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Abstract

This thesis demonstrates methods useful in learning to understand images from only
a few examples, but they are by no means limited to this application. Boosting tech-
niques are popular because they learn effective classification functions and identify
the most relevant features at the same time. However, in general, they overfit and
perform poorly on data sets that contain many features, but few examples. A novel
stochastic regularization technique is presented, based on enhancing data sets with
corrupted copies of the examples to produce a more robust classifier. This regular-
ization technique enables the gentle boosting algorithm to work well with only a few
examples. It is tested on a variety of data sets from various domains, including object
recognition and bioinformatics, with convincing results.

In the second part of this work, a novel technique for extracting texture edges is
introduced, based on the combination of a patch-based approach, and non-parametric
tests of distributions. This technique can reliably detect texture edges using only local
information, making it a useful preprocessing step prior to segmentation. Combined
with a parametric deformable model, this technique provides smooth boundaries and
globally salient structures.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Chapter 1

Introduction: Classification

1.1 Motivation

Classification is one of several primary categories of machine learning problems. In

classification, a system is trained to recognize a type of example or differentiate

between examples that fall in separate categories. In the case of computer vision,

the examples are representations of photographic images and the task of the classifier

is to indicate whether or not a specific object or phenomena of interest is present in

the image. In order to accomplish this successfully, the classifier must have sufficient

prior knowledge about the appearance of the object.

Within the field of computer vision, there is a general consensus that object ap-

pearance cannot be captured by a small number of rules or machine instructions.

Consider a case where the goal is to identify images containing a chair. A set of rules

might include: four vertical legs supporting a horizontal square seat with a perpen-

dicular rectangular back. But chairs may come in many different styles with different

numbers of legs or even no legs at all. Characterizing its shape in order to iden-

tify unseen chairs using a rule-based system would simply require too many different

cases and exceptions, especially considering that a chair could be viewed from any

angle. This would easily frustrate the designer of the system since each rule must be

constructed manually.

Hence, in vision we resort to an alternative: learning object appearance from
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examples. Rather than searching for underlying rules or continuity from which to

characterize the object, the task is simply to collect images of different instances of

the object from various viewing angles and provide them as training examples to a

classification algorithm. The training phase produces a classifier that retains some

knowledge of the essence of its object of interest in order to correctly classify future

examples.

Here, it is important to note that learning is not the same as memorizing. Memo-

rizing every single training example will allow perfect classification of those examples

in the future, but it is not clear how to classify unseen examples. Learning is im-

portant because it implies the discovery of some general aspect that differs between

object categories, thus allowing the classifier to make generalizations about unseen

examples.

Training by example does have its own drawback however, since accurate classifiers

have traditionally required a large number of properly-labeled examples. Obtaining

such training data is usually a laborious task since it involves not only the imaging

of many similar but slightly different objects, but also hand-labelling the contents of

each image and manually segmenting the images in case they contain more than one

class of object. Such work can be time consuming, not to mention mind-numbing.

The need for learning from few training examples is common for many fields in

which the collection of annotated data is costly. In computer vision it is motivated

by the ability of the primate visual system to learn classes of objects with a lot of

interclass variability from only a few examples. While some researchers attribute this

ability to the utilization of partly- labeled data (e.g., [4]), it is becoming more evident

that this is achievable even without such an auxiliary data set. Most notable is the

line of work showing this ability when learning to recognize objects from unsegmented

images [20].

These issues are not isolated to the field of computer vision, and indeed may apply

to any other field where measured data must be classified automatically and collecting

examples is costly. The experiments of Chapter 3 investigate data sets from these

related fields in addition to vision data.
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1.1.1 The Street Scenes Project

The issues described above are most relevant to Street Scenes, a current project

involving real-world still images of street corners. Its goal is to identify all objects

in a scene that belong to prescribed categories (cars, trees, buildings, pedestrians,

etc.) and indicate where they are located. This is a problem of detecting not only

a single class of object, but multiple different types. Systems of the past have only

been successful for unobscured images of a specific type of object or a small number

of different objects in similar environments.

Unlike the discriminative methods described in this chapter, this problem is not a

matter of simply dividing a set of examples into two categories. This is a realm where

multiple objects need to be located and identified in the same single image, which

has traditionally entailed sliding a neighborhood window over all image positions and

computing multiple classifiers at each window position.

To avoid this näıve and time-consuming method, segmentation is sometimes ap-

plied, where the image is first divided into regions that seem similar by some metric.

Then, each region is classified separately. There are several metrics one can employ in

segmentation, e.g. mean shift, but while objects may be multicolored, they often con-

sist of a single texture. Chapter 4 presents the second part of this thesis, examining

a method to extract texture edges from natural images that can be used for seg-

mentation. The remainder of this chapter describes popular classification algorithms

and regularization methods. Then, Chapter 2 will introduce a new regularization

technique.

1.2 Classification Algorithms

Given a set of m examples zi = {(xi, yi)}mi=1, x ∈ X , y ∈ Y drawn from a joint

distribution P on X ×Y , the ultimate goal of the learning algorithm is to produce a

classifier function f : X → Y such that the expected error of f , given by the expression

E(x,y)∼P(f(x) 6= y), is minimized.

The examples xi ∈ <n are vectors of n features, which may equivalently be referred
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to as measurements or variables. These features can be raw, low-level measurements,

such as the intensities of individual pixels in an image, or higher-level representations

such as edge-filter outputs or cross-correlation scores. Some feature representations

elicit better classification performance than others, but otherwise there is no restric-

tion stating what makes an appropriate feature value.

The two most popular algorithms for classifying data of various types into pre-

scribed categories are Boosting and the Support Vector Machine. Both perform very

well when a large amount of training data is available, but each has a significant

drawback, as detailed below.

1.2.1 The Support Vector Machine

The Support Vector Machine (SVM) is an algorithm that locates a decision boundary

between the two classes of examples in multidimensional space, such that the margin

is maximized. The examples closest to the boundary are called support vectors and

their distance from the boundary is the margin. Depending on the type of kernel

used, the decision boundary can take on many different shapes, from a n-dimensional

hyperplane in the linear case, to a complex, bumpy surface in the case of a Gaussian

kernel.

SVM can be successfully applied to all datasets, from small to very large, but its

major drawback is that it uses, when classifying a new example x at run time, all the

measurements (features) of x. This creates a problem because, while we would like to

cover all promising features during training, computing them at run-time might be

too costly. This cost is especially important for object detection problems in vision,

where it is often necessary to search the whole image in several scales over thousands

of possible locations, each location producing one element of x.

SVMs and Feature Selection

Several approaches for combining feature selection with SVM have been suggested

in the past [65], but they are rarely used. Recently, a couple of new SVM variants
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have been suggested, in which a linear SVM is trained multiple times and the relative

importance of the features (dimensions) is indicated by their weight in a vector per-

pendicular to the decision hyperplane. These algorithms are called l0-norm SVM [28]

and SVM-RFE [39]. Another variant, “Wilcoxon SVM,” uses the Wilcoxon Mann-

Whitney test (see Figure 4-1) to select the most statistically dissimilar features.

1.2.2 Ensemble Methods, Boosting

Ensemble classifiers use voting among a group of base classifiers in order to make

a final classification. Boosting is a technique that iteratively constructs a strong

ensemble classifier from weak base classifiers. A weak classifier is one that performs

only slightly better than chance guessing (with an error rate under 50%). The notion

that a weighted combination of such classifiers could produce a strong classifier with

high accuracy was first shown by Kearns and Valiant [44].

Schapire introduced the first provably polynomial-time boosting algorithm in

1990 and later introduced the first mature boosting algorithm, AdaBoost (short for

Adaptive Boosting) [54]. The general study of ensemble classifiers, and variants of

AdaBoost in particular, is a very developed field. AdaBoost uses binary weak clas-

sifiers in the ensemble. It is a powerful learning algorithm, with a proven record in

many applications. It is also very flexible, and easily adapted (e.g.,[60]).

Other variants of the boosting algorithm have been introduced, such as Gentle-

Boost [25], which uses continuous (regression) stumps as the weak learners. Gen-

tleBoost is commonly used in machine vision applications because it has good con-

vergence properties and works well in object recognition problems [38]. Our work

focuses on boosting over decision stumps [5], simple classifiers obtained by threshold-

ing a single variable. For example, “predict a positive label if the 12th attribute of

the input example is larger than 0.7, otherwise predict negative.”

AdaBoost and algorithms based on it are easy to implement, work reasonably

fast, and in general produce classifiers with good generalization properties for large

enough data sets. However, if the data set is not large enough and there are many

features, these algorithms tend to perform much worse than the SVM, which can be
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successfully applied to any data set regardless of size.

1.2.3 Deterministic AdaBoost Variants

In Bioinformatics, a field that at first seems completely unrelated to computer vision,

data containing many features but few examples is quite common. For example,

with microarray data, the features represent thousands of different genes, while the

examples represent human patients and may only be in the tens or hundreds at

most. For this reason, a few deterministic variants of AdaBoost have recently been

suggested. Following previous work [18] that showed that boosting is not well-suited

for expression data, Long and Vega [39] developed a few deterministic modifications of

AdaBoost, and showed that these variants perform much better than the traditional

AdaBoost on microarray data.

In order to compare our results to theirs, we implemented their two most successful

AdaBoost variants: VC and NR. In AdaBoost-VC1, the empirical weighted error of

the classifier chosen at round t is adjusted prior to reweighting. AdaBoost-VC uses

εt = εemp
t + d

m

(
ln m +

√
1 + eemp

t /d
)
, where m is the number of examples, and d is

a free parameter.

The simpler variant, AdaBoost-NR (“No Repeat”), has two modifications over

the usual AdaBoost algorithm. First, each gene (variable) is constrained for use in at

most one decision stump. Second, a decision stump with an empirical error of zero,

is weighted in the final classifier as if it has an empirical error of 0.1/m.

Since our main method is a modification of GentleBoost (and not AdaBoost)

we implemented two variants of GentleBoost that were inspired by Long and Vega.

The simpler one is GentleBoost-NR, in which, like AdaBoost-NR, only one stump

per gene is included; the VC version of GentleBoost was adapted to accommodate

the basic differences between AdaBoost and GentleBoost. For example, AdaBoost

uses the global error estimate to update the weights of all the correctly classified

training examples, whereas GentleBoost updates each example’s weight individually

1The initials VC imply that the form of regularization is similar to the one derived using VC
bounds on generalization error.

18



by considering the error of its best base classifier.

We implemented a GentleBoost-VC algorithm in the spirit of AdaBoost-VC. In-

stead of scaling the weights by e−y·f(x) (as in step (f) of Fig. 2-2), we scale them by

e−y·f(x)+sign(y·f(x))
√

εemp
t /d, where εemp

t is the squared error of the regression function

ft(x).

1.3 Regularization

Carefully controlling the complexity of the classifier is an important task when train-

ing any learning algorithm. If the classifier is not complex enough, it will not be

capable of capturing the structure of the training data. On the other hand, an overly

complex classifier will focus on the irrelevant noise in the data, leading to overfitting

(learning to deal only with the training error) and poor generalization ability [6].

Regularization is one way to mediate the complexity of the classifier.

Since we do not know the distribution P , we are tempted to minimize the em-

pirical error given by
m∑

i=1

(f(xi) 6= yi). The problem is that if the space of functions

from which the learning algorithm selects f is too large, we are at risk of overfitting.

Therefore, while the empirical error is small, the expected error is large. In other

words, the generalization error (the difference of empirical error from expected er-

ror) is large. Overfitting can be avoided by using any one of several regularization

techniques.

Overfitting is usually the result of allowing too much freedom in the selection of the

function f . Thus, the most basic regularization technique is to limit the number of free

parameters we use while fitting the function f . For example, in binary classification

we may limit ourselves to learning functions of the form f(x) = (h>x > 0) (we

assume X = <m and h is a vector of free parameters). Using such functions, the risk

of overfitting is reduced, but we may never optimally learn the target function (i.e.,

the “true function” f(x) = y that is behind the distribution P) of other forms, e.g.,

it is impossible to learn the polynomial relationship f(x) = (x(1)2 − x(2) > 0).

Another regularization technique is to minimize the empirical error subject to
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constraints on the learned functions. For example, we can require that the norm of

the vector of free parameters h be less than one. A related but different regulariza-

tion technique is to minimize the empirical error together with a penalty term on

the complexity of the function we fit. The most popular penalty term – Tikhonov

regularization – has a quadratic form. Using the linear model above, an appropriate

penalty function would be ||h||22, and we would minimize
m∑

i=1

((h>xi > 0) 6= yi)+ ||h||22.

The complexity of the feature vector can be easily controlled by using boosting

techniques over weak classifiers based on single features (e.g., regression stumps), such

as in the highly successful system of [64]. In this case, the number of features used

is bounded by the number of iterations or rounds in the boosting process. However,

since boosting tends to overfit on small data sets, there is a bit of a dilemma here.

An ideal algorithm would enable good control over the total number of features used,

while being able to learn from only a few examples. The algorithm presented in

Section 2.4 demonstrates both these properties.

1.3.1 Enhancing the Data Set

Another method that can be used to regularize the learning process is the creation

of virtual examples. Sometimes, adding a regularization term to the optimization

problem solved by the algorithm is not trivial. In the most extreme case, the algorithm

is a black-box that cannot be altered. Enhancing the data set with virtual examples

is a universal regularization technique because it can be performed as a preprocessing

step prior to training any classification algorithm.

Since we desire the classifier to be able to accurately label examples it has never

seen before, we require it to recognize examples similar, but not identical to those

it considered during the training process. In other words: no future example is

expected to be exactly the same as an example seen in the training process, but its

measurements are assumed to be close in value. Hence, regularization using virtual

examples simply consists of generating new examples, each based on an existing

one, but slightly perturbed in some fashion. Since the learning algorithm sees more
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variation in the training examples, it is trained to cope with variation in the testing

examples.

The downside to regularization through virtual examplesis is that adding more

examples to the training set requires more computing time and memory and slows

down the training process significantly. It also adds additional parameters to the

algorithm (how many virtual examples to add and how much to perturb them) which

are not easy to select a priori.

