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Abstract

A system-level checkpointing mechanism, with global knowledge of the state and
health of the machine, can improve performance and reliability by dynamically de-
ciding when to skip checkpoint requests made by applications. This thesis presents
such a technique, called cooperative checkpointing, and models its behavior as an on-
line algorithm. Where C' is the checkpoint overhead and [ is the request interval,
a worst-case analysis proves a lower bound of (2 + [£])-competitiveness for deter-
ministic cooperative checkpointing algorithms, and proves that a number of simple
algorithms meet this bound. Using an expected-case analysis, this thesis proves that
an optimal periodic checkpointing algorithm that assumes an exponential failure dis-
tribution may be arbitrarily bad relative to an optimal cooperative checkpointing
algorithm that permits a general failure distribution. Calculations suggest that, un-
der realistic conditions, an application using cooperative checkpointing may make
progress 4 times faster than one using periodic checkpointing. Finally, the thesis
suggests an embodiment of cooperative checkpointing for a large-scale high perfor-
mance computer system and presents the results of some preliminary simulations.
These results show that, in extreme cases, cooperative checkpointing improved sys-
tem utilization by more than 25%, reduced bounded slowdown by a factor of 9, while
simultaneously reducing the amount of work lost due to failures by 30%. This the-
sis contributes a unique approach to providing large-scale system reliability through
cooperative checkpointing, techniques for analyzing the approach, and blueprints for
implementing it in practice.
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Chapter 1

Introduction

“It is through cooperation, rather than conflict, that your greatest successes will be

derived.”

- Ralph Charell

A system-level checkpointing mechanism, with global knowledge of the state and
health of the machine, can improve performance and reliability by dynamically decid-
ing when to skip checkpoint requests made by applications. Consequently, the debate
regarding which agent (the application or the system) should be responsible for de-
ciding when to perform these checkpoints is a false dichotomy. This thesis proposes
a system called cooperative checkpointing, in which the application programmer, the
compiler, and the runtime system are all part of the decision regarding when and
how checkpoints are performed. Specifically, the programmer inserts checkpoints at
locations in the code where the application state is minimal, placing them liberally
wherever a checkpoint would be efficient. The compiler then removes any state which
it knows to be superfluous, checks for errors, and makes various optimizations that
reduce the overhead of the checkpoint. At runtime, the application requests a check-
point. The system finally grants or denies the checkpoint based on various heuristics.
These may include disk or network usage information, reliability statistics, and so on.

High-performance computing systems typically exploit massive hardware par-
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allelism to gain performance, at the cost of the applications being more failure
prone. For example, the installation of IBM’s BlueGene/L supercomputer (BG/L) at
Lawrence Livermore National Labs (LLNL) will have 65,536 nodes [1], and millions
of components. The failure of an individual hardware or software component in a
running job’s partition can often cause the failure of that job. We refer to any such
component failure simply as a failure. Because components do not fail independently,
the probability of a job failing grows superlinearly with the number of nodes in its
partition; such growth outpaces the improvements in component reliability. Jobs on
these systems may run for weeks or months at a time, so it is vital to minimize the
amount of recomputed work following a failure. The lack of an effective method for

mitigating the cost of failures would be catastrophic.

A standard solution to this problem is to implement a checkpointing (and rollback-
recovery) scheme. Checkpointing involves periodically saving the state of a running
job to stable storage, allowing for that job to be restarted from the last successful
checkpoint in the event of a failure. Checkpoints have an associated overhead, usually
dictated by the bottleneck to the stable storage system. Therefore, while there is a risk
associated with not checkpointing, there is a direct and measurable cost associated
with performing the checkpoints. As systems grow larger, this overhead increases.
That is because there is greater coordination necessary to guarantee a consistent
checkpoint, as well was more data that requires saving. The central question in the
checkpointing literature asks, “When should a job perform checkpoints?” Optimally,
every checkpoint is used for recovery and every checkpoint is completed immediately
preceding a failure. A central insight of this thesis is that skipping checkpoints that

are less likely to be used for recovery can improve reliability and performance.

The literature generally advises to checkpoint periodically, at an interval deter-
mined primarily by the overhead and the failure rate of the system. These schemes can
be further subdivided into two distinct categories: application-initiated and system-
initiated checkpointing. In application-initiated checkpointing, the job itself is ulti-
mately responsible for determining when checkpoints are performed. The application

programmer places checkpoints in the code in a quasi-periodic manner, often corre-
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sponding to iterations of an outer loop. These checkpoints are performed irrespective
of system-level considerations, such as network traffic. System-initiated checkpointing
is precisely the opposite: the system forces the job to pause and saves its entire state.
These checkpoints require greater coordination overhead, and are often needlessly
large.

Working to decide between application-initiated and system-initiated checkpoint-
ing, however, is to beg the question. Both the application and the system have
information relevant to the value of a checkpoint; to ignore either one is to relinquish
a potential gain. The system presented in this thesis may be thought of as a hybrid
between application-initiated and system-initiated checkpointing, because it permits
cooperation between two such mechanisms. The application requests checkpoints,
and the system either grants or denies each one. Currently, all application-initiated
checkpoints are taken, even if system-level considerations would have revealed that
the checkpoint is inadvisable. (And vice versa.) Many checkpoints are taken even
though they are grossly inefficient or have a low probability of being used for recov-
ery. If the heuristics used by the system are reasonably confident that a particular
checkpoint should be skipped, a benefit is conferred to both parties. That is, the
application may finish sooner or at a lower cost because checkpoints were performed
at more efficient times, and the system may accomplish more useful work because
fewer checkpoints were wasted.

This thesis introduces and describes cooperative checkpointing, develops a theo-
retical analytical model, and addresses the questions involved with implementing it

in practice. The chapters of the thesis answer the following broad questions in order:

e What are some of the challenges related to reliability and performance in large-
scale systems, and what approaches have previously been attempted to address
them? What is cooperative checkpointing and how does it confer the advantages
of previous approaches while simultaneously avoiding many of their pitfalls?

(Cooperative Checkpointing, Chapter 2)

e How can we model and analyze cooperative checkpointing? Under what con-
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ditions is cooperative checkpointing provably better than other methods, and

how much better is it? (Algorithmic Analysis, Chapter 3)

e How might cooperative checkpointing be used in a real-world system? What
supporting infrastructure does it require? What kind of performance and reli-

ability improvements might be seen in practice? (Embodiment, Chapter 4)

The final chapter (Contributions, Chapter 5) summarizes the results, outlines some

open research questions, and reviews the unique contributions of this thesis.
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Chapter 2

Cooperative Checkpointing

“It is one of the beautiful compensations of this life that no one can sincerely try to

help another without helping himself.”
- Charles Dudley

In order to understand and appreciate cooperative checkpointing, it is necessary
to understand the terminology, challenges, and previous approaches to providing re-
liability through checkpointing. This chapter contains a summary of recent results
regarding checkpointing techniques and of the failure behavior of real systems. In ad-
dition, it introduces basic terms and definitions related to checkpointing and reliabil-
ity. The material presented here will suggest two important trends in supercomputing

systems, with implications for checkpointing:
e Increasing system complexity will necessitate more frequent checkpoints.
e Increasing system size will imply larger checkpointing overheads.

Taken together, these trends imply that periodic checkpointing will not be feasi-
ble as a long-term solution to system failures for providing reliability. The chapter
concludes with the introduction of cooperative checkpointing, a unique approach to

checkpointing that addresses these challenges.
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High performance computing systems are tending toward being larger and more
complex. For example, a 64-rack BlueGene/L system contains 65,536 nodes and
more than 16 terabytes of memory. Applications on these systems are designed to
run for days to months. Despite a design focus on reliability, failures on such a large-
scale machine will be relatively frequent. Checkpointing is still the best solution
for providing reliable completion of these jobs on inherently unreliable hardware.
Unfortunately, the rate at which the data sets are growing is outpacing growth in
the speed of stable storage and networks. In other words, there is an I/O bottleneck
facing these massive clusters when they attempt to save their state. Taken together,
it is clear that standard checkpointing techniques must be reevaluated [10].

Many high-performance computing applications are executed repetitiously [16],
making their behavior amendable to modeling. After a single run of the application,
a plethora of information can be harvested to improve the performance of future runs.
For example, users will be able to more accurately estimate the running time of the
application if the system can say, “Last time you ran this job on input X, it took
time T.” Memory usage, caching strategies, physical thread layout on the machine,
and so on, can all be improved by learning behaviors from previous runs of a job.
This kind of application profiling can provide the user and system with information

that can be useful for improving both the performance and utility of the machine.

2.1 Terms and Definitions

Define a failure to be any event in hardware or software that results in the immediate
failure of a running application. At the time of failure, any unsaved computation is
lost, and execution must be restarted from the most recently completed checkpoint.
There is a downtime parameter (D) which measures for how long a failed node is
down and unable to compute. For software errors that simply cause an application
to crash, D may be negligible. If, instead, the failure is the permanent destruction
of a critical hardware component, and no spare components can be used in its place,

the downtime may be much longer.

18



When an application initiates a checkpoint at time ¢, progress on that job is paused
for the checkpoint overhead (C') after which the application may continue. This
overhead may be treated either as a constant (noted as C) or as being dependent
on the system conditions (C; for some 7). This thesis addresses both cases. The
checkpoint latency (L) is defined such that job failure between times t and ¢ + L
will force the job to restart from the previous checkpoint, rather than the current
one; failure after time ¢ + L means the checkpoint was successful and the application
can restart as though continuing execution from time ¢. It was shown [22] that L
typically has an insignificant impact on checkpointing performance for realistic failure
distributions. Therefore, this thesis treats C' &~ L. There is also a checkpoint recovery

parameter (R) which is the time required for a job to restart from a checkpoint.

| start end|

= Downtime/Recovery

% = Job Failure Ci = Overhead

Figure 2-1: Behavior of a job that checkpoints roughly periodically. In this example,
a job failure occurs just before the start of the second checkpoint, requiring I to be
recomputed. The intervals are not drawn to scale.

Figure 2-1 illustrates typical application behavior. Periods of computation are
occasionally interrupted to perform checkpoints, during which job progress is halted.
Job failure forces a rollback to the previous checkpoint; any work performed between
the end of that checkpoint and the failure must be recomputed and is considered
wasted. Because they are not used for rollback, Cy and C5 are also wasted. Appli-
cations that run for weeks or months will have hundreds of these checkpoints, most
of which will never be used. One unfortunate characteristic of assuming a Poisson
failure distribution is that any checkpoint is modeled as being equally likely to be
used for rollback; making it difficult to argue for some being more important than
others until after the fact.

From a system management perspective, the most valuable resource in a super-
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computer system is node time. Define a unit of work to be a single node occupied
for one second. That is, occupying n nodes for k seconds consumes work n - k node-
seconds. For the purposes of job scheduling and checkpointing, work is the constrained
resource for which we optimize. Thus, a node sitting idle, recomputing work lost due
to a failure, or performing a checkpoint is considered wasted work. Similarly, saved
work is node time spent performing calculations required by the job that are success-
fully saved by a checkpoint, or by the job’s completion. Saved work never needs to
be recomputed. Checkpointing overhead is never included in the calculation of saved
work. For example, if job j runs on n; nodes, and has a failure-free execution time
(excluding checkpoints) of e;, then j performs n; - e; node-seconds of saved work.
If that same job requires E; node-seconds, including checkpoints, then a failure-free
execution effectively wastes E; — e; node-seconds. This definition highlights an im-
portant observation: checkpointing wastes valuable time, so (ideally) it should be

done only when it will be used in a rollback to reduce recomputation.

start

start

start
) | | C | c |

time——»

ﬁ = Failure/Downtime/Restart C = Overhead Recomputation

Figure 2-2: Three execution prefixes in which failures cause work to be lost, but
checkpoints manage to save some work as well. The length of each interval in seconds
is denoted by the inset text.

The concept of saved work is critical to understanding the analysis of cooperative
checkpointing in Chapter 3. Figure 2-2 shows some example executions that help

illustrate the concepts of saved and wasted work. Run (a) shows two intervals of
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length I seconds being executed and promptly checkpointed with overhead C' seconds.
These two intervals were checkpointed before a failure occurred, so they count toward
saved work; the overheads do not. The execution ends with an interval of work being
computed, but a failure occurs before it can be saved. That work is wasted. In
all, execution (a) contains I + 2C' units of wasted work and 2/ units of saved work.
Run (b) contains two failures. The first failure happens just after an interval of
executed work, but before that interval can be checkpointed. That interval must be
recomputed. That recomputation is saved, and counts toward saved work. Thus,
run (b) shows 27 + 2C' units of wasted work, and 2/ units of saved work. Finally,
execution (c¢) performs two intervals of work before checkpointing, and a failure occurs
immediately after that checkpoint is completed. As a result, both intervals are saved,
and nothing must be recomputed. The second failure happens midway through an
interval, meaning those £ units of work are lost. In all, run (c) gives £ + 2C units of

wasted work and 3/ units of saved work.

