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Abstract

A system-level checkpointing mechanism, with global knowledge of the state and
health of the machine, can improve performance and reliability by dynamically de-
ciding when to skip checkpoint requests made by applications. This thesis presents
such a technique, called cooperative checkpointing, and models its behavior as an on-
line algorithm. Where C is the checkpoint overhead and I is the request interval,
a worst-case analysis proves a lower bound of (2 + bC

I
c)-competitiveness for deter-

ministic cooperative checkpointing algorithms, and proves that a number of simple
algorithms meet this bound. Using an expected-case analysis, this thesis proves that
an optimal periodic checkpointing algorithm that assumes an exponential failure dis-
tribution may be arbitrarily bad relative to an optimal cooperative checkpointing
algorithm that permits a general failure distribution. Calculations suggest that, un-
der realistic conditions, an application using cooperative checkpointing may make
progress 4 times faster than one using periodic checkpointing. Finally, the thesis
suggests an embodiment of cooperative checkpointing for a large-scale high perfor-
mance computer system and presents the results of some preliminary simulations.
These results show that, in extreme cases, cooperative checkpointing improved sys-
tem utilization by more than 25%, reduced bounded slowdown by a factor of 9, while
simultaneously reducing the amount of work lost due to failures by 30%. This the-
sis contributes a unique approach to providing large-scale system reliability through
cooperative checkpointing, techniques for analyzing the approach, and blueprints for
implementing it in practice.
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Chapter 1

Introduction

“It is through cooperation, rather than conflict, that your greatest successes will be

derived.”

- Ralph Charell

A system-level checkpointing mechanism, with global knowledge of the state and

health of the machine, can improve performance and reliability by dynamically decid-

ing when to skip checkpoint requests made by applications. Consequently, the debate

regarding which agent (the application or the system) should be responsible for de-

ciding when to perform these checkpoints is a false dichotomy. This thesis proposes

a system called cooperative checkpointing, in which the application programmer, the

compiler, and the runtime system are all part of the decision regarding when and

how checkpoints are performed. Specifically, the programmer inserts checkpoints at

locations in the code where the application state is minimal, placing them liberally

wherever a checkpoint would be efficient. The compiler then removes any state which

it knows to be superfluous, checks for errors, and makes various optimizations that

reduce the overhead of the checkpoint. At runtime, the application requests a check-

point. The system finally grants or denies the checkpoint based on various heuristics.

These may include disk or network usage information, reliability statistics, and so on.

High-performance computing systems typically exploit massive hardware par-
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allelism to gain performance, at the cost of the applications being more failure

prone. For example, the installation of IBM’s BlueGene/L supercomputer (BG/L) at

Lawrence Livermore National Labs (LLNL) will have 65,536 nodes [1], and millions

of components. The failure of an individual hardware or software component in a

running job’s partition can often cause the failure of that job. We refer to any such

component failure simply as a failure. Because components do not fail independently,

the probability of a job failing grows superlinearly with the number of nodes in its

partition; such growth outpaces the improvements in component reliability. Jobs on

these systems may run for weeks or months at a time, so it is vital to minimize the

amount of recomputed work following a failure. The lack of an effective method for

mitigating the cost of failures would be catastrophic.

A standard solution to this problem is to implement a checkpointing (and rollback-

recovery) scheme. Checkpointing involves periodically saving the state of a running

job to stable storage, allowing for that job to be restarted from the last successful

checkpoint in the event of a failure. Checkpoints have an associated overhead, usually

dictated by the bottleneck to the stable storage system. Therefore, while there is a risk

associated with not checkpointing, there is a direct and measurable cost associated

with performing the checkpoints. As systems grow larger, this overhead increases.

That is because there is greater coordination necessary to guarantee a consistent

checkpoint, as well was more data that requires saving. The central question in the

checkpointing literature asks, “When should a job perform checkpoints?” Optimally,

every checkpoint is used for recovery and every checkpoint is completed immediately

preceding a failure. A central insight of this thesis is that skipping checkpoints that

are less likely to be used for recovery can improve reliability and performance.

The literature generally advises to checkpoint periodically, at an interval deter-

mined primarily by the overhead and the failure rate of the system. These schemes can

be further subdivided into two distinct categories: application-initiated and system-

initiated checkpointing. In application-initiated checkpointing, the job itself is ulti-

mately responsible for determining when checkpoints are performed. The application

programmer places checkpoints in the code in a quasi-periodic manner, often corre-
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sponding to iterations of an outer loop. These checkpoints are performed irrespective

of system-level considerations, such as network traffic. System-initiated checkpointing

is precisely the opposite: the system forces the job to pause and saves its entire state.

These checkpoints require greater coordination overhead, and are often needlessly

large.

Working to decide between application-initiated and system-initiated checkpoint-

ing, however, is to beg the question. Both the application and the system have

information relevant to the value of a checkpoint; to ignore either one is to relinquish

a potential gain. The system presented in this thesis may be thought of as a hybrid

between application-initiated and system-initiated checkpointing, because it permits

cooperation between two such mechanisms. The application requests checkpoints,

and the system either grants or denies each one. Currently, all application-initiated

checkpoints are taken, even if system-level considerations would have revealed that

the checkpoint is inadvisable. (And vice versa.) Many checkpoints are taken even

though they are grossly inefficient or have a low probability of being used for recov-

ery. If the heuristics used by the system are reasonably confident that a particular

checkpoint should be skipped, a benefit is conferred to both parties. That is, the

application may finish sooner or at a lower cost because checkpoints were performed

at more efficient times, and the system may accomplish more useful work because

fewer checkpoints were wasted.

This thesis introduces and describes cooperative checkpointing, develops a theo-

retical analytical model, and addresses the questions involved with implementing it

in practice. The chapters of the thesis answer the following broad questions in order:

• What are some of the challenges related to reliability and performance in large-

scale systems, and what approaches have previously been attempted to address

them? What is cooperative checkpointing and how does it confer the advantages

of previous approaches while simultaneously avoiding many of their pitfalls?

(Cooperative Checkpointing, Chapter 2)

• How can we model and analyze cooperative checkpointing? Under what con-

15



ditions is cooperative checkpointing provably better than other methods, and

how much better is it? (Algorithmic Analysis, Chapter 3)

• How might cooperative checkpointing be used in a real-world system? What

supporting infrastructure does it require? What kind of performance and reli-

ability improvements might be seen in practice? (Embodiment, Chapter 4)

The final chapter (Contributions, Chapter 5) summarizes the results, outlines some

open research questions, and reviews the unique contributions of this thesis.

16



Chapter 2

Cooperative Checkpointing

“It is one of the beautiful compensations of this life that no one can sincerely try to

help another without helping himself.”

- Charles Dudley

In order to understand and appreciate cooperative checkpointing, it is necessary

to understand the terminology, challenges, and previous approaches to providing re-

liability through checkpointing. This chapter contains a summary of recent results

regarding checkpointing techniques and of the failure behavior of real systems. In ad-

dition, it introduces basic terms and definitions related to checkpointing and reliabil-

ity. The material presented here will suggest two important trends in supercomputing

systems, with implications for checkpointing:

• Increasing system complexity will necessitate more frequent checkpoints.

• Increasing system size will imply larger checkpointing overheads.

Taken together, these trends imply that periodic checkpointing will not be feasi-

ble as a long-term solution to system failures for providing reliability. The chapter

concludes with the introduction of cooperative checkpointing, a unique approach to

checkpointing that addresses these challenges.
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High performance computing systems are tending toward being larger and more

complex. For example, a 64-rack BlueGene/L system contains 65,536 nodes and

more than 16 terabytes of memory. Applications on these systems are designed to

run for days to months. Despite a design focus on reliability, failures on such a large-

scale machine will be relatively frequent. Checkpointing is still the best solution

for providing reliable completion of these jobs on inherently unreliable hardware.

Unfortunately, the rate at which the data sets are growing is outpacing growth in

the speed of stable storage and networks. In other words, there is an I/O bottleneck

facing these massive clusters when they attempt to save their state. Taken together,

it is clear that standard checkpointing techniques must be reevaluated [10].

Many high-performance computing applications are executed repetitiously [16],

making their behavior amendable to modeling. After a single run of the application,

a plethora of information can be harvested to improve the performance of future runs.

For example, users will be able to more accurately estimate the running time of the

application if the system can say, “Last time you ran this job on input X, it took

time T .” Memory usage, caching strategies, physical thread layout on the machine,

and so on, can all be improved by learning behaviors from previous runs of a job.

This kind of application profiling can provide the user and system with information

that can be useful for improving both the performance and utility of the machine.

2.1 Terms and Definitions

Define a failure to be any event in hardware or software that results in the immediate

failure of a running application. At the time of failure, any unsaved computation is

lost, and execution must be restarted from the most recently completed checkpoint.

There is a downtime parameter (D) which measures for how long a failed node is

down and unable to compute. For software errors that simply cause an application

to crash, D may be negligible. If, instead, the failure is the permanent destruction

of a critical hardware component, and no spare components can be used in its place,

the downtime may be much longer.
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When an application initiates a checkpoint at time t, progress on that job is paused

for the checkpoint overhead (C) after which the application may continue. This

overhead may be treated either as a constant (noted as C) or as being dependent

on the system conditions (Ci for some i). This thesis addresses both cases. The

checkpoint latency (L) is defined such that job failure between times t and t + L

will force the job to restart from the previous checkpoint, rather than the current

one; failure after time t + L means the checkpoint was successful and the application

can restart as though continuing execution from time t. It was shown [22] that L

typically has an insignificant impact on checkpointing performance for realistic failure

distributions. Therefore, this thesis treats C ≈ L. There is also a checkpoint recovery

parameter (R) which is the time required for a job to restart from a checkpoint.

I1 C1 I2 C2I2 (again) I3 C3 I4

= Job Failure Ci = Overhead

time

start end

D+R = Downtime/Recovery

D+R

Figure 2-1: Behavior of a job that checkpoints roughly periodically. In this example,
a job failure occurs just before the start of the second checkpoint, requiring I2 to be
recomputed. The intervals are not drawn to scale.

Figure 2-1 illustrates typical application behavior. Periods of computation are

occasionally interrupted to perform checkpoints, during which job progress is halted.

Job failure forces a rollback to the previous checkpoint; any work performed between

the end of that checkpoint and the failure must be recomputed and is considered

wasted. Because they are not used for rollback, C2 and C3 are also wasted. Appli-

cations that run for weeks or months will have hundreds of these checkpoints, most

of which will never be used. One unfortunate characteristic of assuming a Poisson

failure distribution is that any checkpoint is modeled as being equally likely to be

used for rollback; making it difficult to argue for some being more important than

others until after the fact.

From a system management perspective, the most valuable resource in a super-
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computer system is node time. Define a unit of work to be a single node occupied

for one second. That is, occupying n nodes for k seconds consumes work n · k node-

seconds. For the purposes of job scheduling and checkpointing, work is the constrained

resource for which we optimize. Thus, a node sitting idle, recomputing work lost due

to a failure, or performing a checkpoint is considered wasted work. Similarly, saved

work is node time spent performing calculations required by the job that are success-

fully saved by a checkpoint, or by the job’s completion. Saved work never needs to

be recomputed. Checkpointing overhead is never included in the calculation of saved

work. For example, if job j runs on nj nodes, and has a failure-free execution time

(excluding checkpoints) of ej, then j performs nj · ej node-seconds of saved work.

If that same job requires Ej node-seconds, including checkpoints, then a failure-free

execution effectively wastes Ej − ej node-seconds. This definition highlights an im-

portant observation: checkpointing wastes valuable time, so (ideally) it should be

done only when it will be used in a rollback to reduce recomputation.

I I C I

= Failure/Downtime/Restart C = Overhead I = Recomputation

time

start

I C I C I

start

I C I CI I

start

(b)

(a)

(c) I/2C

...

...

...

Figure 2-2: Three execution prefixes in which failures cause work to be lost, but
checkpoints manage to save some work as well. The length of each interval in seconds
is denoted by the inset text.

The concept of saved work is critical to understanding the analysis of cooperative

checkpointing in Chapter 3. Figure 2-2 shows some example executions that help

illustrate the concepts of saved and wasted work. Run (a) shows two intervals of
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length I seconds being executed and promptly checkpointed with overhead C seconds.

These two intervals were checkpointed before a failure occurred, so they count toward

saved work; the overheads do not. The execution ends with an interval of work being

computed, but a failure occurs before it can be saved. That work is wasted. In

all, execution (a) contains I + 2C units of wasted work and 2I units of saved work.

Run (b) contains two failures. The first failure happens just after an interval of

executed work, but before that interval can be checkpointed. That interval must be

recomputed. That recomputation is saved, and counts toward saved work. Thus,

run (b) shows 2I + 2C units of wasted work, and 2I units of saved work. Finally,

execution (c) performs two intervals of work before checkpointing, and a failure occurs

immediately after that checkpoint is completed. As a result, both intervals are saved,

and nothing must be recomputed. The second failure happens midway through an

interval, meaning those I
2

units of work are lost. In all, run (c) gives I
2

+ 2C units of

wasted work and 3I units of saved work.

