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Abstract

Traditionally, access control mechanisms have been static in nature, requiring ex-

plicit intervention in order to change their behavior. However, since security re-

quirements can be expected to change frequently and rapidly in ubiquitous comput-

ing environments, access control mechanisms that can react to the context in which

they are applied are desirable. With this in mind, we have created ACCESS (Ac-

cess Controls for Cooperatively Enabled Smart Spaces); a framework for enabling

dynamic, role-based and context-aware access control mechanisms in ubiquitous

computing applications.

Thesis Supervisor: Robert Laddaga

Title: Research Scientist, MIT CSAIL

2



Acknowledgments

This project would not have been possible without the advice and guidance of Dr.

Robert Laddaga, my thesis adviser, who was always available to share his wisdom

in matters both academic and otherwise. Gratitude is also expressed to Dr. Howard

Shrobe, who believed in the project, supported it, and always seemed to know

where the light was and how to reach it. I would like to thank Max, my friend and

mentor, for coaxing me back in to grad school, introducing me to the AIRE Research

Group, and encouraging me to answer the interesting questions.

I also appreciate the efforts of Prof. Roy Campbell from the University of Illinois

at Urbana-Champaign, and Prof. Armando Fox from Stanford University, who took

time out of their busy schedules to help me understand their own parallel research

efforts.

To my mother, a special word of thanks for always believing and supporting me

in my quest for knowledge. Thank you, for encouraging me to continue with my

studies. It has been a most rewarding experience.

A word of thanks to my friends without whom my life would be incredibly dull:

Samitha, for showing me the importance of being organized and on top of things;

Jennifer, for making me believe that anything is possible, as long as you pursue it

with passion, purpose, and conviction; Joyce, for introducing me to the game of

golf - a surprisingly great stress reliever; Greg, Jim, Vivek, Berta, Aurora, Leslie,

and the rest at Burton One for providing a home away from home; and Jeremy, my

roommate, who endured the same pains as I did in meeting the graduation target

we had set ourselves.

I would also like to thank Stephen, Kevin, Gary, and the others in the AIRE

Research Group for taking me in, sharing their knowledge, and helping me focus

and make progress on my own research efforts, as well as Andy and Tyler, my office

mates, who helped ensure a stimulating work environment.

Finally, I would like to extend gratitude to the MIT Oxygen Alliance for helping

fund this work.

3



Contents

1 Introduction 8

1.1 Ubiquitous Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Smart Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Access Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background & Related Work 12

2.1 Related Work: Gaia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Security in Gaia: Cerberus . . . . . . . . . . . . . . . . . . . . 14

2.2 Related Work: iROS . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Security in iROS: iSecurity . . . . . . . . . . . . . . . . . . . . 15

2.3 The AIRE Research Group . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Early efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Metaglue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Hyperglue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Project Overview 19

3.1 ACCESS: Access Controls for Cooperatively Enabled Smart Spaces . . 19

3.2 Conceptual Requirements . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 Dynamic Access Controls and Context . . . . . . . . . . . . . 23

4



3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Knowledge Architecture 26

4.1 Access Control Policy Ontology . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . 27

4.2 ACCESS Policy Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Software Architecture & Implementation 40

5.1 ACCESS Policy Ontology Representation . . . . . . . . . . . . . . . . 40

5.1.1 SEMANTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 ACCESS in SEMANTIC . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Policy Definition and Persistence . . . . . . . . . . . . . . . . . . . . 41

5.2.1 PolicyGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Inference Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Backward Chaining . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Embedded Intelligence . . . . . . . . . . . . . . . . . . . . . . 44

5.4 ACCESS in Hyperglue . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Hyperglue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 Security Manager . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.3 Authentication Module . . . . . . . . . . . . . . . . . . . . . . 48

5.4.4 Access Control Module . . . . . . . . . . . . . . . . . . . . . . 48

5.4.5 Accessing Dynamic Attributes . . . . . . . . . . . . . . . . . . 49

5.5 Example of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1 Inference Traces from ACCESS . . . . . . . . . . . . . . . . . 52

5.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5



6 Future Issues 62

7 Conclusion 66

A PolicyGen: Sample ACCESS Policy 68

B Obtaining a WalkingDirectionsInfo agent/resource 72

6



List of Figures

3-1 Role Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-2 The Interrupt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4-1 ACCESS Policy Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 29

5-1 Hyperglue Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7



Chapter 1

Introduction

We live in a world where technological advances are being made at a rapid pace.

Moore’s law[29] still holds true and drives computation to be faster, cheaper, and

smaller. Thus, as the cost of computing becomes negligible, a multitude of pos-

sibilities for new applications emerge. Among them is a noticeable trend toward

incorporating computing power in our physical environments. Yet as computing

power becomes a part of our physical environment, we expose ourselves to new

forms of security risk that weren’t previously applicable. Interestingly, this also pro-

vides us with opportunities to address both these new risks and previously identified

ones. This project explores these security concerns and examines how they can be

mitigated, particularly within the context of ubiquitous computing systems.

In this chapter we introduce our research agenda by providing both an overview

of the historical context and the motivational forces that drove the work described

in the other sections of this thesis.

1.1 Ubiquitous Computing

Mark Weiser, in his seminal work describing a vision for the future of computing,

said “The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from it.”[48]

Subsequent work done by Weiser and others in extending this thesis led to the cre-
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ation of the field of ubiquitous computing that studies means by which computing

resources can be embedded in our physical environment and controlled through

natural human interactions.

The field of ubiquitous computing focuses on changing the manner in which

we interact with computing systems. Computers today require users to possess a

great deal of knowledge about their interface and spend time focusing primarily on

interactions with them before even the simplest tasks can be accomplished. This

results in a context switch occurring, leading to the user focusing more on how to

accomplish a task rather than on the task itself. Some of us have grown accustomed

to these restrictions and have learnt to work around them. In doing so we have

found computers to be very useful tools. Yet, to the vast majority of people in this

world computers are still an alien tool, and significantly less useful than they could

be.

In order to truly reap the benefits of technological progress we have made, we

need to build systems whose operation and interface are more intuitive to us. We

desire computers to become invisible, or at least recede to the periphery of our

senses. We want them to be able to understand and use such natural human in-

terfaces as speech, vision, etc. when interacting with us. Instead of having islands

of computing in the form of individual computers, we desire computing itself to be

an omnipresent yet shared resource that is as natural as the air we breathe[30].

Components of this resource should be able to work in concert to both determine

what users are trying to accomplish and assist them in their tasks as needed.

Ubiquitous computing explores these desires and attempts to bridge the gap

between our present reality and a utopia of computing. In doing so the user will

be freed to focus on the tasks at hand as opposed to how they can be accomplished

on his or her computer. This notion has been so radical that it is now described as

the “third great wave in computing” behind the mainframe and personal computing

eras[49].
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1.2 Smart Spaces

Smart spaces are a stepping stone toward the ultimate goal of ubiquitous comput-

ing. They are isolated environments with significant computing resources embed-

ded within them. By working in concert with a range of sensors these computing

resources have the ability to observe the physical world, interpret those observa-

tions, perform reasoning on these interpretations, and then perform actions based

on the reasoning. When computing and sensor resources are put together in such a

manner within a physical space we refer to them as “Smart Spaces”. They are also

referred to as intelligent environments, reactive environments, aware spaces, etc.

in the literature.

1.3 Security and Privacy

When our environment becomes enabled in the manner described above, we open

up opportunities for both our privacy and security to be compromised. Of particular

concern is the scenario where computing resources embedded in our environment

fall under the control of unscrupulous elements.

If these computing resources are able to track our location and the very actions

we perform, then should anyone who so desires have access to that information?

Arbitrary access raises immediate concern regarding individual privacy. So it be-

comes apparent that while we wish to share information, we care about who we

share that information with. For example, Alice may wish to share her calendar

with her co-worker Bob. However, Chris, who is unknown to both Alice and Bob,

shouldn’t have the same level of access that Bob has to Alice’s calendar. Similarly,

a conversation initiated and conducted over video conferencing or some other suit-

able resource available in one’s environment should only be viewed or heard by the

intended participants. But if the resources we use don’t belong to us, and therefore

are not under our control, then can we trust them to act in our best interests?

Therefore, it becomes apparent that even while the intentions of ubiquitous com-
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puting are pure, the haphazard deployment of ubiquitous computing applications

should be avoided. While a number of research projects[22, 36, 9] have focused

on building the infrastructure required to deploy smart spaces, they have been fo-

cused primarily on building systems that serve as proofs of concept. Even though

these systems are beginning to reach levels of sophistication such that they may be

applicable in production settings, the area of security and privacy in these systems

is one that has been minimally explored thus far.

1.4 Access Controls

Access Controls are often considered the more trivial aspect of security systems.

Yet, within the realm of Smart Spaces they take on a level of complexity and impor-

tance that rivals such fundamental aspects of security as cryptographic techniques.

In ubiquitous computing applications, they provide a very important safeguard in

protecting user privacy. Of course, authentication, privacy, and non-repudiation are

important factors as well. However, a data transmission where the identity of both

sender and recipient can be validated (authentication), the channel is encrypted

(privacy), and we’re able to validate that the data the recipient received did actu-

ally come from the sender (non-repudiation) is not useful if we cannot validate that

the recipient was authorized to receive that data.

While authentication, privacy, and non-repudiation draw sustained research in-

terest leading to progress, access controls have traditionally lagged behind. We

believe that correctly determining access controls will be an important factor in

building secure intelligent environments. Therefore, we chose to focus our efforts

in the area of access controls. In particular, we explored means by which to provide

robust, dynamic, role-based and context-aware access control mechanisms within

intelligent environments.
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Chapter 2

Background & Related Work

No pervasive computing project that seeks broad usage can long ignore security.

MIT CSAIL’s AIRE Project is no exception. This chapter will first provide a summary

of related ubiquitous computing projects being pursued elsewhere. We compare

and contrast their approaches to security to our own. It will be clear that while

we think our approach differs, it has been influenced by their efforts. Finally, we

present a historical overview of MIT’s Project Oxygen[30] and the AIRE Group’s

Metaglue/Hyperglue project to provide an indication of where our own work is

situated in the larger context.

2.1 Related Work: Gaia

Researchers at the University of Illinois in Urbana-Champaign have been working

on the Gaia Project[36] since 1996. As such it is one of the more mature research

efforts in this domain. The project was motivated by a lack of middleware through

which to connect network enabled computing resources in building Active Spaces1.

One of the key characteristics of Gaia is that it is viewed as an extension of our no-

tions on conventional operating systems. As such, Gaia has three main components:

the Gaia Kernel, Gaia Application Framework, and the applications themselves. The

1Active Spaces is a term used interchangeably with Intelligent Environments, Aware Spaces, Re-
active Environments and Smart Spaces in the literature.
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Gaia Kernel provides a management and deployment system for the distributed ob-

jects within the system, in addition to a set of basic services available to and used

by all Gaia applications. Gaia applications are built on top of the Gaia Applica-

tion Framework which provides a set of building blocks supporting features like the

mobility, adaptation, and dynamic binding of objects within Gaia.

Furthermore, Gaia provides five basic services: Event Manager Service, Presence

Service, Context Service, Space Repository Service, and the Context File System.

The Event Manager Service is implemented as a decoupled communication model

based on suppliers, consumers, and channels which is responsible for appropriately

distributing events within an active space. The Presence Service uses a beaconing

mechanism to maintain soft-state about the entities (e.g. Application, Service, De-

vice, and Person) present in the space. In the Context Service a set of abstractions

and tools to encapsulate both sensory and other data in capturing notions of con-

text is provided. At the aggregated level this is represented using first order logic

and boolean algebra to allow reasoning over contextual data. Information about

the software and hardware entities providing useful resources within the space is

stored and made available through the Space Repository Service. The Context File

System provides mechanisms for personal data availability in a space in which a

user is present.

Together, these provide mechanisms for resources (which are modeled as soft-

ware objects) to be discovered, managed, and used by other resources. Inter-object

discovery and communications are handled through the CORBA[18] infrastructure.