2.2 Failure Behavior

Algorithmic improvements or increased hardware resources are often overshadowed
by reliability issues. Several early studies in the 1980’s and 1990’s looked at the
failure trends and developed theoretical models for small to medium-scale computer
systems [6, 7, 8, 14]. There have been several approaches to dealing with reliability
problems, including managing system failures. Most theoretical work focuses on pro-
viding fail-over mechanisms, such as hardware or software redundancy [13]. These
efforts, in practice, not only add overhead and complexity to the programming envi-
ronment, but also to the application running environments. Large-scale redundancy
is typically not fiscally practical for supercomputers. Thus, the most common solu-
tion is checkpointing; that subject is covered in detail in Section 2.3. In order for
any scheme to be effective, one must develop useful models of the failure behavior of
supercomputers.

Based on data from smaller computer systems, researchers developed a model
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of failures as behaving like a Poisson arrival process. That is, failure inter-arrival
times are random and independent of one another. Furthermore, these failures were
modeled as being independent and identically distributed across nodes in a system.
Failures under this model are unpredictable and nodes are treated as being equivalent.
Recent studies of large-scale systems, however, have revealed that these assumptions
may not be correct [26, 15]. These studies harvested failures from both large-scale
clusters of commodity machines, as well as from a BlueGene/L prototype. Failures

were found to be

1. Not independent. Failures are dependent on system conditions both in the node
itself and on physically/logically connected nodes. Particularly when jobs run
on numerous nodes simultaneously, the assumption that failures occur inde-
pendently does not hold. Failures frequently cause, and are caused by, other

failures.

2. Not Identically Distributed. Failures seem to be temporally and spatially corre-
lated. The probability distribution is not remotely identical across the system.
In fact, both the AIX cluster and BG/L prototype showed that the reliability
of nodes is distributed exponentially; there are a few troublesome nodes, but

most of them are fairly reliable.

3. Not Poisson. In the past three years, a number of studies of supercomputer
failure distributions [27, 18, 15] have agreed with an earlier study [22] of work-
station failure distributions, which contends that failures in real systems do
not behave like a Poisson arrival process. Furthermore, equations derived from
this Poisson assumption and meant to predict the performance of checkpointing
schemes do not accurately model the behavior of these schemes in the presence

of real failures.

4. Not Unpredictable. Using simple statistical algorithms, it has been shown [27]
that failures are not unpredictable; they are often preceded by regular patterns

of misbehavior that permit prediction of both when and where many failures
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will occur. For failures in a commodity cluster, an algorithm combining linear
time-series modeling and Bayesian learning yielded accurate prediction of 70%

of the failures well in advance.

2.2.1 Event Prediction

A realistic failure model for large-scale systems should admit the possibility of critical
event prediction. Many previous research efforts have looked at analyzing event logs
and other system health signals [6, 7], and some have used this to make event pre-
dictions [32, 34]. Only more recently have these predictions been used effectively to
improve system performance [9, 19]. The idea of using event prediction for proactive
system management has also been explored [28, 25|, as has a mathematical approach
[33].

Critical event prediction is not science fiction. For example, a BG/L prototype
revealed itself to have one very predictable type of problem: ECC memory failures.
Before ECC memory fails, it will first endure a period during which it is correcting bit
errors. This activity can be monitored, and makes it simple to forecast a failure on the
node containing that memory. These predictable ECC memory failures were one of the
most common reasons for node and job failure during the period in which the system
was monitored. It would be invaluable, from a system management perspective, to

utilize this predictive power to improve performance and reliability.

Rare events, such as critical failures, can significantly affect system performance.
Indeed, job failures could easily make a bigger impact on performance than a par-
ticular choice of job scheduling algorithm (for example). Fortunately, many of these
failures happen in a predictable manner. Sahoo and Oliner [26] presented a hybrid
algorithm for event prediction and demonstrated the effectiveness of this algorithm
on actual cluster failure data. The algorithm was able to predict critical failures
with up to 70% accuracy on a Linux cluster with 350 nodes, using a combination of
Bayesian learning [3, 20, 4] and time-series modeling [5]. This work demonstrated the

importance of system health monitoring and event prediction, as well as its feasibility.

23



2.2.2 Fault-aware Job Scheduling

In light of the significant impact of failures on performance, Oliner demonstrated
that event prediction can be used to improve job scheduling [19]. In particular, he
presented two new job scheduling algorithms for BlueGene/L systems [1] that built
on Elie Krevat’s original algorithm [12]. These two scheduling heuristics each used a
different model of event prediction. One algorithm, the balancing algorithm, expected
an event prediction system that took as input a partition and a time window and
would return a level of confidence in the partition. For example, a return value of
0.95 would indicate a 95% chance that the given partition would fail in the given time
window. The tie-break algorithm expected instead a predictor that would return a
boolean: true if the partition was expected to fail and false otherwise. That predictor
would be wrong with some probability.

These algorithms were tested on a BlueGene/L simulator, written specifically for
that research. This event-driven Java simulator was fed real supercomputer job logs
from systems at NASA, SDSC, and LLNL [11]. It was also fed failure data from a large
AIX cluster; the data was modified to match with the architecture of the associated
job logs. This work demonstrated two important results: event prediction only needs
to be about 10% accurate to benefit job scheduling and even low-accuracy event
prediction can improve performance by up to a factor of 2. Such significant results
motivated research into other areas where event prediction could yield a benefit,

namely, checkpointing.

2.3 Checkpointing

Checkpointing for computer systems has been a major area of research over the past
few decades. The goal of high performance computing is to obtain maximum efficiency
from given resources. System failures (hardware/software, permanent /transient), and
the resulting job failures, are a significant cause of degraded performance. Recently,
there have been a number of studies on checkpointing based on certain failure char-

acteristics [23], including Poisson distributions. Plank and Elwasif [22] carried out
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a study on system performance in the presence of real failure distributions and con-
cluded that it is unlikely that failures in a computer system would follow a Poisson
distribution.

The job workloads themselves can be of importance for the performance evaluation
of high performance computing systems. The workloads considered by Plank and
Elwasif for their study are artificial. Similarly, the communication/network topologies
can play an important role in regard to checkpointing or job scheduling strategies for
HPC systems. Tantawi and Ruschitzka [31] developed a theoretical framework for
performance analysis of checkpointing schemes. In addition to considering arbitrary
failure distributions, they present the concept of an equicost checkpointing strategy,
which varies the checkpoint interval according to a balance between the checkpointing
cost and the likelihood of failure. Such a strategy would be costly in practice, because
it is expensive to checkpoint at arbitrary points in a program’s execution.

Some applications may work with state already in stable storage. For most high
performance applications, however, the state is kept entirely in memory. Indeed, one
of the primary reasons for using a supercomputer is not the speed, but the ability to
work on a larger problem size. As such, this thesis does not address issues that arise
when state on disk is modified, and assumes that all application state is in memory.
The checkpointing questions are: what must be saved to stable storage, and when

should it be saved?

2.3.1 System-Initiated Checkpointing

System-initiated checkpointing is a part of many large-scale systems, including IBM
SPs. This means that the system can checkpoint any application at an arbitrary
point in its execution. It has been shown that such a scheme is possible for any MPI
application, without the need to modify user code [30]. Such an architecture has
several disadvantages, however: implementation overhead, time linear in the number
of nodes to coordinate the checkpoint, lack of compiler optimization for checkpoints,
and a potentially large amount of state to save. For these reasons, many supercom-

puting systems, such as BG/L, do not support system-initiated checkpointing. Still,
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the ability of the system to force a checkpoint is a powerful tool that can be used to

improve QoS [17].

2.3.2 Application-Initiated Checkpointing

Application-initiated checkpointing is the dominant approach for most large-scale
parallel systems. Recently, Agarwal et al [2] developed application-initiated check-
pointing schemes for BG/L. There are also a number of studies reporting the effect
of failures on checkpointing schemes and system performance. Most of these works
assume Poisson failure distributions and fix a checkpointing interval at runtime. A
thorough list can be found elsewhere [22], where a study on system performance in
presence of real failure distributions concludes that Poisson failure distributions are
unrealistic. While that work considers real failure distributions, it uses artificial job
logs. Similarly, a recent study by Sahoo et. al. [29, 35], analyzing the failure data
from a large scale cluster environment and its impact on job scheduling, reports that
failures tend to be clustered around a few sets of nodes, rather than following a partic-
ular distribution. They also report how a job scheduling process can be tuned to take
into account the failures on a large-scale cluster by following certain heuristics [35].
Only in the past few months (2004) has there been a study on the impact of realistic

large-scale cluster failure distributions on checkpointing [18].

2.3.3 Characteristics

Application-initiated and system-initiated checkpointing each have pros and cons.

This section gives a summary of some of these properties, and presents them in

Table 2.1.

e Semantics. The checkpointing scheme is aware of the semantics of the data,

and can save only that data which is needed to recreate the application state.

e Minimal-State Placement. The checkpoints are performed at places in the code

where application state is minimal, such as at iterations of an outer loop.
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Portable. Checkpoints may be used for restart on machines that are different
from the ones on which the checkpoint was made. This is useful for heteroge-

neous systems.

Compiler Optimizations. At compile time, the application can be optimized to

more efficiently perform the checkpoints.

Runtime. The checkpointing policy is decided at runtime, and can consider
such factors as the size of the application’s partition, system health, and net-
work traffic. Typically, this means picking a periodic checkpointing interval at

runtime.

Kernel State. The checkpointing mechanism is able to save and restore kernel-

level information, such as PID or PPID.

Transparent. User intervention is not required to accomplish checkpointing;

checkpoints are placed and performed transparently.

’ Characteristic H System \ Application ‘
Semantics X
Minimal-State Placement X
Portable X
Compiler Optimizations X
Runtime X
Kernel State X
Transparent X

Table 2.1: Comparison of the characteristics of the two major approaches to check-
pointing: application-initiated and system-initiated. Generally, system-initiated pro-
vides transparent, coarse-grained checkpointing; application-initiated provides more
efficient, fine-grained checkpointing. Ideally, a checkpointing system would possess
all of these features.

Certainly, Table 2.1 is neither complete nor strictly precise. For example, systems

that are responsible for checkpointing user applications may use some portable inter-

mediate representation, thus providing Portability. The entries in the table, however,

apply to most checkpointing schemes; the table is a useful reminder of the tradeoffs

made by designers attempting to construct reliable systems.
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2.4 Cooperative Checkpointing

Cooperative checkpointing is a set of semantics and policies that allow the applica-
tion, compiler, and system to jointly decide when checkpoints should be performed.
Specifically, the application requests checkpoints, which have been optimized for per-
formance by the compiler, and the system grants or denies these requests. The general

process consists of three parts:

1. The application programmer inserts checkpoint requests in the code at places
where the state is minimal, or where a checkpoint is otherwise efficient. These
checkpoints can be placed liberally throughout the code, and permit the user

to place an upper bound on the number and rate of checkpoints.

2. The compiler optimizes these requests by catching errors, removing dead vari-
ables, and assisting with optimization techniques such as incremental check-
pointing. In the case of cooperative checkpointing, the compiler may move the
checkpoint request to a slightly earlier point in time; this permits a number of

additional performance improvements.

3. The system receives and considers checkpoint requests. Based on system con-
ditions such as I/O traffic, critical event predictions, and user requirements,
this request is either granted or denied. The mechanism that handles these
requests is referred to as the checkpoint gatekeeper or, simply, the gatekeeper.

The request/response latency for this exchange is assumed to be negligible.

Cooperative checkpointing appears to an observer as irregularity in the check-
pointing interval. If we model failures as having an estimable MTBF, but not much
else, then periodic checkpointing is sensible (even optimal). But once these failures
are seen to be predictable, and other factors are considered, this irregularity allows
us to do much better. The behavior of applications as they choose to skip different

checkpoints is illustrated in Figure 2-3.
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start end|

start end|

start end|
time ——»
ﬁ = Job Failure/Downtime/Restart G = Overhead = Recomputation

Figure 2-3: Three job runs in which different checkpoints are skipped. Run (a) shows
typical periodic behavior, in which every checkpoint is performed. In run (b), the
final checkpoint is skipped, perhaps because the critical event predictor sees a low
probability that such a checkpoint will be used for rollback, given the short time
remaining in the computation. Finally, run (c) illustrates optimal behavior, in which
a checkpoint is completed immediately preceding a failure.

