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Abstract 
 
 
Manufacturing a DRAM module that is error free is a very difficult process.  This process 
is becoming more difficult when only utilizing the current methods for producing an error 
free DRAM.  Error correction codes (ECCs) and cell replacement are two methods 
currently used in isolation of each other in order to solve two of the problems with this 
manufacturing process: increasing reliability and increasing yield, respectively.  Possible 
solutions to this problem are proposed and evaluated qualitatively in discussion.  Also, a 
simulation model is produced in order to simulate the impacts of various strategies in 
order to evaluate their effectiveness. 
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I.  Introduction 
 

Two of the biggest problems for memory manufacturers are memory yield and 

reliability.  Memory yield is the percentage of memory chips that make it through 

extensive testing which is done before they are considered good enough to be sold to 

customers.  Manufacturers want this number to be as high as possible.  The higher the 

percentage of chips that make it through the testing, the more memory that is available to 

be sold.  Costs can be spread out over more unit sales and the manufacturer can make 

more money per chip, or sell more chips by undercutting competitors.   

Memory reliability is also of huge concern to memory manufacturers.  The market 

for memory is, for the most part, a commodity market.  A commodity market is one in 

which products from different manufacturers are indistinguishable from one another.  The 

one way that manufacturers of computer memory can differentiate themselves is by 

offering more reliable memory.  This differentiation allows manufacturer to increase 

margins or increase sales. 

Not only are these two of the biggest problems that memory manufacturers face, 

but with the trends in computers, they are also becoming harder and harder to solve.  As 

processor technology progresses, memory densities and speeds must also increase in 

order to realize an overall performance gain.  According to Amdahl, as a rule of thumb, to 

keep a balanced system, memory capacity should grow linearly with CPU speed.  

Microprocessor performance has increased by 55% per year since 1987 and 35% per year 

before 1987 [1].  The vast majority of personal computers use Dynamic Random Access 

Memory (DRAM) for main memory.  So far this type of memory, in terms of capacity, 
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has been able to keep pace with processors, with DRAM capacity growing about 60% per 

year [1].  This rapid growth in memory capacity makes it harder and harder to make a 

DRAM perfect, as each chip now has more cells that could fail and cause the entire chip 

to be useless.   

Also, in terms of speed, memory hasn’t nearly kept pace with processor 

improvement.  DRAM row access times have grown only 7% per year [1].  Test time, and 

consequently test cost, is increasing because memory speed isn’t growing as rapidly as 

density.  New methods must be developed to refine the manufacturing process and enable 

reliable DRAM to be produced in a cost efficient way.  Two currently utilized methods to 

increase the yield and reliability of DRAMs, as the complexity of manufacturing and 

testing increases, are cell replacement and error correcting codes (ECC).  These methods, 

however, are currently used completely independently to solve the memory yield and 

reliability issues separately.  The cell replacement technique is used exclusively to solve 

the yield problem, while error correcting codes are used exclusively to solve the memory 

reliability problem.  Still yet to be explored is whether a combination of these two 

techniques can be used to simultaneously solve both the memory yield and reliability 

problems.  This is the topic of the research covered in the following pages. 
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II.  Possible Solutions 

 

 The two techniques discussed above, cell replacement and error correction codes, 

are currently adequate to address these two problems facing DRAM manufacturers.  

However, also as mentioned above, current trends are making it harder and harder to 

produce reliable memory at a high enough yield to be financially successful.  At some 

point, the techniques previously discussed may not be enough to overcome the difficulties 

in a cost-efficient way.  Two ways of combining these techniques to solve both problems 

that have yet to be explored are: 

 

1. Rather than using redundant rows and columns for cell replacement during 

manufacturing, use redundant cells as extra space within the DRAM that can be used to 

implement an ECC with higher error coverage, which would require more redundant bits.  

Thus making it appear as if there are no errors by correcting them while the memory is in 

use. 

 

2. Implement a replacement method that could be used in connection with an error 

correcting code to perform replacement at any point in the life of the memory, not just 

during prepackaged testing. 
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2.1 Higher Coverage ECC 

 

 Many error correction codes have been discovered that can provide coverage for 

various levels of errors.  Higher levels of error coverage require more redundant bits to 

implement the error correction code.  However, if instead of using built in redundant cells 

for prepackaged replacement, they were used as redundant bits in an error correction code 

then the necessary extra bits might be a reasonably cost efficient way to provide the same 

level of yield and reliability as normal prepackaged replacement.  This method would 

effectively mask failing cells by providing enough redundancy in the extra bits to be able 

to correct the error every time the failing cell is read.  Currently error correction codes are 

used to provide a higher level of reliability, however, in this method, error correction 

codes would be used to provide an equivalent level of reliability.  At the same time this 

method would allow a higher defect level in the manufacturing of the DRAM to be 

tolerated while producing the same quality products.  This would enable a much lower 

level of testing to be performed, as most errors would be recoverable.  Manufacturers 

would be able to effectively provide the same level of reliability to a consumer while 

cutting testing costs and enabling higher chip yields while accommodating higher defect 

levels in the new process. 
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2.2 Later Life Cell Replacement 

 

 One of the larger component costs of manufacturing DRAM is testing.  During the 

testing process, cell replacement is performed in an attempt to make a malfunctioning 

DRAM module function correctly.  If this replacement could be done at any point in the 

life of the DRAM then much of this cost could be cut.  Complete testing would no longer 

be necessary, along with all of the expensive laser equipment needed to implement 

prepackaged cell replacement.   

This method would provide the same benefits as the preceding one.  Namely, 

higher defect levels could be accommodated in production and lower levels of testing 

would be needed, as errors will again be correctable.  It would still involve an error 

correction code, as errors would need to be detected so that the failing cells could be 

replaced.  It could be implemented in two ways.  One would be to implement flash 

programmable data paths so that addresses that are reported to fail could be replaced 

while the memory isn’t performing other operations.  A second method would be for the 

memory controller to keep track of addresses that fail and discontinue using them, 

replacing them with redundant cells at addresses that are not being used.  Either of these 

implementations would allow a low level of ECC coverage to be utilized to provide the 

same level of reliability, with lower accuracy and testing constraints.  Errors would not be 

able to build up beyond the coverage of the ECC, because blocks containing errors would 

be replaced on the fly. 
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III Trends 

 

 Upon first inspection it might seem that these strategies might cost too much in 

added redundancy to make up for the savings in increased yield and lower testing and 

manufacturing costs.  In fact this is almost certainly true currently, as the strategies 

already utilized are effective in producing adequate yields.  However, this might not be 

the case in the future.  The trends in test costs, silicon costs, and DRAM quality could 

lead to the current methods becoming inefficient in producing reliable memory. 

 

 

3.1 Test Cost Trends 

 

 Already the cost of card testing is considered the biggest fraction of total cost for a 

DRAM memory card [2].  The trends show this fraction only increasing over time.  The 

speed at which the DRAM has to operate is constantly increasing to allow system speed 

to increase with processor speed.  This causes huge development and building costs for 

high-speed equipment capable of testing these memories.  As DRAM speeds push toward 

physical limits, developing equipment to test them will only get more difficult.  Already 

DRAM manufacturers buy test equipment from companies that specialize in developing 

testing solutions for the ever-advancing DRAM speeds and size. 