It is interesting to note that Gaia was designed from a systems perspective of the

world. That is, attention was first paid to the lower level Gaia OS or middleware

before applications were considered. Therefore, it appears to enforce constraints

on the type of applications that can be built. The people behind Gaia look at it

as an operating system for spaces, and perhaps due to intentional or unintentional

bias on what form those spaces would take, have built a powerful framework which

has limited applications. This may be why they have been limited to building ap-

plications within well defined self-contained spaces like conference rooms, lecture
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rooms, and offices, but are currently unable to support interactions across such

spaces. However, being one of the oldest and longest active projects in this domain

they have contributed much toward our understanding of applications of ubiquitous

computing in intelligent environments.

2.1.1 Security in Gaia: Cerberus

As a result of being a mature platform, the researchers involved in Gaia have had the

opportunity to work on the security aspects of Smart Spaces[39, 4, 1]. As a result,

some significant contributions have been made in this area. The key ideas emerging

from this work are encapsulated in their latest iteration of security: Cerberus [1].

For example, they propose a multi-level authentication scheme that has associated

confidence values describing the trustworthiness of the authentication achieved.

This authentication scheme also decouples device and protocol abstractions to allow

ease of extensibility. In the area of Access Control, where our specific interests

lie, they highlight the importance of considering context in making access control

decisions. However, it is important to note that Cerberus uses access control lists

defined centrally by a system administrator. These ACL’s are hierarchical in nature,

and while being easy to maintain, lack flexibility.

2.2 Related Work: iROS

The Intelligent Room Operation System or iROS[34] is a meta operating system

built as part of the Intelligent Workspaces [22] project at Stanford University. It is

important in that it has already been deployed in a few production environments.

For example, it is currently deployed in a public space at a library in Stanford which

students are allowed to use. Furthermore, aspects of their design have been repli-

cated by other projects like the i-Land[42] project at Fraunhofer-IPSI in Germany.

The scope of iROS is intentionally restricted to Intelligent Workspaces. That is,

iROS is geared for physical spaces that support collaborative work amongst indi-
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viduals. Examples of such spaces include conference rooms and classrooms. There-

fore, other applications such as offices or even residential settings aren’t considered.

Also, they consciously choose to refrain from performing complex inferencing with

regards to user intention, but rather allows users to explicitly change the environ-

ment based on their needs. They also allow users to provide their own mediation

and conflict resolution when sharing resources.

The general architecture of the iROS platform consists of three main compo-

nents: the Data Heap, iCrafter[33], and the Event Heap[21]. The Data Heap is

a central repository that applications can use to post data they care about. Once

placed in the Data Heap other applications can access the data and the Data Heap

will translate and return the data in a manner useful to the subscribing applica-

tion. For example, if the data in question is a set of power point slides and a

viewer application running on a handheld requests the data, the Data Heap will

translate the slides into a collection of single JPEG[17] images for display on the

handheld. The iCrafter component is used for system service advertisement and

invocation, and also for generating user interfaces for services based on the sub-

scribers constraints (i.e. type of display interface available, etc.). Finally, the Event

Heap provides a centralized mechanism for communication between different ap-

plications. Communication happens as events which are posted on the Event Heap

by the applications. Other applications can choose to subscribe to these events. All

communication within iROS occurs through this Event Heap, thus creating a single

point of failure. However, the general design choices and initial scope limitations

made have ensured that iROS is a very manageable system that has performed re-

markably well in its intended domain.

2.2.1 Security in iROS: iSecurity

Security, as with the Gaia project, is a recent area of focus in the iROS project.

Current work in this area is a part of the iSecurity[41] effort. Like iROS, iSecurity

has strictly defined scope which limits it to being a security solution for the iROS
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platform used within interactive workspaces. iSecurity attempts to address both

the issue of authentication and access control. Like most authentication schemes

available, iSecurity also relies on a centralized mechanism described as an iSign

server. A user logging into a device must first authenticate himself with the iSign

server by conventional challenge/response mechanisms like passwords. A success-

ful response yields a token of trust in the form of an X.509[50] certificate which is

used thereafter to provide authentication with the Event Heap when posting and

subscribing to events. It also allows for events to be transmitted via a secure tunnel

using SSL[35]. We believe that while this provides privacy on the wire, the fact that

all communications occur via the centralized Event Heap leads to security vulnera-

bilities (in addition to the reliability issues mentioned above) in the event that the

Event Heap is compromised.

We found it interesting that iROS implemented a distributed mechanism for

policy management and enforcement. Each device/application running within the

iROS platform and making use of iSecurity’s infrastructure is responsible for main-

taining its own policies and enforcing them. This is desirable since it allows for

applications to evolve based on their own requirements and not be constrained by

a central policy enforcement and management engine. As such this is a design

property that we found appealing and worthy of emulation.

2.3 The AIRE Research Group

Project Oxygen is an inter-disciplinary research effort at MIT’s Computer Science

and Artificial Intelligence Laboratory aimed at re-thinking how computing systems

function and moving toward the realization of Weiser’s original vision. As part of

this project, researchers at MIT and its industry partners (The Acer Group, Delta

Electronics, Hewlett-Packard, NTT, Nokia and Phillips) explore the boundaries of

human-computer interaction, artificial intelligence, and the underlying supporting

technologies.

The AIRE (Agent-based Intelligent Reactive Environments) Research Group is a
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key member of the Oxygen initiative and contributes toward its goals by investigat-

ing the domain of Intelligent Environments utilizing a distributed agent architec-

ture.

2.3.1 Early efforts

Interest in Smart Spaces at MIT began prior to 1994 and led to the SodaBot[6]

project which took a software agent-based approach[8, 7] to enabling smart spaces.

While these efforts were focused on system implementation aspects, shortly there-

after an HCI focus also emerged [44]. Thus, a dual-pronged approach of working

on both system infrastructure aspects and the human visible applications that could

run on the infrastructure was taken. Subsequently these efforts converged into the

Intelligent Room project[3], which continues as a project within the AIRE Research

Group.

2.3.2 Metaglue

Metaglue[9] is a distributed agent framework developed within the AIRE research

group to facilitate the construction of Smart Spaces. It replaced the SodaBot frame-

work. With the research focus within the AIRE group being in Smart Spaces,

Metaglue has seen significant use since taking its current form in 1999. It has

been deployed in a range of spaces including conference rooms[19], offices[13],

and common spaces[25]. Metaglue provides for agent discovery and co-ordination.

The most important component in Metaglue is the Catalog, which maintains knowl-

edge about all agents and their capabilities. Thus, it provides the means for discov-

ery when another agent requires a particular kind of service or resource. Once

the catalog identifies the appropriate agent, it returns a stub to it and the request-

ing agent can access the desired resource or services via the agent stub. The agent

stub hides inter-agent communication that occurs through JINI[43], making it seem

like the resources and services on the other agent are locally available. Metaglue,

also has sophisticated fault tolerance mechanisms that allow it to recover gracefully
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from agent failures. The original design was inspired by the desire to make pro-

gramming for Intelligent Environments easier via an extension to the existing Java

language[15]. However, since then it has evolved and is now viewed as a middle-

ware platform supporting Intelligent Environments. Nevertheless, its roots, being

grounded in programming languages, yield a design that lends itself to being very

easy to use from a programmatic perspective. Perhaps this is a reason for the large

number of applications currently deployed using Metaglue.

2.3.3 Hyperglue

While Metaglue has been used extensively within different sub-projects in the AIRE

group dealing with Intelligent Environments, with every new iteration they stretch

the limits of Metaglue’s capabilities. As such the AIRE group is presently augment-

ing Metaglue to add key aspects of functionality that were found to be desirable.

Most notable among them is the ability to allow interactions between multiple

distinct intelligent spaces. Currently, the architecture only supports independent

and isolated distinct spaces. Furthermore, better abstractions for representing real-

world entities are being provided. That is, it will be possible to associate a collection

of agents with a particular entity. This effort and the resulting framework is called

Hyperglue[31].

Security is another area of focus in Hyperglue, and as such this project provides

some of the preliminary security work done for Hyperglue. Our work is on con-

trolling access to the resources governed by the real-world entities represented in

Hyperglue. A more detailed description of the technical aspects of Hyperglue and

the manner in which this project fits into the Hyperglue framework are discussed in

Chapter 5 (Software Architecture & Implementation).
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Chapter 3

Project Overview

The previous chapters have provided an overview of the ubiquitous computing do-

main and argued for stronger security mechanisms within it. As stated before, this

project focuses on the access control elements that are relevant in this domain. In

this chapter we provide a high level overview of the approach taken and the scope

of this project.

3.1 ACCESS: Access Controls for Cooperatively En-

abled Smart Spaces

This thesis describes the design and implementation of the ACCESS (Access Con-

trols for Cooperatively Enabled Smart Spaces) system. ACCESS is a dynamic, role-

based, context-aware access control mechanism for Smart Spaces. ACCESS is both

dynamic and context-aware because the constraints deemed applicable and eval-

uated in determining access rights vary according to the state of the environment.

Furthermore, the environment state influences the roles assigned to entities request-

ing access rights and these roles have varying degrees of permissions associated

with them. While ACCESS has been designed with Hyperglue in mind, we believe

the level of abstraction provided is sufficient to enable its incorporation into other

ubiquitous computing platforms.
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3.2 Conceptual Requirements

Before we delve into the details, it is important to understand the conceptual re-

quirements for enabling access controls in smart spaces. Here at the MIT Computer

Science and Artificial Intelligence Lab, we have built a number of Smart Spaces as

part of our ongoing research in the area [20, 19, 13, 25]. In doing so, it has be-

come apparent that we are concerned with four primary types of entities: People,

Places, Devices and Data. In our Smart Spaces, these entities can have agent soci-

eties associated with them. Furthermore, agent-based interactions occur between

these entities both within a type and across types (i.e. between People and People,

People and Places, People and Data, etc.). These entities we are concerned with can

also share resources within their control during these interactions. The interactions

themselves can be processes acting on behalf of the entities and thus representing

them. While in general we work with entities that represent people, our framework

should allow other types of entities to be represented as well. Furthermore, we are

now interested in controlling access to these resources. This leads to a complex

set of relationships and constraints, for which we would like to build an evolvable

conceptual representation. As such we are interested in defining a set of basic con-

cepts on which an ontology specifying our conceptualization of entities and their

relationships to one another can be built.

3.2.1 Roles

We assert that when such entities interact, they assume a role for the purposes of

that interaction[11]. We also assert that these roles can be and are often relational.

That is, the roles are defined in terms of the relationships between the entities

concerned.

For example, from the perspective of a Person Entity, another Person Entity could

fit any of a range of roles such as:

1. Student - Fellow Student, My Student
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2. Professor - My Adviser, Colleague

3. Friend

4. Administrator

5. Unknown Person, etc.

Also, from the perspective of a Place Entity, a Person Entity could fit a role such

as:

1. User

2. Presenter

3. Administrator

4. Unknown Person, etc.

And, to a Data Entity a Person Entity could be a:

1. Owner

2. Subscriber

3. User, etc.

For example, Bob could be a Fellow Student from Carol’s perspective but My

Student from Alice’s Perspective. Similarly, Alice could be a Professor from Carol’s

perspective but My Adviser from Bob’s perspective. Furthermore, room 323 - a Place

Entity - could be My Office from Alice’s perspective and an Office from Bob or Carol’s

perspective. Thus, it is apparent that different entities can take on different roles

from the perspective of other entities (Figure 3-1).

It is also important to note that an entity has the ability to assume more than

a single role defined from another entity’s perspective. For example, we know that

Bob and Carol are Fellow Students, but they could also be intramural softball Team

Members as well. In such cases, when making an access control decision a particular

role may be more pertinent than others under a given context.
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Figure 3-1: Role Relationships among different entities

3.2.2 Resources

These entities can also be in control of different resources. For example, a Place En-

tity such as a Conference Room can have Projectors, Lights, Sound Systems, Room

Capacity Information as resources within its control. Similarly, a Data Entity like a

Personal Information Management Server can have individual user Address books

and Personal Calendars as resources within its control. A Device Entity such as a

mobile phone can have such resources as a phone book, a speaker, a microphone

and a display in its control. However, while these resources are within the control

of particular entities, there can be instances when they are useful to other entities

as well. For example, Alice could desire to check the Room Capacity Information of

a conference room before she schedules a meeting for her Research Group. Once a

suitable conference room is found, Alice would desire access to the Personal Calen-

dars of Bob and her other students on the Personal Information Management Server

in order to schedule the meeting.