1.3.2 Noise Injection

Noise injection is one method of regularizing through enhancement of the data set

using virtual examples. The training data is enriched with multiple copies of each data

point xi. A zero-mean, low-variance Gaussian noise (independent for each coordinate)

is added to each copy, and the original label yi is preserved. The motivation is that if

two data points x, x′ are close (i.e., ||x− x′|| is small), we would like f(x) and f(x′)

to have similar values. By introducing many examples with similar x values and

identical y values, the classifier is taught to express this stability property. Hence,

the learned function is encouraged to be smooth (at least around the training points).

These virtual examples can then be used with any learning algorithm to produce a

more robust classifier.

Research efforts of the mid-1990s produced the following results regarding noise

injection: (a) It is an effective way to reduce generalization error, e.g., [51]. (b) It has a

similar effect on shrinkage (the statistical term for regularization) of the parameters

in some simple models (e.g., [10]). (c) It is equivalent to Tikhonov regularization

[6]. Note that this does not mean that we can always use Tikhonov regularization

instead of noise injection, as for some learning algorithms it is not possible to create

a regularized version. It is well-known that noise injection leads to an improved

generalization ability, but as with any sort of virtual example, it requires more memory

space and computing time. It is important to note that noise injection is not suitable

for learning from few examples; in this scenario the input examples are probably well

separated, and a low variance noise will have little effect.
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Chapter 2

Regularization Through

Feature Knockout

2.1 Introduction

The technique introduced next is similar in spirit to noise injection. However, it

is different enough that the results obtained for noise injection will not hold for it.

For example, noise injection used low-variance Gaussian noise, independent to each

coordinate. Here, we make use of a very different type of noise: high variance, and

dependent between the coordinates. The results of [6] use a Taylor expansion around

the original data points. Such an approximation will not hold for our new technique,

since the “noise” is too large (i.e., the new datapoint is too different). Other important

properties that do not hold are the independence of noise across coordinates, and the

zero mean of the noise.

This new algorithm (first introduced in [67]) is based on GentleBoost. Within it we

implemented a regularization technique based on a simple idea: introduce corrupted

copies of the training examples, and the algorithm will not be able to overfit.

This chapter is structured as follows: In Section 2.3, we motivate the use of

our method by relating it to well known concepts and to some statistical work. In

Section 2.4 we describe our boosting algorithm, and then in Section 2.5 we provide

theoretical grounds for the behavior of our methods. Chapter 3 presents experimental
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Input: (x1, y1), . . . , (xm, ym), where xi ∈ <n, yi ∈ Y .
Output: One synthesized pair (x̂, ŷ).

1. Select two examples xa, xb at random.

2. Select a random feature k ∈ {1 . . . n}.

3. Set x̂← xa and ŷ ← ya.

4. Replace feature k of x̂: x̂(k)← xb(k).

Figure 2-1: The Feature Knockout Procedure

sections demonstrating the performance benefits of our algorithm.

2.2 Feature Knockout

Our regularization technique is based on generating corrupted copies of the data set.

Each new data point is a copy of one original training point, selected at random,

where one random coordinate (feature) is replaced with a different value–usually the

value of the same coordinate in another randomly-selected training example. The

basic procedure used to generate the new example is illustrated in Figure 2-1. It is

called the Feature Knockout (KO) procedure, since one feature value is being altered

dramatically, and it is repeated many times to create new examples. It can be used

with any learning algorithm, and is used in the analysis presented in Section 2.5.

However, since the application emphasis is on boosting, we use the specialized version

presented in Section 2.4.

The KO regularization technique is especially suited for use when learning from

only a few examples. The robustness demanded from the selected classification func-

tion is much more than local smoothness around the classification points (c.f. noise

injection). This kind of smoothness is easy to achieve when example points are far

from one another. Our regularization, however, is less restrictive than demanding

uniform smoothness (Tikhonov) or requiring the reduction of as many parameters

24



as possible. Neither approach is ideal when only a few examples are available, since

there is nothing to balance a large amount of uniform smoothness, and it is easy to

fit a model that uses very few parameters. Instead, redundancy is encouraged in the

classifier since, in contrast to the shortage of training examples, there might be an

abundance of features.

2.3 Notes Regarding Redundancy

Intuition. It is a common belief that simpler is better. Occam’s razor–“entities

should not be multiplied beyond necessity”–is often understood as suggesting the

selection of the simplest possible model that fits the data well. Thus, given a data

set, one tends to prefer classifier A that uses 70 features over classifier B that uses

85 if they have the same expected error, because the “simpler” classifier is believed

to generalize better.

In an apparent contrast to this belief, we know from our daily experience that

simpler is not always better. When a good teacher explains something to a class, he

will use a lot of repetition. The teacher ensures that the students will understand the

idea, even if some of the explanations were unclear. Since the idea could be expressed

in a simple form without repetition, his explanation is more complex than necessary.

It is also generally accepted that biological systems use redundancy in their com-

putations. Thus, even if several computational units break down (e.g., when neurons

die) the result of the computation is largely unaffected. The learned model is ex-

pected to be interpreted with some random error. In these cases, we should not train

a single classification function, but instead train to optimize a distribution of such

functions.

Redundancy in boosted classifiers. Boosting over a weak classifier increases

the weights of those examples it does not classify well. The inclusion of a weak

classifier in the strong classifier therefore inhibits future use of similar weak classifiers.

In boosting over regression stumps, each weak classifier is based on one feature.

Hence, from a group of similar features, one may expect to see no more than a few
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participating in the strong classifier. Our boosting over regression stumps algorithm,

presented in Section 2.4, modulates this effect, by creating a new example for which

relying on the selected feature might lead to a mistake. However, it does not change

the values of the other features, making the similar features suitable for classifying

the new example.

Such a process yields a larger classifier, which uses more features. This effect is

clear in our experiments, and might also be interpreted as “a more complex model

is needed to deal with more complex data.” However, using more features does not

necessarily mean that the classifier will lead to a worse generalization error1.

Koltchinskii and Panchenko have derived bounds on the generalization error of

ensemble (voting) classifiers, such as boosting, which take redundancy into consid-

eration [36]. A precise description of their results would require the introduction of

more notation, and will not be presented here. Informally speaking, they show that

one can refine the measures of complexity used for voting classifiers such that it would

encourage ensembles that can be grouped into a small number of compact clusters,

each including base (“weak”) classifiers that are similar to one another.

2.4 The GentleBoost-KO Algorithm

While our regularization procedure, presented in Figure 2-1, can be applied, in princi-

ple, to any learning algorithm, using it directly when the number of features n is high

might be computationally demanding. In other words, for each one of the m training

examples, as many as n(m− 1) new examples can be created. Covering even a small

portion of this space might require the generation of many synthesized examples.

The randomized procedure in Figure 2-1 samples this large space of synthesized

training examples. Still, if there are many features, the sampling would probably

be too sparse. However, for some algorithms our regularization technique can be

applied with very little overhead. For boosting over regression stumps, it is sufficient

1The terms “simple” and “complex” are not trivial to define, and their definition usually depends
on what one tries to claim. The next section presents more rigorous definitions for the cases analyzed.
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Input: (x1, y1), . . . , (xm, ym), where xi ∈ <n, yi ∈ Y = ±1.
Output: Composite classifier H(x).

1. Initialize weights wi ← 1/m.

2. for t = 1, 2, 3, . . . T :

(a) For each feature k, fit a regression function f
(k)
t (x) by

weighted least squares on yi to xi with weights wi, i =
1 . . . m + t− 1.

(b) Let kmin be the index of the feature with the minimal as-
sociated weighted least square error.

(c) Update the classifier H(x)← H(x) + f
(kmin)
t .

(d) Use Feature KO to create a new example xm+t:

Select two random indices 1 ≤ a, b ≤ m
xm+t ← xa

xm+t(kmin)← xb(kmin)
ym+t ← ya

(e) Copy the new example weight wm+t from wa:

wm+t ← wa

(f) Update the weights and normalize:

wi ← wie
−yif

(kmin)
t (xi), i = 1 . . . m + t

wi ← wi/
m+t∑
i=1

wi

3. Output the final classifier H(x).

Figure 2-2: The GentleBoost-KO Algorithm. Steps d and e constitute the differences
from the original GentleBoost.

to modify those features that participate in the trained ensemble (i.e., those features

that actually participate in the classification).

The basic algorithm used in our experiments is specified in Figure 2-2. It is a mod-

ified version of the GentleBoost algorithm [25]. It is based on GentleBoost because

GentleBoost seems to converge faster than AdaBoost, and performs better for object

detection problems [38, 60]. At each boosting round, a regression function is fitted
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(by weighted least-squared error) to each feature in the training set. The experiments

use weak linear regression classifiers, fitting parameters a, b and a threshold t so that

our regression functions are of the form f(x) = a(x > t) + b. The regression function

with the least weighted squared error is added to the accumulated ensemble classifier

H(x) and its associated feature (kmin) is used for Feature Knockout (step d).

In the Feature Knockout step, a new example is generated using the class ya of

a randomly selected example xa and all of its feature values except for the value at

kmin. The value for this feature is taken from a second randomly-selected example xb.

The new example xm+t is then appended to the training set. In order to quantify the

importance of the new example in the boosting process, a weight has to be assigned

to it. The weight wm+t of the new example is estimated by copying the weight of the

example from which most of the features are taken (xa). Alternatively, a more precise

weight can be determined by applying the total classifier H(x) to the new example.

As with any boosting procedure, each iteration ends with the update of the weights

of all m + t examples (including the new one), and a new round of boosting begins.

This iterative process finishes when the weights of the examples converge, or after a

fixed number of iterations. In the experiments of Chapter 3, the boosting processes

were stopped after 100 rounds–enough to ensure convergence in all cases.

2.5 Analysis

The effect of adding noise to the training data depends on which learning algorithm

is used, and is highly complex. Even for the case of adding a zero-mean, low-variance

Gaussian noise (noise injection), this effect was studied only for simple algorithms

(e.g. [10]) or the square loss function [6]. Section 2.5.1 studies the effect of Feature

Knockout on the well-known linear least squares regression problem and shows that

it leads to a scaled version of Tikhonov regularization. Although in the experiments

feature knockout is applied to boosting (Figure 2-2), we still gain insight from this

simple model.
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2.5.1 Effect of Feature Knockout on Linear Regression

The linear model is one of the most basic models that can be applied to the data. In

this model, the input examples xi ∈ <n, i = 1 . . . m are organized as the columns of

the matrix A ∈ <n×m; the corresponding yi values comprise a single column vector

y ∈ <m. The prediction made by the model is given by A>h, where h is the vector of

free parameters to fit to the data. In the common least squares case, ||y − A>h||2 is

minimized.

In the case that the matrix A is full rank and overdetermined, it is well known that

the optimal solution is h = A+y, where A+ = (AA>)−1A is known as the pseudo-

inverse of the transpose of A (our definition of A is the transpose of the common

textbook definition). If A is not full rank, the matrix inverse (AA>)−1 is not well

defined. However, as an operator in the range of A it is well defined, and the above

expression still holds, i.e., even if there is an ambiguity in selecting the inverse matrix,

there is no ambiguity in the operation of all possible matrices on the range of the

columns of A, which is the important concern.

Even so, if the covariance matrix (AA>) has a large condition number (i.e., it is

close to being singular), small perturbations of the data result in large changes to

h, and the system is unstable. The solution fits the data A well, but does not fit

data which is very close to A. Hence there is overfitting. To stabilize the system,

regularization is applied.

Tikhonov regularization is based on minimizing ||y − A>h||2 + λ||h||2. This is

equivalent to using a regularized pseudo inverse: A+
λ = (AA> + λI)−1A, where I is

the identity n× n matrix, and λ is the regularization parameter.

In many applications, the linear system to solve is badly scaled, e.g., one variable

is much larger in magnitude than the other variables. In order to rectify this, we

may apply a transformation to the data that weights each variable differently, or

equivalently weight the vector h by applying a diagonal matrix D, such that h becomes

ĥ = Dh.

Instead of solving the original system A>h = y, we now solve the system Â>ĥ = y,
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where Â = D−1A. Solving this system using Tikhonov regularization is termed

“scaled Tikhonov regularization.” If D is unknown, a natural choice is the diagonal

matrix with the entries Dkk =
√

(AA>)kk [45]. Next, it will be shown that using

the knockout procedure to add many new examples is equivalent to scaled Tikhonov

regularization, using the weight matrix above.

The lemma below if simpler to state and prove when the data is normalized such

that each variable is centered, i.e., has a mean of zero. The lemma considers the case

of infinitely many new training examples, created by the knockout procedure. The

case when only a limited number of such examples are created gives rise to results

that are much more complex to state.

Lemma 1 When using the linear model with a least squares fit on centered data,

applying the regularization procedure in Figure 2-1 to generate many examples is

equivalent to applying scaled Tikhonov regularization, where Dkk =
√

(AA>)kk.

Proof 1 In the case of infinite new examples, the covariance matrix of the new train-

ing examples created by the knock-out procedure concentrates around the covariance

matrix obtained when all possible knockout examples comprise the training data set.

Since this covariance matrix is bounded away from zero, and since there is a finite

number of parameters, the same approximation can be assumed for the inverse of the

covariance matrix.

The vector ĥ, which is fitted by means of a scaled Tikhonov regularization tech-

nique, with a parameter λ is given by:

ĥ = (ÂÂ> + λI)−1Ây

= (D−1AA>D−1 + λD−1D2D−1)−1D−1Ay

= D(AA> + λD2)−1DD−1Ay

= D(AA> + λD2)−1Ay.

Therefore, h = D−1ĥ = (AA> + λD2)−1Ay.

Now consider Ã, the matrix whose columns contain all the possible knockout ex-
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amples, together with the original data points. Let ỹ be the corresponding labels. By

applying a least square linear fit to these inputs, we find: h̃ = (ÃÃ>)−1Ãỹ. There are

nm2 total examples created. Since all features are assumed to have a mean of zero,

all the knockout values of each feature cancel out. What remains is m(n − 1) exact

copies of each variable and Ãỹ = m(n− 1)Ay.

