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Abstract

Integrated optical circuits have the potential to lower manufacturing and operating
costs and enhance the functionality of optical systems in a manner similar to what
has been achieved by integrating electronic circuits. One of the basic optical elements
required to enable integrated optical circuits is an integrated optical switch, analo-
gous to transistor switches used in integrated electronic circuits. An ideal switch for
integrated optical circuits would provide wavelength-selective switching. Wavelength-
selective behavior is an important characteristic for devices intended for networking
applications as wavelength division multiplexing (WDM) of optical signals has become
the accepted standard.

A major contribution of this thesis is the design, fabrication, and experimental
demonstration of a wavelength-selective, integrated optical switch. This switch oper-
ates by combining a microring resonator filter with a microelectromechanical system
(MEMS) device that allows the normally static ring resonator filter to be switched on
and off. This represents the first demonstration of a wavelength-selective integrated
optical MEMS switch.

Additional contributions of this work include a new study of dielectric charging,
analysis of the use of titanium nitride as structural material for MEMS, two new
MEMS actuation techniques that lead to higher speed and/or lower actuation volt-
age, and a feasibility analysis for wavelength tuning using a generalized version of the
switch design. A model for the evolution of dielectric charging during the actuation
of MEMS devices was developed to address a deviation of the experimentally fabri-
cated devices from the theoretical predictions according to older models. The new
model predicts the experimental voltage versus displacement behavior of the wave-
length selective switch accurately, and offers new insights into the physics of dielectric
charging. The use of titanium nitride as a MEMS material was conceived as a solution
to residual stress problems that are common in cantilever-type of actuators in general,
including the wavelength-selective switch. Specific details on MEMS implementation
using titanium nitride are discussed in the thesis. To address CMOS compatibility
and speed challenges, two new complementary MEMS switch actuation techniques
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were developed. The new methods require less voltage and energy for actuation while
at the same time reducing the switching time of the device to levels unachievable
with current MEMS actuation techniques. Preliminary theoretical and experimental
results are presented and discussed. Finally, the thesis covers the feasibility analysis
of a version of the switch design where the motion is analog and, hence, can be used
for tuning of resonant integrated optical structures. The analysis shows that the re-
quired positional accuracy is achievable with on-chip capacitive position sensing and
feedback control, and points to a promising new direction for mechanically tunable
integrated photonics.

While these contributions are all outgrowths of work directed towards realizing
an integrated optical circuit, they are also significant for applications such as radio-
frequency (RF) MEMS switching and free-space optical MEMS devices (i.e. micro-
mirror arrays for projection displays).

Thesis Supervisor: George Barbastathis
Title: Assistant Professor
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Chapter 1

Introduction

Optical integrated circuits (OICs) promise to enable faster and cheaper optical com-

munications networks, optical computer interconnects for extremely fast data transfer

between chips, and even all-optical computing. The vision for these OICs is a chip

that brings together lasers, modulators, amplifiers, filters, and optical switches all in

an integrated package that is both highly functional and inexpensive. The expecta-

tion is that this type of optical integrated circuit will be able to provide an impact

similar to what was experienced when electronics moved from being a collection of

discrete components to integrated electronics. A conceptual idea of a possible IOC is

shown in Figure 1-1 [131].

For the purposes of this work, optical integrated circuits are defined as optical sys-

tems where all of the devices are integrated together on one substrate in a compatible

material system where the light is completely guided (i.e. no free-space transmission

of light). This definition reflects the integration concepts that have proven to be

successful for integrated electronic circuits.

Research into OICs has been ongoing since the 1970's [113] and although signifi-

cant progress has been made towards a functional OIC, the vision and value of OICs

have yet to be realized. Probably the most significant reason OICs have not yet been

widely deployed is that the components needed for an OIC have not yet all been de-

veloped in a single compatible material system. Another reason is that in some cases

the best performing optical components are not integrated devices. A good example
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Figure 1-1: Soref's vision of an optical integrated circuit (OIC) in 1993 [131]. Note
the absence of wavelength selective components. Wavelength division multiplexing
(WDM) was just beginning to be developed in 1993.

of such a device is the lithium niobate optical modulators that are currently used

in optical communications networks [110]. These modulators are currently the best

performing products at modulating light for high-speed communications but they are

not integrated devices in the sense that they could be integrated with other optical

devices in the same material system on the same substrate.

One important consideration in the development of GICs, as with any new tech-

nology is whether the problem the technology is meant to solve can be adequately

solved using current technology. In telecommunications, where OICs would have a

tremendous impact, electronic integrated circuits have so far been able to keep up

with switching and routing needs of the optical networks by the use of optical to

electrical to optical (OEO) conversion of the signals being transmitted. In this ar-

rangement, optical signals coming from optical fiber into switching hubs are converted

into electrical signals by photodetectors. The signals are routed in the electrical do-

main and then are resent into the appropriate output fiber using a laser and an optical

modulator.

By using OEO switching and routing, the needs of optical networking has been

adequately addressed. However, with the desire to put more and more data across

optical networks through the use of wavelength division multiplexing (WDM), where

many different wavelengths (channels) are sent down a single fiber, as well as other
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methods; the ability to switch and route signal using OEO conversion is becoming

difficult to do at both the cost and speed required.

If an OIC could be developed that had the capability to route individual wave-

lengths of light from a single input waveguide into a variety of output waveguides, the

need for OEO would be eliminated and the cost savings on equipment ranging from

photodetectors, electronics, lasers, and modulators that would no longer be needed

at all of the switching nodes would be enormous.

If the OIC was manufactured in an inexpensive material system for microfabrica-

tion, such as silicon CMOS, the OIC would enable inexpensive high speed networking

that could potentially connect every house and business in a way that is not possible

with current technology.

This thesis is aimed towards the development of an OIC that has the capability

to route individual wavelengths of light to various output waveguides. Specifically,

this work focuses on the development of tunable and switchable integrated optical

elements for OICs in a CMOS compatible material system. This work combined

with other recent developments in the use of silicon for optical applications [113]

have brought the vision of OICs much closer to reality. As the cost and speed of

electronic switches, routers, and interconnects are becoming restrictive; these techno-

logical developments make OICs very attractive. The key contribution of this thesis

is to advance the practicality of using OICs in communications networks and inter-

connects by demonstrating switchable and adaptive capabilities. These will be crucial

for utilizing OICs in these contexts.

One particular device that is a fundamental component of an OIC is an integrated

optical switch. This thesis will describe a unique integrated optical switch that is

based on enabling or disabling an optical ring resonator filter. The switching is

accomplished by a microelectromechanical system (MEMS) moving a lossy material

into and out of the evanescent field of the optical ring resonator [144]. The results of

the design, fabrication, and testing of this device are described in Chapters 2, 3, and

4. This switch has the very unique capability of wavelength selective switching.

A second device that will also be explored in this thesis is a tunable ring resonator
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filter where a MEMS device moves a dielectric material within the evanescent field

of an optical ring resonator. The design of this device is developed in Chapter 8

with particular emphasis on controlling the dielectric material position with sufficient

accuracy to make the tuning function a viable element for real life OIC networks.

1.1 Optical switching

An integrated optical switch is a fundamental building block of almost any OIC.

A number of different approaches have been taken in developing an optical switch.

These approaches include MEMS switching, electro-optic switching, liquid crystal

switching, and thermo-optic switching. To date, nearly all of the switches that have

been developed lack intrinsic wavelength selective switching capabilities. There have

been some devices that nominally demonstrate wavelength selective switching [30,56,

140], however, these devices are based on changing the resonant frequency of a ring

resonator filter. This provides wavelength switching in a sense but the "switching"

operation would affect adjacent optical channels making them unsuitable for WDM

applications.

1.1.1 Free-space MEMS switching

The bulk of the work done in the space of MEMS-based optical switching has been for

free-space optical switching. This type of optical switch wouldn't be useful in OICs;

however, it is worthwhile to review the work done in this area to give context to the

work presented in this thesis.

There have been two main approaches to free-space optical MEMS switching.

The best approach in terms of optical losses is in using reflective MEMS devices. An

alternative approach uses diffractive elements.

A good example of a reflective MEMS device used for switching is Lucent's micro-

mirror array used in their WavestarmLambdarouter product. The mirrors are tiltable

on two axes allowing each mirror to be used to reflect light from an incoming fiber to

any of a two-dimensional array of output fibers. The actuation voltage required for
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Figure 1-2: An image of one micro-mirror from the micro-mirror array developed by
Lucent. This mirror is tiltable on two axes allowing a beam to be pointed to any of
a 2D array of output fibers. (Image courtesy of Lucent Technologies Inc.)

the device is 200 volts, with a response time of 5 to 50 ms [3,69]. Lucent's mirrors

were operated with an open-loop control system, yet they still exhibited remarkable

stability over time. Figure 1-2 shows an image of one micro-mirror from a micro-

mirror array developed by Lucent.

In addition to the Lucent micro-mirror device, there have been a number of other

tiltable micro-mirror based devices fabricated for optical switching purposes [8,35,84,

97].

There have also been several MEMS optical gratings that have been demonstrated

for free space optical applications [11, 126,127,130,148]. In theory, these devices have

the capability to switch light but since they are based on diffraction, they intrinsi-

cally have high insertion losses - making them inappropriate for switching in optical

networking applications.

The most "switch-like" of the MEMS optical gratings is the device by Solgaard

et al. developed initially at Stanford University and then at Silicon Light Machines,

where the elements comprising the grating switch from one position to another [130].

The device can produce either a flat, mirror-like surface or a grating with a period that
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Figure 1-3: A schematic representation of how a diffractive grating MEMS device
operates. (A) shows the device cross-section with all of the grating beams as the
same level which essentially acts as a mirror. (B) shows the device with every other
grating beam displaced downward. In this position, the grating will diffract the light
into a variety of optical orders.

is twice the width of the grating beams. Because the diffraction angle of the grating

is wavelength dependent, the grating can produce wavelength selective switching.

The grating is designed to produce a displacement of one quarter of the operating

wavelength for optimal switching contrast. Figure 1-3 shows a schematic illustration

of this device in its two switch positions.

Other diffractive MEMS devices reported on provide a wide range of positions

for the elements comprising the gratings and thus operate in an analog rather than

binary fashion [11, 127,148]. These devices could also be used for wavelength selective

switching.