The rapid increase in the complexity of the DRAM also leads to difficulty, and 

increased costs, in testing.  Early memory cards consisted of just a few DRAM modules 
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mounted on one side of the card with the only other components on the cards being a few 

capacitors.  Today memory cards have been built with 18 or more DRAMs, mounted on 

both the front and back of the card and sometimes stacked on top of each other.  They 

also contain many discrete components including buffering devices, capacitors, and 

PLL’s.  Consequently, isolating an error has become much more difficult, which again 

increases test costs.  Increasingly complex solutions will also be needed to include more 

memory on fewer and smaller modules in order to keep pace with other system level 

advances, further frustrating the testing problem. 

In addition, the size and density of memory being utilized has increased so much 

that even if you could test all the extra components at the same rate, it would still take 

orders of magnitude longer to test all of the cells.  As an example, if the test time for a 

memory card with 256K addresses was 10 seconds, then to produce the same level of 

coverage on a 1GB card with 128 M addresses would require over 85 minutes.  Even 

compensating for the speed increases between these two memories, it would still take 53 

minutes to test the 1GB card [2].  Density increases, as cited in the overview, are greatly 

outpacing speed increases, causing this problem to get worse and worse.  This can 

partially be compensated for in testing strategy.  One example is testing multiple modules 

in parallel with the same piece of test equipment.  This allows overall throughput of 

tested devices to increase.  However, as mentioned above, testing strategies and test 

equipment are already becoming increasingly costly as they struggle to keep up with 

technology advances in the DRAMs being tested. 
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3.2  Silicon Cost Trends 

   

Figure 3.1:  
Price of multiple generations of DRAM’s over time in 1977 dollars [1] 

 

As mentioned in the introduction, DRAM densities are increasing by just under 

60% per year.  This huge increase in memory size has lead to only a small increase in 

constant dollar prices per module.  This has caused a rapid decrease in constant dollar 

cost per megabyte, as each new generation exhibits a higher capacity.  Figure 3.1 shows 

prices of different generations of DRAMs over time in 1977 dollars [1].  By eliminating 

inflation, Figure 3.1 shows the real change in DRAM cost.  The cost per megabyte of 

memory has dropped incredibly during this period, from over $5000 in 1977 to just over 

$6 in 1995 (1977 dollars) [1].  This implies that cost per megabyte of DRAM fell by over 

40% per year during that time period.  As cited in the previous section, testing costs 

during this same period have increased rapidly.  This implies that the component of cost 
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due to things besides testing, including silicon cost, is falling even more rapidly.  The 

proportion of cost attributable exclusively to materials and manufacturing is consequently 

shrinking.  A more efficient solution to the problem of manufacturing reliable DRAM 

might be possible if extra silicon, which is decreasing in cost, could be traded for lower 

levels of testing, which is increasing in cost.  The solutions proposed in section II are both 

designed to take advantage of these trends. 

 

 

3.3 Quality Trends 

 

 The quality demanded from DRAMs is also increasing rapidly.  The market for 

DRAM memory is, for the most part, a commodity market where the products from 

different manufacturers are mostly identical and indistinguishable from one another.  This 

leads to a situation where one cost prevails in the marketplace across all manufacturers.  

This allows buyers to be very selective in choosing between manufacturers.  Quality and 

reliability are basically the only things that moderately differentiate manufacturers.   

Large buyers, in particular, have the ability to research these factors before 

choosing a manufacturer.  Since a lot of DRAM is purchased this way by companies 

manufacturing systems in which the DRAM will be included, these are very important 

factors for DRAM manufacturers.  Thus the demands are getting even more constraining 

in these areas.   

To be competitive, manufacturers must have very high Acceptable Quality Levels 

(AQLs).  AQL is the percentage of the DRAM that function correctly.  If a manufacturer 
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ships a lot of malfunctioning chips to a PC builder, that PC builder is not likely to 

purchase DRAM from that manufacturer in the future.  This again leads to increasing test 

costs, because of the desire to (as completely as possible) test all DRAMs before shipping 

in order to have the highest AQL possible.  This presents another situation in which 

silicon costs, which are decreasing, could be substituted for testing costs, which are 

increasing, to create a more economically efficient process.  This is again the aim of the 

solutions proposed in section II. 

 

 

3.4 Trend Summary 

 

 The solutions proposed in section II are designed to address these exact trends and 

the problems that they are likely to create in producing reliable and quality DRAMs in the 

future.  Both methods are aimed at allowing a limited error level within a DRAM that can 

still function completely correctly.  This reduces the necessary testing, which, as pointed 

out above, is increasing in cost.  Each method allows for this limited error level by using 

extra cells in a strategy to compensate for the failing cells.  As pointed out above, these 

extra cells are decreasing in cost.  Finally, both methods should result in higher quality 

memory because of the ability to survive failures within the DRAM that occur after all 

the manufacturer’s testing is done.  Failures that are missed during testing could also, 

potentially, be recoverable.  This will give manufacturers utilizing these methods a 

competitive advantage in a market where they are price takers and can only differentiate 

themselves by producing more reliable DRAMs.
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IV.  Error Correction 

 

 One method currently utilized to produce reliable memory is the use of Error 

Correction Codes (ECC) to encode data before it is stored in the memory.  Error 

correction codes take a set of information bits at the producer of the information and 

create a set of redundant bits based on the information bits.  These redundant bits are sent 

or stored with the original set of information bits.  The consumer of the information then 

uses the redundant bits to determine if any errors have occurred in transmission or 

storage.  In the case of memory, the redundant bits are calculated and stored along with 

the original bits and then when they are read from the memory they are examined to 

determine if any errors have occurred between the time the information was stored and 

the time it was retrieved. 

 

 

4.1  Basics 

 

 A simple example of an ECC is parity checking.  Parity checking involves 

counting the number of ones in a sequence of bits.  The parity bit is then created to make 

the total either even or odd, depending on which type of parity checking is being 

performed.  For example, if you were checking for even parity and had the following 

sequence of bits: 10011010, then a 0 would be added as the parity bit to keep the total 

number of ones in the sequence an even number.  This is useful because the consumer of 
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the information, knowing that all information it receives should have even parity, can 

detect an error if it gets a sequence of bits with odd parity.  Thus any sequence with only 

one incorrect bit would be detectable because the parity would necessarily be changed.  

This coding is not actually an error correction code since it can only detect errors, not 

correct them. 

 Other codes that are capable of not only detecting errors but also correcting them 

are actual error correction codes.  A simple example is the (7,4) Hamming code, named in 

honor of R.W. Hamming.  In the (7,4) Hamming code each block of bits contains seven 

total bits, four of which are data bits; with the other three being redundant check bits, thus 

the title of (7,4) Hamming code.  In this particular example the data bits of the Hamming 

code are arranged so that when parity checking is performed a single failing bit can be 

located when the entire group is checked.  The four data bits are located in bit positions 

three, five, six and seven, and the parity check bits are located in bit positions one, two, 

and four.  To clarify how the code works think of representing each bit position of the 

seven total bits in each block with its binary representation: 

Bit Position Binary Representation 
1  001 
2  010 
3  011 
4  100 
5  101 
6  110 
7  111 

Now, a parity check is performed on each bit position from the table above that has a ‘1’ 

in the least significant position (farthest right) of its binary representation in order to 

obtain the first parity check bit.  Next, to obtain the second parity check bit, a parity check 
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is performed on every bit position from the table above that has a ‘1’ in the middle 

position of its binary representation.  And finally, to obtain the last parity check bit, a 

parity check is performed on all bit positions with a ‘1’ in the most significant position 

(farthest left) of its binary representation.   