Consider the elements of the matrix ÃÃ>. The off-diagonal elements represent

the dot product between two different variables. Each variable holds either its original

value, or a different value, but it may never happen that both contain the knockout

values at once. It happens m(n − 2) times for each input example that both features

hold the original data. The rest of the cases average out to zero, because while one

operand of the dot product is fixed, the other operand traverses the whole zero-mean

set of feature values. For the diagonal case, because of symmetry, each value appears

nm times, making the diagonal nm times the diagonal of the original matrix.

Putting it all together:

h̃ = (ÃÃ>)−1Ãỹ

= (m(n− 2)AA> + 2mD2)−1m(n− 1)Ay

=
n− 1

n− 2
(AA> + λD2)Ay, where λ =

2

n− 2
.

The leading fraction does not change the sign of the results, and is close to one.

Furthermore, it can be eliminated by scaling the input examples. By ignoring this

fraction, the result of a scaled Tikhonov regularization is obtained. The parameter

λ can be controlled in this asymptotic case by scaling the new value of the changed

feature in step 4 of the knockout procedure (Figure 2-1).

To get a better understanding of the way Feature Knockout works, we study

the behavior of scaled Tikhonov regularization. As mentioned in Section 2.3, in the

boosting case, the knockout procedure is expected to produce solutions which make

use of more features. Are these models more complex? This is hard to define in the

general case, but easy to answer in the linear least square case study.

In linear models, the predictions y̌ on the training data take the form: y̌ = Py.

31



For example, the unregularized pseudo-inverse case has y̌ = A>h = A>(AA>)−1Ay,

and therefore P = A>(AA>)−1A. There is a simple measure of complexity called

the effective degrees of freedom [29], which is just Tr(P ) for linear models. A model

with P = I (the identity matrix) has zero training error, but may overfit. In the

full rank case, it has as many effective degrees of freedom as the number of features

(Tr(P ) = n).

Compare this result to Bishop’s [6], where he used a Taylor expansion to show

that noise injection is equivalent to Tikhonov regularization.

Lemma 2 The linear model obtained using scaled Tikhonov regularization has a

lower effective degree of freedom than the linear model obtained using unregularized

least squares.

Proof 2 This claim is very standard for Tikhonov regularization. Here, a slightly

more elaborate proof is presented. Using the same rules, other claims can be proven.

For example, the condition number of the matrix inverted using scaled Tikhonov reg-

ularization is lower than the one achieved without regularization. A lower condition

number is known to lead to better generalization.

For scaled Tikhonov regularization, we have y̌ = Py, where

Tr(P ) = Tr(A>(AA> + λD2)−1A)

= Tr((DD−1AA>D−1D + λD2)−1AA>)

= Tr((D(D−1AA>D−1 + λI)D)−1AA>)

= Tr(D−1(D−1AA>D−1 + λI)−1D−1AA>)

= Tr((D−1AA>D−1 + λI)−1D−1AA>D−1)

= Tr((EE> + λI)−1EE>), where E = D−1A.

Let USV > = E be the Singular Value Decomposition of E, where S is a di-

agonal matrix, and U and V are orthonormal matrices. The above trace is ex-

actly Tr((US2U> + λI)−1US2U>. Let S∗ be the diagonal matrix with elements

S∗kk = S2
kk + λ, then (US2U> + λI)−1 = (US∗U>)−1 = US∗−1U>. The above trace
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becomes Tr(US∗−1U>US2U>) = Tr(S∗−1S2U>U) = Tr(S∗−1S2) =
∑

k

S2
kk

S2
kk + λ

<

rank(E) = rank(A). Compare this value with the effective degrees of freedom of

the unregularized least square solution: Tr(A>(AA>)−1A) = Tr((AA>)−1AA>) =

rank(A). The last equality also holds in the case where A is not full rank, in which

case (AA>)−1 is only defined on the range of AA>.

2.5.2 Feature Knockout and Boosting Over Regression Stumps

Similar to the work done on noise injection, we examine the effect of feature knockout

on a simple regression technique. As shown above, feature knockout resembles the

effect of scaled Tikhonov regularization, i.e., high norm features are penalized by the

knockout procedure. However, boosting over regression stumps seems to be scale

invariant. Multiplying all the values of a feature by some constant does not change

the resulting classifier, since the stump thresholds are chosen independently across

features. However, a closer look reveals the connection between scaling and the effect

of the knockout procedure on boosting.

Boosting over stumps (e.g., [64, 5]) chooses at each round one out of n features,

and a threshold for this feature. The thresholds are chosen from the m possible values

that exist in between every two sorted feature values. The feature and the threshold

define a “weak classifier” (the basic building blocks of the ensemble classifier built

by the boosting procedure [54]), which predicts -1 or +1 according to the threshold.

Equivalently, one can say that boosting over stumps chooses from a set of nm binary

features – these features are exactly the values returned by the weak classifiers. These

nm features have different norms, and are not scale invariant. Let us call each such

feature an nm-feature.

Consider first the case where the weights over the samples are uniform, i.e., the

error due to a misclassification is the same for all examples. Using the intuitions of

the linear least squares case, it is desirable to inhibit features of high magnitude. All

nm-features have the same norm (
√

m), but different entropies (a measure which is

highly related to norm [15]). These entropies depend only on the ratio of positive
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values in each nm-feature–call this ratio p.

Creating new examples using the generic Feature Knockout procedure (as defined

in Figure 2-1) does not change the number of possible thresholds. Hence, the number

of features remains the same. The values of the new example in the nm feature space

will be the same for all features originating from the n − 1 features left unmodified

by the knockout procedure. The value for a knocked-out feature (feature k), will

change if the new value is on the other side of the threshold as compared to the old

value. This will happen with probability 2p(1− p). If this sign flip does occur, then

the feature is inhibited because it gives two different classifications to two examples

with the same label (KO leaves labels unchanged). Note that the entropy of a feature

with a positive ratio p and the probability 2p(1 − p) behave similarly: both rise

monotonically for 0 ≤ p ≤ 1
2

and then drop symmetrically.

We assume that the error for input example i is weighted by an arbitrary weight

wi and the following result is obtained:

Lemma 3 Let s be an nm-feature created by combining an input feature k with a

threshold t. Let wi be the weight of the classification error of example i, 1 ≤ i ≤ m.

The amount of inhibition s undergoes, as the result of applying feature knockout to

create λ new examples, in which k is replaced, is λp(1 − p) (w̄+ + w̄−), where w̄±

denotes the mean of the weights for which xi(k) is above or below the threshold.

Proof 3 Using the notation of Figure 2-1, here is the complete proof:

Let k = a given regression stump feature,

t = a given regression stump threshold,

S+ = {i|xi(k) ≥ t}

S− = {i|xi(k) < t},

m± = the cardinality (i.e. number of elements) of S±,

m = m+ + m− = the total number of examples xi,

p = m+/m,

1− p = m−/m.
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The nm-feature with the lowest weighted expected error is selected by the weak

learner. In the absence of Feature Knockout, this expected error is simply the sum of

the weights of examples misclassified by feature k and threshold t. Applying feature

knockout to the input examples has the same effect of adding an additional term to

the expected error representing the amount of inhibition the nm-feature undergoes:

E(error|k, t) = E(regression stump error|k, t) + E(additional KO error|k, t).

The last term can be decomposed as follows: E(additional KO error|k, t) =

m∑
i=1

wi · P (a = i, xa(k) < t < xb(k) or xa(k) > t > xb(k)) (2.1)

= P (a = i)
m∑

i=1

wi · P (xa(k) < t < xb(k) or xa(k) > t > xb(k)) (2.2)

=
1

m

∑
i∈S+

wi · P (xb(k) < t) +
1

m

∑
i∈S−

wi · P (xb(k) ≥ t) (2.3)

=
1

m

∑
i∈S+

wi · (1− p) +
1

m

∑
i∈S−

wi · p (2.4)

=
1

m

m+

m+

∑
i∈S+

wi · (1− p) +
1

m

m−

m−

∑
i∈S−

wi · p (2.5)

= p
1

m+

∑
i∈S+

wi · (1− p) + (1− p)
1

m−

∑
i∈S−

wi · p (2.6)

= p(1− p)

(
1

m+

∑
i∈S+

wi +
1

m−

∑
i∈S−

wi

)
(2.7)

= p(1− p)
(
w̄+ + w̄−) . (2.8)

The knockout procedure causes a classification error when it selects an example on

one side of the threshold and replaces a feature value with one taken from an example

on the other side of the threshold. The joint probability of this occurrence, scaled

by the weights wi and summed over all examples (as shown in Eq. 2.1), constitutes

the additional expected error due to the knockout effect. Since the knockout procedure

selects examples randomly with repetition (i.e. it is possible that xa = xb and an exact

copy is produced), the joint probability is independent and can be factored into the
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product of the uniform probability that any given example is chosen for knockout and

the probability that the second randomly-chosen example xb is on the other side of the

threshold t, as shown in Eq. 2.2.

Separating the summation over all i into two distinct summations over examples

that lie on each side of the threshold allows these probabilities to be expressed in terms

of p, as shown in Eqs. 2.3 and 2.4. The factor 1
m

can also be expressed in terms of p,

as shown in Eqs. 2.5 and 2.6. Factoring out the quantity p(1−p) in Eq. 2.6 reveals the

sum of two means, the mean of the weights of the examples that fall above the threshold

and the mean of the weights of those that fall below it, yielding the final expression

for the additional expected error corresponding to the effect of Feature Knockout.

Creating an additional knockout example increases the probability of a resulting

error by a factor of two. Likewise, the additional expected error increases propor-

tionally to the number of knockout examples created. Therefore, the effect of gen-

erating λ knockout examples, is an additional error term with an expectation of

λp(1− p) (w̄+ + w̄−).

Hence, similar to the scaling in the linear case, the knockout procedure inhibits

high magnitude features (here the magnitude is measured by the entropy). Note that

in the algorithm presented in Section 2.4, a feature is used for knockout only after it

was selected to be a part of the output classifier. Still, knockout inhibits more weak

classifiers based on these high-entropy features, making them less likely to be selected

again. It is possible to perform this inhibition directly on all features, therefore

mimicking the full knockout procedure. An implementation of this is described and

evaluated in Section 3.2.1. As it turns out, this direct inhibition, (which is based on

the expected inhibition) does not perform nearly as well as the stochastic knockout

procedure.

The following section analyzes how the Feature Knockout procedure affects the

variance of the learned classifier. This analysis provides further insights on the way

the procedure works.
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2.5.3 Bias/Variance Decomposition

Bias/variance decomposition is a technique used to analyze the expected performance

of a certain class of learning algorithms. The bias is a measure of how closely the

average model matches the target distribution. The variance reveals the amount that

the estimates vary for different training sets. In selecting a model, there is usually a

tradeoff between bias and variance.

Many training algorithms can be interpreted as trying to minimize a cost function

of the form
n∑

i=1

L(f(xi), yi), where L is a loss function. For example, in the 0/1 loss

function L(f(x), y) = (f(x) 6= y), we pay 1 if the labels are different, 0 otherwise.

By applying the knockout procedure to generate more training data, an algorithm

that minimizes such a cost function will actually minimize:
n∑

i=1

Ex̂∼CX(xi)L(f(x̂), yi),

where CX(x) represents the distribution of all knocked-out examples created from x.

In the case of the square loss function L(f(x), y) = (y − f(x))2, the cost function

can be decomposed (similarly to [27]) into bias and variance, respectively:

n∑
i=1

Ex̂∼CX(xi)L(f(x̂), yi) =
n∑

i=1

L(Ex̂∼CX(xi)f(x̂), yi)+
n∑

i=1

Eŵ∼CX(xi)L(ŵ, Ex̂∼CX(xi)f(x̂)).

Consider the related optimization problem which minimizes
n∑

i=1

L(Ex̂∼CX(xi)f(x̂), yi)

subject to
n∑

i=1

Eŵ∼CX(xi)L(ŵ, Ex̂∼CX(xi)f(x̂)) being bounded 2.

The bound on the term
∑n

i=1 Eŵ∼CX(xi)L(ŵ, Ex̂∼CX(xi)f(x̂)) means that the learn-

ing algorithm has a bounded differences property [41] with regards to selection of

features. i.e., by removing one of the features, the value of the learned function f

will not change by more than a bounded amount. Consider a situation (which exists

in our object recognition experiments) where our features are pulled independently

2The relation between the problems is that since one solves the second problem (the one
with the bound) by applying Lagrange multipliers, every solution of the second minimization

problem is also a solution to a minimization problem of the form
n∑

i=1

Ex̂∼CX(xi)L(f(x̂), yi) =

n∑
i=1

L(Ex̂∼CX(xi)f(x̂), yi) + λ

n∑
i=1

Eŵ∼CX(xi)L(ŵ,Ex̂∼CX(xi)f(x̂)) for some λ.
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from a pool of many possible features. The bounded difference property guarantees

that with high probability the observed testing error is close to the expectation of

the testing error with regards to selecting another set of random features of the same

size.

An interesting future direction would be to consider situations where the features

extracted are a random subset of all possible features. This is a common scenario in

recent computer vision algorithms, where the features are often elaborate templates

extracted from random locations in a set of training or natural images. Learning

using random projections of the data is another such example. A desirable property

of the learning algorithm would be stability with regard to this random choice of

features in addition to the (assumed) random selection of the training set.