For telecommunications wavelengths of light, these devices switch at speeds rang-

ing from a few microseconds up to hundreds of microseconds and require anywhere

from a few volts up to several tens of volts for actuation. Since these devices are

34



Input

Fluid

Trench

Heater Waveguides

Bubble

Through Drop

Figure 1-4: Schematic representation of the micro-bubble optical switch. When the
heater is on and the bubble is present in the trench, the light is routed to the drop
waveguide (as shown). When the heater is off and the bubble is not present, the light
is routed to the through waveguide.

all based on either electrostatic or piezoelectric actuation, the devices have very low

currents and thus require very little operating energy - on the order of micro-Watts.

1.1.2 Waveguide based optical MEMS switching

Agilent (HP) developed a MEMS optical switch using micro-bubbles to create a re-

flective surface at the liquid-gas interface. This device can be thought of as a hybrid

between a free-space optical switch and an integrated optical switch. Waveguides

lead light to a small gap where the bubble is formed or removed to create the optical

switching effect. Switching speeds from 100 ps to 7 ms have been reported for this

approach [37,38,51,142,143]. Figure 1-4 illustrates the operation of the micro-bubble

switch.

Another hybrid device that uses a MEMS mirror is described in [17]. This device

also guides light with waveguides/fibers with only a small free-space path where the

mirror is moved in and out of. This device demonstrated switching speeds of 400

to 600 ps with an actuation voltage of 20 volts and an insertion loss of 0.7dB (not
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Figure 1-5: Schematic representation of the mirror based integrated optical switch.
The position of the mirror controls whether the input light is directed toward the
drop waveguide or the through waveguide.

including the coupling losses). A similar device that operates at 30 volts with a

switching speed of 100 ps is described in [80]. The insertion loss for this switch is

quite high at 10dB, due to excessive roughness on the mirror surface. Figure 1-5

illustrates the switching concept used for these devices.

Another hybrid device where a waveguide is pointed to one of two different output

waveguides is described in [104]. This device has insertion losses of 1.5dB when an

index matching gel is used in the gap between the waveguides. The switching time is

1 ms and the actuation voltage is 70 volts. A theoretical design of a similar hybrid

device where a waveguide is either pointed to output waveguides or is coupled to

output waveguides is described in [108].

The device described in [23] maintains the light in the waveguides throughout

the entire switch structure. This device works by controlling the evanescent coupling

between the waveguides to switch the light. Experimental results were not reported

for this switch but a similar attenuator device described in the same reference reported

a switching time of ims with an actuation voltage of between 40 and 85 volts.

Another switch where the light is maintained in waveguides throughout the length

of the device is described in [29]. Switching is accomplished by an electrostatically

actuated structure that interacts with the evanescent field of the integrated waveguide.
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Figure 1-6: Illustration of a electro-optic "Y" switch. To direct the input light to
one of output waveguides, power is applied to the opposite electro-optic region. The
index in that electro-optic region is reduced and thus makes that leg of the Y splitter
appear like cladding material rather than a waveguide.
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Figure 1-7: Illustration of a electro-optic coupling switch. To direct the input light
to one of the two output waveguides, the coupling between the input and the output
waveguides is controlled by applying power to the electro-optic regions.

The MEMS structure is not fabricated on the same substrate as the waveguides. It is

fabricated on a different wafer, die-sawed into individual elements and then bonded

to the waveguide chips. The actuation voltage was comprised of a DC bias voltage

coupled with an additional control voltage. The bias voltage ranged from 7 volts up

to 200 volts while the control voltage signal was only a few volts. Reported switching

times were about 50 Ms.

1.1.3 Electro-optic optical switching

Electro-optic switching is most often demonstrated in waveguide based systems where

the waveguide core and/or cladding material have DC-field dependent index of refrac-

tion and/or absorption. Typically, electro-optic switch structures are based on "Y"

splitters (see Figure 1-6 or waveguide coupling (see Figure 1-7). Some recent electro-

optic switches have been created by tuning microring resonator and Mach-Zehnder
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Figure 1-8: Illustration of a electro-optic ring resonator switch. To direct the input
light to the either the through or the drop port, the index of the ring resonator is
changed to cause the input to either resonate in the ring or not. If the input light is
resonant, the light will couple to the drop waveguide, if the light is non-resonant it
will pass by the ring unaffected and exit through the through waveguide.

filters (see Figures 1-8 and 1-9, respectively).

Electro-optic switches have been demonstrated in silicon and silicon germanium

waveguides [28,78,79,89,90], in III-V semiconductors (InP, InGaAsP, etc.) [2,30,56,57,

100,140], and in perovskite crystals such as lithium niobate [101]. The semiconductor

based switches use the refractive index change resulting from carrier injecting, either

due to a electrical current or an optical pump signal. The injected carriers also cause

absorption in the waveguides which can lead to high insertion losses. Lithium niobate

experiences an index change due to the application of an electric field, hence requiring

much less power to operate than the semiconductor based switches; however, the

required electric field can be high, thus requiring high voltages (relative to IC voltage

levels).

Electro-optic switches based on "Y" splitters, coupling, or Mach-Zehnder filters

require anywhere from 200 to 600 mW up to several watts for silicon and silicon ger-

manium based switches while tens of milliwatts are required for III-V based switches.

Lithium niobate switches have been demonstrated with applied voltages as low as 8

volts with very low power since the current is very small. Switching times of tens of

nanoseconds are common. Insertion losses for these switches have been demonstrated

to be as low as 8.2 dB for silicon switches, 3 dB for silicon germanium switches, 2
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Figure 1-9: Illustration of a electro-optic Mach-Zehnder filter switch. To direct the
input light to one of the two output waveguides, the electro-optic region is used
to change the path length between the two legs of the interferometer. In this way
the light is cause to constructively interfere in one of the output waveguides and
destructively interfere in the other output waveguide.

dB for III-V semiconductor switches, and 7.2 dB for lithium niobate switches. The

length of these switches is usually on the order of a few millimeters to centime-

ters [2, 28, 78,79,89,90,100, 101].

A second group of electro-optic switches use integrated optical ring resonators

fabricated out of III-V semiconductors. The ring resonators are switched by carrier

injection induced by either an electrical current [30] or by optical pumping [56, 57,

140]. These devices work by detuning the resonance of the rings off the particular

wavelength (channel) of interest. In a WDM setup, this approach is troublesome

because the new resonant channel will be switched in the opposite direction as the

initial resonant channel, which is typically not desired.

The power required for switching or tuning of these ring resonator based switches

is generally less than that required for other electro-optic switches because optical

resonance in the ring amplifies the effect of the index change. A few milliwatts of

power is typically sufficient for switching. Switching speeds can be as fast as tens of

picoseconds. Insertion losses for these switches weren't reported [30,56,57, 140].

1.1.4 Liquid crystal optical switching

Most liquid crystal based switches operate on light in free-space [44, 96, 114, 115]

although some devices that use a waveguide based switching approach have also been

reported [5,146,150].
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Figure 1-10: Illustration of a liquid crystal optical switch. The liquid crystal elements
steer the input light to the desired output fiber [441.

These liquid crystal switches have a wide variety of implementations. Figure 1-10

shows one implementation that uses liquid crystals as beam steering elements to direct

the light from an input fiber to one of an array of output fibers. Regardless of the

optical system, the actuation of the liquid crystals requires that the liquid crystals be

sandwiched between two electrodes that can apply an electric field. When the electric

field is applied the liquid crystals line up and create an optically anisotropic media.

It is this effect that is used to create liquid crystal switches.

Liquid crystal based switches have switching times from as good as 20 ps up to

tens of milli-seconds. The fastest switching times were achieved by heating the liquid

crystals to reduce their viscosity. Actuation voltages are reported from 10 volts up to

20 volts. Insertion losses as low as 5 dB have been reported' [5,44,96,114,115,146,150].

'The insertion losses reported for these devices typically include coupling losses since the input
and output fibers are usually an integral part of the switch.
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1.1.5 Thermo-optic switching

Thermo-optic switches are integrated, waveguide based switches. They can be fab-

ricated out of CMOS compatible materials such as silica [31,122,129] although they

are often fabricated out of polymers [45, 53, 62,128] to reduce the amount of power

needed for switching. The silica based devices tend to have lower losses. One particu-

lar device uses a hybrid silica and polymer scheme to take advantage of the properties

of both materials [65].

Thermo-optic switches tend to be similar to electro-optic switches. There are

thermo-optic switches based on "Y' splitters (see Figure 1-6) and coupled waveguides

(see Figure 1-7) as well as Mach-Zehnder (see Figure 1-9) and ring resonator filter

(see Figure 1-8) devices. These devices require the integration of a heating element

to provide the energy for actuation.

Thermo-optic switches have switching times of a few milli-seconds, at best. The

actuation power required is tens to hundreds of milliwatts with insertion losses as low

as 2 dB. These devices typically have sizes of a few to tens of millimeters [31, 45, 53,

62,65,88, 122, 128, 129].

1.1.6 Wavelength selective switching

Most of the devices described so far do not have the capability to selectively switch

individual wavelengths of light. To achieve wavelength selective functionality, these

switches would have to be coupled with some additional demultiplexing and multi-

plexing devices, as illustrated in Figure 1-11. Among the devices described above,

there are a few examples of that approach [31,84,114, 115,122].

A few integrated switches do have intrinsic wavelength selectivity. These switches

are all based on tuning ring resonators or Mach-Zehnder interferometers [30,56, 110,

140]. While this approach provides wavelength selectivity, its utility in a WDM

network is limited. By tuning the filter passband away from a particular wavelength

to switch it between output ports, one inadvertently switches the adjacent wavelength,

as illustrated in Figure 1-12. To avoid interfering with adjacent channels, the channels
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Figure 1-11: Illustration of the required arrangement to achieve wavelength selective
switching with most of the optical switches currently available.

would need to be widely spaced so the drop band of the filter can be placed in between

the channels, or the number of channels would need to be limited so that the drop

band can be moved outside of the frequency band of the channels where the channels

reside. Either of these methods places limitations on the bandwidth that can be sent

using WDM.

These switches would work well in a system that contains only a single wavelength

of light, however, in that type of system their effective functionality would be no

different than the broadband optical switches described in the previous sections.

An ideal wavelength selective switch would provide the capability to switch a

single wavelength or channel between two output waveguides without affecting any

other wavelengths. Prior to the wavelength selective switch described in this thesis,

this capability was not available in an optical switch.
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Figure 1-12: Illustration of the response of a filter tuning based to a WDM input
spectrum. Note that going from the first state to the second state switches two
wavelengths between the drop and through ports, in opposing directions, rather than
just a single wavelength.
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1.2 Filter Tuning

Integrated tunable filters are another important element for integrated optical cir-

cuits used in WDM applications. The techniques that are used to tune integrated

optical filters include thermal tuning, electro-optic tuning, liquid crystal tuning, and

piezoelectrically induced strain tuning. These devices have essentially the same func-

tionality as the filter tuning switches illustrated in Figure 1-12, except that ideal

tunable filters would have the capability to tune to any of the channels in the WDM

input signal rather than have just two states.