2.4.1 Policy

The primary policy question with regard to cooperative checkpointing is, “How does
the gatekeeper decide which checkpoints to skip?” Chapter 4 suggests a gatekeeper
that uses a combination of network traffic data and critical event predictions to make
its decisions. There are, however, many heuristics that the gatekeeper may use,

including:

e Network Traffic. Network 1/0O is the central bottleneck with respect to saving
state to disk. The gatekeeper may choose to skip a checkpoint if the traffic
conditions suggest that the checkpoint would take unacceptably long.

o Disk Usage. Similarly, the shared stable storage itself may be the bottleneck,
if the network bandwidth leading to the disks outpaces the media’s available
write bandwidth.

o Job Scheduling Queue. If a high-priority job is waiting for a running job’s
partition, it may be profitable to risk skipping checkpoints to allow that waiting
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job to run sooner. For example, if a single-node job is blocking a 128-node job,
then we would rather skip some of the small job’s checkpoints to free up that

node as soon as possible.

FEvent Prediction. If a failure is likely to occur in the near future, the gatekeeper
should choose to save the state before that happens. On the other hand, if
system conditions are stable, performing the checkpoint may be a waste of time

and resources.

Logically Connected Components. Recent work [24] has explored the notion of
a connected component of processes in a job. Roughly, a connected component
is a subset of processes among which there is a dependency. Thus, the failure
of one connected component may not necessitate the rollback of the entire job,

but merely that component.

QoS Guarantees. Many systems make QoS guarantees to users in the form of
deadlines or minimum throughput. Cooperative checkpointing can be used as
a tool to help keep those promises. For example, a job that started later than
expected can be made to skip checkpoints in order to reduce its effective running

time, thereby potentially meeting a deadline it would otherwise have missed.

Note that most of these heuristics cannot and should not be considered by the appli-

cation programmer at compile-time. At the same time, there are many aspects of the

internal logic of an application (data semantics, control flow) that cannot and should

not be considered by the system at runtime. Neither application-initiated nor system-

initiated checkpointing satisfactorily considers all these factors in deciding when to

perform checkpoints. This observation is central to cooperative checkpointing.

2.4.2 Characteristics

Recall Table 2.1 from Section 2.3.3, which summarized some of the advantages and

disadvantages of application-initiated and system-initiated checkpointing. Table 2.2
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includes the addition of cooperative checkpointing, which confers nearly all the ben-

efits of the two standard schemes.

] Characteristic H System \ Application \ Cooperative ‘
Semantics X X
Minimal-State Placement X X
Portable X X
Compiler Optimizations X X
Runtime X X
Kernel State X X
Transparent X

Table 2.2: Comparison of the characteristics of the two major approaches in addition
to cooperative checkpointing. Cooperative checkpointing provides nearly all of the
benefits of the other schemes, with the exception of transparency. In the absence of
better compilers or developer tools, however, transparency necessarily comes at the
cost of smaller, more efficient checkpoints; that is not an acceptable tradeoff for most
high performance applications.

Checkpoint requests are placed by the application programmer, and can be posi-
tioned so as to minimize the size of the checkpointed state. Similarly, the semantics of
the data can be captured by the behavior of the checkpoint if the request is granted,
and the checkpoints can easily be made portable. Because the potential checkpoint
positions are fixed at compile-time, the compiler may make optimizations.

On the other side, the system also participates in the checkpointing process by
granting or skipping each checkpoint request. It is empowered to consider runtime
properties of the system when making these decisions, and can include kernel state
when taking a checkpoint.

Transparency is difficult to achieve without sacrificing knowledge of the data se-
mantics and application state behavior. That knowledge translates to smaller check-
points, and, consequently, smaller checkpointing overheads. In the domain of super-

computing, performance trumps simplicity.
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Chapter 3

Algorithmic Analysis

Cooperative checkpointing is unlike typical checkpointing schemes in that it decom-
poses the problem of deciding when to checkpoint into a static part (placing check-
point requests in the code) and a dynamic part (online boolean decisions regarding
which checkpoints to skip). Instead of considering the parameters of the system and
deciding when to checkpoint before the program is run, cooperative checkpointing
makes online choices about whether or not to perform individual checkpoints based
on the information available at the time. The dynamic part can be modeled as an
online algorithm, as opposed to an offline optimization algorithm.

This chapter considers the dynamic component of cooperative checkpointing and
presents a competitive analysis of various algorithms. Although most competitive
analyses use a cost function that represents how expensive operations are, this thesis
uses a value function that measures the benefit conferred by the algorithm. Specifi-
cally, it compares the amount of work saved by a particular checkpointing algorithm
rather than the amount of work lost to failures. In this way, the analysis is better
able to incorporate the checkpoint overheads.

Among the results in this chapter is a lower bound on the worst-case competitive-
ness of a deterministic cooperative checkpointing algorithm and several algorithms
that meet that bound, a proof that periodic checkpointing using an exponential fail-
ure distribution can be arbitrarily bad relative to cooperative checkpointing using an

arbitrary failure distribution, and a case analysis demonstrating that, under realistic

33



conditions, an application using cooperative checkpointing can make progress four

times faster than one using periodic checkpointing.

3.1 Worst-Case Competitive Analysis

We model cooperative checkpointing by considering the execution of a program that
makes periodic checkpoint requests. The length of this period, I, is a characteristic of
the program, not the online algorithm. In other words, I is chosen as part of the static
component of cooperative checkpointing, while the decisions of which checkpoints to
perform is the dynamic algorithmic component. The analysis focuses on failure-free
intervals (FF intervals), which are periods of ezecution between the occurrence of
two consecutive failures. Such periods are crucial, because only that work which is
checkpointed within an FF interval will be saved. Let F' be a random variable with
unknown probability density function. The varying input is a particular sequence of
failures, @ = {fi1, f2, ..., fu}, with each f; generated from F. Each f; is the length
of an FF interval, also written as |F'FI|. The elements of ) determine when the
program fails but not for how long the program is down. Thus, if execution starts at
t = 0, the first failure happens at f;. No progress is made for some amount of time
following the failure. After execution begins again at time ¢ = ¢, the second failure
happens at t = t; + fo. Figure 3-1 illustrates a partial execution including three FF

intervals.

| start

= Downtime/Restart f. = FF interval

% = Failure

Figure 3-1: The execution of a program with failures, shown up to n = 3. The length
of the FF intervals (f;) varies. The downtime and recovery time following a failure is
variable, as well, but is not included in the failure sequence ). The execution may
continue beyond what is shown.
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The average length of these intervals is related to the Mean Time Between Failures
or MTBF. The f;, however, do not include the downtime and recovery time. They
are the periods between failures during which the program can make progress. This
input @) is independent of the choices made by the checkpointing algorithm, and so
fi also includes checkpoint overheads.

Given knowledge of the past behavior of the program and the system, a cooperative
checkpointing algorithm decides whether to grant or skip each checkpoint request, as
it arrives. Let P be some program, A be some cooperative checkpointing algorithm,
and () be some failure sequence of n elements. Say P has infinite execution time, but
n is finite, as are the elements f; € ). Consider the period of execution starting at
t = 0, before the first failure, and ending with the n'* failure (the span of Q). Define
Va to be the cumulative amount of work saved by A during the time spanned by
(). When discussing an individual FF interval, it is acceptable to refer simply to Vjy,

which is the amount of work saved by A in that interval.

Definition 1 An online checkpointing algorithm A has competitive ratio a (A is a-
competitive) if, for every failure sequence @), the amount of work saved by the optimal
offtine algorithm (OPT) is at most a times the amount of work saved by A. That is,

Vao < aVoprg.

It is worth emphasizing that the definition compares the quality of the algorithm
in terms of the amount of work that was saved in an execution with worst-case failure
behavior, rather than the work that is lost and recomputed. Also note that worst-case
failure behavior is not the worst sequence for OPT, but the sequence that results in
the highest ratio of Vopr to V4. In a sense, this definition compares value instead
of cost. When « is infinite, we say that A is not competitive. Work is typically
defined to be execution time multiplied by the size of the program in nodes; for
competitive analysis, let the program have unit size. Before discussing this definition
in more detail, it is necessary to define the behavior of the optimal offline cooperative

checkpointing algorithm.
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3.1.1 Offline Optimal and Cooperative Checkpointing

Recall that the overhead for performing a checkpoint is a constant C' for every check-
point. When a failure occurs, the program is unable to run for some amount of time,
which is the sum of the downtime (D) of the nodes on which it is running and the
recovery time (R) needed to recover state from the most recent checkpoint. This
downtime and recovery time is paid by every checkpointing algorithm after every

element in Q).

Definition 2 The optimal offline cooperative checkpointing algorithm (OPT ) per-
forms the latest checkpoint in each FF interval such that the checkpoint completes

before the end of the interval (if one exists), and skips every other checkpoint.

For example, consider the executions of algorithms A and OPT, illustrated in
Figure 3-2, that both run for f seconds and then both fail simultaneously. Both
A and OPT have exactly f seconds to save as much work as possible; they are
competing. Let [ = % seconds and C' = 3% seconds. OPT skips the first 6 checkpoint
requests in this FF interval, and performs the 7. Remember that A does not know
f (the length of the FF interval), but OPT does. Let algorithm A take the first
checkpoint, skip one, take the third, skip two, and so on. In this example, A takes
checkpoints 1, 3, and 6. In this manner, O PT saves % units of work, while A saves
% units. We say that, for this FF interval, Vopr = %f and V = %. In Figure 3-2,

intervals of saved work are labeled with their length.

Using this execution pair as an example, we now define two kinds of checkpoints.

Definition 3 A critical checkpoint is any checkpoint that is used for recovery at least

once.

Definition 4 A wasted checkpoint is any checkpoint that is completed but never used

for recovery, or which fails just as it is completing.

In an FF interval in which more than one checkpoint is performed, the last check-

point is a critical checkpoint and the rest are wasted checkpoints. Skipping a wasted
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| start end|(t=f)
(a) /8 /8 f/8 f/8 f/8 118 /8

| start end|(t=f)
(b) /8 118 f/8 /8 /8 118

time ——»

ﬁ = Job Failure D = Overhead = Work

Figure 3-2: An example of the execution of OPT (a) executing alongside a sample
algorithm A (b). OPT performs the latest checkpoint that could finish before the
failure, and no others. Algorithm A performs the first, third, and sixth checkpoints.
A could have performed another checkpoint before failing, but instead saved less work
than OPT.

checkpoint does not necessarily increase the amount of work that is saved in an FF
interval, because doing so may or may not allow a later checkpoint to be performed.
Later on, Lemma 1 formalizes how many checkpoints must be skipped to be advan-
tageous. On the other hand, skipping a critical checkpoint will always result in less
saved work, because rollback must then be done to an earlier checkpoint.

In Figure 3-2, note that A could have completed the 7% checkpoint before the
failure ended the interval. Had A performed that checkpoint, it would have saved %
units of work, just like OPT. In order for an algorithm to be made incrementally

more like the optimal, two things can be done:

1. Skip wasted checkpoints.

2. Perform a critical checkpoint that is closer to the end of the FF interval.

As defined, there are many failure sequences ) such that no checkpointing algo-
rithm, including the optimal, will permit a program to make progress. According to
Definition 1, however, there need not be progress with every failure sequence. More
importantly, the worst-case input that is considered in the competitive analysis is
not the worst-case input for OPT, but the input that gives the algorithm in question
(A) the worst performance relative to OPT. For most executions in which A cannot

make progress, neither can OPT'.
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Often, the competitive ratio of an algorithm is governed by the relationship among
various parameters in the system. Of those introduced into the model so far, the
two key parameters are [ and C. Although R (recovery time) and D (downtime)
are included in this model, they are of no importance when performing a competitive
analysis, so long as they are uncorrelated with the decisions made by the checkpointing

algorithm.

Lemma 1 Let A be some deterministic algorithm. Consider a particular FF interval
length such that A performs k wasted checkpoints. As a result of skipping those
checkpoints, Vopr > Va + 1|5 |. (Skipping Lemma)

The proof of the Skipping Lemma is simple, but its consequences are far-reaching.
In particular, it means that the worst-case competitive ratios of most algorithms will
be functions of [ £].

The case of C' > I is not purely academic, especially because [ is the request
interval, not necessarily the checkpoint interval. Consider the standard equation for
the optimal periodic checkpointing interval, where % is the MTBF:

2C
Iopr = 5N (3.1)

In a real system, such as IBM’s BlueGene/L, the projected upper bound for C' is 12
minutes (720 seconds). Simultaneously, the mean time between failures for the full
machine will likely be rather small, perhaps on the order of minutes. Indeed, if the

MTBEF is any less than 6 minutes (360 seconds), then C' > I:

2
lopr = TC =V2-720-360 = 720 seconds = ('

Because such a situation is realistic, the fact that the competitiveness is a function
of [£] is worthy of note. It would be desirable to achieve k-competitiveness for some
constant k, independent of the relationship among the parameters. The Skipping

Lemma forbids this.
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Another general difficulty in analyzing the competitiveness is the challenge of
identifying the worst-case input. So far, this input has been described as a sequence
of failures (@) such that ‘?};—T(f is maximized. It turns out that it is not necessary to

consider the worst-case sequence, but merely the worst-case interval length.

