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Abstract

Next-generation space telescopes in NASA's Origins missions require use of advanced
imaging techniques to achieve high optical performance with limited launch mass.
Structurally-connected Michelson interferometers meet these demands, but pose spe-
cific challenges in the areas of system dynamics and controls, uncertainty management
and testing. The telescope optics must meet stringent positional tolerances in the
presence of environmental and on-board disturbances, resulting in heavy demands
on structural dynamics and control. In addition, fully integrated system tests are
cost-prohibitive due to the size and flexibility of the system coupled with the severe
differences between the on-orbit and ground testing environments. As a result, the
success of these missions relies heavily on the accuracy of the structural and control
models used to predict system performance.

In this thesis, dynamic tailoring and tuning are applied to the design of precision
optical space structures to meet aggressive performance requirements in the presence
of parametric model uncertainty. Tailoring refers to changes made to the system dur-
ing the design, and tuning refers to adjustments on the physical hardware. Design
optimizations aimed at improving both performance and robustness are considered
for application to this problem. It is shown that when uncertainty is high and perfor-
mance requirements are aggressive, existing robust design techniques do not always
guarantee mission success. Therefore, dynamic tuning is considered to take advan-
tage of the accuracy of hardware performance data to guide system adjustments to
meet requirements. A range of hardware tuning techniques for practical implemen-
tation are presented, and a hybrid model updating and tuning methodology using
isoperformance analysis is developed.

It is shown that dynamic tuning can enhance the performance of a system designed
under high levels of uncertainty. Therefore, robust design is extended to include
tuning elements that allow for uncertainty compensation after the structure is built.
The new methodology, Robust Performance Tailoring for Tuning creates a design
that is both robust to uncertainty and has significant tuning authority to allow for
hardware adjustments. The design methodology is particularly well-suited for high-
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performance, high-risk missions and improves existing levels of mission confidence in
the absence of a fully integrated system test prior to launch. In the early stages of the
mission the design is tailored for performance, robustness and tuning authority. The
incorporation of carefully chosen tuning elements guarantees that, given an accurate
uncertainty model, the physical structure is tunable so that system performance can
be brought within requirements. It is shown that tailoring for tuning further extends
the level of parametric uncertainty that can be tolerated at a given performance
requirement beyond that of sequential tailoring and tuning, and is the only design
methodology considered that is consistently successful for all simulated hardware
realizations.

Thesis Committee Chairman: Warren P. Seering
Title: Professor of Mechanical Engineering

Thesis Supervisor: David W. Miller
Title: Associate Professor of Aeronautics and Astronautics
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Subscripts and Superscripts

optimal solution

Hermitian (complex-conjugate tanspose)
hardware value

transpose

worst-case value

nominal value

requirement

tuned value
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Chapter 1

Introduction

Next-generation precision telescopes, such as space-based interferometers, push the

boundaries of existing design methodologies. In order to achieve science goals, nanome-

ter level pointing stability and precise wavefront control are necessary. These require-

ments place a large burden on the structural dynamics and control systems. In ad-

dition, fully-integrated system tests on interferometers are cost-prohibitive, placing a

heavy dependence on models and simulation for pre-launch performance assessment.

In effect, inherently uncertain models and approximations are relied upon to pro-

vide precise performance predictions. Traditional robust design techniques are not

adequate to guarantee success under such conditions.

To address this problem, a two-stage design methodology called Robust Perfor-

mance Tailoring for Tuning (RPTT) is developed. It is an extension to robust design

that includes, in the cost function, the concept of tunability . Uncertainty compen-

sation is shared between robust design and hardware tuning. RPTT is employed

during the design stage when uncertainty is high but the design parameter space is

large. Hardware tuning is used after the components are built, when the performance

is known, but only limited adjustments are possible. The methodology is developed

in the context of structurally-connected space-based interferometers such as NASA's

Space Interferometry Mission (SIM) and Terrestrial Planet Finder (TPF), but is also

applicable to other precision optical systems such as the James Webb Space Telescope

(JWST) and coronographs.
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1.1 Space-Based Interferometry

NASA's Origins program is an on-going effort aimed at exploring both the nature

of the universe and its inhabitants. The specific goals of the program are to answer

questions about the origin of our universe and to search for other Earth-like plan-

ets in nearby solar systems. The program consists of a family of missions that span

over twenty years (Figure 1-1). The earliest telescopes, including the Hubble Space

Telescope (HST), are in operation and provide valuable information to scientists and

astronomers at the time of this writing. Upcoming missions include SIM, JWST,

and TPF (interferometer and coronograph). All three of these missions have ambi-

tious science goals that push the boundaries of engineering across many disciplines,

including optics, structures and control.

Figure 1-1: Timeline of Origins missions [3].

1.1.1 Astrometry and Imaging

In order to achieve the first of Origins' goals, mapping the universe and exploring its

origins, a telescope with very high angular resolution is necessary. Angular resolution
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is an optical metric that describes the accuracy of an optical system. It is defined as

the minimum resolvable angular separation between two objects [54]. Consider two

objects located far from a telescope, but very close to each other. A low-angular

resolution telescope is unable to resolve the two objects, and they appear to an

observer as a single blurred object. A telescope with high angular resolution, however,

presents an image of two distinct light sources.

One challenge faced in the design of these telescopes is the limitations imposed by

a trade-off between system mass and optical performance. In the case of a monolithic

telescope, such as HST, the angular resolution of the system scales proportionally

with the diameter of the primary mirror. However, as the primary mirror becomes

larger it also becomes more massive and more expensive to manufacture and launch.

Therefore mass and cost budgets limit the angular resolution that can be achieved

with a monolithic system.

One alternative to the monolithic telescope design that has generated much inter-

est over the past few decades is astronomical interferometers [105, 8]. These instru-

ments provide high resolution imaging and astrometry at a significant savings of mass

and volume compared to a monolithic design. Interferometers function by combining

the light gathered by two or more smaller apertures separated by a large baseline.

The angular resolution of an interferometer increases proportionally to the length of

this baseline. Therefore, it is not necessary to manufacture and launch very large

mirrors. Instead, it is only necessary to place collecting mirrors sufficiently far away

from each other to achieve the desired performance.

A number of ground-based stellar interferometers are currently in operation. These

include the Keck Observatory [29] on Mauna Kea in Hawaii, the Sydney University

Stellar Interferometer [33, 34] (SUSI) in Australia, and the Navy Prototype Optical

Interferometer [9] (NPOI) in Flagstaff, Arizona. These systems have already provided

valuable astronomical data [58, 59, 30, 38, 77, 32] such as stellar images, astromet-

ric measurements of stellar positions and stellar angular diameters. However, the

optical performance of these ground interferometers is limited by atmospheric distor-

tions. The next logical step is to place these systems in space where they can operate
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unfettered by the Earth's atmosphere [8].

1.1.2 Planet Detection

The second main goal of the Origins program is to search for life in other solar

systems. This aim requires the detection and study of extra-solar, Earth-like planets.

Currently, planet detection is done by ground-based telescopes that measure the

motion of a star due to an orbiting planet. This technique has been successful in

locating a number of Jupiter-sized planets, but is not sensitive enough to find smaller

planets with mass comparable to that of the Earth. Therefore, the concept of a

single instrument that detects Earth-like planets through their radiated heat and

then performs a spectroscopic analysis to find signatures of carbon dioxide, water

and ozone has been proposed [6].

There are two main challenges associated with this type of detection scheme. First,

it is necessary to distinguish the radiated heat from that of the star. If the observing

instrument is located on Earth, the heat from the planet is entirely swamped by the

radiation from the Earth's atmosphere and the ambient temperature of the optical

elements. However, even if the instrument is placed in space, removing these sources

of noise, the contrast ratio of the star to the planet is on the order of 107. It is

necessary, then, to find a way to separate the star radiation from that of the planet.

A second challenge arises due to the small angular separation between the planet and

the star. As discussed above, a high-angular resolution instrument is necessary to

resolve the two sources.

A nulling interferometer operating in the infrared (IR) has been proposed as

the solution to the planet detection problem. The concept was first introduced by

Bracewell [20]. He and his colleagues suggested using an interferometer to destruc-

tively interfere star radiation captured by two apertures separated by a baseline [21].

The destructive interference results in the cancellation of the stellar flux over a broad

waveband. If the instrument is designed correctly, the planet emission, which is

slightly off-axis from the star, constructively interferes and is reinforced allowing the

detection of the planet despite the stronger stellar radiation. Designs for nulling IR
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interferometers have been proposed by Leger et al. [71], Mennesson and Mariotti [86]

and Angel and Woolf [6].

1.1.3 Technical Challenges

While interferometers do provide solutions to the astrometry and planet detection

problems, they also pose a significant set of engineering challenges. In order to pro-

duce astrometric measurements, images or to achieve nulling, the interferometers

must be able to acquire fringes. Interferometric fringes are the dark and light zones

that result from the interference of two light sources (see [54] for a full discussion on

interferometry). The acquisition of fringes is possible given that the distances the

light travels through the two sides of the interferometer are equal to within a fraction

of a wavelength. This optical metric is known as the optical path difference (OPD).

Recall that the angular resolution of the system scales with the baseline. Large

baseline can be achieved by placing the collecting and combining optics on a deploy-

able or articulating truss structure or by flying them on individual spacecraft. The

first configuration is known as a structurally-connected interferometer (SCI), while

the latter is called a formation flown interferometer or a separated spacecraft interfer-

ometer [72]. A high-resolution interferometer operating in the visible regime requires

that the light paths be equal to within a few nanometers over a baseline of ten or

one hundred meters. In the case of the SCI architecture, flexibility in the support-

ing structure and the presence of on-board disturbances place a large demand on

the structural dynamics and control systems to achieve the required stability. The

formation flown problem is also difficult, but its challenge lies in the knowledge of

position and the control of the spacecraft formation. The work included in this thesis

is focused on the SCI architecture.

A second area of difficulty associated with space-based interferometers is system

integration and test. A full system integration test (SIT) previous to launch is not

practical due to the large contrast between the ground testing and operations environ-

ments. The system is designed for operation in a vacuous, zero-gravity environment,

but a ground test is influenced by gravity and atmospheric distortions. In the case of
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the SCI, both the size and flexibility of the structure cause difficulties when creating

a testing environment on Earth that is consistent with the operations environment in

space. More importantly, a pseudo-star is necessary to inject collimated light across

the entire baseline of the interferometer simulating the observation of a star many

light years away. A pseudo-star of this type is currently used with the Microarecond

Metrology Testbed which is a technology demonstrator for the Space Interferometry

Mission [69]. In this case, only one pseudo-star is necessary to test the single baseline

interferometer. However, to complete the objectives of the Origins missions a mul-

tiple baseline interferometer is necessary. Therefore, one pseudo-star per baseline is

required to test all baselines simultaneously. In addition, each pseudo-star must be

more sensitive than the interferometer instrument that it is designed to test. Such a

SIT is theoretically possible, but is cost-prohibitive.

1.1.4 Missions

The Space Interferometry Mission (SIM) is the first interferometer in the suite of Ori-

gins missions and is scheduled for launch in 2009 . The primary goal of SIM is planet

detection and galaxy mapping through precision astrometric measurements. SIM is

also a technology demonstrator for space-based interferometry and hopes to pave the

way for future Origins missions. The current SIM design, shown in Figure 1-2(a) [13, is

a structurally-connected Michelson interferometer with four individual parallel base-

lines. Each baseline is approximately 10 meters long and consists of 35 cm diameter

aperture telescopes that collect star light, compress it and direct it through the opti-

cal train to the beam combiner. Two of the interferometers are guide interferometers

and are pointed directly at guide stars to provide precise inertial reference data. The

other two interferometers are science instruments and are used for observing science

targets [693.

The Terrestrial Planet Finder (TPF) is a second generation Origins mission sched-

uled for launch between 2012-2015. The science goals of the mission include detecting

Earth-like planets in a habitable zone around nearby stars, searching for atmospheric

signatures of life through spectroscopy and performing high-resolution imaging of
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Figure 1-2: Artists' concepts of Origins missions: (a) SIM [1] and (b) TPF [2].

astrophysical targets [2, 70]. The original baseline design for TPF is an infrared sep-

arated spacecraft interferometer [13]. However, as the result of a series of industry

studies at the time of this writing there are three competing architectures for TPF:

an infrared (IR) structurally-connected interferometer, an infrared formation-flown

interferometer and a visible light coronograph. Figure 1-2(b) shows an artist's con-

cept of the SCI design proposed by Lockheed Martin. For the purpose of the work in

this thesis only the SCI architecture is considered.

1.2 Problem Statement

One problem inherent in complex system design arises due to a trade-off that occurs

over the development phase between design flexibility and the accuracy of performance

predictions. Early in the mission development, models of the proposed design are

created to assess system performance. At this stage, design alterations come at a

modest cost, but the models used to predict performance are uncertain, resulting

in low-confidence predictions. Designing the system to meet requirements across this

large uncertainty space may not be possible. In the later phases of the program, flight

components and limited integrated test data become available dramatically increasing

the accuracy of the performance predictions. However, an unfortunate consequence
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may be that it becomes certain that the system will fail. Design changes at this stage

are quite expensive now that flight hardware is built.

Space-based, structurally-connected interferometers are particularly affected by

this trade since they are classified as both high-performance and high-risk systems.

The precision optical performance required for astrometry, nulling and imaging cou-

pled with the size and flexibility of the instrument place heavy demand on the struc-

tural dynamics and control systems, while the high cost of a fully-integrated system

test limits the ability to guarantee desired on-orbit performance prior to launch. As

a result, it is necessary to design the system very precisely, yet rely heavily on models

and simulations, which are approximations, to predict performance.

1.2.1 Background

One approach to the design of these systems is shown in Figure 1-3. The figure is

broken up into three different regions. In Region I, testbeds are used to validate

modeling techniques and generate model uncertainty factors (MUFs) [18]. Testbed

models are developed and performance predictions from these models are compared

to data from the testbeds. The models are refined until all of the major features

visible in the testbed data are captured in the model. Then MUFs are chosen to

approximate any remaining differences between the model and the data that are

difficult to quantify. Model predictions that have been adjusted by MUFs should be

conservative when compared to the testbed data.

In Region II, the component models are used to predict performance and drive

system design. The component developers deliver models of their respective designs.

The MUFs are applied to the component models aid they are integrated to evalu-

ate system performance. The component designs and associated models are iterated

upon until the predicted system performance meets requirements. Once the designs

are validated in this way, the developers build and deliver the flight system compo-

nents. Upon delivery, the components are tested and compared with the conservative

component models before acceptance. If the test data lies within the model predic-

tions the models are considered validated, and the components are accepted.
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Figure 1-3: Current model validation and performance assessment approach.

In Region III, the test data from the component hardware is combined with an on-

orbit simulation to predict system performance in the operational environment. The

predictions are compared to the limited system validation test data that is available

as well as to the requirements. Component interface uncertainty becomes relevant in

this step since a blend of models and data are used in the simulation. If the simulation

prediction meets requirements and the validation tests match predictions, the system

is launched. If the simulation does not meet requirements, launch is delayed to allow

for redesign and adjustments.

Four mission scenarios that could arise based on the process described above are

listed in Table 1.1. In the first scenario, the simulation predictions meet performance,

the system is launched and the on-orbit performance matches the predictions resulting

in a successful mission. In the second scenario, the simulation predicts adequate per-

formance, but the predictions are incorrect and on-orbit performance is not adequate

leading to mission failure. In the third scenario, the predictions are incorrect again,

but this time the simulation predicts poor performance while the on-orbit behavior

would have been adequate, and the result is an unnecessary delay in launch. Finally,
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Table 1.1: Effect of simulation results on mission.

# Simulation Action On-Orbit Result
Prediction Performance

1 good launch good success
2 good launch bad failure
3 bad no launch good delay
4 bad no launch bad delay

in the fourth scenario, the simulation correctly predicts poor performance and the

resulting launch delay and redesign is the appropriate action.

It is interesting to note that only the first scenario results in a successful mis-

sion. All other scenarios lead to failure or a delay in launch. The fourth scenario is

appropriate given the conditions and may eventually lead to success as long as the

simulation predictions continue to be correct after adjustments and redesign. In the

second and third scenarios the simulations predict the system operation incorrectly.

As a result, scenario two is a complete failure, while scenario three calls for unnec-

essary redesign that may lead to scenario two upon eventual launch. The simulation

prediction is therefore a single-point failure in this approach.

One way to increase the chances of mission success is to ensure that the simulation

predictions are always correct. Accomplishing this goal requires a large investment

in modeling and analysis. Uncertainty modeling, structural optimization and robust

design are all known techniques that are frequently employed to increase the accuracy

of performance predictions. Uncertainty modeling involves identifying the sources of

model uncertainty, quantifying them and producing bounds on performance predic-

tions. Uncertainty models are combined with structural optimization in the field of

robust design to find a design that meets the desired performance requirements and

is insensitive to model uncertainties. However, it is well known in the field of robust

control that robustness is achieved at the expense of nominal performance, and so, as

a result, these tools alone may not be adequate for a system that must meet aggres-

sive performance requirements under a high level of uncertainty. In this thesis, the

problem of how to extend robust design techniques to ensure that stringent perfor-
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mance requirements are met on-orbit when high-uncertainty models and simulations

are depended upon for launch decisions is addressed.

1.2.2 Approach

The approach taken in this thesis is a formal synthesis of robust structural design

and hardware tuning. The burden of uncertainty management is shared by both

simulation and hardware. Instead of mitigating uncertainty through robust design

or excessive modeling and component prototyping, it is managed by optimizing for

a mix of performance, robustness and tunability. Such a scheme addresses the prob-

lem of performance prediction accuracy vs. design flexibility by choosing parameters

that can be tuned during component testing, system integration, or on-orbit, to af-

fect the system performance thereby increasing hardware design flexibility. If the

system is designed such that these parameters have enough authority to guarantee

that performance requirements can be met regardless of where the actual system lies

in the uncertainty space, then the resulting system is significantly more likely to be

successful.

Consider the effect of such a design methodology on the scenarios in Table 1.1.

The simulations are augmented with a formal pre-launch and on-orbit tuning pro-

cess so that the predictions only need to meet performance within specified error

bounds. If the system is guaranteed to be "tunable" within these bounds then the

scenarios are as shown in Table 1.2. The simulation prediction metric has changed

from "good" or "bad" to "meet requirement" or "within bound." This distinction is

made because if the prediction does not meet requirements, but is within the tunable

range then launch is still the correct action. Note that all four situations lead to

launch and mission success. The dependence on simulation is reduced by allowing for

on-orbit adjustments and the requirements for launch are relaxed to allow for model

uncertainty resulting in a greater probability of mission success.

When discussing the design methodology throughout the thesis the following ter-

minology is used. The term Performance Tailoring (PT) describes the process of

structural design for performance only, i.e. structural optimization without consid-

29



Table 1.2: Effect of

# Simulation
Prediction

1 meet req

2 meet req

3 within bound

4 within bound

simulation results on mission with tuning.

Action On-Orbit Action Result
Performance

launch good none success
launch bad tune success
launch good none success
launch bad tune success

eration of model uncertainty. Robust Performance Tailoring (RPT) refers to robust

structural optimization in which robustness to a specified uncertainty model is in-

cluded in the design objective. Robust Performance Tailoring for Tuning (RPTT) is

an extension to RPT in which a design is optimized for performance, robustness and

tunability. In this approach the tuning or adjustment on hardware is anticipated and

explicitly planned for during the design optimization.

1.2.3 Research Objectives

The main objective of this thesis is to develop a design methodology that is appropri-

ate for high-performance and high-risk systems such as space-based interferometers.

Available robust design tools are applied to this problem and evaluated for effective-

ness. An extension to robust design that includes a formal tuning methodology is

developed. The specific research goals, and thesis chapters in which they are ad-

dressed, are as follows:

" Apply structural optimization and the robust design framework and tools to

space-based interferometer design. Identify control and noise parameters rele-

vant to the design of precision structures for optical space systems [Chapters 2

and 3].

" Evaluate the performance of robust design techniques on high-performance and

high-uncertainty systems [Chapter 3].

" Formalize an efficient tuning methodology that can be applied to flight hard-

ware either during component testing or on-orbit operation to bring the system
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performance within requirements [Chapter 4].

" Extend robust design techniques to include tailoring for tuning. Define the

concept of tunability and incorporate the idea into robust optimization resulting

in a formal relationship between structural tailoring and tuning [Chapter 5].

" Demonstrate through simulation that RPTT guarantees that the desired per-

formance can be achieved given an accurate model of parametric uncertainty

[Chapter 5].

" Apply the RPTT design methodology to an integrated model of a precision

optical space structure. Choose appropriate tailoring and tuning parameters

for the focus application [Chapter 6].

1.3 Previous Work

The research presented in this thesis draws from previous work in systems engineering,

structural dynamics, integrated modeling, optimization and robust design. In this

section a review of the relevant work in these fields is presented.

Structural optimization is a well-developed field with a rich history. The advent

of the digital computer made optimizing structural elements in the design process

practical. Numerous examples can be found in the literature of sizing, shape and

topology optimization [64]. Sizing optimization is typically applied to a truss structure

and uses parameters such as member cross-sectional area and plate thickness as design

variables. In shape optimization the topology is fixed, but the structural boundaries

are allowed to change [56]. In topology optimization much less is known about the

structure and the search is for optimal material distributions to yield a preliminary

structural configuration [114, 73].

A large body of work exists on the application of sizing optimization to truss prob-

lems to minimize mass subject to static constraints such as maximum stress. Many

different optimization techniques have been applied to variations of this problem. The

reader is referred to Kirsch [66] for an overview of gradient methods and examples. It
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has been found that structural design problems tend to have many variables, include

nonlinearities in the cost functions and/or constraints, and may be non-convex. As

a result, non-gradient or heuristic, search techniques have become popular in recent

years. Lagaros et al. apply genetic algorithms to the minimum weight sizing problem

and compare the results to those obtained with gradient methods [67]. Hasancebi

et al. use simulated annealing to determine the optimal size, shape and layout for

minimum weight truss structures subject to stress, stability and displacement con-

straints [51]. Manoharan and Shammuganathan provide a comparison of four search

techniques, Tabu search, simulated annealing, genetic algorithms and branch-and-

bound, applied to the truss sizing problem [79].

Structural optimization has also received a large amount of attention from the

vibration suppression community. Yamakawa formulated the problem of minimum

root mean square (RMS) tip displacement for a cantilevered beam and truss frame

structures with deterministic loading [113] . Chen, Bruno and Salama demonstrated

increased finite-time energy dissipation through combinatorial optimization of passive

and active damping locations in a simulated annealing framework [26]. Langley uses

a Quasi-Newton optimization algorithm to minimize kinetic energy and maximum

strain in a near-periodic beam system by varying bay lengths and loss factors [68].

Keane, Nair and their colleagues at South Hampton University have done extensive

work in vibration minimization through unusual truss geometries. They use genetic

and evolutionary algorithms to design trusses that exploit the intrinsic vibration

filtering capabilities of non-periodic structures to achieve passive isolation [63, 95,

96]. As a continuation of this work, Moshrefi-Torbati and Keane have published

the first experimental validation of topology optimization for passive isolation [91].

The authors built the optimized structure and demonstrated significant vibration

suppression over the traditional design.

As the science requirements for telescope missions became move aggressive the

structural vibration and control communities began to examine the idea of consid-

ering structure and control design in parallel as an alternative to traditional design

methods. Historically, designs are driven by mass and static requirements. The struc-
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tural dynamics are analyzed after an architecture is chosen and detailed design has

begun. The dynamics are then characterized and active control is implemented to

compensate for undesirable behavior. The high-performance required by space-based

interferometers highlighted the need for a new approach. It was believed that exe-

cuting the system design sequentially would not guarantee the high levels of stability

necessary for mission success. The need for high control bandwidth to acheive high

performance coupled with the detrimental effects from the interaction between this

control and flexible dynamics led to the field of control-structures interaction.

There are many contributions in the field of combined control/structures design.

For example, von Flotow shows that a truss structure can be optimized, or tailored, to

generate a design that is more easily controlled [111]. Other authors include control in

the optimization by adding control energy to the cost functional [87] or optimizing over

closed-loop, instead of open-loop, performance [90, 14]. Uchida and Onoda extend

the problem by considering the optimal design of passive damping for performance

improvement on space structures. They optimize structural parameters and linear

quadratic regulator (LQR) gains to minimize both mass and control effort [109]. In a

more recent publication, Anthony and Elliott compare combined structure and control

optimization strategies to individual optimizations [7]. Genetic algorithms are used

to perform combinatorial optimization of joint and actuator locations to reduce the

average vibrational energy in a given frequency band. It is shown that the combined

optimization solution achieves greater attenuation then the sequential solutions.

Crawley, Masters and Hyde formalize the CSI ideas by developing a methodology

to unify structural dynamics and controls analysis to provide end-to-end design eval-

uations for high performance structures. They stress the importance of considering

both structure and control during conceptual design [31]. These ideas of concep-

tual design are applied to a model of a stellar interferometer precision structure [81]

and validated on a scaled experiment [82]. The experimental validation joins that of

reference [91] as one of the few published in this area.

Application of these methodologies to precision telescopes led to the inclusion of

optical performance in the models. Bronowicki optimized the truss member sizes of a

33



precision telescope structure for mass and optical performance metrics such as line of

sight and wavefront error [22]. Similar efforts have been made by JPL using structural

and optical modeling tools developed in-house. Milman, Salama, and Wette optimized

truss member areas and control gains to generate a Pareto optimal set of designs that

minimize optical performance, control effort and system mass [89]. Combinatorial

optimization of passive damper locations on an interferometer truss to minimize RMS

OPD is presented by Joshi, Milman and Melody [62].

As a result of this multidisciplinary approach to design and performance assess-

ment the field of integrated modeling has been developed. An integrated model is

a system design tool that includes the effects of cross-disciplinary sub-systems. The

MIT Space Systems Laboratory, the Jet Propulsion Laboratory, NASA Goddard

Space Flight Center and Ball Aerospace have demonstrated the role of integrated

models in performance analysis and design of precision space telescopes. Mosier et

al. use an integrated model of the Next-Generation Space Telescope (NGST) to trade

line of sight (LOS) pointing error against reaction wheel speed and isolation corner

frequency [92]. Miller and de Weck present the DOCS (disturbance-structures-optics-

controls) integrated modeling environment and apply it to models of NEXUS and

NGST [35, 88]. Manil and Leiber apply Ball Aerospace integrated modeling tools to

a ground telescope proposed by the European Southern Observatory (ESO) [78]. The

integrated telescope model includes structural and optical dynamics, active mirror

control and environmental effects. Other examples of Ball implementation include

application to a TPF coronograph model [74, 75]. At JPL the integrated modeling

efforts are focused on SIM [49] and include attempts to validate the methodology on

an interferometer testbed [85, 84].

The combination of structural optimization and integrated modeling may lead

to high-performance designs, but if the models that are used in the optimization

are not accurate the system that is ultimately built is not guaranteed to perform

as predicted. Historically models have been used to help engineers understand the

physical behavior of their system. Models are built of a piece of hardware and then

predictions are compared to test data and model updating techniques are employed
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to bring the two into agreement. In this sense, the models are simply used to verify

reality. However, recent trends in complex structures require models to serve as

predictors of future behavior. Since models, by definition, are only approximations to

reality, there is considerable risk and uncertainty involved in the prediction process.

The field of uncertainty and stochastic modeling is growing rapidly. Researchers

are working to understand the sources of model uncertainty, develop models of it

and propagate the effects of this uncertainty to provide bounds, or statistics, on the

performance predictions.

There are many sources of possible model uncertainty, including global modeling,

or model structure errors, parametric errors, discretization errors and environmental

discrepancies [23, 27, 12, 93]. However, of these, parametric uncertainty is treated

most often in the literature as it is the easiest to model and the most difficult to reduce

due to lack of sufficient experimental data. There are several forms of uncertainty

models with probabilistic models being the most popular. Simonian has compiled

a database of measured damping data from twenty-three satellites [106]. He applies

statistical models built from this data to an electro-optic jitter problem to obtain the

probability density function of the performance, optical pointing error. Hasselman has

also been a contributer in this area. He uses a generic modeling database derived from

prior analysis and testing to generate uncertainty models for modal mass, damping

and stiffness parameters [53, 52]. He compares the use of linear covariance, interval

prediction and Monte Carlo propagation of the uncertainties through the analysis to

obtain statistical bounds on frequency response functions.

A short-coming of statistical models is that often the data used to build the un-

certainty model is insufficient. Furthermore, the data that does exist originates from

diverse structural systems making the application to a particular system, such as an

interferometer, suspect. In this sense, the uncertainty model itself is uncertain. Ben-

Haim and Elisakoff present an alternative to probabilistic models in their monograph

on convex uncertainty modeling [15, 41]. The authors suggest that the performance

predictions obtained through statistical analysis are quite sensitive to the distribution

chosen for the uncertainty model. Therefore, convex, or bounded, models present an

35



attractive, and more conservative alternative, when there is insufficient data to build

an accurate statistical model of parametric uncertainty. When these models are used

in uncertainty propagation, bounds on the response are obtained in lieu of statistical

output distributions.

These uncertainty models and propagation techniques are ultimately combined

with structural optimization to produce designs that can meet performance require-

ments despite the model uncertainty. This practice is known as robust design and

has been popular among control experts for some time [110, 10, 47, 48]. Robust

design optimization is a relatively new field in structural design, but has generated

a lot of interest due to the rising complexity of systems [40]. Anderson considers

the problem of robust actuator and damping placement for structural control using

a model with known errors [5]. Park, Hwang and Lee use Taguchi methods to post-

process gradient-based structural optimization to find discrete sizing variables [99].

The Taguchi method [107, 102] is a quality-control technique originally developed for

circuit design that has recently found application in structural optimization. In a

later paper, Park et al. apply the Taguchi method to unconstrained structural op-

timization to find robust optimal designs of three and ten-bar trusses subjected to

applied loads [100]. The areas of the truss members are optimized with conventional

methods first to minimize mass and then with the Taguchi method to minimize the

sensitivity of the displacement of a given node to variations in the member areas.

Constrained robust structural optimization problems are considered as well. Sand-

gren and Cameron suggest a two-stage hybrid approach that combines the use of

genetic algorithms for topology optimization with Monte Carlo uncertainty propa-

gation to determine the statistics of the objective function and/or constraints [103].

The method is computationally expensive, but is successfully applied to a ten-bar

truss problem and a higher-fidelity automobile inner panel using probabilistic mod-

els of uncertainty. Elishakoff, Haftka and Fang use convex uncertainty models to

perform "anti-optimization" or min-max style robust design [42]. They demonstrate

their technique on a ten-bar truss problem subjected to uncertain loading as well as

stress and displacement constraints.
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Although structural optimization and integrated modeling do much to enable the

design of complex structures like space-based interferometers there is a lack of ap-

plication of robust design to this problem in the literature. Structural optimization

has been applied to the opto-mechanical jitter problem presented by interferome-

ters, but robust design techniques have not. Instead, the robust design literature is

generally concerned with truss-sizing problems for mass minimization or static dis-

placement reduction and not with dynamic cost functions such as optical path jitter.

If space-based interferometers are to be designed and launched based on simulation

predictions alone, model uncertainty must be considered during the design process.

However, in order to achieve robustness, a system sacrifices nominal performance.

Therefore, robust design techniques reach their limitation when performance require-

ments are aggressive and uncertainty is high. In this thesis both the application of

robust optimization to SCI design and a technique that can be applied to problems

that lie beyond the limits of robust design are presented.

1.4 Thesis Roadmap

A design methodology that extends robust design techniques for application to high-

performance, high-risk systems such as space-based interferometers is developed. In

this chapter, background information on space-based interferometry is presented and

motivates the need for an extension of current design techniques. A review of relevant

literature is included.

In Chapter 2, Performance Tailoring, or the optimization of a structure to min-

imize performance variance alone, is discussed. A simple model of a structurally-

connected interferometer, referred to throughout as the development model, is in-

troduced and discussed in detail. Included in the model are the structure, optical

performance, and disturbance sources. The performance metric is RMS OPD, and

methods for obtaining its gradient with respect to the design parameters are dis-

cussed. In addition, an overview of two popular optimization methods, sequential

quadratic programming and simulated annealing, is given. These algorithms are used
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to solve the performance tailoring problem on the development model. The results

are compared to assess efficiency and performance of the optimization techniques,

and the optimal design is analyzed.

In Chapter 3, parametric uncertainties in the model are considered, and it is shown

that the performance tailored design is very sensitive to changes in the uncertain

parameters. Therefore, the problem of space-based interferometer design is posed in

a robust design framework. A selection of robust design approaches including multiple

model, anti-optimization and statistical robustness are compared and contrasted on

the SCI development model. The resulting RPT design is compared to the PT design

at both the nominal and worst-case uncertainty values. Specific design regimes are

identified by considering the worst-case performance of the PT and RPT designs as the

level of uncertainty increases. It is shown that, although robust design significantly

increases the amount of uncertainty that can be tolerated, a limit is reached for

systems that are highly uncertain yet require a level of performance at which these

techniques are no longer adequate.

In Chapter 4, the concept of dynamic tuning is introduced as a way to extend the

performance of the PT and RPT designs. Tuning is defined as changes made to the

hardware once it is built to bring the system within performance requirements. Pos-

sible tuning parameters and appropriate selection criteria are discussed. A spectrum

of tuning methodologies are presented ranging from model updating to experimental

hardware optimization. Methods are compared through application to the develop-

ment model, and a hybrid methodology using isoperformance for model updating is

developed. Tuning techniques are applied to hardware simulations of the development

model to improve performance under parametric uncertainty.

The focus of Chapter 5 is the development of the RPTT design methodology. It is

a formal synthesis of the tailoring and tuning techniques detailed in the previous chap-

ters in which the design is tailored to plan for future tuing adjustments on hardware.

Tailoring for tuning is demonstrated on the development model, and a comparison

of PT, RPT and RPTT techniques is presented over a range of uncertainty levels to

illustrate the benefits of formally combining tailoring and tuning. It is shown that
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the level of tolerable uncertainty is extended past that of robust design techniques

alone.