The integrated filters elements that have been used in tunable filters include ring

resonator filters, one-dimensional photonic bandgap crystal filters, and Mach-Zehnder

filters. The tuning is accomplished by using some technique that changes either the

core or cladding index of the waveguides comprising the filter, or by changing the

physical dimensions of the filter. These changes create a change in the optical path

length of the device and, therefore, a change in the spectral position of the passband

of the filter.

1.2.1 Thermal tuning

Thermal tuning is achieved by the thermo-optic effect where the index of a particular

material changes with temperature [49,85]. Thermal tuning can take several Watts

of power and tends to be slow. The fastest response times of these devices are on the

order of milliseconds. The tuning range can be fairly wide, if high temperatures are

acceptable in the devices. The vernier effect has been used with two coupled tunable

ring resonator filters to achieve a very large tuning range [85]2.

1.2.2 Liquid crystal tuning

Liquid crystal based filter tuning has been demonstrated by using liquid crystal ma-

terial as the top and side cladding of a ring resonator [94]. When the liquid crystal is
2Using the vernier effect to create a tunable filter puts significant constraints on the utility of a

device in a WDM network.
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subjected to an electric field, its index changes which causes the resonant frequency

of the ring resonator to change. The tuning range of this device was quite limited,

showing a change in resonance of only 0.22 nm with an applied voltage of 20 volts.

Response time wasn't reported, however, it is expected that it would be no faster than

tens of microseconds, similar to what is possible with other liquid crystal devices.

1.2.3 Electro-optic tuning

Electro-optically tunable ring resonators have already been discussed as switches in

section 1.1.3. These devices use carrier injection resulting from either a current flow

[30] or an optical pump [56,57,140] to change the index of the ring resonator waveguide

core, which is comprised of a III-V semiconductor material. While these devices can

have very fast response times, on the order of tens of picoseconds, the injected carriers

introduces additional optical loss into the rings. This additional loss is readily seen

even with a small change in resonance. This additional loss creates higher insertion

losses and alters the shape of the filter passbands. Tuning of up to about 5 nm has

been shown with tens of mW of input power.

1.2.4 Piezoelectric strain tuning

The tunable filter that utilized piezoelectric strain tuning utilized a one-dimensional

photonic bandgap crystal structure within a waveguide to create the optical fil-

ter [148]. The waveguide was suspended between integrated piezoelectric actuators

which, when actuated, introduced strain into the photonic bandgap waveguide. The

strain changed the length of the resonant cavity and thus introduced a shift in the

response of the filter. Tuning of up to 1.8 nm was observed.

1.3 Thesis objectives

The topic of this thesis is MEMS switching and tuning of optical ring resonator

filters for integrated optical applications. The integration of MEMS devices with
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ring resonator filters is a new application for MEMS. For this reason, the focus of this

research is to analyze and demonstrate the feasibility of operating ring resonator filters

with MEMS switching and tuning. This thesis will address the system impact of these

architectures from the point of view of fundamental optical and mechanical/material

properties.

The first part of this thesis describes the design, fabrication, and demonstra-

tion of an integrated MEMS-switchable ring resonator device where the micromecha-

nism effectively couples the resonator in and out of the optical circuit to accomplish

wavelength-selective response. The performance of our first demonstrated prototype

will be compared the requirements of integrated optical systems and shown to have

unique advantages in terms of functionality, actuation voltage, and operating power.

The second portion of this thesis builds off of the results of the prototype switching

device. A detailed exploration of the dynamic performance of parallel plate MEMS

actuators is given. From this analysis, two new MEMS switching approaches are

derived. The new switching methods allow a significant reduction in actuation voltage

as well as much faster switching speeds compared to what is currently possible with

standard MEMS parallel plate actuators.

The third portion of this thesis will explore the tuning of optical ring resonator

filters by MEMS. This is a much more complex device with some very strict perfor-

mance requirements. The effort in this area is in the design and analysis of the device

to determine its feasibility and if this type of device can meet the strict performance

requirements of integrated optical systems. The answer turned out to be positive, but

the experimental demonstration of the device was outside the scope of this thesis.

1.4 Outline of Thesis

Chapter 1 described the vision of an integrated optical circuit and reviews the relevant

literature related to integrated optical switches and integrated tunable filters.

Chapter 2 describes the design for the integrated wavelength selective switch based

on integrating a high-index-contrast ring resonator filter with a MEMS parallel plate
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structure.

Chapter 3 describes the fabrication process used to create the MEMS ring res-

onator switch designed in Chapter 2 and discusses material and packaging consider-

ations for this type of device.

Chapter 4 describes the results of a series of experiments to characterize the

structure and performance of MEMS ring resonator switches that were fabricated at

MIT's Microsystem Technology Laboratories (MTL). The experiments were designed

to test both the optical and mechanical performance of the device. In addition,

a model for dielectric charging is proposed that allows accurate modelling of the

electro-mechanical pull-in characteristics of the device.

Chapter 5 addresses the problem of residual stress seen in the wavelength selective

optical switch device. The difficulties associated with using aluminum as the MEMS

bridge material are detailed. In addition, the use of titanium nitride (TiN) as an

electro-mechanical material for MEMS applications is proposed and characterized

based on the properties of this material and the telecommunications requirements for

integrated optical systems. TiN has some very unique properties (i.e. high stiffness,

electrically conductive, high strength, low surface adhesion energy, wear resistance,

etc.) that make it a preferred material over many of the current standard MEMS

materials (silicon, silicon oxide, silicon nitride, etc.).

Chapter 6 describes a new technique that allows the operation of the wavelength-

selective switch (and other parallel plate and torsional MEMS actuators) at a much

lower voltage. This chapter first analyzes the system dynamics of these actuators to

get a more full view of the actuation of these MEMS devices. By using these dynamic

motion insights, an actuation technique is proposed that can significantly reduce the

required voltage from the high actuation voltages that are currently used in these

devices.

Chapter 7 describes a new actuation method for MEMS switching that has the

potential to lead to significantly lower actuation voltages, lower operating energy (on

a per-switching event basis), and significantly higher speed than any other MEMS

actuation technique. The key innovation is the use of stored elastic potential energy
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to drive the switching motion while an electrostatic hold voltage maintains the switch

in its two states.

Chapter 8 describes the design and analysis of an integrated tunable optical filter.

This filter is also based on a high-index-contrast ring resonator filter integrated with

a MEMS device. In this case, the MEMS device moves a dielectric slab within the

evanescent field of the ring resonator in such a way as to tune the resonance of the ring

to drop the desired channel out of a WDM input signal. The position of the dielectric

slab in the evanescent field determines the effective index of the ring resonator, and

therefore the optical path length and the resonant wavelength of the ring. It is shown

that although the required positional stability tolerances are tight, the device should

be able to perform within the specifications.

Chapter 9 is a final discussion of the thesis, its impact, and suggestions for related

future work.

1.5 Thesis contributions and applications

This thesis contributes to both IOC technology and MEMS technology. The contri-

butions to IOC technology are the development and demonstration of an integrated

wavelength-selective switch as well as the design and analysis of a new tunable inte-

grated optical filter. Both of these devices are important to a wide variety of potential

applications of IOCs including telecommunications, optical computing, optical inter-

connects, and optical bio-sensing.

The key contributions to MEMS technology include:

* The development of a dielectric charging model that accurately predicts the

effects of dielectric charging during actuation.

" The use of titanium nitride as a material for MEMS applicsations.

" The development of a new actuation technique for parallel plate and torsional

actuators that significantly reduces the voltage needed to pull-in the structure.
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* The development of a second complementary actuation technique that allows

for low voltage and extremely fast actuation - faster than any other current

MEMS actuation technique.

These contributions have many potential applications. Dielectric charging is

present to some degree in virtually any MEMS device where an electric field is present

in combination with an air/dielectric boundary. The model proposed and developed

in Chapter 4 predicts the evolution of the charge on the dielectric surface as a function

of the applied voltage and the bridge displacement. This provides the capability to

model the response of the bridge throughout the actuation process, rather than just

predict the increased pull-in voltage due to dielectric charging [147,151].

As mentioned previously, titanium nitride has a number of appealing properties

for MEMS including high stiffness, high strength, electrical conductivity, low surface

adhesion energy, high wear resistance, chemical stability, low temperature process-

ing, CMOS compatibility, and low temperature annealing. These properties make

titanium nitride a material that is uniquely suited for a wide variety of MEMS appli-

cations.

The two new actuation techniques described in this thesis allows MEMS switch-

ing at speeds that are currently unavailable through any other MEMS actuation tech-

nique. In addition, the low voltage and low power required by these techniques allows

direct integration of MEMS devices based on these techniques into both electronic

and optical integrated circuits.

The low voltage, low energy, and high speed capabilities of these actuation tech-

niques enables many very exciting MEMS switching applications. These techniques

can, of course, be used in integrated optical switching devices, both broadband and

wavelength selective, as described in this thesis. Another exciting application of these

actuation techniques is in radio-frequency (RF) MEMS switching.

RF MEMS switches have been an area of active research since the early 1990's.

These switches provide much lower insertion loss and isolation than semiconductor

based switches that are currently used in RF applications. However, the RF MEMS

switches have typically required high voltages to actuate and are much slower than
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semiconductor switches. By applying these new actuation techniques to an RF MEMS

switch, a low-voltage high-speed RF MEMS switch is possible that would have the

very appealing insertion loss and isolation characteristics that have been demon-

strated by other RF MEMS, but would still provide the low-voltage and high speed

actuation that is provided by semiconductor RF switches. This kind of RF MEMS

switch could be used in phased array radar systems, satellite communications, RF

test equipment, cell phones, wireless internet access, base stations, and a variety of

other RF applications as a direct replacement for RF semiconductor switches.
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Chapter 2

Optical ring resonator MEMS

switch design

This chapter describes the design of the MEMS based wavelength selective integrated

switch. The switching function is based on the introduction of loss into an optical ring

resonator to significantly weaken the resonance of the ring to point where the quality

factor is very small. With a small quality factor, the ring is effectively detached

from the circuit and the light in the input waveguide passes by the ring unaffected

[87,144]. Using this loss-based approach for optical ring resonator switching provides

wavelength selective switching without affecting adjacent wavelength channels.