3.2.3 Permissions

It is apparent that resources within the control of a given entity cannot be given

out at will. For example, when Alice is scheduling her research group’s meeting,

should she be allowed to make an entry in Bob’s calendar? What about Bob’s right
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to privacy?

Thus, we see the need for Permissions. Bob should be able to define that calen-

dar access should only be given to those Person-Entities that assume the My Adviser

role from his perspective. If Carol were able to do the same, then Alice, even though

she is a Professor, would only have access to Bob’s Calendar and not to Carol’s. We

would like to define permissions with respect to roles that entities can assume and

the Resources they have access to. They could take the following form:

An entity assuming role X has access to Resource Y.

By access, we mean complete access. This may seem non-ideal. For example,

one might desire to give Write access to one’s Calendar for those assuming one role

and Read/Write access to those assuming another role. However, cases belonging

to this class can be covered by defining the resources at a more granular level:

Calendar Write resource, Calendar Read/Write resource, etc.

3.2.4 Dynamic Access Controls and Context

The basic concepts defined thus far are sufficient to describe a set of predominantly

static permissions. However, there is a need to consider dynamic changes to access

permissions. Consider the case where Bob takes time off from school to deal with a

family emergency. What he does during this time may be of a very personal nature

to him, and even though Alice has static permissions to his calendar the current

circumstances affecting Bob should be considered in making a decision on whether

Alice should be allowed access or not. Thus, we have a need to dynamically model

changes in the environment that affect access permissions.

Certain aspects of such context can be described by simply extending our notion

of roles to include context. For example, we could define a role called student-on-

leave and define permissions restricting access to the personal calendar of a person

entity assuming that role. However, we believe that this approach may not be desir-

able from a scalability perspective. Instead, modeling context separately was a more

attractive approach where we had a separate notion of context associated with each

23



entity. We assert that each entity should maintain a model of the context in which

it currently finds itself. Thus, any decisions that require contextual information can

be correctly determined.

3.3 Approach

Given this understanding of the conceptual requirements, we formulated our ap-

proach towards building ACCESS in the following manner. First, we selected re-

sources as being the central element we would like to protect from arbitrary use.

That is, a resource under the control of a given entity should be protected from

arbitrary use by another entity.

Second, both roles and context were chosen to be the drivers behind access

right evaluations. The roles in question here are those assumed by the resource

requester. The context considered here is that in which the resource provider finds

himself. While the context of a resource requester could be useful (ex. during

emergency situations), a conscious design choice was made to exclude this factor

from our model. The reason behind this is that we found no suitable means to

guarantee the authenticity of the context cues provided by a resource requester.

Especially in the context of Hyperglue, any claims the resource requester made

about its context would have to be blindly trusted. Local context is only known by

that entity and it allows rogue entities to misrepresent themselves to the external

world. The only guarantees we can provide are with respect to the identity of the

resource requester. Therefore, identity is a factor we consider in determining the

roles that are applicable.

Third, we present an interrupt driven model (Fig. 3-2). That is, when a resource

requester makes a request via ACCESS, ACCESS simply makes a determination of

the requester’s access rights at that time and either grants or denies the request.

This can result in a resource requester who had previously been granted a resource

having that permission revoked. Our design does not allow the polling of resource

requesters to determine if they have completed using the resource in question. This
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Figure 3-2: The resource requesters A,B and C can interrupt each other to obtain

resource R. As shown here, at time T1 A has access to resource R, but at T2 B

interrupts A to obtain it. C follows suit at T3 before A interrupts again and reclaims

R at T4. This case holds true only if at each of the time instances, ACCESS was able

to determine that the interrupting entities had access rights to resource R.

goes back to the point made above about the lack of trust that can be placed on

requesting entities to represent themselves accurately. While this may seem non-

ideal, we assert that it is possible to provide guarantees about a resource that is

granted via the context infrastructure we use. For example, a resource provider can

model a constraint that says a given resource can only be granted if it is currently

not in use, or if it has been held by another entity for more than a stipulated time

interval. At a more granular level you could even define the method call workflow

that encapsulates a meaningful interaction with the resource and determine that its

usefulness to the requesting entity has elapsed. Since all these items of knowledge

can be maintained locally within the resource provider we are able to trust them

and thereby circumvent some of the negative aspects of the interrupt driven model

we propose. Another issue we need to address is the potential for deadlock in

this model. What happens when two entities request the same resource at the same

time? This issue can be addressed by implementing a two-phase locking mechanism

inspired by those found in the domain of Database Systems.

In the next chapter we present the Knowledge Architecture used to both rep-

resent the access control policies we desire and also support inferencing on that

representation. The following chapter provides the Software Architecture used in

the actual implementation.
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Chapter 4

Knowledge Architecture

Knowledge Representation plays a key role in ACCESS. In order to enforce the types

of policies we described in Chapter 3 we desired a robust and extensible means for

both representing policies and reasoning about them. In this chapter we describe

the knowledge representation used in ACCESS and discuss the manner in which it

meets our needs.

4.1 Access Control Policy Ontology

In order to structure our knowledge representation, we took the approach of defin-

ing an Access Control Policy Ontology. We felt an ontology was a suitable approach

since it provides a set of guidelines that can be used to formulate a wide variety of

policies. Furthermore, an ontology lends itself to creating a semantic network of

the components on which inferencing techniques can be applied.

4.1.1 Design Goals

Our design goals were chosen to drive towards a simple, extensible, and useful

knowledge representation for access control policies. We defined them as follows:

1. Make the ontology as simple and primitive as possible without causing un-

due burden on the user to create high-level constructs that would make it
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useful. We understand that these are competing constraints, yet we believe

a suitable compromise is needed. There exists a real danger of designing a

representation that is too primitive for it to be useful to the average user or

one that is too advanced such that it can only be manipulated in the manner

it was designed for. The contrast between the assembly language - which can

be used to build practically anything - with shell scripting languages - which

have specific purposes - illustrates this.

2. Provide mechanisms by which extensibility can occur. In particular, we were

concerned about being able to include all logic types that might ever be ap-

plicable in an instantiated policy. Instead, we would prefer to allow logic

modules to be able to function as plug-ins to an instantiated policy, thus tak-

ing an embedded language approach.

3. Allow dynamic data to be factored in. We are working in Smart Spaces that

are constantly evolving, and therefore need policies to be inherently dynamic.

That is, we wanted to support the definition of dynamic policies that would

function differently under different conditions.

In the next section, we look at some alternative policy definition approaches and

compare them against our design goals to justify our own approach.

4.1.2 Alternative Approaches

A number of alternative policy definition mechanisms which could have been used

in our efforts do exist. REI[23] is a policy definition language developed at the

University of Maryland Baltimore Country which allows for policies to be described

within OWL-Lite[46]. REI allows for the definition of permissions (both negative

and positive) and obligations. It contains a rich set of semantic constructs to be used

in defining policies. However, REI required its own engine for policy evaluation

which wasn’t easily compatible with the Hyperglue framework in which we were

working.
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XACML[14] is an XML-based policy definition framework. Its intended usage

domain is in business applications. In our evaluation of XACML, we found it to

be more suitable for defining static permissions. Due to the nature of static per-

missions, XACML provides excellent mechanisms for conflict resolution prior to run

time. However, a policy evaluation engine suitable for our purposes was not avail-

able.

KAoS[45] is another effort at a policy definition language based on OWL[46].

Therefore, it leverages semantic web technologies, much like REI does, to provide

an extensible means for policy definition.

Unfortunately, both REI and KAoS rely on the basic knowledge definitions be-

ing available and in their current forms don’t support knowledge abstractions that

can be made by an administrator of a specific domain in which the policies are ap-

plicable. Therefore, an assumption is made about the pre-defined existence of all

knowledge in a friendly format that can be used in policy definitions. In reality, this

isn’t currently true. Furthermore, the use of this knowledge requires an inferencing

engine that can reason over knowledge represented in OWL or other semantic web

technologies.

Since such tools were under development, for the purposes of this project we

decided to leverage tools that had been developed and used in-house. We will

discuss our implementation in the next chapter, but in the rest of this chapter a

description of our rudimentary knowledge architecture follows.

4.2 ACCESS Policy Ontology

The ACCESS policy definition ontology focuses on providing a framework for de-

scribing access control policies based on the relationships between resources, roles,

and context. We assert that to sufficiently describe an access control policy gov-

erning a given resource, both the applicable role of the requesting entity and the

applicable current context of the granting entity must be considered. Given this,

the constructs we use in our policy definition ontology can be divided into three
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Figure 4-1: The ACCESS Policy Ontology

sections and are individually described below. A graphical representation of this

ontology is presented in Figure 4-1.

4.2.1 Resources

Resources are elements - services, physical objects, virtual objects, etc. - of interest

that are within the control of a particular entity. For example, my mobile phone is

within my control. A light bulb in a room may be within the control of that room.

Within the domain of smart spaces, these are the resources we would like to protect

from arbitrary use.

29



Resource

A resource construct is used to describe a resource (usually represented by a soft-

ware agent) of interest within a given agent society. This construct has the following

properties:

• Name A name for the resource.

• ReleaseIf A list of ReleaseConditions. The fulfillment of one ReleaseCondi-

tion is sufficient to release the resource. This allows us to represent multiple

situations under which a resource can be released.

• Society The agent society representing a real-world entity like a person, place,

etc.

• AgentID The identifier for the particular agent that provides the software

interface to the real-world resource we are protecting.

ReleaseCondition

This construct is used to provide a high-level representation of the constraints we

need to consider when determining if a given resource should be released. It en-

capsulates a hierarchical tree structure of constraints that need to be satisfied. A

ReleaseCondition has the following properties.

• Name A name for the release condition.

• Context If the ReleaseCondition takes provider context into consideration, the

applicable ContextualState.

• ContextValidity A boolean indicating if the ContextualState referred to by the

Context property is actually valid for the given case.

• Role If the ReleaseCondition takes requester role into consideration, the ap-

plicable RequesterRole.
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• Role Validity A boolean indicating if the RequesterRole referred to in the Role

property is actually valid for the given case.

4.2.2 Roles

Roles play an important part in determining access rights. If a requesting entity

can assert and prove to a providing entity that he can assume a particular role the

providing entity knows about, then the requesting entity is allowed the privileges

associated with that role. Traditionally these have been static and worked on the

premise that an entity proving its identity through proper credentials would be

allowed to assume a given Role. For our purposes, this was determined to be too

restrictive. Therefore, we use dynamic roles which can be built up using both other

roles and evidence attributes. Evidence attributes are like the identity credentials

mentioned above in that they support the requesting entity assuming a particular

role. However, they are different in that they can be dynamic and can take into

account other factors in addition to simple identity. For example, we might want to

define a role of room occupant. This role would only be applicable to an entity that

happened to be in the room in question.

RequesterRole

We use this construct to represent roles we would like to assign to requesting enti-

ties. These roles are defined from the perspective of the provider entity and there-

fore the requester has no knowledge of the properties of such a role. For example,

Alice could define a RequesterRole of colleague and assign the right to her public

calendar to it. If Bob can assume the role of colleague from Alice’s perspective,

he may be allowed to add an entry into Alice’s Calendar. RequesterRoles have the

following properties.

• Name A name for the requester role.

• Valid A boolean indicating if this Role is actually valid for a given case.
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• ValidIf A set of RoleConditions that need to be satisfied for this Role to be

valid in a given case. Note that all the RoleConditions listed here need to be

valid for the Role to be valid.

RoleCondition

The RoleCondition construct is used to represent specific conditions that need to

hold true for a particular Role to be valid. There are usually a set of RoleRequirements

and EvidenceRequirements that contribute towards the validity of a RoleCondition.

RoleConditions have the following properties.

• Name A name for the role condition.

• Valid A boolean indicating if this Role Condition is valid for a given case.

• RoleRequirments A set of RoleRequirements that need to be valid for a Role

Condition to be satisfied for a given case.