Theorem 1 Algorithm A is a-competitive iff, ¥ FF intervals of length f € RT, the

amount of work saved by OPT is at most a times the amount of work saved by A.

Proof We must show both directions.

e Given that A is a-competitive, we show that there cannot exist an f such that
the amount of work saved by OPT is more than « times the amount of work
saved by A; we do this by contradiction. Assume there is such an interval
length, f. Construct () as a sequence of n > 0 elements with value f. This is
now the worst-case input, because, in every FF interval, O PT saves more than
a times the amount of work saved by A. In other words, A is not a-competitive,

which is a contradiction.

e Given that, Vf, the amount of work saved by OPT is at most « times the
amount of work saved by A, we show that A must be a-competitive. By the
given characteristics of the FF interval lengths, there does not exist any f such
that OPT saves more than « times as much as A. Furthermore, there exists
some f where Vpopr = aV,. Within the bounds of the given information, we
can construct ) as in the previous bullet using this worst-case f. As before, by

Definition 1, A is a-competitive. O

Corollary 1 To determine the competitive ratio of algorithm A, it is sufficient to

consider the f for which the ratio of Vopr to Vy is largest. That ratio is o

Remark There may be some f for which the ratio of Vopr to V4 is o/ < a. The

worst-case analysis gives an « that is an upper bound.
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Theorem 2 Let A be a deterministic cooperative checkpointing algorithm that skips

the first checkpoint in every interval. A is not competitive.

Proof By Corollary 1, it is only necessary to find the interval length for which OPT
does the best relative to A. In this case, let f = dI+C for some d > 1. Thus, if A fails
just before it completes the first checkpoint; it makes no progress. Meanwhile, O PT
will perform the latest of the first d — 1 checkpoint requests such that the checkpoint
finishes before the failure. Because OPT makes progress, but A does not, the ratio

is infinite and A is not competitive. O

Theorem 3 There does not exist a deterministic cooperative checkpointing algorithm

that is better than (2 + |$ | )-competitive.

Proof Consider some deterministic cooperative checkpointing algorithm A and the
worst-case FF interval length, f. Let k be the number of wasted checkpoints in that
interval, n be the number of computation intervals executed, and m be the number
of intervals of work saved by A.

It must be the case that k > 1, otherwise either A is OPT or f was not the
worst-case interval length. Because OPT is not deterministic, and A is, there must
be at least one wasted checkpoint in the worst-case interval. Furthermore, m > k
because every saved interval must have at least one associated checkpoint. Finally,
n > m -+ 1 because the worst-case FF interval will be extended such that at least one
computation interval is performed and then lost.

The competitive ratio () is a combination of two factors, alluded to by the
steps toward optimality mentioned in Section 3.1.1: the wasted checkpoints and the

distance of the critical checkpoint to the end of the FF interval.

kC

To show that 2+ L%j is a lower bound on deterministic competitiveness, we attempt to

make « as small as possible within the constraints determined above. The second term
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can be bounded from below by setting £ = 1. There is exactly one wasted checkpoint.
By Theorem 2, A must perform the first checkpoint in order to be competitive. There
is one wasted checkpoint, so the program fails before the end of the next checkpoint
at time 27 4+ 2C'. Only the first interval is saved and m = 1 as well. Usingn > m+1,

we can lower bound the first term:

Thus, we have a lower bound on «, and no deterministic cooperative checkpointing

algorithm can be better than (2 + [ £])-competitive. O

3.1.2 Periodic Checkpointing

This section contains competitive analyses of periodic checkpointing algorithms. Specif-
ically, it describes how cooperative checkpointing can be used to simulate periodic
checkpointing, and proves that the naive implementation is not competitive.

Consider a program that uses cooperative checkpointing where requests occur
every I seconds. There is some desired periodic checkpointing interval (I,) that the
online algorithm is trying to simulate. If I, mod I = 0, then exact simulation is
possible.  When I, mod I # 0, an approximation is sufficient; the algorithm uses
some d such that dI ~ I,. The algorithm should perform, roughly, one out of every
d checkpoint requests.

Let A, 4 be the naive implementation of this simulation, in which, for any FF
interval, the algorithm performs the d** checkpoint, the 2d" checkpoint, the 3d*"

checkpoint, and so on.
Theorem 4 A, 4 is not competitive for d > 1.

Proof A, ; deterministically skips the first checkpoint in every FF interval. By The-

orem 2, A, 4 is not competitive for d > 1. 0
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The case of d = 1 is special. In the previous proof, A, 4 did not make progress
because it skipped checkpoints that were critical checkpoints for OPT. When d = 1,
however, no checkpoints are skipped. Indeed, this is a special cooperative check-
pointing algorithm whose behavior is to perform every checkpoint request it receives.

Define A,y to be the algorithm A, ;. This algorithm is optimally competitive.
Theorem 5 Ay is (2 + |$])-competitive.

Proof Set f = |FFI| =21+2C. A,y takes the first checkpoint, and fails just before
finishing the second one; V,; = I. The behavior of OPT is deduced by working
backwards from f. OPT will perform exactly one checkpoint, but after how many
requests? First, subtract C' from f for the required overhead of OPT’s checkpoint.
The remaining 27 + C' can include at least 2 intervals, but the exact number depends
on the relationship between C' and I. If the overhead is especially large, skipping
that checkpoint may allow OPT to execute more intervals of computation before
performing a checkpoint. Specifically, Vopr = 21 + L%j[ . Therefore, the value of «
for this interval is 2 4+ [£].

Is it possible for some other f; to give a larger ratio? Consider the growth of
Vopr and Vg as f; grows beyond 21 4 2C. Vppr increases by I for every I that f;
increases. Vi, meanwhile, increases by I only after f; increases by I + C. In other
words, the optimal pays the checkpoint overhead once for all the work in the interval,
while A,; must pay the overhead for each checkpoint individually. Asymptotically,
Ve

opPT Itc _ (o} ; ¢
oE goes to == = 1+ F. This can never exceed 2 + 7], so

as f; goes to infinity,
the original f was the worst-case interval length.

Therefore, f = 21 + 2C' is a worst-case interval length; by Corollary 1, A,y is
2 + | £ ]-competitive. O

Corollary 2 Asymptotically, Vopr grows in proportion to |FFI|.

Remark By Theorem 3, A, is competitively optimal for a deterministic algorithm.
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The original intention, recall, was to simulate periodic checkpointing using co-
operative checkpointing. A,; doesn’t simulate periodic checkpointing so much as it
is periodic checkpointing. Instead, consider the following variation of A, ; that also
performs only every d® checkpoint, with a small change to avoid running up against
Corollary 2.

Let A, 4 be a cooperative checkpointing algorithm that simulates periodic check-
pointing by always performing the first checkpoint, and subsequently performing only

L

every d' checkpoint. As above, d ~ 7

and d > 0, where [ is the request interval and
I, is the periodic checkpointing interval that is being simulated. A, ; performs the

1%t checkpoint, the (d + 1) checkpoint, the (2d + 1) checkpoint, and so on.
Theorem 6 A,  is (d+ 1+ |$])-competitive.

Proof Set f = |FFI| = (d+ 1)I + 2C such that A, ; performs the first checkpoint,
skips d — 1 checkpoints, and fails just before completing the (d+ 1)™ request. V, = I.
As with A,y, the exact number of intervals OPT performs before taking its single
checkpoint depends on the relationship between C' and I: Vopr = (d+ 1)I + L%JI .
The ratio for this interval length fis d+ 1+ [$].

Again, we must consider the asymptotic behavior. In order to increase Vppr by
dl, it is necessary to increase f by exactly dI. To increase V), by the same amount
(dI), f must be increased by dI + C' to accommodate the additional checkpoint. The
asymptotic ratio of Vppr to A, 4 is % =1+ %. This is always strictly less than

d+1+ %], so f=(d+1)I +2C was the worst-case interval.
By Corollary 1, A, 4 is (d + 1 + | £])-competitive. O

Remark As expected, the competitive ratio of A, ; is identical to that of A,y; they

are the same algorithm.

3.1.3 Exponential-Backoff Algorithms

The space of deterministic cooperative checkpointing algorithms is countable. Each

such algorithm is uniquely identified by the sequence of checkpoints it skips and
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performs. One possible way to encode these algorithms is as binary sequences, where
the first digit is 1 if the first checkpoint should be performed and 0 if it should be
skipped. All the algorithms we have considered so far can be easily encoded in this

way:

Aa = {1,1,1,1,...}
A, = {0,1,0,1,0,1,...}

p,3 = {170707170,0,1,...}

An upper bound on the length of the FF interval is easily given the program’s
running time, so there is also a bound on the number of checkpoints and the length of
these binary sequences. Consequently, each member of this finite set of deterministic
algorithms can be identified by a little-endian binary number.

Let Ay, be a cooperative checkpointing algorithm that doubles V5, at the com-
pletion of each checkpoint. In each FF interval, it performs the 15¢, 274 4t 8t etc.
checkpoints:

A, =1{1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,...}

The intention in evaluating this algorithm is to highlight a characteristic of worst-
case competitive analysis, which is that a number of very different algorithms can all

be optimally competitive.
Theorem 7 Ay, is (2 + |$])-competitive.

Proof Let f = |FFI| =2[+2C. For this interval length, A,, has the same behavior
as Agy, S0 a0 = 2 + L%j
Asymptotically, V5, doubles every time f increases by Vs, + C. To similarly

increase Vopr by Vo, f must be increased by V5,. Thus, the asymptotic ratio is

Vaz +C —

i 1+ %, which goes to 1 for constant C.

f =21 +2C was the worst-case interval, so As, is (2 + |$|)-competitive. O
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3.1.4 Comments

If the request overhead is ignored, a smaller / should typically allow the online al-
gorithm to do better, because it has more choices regarding when to perform check-
points. Instead, this competitive analysis shows that many algorithms have a com-
petitiveness that is inversely related with I. This is a consequence of comparing with
OPT; requests that are spaced far apart cause OPT to do more poorly, which makes
the cooperative algorithm look better. In practice, the value of C' tends to be sensi-
tive to where in the code checkpoints are performed. More frequent checkpoints may
result in a smaller C'; which improves competitiveness. Furthermore, choosing I such
that checkpoint requests can be placed in the code where the required overhead is

minimal may prove more valuable than increasing [ to artificially improve «.

3.2 Expected Competitive Analysis

This section proposes a more relevant form of competitive analysis in which the algo-
rithm considers the actual failure distribution. The algorithms remain deterministic,
but, with this information and the refined model, the analysis is significantly different.
This refined model addresses a number of weaknesses with the worst-case analysis,

and includes the power to talk about failure distributions.

3.2.1 Failure Probability Density

Let F' be a random variable whose value is the length of the failure-free interval and

let x(t) be the probability density of F. That is,

Pla<F<b)= /b x(t)dt (3.2)

and assume that:

T
vV
o

45



/0 Cdt = 1

Properties of this probability distribution, like mean (pu = E(F)), variance (o),

and standard deviation, are calculated in the usual way:

E(F) = Amwwﬁ

B(F?) — / Tyt
o = E(F?)—[E(F)

SD(F) = o

In the previous section, the offline optimal knew in advance that a failure would
happen after executing for f seconds (the length of the FF interval), and was effec-
tively using

X(t) =d(t = f) (3-3)

where 0(t) is the Dirac delta function. The checkpointing algorithm knew nothing of
this distribution, however, and was forced to choose a strategy that minimized the
worst-case ratio.

Determining the density function in practice can be accomplished by using histor-
ical data to constantly refine an empirical distribution®. Let () be an observationally-
collected list of numbers (fy, fo,. .., f,), where f; is the length of the i'* FF interval
for all jobs across the system (or, perhaps, those from the same node partition). The

empirical distribution would then be defined on [0, oo by
Pyla,b)=#i:1<i<mn,a< f; <b/n

This can be made into a piecewise continuous function by representing the function
as a histogram, where the domain is divided into bins. Rectangles are drawn over the

bins such that the height is the proportion of observations per unit length in that bin.

IFor more information on empirical distributions, and a more complete explanation of this nota-
tion, please see Pitman’s text Probability [21].
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This can then be used as x(¢). By its nature, this function changes over time. For
example, replacing a failed node with a new one changes its probability of failure. The
ability to adjust the cooperative checkpointing algorithm A to accommodate these

changes is powerful.