The loss based approach requires a significant amount of loss to be introduced

into the ring, much more than can be reasonably achieved using carrier injection.

The idea of using an electrostatic MEMS device to move a lossy material membrane

into and out of the evanescent field of the optical ring resonator to introduce the

necessary loss for switching was first proposed theoretically in [144]. This thesis is

the first experimental demonstration to date.

The switch described here provides a number of advantages. The first advan-

tage is that it provides a completely integrated wavelength selective switch within a

material system that is CMOS compatible, thus allowing direct integration into an

'Other ring resonator "switching" devices that make use of detuning as the switching mechanism
will affect adjacent channels, see Section 1.1.6 in Chapter 1.
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opto-electronic integrated circuit. Secondly, the ring resonator and MEMS device are

both extremely small occupying a total area of 160 pm x 30 pm, occupying the small-

est chip real estate of any wavelength selective switch currently available. Thirdly,

electrostatic MEMS devices require very little energy for operation2 , unlike electro-

optic switches based on carrier injection or thermo-optic switches. Finally, because

the switching mechanism isn't doesn't depend on the waveguide material, as is the

case with carrier injection based switches which require semiconductor core and/or

cladding material, the ring resonator can be fabricated out of any material. Allow-

ing the designer to select the best performing waveguide materials for a particular

application without constraints imposed by the switching mechanism.

2.1 Optical ring resonator filters

Ring resonator filters have been shown to be very effective static integrated optical

elements [24,25,55,86]. By coupling MEMS devices with the rings, microring res-

onators can become active elements in an integrated optical circuit for routing optical

channels within the circuit.

Figure 2.1 illustrates the static operation of a typical optical ring resonator. A

number of wavelengths (channels) are directed into the input waveguide. The resonant

wavelength couples into the drop waveguide via the ring resonator while the non-

resonant wavelengths do not couple into the ring resonator and propagate through

unaffected.

Optical ring resonators operate very much like Fabry-Perot resonators. The cou-

pling between the bus waveguides (the input, through, and drop waveguides) and

the ring resonator is very small, on the order of 1% or less. The small fraction of

light that does couple into the ring from the input waveguide propagates around the

ring. After one round trip, the resonant wavelength interferes constructively with

the light currently coupling into the ring. At the same time, some of this light also

2 Electrostatic parallel plate actuators require only a few PW of power during the switching
process, and essentially no power while in either switch state.
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Figure 2-1: Schematic representation of an optical ring resonator filter showing its
static wavelength selective behavior.

couples back into the input/through waveguide. The interference at the through port

is destructively; hence after a sufficient number of roundtrips there is no light at the

resonant wavelength propagating in the through port. The resonant wavelength also

couples weakly into the drop port. However, due to the resonance and since the drop

port is the only pathway for the optical energy to escape the ring resonator (with the

exception of intrinsic losses), all of the resonant light will wind up being coupled into

the drop port.

For non-resonant wavelength channels, the light that couples into the ring res-

onator and propagates around the ring will interfere destructively with the light that

is currently coupling into the ring and constructively with the light that has remained

in the through waveguide. In this way, the non-resonant wavelengths are transmitted

to the through port experiencing essentially no effect due to the presence of the ring

resonator.

The wavelengths that resonate in a particular ring resonator are determined by

the ring's radius r, and refractive index n, according to

A = 27rrn (2.1)
N

where A is a resonant wavelength, and N is an integer value. Equation 2.1 is a result

of calculating the distance required for the resonant wavelengths to constructively

interfere after propagating around the ring.
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The free spectral range (FSR) of a resonator is the spectral distance between two

resonant wavelengths and is calculated according to

FSR = 27rrn (2.2)
N(N + 1)

Ideally, the FSR of the resonator should equal or exceed the spectral band of interest

so that only one resonant wavelength resides in the spectral band of interest.

To increase the FSR of a ring resonator, the radius of the ring must be decreased.

However, as the radius of the ring resonator decreases the curvature of the ring

increases which increases the bend loss from the ring waveguides. When a waveguide

is bent, there is a certain amount of light lost depending on the sharpness of the

bend. To reduce bend losses, the optical index contrast between the waveguide core

and cladding material can be increased. Higher index contrasts creates strong total

internal reflection (TIR) inside the waveguide which more tightly confines the light

and reduces bending loss.

The amount loss in the ring resonator is critical in that it determines the quality

factor of the resonator. The quality factor is defined as

= 2 Total energy stored in resonator (2.3)
Energy lost per roundtrip

Although the desired quality factor for a particular resonator filter depends on the

specific filtering application, usually a higher quality factor is more desirable. The loss

in the ring is a combination of the bending losses, intrinsic material loss (absorption),

scattering loss due to waveguide surface roughness. The coupling of the light from

the ring resonator to the bus waveguides (input/through and drop ports) is also

considered a "loss" for calculating the quality factor of the ring resonator. Strong

coupling between the ring resonator and the bus waveguides will decrease the quality

factor of the ring resonator, while weak coupling will increase the quality factor.

The key design parameters for optical ring resonators include the waveguide and

cladding materials, the radius of the ring resonator, the cross-sectional shape of the

waveguides, the amount of coupling between the bus waveguides and the ring res-
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onator, and the number of cascaded ring resonators. The waveguide and cladding

materials are used to determine the index contrast and the material losses of the ring

resonator. The radius and index of the core determines the resonant wavelengths and

the FSR. The index contrast and the radius determine the bending losses.

The waveguide shape determines whether the waveguide is single-mode or multi-

mode, and also if the waveguide is polarization sensitive [73]. To limit the effects

of dispersion and to improve the performance of the ring resonator (decrease opti-

cal losses), single mode waveguides are normally used. Because the waveguides have

rectangular cross-sections (due to constraints of microfabrication), rather than round

cross-sections like optical fibers, the waveguides are polarization sensitive. Neverthe-

less, optical telecommunications systems require that the performance be insensitive

to polarization, even for randomly polarized light entering the system through the

input fiber. Therefore, the incoming light needs to be converted to the polarization

state which is optimal for the designed waveguides. One possible way of achieving

the conversion of the polarization of the incoming light is described in [144].

The strength of the coupling between the ring resonator and the waveguides affects

the quality factor of the device and therefore the bandwidth of the filter. The two

dimensional parameters affecting the coupling are the gap between the ring and the

bus waveguides and the radius of the ring resonator. Ring resonators with larger radii

have longer coupling lengths than ring resonators with smaller radii. This means

that for a fixed amount of coupling, a smaller ring will need to be closer to the bus

waveguides than a larger ring.

The filter shape provided by the ring resonator can be modified by cascading

several ring resonator filters together. In this way, filters with flat tops and sharp roll-

off can be designed [55]. These are desirable for preserving the quality of transmitted

information in high-bandwidth channels (10GHz and above). The number of rings

used does not significantly affect the switch design since the MEMS bridge structure

can be easily modified to switch any number of rings cascaded together.
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(A) (B)

Figure 2-2: Schematic representation of an optical ring resonator filter switch showing
its (A) resonant behavior with the lossy material membrane up and (B) its non-
resonant behavior with the lossy material membrane down.

2.2 MEMS optical ring resonator switch descrip-

tion

Figure 2.2 shows a schematic drawing of how the optical ring resonator switch oper-

ates. The switch is composed of a standard optical ring resonator filter with a lossy

material membrane suspended above it. When the lossy material is up and away

from the ring resonator, the ring resonator is unaffected by the material and behaves

in its standard static fashion. When the lossy material is brought down on top of the

ring resonator, the optical resonance is killed due to optical loss (damping). Without

the benefit of the resonance in the ring, the formerly resonant wavelengths of light

are no longer able to couple from the input waveguide to the drop waveguide. Thus,

by controlling the position of the lossy material membrane, the resonant wavelength

can be switched between the drop waveguide and the through waveguide.

The lossy material membrane is controlled by a MEMS parallel plate electrostatic

actuator. MEMS parallel plate actuators are often used as switching structures be-

cause of the pull-in effect resulting from the nonlinearities of the system [4,67,99,111].

Pull-in is the term used to describe a phenomena where the movable plate of the elec-
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trostatic actuator snaps down to the fixed plate when the displacement of the movable

plate is roughly a third of the original gap between the plates [125]. Pull-in gives a

binary, switch-like, operation to parallel plate actuators.

2.3 Design requirements

While the primary goal of this work is to prove the concept of MEMS based ring

resonator optical switching, it is important to look forward to the requirements of a

product based on this kind of device.

This device is intended to be used in integrated optical circuits for a variety of

applications. To be useful as part of an integrated circuit, the switch needs to meet

certain requirements. Different applications would have different operating require-

ments. This list of requirements is based on using these devices as part of IOCs for

telecommunications networks. The requirements are:

" IC level voltage operation (~5 volts)

" CMOS compatible fabrication

" Switching time of less than one microsecond

" Insertion loss of less than 1-2dB per switch

" Switch footprint should be less than 100pm x304m

" Heat generation of less than 1mW per switch

" Temperature range of operation -25*C to 85 0C

" Operating lifetime of ten to twenty years.

The switch is intended to be integrated together with standard CMOS circuitry as

well as optical circuitry. For this reason, the switch should operate at IC level voltages

(~5 volts). The switch will also need to be compatible with CMOS fabrication.
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Table 2.1: Switching speed requirements for different applications within optical net-
working [110].

For different applications in optical networking, different switching speeds are

required. Table 2.1 gives some switching speed requirements for different applications

that come out of optical networking standards [110, 116]. With a switching speed

of one microsecond, the switch will be suitable for both lightpath provisioning and

protection switching.

It is expected that in an IOC, many of these switches would be cascaded together

in typical circuit style. For this to be possible, the switches are required to have

very low optical losses. While the specific loss requirement depends on the particular

application and the number of switches in the circuit, a good assumption is that the

losses need to be less than 1-2dB per switch.

A additional requirement resulting from the switch being integrated together with

a number of elements, and because of the cost benefit of small devices in microfabri-

cation, the size of the switch should be minimized [116].

A related integration issue is the amount of energy that is dissipated as heat from

the device. For the device to be successfully integrated with a number of devices, the

heat production of each device needs to be low, less than 1mW. If too much heat is

produced, the microring resonators resonant frequencies will drift from the desired

resonance.

To be used in optical networking, these devices will need to withstand a wide

range of environments. For this reason, the temperature range of operation of the
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Application Switching Time Required

Lightpath Provisioning 1-10 ms

Protection Switching 1-10 /,s

Packet Switching 1-10 ns

Modulation 1-10 ps



switch should be large.