2.2 Failure Behavior

Algorithmic improvements or increased hardware resources are often overshadowed

by reliability issues. Several early studies in the 1980’s and 1990’s looked at the

failure trends and developed theoretical models for small to medium-scale computer

systems [6, 7, 8, 14]. There have been several approaches to dealing with reliability

problems, including managing system failures. Most theoretical work focuses on pro-

viding fail-over mechanisms, such as hardware or software redundancy [13]. These

efforts, in practice, not only add overhead and complexity to the programming envi-

ronment, but also to the application running environments. Large-scale redundancy

is typically not fiscally practical for supercomputers. Thus, the most common solu-

tion is checkpointing; that subject is covered in detail in Section 2.3. In order for

any scheme to be effective, one must develop useful models of the failure behavior of

supercomputers.

Based on data from smaller computer systems, researchers developed a model
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of failures as behaving like a Poisson arrival process. That is, failure inter-arrival

times are random and independent of one another. Furthermore, these failures were

modeled as being independent and identically distributed across nodes in a system.

Failures under this model are unpredictable and nodes are treated as being equivalent.

Recent studies of large-scale systems, however, have revealed that these assumptions

may not be correct [26, 15]. These studies harvested failures from both large-scale

clusters of commodity machines, as well as from a BlueGene/L prototype. Failures

were found to be

1. Not independent. Failures are dependent on system conditions both in the node

itself and on physically/logically connected nodes. Particularly when jobs run

on numerous nodes simultaneously, the assumption that failures occur inde-

pendently does not hold. Failures frequently cause, and are caused by, other

failures.

2. Not Identically Distributed. Failures seem to be temporally and spatially corre-

lated. The probability distribution is not remotely identical across the system.

In fact, both the AIX cluster and BG/L prototype showed that the reliability

of nodes is distributed exponentially; there are a few troublesome nodes, but

most of them are fairly reliable.

3. Not Poisson. In the past three years, a number of studies of supercomputer

failure distributions [27, 18, 15] have agreed with an earlier study [22] of work-

station failure distributions, which contends that failures in real systems do

not behave like a Poisson arrival process. Furthermore, equations derived from

this Poisson assumption and meant to predict the performance of checkpointing

schemes do not accurately model the behavior of these schemes in the presence

of real failures.

4. Not Unpredictable. Using simple statistical algorithms, it has been shown [27]

that failures are not unpredictable; they are often preceded by regular patterns

of misbehavior that permit prediction of both when and where many failures
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will occur. For failures in a commodity cluster, an algorithm combining linear

time-series modeling and Bayesian learning yielded accurate prediction of 70%

of the failures well in advance.

2.2.1 Event Prediction

A realistic failure model for large-scale systems should admit the possibility of critical

event prediction. Many previous research efforts have looked at analyzing event logs

and other system health signals [6, 7], and some have used this to make event pre-

dictions [32, 34]. Only more recently have these predictions been used effectively to

improve system performance [9, 19]. The idea of using event prediction for proactive

system management has also been explored [28, 25], as has a mathematical approach

[33].

Critical event prediction is not science fiction. For example, a BG/L prototype

revealed itself to have one very predictable type of problem: ECC memory failures.

Before ECC memory fails, it will first endure a period during which it is correcting bit

errors. This activity can be monitored, and makes it simple to forecast a failure on the

node containing that memory. These predictable ECC memory failures were one of the

most common reasons for node and job failure during the period in which the system

was monitored. It would be invaluable, from a system management perspective, to

utilize this predictive power to improve performance and reliability.

Rare events, such as critical failures, can significantly affect system performance.

Indeed, job failures could easily make a bigger impact on performance than a par-

ticular choice of job scheduling algorithm (for example). Fortunately, many of these

failures happen in a predictable manner. Sahoo and Oliner [26] presented a hybrid

algorithm for event prediction and demonstrated the effectiveness of this algorithm

on actual cluster failure data. The algorithm was able to predict critical failures

with up to 70% accuracy on a Linux cluster with 350 nodes, using a combination of

Bayesian learning [3, 20, 4] and time-series modeling [5]. This work demonstrated the

importance of system health monitoring and event prediction, as well as its feasibility.
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2.2.2 Fault-aware Job Scheduling

In light of the significant impact of failures on performance, Oliner demonstrated

that event prediction can be used to improve job scheduling [19]. In particular, he

presented two new job scheduling algorithms for BlueGene/L systems [1] that built

on Elie Krevat’s original algorithm [12]. These two scheduling heuristics each used a

different model of event prediction. One algorithm, the balancing algorithm, expected

an event prediction system that took as input a partition and a time window and

would return a level of confidence in the partition. For example, a return value of

0.95 would indicate a 95% chance that the given partition would fail in the given time

window. The tie-break algorithm expected instead a predictor that would return a

boolean: true if the partition was expected to fail and false otherwise. That predictor

would be wrong with some probability.

These algorithms were tested on a BlueGene/L simulator, written specifically for

that research. This event-driven Java simulator was fed real supercomputer job logs

from systems at NASA, SDSC, and LLNL [11]. It was also fed failure data from a large

AIX cluster; the data was modified to match with the architecture of the associated

job logs. This work demonstrated two important results: event prediction only needs

to be about 10% accurate to benefit job scheduling and even low-accuracy event

prediction can improve performance by up to a factor of 2. Such significant results

motivated research into other areas where event prediction could yield a benefit,

namely, checkpointing.

2.3 Checkpointing

Checkpointing for computer systems has been a major area of research over the past

few decades. The goal of high performance computing is to obtain maximum efficiency

from given resources. System failures (hardware/software, permanent/transient), and

the resulting job failures, are a significant cause of degraded performance. Recently,

there have been a number of studies on checkpointing based on certain failure char-

acteristics [23], including Poisson distributions. Plank and Elwasif [22] carried out
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a study on system performance in the presence of real failure distributions and con-

cluded that it is unlikely that failures in a computer system would follow a Poisson

distribution.

The job workloads themselves can be of importance for the performance evaluation

of high performance computing systems. The workloads considered by Plank and

Elwasif for their study are artificial. Similarly, the communication/network topologies

can play an important role in regard to checkpointing or job scheduling strategies for

HPC systems. Tantawi and Ruschitzka [31] developed a theoretical framework for

performance analysis of checkpointing schemes. In addition to considering arbitrary

failure distributions, they present the concept of an equicost checkpointing strategy,

which varies the checkpoint interval according to a balance between the checkpointing

cost and the likelihood of failure. Such a strategy would be costly in practice, because

it is expensive to checkpoint at arbitrary points in a program’s execution.

Some applications may work with state already in stable storage. For most high

performance applications, however, the state is kept entirely in memory. Indeed, one

of the primary reasons for using a supercomputer is not the speed, but the ability to

work on a larger problem size. As such, this thesis does not address issues that arise

when state on disk is modified, and assumes that all application state is in memory.

The checkpointing questions are: what must be saved to stable storage, and when

should it be saved?

2.3.1 System-Initiated Checkpointing

System-initiated checkpointing is a part of many large-scale systems, including IBM

SPs. This means that the system can checkpoint any application at an arbitrary

point in its execution. It has been shown that such a scheme is possible for any MPI

application, without the need to modify user code [30]. Such an architecture has

several disadvantages, however: implementation overhead, time linear in the number

of nodes to coordinate the checkpoint, lack of compiler optimization for checkpoints,

and a potentially large amount of state to save. For these reasons, many supercom-

puting systems, such as BG/L, do not support system-initiated checkpointing. Still,
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the ability of the system to force a checkpoint is a powerful tool that can be used to

improve QoS [17].

2.3.2 Application-Initiated Checkpointing

Application-initiated checkpointing is the dominant approach for most large-scale

parallel systems. Recently, Agarwal et al [2] developed application-initiated check-

pointing schemes for BG/L. There are also a number of studies reporting the effect

of failures on checkpointing schemes and system performance. Most of these works

assume Poisson failure distributions and fix a checkpointing interval at runtime. A

thorough list can be found elsewhere [22], where a study on system performance in

presence of real failure distributions concludes that Poisson failure distributions are

unrealistic. While that work considers real failure distributions, it uses artificial job

logs. Similarly, a recent study by Sahoo et. al. [29, 35], analyzing the failure data

from a large scale cluster environment and its impact on job scheduling, reports that

failures tend to be clustered around a few sets of nodes, rather than following a partic-

ular distribution. They also report how a job scheduling process can be tuned to take

into account the failures on a large-scale cluster by following certain heuristics [35].

Only in the past few months (2004) has there been a study on the impact of realistic

large-scale cluster failure distributions on checkpointing [18].

2.3.3 Characteristics

Application-initiated and system-initiated checkpointing each have pros and cons.

This section gives a summary of some of these properties, and presents them in

Table 2.1.

• Semantics. The checkpointing scheme is aware of the semantics of the data,

and can save only that data which is needed to recreate the application state.

• Minimal-State Placement. The checkpoints are performed at places in the code

where application state is minimal, such as at iterations of an outer loop.
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• Portable. Checkpoints may be used for restart on machines that are different

from the ones on which the checkpoint was made. This is useful for heteroge-

neous systems.

• Compiler Optimizations. At compile time, the application can be optimized to

more efficiently perform the checkpoints.

• Runtime. The checkpointing policy is decided at runtime, and can consider

such factors as the size of the application’s partition, system health, and net-

work traffic. Typically, this means picking a periodic checkpointing interval at

runtime.

• Kernel State. The checkpointing mechanism is able to save and restore kernel-

level information, such as PID or PPID.

• Transparent. User intervention is not required to accomplish checkpointing;

checkpoints are placed and performed transparently.

Characteristic System Application

Semantics ×
Minimal-State Placement ×
Portable ×
Compiler Optimizations ×
Runtime ×
Kernel State ×
Transparent ×

Table 2.1: Comparison of the characteristics of the two major approaches to check-
pointing: application-initiated and system-initiated. Generally, system-initiated pro-
vides transparent, coarse-grained checkpointing; application-initiated provides more
efficient, fine-grained checkpointing. Ideally, a checkpointing system would possess
all of these features.

Certainly, Table 2.1 is neither complete nor strictly precise. For example, systems

that are responsible for checkpointing user applications may use some portable inter-

mediate representation, thus providing Portability. The entries in the table, however,

apply to most checkpointing schemes; the table is a useful reminder of the tradeoffs

made by designers attempting to construct reliable systems.
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2.4 Cooperative Checkpointing

Cooperative checkpointing is a set of semantics and policies that allow the applica-

tion, compiler, and system to jointly decide when checkpoints should be performed.

Specifically, the application requests checkpoints, which have been optimized for per-

formance by the compiler, and the system grants or denies these requests. The general

process consists of three parts:

1. The application programmer inserts checkpoint requests in the code at places

where the state is minimal, or where a checkpoint is otherwise efficient. These

checkpoints can be placed liberally throughout the code, and permit the user

to place an upper bound on the number and rate of checkpoints.

2. The compiler optimizes these requests by catching errors, removing dead vari-

ables, and assisting with optimization techniques such as incremental check-

pointing. In the case of cooperative checkpointing, the compiler may move the

checkpoint request to a slightly earlier point in time; this permits a number of

additional performance improvements.

3. The system receives and considers checkpoint requests. Based on system con-

ditions such as I/O traffic, critical event predictions, and user requirements,

this request is either granted or denied. The mechanism that handles these

requests is referred to as the checkpoint gatekeeper or, simply, the gatekeeper.

The request/response latency for this exchange is assumed to be negligible.

Cooperative checkpointing appears to an observer as irregularity in the check-

pointing interval. If we model failures as having an estimable MTBF, but not much

else, then periodic checkpointing is sensible (even optimal). But once these failures

are seen to be predictable, and other factors are considered, this irregularity allows

us to do much better. The behavior of applications as they choose to skip different

checkpoints is illustrated in Figure 2-3.
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I1 I2 C2 I3 I4

= Job Failure/Downtime/Restart Ci = Overhead Ii = Recomputation

time

start end

I1 C1 I2 C2I2 I3 I4

start end

I1 C1 I2 C2I2 I3 C3 I4

start end

(a)

(b)

(c)

Figure 2-3: Three job runs in which different checkpoints are skipped. Run (a) shows
typical periodic behavior, in which every checkpoint is performed. In run (b), the
final checkpoint is skipped, perhaps because the critical event predictor sees a low
probability that such a checkpoint will be used for rollback, given the short time
remaining in the computation. Finally, run (c) illustrates optimal behavior, in which
a checkpoint is completed immediately preceding a failure.

2.4.1 Policy

The primary policy question with regard to cooperative checkpointing is, “How does

the gatekeeper decide which checkpoints to skip?” Chapter 4 suggests a gatekeeper

that uses a combination of network traffic data and critical event predictions to make

its decisions. There are, however, many heuristics that the gatekeeper may use,

including:

• Network Traffic. Network I/O is the central bottleneck with respect to saving

state to disk. The gatekeeper may choose to skip a checkpoint if the traffic

conditions suggest that the checkpoint would take unacceptably long.

• Disk Usage. Similarly, the shared stable storage itself may be the bottleneck,

if the network bandwidth leading to the disks outpaces the media’s available

write bandwidth.