The parity bits of the block cannot be checked before they are generated, so the 

parity bits are generated just from the data bits.  Thus, the first parity bit will be generated 

from bits three, five, and seven; the second from bits three, six, and seven; and the third 

from five, six, and seven.  When the block is checked for errors, all bits, including parity 

bits, will be checked for parity and a syndrome will be generated.  A syndrome is the 

binary number, in this case three bits long, that results from each parity check on each 

groupings of bits.  If there are no errors then the syndrome will be zero.  If there are errors 

the syndrome will contain the information necessary to decode where the error occurred.  

As an example to illustrate how this works for the (7,4) Hamming code being discussed, 

take 0101 as the data bits, producing 1001101 as the entire odd parity block (xx0x101 

being the data and 10x1xxx being the bits generated by an odd parity check on the data 

bits).  Performing an odd parity check to the same groupings of bits does in fact produce a 

syndrome of 000.  Now, if we flip bit five the block becomes 1001001.  Performing the 

parity checking again results in: 

Parity check on bits 1,3,5,7 (1001001): 1 
Parity check on bits 2,3,6,7 (1001001): 0 
Parity check on bits 4,5,6,7 (1001001): 1 

This is a syndrome of 101.  101 is the binary representation of five, which is the bit that 

we flipped to induce an error.   
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The location of the data bits and parity bits within the block of this code allow the 

error bit to be identified directly from the syndrome by interpreting the syndrome as the 

binary representation of the failing bit position.  The data bits and parity bits can be 

arranged in any way through the block, as long as the data bits are still checked in three 

groups of three, and the code will still have the same error correction properties.  

However, if the bits are located in different positions, a lookup table will be needed to 

determine which bit is incorrect from the syndrome. 

This arrangement of bits allows decoding to be simple for an observer.  Another 

arrangement that is used more often across a variety of codes is called systematic.  A 

systematic arrangement is one in which all of the data bits are grouped together and all of 

the check bits are grouped together.  A code arranged in this way is called a systematic 

code.  In general, there can be many different arrangements of the bits in a code that can 

be used to create distinct codes.  However, all codes generated this way are equivalent in 

terms of their error correction/detection properties, and are equivalent to some systematic 

code.  Some of the reasons for arranging a code to be a systematic code will be discussed 

later. 

 A similar linear block code to the (7,4) Hamming code is used in Pentium Pro 

Processors.  This code allows all single bit errors to be corrected, all double bit errors to 

be detected, and all errors confined to one nibble to be detected.  This is abbreviated 

SEC-DED-S4ED for Single-bit Error Correction, Double-bit Error Detection, Single-

nibble of four bits Error Detection.  A nibble is a defined group of bits, in this case four.  

But not every four bits is a nibble, only bits grouped together in the ECC.  In this case 0-

3, 4-7,... and not 3-6, 7-10,... because the nibble boundaries for this code is every four 
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bits.  This code is 72 bits wide with 64 data bits and eight check bits.  As before the check 

bits are generated by performing a parity check on groups of bits within the data.  In this 

code a lookup table is necessary to determine where, within the block, an error has 

occurred from a non-zero syndrome.  However, the syndrome does have the following 

properties that can be used to determine what kind of error has occurred simply by 

looking at the syndrome: 

1.  If one nibble of the syndrome contains three bits that are a ‘1’, and the 

other nibble contains all zeros, then there is a data nibble that contains a 

three or four bit error 

2.  If the syndrome contains an odd number of ones, then the data contains a 

single bit error that is correctable using the lookup table. 

3.  All other values of the syndrome are double bit or greater, non-correctable 

errors. 

Codes like this one used in the Pentium Pro are widely used in higher end applications 

that require higher reliability than standard implementations. 

 

 

4.2 Definitions 

 

 This subsection will give definitions for some of the terminology that will be used 

in the rest of section IV.  Every code has a certain number of data bits and a certain 

number of redundant check bits that are generated from the data bits.  The number of data 

bits is generally referred to as k and the total number of bits in the code (data bits + check 
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bits) is referred to as n.  Codes are often identified by “type of code (n, k)”.  (Example: 

Hamming (7,4))  The code rate of a code is the number of data bits divided by the number 

of total bits (k/n).  A higher code rate indicates that less redundancy has to be added.  

However, higher levels of error correction capacity (ability to survive more errors) 

generally lead to lower code rates because more redundancy is needed to survive more 

simultaneous errors.  This tradeoff is illustrated visually in Figure 4.1 [3].  In the diagram, 

codes closer to the origin are better because they have both higher error correction 

capacity and code rate.  Class B codes from the diagram are more efficient than class A 

codes from the diagram because all codes in class B are closer to the origin than 

corresponding codes in class A.  However, class A codes could still be useful in certain 

applications.  Codes, like class B codes, that are more efficient generally require more 

complex and slower hardware to decode.  So in high speed or low cost applications, 

codes from class A might be more appropriate. 

Figure 4.1 
Characteristics of codes [3] 
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  A single code type generally has a specific procedure for generating that 

particular code with different code lengths.  However, the generation procedure usually 

doesn’t allow all code lengths to be generated.  One constraint that is often found in the 

generating procedure for binary codes is that the code length, n, must be a power of two.  

However, there are often accompanying procedures for modifying a code while retaining 

some or all of the properties of the original code.  These procedures create a modified 

code, which isn’t a code of the pure type that was generated, but can often still have all of 

the same error correction properties.  This modified code can then be the length needed 

for a specific application. 

 One of the properties that these modifying procedures hope to retain is the 

minimum distance.  This is the property of the code that determines the error correction 

coverage of the code.  The distance between two code words is the number of bits by 

which the two codes differ.  For example the distance between 10001010 and 10101100 

is three, with the bits that differ in bold.  The minimum distance of a code is the shortest 

distance between any two code words.  For example if the following were all of the code 

words in a code: 

001 
010 
111 
100 

then the distance of the code would be two since all of the code words differ from all of 

the other code words by at least two positions.  If a code has a minimum distance d=2t+1, 

then the code can correct all t bit errors and detect all d-1 bit errors.  Depending on other 
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properties of the code, some higher bit errors might be detectible, but not all higher bit 

errors can be detected, so the distance gives a minimum reliability.  

  

 

Figure 4.2 
Code Words Graph 

 A code can detect all d-1 errors because for any of the code words to get changed 

into another code word, d bits would have to change.  This is because d-1 is the number 

of bits that differ between the two code words with the most bits in common of any pair 

in the code.  To see why the code can correct t errors, think of each code word as 

occupying a single spot in a grid.  In Figure 4.2, a blackened circle located at a junction in 

the grid represents a code word.  Moving between adjacent junctions represents changing 

one bit.  So the minimum distance of the code pictured is three since the closest two code 

words are three junctions apart (three bits differ).  The larger uncolored circles represent 

circles of distance t=1 away from the code word.  Any received word that falls inside the 

larger circle surrounding a code word can be corrected to that code word.  This is because 



 23

errors are assumed to be equally likely and uncorrelated, and thus with a low probability 

of a single error, the chance of an additional error is much lower.  Consequently, the 

probabilities lead to the conclusion that a received word that is located inside a larger 

circle on the graph in Figure 4.2 almost certainly originated as the code word at the center 

of the circle.  This is called maximum-likelihood decoding. 

 

 

4.3 Types of Codes 

 

 There are many different types of error correction codes.  Some examples are 

Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Muller codes, 

Golay codes, and Reed-Solomon codes.  These examples are all from a single class of 

codes called linear block codes.  There are many other linear block codes that have been 

studied to varying levels, not to mention other classes of codes, including convolution 

codes and arithmetic codes.   