• EvidenceRequirements A set of EvidenceRequirements that need to be valid

for a Role Condition to be satisfied for a given case.

RoleRequirement

A RoleRequirement is used to represent whether a given RequesterRole needs to

be valid or invalid for another RequesterRole to be valid. This allows us to de-

fine RequesterRoles in terms of other RequesterRoles in hierarchical structures thus

providing for ease of use and eliminating redundant information. The following

properties are contained within a RoleRequirement.

• Name A name for the role requirement.

• Role A RequesterRole we take into consideration when evaluating a Role-

Requirement.
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• FulfilledWhen A boolean indicating if the RequesterRole in the Role property

needs to be valid for the RoleCondition to be fulfilled. This allows us to define

RoleRequirements with negative relationships to the RequesterRoles.

• Valid A boolean indicating the validity of this RoleRequirement in a given

case.

EvidenceRequirement

An EvidenceRequirement captures the affect an EvidenceAttribute might have on

the applicability of a Role. For example, an identity credential can be an Evidence-

Attribute that supports the notion that the entity presenting it can assume the iden-

tity role. An EvidenceRequirement contains the following properties.

• Name A name for the evidence requirement.

• Attribute An EvidenceAttribute whose value is important in determining the

satisfaction of the EvidenceRequirement in a given case.

• FulfillmentCheckType An operator that evaluates the Attribute property in

conjunction with the FullfilledWhen property to determine if the Evidence-

Requirement is satisfied. Operators are currently defined to be checks for

equality, greater than (or equal to), less than (or equal to), and inequality. In

practice this has proven to be sufficient so far. However, the implementation

does allow for extensibility with additional operators.

• FulfilledWhen The constraint used to evaluate the satisfaction of an Evidence-

Requirement. Can mean different things depending on the value for Fulfill-

mentCheckType as described above.

• Valid A boolean indicating the satisfaction of a EvidenceRequirement in a

given case.
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EvidenceAttribute

An EvidenceAttribute is an element of knowledge that may support an entity assum-

ing a particular role. An EvidenceAttribute value may vary over time and is usually

known by a software agent within a given agent society. We use this construct to

store the means by which the current value of a given Evidence Attribute can be

queried.

• Name A name for the evidence attribute.

• EvidenceAgentID The identifier for a software agent that has the means to

acquire knowledge about this Evidence Attribute.

• EvidenceQuery The formulation of the query that is passed in to the agent

pointed to by the EvidenceAgentID property such that the agent can correctly

return the desired attribute. For example, we might query an Authentication-

Agent with a ’CredentialCheck’ query.

• Value The current value of this evidence attribute.

4.2.3 Context

Context is another key factor that ACCESS uses in making decisions on access rights.

This is a recent development in access control mechanisms[10, 26]. Our constructs

for representing context drivers are analogous to those used for representing re-

quester roles. We argue that while an entity may be able to assume a role that has

permissions to a given resource, the entity providing that resource may not be in

a state that allows the release of such a resource. For instance, extending on the

example above, even when Bob can assume the role of colleague if Alice is away on

vacation and has closed her Calendar from public access, Bob maybe denied access

to it. In order to handle this scenario we need to model the context drivers that af-

fect Alice. One might argue that this can be folded into the Role definitions shown

above. That is, we might define one role for colleague that is applicable when Alice
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is on vacation and one when she is not. However, we believe that this leads to

convoluted representation that when modeling complex scenarios can be difficult

to use. Therefore, we model these two notions as separate factors.

ContexualState

We use this construct to represent contextual states applicable to the resource

provider that are pertinent to access control decisions. These states are also de-

fined from the perspective of the provider entity and therefore the requester has no

knowledge of them. The ContextualState models the different states of a provider

entity, thereby allowing it to be part of the consideration in making an access rights

evaluation. The following properties exist within this construct.

• Name A name for the contextual state.

• Valid A boolean indicating if this ContextualState is actually valid for a given

case.

• ValidIf A set of ContextConditions that need to be satisfied for this Contextual-

State to be valid in a given case. Note that all the ContextConditions listed

here need to be valid for the ContextualState to be valid.

ContextCondition

A context condition captures the StateRequirements and the AttributeRequirements

that need to be satisfied for a particular ContextualState to be applicable. The

following properties are used to capture there requirements.

• Name A name for the context condition.

• Valid A boolean indicating if this ContextCondition is valid for a given case.

• StateRequirments A set of StateRequirements that need to be valid for a

ContextCondition to be satisfied in a given case.
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• AttributeRequirements A set of AttributeRequirements that need to be valid

for a ContextCondition to be satisfied in a given case.

StateRequirement

Like a RoleRequirement, a StateRequirement is used to represent whether a given

ContextualState needs to be valid or invalid for another ContextualState to be valid.

This means that ContextualStates can be defined in terms of other ContextualStates

in hierarchical structures which are easy to use and minimize knowledge redun-

dancy. The following properties are contained within a StateRequirement.

• Name A name for the state requirement.

• State A ContextualState we take into consideration when evaluating a Role-

Requirement.

• FulfilledWhen A boolean indicating if the ContextualState in the State prop-

erty needs to be valid for the ContextCondition to be fulfilled. This allows the

definition of StateRequirements with negative relationships with the Contextual-

States.

• Valid A boolean indicating the validity of this StateRequirement in a given

case.

AttributeRequirement

Similarly, an AttributeRequirement is used to represent individual ContextAttributes

that may have a bearing on the applicability of a particular ContextualState. Like

the EvidenceRequirement described above, an AttributeRequirement captures both

the ContextAttribute and the logic that needs to be evaluated on the Context-

Attribute to determine its influence on the applicability of a ContextCondition. They

contain the following properties.

• Name A name for the attribute requirement.

36



• Attribute A ContextAttribute whose value is important in determining the

satisfaction of the AttributeRequirement in a given case.

• FulfillmentCheckType The same functional and semantic behavior as that of

the FulfillmentCheckType Property in the EvidenceRequirement.

• FulfilledWhen The constraint used to evaluate the satisfaction of an Attribute-

Requirement. Can mean different things depending on the value for Fulfill-

mentCheckType as described earlier in the EvidenceRequirement.

• Valid A boolean indicating the satisfaction of a AttributeRequirement in a

given case.

ContextAttribute

A ContextAttribute is an element of knowledge existing within the agent society

that indicates that a particular ContextualState is applicable in a given case. Like an

EvidenceAttribute, the value of a ContextAttribute may vary over time and is usually

known by a software agent within the provider entity’s agent society. We use this

construct to store the means by which the current value of a given ContextAttribute

can be queried.

• Name A name for the context attribute.

• ContextAgentID The identifier for a software agent that has the means to

acquire knowledge about this ContextAttribute.

• ContextQuery The formulation of the query that is passed in to the agent

pointed to by the ContextAgentID property such that the agent can correctly

return the desired attribute. For example, we might query a ClockAgent with

a ’DayOfWeek’ query.

• Value The current value of this evidence attribute.
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4.3 Analysis

We believe the ACCESS Policy Ontology described above meets our stated design

goals. It provides the basic elements that are sufficient to define access control poli-

cies that consider both roles and context. The nature of these roles and context

can be defined using this ontology and specific attributes that are available in the

provider entity’s agent society at large. Therefore, it can be expressive to the ex-

tent of the expressiveness of the environment in which it is deployed. However, it

includes no higher level semantic constructs that make it easier to use in a partic-

ular domain and therefore restrict the manner in which the policy is defined. For

example, one cannot claim that this ontology is only sufficient to describe Access

Controls for a Database. Any application that desires to define access control policy

based on requester roles and provider context can use this framework. It does, by

design, have a bias towards applications within the Hyperglue framework. This bias

is achieved by adding Hyperglue specific properties(ex. AgentID’s, context queries)

to the ontology. These properties can easily be modified and extended for use in

other frameworks.

Furthermore, we support dynamic data by allowing attribute values to be ob-

tained by querying the agents that may have knowledge about them at the time

the values are required. This means our decisions won’t be based on stale data but

rather on current and relevant data.

It should also be apparent that the hierarchical structure of our ontology is in-

herently compatible with inferencing based on backward-chaining[37]. We believe

that this is a mechanism for reasoning that is familiar to humans, and as such should

make the task of defining or specifying policies more intuitive to the end user. It

also allows for an efficient inferencing engine that makes evaluations based only on

need, in contrast to one that lent itself towards a forward-chaining approach where

wasted computation can occur.

In the next chapter we describe how this knowledge architecture was imple-

mented in software and also how inferencing was performed on it to evaluate access
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control policy decisions, or in essence how ACCESS was implemented in practice.
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Chapter 5

Software Architecture &

Implementation

In this chapter we focus on describing the software architecture used for the im-

plementation of ACCESS. We begin by explaining how the ACCESS Policy Ontol-

ogy described in Chapter 4 was represented and follow with a description of the

mechanisms used for policy definition and persistence. Next, we discuss the infer-

encing mechanism built to evaluate policies and determine permissions. Finally,

we describe how ACCESS was integrated into the existing Hyperglue framework to

provide an access control capability and show an example of its use.

5.1 ACCESS Policy Ontology Representation

The knowledge architecture described in the preceding chapter required a soft-

ware based representation to enable policy evaluations to occur. That knowledge

architecture involves representing policies as interconnected ontology elements (or

nodes). As such, it contains properties closely associated with a semantic network[38].

Therefore, we based our approach for the software architecture on the SEMANTIC

[32] toolkit which had already been built and seen significant use within the AIRE

research group.
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5.1.1 SEMANTIC

SEMANTIC is a toolkit developed for the purpose of representing and working with

semantic networks. It provides persistence through a relational database[5] at the

backend. The relational representation uses sets of triples (similar to the RDF [47]

triple) composed of: unique identifier, property and value. These triples represent

resources or objects. It also allows for the use of these triples to instantiate Java

objects with corresponding properties. Thus, the relational representation used for

persistence can be instantiated as a collection of Java objects which provide ease of

manipulation and navigation.

5.1.2 ACCESS in SEMANTIC

To allow ACCESS to leverage the SEMANTIC toolkit, we implemented Java classes

for each of the ontology/knowledge elements defined in the ACCESS Policy On-

tology. Each class contained the properties corresponding to the actual ontology

element it represented. They were also augmented with components from the SE-

MANTIC toolkit to allow interaction with the persistent data storage mechanism.

Furthermore, since Java allows object properties to point to instances of other Java

objects, and since SEMANTIC is capable of serializing and storing such relationships,

we had a means to represent semantic networks described using the ACCESS Policy

Ontology as interconnected Java objects.

5.2 Policy Definition and Persistence

Having the ability to interact with an ACCESS policy as a semantic network built

using interconnected Java objects was only useful if we could instantiate such net-

works as needed at runtime from a persistent storage mechanism. Thus, we needed

a means to populate the persistent storage mechanism with ACCESS policies. We

also needed an abstraction that allowed end-users to define ACCESS policies with-

out being burdened by knowledge of the underlying implementation. To address
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both of these needs we created PolicyGen.

5.2.1 PolicyGen

PolicyGen is a tool that:

1. Enables the definition of ACCESS policies using a set of primitive constructs

2. Generates an executable Java program that interacts with SEMANTIC to pop-

ulate the persistent storage with the semantic network describing a given AC-

CESS policy.

PolicyGen is based on OntoGen[24]; a tool for instantiating and manipulating

semantic networks in SEMANTIC. In creating PolicyGen, we identified a useful sub-

set of the functionality and syntax available in OntoGen, and augmented it to meet

our particular needs. For example, while OntoGen supports links between nodes in

a semantic network as separate constructs, such links were represented using prop-

erties in the ACCESS policy ontology. Therefore, there was no need for links. How-

ever, since OntoGen didn’t inherently support collections as properties of nodes and

the ACCESS Policy Ontology relied on them, we included support for collections.

The completed version of PolicyGen supports the syntax described below.

PolicyGen Syntax

• is-a <instance_name> <node_type>

Creates an instance of an ACCESS policy ontology node (ex. Resource, Re-

leaseCondition, ContextualState, etc.). All node definitions must occur at the

beginning of the policy description before any properties are defined. The

PolicyGen parser enforces this to prevent overlap in the namespace.