• Job Scheduling Queue. If a high-priority job is waiting for a running job’s

partition, it may be profitable to risk skipping checkpoints to allow that waiting
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job to run sooner. For example, if a single-node job is blocking a 128-node job,

then we would rather skip some of the small job’s checkpoints to free up that

node as soon as possible.

• Event Prediction. If a failure is likely to occur in the near future, the gatekeeper

should choose to save the state before that happens. On the other hand, if

system conditions are stable, performing the checkpoint may be a waste of time

and resources.

• Logically Connected Components. Recent work [24] has explored the notion of

a connected component of processes in a job. Roughly, a connected component

is a subset of processes among which there is a dependency. Thus, the failure

of one connected component may not necessitate the rollback of the entire job,

but merely that component.

• QoS Guarantees. Many systems make QoS guarantees to users in the form of

deadlines or minimum throughput. Cooperative checkpointing can be used as

a tool to help keep those promises. For example, a job that started later than

expected can be made to skip checkpoints in order to reduce its effective running

time, thereby potentially meeting a deadline it would otherwise have missed.

Note that most of these heuristics cannot and should not be considered by the appli-

cation programmer at compile-time. At the same time, there are many aspects of the

internal logic of an application (data semantics, control flow) that cannot and should

not be considered by the system at runtime. Neither application-initiated nor system-

initiated checkpointing satisfactorily considers all these factors in deciding when to

perform checkpoints. This observation is central to cooperative checkpointing.

2.4.2 Characteristics

Recall Table 2.1 from Section 2.3.3, which summarized some of the advantages and

disadvantages of application-initiated and system-initiated checkpointing. Table 2.2
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includes the addition of cooperative checkpointing, which confers nearly all the ben-

efits of the two standard schemes.

Characteristic System Application Cooperative

Semantics × ×
Minimal-State Placement × ×
Portable × ×
Compiler Optimizations × ×
Runtime × ×
Kernel State × ×
Transparent ×

Table 2.2: Comparison of the characteristics of the two major approaches in addition
to cooperative checkpointing. Cooperative checkpointing provides nearly all of the
benefits of the other schemes, with the exception of transparency. In the absence of
better compilers or developer tools, however, transparency necessarily comes at the
cost of smaller, more efficient checkpoints; that is not an acceptable tradeoff for most
high performance applications.

Checkpoint requests are placed by the application programmer, and can be posi-

tioned so as to minimize the size of the checkpointed state. Similarly, the semantics of

the data can be captured by the behavior of the checkpoint if the request is granted,

and the checkpoints can easily be made portable. Because the potential checkpoint

positions are fixed at compile-time, the compiler may make optimizations.

On the other side, the system also participates in the checkpointing process by

granting or skipping each checkpoint request. It is empowered to consider runtime

properties of the system when making these decisions, and can include kernel state

when taking a checkpoint.

Transparency is difficult to achieve without sacrificing knowledge of the data se-

mantics and application state behavior. That knowledge translates to smaller check-

points, and, consequently, smaller checkpointing overheads. In the domain of super-

computing, performance trumps simplicity.
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Chapter 3

Algorithmic Analysis

Cooperative checkpointing is unlike typical checkpointing schemes in that it decom-

poses the problem of deciding when to checkpoint into a static part (placing check-

point requests in the code) and a dynamic part (online boolean decisions regarding

which checkpoints to skip). Instead of considering the parameters of the system and

deciding when to checkpoint before the program is run, cooperative checkpointing

makes online choices about whether or not to perform individual checkpoints based

on the information available at the time. The dynamic part can be modeled as an

online algorithm, as opposed to an offline optimization algorithm.

This chapter considers the dynamic component of cooperative checkpointing and

presents a competitive analysis of various algorithms. Although most competitive

analyses use a cost function that represents how expensive operations are, this thesis

uses a value function that measures the benefit conferred by the algorithm. Specifi-

cally, it compares the amount of work saved by a particular checkpointing algorithm

rather than the amount of work lost to failures. In this way, the analysis is better

able to incorporate the checkpoint overheads.

Among the results in this chapter is a lower bound on the worst-case competitive-

ness of a deterministic cooperative checkpointing algorithm and several algorithms

that meet that bound, a proof that periodic checkpointing using an exponential fail-

ure distribution can be arbitrarily bad relative to cooperative checkpointing using an

arbitrary failure distribution, and a case analysis demonstrating that, under realistic
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conditions, an application using cooperative checkpointing can make progress four

times faster than one using periodic checkpointing.

3.1 Worst-Case Competitive Analysis

We model cooperative checkpointing by considering the execution of a program that

makes periodic checkpoint requests. The length of this period, I, is a characteristic of

the program, not the online algorithm. In other words, I is chosen as part of the static

component of cooperative checkpointing, while the decisions of which checkpoints to

perform is the dynamic algorithmic component. The analysis focuses on failure-free

intervals (FF intervals), which are periods of execution between the occurrence of

two consecutive failures. Such periods are crucial, because only that work which is

checkpointed within an FF interval will be saved. Let F be a random variable with

unknown probability density function. The varying input is a particular sequence of

failures, Q = {f1, f2, . . . , fn}, with each fi generated from F . Each fi is the length

of an FF interval, also written as |FFI|. The elements of Q determine when the

program fails but not for how long the program is down. Thus, if execution starts at

t = 0, the first failure happens at f1. No progress is made for some amount of time

following the failure. After execution begins again at time t = t1, the second failure

happens at t = t1 + f2. Figure 3-1 illustrates a partial execution including three FF

intervals.

= Failure = Downtime/Restart

f1

start

fi = FF interval

f2 f3 ...

Figure 3-1: The execution of a program with failures, shown up to n = 3. The length
of the FF intervals (fi) varies. The downtime and recovery time following a failure is
variable, as well, but is not included in the failure sequence Q. The execution may
continue beyond what is shown.
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The average length of these intervals is related to the Mean Time Between Failures

or MTBF. The fi, however, do not include the downtime and recovery time. They

are the periods between failures during which the program can make progress. This

input Q is independent of the choices made by the checkpointing algorithm, and so

fi also includes checkpoint overheads.

Given knowledge of the past behavior of the program and the system, a cooperative

checkpointing algorithm decides whether to grant or skip each checkpoint request, as

it arrives. Let P be some program, A be some cooperative checkpointing algorithm,

and Q be some failure sequence of n elements. Say P has infinite execution time, but

n is finite, as are the elements fi ∈ Q. Consider the period of execution starting at

t = 0, before the first failure, and ending with the nth failure (the span of Q). Define

VA,Q to be the cumulative amount of work saved by A during the time spanned by

Q. When discussing an individual FF interval, it is acceptable to refer simply to VA,

which is the amount of work saved by A in that interval.

Definition 1 An online checkpointing algorithm A has competitive ratio α (A is α-

competitive) if, for every failure sequence Q, the amount of work saved by the optimal

offline algorithm (OPT) is at most α times the amount of work saved by A. That is,

VA,Q ≤ αVOPT,Q.

It is worth emphasizing that the definition compares the quality of the algorithm

in terms of the amount of work that was saved in an execution with worst-case failure

behavior, rather than the work that is lost and recomputed. Also note that worst-case

failure behavior is not the worst sequence for OPT , but the sequence that results in

the highest ratio of VOPT to VA. In a sense, this definition compares value instead

of cost. When α is infinite, we say that A is not competitive. Work is typically

defined to be execution time multiplied by the size of the program in nodes; for

competitive analysis, let the program have unit size. Before discussing this definition

in more detail, it is necessary to define the behavior of the optimal offline cooperative

checkpointing algorithm.
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3.1.1 Offline Optimal and Cooperative Checkpointing

Recall that the overhead for performing a checkpoint is a constant C for every check-

point. When a failure occurs, the program is unable to run for some amount of time,

which is the sum of the downtime (D) of the nodes on which it is running and the

recovery time (R) needed to recover state from the most recent checkpoint. This

downtime and recovery time is paid by every checkpointing algorithm after every

element in Q.

Definition 2 The optimal offline cooperative checkpointing algorithm (OPT ) per-

forms the latest checkpoint in each FF interval such that the checkpoint completes

before the end of the interval (if one exists), and skips every other checkpoint.

For example, consider the executions of algorithms A and OPT , illustrated in

Figure 3-2, that both run for f seconds and then both fail simultaneously. Both

A and OPT have exactly f seconds to save as much work as possible; they are

competing. Let I = f
8

seconds and C = f
32

seconds. OPT skips the first 6 checkpoint

requests in this FF interval, and performs the 7th. Remember that A does not know

f (the length of the FF interval), but OPT does. Let algorithm A take the first

checkpoint, skip one, take the third, skip two, and so on. In this example, A takes

checkpoints 1, 3, and 6. In this manner, OPT saves 7f
8

units of work, while A saves

6f
8

units. We say that, for this FF interval, VOPT = 7f
8

and VA = 6f
8

. In Figure 3-2,

intervals of saved work are labeled with their length.

Using this execution pair as an example, we now define two kinds of checkpoints.

Definition 3 A critical checkpoint is any checkpoint that is used for recovery at least

once.

Definition 4 A wasted checkpoint is any checkpoint that is completed but never used

for recovery, or which fails just as it is completing.

In an FF interval in which more than one checkpoint is performed, the last check-

point is a critical checkpoint and the rest are wasted checkpoints. Skipping a wasted
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= Job Failure = Overhead

time

start end (t=f)

(a)

start end (t=f)

(b)

= Work

f/8

f/8 f/8 f/8 f/8 f/8 f/8 f/8

f/8 f/8 f/8 f/8 f/8

Figure 3-2: An example of the execution of OPT (a) executing alongside a sample
algorithm A (b). OPT performs the latest checkpoint that could finish before the
failure, and no others. Algorithm A performs the first, third, and sixth checkpoints.
A could have performed another checkpoint before failing, but instead saved less work
than OPT .

checkpoint does not necessarily increase the amount of work that is saved in an FF

interval, because doing so may or may not allow a later checkpoint to be performed.

Later on, Lemma 1 formalizes how many checkpoints must be skipped to be advan-

tageous. On the other hand, skipping a critical checkpoint will always result in less

saved work, because rollback must then be done to an earlier checkpoint.

In Figure 3-2, note that A could have completed the 7th checkpoint before the

failure ended the interval. Had A performed that checkpoint, it would have saved 7f
8

units of work, just like OPT . In order for an algorithm to be made incrementally

more like the optimal, two things can be done:

1. Skip wasted checkpoints.

2. Perform a critical checkpoint that is closer to the end of the FF interval.

As defined, there are many failure sequences Q such that no checkpointing algo-

rithm, including the optimal, will permit a program to make progress. According to

Definition 1, however, there need not be progress with every failure sequence. More

importantly, the worst-case input that is considered in the competitive analysis is

not the worst-case input for OPT , but the input that gives the algorithm in question

(A) the worst performance relative to OPT . For most executions in which A cannot

make progress, neither can OPT .
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Often, the competitive ratio of an algorithm is governed by the relationship among

various parameters in the system. Of those introduced into the model so far, the

two key parameters are I and C. Although R (recovery time) and D (downtime)

are included in this model, they are of no importance when performing a competitive

analysis, so long as they are uncorrelated with the decisions made by the checkpointing

algorithm.

Lemma 1 Let A be some deterministic algorithm. Consider a particular FF interval

length such that A performs k wasted checkpoints. As a result of skipping those

checkpoints, VOPT ≥ VA + IbkC
I
c. (Skipping Lemma)

The proof of the Skipping Lemma is simple, but its consequences are far-reaching.

In particular, it means that the worst-case competitive ratios of most algorithms will

be functions of bC
I
c.

The case of C > I is not purely academic, especially because I is the request

interval, not necessarily the checkpoint interval. Consider the standard equation for

the optimal periodic checkpointing interval, where 1
λ

is the MTBF:

IOPT =

√
2C

λ
(3.1)

In a real system, such as IBM’s BlueGene/L, the projected upper bound for C is 12

minutes (720 seconds). Simultaneously, the mean time between failures for the full

machine will likely be rather small, perhaps on the order of minutes. Indeed, if the

MTBF is any less than 6 minutes (360 seconds), then C > I:

IOPT =

√
2C

λ
=
√

2 · 720 · 360 = 720 seconds = C

Because such a situation is realistic, the fact that the competitiveness is a function

of bC
I
c is worthy of note. It would be desirable to achieve k-competitiveness for some

constant k, independent of the relationship among the parameters. The Skipping

Lemma forbids this.
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Another general difficulty in analyzing the competitiveness is the challenge of

identifying the worst-case input. So far, this input has been described as a sequence

of failures (Q) such that
VOPT,Q

VA,Q
is maximized. It turns out that it is not necessary to

consider the worst-case sequence, but merely the worst-case interval length.

Theorem 1 Algorithm A is α-competitive iff, ∀ FF intervals of length f ∈ R+, the

amount of work saved by OPT is at most α times the amount of work saved by A.

Proof We must show both directions.

• Given that A is α-competitive, we show that there cannot exist an f such that

the amount of work saved by OPT is more than α times the amount of work

saved by A; we do this by contradiction. Assume there is such an interval

length, f . Construct Q as a sequence of n > 0 elements with value f . This is

now the worst-case input, because, in every FF interval, OPT saves more than

α times the amount of work saved by A. In other words, A is not α-competitive,

which is a contradiction.