Finally, the lifetime of the switch needs to be adequate for the particular appli-

cation. For some consumer applications, the lifetime may be only three to five years.

For commercial applications, such as in optical communication networks, the lifetime

requirement may be anywhere from ten to twenty years [116].

2.4 MEMS parallel plate electrostatic actuation

There are a number of actuation techniques currently used in MEMS devices . They

include piezoelectric, thermal, shape-memory, magnetic, and electrostatic [125]. The

characteristics of these actuation techniques are widely varied. Depending on the

particular application, one actuation technique is often preferable over others. For the

ring resonator switch, electrostatic actuation is the best candidate based on actuation

speed, CMOS compatibility, and actuation energy.

Actuation speed is a key requirement of the wavelength selective switch. Of all the

actuation techniques available, parallel plate actuators have proven to be the fastest

for this type of switching device [111].

Parallel plate actuators can very easily meet the CMOS compatibility requirement.

Piezoelectric, shape-memory, and magnetic actuation all use non-CMOS compatible

materials.

Additional advantages that electrostatic actuation has over thermal, magnetic,

and shape-memory actuation is that the energy required for switching is several orders

of magnitude less and that no additional energy is needed to maintain the switch in

the switched state. This is not true of thermal and magnetic actuators. Because very

little energy is dissipated by the electrostatic device, the thermal load on the overall

system that comes from the switch is very low. This is an important consideration

when integrating a number of these devices together in a circuit to implement crossbar
3The temperature range is limited more by the ring resonator's sensitivity to temperature than

that of the MEMS device. To maintain a consistent resonant wavelength, the ring resonator will
need to be maintained at a rather narrow temperature range. To achieve the requirement of a large
temperature operation range means that some active packaging will be required to maintain the
proper operating temperature for the device.
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switching, for example.

The actuation voltage also needs to be low for integration with standard CMOS

circuitry. This tends to be difficult for electrostatic actuation where a high pull-in

voltage is usually required for parallel plate actuators. In spite of this, some parallel

plate devices have been demonstrated that require voltages as low as 6 volts [107].

However, the low actuation voltage comes at the price of slow switching speeds and

reliability concerns.

MEMS parallel plate actuators consist of a fixed electrode or plate, a movable

plate, and a suspension system that holds the movable plate over the fixed plate.

When a voltage difference is applied between the two plates, the plates act as a

capacitor, with each plate taking on an opposite signed charge. The charges on the

two plates exert an electrostatic force that tends to pull the two plates together.

The electrostatic force is resisted by the stiffness of the suspension system. Figure

2-3 shows some images of some MEMS parallel plate actuators used in RF MEMS

switches [15,92,107,112].

Parallel plate actuators are often modelled as a mass (the movable plate), damper,

and spring (the suspension system) over a fixed plate, as in Figure 2.4. For actuation,

a voltage source is connected between the two plates. The equation of motion that is

derived from this lumped parameter model is

E0 AV 2

mi + bx + kx = , (2.4)
2 (do - x) 2 (

where x is the displacement of the movable plate, m is the mass of the movable plate,

b is the damping coefficient, k is the spring constant of the suspension system, A is

the overlap area of the fixed and movable electrodes, V is the voltage applied across

the plates, co is the permittivity of air, and do is the initial effective gap between the

fixed and movable electrodes.

The effective gap do is a combination of the air gap da and the effective thickness

of the dielectric material that maintains electrical isolation between the plates. The
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(A) (B)

100 pm'

(C) (D)

Figure 2-3: RF MEMS switches using electrostatic parallel plate actuators. A) was
developed at the University of Michigan [107]. B) was developed at the University of
Illinois [15]. C) was developed at Northeastern University and Analog Devices and is
currently licensed to Radant MEMS [92]. D) was also developed at the University of
Michigan [112].
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m V

Figure 2-4: Simplified lumped parameter model of a parallel plate electrostatic actu-

ator.

effective gap is thus

do = da + -, (2.5)
ed

where td is the actual thickness of the dielectric material, and Ed is the relative per-

mittivity of the dielectric material.

Because of the nonlinear nature of Equation 2.4, quasi-static conditions (z Z i ~ 0)

are usually assumed to simplify the equation and provide some insight into the system.

This approximation gives

kx = oAV 2  (26)
2 (do - x) 2 (

Solving for the applied voltage gives

v = (do ) (2.7)

which provides the equilibrium curve of voltage versus displacement shown in Figure

2-5.

In the domain 0 < x < do, Equation 2.7 has a maximum that occurs at x = do/3.

This is often referred to as the pull-in position. The equilibrium voltage associated

with this point is called the pull-in voltage, since application of higher voltages will

cause the system to experience a bifurcation to an equilibrium point located at x > do.

Of course, this jump cannot be fully realized due to the fixed electrode and dielectric
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Figure 2-5: Quasi-static equilibrium curve for the parallel plate actuator from Equa-
tion 2.7. The arrows indicating the evolution of the equilibrium positions for increas-
ing and decreasing voltage illustrate the bifurcation in the system. When the pull-in
voltage is reached, the movable plate tries to jump to the equilibrium position to
the right of the fixed electrode position. The isolation layer between the two elec-
trodes will, of course, limit the plate's displacement so it won't reach the theoretical
equilibrium position. The thickness of the isolation layer determines the voltage re-
quired to maintain the movable plate in the pulled-in state, referred to as the "hold"
voltage [22].
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layer; instead, the moving electrode is jumps to and is held at the dielectric layer.

Figure 2-5 illustrates the "pull-in" bifurcation experienced by parallel plate actuators.

The pull-in voltage is found to be

VP= kd (2.8)
27c0A

The minimum voltage to hold the moving electrode in the pulled-in state is called

the hold voltage and is

2k (do - Ed

Vh = E Id (2.9)
\6_0A Cd

As with any model, there are a number of assumptions associated with this model.

These assumptions are discussed in detail in Section 6.1.

In designing a MEMS parallel plate electrostatic actuator, the main parameters

that can be varied are the stiffness, k, and the overlap area, A. The initial gap,

do, is usually fixed by the particular application of the device (as is the case for the

integrated wavelength selective switch).

2.5 Switch Design

The design of the wavelength selective switch consisted of the optical design of the

ring resonator filter and the electro-mechanical design of the MEMS structure to be

integrated together with the ring resonator. The goal of the device design described

in this section is to first of all demonstrate MEMS switching of a ring resonator

filter. Secondarily, an effort will be made to meet, or at least approach, the design

requirements discussed in Section 2.3.

2.5.1 Optical Design

One of the compelling characteristics of this MEMS-based approach to ring resonator

switching is that it is applicable to virtually all of the many ring resonator filter designs

that have been proposed, including the higher order filter designs [24,25,55,86]. For
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1000nm

400nm 100nm

2900nm

* Silicon substrate
* Silicon oxide

Silicon nitride

Figure 2-6: Schematic drawing of the cross-sectional view of the waveguides. (Note,
drawing not to scale.)

Table 2.2: Dimensions of the optical ring resonator that was integrated into the
wavelength selective switch devices.

this reason, and since the goal of this work is to experimentally demonstrate loss based

switching of a ring resonator filter, the actual performance of the filter, in terms of

bandwidth and filter shape is somewhat arbitrary. A simple single ring resonator

design was used to create the prototype wavelength selective switche.

The ring resonator and bus waveguides were composed of a core material of silicon-

rich silicon nitride, with an index of 2.0. The cladding was silicon oxide (index 1.44)

on the bottom, and air cladding on the top and sides (index 1.0). The dimensions of

the waveguide cross-section axe shown in Figure 2-6.

The inside and outside diameter of the ring and the gap between the ring and the

bus waveguides is given in Table 2.2.

As mentioned before, the ring resonator design does not strongly effect the MEMS

design. There is, however, one exception; the required separation between the lossy

material membrane and the ring resonator must be chosen so as to not induce loss
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in the ring resonator. This distance is primarily a function of the material system of

the ring. The index of the lossy material also has a secondary effect on the required

separation. For the silicon nitride/silicon oxide material system used for the ring res-

onators in this prototype, the initial gap needs to be at least 1.1 pIm for an aluminum

bridge [145]. Aluminum was selected as the lossy material for the prototype switch.

2.5.2 Electro-mechanical Design

There are a number of considerations in designing the MEMS structure for the switch.

They are:

" There needs to be a membrane of optically lossy material that covers the ring

resonator

" There needs to be a suspending structure that provides the proper elastic stiff-

ness for the system

" There needs to be adequate overlap area between the top movable electrode and

the fixed bottom electrode for actuation

" The input, through, and drop waveguides need to be kept away from the lossy

material comprising the MEMS device.

The optically lossy material membrane is simple to construct in this case because

the suspended electrode, or bridge, is itself constructed of a conductive material,

which, in almost all cases, means the material is also optically lossy. This allows

the bridge to act both as the suspended electrode for the actuator and the optically

lossy material membrane used to switch the optical ring resonator. This significantly

simplifies the design and fabrication of the device.

A very simple MEMS bridge structure that allows integration with ring resonator

filters is shown in Figure 2-7. The bridge uses one conformal film deposition step

to define the suspended bridge as well as the anchors that attach the bridge to the

silicon oxide layer. The silicon substrate acts as the bottom fixed electrode.
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* Silicon substrate
* Silicon oxide

Silicon nitride
M Aluminum

Figure 2-7: Schematic drawing of the side view of the wavelength-selective MEMS
switch structure. (Note drawing not to scale.)

In designing the bridge, the two key characteristics that we have control over

are the mechanical stiffness of the structure and the overlap area of the top and

bottom electrodes. Because of the dimensional constraints imposed by the waveguide

structures, the primary dimensions that can be controlled to vary the stiffness and

overlap area are the length and the thickness of the bridge. One possible way to

decrease the stiffness without increasing the overlap area of the structure is to use

thin flexures to suspend the membrane over the ring resonator. The overall stiffness

of the bridge actuator in this case is a combination of the stiffness of the plate and

the flexures that suspend the plate.

To develop insight into the design and fabrication of MEMS bridge structures, a

wide range of prototype bridge structures were designed and fabricated. Figure 2-8

shows images of some of the prototypes. The bridge structures covered a wide range

of designs. Straight flexure, serpentine flexure, and solid (no flexure) design concepts

were all explored. Within each of the different flexure designs, widths were varied

from 8 Mm to 30 pm and lengths were varied from 30 Mm to 150 y. These bridge

prototype designs were analyzed using finite element analysis4 . The theoretical range

of the pull-in values for these prototype bridges extended from about 3V up to more

than 80V.