In Chapter Six, the PT, RPT and RPTT methodologies are applied to a high-

fidelity integrated model of a structurally-connected interferometer architecture for

TPF. Appropriate tuning, tailoring and uncertainty parameters are identified, and

the design methodologies are demonstrated. Trends similar to those exhibited by the

development model are observed. Limitations of the optimizations algorithms are

identified and recommendations for increasing computational efficiency are made.

Finally, in Chapter 7 the thesis contributions are highlighted and recommenda-

tions for future work are enumerated.
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Chapter 2

Performance Tailoring

A common approach to designing high-performance systems is to use optimization

techniques to find a design that meets performance requirements [113, 26, 56, 109, 62,

51]. One popular problem statement is the design of a minimum mass structure given

constraints on load carrying capability or first natural frequency. In this example, the

objective is a static quantity; the mass of the structure does not change over time.

In contrast, the structural control problem posed by space-based interferometers has

driven the need for both structural and control optimization with a dynamic objec-

tive such as output variance or frequency response. In these problems the objective

function changes with time due to dynamic loading on the structure. Langley et al.

consider the minimization of kinetic energy and maximum strain energy by variation

of truss bay length and bay loss factor [68]. Moshrefi-Torbati, Keane et al. reduce the

frequency-averaged response of a truss by varying the truss topology [91]. The use

of optical performance metrics as cost functions is addressed by both Bronowicki [22]

and Milman et al [89].

In this thesis, the term Performance Tailoring (PT) is applied to structural opti-

mizations in which the goal is to tailor the structure to meet a dynamic performance

requirement. This chapter provides a formal definition of performance tailoring and

gives an illustrative example using a simple structural model that is representative

of a structurally-connected interferometer. The model details are presented and the

PT problem is formulated specifically for the problem of minimizing the RMS of an

41



optical metric. Disturbance analysis methods for evaluating performance RMS and

sensitivity analyses that provide performance gradients are discussed. Both gradient

based and stochastic search techniques are applied to the sample problem to obtain

a performance tailored design.

2.1 PT Formulation

The objective of performance tailoring is to design a system using a set of design vari-

ables, I, such that a desired performance metric, f(Y), is below some required value,

freq One approach to this problem is to formulate an optimization that minimizes

the performance metric:

min f (Y) (2.1)

s.t. g ( <

where f (5) is the performance, or cost, function, S is a vector of design variables that

affect the performance, and g (5) are constraints on the design variables. Examples

of performance metrics include first mode natural frequency and the variance of the

displacement of a particular structural element. For example, consider the design

of a truss that must achieve a specified level of stability at a given point, such as

the tip, when subjected to a dynamic disturbance environment. A PT optimization

would minimize the variance of the tip motion within a given frequency range by

varying the cross-sectional areas of the truss bars. Due to practical considerations,

the cross-sectional areas may be constrained by a lower bound set by manufacturing

and local buckling considerations and an upper bound on the mass of the structure.

2.2 SCI Development Model

The PT formulation is applied to the problem of high-performance systems through

a simple sample structure that is representative of a structurally-connected interfer-
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ometer (SCI). In the following section the development model is presented in detail.

This model is used throughout the thesis to develop and demonstrate the design

methodology and provide a comparison among problem formulations and optimiza-

tion techniques.

The model is two-dimensional and consists of three optical elements, two collectors

and a combiner, modeled by lumped masses rigidly connected to a truss structure as

shown in Figure 2-1. The truss model is broken into four segments, each with its

Mo1l L1

Y

Mcomb

B,

I q xk:: ]po

Nko12

optical mass

0 design mass

- y

0Z z
xX

Figure 2-1: Schematic of SCI development model.

own material and geometric properties, to represent an articulated truss. Each truss

segment is modeled with one Bernoulli-Euler beam finite element. The beam elements

have two nodes each with three degrees of freedom: x-translation, y-translation, and

z-rotation (See Fig. 2-1), for a total of four elements, five nodes and fifteen degrees
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of freedom in the model. The stiffness and mass matrices for one beam element are:

EA 0 0 -E 0 0L L

0 12EI 6EI 0 12EI 6EI
L 3  L2 L 3  L 2

0 6EI 4EI 0 6EI 2EI

Ke L2 L 2 L (22)
EA 0 0 0 0

L L

o 12EI 6E1 0 1E E
L3 -2 L 3

0 6E1 2E1 0 - 6E1 L2 L T2 L

175 0 0 35 0 0

0 156 22L 0 54 -13L

pAL 0 22L 4L 2  0 -13L -3L 2

e 420 35 0 0 175 0 0

0 54 13L 0 156 -22L

0 13L 3L 2  0 -22L 4L 2

where E and p are the Young's Modulus and material density, A and I are the cross-

sectional area and inertia of the beam, and L is the element length. The mass matrix

is of the same form as that used by the finite element program NASTRAN. The

element matrices are assembled into global mass and stiffness matrices, K and M.

The optical elements are simply lumped masses without inertial or optical properties.

They are rigidly fixed to the beam elements and are incorporated by adding the

appropriate mass to the x and y degrees of freedom of the corresponding node in the

global mass matrix. The mass breakdown of the model is given in Table 2.1.

Table 2.1: Mass breakdown of SCI development model.

Component Mass [kg]
Truss 791.7
Combiner 200
Collector (-x) 200
Collector (+x) 200
Total 1391.7
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The equations of motion of the undamped system are written as:

M:x + K> = BjwF (2.4)

where Bj, is a mapping matrix between the disturbance forces, F and the physical

degrees of freedom, ,. The disturbances enter at the combiner node, where the

spacecraft bus and reaction wheels are located and include force and torque in all

three directions, F2, Fy, T,. Therefore, Bj, is a sparse matrix with fifteen rows and

three columns. The axial force, F2, and the torque, T, disturbances are modeled as

unit-intensity white noise, while the y-force, Fy, is white noise with an intensity of

0.01 N The y-force intensity is a fraction of the torque intensity to ensure that the

system response from the two disturbances are of similar scale.

Equation 2.4 is transformed to modal coordinates through the eigenvalue problem:

(- 2 M + K) <D = 0 (2.5)

where Q is a diagonal matrix of natural frequencies and (D contains the associated

mode shapes. The natural frequencies and mode shape descriptions for select modes

are listed in Table 2.2. The system dynamics are written in a modal state-space

Table 2.2: Natural frequencies and mode shapes of nominal SCI model, unconstrained
and with model of Attitude Control System (ACS) included.

Description
Rigid X-translation
Rigid Y-translation
Rigid Z-rotation
ACS mode, Oz rotation
1st bending mode, symmetric
2nd bending mode, asymmetric
3rd bending mode, symmetric
4th bending mode, asymmetric
1st axial mode, asymmetric
2nd axial mode, symmetric

unconstrained
Mode # Freq (Hz)

1 0
2 0
3 0

N/A N/A
4 0.197
5 0.708
6 1.294
7 2.848
12 47.81
13 83.83

with ACS Model
Mode # Freq (Hz)

N/A N/A
N/A N/A
N/A N/A

1 0.082
2 0.197
3 0.813
4 1.294
5 3.030
10 47.81
21 83.83
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representation as follows:

A B

} [q + w (2.6)
_Q--2 -2ZQ (pTbB' W

%] q
z= [Czeb

C

where q are modal coordinates, w is white noise, z is the output, and Cze is a mapping

matrix from physical states to the output. Damping is introduced into the system

through the matrix Z, a diagonal matrix of modal damping ratios. In the development

model, modal damping is set to 0.001 for all modes.

In interferometer design, the optical performance determines the success of the

instrument. There are many optical metrics that are of interest such as the angle of

the wave-front at the combiner, beam shear and optical path-length difference. Since

the SCI development model is a low-fidelity model without true optics, the output, z,

is a linearized geometric approximation of the optical path difference (OPD) between

the two arms of the interferometer and is based only on the translations of the mirror

nodes. If the star is located at a distance R from the interferometer in the Y-axis

direction (Figure 2-1), then the linearized optical path lengths from the star to the

combiner through the two interferometer arms are:

B1OP1 = R - y1+ x -X + B(2.7)
2

B1
OP2 = R-Y2 -xc - x2+x3 + (2.8)2

where B1 is the interferometric baseline, x1 and yi are the negative-x collector trans-

lations, x2 and Y2 are the positive-x collector translations, and x, is the combiner

x-translation. The linearized OPD is the difference of Equations 2.7 and 2.8:

z = -x - y1 +2xc- x 2 + y 2 (2.9)
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The frequency response functions from disturbance inputs to the performance are

computed from the state-space matrices as follows:

Gw (s) = C (sI - A)- B (2.10)

where s = jw and, G,, is a matrix of transfer functions. The resulting transfer

functions from the SCI model are plotted in Figure 2-2. The transfer function from

F2 and T, to OPD are drawn in solid and dash-dotted lines, respectively. The transfer

function from Fy to OPD does not appear on the plot because the force in this

direction does not couple to the output due to the symmetry in the model. Forcing

the structure at the center node in the y-direction only excites the symmetric bending

modes. It is seen from Equation 2.9 that symmetric y motion of the two collector

nodes results in zero OPD. The dominant transfer function is that from torque at the

F [ m/N]

- - T [pm/Nm]

10

10 10 10 2

Frequency [Hz]

Figure 2-2: Frequency response functions (FRF) of SCI: disturbance input to perfor-
mance.

center to OPD. The first flexible mode is the first asymmetric bending mode at 0.708

Hz, followed by the higher order asymmetric bending modcs. In contrast, the F,

transfer function has no low-frequency modes because the beam elements are much

stiffer axially than in bending. The first observable axial mode is at 80.2 Hz.
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The transfer function from torque to OPD is nonzero at zero frequency because

the model is unconstrained and there is a rigid body rotation about the center of

the array. This motion results in equal, but opposite displacement at the ends of the

structure, where the collecting optics are located. It is clear from Equation 2.9 that

such a motion results in infinite OPD contribution. The transfer function from F, to

OPD does not show any contribution from axial rigid body motion. The translational

rigid body modes are unobservable in the output since OPD is only affected by relative

changes in the positions of the collectors and combiners.

2.3 PT Implementation

In the next section the PT optimization formulation is applied to the development

model. First, the performance metric is defined, then design variables for tailoring

the structure are selected.

2.3.1 Performance Metric

The output of interest, z, is the OPD between the two arms of the interferometer

which changes as a function of time with the disturbance. The output variance, o, is

a common measure of system performance that reduces the output time history to a

scalar quantity. If the output signal is zero mean, then the variance is also the mean

square and its square root is called the root mean square [112] (RMS). Output RMS is

often used in disturbance, or jitter, analysis to predict the broadband performance of a

system in the presence of a dynamic disturbance environment. Performance variance

is calculated in the frequency domain from the power spectral density (PSD), of the

output signal, Sz,:

SZZ = GzwSwwGH (2.11)

where Gzw is the system transfer function from disturbance to output, Sww is the PSD

of the input signal and ()H is the matrix Hermitian. Given that z(t) is zero-mean,
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the output covariance matrix, E, is found by integrating S2, over frequency:

Sigmaz = JG S (w) dw (2.12)

In general, Ez, is a matrix, and the diagonal elements are the performance variances,

Uz, corresponding to the system outputs, zi.

Alternatively, if the disturbance input is white noise then the output variance

is obtained more directly using the Lyapunov equation to obtain the modal state

covariance matrix, Eq:

AEq + EqAT + BBT =0 (2.13)

The performance variance for the ith output is obtained by pre and post-multiplying

the state covariance matrix by the appropriate rows of the state-space output matrix

C:

of C, xqC[ (2.14)

The disturbance input for the SCI model is white noise, therefore Equation 2.14 is

used in the implementation to compute performance variance. However, a Lyapunov

analysis can only be conducted on a stable system. Recall from Figure 2-2 and

Table 2.2 that this model contains three rigid body modes with zero frequency. These

modes must be removed or stabilized in order to perform the necessary jitter analysis.

The translational rigid body modes are not observable in the output and, therefore,

can be removed from the model without consequences. The rotational rigid body

mode, on the other hand, does result in positive OPD. In practice, such motion

is controlled with an attitude control system (ACS). The ACS is modeled with a

rotational spring with stiffness, kAcs = 10, 000 Nm at the rotational node of therad

combiner. The value of kAcs is chosen to produce an ACS mode that has a frequency

well below the flexible modes. The effect of the ACS model on the transfer functions

from T, to OPD is shown in Figure 2-3. Notice that the transfer function with ACS

does not have a negative slope at zero frequency. The addition of the ACS model does

affect the first few asymmetric bending modes, but only slightly. The new frequency
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Figure 2-3: Frequency response function of SCI: disturbance input T, to performance,
'-.': without ACS model, '-': with ACS.

values are listed in Table 2.2. This method of modeling the ACS is simplistic, but will

suffice for a model of this fidelity. The F and Fy transfer functions are not shown in

Figure 2-3 since they are not affected by the rigid body modes.

2.3.2 Performance Gradients

A large number of optimization techniques, such as steepest descent, conjugate gradi-

ent and Newtons method (see Appendix A), require the gradient of the performance

with respect to the design variable, x. In the following discussion the gradients of the

output variance are derived. For a more thorough presentation of these equations the

reader is referred to the thesis by H. Gutierrez [50].

To begin, notice that the performance metric is defined by Equation 2.14 with the

constraint that Eq satisfies Equation 2.13. Therefore, the Lagrangian of the variance

is written by augmenting the expression for the variance with a symmetric Lagrange

multiplier matrix, A:

2 Cz(qC[ + Ai (A q + ZqAT + BBT) (2.15)
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where the subscript indicates the it performance metric. In order for the derivative of

Equation 2.15 to equal the derivative of the variance, of, its derivatives with respect

to both Eq and A must be zero. As a result, the Lagrange multiplier is computed by

solving the following equation:

AT Ai + A2A + CTC = 0 (2.16)

Equation 2.16 is similar in form to that of Equation 2.13 and is in fact simply another

Lyapunov equation in AT and C instead of A and B.

Then, taking the derivative of Equation 2.15 with respect to a design variable, x

and using well-known matrix identities gives:

__ f a(cT1 C) +trAA (28± AT ± (BBT )0x =tr Eq + aA + + (2.17)

Equation 2.17 is referred to as the Governing Sensitivity Equation (GSE) and

provides an analytical method of obtaining cost function gradients for design opti-

mizations that use output variance as a performance metric. However, in order to

use this equation it is necessary to calculate the gradients of the state-space matrices.

Recall that these matrices are based on the modal representation of the structure and

therefore, in general, are not explicit functions of the design variables. The design

variables are related to these matrices through the modal quantities, w and (P as

follows:

DA Y O D w, (2.18)
Dx . odw x09 =1 (wO

D- = -B -- 3 (2.19)
j=1

C = -- 3 (2.20)
j=1

where the summations are performed over the modes included in the model.

Since the natural frequencies and mode shapes of the model are obtained through
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the eigenvalue equation, the derivatives of the frequencies are obtained by differenti-

ating Equation 2.5:

wj _ 1 O 2aM + K N
x - =D - -#x a x + #± (2 .2 1)

Obtaining the derivatives of the eigenvectors, or mode shapes, is slightly more in-

volved. Using Nelson's method [98], it is assumed that the jth eigenvector derivative

is written as a linear combination of the Jfh eigenvector and a linearly independent

vector, 4':
-= 0 + ay#, (2.22)

Ox

The scalar aj is obtained through derivation of the mass normalization equation:

= (2.23)

The vector V'j is found by solving the following matrix equation:

bj = Kj V~(2.24)

where AZ, and bj are defined as:

Kg = -w M+K (2.25)

w 2 M aK
b± = mo, -W1 + # (2.26)

Ox ( ax x

The matrix KZ, is singular with rank of n -I if the eigenvalues are distinct. This issue is

addressed by arbitrarily removing one element from bj as well as the corresponding row

and columns from K. The corresponding element in 4', is set to zero. Equations 2.21

and 2.22 provide expressions for the derivatives of the modal quantities with respect

to the design variables as a function of the mass and stiffness matrix derivatives, a"

and j-. These final quantities will differ depending on how the design variables enter

the stiffness and mass matrices. These gradients are derived in the following section

for the specific design variables chosen for the SCI model PT optimization.
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2.3.3 Design Variables

The choice of design parameters for performance tailoring varies from application to

application. In general, it is desirable to choose variables that have a significant effect

on the performance metric and can be controlled to high accuracy during manufac-

turing. For example, geometric properties, such as the cross-sectional diameter of the

truss elements affect the performance metric and can be specified to a relatively high

precision in practice. In contrast, the material properties of the truss elements also

affect the performance metric, but are not good choices for tailoring parameters be-

cause it is difficult and costly to manufacture a material with a very specific Young's

Modulus.

The design variables used in the SCI development model are the cross-sectional

diameters of the truss segments and lumped masses placed at pre-determined locations

along the truss. The truss diameters are constrained to be symmetric about the center

of the array so that there are only four tailoring parameters as listed in Table 2.3 and

shown in the accompanying figure.

Table 2.3: Tailoring parameters for SCI sample problem.

Name Description XO 0
di cross-sectional diameter of truss 1 & 4 0.10 [m] -11.81
d 2  cross-sectional diameter of truss 2 & 3 0.10 [m] -31.15
mI lumped mass on -x truss 0 [kg] 9.31
m 2  lumped mass on +x truss 0 [kg] 9.31

Y

d, M d d M2 di2 2 _6

The third column of the table gives the nominal value for the paramcters, xO,

and the fourth column lists the normalized sensitivity, 7- of the performance metric

with respect to the tailoring parameter. The normalized sensitivity is defined as the
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percent change in the performance due to a percent change in the parameter:

d-r = X -- (2.27)
dp czr, Op

where -z0 is the RMS performance of the nominal design and %c-z is the derivative of

the RMS performance with respect to the parameter, x as defined in Equation 2.17.

In the case of the design masses, the nominal values are zero, so the average of the

structural mass in the consistent mass matrix in the x and y degrees of freedom

at the appropriate node is used in the sensitivity calculation. Note from the table

that increasing the cross-sectional area of the truss segments in the nominal design

decreases the variance of the OPD thereby improving the performance of the system.

2.3.4 Finite Element Gradients

In order to compute the performance gradients it is necessary to obtain the gradients

of the stiffness and mass matrices with respect to the design variables. The stiff-

ness and mass matrices depend on the cross-sectional diameter of the truss segments

through the area and inertia properties of the beam elements. Therefore, the chain

rule is employed to find the derivatives of the global stiffness and mass matrices with

respect to di:

K _ aK OIh OK OA (2.28)
adi aI, Odi a Aj Odi
M = -M A (2.29)

adi aAj Odi

It is assumed that the bar elements have a circular cross-section, so that the inertia

and area of the elements in the ith truss segment are defined as:

I, = (2.30)
64

Ai = di (2.31)
4
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and then, by inspection, the inertia and area derivatives required for Equations 2.28

and 2.29 are:

- = (2.32)
&di 16
aAj 7r- = d (2.33)
adi 2

The stiffness and mass matrix derivatives with respect to di follow directly from

the matrices for one beam element (Equations 2.2 and 2.3). The individual element

derivatives are assembled into the global mass and stiffness matrices as is appropriate

for the truss segment under consideration.

The lumped masses enter the model as concentrated mass at the x and y transla-

tion degrees of freedom on the appropriate grids in the mass matrix. The derivatives

of the stiffness and mass matrices with respect to these masses are therefore:

0 0

1 0 0
aK am.
DK 0, a -M 0 1 0 : (2.34)

0 0 0
=0, --

0 ... 0

2.3.5 Constraints

The cross-sectional diameters are constrained to be greater than a lower bound of 30

mm. This constraint prevents the optimization algorithm from choosing a design in

which the collectors are perfectly isolated from the disturbance by removing the truss

altogether. A lower bound of zero is also enforced on the lumped masses as mass may

only be added to the truss in this manner. An additional constraint is placed on the

total mass of the tailored design, R, to represent the mass constraints imposed by

launch vehicle specifications:
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0.03 - di 0 Vi = 1, 2 (2.35)

-mi < 0 Vi = 1, 2 (2.36)
2

Lp (di + mi) - 0.90R < 0 (2.37)

where M is the total system mass allocated to the design. Only 90% of the mass

budget is allocated at design in order to reserve 10% as margin. Note that the mass

constraint is nonlinear in the cross-sectional diameters.

The equations presented throughout this section describe the PT formulation for

the SCI development model and are summarized in Equation 2.38. The objective is

to minimize the RMS of the performance metric over all frequencies given a white

noise disturbance input. Four design variables, a symmetric distribution of the cross-

sectional areas of the four truss segments and two lumped masses, are considered.

The variables are constrained by a mixed set of linear and nonlinear inequalities that

ensure the optimized design meets practical criteria. In the following section the

optimization algorithm used to produce performance tailored designs are discussed

and results from the SCI development model are presented.

- di d 2 m 1 m 2

Y* arg min o-, (Y) (2.38)
xEX

s.t. 0.03 - di < 0 VZ' = 1, 2

-mi 0 Vi= 1,2

2 Lp (di+mi) -0.90I < 0

2.4 Optimization Algorithms

The field of optimization is quite large and there are many algorithms available to

solve problems such as the PT formulation given in Equation 2.38. In general, the
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algorithms begin at an initial guess for the design variables and then try some number

of configurations until an optimal design is achieved or some termination conditions

are met. The approaches differ in the methods used to move from one iteration to

the next. Gradient-based methods use gradient information to guide the search for

points that satisfy the necessary conditions for optimality. However, if the solution

space is not convex there is no guarantee that a global optimum is found. Heuristic

methods do not require gradients and use randomized algorithms to search for good,

but not necessarily optimal, solutions. These methods are most useful when the

solution space is non-convex and/or highly constrained as the search is able to jump

out of local minima and across islands of feasibility. A more detailed discussion of

the gradient-based algorithms and a simple example is given in Appendix A. Both

a gradient-based method, sequential quadratic programming (SQP), and a heuristic

method, simulated annealing (SA), are applied to the PT SCI problem.

2.4.1 Sequential Quadratic Programming

Sequential quadratic programming (SQP) is a quasi-Newton method developed to

solve constrained optimization problems such as that of Equation 2.1. Constraints

are handled by augmenting the objective function to produce the Lagrangian function:

m

L (X', A) = f (M + Agi (X') (2.39)
i=1

The general goal of SQP is to find the stationary point of this Lagrangian using New-

ton's method. Therefore, the algorithm is also referred to as the Lagrange-Newton

method. For a detailed discussion of SQP the reader is referred to Fletcher [44].

SQP is chosen as the gradient-based optimization algorithm for the SCI develop-

ment model because it can handle constrained problems with nonlinear objectives and

constraints, and is already implemented in the MATLAB optimization toolbox [108].

Also, analytical gradients of the cost function are available, as described above, en-

abling a computationally efficient search.

In the MATLAB SQP implementation there are two levels of iterations. At each
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major iteration an approximation of the Hessian of the Lagrangian function is made

using the quasi-Newton updating method of Broyden, Fletcher, Goldfarb and Shanno

(BFGS). The Hessian approximation is then used along with first-order Taylor series

approximations of the nonlinear constraints to generate a quadratic programming

(QP) subproblem:

min IdT Hkd +Vf (xk )T d
dG71Z 2

V9 i (x )T d + gi (Xk) =0 i= 1,... me (2.40)

Vg (Xk )T d + gi (xk) 0 i= me, + ... m

where H is the Hessian approximation, gi are the constraint equations and m and me

are the total number of constraints and the number of equality constraints, respec-

tively. The solution, dk, is obtained through an active set quadratic programming

strategy and is used to form a new major iterate:

Xk+1 =Xk + &kdk (2.41)

The step length, cak is found through a line search that requires sufficient decrease in

a particular merit function.

If a problem is well-behaved and properly scaled, then gradient-based algorithms,

such as SQP, are likely to find a global optimum as long as the objective function and

constraints are convex. However, if the problem is non-convex, i.e. there are multiple

solutions in the space that are locally optimal, then the algorithm may converge to a

local minima, instead of the global one. In fact, the solution that is obtained depends

on the initial guess chosen by the user. Non-convexity poses a difficult problem since

there is no known way to prove definitively that a global optimum has been found

instead of simply a local one. Therefore, there is an entire body of heuristic methods

that can be employed to search for a global optimum. One simple heuristic is to

randomly chose some number of initial guesses and run SQP, or some other gradient-

based algorithm, from each of these starting points. Each resulting solution is then
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at least locally optimal, and the solution with the lowest cost can be chosen as the

"global" optimum. Such a method is applied to the PT SCI problem and is referred

to as Monte Carlo (MC) SQP.

2.4.2 Simulated Annealing

Simulated annealing (SA) is another example of a heuristic search method. Originally

developed for application to the field of combinatorial optimization, it uses principles

from statistical mechanics to conduct a random search of the solution space. In the

original paper on the subject, Kirkpatrick et al. [65] draw an analogy between the

cooling of a liquid material, such as metal, and a stochastic search optimization.

If a metal is cooled very quickly then the material will solidify into a sub-optimal

configuration. However, if the cooling is done slowly through careful annealing the

material solidifies into a state of minimum energy. In SA, this minimum energy state

is analogous to the minimum of the objective function.

The authors outline four key ingredients necessary to implement a simulated an-

nealing algorithm [65]. The first is a concise description of the configuration of the

system, such as a mathematical model that depends directly on the design variables.

The second requirement is a method of randomly generating new rearrangements of

the design variables. Recall that in the gradient-based methods a new iteration is

chosen based on the search direction found through the cost function gradients. In

simulated annealing, it is up to the user to set up a method of randomly generating

design variable perturbations. The third ingredient is a quantitative objective func-

tion containing the trade-offs that have to be made. In the SCI problem this function

is the combination of the cost and constraints given in Equation 2.38. Finally, an

annealing schedule of the temperatures and length of times for which the system is to

be evolved is necessary. In the optimization context the temperature has no physical

meaning but defines as a set of rules that guides the random search.

An SA algorithm based on elements from the Kirkpatrick reference [65] and the

thesis by Jilla [61] is implemented in MATLAB for use in this thesis. The algorithm

is presented in Figure 2-4 and described here in detail. The process begins with an
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Data: initial iterate, X0 , initial temperature, To, change bounds on x, Ax,
algorithm parameters, ka, kr, kc, ndof

Result: optimal design variables and cost: x*, J*
begin

Evaluate initial cost: Jo = f (xo)
Initialize: x = xo, J = Jo, k = 1, T = TO, A = R = 0
while not frozen and number of function evaluations < max do

Randomly choose design variables to change based on ndof
Generate random change with bounds Ax [Equations 2.42 and 2.43]
if xk is feasible then

Evaluate new cost, JA = f (Xk)

Calculate change in cost, AJ= Jk - Jk-1

if AJ < 0 then
I accept design, A++, k++, store: JA, Xk

else
Calculate acceptance probability, PA [Equation 2.44]
if rand(O,1)< PA then
I accept design, A++, k++, store: JA, xk

else
I reject design, R++

end
end
if R > k, or A > kA then

Increment temperature [Equation 2.45]
Reset counters, A = R = 0

end
end

end
Return lowest-cost design: P = min J, x* = arg min J (x)

end
Figure 2-4: Simulated annealing algorithm.
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initial design variable state, x = xo, an initial temperature, T = To and a set of

optimization parameters. The initial cost is calculated from xO and stored. In the

SCI development model, this step is equivalent to determining the RMS OPD for

the initial design. The counters, A and R, are used to track the number of designs

accepted and rejected at each temperature and are initially set to zero.

To begin the search, new values for the design variables, Xk, in the neighborhood

of the current design, Xkl are generated:

x4 = xkI + dxk (2.42)

where the superscript indicates the ith element of x. A study in [611 shows that to

conduct an efficient search of the solution space it is desirable to change only two or

three design variables at a time. The optimization parameter, nadf, indicates how

many degrees of freedom to change per iteration. If nrtd= 2, two design variables,

chosen randomly from the vector X, are changed and the others remain static. The

magnitude of the change, dx4, is chosen from a random uniform distribution bounded

by Ax:

-Ax' < dx4 < Ax' (2.43)

The new design is checked for feasibility by considering the constraint equations. If

the design is not feasible it is discarded and a new dx is chosen. This process continues

until a feasible new design is obtained.

The new design variables, Xk, are then used to calculate a new cost, Jk and the

cost differential, AJ = Jk - Jk-1. If the change in cost is negative, i.e. the new

design is better than the current, it is accepted. The new cost becomes the current

cost, J = Ji and the counter A is incremented. If AJ is positive it is accepted with

probability:

PA (AJ) = e A (2.44)

where T is the current temperature and kT is a scaling constant. Rejected designs

are not recorded, but the counter R is incremented. The constants, kA and kR are
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defined by the user and indicate the number of designs that must be accepted or

rejected, respectively, at a given temperature. When either A = kA or R = kR the

temperature is reduced according to a user-defined cooling constant, kc:

Tk = Tk_1 (1 - kc) (2.45)

and the A and R counters are reset to zero. The search continues in this manner until

the termination conditions are met. The termination conditions are chosen by the

user based on the specific problem statement. In the PT SCI search the algorithm

terminates when kR designs are rejected at three temperatures in a row.

Equation 2.44 is called the Boltzman probability, and is the critical feature of

the SA algorithm. At high temperatures the probability of accepting a design that

increases the cost is high. By randomly accepting less favorable designs the algorithm

allows itself to climb out of areas of local minimum and more thoroughly search the

space. As the temperature decreases the acceptance probability, PA, becomes lower,

and the search eventually converges in the neighborhood of a favorable design. The

minimum cost and corresponding design variables are identified from the history of

accepted design costs. There is no guarantee that the resulting design is an optimum

in the mathematical sense, in fact it most likely is not. However, if the cooling

schedule is set appropriately for the given problem the resulting design is a good

design and in many cases is better than a locally optimal design resulting from a

gradient search.

2.5 Performance Tailoring Results

The results of the PT optimizations run on the SCI development model are presented

in the following section. Three optimization algorithms, SQP, MC SQP and SA are

compared for performance and efficiency. The SQP algorithm is part of the MATLAB

optimization toolbox, and the SA algorithm is implemented as outlined in Figure 2-4.

At each optimization or search iteration a new SCI state-space model is built
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and the RMS OPD is computed using Equations 2.13 and 2.14. The SCI model is

built in MATLAB as indicated in the algorithm outlined in Figure 2-5. The input to

the model generation code is a vector of tailoring design variables, x. These design

variables are used to build the appropriate finite element model that includes the truss

elements, optics, design masses and ACS model. The eigenvalue problem is solved,

resulting in the natural frequencies and mode shapes for this particular design. The

rigid body modes are removed and a state-space model, SYS (x) is assembled.

Data: tailoring parameters, S
Result: SCI system model, SYS()
begin

Build finite element model including: truss, optics, design masses and ACS
-+K(), M()

Solve eigenvalue problem -+ Q(K, M), 41)(K, M)
Remove rigid body modes
Build state-space model -- A (Q, Z), B(1D), C(<b)
Build data structure and return model

end
Figure 2-5: Development model generation algorithm.

2.5.1 Comparison of Optimization Algorithms

The model performance is evaluated in the nominal configuration to provide a base-

line for comparison with the optimized designs. Building the model with the nominal

tailoring parameters listed in Table 2.3 and running the disturbance analysis results

in a nominal RMS OPD of 471 pm. The cost, optimal tailoring parameters, compu-

tation time and number of function evaluations for each optimized design are listed

in Table 2.4.

Table 2.4: PT optimization results, Jo = 471 pm.

Tailoring Parameters
Algorithm J [pm] di[m] d2 [m] mi [kg] m2 [kg] time [min] nfun
SA 101.57 0.03 0.03 0.3614 2.520 8.74 1619
SQP 100.53 0.03 0.03 0.0 1.934 1.28 29
MC SQP 100.53 0.03 0.03 1.941 0.0 18.1 447
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Simulated annealing results in a very good tailored design that improves the per-

formance by 78.4% when compared to the nominal design. The algorithm freezes on a

design in just under nine minutes and requires 1619 function evaluations. The cooling

schedule and configuration change parameters used for this SA search are listed in

Table 2.5. The algorithm performance is illustrated by the plots in Figure 2-6. The

Table 2.5: SA algorithm parameters.

Parameter Description Value
TO initial temperature 500
kA acceptance quota 25
kR rejection quota 25
kc cooling rate 0.1
kT scaling 1.0

ndof number of degrees of freedom 2
Adi perturbation bounds [in] ±0.005
Ami perturbation bounds [kg] ±1

first plot, Figure 2-6(a), shows the number of designs accepted due to a reduction in

cost (solid line with circles), accepted randomly based on PA (dashed line with circles),

and rejected (solid line with stars), at each temperature. Notice that initially very few

designs are rejected and the accepted designs are split between those that improve

the cost and those that are accepted randomly. As the temperature decreases the

number of rejected designs steadily increases until the maximum quota of 25 rejected

designs is reached at three consecutive temperatures and the design is frozen. The

temperature and objective function histories are shown in the upper and lower plots

of Figure 2-6(b), respectively. The performance starts at around 300pim and fluctu-

ates quite a bit at high temperatures. The performance even becomes worse than

the starting point due to the high value of PA at high temperatures. As the process

cools the performance becomes steadily better until freezing in the neighborhood of

the tailored design.

The SA-optimized design is used as the initial guess for the SQP design, and both

the SQP and MC SQP algorithms find designs with a cost that is slightly lower than

that of the SA design. With an RMS OPD of only 100.53 pm, the SQP-tailored
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Figure 2-6: Search Results for PT with Simulated Annealing: (a) Temperature and

objective history for accepted designs (b) Accepted and rejected design statistics vs.

temperature.

designs improve the performance by 78.6% over the nominal design, but are only

0.2% better than SA. When started at the SA design, the SQP algorithm converges

very quickly and results in the same performance as the MC SQP algorithm. In fact,

the combination of SA and SQP takes nearly half the time (9 minutes) as MC SQP

(18.1 min) to find the optimal design. It is interesting to note that, although the SQP

and MC SQP designs have the same performance, the mass distributions are nearly

mirror images of each other. This result makes sense, since the design masses affect

the performance symmetrically as evidenced by the sensitivities listed in Table 2.3,

but does indicate that the PT solution space is non-convex.