However, the types of codes that are applicable for implementing error correction 

for DRAM used in personal computer applications is very limited.  Arithmetic codes are 

designed to correct errors at the output of arithmetic operations.  Convolution codes are 

designed to correct errors over multiple consecutive message blocks.  Linear block codes 

are really the only class of codes applicable to DRAM memories. 

Further, the number of linear block codes that are applicable to DRAM used in 

personal computers is even more limited.  DRAM used in personal computers necessarily 

has to operate at very high speeds.  Many codes have very complicated encoding and 
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decoding schemes that are difficult and expensive to implement in hardware.  Even codes 

that are easily implemented in hardware often don’t have hardware implementations that 

perform fast enough to meet speed requirements for memory subsystems in personal 

computer systems. 

Even with all of these limiting factors on the number of codes that are applicable 

to DRAM memory, there are still a wide variety of codes that can be used in DRAM 

applications.  Many Hamming codes and modified Hamming codes have encoding and 

decoding hardware that is able to meet the speed requirements of DRAM.  Also, because 

of the high code rate of BCH codes, a lot of study has been done to find fast hardware 

encoding and decoding schemes to make BCH codes applicable to high-speed memory.   

  Check Bits
SEC  7
SEC-DED-SPD (4 bits/package) 8
SPC (2 bits/package) 8
SPC-DPD (2 bits/package) 10
SEC-TED 14
DEC-TED 15

 
Figure 4.3 

Check bits needed for 64 data bits with different error correction capacities 

The applicable codes still offer a wide variety of error correction properties.  They 

range from simple parity checking with single error detection through triple bit error 

correcting and beyond.  Some codes also offer special properties like the Pentium code 

cited before, which can detect burst errors of length four.  Also besides being able to 

correct and detect all errors at some level, there are many codes that detect large 

percentages of higher bit errors, making them even better codes.  All of these properties 

come at the cost of varying number of necessary redundant bits.  Figure 4.3 shows the 
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number of bits needed to implement varying levels of error correction capacity for 64 bit 

long data words. 

Looking at the chart in Figure 4.3, the number of total bits needed to implement a 

DEC-TED code is nearly 10% more than the number of bits needed to implement a SEC-

DED code.  Even given that silicon only currently makes up about 50% of the total cost 

of a chip, this is a significant cost and efficiency penalty for adding just one more bit of 

error coverage.  This calls into question the effectiveness that could be obtained currently 

by the first solution proposed in section II.  A double error correction code would cost 

significantly more in terms of chip costs, while only barely satisfying the requirements of 

using a higher error correction code to mask all errors.  If more than two hard errors lined 

up in a lowered accuracy manufacturing process, like the one proposed in solution one 

from section II, the chip would be entirely useless without also having later life cell 

replacement capability.  Also, soft errors could line up with hard errors in an 

irrecoverable way with reasonable probability.   

It is still possible that some time in the future a code with a low code rate could be 

paired with a compression code to produce an overall code rate that would be acceptable.  

However, compression codes have only very recently been applied to main memory in 

personal computers.  In the near future, the second proposed solution has a much higher 

chance of producing a cost efficient result.  Consequently, the remainder of this paper will 

concentrate on exploring the second proposed solution, which doesn’t allow errors to 

build up along the same code word, with a modified Hamming (72,64) code. 
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4.4  Modified Hamming (72, 64) Code 

 

 This code is a distance four modified Hamming code.  It can correct all single bit 

errors and detect all double bit errors.  In addition it has some special properties that 

allow it to detect high percentages of higher bit errors.  This code, proposed in [4] and 

described in [3], satisfies the conditions of the minimum-equal-weight code, the odd-

weight-column code, and the rotational code. 

 Hardware encoding and decoding involve a number of modulo two additions that 

is proportional to the number of ones in the code’s parity check matrix (parity check 

matrices will be explained in 4.5).  This leads to two constraints on the parity check 

matrix that will lead to faster, lower cost, and more reliable hardware for encoding and 

decoding. 

1.  The total number of 1’s in the parity matrix should be minimum 

2.  The number of 1’s in each row of the parity check matrix should be made 
equal, or as close as possible, to the average number, i.e., the total number of 
1’s in the parity matrix divided by the number of rows. [3] 

 
 The parity check matrix of an odd-weight column code has an odd number of ones 

in all the column vectors of the matrix.  Such a code gives “good discrimination of even 

number and odd number of errors by modulo 2 addition of the syndrome bits” [3].  

Therefore the code is able to detect a larger percentage of errors which affect more bits 

than are covered by the code normally. 
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 A rotational code is one in which the parity check matrix is made up of 

consecutive sub-matrices.  The sub-matrices are identical except for being rotated once 

between each sub-matrix.  Encoding/decoding hardware for such a code can be 

implemented by creating a circuit for one sub-matrix and then replicating that circuit for 

all other sub-matrices and simply changing the input output connections.  This reduces 

the design time and cost for implementing the encoding/decoding hardware. 

 

 

4.5  Decoding 

 

Figure 4.4 
Parity check matrix for Hamming (72, 64) code 

 A lot of study has been done in an effort to discover more efficient hardware 

implementations for encoding and decoding data in an error correction code.  This is not 

the focus of this section and the next one.  For the purpose of this research it is sufficient 

to know that such an efficient hardware encoder/decoder exists for the codes we are 

using.  The focus of this section and the next one will be explanations of the basics of 

encoding and decoding linear block codes. 

 One way to describe an error correction code is by listing all of the vector code 

words.  The parity check matrix is an alternative way to define a code.  Figure 4.4 depicts 
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the r by n, rank r=n-k parity check matrix for a Hamming (72,64) code.  The code words 

of the code are the 2k vectors that make up the null space of the parity check matrix.  The 

null space of a matrix is all of the vectors, X, which satisfy the matrix equation X*Ht=0 

(Ht denotes the transpose of H and 0 represents the 1 by r zero matrix).   

This leads to a very obvious and simple error detection scheme.  Multiply the 

received vector by the transpose of the parity matrix and if the result, called the 

syndrome, is zero then the received word is a code word and either no errors occurred or 

an undetectable error occurred.  The syndrome can also be used to find the error locations 

of errors that are correctable.  There are, again, many ways to do this.  One very simple 

approach for single error correcting codes is to note that the transpose of the syndrome for 

a single error matches one of the columns from the parity check matrix.  The number of 

this matching column is the bit location in the code word that is in error.  The bit in 

question can be flipped in order to correct the error. 

 

 

4.6 Encoding 

 

 Another way of representing a code is by its k by n generator matrix.  The 

generator matrix for the Hamming (72, 64) code is shown in Figure 4.5.  The rows of the 

generator matrix are a set of basis vectors for the vector subspace that is the code.  The 2k 

code words are generated by all the linear combinations of the rows.  This is why this 

matrix is called the generator matrix, because linear combinations of the rows produce 
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code words.  Also, a data vector is encoded in the code when a one by k data vector is 

multiplied by the generator matrix producing the one by n code word. 