In characterizing the fabricated prototype bridges, it was found that the bridge

structures with flexures (both serpentine and straight) were more susceptible to the

effects of residual stress. The solid (no flexure) bridge structures tended to be flatter

and straighter. In addition, for the solid bridges, it was found that the wide structures

tended to amplify the effects of residual stress gradients (i.e. by bending up or down
4 Finite element analysis was performed using the Coventorware MEMS analysis software package.
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Figure 2-8: Optical micrographs of prototype bridges that were fabricated to evaluate
different design concepts.

68

(B)



Figure 2-9: CAD image of the layout of the device showing the optical waveguides
and the MEMS bridge structure.

at the free edges).

Taking into account the lessons learned from the prototype bridge structures, the

bridge structure to be integrated with the optical ring resonator was designed to be

tolerant to some amount of residual stress. In addition, while the eventual goal of this

project is to create an optical switch that utilizes integrated circuit level voltages, it

was decided based on the results of the initial prototype bridge structures that in the

first demonstration prototype, a higher actuation voltage would create a device that

would be more robust relative to process variations. For this reason, an actuation

voltage of between 12 and 15 volts was targeted in the design. The final bridge

structure design for the wavelength selective switch prototype is shown in Figure 2-9.

The bridge structure over the top of the ring resonator was designed as two sepa-

rate bridges. This technique was employed to minimize the width of the bridges and

thus minimize the effect of residual stress gradients. Also, in this design, no flexures

were used. This choice was also motivated by the desire to minimize the effects of

residual stresses in the bridge material.

Figure 2-9 shows that etch holes were included in the bridge design. The bridge

structure is quite narrow and would allow a very quick release etch, even without the
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etch holes. The etch holes were included to minimize the exposure time of the silicon

nitride waveguides to the release etchant (xenon difluoride). In etch selectivity tests

performed on silicon and silicon-rich silicon nitride, it was found that the selectivity

of xenon difluoride to silicon nitride versus the polysilicon sacrificial material was

1:550. While this is very good selectivity, the exposed surfaces of the waveguides

would still have been etched by as much as 20nm without the use of etch holes, which

was unacceptable. By introducing the etch holes, the etching of the waveguides is

kept to under 10nm.

The bridge structure has a length of 160pm, a width of 10.5pm, and a thickness

of 0.35pim. There are 16 etch holes in the bridge that are each 2pm x 2[pm. The gap

between the bridge and the substrate (which acts as the fixed electrode) is 1.1pm of

air and 3pim of silicon oxide. This is the same as an effective gap of 2.6pm of air for

the electrostatic actuation calculations, due to the differences in permittivity of air

and silicon oxide.

2.5.3 Performance analysis

The response of the bridge structure to an applied voltage is rather complex for a

number of reasons. For instance, the stepped-up anchors used in the design of the

bridge do not match typical end conditions used in analytical beam analysis. The

etch holes in the bridge also create a more complex mechanical response than a

solid bridge [109]. Finally, the effects of residual stress on the bridge structure are

significant. Finite element analysis is the only option that allows these effects on the

electromechanical response of the bridge to be modelled. The structure was therefore

modelled and analyzed using the finite element tools in the Coventorware package.

From this analysis, the resonant frequency fa, generalized mass m, pull-in voltage

Vi, pull-in displacement, and maximum Mises stress5 were all calculated.

The finite element model utilized 692 quadratic hexahedral elements. The mesh

was highly refined at the bridge anchors, which experience the largest values of stress

5Mises stress is a yield criterion comprised of all the components of stress. If the Mises stress

exceeds the yield stress of the material, plastic deformation will result.
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and strain and therefore require the highest mesh refinement.

By combining the results of the finite element response with an analytical esti-

mate of the damping of the structure, analytical predictions of the damped dynamic

response of the structure were found.

The dynamic response of the switch is complex due to the nonlinearity of the

electrostatic actuation. An estimate of the pull-in time, tpj, upon the application of

the actuation voltage is given by the equation [112]

V-
tpi ~ 3.67 -V .

V fn
(2.10)

A value of 1.2 was used for the ratio V/Vmi for the calculation of the pull-in time.

Typically, electrostatic actuators are operated at 1.1 to 1.3 times the pull-in voltage

[111].

The rise time was calculated using standard second-order system response tech-

niques [103]. This is because, upon the removal of the actuation voltage, the system

behaves essentially like a second order system. It should be noted that the squeeze

film damping effect present in the system does add some nonlinearities.

The first step in determining the response of a second order system is determining

if the system is underdamped, overdamped, or critically damped. To determine this,

an estimate of the damping present in the system is needed. For this device, the

damping will be dominated by the squeeze film effects of the air trapped between

the bridge and the substrate. A rough estimate of the damping resulting from the

squeeze film effect can be found in [125] which gives the damping constant, b, as

b 96 1LLW3
b- =

7r da
(2.11)

where p is the viscosity of the fluid, L is the length of the bridge, and da is the air

gap beneath the bridge. W is the distance the air molecules need to travel to get out

from under the bridge. Because of the presence of the etch holes, the value used for

We in this calculation is 5pm. (The viscosity of air is given in Table A.6 in Appendix

A.)
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Equation 2.11 is derived assuming small displacements of the suspended bridge,

which is not the case when the bridge is pulled-in or when it releases. For this reason,

this is only a rough estimate of the damping of the system and should be treated

as such. In reality, the effects of the squeezed-film damping are nonlinear in nature

and require computational fluid dynamic techniques for a proper large displacement

analysis.

With the damping constant calculated from Equation 2.11 and the system values

obtained from the finite element analysis, the damping ratio is found by

b 
(2.12)

2wm

This value of C obtained indicates that the system is underdamped. For an un-

derdamped second order system, the rise time tr is

tr = - arccos (2.13)
Wd

where the damped natural frequency Wd is

Wd = Wn V/1 -i 2. (2.14)

One other system parameter of interest is the mechanical quality factor, Q, of the

system. The quality factor is calculated as

Q = M". (2.15)
b

Table 2.3 summarizes the results of the finite element and analytical analysis of

the bridge design. The results are compared with the design requirements as well as

the fabricated prototype test results discussed in 4.
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Table 2.3: Results of the electromechanical analysis of the bridge structure design
compared with the design requirements and the actual experimental results of the
fabricated switch prototypes.

Parameter Required Design Actual

Pull-in Voltage Vp, (V) 5 12.8 24

Pull-in Displacement (mm) 1.1 1.1 0.34

Resonant Frequency f, (kHz) NS 69.9 NM

Switching Time tpA (ps) 1.0 7.0 60*

Switching Time t, (As) 1.0 5.5 16*

Damping Constant b (N-s/m) NS 2.64x10 7  NM

Generalized Mass m (kg) NS 6.08x 10-13 NM

Damped Natural Frequency fd (kHz) NS 60.8 NM

Damping Ratio ( NS 0.5 NM

Mechanical Quality Factor Q NS 1.0 NM

NS - Not specified.
NM - Not measured.
* Test equipment limited. Faster equipment should allow faster switching.
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2.6 Reliability

The wavelength selective switch needs to be highly reliable to be appropriate for use

in fiber optic networks. The requirement would be for the product to work reliably

over a period of ten to twenty years with potentially billions of switching cycles. This

has been an area of intense research for parallel plate electrostatic MEMS devices.

RF MEMS switches based on parallel plate actuators in particular have been put

through rigorous reliability tests with mixed results.

There are a number of reasons for failure of switching devices utilizing parallel

plate electrostatic actuation. The two main failure mechanisms are stiction [9,137]

and dielectric charging [15, 151]. Both failure mechanisms are of concern for the

wavelength selective switch presented here.

2.6.1 Stiction

Stiction in parallel plate actuators occurs when the moving electrode becomes stuck

in the pulled-in position with no voltage applied [9, 137]. This is a result of the

mechanical stiffness of the structure being insufficient to overcome the adhesion forces

of the surfaces in contact. There are a number of techniques to minimize the effects of

stiction. The most obvious is to increase the stiffness of the system. Another method

is reducing the surface area of contact, which reduces the overall surface adhesion

force. A third technique is using contact surfaces with low surface adhesion energy.

This can be achieved by coating the contact surfaces with thin layers of materials

with low surface adhesion energy, such as teflon.

The natural approach for our switch is to reduce the contact area. The bridge only

needs to come into contact with the ring resonator, which has a very small surface area

compared to the parallel plate actuator. This method requires the planarization of

the sacrificial layer, which was not done in the initial prototype but is straightforward

to do in subsequent devices.
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2.6.2 Dielectric charging

Dielectric charging describes a situation where the dielectric material separating the

two plates of the parallel plate actuator accumulates charges [151]. Because the

material is a dielectric, the charges are trapped and cannot move or dissipate. The

field that these trapped charges creates can affect the performance of the electrostatic

actuator. Effects of dielectric charging include an increased actuation voltage, slower

switching speeds, failure to actuate, or holding the structure in a pulled-in state.

The best way to remove this failure mechanism is to reduce the amount of dielectric

material between the plates [15]. Another option is to heat up the dielectric material,

which tends to allow the charges in the dielectric to disperse. Yet another technique

is to reduce the electric field that the dielectric material experiences. This decreases

the charging effect but usually involves lowering the mechanical stiffness of the system

which can then lead to problems with stiction.

In the case of the wavelength selective switch, the ring resonator is used as a

mechanical stop, therefore, there is no need for additional dielectric material between

the two parallel plates. This should allow significant improvements in reliability

relative to dielectric charging [15].
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Chapter 3

Optical ring resonator MEMS

switch fabrication

In MEMS, the design of the device is strongly coupled with the fabrication process.

In Chapter 2, the design of the wavelength-selective integrated optical switch was

described, and an analysis of it's predicted performance was given. In this chapter

the design and implementation of the fabrication process for the Optical ring resonator

MEMS switch is described.

3.1 Fabrication Process Design

The fabrication process of the switch consists of two distinct parts. The fabrication

of the waveguides and ring resonators, and the fabrication of the MEMS structure.

This further indicates the ability of the MEMS structure to be integrated together

with a wide range of ring resonator devices to produce a wide range of wavelength

selective switches.