To further explore the convexity of the design space, the resulting solutions and

performances from the individual MC SQP optimizations are listed in Table 2.6. Note

that over the ten trials the optimization converges at one of five different solutions.

One solution has zero design mass and a performance of 102.88pm. The other four

solutions have pretty much the same performance, 100.52pm, but show slight variation

in the size of mi. Also note that the tailored cross-sectional diameters are the same

across all ten solutions; it is only the mass values that change. This result indicates

that the solution space is convex with respect to the cross-sectional parameters, but is
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non-convex with respect to the lumped masses. This theory is supported by the fact

that both the single SQP run and the MC SQP run resulted in the same values for the

di's; with different mass distributions. Referring back to the normalized parameter

sensitivities in Table 2.3 it is apparent that changing the cross-sectional diameters

has a greater impact on the cost than changing the lumped mass values. Therefore,

the cost value is dominated by the di solution, which seems to be a global optimum

and is found by all three algorithms.

Table 2.6: PT optimization: MC SQP optimizations.

J Tailoring, x*

# [pm] di[m] d2 [m] m1[kg] m2[kg]
1 100.53 0.03 0.03 1.9410 0.0
2 102.88 0.03 0.03 0.0 0.0
3 102.88 0.03 0.03 0.0 0.0
4 100.53 0.03 0.03 1.9344 0.0
5 102.88 0.03 0.03 0.0 0.0
6 102.88 0.03 0.03 0.0 0.0
7 102.88 0.03 0.03 0.0 0.0
8 102.88 0.03 0.03 0.0 0.0
9 100.53 0.03 0.03 1.9311 0.0
10 100.53 0.03 0.03 1.9347 0.0

All three optimization algorithms result in

The combination of SA and SQP converges on

design in around ten minutes, while running

a much improved PT-tailored design.

what appears to be a globally optimal

SQP optimizations at random initial

guesses took almost twice as long (18 minutes) and 447 function evaluations. Since the

solution space is non-convex due, in part, to the symmetry in the design masses, the

SA algorithm provides a good starting point for the SQP optimization and improves

the likelihood of locating the best design quickly.

2.5.2 Performance Tailored Design

It is clear from comparing the cost values, RMS OPD, that the PT design is a large

improvement over the nominal design in terms of performance. However, since the

cost metric is RMS, an average energy over all frequencies, comparing these numbers
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does not provide information on why the PT design performs so much better. In this

section, the nominal and SQP PT designs are compared more closely.

First, consider the output PSDs of each design obtained from the transfer functions

using Equation 2.11. The PSDs are presented in the lower plot of Figure 2-7(a), and

show a significant difference in the behavior of the two systems. The backbones of

the systems are quite different and all of the modes in the PT design are shifted lower

in frequency. The upper plot in the figure is the normalized cumulative variance,

&2,. This quantity is the running total of energy in the system and is obtained

by integrating the PSD over discrete frequency bins [50]. The cumulative variance

presented here is normalized by the total system energy so that the two systems can

be compared on a single plot:

U = 2 [+f() , (f)] df (2.46)

where fo G [fmn - fmax] and &2 ~- 1.0. The normalized cumulative variance plot is

especially interesting because it indicates how the energy in the system accumulates

as a function of frequency. It is possible to pick out the modes that are most critical

to the performance by visually correlating the largest steps in the cumulative variance

curve to the peaks in the output PSDs directly below it. The cumulative variance

curve of the PT design shows that the energy is distributed somewhat evenly over a

few critical modes instead of concentrated in a single mode, as in the nominal design.

The critical modes and the distribution of energy among them for the two designs

are shown graphically in a bar chart in Figure 2-7(b) and listed in full in Table 2-7(c).

A critical mode is defined as one that accounts for at least 1% of the total output

energy. The nominal and PT design data is presented side-by-side in the table with

the modal frequencies in the first column, followed by the percent contribution of

the mode to the total energy, and then the output variance and RMS attributed

to the mode. The bar chart shows that the third mode, or second bending mode, is

responsible for most of the energy in the nominal design (~ 80%), while the PT design
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energy is distributed almost evenly among the first (ACS), third and eleventh (second

axial) modes. The ACS mode and second axial mode contribute a small percentage

to the output in the nominal design, but account for 38% and 26% of the energy,

respectively, in the PT design. Comparing the natural frequencies, it is found that

the PT design frequencies are at least a factor of two lower than those of the nominal

design. The lower frequencies make sense considering the fact that the cross-sectional

areas of the beam have decreased greatly from the nominal system (0.10 m) to the

PT design (0.03 m). The cross-section diameters map directly to area and inertia

(Equations 2.31 and 2.30) which in turn map to the stiffness matrix (Equation 2.2).

Lowering the cross-sectional diameters lowers the global stiffness matrix of the system

and, in turn, the natural frequencies.

The final step in understanding the differences between the two systems is to ex-

amine the mode shapes of the critical modes, plotted in Figure 2-8. The ACS mode

changes between the two systems (Figure 2-8(a)) partly due to the change in inertia,

which in turn effects the modal frequency. The shape of this mode (Figure 2-8(a))

is similar in the nominal and PT design but its frequency is much lower in the tai-

lored case (PT). There is a large difference in percent energy contribution from this

mode between the two systems (from 14% to 38.5%), but the absolute RMS values

accumulated in the motion are of similar magnitude (59 and 39pm).

The major improvement in performance is due to the tailoring of the second

bending mode (Figure 2-8(b)). Notice that in the nominal design the two outer nodal

points, or points of zero deflection, are located slightly away from the endpoints of

the array towards the center. However, in the PT design, these nodal points are right

at the ends of the array, where the collectors are located. Since the collector motions

feature prominently in the OPD equation (Equation 2.9), tailoring the mode shape

such that the nodal points are located at the collectors significantly reduces the OPD

output in this mode, and, as a result, the total RMS OPD.

The second and fourth modes (Figures 2-8(c) and 2-8(d)) are account for zero

energy in the nominal case, but a finite (although small) amount of energy in the PT

design. In the nominal design the system is perfectly symmetric so these modes are
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also symmetric as seen in the figure. It is obvious from inspection of the OPD equation

(Equation 2.9) that symmetric y-translation of the collectors does not result in OPD.

It is only relative motion that is important. The PT design, however, is slightly

asymmetric due to the small mass added to the negative-x arm of the interferometer.

The mode shapes of the PT design show definite asymmetry resulting in a small

relative displacement between the end points and a slight energy accumulation in

these modes. The asymmetry is slight however, and does not have a large affect on

the total OPD.

The final mode of interest is the second observable axial mode, Mode #11, listed

in the table. The mode shape is not pictured here because the motion is only axial

and difficult to discern on a linear plot. In both designs the positive x-motion of the

collectors together with the negative x-displacement of the combiner node increase

the OPD (Equation 2.9). The main difference between the two systems is that in

the nominal design this mode is much higher in frequency and therefore contributes

very little to the overall OPD, while the axial stiffness in the PT case is decreased

significantly so that this mode plays a major role in the accumulation of output energy.

The increase is only relevant to the distribution of energy; the total PT energy is still

much lower than that of the nominal design.

In summary, the optimized design achieves better performance by choosing very

small truss elements that result in lower natural frequencies overall and move the

nodal points of the first two asymmetric bending modes to the ends of the array,

where the collector optics are located. The large mass of the collectors on a very

flexible truss effectively pin the collectors in place, so that the truss isolates the

optics from the disturbances entering at the center.

2.6 Summary

In this chapter Performance Tailoring (PT) is introduced and formalized. A sim-

ple model of structurally-connected interferometer is presented in detail and used to

step through the process of applying the PT formalization to a structural model. The
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problem of minimizing a dynamic cost, RMS performance, by varying geometric prop-

erties of the structure, cross-sectional diameters and mass distribution, is addressed.

The design variables are introduced and practical constraints as well as analytical

calculation of cost gradients are discussed.

Two well-known optimization algorithms, sequential quadratic programming (SQP)

and simulated annealing (SA), are applied to the problem. The results are compared

for performance and efficiency and it is found that this particular problem can be

solved with a combination of heuristic and gradient methods with reasonable com-

putational effort. The PT design obtained through a heuristic SQP approach shows

dramatic improvement in performance over the nominal design. The nominal and PT

designs are examined in detail to understand why the tailored design produces such

a large improvement in performance RMS.
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Chapter 3

Robust Performance Tailoring

"There is nothing so wrong with the analysis as believing the answer!... Uncertainties

appear everywhere in the model.. When using a mathematical model, careful attention

must be given to the uncertainties in the model." - Richard Feynman [43J

Performance tailoring optimization results in a design that is tailored to achieve

a high level of performance given the design variables and constraints. However,

in the early design stage, the performance assessment is based only on the model

predictions and not on real data. Therefore, there is a question regarding how well

the model can predict the actual behavior of the system. In the following chapter

this issue of prediction accuracy is explored in detail. First, model uncertainty is

defined and methods for quantifying it and assessing the effects of uncertainty on

the performance predictions are discussed. Then, parametric uncertainty is identified

in the SCI development model and its effect on the performance predictions of the

PT design is explored. This study motivates the need for robust design techniques

and three existing Robust Performance Tailoring (RPT) cost functions are presented.

Results of RPT optimization on the SCI development model are presented and ana-

lyzed. The chapter concludes with a discussion of the limitations of robust design on

high-performance systems.
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3.1 Uncertainty

Historically, structural models are used along with test data to help engineers better

understand the physical behavior of the hardware. Model predictions are compared

to test data, and the data is used to provide deeper understanding of the underlying

physics and validate the model for use in trade analyses. However, as space systems

become more complex and more difficult to test on the ground, test data is harder

to obtain and it is necessary to rely solely on models and simulations to provide

predictions of future system behavior without the benefit of validation data. This

task is a much more demanding one and requires a high level of confidence in the

models. As a result, much attention is focused in the area of prediction accuracy and

model uncertainty.

The sources of inaccuracy in model predictions are grouped into three main cate-

gories: parametric errors, discretization errors and model structure errors [27, 93, 12].

Parametric errors refer to inaccuracies in the values of model parameters. For exam-

ple, a finite element model may consist of beam elements that have certain material

properties, such as Young's Modulus. Although the value of Young's Modulus is

published for a wide range of materials it is likely that components made from the

same material have slightly different Young's Modulus values. A value of Young's

modulus in a finite element model that is slightly different from the Young's modulus

of the physical component is an example of a parametric error. Discretization errors

exist because finite element models are composed of discrete elements while physical

parts are continuous. These errors can be reduced by using a high-fidelity mesh,

but not eliminated. Finally, model structure errors are global modeling omissions or

mistakes. This category includes any physical system behavior that is not captured

in the model. Examples of these types of errors are unmodelled nonlinearities and

improper choice of element types.

Parametric errors are most often considered in stochastic analysis because they are

the easiest to model and the hardest to reduce. Discretization error can be reduced

by refining the finite element model mesh, and model structure errors are reduced
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through careful and experienced modeling [573. Parametric errors, on the other hand,

are nearly impossible to eliminate entirely since the model is built and used to make

predictions well before components are available for testing. Even when test data

is available, measurements are affected by noise in the sensor and data acquisition

making it nearly impossible to obtain accurate data for model updating. Therefore,

there is always some level of uncertainty inherent in the parameter values.

3.1.1 Uncertainty Models

The modeling of parametric uncertainties is currently a popular field of research as

engineers move away from purely deterministic models and analysis to stochastic

analogues. There are three accepted ways of modeling parametric uncertainty: prob-

abilistic models, fuzzy logic, and convex, i.e. bounded, models [413. In probabilistic

modeling, a random distribution, usually normal, is assigned to a parameter and the

uncertainty model is defined by choosing the mean parameter value and a standard

deviation. These models are propagated through the analysis to provide statistical

information about the performance such as probability of mission success [19, 52].

One drawback to probabilistic modeling is that there are generally insufficient data

to accurately determine the statistical properties. In effect, the uncertainty model

is itself uncertain. Convex, or bounded, uncertainty models address this concern by

taking a more conservative approach. The uncertain parameter is assumed to be

distributed between some bounds, and the worst-case performance prediction is con-

sidered. The uncertainty model used in this thesis is a type of convex model known

as "envelope bounds." For a complete treatment of convex uncertainty models see

the monograph by Elishakoff and Ben-Haim [153.

3.1.2 Uncertainty Analysis

Once a model of the parametric uncertainty is chosen, the effects of the uncertainty

on the model predictions are assessed through an uncertainty analysis. Quite a few

techniques for propagating uncertainty through a structural model are found in the
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literature, and four methods compatible with bounded parametric uncertainty models

are described below. The goal of the analysis is to provide a model, or mapping, of

the performance as a function of the uncertainty parameters. This model is referred

to in this work as the uncertainty space and can be used to provide a metric of the

performance prediction accuracy. Such a metric is used to assess the accuracy of the

performance prediction or in combination with optimization to produce a design that

is robust to uncertainty.

Exhaustive Search

When the uncertainty is modeled as a bounded set, the uncertainty space may be

evaluated by discretizing the uncertainty parameters with a fine grid and performing

a full-factorial search of the space. The problem with this method is that it requires a

large number of function evaluations and is therefore computationally expensive. For

example, if there are four uncertainty parameters and a grid of 100 points is chosen for

each parameter, the full-factorial uncertainty space consists of 100 4 = 1x108 possible

combinations.

Taguchi Arrays

One way to reduce the full-factorial space is to carefully choose a few "noise levels"

and take advantage of orthogonal arrays as in the Taguchi method. The Taguchi

method is a quality engineering technique developed by Genichi Taguchi for appli-

cation to electronic circuit design [107], but has since been applied to problems of

robust structural design [100]. In the Taguchi framework the parameters in a process

are classified as either "control" or "noise" factors. Control factors are parameters

that can be specified freely by the designer and are analogous to the tailoring param-

eters in our formulation. Noise factors cannot be controlled by the designer, but still

affect the quality, or performance of the system, like the uncertainty parameters. An

objective function that captures a measure of design quality is then evaluated using

matrix arrays of the control and noise factors at specified levels. If a full-factorial

experiment is performed then the method is no different from the exhaustive search
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described above. However, one can reduce the full factorial matrix by choosing or-

thogonal sets so that for any two sets of factor levels all combinations occur an equal

number of times. One caveat of this technique is that for the results of an orthogonal

experiment array to be accurate the factor effects must be independent of each other.

This assumption is generally only true to first order. For more information on the

Taguchi method and its application to robust design the reader is referred to the book

by Phadke [102].

Monte Carlo Propagation

A third approach, that lies somewhere between the computational expense of an ex-

haustive search and the rigor of the Taguchi method, is Monte Carlo uncertainty

propagation. Instead of searching through a grid of all possible combinations, a num-

ber of uncertainty values are chosen randomly from the parameter distributions. The

idea is that the performance space can be approximated relatively well by sampling

at a large number of random points. Monte Carlo propagation is a useful way to

check the performance of other analysis methods and provides a baseline result that

is obtained with less computational effort than an exhaustive search.

Vertex Method

While all three of these methods are valid ways to define and map out the uncertainty

space, they all require significant computational effort and do not necessarily guar-

antee that the entire space is captured. Each method requires the discretization of a

continuous uncertainty space. As a result, the performance map is discrete and there

may be significant uncertainty values that are not explored. However, if the uncer-

tainty space is convex about a given design point, then it is possible to severely reduce

the computational effort involved by searching only the vertices of the space. This

method is particularly useful when the uncertainty metric of interest is the worst-case

performance.

In this thesis only parametric errors modeled with bounded uncertainty models are

considered. Uncertainty analysis is performed with either a vertex search or Monte
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Table 3.1: Uncertainty parameters for SCI development model.

Name Description Po
El Young's Modulus of truss 1 & 2 72 GPa
E2 Young's Modulus of truss 3 & 4 72 GPa

d d M d

E El E 2  E2

Carlo propagation, depending on the application. The Monte Carlo propagation

serves as a baseline comparison to verify the assumption of convexity. In the following

section these techniques are demonstrated through an uncertainty analysis of the PT

SCI design.

3.1.3 Example: SCI Development Model

In general, material properties represent a significant source of parametric uncer-

tainty. Properties such as Young's modulus can be difficult to measure or predict

accurately and often vary from sample to sample of the same material. Therefore,

in the SCI sample problem the Young's modulus of the four truss segments, taken in

pairs, are chosen as the uncertainty parameters, as listed in Table 3.1. The param-

eter, El is the Young's modulus of the truss segments with negative-x coordinates,

and E2 corresponds to the truss segments with positive-x coordinates, as shown in

the accompanying figure. The nominal values of 72 GPa are based on the material

properties of aluminum [17]. The Young's Modulus of the truss segments are con-

sidered in pairs to reduce the computation required for the development model. In

application, any number of uncertainty parameters can be considered, but the com-

putation time required for uncertainty analyses and robust optimizations increases

significantly with the number of parameters.

The addition of uncertainty parameters to the model results in a performance met-
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ric, og(, p), that is dependent on both the tailoring, x and uncertainty parameters,

p. Like the tailoring parameters, the uncertainty parameters affect the performance

through the finite element matrices. In this particular case, only the stiffness matrix

is affected, since Young's modulus does not appear in the mass matrix at all (Equa-

tions 2.2 and 2.3). The uncertainty model is bounded and uniformly distributed

about the nominal parameter value over a ranged defined by Aj:

Aj -- Pio < Pi < + AiPio (3.1)
100) 100)

where pi is one of the uncertainty parameters in Table 3.1. A is a percent of the

nominal parameter value and is referred to throughout as the uncertainty level.

The uncertainty model is propagated through the PT design with both a vertex

search method and Monte Carlo analysis. In the vertex search, only the vertices,

or corners, of the uncertainty space are considered. The number of performance

evaluations necessary for this propagation method, nP,, grows exponentially with the

number of uncertainty parameters, nr:

n -V = 2"n (3.2)

As discussed previously, the worst-case performance is at a vertex if the uncertainty

space is convex. To check this assumption, a Monte Carlo analysis is run in which

values for the uncertainty parameters are chosen randomly from their distributions.

The performance is then evaluated at each uncertainty combination. If the convexity

assumption holds, all of the performance values from the Monte Carlo should be at

or below the worst-case value from the vertex search.

The results of the uncertainty analyses on the PT design are plotted in Figure 3-1.

The uncertainty level for all parameters is 10%, and the Monte Carlo analysis is run

with 500 random uncertainty values. The Monte Carlo results are shown in a his-

togram plotted against RMS performance. It is clear that even a small amount of

uncertainty in the Young's Modulus values results in a large spread on the perfor-

mance prediction. The dotted line to the right of the plot indicates the worst-case
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Figure 3-1: Uncertainty propagation results on PT optimized design: histogram - MC

results, (- -) worst-case vertex search, A = 10%.

Table 3.2: Uncertainty propagation results: PT design.

RMS Young's Modulus [GPa]

[pm] E1  E2
nominal 100.53 72.0 72.0
WC vertex 1355.5 64.8 79.2
WC Monte Carlo 1315.9 64.85 78.73

performance value from the vertex search. The fact that all of the Monte Carlo

performance predictions are below this value is a good indication that the convexity

assumption is valid in this case. The values of nominal and worst case RMS, along

with the uncertainty parameter values, are listed in Table 3.2. Note that the worst-

case performance occurs at an asymmetric configuration when El and E2 are at the

lower and upper limits, respectively.

The frequency response functions (FRF) from disturbance forces and torques to

the output are presented in Figures 3-2(a) through 3-2(c). The transfer functions for

the PT configuration at nominal uncertainty values are depicted with a solid line,

while those for the worst-case uncertainty configuration obtained through the vertex
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method are shown with dashed lines. The transfer functions from axial force and

torque to the output do not show much change between the two models. However,

there is a significant increase in FRF magnitude between the nominal and worst-

case designs for the y-direction force input. Recall, that in the PT configuration,

the design is nearly symmetric and that the y-force disturbance has little effect on

the output. When the system asymmetry is increased the symmetric modes become

asymmetric and are observable in the OPD.

The normalized cumulative variance and output PSD plots are shown in Fig-

ure 3-2(d). It is clear from this plot that nearly all of the RMS in the worst-case

PT model is attributed to one mode. This mode is the first bending mode at 0.023

Hz, and does not contribute significantly to the output in the nominal PT design,

as evidenced by the modal energy distributions plotted and tabulated in Figure 3-3.

The modal energy breakdown for the nominal uncertainty PT system is repeated here

for comparison. In the nominal PT model the first bending mode contributes only

3.50pm to the total RMS performance. However, at the worst-case uncertainty vertex

this mode accounts for 99.1% (1343pum) of the output energy.

The reason for the dramatic degradation in performance is found by comparing

the shape of the first bending modes of the two systems (Figure 3-4). Note that the

nominal PT mode shape (solid line) is nearly symmetric about the center so that

there is no discernible relative y-motion between the collectors and no resulting OPD

contribution. However, at the worst-case uncertainty vertex the system is highly

asymmetric, and this bending mode is not symmetric about the center of the array

(dotted line). In that case, the collector nodes do not move the same amount and

OPD results. The addition of this mode to the output is significant since it is excited

by both the force in the y-direction and torque about the z-axis.

The uncertainty propagation analysis of the PT optimized design shows that this

design is only optimal if the model represents the physical system exactly. Small

changes in the model parameters have drastic effects on the performance. This result

is common in optimization problems as the design is often pushed to sensitive areas

of the solution space in order to achieve maximum performance. In order to increase
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# [Hz] % [p/m2] [pm] [Hz] % [pm2] [pM]
1 0.013 38.46 3886 38.66 0.013 0.61 11144 8.22
2 0.023 3.48 352 3.50 0.023 99.09 1820600 1343.10
3 0.281 26.01 2628 26.15 0.281 0.14 2641 1.95
4 0.302 1.26 127 1.26 0.300 0.01 119 0.09
5 1.08 3.47 351 3.49 1.04 0.01 140 0.10

11 31.7 25.85 2612 25.98 31.7 0.14 2554 1.88
Total: 98.53 9956 99.04 100.00 1837198 1355.34

(b)

Figure 3-3: % Total energy by mode (A = 0.
PT with worst-case uncertainty (light).

10): PT with nominal uncertainty (dark),
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Figure 3-4: Mode shape of first bending mode for the nominal (-) and worst-case

(_ -) uncertainty PT designs.

the probability of success for a mission it is desirable to design a system such that it

both meets performance requirements and is insensitive to model uncertainty. In the

following section common robust design techniques aimed at decreasing the sensitivity

of the design to the uncertainty parameters are discussed.

3.2 RPT Formulation

Robust performance tailoring accounts for the effects of uncertainty on the perfor-

mance predictions by minimizing a robust objective function, JRPT, in lieu of the

nominal performance:

min JRPT (V) (3.3)

s.t. g# () < 0

Unlike the PT optimization formulation, the RPT problem specifically accounts for

the fact that there is uncertainty in the model parameters by adding a robustness
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metric to the cost function. Note, however, that the uncertainty parameters do not

appear in the constraint equations. The RPT optimizations considered in this thesis

do not include constraints that are a function of the uncertainty parameters. For

example, the uncertainty parameters chosen for the sample problem affect only the

stiffness matrix and not the constraint on total system mass. In the most general

form of Equation 3.3, uncertainty does affect the constraints and can be incorporated

by requiring that the tailoring parameters satisfy the constraint equations for the

uncertainty values that are worst-case in relation to the constraints. Examples of

such problems are found in [42] and [103].

There are many possible formulations for JRPT since there are numerous ways to

account for uncertainty and penalize design sensitivity. In the following sections three

known techniques are presented and discussed in detail.

3.2.1 Anti-optimization

Optimization with anti-optimization (AO) is a design approach for structural opti-

mization with bounded uncertainty formulated by Elishakoff, Haftka and Fang in [42].

The authors discuss both of the formulations described below and demonstrate the

design method on a standard ten-bar truss optimization problem using sequential lin-

ear programming. The truss is subjected to uncertain loads, and the cross-sectional

areas of the truss members are optimized for minimum mass subject to stress and

minimum gage constraints.

Anti-optimization can be defined as a min-max optimization problem that includes

the process of identifying the critical uncertainty parameter values.

JAO

min max f (,p) (3.4)
Z JiEP V

s.t g(V) < 0

At each iteration of tailoring parameters, , an uncertainty analysis is run to de-

termine the values of uncertainty parameters, '3 that result in the worst-case per-
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formance. This worst-case performance is then the objective function for the outer

tailoring optimization. In effect, anti-optimization is analogous to performance tai-

loring for worst-case, instead of nominal, performance.

In order to use a gradient-based optimization algorithm to solve the anti-optimization

problem efficiently analytical gradients of the objective are required. These gradients

are difficult to obtain given the form of Equation 3.4. As the tailoring parameters

change, the worst-case uncertainty vector may move from one vertex to another caus-

ing a discontinuity in the gradient. If the objective and constraints are linear, then

the problem can be solved with a linear programming algorithm and the disconti-

nuities do not cause a problem. However, if a quadratic approximation algorithm,

such as SQP, is applied to a problem with nonlinear objectives and/or constraints,

the discontinuity causes the optimization to misbehave and search inefficiently.

The problem can be formulated in a manner that is better suited for SQP by

minimizing a dummy variable, z, and moving the performance at the uncertainty

vertices to the constraints:

min z (3.5)
Y'z

s.t. g() 0

hi (z, X-, P)) < 0 V Z = I. ... nPV

where the augmented constraints, hi (z, X', ji), are defined as follows:

hi (z, X', Pi) = - z + f (i, Pi) (3.6)

By inspection, the gradients of the objective with respect to the tailoring, 7 and

dummy, z, variables are zero and one, respectively. The performance gradients are

included through the augmented constraint gradient, instead of in the objective func-
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tion:

hi_(z,Y,i) af(,i(3)

.ahi (z,Y, Pi) 1(38
az

In this alternate formulation (Equation 3.5) the optimization is a minimization with

nonlinear constraints. Although the performance at each of the vertices is still re-

quired at each iteration, it is no longer necessary to determine the worst-case vertex.

The problem is set up such that the optimal cost must be at one of the constraint

boundaries, and as a result the variable z is the worst-case performance.

This robust design method is particularly well-suited for convex parametric un-

certainty models. In their monograph [15], Ben-Haim and Elishakoff define convex

models and discuss their application to problems in applied mechanics. The authors

show that for most practical problems the uncertainty space is convex and therefore

only the vertices of the space need be considered in robust design applications. This

result is fortuitous as it allows a large reduction in the uncertainty set and guarantees

robustness to all other uncertainty values within the bounds.

3.2.2 Multiple Model

Multiple model is a robust design technique borrowed from the field of robust control.

It is applied to control system design in order to obtain a controller that is stable for a

range of parameter values [10, 47]. In order to achieve this goal the weighted average

of the 7 2 norms of a discrete set of plants is minimized. The resulting solution is

guaranteed to stabilize each of the plants in the set.

The multiple model principle is readily applied to the robust performance tailoring

problem since the output RMS value calculated with the Lyapunov expression is also

an N 2 norm. Instead of minimizing the nominal performance, as in the PT case, a

weighted sum of the performances of a set of models within the uncertainty space is
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minimized:

JMM

n

m n if (X P) (3.9)
i=z1

s.t. g(V) < 0

where fi is a weighting factor on each of the model realizations in the set. The gra-

dients of the cost function are simply the weighted sum of the performance gradients

at each uncertainty realization:

9JMM j Y f P,5A (3.10)
ax axi=1

This method is similar to the anti-optimization technique in that at each tailoring

iteration the model must be evaluated at a set of uncertainty values. However, it is less

conservative since the average performance over the uncertainty space is minimized

instead of the worst-case performance. Any of these uncertainty analysis methods are

appropriate for defining the uncertainty space for use with this cost function. The

vertex method is the most computationally efficient, as it requires a small number of

function evaluations at each iteration.

3.2.3 Statistical Robustness Metric

A third approach is to augment the performance tailoring cost with a statistical

robustness metric such as the standard deviation of the performance. An example of

such a technique is found in a recent article by Sandgren and Cameron [1031. The

authors propose a two-stage optimization for application to structural optimization

problems in which sensitivity to parameter variations is penalized by including the

standard deviation of the constraint in the formulation. Similar to Elishakoff et

al. [421, a mass minimization problem with stress and displacement constraints is

considered. The inner loop of the process requires a Monte Carlo simulation for each

design point in which the design parameters are fixed and the uncertain parameter
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values are chosen from their statistical distributions. The standard deviation(s) of

the constraint(s) and/or objective, are then found from the results of the Monte Carlo

analysis.

The formulation of this statistical approach for RPT is as follows:

JsR

min{af (, ) + (1 - a) oj (, 5)} (3.11)

s.t. g(i) < 0

where p5' denotes the nominal values of the uncertain parameters, a is a relative

weighting and of is the standard deviation of the performance:

2 1_tf2
= (f (, Pi) f) (3.12)

i=1l

where N is the number of uncertainty samples chosen to populate the output distri-

bution. The mean, Pf , is simply the weighted average of the performance:

N

P = N f (V, i (3.13)
i:=1

As with the other two methods discussed thus far, an uncertainty analysis is neces-

sary at each iteration of the tailoring parameters. If Monte Carlo analysis is used

then the performance at all values in the uncertainty sample space is computed and

Equations 3.13 and 3.12 are used to calculate the performance mean and standard

deviation, respectively.

The gradient of the objective is obtained by differentiating JSR directly and sub-

stituting the derivatives of Equations 3.12 and 3.13 appropriately:

1 =JSR O (X- PO)(3.14)
Dx Dx

V,1 N OfV

+ (1 -c) E (f(x, p')-Pfp)
No-f Ox N x
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This formulation differs from that of Sandgren and Cameron in that the standard

deviation of the objective is considered instead of that of the constraints. Also,

the weighting factor a is included to allow a trade between nominal performance

and robustness. When a = 1.0 the cost function in Equation 3.11 reduces to the

PT objective (Equation 2.1), and when a = 0 nominal performance is completely

sacrificed in favor of robustness, as in AO.

3.3 RPT Designs

The RPT optimizations are run with each of the cost functions described previously

on the SCI development model with A = 0.10 on both of the uncertainty parame-

ters. The design variables and constraints are equivalent to those in Equation 2.38.

Both the SQP and SA algorithms are used, and the resulting designs and algorithm

performance for each cost function are presented in the following section.

3.3.1 Algorithm comparisons

Anti-optimization

RPT through anti-optimization is applied to the two-stage optimization problem

of Equation 3.4 with SA and then with SQP. For comparison, the alternate form

(Equation 3.5) is run with SQP starting from the SA design as well as a series of

different initial guesses. The optimization performance data and resulting robust

designs are listed in Table 3.3. The "iter" column lists the number of iterations

required for convergence, and the column labelled "feval" gives the total number of

function evaluations. In the SA case, the number of iterations is equivalent to the

number of temperatures necessary to freeze the design, and in MC SQP it represents

the total number of iterations and function evaluations required by all of the individual

SQP runs.

The table shows that the SQP algorithms all find the same optimal design. Rows

two and three of the table list the results of running SQP on the two different for-

90



Table 3.3: Algorithm performance: anti-optimization.

J* iter fevals time X * [m] c* [kg]
Alg. Form [ptm] # # [min] di d2 mi M2
SA Eq 3.4 307.17 59 1800 11.52 0.0481 0.0580 0.1234 0.0164
SQP Eq 3.4 306.86 25 86 1.48 0.0486 0.0581 0.0 0.0
SQP Eq 3.5 306.86 17 35 2.00 0.0486 0.0581 0.0 0.0
MC SQP Eq 3.5 306.86 698 1431 53.52 0.0486 0.0581 0.0 0.0

mulations using the SA design as an initial guess. In both cases the same design is

found, but the simple minimization problem (Equation 3.5) is more efficient. The

min-max problem (Equation 3.4) takes 2.0 minutes and requires 25 iterations to con-

verge, while the simple optimization converges in only 1.5 minutes and 17 iterations.

The MC SQP algorithm finds the same optimal design as the SA-SQP combination

indicating that this design is likely to be a global optimum. The combination of SA

and SQP proves to be a much quicker way to heuristically search the space than MC

SQP, requiring a combined 13.52 minutes to find the optimal design in contrast to

53.32 minutes needed for the ten MC SQP runs.

The SA design is slightly sub-optimal, but is close to the SQP designs and pro-

vides a good starting point for the gradient search. The min-max formulation is used

for SA since gradients are not required, and the algorithm may have trouble finding

feasible iterates due to the additional constraints in the alternate formulation (Equa-

tion 3.5). The SA algorithm requires far more function evaluations then the SQP

optimizers because the search is not guided by gradient information. Although the

SA optimization does not perform quite as well as SQP, the worst-case performance

of the resulting design, J, is significantly lower than that of the worst-case PT de-

sign indicating that a more robust design has indeed been found. Note that in the

SQP-optimized design the design masses are all zero, while those in the SA design are

small, but non-zero. Due to the random nature of the SA search, it is highly unlikely

that the resulting design is an optimal solution, especially if that solution is along a

constraint boundary, as is the case with the design masses.
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Multiple Model

The multiple model RPT optimization is run on the SCI sample problem using both

SA, SQP and MC SQP algorithms. The optimization performance metrics and re-

sulting designs are listed in Table 3.4. The optimal costs listed in the table are much

Table 3.4: Algorithm performance: multiple model, p = ,.

J* iter fevals time x* [im] x* [kg]
Alg. [pm] # # [min] di d2  mi M2
SA 273.51 64 2059 12.79 0.0440 0.0515 0.8464 19.5131
SQP 271.78 20 48 3.83 0.0432 0.0529 0.0 22.613
MC SQP 271.78 238 545 41.06 0.0432 0.0529 0.0 22.613

lower than those of the AO designs (Table 3.3), since the multiple model objective

is the weighted sum of the performance values at each of the uncertainty vertices,

and not the worst-case performance. In the results presented here the weighting fi

is the same at each vertex and equals 1/nPV, so that the cost is the average of the

performance values at the uncertainty vertices.