• property-value <instance_name> <property_name> <value>

Populates a specific property in a node described by the ACCESS policy on-

tology. The value given must be of the same type as that expected by the
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property. Type definitions are made in the Java classes describing a particular

node. The value can be a reference to an instance of another node defined

within a given policy as long as the type requirements are met.

• property-value-list <instance_name> <property_name> <value list>

Populates a specific property in a node described by the ACCESS policy ontol-

ogy which is accepting a collection. The value list contains a comma separated

list of references to instances of nodes defined in a particular policy.

In our use of PolicyGen we have found this to be a sufficient set of constructs

to describe an ACCESS policy given knowledge of the expected ontology conven-

tions. For an example, policy definition using the ACCESS policy ontology and for

consumption by PolicyGen, see Appendix A. The example we provide is one that we

have used in practice to protect resources within a Hyperglue agent society.

Using PolicyGen

The first step in using PolicyGen is to use the constructs described above to define

an ACCESS policy like the one shown in Appendix A. Essentially, this amounts to

describing a semantic network that conforms to the ontology described in Chapter

4 and which describes the types of constraints we would like to place on a set of

resources. Once a policy has been created and stored in a policy file, we execute

PolicyGen. If the policy file is well-formed, PolicyGen will create a new Java file

called BuildSphere.java which contains code that:

1. Instantiates Java objects representing instances of particular nodes in the se-

mantic network representing the ACCESS policy defined in the policy file.

2. Stores the instantiated Java objects to persistent storage via facilities afforded

by the SEMANTIC toolkit.

Executing this generated BuildSphere.java file sets up an ACCESS policy for use

within a Hyperglue society. The semantic network in persistent storage can be
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instantiated in part or whole as Java objects through the SEMANTIC toolkit. We

exploit this in the inference mechanism we built.

5.3 Inference Mechanism

Once we had a means to instantiate a policy representation, we required a mecha-

nism to evaluate it to determine access rights at runtime. We exploited the semantic

network’s inherent support for backward-chaining and enabled backward-chaining

by embedding intelligence in the nodes contained within the network. Our ap-

proach to enabling inferencing is described below.

5.3.1 Backward Chaining

As mentioned previously, the ACCESS policy ontology is conducive to backward-

chaining. This is because at each node, the relevance of the node to an access

rights evaluation is dependent on a set of other nodes (except for the leaf nodes

like EvidenceAttribute, ContextAttribute, etc. in the ontology). Thus, given that

we’re determining access rights for a particular Resource, finding the node describ-

ing the permissions associated with that Resource needs to be done first. There-

after, we need to evaluate the ReleaseConditions associated with it to determine

if any of them hold true and access can be granted. The requirements for each

of those conditions to hold true are described by other nodes like RequesterRoles

and ContextualStates which must also be evaluated for validity. Thus, we chain

backwards from the Resource node evaluating other nodes until we can determine

that a particular ReleaseCondition holds true or that none of them do. Using this

mechanism, an access rights evaluation can occur.

5.3.2 Embedded Intelligence

In performing the backward-chaining based inferencing described above, it is ap-

parent that a mechanism for evaluating the relevance of a particular node must also
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exist. We achieve this by embedding intelligence in each node. That is, we enable

policy permissions to be self-evaluating. This is done by implementing an appropri-

ate evaluate method in the Java objects that represent each node. The evaluate

method is unique to each class of nodes and contains knowledge about the nature of

the dependencies with other nodes and the state of that particular node required to

ascertain its relevance in the inferencing mechanism. For example, a Resource node

must find a ReleaseCondition that holds true in order to ascertain that the Resource

can be released. The evaluate method on the Resource node sequentially obtains

handles to the ReleaseConditions associated with it. If the ReleaseCondition has

not been instantiated into memory it is retrieved from the persistent storage and

instantiated. When a handle is obtained the evaluate method on that ReleaseCon-

dition is called which in turn causes other nodes to be evaluated. This process is

repeated till either a valid ReleaseCondition is found or all ReleaseConditions have

been exhausted.

This is an artifact of the object-oriented nature of SEMANTIC and the influence

it had on our own ACCESS ontology representation. By taking an object-oriented

approach, our representation has an unambiguous meaning because the semantics

are encoded in the data structure holding the knowledge. In doing so we have

reduced the need for a co-ordinated inferencing mechanism (e.g. a rule chainer),

instead allowing the knowledge representation to have the capability to determine

the relevance of that knowledge when applied to a particular instance. That is,

we’re able to navigate to any node in the semantic network that represents knowl-

edge about a particular ACCESS policy and query it for its validity or relevance. The

required computation occurs in a distributed manner spreading from node to node

as needed. This is in contrast to representations like the Semantic Web[2] which

relies on external reasoners which traverse and interpret RDF graphs in their own

ways.
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5.4 ACCESS in Hyperglue

The work described in this thesis was positioned within the Hyperglue platform

for enabling smart spaces. As such, in this section we will provide an overview of

Hyperglue, it’s security model and the manner in which we integrated ACCESS into

Hyperglue.

5.4.1 Hyperglue

Hyperglue is a distributed agent infrastructure that provides lookup and brokering

services to agents. These agents are organized into societies and Hyperglue facili-

tates inter-society communications. Furthermore, the notion of societies provide an

excellent mapping for the real world (Place, Person, etc.) entities in which we are

interested. Also, the agents provide an ideal mapping for the real world resources

(Calendar, Mobile Phone, etc.) that interest us.

Figure 5-1 provides a description of how an agent request is made and fulfilled

in Hyperglue. Initially Agent Society 1 makes a request for an agent from its own

Resource Manager. Each society contains a Resource Manager that is responsible

for knowledge about the resources contained in the society and their availabil-

ity/usage. Since resources within a society are held by that society, requests for

resources within a society do not require any access control mechanisms. In the

example shown in figure 5-1, the required resource is not available within the soci-

ety. Therefore, the Resource Manager contacts its Ambassador agent. Each society

has an Ambassador agent that represents the society to other agent societies and

acts as an intermediary for brokering resources amongst them. Thus, the Ambas-

sador agent representing Agent Society 1 uses the Hyperglue Entity Directory to

discover the required resource. The Hyperglue Entity Directory provides a distrib-

uted mechanism for resource discovery in any Hyperglue enabled agent society.

Once the location of the required resource is established, the requesting society’s

Ambassador agent contacts the resource provider’s Ambassador agent to obtain the

resource. The provider society’s Ambassador agent in turn passes that request onto
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Figure 5-1: High-level overview of a inter-society resource request in Hyperglue

its own Resource Manager. The provider society’s Resource Manager then queries

its Security Manager to establish whether the resource request should be granted

or not. If the Security Manager allows the release of the resource, then a handle to

the resource is passed back via the two Ambassador agents.

5.4.2 Security Manager

In Hyperglue, a Security Manager is responsible for all security related decisions

within an agent society. This means that it is responsible for such tasks as authen-

tication and authorization. The Security Manager we implemented modularizes

these tasks. Our implementation of the Security Manager takes in an agent request

and passes it into both an Authentication module and an Access Control module. In

our architecture these modules are pluggable and allow for extensibility and flex-

ibility. If all the modules that the Security Manager relies on determine the agent

request to be satisfiable, then the Security Manager informs the Resource Manager

to proceed with the request. The Security Manager is invoked through the following

interface:

public boolean isAllowed(Request req) throws RemoteException;

This allows the security mechanisms to be abstracted away from the other com-

ponents of Hyperglue by a single simple interface.
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5.4.3 Authentication Module

The Authentication Module we built was a placeholder reference implementation.

Since the goal of this project was not to address authentication issues, our imple-

mentation assumes that all agent requests are authenticated by default. The Secu-

rity Manager invokes the Authentication Module through the following interface:

public AuthenticatedRequestToken Authenticate(Request req) throws RemoteException;

We introduce a notion of an AuthenticatedRequestToken which contains ele-

ments in the request that the Authentication Module has validated. These include

the name of the requesting society, the resource being requested, the validity of

the request, and the name of the provider society (from whom the request is being

made). These validated elements are later made available for use by other modules

used by the Security Manager.

5.4.4 Access Control Module

This module acts as the bridge between ACCESS and Hyperglue. The Security Man-

ager invokes the Access Control Module through the following interface:

public boolean isAllowed(AuthenticatedRequestToken art) throws RemoteException;

The Access Control module extracts the name of the resource being requested

from the AuthenticatedRequestToken and retrieves a handle for the appropriate

node in the semantic network describing the ACCESS policy. If the node is not

already in memory a handle is obtained by instantiating it from the persistent stor-

age. Thereafter, we evaluate the resource to determine if it can be released, and

this causes the backward-chaining based inferencing described earlier to be initi-

ated. The result is returned up to the Security Manager. If a node describing the

resource being requested does not exist in the semantic network, no permissions are

associated with that resource and it can be released at will. Therefore, the Security

Manager is informed that the resource is available for release.
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5.4.5 Accessing Dynamic Attributes

In the ACCESS ontology, the leaf nodes are able to obtain and use the current val-

ues of Attributes outside the scope of the semantic network. These nodes defined as

ContextAttributes and EvidenceAttributes obtain live values from software agents

within the same Hyperglue society that controls the resource being requested. We

assert that when ACCESS is deployed in a Hyperglue environment, knowledge re-

garding attributes relevant within a society and taken into consideration when mak-

ing access rights determinations exist in software agents running as part of that

Hyperglue society. For example, a Calendar agent running within a person’s society

can provide attributes regarding the person’s activities. Therefore, these particu-

lar nodes in the ACCESS ontology have been instrumented such that they are able

to communicate with Hyperglue agents. However, agents are implemented over

time and their interfaces and functionality generally varies, so we have defined an

AttributeProvider interface that all agents providing information during ACCESS

policy evaluations must implement.

At a very basic level, implementing the interface in a Hyperglue agent involves

implementing a method of the following form:

public String attributeQuery(String method, String param) throws RemoteException;

Method is an identifier for the information being requested and param provides

any information that may be required by the attribute provider. For example, we

make information from the AuthenticatedRequestToken available for populating the

param field. Thus, it is possible to define a policy where the EvidenceAttribute

FacultyMember is determined by querying the FacultyDirectory agent with method

IsMember and param REQUESTOR. By convention we use all uppercase tags to re-

trieve non-static values that need to be passed into such attributeQueries, and cur-

rently support the properties contained in the AuthenticatedRequestToken. Thus,

at runtime, the above attributeQuery would occur with the param field populated

with the requesting society name.
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5.5 Example of Use

To demonstrate the effectiveness of ACCESS, we applied ACCESS on a toy applica-

tion that retrieved contact information from other agent societies. That is, an ap-

plication where if Alice wanted to contact Bob, an agent running in Alice’s society

would query a set of agents in Bob’s society to determine his contact information.

We are aware that this approach has a weakness with respect to time. That is,

since we’re simply controlling access to the contact information and not the contact

channels themselves, once obtained it is possible for the contact information to be

cached and used at the resource requester’s discretion. This would circumvent the

intent of the policies defined. Therefore, in an actual application of ACCESS we

would secure the contact channels themselves.

However, for demonstration purposes, due to the unavailability of more sophis-

ticated resources we used this approach and implemented a set of Contact Informa-

tion Providers that can be instantiated by a given agent society. The need for sup-

porting more complicated resources, and ACCESS’s ability to support them is dis-

cussed further in Chapter 6. In this example case, the Contact Information Providers

were intended for use by agent societies representing Person entities who worked

in the Computer Science and Artificial Intelligence Laboratory at MIT.

Contact Information Providers

• NonInteractiveContactInfoProvider This agent can be queried for information

about non-interactive channels for contacting the entity in which this agent

has been instantiated. Thus, if this agent was instantiated in Bob’s society it

would contain knowledge about such elements as Bob’s e-mail address, snail

mail address, etc.

• InteractiveContactInfoProvider Contains Knowledge about interactive channels

for contacting the entity in which this agent is instantiated. Such channels can

include telephone number and instant messaging ID.
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• WalkingDirectionsInfoProvider Given a starting location within the Stata Cen-

ter, provides walking directions to the office of the person who’s agent society

this agent has been instantiated in. Walking directions are provided by lever-

aging work done for the LAIR project [28].