3.2.2 Work Function

Every deterministic cooperative checkpointing algorithm (A) has a characteristic work
function, Wa(t). This function specifies, for all times ¢ within an FF interval, how
much work A has saved. More to the point, if |F'FI| = f, then V4 = Wu(f). The
beginning of an FF interval is always ¢ = 0. The work function will be used along
with x(¢) in Section 3.2.3 to calculate the expected competitive ratio of the algorithm.

Work functions are nondecreasing, irregularly-spaced staircase functions. Some

properties of the work function:

Wat)=0 , t<I+C

WA(t) =nl , neZ”

Lemma 2 Let k be the number of checkpoints completed in a given FF interval by

algorithm A at time t. Then I|=EC] > Wy(t) > k1.

Proof First, we prove the lower bound. Let s be the number of intervals of saved
work (WAT(t)) Each completed checkpoint must save at least one interval, so s > k.
Thus, Wa(t) > kI.

The upper bound is determined by considering the total amount of computation
time, ¢, and maximizing the amount of saved work. If k checkpoints were performed,
kC time was spent checkpointing. This leaves ¢t — kC' time for useful work. Account-
ing for the possibility of an incomplete interval, the maximum number of intervals of

work completed by ¢ is [[=€]. O
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The work function for OPT is Wopr(t). This function is unique:

Wopr(t) = H#J

Wopr(t) gives an upper bound for the work functions of all other algorithms:

Wopr(t) > Wal(t) vt

In the worst-case competitive analysis, recall that OPT was nondeterministic and
had absolute knowledge about when the FF interval would end. Similarly, this work
function for OPT does not obey the rules to which deterministic algorithms are
bound. For example, after increasing by I, W4 (t) cannot increase again until at least
I + C seconds later. Wopr(t), on the other hand, increases by I every I seconds.
This is equivalent to an OPT that knows x(t) as the function in Equation 3.3 and

waits until the latest possible time before performing a single checkpoint.

>

)

w
H
|

I

e

W (units of work

% —1 % >
I+C 2I+C 3I+C 3I+2C 4I+C
Time (seconds)

Figure 3-3: The initial portion of two work functions: Wy(t) and Wopr(t). The
behavior of A is to skip the second checkpoint. A high probability of failure in the
interval [3] +C, 31 +2C] would be bad for A, because the difference between Wopr(t)
and W4 (t) is high. The plot is not to scale.
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As an example, the work function for A, is

t

Wa(t) = IL] C

]

because a checkpoint is completed every I + C' seconds, and I seconds of work are
saved each time. To help visualize work functions, consider an algorithm A that skips
the second checkpoint but performs all others. The work function of A, as well as

Wopr, are plotted together in Figure 3-3.

3.2.3 Competitive Ratio

At the beginning of a failure free interval, the cooperative checkpointing scheme
selects some deterministic algorithm A based on what it knows about x(t) for this
interval. How this selection process proceeds is derived from the definition of expected

competitiveness and the calculation of the expected competitive ratio w.

Definition 5 An online checkpointing algorithm A has expected competitive ratio
w (A is w-competitive) if the expected amount of work saved by the optimal offline
algorithm (OPT) is at most w times the expected amount of work saved by A. That
is, E[Va] < wE[Vopr].

By the definition of Vj, if a failure happens at time ¢t = h,
Va=Wa(h)

Therefore, calculating E[V,4] can be thought of as an infinite sum of the product of
the work function and the probability of failing at each time over the possible failure

times:

ElVorr] = / T e



By the definition of w-competitiveness,

_ ElVopr] _ Jo 1155 Ix(t)dt
EVal  J7 Wa®)x(®)dt

Given some information about y(t), A should be chosen to maximize the denomi-
nator in the equation for w, because we want that quotient to be as small as possible.

Intuitively, we want to match up W4 (t) and x(t).

The cooperative checkpointing scheme now behaves as follows. At the beginning
of each FF interval, the system considers everything it knows about x(¢) and selects

a deterministic algorithm A that maximizes the overlap between W4 (¢) and x(¢).

W4(t) would be piecewise continuous if there was some way to place an upper
bound on ¢, and thereby make the number of discontinuities finite. Bounding ¢ has
value, anyway, because fooo W4(t)dt = oo for any A that takes at least one checkpoint.

There are two reasons why taking this infinite integral is unnecessary:

1. limy_,o P(F > t) = 0 because the system will eventually fail. This means that
the length of the FF interval is unlikely to grow very large, and will not be

infinite.

2. Programs do not have infinite running time. The end of a program’s execution
can be modeled as a zero-overhead, required checkpoint. Just as an FF interval
does not extend beyond the first failure, the first forced checkpoint effectively
ends the FF interval.

Therefore, let T' be the maximum FF interval length, easily determined by the running
time of the program. We can now define w in terms of finite integrals over the products

of piecewise continuous functions and probability densities:




3.2.4 Example Analyses

This section contains the analysis of several distributions and algorithms in order to

illustrate the use of expected competitive analysis for checkpointing.

Uniform Distribution

Let x(t) be uniformly distributed from 0 to 7. Because the probability density is a
constant, it comes out of the integrals and cancels. w is now a ratio of the area under
the curves of OPT and A. The integral of Wopr(t) can be calculated exactly. Use

D = ng
D-1

I/OTL#Jdt— Iy (kI)+DI(T - DI - C)

The only piece needed to calculate w is fOT W4(t)dt. What valid work function max-
imizes this? That depends on the relationship between I and C. When [ > C,
Aqy is optimal; Theorem 8 proves that A,y is optimal under a uniformly distributed
X(t) when I > C. This makes sense, because checkpointing is cheap and we want
to maximize the amount of saved work at any given time. Furthermore, recall that
Wopr behaved (generally) as though checkpoints were free and took every one of
them; a similar strategy is appropriate for A in this case. On the other hand, C' > [
requires a different strategy: skip the early checkpoints and perform the later ones.
Because checkpoints are so expensive, the algorithm should wait to perform them
until there is work saved up already. Spending time on a long checkpoint when there
is little work already saved is risky. This may seem counterintuitive, because skipping
checkpoints is typically considered risky. In the case where checkpoints are costly,

however, performing them is what holds the most risk.

Theorem 8 Let x(t) be a uniform distribution. If I > C, Ay is 1-competitive

(optimal) in the expected case.
Proof Under the uniform distribution,
L)yt
S Wa(t)dt
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because x(t) comes out of the integrals as a constant and cancels (as will the factors

of I in the work functions). Take W,; = I| /%] and consider the limit as C' — 0;

lim (w) = lim (LTCJC#> =1

T
C=0 c=0 fo Lp%c |dt

Therefore, for I > C, Ay is expected case 1-competitive (optimal). 0

Of course, practical situations will probably be somewhere in between, in which
case more careful selection is required. For small T, the space of algorithms is search-
able. The space grows exponentially (O(2T)), but the search can be guided by heuris-
tics inspired by the observations for the extreme cases above. Specifically, skipping
checkpoints (especially early on) is generally good when C' is large, and performing
many of them is good when [ is large. Recall that [ is not the checkpointing interval,
but the request interval. Having I < C or even I < (' is not as bizarre as in the

situation where checkpoints are actually taken every I seconds.

If the uniform distribution is constrained to some interval [a, b] smaller than [0, T,

with 0 < a < b < T, such that

) = { ﬁ, if t € [a, b]

0, otherwise

then the strategy is similar. Inside [a,b], the analysis proceeds as before. After
that interval, performing checkpoints has no value. Before the interval, exactly one
checkpoint should be performed: the latest checkpoint that would complete before a.
As a — b, this analysis and the resulting algorithm become increasingly like OPT
from the worst-case analysis. That is, if A knows the exact time of the failure, it
now has all the power that OPT had. Realistically, this will rarely be the case.
Still, one can imagine the scheduled shutdown of an otherwise reliable system might

approximate to this situation.
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Exponential Distribution

The reliability of components is often modeled as following an exponential distribu-

tion. Because it has nice properties, we use
xt)=Xxe™  t>0

If we think about F' as being the lifetime of an FF interval, then the probability of

the interval lasting longer than s seconds is

P(F>s) = / T (Bt = e

Furthermore this survival function can be used to calculate the probability of F' falling

within a particular range, which, for an exponential x(t), is:
Pla<F<b)=P(F>a)—P(F>b)=e—e?
Among the nice properties of this distribution are the mean and standard deviation:

E(F) = SD(F) = %

The distribution of a positive random variable is memoryless iff it is an exponential
of the form e~ for some A > 0. Memoryless means that the probability that F' > a-+b
given that F' > a is the same as the probability that /' > b in the first place. Formally,

P(F >a+b|F >a)=P(F >b) (>0, b>0)

A great deal of research in systems reliability treats the lifetime of components as
being exponentially distributed. That is, there is no gradual degradation or aging of
components; they fail suddenly and without warning. Most distributions (any that
are not exponential) are not memoryless. The expected competitiveness model for

checkpointing allows all kinds of distributions, making it far more general than a
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scheme that presumes a memoryless failure distribution.

How powerful is this generality? Consider F', as above, distributed with some
failure probability density x(¢). Let A, be a periodic checkpointing algorithm; restrict
Ay, however, to only have access to an exponential distribution x)(t) = Ae ' with
+ = E[F]. A, always has an accurate measure of the mean of the distribution x(¢),
but may otherwise have no similarities. For example, the exponential variance will
be 37 while the variance of x(t) may be infinite. OPT, as usual, knows x(t). Pick

X (t) such that the expected competitiveness is worst-case.
Theorem 9 A, is not competitive.

Proof Pick x(¢) to be the sum of two Dirac delta functions at t; and to: x(t) =
ad(t —t1) + (1 — a)d(t — t3) with 0 < a < 1. The mean of this distribution is
+ = E[F] = aty+ (1 —a)t. Set t; = I+ C. OPT will always make progress, because
t; is large enough for OPT to save at least that one request interval before failing.

To give Ay every advantage, let it checkpoint with the optimal period: Ippr = %
All that remains is to set it up so that A, will not make progress, even though it
is the optimal periodic checkpointing algorithm for an exponential distribution with
that mean.

The way to do this is to make A, checkpoint with period > I; use 2I to be safe:

Iopr = \/? = \/2CE[F] = /2C(a(I + C) + (1 — a)ty) > 21

Isolating the variables over which we have control:

a(l +C)+ (1 —a)ty > %[2 (3.5)

Using Equation 3.5 as the constraint, we want to make a as close to 1 as possible, so
that the FF interval almost always ends after I + C, when OPT has made progress
but A, has not. As a — 1, t2 — o0 in order to maintain the inequality (unless
C > I). As before, T is the maximum length of an FF interval. If we allow T to go

to infinity, Ay will not make progress arbitrarily often, though O PT always will. The
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competitive ratio approaches infinity:. 0

Remark When a is set to 1, x(t) is really just the worst-case failure scenario. Having
set the periodic checkpointing interval to 21, this is forcing A, to be a determinis-
tic algorithm that skips the first checkpoint. By Theorem 2, the algorithm is not

competitive.

Corollary 3 By Theorem 9, a periodic checkpointing algorithm that assumes an ex-
ponential failure distribution may be arbitrarily bad compared to a cooperative check-
pointing algorithm that permits arbitrary probability density functions as failure dis-

tributions.

In Section 3.1.1 there was some discussion about real reliability numbers in the
context of IBM’s BlueGene/L. In light of Theorem 9, it is worth asking how badly
BG/L might do by using periodic checkpointing with an assumption of exponentially
distributed failures, versus how it might do by using cooperative checkpointing. What
is the potential gain under realistic conditions?

First, set C' = 6 minutes (360 seconds); the upper bound was estimated at 12
minutes (720 seconds) so this is a reasonable average. Second, assume that the random
variable F', the length of each FF interval, is independent and identically distributed
with exponential distribution x(t) = Ae*'. Third, consider an installation of BG /L
that consists of 64 racks with a total of 65,536 nodes.

In selecting realistic numbers for the checkpointing interval and distribution mean,
an interesting paradox occurs. Consider these two approaches to setting the variables

in the absence of empirical data, and how and why they fail:

e Assume the mean time to failure for an individual node is 5 years. This may
even be too high. With N = 65,536 nodes, the mean time to failure for them
collectively comes from the survival function:

PE,>t& Fy>t&...& Fy >t) = (P(F > t))N = ¢ VM = 659361
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The expected failure time, then, is decreased by a factor of 65,536. That is,

2716

E[F] = . If % was b years, by assumption, then the expected lifetime of
the entire machine is around 40 minutes (2406 seconds). The optimal periodic
checkpointing interval for this distribution is 21.9 minutes (1316 seconds). With
a checkpoint overhead of 6 minutes, this means spending 21% of the machine
time on performing checkpoints. In the worst case (C' = 12 minutes), this
percentage is 28%. No user or system administrator would be willing to spend

this much time checkpointing, but anything less would increase the application’s

expected running time.