The SQP and SA designs are nearly equivalent as the SA cost is only 0.6% higher

than SQP. The individual runs in the MC SQP algorithm result in a few different

optimal solutions with slight variations in the diameter of the inner array segments

and the design mass values. All designs, however, are at the maximum mass con-

straint, and the best design is found with either MC SQP or the combination of SA

and SQP. As seen previously with AO, using SA in conjunction with SQP finds the

global optimum much more quickly (16.62 minutes) than performing ten randomly

started MC SQP searches (41.06 minutes). The optimal cross-sectional diameters are

similar to those in the anti-optimization designs, in that the diameters of the inner

truss segments are larger than those of the outer segments. However, the MM design

has 22 kg of design mass on the positive-x arm of the interferometer while the AO

design has no lumped mass at all.
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Statistical Robustness

The statistical robustness RPT optimization is run with the SA, SQP, and MC SQP

algorithms and two measures of standard deviation. The algorithm performance

metrics and resulting designs for are listed in Table 3.5. For the cases with vertex

uncertainty propagation the standard deviation is calculated by solving Equation 3.12

using only the designs at the uncertainty vertices. This method is a conservative

measure of the standard deviation since only the extremes of the distribution are

considered. In the cases labelled "MC," a Monte Carlo uncertainty analysis with

500 samples is conducted to obtain an output distribution and then the standard

deviation of that distribution is computed from Equation 3.12 at each iteration. This

method is closer to a true standard deviation measure.

Table 3.5: Algorithm performance: statistical robustness, a = 0.5.

Unc. P iter fevals time x* [in] x* [kg]
Alg. Prop. [pm] # # [min] di d2 mi M2
SA vertex 137.27 72 2223 15.54 0.0415 0.0543 0.0426 0.0477
SQP vertex 137.22 14 30 1.55 0.0423 0.0540 0.0 0.0
MC SQP vertex 137.22 238 895 25.19 0.0423 0.0540 0.0 0.0
SA MC 114.75 68 2043 75.53 0.0344 0.0597 0.0683 0.0197
SQP MC 114.63 16 38 75.83 0.0360 0.0485 0.0 0.0

Recall from Equation 3.11 that the statistical robustness objective function in-

cludes both the nominal performance and its standard deviation over the uncertainty

space. In the results presented here the relative weighting on the nominal perfor-

mance is a = 0.5, so that it is as important as the robustness metric. The first three

rows in the table compare the results of the SA, SQP and MC SQP algorithms with

the vertex standard deviation measure. The results are similar to those seen in the

anti-optimization and multiple model studies in that the performance of all three

algorithms is similar with the SA-SQP combination obtaining the optimal design in

less time than MC SQP.

The Monte Carlo standard deviation results for both SQP and SA have optimal

costs that are significantly lower than the vertex method counter-parts. This differ-
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ence in cost is due to the fact that the standard deviation metric is less conservative

in this implementation. Note that both optimization algorithms take a very long

time to converge when Monte Carlo standard deviations are calculated. This jump in

computational effort is due to the fact that to get a good estimate of standard devia-

tion it is necessary to run a large number of uncertainty combinations. In the case of

the SQP algorithm, it is important that the Monte Carlo uncertainty distribution is

chosen before running the optimization so that the uncertainty space are consistent

from one iteration to the next. Otherwise, the gradients given in Equation 3.14 do

not track the design changes.

The differences between the SQP and SA designs are similar to the other cases

considered thus far in that SA finds a sub-optimal design, but provides a starting point

for SQP that is very close to the optimal design. Although the Monte Carlo method

provides a more accurate measure of the standard deviation, the results indicate that

the increase in accuracy is not worth the additional computational effort required.

The combination of SA and SQP optimization with the vertex method converges in

17 minutes compared to 151 minutes required for the Monte Carlo metric. Although

the vertex method may not be an accurate measure of standard deviation for the

uniform distribution, it does provide a conservative measure of robustness for bounded

uncertainty models.

In order to assess the effect of the weighting parameter, a, the statistical robust-

ness algorithm is run over a range of relative weightings from 0.0 to 1.0. The nominal

and worst-case performance for the resulting designs are plotted in Figure 3-5 along

with the standard deviation measure obtained from the vertex method. The nominal

performance is depicted with circles and the standard deviation with stars. As a

increases, the weight on the standard deviation decreases and that on nominal per-

formance increases as evidenced by the figure. The nominal performance decreases as

a increases while the standard deviation shows the opposite trend. At a = 0.0, the

nominal performance is not included in the cost at all and only the standard deviation

is minimized. At the other extreme, when a = 1.0, the standard deviation is elimi-

nated from the cost function and the problem is equivalent to the PT optimization.
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Figure 3-5: Nominal performance (o), worst-case (E) performance and standard devi-

ation (*) for vertex statistical robustness (VSR) RPT designs vs nominal performance
weighting, a.

The squares on the plot represent the worst-case performance, or the performance

at the worst-case uncertainty vertex. As a increases, and the weight on robustness

decreases, the worst-case performance increases nonlinearly. There is significant jump

in the worst-case performance at a = 0.8, and as the weighting approaches a = 1.0

the curves plateau to the performance of the PT design.

3.3.2 Objective function comparisons

In the previous section the different implementations of optimization with the three

RPT cost functions are compared for computational efficiency and performance. The

combination of SA and SQP algorithms consistently achieves a lower cost value in

less time than MC SQP. In this section the SQP RPT designs are compared against

each other and the PT design for robustness.

The nominal and worst-case performance values for the PT and RPT designs

are plotted in Figure 3-6(a), and the values are listed in the accompanying table
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MM 214.75 362.06 352.63 0.0432 0.0529 0.0 22.61 184.89
VSR 223.45 325.09 312.40 0.0423 0.0540 0.0 0.0 185.97
AO 263.87 306.86 300.54 0.0486 0.0581 0.0 0.0 227.04

(b)

Figure 3-6: Nominal and worst case performance for PT and RPT optimizations.
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(Figure 3-6(b)). The nominal performance for each design is depicted in the plot with

circles and the worst-case performance, obtained through a vertex analysis, is denoted

with an error-bar to indicate that the true performance could lie anywhere in this

range. The designs are ordered, from highest to lowest, by worst-case performance.

The error bar of the PT design is by far the largest and is many times higher than

those of the RPT designs. The RPT designs all show a significant improvement in

worst-case performance, but the AO design is the clear winner in terms of robustness

as the error-bar is the shortest and the worst-case performance the lowest of all the

designs. The worst-case value for performance of the AO design is only 306.86/p m,

while vertex statistical robustness (VSR) and multiple model (MM) designs have

worst-case value performances of 325.09pm and 362.06pm, respectively. The Monte

Carlo statistical robustness (MCSR) design is the least robust of the RPT designs,

with a worst-case performance of 412.6pm.

The plot andq table show that the nominal performance is inversely related to the

robustness; as the designs become more robust, the nominal performance degrades.

The nominal performance of the PT design is significantly better than that of the

RPT designs, and the AO design has the worst nominal performance of the group.

It is interesting to note, however, that the improvement in worst-case performance

is much more significant that the degradation in nominal performance. The nominal

performance of the PT design is roughly two times better than that of the AO design,

but the worst-case performance of the AO design is nearly 4.5 times better that

that of the PT design. Although there is a trade between nominal performance and

robustness, large improvements in robustness can be achieved with moderate sacrifices

in nominal performance.

The worst-case performance values shown in the plot are obtained through a

vertex uncertainty analysis. These results are listed in Table 3-6(b) along with the

worst-case values resulting from a Monte Carlo uncertainty analysis with 500 samples

chosen from the distribution. Note that the worst-case performance results from the

MC propagation are consistently below those from the vertex method confirming

the assumption of a convex uncertainty space. In addition, the design parameters
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and truss mass for the designs are given in the table. Note that all of the RPT

designs achieve robustness by increasing the cross-section diameter of the inner truss

segments. It seems that the cross-sectional diameters have a greater effect on the

system robustness due to the fact that in the most robust designs all of the mass

is allocated to the truss members and none to the design masses. These issues are

explored further in the following section by comparing the energy distributions of the

PT and RPT designs.

3.3.3 Comparison to PT design

The results presented thus far show that the RPT design is dramatically less sensitive

to uncertainty than the PT design. However, it is not yet clear how the increase in

robustness is achieved physically. To answer this question the model energy distribu-

tions of the PT and RPT (AO and MM) designs are compared in the nominal and

worst-case uncertainty configurations.

The output PSDs and normalized cumulative variance plots are shown in Fig-

ure 3-7(a) for the PT (solid line), multiple model RPT (dashed line) and anti-

optimization RPT (dash-dotted line) designs with nominal uncertainty parameter

values. The PSDs of the RPT designs are similar to each other, but are quite dif-

ferent from that of the PT design. The robust designs are stiffer with increased

frequencies in all modes, and their energy is concentrated in one mode instead of

being spread out over a few critical modes. A bar chart of the percent energy in the

critical modes for the PT, RPT MM and RPT AO designs is shown in Figure 3-7(b),

and the frequencies and energy breakdown of these modes for the two RPT designs

are listed in Table 3-7(c). It is clear form the bar chart that the energy in the robust

designs is concentrated largely in the second bending mode (mode #3). Referring

back to Table 3-3(b) it is seen that the PT design only accumulates 26.15pm of RMS

OPD in this mode compared to 131 and 188pm in the RPT MM and AO designs,

respectively.

A plot of this mode shape for the three designs, Figure 3-8, readily illustrates the

reason for this difference. In the PT design the nodal points of the mode coincide
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Mode f, energy 0- 2 Z f, energy U 2 2

# (Hz) % (pm2 ) (pm) (Hz) % (pm2 ) (pm)
1 0.036 23.67 10917 50.83 0.043 18.58 12936 49.02
2 0.061 2.41 1114 5.19 0.073 0.0 0 0.0
3 0.388 61.04 28152 131.09 0.494 71.23 49595 187.95
4 0.502 2.02 930 4.33 0.594 0.0 0 0.0
5 1.677 6.70 3091 14.39 1.842 6.74 4695 17.79
7 3.787 2.49 1148 5.34 4.375 2.47 1722 6.52
11 46.69 1.11 512 2.39 51.36 0.53 367 1.39

Total: 99.44 45864 213.56 99.55 69315 262.67

(c)

Figure 3-7: Modal energy breakdown for PT and RPT designs with nominal uncer-
tainty: (a) output PSDs (b) % energy comparison: PT (dark), RPT MM (light) RPT
AO (white) (c) results table.
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almost exactly with the collector locations. Therefore, when this mode is excited there

is very little OPD accumulated. However, in the robust designs the nodal points are

moved inwards towards the center of the array and away from the collectors. As a

result, the collectors move in opposite directions when this mode is excited leading

to larger OPD.

0.2 -

- 0 .1.

00

0

> - -1 PT

- - - RPT:MM

-0.2 - - - RPT:AO

-15 -10 -5 0 5 10 15
X-coordinate [m]

Figure 3-8: Critical modes shape comparisons of PT (-), MM RPT (- -) and AO RPT
(-.) designs with nominal uncertainty parameters: second bending mode.

In order to understand why the robust designs are so much less sensitive to un-

certainty than the PT design it is necessary to compare the designs at the worst-case

uncertainty parameter values. The output PSDs and cumulative variance plots for

this case are presented in Figure 3-9(a). The PT design is depicted with a solid line,

and the RPT MM and AO design results are plotted in dashed and dash-dotted lines,

respectively. At the worst-case uncertainty vertex a situation directly opposite to

that at the nominal uncertainty values is observed. All of the energy is contained

in the first observable bending mode, while the output energy in both of the RPT

designs is distributed over two critical modes. The exact modal energy numbers for

the critical modes are listed in Figure 3-9(c) along with a bar chart of percent total
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energy by mode for easy comparison.

Comparing the values in this table to those for the worst-case PT system in

Figure 3-3(b) it is observed that the first bending mode (Mode 2), which accounts

for 99.1% of the total PT energy, is responsible for only 61.2% (MM) and 33.4%

(AO) of the RPT performance energy. In contrast, there is very little energy in Mode

3 in the PT design, but this mode is the second most critical in the RPT designs.

To understand the physical mechanism behind the energy redistribution consider the

contributions of a given mode, k, to the frequency response function:

k =Czj zkcBVw.G 2 k (k = (3.15)

The quantities Czj and Bej, are vectors mapping the physical degrees of freedom

to the ith output and Ith disturbance, respectively as defined in Chapter 2. Since

the modal damping, k and general model structure are constant across designs, the

energy in a given mode can only be reduced by changing the mode shape, 4k, in such

a way that less energy is transferred to the output or increasing the modal frequency.

The mode shapes for Modes 2 and 3 are plotted for all three designs in Figure 3-10.

The PT design mode shape is shown with a solid line, while the RPT MM and AO

are drawn in dashed and dash-dotted lines. The plot of Mode 2 in Figure 3-10(a),

shows that this mode is asymmetric in all three designs. Therefore, it seems that the

robustness is not achieved through a change in the mode shape. However, comparing

the frequencies of this mode in the PT and RPT designs it is obvious from the tables

and the PSD plot (Figure 3-9(a)) that this mode has a significantly lower frequency

in the PT design than in the RPT designs. Since the disturbance input is white noise

all modes are excited, but those with lower frequencies contribute more to the output

energy.

The energy distribution in the third mode shape also changes and is much more

significant in the RPT designs. The physical mechanism behind this shift is the same

as in the nominal uncertainty case as shown in Figure 3-10(b). Note that the mode

shape of the PT design, although asymmetric, has nodal points at the collectors,

101



.1. 1-

0.5

0

0

Z10 10

U)
0-

21
(D
C

w

10
9

8

7

6

5

4

3

2

1

10F
Frequency [Hz)

(a)

1 2 3
Mode #

5 7

(b)
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Mode f, energy U 2 2 f,, energy a 2 -2

# (Hz) % (pm2) (pm) (Hz) % (pm2 ) (pm)
1 0.036 8.34 10933 30.20 0.043 13.70 12902 42.04
2 0.061 61.21 80242 221.63 0.073 33.43 31479 102.58

3 0.399 26.86 35207 97.24 0.488 46.63 43906 143.08

5 1.655 1.87 2449 6.76 1.808 3.85 3625 11.81

7 3.819 1.02 1341 3.70 4.30 1.40 1315 4.29
Total: 99.30 130172 359.53 99.01 93227 303.80

(c)

Figure 3-9: Modal energy breakdown for PT and RPT designs with worst-case un-

certainty: (a) output PSDs (b) % energy comparison: PT (dark), RPT MM (light)
RPT AO (white) (c) results table.
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Figure 3-10: Critical modes shape comparisons of PT (-), MM RPT (- -) and AO

RPT (-.) designs with worst-case uncertainty parameters: (a) first bending mode (b)

second bending mode.

103



while the nodal points of the RPT designs are moved in towards the center of the

array. This shift in the mode shape accounts for the greater accumulation of energy

in this mode in the RPT design when compared to the PT design. However, the price

of the increased energy in mode #3 is justifiable since reducing the effect of mode #2

has such a dramatic effect on the worst case performance.

Investigation of the energy distribution among modes and the frequencies and

mode shapes of the PT and RPT designs allows a physical understanding of the

trades that are made to achieve robustness to uncertainty. In the PT design there is

no balance between nominal performance and robustness; instead the resulting system

performs very well nominally, but is highly sensitive to uncertainty. The RPT design

strikes a balance by making a small sacrifice in nominal performance for a dramatic

increase in robustness. The nominal performance of the RPT designs is worse than

that of the PT design since the asymmetric bending mode shapes are no longer

tailored such that the nodal points are at the ends of the truss where the collectors

are located. However, by tailoring the truss such that the mass is concentrated on the

inner truss segments, the frequency of the second mode, and consequently its output

energy, is significantly reduced at the worst-case uncertainty vertices.

3.4 Limitations: Design Regimes

In order to obtain a complete comparison of PT and RPT methods, the tailoring

optimizations and uncertainty propagations are run over a range of uncertainty values

from 0.01% to 25%. Since the RPT AO design is the most robust design in terms

of worst-case performance, it alone is considered in the study. At each uncertainty

level, the optimal design is found and the nominal performance is calculated. Then

the uncertainty vertex resulting in the worst-case performance, clwc, is identified and

applied to the design to produce a worst-case performance prediction.

The results of the simulations are plotted in Fig. 3-11. The PT and RPT AO per-

formance predictions are represented with solid and dash-dotted lines, respectively.

The nominal performance is denoted by circles and the worst case performance by
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squares. Since the PT formulation does not include uncertainty, the nominal PT

performance is independent of uncertainty level and remains at a value of 100.53pm

across the entire range. However, as the uncertainty increases, the worst case perfor-

mance of the PT design increases dramatically. In fact, the worst case for values for

uncertainty over 3% are too large to show on this plot. The RPT AO formulation

does include uncertainty in the cost function and therefore produces different designs

at each value of A. The worst-case RPT performance predictions at all uncertainty

levels are much lower than those of the corresponding PT design, while the nominal

RPT performance is larger than the PT nominal and increases with the uncertainty

level. This behavior is the classic trade between nominal performance and robustness

explored in the previous section. As the uncertainty increases the nominal perfor-

mance of the RPT design gets slowly worse, but the design is relatively insensitive to

uncertainty so the worst-case performance stays close to the nominal prediction.
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Distinct design regimes appear when the PT and RPT results are compared to

the requirement. The horizontal black line in Fig. 3-11 represents a performance

requirement of 280pm, and the design regimes are indicated by dashed vertical lines.

In regime A (A = 0.01% to A - 2%), the uncertainty is very low and can be ignored

since the worst-case prediction from the PT design is below the requirement. As the

uncertainty increases, the worst-case PT performance moves beyond the requirement

and the design moves into regime B. In this regime, (A _ 2% to A - 7%), it is

necessary to use RPT optimizations to find a design that meets the requirement at

the worst-case uncertainty vertices. However, RPT also has its limits, and once the

uncertainty becomes larger than A - 7% even the robust designs fail to meet the

requirement in the worst-case realizations. In this regime, labelled C, neither the PT

nor the RPT designs are adequate. At these high uncertainty levels, RPT is unable

to produce a design that is both insensitive to uncertainty and meets the aggressive

performance requirement.

400 -

350

300 -

E 2 5 0 -.. . . ... .. .. ... .. .. .. ...... .. .. .

2Cc 1: PT, RPT
E1 2: RPT

0
1c01-

E

0 100--

50 - -.. .

0
0 5 10 15 20 25

Uncertainty (%)

Figure 3-12: Performance requirement vs uncertainty: PT and RPT designs.
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The requirement chosen here is somewhat arbitrary, but it is important to note

that as the requirement changes so does the level of uncertainty that can be tolerated

by each design. To illustrate this point consider the contours shown in Figure 3-12.

The performance requirement is shown on the y-axis, and the maximum level of uncer-

tainty that can be tolerated is plotted along the x-axis. The dark patch in the upper

left sector of the plot, Region 1, represents the design regime that can be accommo-

dated with PT design methods. As the value of the performance variance increases,

indicating more relaxed requirements, a higher level of parametric uncertainty can be

tolerated. For example, if -req = 250pm, then just over 2.3% uncertainty variation

can be tolerated with PT design techniques. However, if the performance requirement

is tightened to 200pm then only ~ 1% variation in the uncertainty parameters can

be tolerated.

The RPT design, Region 2 (light patch), covers a greater uncertainty range than

the PT design, significantly opening the design space. At a performance requirement

of 350pm the RPT design can accommodate over 16% variation in the uncertainty

parameters. This value is a significant improvement over the PT design. However,

as the performance requirement becomes more aggressive, the RPT design, like the

PT design, can tolerate much less uncertainty. At a requirement of 200pm, the RPT

design can tolerate ~ 2.5% variation in the uncertainty parameters, only slightly

better than the PT design at the same level. Although the RPT design methods

do result in designs that are significantly more robust than simple PT, they are not

adequate for high-performance and high-uncertainty designs, as evidenced by the

large unfilled area in the lower right corner of the plot.

3.5 Summary

Robust performance tailoring is a design methodology that is used to produce designs

that are robust to parametric uncertainty. In this chapter the effects of uncertainty

on the PT design are explored motivating the need for robust design techniques.

Three different robust cost functions are reviewed and applied to the SCI development
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problem. The optimizations are run with both SQP and SA search techniques to

produce robust optimal designs. The performance of the optimization techniques are

compared, and it is found that the SA design is a good initial guess for SQP, enabling

quick convergence to the optimal design for this particular problem. It is also found

that the anti-optimization cost function is the most conservative of the three chosen

and produces the design with the lowest worst-case performance variance.

The RPT AO and MM designs are compared to the PT design, and it is shown

that the RPT designs achieve greater robustness by tailoring the truss such that the

inner segments are larger than the outer segments resulting in an increase in the nat-

ural frequency of the first bending mode. The PT and RPT designs are compared

over a range of uncertainty levels and the concept of design regimes is introduced.

PT designs are only adequate in the cases of relaxed performance requirements and

low uncertainty levels. RPT designs cover much more of the design space and can

accommodate greater levels of uncertainty than the PT designs at equivalent perfor-

mance requirements. However, even the RPT methodology is not adequate in the

high-performance, high-uncertainty regime.
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Chapter 4

Dynamic Tuning

Robust Performance Tailoring (RPT) optimization results in a design that is tailored

to be robust to parametric uncertainty across a large range of values. Robustness is

achieved by sacrificing nominal performance, so that the nominal, and consequently

worst-case, performance predictions increase with the level of uncertainty. Therefore,

although the RPT design is insensitive to uncertainty, it may not meet agressive

performance requirements. The trade between robustness and nominal performance

places high-performance and high-uncertainty systems outside of the RPT design

regime.

In the following chapter, dynamic tuning is explored as a method of extending the

capabilities of PT and RPT design, by exploiting the additional information available

from hardware testing. First, a formal definition of dynamic tuning is provided,

and the optimization problem is formulated. Tuning parameters are identified in

the SCI development model and SQP and SA optimization techniques are employed

to tune the worst-case uncertainty realizations of the PT and RPT designs. The

tuned designs are considered in the context of the design regimes introduced in the

previous chapter, and it is shown that tuning increases the level of uncertainty that

can be tolerated at a given performance requirement. Then, a spectrum of tuning

methods for practical application, in which the value of the uncertainty parameters

are unknown, ranging from pure hardware tuning to model-based techniques are

discussed. A hybrid method that uses isoperformance techniques to facilitate model
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updating for tuning is developed and demonstrated on the SCI development model.

The tuning methods are compared to one another for performance and testing cost

over a large sample of hardware simulations, and it is shown that only isoperformance

tuning consistently requires a small number of hardware tests and is successful across

the sample space.

4.1 Tuning Formulation

In this thesis, dynamic tuning is defined as adjustments made to the hardware once

it is built to affect the performance and bring it within requirements. Consider a

situation in which models predict that the system meets performance requirements

across most of the uncertainty space, but not at the extremes. If only one such system

is built, there is a possibility that the physical system may lie outside the area in

which the RPT design meets requirements. However, if there are tuning adjustments

that can be made to the hardware at this stage to affect the performance, it may

be possible to improve the system performance to within the desired range. Due

to model inaccuracies and manufacturing discrepancies, situations such as this arise

frequently in practice. Engineers often make ad hoc adjustments to hardware to

improve performance or bring a component or entire system within specifications.

However, this type of tuning is not formalized, and it is difficult to find references on

these practices.

Dynamic tuning is a hardware-based procedure, and therefore, the tuning parame-

ters must be chosen carefully. As in the case of performance tailoring, the parameters

must have some effect on the performance metric. The range of this effect, or the

difference between the tuned and untuned performance, is referred to as the tuning

authority. In addition, the parameters must be easy to adjust on the hardware, signif-

icantly limiting the possible design variables compared to those available for tailoring.

For example, although it has been shown previously that the cross-sectional diameters

of the truss members are good tailoring parameters for the SCI development model,

they are not well-suited for tuning as there is not an easy way to change these values
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on a physical truss. Since tailoring takes place on models it is easy to try a range of

truss diameters and optimize the design in this manner. However, tuning with these

parameters requires physically cutting into the existing truss and replacing members.

This procedure is expensive and may have undesired global effects on the performance

resulting in mission delays.

One example of dynamic tuning on hardware is found in a recent paper by Glaese

and Bales [46]. The authors study the effects of a range of structural adjustments to

a gossamer structure. In the paper, they call the process dynamic tailoring because

the goal is to affect the dynamic performance of the membrane. However, in the

context of this thesis, their efforts are classified as dynamic tuning since the authors

make adjustments to the hardware itself. A 80-inch major diameter, 8-inch minor

diameter, pre-formed Kapton torus is the structure used to demonstrate the dynamic

tuning. The authors choose four possible tuning parameters: inert masses added at

random locations on the structure to minimize the disturbance forces by increasing the

effective impedance, tuned mass dampers to reduce narrow-band disturbance effects,

piezo-electro actuators and sensors that enhance broadband structural damping, and

shunts added to the piezo-electric elements to actively control the flow of energy in the

structure. All of these techniques are good examples of tuning parameters since they

can be added to the structure and adjusted with minimal disruption to the hardware

itself.

The formulation of the tuning optimization problem is similar to performance

tailoring with the major distinction being that the system performance is now a

function of the tailoring, zF, uncertainty, A5, and tuning parameters, Y, but the tuning

parameters are the only design variables:

min f (zJc (4.1)

s.t. gQ(,' ) < 0

where i and P are the actual values of the tailoring and uncertainty parameters

realized in the hardware and g (J, Y) are constraints on the design variables. The
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tailoring parameters are fixed by the design, and the uncertainty parameters by the

actual hardware realization. At the tuning stage the hardware exists and performance

data is available so it is no longer necessary to rely on performance predictions from

the model. Furthermore, the hardware represents one instantiation of the uncertainty

model which, if identified through the data, no longer requires the system to be robust

across the entire uncertainty space. The parametric model uncertainty is effectively

removed from the performance data and the uncertainty parameters become deter-

ministic.

4.1.1 Example

The SCI development model is used to demonstrate the tuning optimization. The

design masses originally introduced in Chapter 2 as tailoring parameters are now used

as tuning parameters. This choice of tuning element is similar to the inert masses used

by Glaese and Bales in [46]. The tuning parameters are listed in Table 4.1 along with

a figure of the model reproduced here from Chapter 3 for the reader's convenience.

The tuning formulation for this specific problem is as follows:

min OPD (, S 3 (4.2)

s.t. --y < 0
4 2

i2 Lipi +Zyi <
i=1

mntrus s

where M is the total mass of the structure, without the optics. The first part of the

mass constraint equation, mtruss, is static as it is only dependant on the tailoring

parameters, the cross-sectional diameters of the beam elements. It is included in the

equation here because it changes from one tailored design to another. Recall from

Chapter 2 that a mass margin of 10% is held back when the design is tailored. This

margin, plus any mass not used by the tailoring optimization, is available for tuning.
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Table 4.1: Tuning parameters for SCI development model.

Name Description Yo
mi -x tuning mass 0 kg
m 2 +x tuning mass 0 kg

M m 2  xdi d2 d2 d M

El E E2 E2

To demonstrate the technique the worst-case uncertainty realizations (A = 10%)

of the PT and RPT AO designs are tuned using the SA and SQP algorithms. The

nominal, worst-case and tuned performances are listed in Table 4.2. The worst case

PT performance is significantly higher than nominal, and tuning results in a large

improvement. Tuning also improves the RPT worst-case designs, but the results are

not as dramatic.

Table 4.2: Tuning performance summary for PT and RPT designs.

Performance [pm]
Design nominal worst-case tuned
PT 100.53 1355.5 303.17
RPT AO 263.87 306.86 273.32

Algorithm Performance

In order to evaluate the performance of the different optimization algorithms, tuning

is performed with SA-SQP, MC-SQP and an exhaustive search (ES) of the solution

space. The results for the PT and RPT designs are given in Figures 4-1 and 4-2,

respectively. Each figure includes a table of the algorithm performance data as well

as a two-dimensional surface plot of the tuning solution space. In SA-SQP, a feasible

initial guess is chosen randomly for SA, and the resulting design is used as the initial

guess for the SQP algorithm. In MC-SQP ten feasible initial guesses are randomly
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generated and SQP is run from each one. The minimum-cost design is then identified

from the results. The cost and design variables listed for this algorithm in the tables

are the best of the ten runs, and the number of iterations and function evaluations are

the sum of the values from each individual run. The exhaustive search is conducted

by discretizing the tuning masses into fifty distinct values within the allowable range

and performing a full-factorial search of the space, neglecting any mass combinations

that violate the constraints.

First, consider the tuning results for the worst-case PT design (Figure 4-1). The

SA-SQP combination finds the optimal tuning solution in the shortest amount of time.

The combined time required to tune the PT design using first SA and then SQP is

54.21 seconds, while MC SQP with ten initial guesses takes over almost four times as

long (210.51 seconds). The MC-SQP and SA-SQP results are equivalent indicating

that a global optimum is found. The SA design providesa a good starting point for the

SQP optimization in that the tuned performance is very close to the optimial design

and the majority of the mass is placed at M2. The SA-SQP combination is a good

way to handle convexity issues when the space is not well known. The exhaustive

search results further support this conclusion, as does the surface plot of the solution

space, Figure 4-1(b). The light and dark regions in the plot indicate high and low

performance variance, respectively. The darkest area is along the constraint boundary

of zero mi, near M 2 = 200 kg.

The RPT AO results, Figure 4-2, show similar trends to the PT results. Both the

SA-SQP and MC-SQP algorithms find an optimal tuning solution, but SA-SQP does

so much more quickly (37 seconds, instead of 264 seconds). SA finds a sub-optimal

design due to the randomness of the search, but provides a good starting point for

SQP. The exhaustive search design is nearly equivalent to the SA-SQP and MC-SQP

designs indicate that a global optimum is found. The ES design is slightly sub-optimal

due to coarse discretization of the tuning parameter values. The accompanying plot of

the tuning space, Figure 4-2(b), shows that the tuning solution is a global minimum.

A comparison of the performance scale of the RPT space to that of the PT space

indicates that the RPT design is less tunable. In Figure 4-1(b) the performance
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* # # time y* [kg]
Algorithm [[tim] iter fvals [sec] mi M2
SA 303.55 64 2445 44.15 174.01 0.15
SQP 303.17 3 14 10.06 175.05 0.00
MC SQP 303.17 98 73 210.51 175.07 0.00
ES 303.46 N/A 1275 23.02 172.66 0.00.

(a)
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(b)

Figure 4-1: PT worst-case tuning results: (a) table of algorithm performance results
(b) solution space, 2D surface view.
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ranges from 300p m to 3650p, while in the RPT performances range from 273pm to

only 665pm. The shorter range suggests that the tuning parameters have less of an

effect on the performance of the RPT design.

It is clear from these reults that tuning the worst-case uncertainty realization

has a significant effect on the performance. In the following sections, a physical

understanding of how the tuning masses improve the performance is obtained by

investigation of the output PSDs and energy distribution among modes.

Physical Interpretation: PT Tuning

To begin, consider the worst-case PT design in both the untuned and tuned config-

urations. As seen from Table 4.2 and Figure 4-1, a 77% reduction in performance

variance is achieved by adding 175 kg of tuning mass to the positive-x arm of the in-

terferometer. The plot of the tuning space (Figure 4-1(b)) shows that this particular

tuning configuration is a global optimum. The RMS increases as mass is added to the

negative-x arm or if more/less mass is added to the positive-x arm. To understand

why this tuning configuration has such an impact on the performance consider the

energy information presented in Figure 4-3.

The first plot (Figure 4-3(a)) is the normalized cumulative variance and output

PSDs for both the untuned (solid line) and tuned (dashed line) worst-case PT sys-

tems. The largest differences in energy distribution between the two systems occur

at low frequencies. The second mode, which accounts for almost all of the RMS in

the untuned case, has only a small effect in the tuned system, and the third mode is

at a lower frequency in the tuned system. The bar chart, (Figure 4-3(b)), shows the

percent of total energy in each of the critical modes. It is clear that the addition of

tuning mass shifts the energy from the second mode to the third mode. The accom-

panying table lists the natural frequencies and energy of each of the critical modes.

The absolute energy values show that not only has the energy been redistributed

among the modes, but the total energy in the modes is greatly reduced. For example

the second mode has 1325ftm of RMS in the untuned PT design, but only 14.96pm

in the tuned configuration. The third mode accounts for more energy in the tuned
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J # # time y* [kg]
Algorithm [am] iter fvals [sec] mi m 2

SA 298.28 68 1980 18.97 6.77 0.02
SQP 273.32 6 18 18.36 81.05 0.0
MC SQP 273.32 84 259 264.3 80.99 0.0
ES 273.32 N/A 1271 12.42 80.05 0.0

(a)

200 400 600
m1 [kg]

800

(b)

Figure 4-2: RPT AO worst-case tuning results:
results (b) solution space, 2D surface view.

(a) table of algorithm performance
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Not tuned Tuned
Mode f, energy o 2  UZ f, energy a 2 2

# (Hz) % (pm2) (pm) (Hz) % (pm2 ) (pm)
1 0.013 0.61 11144 8.22 0.013 27.68 25446 83.93
2 0.023 99.09 1820600 1343.10 0.021 4.93 4537 14.96
3 0.281 0.14 2641 1.95 0.097 64.03 58852 194.12
11 31.77 0.14 2554 1.88 30.95 2.05 1884 6.21

Total: 99.98 1836939 1355.15 98.69 90719 298.22

(c)

Figure 4-3: Modal energy breakdown for worst-case PT design (a) output PSDs (b)
% energy comparison: not tuned (blue), tuned (green) (c) results table.
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configuration than the untuned, but the increase is only from 1.33pm to 194.13pm

so that the total energy is much lower when the design is tuned.
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(b)

Figure 4-4: Mode shape comparisons, worst-case PT untuned (blue solid) and tuned
(green dashed): (a) Mode #2, first bending (b) Mode #3, second bending.