• PresenceInfoProvider An agent that can be queried with a location name to

check if the person entity represented by the society this agent is running in

is present at that location. This information can obtained by leveraging work

done for the PLACE project [27].

The Contact Information Providers described here are limited in functionality

and simple by design. They serve the purpose of demonstrating how ACCESS func-

tions. One should note that more interesting resources from actual instant mes-

saging channels to even real-time video conferencing channels can be implemented

using the same agent framework. Furthermore, ACCESS will provide the same

guarantees to applications of that nature.

Contact Information Retriever

We also built an application that retrieved and assembled contact information from

another agent society for presentation to the user represented by a given agent so-

ciety. This application was implemented as a ContactInformationRetriever agent. It

would try to obtain handles for the four Contact Information Providers described

above and query them for the knowledge contained within them. Thus, it could po-

tentially obtain a diverse set of contact information elements about another entity.

Securing Contact Information Providers with ACCESS

Given this infrastructure, we formulated a sample ACCESS policy to be used in

controlling access to the Contact Information Providers in a given agent society.

This policy is given as a PolicyGen policy file in Appendix A. The policy we defined

adds the following restrictions regarding how access permissions should be granted

to Contact Information Providers.
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• NonInteractiveContactInfoProvider In this case, we wanted to demonstrate how

ACCESS would function when we want to place no restrictions on a resource.

You will notice that the policy file makes no mention of it.

• InteractiveContactInfoProvider Here we wanted to show how ACCESS can be

used to deal with instances where multiple conditions under which a resource

can be released exist. In this case, we restricted access to the information un-

der two different ReleaseConditions. We also wanted to demonstrate how

restrictions on access rights can be made with respect to either requester

roles, provider context, or a combination of both. The first ReleaseCondi-

tion requires the current time to be within the block of regular working hours

(a ContextualState) and for the provider to be present in his office (another

ContextualState). The second ReleaseCondition requires that requester is a

CSAIL lab member (a RequesterRole) and that the provider be present in his

office (a Contextual State).

• WalkingDirectionsInfoProvider For this case, we defined policies analogous to

those defined for the InteractiveContactInfoProvider resource. The reason for

doing this is to show that our design allows for the reuse of policy elements.

If you examine the policy file in Appendix A, you will notice that both the

InteractiveContactInfoProvider and the WalkingDirectionsInfoProvider share

the same ReleaseConditions.

• PresenceInfoProvider We use this case to demonstrate how we still support the

more conventional Role Based Access Control [40, 11] mechanisms. For this

particular resource, we define permissions through a ReleaseCondition that

just requires the requester to be a CSAIL lab member.

5.5.1 Inference Traces from ACCESS

To demonstrate how these resources are protected, a detailed and annotated trace

of how ACCESS and Hyperglue function when working through this scenario is
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provided in this section. Note that in the case that generated the trace, Bob is an

entity trying to restrict access to his contact information and Alice is an entity trying

to obtain his contact information. The trace demonstrates how a resource request

transitions across Hyperglue from one society to another and is passed through its

Ambassador agent, Resource Manager, Security Manager, Authentication Module,

and Access Control Module before the request is fulfilled or denied. The trace that

was run was configured to highlight the ACCESS system’s functionality. We provide

annotated traces for the process of obtaining handles on NonInteractiveContactInfo,

InteractiveContactInfo and PresenceInfo resources. Since the trace for a WalkingDi-

rectionsInfo resource is analogous to an InteractiveContactInfo resource we do not

annotate it but provide it as Appendix B.

Obtaining a NonInteractiveContactInfo agent/resource

A request for the NonInteractiveContactInfo agent from Bob’s society is initiated by
Alice’s society.

Alice:edu.mit.aire.hyperglue.Ambassador:

Remote request for ag[Bob:occreq{demo.hyperglue.access.NonInteractiveContactInfo}]

The request transitions to Bob’s society over Hyperglue, and results in the in-
stantiation of Ambassador, SecurityManager, AuthenticationModule and Access-
ControlModule agents in Bob’s society (since they hadn’t been instantiated before).
The request is also identified as being for Bob’s society and therefore marked as a
local request.

Bob:HYPERGLUE: Starting agent Bob:edu.mit.aire.hyperglue.Ambassador.

Bob:HYPERGLUE: Starting agent Bob:edu.mit.aire.hyperglue.security.SecurityManager.

Bob:HYPERGLUE: Starting agent Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule.

Bob:HYPERGLUE: Starting agent Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule.

Bob:edu.mit.aire.hyperglue.Ambassador:

Local request for ag[Bob:occreq{demo.hyperglue.access.NonInteractiveContactInfo}]

The AuthenticationModule retrieves relevant information from the request and
validates it.

Bob:edu.mit.aire.hyperglue.security.SecurityManager: [ACCESS]Received a request for evaluation

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Received a request for Authentication

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:
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[ACCESS]Request *IS* an AgentRequest

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Requestor Society:Alice

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule: [ACCESS]Provider Society:Bob

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Resource Occupation:demo.hyperglue.access.NonInteractiveContactInfo

The AccessControlModule (which is an implementation of ACCESS) realizes that
no permissions are associated with the requested resources and allows it to be re-
leased. A handle to a NonInteractiveContactInfo agent is provided to Alice’s society.

Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule:

[ACCESS]Received a request for Authorization

Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule:

[ACCESS]No permissions defined for this resource - allowing...

Alice:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.NonInteractiveContactInfo.

Obtaining an InteractiveContactInfo agent/resource

Alice’s society makes a request for the InteractiveContactInfo resource in Bob’s so-
ciety.

Alice:edu.mit.aire.hyperglue.Ambassador:

Remote request for ag[Bob:occreq{demo.hyperglue.access.InteractiveContactInfo}]

Bob:edu.mit.aire.hyperglue.Ambassador:

Local request for ag[Bob:occreq{demo.hyperglue.access.InteractiveContactInfo}]

The request is passed into the SecurityManager which in turn hands it to the
AuthenticationModule which retrieves relevant information from the request and
validates it.

Bob:edu.mit.aire.hyperglue.security.SecurityManager: [ACCESS]Received a request for evaluation

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Received a request for Authentication

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Request *IS* an AgentRequest

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Requestor Society:Alice

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule: [ACCESS]Provider Society:Bob

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Resource Occupation:demo.hyperglue.access.InteractiveContactInfo

The SecurityManager next passes the request to the AccessControlModule that
realizes there are two ReleaseConditions under which this resource can be released.
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Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule:

[ACCESS]Received a request for Authorization

demo.hyperglue.access.InteractiveContactInfo: 2 Release Conditions Found.

The InOfficeDuringWorkingHours ReleaseCondition has no RoleRequirements
so we assert that the RoleValdity is true. Next we need to evaluate the two Context-
Conditions that need to be fulfilled for the InOfficeDuringWorkingHoursState to be
applicable.

[ACCESS]Evaluating InOfficeDuringWorkHours Release Condition.

No role requirements defined -> Role Validity is True

InOfficeDuringWorkingHoursState: 2 Context Conditions Found.

We determine that there’s one AttributeRequirement that needs to be fulfilled
for the InOfficeCondition to be valid.

[ACCESS]Evaluating InOfficeCondition Context Condition.

1 Attribute Requirements found.

The InOfficeRequirement requires the Attribute to be “true”. It needs to be ful-
filled for the InOfficeCondition to be valid.

[ACCESS]Evaluating InOfficeRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

ACCESS evaluates the InOfficeAttribute by first instantiating the PresenceInfo
agent in Bob’s agent society and then making an attributeQuery on whether Bob is
in his office. When this trace was obtained, he was in his office and therefore the
attribute returns “true”.

[ACCESS]Evaluating InOfficeAttribute Context Attribute.

Bob:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.PresenceInfo.

[ACCESS]Calling demo.hyperglue.access.PresenceInfo.attributeQuery(presence,office)

[ACCESS]InOfficeAttribute Returning:true

The result from the InOfficeAttribute means that both the InOfficeRequirement
and InOfficeCondition hold true.

[ACCESS]InOfficeRequirement Returning:true

[ACCESS]InOfficeCondition Returning:true

ACCESS now evaluates the second ContextCondition, which is the condition that
determines if the current time is within regular working hours.
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[ACCESS]Evaluating WorkingHoursCondition Context Condition.

1 Attribute Requirements found.

The WorkingHoursRequirement requires the Attribute to be “true”. It needs to
be fulfilled for the WorkingHoursCondition to be valid.

[ACCESS]Evaluating WorkingHoursRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

Again, ACCESS needs to instantiate an Clock agent in Bob’s society to evalu-
ate the WorkingHoursAttribute. An attributeQuery on whether the current time
is within the “WorkingHours” block is made. When this trace was obtained, the
current time was outside this block and therefore the agent returns false.

[ACCESS]Evaluating WorkingHoursAttribute Context Attribute.

Alice:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.Clock.

[ACCESS]Calling demo.hyperglue.access.Clock.attributeQuery(InBlock,WorkingHours)

[ACCESS]WorkingHoursAttribute Returning:false

The result from the WorkingHoursAttribute means that both the WorkingHoursRe-
quirement and WorkingHoursCondition are invalid.

[ACCESS]WorkingHoursRequirement Returning:false

[ACCESS]WorkingHoursCondition Returning:false

Since one of the required ContextConditions was invalid(ie. the WorkingHoursCon-
dition), both the ContextualState encapsulating Bob being in his office during work-
ing hours and the ReleaseCondition associated with it are also invalid.

[ACCESS]InOfficeDuringWorkingHoursState Returning:false

[ACCESS]InOfficeDuringWorkHours Returning:false

ACCESS now tries to determine if the second ReleaseCondition is applicable.
The InOfficeCSAILMemberRequest condition contains one RoleCondition and that
will be evaluated first.

[ACCESS]Evaluating InOfficeCSAILMemberRequest Release Condition.

CSAILMemberRole: 1 Role Conditions Found.

ACCESS tries to evaluate the RoleCondition determining whether the resource
requester is a lab member and determines that it needs to have an EvidenceRequirement
fulfilled first.

[ACCESS]Evaluating CSAILMemberCondition Role Condition.

1 Evidence Requirements found.
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The EvidenceRequirement asserts that it is only fulfilled when the attribute is
equal to “true”.

[ACCESS]Evaluating CSAILMemberRequirement Evidence Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

To determine the EvidenceAttribute, ACCESS has to instantiate a CSAILDirec-
tory agent in Bob’s society. This agent interfaces with a central CSAIL directory to
allow queries of interest to Bob. An attributeQuery to determine whether Alice is a
member of CSAIL is executed and the result in this case turns out to be true.

[ACCESS]Evaluating CSAILMemberAttribute Evidence Attribute.

Bob:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.CSAILDirectory.

[ACCESS]Calling demo.hyperglue.access.FakeCSAILDirectory.attributeQuery(isMember,Alice)

[ACCESS]CSAILMemberAttribute Returning:true

Since the EvidenceAttribute is what was expected by the EvidenceRequirement
and no other requirements are defined, the CSAILMemberRole is determined to be
valid.

[ACCESS]CSAILMemberRequirement Returning:true

[ACCESS]CSAILMemberCondition Returning:true

[ACCESS]CSAILMemberRole Returning:true

ACCESS is now back to evaluating the ReleaseCondition and realizes that a
ContextualState describing Bob’s presence which has an associated ContextCondition
needs to be evaluated as well.

InOfficeState: 1 Context Conditions Found.

The ContextCondition has one AttributeRequirement which needs to be valid.

[ACCESS]Evaluating InOfficeCondition Context Condition.

1 Attribute Requirements found.

The AttributeRequirement asserts that it is only fulfilled when the attribute is
equal to “true”.

[ACCESS]Evaluating InOfficeRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

To determine the InOfficeAttribute, ACCESS makes an attributeQuery to the
PresenceInfo agent (already instantiated earlier when evaluating the previous Re-
leaseCondition) to determine whether Bob is present in his office. At the moment
that this trace was obtained, Bob was in his office and the InOfficeAttribute is de-
termined to be true.
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[ACCESS]Evaluating InOfficeAttribute Context Attribute.