Let us now turn our attention to another “bias-variance” decomposition. We

consider the one based on the 0/1 loss function, as analyzed in [16]. We follow the

terminology of [16, 62] with a somewhat different derivation, and for the presentation

below we include a simplified version. Assume for simplicity that each training exam-

ple occurs in our data set with only one label, i.e., if xi = xj then yi = yj. Define the

optimal prediction f∗ to be the “true” label f∗(xi) = yi. Define the main prediction of

a function f to be just the prediction f(x). The bias is defined to be the loss between

the optimal and main predictions: B(x) = (f(x) 6= f∗(x)). The variance V (x) is

defined to be the expected loss of the prediction with regard to the main prediction:

V (x) = Ex̂∼CX(x)(f(x) 6= f(x̂)). These definitions allow us to present the following

observation:

Observation 1 Let B0 be the set of all training-example indices for which the bias

B(xi) is zero (the unbiased set). Let B1 be the set for which B(x1) = 1 (the biased

set). Then,
n∑

i=1

Ex̂∼CX(xi)(f(x̂) 6= yi) =
m∑
i=i

B(xi) +
∑
i∈B0

V (xi)−
∑
i∈B1

V (xi)

In the unbiased case (B(x) = 0), the variance V (x) increases the training error. In

the biased case (B(x) = 1), the variance at point x decreases the error. A function f ,

which minimizes the training cost function that was obtained using Feature Knockout,

has to deal with these two types of variance directly while training. Define the net
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variance to be the difference of the biased variance from the unbiased; a function

trained using the Feature Knockout procedure is then expected to have a higher net

variance than a function trained without this procedure. If we assume our corruption

process CX is a reasonable model of the robustness expected from our classifier, a good

classifier would have a high net variance on the testing data3. In the experiment

presented in Tab. A we measure the net variance, and show that it is actually reduced

by applying Feature Knockout. An interesting application that is not explored in this

chapter is the exploitation of net variance to derive confidence bars at a point (i.e.,

a measure of certainty in our prediction for a specific input example). Since Feature

Knockout emphasizes these differences, it might yield narrower confidence bars.

2.6 Summary and Conclusions

Boosting algorithms continue to gain popularity since they select only the important

features of a data set. Unfortunately, they perform poorly on small training sets due

to overfitting. SVM performs well regardless of the size of the data set, but uses

all features regardless of their relevance. We introduced Feature Knockout, a simple

generic regularization technique, and discovered that it is related to deterministic

scaled regularization techniques. When applied to GentleBoost, feature knockout

promotes redundancy in the output classifier and prevents overfitting on small data

sets, yielding performance comparable to SVM for data sets of any size. Hence, it

provides the best of both worlds: feature selection and robust learning from few

examples.

Feature Knockout is well-suited for machine vision applications because it is not

unusual for image data to be partially obscured (i.e. containing incorrect features)

and objects in the same conceptual classification may exhibit differences in only a few

features (a car is still a car even if a tire is missing, for example). Boosting selects

these important features, while Feature Knockout prevents it from relying too heavily

3We omit the formal discussion on the relation between variance on training examples and vari-
ance on testing examples.
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on any particular feature.

Feature knockout, by itself, is similar in spirit to work done a decade ago on

noise injection. Back then it was used in combination with bagging, to allow simple

classifiers to gain better generalization properties. Here, a different kind of noise is

used to prevent modern classifiers from eliciting an oversimplified classification rule.
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Chapter 3

Experiments

This chapter presents the results of experiments using the GentleBoost-KO algorithm

of Section 2.4 on several different types of data sets, demonstrating that it performs

as well or better than the other proposed deterministic boosting variants. In contrast

to most boosting techniques, which overlook the high variance each base classifier’s

performance has on small data sets, our method encourages redundancy in the con-

structed classifier. This is done not in a deterministic way, by estimating a bound

on the expected performance, but by creating new random examples to be used for

training.

3.1 General-Purpose Data: UCI Repository

The feature knockout method was evaluated on 10 UCI Repository[7] data sets that

were made suitable for binary classification, by either thresholding the value of the

target function (e.g. the price in the housing data set) at its median, or by picking

a label to be the positive class. These 10 data sets were: arrhythmia, dermatology,

e.coli, glass, heart, housing, letters, segmentation, wine, and yeast.

Each data set was split randomly into 10% training, 90% testing, and each of the

following classifiers were run: original, KO, NR, and VC variants of AdaBoost and

GentleBoost, Linear and Gaussian SVM, as well as SVM-RFE which was allowed to

select half of the features. Linear SVM was also run on a data set that contained
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100 examples generated in accordance with the knockout procedure of Figure 2-1.

In addition, results are reported for GentleBoost combined with noise injection (the

algorithm that adds gaussian noise to the examples) with the best noise variance

found. For each training example, ten noisy virtual examples were created. By

selecting parameters according to the performance on the testing data, the noise

injection results were biased, and should only be taken as an upper bound for the

performance of noise injection.

Table A shows the mean error, the standard deviation of the error, and the number

of features used by the classifiers (SVM always uses the maximal number of features).

The variance over a distribution of knockout examples for correct classifications (unbi-

ased variance), and incorrect classifications (biased variance) (see Section 2.5.3 below)

was also measured in the following manner: for each testing example, 50 knockout

examples were generated in accordace with Figure 2-1, and the classification variance

was computed over these 50 examples. The variance was averaged over all biased

and unbiased testing examples separately. A good classifier produces more variance

for incorrectly classified examples, and only a little variance for correctly classified

ones. The net variance, i.e. the difference between the unbiased and biased variance,

is expected to be higher for better classifiers.

It is apparent from the results that:

1. In general the knockout procedure helps GentleBoost, raising it to the same

level of performance as Linear SVM.

2. Knockout seems to help AdaBoost as well, but not always, and sometimes helps

SVM.

3. Knockout seems to help increase the net variance (which is good, see Sec-

tion 2.5.3).

4. As expected, knockout produces classifiers that tend to use more features.

5. Knockout shows different, sometimes better, performance than noise injection

(GentleBoost-NI).
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6. The feature selection of SVM-RFE seems to hurt more than it helps.

7. The VC variants seem to perform poorly on these datasets.

8. Knockout beats the NoRepeat (NR) variants most of the time.

3.2 Experiments to Understand Feature Knockout

Feature knockout makes it more likely for training errors to occur, and when they

do, the effects are profound. In order to better understand these effects, it is useful

to investigate how a knockout example affects the training process by simulating

its behavior and examining the results. In the following two experiments, we first

simulate the outcome of feature knockout using a technique we call direct inhibition,

and then examine the influence of individual knockout examples on the ensemble

classifier.

3.2.1 Direct Inhibition

As demonstrated in the proof of Lemma 3, the effect of feature knockout on the

expected error of a regression stump can be simulated, without generating any new

examples, by adding an additional error term to the expected error. A modified

version of the standard GentleBoost algorithm was created to take into account this

additional expected error in the selection of the best regression stump for each boost-

ing round. This direct inhibition therefore simulates the effect of feature knockout on

GentleBoost without generating any new examples. Keep in mind that direct inhibi-

tion does not recreate the full effect of feature knockout, since it only deterministically

estimates the expected error of the randomized knockout process.

There are two different methods of applying direct inhibition to the selection of the

best regression stump. The inhibition error can either be added to select features only,

or applied uniformly over all features. Select inhibition is used to simulate the effect

of GentleBoost-KO, in which knockout is performed only on the features that actually

participate in the classification. Alternatively, uniform inhibition simulates the effect
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Table 3.1: Comparison of the performance effects of both uniform and direct inhibition
on the UCI data sets. Experiments included ten independent runs using random splits
of 10% training and 90% testing examples.

Gentle- Select Uniform
Data Gentle- Boost- Direct Direct
Set Boost KO Inhibit. Inhibit.

Arrhythmia 37.6±2.7 35.6±1.8 37.9±2.6 39.7±6.0
Dermatology 4.6±3.5 1.0±1.2 3.7±3.0 3.8±3.0
E.coli 11.0±6.6 10.2±5.0 10.4±6.5 12.3±6.0
Glass 35.5±8.8 30.3±6.6 35.0±8.0 37.6±9.4
Heart 28.3±9.4 23.6±3.0 28.0±9.7 28.6±9.2
Housing 18.3±2.7 17.0±1.5 20.7±7.7 21.3±7.8
Letters 3.9±0.6 3.3±0.2 4.3±0.6 4.2±0.6
Segmentation 7.4±4.4 6.8±3.2 7.2±4.5 7.5±4.4
Wine 14.3±4.0 7.7±2.4 14.8±4.5 14.2±3.9
Yeast 33.0±2.6 32.3±1.5 35.2±4.9 35.0±5.0

of applying the knockout procedure to all features, a method that would otherwise

require an excessive amount of memory if the knockout procedure of Figure 2-1 were

used.

Refer to Table 3.1 for a comparison of the performance of direct inhibition and

feature knockout. The results show the mean error for ten independent runs of the

modified versions of GentleBoost on each UCI data set, using a random split of 10%

training and 90% testing examples. While direct inhibition sometimes performs better

than the original GentleBoost, it does not reach the performance level of GentleBoost-

KO.

One might suppose that direct inhibition performs worse than feature knockout

because it inhibits the initial selection of a feature to classify upon, in addition to

inhibiting the continued reliance upon the same feature. In other words, features

that would otherwise be selected first by GentleBoost would be inhibited by direct

inhibition even before they are selected. While this may be true for uniform inhibition,

it should not affect the select inhibition, which is applied only to features that have

already been selected. The fact that neither method performed as good as feature

knockout indicates that the effect of feature knockout is more complex than something

that can be captured in a simple error expectation.
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Unless the knockout procedure shifts a feature value from one side of a regression

stump threshold to the other, it has no effect on the training process. While many

knockout examples do not exercise any affect on the selection of regression stumps,

a handful of them or even a single one will inhibit the reliance on a small num-

ber of features in successive selections of the weak classifiers, thus leading to better

generalization. It seems that the stochastic nature of feature knockout allows it to

produce these rare influential examples, while direct inhibition fails to do so. Perhaps

direct inhibition underestimates the importance of a single knockout example. To

further investigate this supposition, the next section examines the effect of individual

knockout examples on the performance of GentleBoost.

3.2.2 One Example KO

To understand if it is the rare events that contribute to the generalization properties

of GentleBoost-KO, we study the effect of a single knockout example on the trained

classifier. Several experiments were run in which 100 knockout examples created dur-

ing a typical run of GentleBoost-KO were then appended individually to the training

data of independent runs of the standard GentleBoost algorithm. To clarify: for each

data set and split, we ran GentleBoost-KO for 100 rounds, resulting in the creation

of 100 knockout examples. We then ran GentleBoost 100 additional times, each time

on the original training set plus one of the artificial knockout examples.

Since the examples were created by GentleBoost-KO, we can be sure that the

knocked-out features are ones that are important to classification, and thus should

make a difference in the ensemble classifier. By independently appending each of

these examples to the original training set and successively running GentleBoost for

each example, we can determine the portion of knockout examples that actually

helped improve performance in the output classifier, one at a time. Histograms of the

performance change due to 100 individual knockout examples (as well as the original

performance level of GentleBoost and GentleBoost-KO for comparison) are shown

in Figure B-2. The solid line shows the performance of the traditional GentleBoost

algorithm, while the dashed line indicates that of GentleBoost-KO. Bars indicate
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the number of KO examples that caused GentleBoost to attain specific levels of

performance.

In most cases, some of the individual knockout examples improved GentleBoost

and some worsened its performance. The histograms for E.coli and Glass demonstrate

cases where a mere handful of knockout examples can lead to significant performance

gains. Segmentation was the only data set for which all knockout examples worsened

the performance of GentleBoost, signifying that, while knockout usually leads to a

better classifier, it does not work in all cases.

The overall conclusion from this section’s experiments is that the Feature Knock-

out procedure cannot be understood by considering only the expected inhibition each

weak classifier undergoes. Rather, it is individual knockout examples that make

GentleBoost-KO preferable over GentleBoost in many cases. This result cannot be

used in practice though, since it is impossible to identify the influential KO examples

a priori.

3.3 Vision Experiments

3.3.1 Visual Recognition Using Caltech Data Sets

We also tested the boosting variants and SVM with feature selection on several Cal-

tech object recognition data sets (presented in [21]). In each experiment the classi-

fier had to perform binary classification, i.e. distinguish between images containing

an object and background images that lack the object. The data sets: Airplanes,

Cars, Faces, Leaves and Motorbikes, as well as the background images are available

at http://www.vision.caltech.edu/html-files/archive.html. Example images

are shown in Figure 3-1. Any colored images were converted to grayscale before use.

Note that this task is challenging since the images contain clutter, i.e., the objects

appear in front of arbitrary backgrounds. For some classes, the images are not nor-

malized in terms of their location in the image, suggesting some advantage to the use

of translation invariant features.
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Backgrounds Airplanes Cars Faces Leaves Motorbikes

Figure 3-1: Sample Images from the Caltech Object Recognition Database

In the experiments, the predefined splits of the positive class were used1. From

the positive training examples, a random subset was sampled to serve as the positive

training set. This way, although each experiment trains on a different number of

positive examples, the test sets are fixed and allow direct comparison.

Since discriminative methods were used, a negative training set was necessary.

Toward this end, examples were removed randomly from the negative set (the back-

ground images) and used for training. Twice as many negative examples were used

as positive ones. Note that extra negative training examples are used, because for

visual recognition, negative training images are easy to collect. For each data set

and training size, the experiment was repeated 10 times, each time drawing a new

random subset of positive training examples, and re-splitting the negative training

and testing set.

Where parametric classifiers were employed, results are shown for the best param-

eters found. Since cross-validation is problematic for small training sets (especially

with less than six positive examples), the hyperparameters were hand-selected to min-

imize the testing error (i.e., the parametric classifiers were given an unfair advantage

and their performance should likewise be considered an upper-bound). We considered

1No predefined split was available for the Leaves dataset, so it was split randomly into 50%
training and 50% testing examples.
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Gaussian SVM kernels with widths σ ∈ {0.01, 0.1, 1, 10, 100}. The parameter d was

tested with values 1,2, and 3 in the VC boosting variants. In GentleBoost-NI (Gen-

tleBoost with noise injection), ten noisy examples were generated for each training

example, and noise variances σ ∈ {1%, 5%, 10%, 20%, 30%} were considered. Simi-

larly to the 100-round boosting experiments, 100 knockout examples were generated

for Linear SVM-KO.

To convert each image into feature-vectors, 1000 C2 features [56] were used. These

extremely successful features allow us to learn to recognize objects using few training

images, and the results seem to be comparable or better than those reported in [20].