Instead, assume that no more than 10% of the machine time should be spent
performing checkpoints. If the overhead is 6 minutes (360 seconds), this means
checkpointing every 54 minutes (3240 seconds). For what exponential distribu-

tion is this actually optimal?

3600 = /2(360)E[F]
32402
ElF] = 2(360)

= 14580 seconds

= 243 minutes

This requires that each individual component have a lifetime 65,536 times
greater than that; the mean time to failure for a single node must be 30.3 years.

This is not realistic, but anything less would require more frequent checkpoints.

In practice, the mean time between failures for a 4,096-node BG/L prototype was

12.45 minutes (747 seconds). Many of these failures were correlated, however, and

shared a root cause. In the end, Sahoo et al [15] estimate that the system saw 3.7

failures per day (MTBF = 6.5 hours). Presuming linear scaling, the 64-rack machine

will have E[F] = 24 minutes (1,459 seconds). The MTBF corresponds roughly to a

3-year component lifetime. The reason application programmers have an expectation

of progress in these situations is that they have implicitly accepted that failure dis-
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tributions are not exponentials, are not identically distributed, or not independent.
Cooperative checkpointing makes these implicit assumptions into explicit considera-

tions and reaps a benefit as a result.

Returning to the original question, how would a periodic checkpointing algorithm
perform if it really did assume an IID exponential distribution? On the full BG/L
machine, it would checkpoint every 17 minutes (1,025 seconds). With an overhead of
6 minutes, it would spend 26% of the machine time performing checkpoints; this may

be as high as 33% when C' = 12 minutes.

In order to comment on the performance of cooperative checkpointing, we must
hypothesize a non-exponential failure distribution that might better describe BG/L’s
behavior. Use x(t) = ad(t — t1) + (1 — a)d(t — t2). In the prototype study [15], the
maximum uptime was slightly more than 140 hours (504,000 seconds), far larger than
the mean. This real data already echoes the construction of the proof of Theorem 9;
pick t; to be small, t5 to be very large, and a to be nearly 1. Use C' = 360 seconds.
As before, pick I to be half the optimal periodic checkpointing interval, meaning that
A, performs every other request starting with the second: I = 512 seconds. Set E[F
at 1459 seconds, to at 504,000 seconds, and t; at I + C' = 872 seconds:

E[F] = 1459 = at; + (1 — a)ty = 872a + (1 — a)504000

Which fixes a at 0.9988. In other words, x(t) causes the application to fail at time
I+ C 99.88% of the time, a situation in which A, saves no work, but OPT saves I.
The remaining 0.22% of the time,

t 504000
Vi = ILQ[j—CJ =512| 1384 | = 186368 units of work
ty—C 503640
Vopr = I|2—=] =512| | = 503296 units of work

I 512

The expected ratio for this example case is,

u}__\49p7»__(19988(512)-%(10022(503296)__ 1618.6368 _
W 0.0022(186368) ©410.0096

57



This means roughly that, in an infinite execution under these system parameters and
this failure distribution, cooperative checkpointing can accomplish 4 times as much
useful work in a given amount of machine time, compared to even the optimal periodic
checkpointing algorithm. Certainly, increasing the throughput of the machine four-
fold would be a worthwhile investment. The realism of x(¢) or the ability to actually
achieve O PT" are beside the point. The intention of this example was to illustrate that
cooperative checkpointing is not merely of theoretical value; it can result in tangible

improvements in reliability and performance over periodic checkpointing.

3.3 Dynamic Competitive Analysis

This section introduces dynamic-case analysis. This model differs from the expected-

case model in the following ways:

1. The gatekeeper selects a deterministic cooperative checkpointing algorithm at
each checkpoint request based on what is optimal at the time; the selection
only affects the current checkpoint request, because the algorithm will be re-
considered at the next request. This is different from the previous models, in
which the algorithm was selected at the beginning of the FF interval and was

not reconsidered until after a failure.

2. x(t) can change between checkpoint requests, not just between FF intervals. As
X(t) evolves over the course of an execution, the gatekeeper may dynamically

change the checkpointing algorithm, as per change #1.

3. The checkpoint overhead is no longer constant, but may be different for every

checkpoint. The overhead of the 7*" checkpoint in an FF interval is denoted C;.

4. The model introduces another parameter in addition to expected value for the
application: the system value function, S. This allows the gatekeeper to consider
such factors as the scheduling queue status, deadlines and QoS guarantees, and

network traffic considerations.
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The checkpointing choices of a job can affect the system by tying up network
resources, restricting the job scheduler, or impacting system-level performance guar-
antees. The system value function, S, captures these considerations and is a measure
of how desirable a particular checkpointing algorithm is to the system, as opposed to
the application. S is the analog of V', so it also has units of work. The system value

of an algorithm A is denoted by S4.

Definition 6 The cumulative value of an algorithm A, denoted Z,, is the sum of

Vi and Sy.

The equation for S will differ depending on the resource restrictions and capabil-
ities of the system. For an example of a system value function, consider a system
that checkpoints over a shared, packet-based pipe. A large application P; starts a
checkpoint with a projected overhead of C' seconds; simultaneously, P, requests a
checkpoint, also with a projected overhead of C' seconds. The system knows that P,
is checkpointing, and that starting a second checkpoint would effectively double the
overhead for both checkpoints. The extra C' of overhead for P; is captured in V. The
system value function must capture the notion that choosing to perform the current
checkpoint also costs Py an extra C' of work. Let A be any algorithm that would take
the checkpoint:

Sp=—-C

This leads into the notion of projecting the checkpoint overhead, which is no longer
set to be a constant. There are many potential techniques for doing this estimation,
including a network traffic analysis (as used with P; and P,), software techniques for

tracking the amount of application state that has changed, and application profiling.

Definition 7 An online checkpointing algorithm A has dynamic competitive ratio w
(A is w-competitive) if the expected cumulative value of the optimal offline algorithm
(OPT) is at most w times the expected cumulative value of A. That is, E[Z4] <
wE[Zopr].
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The gatekeeper for the dynamic case selects the optimal checkpointing algorithm
at each checkpoint request. It is not required to execute the remainder of the algo-
rithm, but it looks ahead in order to estimate risk. Returning to the binary notation
for deterministic cooperative checkpointing algorithms, the gatekeeper is, at each
checkpoint request, asking what algorithm with a prefix matching what has already
been executed is optimal for the latest system data. Imagine that x(¢) is gener-
ated by an event predictor that only generates predicted distributions of the form
X(t) = 0(t — t1) where t; changes over the course of the FF interval. Let A; be the
algorithm that the gatekeeper “picks” at request . One possible beginning to an FF

interval might be as follows, where the current checkpoint is underlined:

A, = {0,0,0,1,0,0,0,0,...}
A, = {0,1,0,0,0,0,0,0,...}
A; = {0,1,1,0,0,0,0,0...}
A, = {0,1,1,0,1,0,0,0,...}
As = {0,1,1,0,1,0,0,0,...}
Ag =

The execution might be interpreted as follows. At the first request, x(t) predicts
that the failure will not occur until after the 4** checkpoint request can be performed
successfully. A; = OPT given this information. At the second request, however, x(t)
has been updated to indicate that the failure will happen before the 3" checkpoint
can be completed, so A, is optimal. The failure does not occur, and at the third
request the predictor has revised x(t) to suggest that the failure will happen before
the 4" checkpoint request can be performed successfully. As is not optimal, because
it would have been better to skip the second request. Given the choices the gatekeeper
already made, Az is the best it can do. This continues until a failure actually occurs,

thereby ending the FF interval.
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3.3.1 Example Analysis

Consider a system in which the job scheduler must adhere to deadlines set by users.
From the system’s perspective, jobs that are not completed by the deadline have no
value. The following analysis shows how cooperative checkpointing can help to ensure
that deadlines are met, and demonstrates how dynamic-case analysis works. Oliner et
al [17] investigated a similar system in which probabilistic deadlines were promised,
and suggested that a mechanism similar to cooperative checkpointing might be used

to make and keep those promises.

If a job misses its deadline, it is not useful and counts toward wasted work. Let
d4 be an indicator random variable such that d, = 1 iff algorithm A is guaranteed to
cause the application to miss its deadline. An appropriate S4 (and Z4) in this case

might be

Sa = —disVa
Zy = Vy—daVy

The cumulative value function is zero if A would cause the job miss its deadline. Note

that S may be negative, unlike V.

Let t = 0 be the beginning of the FF interval, and ¢ = t; be the time of the
5" checkpoint request. This example application has running time 9/ and makes
only 8 checkpoint requests. Without explanation as to why certain checkpoints were
taken or not, say the execution so far restricts the gatekeeper’s choices at time ¢; to
algorithms in the family

A, =1{0,1,1,0,2,7,2,?

PR A

Let the projected checkpoint overhead for all future checkpoints be C' and let the
application deadline be t; +57+C'. A can only afford to perform one more checkpoint
and to recompute at most I work. The gatekeeper must pick A to maximize the

probability that a failure (if one occurs) will happen less than I seconds after the
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completion of the next checkpoint. Let
1 1
x(t) = S0t = (b + 1+ C)) + 58(t — (t1 + 21 + )

This means that the predictor thinks it is equally likely that the gatekeeper should
either perform the current checkpoint (5) or perform the next checkpoint (6).
What is the dynamic competitive ratio in this situation?

There are only two algorithms that result in a non-zero Z:

A, ={0,1,1,0,0,1,0,0}
A, ={0,1,1,0,1,0,0,0}

Calculate the competitive ratio for each:

Za, B E[Va, + Sa,] _9_21+g;2_1_%—9?1_

A, is 2-competitive in the dynamic case; this is intuitive because with probability 0.5
A, misses the deadline and with probability 0.5 A, is OPT. The situation is sym-
metrical for A,, meaning that the gatekeeper could pick either one without preference
or prejudice.

As is the case with deadline-based systems, the dynamic case analysis considers
factors, when checkpointing, that are critical to the system as a whole. The following
chapter considers what kind of infrastructure might be needed to support cooperative

checkpointing with the ability to consider the dynamic case.
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Chapter 4

Embodiment

This chapter discusses a possible embodiment for cooperative checkpointing, so that
it might be implemented in practice. An explanation of the general system model is
followed by a description of what infrastructure might be used to support cooperative
checkpointing.

There are two implementations in progress. One is in the form of a Java simulator,
and the other is being coded for IBM’s BlueGene/L. For BG/L, cooperative check-
pointing will initially be used to dynamically adjust the checkpoint interval based on
the size of the job’s partition. The intention is for BlueGene to eventually include an
implementation of cooperative checkpointing of the kind described in this chapter,
complete with health monitoring and event prediction. The simulator implemented
an earlier rendition of cooperative checkpointing. That simulator and the results of

a number of experiments are presented in Section 4.3.

4.1 System Description

The system is modeled as N computational nodes of equal processing power, con-
nected to stable storage via a shared network connection with limited bandwidth.
The cluster is composed of homogeneous, dedicated nodes, where homogeneous means
only that the hardware specifications are uniform but not identical across the cluster.

Unlike most previous work that assumed identical processors, we allow nodes to vary
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in reliability and fail in correlation with the behavior of other nodes. In that respect,
no two nodes are identical. The assumption of homogeneity simply means that any
two non-failing nodes can accomplish the same amount of useful work in a certain

amount of time.

In general, the connection to stable storage (I/O) is the bottleneck with regard to
saving a checkpoint to disk. Let this connection, or pipe, have bandwidth B Gb/s.
While the bandwidth of the disk itself may be the true bottleneck, the pipe is modeled
as being the primary determinant of checkpoint overhead time. A job j that must
save K Gb to disk as part of a particular checkpoint requires % seconds of dedicated
time on the pipe. When n > 1 jobs are competing for the pipe, the required overhead
increases as a function of n. This model allows the system to estimate the checkpoint
overhead before agreeing to perform the checkpoint, while still simulating the effect of

the 1/O bottleneck on multiple checkpoints. The system is illustrated in Figure 4-1.

Compute Nodes

Job #2
(Ko Gb)

Shared Pipe (B Gb/s)

Figure 4-1: Overview of the system and the relationship among its parts. The cluster
is running three jobs with state sizes K, K,, and Kj3. During a checkpoint, these
jobs must all save their state over the Shared Pipe.
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4.2 Infrastructure

In order to perform cooperative checkpointing, the system must be equipped with
a gatekeeper and the tools necessary for the gatekeeper to make informed decisions.
Such tools may include a Reliability, Availability, and Serviceability (RAS) Database
for monitoring, and an event prediction mechanism (predictor) for modeling and
forecasting. An overview of a system that is equipped to perform cooperative check-

pointing is illustrated in Figure 4-2.