• Given that, ∀f , the amount of work saved by OPT is at most α times the

amount of work saved by A, we show that A must be α-competitive. By the

given characteristics of the FF interval lengths, there does not exist any f such

that OPT saves more than α times as much as A. Furthermore, there exists

some f where VOPT = αVA. Within the bounds of the given information, we

can construct Q as in the previous bullet using this worst-case f . As before, by

Definition 1, A is α-competitive. �

Corollary 1 To determine the competitive ratio of algorithm A, it is sufficient to

consider the f for which the ratio of VOPT to VA is largest. That ratio is α.

Remark There may be some f for which the ratio of VOPT to VA is α′ < α. The

worst-case analysis gives an α that is an upper bound.
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Theorem 2 Let A be a deterministic cooperative checkpointing algorithm that skips

the first checkpoint in every interval. A is not competitive.

Proof By Corollary 1, it is only necessary to find the interval length for which OPT

does the best relative to A. In this case, let f = dI+C for some d > 1. Thus, if A fails

just before it completes the first checkpoint; it makes no progress. Meanwhile, OPT

will perform the latest of the first d− 1 checkpoint requests such that the checkpoint

finishes before the failure. Because OPT makes progress, but A does not, the ratio

is infinite and A is not competitive. �

Theorem 3 There does not exist a deterministic cooperative checkpointing algorithm

that is better than (2 + bC
I
c)-competitive.

Proof Consider some deterministic cooperative checkpointing algorithm A and the

worst-case FF interval length, f . Let k be the number of wasted checkpoints in that

interval, n be the number of computation intervals executed, and m be the number

of intervals of work saved by A.

It must be the case that k ≥ 1, otherwise either A is OPT or f was not the

worst-case interval length. Because OPT is not deterministic, and A is, there must

be at least one wasted checkpoint in the worst-case interval. Furthermore, m ≥ k

because every saved interval must have at least one associated checkpoint. Finally,

n ≥ m + 1 because the worst-case FF interval will be extended such that at least one

computation interval is performed and then lost.

The competitive ratio (α) is a combination of two factors, alluded to by the

steps toward optimality mentioned in Section 3.1.1: the wasted checkpoints and the

distance of the critical checkpoint to the end of the FF interval.

α =
n

m
+ bkC

I
c

To show that 2+bC
I
c is a lower bound on deterministic competitiveness, we attempt to

make α as small as possible within the constraints determined above. The second term
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can be bounded from below by setting k = 1. There is exactly one wasted checkpoint.

By Theorem 2, A must perform the first checkpoint in order to be competitive. There

is one wasted checkpoint, so the program fails before the end of the next checkpoint

at time 2I +2C. Only the first interval is saved and m = 1 as well. Using n ≥ m+1,

we can lower bound the first term:

n

m
≥ m + 1

m
≥ 1 + 1

1
≥ 2.

Thus, we have a lower bound on α, and no deterministic cooperative checkpointing

algorithm can be better than (2 + bC
I
c)-competitive. �

3.1.2 Periodic Checkpointing

This section contains competitive analyses of periodic checkpointing algorithms. Specif-

ically, it describes how cooperative checkpointing can be used to simulate periodic

checkpointing, and proves that the näıve implementation is not competitive.

Consider a program that uses cooperative checkpointing where requests occur

every I seconds. There is some desired periodic checkpointing interval (Ip) that the

online algorithm is trying to simulate. If Ip mod I = 0, then exact simulation is

possible. When Ip mod I 6= 0, an approximation is sufficient; the algorithm uses

some d such that dI ≈ Ip. The algorithm should perform, roughly, one out of every

d checkpoint requests.

Let An,d be the näıve implementation of this simulation, in which, for any FF

interval, the algorithm performs the dth checkpoint, the 2dth checkpoint, the 3dth

checkpoint, and so on.

Theorem 4 An,d is not competitive for d > 1.

Proof An,d deterministically skips the first checkpoint in every FF interval. By The-

orem 2, An,d is not competitive for d > 1. �
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The case of d = 1 is special. In the previous proof, An,d did not make progress

because it skipped checkpoints that were critical checkpoints for OPT . When d = 1,

however, no checkpoints are skipped. Indeed, this is a special cooperative check-

pointing algorithm whose behavior is to perform every checkpoint request it receives.

Define Aall to be the algorithm An,1. This algorithm is optimally competitive.

Theorem 5 Aall is (2 + bC
I
c)-competitive.

Proof Set f = |FFI| = 2I +2C. Aall takes the first checkpoint, and fails just before

finishing the second one; Vall = I. The behavior of OPT is deduced by working

backwards from f . OPT will perform exactly one checkpoint, but after how many

requests? First, subtract C from f for the required overhead of OPT ’s checkpoint.

The remaining 2I +C can include at least 2 intervals, but the exact number depends

on the relationship between C and I. If the overhead is especially large, skipping

that checkpoint may allow OPT to execute more intervals of computation before

performing a checkpoint. Specifically, VOPT = 2I + bC
I
cI. Therefore, the value of α

for this interval is 2 + bC
I
c.

Is it possible for some other fj to give a larger ratio? Consider the growth of

VOPT and Vall as fj grows beyond 2I + 2C. VOPT increases by I for every I that fj

increases. Vall, meanwhile, increases by I only after fj increases by I + C. In other

words, the optimal pays the checkpoint overhead once for all the work in the interval,

while Aall must pay the overhead for each checkpoint individually. Asymptotically,

as fj goes to infinity, VOPT

Vall
goes to I+C

I
= 1 + C

I
. This can never exceed 2 + bC

I
c, so

the original f was the worst-case interval length.

Therefore, f = 2I + 2C is a worst-case interval length; by Corollary 1, Aall is

2 + bC
I
c-competitive. �

Corollary 2 Asymptotically, VOPT grows in proportion to |FFI|.

Remark By Theorem 3, Aall is competitively optimal for a deterministic algorithm.
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The original intention, recall, was to simulate periodic checkpointing using co-

operative checkpointing. Aall doesn’t simulate periodic checkpointing so much as it

is periodic checkpointing. Instead, consider the following variation of An,d that also

performs only every dth checkpoint, with a small change to avoid running up against

Corollary 2.

Let Ap,d be a cooperative checkpointing algorithm that simulates periodic check-

pointing by always performing the first checkpoint, and subsequently performing only

every dth checkpoint. As above, d ≈ Ip

I
and d > 0, where I is the request interval and

Ip is the periodic checkpointing interval that is being simulated. Ap,d performs the

1st checkpoint, the (d + 1)th checkpoint, the (2d + 1)th checkpoint, and so on.

Theorem 6 Ap,d is (d + 1 + bC
I
c)-competitive.

Proof Set f = |FFI| = (d + 1)I + 2C such that Ap,d performs the first checkpoint,

skips d−1 checkpoints, and fails just before completing the (d+1)th request. Vp = I.

As with Aall, the exact number of intervals OPT performs before taking its single

checkpoint depends on the relationship between C and I: VOPT = (d + 1)I + bC
I
cI.

The ratio for this interval length f is d + 1 + bC
I
c.

Again, we must consider the asymptotic behavior. In order to increase VOPT by

dI, it is necessary to increase f by exactly dI. To increase Vp by the same amount

(dI), f must be increased by dI +C to accommodate the additional checkpoint. The

asymptotic ratio of VOPT to Ap,d is dI+C
dI

= 1 + C
dI

. This is always strictly less than

d + 1 + bC
I
c, so f = (d + 1)I + 2C was the worst-case interval.

By Corollary 1, Ap,d is (d + 1 + bC
I
c)-competitive. �

Remark As expected, the competitive ratio of Ap,1 is identical to that of Aall; they

are the same algorithm.

3.1.3 Exponential-Backoff Algorithms

The space of deterministic cooperative checkpointing algorithms is countable. Each

such algorithm is uniquely identified by the sequence of checkpoints it skips and
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performs. One possible way to encode these algorithms is as binary sequences, where

the first digit is 1 if the first checkpoint should be performed and 0 if it should be

skipped. All the algorithms we have considered so far can be easily encoded in this

way:

Aall = {1, 1, 1, 1, . . .}

An,2 = {0, 1, 0, 1, 0, 1, . . .}

Ap,3 = {1, 0, 0, 1, 0, 0, 1, . . .}

An upper bound on the length of the FF interval is easily given the program’s

running time, so there is also a bound on the number of checkpoints and the length of

these binary sequences. Consequently, each member of this finite set of deterministic

algorithms can be identified by a little-endian binary number.

Let A2x be a cooperative checkpointing algorithm that doubles V2x at the com-

pletion of each checkpoint. In each FF interval, it performs the 1st, 2nd, 4th, 8th, etc.

checkpoints:

A2x = {1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .}

The intention in evaluating this algorithm is to highlight a characteristic of worst-

case competitive analysis, which is that a number of very different algorithms can all

be optimally competitive.

Theorem 7 A2x is (2 + bC
I
c)-competitive.

Proof Let f = |FFI| = 2I +2C. For this interval length, A2x has the same behavior

as Aall, so α = 2 + bC
I
c.

Asymptotically, V2x doubles every time f increases by V2x + C. To similarly

increase VOPT by V2x, f must be increased by V2x. Thus, the asymptotic ratio is

V2x+C
V2x

= 1 + C
V2x

, which goes to 1 for constant C.

f = 2I + 2C was the worst-case interval, so A2x is (2 + bC
I
c)-competitive. �
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3.1.4 Comments

If the request overhead is ignored, a smaller I should typically allow the online al-

gorithm to do better, because it has more choices regarding when to perform check-

points. Instead, this competitive analysis shows that many algorithms have a com-

petitiveness that is inversely related with I. This is a consequence of comparing with

OPT ; requests that are spaced far apart cause OPT to do more poorly, which makes

the cooperative algorithm look better. In practice, the value of C tends to be sensi-

tive to where in the code checkpoints are performed. More frequent checkpoints may

result in a smaller C, which improves competitiveness. Furthermore, choosing I such

that checkpoint requests can be placed in the code where the required overhead is

minimal may prove more valuable than increasing I to artificially improve α.

3.2 Expected Competitive Analysis

This section proposes a more relevant form of competitive analysis in which the algo-

rithm considers the actual failure distribution. The algorithms remain deterministic,

but, with this information and the refined model, the analysis is significantly different.

This refined model addresses a number of weaknesses with the worst-case analysis,

and includes the power to talk about failure distributions.

3.2.1 Failure Probability Density

Let F be a random variable whose value is the length of the failure-free interval and

let χ(t) be the probability density of F . That is,

P (a ≤ F ≤ b) =

∫ b

a

χ(t)dt (3.2)

and assume that:

F ≥ 0

χ(t) ≥ 0 ∀t
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∫ ∞

0

χ(t)dt = 1

Properties of this probability distribution, like mean (µ = E(F )), variance (σ),

and standard deviation, are calculated in the usual way:

E(F ) =

∫ ∞

0

tχ(t)dt

E(F 2) =

∫ ∞

0

t2χ(t)dt

σ = E(F 2)− [E(F )]2

SD(F ) =
√

σ

In the previous section, the offline optimal knew in advance that a failure would

happen after executing for f seconds (the length of the FF interval), and was effec-

tively using

χ(t) = δ(t− f) (3.3)

where δ(t) is the Dirac delta function. The checkpointing algorithm knew nothing of

this distribution, however, and was forced to choose a strategy that minimized the

worst-case ratio.

Determining the density function in practice can be accomplished by using histor-

ical data to constantly refine an empirical distribution1. Let Q be an observationally-

collected list of numbers (f1, f2, . . . , fn), where fi is the length of the ith FF interval

for all jobs across the system (or, perhaps, those from the same node partition). The

empirical distribution would then be defined on [0,∞] by

Pn(a, b) = #i : 1 ≤ i ≤ n, a < fi < b/n

This can be made into a piecewise continuous function by representing the function

as a histogram, where the domain is divided into bins. Rectangles are drawn over the

bins such that the height is the proportion of observations per unit length in that bin.

1For more information on empirical distributions, and a more complete explanation of this nota-
tion, please see Pitman’s text Probability [21].
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This can then be used as χ(t). By its nature, this function changes over time. For

example, replacing a failed node with a new one changes its probability of failure. The

ability to adjust the cooperative checkpointing algorithm A to accommodate these

changes is powerful.

3.2.2 Work Function

Every deterministic cooperative checkpointing algorithm (A) has a characteristic work

function, WA(t). This function specifies, for all times t within an FF interval, how

much work A has saved. More to the point, if |FFI| = f , then VA = WA(f). The

beginning of an FF interval is always t = 0. The work function will be used along

with χ(t) in Section 3.2.3 to calculate the expected competitive ratio of the algorithm.

Work functions are nondecreasing, irregularly-spaced staircase functions. Some

properties of the work function:

WA(t) = 0 , t ≤ I + C

WA(t) = nI , n ∈ Z∗

Lemma 2 Let k be the number of checkpoints completed in a given FF interval by

algorithm A at time t. Then Ib t−kC
I
c ≥ WA(t) ≥ kI.