The second and third modes of the untuned and tuned PT designs are plotted in

Figure 4-4. Recall from the last chapter that the worst-case PT design has a high

RMS due to an asymmetric uncertainty distribution that results in an asymmetric first

bending mode shown with the solid line in Figure 4-4(a). When the design is tuned,

mass is added asymmetrically (only to the positive-x arm) to counter the asymmetric

uncertainty distribution. As a result, the second mode in the tuned system (dashed

line) is nearly symmetric, and little OPD is accumulated by this motion. The price

that is paid for this improvement is observable in the third mode, Figure 4-4(b). Note

that the outer nodal points of the untuned mode (solid line) are located very close

to the ends of the structure where the collectors are located resulting in little OPD

accumulation. However, when the design is tuned (dashed line), these nodal points

move towards the center of the array, and the collector nodes experience greater

relative displacement. The increase in OPD in the third mode energy (192.8pm) is

more than offset by the decrease in that of the second mode (1310.84gm). The tuning

algorithm properly identifies the second mode as the critical one and focuses all the
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tuning effort there.

Physical Interpretation: RPT Tuning

The results for the RPT AO design exhibits trends similar, although less dramatic, to

those of the PT design. Recall from Table 4.2 that tuning the worst-case AO design

reduces the performance variance by 11%. The energy results for this design is pre-

sented in Figure 4-5. The cumulative variance and output PSD plots, Figure 4-5(a),

show a decrease in the energy in Mode 2 and the frequency of Mode 3. The bar

chart of percent energy, Figure 4-5(b), supports the PSD plots indicating that energy

distribution has been shifted from the second mode to the third mode and a few

higher modes. It is interesting to compare this bar chart to that of the PT design

(Figure 4-3(b)). Note that the second mode contains a smaller percentage of the

energy in the RPT design, and additional high-frequency modes are critical. Recall

from Chapter 3 that the robust optimization tailors the system to reduce the effect

of the second mode by increasing its frequency. The resulting design is insensitive to

the uncertainty parameters, but is also insensitive to the tuning parameters. How-

ever it is still most advantageous, given the tuning parameters chosen, to place the

mass such that the energy in mode two is reduced further. The table included in

the figure provides additional results that support these observations. Note that the

energy in Mode 2 is reduced from 102.58 to 34.66pm, but there is an increase in the

accumulated RMS in Mode 3.

The second and third mode shapes for the RPT AO design are plotted in Fig-

ure 4-6. The effect of tuning on the second mode (Figure 4-6(a)) is more difficult to

observe in this case. Recall from chapter 3 that the AO design is tailored for robust-

ness and as a result has more effect on the second mode in the worst-case uncertainty

realization. Therefore, since the tuning parameters are limited to masses in only two

locations, there is less tuning authority for this system. The second mode is made

slightly more symmetric through the tuning masses, but not significantly so. The

third mode (Figure 4-6(b)) exhibits characteristics similar to that of the tuned PT

design in that the nodal crossings are shifted slightly inwards resulting in a small
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Not tuned Tuned
Mode f, energy a 2 UZ f, energy 02

(Hz) % (pm2) (pm) (Hz) % (pm2) (pm)
1 0.043 13.70 12902 42.04 0.043 17.64 13179 48.22
2 0.073 33.43 31478 102.58 0.072 12.68 9474 34.66
3 0.487 46.63 43906 143.08 0.336 57.43 42907 156.98
4 0.599 0.19 175 0.57 0.578 5.64 4217 15.43
5 1.808 3.85 3625 11.81 1.754 3.57 2670 9.77
7 4.300 1.34 1315 4.29 3.864 1.69 1265 4.62

Total: 99.14 93401 304.37 98.65 73712 269.68

(c)

Figure 4-5: Modal energy breakdown for worst-case RPT AO design (a) output PSDs
(b) % energy comparison: not tuned (blue), tuned (green) (c) results table.

121

105

10

10~5

I

Uv

10-2 10 2



0.04

0.021 - not tuned

0.01 - - - tuned

0 -0.01-

-0.04

-15 -10 -5 0 5 10
X-coordinate (m]

(a)

15

0.15

0.1 L

0.05[

E
'0
0
0

-0.1

-0.15'
-15 -10 -5 0 5 10 15

X-coordinate [m]

(b)

Figure 4-6: Mode shape comparisons, worst-case RPT AO untuned (blue solid) and
tuned (green dashed): (a) Mode #2, first bending (b) Mode #3, second bending.

increase in OPD in this mode.

4.1.2 Design Regimes

In order to assess the impact of tuning on the design space it is applied to the worst-

case PT and RPT AO models across a range of uncertainty values. The results are

shown in Figure 4-7, a further evolution of the design regimes plot introduced at the

end of Chapter 3. The y-axis represents the performance requirement of the system

and the x-axis is the level of uncertainty in the parameters. It is assumed that the

uncertainty levels range ±A about the nominal parameter value and are the same for

both uncertainty parameters. The design regimes are the numbered areas, and the

design methods that are successful in each regime are listed in the legend.

The addition of hardware tuning to the design process changes the design regimes

significantly from those observed with PT and RPT alone (Figure 3-12). There are

now six separate regimes instead of only two due to intersecting regions, where more

than one technique is applicable. Consider, for example, a performance requirement

of 200pm. PT is adequate for this level of performance if the uncertainty is under
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Figure 4-7: Requirement vs uncertainty for PT and RPT designs with tuning: design

regimes are numbered and labelled on plot.

2%. Tuning the PT design increases the tolerated uncertainty level to just about

7%. It is interesting to note that the RPT AO method is only applicable up to 3%

uncertainty at this perfomrance, and that this range is only increased to 5% by the

addition of tuning. Therefore there is a regime, Region 4 in the figure, in which

tuning the PT design is the only successful method. This result indicates that for

this problem tailoring the system to be robust actually reduces the tuning authority

available for later adjustments on the hardware. At the more stringent performance

requirements it is better to performance tailor the design and then compensate for the

uncertainty with tuning. This approach is somewhat worrisome because the success

of the mission relies heavily on the ability to tune the hardware since the predicted

worst case of the PT design is many times that of the nominal performance even at

the low uncertainty levels.

As the requirement is relaxed the RPT and tuned RPT designs have a great

effect on the design space. At a requirement of 280pm, PT is only adequate up to
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2% uncertainty, but the tuned RPT design can tolerate up to 11%. Tuning the PT

design also does better at this requirement, allowing just under 9.2% variation in the

uncertainty parameters. At this relaxed requirement. there is no longer a regime

where only tuned PT works. The RPT designs can both compensate for uncertainty

and provide a fair amount of tuning authority. Relaxing the requirement further,

above 350pim for example, greatly increases the benefits of tuning the RPT design.

At these requirement levels tuning the PT design can accommodate 11% variation in

uncertainty parameters, but tuning the RPT design extends the range out to 20%.

It is clear from the comparison of Figures 4-7 and 3-12 that tuning the hardware

has a significant impact on the design space. At a given requirement, a larger variation

in the uncertainty parameters can be tolerated if the hardware is tuned to improve

the system performance. The addition of a tuning step to the overall design process

allows a greater level of risk for systems with aggressive performance goals. In the

next section, practical methods for tuning hardware, when the realized values of the

uncertainty parameters are not exlicitly known, are explored.

4.2 Tuning in Practical Application

The results presented in the previous section demonstrate that hardware tuning is

effective in improving system performance and extends the limits of RPT and PT

design. The studies are conducted on models in which the uncertain parameters

are known, since systems under worst-case uncertainty are considered. In practical

application, however, the engineer does not have the advantage of full knowledge of

the uncertain parameters. Even though the hardware is built and these parameters

are no longer random, their values can rarely be measured directly. For example,

in the case of Young's Modulus, it is very difficult, if not impossible, to measure

the exact value of this parameter even with access to the hardware. Despite this

difficulty there is information available that can indirectly lead to the identification

of the uncertainty parameters and successful tuning of the hardware. In this section,

the practical problem of tuning the hardware when only performance data is available
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is considered.

4.2.1 Hardware-only Tuning

One approach to the problem is to perform a tuning optimization and replace per-

formance predictions from the model with hardware data. In effect, a real-time

optimization is conducted using the hardware and test data. At each iteration of

a gradient-based optimization algorithm the cost function, f (X,), is evaluated, the

gradient of the objective is calculated and a new search direction and step-size are ob-

tained. The use of a model in this process allows for quick computation and analytical

gradient calculations.

Replacing the model simulation with actual test data is both computationally

expensive and labor intensive as each function call requires an actual hardware test.

In addition, analytical gradients are no longer available and finite-difference approx-

imations must be used instead. There are two methods to compute finite-difference

gradients, the forward-difference and central-difference equations:

09f (X) _ f (X + Axei) - f (X) (4.3)
Dxi Ax

Of (x) _ f (x + Axei) - f (x - Axei) (44)
axi 2Ax

where i denotes an element of x, ei is a unit vector with a 1 in the ith location,

and Ax is a small change in the design parameter. The central difference equation

(Equation 4.4) is more accurate, but requires an additional function evaluation at

each step. These approximations are both sensitive to the size of Ax, and large

parameter changes may be outside the range of linear approximation. The need to

use finite-difference gradient approximations adds to the time and cost burden of

real-time tuning optimizations.

A second consideration of hardware optimizations is that it is not always possible

to evaluate iterates that are beyond the constraint boundaries. In the example of mass

tuning considered in this chapter there are two constraints: a total mass constraint
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and a lower bound constraint at zero. When performing a hardware-based empirical

optimization it may be okay to break the total mass constraint, but it is not physically

possible to add negative tuning mass. Therefore, the lower bound is a hard constraint

that cannot be broken during the optimization. For this reason, it is desirable to use

an optimization method that guarantees that the search path contains only feasible

iterates.

Barrier Method

Barrier methods, or interior point methods, have recently gained popularity for solv-

ing optimization with inequality constraints. The constrained problem is converted

into a sequence of unconstrained problems that involve a high cost for approaching

the boundaries of the feasible region. As a result, if the initial iterate is feasible, all

subsequent ones are feasible as well. The following brief overview is taken from the

book by Bertsekas [16].

The interior of the set, defined by the inequality constraints, gYj (P), is:

Yf = - Y~gJ (W) < 0, j = 1, .,r (4.5)

It is assumed that S is non-empty and that any feasible point not in S can be ap-

proached arbitrarily closely by a vector from S. The optimization objective is aug-

mented with a barrier function that is defined in the interior set, S, and goes to

infinity at the boundary of S:

r

B (y) = - ln {-g, (g)} (4.6)
j=1

Equation 4.6 is a logarithmic barrier function. Alternate forms, such as inverse barrier

functions are also used. The barrier function is modified by a parameter sequence,

{k}:

0 < ltk+1 < Pk k = 0, 1, ... ,A k -+ 0 (4.7)
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and added to the objective function:

yk = argmin ff (y) + AkB (y) k= , , - (4-8)
yES

The subscript k indicates the iteration number, and the weight of the barrier function

relative to the objective decreases at each iteration allowing the search to approach the

constraint boundary. The search direction can be determined through any standard

gradient search procedure such as steepest descent, Newton's method or conjugate

gradient (See Appendix A). However, the step-size must be properly selected to

ensure that all iterates lie within the feasible region, S. An interior point method is

attractive for the problem of hardware tuning since all iterates are feasible.

The barrier method is implemented in MATLAB as outlined in Figure 4-8. The

initial iterate, £0, termination condition tolerances and barrier parameters, c and P0,

are inputs to the algorithm. The iteration loop begins by initializing the algorithm

as shown. Then the constraint equations, their derivatives and the barrier function

(Equation 4.6) are calculated analytically at the current iterate. The tuning param-

eters are set to the current iterate on the hardware and a test is run. This data is

saved as f (Yk), and the objective cost at this iterate is evaluated. Next, the gradients

of the objective are needed to generate a new search direction:

aJ (Yk) - f (yk) f B (yk)
=ay +11k

VJ(yk) Vf (yk) -- pkVB(yk) (4.9)

The performance gradients, Vf (Yk), are determined with Equation 4.3, requiring

an additional hardware setup and test, while the barrier gradients are calculated

analytically:
r (

VB (y)) = - - (4.10)
g= (yk) Ny

The objective gradients are then used to find the new search direction. The MATLAB

implementation developed for this thesis allows either a steepest descent or conjugate

gradient directions. Once the search direction is obtained the step-size is calculated
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Data: initial iterate, yo, termination tolerances, barrier parameters, c, po
Result: optimal design variables
begin

Initialize: y = yo, k 1, pos;
while termination conditions not met do

evaluate g (y), .9g;i);

evaluate B (y) (Equation 4.6);
evaluate f (y) [Hardware test];
evaluate J = f (y) + pB (y);
calculate finite difference gradients [Hardware test];
calculate VB (y) and VJ (y);
calculate descent direction;
if steepest descent then
I d = -VJ (y) (Equation A.3);

else if conjugate gradient then
I d = -VJ (y) + dk_1 (Equation A.15);

end
calculate step-size;
if decreasing then

= k (Equation A.10);

else if line minimization then
I k = arg minao, 1, f (Yk + adk) (Equation A.11);

end
evaluate new iterate, Yk+1 = Yk + akdk;
increment barrier sequence, /k+1 = PoEk;
increment iterate, k = k + 1;

end
end

Figure 4-8: Barrier method implementation.
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using either a decreasing step-size or a line search algorithm. The calculation of these

search directions and step-sizes is discussed in detail in Appendix A. Special care is

taken in the step-size selection such that the next iterate remains within the feasible

set. Finally, the new iterate is calculated and the barrier sequence and iteration

numbers are incremented.

Three termination conditions are implemented for the hardware tuning applica-

tion. Since the goal of the exercise is simply to bring the hardware within the required

performance it is not actually necessary to reach an optimum tuned performance.

Therefore at each iteration the algorithm checks to see if the hardware performance

is better than the requirement, if so the tuning optimization terminates. If the tuned

performance does not get below the requirements the optimization terminates when

either the change in objective function or the change in the design variables fall below

a specified tolerance. These conditions only exist to prevent an infinite loop if the

system cannot be tuned below the requirement. In reality, tuning on such a system

has failed.

Simulated Annealing

Many stochastic search methods are easily modified such that only feasible iterates

are considered. Simulated annealing is a particularly attractive search technique for

a hardware optimization problem due to the simplicity of the algorithm. The search

algorithm and MATLAB implementation are discussed in detail in Chapter 2 (see

Figure 2-4). The algorithm is modified slightly for application to hardware tuning

by adding f (Yk) < feq as a termination condition. In effect, simulated annealing for

hardware tuning is simply a random search of tuning configurations in the hope of

finding one that works.

4.2.2 Model-only Tuning

A major drawback of the hardware optimization methods described above is that

they are labor and time intensive and therefore, costly. Each function evaluation
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required by the optimization or stochastic search algorithm involves a new test setup

and data acquisition. In contrast, optimizations performed on the model are much

cheaper requiring only computational effort. In this section some model-only tuning

schemes are considered.

Nominal Model Tuning

A very simple approach to model-only tuning is to tune the nominal model for im-

proved performance and apply this tuning configuration to the hardware. If the shape

of the performance space with respect to the tuning parameters is similar for the nom-

inal model and the hardware, then a tuning configuration that improves the nominal

model performance may also improve the hardware performance. If the hardware

performance is only slightly above the requirement or the degree of uncertainty is

low then this improvement may be enough to bring the system within specification.

The optimization formulation is very similar to that of the tuning formulation in

Equation 4.2 with 'o replacing the actual uncertainty values, P:

min f(z,'go) (4.11)

st. g (, < 0

This technique is referred to as nominal model tuning throughout the rest of this

chapter.

Robust Tuning with Anti-optimization

A second model-only tuning method is to apply the robust performance tailoring ideas

to the tuning problem. The anti-optimization method is chosen as the cost function

to obtain a conservatively robust design. The formulation is the nearly the same as
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for tailoring, but tuning parameters are the design variables:

min z (4.12)

S -t. g(zr <) 0

hi (z, ;, , )) 0 Z = ... npv

where the augmented constraints, hi (z, z, , 5 ), are defined as follows:

hi (z, z, ,i) = -z + f (, ,f) (4.13)

The goal of the AO tuning optimization is to find a set of tuning parameters that

reduce the worst-case model performance over the uncertainty vertices. The resulting

tuning parameters are then used to tune the hardware.

Worst-Case Model Tuning

Another approach that is similar in nature to nominal model tuning and less con-

servative than AO tuning is worst-case model tuning. Instead of tuning the nominal

model to find a tuning configuration, or trying to tune over the entire uncertainty

space, only the model at the worst-case uncertainty vertex is tuned. The worst-case

combination of uncertainty parameters is found by searching over the uncertainty ver-

tices of the untuned model. If the design has been tailored with RPT methods then

this information may already be available. The optimization formulation is similar to

that of nominal model tuning with the worst-case uncertainty values, fwc, replacing

the nominal values:

min f (z, g, iwc) (4.14)

s.t. g (i,) < 0
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Optimized Model Tuning

None of the model tuning methods presented thus far use any information from the

hardware to guide the tuning process. Tuning is only necessary if the hardware

does not meet performance requirements, so an initial test must be conducted to

evaluate the hardware. Therefore, there is at least one data point, the performance

of the untuned hardware, fHw, available for the model tuning process. One way to

incorporate this data is to formulate an optimization to find uncertainty parameters

that result in a performance prediction from the model equal to that of the hardware:

= arg min (f (,Yo,p)-fuw) 2  (4.15)
pEP

s.t. '- (1 +A) 50  0

(1 - A) - 5< 0

The constraint equations ensure that the optimal uncertainty parameters are within

the bounds of the uncertainty model. The resulting uncertainty values, P, are used

in the model tuning optimization to obtain a hardware tuning configuration:

min f (zp, , P) (4.16)

S. t. J,g < 0

This technique is referred to as optimized model tuning throughout the rest of this

chapter.

4.2.3 Example

The hardware and model tuning methods are applied to the SCI development model

to assess their performance. In this example, a hardware simulation is used in lieu of

actual hardware. It is assumed that uncertainty exists only in the uncertain parame-

ters and is within the bounds of the uncertainty model. All other model parameters

and the general form of the model are assumed exact. A hardware simulation is ob-
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tained by randomly choosing parameters from the uncertainty distribution. In order

for a system to be a candidate for tuning the hardware performance must be worse

than the requirement. For this example, the RPT AO design at A = 10% uncer-

tainty is used to generate a hardware model, and the requirement is set at 280gm.

The model parameters and performance data for the resulting hardware model is

listed in Table 4.3. Recall from Chapter 3 that in RPT design all of the mass is given

Table 4.3: Hardware Model Data.

Tailoring, x 0.0486 0.0581 [m]
Uncertainty, p 76.6 65.4 [GPa]
Tuning, y 0.0 60.01 [kg]
HW Performance YHW 290.83 [Pm
Tuned Performance UHWt 262.75 [im]

to the cross-sectional diameters and the design masses are not used at all. However,

10% of the allowable mass is reserved during the design stage as margin and is now

available for tuning. The uncertainty parameters listed in the table are chosen ran-

domly from the uncertainty model. The performances, 0-HW and gHWt, are the system

performance variances before and after tuning, respectively. The tuned performance

is obtained by directly tuning the hardware with the known uncertainty values as in

the previous section. This result serves as a baseline for the other tuning schemes

and confirms that this system can be tuned below the requirement.

Model Tuning

To begin, the four model tuning schemes, nominal model tuning (NomMod), AO

model tuning (AOMod), worst-case model tuning (WCMod), and optimal model

tuning (OptMod) are applied to the hardware simulation. We start with model-only

tuning in the example since it is the easiest to implement and requires no additional

hardware testing. In a sense, these tuning methods are "free" and, at the very

least, provide starting points for the hardware tuning schemes. The results of these

schemes are presented in both tabular and graphical form in Figure 4-9. The table

(Figure 4-9(a)) includes the uncertainty parameters used in the model, the tuning
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parameters obtained by tuning the model and the performance variance of the nominal

and tuned models as well as that of the tuned hardware. These results are plotted

graphically in Figure 4-9(b) with open circles, filled circles and black x's representing

the nominal model, tuned model and tuned hardware performance RMS, respectively.

The tuned hardware preformance is obtained by applying the tuning parameters

resulting from a given tuning algorithm to the hardware simulation. The requirement

is indicated by the solid line, and the untuned hardware performance by the dashed

line.

It is clear from both the table and the figure that none of the model-only tuning

schemes result in a tuning configuration that successfully tunes this hardware simula-

tion since none of the x's lie below the requirement line. This result is not surprising

for the nominal, AO and worst-case model methods since there no hardware data

are used at all in those techniques. Both the nominal and worst-case model tuning

provide tuning configurations that improve the model performance, but make the

hardware performance worse. The AO tuning fails to find a tuning configuration that

improves all of the uncertainty vertices. The untuned configuration is actually the

most robust since the uncertainty space is so large. Therefore the nominal and tuned

model performance (open and filled circles) are directly on top of each other and the

hardware performance (black x) stays at its nominal value.

It is a bit more surprising that optimal model tuning also fails to improve hardware

performance. The optimal model has uncertainty parameters chosen specifically to

result in a model prediction equal to the hardware performance. This goal is met as

indicated in Figure 4-9(b) by the fact that the open circle is directly on the dashed line

for the optimized model case. However, despite the fact that the performances are the

same, the tuned configuration obtained from the optimized model does not also tune

the hardware. In fact, in the figure, the x associated with this method is well above

the HW performance line indicating that tuning has made the performance worse.

This result suggests that the uncertainty parameters found by the optimization are

a non-unique solution and there are multiple uncertainty configurations that result

in the same performance. This problem of uniqueness is well-known in the field of
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p [GPa] y* [kg] Performance [pm]
E1  E 2  mI m 2 Model Tuned Model Tuned HW

NomMod 72 72 28.61 0.0 263.87 259.07 317.19
AOMod 72 72 0.0 0.0 263.87 263.87 290.83
WCMod 64.8 79.2 81.04 0.0 306.86 273.32 346.46
OptMod 65.5 76.7 59.92 0.0 290.83 262.81 332.79
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Figure 4-9: Results of model-only tuning algorithms (a) table of results (b) nom-
inal model (open circle), tuned model (filled circle) and tuned hardware (black x)
performance, oHW, = 290.83pm (dashed line) and -req = 280pm (solid line).
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model updating [60, 55, 12] and is addressed in a future section.

Hardware Tuning

The hardware simulation is tuned in real time with the barrier steepest descent al-

gorithm (BSD) and simulated annealing (SA). The tuning configuration from the

model-only method that resulted in the best performance (in this case, nominal model

tuning) is used as the starting point. The resulting tuning parameters, tuned perfor-

mance and required number of hardware tests are listed in the table in Figure 4-10.

Although each method resulted in a different tuning mass configuration, both suc-

ceeded in bringing performance below the requirement. However, in order to achieve

this goal a large number of tests, more than 2000 in the case of SA, are required.

The results are shown graphically in the lower figure, Figure 4-10(b). The bar

chart shows the number of function evaluations required for each method. In this

example, the barrier method found a working configuration much more quickly than

simulated annealing. Simulated annealing takes a long time since it is a random

search and is not directed by gradient information. The lower subplot shows the

performance results obtained by each algorithm. The solid line is the requirement,

and the dotted lines indicates the nominal hardware performances. It is clear that

both algorithms succeed in meeting the requirement.

4.3 Isoperformance Updating for Tuning

In the previous section tuning methods ranging from those that use only the model to

others that reject the model and tune directly on hardware are explored. It is shown

that a trade exists between cost and reliability. The model-only methods are low-

cost since only one hardware test is necessary. The tuning optimization is done using

only the model and the resulting tuning parameters are then applied to the hardware.

However, since these methods rely only on a model that is uncertain and consequently

not exact they do not always succeed in tuning the hardware within performance. In

fact, for the hardware simulation considered, the tuned hardware performance is
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y* [kg] Performance #
mi m 2  [tm] Tests

BSD 0.0 10.40 278.87 61
SA 0.09 12.42 277.24 2176
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Figure 4-10: Results of Hardware tuning algorithms: (a) table of results (b) number
of tests required and tuned performances, (HW = 290.83pm (dashed line), Oreq
280pm (solid line).
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actually worse. In contrast, the hardware-only methods disregard the model entirely

and perform a real-time tuning optimization directly on the hardware. If theres is

enough tuning authority to meet the requirement, these methods are successful, but

often require a large number of hardware tests. Such tests are generally expensive as

they require a large investment of time and labor.

4.3.1 Model Updating

One way to balance this trade between reliability and cost is to use a hybrid method

that takes advantage of available performance data from the hardware to guide the

model tuning. One approach is to use the hardware data to update the model such

that its predictions match the hardware performance. Then the updated model can

be used to run tuning optimizations for application to the hardware. The concept

of model updating from data is not a new one and many different techniques can

be found in the literature [93]. One problem that is common to all methods is non-

uniqueness of the updating solutions. The updated model is generally quite sensitive

to the parameters chosen to do the updating [12] and although the updated model may

match the test data for one configuration, there is no guarantee that the performance

predictions will track actual performance across multiple configurations. If incorrect

model updating solutions are used for the tuning optimization then the optimal tuning

parameters will not tune the hardware as predicted. In fact, this situation has already

been observed in the optimized model tuning technique described previously. The

model uncertainty parameters are optimized such that the model prediction matches

the hardware. However, the tuning parameters that result from tuning the updated

model do not always successfully tune the hardware. The method fails because there

are multiple solutions to the updating optimization so although the updated model

may predict the same performance these predictions do not track the hardware as

other parameters are changed.

One approach to solve the problem of solution uniqueness is to include config-

uration tracking in the updating procedure. In a recent work, Howell develops a

general updating methodology along with a metric for evaluating how well configura-
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tion changes in the updated solution track analogous changes in the real system [57].

Cha and Pillis use the idea of configuration changes to perform model updating by

adding known masses to the physical structure to obtain a new set of measurements.

These new measurements are used in conjunction with previous data to correct the

mass and stiffness matrices of the model [25].
These ideas are readily applied to the tuning problem posed in this chapter with

a few modifications. The updating method of Cha and Pillis is developed to improve

the frequency and mode shape predictions of the model through manipulation of the

mass and stiffness matrices. In the tuning application it is only necessary to find

tuning parameters that successfully tune the model; it is not required that the model

be accurately updated. Also, in this application the data used for updating is a single

performance metric and not a set of modes and frequencies, and the uncertainty model

is parametric and assumed to be accurate. Therefore it is desirable to update the

uncertainty parameters and not operate directly on the mass and stiffness matrices.

However, the idea of tracking the hardware and model through configuration changes

is key in developing a tuning algorithm that is both successful and low cost.

The hybrid method, referred to as isoperformance tuning, exploits a design tool

called isoperformance to reduce the uncertainty space by considering the changes

in the performance data as the hardware is tuned. It is an iterative, cooperative

process in which tuning optimizations on the model guide the hardware tests, and

the resulting data further refines and guides the model tuning optimizations.

4.3.2 Isoperformance

Isoperformance is a methodology developed by deWeck for multi-objective design and

analysis of complex, high-performance systems [36]. Instead of fixing the design costs

or resources a priori and optimizing for system performance within those constraints,

the isoperformance methodology constrains the performance and searches for a family

of designs that achieve this performance. The idea is that the "optimal" family of

designs can then be evaluated with respect to other considerations such as cost and

risk. In the thesis [36], deWeck develops and compares three methods of finding
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an isoperformance set for both bivariate (two design parameters) and multi-variable

design problems.

In this thesis the isoperformance methodology is applied to the hardware tuning

process. Instead of using isoperformance to obtain a design, the methodology aids

in finding a set of uncertainty parameters that, when used in the model, predict the

actual hardware performance. In order to locate the isoperformance set for a system

with two uncertainty parameters and one performance objective, deWeck's gradient-

based contour following algorithm is employed. This algorithm traces out an isop-

erformance contour using performance gradient information. First, a gradient-based

optimization is used to find an initial point on the contour. In fact, the uncertainty

values obtained through optimized model tuning could be used for this purpose. A

neighboring point on the contour is then found by taking a step in a direction tan-

gential to the contour. The tangent direction is obtained through a singular value

decomposition of the performance gradient with respect to the uncertain parameters.

The contour following algorithm takes advantage of the fact that there are only two

uncertain parameters, but is extensible to the n-dimensional case. The extended algo-

rithm is called tangential front following, and detailed descriptions of it and contour

following are found in [36].

4.3.3 Tuning Algorithm

If the dominant source of uncertainty is parametric and the uncertainty model is

well-known and bounded, then isoperformance can be applied to the model updating

problem to reduce the uncertainty set. The isoperformance tuning algorithm is given

in Figure 4-11 for reference.

To begin, there is one data point from the hardware available, the performance of

the untuned hardware, denoted o-. Gradient-based contour following is applied over

the uncertainty bounds to obtain the initial isoperformance set, PiSO:

iso = {P E Yl ( A, o, p-) =-o} (4.17)
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Data: initial iterate, Po, performance requirement, ireq, uncertainty model,
tuning constraints, initial HW performance, uo

Result: optimal design variables
begin

Obtain initial isoperformance set, P,,
Initialize: k = 1, UHW = UO while UHW Jreq do

for each iso-segment in Pisok do
Find uncertainty bounds, B
Run AO tuning on model over uncertainty space
Obtain tuning configuration Yk
if |Yk -- Yk_1 2 is small then

Discard Yk
Choose a new tuning configuration, Yk, randomly

end
end
for each Yk do

Set tuning parameters on hardware
Test hardware, obtain performance data, UHW

if cHW < Ureq then
I Stop! tuning is successful

end
end
Search along PjLk for intersections with new HW configuration
performance: PiSO= J%80 (z, Yk, fl PiSO

end
end

Figure 4-11: Isoperformance tuning algorithm.

This contour is a subset of the uncertainty space, P, and consists of all the uncertainty

values that, when applied to the model, yield a performance prediction equal to

the nominal hardware performance. Since the parameters in f are the only source

of model uncertainty the real hardware parameters must lie somewhere along this

contour. Therefore, the bounds on the uncertainty space can be reduced by finding

the minimum and maximum values of each of the parameters in Pis,,,. In some cases,

the isoperformance line (iso-line) is a single open or closed contour, but it is also

possible for there to be multiple isoperformance contours in a given space. Each

individual contour is referred to as an isoperformance segment (iso-segment). This

situation is handled in the algorithm (Figure 4-11) by looping over the iso-segments

and creating subsets of the uncertainty space for each one.
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Robust tuning with anti-optimization (Equation 4.12) is run on the model over

the reduced uncertainty space(s), and the resulting tuning parameters are applied to

the hardware to obtain new performance data, -HW,. The subscript k indicates the

iteration number. If the hardware performance, Jk, is within requirement then the

tuning is successful and the algorithm ends. Otherwise, the uncertainty space is still

too large to tune robustly, and the new performance data is used to reduce the space

further by searching for intersections in the uncertainty parameter space between the

original isoperformance line and that defined by the newly acquired data. Although

the tuning parameters, and consequently, the hardware performance, have changed,

the values of the uncertainty parameters have not. Therefore, it is guaranteed that the

iso-lines intersect somewhere in the uncertainty space. Conceptually, it is convenient

to think of two iso-contours crossing, but in the implementation it is not necessary to

trace out the second curve. Instead, it is sufficient to evaluate the model prediction

at each uncertainty point in Pi,,8 with the new tuning parameters and to retain those

points for which the predicted performance is equal to the new hardware performance

within a set tolerance, E:

- {~k E iS~l (,kp)-HJ ~ (4.18)
P Po =0 11 {a3 PG'7_\\ , Y, P - UHW, I <_- 0

The new isoperformance set, PiOk is a subset of Pio, and allows a further reduction

of the uncertainty bounds. This new uncertainty set replaces Pisco and the algorithm

begins another iteration. This process of robust tuning and uncertainty reduction

continues until the uncertainty space is small enough that robust tuning is successful.

It is possible that the tuning configuration resulting from the robust model tuning

does not successfully tune the hardware or produce a new iso-contour that significantly

reduces the uncertainty space. For example, the new iso-line may only be slightly

different from the previous one, so that all the points in PiSOk_ 1 evaluate to the new

performance within the given tolerance, c. This situation is handled in the algorithm

by evaluating the norm of the difference between the new tuning configuration and the

previous one before performing the hardware test. If this value is small indicating that
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the new tuning configuration is very close to the previous one, then the optimized

tuning configuration is disregarded and a new one is chosen randomly. It is also

possible to perform a new optimization in which the goal is to find a set of tuning

parameters that result in the greatest reduction of the uncertainty space. It is not

necessary to implement the alternate method in this thesis due to the form of the

development model. However, such a technique may be useful for more complex

design problems and should be considered in future work.

4.3.4 Examples

The isoperformance tuning algorithm is best illustrated through an example and

is applied to the problem of tuning the SCI development model considered in the

previous section on the same hardware model. The uncertainty space ranges ±10%

about the nominal for both parameters, El and E2, and the required performance is

280pum. The nominal hardware performance is 290.93pm so tuning is necessary on

this system. Although the baseline tuning on this system is successful (see Table 4.3)

applying AO tuning over the entire uncertainty space does not result in a tuning

configuration. In fact, the optimization chooses to not tune the structure at all since

any additional mass increases the performance at one of the uncertainty vertices. The

isoperformance tuning algorithm is therefore applied to reduce the uncertainty space

and bring the hardware performance within requirements.

The results of applying the isoperformance tuning algorithm to this problem are

given in both graphical and tabular form in Figure 4-12. The tuning parameters,

uncertainty bounds and performance data for each hardware test are listed in the

Table 4-12(b). The first test is the hardware in its nominal configuration with no

tuning parameters. The uncertainty bounds for this iteration are drawn on the ac-

companying Figure 4-12(a) in dashed lines. The isoperformance contour for this

performance is drawn in a solid lines and consists of two labelled segments. The seg-

ments are mirror images of each other due to the model's symmetry. Since there are

two distinct iso-segments it is possible to reduce the uncertainty space significantly

into two much smaller regions as indicted by the dotted lines around the contours.
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Uncertainty Bounds
Test y [kg] Source PI P2 UHW

# mI m 2  AL AU AL AU [Am]
1 0.0 0.0 nominal HW -0.1 0.1 -0.1 0.1 290.83
2 81.04 0.0 AO tune: iso-seg 1 -0.1 0.05 -0.62 0.1 346.47
3 0.0 81.05 AO tune: iso-seg 2 0.05 0.1 -0.1 0.62 264.07

(b)

Figure 4-12: Isoperformance tuning, J = [ E1 E 2 ]: (a) uncertainty space and

isoperformance contours, actual hardware parameters are denoted with black circle

(b) table of hardware tests, uncertainty bounds and results.
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Performing an AO tuning optimization about the uncertainty space of the first iso-

segment results in the tuning configuration listed in the table under Test 2. These

parameters are set on the hardware and a new performance measure of 346.47pm is

obtained. This tuned configuration does not meet requirements, and in fact, is worse

than the nominal hardware performance indicating that the hardware parameters are

most likely on the second iso-segment. Performing an AO tuning optimization on the

other iso-segment results in a tuning configuration that is symmetric to that found

in Test 2. This tuning configuration successfully tunes the hardware performance to

below the requirement ending the process after only three hardware tests. Comparing

these results to the baseline tuning results in Table 4.3 it is interesting to note that

the isoperformance tuning methodology results in a similar tuning configuration and

leads to a hardware performance that is very close to the baseline tuned performance.