The results are shown in Figure B-1. To facilitate comparison with previous work, the

error at the equilibrium-point between false and true positives was used as the error-

measure. It is clear that for a few dozen examples, all algorithms attain the same

performance level. However, for only a few training examples, GentleBoost does

not perform as well as SVM, while GentleBoost-KO performs significantly better.

The true victors in this experiment were AdaBoost-KO and AdaBoost-NR, which

consistently challenged Linear SVM, even for very few examples.

For clarity, not all classifiers were included in Figure B-1. Table A lists the com-

plete equilibrium error results for all classifiers and training set sizes tested. The

various SVMs failed to demonstrate a marked difference in performance from the

simple linear kernel and were thus omitted. A linear kernel also maintains a low VC-

dimension, which helps to avoid overfitting, and is therefore important when dealing

with a small number of training examples.

Note that we ran the boosting procedures for 100 rounds, which means they used

fewer than 100 features. Compared to the 1000 features used by the SVM classifier,

the boosting classifiers offer a considerable savings in run time.

Experiments Using SIFT Features

We also tried to apply Lowe’s SIFT features [40] to the same data sets, although these

features were designed for a different task. For each image, we used Lowe’s binaries to

compute the SIFT description of each key point. We then sampled from the training
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Error
Algorithm

Air-
Cars Faces Leaves

Motor-
Measure planes bikes

Mean
Error

Linear SVM 0.104 0.019 0.107 0.118 0.033
GentleBoost 0.118 0.036 0.168 0.137 0.026
GentleBoost-KO 0.100 0.033 0.119 0.114 0.023

Error at
Equilibrium

Linear SVM 0.108 0.018 0.111 0.126 0.007
GentleBoost 0.120 0.037 0.166 0.132 0.003
GentleBoost-KO 0.111 0.030 0.136 0.120 0.008

Table 3.2: Mean testing error, and error at equilibrium for Lowe’s SIFT features,
applied to the Caltech data sets. In this table the features were the minimum distance
from the keypoints in the image to the keypoints collected during training.

set 1000 random keypoints k1, . . . , k1000. Let {kI
i } be the set of all keypoints associ-

ated with image I. We represented each training and testing image I by a vector of

1000 elements: [vI(1) . . . vI(1000)], such that vI(j) = mini||kj−kI
i ||. Note that in [40]

the use of the ratio of distances between the closest and the next closest points were

encouraged (and not just the minimum distance). For our application, which disre-

gards all geometric information, we found that using the minimum gives much better

results. For the testing and training splits reported in [21] we produced the results

in Table 3.2. Although we tried several kernels for SVM, they did not outperform

than the linear kernel. GentleBoost seems only slightly worse, and GentleBoost-KO

succeeds in outperforming it. Again, note that the boosting classifiers use less than

one tenth of the features. Unfortunately, all algorithms performed poorly on these

features when few training examples were used. These figures are omitted since a dif-

ference of several percentage points is insignificant when the algorithms only achieve

70% accuracy.

Since SIFT features were not created for the purpose of classifying images of

generic objects, we tried another way to apply them to the Caltech data sets. In the

following experiment we implemented the method of [14], which is based on a text

analysis approach. The SIFT descriptors (128 dimensional vectors) were clustered

into 1000 “vocabulary terms” using k-means. The SIFT keypoints in a new image are

distributed between the clusters using the least Euclidean distance. The frequencies
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Error
Algorithm

Air-
Cars Faces Leaves

Motor-
Measure planes bikes

Mean
Error

Linear SVM 0.111 0.019 0.135 0.173 0.075
GentleBoost 0.436 0.173 0.250 0.378 0.326
GentleBoost-KO 0.386 0.063 0.173 0.237 0.165

Error at
Equilibrium

Linear SVM 0.107 0.018 0.132 0.172 0.076
GentleBoost 0.357 0.169 0.249 0.398 0.335
GentleBoost-KO 0.331 0.061 0.199 0.260 0.173

Table 3.3: Mean testing error, and error at equilibrium for Lowe’s SIFT features
with vocabulary terms, applied to the Caltech data sets. Here a vocabulary of 1000-
keypoint clusters was created using the k-means clustering algorithm. The frequencies
of vocabulary terms in the keypoints of the new image were used as features.

of the terms, i.e., the number of keypoints detected in the new image which belong

to each cluster constitutes the vector passed to the classifier. In a similar manner

to [14] we used linear SVM in our experiments, and compared the performance with

GentleBoost and GentleBoost-KO. The results are reported in Table 3.3. They seem

comparable to the results above using the SIFT features directly.

3.3.2 Car Type Identification

The Car Type data set consists of 480 images of private cars, and 248 images of

mid-sized vehicles (such as SUV’s). All images are 20× 20 pixels, and were collected

from a video stream generated by a Mobileye car detector mounted on the windshield

of a moving car. The task is to learn to identify private cars from mid-sized vehicles,

which has some safety applications. Taking into account the low resolution and the

variability in the two classes, this is a difficult task. The results are shown in Figure 3-

2. Each point of the graph shows the mean error when applying the algorithms to

training sets of different size (between 5 and 40 percent of the data, 30 repetitions

each). The rest of the examples were used for testing. It is evident that for this

specific data set GentleBoost outperforms SVM. Still, GentleBoost-KO does even

better.

Presented in Tab. 3.3.2 are further results obtained using nonlinear SVMs, and
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Figure 3-2: The results for the car types data set, together with example images.
Points indicate the mean and standard error of 30 independent experiments versus
percentile of training images. Note that for this image the vertical axis does not start
at zero.

Table 3.4: Results omitted from the Car Types data set plot (Figure 3-2), including
the best performing polynomial and Gaussian SVM, as well as the Random Forest
method.

Classifier
Train/Test Split

10/90 25/75 40/60

Best Gaussian SVM 29.1 28.2 27.9
Best Polynomial SVM 24.4 9.6 17.9
Random Forest 27.0 21.9 18.8

using the Random Forest (RF) Algorithm [11]. We compare with RF since it is a

recent development in ensemble classifiers, with a lot of experimental support. Note,

however, that RF was not designed to perform feature selection on small data sets2.

Results are also shown for the best Gaussian and polynomial SVM kernels, but again

none outperformed linear SVM.

2RF may not be appropriate for small data sets, because of its out-of-bag method and reliance
on deep CART trees with many branches. Nor does it select relevant features per se.
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3.4 Bioinformatics Experiments

3.4.1 Data Sets of Long and Vega

In order to compare to the results of Long and Vega [39], we recreated their experi-

ments using the five published datasets: ALL-AML, ER, Colon, LN, and Brain, all

available at http://www.cs.columbia.edu/~plong/boost_microarray/. For each

experiment, the biological datasets were randomly split using two-thirds of the exam-

ples for training and the remaining third for testing. The experiments were repeated

100 times independently and the mean testing errors were computed for two cases:

one in which all classifiers were limited to using 10 features and another in which they

were limited to 100 features. The resulting mean error rates are shown in Table 3.5.

The number following VC indicates the setting of the parameter d. The GentleBoost-

KO-VC rows use GentleBoost with both KO and VC modifications. The original

results of Long and Vega are reproduced for comparison in Table 3.6.

It is evident from these results that:

1. GentleBoost has a slight advantage over AdaBoost on these data sets.

2. GentleBoost-KO usually outperformed GentleBoost and GentleBoost-NR.

3. GentleBoost-VC does not beat regular GentleBoost, but the combined GentleBoost-

KO-VC does, and

4. GentleBoost-KO-VC is consistently among the best performing algorithms for

each dataset, but at the cost of an additional parameter.

5. GentleBoost-NR performed about the same as AdaBoost-NR.

6. SVM-RFE and l0-norm SVM performed comparably (worse than Linear SVM,

but that is to be expected).

7. Our SVM-RFE implementation performed much better than Long and Vega’s,

suggesting that there might be a flaw in their results.
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Table 3.5: Results for GentleBoost Variants on the Long-Vega Data Sets

Classifier
Gene ALL-

ER Colon LN Brain
Limit AML

GentleBoost 10 7.3 19.7 20.2 41.2 39.7
GentleBoost-KO 10 4.4 18.8 21.9 41.9 38.2
GentleBoost-NR 10 3.1 20.9 23.3 45.9 41.2
GentleBoost-VC1 10 6.5 20.0 23.1 41.6 43.8
GentleBoost-VC2 10 6.0 21.2 21.0 41.2 38.2
GentleBoost-VC3 10 6.0 20.3 21.2 40.3 38.2
GentleBoost-KO-VC1 10 4.0 18.8 19.0 39.4 39.3
GentleBoost-KO-VC2 10 3.5 19.4 19.3 38.4 39.0
GentleBoost-KO-VC3 10 4.4 18.4 19.5 38.1 35.5
Linear SVM 10 3.7 13.1 18.8 41.9 35.8
l0-norm SVM 10 6.2 20.3 24.5 38.4 39.2
SVM-RFE 10 6.5 25.0 21.0 38.8 40.5

GentleBoost 100 4.8 14.7 22.1 37.2 34.8
GentleBoost-KO 100 2.1 12.5 19.3 36.6 35.8
GentleBoost-NR 100 2.7 12.2 16.9 41.9 35.2
GentleBoost-VC1 100 5.0 12.5 47.9 35.9 49.5
GentleBoost-VC2 100 4.4 14.1 20.7 36.6 38.5
GentleBoost-VC3 100 4.4 13.4 20.7 38.4 39.5
GentleBoost-KO-VC1 100 2.1 13.4 26.9 37.2 46.2
GentleBoost-KO-VC2 100 2.1 12.8 20.2 37.2 38.3
GentleBoost-KO-VC3 100 1.7 13.1 19.5 36.2 36.8
Linear SVM 100 2.5 14.1 17.6 36.6 36.0
l0-norm SVM 100 3.1 20.0 18.1 35.9 35.2
SVM-RFE 100 2.5 17.5 17.4 38.1 34.8

3.4.2 Microarray Data

Data sets. We evaluated the performance of the knockout method for the problem

of gene expression classification on four data sets containing treatment outcome or

status studies. The first was a study of the treatment outcome of patients with dif-

fuse large cell lymphoma (DLCL), here referred to as “lymphoma” [57]. The second

data set came from a study of the treatment outcome of patients with childhood

medulloblastomas [48], here referred to as “brain”. For both sets, positive examples

indicate a successful outcome. The third was a study of the metastasis status of

patients with breast tumors [63], referred to as “breast met”, where positive samples
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Table 3.6: Original Results of Long and Vega

Classifier
Gene ALL-

ER Colon LN Brain
Limit AML

Adaboost 10 6.2 19.9 25.3 40.4 42.3
Adaboost-VC 10 3.9 18.1 24.4 43.8 41.1
Adaboost-NR 10 3.5 19.5 25.1 42.7 41.2
Adaboost-PL 10 7.0 20.6 23.4 36.5 41.9
Arc-x4-RW 10 6.5 19.8 25.0 39.1 41.4
Arc-x4-RW-NR 10 3.3 17.8 24.7 42.1 40.7
SVM-RFE 10 13.4 20.9 19.2 48.4 39.2
Wilcoxon/SVM 10 6.4 23.2 24.3 35.4 39.3

Adaboost 100 5.2 16.1 23.4 35.4 38.2
Adaboost-VC 100 2.8 13.8 22.6 42.8 38.2
Adaboost-NR 100 2.7 13.2 21.9 40.6 36.5
Adaboost-PL 100 5.0 17.2 23.2 36.2 38.6
Arc-x4-RW 100 5.4 16.6 23.7 36.9 38.0
Arc-x4-RW-NR 100 2.6 12.8 21.6 41.1 36.1
SVM-RFE 100 6.5 12.6 20.7 48.1 35.7
Wilcoxon/SVM 100 3.3 17.5 23.6 40.4 37.8

Table 3.7: Microarray Data Set Details

Data Set Dimensions
Positive Negative
Examples Examples

Lymphoma 7129 32 26
Brain 7129 39 21
Breast Metastasis 24624 44 34
Lymph Status 12600 47 43

indicate the patients were disease-free for 5 years after the onset and the negative

examples indicate metastasis within that time period. The fourth is an unpublished

study of breast tumors [50] for which corresponding lymph nodes were either can-

cerous or not, referred to as “lymph status”. The sizes and dimensionality of these

datasets are summarized in Table 3.7.

We tested many algorithms on these datasets, including the original and vari-

ants of SVM, AdaBoost, and GentleBoost. Feature selection was added to Linear

SVM using the Wilcoxon Mann-Whitney test to choose 100 differentially-expressed
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Table 3.8: Mean classification error and standard deviation for 20 independent runs
on randomized (80% training, 20% testing) splits of the microarray data sets. Except
for Linear SVM and Linear SVM-KO, all classifiers were limited to using 100 features.