Proof First, we prove the lower bound. Let s be the number of intervals of saved

work (WA(t)
I

). Each completed checkpoint must save at least one interval, so s ≥ k.

Thus, WA(t) ≥ kI.

The upper bound is determined by considering the total amount of computation

time, t, and maximizing the amount of saved work. If k checkpoints were performed,

kC time was spent checkpointing. This leaves t− kC time for useful work. Account-

ing for the possibility of an incomplete interval, the maximum number of intervals of

work completed by t is Ib t−kC
I
c. �
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The work function for OPT is WOPT (t). This function is unique:

WOPT (t) = Ibt− C

I
c

WOPT (t) gives an upper bound for the work functions of all other algorithms:

WOPT (t) ≥ WA(t) ∀t

In the worst-case competitive analysis, recall that OPT was nondeterministic and

had absolute knowledge about when the FF interval would end. Similarly, this work

function for OPT does not obey the rules to which deterministic algorithms are

bound. For example, after increasing by I, WA(t) cannot increase again until at least

I + C seconds later. WOPT (t), on the other hand, increases by I every I seconds.

This is equivalent to an OPT that knows χ(t) as the function in Equation 3.3 and

waits until the latest possible time before performing a single checkpoint.

W
 (u

ni
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f w

or
k)

Time (seconds)

I

2I

3I

I+C 3I+2C3I+C2I+C 4I+C

= W_OPT
= W_A

Figure 3-3: The initial portion of two work functions: WA(t) and WOPT (t). The
behavior of A is to skip the second checkpoint. A high probability of failure in the
interval [3I +C, 3I +2C] would be bad for A, because the difference between WOPT (t)
and WA(t) is high. The plot is not to scale.
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As an example, the work function for Aall is

Wall(t) = Ib t

I + C
c

because a checkpoint is completed every I + C seconds, and I seconds of work are

saved each time. To help visualize work functions, consider an algorithm A that skips

the second checkpoint but performs all others. The work function of A, as well as

WOPT , are plotted together in Figure 3-3.

3.2.3 Competitive Ratio

At the beginning of a failure free interval, the cooperative checkpointing scheme

selects some deterministic algorithm A based on what it knows about χ(t) for this

interval. How this selection process proceeds is derived from the definition of expected

competitiveness and the calculation of the expected competitive ratio ω.

Definition 5 An online checkpointing algorithm A has expected competitive ratio

ω (A is ω-competitive) if the expected amount of work saved by the optimal offline

algorithm (OPT) is at most ω times the expected amount of work saved by A. That

is, E[VA] ≤ ωE[VOPT ].

By the definition of VA, if a failure happens at time t = h,

VA = WA(h)

Therefore, calculating E[VA] can be thought of as an infinite sum of the product of

the work function and the probability of failing at each time over the possible failure

times:

E[VA] =

∫ ∞

0

WA(t)χ(t)dt

E[VOPT ] =

∫ ∞

0

Ibt− C

I
cχ(t)dt
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By the definition of ω-competitiveness,

ω =
E[VOPT ]

E[VA]
=

∫∞
0

Ib t−C
I
cχ(t)dt∫∞

0
WA(t)χ(t)dt

Given some information about χ(t), A should be chosen to maximize the denomi-

nator in the equation for ω, because we want that quotient to be as small as possible.

Intuitively, we want to match up WA(t) and χ(t).

The cooperative checkpointing scheme now behaves as follows. At the beginning

of each FF interval, the system considers everything it knows about χ(t) and selects

a deterministic algorithm A that maximizes the overlap between WA(t) and χ(t).

WA(t) would be piecewise continuous if there was some way to place an upper

bound on t, and thereby make the number of discontinuities finite. Bounding t has

value, anyway, because
∫∞

0
WA(t)dt = ∞ for any A that takes at least one checkpoint.

There are two reasons why taking this infinite integral is unnecessary:

1. limt→∞ P (F > t) = 0 because the system will eventually fail. This means that

the length of the FF interval is unlikely to grow very large, and will not be

infinite.

2. Programs do not have infinite running time. The end of a program’s execution

can be modeled as a zero-overhead, required checkpoint. Just as an FF interval

does not extend beyond the first failure, the first forced checkpoint effectively

ends the FF interval.

Therefore, let T be the maximum FF interval length, easily determined by the running

time of the program. We can now define ω in terms of finite integrals over the products

of piecewise continuous functions and probability densities:

ω =
E[VOPT ]

E[VA]
=

∫ T

0
Ib t−C

I
cχ(t)dt∫ T

0
WA(t)χ(t)dt

(3.4)
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3.2.4 Example Analyses

This section contains the analysis of several distributions and algorithms in order to

illustrate the use of expected competitive analysis for checkpointing.

Uniform Distribution

Let χ(t) be uniformly distributed from 0 to T . Because the probability density is a

constant, it comes out of the integrals and cancels. ω is now a ratio of the area under

the curves of OPT and A. The integral of WOPT (t) can be calculated exactly. Use

D = bT−C
I
c:

I

∫ T

0

bt− C

I
cdt = I

D−1∑
k=1

(kI) + DI(T −DI − C)

The only piece needed to calculate ω is
∫ T

0
WA(t)dt. What valid work function max-

imizes this? That depends on the relationship between I and C. When I � C,

Aall is optimal; Theorem 8 proves that Aall is optimal under a uniformly distributed

χ(t) when I � C. This makes sense, because checkpointing is cheap and we want

to maximize the amount of saved work at any given time. Furthermore, recall that

WOPT behaved (generally) as though checkpoints were free and took every one of

them; a similar strategy is appropriate for A in this case. On the other hand, C � I

requires a different strategy: skip the early checkpoints and perform the later ones.

Because checkpoints are so expensive, the algorithm should wait to perform them

until there is work saved up already. Spending time on a long checkpoint when there

is little work already saved is risky. This may seem counterintuitive, because skipping

checkpoints is typically considered risky. In the case where checkpoints are costly,

however, performing them is what holds the most risk.

Theorem 8 Let χ(t) be a uniform distribution. If I � C, Aall is 1-competitive

(optimal) in the expected case.

Proof Under the uniform distribution,

ω =
I
∫ T

0
b t−C

I
cdt∫ T

0
WA(t)dt
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because χ(t) comes out of the integrals as a constant and cancels (as will the factors

of I in the work functions). Take Wall = Ib t
I+C

c and consider the limit as C → 0:

lim
C→0

(ω) = lim
C→0

(∫ T

0
b t−C

I
cdt∫ T

0
b t

I+C
cdt

)
= 1

Therefore, for I � C, Aall is expected case 1-competitive (optimal). �

Of course, practical situations will probably be somewhere in between, in which

case more careful selection is required. For small T , the space of algorithms is search-

able. The space grows exponentially (O(2T )), but the search can be guided by heuris-

tics inspired by the observations for the extreme cases above. Specifically, skipping

checkpoints (especially early on) is generally good when C is large, and performing

many of them is good when I is large. Recall that I is not the checkpointing interval,

but the request interval. Having I < C or even I � C is not as bizarre as in the

situation where checkpoints are actually taken every I seconds.

If the uniform distribution is constrained to some interval [a, b] smaller than [0, T ],

with 0 ≤ a < b ≤ T , such that

χ(t) =

{
1

b−a
, if t ∈ [a, b]

0, otherwise

then the strategy is similar. Inside [a, b], the analysis proceeds as before. After

that interval, performing checkpoints has no value. Before the interval, exactly one

checkpoint should be performed: the latest checkpoint that would complete before a.

As a → b, this analysis and the resulting algorithm become increasingly like OPT

from the worst-case analysis. That is, if A knows the exact time of the failure, it

now has all the power that OPT had. Realistically, this will rarely be the case.

Still, one can imagine the scheduled shutdown of an otherwise reliable system might

approximate to this situation.
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Exponential Distribution

The reliability of components is often modeled as following an exponential distribu-

tion. Because it has nice properties, we use

χ(t) = λe−λt t ≥ 0

If we think about F as being the lifetime of an FF interval, then the probability of

the interval lasting longer than s seconds is

P (F > s) =

∫ ∞

s

χ(t)dt = e−λt

Furthermore this survival function can be used to calculate the probability of F falling

within a particular range, which, for an exponential χ(t), is:

P (a < F ≤ b) = P (F > a)− P (F > b) = e−λa − e−λb

Among the nice properties of this distribution are the mean and standard deviation:

E(F ) = SD(F ) =
1

λ

The distribution of a positive random variable is memoryless iff it is an exponential

of the form e−λt for some λ > 0. Memoryless means that the probability that F > a+b

given that F > a is the same as the probability that F > b in the first place. Formally,

P (F > a + b|F > a) = P (F > b) (a ≥ 0, b ≥ 0)

A great deal of research in systems reliability treats the lifetime of components as

being exponentially distributed. That is, there is no gradual degradation or aging of

components; they fail suddenly and without warning. Most distributions (any that

are not exponential) are not memoryless. The expected competitiveness model for

checkpointing allows all kinds of distributions, making it far more general than a
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scheme that presumes a memoryless failure distribution.

How powerful is this generality? Consider F , as above, distributed with some

failure probability density χ(t). Let Aλ be a periodic checkpointing algorithm; restrict

Aλ, however, to only have access to an exponential distribution χλ(t) = λe−λt with

1
λ

= E[F ]. Aλ always has an accurate measure of the mean of the distribution χ(t),

but may otherwise have no similarities. For example, the exponential variance will

be 1
λ2 while the variance of χ(t) may be infinite. OPT , as usual, knows χ(t). Pick

χ(t) such that the expected competitiveness is worst-case.

Theorem 9 Aλ is not competitive.

Proof Pick χ(t) to be the sum of two Dirac delta functions at t1 and t2: χ(t) =

aδ(t − t1) + (1 − a)δ(t − t2) with 0 ≤ a ≤ 1. The mean of this distribution is

1
λ

= E[F ] = at1 +(1− a)t2. Set t1 = I +C. OPT will always make progress, because

t1 is large enough for OPT to save at least that one request interval before failing.

To give Aλ every advantage, let it checkpoint with the optimal period: IOPT =
√

2C
λ

.

All that remains is to set it up so that Aλ will not make progress, even though it

is the optimal periodic checkpointing algorithm for an exponential distribution with

that mean.

The way to do this is to make Aλ checkpoint with period ≥ I; use 2I to be safe:

IOPT =

√
2C

λ
=
√

2CE[F ] =
√

2C(a(I + C) + (1− a)t2) ≥ 2I

Isolating the variables over which we have control:

a(I + C) + (1− a)t2 ≥
2I2

C
(3.5)

Using Equation 3.5 as the constraint, we want to make a as close to 1 as possible, so

that the FF interval almost always ends after I + C, when OPT has made progress

but Aλ has not. As a → 1, t2 → ∞ in order to maintain the inequality (unless

C > I). As before, T is the maximum length of an FF interval. If we allow T to go

to infinity, Aλ will not make progress arbitrarily often, though OPT always will. The
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competitive ratio approaches infinity. �

Remark When a is set to 1, χ(t) is really just the worst-case failure scenario. Having

set the periodic checkpointing interval to 2I, this is forcing Aλ to be a determinis-

tic algorithm that skips the first checkpoint. By Theorem 2, the algorithm is not

competitive.

Corollary 3 By Theorem 9, a periodic checkpointing algorithm that assumes an ex-

ponential failure distribution may be arbitrarily bad compared to a cooperative check-

pointing algorithm that permits arbitrary probability density functions as failure dis-

tributions.

In Section 3.1.1 there was some discussion about real reliability numbers in the

context of IBM’s BlueGene/L. In light of Theorem 9, it is worth asking how badly

BG/L might do by using periodic checkpointing with an assumption of exponentially

distributed failures, versus how it might do by using cooperative checkpointing. What

is the potential gain under realistic conditions?

First, set C = 6 minutes (360 seconds); the upper bound was estimated at 12

minutes (720 seconds) so this is a reasonable average. Second, assume that the random

variable F , the length of each FF interval, is independent and identically distributed

with exponential distribution χ(t) = λe−λt. Third, consider an installation of BG/L

that consists of 64 racks with a total of 65,536 nodes.

In selecting realistic numbers for the checkpointing interval and distribution mean,

an interesting paradox occurs. Consider these two approaches to setting the variables

in the absence of empirical data, and how and why they fail:

• Assume the mean time to failure for an individual node is 5 years. This may

even be too high. With N = 65, 536 nodes, the mean time to failure for them

collectively comes from the survival function:

P (F1 > t & F2 > t & . . . & FN > t) = (P (F > t))N = e−Nλt = e−65536λt
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The expected failure time, then, is decreased by a factor of 65,536. That is,

E[F ] = 2−16

λ
. If 1

λ
was 5 years, by assumption, then the expected lifetime of

the entire machine is around 40 minutes (2406 seconds). The optimal periodic

checkpointing interval for this distribution is 21.9 minutes (1316 seconds). With

a checkpoint overhead of 6 minutes, this means spending 21% of the machine

time on performing checkpoints. In the worst case (C = 12 minutes), this

percentage is 28%. No user or system administrator would be willing to spend

this much time checkpointing, but anything less would increase the application’s

expected running time.

