward towards the output 
of the circuit, and another that comes back to the beginning of the loop. If there were more 
registers “stuck” at the beginning of the loop, we could combine each one in turn with the 
register in the loop and retime them forward one by one until they all reach the other side of 
the loop (except for the one register that was originally inside the loop). 
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Figure 18: Forward retiming of registers in loops 

 
This approach works in many cases; however, for some cases it actually causes a false 

negative. Figure 19 shows one such case. Using the original algorithm, the two registers on 
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the B input would be retimed backward and thus combined into one and matched with the 
register on the B input of the implementation design. Both registers in the loops are in 
equivalent locations. Therefore, this verification would succeed using the original algorithm. 

However, the enhancement of moving registers through loops would cause this case to 
fail. In the reference design, none of the registers can be retimed forward. On the other 
hand, in the implementation design the register on input B can now be combined with the 
register in the loop and retimed to the output. As a result, even if Formality managed to 
match the new register on the output with the two registers on input B in the reference 
design, the registers are not in equivalent locations and the verification would fail. 
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Figure 19: A case for which forward retiming through loops does not work 

 
Therefore, the current implementation of the algorithm still keeps registers inside loops 

fixed.  
 
 
8. Summary: Improvements Achieved 
 

The aim of the project was primarily to increase the scope of cases that the retiming 
algorithm in Formality handles. This raises some difficulty in quantifying improvements. 
Because there were no significant improvements in speed or memory consumption as a 
result of this project, the best way to quantify the improvements is to summarize which of 
the issues presented have been solved and which have not. That summary is presented in 
Table 1. 
 
Table 1: Summary of register retiming accomplishments 
 
Problem Solved? Solution  

(Implemented or proposed) 
Large logic cone to verify No Could be alleviated with 

cutpoints 
Logic duplication causes large memory usage No Could be eliminated by 

removing backward retiming 
Duplication makes debugging failing 
verifications difficult 

No Could be eliminated by 
removing backward retiming  

Port equivalence is not inferred from common Yes Equivalence classes of ports, 
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driver or from equivalence set on top level only use one port from each 
class 

Loops No Most cases could be solved by 
retiming registers inside loops 

Loops caused by Mux decomposition Yes Mux removal code 
Reset state issues No Could be eliminated by 

removing backward retiming 
Register control signals equivalent only if they 
are driven by the same pin  

Yes Use BDD comparison instead 
of comparing drivers 

Clock Gating Yes Remove clock gating 
Test outputs  Yes User must identify these test 

outputs 
 

To give an idea of the practical impact of these improvements, I summarize here the 
impact of the project on a sample set of 19 test cases that my coworker, Muzaffer 
Hiraoglu, investigated at the beginning of the project. Each of these test cases included 
some retimed components and was originally failing. Upon investigation of the test cases, 
my coworker found that 10 of the test cases were failing due to other reasons (mostly set-
up issues). Out of the remaining 9 test cases, two thirds were solved by this project.  

The number of test cases investigated is too low for this fraction to be statistically 
significant. However, the success of the project is also supported by anecdotal evidence 
from the marketing department. 

 
 

9. Conclusion 
 
This thesis project improved Formality’s performance on retimed circuits by solving 

many of the issues faced by the original implementation. Furthermore, as part of this project 
I examined alternative retiming verification algorithms and determined that no other 
algorithm is better suited for use in Formality. Finally, in this thesis I have outlined partial 
solutions for the problems that have not yet been satisfactorily solved.  

Most of the academic papers on retiming verification restrict their scope to the special 
case of isomorphic circuits. However, isomorphic circuits are of little practical interest and 
there have been very few attempts at solving this problem for the general case of retimed 
and resynthesized circuits. A lot of work remains to be done to find a practical solution to 
the retiming verification problem. 
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