Table 4.4: Uncertainty parameters for SCI development model.

Name Description Po
E1  Young's Modulus of truss 1 & 2 72 [GPa]
Pi material density of truss 1 & 2 2900 [kg\m 3]

Y

di d2 d2 d a

El p, :El p, E 2 P2  E 2 P2

The development model tunes easily with isoperformance tuning due to the sym-

metry in the model. The iso-contours are distinct mirror images of each other allowing

a dramatic reduction of the uncertainty space from only one hardware measurement.

In order to demonstrate the latter half of the algorithm, the search for intersecting

subsets of the isoperformance space, a slight variation of the development model is

considered. In this example the uncertainty parameters are Young's Modulus, El,

and density, pi, of the beams in truss segments 1 and 2, as listed in Table 4.4 and

shown in the accompanying figure. In addition, the uncertainty range is increased to

±50% about the nominal parameter values. Since the uncertainty model has changed
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it is necessary to generate a new hardware simulation to test the isoperformance tun-

ing methodology. The hardware simulation is obtained as previously described and

tuned using full knowledge of the uncertainty parameters to obtain a baseline tun-

ing configuration for comparison. The hardware model parameters and nominal and

tuned performance are listed in Table 4.5. The performance requirement in this case

is 295pm.

Table 4.5: Hardware Model Data: Example 2.

Tailoring, x 0.0486 [m] 0.0581 [m]
Uncertainty, p 86.45 [GPa] 3440 [kg\m3 ]
Tuning, y 0.0 [kg] 60.01 [kg]
HW Performance THW 318.75 [ipm]
Tuned Performance c-HWt 289.98 [gin]

The results of applying the isoperformance tuning methodology to this problem are

given in Figure 4-13. The hardware tests are described in the table (Figure 4-13(a)),

and the corresponding isoperformance curves and uncertainty space reduction are

shown graphically in Figure 4-13(b). The first hardware test is performed in its

nominal configuration with the tuning masses set to zero. At 318.76pm the untuned

hardware performance is significantly higher than the requirement. The dashed lines

in the plot represent the boundaries of the uncertainty space. The solid lines, labelled

"iso seg 1" and "iso seg 2", are the isoperformance contours of the nominal, untuned,

hardware performance. Note that there are two distinct contours, but in this case each

contour covers a significant portion of the uncertainty space. The reduced uncertainty

bounds are shown around the contours in dashed lines and listed in the table. Tracing

these iso-contours reduces the bounds on E1 dramatically, but does not affect the

bounds on pl. The tuning configurations for the second and third hardware tests

result from an AO tuning optimizations on the model over the blue uncertainty spaces.

The second test results in a hardware performance that is worse than nominal, while

the third test improves the hardware performance to 299.62pm. These results indicate

that the hardware uncertainty parameters are most likely located on the second iso-

segment.
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Uncertainty Bounds
Test y [kg] Source Pi P2 -HW

# i M 2  AL AU AL AU [ftm

1 0.0 0.0 nominal HW -0.5 0.5 -0.5 0.5 318.76
2 156.77 0.0 AO tune: iso-seg 1 -0.218 0.183 -0.5 0.05 397.74
3 0.0 134.12 AO tune: iso-seg 2 -0.715 0.41 -0.5 0.05 299.62
4 0.0 69.23 AO tune over Pi, 1 -0.193 0.208 0.196 0.265 290.00

(a)

...-...... .... -....---...---. ..--......-.. - --

-0.5 --04 -0.3 -0.2 -0.1 0
A E,

01 0.2 03 04 0,5

(b)

Figure 4-13: Isoperformance tuning, p = [ E1 pi ] (a) uncertainty space and isop-
erformance contours, actual hardware parameters are denoted with black circle (b)
table of hardware tests, uncertainty bounds and results.
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Since neither tuning configuration results in successfully tuned hardware the two

iso-segments are searched for intersections with either of the hardware performance

values obtained in these two tests. The first tuning configuration does not yield any

intersecting points, further supporting the conclusion that the hardware uncertainty

parameters do not lie on the first .iso-segment. The search for intersections with the

second tuning configuration performance bears fruit and a new isoperformance set is

extracted from the original. The new set, Pi, is indicated with gray x's in the plot.

For visualization purposes, the entire isoperformance line for this performance value

is traced with a light gray line. It is clear that there is an intersection between the

first and second iso-lines precisely at the value of the hardware uncertainty parame-

ters (marked by a black circle on the plot and listed in Table 4.5). The two contours

intersect in only one location yielding greatly reduced uncertainty boundaries. The

fourth, and final, tuning configuration is found by performing the AO tuning op-

timization over this smaller uncertainty space (bounded by dashed gray lines) and

successfully tunes the hardware performance to a value below 295pm.

4.3.5 Comparison of Tuning Methods

The tuning results presented thus far are all for one particular hardware simulation.

In order to fairly assess the performance of the methods and compare them, fifty

hardware models are generated and tuned with the eight techniques: nominal model,

AO tuning, optimized model, worst-case model, BSD hardware tuning, SA hardware

tuning and isoperformance tuning. The model-only methods are tried first and then

the best performing tuning configuration is used as a starting point for the hardware

tuning process. The methods are compared based on reliability, how often the hard-

ware model tunes successfully, and efficiency, how many hardware tests are required.

The results of the tuning simulations are presented in Table 4.6. The tuning methods

are sorted from top to bottom, first by the number of successful tuning trials, and

then by the average number of hardware tests required. Therefore, the method that

performs best in both categories, isoperformance tuning, is listed first.

The model-only methods are grouped at the bottom of the table because they are
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Table 4.6: Tuning results on fifty hardware simulations: performance and number of
required tests.

# of Sims # Hardware tests
Method Success Failure Maximum Average
Iso Tuning 50 0 4 2.5
Hardware: BSD 50 0 231 46.2
Hardware: SA 50 0 2618 790
Worst-Case Model 29 21 2 2
Nominal Model 29 21 2 2
Optimized Model 24 26 2 2
AO Tuning 0 50 2 2

successful on only 50% of the trials. The only exception is AO tuning, which does not

successfully tune any of the simulations. It is worthwhile to note that, although the

model-only methods failed in the example discussed previously, there are some hard-

ware realizations for which these methods are adequate. Since each of these methods

require only two hardware tests, the initial test to assess nominal hardware perfor-

mance and a second one to try the tuning configuration, there is little cost in starting

the tuning process with these methods as much time and effort can be avoided if they

succeed. If the model-only method fails, the tuning configuration is a good starting

point for a hardware tuning scheme. Optimized model tuning and isoperformance

tuning are particularly compatible in this way since the uncertainty parameters used

for the model tuning also serve as an initial point on the isoperformance contour. It

is also interesting to note that the nominal model and worst-case model tuning meth-

ods result in the exact same numbers of successes. It turns out that these methods

succeed and fail on the same hardware realizations indicating that these methods are

interchangeable for this particular problem.

The hardware tuning methods and isoperformance tuning, on the other hand, are

consistently successful across the entire sample space. There is quite a difference in the

number of hardware tests that are required by the three methods, however. Real-time

simulated annealing is by far the least efficient requiring an average of 790 hardware

tests across the sample space. This result is not surprising since the method is a

random search of the tuning space. It is equivalent to simply trying random tuning
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configurations until one works. The fact that such a large number of tests are required

for such a simple problem (only two tuning and two uncertainty parameters) indicates

that this approach is fairly ill-suited for this application. The barrier steepest-descent

real-time optimization performs much better than SA, requiring an average of 46

hardware tests to tune successfully. The maximum value of tests is still pretty high at

231, however, and is expected to increase with the number of tuning and uncertainty

parameters in the problem.

The isoperformance tuning algorithm, a hybrid of model and hardware tuning

techniques, stands out as the clear winner. Like the hardware-only methods it suc-

cessfully tunes each and every one of the hardware realizations, but does so with only

a few hardware tests. The maximum number of tests required by the isoperformance

tuning method is 4 and the average across the sample space is 2.5. These statistics

are a factor of ten less than BSD and a hundred times less than SA. It is true that

the iso-lines in this problem are particularly well-suited for this tuning methodology

as discussed previously, but the additional example considered shows that even if

the isoperformance lines are less favorable the method performs very well. As the

complexity of the model and tuning problem increases, it is expected that the model-

only methods will fail more often and that the hardware tuning methods will require

even more tests to find a successful tuning configuration. Therefore, although the

model-only methods are attractive for their simplicity and low-cost, and the hard-

ware methods are attractive for their success rate, neither method is really a practical

solution as there is always the chance of failure or prohibitive expense. In contrast,

the isoperformance tuning method is able to consistently provide successful tuning

solutions with only a small number of hardware tests.

4.4 Summary

In this chapter, the concept of dynamic tuning is defined as the process of adjusting

hardware to bring the system performance within requirements. The tuning process is

formalized as an optimization, and guidelines for choosing appropriate tuning param-
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eters are discussed. The optimization is run on the worst-case uncertainty realizations

of the SCI development model PT and RPT designs to demonstrate the performance

improvement that results from tuning the hardware. Three different optimization

algorithms are explored, and a physical interpretation of how tuning masses reduce

the performance variance in these models is provided. The design regime plot intro-

duced in the previous chapter is updated to include tuned PT and RPT designs, and

it is shown that adding a tuning step to the design process extends the uncertainty

tolerance of the tailoring techniques.

The problem of tuning in practical application is also considered. In order to

tune the hardware successfully additional information about the values of the un-

certainty parameters is required. Eight different tuning schemes are presented and

demonstrated on a hardware simulation of the SCI development model. The tun-

ing methods range from model-only methods that use little or no hardware data, to

hardware-only methods that disregard the uncertain model altogether. The methods

are evaluated based on reliability and efficiency. A hybrid tuning method that ex-

ploits a technique from multi-objective optimization, isoperformance, is shown to be

both consistently successful and low-cost in that a small number of hardware tests

are required to tune successfully.
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Chapter 5

Robust Performance Tailoring with

Tuning

Dynamically tuning hardware that does not meet specification may be successful in

bringing the performance within requirements. This added step takes advantage of

the additional knowledge provided by hardware data to meet aggressive requirements

that can not be met through modeling and robust design alone. However, since tuning

is performed after the hardware is built, options are limited to only changes that do

not disrupt the integrity of the system, and therefore, it is not always be possible to

tune the hardware to meet performance. If this is the case, then the engineer gains

the knowledge that the system does not meet requirements, but is left without easy

options to pursue.

A better approach is to explicitly plan for dynamic tuning from the beginning

of the design process. The design is tailored for both robustness to uncertainty and

tunability. Tuning is added to the design optimization as a complement to robust

tailoring and shares in the uncertainty management. This approach is named Robust

Performance Tailoring for Tuning (RPTT), and is the major contribution of this

thesis.

In the following chapter the RPTT methodology is developed as an optimization

problem in various forms. It is applied to the SCI development model using SA and

SQP optimization algorithms, and the results are compared for algorithm performance
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and efficiency. The resulting RPTT design is compared to the PT and RPT designs

presented in the previous chapters. The modal energy distributions are explored to

gain physical insight into the tailored and tuned designs. The RPTT methodology is

run over a range of uncertainty bounds, and the design regimes plot presented in the

previous chapters is updated to include the RPTT design. It is shown that RPTT

further extends the uncertainty level that can be tolerated for a given performance

requirement. Finally, random hardware simulations are generated and the entire

tailoring-tuning process is applied using the PT, RPT and RPTT designs. It is

shown that only the RPTT designs can consistently meet aggressive performance

requirements over a large range of uncertainty bounds.

5.1 RPTT Formulation

Robust Performance Tailoring for Tuning extends Robust Performance Tailoring by

designing the system to be tunable across the entire uncertainty space. Recall that the

tailoring process chooses design variables, 5, to optimize the predicted performance

of the final system. In RPT, F is chosen such that the performance predictions are

insensitive to the uncertainty parameters, j, given fixed, nominal values for the tun-

ing parameters, '. The key feature of RPTT is that the prediction accounts for the

fact that the tuning parameters can be adjusted after the hardware is built and the

uncertainty is fixed (and known). The goal of the optimization is to choose Y to

find a design that is tunable across all possible hardware realizations. In the imple-

mentation, the tuning parameters change depending on the uncertainty parameters.

This consideration of future tuning adds extra degrees of freedom to the problem in

the form of additional ' realizations, and, as a result, the optimization is less con-

strained and may have better solutions. Tailoring for tuning idea is similar to an

optimization problem presented by Scokaert and Mayne for application to receding-

horizon model predictive control (MPC)[104]. The MPC formulation accounts for the

fact that future control decisions are made with more information than is currently

available. Scokaert's min-max problem introduces the notion of feedback into the
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MPC optimization by allowing a different control sequence for each realization of the

disturbance.

The RPTT cost function is a weighted sum of a tailoring for tuning objective,

JTT, and a robust performance tailoring objective, JRPT:

JRPTT = (1 - a)JTT + a JRPT (5.1)

The weighting parameter, a, allows adjustment of the relative weight between tuning

authority and robustness. If a = 0, the design is tailored for maximum tuning

authority, and if a = 1, JRPTT reduces to an RPT optimization. Optimizing for

only JTT could lead to a design that is tunable, but is highly sensitive to uncertainty

and therefore relies heavily on hardware tuning for mission success. Since hardware

tuning requires additional time and resources, the ideal structure is one that will most

likely meet performance, but can be tuned to meet requirements in the event that

the hardware realization falls short. Therefore, it is preferable to find a design that

is both robust to uncertainty and tunable, so that the uncertainty compensation is

shared between robust design and hardware tuning.

One way to formulate the two objectives is with nested optimizations:

JTT
JRPT

min -a) max min f ( ppgf) +a max f (Y, /o,p) (5.2)
EP YeY j ,5EP

s.t. g () < 0

The tailoring for tuning cost is a max-min optimization in which the tuning optimiza-

tion, Equation 4.2, is performed at each of the uncertainty vertices. In effect, JTT, is

the worst-case tuned performance over the uncertainty space. The anti-optimization

cost, Equation 3.4, is used as the robust performance tailoring objective. Note that

the difference between JTT and JRPT is that, in the robust objective the tuning pa-

rameters are fixed at their nominal value, yo and no tuning optimization is performed.

The outer tailoring optimization is performed only over the tailoring parameters, 5,
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which are constrained by '. The uncertainty bounds and tuning parameter constraints

are handled in the inner optimizations.

Although Equation 5.2 is conceptually the simplest formulation of the RPTT

problem, it is rather cumbersome to implement. At each major iteration of tailoring

parameters a tuning optimization is performed at each of the uncertainty vertices.

Therefore a problem with only two uncertainty parameters requires four tuning opti-

mizations each time the objective function is evaluated. Such a nested optimization is

computationally inefficient. In addition, similar to the min-max AO objective (Equa-

tion 3.4), it is not clear how to derive analytical gradients for this objective function.

The tuned performance is a function of the uncertainty and tuning parameters, but

the tailoring parameters are the only design variables in the outer optimization.

One way to improve the computational efficiency is to move the tuning parameters

to the outer optimization, eliminating the need for the nested tuning optimization:

JTT JRPT

min (I - a)'max f (', i, p-) +a'max p (5.3)
XYt' TE P ITEP fXy

s81. W, Mi < 0

Vi = 1.. .n,

Equation 5.3 is equivalent to Equation 5.2 in that the tailoring for tuning objective

is the maximum tuned performance over the uncertainty space. The nested tuning

optimization is removed by expanding the design variables to include multiple sets of

tuning parameters, g, one set at each uncertainty realization. For example, consider

a problem with two tailoring parameters, two tuning parameters and two uncertainty

parameters. If the problem is locally-convex so that the vertex method of uncertainty

propagation can be used, then there are four uncertainty vertices to consider, and the

design variables for the optimization in Equation 5.3 are:

dv= [1 X2 Y11 Y12 Y21 Y22 Y31 Y32 Y41 Y42 (5.4)
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where the notation yij indicates the Jt" tuning parameter at the ith uncertainty vertex.

Keep in mind, that the ' vectors are only the tuning configuration at the vertices of

the uncertainty space and are not necessarily the final values of the tuning paramters.

The hardware tuning process discussed in Chapter 4 must still be employed if the

hardware realization does not meet requirements. However, the assumption is that if

x'z is chosen during tailoring such that the system is tunable at the uncertainty vertices

then the actual hardware will be tunable across the entire uncertainty space. In this

formulation, JTT and JRPTT are almost identical except that the tuning parameters

are allowed to change with the uncertainty vertices in JTT.

The formulation in Equation 5.3 improves the computational efficiency of the

tailoring optimization since tuning optimizations are no longer required at each eval-

uation of the objective function. However the optimization is still a combination of

min-max formulations, and it is unclear how to obtain the analytical gradients. It is

possible to further simplify the RPTT formulation by posing it as a simple minimiza-

tion problem similar to the minimization form of anti-optimization (Equation 3.5):

JTT JRPT

min (I - a)'ZI+a'Z2 (5.5)

s.t Jg ( , g) <

hii (zi, Z, i, Ai) < 0

h 2i (z 2 , ', '7) _ 0

Vi = 1... nP

In this formulation the cost function consists only of the weighted sum of two dummy

variables, z1 and z2 . The tailoring for tuning and robustness metrics are included

through the augmented constraints:

hii (zi, ', i, ) = -zi + f(, i, 1 ) (5.6)

h2i (Z2, z, ') = - Z2 + f (Z, gO, Pi) (5.7)
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The first constraint, Equation 5.6, requires the tailoring for tuning dummy variable,

z1 , to be greater than or equal to the maximum tuned performance over the uncer-

tainty vertices. Equation 5.7 is equivalent to Equation 3.6 from the AO formulation,

and requires that z2 be greater than or equal to the maximum un-tuned performance

over the uncertainty space. Since the objective is to minimize a weighted sum of zi

and z2, the constraints ensure that these variables are effectively the worst-case tuned

and worst-case untuned performances, respectively.

In this form, the analytical gradients of the cost function are easily derived by

inspection:

&JRPTT - JRPTT _ iRT__ aJRPTT (58)
OY Oi 09Zi 09z2

Constraint gradients are also required for a constrained gradient-based optimization.

The gradients of the parameter constraints, J', depend on the particular design prob-

lem under consideration. The augmented constraint gradients include the gradients

of the performance with respect to the tailoring and tuning parameters:

Ai Of (_, _ i, ) li Of (Ali_, ) __ Ohi
- = - - - - = _1 = 0 (5.9)

O x Dyi Oy iZi 0Z2

Oh 2i _ Of (, YO, A) h2  _ 2 = h2  = -1 (5.10)
- -- = 0 -Z- (.082 2 Yi az Z2

In the following section the RPTT optimization is applied to the design of a

structurally connected interferometer using the SCI development model. A variety

of optimization algorithms are used to solve the problem and the performance of the

different formulations are compared for efficiency.

5.2 SCI Development Model

Application of the RPTT methodology to the SCI development model requires all of

the elements presented in the previous chapters. The tailoring parameters are the

two cross-sectional areas (Table 2.3), the tuning parameters are the design masses
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(Table 4.1), and the uncertainty parameters are the Young's Moduli of the two truss

arms (Table 3.1), so that the design variable vector is:

T1
Xdv = [ di d 2 in 1  in1 2 m 2 1 M 2 2 in3 1 M 3 2 m 4 1 M42  (5.11)

The design masses are no longer considered as tailoring parameters in this formulation

since they are accounted for by the tuning component. The performance metric is the

RMS of the OPD between the two collectors and is a function of all the parameters.

A constraint equation limiting the total mass of the tailored and tuned system is

enforced at each uncertainty vertex:

EpL d2  + E Imi - A1I

g (, i) =.Vi= 1 ... 4 (5.12)

2=pLZ d? + m 4 j - M

This constraint couples the tailoring and tuning parameters into the mass equation

allowing the optimization algorithm to spend mass where it is most beneficial.

The results presented in this section are for the case of bounded uncertainty within

±10% of the nominal uncertainty values. The weighting on robustness, o, in the

RPTT formulations is set to zero to produce a design with maximum tuning authority.

5.2.1 Optimization Algorithms

RPTT designs of the SCI development problem are generated by running the opti-

mizations formulated in Equations 5.3 and 5.5 through the simulated annealing and

sequential quadratic programming algorithms. The resulting designs are presented in

Table 5.1 along with algorithm performance data. Simulated annealing is run first on

the formulation in Equation 5.3 to provide an initial guess to the SQP algorithm. SA

is not run with the simple minimization formulation (Equation 5.5) as it is difficult

to obtain feasible guesses due to the augmented constraints. SQP is also run with

ten randomly-chosen initial guesses to assess the convexity of the solution space.

The results show that nearly all of the SQP runs converged on the same design.
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Table 5.1: Algorithm performance: RPTT, a = 0.0, A = 0.1.

J* iter fevals time x* [m] Ywc [kg]
Alg. Form [pm] # # [min] di d2 mi M2
SA Eq 5.3 216.03 201 8304 5.26 0.0451 0.0388 175.63 0.0774
SQP Eq 5.5 215.94 23 53 1.77 0.0451 0.0388 175.88 0.0
SQP Eq 5.3 215.97 13 1001 1.62 0.0452 0.0388 175.66 0.028
MC SQP Eq 5.5 215.94 414 906 31.47 0.0451 0.0388 175.90 0.0
MC SQP Eq 5.3 215.94 661 5843 51.82 0.0451 0.0388 175.93 0.0

Since the weighting on robustness is set to zero the optimal cost, J*, is the tuned

performance at the worst-case uncertainty vertex. SA provides a starting point that

is very close to the optimal design after 201 temperature iterations and 8304 function

evaluations. The SQP algorithm performs nicely when started at the SA design

and applied to the problem of Equation 5.5. It converges to a design in only 23

iterations and 53 function evaluations. In contrast, the SQP solution obtained from

the formulation in Equation 5.3 is slightly sub-optimal. Note that the algorithm ran

for only 13 iterations, but 1001 function evaluations. The algorithm fails to properly

converge because it becomes stuck in the line search and the maximum number of

function evaluations (1000) is reached. One possible reason for this behavior is that

the objective function gradients required for the SQP algorithm are not well-posed

for this problem. The MC SQP results are equivalent to those obtained by starting

from the SA design indicating that a globally optimal design has been found. MC

SQP does find the optimal design when applied to Equation 5.3 since five out of ten

trials do converge successfully. The time results show that the combination of SA and

SQP finds the optimal design much more quickly (7 minutes) than MC SQP (31.5

minutes).

5.2.2 Comparison to PT and RPT Designs

The optimal tailoring parameters for the RPTT design and its performance in the

nominal, and worst-case (untuned) uncertainty configurations are listed in Table 5.2

along with the corresponding design variables and performances for the PT and RPT
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Table 5.2: Performance and design parameters for optimal designs.

Tailoring, F Performance, [pm] Total Mass
di [m] d 2 [M] m1  m 2  o00  cwC [kg]

PT 0.030 0.030 0.0 1.934 100.53 1355.50 673.18
RPT 0.0486 0.0581 0.0 0.0 263.87 306.86 827.04
RPTT 0.0451 0.0388 N/A N/A 158.53 572.66 740.05

(AO) designs. The RPTT design is significantly different from both the PT and RPT

designs. In the PT design all of the truss segments are of equal diameter and are

at the lower bound, while in the RPT design they are tailored so that the mass is

concentrated towards the center of the array with the inner truss diameters are about

a centimeter larger that those of the outer truss segments. The RPTT design is

opposite the RPT as the inner segments have a smaller cross-sectional diameter than

the outer segments, so mass is distributed towards the ends of the array. The tuning

parameters are used as tailoring parameters in the PT and RPT optimizations so that

the same design variables are used to ensure a fair comparison among the methods.

The PT design has the lowest nominal cost by far (100.53pm), but is very sen-

sitive to uncertainty with a worst case performance of 1355pm. The RPT design is

much more robust to uncertainty, and has a much lower worst-case performance value

(306.86pm), but sacrifices nominal performance (263.87pm) to achieve this robust-

ness. The RPTT design lies somewhere in between the PT and RPT designs. It has

a nominal performance of 158.53pm, higher than that of the PT design, but lower

than that of the RPT design. It is not quite as robust as the RPT design, but has a

much lower worst-case performance (572.66gm) than the PT design.

Table 5.3: Performance and parameters for tuned worst-case realizations.

Tuning, y [kg] Performance Total Mass
Mi M2 o [pm] [kg]

PT 175.06 0.0 303.17 848.25
RPT 81.04 0.0 273.32 908.08
RPTT 0.0 175.88 215.94 915.94

The tuned performance of the designs is obtained by applying the tuning op-
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timization (Equation 4.2) to the model at the worst-case uncertainty vertex. The

resulting optimal tuning parameters and tuned performances for the three designs

are listed in Table 5.3. In all cases, the tuning mass is concentrated in one arm of the

interferometer. The RPTT design is tuned on the positive-x arm while the PT and

RPT designs are tuned by adding mass to the negative-x arm. This mirror effect is

simply due to the choice of worst-case uncertainty vertex. Since the model is perfectly

symmetric there are two vertices that result in the same worst-case performance.

The tuned performance values indicate that the RPTT design can achieve the

best performance through a combination of tailoring and tuning. Consider, for ex-

ample, a performance requirement of 240Mm, shown with a solid horizontal line in

Figure 5-1. Nominal performance is indicated by circles and tuned performance by

triangles. The top of the solid error bars is the worst-case untuned performance, and

the dashed error bar denotes the worst-case tuned performance. The PT design meets

1400
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1000
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cp 800----
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400-

200 Requirement ..-
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PT RPT RPTT

Figure 5-1: Nominal, worst-case and tuned performance for PT, RPT and RPTT
designs. Nominal and tuned performances shown with circles and triangles, respec-
tively, and worst-case performance indicated by error bars. The solid black horizontal
line indicates a performance requirement of 240 pm.

this requirement nominally with a performance value of 100.58pm, but is far above
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it in the worst-case uncertainty realization at 1355pm. Tuning the PT design at this

worst-case vertex improves the performance greatly to 303pm, but does not succeed in

bringing the system performance within the requirement. The RPT design is much

less sensitive to uncertainty, but sacrifices nominal performance, and consequently

tunability, to gain robustness. As a result, it does not meet the requirement in either

the nominal (2 63.87pm) or tuned worst-case (273.32pam) configurations. The RPTT

design methodology improves on RPT by tailoring for multiple sets of tuning param-

eters instead of just one. RPTT sacrifices some robustness for tunability resulting

in a worst-case performance of 573pm, higher than that of RPT, but this worst-case

hardware realization is tunable to just under 216pm and meets the requirement. In

this context, tunability is considered a form of robustness. Although the design is

somewhat sensitive to uncertainty, the physical hardware is guaranteed to be tunable

to below the requirement resulting in a robust system.

To understand the physical source of the increased tuning authority consider the

energy information provided in Figure 5-2. The output PSDs of the RPTT design

in nominal (solid line), worst-case (dotted line) and tuned worst-case (dash-dot line)

uncertainty configurations are plotted in Figure 5-2(a). The normalized cumulative

variance plot shows that the majority of the energy in the worst-case realization is

concentrated in the first bending mode. This result is consistent with the PT and

RPT designs. The distribution of energy in the nominal and tuned configurations

is similar, but the modal frequencies are much lower in the tuned case due to the

additional tuning mass.

The bar chart, Figure 5-2(b), presents the percent of energy accumulated in the

critical modes. The nominal uncertainty case is shown by the black bars, the worst-

case uncertainty realizations by gray bars and the tuned configurations by white

bars. The first three modes are most critical, and the first bending mode contains

most of the energy in the worst-case uncertainty situation. The accompanying table

(Figure 5-2(c)) lists the modal frequencies, percent energy and absolute RMS of each

mode. Note the large increase in energy in Mode #2 in the worst-case realization and

the drop in frequency of Mode #3 in the tuned case.
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# [Hz] % [Mm] [Hz] % [pm] [Hz] % [pm
1 0.022 25.92 41.10 0.022 2.38 13.61 0.022 22.86 49.36
2 0.038 0.00 0.00 0.038 93.63 536.17 0.036 4.10 8.84
3 0.395 59.39 94.16 0.386 3.07 17.58 0.178 61.93 133.73
4 0.431 0.00 0.00 0.440 0.16 0.92 0.434 5.90 12.75
5 1.517 7.20 11.42 1.461 0.23 1.32 1.345 0.89 1.92
7 4.275 2.87 4.55 4.121 0.09 0.52 3.801 0.88 1.90
11 43.04 3.83 6.07 43.14 0.29 1.64 42.74 1.76 3.80

(c)

Figure 5-2: Modal energy breakdown for RPTT design (A = 0.1 and a = 0.0)
for nominal uncertainty, worst-case uncertainty, and tuned configurations (a) output
PSDs: nominal (solid blue), worst-case (dashed green), tuned (dash-dot red) (b) %
energy comparison (c) results table.
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The data in Figure 5-2 indicate that the first bending mode at 0.038 Hz is the

focus of the tailoring and tuning mechanisms. Recall from discussions in previous

chapters that this mode is critical for all of the designs. A comparison of the modal

characteristics of this mode among the PT, RPT and RPTT designs in the nominal,

worst-case and tuned configurations is presented in Figure 5-3 to provide insight into

the underlying physics.

The natural frequency of the first bending mode in all three designs is shown in

the upper subplot of Figure 5-3(a). The frequency of the nominal, worst-case and

tuned configurations are marked with circles, squares and diamonds, respectively.

The symbols are difficult to distinguish from one another because, for a given design,

the frequency of the modc does not change appreciably from one configuration to

the next. However, there is quite a difference in the frequency of this mode among

the three designs. The natural frequency in the AO design (0.072Hz) is over twice

that of the PT design (0.022Hz). Recall from the discussion in Chapter 3 that it is

the stiffening of this mode that gives the RPT design its robustness to uncertainty.

However, a side effect is that the RPT design is robust to the tuning parameters,

and little can be done to improve the performance at a given uncertainty realization.

The first bending mode frequency in the RPTT design is between that of the PT and

RPT designs, but is closer to the PT design (0.036Hz) so that tuning authority is

preserved.

The lower subplot in Figure 5-3(a) is a bar chart of the percent energy in the

first bending mode for all three systems in the three configurations. The nominal

configuration is shown in black, worst-case in gray and tuned worst-case in white.

Keep in mind that the total energy of the designs in the different configurations are

different from one another, so that the bars only indicate how the energy is distributed

among the modes, and not the absolute energy in each mode. In the worst-case

configuration the first bending mode is the dominant mode for the PT and RPTT

systems, accounting for over ninety percent of the output energy. In contrast the

RPT design, which is less sensitive to this mode due to its higher natural frequency,

shows only thirty percent of the output energy in first bending in the worst-case
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Figure 5-3: Modal characteristics of first bending mode for PT, RPT and RPTT
designs in the nominal (blue, circle), worst-case (green, square) and tuned (white,
diamond) configurations.
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configuration. The tuned configurations are especially interesting as it is clear that

the tuning parameters are able to drastically reduce the percent energy of this mode

in both the PT and RPTT designs, while the RPT design is not affected as strongly.

To complete the story the relative modal displacement between the collector nodes

for each design is shown in Figure 5-3(b). Again, the results for the nominal, worst-

case and tuned worst-case configurations are shown in black, gray and white, respec-

tively. This metric is important since the y-translation contribution to the OPD is

due to the relative motion of these nodes (Equation 2.9). It is clear from the chart

that the addition of the tuning masses to the PT and RPTT designs reduces the rel-

ative motion between collectors quite drastically. In effect, the asymmetric addition

of tuning mass balances the asymmetry introduced by the uncertainty parameters

at the worst-case vertex. The RPT design also shows a reduction, but it is not as

significant. The tuning parameters are not able to affect the shape of the first mode

as much, because the design is robust to uncertainty but is also robust to tuning.

The RPTT design formulation balances the key elements of the PT and RPT

designs to produce a design that is both robust to uncertainty, yet tunable. In the

SCI development model all effort is directed to the first bending mode as this is the

significant mode in the worst-case uncertainty realization due to asymmetric motion

of the collector nodes. The natural frequency of this mode in the RPTT design is

higher than that of the PT design so that the mode contributes less to the output

energy. However, it is not stiffened as sharply as in the RPT design so that the tuning

parameters have sufficient authority to affect the performance.

5.2.3 Design Regimes

The tuned RPTT design is compared to the PT, RPT, tuned PT and tuned RPT

designs over a range of uncertainty values. The formulation in Equation 5.5 is run

for maximum tuning authority (a = 0.0) at various values of uncertainty bound, A,

ranging from 0.01% to 25%. The uncertainty values vary +A% about nominal and

are the same for both uncertainty parameters. The tuned results are obtained by

running a tuning optimization on the worst-case uncertainty realization. The results
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are shown in Figure 5-4, the final evolution of the design regimes plot introduced

at the end of Chapter 3. The y-axis represents the performance requirement of the

system and the x-axis is the level of uncertainty in the parameters. The numbered

regions indicate areas in which particular design methodologies are successful for all

possible uncertainty realizations as listed in the legend. For example, in Region 1,

PT, RPT and RPTT all produce designs that can meet the requirement within the

uncertainty bounds, while in region 4 only PT tuned and RPTT designs are successful.
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Figure 5-4: Performance requirement vs uncertainty: all designs.