• Instead, assume that no more than 10% of the machine time should be spent

performing checkpoints. If the overhead is 6 minutes (360 seconds), this means

checkpointing every 54 minutes (3240 seconds). For what exponential distribu-

tion is this actually optimal?

3600 =
√

2(360)E[F ]

E[F ] =
32402

2(360)

= 14580 seconds

= 243 minutes

This requires that each individual component have a lifetime 65,536 times

greater than that; the mean time to failure for a single node must be 30.3 years.

This is not realistic, but anything less would require more frequent checkpoints.

In practice, the mean time between failures for a 4,096-node BG/L prototype was

12.45 minutes (747 seconds). Many of these failures were correlated, however, and

shared a root cause. In the end, Sahoo et al [15] estimate that the system saw 3.7

failures per day (MTBF = 6.5 hours). Presuming linear scaling, the 64-rack machine

will have E[F ] = 24 minutes (1,459 seconds). The MTBF corresponds roughly to a

3-year component lifetime. The reason application programmers have an expectation

of progress in these situations is that they have implicitly accepted that failure dis-
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tributions are not exponentials, are not identically distributed, or not independent.

Cooperative checkpointing makes these implicit assumptions into explicit considera-

tions and reaps a benefit as a result.

Returning to the original question, how would a periodic checkpointing algorithm

perform if it really did assume an IID exponential distribution? On the full BG/L

machine, it would checkpoint every 17 minutes (1,025 seconds). With an overhead of

6 minutes, it would spend 26% of the machine time performing checkpoints; this may

be as high as 33% when C = 12 minutes.

In order to comment on the performance of cooperative checkpointing, we must

hypothesize a non-exponential failure distribution that might better describe BG/L’s

behavior. Use χ(t) = aδ(t − t1) + (1 − a)δ(t − t2). In the prototype study [15], the

maximum uptime was slightly more than 140 hours (504,000 seconds), far larger than

the mean. This real data already echoes the construction of the proof of Theorem 9;

pick t1 to be small, t2 to be very large, and a to be nearly 1. Use C = 360 seconds.

As before, pick I to be half the optimal periodic checkpointing interval, meaning that

Aλ performs every other request starting with the second: I = 512 seconds. Set E[F ]

at 1459 seconds, t2 at 504,000 seconds, and t1 at I + C = 872 seconds:

E[F ] = 1459 = at1 + (1− a)t2 = 872a + (1− a)504000

Which fixes a at 0.9988. In other words, χ(t) causes the application to fail at time

I + C 99.88% of the time, a situation in which Aλ saves no work, but OPT saves I.

The remaining 0.22% of the time,

Vλ = Ib t2
2I + C

c = 512b504000

1384
c = 186368 units of work

VOPT = Ibt2 − C

I
c = 512b503640

512
c = 503296 units of work

The expected ratio for this example case is,

ω =
VOPT

Vλ

=
0.9988(512) + 0.0022(503296)

0.0022(186368)
=

1618.6368

410.0096
= 3.95
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This means roughly that, in an infinite execution under these system parameters and

this failure distribution, cooperative checkpointing can accomplish 4 times as much

useful work in a given amount of machine time, compared to even the optimal periodic

checkpointing algorithm. Certainly, increasing the throughput of the machine four-

fold would be a worthwhile investment. The realism of χ(t) or the ability to actually

achieve OPT are beside the point. The intention of this example was to illustrate that

cooperative checkpointing is not merely of theoretical value; it can result in tangible

improvements in reliability and performance over periodic checkpointing.

3.3 Dynamic Competitive Analysis

This section introduces dynamic-case analysis. This model differs from the expected-

case model in the following ways:

1. The gatekeeper selects a deterministic cooperative checkpointing algorithm at

each checkpoint request based on what is optimal at the time; the selection

only affects the current checkpoint request, because the algorithm will be re-

considered at the next request. This is different from the previous models, in

which the algorithm was selected at the beginning of the FF interval and was

not reconsidered until after a failure.

2. χ(t) can change between checkpoint requests, not just between FF intervals. As

χ(t) evolves over the course of an execution, the gatekeeper may dynamically

change the checkpointing algorithm, as per change #1.

3. The checkpoint overhead is no longer constant, but may be different for every

checkpoint. The overhead of the ith checkpoint in an FF interval is denoted Ci.

4. The model introduces another parameter in addition to expected value for the

application: the system value function, S. This allows the gatekeeper to consider

such factors as the scheduling queue status, deadlines and QoS guarantees, and

network traffic considerations.
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The checkpointing choices of a job can affect the system by tying up network

resources, restricting the job scheduler, or impacting system-level performance guar-

antees. The system value function, S, captures these considerations and is a measure

of how desirable a particular checkpointing algorithm is to the system, as opposed to

the application. S is the analog of V , so it also has units of work. The system value

of an algorithm A is denoted by SA.

Definition 6 The cumulative value of an algorithm A, denoted ZA, is the sum of

VA and SA.

The equation for S will differ depending on the resource restrictions and capabil-

ities of the system. For an example of a system value function, consider a system

that checkpoints over a shared, packet-based pipe. A large application P1 starts a

checkpoint with a projected overhead of C seconds; simultaneously, P2 requests a

checkpoint, also with a projected overhead of C seconds. The system knows that P1

is checkpointing, and that starting a second checkpoint would effectively double the

overhead for both checkpoints. The extra C of overhead for P2 is captured in V . The

system value function must capture the notion that choosing to perform the current

checkpoint also costs P1 an extra C of work. Let A be any algorithm that would take

the checkpoint:

SA = −C

This leads into the notion of projecting the checkpoint overhead, which is no longer

set to be a constant. There are many potential techniques for doing this estimation,

including a network traffic analysis (as used with P1 and P2), software techniques for

tracking the amount of application state that has changed, and application profiling.

Definition 7 An online checkpointing algorithm A has dynamic competitive ratio $

(A is $-competitive) if the expected cumulative value of the optimal offline algorithm

(OPT) is at most $ times the expected cumulative value of A. That is, E[ZA] ≤

$E[ZOPT ].
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The gatekeeper for the dynamic case selects the optimal checkpointing algorithm

at each checkpoint request. It is not required to execute the remainder of the algo-

rithm, but it looks ahead in order to estimate risk. Returning to the binary notation

for deterministic cooperative checkpointing algorithms, the gatekeeper is, at each

checkpoint request, asking what algorithm with a prefix matching what has already

been executed is optimal for the latest system data. Imagine that χ(t) is gener-

ated by an event predictor that only generates predicted distributions of the form

χ(t) = δ(t − t1) where t1 changes over the course of the FF interval. Let Ai be the

algorithm that the gatekeeper “picks” at request i. One possible beginning to an FF

interval might be as follows, where the current checkpoint is underlined:

A1 = {0, 0, 0, 1, 0, 0, 0, 0, . . .}

A2 = {0, 1, 0, 0, 0, 0, 0, 0, . . .}

A3 = {0, 1, 1, 0, 0, 0, 0, 0 . . .}

A4 = {0, 1, 1, 0, 1, 0, 0, 0, . . .}

A5 = {0, 1, 1, 0, 1, 0, 0, 0, . . .}

A6 = . . .

The execution might be interpreted as follows. At the first request, χ(t) predicts

that the failure will not occur until after the 4th checkpoint request can be performed

successfully. A1 = OPT given this information. At the second request, however, χ(t)

has been updated to indicate that the failure will happen before the 3rd checkpoint

can be completed, so A2 is optimal. The failure does not occur, and at the third

request the predictor has revised χ(t) to suggest that the failure will happen before

the 4th checkpoint request can be performed successfully. A3 is not optimal, because

it would have been better to skip the second request. Given the choices the gatekeeper

already made, A3 is the best it can do. This continues until a failure actually occurs,

thereby ending the FF interval.
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3.3.1 Example Analysis

Consider a system in which the job scheduler must adhere to deadlines set by users.

From the system’s perspective, jobs that are not completed by the deadline have no

value. The following analysis shows how cooperative checkpointing can help to ensure

that deadlines are met, and demonstrates how dynamic-case analysis works. Oliner et

al [17] investigated a similar system in which probabilistic deadlines were promised,

and suggested that a mechanism similar to cooperative checkpointing might be used

to make and keep those promises.

If a job misses its deadline, it is not useful and counts toward wasted work. Let

dA be an indicator random variable such that dA = 1 iff algorithm A is guaranteed to

cause the application to miss its deadline. An appropriate SA (and ZA) in this case

might be

SA = −dAVA

ZA = VA − dAVA

The cumulative value function is zero if A would cause the job miss its deadline. Note

that S may be negative, unlike V .

Let t = 0 be the beginning of the FF interval, and t = t1 be the time of the

5th checkpoint request. This example application has running time 9I and makes

only 8 checkpoint requests. Without explanation as to why certain checkpoints were

taken or not, say the execution so far restricts the gatekeeper’s choices at time t1 to

algorithms in the family

A? = {0, 1, 1, 0, ?, ?, ?, ?}

Let the projected checkpoint overhead for all future checkpoints be C and let the

application deadline be t1+5I +C. A can only afford to perform one more checkpoint

and to recompute at most I work. The gatekeeper must pick A to maximize the

probability that a failure (if one occurs) will happen less than I seconds after the
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completion of the next checkpoint. Let

χ(t) =
1

2
δ(t− (t1 + I + C)) +

1

2
δ(t− (t1 + 2I + C))

This means that the predictor thinks it is equally likely that the gatekeeper should

either perform the current checkpoint (5th) or perform the next checkpoint (6th).

What is the dynamic competitive ratio in this situation?

There are only two algorithms that result in a non-zero Z:

Ax = {0, 1, 1, 0, 0, 1, 0, 0}

Ay = {0, 1, 1, 0, 1, 0, 0, 0}

Calculate the competitive ratio for each:

ZOPT

ZAx

=
E[VOPT + SOPT ]

E[VAx + SAx ]
=

9I + 0
9I
2

+ 9I
2
− 9I

2

=
9I
9I
2

= 2

Ax is 2-competitive in the dynamic case; this is intuitive because with probability 0.5

Ax misses the deadline and with probability 0.5 Ax is OPT . The situation is sym-

metrical for Ay, meaning that the gatekeeper could pick either one without preference

or prejudice.

As is the case with deadline-based systems, the dynamic case analysis considers

factors, when checkpointing, that are critical to the system as a whole. The following

chapter considers what kind of infrastructure might be needed to support cooperative

checkpointing with the ability to consider the dynamic case.
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Chapter 4

Embodiment

This chapter discusses a possible embodiment for cooperative checkpointing, so that

it might be implemented in practice. An explanation of the general system model is

followed by a description of what infrastructure might be used to support cooperative

checkpointing.

There are two implementations in progress. One is in the form of a Java simulator,

and the other is being coded for IBM’s BlueGene/L. For BG/L, cooperative check-

pointing will initially be used to dynamically adjust the checkpoint interval based on

the size of the job’s partition. The intention is for BlueGene to eventually include an

implementation of cooperative checkpointing of the kind described in this chapter,

complete with health monitoring and event prediction. The simulator implemented

an earlier rendition of cooperative checkpointing. That simulator and the results of

a number of experiments are presented in Section 4.3.

4.1 System Description

The system is modeled as N computational nodes of equal processing power, con-

nected to stable storage via a shared network connection with limited bandwidth.

The cluster is composed of homogeneous, dedicated nodes, where homogeneous means

only that the hardware specifications are uniform but not identical across the cluster.

Unlike most previous work that assumed identical processors, we allow nodes to vary
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in reliability and fail in correlation with the behavior of other nodes. In that respect,

no two nodes are identical. The assumption of homogeneity simply means that any

two non-failing nodes can accomplish the same amount of useful work in a certain

amount of time.

In general, the connection to stable storage (I/O) is the bottleneck with regard to

saving a checkpoint to disk. Let this connection, or pipe, have bandwidth B Gb/s.

While the bandwidth of the disk itself may be the true bottleneck, the pipe is modeled

as being the primary determinant of checkpoint overhead time. A job j that must

save K Gb to disk as part of a particular checkpoint requires K
B

seconds of dedicated

time on the pipe. When n > 1 jobs are competing for the pipe, the required overhead

increases as a function of n. This model allows the system to estimate the checkpoint

overhead before agreeing to perform the checkpoint, while still simulating the effect of

the I/O bottleneck on multiple checkpoints. The system is illustrated in Figure 4-1.

Job #2
(K2 Gb)

Job #3
(K3 Gb)

Job #1
(K1 Gb)

Stable
Storage
(∞ Gb)Shared Pipe (B Gb/s)

Compute Nodes

Figure 4-1: Overview of the system and the relationship among its parts. The cluster
is running three jobs with state sizes K1, K2, and K3. During a checkpoint, these
jobs must all save their state over the Shared Pipe.
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4.2 Infrastructure

In order to perform cooperative checkpointing, the system must be equipped with

a gatekeeper and the tools necessary for the gatekeeper to make informed decisions.