[ACCESS]Calling demo.hyperglue.access.PresenceInfo.attributeQuery(presence,office)

[ACCESS]InOfficeAttribute Returning:true

Since no other constraints are specified, this result bubbles up to assert that the
ContextualState representing Bob being in his office is valid.

[ACCESS]InOfficeRequirement Returning:true

[ACCESS]InOfficeCondition Returning:true

[ACCESS]InOfficeState Returning:true

Since both the RoleRequirement and ContextualState associated with the Re-
leaseCondition being evaluated are valid, ACCESS determines that the Interactive-
ContactInfo resource can be released and instantiates and provides a handle of it to
Alice’s society.

InOfficeCSAILMemberRequest Returning:true

demo.hyperglue.access.InteractiveContactInfo Returning:true

Alice:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.InteractiveContactInfo.

Obtaining a PresenceInfo agent/resource

Alice’s society makes a request for the PresenceInfo resource in Bob’s society.

Alice:edu.mit.aire.hyperglue.Ambassador:

Remote request for ag[Bob:occreq{demo.hyperglue.access.PresenceInfo}]

Bob:edu.mit.aire.hyperglue.Ambassador:

Local request for ag[Bob:occreq{demo.hyperglue.access.PresenceInfo}]

The request is passed into the SecurityManager which in turn first hands it to
the AuthenticationModule which retrieves relevant information from the request
and validates it.

Bob:edu.mit.aire.hyperglue.security.SecurityManager: [ACCESS]Received a request for evaluation

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Received a request for Authentication

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Request *IS* an AgentRequest

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Requestor Society:Alice

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule: [ACCESS]Provider Society:Bob

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Resource Occupation:demo.hyperglue.access.PresenceInfo
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The SecurityManager next passes the request to the AccessControlModule which

realizes there’s just one ReleaseCondition under which this resource can be re-

leased.

Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule:

[ACCESS]Received a request for Authorization

demo.hyperglue.access.PresenceInfo: 1 Release Conditions Found.

ACCESS now tries to determine if the ReleaseCondition is applicable. The CSAILMem-
berRequest condition contains one RoleCondition and that will be evaluated first.

[ACCESS]Evaluating CSAILMemberRequest Release Condition.

CSAILMemberRole: 1 Role Conditions Found.

ACCESS tries to evaluate the RoleCondition determining whether the resource
requester is a lab member and determines that it needs to have an EvidenceRequirement
fulfilled first.

[ACCESS]Evaluating CSAILMemberCondition Role Condition.

1 Evidence Requirements found.

The AttributeRequirement asserts that it is only fulfilled when the attribute is
equal to “true”.

[ACCESS]Evaluating CSAILMemberRequirement Evidence Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

To determine the EvidenceAttribute, ACCESS has to instantiate a CSAILDirec-
tory agent in Bob’s society. This agent interfaces with a central CSAIL directory to
allow queries of interest to Bob. An attributeQuery to determine whether Alice is a
member of CSAIL is executed and the result in this case turns out to be true.

[ACCESS]Evaluating CSAILMemberAttribute Evidence Attribute.

[ACCESS]Calling demo.hyperglue.access.CSAILDirectory.attributeQuery(isMember,Alice)

[ACCESS]CSAILMemberAttribute Returning:true

Since the EvidenceAttribute is what was expected by the EvidenceRequirement
and no other requirements are defined, the CSAILMemberRole is determined to be
valid.

[ACCESS]CSAILMemberRequirement Returning:true

[ACCESS]CSAILMemberCondition Returning:true

[ACCESS]CSAILMemberRole Returning:true
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At the ReleaseCondition being evaluated we notice that no ContextRequirements
are defined. Therefore, the resource can be released and we pass a handle to it back
to Alice’s society.

No context requirements defined -> Context Validity is True

[ACCESS]CSAILMemberRequest Returning:true

demo.hyperglue.access.PresenceInfo Returning:true

Alice:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.PresenceInfo.

5.5.2 Discussion

This toy use case highlights some important capabilities in ACCESS. The policy

we generated didn’t have any references to the NonInteractiveContactInfoProvider.

This is because ACCESS only models restrictions regarding when resources can be

released. By doing so we reduce the complexity of policies that are created. In

practice we have observed that only a subset of the total available resources ac-

tually need to be protected from unauthorized use. The ACCESS model allows

administrators to focus on the resource elements that are important.

Furthermore, in defining policies for WalkingDirectionsInfoProvider and Inter-

activeContactInfoProvider we were able to model constraints using a mix of both

resource provider context and resource requester role. In doing so, we have en-

abled the ACCESS policy to dynamically change and apply itself. Another feature

in ACCESS illustrated by the permissions defined for these two resources is in the

modularity and re-usability of policy elements. For example, at the lowest level the

ContextAttributes and EvidenceAttributes used to represent time of day, presence

and lab member status are represented as individual nodes in the semantic network

describing the policy. They are used by ContextualState and RequesterRole nodes

that represent “working hours,” “in office,” and “lab member”. Those in turn are

used by ReleaseConditions that describe conditions like “in office during working

hours,” “requester is a lab member,” or “in office and requester is a lab member”.

Thus, we see that lower level nodes in the network are linked to and used by mul-

tiple nodes at higher levels. This means the representation of a single concept can
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exist on a single node and be referenced by any other node. This also means that

when the mechanics of that concept change, only one node needs to be changed to

update the entire policy. For example, if the agent providing presence information

changes, we simply need to update the ContextAttribute containing that informa-

tion and the policy will continue to work as intended. This level of abstraction

provides for greater maintainability of policies.

In restricting the PresenceInfoProvider to just lab members, we have shown that

ACCESS doesn’t add new constraints on existing access control mechanisms. In

that particular case, we allowed permissions to be defined purely in terms of roles

analogous to the role-based access controls currently popular. Therefore, ACCESS

can be viewed as an evolution of existing access control mechanisms addressing

new needs that have become apparent.

The next chapter provides an overview of the issues we expect to encounter in

the future as ACCESS matures and sees more use.

61



Chapter 6

Future Issues

As Hyperglue evolves and sees extended use, we believe that ACCESS’s role in Hy-

perglue enabled smart spaces will also increase. However, in order for that role

to be an effective one a number of issues will need to be addressed first. In this

chapter we identify some of these issues and discuss possible approaches that can

be taken towards resolving them. In particular, the issues we focus on are:

• Policy definition mechanisms

• AI Planners

• System performance

• Modelling requester intent

• Authentication

Our existing mechanisms for defining ACCESS policies still leave much to be

desired. While PolicyGen is an useful tool, it is far from being user friendly. Trans-

lating a semantic network describing an ACCESS policy into a form that PolicyGen

can work with requires the ability to mentally visualize the network and the inter-

dependencies within it. This is difficult for even the most sophisticated users. We

believe a graphical tool that helps visualize the policy and allows its manipulation
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and navigation will make this task significantly easier. This will make the func-

tion of different instances of each node type and their inter-dependencies clearer.

Additionally, the tool could be enabled to check that the policy being defined is

well-formed and point out potential errors as they are being defined. Furthermore,

the ability to run sandboxed test cases on the policy being developed would also

benefit the end user and increase the efficiency of the policy definition process.

As applications of smart spaces using Hyperglue increase, we expect there to

be a greater level of interest in adding indirection. That is, resources like instant

messaging channels, telephones, video feeds, etc. will be represented as Hyperglue

resources. This enables those resources that were traditionally embedded indepen-

dently in our environments to benefit from the facilities that Hyperglue affords. For

example, an agent society representing Alice wanting to contact Bob could request

a communication channel from Bob’s society. Bob’s agent society would make avail-

able a channel that took into account his preferences for communication. But let us

consider a case where Alice required a particular type of communication channel–

a video conferencing channel since she needed to show a diagram to Bob. It may

be that Bob’s ACCESS policies don’t allow the release of this resource at that mo-

ment. Alice would have to find alternative means to achieve her goal. Perhaps she

may have to send the diagram via e-mail. This approach does not scale well as the

number of options available grow. Instead, it would be desirable for ACCESS to

support planners[16] running on other agent societies. Thus, they would be able

to determine a-priori the likelihood that a given agent society will release a desired

resource. This enables the planner to generate and execute plans that have a higher

likelihood of succeeding. A caveat: if the manner in which policy evaluations are

done become exposed to external entities, one becomes susceptible to exploitation

via exploratory or probing attacks. In the case of an ill-defined policy this may allow

security compromises to occur. Given that we can reasonably predict what normal

behavior is, we believe it is possible to detect such attacks when they are occurring

(since they will differ from the norm). Therefore, taking remedial action at that

time is an option that can mitigate this risk.
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For broader use, ACCESS will also have to make some performance enhance-

ments. Currently we evaluate policies in a naive manner where nodes in the seman-

tic network describing policies are retrieved from persistence storage and instanti-

ated into memory as and when needed. However, no garbage collection occurs

and as policies grow larger virtual memory and the performance issues associated

with it will come into play. If the relevant permissions associated with an ACCESS

policy cannot be evaluated within a reasonable time frame, ACCESS will hinder

rather than enhance the user experience. We believe this issue can be addressed

with smarter caching mechanisms where only node objects that are frequently re-

quired are kept in memory. Furthermore, the retrieval of attribute values can also

delay policy evaluations. We propose to add functionality that allows administra-

tors to define how long an attribute remains valid. Thus, attribute values that are

less dynamic can be cached until they are stale. This will reduce the overhead of

having to retrieve attribute values from the appropriate attribute provider during

every evaluation.

We believe it’s also important to support ACCESS policy evaluations where in-

tended use is taken into account. That is, we might want to allow the release of

certain resources if the requester has a specific use for them in mind that doesn’t

conflict with the provider’s preferences. For example, if the request is for a com-

munication channel via telephone and the intended use is to provide information

about an emergency relevant to the provider, we would like to allow the request to

occur. Unfortunately, in our existing framework of ACCESS we’re unable to trust

context attributes provided by the resource requester. So, the requester has no

trusted mechanism for letting the provider know about the intended use. A broader

mechanism that allows trust to be placed on external context providers needs to be

established. This could occur as part of the support for an authentication framework

we desire and discuss below. Furthermore, Hyperglue’s internal request marshalling

mechanism needs to be extended to support the inclusion of additional data. Given

these, the amount of interesting applications that can be supported by Hyperglue

using ACCESS would increase significantly.
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Finally, we believe there is a need for an authentication framework complimen-

tary to ACCESS. While ACCESS currently provides a framework for establishing

access control policies in Hyperglue-enabled applications, it inherently relies on the

resource requests being authenticated. Thus, without a complimentary authentica-

tion mechanism, ACCESS’s effectiveness is questionable. The society-based organi-

zation imposed in Hyperglue has strong synergies with domains where the widely

used Public Key Infrastructure[12] for authentication, privacy, and non-repudiation

is usually applied. It is feasible to establish a trusted authority that can validate and

issue identifying tokens as X.509 certificates to an agent society when it is estab-

lished. These tokens can be used for establishing trust amongst agent societies.

We believe these are the primary issues of concern as we move forward with AC-

CESS and its use in Hyperglue. In the next chapter we will provide some concluding

thoughts.
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Chapter 7

Conclusion

In this research project we have highlighted security and privacy issues related to

smart spaces. In particular, we focused attention on the access control mecha-

nisms required in such applications. In doing so, we have argued for and proposed

a set of requirements for access control frameworks in smart spaces. Based on

these requirements, we designed ACCESS (Access Controls for Cooperatively En-

abled Smart Spaces); a framework for access control specification, evaluation, and

enforcement. ACCESS takes into consideration both resource provider context and

resource requester roles in determining access rights. This enables dynamic con-

text to be factored in when making access control decisions. Since smart spaces

are dynamic in nature, we believe our system avoids some of the pitfalls in other

approaches taken in the same domain.