Classifier
Lymph

Brain
Breast

Lymphoma
Status Metastasis

Linear SVM 37.8±11.7 36.3±13.0 43.3± 11.3 42.5± 16.2
Linear SVM-KO 37.8±11.7 36.3±13.0 43.1± 11.5 42.5± 16.4
Wilcoxon SVM 35.6±12.7 41.7±12.1 48.3± 13.3 47.5± 11.2
l0-norm SVM 40.9±10.4 31.7±11.7 46.7± 11.3 47.9± 15.7
SVM-RFE 36.6± 9.8 31.7±12.9 43.1± 9.5 43.7± 18.1
GentleBoost 36.2±12.1 36.2±12.5 48.6± 10.3 46.2± 16.6
GentleBoost-KO 35.9± 9.0 34.2±10.4 46.7± 9.9 44.6± 15.6
GentleBoost-NR 33.8±10.2 36.2±11.6 47.8± 12.0 46.2± 17.2
GentleBoost-VC1 43.8±11.5 49.2±14.3 48.9± 8.2 41.7± 15.3
GentleBoost-VC2 40.0±11.0 34.2± 8.5 43.3± 9.6 38.7± 11.6
GentleBoost-VC3 37.5±10.3 32.9± 9.5 46.4± 12.1 41.7± 16.7
GentleBoost-KO-VC1 40.9± 9.6 50.4±13.4 43.6± 13.5 39.6± 14.0
GentleBoost-KO-VC2 40.0± 9.2 37.1± 8.8 45.3± 13.4 39.2± 14.1
GentleBoost-KO-VC3 35.6±10.4 34.2±11.8 45.3± 9.4 42.9± 14.9
AdaBoost 37.2±11.9 36.2± 9.9 47.8± 11.9 49.2± 14.5
AdaBoost-KO 37.2±11.9 36.2± 9.9 45.8± 15.6 42.9± 15.1
AdaBoost-NR 33.8±11.2 35.8± 9.8 45.0± 8.8 42.1± 15.9
AdaBoost-VC1 38.4±11.7 36.3± 8.7 51.9± 8.9 41.2± 16.8
AdaBoost-VC2 39.7±10.8 27.1±12.9 49.4± 8.2 53.3± 17.2
AdaBoost-VC3 55.6±10.3 72.5±13.8 48.6± 8.6 57.9± 13.1

genes. GentleBoost and AdaBoost were run with the previously suggested NR and

VC variants (see Section 1.2.3). The number following VC indicates the setting of

the parameter d. The GentleBoost-KO-VC rows use GentleBoost with both KO and

VC modifications. Since microarray data is very difficult to classify, 80% of the data

was used for training, leaving 20% for testing.

Results. For these difficult data sets, there is no clear winner. See Table 3.8

for the mean error measurements. It is apparent from the results that GentleBoost-

KO outperforms the standard GentleBoost and Linear SVM. In general, knockout

helped boosting but had little effect on Linear SVM. SVM-RFE is easily the best

feature selecting SVM on these data sets, with performance very close to Linear

SVM. The NoRepeat (NR) and knockout (KO) variants were close in performance;

AdaBoost-NR was slightly better than AdaBoost-KO, but GentleBoost-KO slightly
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beat GentleBoost-NR.

3.4.3 NMR Spectroscopy

Since biological data sets are hard to create, learning from few examples is a real

issue with biological data. This section was motivated by the need to create a learn-

ing algorithm that can be run and evaluated on the 12 samples available for each

experiment in the following NMR data set.

A group of researchers wished to classify mice according to the number of days

that passed since they received some dosage of a drug. The experiment lasted several

days and urine samples were collected from each mouse twice daily. The drugs were

administered just after the first PM sample was taken at day 0. The spectrum of the

resulting NMR test contains 198 frequencies, each giving rise to one feature vector.

Our task was to find a good classifier and to locate some bio-markers that can be

used to design a simple urine test. For each dose there were only 6 mice, resulting

in a total of 12 examples for each experiment. The boosting variants were run for

100 rounds or the selection of 20 distinct features, whichever came first, with results

summarized in Table 3.9. For SVM, GentleBoost and GentleBoost-KO we measure

the leave-one-out (LOO) classification error. While LOO has a large variance, we

were forced to use it due to the low number of examples.

It is no surprise that Linear SVM performed the best on these few examples. SVM-

RFE and l0-norm SVM both managed to perform as well as the standard Linear SVM

while using less features. The Wilcoxon SVM performed poorly, however. The results

show a clear advantage of the GentleBoost-KO algorithm over GentleBoost, but the

best boosted classifier is clearly AdaBoost-KO with a mere six LOO errors. Knockout

does not help SVM in this case, but definitely improves GentleBoost-VC, which seems

unstable without it.
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Table 3.9: LOO errors (out of a possible 12) for three classifiers on the NMR data set.
The positive examples were taken on Day I, and the negative on Day II. After one
day, a low dose is easy to detect. At day two, the body is almost back to normal; day
three is very difficult. The effect of a high dose is maximal only after several days.

Dose Low Medium High
Day I 0 0 0 0 0 0 0 0 0

Algorithm Day II 1 2 3 1 2 3 1 2 3

Linear SVM 0 2 1 0 0 0 0 0 0
Linear SVM-KO 1 5 1 0 0 1 1 0 0
l0-norm SVM 1 1 1 0 0 0 0 0 0
SVM-RFE 0 2 1 0 0 0 0 0 0
Wilcoxon SVM 0 5 6 0 0 0 1 0 0
AdaBoost 0 7 5 4 8 3 4 2 0
AdaBoost-KO 0 1 2 0 0 3 0 0 0
AdaBoost-NR 0 5 2 0 0 3 0 0 0
AdaBoost-VC1 0 7 5 4 8 3 4 2 0
AdaBoost-VC2 12 4 5 8 4 9 8 10 12
AdaBoost-VC3 12 6 8 8 4 9 8 10 12
GentleBoost 0 7 3 3 7 4 4 1 0
GentleBoost-KO 0 3 4 0 1 0 0 0 0
GentleBoost-NR 0 3 3 0 0 2 0 0 1
GentleBoost-VC1 0 6 3 3 6 4 4 1 0
GentleBoost-VC2 0 5 3 3 6 4 4 1 0
GentleBoost-VC3 0 5 3 3 7 4 4 1 0
GentleBoost-KO-VC1 0 5 4 0 1 0 0 0 0
GentleBoost-KO-VC2 0 4 4 0 1 0 0 0 0
GentleBoost-KO-VC3 0 5 4 0 1 0 0 0 0

3.4.4 High-Throughput Docking

In high-throughput docking (HTD) classification, one tries to predict the activity

level of compounds against a protein target of interest in an attempt to identify

novel compounds that elicit a desired biological response. A typical data set contains

millions of compounds, and the number of features (describing the chemical and

geometrical properties of the compounds) is in the thousands.

The initial experiments we present are on a data set recommended to us by [35]. It

contains a subset of 2305 compounds that were pre-filtered using commercial software.

Of these components, 230 are HIV-1 protease inhibitors, and the rest are inactive.

Since the actual verification of the results is time-consuming, it is desirable to reduce
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Figure 3-3: Classifier Performance on the HTD Data

the number of components returned even further. Hence, an appropriate error mea-

sure is the percentile of true components recovered out of those predicted with the

highest scores.

Results. See Figure 3.4.4 for a plot of mean error vs. percentage of examples used

for training for each classifier considered. Since Linear SVM and Linear SVM-KO

performed indistinguishably, only Linear SVM is shown. The Gaussian SVM used

the best kernel width from γ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103}, and the VC

lines represent the best performing classifier using parameter d ∈ {1, 2, 3}.

It is clear that this type of data is best characterized by the Gaussian SVM. The

best-performing boosted classifier was GentleBoost-NR, followed closely by GentleBoost-

KO. They both show performance comparable to Linear SVM, even with few ex-

amples. AdaBoost does not work nearly as well as GentleBoost on this data, but

knockout still helps it significantly. Once again, the VC variants appear to be very

unstable and exhibit very poor performance for few examples. The Wilcoxon feature

selection for SVM also performed poorly.

58



3.4.5 Conclusion

It is evident that feature knockout usually helps the algorithms to which it is applied.

NR and KO variants seem to perform better than other boosting variants through

encouraging redundancy in the resulting classifier. Where traditional boosting algo-

rithms tend to overfit, GentleBoost-KO works well regardless of the amount of train-

ing examples. The VC variants of both AdaBoost and GentleBoost did not perform

as well on the datasets considered. Even though GentleBoost-KO-VC demonstrated

some of the best performance in a few cases, the VC variants in general are suspi-

ciously unstable for few examples, and are recommended for use with only medium

or large size datasets as a result.

Our experimental evidence shows that KO is difficult to imitate in a deterministic

manner. Noise injection was used to regularize unstable algorithms a decade ago;

in its new form (KO) it can be used to prevent the overfitting of state-of-the-art

algorithms. It enables these classifiers to be used on Bioinformatics data sets that

are noisy and contain very few examples.
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Chapter 4

Patch-Based Texture Edges

4.1 Introduction

The detection of image edges has been one of the most explored domains in computer

vision. While most of the effort was aimed at the detection of intensity edges, the

study of color edges and the study of texture edges are well developed fields as well.

The dominant approach in texture edge analysis is to construct a description of

the local neighborhood around each pixel, and then to compare this descriptor to

the descriptors of nearby points. This approach is often referred to as “patch-based”

since a fragment surrounding each pixel is used to compute its filter output. In this

work, however, the term “patch-based” is quite distinguishable: It means that the

gray values of the patch are used as is, and that the basic operation on patches is

the comparison of two patches using image correlations measures, such as normalized

cross correlation between the gray values, or their Euclidean distance.

What makes this approach novel for texture edge detection is that since texture

is a stochastic property, this kind of descriptor would be traditionally considered

unfit. In other words, since the gray values of two neighboring patches from the same

texture could be very different, most researchers search for more elaborate descriptors.

This is in contrast to the dominant trend in current texture synthesis research, where

patches of the original texture are stitched together in order to generate a new texture

image, a trend that seems to be much more successful than the best descriptor based
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methods.

The main idea of this work is simple to grasp: if a point lies on the left-hand side

of a texture edge, the distribution of similarities of the patch centered at this point to

the patches on its left is different from the distribution of similarities to the patches

on its right. Detection of the texture edges can therefore be achieved by examining

these differences in similarity distributions.

As we will show in this chapter, sampling from the distributions of similarities

can be done very efficiently. In order to estimate whether the distributions are the

same, we use a non-parametric test called the Wilcoxon Mann-Whitney Test [66]. It

is similar to the t-test but performs well even for small sample sizes with unknown

distributions. This test was used previously for SVM feature selection in Section 3.4.2.

In contrast to intensity edges, which have many uses in computer vision, texture

edges have been used primarily for image segmentation. In order to make this work

complete, we couple it together with a segmentation scheme. Since texture edges are

often gapped, we use a hybrid deformable model to capture the image contour. This

type of deformable model borrows the best features from traditional parametric de-

formable models [34, 59] and geometric level-set based deformable models [13, 43], and

enjoys the advantage of bridging over gaps in contours, topology freedom during evo-

lution, and fast convergence. In particular, the model shape is implicitly represented

in a higher dimensional space of distance transforms as a distance map “image,” and

model deformations are efficiently parameterized using a space warping technique:

the Free Form Deformations (FFD) [1, 3] based on cubic B-splines.

4.2 Related Work

Below we discuss traditional texture segmentation approaches, the emerging patch-

based techniques, and explain the background of the statistical tests we employ.
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4.2.1 Feature-Based Texture Edge Detection and Segmenta-

tion

Traditional methods for texture analysis are often grouped into three major categories:

statistical, structural and spectral. In the statistical approach, texture statistics (e.g.,

moments of the gray-value historgram, or co-occurrence matrices) serve as texture

descriptors. In structural approaches, the structure is analyzed by constructing a set

of rules that generates the texture. In spectral approaches, the texture is analyzed in

the frequency domain.

In contrast to the wealth of approaches suggested in the past, the last decade was

dominated by the filter bank approach, to which we will suggest an alternative.

“There is an emerging consensus that for texture analysis, an image should

first be convolved with a bank of filters tuned to various orientations and

spatial frequencies.”[23]

Of the many contributions that employ banks of filters, the most common set

of filters used seems to be the Gabor filters [22, 31, 32, 23, 42, 53]. We would like

to especially mention the work of [53] which, like our work, emphasizes the detec-

tion of texture edges, and not texture segmentation. In relation to our work, we

would also like to point out that non-parametric tests have been used in the past

for texture segmentation, [31, 32], where nearby blocks of the image were grouped

together if the distributions of filter outputs in those blocks were not statistically dis-

tinguishable. Similarly to our work, the statistical distinguishability was measured

by using non parametric tests: [31] used the the Kolmogorov-Smirnov distance and

[32] used the χ2 statistic. On a more abstract level we find relation to the work

of [26] in which characteristics of small segments in the image are used as part of

the texture description in addition to filter banks. These segments are localized as

part of a bottom-up approach. We conjecture that, similar to the move in object

recognition from semantic-object-parts to patches at random locations [61], patches

from textured areas may prove to be similar in strength to identified sub-segments

for texture segmentation (of course, we cannot use shape descriptors, since the shape
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is not given).

4.2.2 Patch-Based Methods

The filter bank approach was popular in the field of texture synthesis as well (e.g.,

[30, 49]), up until the advent of the patch based methods. In the few years since

its publication [19, 37], the patch-based method has dominated the field of texture

synthesis.

The basic use of the patch for texture synthesis consists of stitching together small

overlapping patches of the input texture, such that their boundaries overlap (i.e., the

gray value differences at the boundaries are minimal). This results in a new texture

image, which seems to match the original texture in appearance, and has similar

statistical properties. A similar approach was used for super-resolution [24] and for

class-based edge detection [8]. The success of the patch-based methods has been

extended to image completion [17] and to image denoising [2].

Patch-based methods were also recently shown to be extremely successful in object

recognition [61, 60]. Similarities between patches taken from training images, and

patches of the image to be classified, seem to be extremely powerful in discriminating

between the object classes.

4.2.3 Non-Parametric Statistical Tests

Non-parametric statistical tests are preferred over their parametric counterparts when

certain assumptions about the data cannot be made. For example, the two sample t-

test assumes that the difference between the two independent samples it is applied to

is normally distributed, while its non-parametric analog, the Wilcoxon Mann-Whitney

test [66, 58], does not.

The Wilcoxon Mann-Whitney Test is one of the most powerful of the non-parametric

tests for comparing two samples. It is used to test the null hypothesis that two sam-

ples have identical distribution functions against the alternative hypothesis that the

two distribution functions differ only with respect to location (median), if at all. This
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Given two vectors of samples va and vb, of lengths na and nb

we wish to find a measure for the similarity of the underlying
distributions.

1. Combine the samples into one vector of length na + nb and sort
this vector.

2. Each observation in the combined vector has a rank. The first
observation has a rank of 1, the second has a rank of 2, etc.

3. Let wa be the sum of all of the ranks of elements originating
from the vector va, and let wb be a similar sum for vb.

4. Use the statistic w = min(wa, wb) to determine if the two dis-
tributions are different. Very low values of w suggest they are.