Such tools may include a Reliability, Availability, and Serviceability (RAS ) Database

for monitoring, and an event prediction mechanism (predictor) for modeling and

forecasting. An overview of a system that is equipped to perform cooperative check-

pointing is illustrated in Figure 4-2.

Job #2
(K2 Gb)

Job #3
(K3 Gb)

Job #1
(K1 Gb)

Stable
Storage
(∞ Gb)Shared Pipe (B Gb/s)

Compute Nodes

RAS 
Database & 
Monitoring

Predictor
Checkpoint
Gatekeeper

Figure 4-2: The system, including the tools used to perform cooperative checkpoint-
ing. The RAS Database monitors the state of the system, logging various events
and messages that are pertinent to system health. The Predictor, in turn, uses this
data and internal models to forecast critical events. The Checkpointing Gatekeeper
receives checkpoint requests from the jobs, and uses RAS and Predictor information
to make a decision regarding whether or not to skip the checkpoint.

4.2.1 System Health Monitor and Modeler

In order to make informed checkpointing decisions, the system must have a way of

monitoring and modeling its health. This mechanism has access to both physical

and logical data about the state of the machine, including information such as node

temperatures, power consumption, error messages, problem flags, and maintenance

schedules. The more information the health monitor is able to access, the more use-
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ful the derived models can be. Most large-scale machines, like BG/L, are already

equipped with a RAS database that logs everything from failed communication mes-

sages to ECC memory errors.

This modeling mechanism is able to answer questions like, “Is there a problem with

node x? Which nodes are frequently exceeding their maximum tolerated temperature?

What communication errors have been passed between nodes y and z?” Such a system

could be used without event prediction to improve other system features, such as job

scheduling. This thesis will mostly use the health monitoring and modeling system

as a tool for checkpointing.

4.2.2 Event Predictor

The supercomputer should possess an event prediction mechanism, which makes

heavy use of the health modeling system. This event prediction may use a set of

algorithms similar to those presented elsewhere [26], or any other algorithm that

provides reasonable prediction accuracy. The prediction system [19] is given a set

(partition) of nodes and a time window and either:

1. Returns the estimated probability of failure or

2. Returns a boolean indicating whether a failure is anticipated or not.

The quality of the predictor is governed by the accuracy with which it estimates

these probabilities (Type #1) or correctly identifies whether a failure was going to

occur (Type #2). One way to think about the predictor is as a tool for estimating

the failure probability distribution, χ(t).

What events, exactly, are we interested in predicting? For a job running on a given

partition, we are looking for any critical events in the system that would cause that

job to fail. For example, the predictor could be used to predict when a troublesome

memory component will fail completely, or will result in data corruption so severe

that the application will have to be rolled back.

How far ahead must we predict? The choice of whether or not to skip a checkpoint

becomes moot once the subsequent checkpoint is completed. Thus, we typically want
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to predict critical failures that will happen prior to the end of the next checkpoint.

Intervals exceeding several hours are uncommon, meaning we will rarely need to

predict further ahead than that.

4.2.3 Gatekeeper

The gatekeeper is the online decision-making component. As illustrated in Figure 4-2,

it is in communication with nearly all other system components. When a checkpoint

request is made by an application, the request is passed to the gatekeeper. This

component has been actively considering everything it knows about χ(t), network

traffic, the estimated checkpoint overhead, and so on; when the request comes in, it

is ready with an answer. This minimizes the request/response latency of cooperative

checkpointing. In a large-scale system of the kind targeted by this thesis, I is large

enough, and the number of running jobs is small enough, that having an answer ready

for each job at any given time is not computationally expensive.

Section 3 analyzed online cooperative checkpointing algorithms. These algorithms

are chosen and executed by the gatekeeper. To put it another way, the dynamic

component of cooperative checkpointing resides in the gatekeeper, while the static

component is implemented inside the applications.

As an example, imagine that the predictor, using data gathered from the RAS

database, estimates that χ(t) = λe−λt for some λ. With only this information, the

gatekeeper will choose to perform checkpoints roughly periodically. At some point,

however, the predictor may notice that the pipe is being saturated by traffic from

some other application. It predicts that the checkpoint overhead will be very high

and shares this information with the gatekeeper. The gatekeeper may then increase

the checkpointing period in order to perform fewer checkpoints (until this network

traffic subsides).
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4.3 Simulations

This section presents results from simulations of a rudimentary implementation of

cooperative checkpointing. They demonstrate that using cooperative checkpointing,

even with very simple heuristics, can translate to measurable performance improve-

ments. An event-driven simulator is used to process actual supercomputer job logs,

and failure data from a large-scale cluster [29].

The simulations consider gatekeepers that use one of two heuristics, called work-

based and risk-based checkpointing. Let d be the number of intervals of computation

that have been performed since the last checkpoint, Ci be the projected overhead

for the current checkpoint, pf be the predicted probability that a failure will occur

before the completion of the subsequent checkpoint, and I be the request interval.

The heuristic for risk-based checkpointing is

pfdI ≥ Ci (4.1)

At each checkpoint request, the gatekeeper checks Equation 4.1. If the inequality

holds, the gatekeeper performs the checkpoint. Work-based checkpointing is the spe-

cial case of risk-based checkpointing where pf = 1. This simplified conception of

cooperative checkpointing is run in simulation.

4.3.1 Simulation Environment

The event-driven simulator models a 128-node system either in flat cluster or in

three dimensional 4 × 4 × 8 torus configuration. The simulator is provided with

a job log, a failure log, and other parameters (for example: checkpoint overhead,

checkpoint interval). The events include: (1) arrival events, (2) start events, and

(3) finish events, similar to other job scheduling simulators [12]. Additionally, the

simulator supports (4) failure events, which occur when a node fails, (5) recovery

events, which correspond to a failed node becoming available again, (6) checkpoint

start events, indicating the start of a job checkpoint, and (7) checkpoint finish events,
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which correspond to the completion of a checkpoint.

Compared to earlier work [19], the following changes were made to the simulation

environment.

• Jobs may be checkpointed, and these checkpoints have an overhead. The inter-

val and overhead cost are parameters of the simulation.

• The downtime of a failed node is set at a constant 120 seconds, which is esti-

mated to be a modest restart time for nodes in any large-scale computer system.

While down, no jobs may be run on the node.

• The job scheduler is equivalent to the scheduler in previous work [12] with only

backfilling.

The simulation produces values for the last start time (sj) and finish time (uj) of

each job, which are used to calculate wait time (wj), response time (rj), and bounded

slowdown (bsj). While utilization measurements can often be misleading, we still

calculated system capacity utilized and work lost based on the following formulations.

If M = (max∀j(uj) − min∀j(aj)) denotes the time span of the simulation, then the

capacity utilized (Kutil) is the ratio of work accomplished to computational power

available.

Kutil =
∑
∀j

sjej

MN
.

Let tx be the time of failure x, and jx be the job that fails as a result of x, which

may be null. If cjx is the time at which the last successful checkpoint for jx started,

then the amount of work lost as a result of failure x is (tx − cjx)njx (this equals 0 for

jx = null). Hence, the total work lost (Klost) is

Klost =
∑
∀x

(tx − cjx)njx.

This thesis ignores Kunused, which relates to capacity that is unused because of a

lack of jobs requesting nodes or other non-failure reasons.
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This thesis also considers metrics similar to those in Krevat’s scheduler [12]. The

actual job execution time is calculated based on start time sj and actual finish time uj

of each job; when measuring utilization, we use execution time excluding checkpoints.

Similarly, sj, uj, and job arrival time (aj) can be used to calculate wait time wj =

sj − aj, response time rj = uj − aj, and bounded slowdown bsj =
max(rj ,Γ)

min(ej ,Γ)
, where

Γ = 10 seconds. Therefore, we consider the following metrics when evaluating overall

system performance: (1) {Average[wj]}, (2) {Average[rj]} and (3) {Average[bsj]}.

Calculations used the so-called “last start time” of each job, which is the latest

time at which the job was started in the cluster. There may be many start times,

because a failed job returns to the wait queue. It would be misleading to use the

first start time, because a job may fail many times, spend time checkpointing in the

cluster, and sit waiting in the queue, all after the initial start time. Due to the choice

of start time, wj tends to be similar to rj.

In order to be consistent, and because this thesis proposes that checkpoints should

be optional, checkpointing overhead is treated as being unnecessary work. That is, ej

is the execution time of the job without checkpoints. Therefore, values for bounded

slowdown, for example, may seem unusually high. In fact, this is a more accurate

representation of the performance of the cluster; if the checkpoints could be skipped,

the baseline optimal may be improved.

4.3.2 Workload and Failure Traces

The simulations used job logs from the parallel workload archive [11] to induce the

workload on the system. The parallel job logs include a log from NASA Ames’s 128-

node iPSC/860 machine collected in 1993 (referred to as NASA log henceforth), San

Diego Supercomputer Center’s 128-node IBM RS/6000 SP job log from 1998-2000

(SDSC log), and Lawrence Livermore National Laboratory’s 256 node Cray T3D

job log from 1996 (LLNL log). For space considerations, this thesis focuses on the

results using the SDSC log, and includes some results using the NASA logs. Each log

contained 10, 000 jobs. Some characteristics are shown in Table 4.1, where runtimes

do not include checkpoints.
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Job Log Avg Size Avg Runtime (s) Max Runtime (hr)

NASA 6.3 381 12
SDSC 9.7 7722 132
LLNL 10.2 1024 41

Table 4.1: Basic characteristics of the job logs used to generate workloads in the
simulations.

To generate failure behavior, failure logs were used from filtered traces collected

for a year from a set of 350 AIX machines for a previous study on failure analysis

and event prediction [29, 27]. Failures from the first 128 such machines were used,

resulting in 1, 021 failures, an average of 2.8 failures per day. The MTBF on any node

in the cluster was 8.5 hours. Therefore, the timing and distribution of failures used

in these experiments reflect the behavior of actual hardware and software in a large

cluster.

4.3.3 Results

Results are presented for the NASA and SDSC job logs on a flat cluster, as well as

for a toroidal communication architecture using the SDSC log. The simulations, in

all, represent more than 600,000 days of cluster time, and involve the scheduling of

more than 30 million jobs. The results presented here are necessarily a subset of these

simulations. A particular graph was included either because it was representative of

our results or it accentuated an important feature. Exceptional results are noted as

such.

System Performance

This section investigates the effects of work-based and risk-based checkpointing on

system-level metrics such as average bounded slowdown. Figure 4-3 plots checkpoint-

ing interval against average bounded slowdown for the SDSC log, on a flat cluster,

with a checkpoint overhead of 12 minutes (720 seconds). The same runs for the NASA

log are shown in Figure 4-4, and runs for the SDSC log on a toroidal interconnect

architecture are shown in Figure 4-5. The five curves represent periodic, work-based,
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and risk-based checkpointing for three accuracy levels. Periodic checkpointing means

every checkpoint is performed at intervals defined by the x-axis value. Similarly,

work-based checkpointing is performed according to the definition in Equation 4.1

with pf = 1.

Risk a indicates risk-based checkpointing with a false negative rate of 1 − a.

Referring to the definition of risk-based checkpointing in Equation 4.1, a = 0 implies

that the predictor will always return pf = 0 or no checkpointing is performed. Despite

the fact that no checkpoints are performed, the metric for Risk 0 varies with the

checkpoint interval. This is because the job scheduler must estimate the completion

time of the job. In other words, the scheduler considers the runtime (r), checkpoint

interval (I), and checkpoint overhead C, and estimates the total running time (R) as

if all checkpoints are to be performed based on R = r + C · b(r/I)c. Therefore, R for

each job is estimated to be greater for a smaller I, making performance enhancing

techniques, like backfilling, less likely. As a result, performance of Risk 0 is marginally

worse at smaller I values.

For a checkpoint overhead of 720 seconds, I < C, so work-based checkpointing

results in the same curve as periodic checkpointing. As the checkpointing interval

is decreased, bounded slowdown for the periodic checkpointing scheme increases ex-

ponentially. In general, risk-based checkpointing, at any accuracy, results in a lower

bounded slowdown compared to either work-based or periodic checkpointing. This is

because the bounded slowdown is dominated by the checkpointing overhead. Risk-

based checkpointing will never perform more checkpoints than work-based checkpoint-

ing, and work-based checkpointing will never perform more checkpoints than periodic

checkpointing. Zooms of Figures 4-3 to 4-5, with all accuracy levels included, are

shown in Figures 4-6 to 4-8, respectively.

As a representative case of checkpointing results for higher overheads (say C =

3600 seconds), Figure 4-9 plots bounded slowdown for the SDSC log on a flat clus-

ter. Between the intervals of I = 3500 seconds and I = 4000 seconds, work-based

checkpointing diverges suddenly and dramatically from periodic checkpointing. The

checkpoint overhead is 3600 seconds, so I > 3600 seconds means that every check-
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Figure 4-3: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log, using a checkpoint overhead of 720 seconds.

point will be performed. Below 3600 seconds, the work-based heuristic takes into

effect. At I = 3500 seconds, for example, every other checkpoint is performed, start-

ing with the second one. Applications that only checkpointed once do not checkpoint

at all. This immediately results in a 7-fold decrease in average bounded slowdown.