We have also built a reference implementation of ACCESS for use within our own

Hyperglue framework. Our implementation includes an ontology for representing

access control policy information. We instantiate policies in a semantic network

where we can perform reasoning. We have extended the SEMANTIC framework to

support the use of context cues obtained from Hyperglue-enabled agents when per-

forming reasoning on a semantic network. Thus, we are able to perform reasoning

on dynamic data. Furthermore, we have taken a novel approach in embedding the

inferencing mechanisms within the knowledge representation itself. While this is

an artifact of the object-oriented nature of our knowledge representation, it has
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eliminated the need for an external inferencing engine, thereby allowing greater

flexibility and extensibility in the inferencing mechanisms.

To assist end-users in defining relevant policies we have defined a simple yet

expressive declarative policy definition language. A compiler that parses this pol-

icy definition language to produce a corresponding semantic network which can be

instantiated in SEMANTIC was also implemented. We believe that this policy defini-

tion language provides the basic building blocks on which abstractions allowing for

greater usability can be built.

In conclusion, our work has shown that dynamic, role-based, context-aware ac-

cess controls can be a powerful means to enable the types of access controls we

desire and require in smart spaces. We have also shown that such access control

mechanisms, while supporting complex policies, aren’t unwieldy but rather have

practical use. We believe that as Hyperglue-based applications continue to be de-

ployed, ACCESS will provide a critical set of features required for their success.
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Appendix A

PolicyGen: Sample ACCESS Policy

;;FILENAME:access-demo.pol

;;

;;ACCESS Policy Definition

;;creates an instance of a policy based on the ACCESS policy definition ontology

;;

;;syntax uses 3 primitives:

;;1. is-a <instance_name> <node_type>

;; creates an instance of a node

;; ex. "is-a WeatherAgent Resource"

;;

;;2. property-value <instance_name> <property_name> <value>

;; adds a property value to the instance

;; ex. "property-value WeatherAgent AgentID edu.mit.aire.applications.info.weather.WeatherDisplay"

;;

;;3. property-value-list <instance_name> <property_name> <value list>

;; adds a property value list to an instance. that is, a property that is a list

;; can be populated using this mechanism.

;; ex. "property-value-list WeatherAgent ReleaseIf relcond1, relcond2, relcond3"

;;

;; ACCESS Demo Policy

;;Evidence Attribute

is-a CSAILMemberAttribute EvidenceAttribute

;;Context Attribute

is-a InOfficeAttribute ContextAttribute

is-a WorkingHoursAttribute ContextAttribute

;;EvidenceRequirement
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is-a CSAILMemberRequirement EvidenceRequirement

;;Attribute Requirement

is-a InOfficeRequirement AttributeRequirement

is-a WorkingHoursRequirement AttributeRequirement

;;Role Condition

is-a CSAILMemberCondition RoleCondition

;;Context Conditions

is-a InOfficeCondition ContextCondition

is-a WorkingHoursCondition ContextCondition

;;Requestor Roles

is-a CSAILMemberRole RequestorRole

;;ContextualStates

is-a InOfficeState ContextualState

is-a WorkingHoursState ContextualState

is-a InOfficeDuringWorkingHoursState ContextualState

;; ReleaseConditions

is-a InOfficeDuringWorkHours ReleaseCondition

is-a InOfficeCSAILMemberRequest ReleaseCondition

is-a CSAILMemberRequest ReleaseCondition

;; Resources

is-a InteractiveContactInfo Resource

is-a WalkingDirections Resource

is-a PresenceInfo Resource

;;CSAILMemberAttribute

property-value CSAILMemberAttribute Name "CSAILMemberAttribute"

property-value CSAILMemberAttribute EvidenceAgentID "demo.hyperglue.access.CSAILDirectory"

property-value CSAILMemberAttribute EvidenceQuery "isMember_REQUESTOR"

;;InOfficeAttribue

property-value InOfficeAttribute Name "InOfficeAttribute"

property-value InOfficeAttribute ContextAgentID "demo.hyperglue.access.PresenceInfo"

property-value InOfficeAttribute ContextQuery "presence_office"

;;WorkingHoursAttribute

property-value WorkingHoursAttribute Name "WorkingHoursAttribute"

property-value WorkingHoursAttribute ContextAgentID "demo.hyperglue.access.Clock"

property-value WorkingHoursAttribute ContextQuery "InBlock_WorkingHours"
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;;CSAILMemberRequirement

property-value CSAILMemberRequirement Name "CSAILMemberRequirement"

property-value CSAILMemberRequirement FulfillmentCheckType "="

property-value CSAILMemberRequirement FulfilledWhen "true"

property-value CSAILMemberRequirement Attribute CSAILMemberAttribute

;;InOfficeRequirement

property-value InOfficeRequirement Name "InOfficeRequirement"

property-value InOfficeRequirement FulfillmentCheckType "="

property-value InOfficeRequirement FulfilledWhen "true"

property-value InOfficeRequirement Attribute InOfficeAttribute

;;WorkingHoursRequirement

property-value WorkingHoursRequirement Name "WorkingHoursRequirement"

property-value WorkingHoursRequirement FulfillmentCheckType "="

property-value WorkingHoursRequirement FulfilledWhen "true"

property-value WorkingHoursRequirement Attribute WorkingHoursAttribute

;;CSAILMemberCondition

property-value CSAILMemberCondition Name "CSAILMemberCondition"

property-value-list CSAILMemberCondition EvidenceRequirements CSAILMemberRequirement

;;InOfficeCondition

property-value InOfficeCondition Name "InOfficeCondition"

property-value-list InOfficeCondition AttributeRequirements InOfficeRequirement

;;WorkingHoursCondition

property-value WorkingHoursCondition Name "WorkingHoursCondition"

property-value-list WorkingHoursCondition AttributeRequirements WorkingHoursRequirement

;;CSAILMemberRole

property-value CSAILMemberRole Name "CSAILMemberRole"

property-value-list CSAILMemberRole ValidIf CSAILMemberCondition

;;InOfficeState

property-value InOfficeState Name "InOfficeState"

property-value-list InOfficeState ValidIf InOfficeCondition

;;WorkingHoursState

property-value WorkingHoursState Name "WorkingHoursState"

property-value-list WorkingHoursState ValidIf WorkingHoursCondition

;;InOfficeDuringWorkingHoursState

property-value InOfficeDuringWorkingHoursState Name "InOfficeDuringWorkingHoursState"
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property-value-list InOfficeDuringWorkingHoursState ValidIf InOfficeCondition, WorkingHoursCondition

;;InOfficeDuringWorkHours

property-value InOfficeDuringWorkHours Name "InOfficeDuringWorkHours"

property-value InOfficeDuringWorkHours Context InOfficeDuringWorkingHoursState

;;InOfficeCSAILMemberRequest

property-value InOfficeCSAILMemberRequest Name "InOfficeCSAILMemberRequest"

property-value InOfficeCSAILMemberRequest Context InOfficeState

property-value InOfficeCSAILMemberRequest Role CSAILMemberRole

;;CSAILMemberRequest

property-value CSAILMemberRequest Name "CSAILMemberRequest"

property-value CSAILMemberRequest Role CSAILMemberRole

;;InteractiveContactInfo

property-value InteractiveContactInfo Name "InteractiveContactInfo"

property-value InteractiveContactInfo Society "Bob"

property-value InteractiveContactInfo AgentID "demo.hyperglue.access.InteractiveContactInfo"

property-value-list InteractiveContactInfo ReleaseIf InOfficeDuringWorkHours, InOfficeCSAILMemberRequest

;;WalkingDirections

property-value WalkingDirections Name "WalkingDirections"

property-value WalkingDirections Society "Bob"

property-value WalkingDirections AgentID "demo.hyperglue.access.WalkingDirectionsInfo"

property-value-list WalkingDirections ReleaseIf InOfficeDuringWorkHours, InOfficeCSAILMemberRequest

;;PresenceInfo

property-value PresenceInfo Name "PresenceInfo"

property-value PresenceInfo Society "Bob"

property-value PresenceInfo AgentID "demo.hyperglue.access.PresenceInfo"

property-value-list PresenceInfo ReleaseIf CSAILMemberRequest
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Appendix B

Obtaining a WalkingDirectionsInfo

agent/resource

We apply the same restrictions applied to the InteractiveContactInfo agent/resource to the

WalkingDirectionsInfo agent/resource. This trace is analogous to that shown above and

therefore we have not repeated the annotations here.

Alice:edu.mit.aire.hyperglue.Ambassador:

Remote request for ag[Bob:occreq{demo.hyperglue.access.WalkingDirectionsInfo}]

Bob:edu.mit.aire.hyperglue.Ambassador:

Local request for ag[Bob:occreq{demo.hyperglue.access.WalkingDirectionsInfo}]

Bob:edu.mit.aire.hyperglue.security.SecurityManager: [ACCESS]Received a request for evaluation

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Received a request for Authentication

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Request *IS* an AgentRequest

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Requestor Society:Alice

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule: [ACCESS]Provider Society:Bob

Bob:edu.mit.aire.hyperglue.security.authentication.AuthenticationModule:

[ACCESS]Resource Occupation:demo.hyperglue.access.WalkingDirectionsInfo

Bob:edu.mit.aire.hyperglue.security.access.AccessControlModule:

[ACCESS]Received a request for Authorization

demo.hyperglue.access.WalkingDirectionsInfo: 2 Release Conditions Found.

[ACCESS]Evaluating InOfficeDuringWorkHours Release Condition.

No role requirements defined -> Role Validity is True

InOfficeDuringWorkingHoursState: 2 Context Conditions Found.
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[ACCESS]Evaluating InOfficeCondition Context Condition.

1 Attribute Requirements found.

[ACCESS]Evaluating InOfficeRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

[ACCESS]Evaluating InOfficeAttribute Context Attribute.

[ACCESS]Calling demo.hyperglue.access.PresenceInfo.attributeQuery(presence,office)

[ACCESS]InOfficeAttribute Returning:true

[ACCESS]InOfficeRequirement Returning:true

[ACCESS]InOfficeCondition Returning:true

[ACCESS]Evaluating WorkingHoursCondition Context Condition.

1 Attribute Requirements found.

[ACCESS]Evaluating WorkingHoursRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

[ACCESS]Evaluating WorkingHoursAttribute Context Attribute.

[ACCESS]Calling demo.hyperglue.access.Clock.attributeQuery(InBlock,WorkingHours)

[ACCESS]WorkingHoursAttribute Returning:false

[ACCESS]WorkingHoursRequirement Returning:false

[ACCESS]WorkingHoursCondition Returning:false

[ACCESS]InOfficeDuringWorkingHoursState Returning:false

[ACCESS]InOfficeDuringWorkHours Returning:false

[ACCESS]Evaluating InOfficeCSAILMemberRequest Release Condition.

CSAILMemberRole: 1 Role Conditions Found.

[ACCESS]Evaluating CSAILMemberCondition Role Condition.

1 Evidence Requirements found.

[ACCESS]Evaluating CSAILMemberRequirement Evidence Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

[ACCESS]Evaluating CSAILMemberAttribute Evidence Attribute.

[ACCESS]Calling demo.hyperglue.access.FakeCSAILDirectory.attributeQuery(isMember,Alice)

[ACCESS]CSAILMemberAttribute Returning:true
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[ACCESS]CSAILMemberRequirement Returning:true

[ACCESS]CSAILMemberCondition Returning:true

[ACCESS]CSAILMemberRole Returning:true

InOfficeState: 1 Context Conditions Found.

[ACCESS]Evaluating InOfficeCondition Context Condition.

1 Attribute Requirements found.

[ACCESS]Evaluating InOfficeRequirement Attribute Requirement.

FulfillmentCheckType is =

FulfilledWhen is true

[ACCESS]Evaluating InOfficeAttribute Context Attribute.

[ACCESS]Calling demo.hyperglue.access.PresenceInfo.attributeQuery(presence,office)

[ACCESS]InOfficeAttribute Returning:true

[ACCESS]InOfficeRequirement Returning:true

[ACCESS]InOfficeCondition Returning:true

[ACCESS]InOfficeState Returning:true

[ACCESS]InOfficeCSAILMemberRequest Returning:true

demo.hyperglue.access.WalkingDirectionsInfo Returning:true

Alice:HYPERGLUE: Starting agent Bob:demo.hyperglue.access.WalkingDirectionsInfo.
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