Compute Nodes

Job #2
(K5 Gb)

Checkpoint
Gatekeeper

Database &
Monitoring

Job #3
(K5 Gb)

Shared Pipe (B Gb/s)

Figure 4-2: The system, including the tools used to perform cooperative checkpoint-
ing. The RAS Database monitors the state of the system, logging various events
and messages that are pertinent to system health. The Predictor, in turn, uses this
data and internal models to forecast critical events. The Checkpointing Gatekeeper
receives checkpoint requests from the jobs, and uses RAS and Predictor information
to make a decision regarding whether or not to skip the checkpoint.

4.2.1 System Health Monitor and Modeler

In order to make informed checkpointing decisions, the system must have a way of
monitoring and modeling its health. This mechanism has access to both physical
and logical data about the state of the machine, including information such as node
temperatures, power consumption, error messages, problem flags, and maintenance

schedules. The more information the health monitor is able to access, the more use-
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ful the derived models can be. Most large-scale machines, like BG/L, are already
equipped with a RAS database that logs everything from failed communication mes-
sages to ECC memory errors.

This modeling mechanism is able to answer questions like, “Is there a problem with
node 7 Which nodes are frequently exceeding their maximum tolerated temperature?
What communication errors have been passed between nodes y and 27”7 Such a system
could be used without event prediction to improve other system features, such as job
scheduling. This thesis will mostly use the health monitoring and modeling system

as a tool for checkpointing.

4.2.2 Event Predictor

The supercomputer should possess an event prediction mechanism, which makes
heavy use of the health modeling system. This event prediction may use a set of
algorithms similar to those presented elsewhere [26], or any other algorithm that
provides reasonable prediction accuracy. The prediction system [19] is given a set

(partition) of nodes and a time window and either:

1. Returns the estimated probability of failure or

2. Returns a boolean indicating whether a failure is anticipated or not.

The quality of the predictor is governed by the accuracy with which it estimates
these probabilities (Type #1) or correctly identifies whether a failure was going to
occur (Type #2). One way to think about the predictor is as a tool for estimating
the failure probability distribution, x(t).

What events, exactly, are we interested in predicting? For a job running on a given
partition, we are looking for any critical events in the system that would cause that
job to fail. For example, the predictor could be used to predict when a troublesome
memory component will fail completely, or will result in data corruption so severe
that the application will have to be rolled back.

How far ahead must we predict? The choice of whether or not to skip a checkpoint

becomes moot once the subsequent checkpoint is completed. Thus, we typically want
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to predict critical failures that will happen prior to the end of the next checkpoint.
Intervals exceeding several hours are uncommon, meaning we will rarely need to

predict further ahead than that.

4.2.3 Gatekeeper

The gatekeeper is the online decision-making component. As illustrated in Figure 4-2,
it is in communication with nearly all other system components. When a checkpoint
request is made by an application, the request is passed to the gatekeeper. This
component has been actively considering everything it knows about x(¢), network
traffic, the estimated checkpoint overhead, and so on; when the request comes in, it
is ready with an answer. This minimizes the request/response latency of cooperative
checkpointing. In a large-scale system of the kind targeted by this thesis, I is large
enough, and the number of running jobs is small enough, that having an answer ready

for each job at any given time is not computationally expensive.

Section 3 analyzed online cooperative checkpointing algorithms. These algorithms
are chosen and executed by the gatekeeper. To put it another way, the dynamic
component of cooperative checkpointing resides in the gatekeeper, while the static

component is implemented inside the applications.

As an example, imagine that the predictor, using data gathered from the RAS
database, estimates that x(t) = Ae™* for some A\. With only this information, the
gatekeeper will choose to perform checkpoints roughly periodically. At some point,
however, the predictor may notice that the pipe is being saturated by traffic from
some other application. It predicts that the checkpoint overhead will be very high
and shares this information with the gatekeeper. The gatekeeper may then increase
the checkpointing period in order to perform fewer checkpoints (until this network

traffic subsides).
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4.3 Simulations

This section presents results from simulations of a rudimentary implementation of
cooperative checkpointing. They demonstrate that using cooperative checkpointing,
even with very simple heuristics, can translate to measurable performance improve-
ments. An event-driven simulator is used to process actual supercomputer job logs,
and failure data from a large-scale cluster [29].

The simulations consider gatekeepers that use one of two heuristics, called work-
based and risk-based checkpointing. Let d be the number of intervals of computation
that have been performed since the last checkpoint, C; be the projected overhead
for the current checkpoint, p; be the predicted probability that a failure will occur
before the completion of the subsequent checkpoint, and I be the request interval.

The heuristic for risk-based checkpointing is

At each checkpoint request, the gatekeeper checks Equation 4.1. If the inequality
holds, the gatekeeper performs the checkpoint. Work-based checkpointing is the spe-
cial case of risk-based checkpointing where p; = 1. This simplified conception of

cooperative checkpointing is run in simulation.

4.3.1 Simulation Environment

The event-driven simulator models a 128-node system either in flat cluster or in
three dimensional 4 x 4 x 8 torus configuration. The simulator is provided with
a job log, a failure log, and other parameters (for example: checkpoint overhead,
checkpoint interval). The events include: (1) arrival events, (2) start events, and
(3) finish events, similar to other job scheduling simulators [12]. Additionally, the
simulator supports (4) failure events, which occur when a node fails, (5) recovery
events, which correspond to a failed node becoming available again, (6) checkpoint

start events, indicating the start of a job checkpoint, and (7) checkpoint finish events,
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which correspond to the completion of a checkpoint.
Compared to earlier work [19], the following changes were made to the simulation

environment.

e Jobs may be checkpointed, and these checkpoints have an overhead. The inter-

val and overhead cost are parameters of the simulation.

e The downtime of a failed node is set at a constant 120 seconds, which is esti-
mated to be a modest restart time for nodes in any large-scale computer system.

While down, no jobs may be run on the node.

e The job scheduler is equivalent to the scheduler in previous work [12] with only

backfilling.

The simulation produces values for the last start time (s;) and finish time (u;) of
each job, which are used to calculate wait time (w;), response time (r;), and bounded
slowdown (bs;). While utilization measurements can often be misleading, we still
calculated system capacity utilized and work lost based on the following formulations.
If M = (maxy;(u;) — miny;(a;)) denotes the time span of the simulation, then the
capacity utilized (K;j) is the ratio of work accomplished to computational power
available.

Sj€j

Kutﬂ = MN’
vj

Let t, be the time of failure z, and jx be the job that fails as a result of x, which
may be null. If ¢;, is the time at which the last successful checkpoint for jx started,
then the amount of work lost as a result of failure x is (¢, — ¢j,)n;, (this equals 0 for

jx = null). Hence, the total work lost (Kj,gt) is

KlOSt = Z(tm — ij>njm.
Vo

This thesis ignores K which relates to capacity that is unused because of a

nused:’

lack of jobs requesting nodes or other non-failure reasons.
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This thesis also considers metrics similar to those in Krevat’s scheduler [12]. The
actual job execution time is calculated based on start time s; and actual finish time u;
of each job; when measuring utilization, we use execution time excluding checkpoints.

Similarly, s;, u;, and job arrival time (a;) can be used to calculate wait time w; =

max(r;,I")

min(e;,I") where

s; — a;, response time r; = u; — a;, and bounded slowdown bs; =
I' = 10 seconds. Therefore, we consider the following metrics when evaluating overall
system performance: (1) {Average[w,|}, (2) {Average[r;]} and (3) {Average[bs;]}.

Calculations used the so-called “last start time” of each job, which is the latest
time at which the job was started in the cluster. There may be many start times,
because a failed job returns to the wait queue. It would be misleading to use the
first start time, because a job may fail many times, spend time checkpointing in the
cluster, and sit waiting in the queue, all after the initial start time. Due to the choice
of start time, w; tends to be similar to r;.

In order to be consistent, and because this thesis proposes that checkpoints should
be optional, checkpointing overhead is treated as being unnecessary work. That is, e;
is the execution time of the job without checkpoints. Therefore, values for bounded
slowdown, for example, may seem unusually high. In fact, this is a more accurate
representation of the performance of the cluster; if the checkpoints could be skipped,

the baseline optimal may be improved.

4.3.2 Workload and Failure Traces

The simulations used job logs from the parallel workload archive [11] to induce the
workload on the system. The parallel job logs include a log from NASA Ames’s 128-
node iPSC/860 machine collected in 1993 (referred to as NASA log henceforth), San
Diego Supercomputer Center’s 128-node IBM RS/6000 SP job log from 1998-2000
(SDSC log), and Lawrence Livermore National Laboratory’s 256 node Cray T3D
job log from 1996 (LLNL log). For space considerations, this thesis focuses on the
results using the SDSC log, and includes some results using the NASA logs. Each log
contained 10,000 jobs. Some characteristics are shown in Table 4.1, where runtimes

do not include checkpoints.
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| Job Log | Avg Size | Avg Runtime (s) | Max Runtime (hr) |

NASA 6.3 381 12
SDSC 9.7 7722 132
LLNL 10.2 1024 41

Table 4.1: Basic characteristics of the job logs used to generate workloads in the
simulations.

To generate failure behavior, failure logs were used from filtered traces collected
for a year from a set of 350 AIX machines for a previous study on failure analysis
and event prediction [29, 27]. Failures from the first 128 such machines were used,
resulting in 1,021 failures, an average of 2.8 failures per day. The MTBF on any node
in the cluster was 8.5 hours. Therefore, the timing and distribution of failures used
in these experiments reflect the behavior of actual hardware and software in a large

cluster.

4.3.3 Results

Results are presented for the NASA and SDSC job logs on a flat cluster, as well as
for a toroidal communication architecture using the SDSC log. The simulations, in
all, represent more than 600,000 days of cluster time, and involve the scheduling of
more than 30 million jobs. The results presented here are necessarily a subset of these
simulations. A particular graph was included either because it was representative of
our results or it accentuated an important feature. Exceptional results are noted as

such.

System Performance

This section investigates the effects of work-based and risk-based checkpointing on
system-level metrics such as average bounded slowdown. Figure 4-3 plots checkpoint-
ing interval against average bounded slowdown for the SDSC log, on a flat cluster,
with a checkpoint overhead of 12 minutes (720 seconds). The same runs for the NASA
log are shown in Figure 4-4, and runs for the SDSC log on a toroidal interconnect

architecture are shown in Figure 4-5. The five curves represent periodic, work-based,
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and risk-based checkpointing for three accuracy levels. Periodic checkpointing means
every checkpoint is performed at intervals defined by the x-axis value. Similarly,
work-based checkpointing is performed according to the definition in Equation 4.1
with py = 1.

Risk a indicates risk-based checkpointing with a false negative rate of 1 — a.
Referring to the definition of risk-based checkpointing in Equation 4.1, a = 0 implies
that the predictor will always return py = 0 or no checkpointing is performed. Despite
the fact that no checkpoints are performed, the metric for Risk 0 varies with the
checkpoint interval. This is because the job scheduler must estimate the completion
time of the job. In other words, the scheduler considers the runtime (r), checkpoint
interval (1), and checkpoint overhead C, and estimates the total running time (R) as
if all checkpoints are to be performed based on R =r+ C' - [(r/I)|. Therefore, R for
each job is estimated to be greater for a smaller I, making performance enhancing
techniques, like backfilling, less likely. As a result, performance of Risk 0 is marginally

worse at smaller I values.

For a checkpoint overhead of 720 seconds, I < ', so work-based checkpointing
results in the same curve as periodic checkpointing. As the checkpointing interval
is decreased, bounded slowdown for the periodic checkpointing scheme increases ex-
ponentially. In general, risk-based checkpointing, at any accuracy, results in a lower
bounded slowdown compared to either work-based or periodic checkpointing. This is
because the bounded slowdown is dominated by the checkpointing overhead. Risk-
based checkpointing will never perform more checkpoints than work-based checkpoint-
ing, and work-based checkpointing will never perform more checkpoints than periodic
checkpointing. Zooms of Figures 4-3 to 4-5, with all accuracy levels included, are
shown in Figures 4-6 to 4-8, respectively.