 
Figure 4.5 

Generator matrix for Hamming (72,64) code 

 Every row, Xi, of the generator matrix must satisfy the parity check equations 

given in the parity check matrix.  Symbolically, Xi * Ht = 0.  Since this must hold true for 

every row in the generator matrix, multiplying the generator matrix by the transpose of 

the parity check matrix must produce a k by r zero matrix.  Symbolically, G * Ht = 0.  
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This leads to methods for deriving generator matrices from parity check matrices or parity 

check matrices from generator matrices.  For systematic codes, this is trivial.  Define P as 

the k by r matrix defined in the following equation for a systematic code G1: G1 = [Ik P], 

where Ik is the k by k identity matrix.  Then using the relationship between the generator 

matrix and the parity check matrix cited above, G * Ht = 0, it can be seen that the parity 

check matrix of the same systematic code defined in G1 can be defined by the following 

equation for H1: H1 = [-Pt Ir], where – Pt is the additive inverse of Pt and Ir is the r by r 

identity matrix.   

Since every code is equivalent to a systematic code, this method can be used to 

find the parity check matrix from the generator matrix or the generator matrix from the 

parity check matrix for any code.  A non-systematic code would need to be multiplied by 

a permutation matrix to produce the equivalent systematic code.  Then the unknown 

matrix could be generated from the first by the above procedure.  Finally this matrix 

would need to be permuted back to the order from the original matrix. 
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V.  Cell Replacement 

 

 
Figure 5.1 

Cell replacement 
 

5.1 Basics 

 

 As mentioned above, DRAM densities are increasing at an incredible rate.  As 

each cell gets smaller, it becomes more difficult to make every cell perfect.  Thus the 

probability of any particular cell being a failure increases with these density increases.  In 

addition, the total number of cells on a chip also increases with the density.  With both 

the probability of a failing cell and the number of cells per chip increasing, the probability 

of having a chip with a failing cell is increasing very rapidly.  In order to combat this 

problem, memory manufacturers have begun building in extra, redundant rows and 
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columns of cells that can be used to replace rows and columns that have cells that are 

known to fail.  Figure 5.1 shows an example of how replacement would work for a very 

small array.  Column three and Row four are being replaced using lasers to connect in the 

extra row and column. 

 A somewhat valid analogy for this is a spare tire in a car.  It is completely unused 

unless another tire blows out, in which case the spare tire is used to replace the blown out 

tire.  In this way the car can still serve it’s original purpose using only parts that were 

originally made with it, even when one part fails.  In the same way, there are “spare” rows 

and columns made within a chip that can be used to replace “blow outs”.   

 There are, however, two things that make the analogy incomplete.  First, another 

new tire can always be bought to fit a car.  However, only rows and columns originally 

built within a memory chip can be used to replace broken cells.  Thus if the number of 

rows or columns that need to be replaced exceeds the number of “spares” originally 

manufactured with the memory then the chip cannot be made to function properly.  

Second, any time in the life of the car, the spare can replace a blown out tire.  However, 

with the way redundancy is currently implemented, this cannot be done with memory.  

Extra rows and columns are used to replace failing ones by using a laser beam on links to 

remove the defective rows or columns and connect in the extras.  Because of the way this 

is done, the process must take place before the memory chip is packaged and sent to 

customers.  So, only rows and columns that fail in prepackaged testing can be replaced 

using this method.  

 Thus this method is not a full proof way to manufacture functional memory.  

However it can increase the percentage (also known as yield) of the memory 
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manufactured which can be made to function properly.  This increased yield leads to a 

greater profit for the particular process because more of the product can be sold.   

Figure 5.2 
The yield advantage of using cell replacement throughout the life of a process. 

 

The impact of this method is even greater when it is taken into account that 

process technology changes rapidly.  Every time a new process is utilized, yields are low 

until the process can be refined.  This replacement method can be used to decrease this 

initial poor yield problem, increase profits over the life of a process, and enable much 

greater profits in the early life of the process.  Figure 5.2 shows an example of how the 

yield curve might be flattened out by using cell replacement.  This can happen if a 

significant percentage of the failures in early life can be corrected with cell replacement.  

Also, more cell redundancy can be built into the DRAM in the early life of a new process 

in order to increase yield in the early life.  As the process gets refined, the amount of 

redundancy can be reduced.  This would enable more chips to fit on a wafer, because of 
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the reduced size, and lead to a higher number of saleable modules at only marginal extra 

cost. 

This initial poor yield problems can be seen in the prices of DRAM over the life 

of a process.  Figure 3.1 from section 3.2 shows a drop in the constant dollar price by a 

factor of 8 to 10 over the lifetime of a generation of DRAM.  This consistent drop in the 

price over the lifetime of a generation of DRAM can be attributed to a number of factors 

including upfront costs of manufacturing equipment for new generations, but low yields 

is a large factor.  If this problem could be reduced as discussed in the previous paragraph, 

both consumers and manufacturers could benefit.  Consumers could see lower initial 

prices on new technology as well as lower average prices.  While manufacturers could see 

their profit margins increase, even with reduced prices, because of the greater yields 

distributing fixed cost over more modules. 

 

 

5.2 Implementation 

 

As stated previously, current implementations of cell replacement use lasers to 

blow fuses before the DRAM is packaged.  This implementation is a sufficient, cost 

effective method for implementing cell replacement for failures that are discovered in 

pre-packaged testing.  However, all failures are not found in pre-packaged testing.  Some 

error patterns just aren’t found during this testing.  Also, failures can occur in later life or 

get induced before the module makes it through packaging.  In addition soft errors can be 

induced by alpha particles hitting the DRAM at any time.  These errors are transient but if 
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they line up with existing hard errors that were not found in pre-packaged testing, then 

they can go undetected by an error code being used to compensate for these soft errors.  

For these reasons, and many others stated previously, an implementation of cell 

replacement that could work in the later life of the DRAM is desirable.   

In section II, two implementations were proposed that would allow latter life cell 

replacement.  One of the solutions proposed was to have the memory controller keep up 

with the addresses that had failed and discontinue using them, replacing them with 

redundant cells at addresses that were not being used.  Upon deeper consideration, this 

method is not at all applicable to DRAM being used for personal computer main memory.   

The first problem with this implementation is the amount of storage space it 

would require to implement.  Memory controllers generally don’t keep much if any state.  

The amount of space required to implement this version of cell replacement would be 

ludicrous in comparison.  Each failing address would need to be stored along with a 

replacement address to associate with the failing address.  This could add up to a 

significant portion of the total memory.   

The second problem is that this storage space would need to be fault free also.  

Making such a large amount of memory error free would require using identical methods 

and lead to the need to implement the same strategy recursively over and over again.   

The third problem is speed.  The speed of the storage space implementing the 

memory address mapping would need to be much faster than the memory in order to 

maintain current access speeds.  Again this would be a recursive problem leading to 

higher and higher costs.  Also, even give a much faster memory mapping table, the search 
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for failing address mappings would require a large amount of time, reducing the speed of 

the system further.   

The fourth problem is a lack of resolution on replacements.  Currently utilized cell 

replacement strategies offer the ability to replace parts of code words without replacing 

entire addresses.  This would not be possible with a scheme implemented in the memory 

controller because the memory controller isn’t able to resolve locations any further than 

allowed by it’s addressing scheme.  It is clear that the only reasonable implementation 

solution for later life cell replacement is flash programmable data paths. 
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VI.  Memory Models 

 

 There are many different and varied DRAM memory models to describe what 

types of errors can occur in a DRAM.  These models give varying levels of abstraction 

away from the actual physical implementation of the DRAM memory.  Memory models 

found in academic work often involve many types of errors and many rules for how to 

test for them.  These various error types are attempts to model specific failure modes 

within memory modules while abstracting away from them and trying to cover as many 

possible architectures as possible.  Within industry, memory models are more likely to 

drift to the two extremes.  Either the model nearly completely describes every aspect of a 

particular DRAM product, or the model includes only a few types of errors that cover the 

basic failure modes for any DRAM no matter what the architecture.  One example of 

typical memory error models from each of academia and industry are described in the 

following sections. 