Again from Figure 4-9, there is nearly a 50% gap in performance between the Work

and Risk 1 maximum values. A similar gap can be seen in all Figures for C = 720

seconds. Work-based checkpointing will perform every checkpoint such that dI > C,

whether or not the event predictor indicates that a failure is likely. On the other hand,

risk-based checkpointing, with no false positives, will only perform a checkpoint when

a failure is predicted to occur before the end of the subsequent checkpoint. Conse-

quently, there are many checkpoints to be performed by work-based checkpointing

compared to risk-based checkpointing. In the case of a = 1, all failures are correctly

predicted (ideal case). Our predictor does not have any false positives. If, however,

the false positive rate was set at 1 (always predicts a failure) and the predictor, there-
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Figure 4-4: Bounded slowdown vs. checkpoint interval in seconds for the NASA job
log, using a checkpoint overhead of 720 seconds.

fore, always returned pf = 1, then the Risk 1 and Work curves would be identical.

We therefore call the gap between these curves the false positive gap.

Another prominent characteristic visible in Figures 4-6 to 4-9 is the stratification

of the drop in metric under risk-based checkpointing at different accuracies. For risk-

based checkpointing at higher accuracies (and work-based checkpointing for Figure 4-

9), this drop occurs below I = C seconds, since pfI < C, in general. For lower

accuracies, however, this drop occurs at higher intervals. At these lower accuracies, a

greater proportion of failures will be predicted with lower probabilities. For instance,

at a = 0.9, all failures will have 0 ≤ pf ≤ 0.9, while at a = 0.2, 0 ≤ pf ≤ 0.2, ∀pf .

Additionally, the number of failures predicted is nondecreasing as a increases, so the

average pf tends to increase with a. Referring back to the heuristic for risk-based

checkpointing, lower accuracies will be more likely to satisfy pfdI < C, thus more

checkpoints are skipped.

Because of our choice of job start time, response time and wait time tend to be
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Figure 4-5: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log on a toroidal topology, using a checkpoint overhead of 720 seconds.

similar to each other. This is clear from a comparison of Figures 4-10 and 4-11, which

use C = 720 seconds. In general, bounded slowdown, response time and wait time

curves for the same input parameters are similar in nature. Bounded slowdown is

used because the curves more strongly exhibit important characteristics.

To summarize, periodic checkpointing suffers from an exponential decrease in per-

formance as the checkpoint interval decreases. Work-based checkpointing effectively

trims off the most devastating part of this curve by applying a simple run-time heuris-

tic, for those situations in which C > I. Further benefit can be achieved by using

risk-based checkpointing, where all event predication accuracies fare better than ei-

ther periodic or work-based checkpointing.

System Utilization

A common measure of performance is average system utilization. Particularly for

dynamically-arriving workloads, as jobs are encountered in most production circum-
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Figure 4-6: A zoom of Figure 4-3, with all prediction accuracy levels.

stances, this is a misleading metric. A long-running job arriving late in the simulation

can dominate the running time (M), which solely determines the utilization for a given

workload.

Results for the SDSC log on a torus (C = 720 seconds) are presented in Figure 4-

12. A closer view of the figure, between checkpointing interval 1000-10000 seconds for

all accuracies, is shown in Figure 4-13. We see that näıve checkpointing can reduce ef-

fective utilization from ∼ 74% to ∼ 55%; when C = 3600 seconds, utilization dropped

from ∼ 67% to ∼ 20%. Simple work-based checkpointing increases utilization, in the

latter case, by more than 25%. In general, for these parameters, not checkpointing

decreases effective utilization. For smaller intervals, however, Risk 0 is optimal for

this metric. Once again, stratification is clearly visible in Figure 4-13.

From these results, and the results in Section 4.3.3, it appears that checkpointing

does not generally act to improve system-level metrics like utilization and bounded

slowdown, for these workloads and failure distributions. Checkpointing increases the

effective running time of jobs, and makes efficient scheduling more difficult. In par-
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Figure 4-7: A zoom of Figure 4-4, with all prediction accuracy levels.

ticular, it complicates backfilling. Work-based and risk-based checkpointing mitigate

this loss of efficiency by skipping checkpoints that the heuristics perceive as being

superfluous. In section 4.3.3, we examine the trade-off made for those improvements

in performance.

Work Lost

Standard checkpointing is intended to be a selfish act: a job checkpoints in order to

minimize the amount of recomputation it will need to perform after a failure. It does

not consider the effect of its continued execution on the scheduling of other jobs, or

the perceived speed of the cluster. Minimizing the work lost parameter inherently

satisfies the goal of checkpointing, and is the basis for the requirements of work-based

and risk-based checkpointing. Neither of the algorithms in these simulations have

a system value function (S) that would permit consideration of system-level factors

that might improve utilization or average slowdown.

Figure 4-14 shows the total amount of work lost due to failures for the SDSC
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Figure 4-8: A zoom of the torus results in Figure 4-5, with all prediction accuracy
levels.

log on a flat cluster. The most outstanding feature is the curve for Risk 0 (no

checkpointing), which is distinctly separate from the other curves. The amount of

work lost from failures is reduced to nearly the optimal value when the accuracy of

the predictor is raised to 50%. Figure 4-15 shows the same results for the torus.

Clearly, checkpointing is accomplishing its goal: reducing the amount of work lost

due to job failures.

For curves other than Risk 0, where checkpointing is being performed, a higher

interval tends to increase the amount of lost work. This is reasonable, because more

frequent checkpointing is a common strategy to minimize lost work. The fluctuations

in Risk 0 are a consequence of the way in which the jobs happen to be scheduled, and

illustrates the variance in the amount of work that may be lost without checkpointing.

A closer look at Figure 4-15, with all prediction accuracies, is shown in Figure 4-

16. Compared to no checkpointing, the amount of work lost from failures is reduced

by more than 79% when the accuracy of the predictor is raised to 10%, and by 92%

at 40% accuracy. In other words, predicting and checkpointing ahead of only 10% of
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Figure 4-9: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log, using a checkpoint overhead of 3600 seconds.

all failures makes a huge impact in the amount of lost work. Predicting around half

of the failures has the same effect on lost work as checkpointing periodically, whether

or not a failure is expected.

Strategy Comparison

This section presents a different view of the results from the previous section, and

summarizes the trade-offs offered by these checkpointing heuristics. Figures 4-17

through 4-19 show results for the SDSC log on a flat cluster. The x-axis indicates

the type of checkpointing that was used. All plots are for C = 720, 3600 seconds and

I = {1000, 10000} seconds. The results for C = 720 seconds represent results when

C < I. In this case, the work-based heuristic performs every checkpoint; periodic

and work-based checkpointing yield the same results.

Consider first the results for I = 10, 000 seconds. The bounded slowdowns in
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Figure 4-10: Response time vs. checkpoint interval in seconds for the SDSC job log,
using a checkpoint overhead of 720 seconds.

Figure 4-17 show a gradual decrease in this metric as fewer checkpoints are performed,

for both overheads. While Risk 0 is optimal, note that Risk 0.1 gives nearly the same

values. Utilization, graphed in Figure 4-18, shows a similar pattern, with utilization

tending to increase as fewer checkpoints are performed. The sole exception is Risk

0 with C = 720 seconds, where utilization suffers negligibly. For this interval of

I = 10, 000 seconds, the range of utilization fractions is relatively small.

For I = 1000 seconds, periodic checkpointing performs significantly worse than

either of our heuristics in both bounded slowdown and utilization. In that case,

with C = 3600 seconds, work-based checkpointing gave an immediate 25% utilization

boost, with an additional 20% being possible if all checkpoints are skipped. Work-

based checkpointing reduced bounded slowdown, in this extreme case, by more than a

factor of 90. By themselves, these measurements of bounded slowdown and utilization

give the impression that checkpointing should be abandoned entirely.
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Figure 4-11: Wait time vs. checkpoint interval in seconds for the SDSC job log, using
a checkpoint overhead of 720 seconds.

Figure 4-19, however, tells just the opposite. For I = 10, 000 seconds, the amount

of lost work increases as the amount of checkpointing decreases. For a system with

C = 720 seconds, a prediction accuracy of 10% reduces the amount of lost work as

much as periodic checkpointing, while also bringing bounded slowdown and utilization

to near optimal values. Recall that event prediction with accuracy as high as 70% has

already been achieved [27]. We conclude that an application should spend as little

time checkpointing as possible, but no less, and that those important checkpoints can

be effectively identified with event prediction.

The results for I = 1000 seconds were slightly more complicated: the lost work

plot was a U-shaped curve. Too much checkpointing meant that jobs tended to hit

more failures, and there was a greater chance of failing during a checkpoint. On

the other hand, too little checkpointing was even worse. For such an extreme case,

work-based checkpointing is a simple heuristic for getting a considerable boost in
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Figure 4-12: System utilization vs. checkpoint interval in seconds for the SDSC job
log on a toroidal architecture, using a checkpoint overhead of 720 seconds. This is
representative of the results with other inputs.

system-level metrics, while cutting the amount of lost work in half. That is, by in-

telligently skipping checkpoints according to the work-based heuristic, the amount of

lost work can be decreased. If system-level metrics are most important to the system

administrator, risk-based checkpointing may be an appropriate solution. Once again,

by using event prediction with a mere 10% accuracy, the amount of lost work can dras-

tically reduced, while simultaneously increasing bounded slowdown and utilization to

near-optimal levels.
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Figure 4-13: Zoom of Figure 4-12 with all accuracies.
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Figure 4-14: Lost work vs. checkpoint interval in seconds for the SDSC job log, using
a checkpoint overhead of 720 seconds.
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Figure 4-15: Lost work vs. checkpoint interval in seconds for the SDSC job log on a
toroidal architecture, using a checkpoint overhead of 720 seconds.
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Figure 4-16: A closer look at Figure 4-15, with all prediction accuracies

Figure 4-17: Comparison of different checkpointing policies: bounded slowdown,
SDSC log. C = 720 and 3600 seconds. (a) I = 1000 sec., (b) I = 10, 000 sec.

86



Figure 4-18: Comparison of different checkpointing policies: system utilization, SDSC
log. C = 720 and 3600 seconds. (a) I = 1000 sec., (b) I = 10, 000 sec.

Figure 4-19: Comparison of different checkpointing policies: lost work, SDSC log.
C = 720 and 3600 seconds. (a) I = 1000 sec., (b) I = 10, 000 sec.
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Chapter 5

Contributions

As computing systems continue to grow in scale, new techniques must be developed

for ensuring reliable and efficient operation. Periodic checkpointing, at either the

application or system level, is quickly becoming an infeasible solution to the challenge

of minimizing the cost of failures. This thesis has presented a unique checkpointing

scheme called cooperative checkpointing, in which many components of the system

work together to save application state to stable storage in an efficient, timely manner.

Specifically, the programmer places checkpoint requests in the application code

where the critical state is minimal. These requests are optimized by the compiler.

At runtime, checkpoint requests are sent to the gatekeeper, which either performs or

skips each checkpoint request. The gatekeeper uses input from a multitude of sources

to make informed choices. In this way, cooperative checkpointing combines many of

the strengths of previous techniques while negating many weaknesses.

Cooperative checkpointing can be modeled as two parts: the static placement and

optimization of checkpoint requests in the code, and the dynamic online decisions

made by the gatekeeper. The behavior of the gatekeeper can be modeled as an on-

line algorithm. Where C is the checkpoint overhead and I is the request interval,

a worst-case analysis proves a lower bound of (2 + bC
I
c)-competitiveness for deter-

ministic cooperative checkpointing algorithms, and proves that a number of simple

algorithms meet this bound. In the expected-case, an optimal periodic checkpointing

algorithm that assumes an exponential failure distribution may be arbitrarily bad rel-
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ative to an optimal cooperative checkpointing algorithm that permits a general failure

distribution. An application using cooperative checkpointing may make progress 4

times faster than one using periodic checkpointing, under realistic conditions. Simula-

tion results show that, in extreme cases, cooperative checkpointing improved system

utilization by more than 25%, reduced bounded slowdown by a factor of 9, while

simultaneously reducing the amount of work lost due to failures by 30%.

Cooperative checkpointing is a topic of active research. An implementation is

currently in progress for BlueGene/L. The next steps include developing more specific

cooperative checkpointing algorithms for supercomputing systems, improving health

monitoring and event prediction systems, extending the simulator to support the

dynamic case, and using that simulator to perform more extensive experiments.

More concisely, this thesis makes the following contributions:

• Formalizes the problem of checkpointing on realistic systems, in which check-

point overheads are dominated by I/O bottlenecks and where failures may occur

in predictable ways.

• Introduces cooperative checkpointing, a novel technique for overcoming these

challenges, whereby the application requests checkpoints and the system dy-

namically decides which to perform and which to skip.

• Analyzes cooperative checkpointing as an online algorithm. The worst-case and

expected-case analyses prove that cooperative checkpointing can do significantly

better than periodic checkpointing.

• Proposes an embodiment of cooperative checkpointing that takes advantage of

its full potential and suggests what kind of supporting infrastructure is required

(or desirable) for this scheme.

• Simulates the performance of a rudimentary cooperative checkpointing imple-

mentation and presents the results.
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