The fabrication process of the waveguides and ring resonators is shown in Figure

3.1. For the ring resonator devices that were integrated with the MEMS structure,

steps (A) and (B) in Figure 3.1 were done in MIT's Microsystems Technology Labo-

ratories (MTL). Step (C) was done at Pirelli Labs in Milan, Italy. Other preliminary

test rings were fabricated completely at MIT (see Figure 3-2). For these rings the
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Silicon substrate-Silicon oxide
Silicon nitride

(A) (B) (C)

Figure 3-1: Cross-section illustration of the fabrication process of the waveguides and
ring resonators. (A) 3 pm of low-temperature oxide (LTO) was deposited for the
bottom side cladding. (B) 0.33 pm of silicon rich silicon nitride was deposited for
the waveguide core material. (C) The silicon nitride was patterned and etched using
e-beam direct-write lithography and reactive ion etching (RIE).

(A) (B)

Figure 3-2: Image from a ring resonator device fabricated using the process described
in Figure 3.1. This device was completely fabricated at MIT and is the work of T.
Barwicz [6]

film depositions were done in MTL while the lithography and etching was done in

MIT's Nano-Systems Laboratory (NSL).

Figure 3-2 is an image of a ring resonator fabricated at MIT using the process

described in Figure 3.1. The fabrication of the ring resonators was not part of this

thesis project. For more details on this fabrication process see [6].

The fabrication process for the MEMS structure is shown in Figure 3-3. The entire

process flow is described in detail in Table 3.1.
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F Silicon subs
U Silicon oxid
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trate
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Silicon nitride
Polysilicon
Aluminum

(E)

Figure 3-3: Fabrication process for the MEMS structure. (A) the poly-silicon sacri-
ficial layer is deposited using low-pressure chemical vapor deposition (LPCVD). (B)
the poly-silicon is patterned and etched using contact photolithography and reactive
ion etching (RIE). (C) the bridge material (aluminum) is deposited by sputtering.
(D) the aluminum is patterned and etched using contact photolithography and wet
etching. (E) the structure is released by isotropically etching away the poly-silicon
using a gas phase xenon difluoride etch.

Table 3.1: Process flow for the fabrication of the MEMS

structures on top of the optical ring resonator structures.

The process begins after the fabrication of the ring res-

onator structures.

Step Machine Process Notes

1 Wet station RCA clean

2 Low-pressure diffusion tube LPCVD deposition of 1.1 pm

of polysilicon

3 HMDS oven Vapor phase deposition of

Hexamethyldisilazane (HMDS)

(photoresist adhesion promoter)

4 Spin coater Coat wafer with 1.3pim of photoresist

5 Oven Pre-bake photoresist for 30 min. at 90C

continued on next page
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Table 3.1: continued

Step Machine Process Notes

6 EV620 Aligner Align mask and expose photoresist

7 Wet station Develop photoresist

8 Oven Post-bake photoresist for 30 min. at 120*C

9 Lam 490B Reactive ion etch (RIE) polysilicon

10 Oxygen plasma asher Strip photoresist

11 Wet station Piranha clean and HF dip

12 Endura 5500 Sputter 350nm of Aluminum

13 HMDS oven Vapor phase deposition of HMDS

14 Spin coater Coat wafer with 1.Ojm of photoresist

15 Oven Pre-bake photoresist for 30 min. at 90*C

16 EV620 Aligner Align mask and expose photoresist

17 Wet station Develop photoresist

18 Oven Post-bake photoresist for 30 min. at 120*C

19 Wet station Etch aluminum with PAN etchant

20 Oxygen plasma asher Strip photoresist

21 HMDS oven Vapor phase deposition of HMDS

22 Spin coater Coat wafer with 8pm of photoresist

23 Oven Pre and post-bake photoresist for 90 min.

at 90 0C

24 Die saw Cut through 80% of wafer from backside

25 Cleave through remaining wafer thickness

26 Solvent hood Soak in acetone to remove photoresist

27 Solvent hood Rinse with isopropyl

28 Xenon difluoride etcher Release aluminum bridges with isotropic etch

continued on next page
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Table 3.1: continued

Step Machine Process Notes

of polysilicon

3.2 Fabrication details

While there are number of fairly standard microfabrication steps in the process shown

in Table 3.1, there are a few steps that require some additional explanation about

the motivation for the process and/or the process itself. These steps include the

use of polysilicon as the sacrificial material, the material selection and process for the

aluminum bridge structures, the release etch, the unique die-saw and cleave technique

for dicing the wafer, and the subsequent packaging steps.

3.2.1 Sacrificial material

For suspended metal MEMS structures, it is very common to use some type of polymer

as the sacrificial layer [1113. Polymers allow for low temperature processing which is

important for integrating MEMS devices with optical and CMOS circuitry. For this

reason, the use of polyimide as a sacrificial material was initially explored. However,

the polyimide was found to be difficult to planarize. In addition, the high vacuum

system used to sputter aluminum is incompatible with polymers. For these two

reasons, polyimide was abandoned as the sacrificial material.

Amorphous silicon was next explored as a potential low-temperature sacrificial

material. Some prototype bridge structures were fabricated using the amorphous sil-

icon. Amorphous silicon was also subsequently abandoned, mostly due to machine

contamination issues. The machine used to deposit the amorphous silicon is gold con-

taminated, which then bars the wafers from further processing in the CMOS machines

in MTL. If this process were to be commercialized, low temperature deposition of the

amorphous silicon would be a very appealing process for the sacrificial material.
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To maintain CMOS compatibility in MIT's MTL, polysilicon deposited in a LPCVD

tube was finally settled on as the sacrificial material. This has the disadvantage of

being a rather high temperature process, which limits its ability to be included in an

integrated process. However, for the demonstration prototype, this proved to be the

best available option.

3.2.2 Release etch

In conjunction with the selection of silicon (poly or amorphous) as the sacrificial

material came the selection of the release etch. The release etch needed to be an

isotropic etch that, ideally, was a dry etch. A dry etch is desirable in that it avoids

the stiction problems that are experienced with wet release etches. In addition, the

etch needed to selectively etch silicon relative to the silicon oxide bottom cladding,

the silicon nitride waveguide core, and the aluminum comprising the MEMS bridge

structure. Finally, the machine used for the etch needed to accept metals (aluminum).

The etch that matched all of these constraints was determined to be a gas-phase

xenon difluoride etch. The xenon difluoride is highly selective to all of the materials

comprising the structure of the switch, etches silicon rapidly, and is a dry etch [91].

3.2.3 Lossy bridge material

The optically lossy bridge material was selected to be aluminum due to a couple of

constraints. First, the preferred deposition technique was sputtering, which gives

a fairly good conformal coating and is a low temperature process. Secondly, the

material needed to be resistant to being etched by xenon difluoride.

In the machines and materials available at MTL, aluminum and titanium nitride

both matched the conditions mentioned above. Aluminum was selected as the ma-

terial for the prototype bridge based on aluminum having been used successfully in

other MEMS devices [35].
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3.2.4 Wafer dicing

The dicing of the wafer is a critical step in the wavelength selective switch process

because the end facets of the waveguides need to come right to the edge of the chip

and be optically flat. This can be accomplished by dicing the wafer using a typical

die saw procedure and then polishing the edge of the chip until a nice flat end facet

is achieved. For the MEMS process, this approach was not acceptable because the

release of the MEMS devices could not occur before the polishing step (the bridges

would have been destroyed by the polishing) and after the polishing step, the chips

would not be allowed back into the fab for subsequent processing.

An alternative technique that relies on the brittle nature of the silicon nitride

waveguides is to cleave the wafer and allow the fracture of the silicon nitride to

produce a nice flat end facet for the waveguide. This would work quite well except

that cleaving the wafer does not provide the necessary accuracy for the optical test

chips.

To overcome these challenges, a combined die-saw and cleave process was used.

This involved die sawing the wafer through 90% of the thickness from the backside

of the wafer. To protect the devices on the frontside of the wafer, which is in contact

with Kapton tape and the wafer chuck, a thick layer of photoresist was applied to the

frontside of the wafer.

Once the wafer was die sawed, the wafer was very carefully removed from the

Kapton tape and cleaved along the lines defined by the die saw. This technique

produced very accurate cleaved surfaces that provided a fairly high yield ( 75%) of

good quality waveguide end facets. With process refinement, higher yields are very

likely possible.

3.2.5 Packaging

Two different packaging techniques were used for the device. One package was op-

timized for electromechanical testing with the Zygo profilometer system. This setup

was used for measuring displacement with applied voltage, which required optical
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Figure 3-4: Image of the packaged optical MEMS switches evaluated in the Zygo
profilometer system.

access to the top of the device. Because the objective lens comes very close to the

device, probes could not be used to apply the actuation voltage. For this reason, a

simple test package was used with gold wire-bonds connecting the device bond-pads

to the package connector pins. Figure 3-4 shows a packaged device that was tested

in the Zygo profilometer.

For testing the optical performance of the device, access needed to be provided

to the input and output edges of the chip where the end facets of the waveguides

were located. In this case, the test package used in the Zygo profilometer was not

acceptable. However, in the optical test setup, the top of the device was available

for access by probes to allow the introduction of the control voltage. The chip was

mounted to a small pedestal that was inserted into the optical test set-up. The chip

substrate was grounded to the pedestal while the control voltage was applied through

probes, as shown in Figure 3-5. This technique allowed the necessary introduction of

the actuation voltage as well as maintained the optical pathway to the edge of the

device to couple the light into and out of the waveguides.
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Figure 3-5: Picture of a die with an array of MEMS bridges. The probe tips can be
seen in contact with one of the contact pads for the optical switch devices.
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Chapter 4

Optical ring resonator MEMS

switch fabrication results and

testing

After fabrication, the devices were subjected to a series of mechanical and optical

tests. Some of these tests were metrological to determine how well the fabricated

devices matched the design. Other tests evaluated electro-mechanical performance of

the device and the actual optical switching performance. This chapter reports on the

results of these tests. In addition, further modelling of the performance of the device

is provided based on information extracted from the experimental testing.

4.1 Fabrication results

The MEMS structures resulting from the fabrication process were analyzed using

an optical microscope, a white light Zygo interferometer, and an scanning electron

microscope (SEM). The results of this analysis indicated that the structures were

affected by lithographic resolution, residual stress, surface roughness, mask alignment,

and over-etching. The effects of these issues caused deviations from both the designed

geometry as well as from the expected optical performance. Nevertheless, the switch

functioned and thus demonstrated the first-ever switching on and off of an integrated
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Figure 4-1: Optical micrograph of a fabricated wavelength selective switch.

microring optical resonator by a MEMS device.