 

 

6.1 Academic Memory Model 

 

 The memory testing model described in this section is described in more detail in 

[5].  This model starts by listing the functional faults that can occur in a DRAM.  These 

include: 

 1.  Opens and shorts in connecting lines 
 2.  Open decoders: The total memory cannot be truly addressed 
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 3. Wrong access: Wrong cells are accessed 
 4.  No access 
 5.  Multiple access: More cells than the addressed ones are accessed 
 6.  Crosstalk between cells 
 7.  Stuck cell 
 8.  Pattern sensitive interaction between cells 
 9.  Chip select line stuck 
 10. Read/write line stuck 
 11. Data register stuck 
 12. Crosstalk between data lines or cells of the data register 
 13. Drivers stuck 
 14. Cell can be set to 0 but not to 1 (or vice versa) 

These fault types are based on a memory model that includes an address latch, row and 

column decoders, refresh latch, write driver, data register, sense amplifiers, and memory 

cell array.  While, in some situations, it might be useful to locate which of these modules 

an error has occurred in, most of the time errors outside of the memory array cannot be 

corrected.  So, next, this model maps these functional errors based on the above memory 

module breakdown into a simpler memory model that includes an address decoder, 

memory cell array, and read/write logic.  These new fault types are: 

 1.  Stuck-At Faults    (SAF) 
 2.  Transition Faults    (TF) 
 3.  Coupling Fault    (CF) 
 4.  Neighborhood Pattern Sensitive Faults (NPSF)  

 Stuck at faults are cells where the memory always takes on 0 or all ways takes on 

1 as a value.  No matter what is written, the value read from the cell never changes.  

Transition faults are faults where a cell either cannot make a 0 � 1 transition (TF↑) or 

cannot make a 1 � 0 transition (TF↓).  Coupling faults are faults where changing the 

value of one cell affects a single other cell value.  There are two types of coupling faults: 

idempotent coupling faults and inversion coupling faults.  Idempotent coupling faults 

occur when a transition in one cell forces the contents of another cell to a specific value.  
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Inversion coupling faults occur when a transition in one cell causes an inversion in 

another cell.  Neighborhood pattern sensitive faults are faults where a pattern in cells in 

close physical proximity to a cell under test causes the cell under test to be affected.  

There are three types of neighborhood pattern sensitive faults: active NPSFs, passive 

NPSFs, and static NPSFs.  Active NPSFs involve the base cell’s (cell under test) contents 

changing because of changes in the neighborhood pattern.  Passive NPSFs involve the 

base cell’s contents not being changeable because of the neighborhood pattern.  Static 

NPSFs involve the base cell’s contents being forced to a certain state due to the 

neighborhood pattern. 

 The next element of the model is a set of tests that cover various combinations of 

error types from the reduced function error types.  All of these tests are march tests.  A 

march test is a sequence of march elements.  A march element is a set of reads and writes 

to perform at every address in order from one end of the memory to the other.  An 

example march element is: ↑(r0, w1).  This means go up through the address starting at 

zero.  At every address, first try to read 0 from the memory and then try to write 1.  Here 

is some example pseudo code for this particular march element to more clearly illustrate 

exactly what the element means: 

for i=0 to memory_size-1 do
temp=Memory[i]
if temp ~= 0 then

report error
end
Memory[i]=1

end 

The march tests defined in this model and their fault coverages are listed in Figure 6.1. 
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MATS ↑(w0); ↑(r, w1); ↑(r)  4n or 4*2N SAF, some AF  
MATS+ ↑(w0); ↑(r, w1); ↓(r, w0)  5n or 5*2N SAF, AF  
MATS++ ↑(w0); ↑(r, w1, r);  7n or 7*2N SAF, TF, AF  
 ↓(r, w0, r)    
March C ↑(r, w1); ↑(r, w0); ↑(r);  11n SAF, TF, AF, Unlinked CF  
 ↓( r, w1); ↓ (r, w0); ↓ (r)    
March A ↑(r, w1, w0, w1); ↑(r, w0, w1);  15n SAF, AF, linked CF  
 ↓( r, w0, w1, w0); ↓ (r, w1, w0)    
March B ↑(r, w1, r, w0, r, w1); ↑(r, w0, w1);  17n SAF, AF, linked CF, linked TF  
 ↓( r, w0, w1, w0); ↓ (r, w1, w0)     

Figure 6.1 
March Tests 

 

 

6.2 Industry Memory Model 

 

 As stated in the introduction to this section, industry memory models are most 

often of one extreme or the other.  They are either completely detailed and specific to a 

particular DRAM product or very general with almost no linking to any type of memory 

architecture.  A very general model will be discussed here.  One very general model 

involves four types of failures: single cell failure, bit line failure, word line failure, and 

decoder failure.  These are very simple error types that stress the results of the failure 

rather than the cause as in the model from the previous section.  A single cell failure is, as 

its name implies, a failure isolated to a single cell.  Bit line and word line failures are 

failures that affect entire rows or columns within the memory’s internal layout.  A 

Decoder failure, also as its name implies, involves a failure of the decoding hardware for 

the memory array. 
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 While this model is more generalized with less complex error types than the one 

from the previous section, it is tied more to the memory architecture than the previous 

model.  Word line and bit line errors affect pieces of memory, whose size depends on the 

internal organization of the memory array.  The details of how the memory array is laid 

out are very important to memory manufacturers.  This layout determines how 

redundancy can be placed throughout the memory array.  So, the compromise of making 

the model less general is one worth making for memory manufacturers.
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VII. Simulation Model 

 

 A simulation tool was created in order to test the reliability achieved for different 

proposed error rates.  Matlab was chosen as the implementation language.  Conceptually 

DRAM memory is a large storage matrix of ones and zeros.  Also, error correction is 

conceptually based on generator and parity check matrices.  So, Matlab was chosen 

because of the ease of implementing matrices and the extensive collection of matrix 

operations. 

Figure 7.1: 
Module Dependency Diagram 

 

 This simulation tool consists of four modules: Test Generator, Memory 

Controller, ECC Generator/Decoder, and Memory.  The Test Generator sends test 
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patterns into the other modules of the system.  Each of the other modules performs the 

basic operations that their logical counterparts perform in an actual system.  Figure 7.1 

shows a block diagram of the interactions between the modules.  Each module is a .m 

file, a file of Matlab scripting commands.  There are also two supporting .m files: 

hmatrix.m and parameters.m. 

 

 

7.1  Setup  

 

 Hmatrix.m defines the specific error correction code to be used.  In this module 

the parity check matrix, or H-matrix, is specified as a matrix of zeros and ones.  Matrix 

operations are then performed on the parity check matrix in order to derive the generator 

matrix.  First, if the code is not a systematic code a permutation matrix is defined which 

will transform the code into an equivalent systematic code.  The check bit portion of the 

equivalent systematic code, generated by multiplying the original parity matrix by the 

permutation matrix, is then separated from the rest of the code.  Next the transpose of this 

part of the systematic parity matrix is taken.  An identity matrix, which is the number of 

information bits by the number of information bits in size, is then joined with the 

resulting matrix from the previous transpose operation.  This combined matrix is the 

generator matrix for the equivalent systematic code that was derived from the original 

code.  A second permutation matrix is generated to transform this generator matrix into 

an equivalent generator matrix for the original non-systematic code.  Finally the generator 

matrix is multiplied by the permutation matrix to produce the generator matrix for the 
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original code.  The error correction code to be used is now fully defined by the generator 

matrix, G, and the parity matrix, H. 