Figure 4-1: The Wilcoxon Mann-Whitney Test

test can also be applied when the observations are ranks, that is, ordinal data rather

than direct measurements.

This test has several advantages that make it especially suitable for out applica-

tion. First, it is valid for data from any distribution and is robust to outliers. Second,

it reacts to differences both in the location of the distributions (i.e., to the difference

of their median), and to the shape of the distributions. The test is well known, but

since it is uncommon in computer vision circles, we include a description of it in

Figure 4-1.

4.3 Patch-Based Texture Edge Detection

Our extremely simple method is illustrated in Figure 4-2. In essence, it tests whether

a point in the image (x, y) is near a texture edge. Assume a situation where the

point (x, y) is not near a texture edge. In this case the similarities between the patch

surrounding (x, y) and the nearby patches to its left and right are drawn from the same

distribution. In our experiments we measure similarities (or rather dissimilarities) by

simply computing the Euclidean distance between the patch at (x, y) and the nearby
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Figure 4-2: An illustration of the patches near the center patch that are used in order
to compute the similarity distributions. Four distributions are sampled: Dup, Ddown,
Dleft and Dright. The pixel at the center would be considered to lie on a texture edge
if, according to the Wilcoxon Mann Whitney test, the distribution Dup is determined
to be different from the distribution Ddown, or if Dleft is determined to be different
from Dright.

patches. Our use of the actual image patch as a template, instead of a predefined

filter bank, has the potential to be very sensitive to changes in the local texture.

Let Dright,Dleft be the distributions of similarities between the patch around (x, y)

and the nearby patches. If there is a texture edge on the left side of (x, y), it is natural

to expect the distributions Dright and Dleft to be different. For example, it might be

reasonable to assume larger similarities within Dright.

In order to find whether the two distributions are the same, we sample patches

slightly to the left and to the right of the point (x, y). In the experiments we used a

maximum distance of 15 pixels, and sampled at each pixel. We therefore sampled 15

similarities from each distribution. This small sample size, and the unexpected nature

of the probability distribution of the similarities, make parametric tests inappropriate.

As mentioned above, we use the Wilcoxon Mann-Whitney test, which excels for

samples small in size, and assumes very little about the nature of the distributions.

The horizontal edge points are those points for which the test determines that the two

distributions Dright and Dleft are different. The same process is then applied vertically,

and two similar distributions Dup and Ddown are compared. For our application we
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Figure 4-3: Profile of the edges obtained using our method. Left: the original part
of the image. Middle: the texture edge we get. Right: the profile as a 2D plot. Note
that the profile has a double edge effect, but it is rather minimal.

combine the two edge directions by taking the minimum value returned for the two

tests.

Note, that since measurements from patches as far as 15 pixels away affect the

distribution, we can expect the test score to change gradually. Moreover, since when

(x, y) lies exactly on a texture edge, the patch around it is a hybrid patch, composed

of two textures, we expect the difference between the distributions to be lower exactly

at the edge. It turns out that for the small patch size we used in the experiments

(3 × 3 pixels), these concerns did not affect the texture edges dramatically. This is

demonstrated in Figure 4-3 with plots of several edge profiles.
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Figure 4-4: An illustration of the efficient method to sample the four distributions
using vector operations. To sample all patch similarities at once (for all of the patches
which are ∆x pixels to the right or to the left), a copy of the image is translated by
∆x pixels, and then subtracted from the original image. The difference is squared,
and then summed at each patch in the image, which is a separable operation.

4.3.1 Efficient Computation

Every pixel in the image contributes to many patches, which are in turn compared

with many overlapping patches. A näıve implementation would compute the differ-

ence of the same two pixels multiple times. Also, in some programming environments

or hardware configurations (e.g., Matlab, designated graphics hardware), vector com-

putations are done more efficiently than the repeated index-by-index computation.

The implementation we suggest is illustrated in Figure 4-4, and is based on com-

puting all of the patch comparisons to patches at a distance of k in either the vertical

or horizontal direction at the same time. In order to do so, one only needs to trans-

late the image k pixels in either the horizontal or vertical direction, and subtract the

resulting image from the original image. Since we are interested in the Euclidean

distance, we square each value in the difference image, we then sum across all patches

in the difference image. Since the summing operation can be performed as a separable

convolution (i.e., can be done first in the horizontal direction, then vertically), the

procedure can be made extremely efficient.

4.3.2 Flux

Below, we describe a method which was designed to circumvent concerns regarding

double-edge detection. The method is based on the idea of the gradient flux [9],
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Figure 4-5: An alternative architecture using the flux idea. A pixel would not be on
a texture edge if the similarity of points along a circle around it are as likely to be
similar to points inside the circle, as they are to points outside the circle. For each
point on the circle of radius r, the similarity of the patch around it is compared to
patches along the line of length 2l which passes through the center point and the
point on the circle. l = 2r in the figure, but this does not have to be the case. We
then keep a record of whether the closest patch was inside or outside the circle. For
points that do not lie on a texture edge, the number of inside votes should be close
to the number of outside votes.

where a medial axis transform is found by computing the distance transform of a

shape, and finding the points for which the gradient flux (the sum of all gradients

at the boundary of a small circle surrounding a point) is zero. Since on the medial

axis the distances to the boundaries on both sides are equal, the gradients along the

boundary of the circle will cancel each other.

Imagine the patches at a circle around (x, y) as being pulled to the most similar

patch which is up to some distance away from them. The following process is illus-

trated in Figure 4-5. A circle of patches is drawn around the points (x, y), at a radius

r. Each patch around a point on the circle’s boundary is compared with patches along

a line that connects the point on the circle and the point (x, y) (the circle’s center).

More concretely, the patch on the circle’s boundary is compared with patches along

that line that are at a distance up to l from the boundary, either inside or outside

the circle.

If the circle is well within a uniform texture region, we can expect that the patch

which most closely resembles the patch at the boundary will be either inside or out-
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side the circle, with equal probabilities. We keep a record for each point along the

boundary that states whether the closest patch to it was inside or outside the circle.

Sampling such points, in their natural order along the boundary of the circle, re-

sults in a sequence of the form [in, out, in, in, out, in, . . .]. In order to check whether

this sequence is random or not, we can apply any ordinal statistical score of random-

ness (a method which relies on the order of elements). An example for such a score

is the Wilcoxon score, on top of which the Wilcoxon Mann-Whitney test is designed.

This solution is not optimal though, since it depends on where we started to sample

the circle (the direction is irrelevant in the ordinal tests we are aware of). We there-

fore take a maximum of the score over all possible starting points. A much simpler

alternative is to just count whether the number of “in” equals the number of “out.”

The flux-based method described here, though able to better handle the double

edge problem, and perhaps more correct than the “grid” method we described first

(Figure 4-2), is too computationally expensive. The increased accuracy we observed

in our experiments did not justify the extra computational time spent. Therefore, in

our experiments, we present results using the grid method which is much faster.

4.4 The Free-Form Deformable Model

The detected texture edges can be coupled with a hybrid deformable model that

moves in the manner of free form deformations to achieve segmentation over the

entire image domain.

The Euclidean distance transform is used to implicitly embed an evolving model

as the zero level set of a higher dimensional distance function [46]. If we denote the

model asM, and the implicit model representation as a distance map ΦM, then the

shape defines a partition of the image domain: the region enclosed byM, [RM]; the

background region [Ω−RM]; and the model itself, [∂RM], which corresponds to the

zero level set. Such model shape representation provides a feature space in which

objective functions that are optimized using a gradient descent method are stable

enough to use.
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The deformations that a model can undergo are defined using a space warping

technique: the Free Form Deformations (FFD) [55]. In essence, FFD deforms an ob-

ject by manipulating a regular control lattice F overlaid on its volumetric embedding

space. In the Incremental Free Form Deformations (IFFD) formulation used in [33],

the deformation parameters q are the deformations of the control points in both x

and y directions:

q = {(δF x
m,n, δF

y
m,n)}; (m, n) ∈ [1, M ]× [1, N ],

where the control lattice is of size M×N . The deformed position of a pixel x = (x, y)

is given by D(q;x) = x+ δD(q;x). Given the deformation of the control lattice from

F 0 to F , it is defined in terms of a tensor product of Cubic B-spline polynomials:

D(q;x) =
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(F 0
i+k,j+l + δFi+k,j+l), (4.1)

where i = b x
X
· (M − 1)c+ 1, j = b y

Y
· (N − 1)c+ 1.

To find texture region boundaries given a simple-shape model initialized around

a seed point, the dynamics of the free-form deformable model are derived from edge

energy terms. Instead of intensity edges which fail to separate textured regions, we

use the texture edges computed using our patch-based method above. Since true

edges between different texture regions correspond to low values on our texture edge

image It, we define a boundary data term that encourages model deformations that

map the model boundary to pixel locations with smallest values on It. This energy

term Eb is defined as follows:

Eb =
1

V (∂RM)

∫∫
∂RM

(
It(D(q;x))

)2
dx,

where V (R) represents the volume of a region R.

The above boundary term Eb can help the model to converge to the exact edge

location where the difference between two neighboring texture patches is maximized.

However, it may cause the model to get stuck in local minima when the model is
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initialized far-away from the true boundary. To address this problem, we compute a

binary edge map by thresholding on the texture edge image It. We encode this edge

information by computing the un-signed distance transform of the edge map. The

resulting distance map image is denoted by Φe. We then define another data term

Ee which aims to minimize the sum-of-squared-differences between the implicit shape

representation values both on the model and inside the model and the underlying

distance values on Φe at corresponding deformed positions. This can be written as:

Ee =
1

V (R)

∫∫
R

(
ΦM(x)− Φe(D(q;x))

)2
dx,

where R = RM ∪ ∂RM. During optimization, when the model is still far-away from

the true edges, this term serves as a two-way ballooning force that expands or shrinks

the model along the gradient direction of Φe. At an edge with small gaps, this term

also constrains the model to follow the “geodesic” path (i.e., with the shortest smooth

path connecting the two open ends of a gap).

Combining the two data terms – the boundary term Eb and the thresholded edge

term Ee, the overall energy functional is: E = Eb + kEe, where k is a constant

balancing the contributions from the two terms. We are able to omit an explicit

model smoothness term here because of the strong implicit smoothness constraints

imposed by FFD.

Both terms are differentiable with respect to the free-form-deformation parameters

q, and a gradient-descent based method is used to derive the model evolution equation

for each element qi in q:
∂E

∂qi
=

∂Eb

∂qi
+ k

∂Ee

∂qi
, (4.2)

where
∂Eb

∂qi
=

1
V (∂RM)

∫∫
∂RM

2It(D(q;x)) ·
(
∇It(D(q;x)) · ∂

∂qi
D(q;x)

)
dx

∂Ee

∂qi
=

1
V (RM ∪ ∂RM)

∫∫
RM∪∂RM

2
(
ΦM(x)− Φe(D(q;x))

)
·
(
−∇Φe(D(q;x)) · ∂

∂qi
D(q;x)

)
dx

In the above formulas, the partial derivatives ∂
∂qi

D(q;x) can be easily derived from

the model deformation formula in Eq. 4.1.
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The whole image is processed in the following manner: the first region is segmented

by starting a deformable model at the center of the image. Another point well outside

the first region is then used to initialize a second model, and a second region is

segmented. The process continues until almost all of the points in the image are

segmented. In the case where a new region grows into an old region, the two regions

are joined together.

4.5 Experiments

Below we present our experiments. We would like to stress that all the results were

obtained by using texture edges alone. We did not use intensity edges or color infor-

mation. While these could be easily incorporated into our FFD framework by adding

terms to the energy function, we avoided this in order to demonstrate the power of

our texture analysis method.

4.5.1 Comparing methods for texture edge detection

The main purpose of these experiments is to demonstrate that Gabor based filter

bank methods cannot be easily altered to local methods of deriving texture edges.

Indeed, in [31, 32] a global clustering method was used to combine regions based

on the filter bank descriptors; in [53] a method based on anisotropic diffusion in the

direction of the global principle direction was suggested; in [26] the filter bank output

was integrated along a region and was modified with statistics on the shape of small

segments. One can also refer to the text of [53, 26], where the limitations of the local

filter bank measurements are discussed.

In Figure 4-6, we compare our method, the Canny edge detector, and a method

based on [32], where for each pixel we plot the maximum difference (using the original

parameters and distance measure) of the block around it to the nearest four blocks.

The results are similar if the Wilcoxon Mann-Whitney test is used instead of χ2. As

can be seen, this “alternative” is not doing well at all. Further evidence can be found

in Figure 4-a of [53].
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(a) (b) (c) (d)

Figure 4-6: Comparison of edge detection performed on the original gray images (a),
using the Canny edge detector (b), filter bank dissimilarity based on [32](c), and our
method (d).

4.5.2 Experiments on Texture Mosaics

Next, we show results on the texture mosaic images constructed by the authors of [32],

which are available online at http://www-dbv.cs.uni-bonn.de/image/mixture.

tar.gz. This data set contains mosaics generated from a set of 86 micro-patterns

from the Brodatz texture album [12]. Each image contains 5 random textures out of

this set, and is of size 512× 512.

As mentioned above, the parameters were fixed to a patch size of 3 × 3 and to

a sample size of 15 in each direction. The process of retrieving the edges is very
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(a) (b) (c)

Figure 4-7: Results of our edge detection and texture segmentation methods on several
mosaics constructed by the authors of [32]. (a) the original images. (b) the recovered
texture edges. (c) the resulting segmentation.

efficient, and our Matlab implementation can detect edges for such an image in under

five seconds.

The results on the several challenging (with regard to their lack of intensity edges)

images in this data set are presented in Figure 4-7.

Real image experiments In Figure B, we present experiments on images taken

from the first 25 grayscale testing images of the Berkeley Segmentation Dataset1. The

figure illustrates the original images, the recovered texture edges, and the resulting

segmentation. The dark area below the wolf in the top-right image is due to an

artificial texture created by the image being uniformly saturated (a maximum inten-

sity of 255) in that region. Since the neighboring distributions are homogeneous, the

1http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Wilcoxon test fails to mix them during sorting and judges the whole region to be a

texture boundary. This can be avoided by first randomly sorting the distributions

before applying the Wilcoxon test. The images in the lower right demonstrate the

detection of texture edges that also constitute intensity edges. We did not use any

intensity edges, but as can be seen in the first image, edges between regions of uniform

but different intensities are detected by our method.