In Region 7, only RPTT can produce a successful design indicating that consider-

ing tuning in the tailoring stage of the design further extends the uncertainty that can

be tolerated at a given performance requirement. For example, at a requirement of

c-req =200pm the maximum uncertainty that can be tolerated without RPTT is 7%

and is achieved through a combination of PT design and hardware tuning. However,

if RPTT is applied to the system the uncertainty range is extended to 9% for the
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same requirement. The effect becomes more dramatic as the requirement is relaxed

slightly. At a requirement of 280pm the tuned RPT design can tolerate up to 11%

uncertainty, but the RPTT design allows ~ 16.3%. The entire 25% uncertainty range

is covered for requirements of 320pm and higher with the RPTT design. This re-

quirement is nearly 13% lower (more aggressive) than that which can be met by the

tuned RPT design at the same uncertainty level.

In addition to extending the reachable design space, RPTT is the only method

that is successful in all of the design regions. As noted in the previous chapter, Region

4 is interesting because the tuned PT design is adequate, but RPT and RPT tuned

are not. This result is concerning because the uncertainty is relatively low in this

region and it is reasonable to assume that RPT or tuned RPT formulations are the

correct approach here. However, the plot shows that, for this problem, tuning the

PT design achieves a more aggressive performance requirement than tuning the RPT

design at the same level of uncertainty. For example, at A = 5.75% the tuned PT

design can meet a requirement of 178pm, while the tuned RPT design can only meet

a requirement of 218.62pm. In contrast, RPTT is able to meet the same requirement

as tuned PT, and can go slightly further to 161.43pm if necessary. In fact, RPTT is

the only method that is appropriate in all of the regions shown here.

5.3 RPTT Simulations

In this section the RPTT design space is investigated more thoroughly through a

series of simulations. First the trade between tuning authority and robustness is con-

sidered by varying the robustness weight, a. Then, the PT, RPT and RPTT designs

are compared over a set of random hardware simulations to assess the methodology

performance the entire uncertainty space.

5.3.1 Tuning Authority

Recall from Equation 5.1 that the RPTT objective function includes weighted robust-

ness and tuning authority costs allowing a trade of relative importance between the
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two. The effects of this weighting, a, on the design performance predictions are ex-

plored by finding the optimal RPTT design for a range of a at a constant uncertainty

bound, A = 10%. The nominal performance prediction of each design is evaluated

along with the performance at the worst-case uncertainty vertex. The worst-case

realization is then tuned to obtain the tuned performance.
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Figure 5-5: RPTT design performance as a function of weighting (a) for A = 0.10:

() requirement.

The results of this study are shown in Figure 5-5. Nominal, worst-case and tuned

performance are depicted by circles, squares and triangles, respectively. At low values

of a the tuning authority is weighed heavier than robustness, and, as expected, the

tuned performance is best in this region. It is interesting to note that the nominal

performance is also very good when a is low, but the worst-case performance is

very high. As a increases, robustness becomes more important, and the worst-case

performance decreases while the nominal and tuned performance increase. It is clear

that, for this model, a trade exists between tuning authority and robustness.

Consider a requirement of 220ptm, indicated by a solid black line on the figure.

The tuned performance meets this requirement only at robustness weight close to zero
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indicating that this requirement is aggressive for this system at this uncertainty level.

Therefore, to guarantee success through tailoring and tuning the system should be

designed for maximum tunability with a robustness weight at or near a = 0. However,

if this requirement is relaxed to 250Arm then less tuning authority is necessary to

meet requirements, and a higher weight, up to a = 0.4, can be placed on robustness.

Placing the maximum weight possible on robustness produces a design with a worst-

case performance prediction that is closer to the requirement increasing the chance

that the hardware will not need tuning at all.

5.3.2 Hardware Simulations

The results presented thus far indicate that the RPTT is more tunable than both

the PT and RPT designs at the worst-case uncertainty vertex. This result is not

surprising given the formulations of the design optimizations. PT does not consider

uncertainty at all, and RPT is only concerned with being robust to uncertainty at

the worst-case vertex and does not take advantage of hardware tuning. The RPTT

formulation anticipates the decrease in uncertainty effected by building hardware and

incorporates that benefit into the design by allowing different tuning configurations

at each uncertainty vertex and minimizing the worst-case tuned performance. As a

result, it is guaranteed that RPTT is tunable at the uncertainty vertices, but it is

unclear if that assumption holds throughout the rest of the uncertainty space. In this

final section, a series of hardware simulations are run to evaluate the performance of

the designs across all of the uncertainty space.

The algorithm used to generate the hardware simulations is given in Figure 5-6.

The outer loop in the algorithm is over the number of simulations desired, nrims.

For each simulation an uncertainty realization, 5 MC, is chosen randomly from the

uncertainty model. Recall from Equation 3.1 that the uncertainty values in the SCI

development model are assumed to be uniformly distributed about the nominal val-

ues within bounds of ±A%. A hardware simulation is generated for each of the three

designs, PT, RPT and RPTT, by applying PMC to the models and evaluating the

performance, UHW. The hardware performance is then compared to the requirement.
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If the hardware meets the requirement then no tuning is necessary and it is considered

nominally successful. However, if UHW is not within the requirement, then the hard-

ware simulation is tuned assuming that the exact uncertainty parameter values, PMc,

are known, a procedure referred to as baseline tuning in Chapter 4. In reality, the

tuning would take place through a model updating technique such as isoperformance

tuning (see Chapter 4), however for the purposes of this study it is only necessary

to determine if it is possible to tune the hardware below requirement, so baseline

tuning is adequate. The results of the simulations include the nominal hardware

performances and the tuned hardware performances for each of the designs.

Data: PT, RPT, RPTT designs, uncertainty model, nsims
Result: nominal HW performance, tuned HW performance
begin

for i = to nsims do
Randomly choose I5 c from uncertainty model
for PT, RPT and RPTT designs do

Generate HW simulation by applying ]7 C to model
Evaluate nominal HW performance, OcHW

if OHW > 9,,q then
Tune HW simulation with knowledge of ]7 C -> baseline tuning
Evaluate tuned performance, Utune, and store

end
end

end
end

Figure 5-6: Hardware simulation algorithm.

The PT, RPT (AO) and RPTT designs generated based on an uncertainty model

with A = 10%, a = 0.0 and -req = 220pm are used to generate 200 hardware

simulations. A map of the uncertainty space explored is plotted in Figure 5-7. The

nominal uncertainty values are marked with the large dot in the middle of the grid

and the bounds are denoted by the box around the grid. Each of the realizations

used to generate the hardware simulations is marked with a dot. Note that although

the 200 simulations aren't quite enough to fill the space, they do an adequate job of

sampling it.

The results of the hardware simulation are presented in Figure 5-8. The upper plot,
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Figure 5-7: Uncertainty points considered in Monte Carlo hardware simulation study,
A = 10%.

(Figure 5-8(a)), shows the nominal and tuned performances obtained for each of the

designs. The nominal performance values are denoted by gray dots forming a vertical

line. The maximum and minimum values are marked with horizontal error bars. The

tuned performances are plotted in a similar fashion but in balck. The requirement

is indicated by the solid line at 220pm. The nominal PT hardware covers a large

range of performance values ranging from 98.54pm to 1266.8pm. Once the poorly

performing designs are tuned the range is decreased considerably to a maximum value

of only 289.50pm. However, the maximum tuned value does not meet the performance

requirement indicating that some number of the PT simulations do not have sufficient

tuning authority. In contrast, the range of RPT peformances is very small. In the

nominal configuration the performances range from 259.81pm to 303.5pm, and once

tuned range from 249pm to 271.21pum. Note that none of the nominal designs meet

the requirement, and although tuning improves the performance, it is not sufficient to

bring the simulations within the required performance, and not a single tuned RPT

design is successful. The RPTT design has a greater range of nominal performance
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than the RPT design, 155.45pm to 551.5pm, but is less sensitive to uncertainty than

the PT design. The lower range of the RPTT nominal performance is below the

requirement indicating that some of the nominal hardware simulations are successful

without tuning. More importantly, the entire tuned range, 148.16pm to 211.23pm, is

below the requirement indicating that all of the designs are successful once tuned.

The lower subplot, Figure 5-8(b), is a bar chart showing the percent of simulations

that are successful, i.e. meets requirements, for each design. Successful designs are

broken into two subcategories: those that pass nominally (white bars) and those that

pass after tuning (gray bars). The failed designs are indicated by black bars. The PT

design is largely successful, with 94.5% of the simulations meeting the requirement.

However, the majority of simulations need to be tuned (only 27% pass nominally),

and 5.5% of the simulations fail even with tuning indicating that there is no guarantee

of success with the PT design. The RPT design fares much worse with a 100% failure

rate over the simulations. As discussed in Chapters 3 and 4, the RPT is much less

sensitive to uncertainty, but is also insenstive to the tuning parameters resulting in a

design with a small range on both nominal performance and tuning. Only the RPTT

design is successful for 100% of the simulations. In addition, over half of the RPTT

simulations pass nominally, and tuning is only required in 47.5% of the cases. Even

though the robust weight, a was set to zero, RPTT achieves a blend of tunability and

robustness since the design is tuned at all of the uncertainty vertices. The resulting

design is more robust to uncertainty than the PT design and is more likely to meet

requirements in the nominal hardware configuration.

The results of the simulations at A = 10% are interesting because although RPTT

is the only design that is successfull 100% of the time, it is surprising to see that

the PT design is highly tunable and largely successful despite its high sensitivity

to the uncertainty parameters. To further explore this issue 200 simulations are

run with a higher uncertainty level, A = 21.5%. The design regimes in Figure 5-4

indicate that none of the designs can accomodate such a high uncertainty level and a

requirement of 220pm, so for these simulations the requirement is relaxed to req =

330ptm. In addition, two RPTT designs are generated, one with a = 0.0 and the other
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at a = 0.1 to further explore the trade between robustness and tuning authority. The

uncertainty parameters used in this set of simulations are plotted in Figure 5-9. Note

that the bounds on the uncertainty parameters are increased compared to those in

the corresponding figure from the previous set of simulations, Figure 5-7. The 200

samples do not cover the entire space evenly, but do provide decent coverage across

the grid.
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Figure 5-9: Uncertainty points considered in Monte Carlo hardware simulation study,
A = 21.5%.

The nominal and tuned perfromances from the hardware simulations are plotted

in Figure 5-10 along with a bar chart indicating the success rate of each design.

The performance plot (Figure 5-10(a)) is similar in trend to that from the previous

set of simulations (Figure 5-8(a)), but there are some key differences. First, the

range of the PT nominal performance values is much higher due to the increase

in uncertainty bounds. The PT hardware simulations range from 101.87pm all the

way to 2591.10pm, over twice the value of the maximum at A = 10%. A similar

increase occurs in the tuned range as well (I112.98pm to 740.47pm) , and the maximum

tuned value is over twice that of the requirement. The RPT design simulations
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have a very small nominal performance range (341.43pm to 369.1,pm) indicating that

the design is quite robust to uncertainty. Unfortunately, the robustness comes at

the price of nominal performance and none of the hardware simulations meet the

requirement. Upon tuning these hardware simulations the performance range shrinks

further (331pm to 349.63pm) due to a lack of tuning authority in the robust design,

and all of the tuned designs also fail to meet the requirement.

The two RPTT designs are differentiated in the plot by the value of a placed

parenthetically in the label. As seen in the previous simulation, both RPTT designs

show a blend of the PT and RPT design characteristics. At a = 0, the nominal

performance range (232.52gm to 565.5pm) is greater than that of the RPT design

but much smaller than that of the PT design. This result indicates that even with no

weight on the robustness cost the RPTT formulation produces a design that is dra-

matically less sensitive to uncertainty than the PT optimization. The RPTT design

also has greater tuning authority than the RPT design, and the tuned performances

range from 237.67pm to 312.45pm. The maximum value of this range is well below

the requriement of 330pm, so that all of the tuned RPTT designs are successful.

The second RPTT design, acheived through an RPTT optimization with a = 0.1,

shows increased robustness to uncertainty with a nominal performance ranging from

261.10pm to 448.9pm. The range of tuned performances is also smaller than that

in the first RPTT design starting at 274.30gm and continuing to just under the re-

quirement at 320.15pm. All of the design simulations are again tunable to below the

requirement, but the RPTT design with a = 0.1 is superior to that for a = 0 in

that it is just tunable enough and therefore more robust to uncertainty. The tuning

authority and robustness is balanced such that the design is perfectly tailored to meet

the requirement.

The accompanying bar chart, Figure 5-10(b), presents the percent of success-

ful simulations for each design. As seen in the previous hardware simulation (Fig-

ure 5-8(b)) only the RPTT designs are successful for all of the simulations, and the

RPT design never meets requirements. At the higher uncertainty level just over 70%

of the PT simulations succeed, with 51% requiring hardware tuning. Over a quarter
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of these simulations fail to meet requirements all together. In contrast, all of the

simulations meet requirements for both of the RPTT designs, and only 34.5% and

24% of the simulations require tuning for the a = 0 and a = 0.1 designs, respectively.

Since there is a cost associated with hardware tuning it is perferable to design the

system such that it is likely to meet requirements nominally. In this sense, the RPTT

design with a = 0.1 performs the best at this requirement and uncertainty level since

all simulations meet the requirement and only 24% require hardware tuning.

A plot of the nominal, worst-case and tuned performances of RPTT designs at

various values of a at this uncertainty level (A = 21.5%) is shown in Figure 5-11 along

with the requirment at 330Mm. Note that the tuned worst-case performance is above

the requirement for values of a just over 0.1. The results of the hardware simulation

indicate that to produce the best RPTT design a should be set to the maximum value

at which the tuned worst-case performance meets the requirement. This robustness

weighting produces a design that is robust to uncertainty, yet is still tunable to meet

requirements. As indicated by the bar chart (Figure 5-10(b)), including maximum

allowable robustness in the cost increases the number of uncertainty realizations in

which hardware tuning is not necessary.

5.4 Summary

Robust performance tailoring for tuning blends the concepts of robust design and

hardware tuning to produce a design with good nominal performance that is both

robust to uncertainty and has sufficient authority to meet requirements through hard-

ware tuning if necessary. The RPTT formulation extends the idea of robustness from

the design to the physical system by optimizing to facilitate hardware tuning by mini-

mizing the worst-case tuned performance over the uncertainty space. During tailoring,

the performance prediction accounts for the fact that the tuning parameters can be

changed when the hardware is built and the uncertainty is fixed (and known) i.e. the

value of ' is different depending on the value of '. This knowledge adds extra degrees

of freedom to the problem and results in a less constrained optimization.
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The RPTT formulations are applied to the SCI development model with uncer-

tainty bounds of A = 10% using SA and SQP optimization algorithms. The results

are compared for performance and efficiency. It is found that a blend of SA and

SQP in which the SA design is used as an initial guess for SQP performs best. In

addition, a simple minimization form of the RPTT cost function in which the tuned

and nominal performances at the uncertainty vertices are included in the constraints

is found to be the best posed for SQP optimization.

The nominal, worst-case and tuned performances of the optimal RPTT design are

compared to those of the PT and RPT designs. It is found that the RPTT design is

somewhere between the PT and RPT designs in terms of nominal performance and

robustness. It has a better nominal performance than the RPT design, but is more

sensitive to uncertainty. However, the tuned worst-case performance of the RPTT

design is better than those of either the PT or RPT designs. A design regimes plot

shows that the RPTT design further extends the design space for this model allowing

more aggressive performance requirements to be met at higher levels of uncertainty
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and that it is the only design method that is successful in all of the reachable regimes.

Finally, a set of randomly generated hardware simulations are run for two different

levels of uncertainty and performance requirement. Simulations of the RPT designs

are never successful because too much focus is placed on insensitivity to uncertainty.

A good number of the simulated PT designs are successful, but there are some that

fail. In addition, much dependance is placed on tuning as few of the nominal hardware

configurations meet the requirement. In contrast, all simulations of the RPTT design

succeed and the majority do not require tuning.
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Chapter 6

Focus Application: Structurally

Connected TPF

In the previous chapters, three tailoring methodologies are explored and it is shown

through application to a low-fidelity development model that RPTT, Robust Per-

formance Tailoring for Tuning, produces a design with the most desirable blend of

nominal performance, robustness to uncertainty and tuning authority. The develop-

ment model is representative of a structurally-connected interferometer but has only

fifteen degrees of freedom and contains only structural elements. In realistic applica-

tions a high-fidelity integrated model is required for design and analysis. Therefore,

in this chapter the design methodologies are applied to an integrated TPF model that

includes a high-fidelity structural component as well as a realistic disturbance model,

vibration isolation and a simple ACS controller. PT, RPT and RPTT designs for a

structurally-connected TPF interferometer (TPF SCI) are obtained, and performance

trends similar to those in the previous chapters are observed. Implementation issues

encountered with such a model are identified and addressed.

6.1 Model Description

The TPF SCI model used for the study is an integrated model with components built

in MATLAB and NASTRAN and integrated with the DOCS (Disturbance Optics
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Controls Structure) tools [24]. The model is based largely on one created at the

MIT Space Systems Laboratory by D. Lobosco [76] with some updates resulting from

communication with the Jet Propulsion Laboratory '. A schematic of the integrated

model is shown in Figure 6-1. The main model components are the plant, attitude

RWA bus
Isolator Isolator

Fx
LPF LPF

Fy
LPF LPF
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LPF LPF
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Tz
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ACS Tz
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Figure 6-1: Schematic of TPF SCI Model.

control system, disturbance model and vibration isolation stages. The inputs to the

integrated model are reaction wheel assembly (RWA) disturbances, shown at the left-

hand side of the figure. The disturbances are combined with torque commands from

the attitude control system (ACS) and pass through a two-stage vibration isolation

system. The first stage represents an isolator between the RWA and the bus, and

the second stage models isolation between the bus and the supporting structure. The

isolated disturbances then pass through the plant. This component has the highest

fidelity and includes the structural finite element model and optical sensitivities. The

structural model consists of four evenly-spaced collectors mounted to a truss with

a triangular cross-section as shown in Figure 6-2. The plant has six outputs, three

1personal communication with Douglas Adams, Member of Technical Staff, Jet Propulsion Lab-
oratory
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optical path differences between the collector pairs and three angular torque mea-

surements from the bus that drive the ACS. Since the ACS commands are fed back

to the plant torque inputs, the only outputs of the integrated model are the three

optical performance metrics. The model components are described in detail in the

following sections.

(a) (b)

(c) (d)

Figure 6-2: Nominal SCI TPF plant finite element model (a) Isometric view (b) top

view (XY) (c) side view (ZY) (d) front view (XZ).

6.1.1 Reaction Wheel Assembly Disturbances

The inputs to the integrated model are the disturbances. The are many possible

sources of disturbances that may impinge on a spacecraft such as TPF. Some are

functions of the environment, such as gravity gradients and solar torque. Other dis-

turbances are from on-board mechanisms such as fast-steering mirrors or thrusters.

Vibrations from the reaction wheel assembly (RWA) are anticipated to be the dom-
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inant disturbance source and much work has been done regarding the modeling of

these vibrations. As a result it is the only disturbance source considered in this model.

The wheel vibrations are assumed to be harmonic in nature with amplitudes

proportional to the wheel speed squared:

n

m(t, Q)= ZCif2 sin(2hiQt+ai) (6.1)

where m(t, Q) is the disturbance force or torque in Newtons (N) or Newton-meters

(Nm), n is the number of harmonics included in the model, Ci is the amplitude of

the ith harmonic in N2 /Hz (or [Nm]2/Hz), f is the wheel speed in Hz, hi is the ith

harmonic number and ac is a random phase (assumed to be uniform over [0, 2ir]). The

harmonic numbers and amplitude coefficients for an Ithaco E-type wheel are given

in [83]. Note that Equation 6.1 is a function of the wheel speed. Therefore, in order

to perform a disturbance analysis with the model in this form a separate analysis is

required for each wheel speed.

In the course of operation the wheels traverse through a range of speeds. There-

fore, a frequency-domain, stochastic wheel model was developed by J. Melody to

estimate the wheel disturbances over a given speed range [97]. The model is devel-

oped from Equation 6.1 by assuming that the wheel speed is a uniformly distributed

random variable:

2(fi22 W' for 2whif 1 < |w| < 2-zhf 2
S. ) 2f fl 2=h) (6.2)

0 otherwise

where S., is the power spectral density (PSD) of the wheel force or torque distur-

bance, fi and f2 are the lowest and highest expected wheel speeds (Hz), respectively,

and w is the frequency variable.

Equations 6.1 and 6.2 model the disturbances from a single reaction wheel in a

coordinate system that is aligned with the body frame of the wheel. However, a

reaction wheel assembly is generally composed of multiple wheels, usually between

three and six. In order to create a disturbance model of the entire assembly that can
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Table 6.1: RWA disturbance model parameters.

Name Value Units Description

fi 0 Hz minimum wheel speed
f2 50 Hz maximum wheel speed
nrwa 3 N/A number of wheels
a 30 degrees orientation angle
0 45 degrees orientation angle

Y 0 degrees orientation angle
drwa 0.25 m distance to spacecraft origin

be used to drive the structural model, the number and configuration of the wheels

must be taken into account. A multiple wheel model was developed by H. Gutierrez

that combines the disturbance models of n wheels in a given configuration into a single

RWA disturbance model [501. This model is a 6x6 matrix of power and cross-spectral

densities of the RWA vibrations transformed to the body-frame of the spacecraft.

The disturbance model implemented in this version of the TPF model is a stochas-

tic, multiple-wheel model created using the DOCS docspsd_rwa_dist.m function.

The model parameters used are listed in Table 6.1. The wheel speeds are assumed

to range from 0 to 3000 RPM. The angles a, 0, and -y locate the three wheels with

respect to the body-frame spacecraft axes. The parameter drwa is the radial distance

from the wheel centers to the spacecraft origin. In the current TPF configuration,

the spin-axes of the three wheels are 450 from the TPF Z-axis, and their projections

in the X-Y plane are spaced 120' apart as shown in Figure 6-3(a). The modelled

disturbance PSDs are shown in Figure 6-3(b).

6.1.2 Vibration Isolation

Due to the precision required by the TPF instrument it is likely that the RWA will

be isolated from the truss structure that supports the optics. Simple models of a

two-stage isolation system based on the isolator design for SIM are included in the

integrated model. The first model represents an isolator located between the RWA and

the bus, and the second isolates the supporting structure from the bus. The isolator

models are included in the TPF SCI model by placing two second-order systems in
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Figure 6-3: RWA disturbance model.

series between the RWA disturbances and the plant as shown in Figure 6-1. The

isolator transfer functions are:

(27fT-so) 2

s 2 + 2(jso(27r fj,)s + (27fiso) 2
(6.3)

where GjO is the transfer function from the input to the isolated disturbance, fiso is

the corner frequency of the isolator (Hz), and (jO is the isolator damping ratio. The

damping ratio for both isolators is assumed to be 0.1 and the frequencies of the first

and second stages are set to 3 Hz and 8 Hz, respectively. The transfer functions for

both stages are shown in Figure 6-4.

6.1.3 Plant

The plant is a finite element model of a baseline design of the TPF structurally-

connected interferometer concept consisting of four collecting apertures, a supporting

188

10

10 2

Giso -



10

100

C 10

LL . . . . . . .

-2

102 -RWA Isolator

--- Bus Isolator .... ....

103 -2 0 10
10 10 20

Frequency [Hz]

Figure 6-4: Transfer functions of Isolator models: RWA isolator, (,, = 0.4 and
fiso = 8 Hz (solid line), bus isolator, (jO = 0.1 and f so = 3 Hz (dashed line).

truss and a combiner. The interferometric baseline, measured as the distance between

the centers of the two outermost collectors, is 36 meters. The collectors are evenly

spaced along the baseline such that there are 12 meters between any two neighboring

collectors. The plant model is built mainly in NASTRAN and is shown in its nominal

configuration in Figure 6-2.

It is comprised of NASTRAN beam elements (CBAR), concentrated masses (CONM2),

plate elements (CQUAD8, CTRIA6) and rigid elements (RBAR, RBE2). The reader

is referred to the NASTRAN documentation for more information on these finite el-

ements [94]. The inputs to the plant are the six isolated RWA disturbances, three

forces and three torques. The plant outputs are three OPD metrics from the interfer-

ometer pairs and three angular rotations from the ACS sensor. The structural mass

breakdown of the plant model is given in Table 6.2. The masses listed are based on

current best estimates from JPL, and the total structural mass is 2679 kg.

Truss

The main structural component of the TPF model is the supporting truss. The origin

of the spacecraft frame is at the center of the truss so that the truss is broken into
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Table 6.2: TPF SCI m

Component
Truss
Combiner
RWA (3 Ithaco
Collectors (4)
TOTAL

odel mass breakdown.

Mass [kg]
850.1
250.0

E) 31.8
1547.1
2679.0

two arms, one that extends from the origin in the positive X-direction and one that

extends in the negative X-direction. Note from Figure 6-2(a) that the X-axis is aligned

with the interferometer baseline and the Z-axis with the observation direction. The

Y-axis completes the right-handed coordinate system. The truss is symmetric about

the origin so that the negative truss arm is simply the reflection of the positive arm.

The truss is 38 meters in length and is composed of 38 individual truss bays. Each

bay consists of nine members: three longerons, three battens forming a triangular

frame and three diagonals as shown in Figure 6-5. Each truss member is modeled

with a NASTRAN CBAR element, and the material properties are based on those of

a low-CTE (coefficient of thermal expansion) MJ55 composite (Table 6.3). The truss

design and material are based on a model from the Jet Propulsion Laboratory 2. The

numbering scheme used for the truss elements is given in Table 6.4.

Table 6.3: Truss properties.

Name Description Value Units Source

p material density 1830 kg/m 3  low CTE MJ55
E Young's Modulus 111.7 GPa low CTE MJ55
v Poisson's Ratio 0.3 none low CTE MJ55
r cross-sectional radius .01 m mass and frequency estimates
h batten frame height 1 m sized from mass/freq estimates
w batten frame width 2 m sized from mass/freq estimates
L truss bay length 1 m modeling convenience

2 personal communication with Douglas Adams, Member of Technical Staff, Jet Propulsion Lab-
oratory
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Table 6.4: Truss

ID Type
1-117 GRID
1001 - 1435 CBAR
2001-2019 MATI
2001 - 2019 PBAR

element and grid numbering.

Description
truss grid points
truss members
material properties by truss bay
member properties by truss bay

The spacecraft bus contains the operations sub-systems such as communication and

data handling, attitude control, propulsion and power systems. The bus mass is

not included in this model, but its location is modeled with a grid point at the XY

origin of the spacecraft frame in the middle of the center truss bay. The bus node

is connected to the supporting truss at three grid points through a distributed rigid

connection (RBE2), and serves as a connection point for the combining optics and

reaction wheel assembly.

The only attitude control system component (ACS) included in the model is a

reaction wheel assembly (RWA). The RWA is modeled as a concentrated mass on a
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node located on the negative Z surface of the truss bay at the spacecraft XY origin

and is rigidly connected to the bus. It is assumed that the assembly consists of

three Ithaco E-type wheels. This particular wheel is chosen because it has a mass

that is close to the current best estimate (CBE) from JPL and a well-documented

disturbance model of this type of wheel is available (see Section 6.1.1). The bus grid

points and masses are listed in Table 6.5.

Table 6.5: Bus model elements and properties.

ID Type Description
5001 GRID bus location
5100 RBE2 bus-truss connection
5002 GRID RWA location
5012 CONM2 RWA mass (31.8 kg)
5102 RBAR RWA-bus connection

Instrument

The telescope instrument consists of a combiner, located at the origin of the spacecraft

coordinate system, and collectors evenly spaced along the truss such that there as 12

meters between neighboring pairs as show in Figure 6-2. In reality the collecting

optics consist of a primary mirror, a secondary mirror and relay optics. However, for

simplicity, each collector is modeled only by a 3.5 diameter circular primary mirror

built from NASTRAN plate elements. The mirror material is Ultra-Low Expansion

(ULE) glass, a titanium silicate glass manufactured by Corning with desirable thermal

properties[4]. The material properties of the glass are listed in Table 6.6. Further

details regarding the geometry and construction of the mirror model are found in [76].

The collectors are mounted to the truss with six beam elements connected to three

locations on the mirror and six grids on the bottom surface of the truss. Each mirror

mount point has two beam elements connecting it to two truss grids. Low CTE MJ55

is used as the material for these primary mirror mounts. Their cross-sectional radius

is set to 5 centimeters to provide a reasonably stiff optical mount. The primary mirror
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Table 6.6: Primary mirror properties.

Description Value Units
mirror diameter 3.5 m
material density 2210 kg/m 3  U
Young's Modulus 67.6 GPa U
Poisson's Ratio 0.17 none U
areal density 40 kg/M 2 JP

mount properties are listed in Table 6.7 for reference.

Table 6.7: Primary

Description
material density

Young's Modulus
Poisson's Ratio

cross-sectional radius

mirror

Value
1830
111.7

0.3
.05

mount properties.

Units Source

kg/M 3  low CTE MJ55
GPa low CTE MJ55
none low CTE MJ55

m frequency estimates

The combiner consists of the combining optics, supporting structure, a cryo-cooler,

and thermal and mechanical controls and is located at the center of the interferometric

array. All of these elements are modelled together as a concentrated mass (250 kg)

with no inertia. The mass of the combiner is based on the CBE from JPL. The

combiner mass is located at the origin of the spacecraft coordinate system and is

connected to the bus with a rigid element. All of the finite elements that make up

the instrument model are listed in Table 6.8.

Optical Performance

The performance metrics of interest are the optical path differences (OPD) between

the reference collector, collector 1, and the other three apertures as shown schemati-

cally in Figure 6-6. Similar to the development model the OPD calculation is based

only on the perturbations of the center node of the collector primary mirrors since

there is no optical train detail in the model.

When the interferometer is in its nominal configuration, i.e. the collectors and

combiners are not perturbed from their locations, the path lengths from the star to
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Table 6.8: TPF SCI instrument elements.

Element ID Element Type Description
5000 GRID
5010 CONM2 Combiner
5101 RBAR
3000 PSHELL, MATI Collector glass properties
10001-10085 GRID
13001 - 13060 CQUAD8 Collector 1 (X=-18m) Mirror
14001 - 14024 CTRIA6
12203 - 12206 CBAR
12200 PBAR, MATI Collector 1 Mounts
20001-20085 GRID
23001 - 23060 CQUAD8 Collector 2 (X=-6m) Mirror
24001 - 24024 CTRIA6
22203 - 22206 CBAR
22200 PBAR, MATI Collector 2 Mounts
30001-30085 GRID
33001 - 33060 CQUAD8 Collector 3 (X=+6m) Mirror
34001 - 34024 CTRIA6
32203 - 32206 CBAR
32200 PBAR, MATI Collector 3 Mounts
40001-40085 GRID
43001 - 43060 CQUAD8 Collector 4 (X=+18m) Mirror
44001 - 44024 CTRIA6
42203 - 42206 CBAR
42200 PBAR, MAT1 Collector 4 Mounts
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Figure 6-6: Structural model schematic showing optical paths.

the combiner through each collector are all equal to f + R, where R is the distance

from the star to the collector. These paths are shown in in Figure 6-6. However, if

the collectors and/or combiner are perturbed from their nominal positions, the path

lengths are affected as follows:

OP 1

oP2

oP3

oP4

B
= R -Z1 +X - X1 + --

2
B

- R-Z 2 -Xc-X 2 +2x3 + B

2
B

- R- Z4 - X 2X4 + -
2

(6.4)

(6.5)

(6.6)

(6.7)

where Zi and Xi are the Z and X coordinates of the ith collector, and Z, and X,

are the Z and X coordinates of the combiner. The OPDs are then found by simply

subtracting the relevant path lengths:

OPD12

OPD13

OPD14

= Z 2 - Z 1 + 2X, - X 1 + X 2 -2X

= Z 3 - Z 1 - X1 + 2X 2 - X 3

= Z4 - Z1 + 2X -- X1 - X4

(6.8)

(6.9)

(6.10)

where OPDjj is the optical path difference between the ith and Jth collectors. Equa-

tions 6.8 through 6.10 form the optical sensitivity matrix from the instrument position

states to the performance metrics.
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6.1.4 Attitude Control System

The model of the attitude control system (ACS) is created with the docsacs.m

function, a part of the DOCS suite of analysis tools. This function implements a

rigid body angular position controller with a bandwidth, facs, specified as a fraction

of the first flexible mode. The bandwith fraction of the ACS is set at facs = 0.001

to keep it well below the first flexible mode of the structure and avoid coupling with

the flexible modes. The controller is a proportional-derivative controller with inertia

decoupling. The inputs to the controller are three ACS sensor outputs from the plant

which are simply the angular motions of the bus node. The controller outputs are

torque commands for the RWA and are fed back to the structural plant through a

summer element that combines the commanded torques with the disturbance torques

from the disturbance model (see Figure 6-1). Since the RWA disturbance model is

broadband and therefore not a function of the instantaneous wheel speed the ACS

commands simply add to the disturbances and do not drive the vibrations.

6.1.5 Integrated Model Nominal Performance

The individual model components are integrated within MATLAB using the DOCS

toolbox. The plant, ACS and RWA isolator component models are transformed to

state-space form (Equation 2.6) and integrated to obtain the system model. Since

the RWA disturbance model is provided as PSDs, a frequency domain disturbance

analysis is run using Equation 2.12 to obtain the RMS of the optical performance

metrics over the frequency band of interest. The OPD RMS is the performance used

in the PT, RPT and RPTT objective functions. For simplicity, only the RMS OPD

between collectors 1 and 4, 0 14 , is considered in the following sections.

The output PSD from the nominal TPF SCI model is plotted in Figure 6-7 along

with the cumulative variance. The RMS OPD between collectors one and four is

15.88 nm. It is clear from the cumulative variance plot that the energy is largely

accumulated in the mode at 3.06 Hz. This mode is one of the second bending modes

and is shown in Figure 6-8(b). The first bending mode (Figure 6-8(a)) is just under

196



x 10-

2-
* 7.55 Hz

o :3.06:H

_a6 Hz

10
10--

0

10 .

100 10 100 101 102
Frequency [Hz]

Figure 6-7: Output PSD and cumulative variance from nominal TPF SCI design.