 The definition of the error correction code in a separate m file was done in order 

to be able to substitute different codes into the simulation tool without any re-coding.  

Unfortunately the decoding method for different error correction coverages isn’t exactly 

the same.  So, some amount of re-coding does have to be done in the ECC decoder when 

using different codes.  However, this attempt at modularity was at least partially 

successful in that the generation process for different error correction codes is exactly the 

same. 

 Parameter.m is another attempt at modularizing the program to allow different 

configurations to be run without having to change any of the other modules.  First 

parameter.m clears the memory so that all of the memory is available to model the largest 

size memory possible.  Next, the error correction code (which is a version of hmatrix.m) 

to be used is defined.  A variable is set to determine whether replacement is used or not.  

Variables that define the architecture of the memory module are set.  These variables 

include the number of chips and the number of sections per chip.  Modeling the memory 

as a number of chips with a number of sections allows the redundancy to be modeled as 

extra rows within each section.  DRAM devices are generally laid out as roughly square 

sections of cells grouped together into sections where bit lines or word lines might fail.  

However, the exact architecture varies greatly between DRAM modules.  So this model 

can accurately describe the features that are common between most DRAM modules.  

Next, which test algorithm(s) to use is defined.  The size of the memory and the amount 
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of redundant cells available for replacement is defined.  The error rates are defined.  

Finally the test generator is started to run a simulation with the desired parameters. 

 Defining these things in a parameters file allows for many test cases to be run 

without changing any of the codes from the actual modules of the memory.  You can set 

the error coverage to be used.  Determine whether replacement will be used or not.  

Determine exactly what areas of the memory have what amounts of replacement.  Define 

the total size of the memory, set which error rates will be used, and pick from a set of 

standard test algorithms to run on the memory configuration. 

 

 

7.2  Test Generator 

 

 The test generator module does exactly what its title implies:  generates test 

sequences to uncover errors in the memory.  First it sets up some structures to allow the 

functioning of the other modules.  The number of address lines set in the parameters file 

is used to set a variable that describes how many addressable memory locations there are.  

If replacement is being used, a memory status array is created to keep track of when and 

where errors occur.  The memory matrix is created.  The number of replacements 

available per block of memory is calculated by multiplying the percentage of total 

memory available for replacement, defined in the parameters.m, by the number of 

addressable memory locations.  Each section in each chip has this many replacements 

available because each replacement only replaces the number of bits in that section and 

chip.  An error occurred indicator and an error count indicator are both initialized to zero.  
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After all of this setup, the test algorithms; designated in parameters.m; run.  The available 

test algorithms are the same ones discussed section 6.1.  However, as cited in section 6.2 

the industry memory module is much simpler than a complete academic memory model.  

Also because of the variation in the exact memory architecture, it would not be possible 

to reach a general conclusion by basing simulations on any exact memory architecture, 

even if the more detailed academic memory models were used.  For these reasons, the 

memory test that runs in the tests for this research is the MATS algorithm.  Because of 

the model used to generate errors, this algorithm offers sufficient coverage to discover all 

errors introduced by the memory error generation model used. 

 

 

7.3  Memory Controller 

 

 Memorycontroller.m is the logical equivalent of a memory controller in a real 

memory subsystem.  It translates logical addresses into physical memory accesses.  In 

addition to this function it implements the actual replacement of cells.  In the physical 

world this would be equivalent to the memory controller directing the blowing of fuses 

within the memory to replace specific groups of cells within DRAMs.  An actual system 

could be built this way or the logic to implement the fuse blowing functionality could be 

placed within the DRAM itself.  Regardless of the way this is implemented, in reality this 

simulation model delivers the same functionality and fully tests the logical soundness of 

either implementation.  The reason the logic was placed within the memory controller 
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logic in the simulation model was to separate the error inducing logic, which needed to be 

included in the memory module, from the replacement and correction logic. 

 In this simulation model the memory controller module takes in an address, a 

word of data, and a read or write command from the test generator module.  It then tests 

whether replacement is being used or not.  If replacement is not being used it merely 

forwards the read or write command, with the correct physical address, to the error 

correction module so that the data can be coded for a write operation or decoded for a 

read operation.   

If replacement is being used, the memory controller module first tests whether a 

write or a read is being performed.  If the operation is a write, it again merely forwards 

the operation on to the error correction module with the correct physical address.  If the 

operation is a read, it still forwards the command in the same way to the error correction 

module.  The error correction module requests the data from the memory and decodes it.  

After the data is returned, some extra functionality is implemented in the memory 

controller module.  First it tests to determine if a detectable error occurred.  A detectable 

error is one that the error correction code currently being implemented has coverage to 

detect.  The error correction module sends back a flag to the memory controller module 

that alerts the memory controller module that a detectable error has or has not occurred.  

If no detectable error occurred then the data is sent back to the test generator module and 

control is returned to that module to determine if any undetectable error has occurred.  If a 

detectaible error did occur, the memory controller module first determines which chip and 

then which section within that chip the error occurred.  The error correction module 

passes back the bit number that failed and this is then used to determine within which 
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chip and section number the bit is located.  Once this is done the memory controller 

module tests whether there are any replacements left within the particular chip and 

section where the error occurred.  If there is a replacement available, a replacement 

operation is sent to the memory with the correct chip and section, and the number of 

replacements used for that section and chip number is incremented by one.  Finally 

control and the data is returned to the test generator. 

 The replacement logic is implemented in the memory controller be means of an 

array that holds the number of replacements that have already been used.  The dimensions 

of this array are the number of chips by the number of sections so that the number of 

replacements can be tracked by where actual replacements exist within the DRAM.  This 

array is tested and updated within the memory controller module.  For the same reasons 

discussed in section 5.3 in relation to keeping up with address mapping replacements in 

the memory controller, this would not be a realistic way to actually implement this 

functionality.  A fairly large amount of storage would be needed within the memory 

controller, which also would need to be error free for the scheme to work.  The process of 

making that memory error free would add an extra level of complexity and would be an 

inefficient way to implement the functionality.  A memory system implemented this way 

would not be able to operate at the speeds demanded of memory subsystems.  In a real 

memory a single replacement request could be sent to the memory, which would test for 

available replacements and return a success or failure status based on whether there were 

replacements available.  However, the way it is actually implemented in this simulation 

model is logically equivalent and will still provide complete testing coverage equivalent 

to the way an actual physical implementation would be tested.  The reason this was 
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separated out in the simulation module rather than exactly matching the way a physical 

implementation would be implemented, was, again, to separate the error introducing logic 

in the memory module from the memory correction logic in the error correction module, 

and the replacement logic in the memory controller. 

 

 

7.4  ECC generator/decoder 

  

 The ECC generator/decoder module, eccgenerator.m, encodes and decodes the 

data into the error correction code being used.  As discussed earlier, this module has to be 

modified to function differently depending on the error correction code being used.  The 

simulations discussed in this paper are limited to one error correction code.  This 

implementation is sufficient while only one code is being used for simulation.  However, 

if more, or other, codes are used this solution isn’t very scalable or modular.  For each 

new code, modification has to occur.  A better original design might have been to define 

the code for decoding in the hmatrix.m module, which defines the error correction code, 

and call it from the ECC module.  However, this was not an anticipated complication, so 

the current implementation is a reasonable solution to resolve the problem within the 

framework in which it is currently being used. 