4.6 Summary and Conclusions

The patch based technologies, which are based on local gray value representations

and correlations between gray values, have proven to be successful in many com-

puter vision domains, and suggest an appealing alternative to filter bank approaches.

While there is no doubt that their recent proliferation is partly due to the increasing

computational power available, the representation itself seems inherently powerful.

We used patches in order to compute texture edges. The edge representation (as

opposed to a representation of regions using some form of descriptor) is powerful in

that it can be readily combined with global optimization based-segmentation (e.g.

“snakes”). Most energy-based methods do not deal with texture edges. Attempts

that have been made in the past to incorporate texture into these methods used

simple texture descriptors such as mean intensity of a region or the variance of the

intensity in that region [47, 52], and were computationally expensive.

By using our patch-based texture edge detection technique, combined with Free-

Form Deformations, we are able to suggest a tractable solution, which enjoys both

rich texture information, and the advantages of a global solution. These advantages

include the detection of a smooth boundary, which is globally salient. We focused

mainly on texture edges, but one can easily add the traditional energy terms for

intensity edges and color edges to the framework described, making it complete for

image segmentation. This completeness was available in the affinity based approaches,

but not in the energy-based methods.
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Table A.1: Performance Comparison on UCI Repository Data Sets
Set Classifier

Mean Variance Feat.
Error Bias.–Unb.= Net Used

A
r
r
h
y
t
h
m
ia

Linear SVM 37.0± 6.0 0.05– 0.03= 0.02 279.0
Linear SVM-KO 36.6± 5.4 0.05– 0.03= 0.01 279.0
SVM-RFE 36.0± 3.6 0.08– 0.05= 0.03 140.0
Gaussian SVM 48.9± 4.4 0.00– 0.00= 0.00 45.0
AdaBoost 42.1± 5.7 0.26– 0.22= 0.03 14.4
AdaBoost-KO 37.9± 3.9 0.16– 0.12= 0.04 41.4
AdaBoost-NR 39.1± 3.4 0.08– 0.06= 0.03 100.0
AdaBoost-VC 46.9± 6.2 0.62– 0.59= 0.03 1.1
GentleBoost 36.7± 3.6 0.15– 0.10= 0.05 43.4
GentleBoost-KO 34.5± 2.5 0.07– 0.04= 0.02 127.3
GentleBoost-NR 36.8± 3.5 0.10– 0.06= 0.04 100.0
GentleBoost-VC 48.0± 5.0 0.30– 0.30=-0.00 6.9
GentleBoost-KO-VC 34.3± 2.6 0.06– 0.04= 0.02 93.3
GentleBoost-NI 33.4± 3.9 0.14– 0.09= 0.05 47.0

Set
Mean Variance Feat.
Error Bias.–Unb.= Net Used

D
e
r
m
a
t
o
l
o
g
y

0.8± 1.0 0.32– 0.01= 0.31 34.0
1.1± 1.5 0.26– 0.01= 0.25 34.0

15.1±13.3 0.20– 0.07= 0.13 17.0
13.3± 4.3 0.09– 0.04= 0.06 34.0
2.4± 1.5 0.76– 0.65= 0.11 2.2
1.7± 1.7 0.40– 0.05= 0.36 12.2
1.1± 1.3 0.17– 0.01= 0.16 34.0
2.5± 1.7 0.71– 0.65= 0.06 2.1
2.3± 1.5 0.58– 0.49= 0.09 5.6
0.8± 1.1 0.19– 0.01= 0.19 27.3
2.6± 2.7 0.29– 0.03= 0.27 34.0
9.1±20.9 0.15– 0.49=-0.34 6.9
0.5± 0.4 0.35– 0.01= 0.34 26.3
1.2± 1.3 0.57– 0.21= 0.37 9.8

Set Classifier
Mean Variance Feat.
Error Bias.–Unb.= Net Used

E
.c

o
l
i

Linear SVM 10.4±12.2 0.34– 0.22= 0.12 7.0
Linear SVM-KO 6.9± 3.8 0.54– 0.23= 0.31 7.0
SVM-RFE 7.7± 4.4 0.73– 0.43= 0.30 4.0
Gaussian SVM 4.9± 2.1 0.53– 0.25= 0.28 7.0
AdaBoost 9.9± 2.6 0.64– 0.45= 0.19 3.9
AdaBoost-KO 9.3± 2.2 0.59– 0.27= 0.32 5.8
AdaBoost-NR 12.8± 3.8 0.44– 0.22= 0.22 7.0
AdaBoost-VC 14.3± 4.0 0.74– 0.71= 0.04 1.9
GentleBoost 8.0± 2.4 0.61– 0.40= 0.21 4.6
GentleBoost-KO 6.2± 1.7 0.57– 0.23= 0.35 6.1
GentleBoost-NR 12.6± 6.9 0.44– 0.21= 0.24 7.0
GentleBoost-VC 29.7±18.6 0.14– 0.26=-0.13 4.3
GentleBoost-KO-VC 28.1±20.8 0.41– 0.28= 0.12 6.1
GentleBoost-NI 5.7± 1.7 0.49– 0.24= 0.25 7.0

Set
Mean Variance Feat.
Error Bias.–Unb.= Net Used

G
l
a
ss

45.8± 6.0 0.23– 0.22= 0.01 8.0
42.4± 5.9 0.31– 0.28= 0.03 8.0
48.3± 4.6 0.24– 0.24= 0.00 4.0
39.7± 8.0 0.17– 0.23=-0.06 8.0
40.6± 8.9 0.44– 0.38= 0.07 5.2
42.5± 5.9 0.35– 0.27= 0.08 7.9
38.6± 7.0 0.30– 0.28= 0.02 8.0
46.4±13.9 0.67– 0.69=-0.02 1.4
39.9± 7.6 0.34– 0.32= 0.03 6.1
34.9± 6.6 0.34– 0.26= 0.08 8.0
37.7± 6.0 0.33– 0.28= 0.05 8.0
42.3± 9.2 0.31– 0.31=-0.00 5.4
38.3± 5.3 0.26– 0.26=-0.00 8.0
32.7± 6.8 0.39– 0.36= 0.04 6.3

Set Classifier
Mean Variance Feat.
Error Bias.–Unb.= Net Used

H
e
a
r
t

Linear SVM 26.6± 4.2 0.36– 0.18= 0.18 13.0
Linear SVM-KO 24.9± 4.1 0.33– 0.19= 0.14 13.0
SVM-RFE 24.7± 4.2 0.41– 0.27= 0.14 7.0
Gaussian SVM 48.7± 3.6 0.05– 0.06=-0.00 13.0
AdaBoost 26.2± 4.0 0.46– 0.32= 0.15 6.5
AdaBoost-KO 24.2± 3.5 0.33– 0.18= 0.15 10.9
AdaBoost-NR 24.3± 2.6 0.28– 0.15= 0.13 13.0
AdaBoost-VC 36.0±14.5 0.76– 0.72= 0.05 2.1
GentleBoost 28.8± 7.3 0.32– 0.24= 0.08 7.3
GentleBoost-KO 24.1± 2.3 0.33– 0.16= 0.17 13.0
GentleBoost-NR 25.4± 4.0 0.32– 0.16= 0.17 13.0
GentleBoost-VC 37.9±10.6 0.10– 0.12=-0.02 6.7
GentleBoost-KO-VC 39.2± 8.2 0.16– 0.15= 0.01 11.5
GentleBoost-NI 23.9± 3.5 0.29– 0.17= 0.12 12.2

Set
Mean Variance Feat.
Error Bias.–Unb.= Net Used

H
o
u
si

n
g

17.5± 2.2 0.46– 0.27= 0.19 13.0
17.0± 2.6 0.39– 0.22= 0.17 13.0
19.6± 2.7 0.52– 0.34= 0.18 7.0
37.6± 5.8 0.12– 0.15=-0.03 13.0
17.2± 2.1 0.54– 0.34= 0.20 5.5
17.3± 2.8 0.37– 0.19= 0.18 9.9
18.9± 3.7 0.27– 0.13= 0.14 13.0
20.3± 4.6 0.65– 0.53= 0.12 3.0
18.8± 3.0 0.40– 0.22= 0.18 10.7
17.5± 1.8 0.38– 0.15= 0.24 13.0
19.0± 4.2 0.34– 0.14= 0.20 13.0
42.4± 9.7 0.14– 0.21=-0.07 4.6
43.2±14.0 0.12– 0.14=-0.02 12.5
17.6± 1.8 0.39– 0.19= 0.21 12.6

Set Classifier
Mean Variance Feat.
Error Bias.–Unb.= Net Used

L
e
t
t
e
r
s

Linear SVM 17.5± 2.2 0.46– 0.27= 0.19 13.0
Linear SVM-KO 17.0± 2.6 0.39– 0.22= 0.17 13.0
SVM-RFE 19.6± 2.7 0.52– 0.34= 0.18 7.0
Gaussian SVM 37.6± 5.8 0.12– 0.15=-0.03 13.0
AdaBoost 17.2± 2.1 0.54– 0.34= 0.20 5.5
AdaBoost-KO 17.3± 2.8 0.37– 0.19= 0.18 9.9
AdaBoost-NR 18.9± 3.7 0.27– 0.13= 0.14 13.0
AdaBoost-VC 20.3± 4.6 0.65– 0.53= 0.12 3.0
GentleBoost 18.8± 3.0 0.40– 0.22= 0.18 10.7
GentleBoost-KO 17.5± 1.8 0.38– 0.15= 0.24 13.0
GentleBoost-NR 19.0± 4.2 0.34– 0.14= 0.20 13.0
GentleBoost-VC 42.4± 9.7 0.14– 0.21=-0.07 4.6
GentleBoost-KO-VC 43.2±14.0 0.12– 0.14=-0.02 12.5
GentleBoost-NI 17.6± 1.8 0.39– 0.19= 0.21 12.6

Set
Mean Variance Feat.
Error Bias.–Unb.= Net Used

S
e
g
m
e
n
t
a
t
io

n

12.0±11.0 0.34– 0.16= 0.18 19.0
10.4±10.0 0.33– 0.15= 0.17 19.0
16.6±12.1 0.43– 0.20= 0.24 10.0
14.3± 1.0 0.00– 0.00= 0.00 19.0
5.9± 4.5 0.37– 0.23= 0.14 4.3
6.8± 3.8 0.24– 0.08= 0.16 11.4
9.0± 3.3 0.19– 0.05= 0.14 19.0
6.7± 3.3 0.27– 0.31=-0.04 1.1
6.6± 3.6 0.31– 0.18= 0.13 5.5
6.1± 4.4 0.10– 0.03= 0.08 18.0

10.0± 3.8 0.18– 0.04= 0.15 19.0
9.5± 5.3 0.42– 0.28= 0.14 5.8
9.6± 4.7 0.22– 0.07= 0.15 17.9
6.3± 3.5 0.31– 0.16= 0.15 5.7

Set Classifier
Mean Variance Feat.
Error Bias.–Unb.= Net Used

W
in

e

Linear SVM 11.4± 4.0 0.38– 0.17= 0.21 13.0
Linear SVM-KO 9.7± 4.0 0.36– 0.14= 0.22 13.0
SVM-RFE 16.6± 9.3 0.46– 0.29= 0.17 7.0
Gaussian SVM 36.8± 2.7 0.05– 0.04= 0.01 13.0
AdaBoost 11.8± 5.1 0.76– 0.56= 0.20 4.0
AdaBoost-KO 7.8± 2.8 0.40– 0.13= 0.27 11.0
AdaBoost-NR 10.1± 1.6 0.33– 0.13= 0.20 13.0
AdaBoost-VC 13.8± 5.4 0.74– 0.75=-0.01 1.7
GentleBoost 11.1± 5.4 0.76– 0.51= 0.25 5.7
GentleBoost-KO 6.8± 1.6 0.40– 0.10= 0.30 12.9
GentleBoost-NR 10.5± 3.0 0.41– 0.12= 0.30 13.0
GentleBoost-VC 11.9± 4.2 0.74– 0.56= 0.18 4.7
GentleBoost-KO-VC 5.2± 0.9 0.43– 0.10= 0.33 13.0
GentleBoost-NI 8.3± 2.9 0.38– 0.18= 0.20 11.0

Set
Mean Variance Feat.
Error Bias.–Unb.=Net Used

Y
e
a
st

31.1± 0.3 0.00– 0.00=0.00 8.0
31.0± 0.3 0.00– 0.00=0.00 8.0
32.6± 2.2 0.58– 0.40=0.18 4.0
28.6± 0.7 0.36– 0.22=0.14 8.0
38.9± 9.4 0.56– 0.38=0.18 1.7
31.2± 1.2 0.08– 0.05=0.03 4.1
31.9± 1.4 0.04– 0.02=0.02 8.0
39.5±10.1 0.57– 0.38=0.19 1.4
34.2± 2.6 0.57– 0.42=0.15 5.3
32.2± 1.7 0.46– 0.31=0.15 8.0
31.6± 1.8 0.32– 0.22=0.10 8.0
43.6±10.3 0.42– 0.36=0.06 3.8
40.4± 9.3 0.23– 0.17=0.05 6.9
31.9± 2.1 0.49– 0.33=0.16 7.1
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Figure B-1: A comparison between boosting variants using the C2 features on the
five Caltech data sets: Airplanes, Cars, Faces, Leaves and Motorbikes. The graphs
show the the equilibrium error rate vs. the number of training examples used from
the class we want to detect. In each experiment, the test set was fixed to be the same
as those described in [21], except for the random examples from the background set
that were put aside for training. Each experiment was repeated 10 times.
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Figure B-2: Performance histograms of the effect of a single knockout example on
GentleBoost.
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Original Image Texture Edges Segmentation

Figure B-3: Segmentations of Berkeley Database Images
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