Table 6.9: Critical modes of nominal TPF SCI design.

Mode # Freq. [Hz] % Energy (app.). Description
4 1.07 < 1 truss 1 " bending
7 3.06 88.00 truss 2nd bending
13 5.99 2.42 collector 1"t bending (potato-chip)
18 7.55 16.7 truss 3rd bending

2 Hz, but does not contribute appreciably to the OPD since it is symmetric and the

path lengths change equally on each arm of the interferometer. Additional critical

modes under 10 Hz are listed in Table 6.9. The cluster of modes around 6Hz are

due to local bending modes of the primary mirrors as shown in Figure 6-8(c). The

third bending mode at 7.55 Hz (Figure 6-8(d)) is also a significant contributor. It is

interesting to note that, although this model is higher-fidelity than the development

model presented in Chapter 2, the global behavior is similar in that the second bending

mode is the most critical.
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Figure 6-8: Mode Shapes of nominal SCI TPF design (a) first bending, 1.07 Hz (b)
second bending, 3.06 Hz (c) collector primary mirror, 5.99 Hz (d) third bending, 7.55
Hz.
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6.2 Design Parameters

In order to apply the tailoring and tuning design optimizations to the TPF SCI

model to improve the RMS OPD, the control, or tailoring and tuning, and noise,

or uncertainty, parameters must first be identified. In the following sections these

parameters are presented along with appropriate design variable constraints.

6.2.1 Tailoring

Similar to the development model the tailoring parameters allow variation of the

truss geometry. However, since the TPF SCI model is a high-fidelity truss structure

there are more design options available and a practical and easily visualized tailoring

approach is possible. Instead of varying the cross-sectional diameters of each truss

segment, the overall geometry of the truss is tailored. To this end, four tailoring

parameters are selected as listed in Table 6.10.

Table 6.10: TPF SCI model tailoring parameters.

x Description xO Units
hi outer bay height 1 m
h 2  center bay height 1 m
w1  outer bay width 2 m
w2  center bay width 2 m

The values h, and h2 are the height of the batten frames (Figure 6-5(c)) at the

end and in the center of the truss, respectively as shown in Figure 6-9. In the nominal

configuration these values are set equal to each other so that the batten frames are

the same height from bay to bay (Figure 6-2(d)), but for the tailoring optimization

they are allowed to change independently so that a configuration such as that shown

in Figure 6-9(a) could result. The height of the bays between the end bay and the

center bay vary linearly in the x-direction, and the top surface of the truss is always

at Z=0 so that the positions of the collectors remain collinear. In order to reduce

the number of tailoring parameters and limit the computational effort the truss is

assumed to be symmetric about the center so that the batten height at either end is
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Figure 6-9: Schematic of TPF SCI tailoring parameters (a) XZ-plane (b) XY-plane.

Geometric tailoring is also allowed in the XY-plane through the parameters w,

and w2. These parameters are the width of the batten frame at the end and in the

center of the array as shown in Figure 6-9(b). The width tailoring is similar to the

height tailoring in that the batten widths vary linearly in x and are symmetric about

the center of the array. However, in this plane the tailoring is also symmetric about

the x-axis, since the positions of the optics are not affected by the batten frame

widths.

There are constraints on the tailoring parameters in order to keep the design

within practical limits. Both the height and width parameters are subject to a lower

bound of 10 cm. In addition, the total mass of the system is constrained to be less

than 4000 kg. This number is based on launch vehicle mass limits and ensures that

the resulting design is realistic.
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6.2.2 Tuning

The tuning parameters are chosen from a small subset of design variables that could

practically be adjusted on hardware during component testing or on-orbit operation.

Only two tuning parameters are used in order to keep the number of design variables

required for the RPTT problem small. The parameters are the cross-sectional radius

of the primary mirror supports, rpm and the corner frequency of the RWA isolator,

fi,. The nominal tuning parameter values are listed in Table 6.11. Adjusting the

parameter rpm is equivalent to changing the stiffness of the optical mount. Although

the radii of the support bars are not easily adjusted on the hardware, this parameter

is used to model a tunable optical mount stiffness. The isolator corner frequency

parameter models a type of active isolator in which the corner frequency can be

adjusted through some unspecified mechanism.

Table 6.11: TPF SCI model tuning parameters.

y Description yo Units
rPM XS radius of primary mirror support 0.05 m

fiso RWA isolator corner frequency 8 Hz

The tuning parameters are subject to constraints that keep them within realis-

tic limits. The radius of the primary mirror support structure is constrained by a

lower bound of 1 cm to ensure that the primary mirrors stay connected to the truss.

Although the radius of the optical mount supports does in fact affect the mass of

the system, this parameter is not included in the mass constraint calculation. The

reason for this omission is that in reality only the stiffness of the mount will change

and not the physical properties of the support. The corner frequency of the RWA

isolator is constrained to be between 2 and 10 Hz based on engineering judgment and

experience.

6.2.3 Uncertainty

The uncertainty parameters considered for the TPF SCI model are very similar to

those in the development model and are listed in Table 6.12. The Young's Modulus of
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the truss material is a source of uncertainty and is allowed to vary asymmetrically in

the two interferometer arms as in the development model. The resulting asymmetry

in the two interferometer arms greatly affects the performance and models the effects

of many uncertainty parameters while keeping the computational effort low. A third

uncertainty parameter, the modal damping, is added to the parameter set. Damping

is a mechanism that is not well-understood and most models of it are conservative

approximations to the physical reality. Therefore it is a prime candidate for uncer-

tainty. In this example, a singl modal damping ratio is applied globally to all modes.

Table 6.12: TPF SCI model uncertainty parameters.

p Description Po Units A [%1
E1 Young's Modulus of -X truss 111.7 GPa 25
E 2 Young's Modulus of +X truss 111.7 GPa 25

n modal damping ratio 0.001 none 40

A bounded uncertainty model of the form in Equation 3.1 is used. The percent

bounds on the uncertainty parameters are given by A and are listed in Table 6.12.

The truss Young's Modulus is allowed to vary ±25% about its nominal value and the

modal damping ranges in value ±40% about nominal. The range on the damping

parameter is larger than that of the Young's Moduli to capture the high uncertainty

inherent in the modal damping model.

6.3 Optimization Implementation

It is shown in the previous chapters that a combination of SA and SQP finds the

best design consistently and efficiently in the case of the development model. Unfor-

tunately, running the SQP optimization on the TPF model is not straightforward.

Recall from Chapter 2 that the SQP algorithm requires performance gradients, and

that the calculation of the gradients requires the gradients of the eigenvalues and

eigenvectors. The development model is relatively simple and as a result, these quan-

tities can be derived directly. The TPF model, on the other hand, is much more
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complex and the normal modes analysis of the FEM is performed in NASTRAN, not

in MATLAB. Therefore, the modal gradients can not be obtained directly. MSC NAS-

TRAN does provide solutions for obtaining eigenvalue and eigenvector gradients, but

in the current available NASTRAN version it is difficult to obtain gradient informa-

tion for all modes. A second option is to use finite-difference gradients (Equation 4.3

or 4.4), however sensitivity of the method to step-size selection leads to inaccurate

results. If the step-size is too large, the gradient is beyond the linear regime, but if it

is too small the gradient becomes corrupted by numerical errors. Due to these issues,

the implementation of a gradient-based optimization method to a model of this size

and fidelity is a problem that is left to future study.

As an alternative, simulated annealing alone is used to obtain the PT, RPT and

RPTT designs. Although SA does not guarantee an optimum, it has been shown

that it can produce a very good design. In order to implement SA it is necessary to

evaluate the performance for a random sampling of design variables. The process used

to build the model is shown in flow chart form in Figure 6-10. Inputs are indicated

by quantities in ovals and the output is an integrated model, SYS(Y, g, p), that is

a function of the tailoring, tuning and uncertainty parameters. To begin, the design

parameters are used to generate the finite element model. All design-dependent model

data (such as the grid point locations and truss material) is collected in MATLAB and

written out to a NASTRAN bulk data deck, Model.bdf. This file is combined with

the static bulk data found in Mirrors. bdf and ModelCbar_19TraiBays .bdf. These

files contain model data that remains static, such as the primary mirror elements and

the truss connectivity information. A modal analysis of the complete FEM is run in

NASTRAN and the results are read into MATLAB by using a custom Perl function to

parse the NASTRAN output. The rigid body modes are replaced with geometrically

clean modes and the translational rigid body modes are removed. Modal damping is

added to the model and the modal quantities are converted to a state-space DOCS

structure called PLANT. The PLANT structure is sent to the function docsacs.m

to produce an appropriate ACS model. In addition, the tuning parameters are used

to generate the isolator model structures, ISO. The RWA disturbance model, DIST,
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Figure 6-10: Implementation flow for generating integrated TPF model.
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does not change with the design parameters, so it is generated a priori and then

loaded into the workspace at each iteration. The model components are integrated

with DOCS to form the fully-integrated system model and evaluate the performance.

It is important to keep in mind that the process outlined in Figure 6-10 is exe-

cuted once for each iteration, or random guess, in the SA algorithm. Therefore, the

NASTRAN model must be built and a finite element analysis run thousands of times.

This operation is computationally expensive and becomes more so as the model fi-

delity and number of degrees of freedom are increased. In addition, as the design

space grows, a greater number of SA iterations are required. It is clear that a brute

force method such as the one outlined here may not be appropriate for a model of

this fidelity and further investigation into the optimization implementation is war-

ranted. There are known methods for reducing the computational effort required for

these types of optimizations [28, 39] that are appropriate for this application, such as

reduced-order modeling [37] and response surface approximation [22, 11].

6.4 Results

The TPF SCI structure is designed through a SA stochastic search using the PT, RPT

and RPTT cost functions (Equations 2.1, 3.5, and 5.5, respectively). In the RPT and

RPTT optimizations the uncertainty space is searched with the vertex method. Since

there are three uncertainty parameters, there are eight vertices at which performance

must be evaluated during each iteration. The RPTT cost is considered with a = 0

to obtain the most tunable design. In the PT and RPT optimizations both the

tailoring, X and tuning, y parameters are used as tailoring parameters to provide for

a fair comparison with the RPTT design. In this way all three optimizations have

the same design variables available to them and the only difference lies in the manner

in which the tuning parameters are incorporated.

The tailoring parameters for the nominal and optimized designs are listed in Ta-

ble 6.13 along with the mass of the structures. The three designs are distinct from

each other and very different from the nominal design. In each case the truss bays
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are tailored such that the mass is concentrated towards the center of the array by

setting the batten height and width at the ends smaller than at the center. However,

the severity of the tailoring is different for each design. The PT design is closet to

the nominal design in that the widths are nearly equal along the truss and the bay

heights only differ by 0.7 m from the end to the center. The RPT and RPTT designs

are tailored more drastically in both bay width and height. The RPTT design has the

largest difference between the end and center bay heights (2 m). The mount radius

and isolator frequency are both decreased from nominal in the PT and RPT designs.

These values are kept at nominal in the RPTT design since tuning is only considered

on hardware in this optimization. The finite element models of the three designs are

shown in Figures 6-11 through 6-13.

Table 6.13: Design parameters for nominal and optimal TPF SCI designs.

Tailoring, 5 Total Mass
h1 [m] h2 [M] w1 [M] w2 [m] rpm [m] .fj, [Hz] [kg]

Nominal 1.0 1.0 2.0 2.0 0.05 8.0 2679.0
PT 1.824 2.522 1.760 1.780 0.03 6.56 2506.6
RPT 0.754 2.52 1.34 2.25 0.02 6.77 2264.2
RPTT 0.50 2.56 1.48 2.34 0.05 8.0 2801.2

The RMS OPDs between collectors 1 and 4 of each of the three designs are eval-

uated for the cases of nominal and worst-case uncertainty. The results are listed in

Table 6.14 and shown graphically in Figure 6-14. The nominal performance is in-

dicated by circles and the worst-case performance with solid error bars. As in the

development model, the PT design exhibits the best nominal performance (2.90 nm),

but is sensitive to uncertainty as evidenced by the large performance range between

the error bars. The nominal performance of the RPT design is worse than that of the

PT design (3.79 nm), but it suffers the least performance degradation at the worst-

case uncertainty vertex. The nominal and worst-case performances of the RPTT are

worse than those of either the PT or RPT designs. This result is due, in part, to the

fact that the tuning parameters are not part of the nominal RPTT design since they

are considered explicitly during hardware tuning.
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Figure 6-12: SCI TPF RPT design (a) top view (XY) (b) front view (XZ) (c) isometric
view.
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208

O Nominal

V WC tuned

P --

..................



Table 6.14: Performance predictions for all TPF SCI designs.

RMS OPD14 [nm]
0 o~WC cit

PT 2.90 12.70 9.01
RPT 3.79 8.38 4.95
RPTT 5.99 13.15 4.28

Each design is tuned with the parameters in Table 6.11 at the worst-case un-

certainty vertices using Equation 4.2 and SA. This step serves as a simulation of

hardware tuning, and the resulting parameter values are listed in Table 6.15. The

tuned RMS performances are listed in Table 6.15 and shown graphically in Figure 6-14

with triangles and dotted error bars. As expected, the best tuned performance (4.28

nm) is achieved by the RPTT design. The PT design does not appear to be very

tunable as the worst-case performance only improves from 12.8 nm to 9 nm. The

RPT design exhibits more favorable tuning properties and can be adjusted to 4.95

nm from the worst-case performance of 8.4 nm. While the overall trend observed

is similar to that in the development model (Figure 5-1), it is interesting to note

that in the TPF SCI model the RPT design is more tunable than the PT design. In

this problem, robustness to uncertainty and tunability are not coupled as they are in

the development problem. As a result, the RPTT system is similar in design to the

RPT system. However, it still true that explicitly tailoring for tuning improves the

performance of the tuned system.

Table 6.15: Tuning parameters for tuned worst-case TPF SCI realizations.

rPM fiso
PT 0.07 7.53
RPT 0.213 6.96
RPTT 0.246 6.41

Although the results in Figure 6-14 follow the general trends expected for the

PT, RPT and RPTT systems, the design improvement effected by RPTT is not as

dramatic as in the development model. One explanation is that the optimization is

limited by the lack of gradient information and computational inefficiencies. Recall
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from Chapter 2 that SA is only a stochastic search technique, and therefore optimality,

local or global, is not guaranteed or even expected. It is simply hoped that randomly

searching the design space finds a design that is near-optimal or at least very good. In

addition, the performance of the SA algorithm is sensitive to the cooling schedule, or

the number of designs that are generated. The design is more likely to be near optimal

as the number of iterations increases. However, the complexity of the TPF SCI model

leads to large computational expense since a NASTRAN model is generated and

analyzed with each performance evaluation. This analysis becomes very costly in the

RPT and RPTT optimizations since eight models (one at each uncertainty vertex)

must be generated at each design iteration. In fact, evaluating the RPT and RPTT

costs for 1000 designs requires over fifteen hours of computation time on a Pentium

IV machine with a 3.2 GHz processor. Due to the heavy computational burden the

number of SA iterations are limited and the entire design space is not well searched.

This problem is especially limiting in the case of the RPTT optimization because the

number of design variables is large. A unique set of tuning parameters is allowed for

each uncertainty vertex resulting in 30 design variables (4 tailoring parameters plus 2

tuning parameters at each of the eight uncertainty vertices). Therefore, it is possible

that RPTT designs better than the one presented here exist.

6.5 Summary

A high-fidelity integrated model of a SCI architecture for TPF is presented in detail.

The model consists of a structural model built in NASTRAN, an ACS controller and

passive vibration isolation. The model components are integrated in MATLAB with

the DOCS tool set and the RMS OPD due to realistic reaction wheel disturbances

is evaluated. Appropriate tailoring, tuning and uncertainty parameters are identi-

fied, and the model is used to perform PT, RPT and RPTT design optimizations.

The performance of the resulting designs is evaluated in the nominal and worst-case

uncertainty configurations. The worst-case realizations are then tuned through a dy-

namic tuning optimization, and the tuned performance is evaluated. It is shown that
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performance trends similar to those observed in the development model exist. Al-

though the PT design exhibits the best performance nominally and the RPT design

performs best at the worst-case uncertainty realization, it is the RPTT design that

obtains the best tuned performance thereby increasing the chance of mission success.

However, the RPTT design optimization is hampered by lack of analytical gradients

and a large computational burden. It is likely that improvements in the optimization

implementation would yield a better RPTT design further extending the capabilities

of the TPF SCI system in the presence of model uncertainty.
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Chapter 7

Conclusions and Recommendations

7.1 Thesis Summary

Space-based precision optical structures, such as the telescopes in NASA's Origins

missions, require high levels of performance to meet science goals. The optics on

interferometers, such as the Space Interferometry Mission and the Terrestrial Planet

Finder, must meet positional tolerances on the order of nanometers. To further

complicate matters, it is not practical to fully test these systems on the ground due

to large differences between the testing and operational environments. As a result,

models and simulations are expected to play a significant role in the design and testing

of these structures. Relying on models to predict future performance is risky as there

are many sources of uncertainty that can lead to errors in the model predictions.

The design of such high-performance, high-uncertainty systems is challenging because

early in the design cycle, when there is maximum design flexibility, the uncertainty

is very high. It is often difficult to find a design that can compensate for all of the

uncertainty in the model and still meet performance requirements. The uncertainty

space is greatly reduced once the design is finalized and hardware is built. However,

it may become apparent during testing that the hardware does not meet performance

requirements, and only limited adjustments are possible without incurring high cost

and/or launch delays. This thesis provides a solution to the problem of system design

for high performance and high uncertainty systems that attempts to balance this
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trade between design flexibility and prediction accuracy.

First the idea of structural optimization is introduced through a design method

termed Performance Tailoring (PT) (Chapter 2). The objective of a PT optimization

is to find a set of design parameters that minimize the root mean square (RMS) of

the performance metric. A simple model representative of a structurally-connected

interferometer (SCI) is introduced as the development model and is described in de-

tail. Methods for evaluating the RMS performance of the structure when subject

to a white noise disturbance environment are discussed. Two types of optimization

algorithms, a constrained gradient-based search known as sequential quadratic pro-

gramming (SQP), and a popular heuristic search called simulated annealing (SA) are

reviewed. These algorithms are applied to the problem of performance tailoring the

development model to minimize the variance of the optical path length difference

between the two interferometer arms. The algorithms are compared for performance

and efficiency, and the physical mechanisms at work in the tailored design are ex-

plored. It is shown that the nominal output RMS can be reduced to one quarter of

its value by tailoring the truss diameters such that the truss is very soft and most

of the mass is in the collector optics at the ends of the arrays, and the optics are

effectively isolated from the disturbance at the array center.

In Chapter 3 the concept of model uncertainty is introduced, and a brief review

of model forms and analysis techniques is provided. Uncertainty is added to the

development model through the Young's Modulus of the truss segments. An uncer-

tainty analysis is conducted and it is shown that the RMS performance of the PT

design degrades dramatically when asymmetry is introduced to the model through

the uncertainty parameters. The PT design only performs well at the nominal un-

certainty values and covers a large range of performance predictions when the effects

of model uncertainty are considered. To address the problem Robust Performance

Tailoring (RPT), a subset of the robust design field, is applied. RPT is an design

optimization in which the effects of the uncertainty are considered in the objective

function through a robustness metric. Three well-developed robust cost functions

are considered: anti-optimization, multiple model and a technique that incorporates
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a statistical robustness measure such as standard deviation into the objective. The

RPT optimizations are applied to the SCI development model, and it is found that

anti-optimization provides the most robust design when the uncertainty is modeled

as a bounded uniform distribution.

The resulting RPT design is compared to the PT design and it is found that the

worst-case performance of the RPT design is significantly lower than that of the PT

design. However, the increase in robustness comes at the cost of nominal performance,

so that the RPT has a higher RMS performance at the nominal uncertainty values

than the PT design. A comparison of the worst-case performance values of the two

designs over a range of uncertainty bounds shows that RPT designs can tolerate

greater variation in the uncertainty parameters at a specific performance requirement

than the PT design. However, since nominal performance is sacrificed, RPT designs

cannot meet aggressive performance requirements given high levels of uncertainty.

The RPT designs fail when uncertainty is high because it is not possible to find val-

ues of the tailoring parameters that meet requirements under all possible uncertainty

realizations. Therefore, in Chapter 4, the concept of dynamic tuning is introduced.

It is defined as the adjustment of physical tuning parameters on hardware that brings

its performance to within required values. A tuning optimization is formulated and

applied to the PT and RPT designs in the worst-case uncertainty realizations. It

is shown that in both cases, dynamic tuning succeeds in reducing the performance

variance of the worst-case design, however, the effect is more dramatic on the PT

design. The worst-case uncertainty realizations of both designs, over a range of un-

certainty bounds, are tuned, and it is shown that dynamic tuning extends the range

of performance requirements that each design can meet at a given uncertainty level.

The practical issues associated with dynamic tuning are also considered. In reality

only limited performance data is available from the hardware and the actual values

of the uncertainty parameters are not known. Therefore some type of model up-

dating technique or real-time hardware tuning is necessary to improve the hardware

performance. A set of possible hardware tuning methods, ranging from model-only

methods that rely on the uncertain model to find successful tuning configurations to
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real-time hardware optimizations that do not utilize the model at all, are explored.

Hardware simulations are generated with the SCI development model, and it is found

that although the model-only methods are attractive in that few costly hardware tests

are required, they are not consistently successful, and sometimes the resulting tuning

configurations actually degrade the hardware performance. Hardware optimization

methods, on the other hand, find a working tuning configuration (given that one ex-

ists), but generally require a large number of costly hardware tests. As an alternative,

a hybrid method called isoperformance tuning is developed that utilizes the limited

hardware performance data that is available to reduce the uncertainty space so that a

robust tuning optimization performed on the model results in a tuning configuration

that successfully improves the hardware performance. This method is superior to the

model-only and hardware optimization methods in that is consistently successful for

a large number of hardware simulations and requires only a small number of hardware

tests.

Finally the concepts of robust performance tailoring and dynamic tuning are com-

bined to create a design methodology called Robust Performance Tailoring for Tuning

(RPTT). This design optimization anticipates the fact that hardware tuning may be

employed and tailors the design to balance robustness to uncertainty and tuning au-

thority thereby utilizing a two-step uncertainty mitigation scheme . The additional

knowledge of the uncertainty provided by the hardware is anticipated by the tailor-

ing optimization and the design variables are augmented to include different tuning

parameters for each uncertainty realization in order to minimize the worst-case tuned

performance over the uncertainty space. The result is a design that produces a robust

system, instead of simply a robust design. Three different mathematical formulations

of the RPTT optimization are presented and compared through application to the

SCI development problem with both SA and SQP algorithms. The nominal, worst-

case and tuned performances of the resulting RPTT design are compared to those

of the PT and RPT designs over a range of uncertainty bounds. The nominal and

worst-case performances of the RPTT design lie in between those of the PT and RPT

designs. The nominal performance RMS is a little higher than that of the PT design,
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and the worst-case performance is above that of the RPT design. The tuned perfor-

mance of the RPTT designs, however, is better than that of either the PT or RPT

designs for all uncertainty levels. The RPTT design further extends the performance

of the system at a given uncertainty level, and is applicable to all design regimes de-

fined by combinations of PT, RPT and tuning. Random hardware simulations of the

three designs are run to evaluate the design performance over the entire uncertainty

space. The RPTT design is the clear winner in that it is the only design for which

all hardware simulations either meet the requirements nominally or after hardware

tuning is employed.

7.2 Contributions

This thesis develops a novel approach to the design of high-performance, high-uncertainty

systems in which dynamic tuning is anticipated and formalized in a design optimiza-

tion. This design methodology, RPTT, is especially applicable to high-precision opti-

cal space systems, such as the Space Interferometry Mission (SIM), the James Webb

Space Telescope (JWST) and the Terrestrial Planet Finder (TPF). Specific thesis

contributions are as follows:

" Development of a design methodology, RPTT, that formalizes a complimen-

tary relationship between dynamic tailoring and tuning. RPTT extends robust

design for application to systems that require high levels of performance and

exhibit high uncertainty.

* Development of a model updating technique for application to dynamic tai-

loring that utilizes limited hardware performance data and isoperformance to

reduce the parametric uncertainty space so that a robust tuning optimization

performed on the model yields tuning parameter values that successfully tune

the hardware.

" Study of gradient-based and heuristic optimization techniques for application

to tailoring and tuning given a dynamic performance model. Eigenvector and
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eigenvalue derivatives are used to obtain RMS gradients with respect to design

variables for use in gradient-based optimizations.

" Application of the robust design framework to a simple model of a structurally

connected interferometer. Realistic control (tailing and tuning) and noise (un-

certainty) factors are identified.

* Application of dynamic tailoring and tuning optimizations to a simple model of

a structurally connected interferometer. Three tailoring methods are compared

in terms of ability to meet performance requirements given model uncertainty.

In addition, three existing robust cost functions are applied and compared in

terms of the robustness of the resulting design.

" Application of dynamic tailoring and tuning optimizations to a high-fidelity

model of a structurally-connected TPF interferometer. NASTRAN and MAT-

LAB are integrated to perform a heuristic multi-disciplinary design optimiza-

tion.

7.3 Future Work

The recommendations for future work focus on four main areas: uncertainty model-

ing, RPTT methodology, isoperformance tuning and application. An itemized list of

specific recommendations are provided below:

e Uncertainty Modeling

- Consider sources of uncertainty other than parametric errors. Explore the

ability of the RPTT framework to compensate for discretization errors and

unmodelled effects.

Consider additional forms of uncertainty models. In particular, examine

the effect of RPTT when probabilistic uncertainty models are used in place

of bounded.
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- Consider uncertainty analysis tools other than the vertex method and

Monte Carlo propagation for use in robust tailoring optimizations.

- Evaluate the effects of measurement noise on the dynamic tuning method-

ologies through simulations.

* Robust Performance Tailoring for Tuning Methodology

- Repeat the analysis considering coupling among the tailoring, tuning and

uncertainty parameters. Assess the effects of uncertainty in the tailoring

and tuning parameters on the performance of the RPTT designs. Modify

the methodology as necessary to accommodate this coupling.

The design space and effectiveness of the RPTT methodology is highly

dependant on the tailoring and tuning parameters chosen in a given prob-

lem. Formalize the determination of appropriate tailoring and tuning pa-

rameters. Develop metrics to measure the tailoring and tuning authority

afforded by a design parameter as well as the practical cost of adjusting

it. Study these trades and develop a formal method for choosing the most

appropriate design parameters for a given system.

- Apply the framework to additional structures to draw general conclusions

regarding tailoring and tuning. For example, further explore the trade

inherent in the SCI development model between tunability and robustness

by investigating a range of systems to determine under what conditions

such a trade exists.

- Design and conduct experiments to validate the performance of the RPTT

methodology in the design of a real system.

* Isoperformance Tuning

- Extend isoperformance tuning for application to more than two uncer-

tainty parameters using existing n-dimensional isoperformance algorithms.

Adjust the tuning method as necessary to account for the additional un-

certainty dimensions.
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- Design and conduct experiments to test isoperformance tuning using real

hardware data and an uncertainty model.

Application

- Explore alternate optimization algorithms for application to problems of

this type in order to decrease computational effort required for tailoring

optimizations. Implement reduced-order modeling or response-surface ap-

proximations.

- Explore the possibility of conducting gradient-based optimizations on high-

fidelity integrated models. Consider the complex-step derivative approxi-

mation [80] to avoid step-size limitations associated with a finite difference

approach. Investigate use of FEM packages such as NASTRAN to obtain

the necessary gradients.
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Appendix A

Gradient-Based Optimization

The goal of a general unconstrained nonlinear programming optimization problem is

to minimize a convex objective function, f, over a set of design variables, x defined

in the set of real numbers, R :

min f (x) (A.1)

One way to find the optimal set of parameters, x*, is to begin at some initial iterate,

x0 and search the design space by finding successive iterates, Xk that reduce the

objective funcion. A general form for the iterate is:

Xk+1 - Xk + ckdk (A.2)

where k denotes the iteration number, Ok is the stepsize and dk is a serach direction.

It is the choice of the search direction that distinguishes one optimization algorithm

from another. In gradient-based optimizations d is chosen based on the gradient of

the cost function at each iteration. There is a large body of work on this subject

and many algorithms from which to choose. The choice of algorithm depends on the

features of the given problem formulation. Bertsekas provides a detailed overview of

many popular gradient methods in [16]. In this appendix, three popular gradient-

based algorithms are briefly reviewed.
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A.1 Steepest Descent

The simplest gradient-based optimization algorithm is known as steepest descent. The

search direction for the kth iterate is simply the value of the cost function gradient at

dk -= -Vf (Xk) (A.3)

where Vf is the derivative of f with respect to the design vector x:

Vf _ _ Df(x) Of(x) af W (A.4)
V - $ x{ aX2 ' (' axn )

Although Equation A.3 is the simplest form of the steepest descent direction, many

modifications, including scaled directions, exist.

Although it is computationally prefereable to compute the cost function gradient

analytically, a closed-form solution is not always be availble. In these cases, the gra-

dient can be approximated with one of the following finite difference approximations:

Of (X) _ f (x + Axes) - f (x) (A. 5)

Of (x) _ f (x + Axe2 ) - f (x - Axej) (A.6)
Oxj 2Ax

where i denotes an element of x, ej is a unit vector with a 1 in the ith location, and

Ax is a small change in the design parameter. Equations A.5 and A.6 are known

as the forward and central finite difference approximations, respectively. The central

difference equation is the more accurate of the two, but requires an additional function

evaluation at each step. These approximations are both sensitive to the size of Ax.

Large parameter changes may be outside of the linear approximation to the function

while very small changes can induce numerical instability.

The main advantage of steepest descent is its ease of implementation. The algo-

rithm gurantees that f decreases at each iteration, but often exhibits slow convergence,

especially in the unscaled formulation of Equation A.3. In particular, the algorithm

will take a long time to converge if the solution space is relatively flat at the optimum,
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such that the gradient direction is almost orthogonal to the direction leading to the

minimum.

A.1.1 Stepsize Selection

There many possible choices for the stepsize, ak. Perhaps one of the simplest is the

constant stepsize, in which a fixed stepsize, s > 0, is selected for all iterates:

ak = S, k = 0, 1, ... (A.7)

Although easy to implement, a constant stepsize can cause the algorithm to diverge

if s is too large or result in very slow convergence if s is too small.

Another relatively simple rule is the diminishing stepsize in which ak converges

to zero with each successive iteration:

ak -+ 0 (A.8)

This rule does not guarantee descent and it is possible that the stepsize may become

so small that progress is effectively halted before an optimum is reached. To prevent

this from happening the following condition is imposed:

Z: ak -00

a 0ak-k

Equation A.10 is a possible choice for a decreasing stepsize rule.

this rule is also known to be slow.

A more complicated but better-behaved method is the limited

f (Xk + akdk) = min f (Xk + adk)
QeE[0,s]

Convergence with

minimization rule:

(A.11)

In this method, ak is chosen such that the cost function is minimized along the

direction dk. A fixed positive scalar, s, may be chosen to limit the possible size of
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'ak. A one-dimensional line search is generally used to find the minimizing stepsize.

In general, this value is not found exactly, instead a termination criteria is used to

determine when the line search algorithm has gotten close enough. Bertsekas suggests

implementations for the line search in [16].

A.2 Newton's Method

In Newton's method a quadratic approximation to f around the current iterate Xk is

minimized. The descent direction, therefore, includes second-order information:

dk = - (V2f (Xk)- 1 Vf (Xk) (A.12)

The quantity, V 2f is the second-order derivate of the objective with respect to the

design variables and is known as the Hessian:

a2 f(x) 92f(X) 0 2f(x)~
5x2 Ox1aX2 - -

9
X I Xn

2 a2f x) a2f(x) a2_X

2f aX2X1 &XX2 ... X,

V2 _ a2 2 x xx (A. 13)

a2 f X 2f (X) a2f X
. x 21~ aXnX2 nx

As with the gradients, the Hessian may be calculated ananlytically or approximated

through finite-difference or other methods. If the central difference equation (Equa-

tion 4.4) is used to calculate gradients, then the diagonal elements of the Hessian can

be obtained at very little additional expesne:

a 2 f (x) f (x + Axel) - f (x - Axe2 ) - 2f (x)
09X 2 AX2(A. 14)

8xy Ax2

Newton's method is very popular due to its fast convergence properties. In fact,

the method finds the global minimum of a positive definite quadratic function in

only one iteration. For this reason, many modified algorithms are based on Newton's

method. One drawback of the tecqhnique is that the Hessian is required to determine
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the descent direction. In some cases, calculation of the Hessian may be impossible

or require prohibitively expensive computation. In addition, if the Hessian matrix is

ill-conditioned then the optimization may have trouble converging.

A.3 Conjugate Gradient

Conjugate direction methods were originally developed for solving quadratic problems

and were motivated by a desire to speed up the convergence of steepest descent while

avoiding the exta storage and computation necessary for Newton's method. The

algorithm can also be applied to the general non-quadratic problem (Equation A.1)

and proceeds with successive iterations as in Equation A.2. The stepsize, ak, must

be obtained through line minimization ((A.11)), and the search directions for this

method are functions of the gradient at the current iteration as well as the previous

search direction:

dk = -Vf (§k)) + 3kdk-1 (A.15)

There are multiple forms of the quantity /k. One form, known as the Fletcher-Reeves

conjugate direction [45], requires a quadratic objective function f(x) and a perfect

line search for the stepsize. Another common form is the Polak-Ribiere conjugate di-

rection which relaxes the quadratic requirement on f(x), but only prodcues conjugate

directions if the line search is accurate. A more general direction, requiring neither a

quadratic objective nor a perfect line search, is proposed by Perry[101]:

(Vf (Xk) - Vf (Xk_1) - akldk-I ) Vf (Xk) (A.16)
(Vf (Xk) - Vf (Xk 1 ))T dk_1

The conjugate gradient method is essentially a compromise between the simplicity

of steepest descent and fast convergence of Newton's method. When there are non-

quadratic terms in the cost function there is the danger for loss of conjugancy as

the algorithm progresses. Therefore it is common practice to periodically restart the

algorithm with a steepest descent direction.
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