As a representative case of checkpointing results for higher overheads (say C' =
3600 seconds), Figure 4-9 plots bounded slowdown for the SDSC log on a flat clus-
ter. Between the intervals of I = 3500 seconds and I = 4000 seconds, work-based
checkpointing diverges suddenly and dramatically from periodic checkpointing. The

checkpoint overhead is 3600 seconds, so I > 3600 seconds means that every check-
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Figure 4-3: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log, using a checkpoint overhead of 720 seconds.

point will be performed. Below 3600 seconds, the work-based heuristic takes into
effect. At I = 3500 seconds, for example, every other checkpoint is performed, start-
ing with the second one. Applications that only checkpointed once do not checkpoint
at all. This immediately results in a 7-fold decrease in average bounded slowdown.
Again from Figure 4-9, there is nearly a 50% gap in performance between the Work
and Risk 1 maximum values. A similar gap can be seen in all Figures for C' = 720
seconds. Work-based checkpointing will perform every checkpoint such that dI > C,
whether or not the event predictor indicates that a failure is likely. On the other hand,
risk-based checkpointing, with no false positives, will only perform a checkpoint when
a failure is predicted to occur before the end of the subsequent checkpoint. Conse-
quently, there are many checkpoints to be performed by work-based checkpointing
compared to risk-based checkpointing. In the case of a = 1, all failures are correctly
predicted (ideal case). Our predictor does not have any false positives. If, however,

the false positive rate was set at 1 (always predicts a failure) and the predictor, there-
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Figure 4-4: Bounded slowdown vs. checkpoint interval in seconds for the NASA job
log, using a checkpoint overhead of 720 seconds.

fore, always returned p; = 1, then the Risk 1 and Work curves would be identical.
We therefore call the gap between these curves the false positive gap.

Another prominent characteristic visible in Figures 4-6 to 4-9 is the stratification
of the drop in metric under risk-based checkpointing at different accuracies. For risk-
based checkpointing at higher accuracies (and work-based checkpointing for Figure 4-
9), this drop occurs below I = C seconds, since psl < C, in general. For lower
accuracies, however, this drop occurs at higher intervals. At these lower accuracies, a
greater proportion of failures will be predicted with lower probabilities. For instance,
at a = 0.9, all failures will have 0 < py < 0.9, while at a = 0.2, 0 < py < 0.2, Vpy.
Additionally, the number of failures predicted is nondecreasing as a increases, so the
average py tends to increase with a. Referring back to the heuristic for risk-based
checkpointing, lower accuracies will be more likely to satisfy pydl < C, thus more
checkpoints are skipped.

Because of our choice of job start time, response time and wait time tend to be
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Figure 4-5: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log on a toroidal topology, using a checkpoint overhead of 720 seconds.

similar to each other. This is clear from a comparison of Figures 4-10 and 4-11, which
use C' = 720 seconds. In general, bounded slowdown, response time and wait time
curves for the same input parameters are similar in nature. Bounded slowdown is
used because the curves more strongly exhibit important characteristics.

To summarize, periodic checkpointing suffers from an exponential decrease in per-
formance as the checkpoint interval decreases. Work-based checkpointing effectively
trims off the most devastating part of this curve by applying a simple run-time heuris-
tic, for those situations in which C' > I. Further benefit can be achieved by using
risk-based checkpointing, where all event predication accuracies fare better than ei-

ther periodic or work-based checkpointing.

System Utilization

A common measure of performance is average system utilization. Particularly for

dynamically-arriving workloads, as jobs are encountered in most production circum-
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Figure 4-6: A zoom of Figure 4-3, with all prediction accuracy levels.

stances, this is a misleading metric. A long-running job arriving late in the simulation
can dominate the running time (M), which solely determines the utilization for a given

workload.

Results for the SDSC log on a torus (C' = 720 seconds) are presented in Figure 4-
12. A closer view of the figure, between checkpointing interval 1000-10000 seconds for
all accuracies, is shown in Figure 4-13. We see that naive checkpointing can reduce ef-
fective utilization from ~ 74% to ~ 55%; when C' = 3600 seconds, utilization dropped
from ~ 67% to ~ 20%. Simple work-based checkpointing increases utilization, in the
latter case, by more than 25%. In general, for these parameters, not checkpointing
decreases effective utilization. For smaller intervals, however, Risk 0 is optimal for

this metric. Once again, stratification is clearly visible in Figure 4-13.

From these results, and the results in Section 4.3.3, it appears that checkpointing
does not generally act to improve system-level metrics like utilization and bounded
slowdown, for these workloads and failure distributions. Checkpointing increases the

effective running time of jobs, and makes efficient scheduling more difficult. In par-
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Figure 4-7: A zoom of Figure 4-4, with all prediction accuracy levels.

ticular, it complicates backfilling. Work-based and risk-based checkpointing mitigate
this loss of efficiency by skipping checkpoints that the heuristics perceive as being
superfluous. In section 4.3.3, we examine the trade-off made for those improvements

in performance.

Work Lost

Standard checkpointing is intended to be a selfish act: a job checkpoints in order to
minimize the amount of recomputation it will need to perform after a failure. It does
not consider the effect of its continued execution on the scheduling of other jobs, or
the perceived speed of the cluster. Minimizing the work lost parameter inherently
satisfies the goal of checkpointing, and is the basis for the requirements of work-based
and risk-based checkpointing. Neither of the algorithms in these simulations have
a system value function (S) that would permit consideration of system-level factors
that might improve utilization or average slowdown.

Figure 4-14 shows the total amount of work lost due to failures for the SDSC
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Figure 4-8: A zoom of the torus results in Figure 4-5, with all prediction accuracy
levels.

log on a flat cluster. The most outstanding feature is the curve for Risk 0 (no
checkpointing), which is distinctly separate from the other curves. The amount of
work lost from failures is reduced to nearly the optimal value when the accuracy of
the predictor is raised to 50%. Figure 4-15 shows the same results for the torus.
Clearly, checkpointing is accomplishing its goal: reducing the amount of work lost
due to job failures.

For curves other than Risk 0, where checkpointing is being performed, a higher
interval tends to increase the amount of lost work. This is reasonable, because more
frequent checkpointing is a common strategy to minimize lost work. The fluctuations
in Risk 0 are a consequence of the way in which the jobs happen to be scheduled, and
illustrates the variance in the amount of work that may be lost without checkpointing.

A closer look at Figure 4-15, with all prediction accuracies, is shown in Figure 4-
16. Compared to no checkpointing, the amount of work lost from failures is reduced
by more than 79% when the accuracy of the predictor is raised to 10%, and by 92%
at 40% accuracy. In other words, predicting and checkpointing ahead of only 10% of
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Figure 4-9: Bounded slowdown vs. checkpoint interval in seconds for the SDSC job
log, using a checkpoint overhead of 3600 seconds.

all failures makes a huge impact in the amount of lost work. Predicting around half
of the failures has the same effect on lost work as checkpointing periodically, whether

or not a failure is expected.

Strategy Comparison

This section presents a different view of the results from the previous section, and
summarizes the trade-offs offered by these checkpointing heuristics. Figures 4-17
through 4-19 show results for the SDSC log on a flat cluster. The x-axis indicates
the type of checkpointing that was used. All plots are for C' = 720, 3600 seconds and
I = {1000, 10000} seconds. The results for C' = 720 seconds represent results when
C < I. In this case, the work-based heuristic performs every checkpoint; periodic
and work-based checkpointing yield the same results.

Consider first the results for I = 10,000 seconds. The bounded slowdowns in
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Figure 4-10: Response time vs. checkpoint interval in seconds for the SDSC job log,
using a checkpoint overhead of 720 seconds.

Figure 4-17 show a gradual decrease in this metric as fewer checkpoints are performed,
for both overheads. While Risk 0 is optimal, note that Risk 0.1 gives nearly the same
values. Utilization, graphed in Figure 4-18, shows a similar pattern, with utilization
tending to increase as fewer checkpoints are performed. The sole exception is Risk
0 with C' = 720 seconds, where utilization suffers negligibly. For this interval of

I = 10,000 seconds, the range of utilization fractions is relatively small.

For I = 1000 seconds, periodic checkpointing performs significantly worse than
either of our heuristics in both bounded slowdown and utilization. In that case,
with C' = 3600 seconds, work-based checkpointing gave an immediate 25% utilization
boost, with an additional 20% being possible if all checkpoints are skipped. Work-
based checkpointing reduced bounded slowdown, in this extreme case, by more than a
factor of 90. By themselves, these measurements of bounded slowdown and utilization

give the impression that checkpointing should be abandoned entirely.
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Figure 4-11: Wait time vs. checkpoint interval in seconds for the SDSC job log, using
a checkpoint overhead of 720 seconds.

Figure 4-19, however, tells just the opposite. For I = 10,000 seconds, the amount
of lost work increases as the amount of checkpointing decreases. For a system with
C = 720 seconds, a prediction accuracy of 10% reduces the amount of lost work as
much as periodic checkpointing, while also bringing bounded slowdown and utilization
to near optimal values. Recall that event prediction with accuracy as high as 70% has
already been achieved [27]. We conclude that an application should spend as little
time checkpointing as possible, but no less, and that those important checkpoints can

be effectively identified with event prediction.

The results for I = 1000 seconds were slightly more complicated: the lost work
plot was a U-shaped curve. Too much checkpointing meant that jobs tended to hit
more failures, and there was a greater chance of failing during a checkpoint. On
the other hand, too little checkpointing was even worse. For such an extreme case,

work-based checkpointing is a simple heuristic for getting a considerable boost in
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Figure 4-12: System utilization vs. checkpoint interval in seconds for the SDSC job
log on a toroidal architecture, using a checkpoint overhead of 720 seconds. This is
representative of the results with other inputs.

system-level metrics, while cutting the amount of lost work in half. That is, by in-
telligently skipping checkpoints according to the work-based heuristic, the amount of
lost work can be decreased. If system-level metrics are most important to the system
administrator, risk-based checkpointing may be an appropriate solution. Once again,
by using event prediction with a mere 10% accuracy, the amount of lost work can dras-
tically reduced, while simultaneously increasing bounded slowdown and utilization to

near-optimal levels.
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Figure 4-13: Zoom of Figure 4-12 with all accuracies.
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Figure 4-14: Lost work vs. checkpoint interval in seconds for the SDSC job log, using
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Figure 4-15: Lost work vs. checkpoint interval in seconds for the SDSC job log on a
toroidal architecture, using a checkpoint overhead of 720 seconds.
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Chapter 5

Contributions

As computing systems continue to grow in scale, new techniques must be developed
for ensuring reliable and efficient operation. Periodic checkpointing, at either the
application or system level, is quickly becoming an infeasible solution to the challenge
of minimizing the cost of failures. This thesis has presented a unique checkpointing
scheme called cooperative checkpointing, in which many components of the system
work together to save application state to stable storage in an efficient, timely manner.

Specifically, the programmer places checkpoint requests in the application code
where the critical state is minimal. These requests are optimized by the compiler.
At runtime, checkpoint requests are sent to the gatekeeper, which either performs or
skips each checkpoint request. The gatekeeper uses input from a multitude of sources
to make informed choices. In this way, cooperative checkpointing combines many of
the strengths of previous techniques while negating many weaknesses.

Cooperative checkpointing can be modeled as two parts: the static placement and
optimization of checkpoint requests in the code, and the dynamic online decisions
made by the gatekeeper. The behavior of the gatekeeper can be modeled as an on-
line algorithm. Where C' is the checkpoint overhead and [ is the request interval,
a worst-case analysis proves a lower bound of (2 + [£])-competitiveness for deter-
ministic cooperative checkpointing algorithms, and proves that a number of simple
algorithms meet this bound. In the expected-case, an optimal periodic checkpointing

algorithm that assumes an exponential failure distribution may be arbitrarily bad rel-
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ative to an optimal cooperative checkpointing algorithm that permits a general failure
distribution. An application using cooperative checkpointing may make progress 4
times faster than one using periodic checkpointing, under realistic conditions. Simula-
tion results show that, in extreme cases, cooperative checkpointing improved system
utilization by more than 25%, reduced bounded slowdown by a factor of 9, while
simultaneously reducing the amount of work lost due to failures by 30%.
Cooperative checkpointing is a topic of active research. An implementation is
currently in progress for BlueGene/L. The next steps include developing more specific
cooperative checkpointing algorithms for supercomputing systems, improving health
monitoring and event prediction systems, extending the simulator to support the
dynamic case, and using that simulator to perform more extensive experiments.

More concisely, this thesis makes the following contributions:

e Formalizes the problem of checkpointing on realistic systems, in which check-
point overheads are dominated by I/O bottlenecks and where failures may occur

in predictable ways.

e Introduces cooperative checkpointing, a novel technique for overcoming these
challenges, whereby the application requests checkpoints and the system dy-

namically decides which to perform and which to skip.

e Analyzes cooperative checkpointing as an online algorithm. The worst-case and
expected-case analyses prove that cooperative checkpointing can do significantly

better than periodic checkpointing.

e Proposes an embodiment of cooperative checkpointing that takes advantage of
its full potential and suggests what kind of supporting infrastructure is required

(or desirable) for this scheme.

e Simulates the performance of a rudimentary cooperative checkpointing imple-

mentation and presents the results.
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