 Within the ECC generator/decoder module, the first thing that happens is a test for 

whether the operation is a write or a read.  If the operation is a write, the data vector is 

multiplied by the generator matrix modulo two.  The modulo two is necessary because the 

Matlab matrix multiplication function is a base 10 operation, but what is needed is a 
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binary multiply.  Simply taking modulo two of the result is sufficient because all of the 

multiples in the matrix multiply operation are one times zero, zero times zero, or zero 

times one.  The results of all of the multiplications are still binary numbers.  The problem 

is introduced when the numbers are added together.  However, the sum of ones and zeros 

in base 10 taken modulo two is the same as the binary sum of the same numbers.  So 

taking the result of multiplying the data vector by the generator matrix modulo two is 

sufficient to encode the data in the error correction code.  Next the coded data is passed 

along to the memory module to be stored in the memory. 

 If the memory operation is a read, the memory module is accessed first to retrieve 

the data for the address being read.  Next a syndrome is produced.  Multiplying the 

retrieved coded vector from the memory by the parity check matrix modulo two produces 

this syndrome.  The matrix multiplication modulo two works in this situation for the 

same reasons described above.  Next the syndrome is tested to determine if any detectable 

errors occurred.  If the syndrome is composed of all zeros then no detectable errors 

occurred.  In this case, the data bits are picked out of the coded word to produce the 

decoded data.  Control is then returned to the memory controller module along with the 

data produced.  If the syndrome is not composed of all zeros then a detectable error has 

occurred.  If this happens then the syndrome is compared to each column of the parity 

matrix.  If it matches any of the columns then a single bit error has occurred and the bit 

location of the error is the same as the column number that was matched.  If a match is 

found the digit at the bit position that was matched is flipped to make the data word 

correct.  A variable is then set to indicate that a correctable error occurred.  A variable is 

set indicating which bit was corrected so that the information can be passed back to the 
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memory controller for possible substitution in the memory.  If no match is found on the 

syndrome then a detectable, non-correctable error has occurred.  This information is 

passed back to the memory controller by the combination of the erroroccurred indicator 

and the errorcorrected indicator.  If erroroccurred is one and errorcorrected is zero then a 

detectable, non-correctable error has occurred.  Regardless of whether the error was 

correctable or not, the bits which should represent the data word are now picked out of 

the coded data word to be returned to the memory controller. 

 

 

7.5  Memory 

 

 The memory module is where the actual matrix that represents the storage array of 

the memory is maintained.  Assignments and lookups are performed within this module.  

In addition to serving as the logical equivalent of a physical memory, the intentional 

introduction of errors occurs within this module.  Errors are introduced into the memory 

with the probability specified in the parameters module.  Stuck at bits are also accounted 

for in the memory so that the bit remains stuck at the same value between accesses unless 

the memory location is replaced.  Stuck bits are simply represented by a two or a three in 

the memory matrix.  The Matlab matrix is not restricted to binary numbers so an error can 

be represented by any value in the array that is not a one or a zero.  Twos represent bits 

stuck at one and threes represent bits stuck at zero.  The write operation in the memory is 

coded to preserve these twos and threes when new data is written to a location with stuck 

at bits.  The read operation is coded to translate the twos and threes into ones and zeros 
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when the data is sent back to the ECC decoder.  The replacement operation is coded to 

eliminate the twos and threes from the location being replaced.  The number of 

replacements left for a particular section is maintained in the memory controller module, 

so any replacement request sent to the memory by the memory controller is assumed to 

have replacements available.  Once the maximum number of replacements have been 

reached for a section, the memory controller will stop requesting replacements for that 

section. 

 First the memory module tests whether the access is a read or a write.  If the 

operation is a write, then errors are randomly introduced into the data before it is stored.  

This is done by creating a vector of random numbers that is the length of a code word.  A 

call to the Matlab rand function generates the random number vector.  This produces a 

vector of numbers between zero and one.  Next, ½ plus the error rate percentage is 

subtracted from all of the elements of the random number vector.  This shifts the center of 

the random function.  Now only numbers that are less than the error rate percentage will 

be more negative than –½.  If all of the elements are then rounded, everything will round 

to zero except for numbers which were originally smaller than the error probability, 

which will round to -1.  Since the numbers are uniformly distributed these numbers 

should occur with the same probability as specified by the error probability.  So the error 

vector is now a vector of zeros and negative ones, which occur with the error rate 

probability.  Next this vector is multiplied by negative two.  This produces a vector of 

zeros and twos, which are distributed in the same way as the negative ones.  This vector is 

then added to the data vector to induce errors.  If no errors (twos) were present in the 

error vector then the data vector will be unchanged.  However, if errors were present, they 
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cause the bit that they match up with to flip.  This is because zero plus two is two, which 

represents a bit stuck at one in the memory, and one plus two equals three, which 

represents a bit stuck at zero in the memory.  After the error injection is done, the address 

in the memory matrix is checked to determine if there are any existing stuck at bits in that 

location.  If there are any pre-existing stuck at bits in the memory they are copied into the 

data word about to be written.  The new data word is then copied into the correct location 

in the memory regardless of the pre-existing or induced errors. 

 If the memory operation is a read then the contents of the memory at the current 

physical address is put into a data word.  Next, the data word is checked for stuck at bits 

so that they can be translated into their binary equivalents before they are passed back to 

the ECC generator.  Zeros are substituted for threes and ones are substituted for twos. 

 If the memory operation is a replacement, the memory status is reset to indicate 

that no errors are present in that memory location.  Next the stuck at bits are taken out of 

the memory array for that physical address, chip number, and section number.  Twos are 

replaced in the memory by ones and threes are replaced in the memory by zeros. 
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VIII. Conclusions 

 

 The simulation module described above was run over a range of error rates.  For 

the purpose of the simulations the error rate was defined as the probability that any single 

address location has one or more failing bits.  Error rates ranging from .1% to 50% were 

tested.  Figure 8.1 shows the total number of errors that occurred versus the error 

probability.  This is roughly a direct proportionality relationship as expected.  The total 

number of errors should vary directly with the error rate. 

Figure 8.1 
Total Errors 

 Figure 8.2 shows the number of errors corrected versus the error rate.  This graph 

also shows roughly a direct proportionality relationship.  However, the curve is a little 

more concave than the total errors graph, indicating that a higher percentage of errors 

were corrected at a lower error rate.  This can be seen even more clearly in Figure 8.3, 

which graphs the number of errors that show up outside the memory.  Since this number 
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is the only other component of the total number of errors and the graph of it is convex, the 

correctable graph must be more concave than the total errors graph.  This also makes 

sense, because at a lower error rate, there is a lower probability of more than one bit 

failing at a time.  Also, it should be noted that the corrected errors make up the largest 

portion of the total errors.  Even at the highest error rate, the total number of errors is  

about 5.4*104, while the number of corrected errors is about 4.6*104, or greater than 80%  

of the total. 

Figure 8.2 
Errors Corrected 

 Finally, figure 8.4 shows the number of errors that were neither correctable nor 

detectible.  This graph shows an obvious sharp descent as the error rate goes down.  Even 

at a 15% error rate, virtually no errors are able to make it through all of the error 

correction methods. This is a promising result, which upon further, more detailed study 

might produce a better solution to memory manufacturing problems this research has  

discussed. 
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Figure 8.3 
 

Errors found outside the memory 

Figure 8.4 
Undetectable Errors 
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