4.1.1 Lithographic resolution

The diameter of the etch-holes in the MEMS bridge structures was almost equal to the

resolution limit (2pm) of the contact lithography equipment used for the patterning

of the bridge structures. The result of this was that in some areas on the wafer,

the etch holes were not imaged into the photoresist and thus no etch holes were

transferred into the aluminum bridge structure. In the bridges where the etch holes

were patterned the limited resolution caused the corners of the the etch holes to be

rounded to the point that the etch holes assumed a circular shape, as seen in Figure

4-1.

The rounding of the corners of the etch holes was anticipated and desired since

rounded corners produce lower stress concentrations in deforming structures. The

complete disappearance of the etch holes was undesirable and indicates that greater

care needs to be exercised during the patterning of the aluminum layer. However, the

bridge structures without etch holes actually proved to be useful in the mechanical

displacement measurements because they provided better experimental results from

the optical profilometer as compared with the bridge structures with etch holes. The

limited lateral resolution combined with the small features resulting from the etch
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holes in the bridges produced noisy results when the bridges with the etch holes were

tested in the optical profilometer.

The bridge structures with etch holes were used for the optical testing since the

etch time to release the bridges was less and therefore the etching of the silicon nitride

waveguides was also minimized. Somewhat surprisingly, the pull-in voltage for both

bridges with and bridges without etch holes was about 24 volts. The reason for this

is that the pull-in voltage of the bridge was actually more strongly controlled by

dielectric charging rather than the stiffness of the bridge structure, as explained in

Section 4.2.1.

4.1.2 Residual stress

Residual stress within the MEMS structures significantly reduced the optical per-

formance of the MEMS devices. Through measurements with the Zygo white light

interferometer, it was found that residual stress in the MEMS structure reduced the

gap between the optically lossy material in the MEMS bridge from the required 1.1

pm down to 0.34 Mm. This caused the optically lossy MEMS bridge to interact with

the evanescent field in its unactuated position more strongly than desired, and en-

hanced the insertion loss in the drop waveguide and reduced the switching contrast

in the through waveguide.

To assist in the analysis of the stress in the unreleased aluminum film, it is helpful

to think of the stress in the film as a combination of a constant stress, or mean stress,

and a stress gradient. In this analysis, the stress gradient will be assumed to be

constant (i.e. linear stress variation through the thickness of the beam).

To determine the value of the stress gradient in the aluminum film, release struc-

tures were incorporated into the mask set that allowed the determination of the stress

gradient due to the deformation of the structures. Similar techniques have been re-

ported on in the past [18,26,27,33,34,98,105,139].

For the particular method used here, a series of cantilever beams of different

lengths were fabricated, similar to [26, 27, 139]. Cantilever beams were selected be-

cause they allow the mean stress in the beam to relax through the expansion or
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contraction of the beam. The beam also bends up or down due to the stress gradi-

ent. This decouples the mean stress from the stress gradient. While the relaxation

of the mean stress due to the beam contracting or expanding can not be measured,

the deformation (bending) due to the stress gradient is measurable, from which the

stress gradient can calculated.

By using a series of beams with a fixed difference in length, the only measurement

required of each beam is the gap between the tip of the beam and the substrate.

This measurement is best done with a non-contact profilometer. In the testing of the

wavelength selective switch, a Zygo white-light interferometer was used successfully.

From the measurement of the gaps between beam tips and the substrate of sub-

sequent beams, the radius of curvature of the deformed beams can be found. The

stress gradient of the unreleased film is directly related to the radius of curvature of

the released beams. Figure 4-2 shows the layout of the series of cantilevers used to

determine the stress gradient in the aluminum film.

In addition to the unknown stress gradient, there is an unknown amount of rota-

tion about the beam anchor introduced by the deformation of the anchor resulting

from the residual stress. This means that at least three beams (providing two relative

tip displacement measurements) are required to find the unknown stress gradient.

The radius of curvature of the beams is constant and equal if there is no variation

in the stress state of the film comprising the beams in any plane parallel to the

substrate plane. Because of the small size of the beams and the close proximity of

the individual beams, variation in the film stress is in this manner is unlikely to cause

a problem. By using the measured tip displacement values along with the known

difference in beam lengths, the radius of curvature can be calculated. Figure 4-3

shows the important dimensions and geometric relationships for the calculation.

The cantilever beams in the array have a constant change in length AL between

adjacent beams. After the sacrificial release etch, the beams bend due to the residual

stress gradient in the film. Because they are only attached at one end, the beams

assume a circular shape with a constant radius of curvature. The length A L, has now
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Figure 4-2: CAD layout of the suspended series of cantilever beams used to determine
the residual stress gradient in the aluminum film.
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Figure 4-3: Diagram showing the important dimensions and geometric relationships
used in the residual stress gradient derivation from the cantilever beam array.
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become an arc on the circle defined by the deformed beams. The relationship

pO = A L (4.1)

between the radius p, the arc length AL, and the angle subtended by the arc 0,

therefore holds.

In addition, equations relating the change in end height (Ahi, Ah 2) and chord

length, C, of subsequent cantilever beams with the angles q and 0 as defined in Figure

4-3 can be written as

= sin (+ (4.2)

C2 = sin 4+ 20 .(4.3)

If the angle 0 is small, then the arc length AL, and the chord length C, are approx-

imately equal'. By using this assumption, Equations 4.2 and 4.3 can be rearranged

and combined to eliminate q, leaving 0 as the only unknown.

0 : arcsin Ah2 arcsin AL (4.4)

Equation 4.4 can be combined with Equation 4.1 to allow the direct calculation

of the radius of curvature of the cantilever beams.

AL
arcsin (A2) - arcsin (itl) (4.5)

The relationship between the radius of curvature and the bending moment, M, of

a beam is [41]
1 = M 

(4.6)
p EIa'

where E is the Young's modulus of the beam material 2 and Ia is the area moment of

'The size of the angle 6 is controlled by the magnitude of AL. Therefore, the AL value that
is selected in the design of the cantilever beams should be such that 6 is small to simplify the
calculation of the residual stress gradient.

2For beams with a width greater than about ten times the thickness, the biaxial modulus, 1,
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inertia of the beam cross-section.

The relation between bending moment and stress at any particular point through

the thickness of the beam is [41]

O-YX = ,My (4.7)
Ia

where a-x is the stress in the beam at the position y, and y is measured from the

neutral axis of the beam. For the case of beams of rectangular cross-section composed

of a single material, the neutral plane is at the center of the thickness of the beam.

By taking the spatial derivative of Equation 4.7 and combining it with Equations

4.6 and 4.5, the residual stress gradient is found as

I= ~Earcsin ( Al) - arcsin (R) (4.8)

(9y AL

Using this technique, the aluminum film was found to have a residual stress gra-

dient of 63.1 +16.8 MPa/pm (for a 95% level of certainty)3 . This indicates that for

the aluminum film with thickness 350nm, the stress difference between the top and

bottom of the film was 22.1 +5.9 MPa.

If we set the stress at the bottom of the aluminum film at 100 MPa, then the stress

at the top of the film will be 122.1 MPa. The average stress through the thickness

of the aluminum is therefore 111.0 MPa. This constant background stress level is

consistent with reported values of average residual stress levels in the aluminum films

deposited on silicon substrates [54, 71, 72] and is further validated by the results

of the finite element modelling of the experimental results of the fixed-fixed bridge

structures.

Using the stress values for the film described above, the bridge structure used to

switch the optical ring resonator on and off was modelled using finite element analysis

(FEA) with a linear elastic material model. The analysis indicated that the Mises

should be used in place of the Young's modulus to account for the Poisson effect in the beam which
tends to stiffen the beam.

3Appendix C lists the results of the individual measurements of the radius of curvature and the
residual stress gradient.
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Figure 4-4: Finite element analysis showing the Mises stress in the anchor resulting
from the residual stress in the aluminum film. Where the Mises stress exceeds the
yield stress of aluminum, the structure will plastically deform, causing the anchor to
rotate inward as indicated.

stress where the anchors rise up into the bridge structure greatly exceeds the yield

stress of aluminum (see Figure 4-4). This result indicates that the upright portion of

the anchors will experience significant plastic deformation. The result of the plastic

deformation is that the anchor rotates inward, giving the bridge structure an initial

downward slope. This is observed experimentally in the profilometry tests of the

bridge structure.

The Coventorware finite element package does not provide a material model that

allows plastic deformation. However, the rotation in the anchors resulting from the

plastic deformation can still be captured in the model by reducing the stiffness of the

anchor. This was done in the model by reducing the thickness of the anchor and thus

allowing more bending and rotation of the anchor.

Figure 4-5 shows an experimental measurement of the profile of the bridge com-

pared with both the strictly elastic and the plastic deformation compensated finite

element models. When the plastic deformation is taken into account, the finite ele-

ment model predicts quite well the deformation experienced by the bridge using the
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Figure 4-5: Comparison between the experimentally measured bridge profile and the

bridge profiles calculated using an elastic finite element model as well as a finite

element model that compensated for the plastic deformation that was experienced by

the structure.

residual stress values of the aluminum bridge as determined above. This plastic de-

formation compensated finite element model will be used again in Section 4.2.1 to

model the actuation of the MEMS bridge.

4.1.3 Surface roughness

Figures 4-6 and 4-7 are SEM images of an aluminum bridge structure over the ring res-

onator and bridge anchor, respectively. Significant roughness can be seen on both the

top surface as well as the edges (sidewalls) of the aluminum bridge. For the switching

application, the roughness is not a significant concern. In fact, the roughness likely

increases the optical loss introduced into the ring resonator when the MEMS bridge

is pulled down due to the roughness inducing scattering losses. However, for other

applications, such as ring resonator MEMS tuning (see Chapter 8), the roughness of

the surface must be avoided.
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Figure 4-6: SEM image of a portion of the MEMS bridge over the top of the optical

ring resonator filter.
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Figure 4-7: SEM image showing one of the anchored sides of the MEMS bridge. Note
that the suspended section of the aluminum bridge has much greater roughness than
the aluminum anchored to the silicon oxide layer. This is a result of the roughness of
the poly-silicon sacrificial layer.
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The surface roughness of the aluminum bridge is due to the roughness of the

underlying poly-silicon sacrificial layer. The poly-silicon develops a rough surface by

the preferential growth of certain orientations of silicon crystal grains in the poly-

silicon film. The deposited aluminum film conforms to the shape of the poly-silicon

grains and in so doing assumes the roughness of the poly-silicon film. The effect of

the roughness of the poly-silicon layer on the aluminum bridge is very clear in Figure

4-7, where the suspended aluminum is quite rough while the aluminum that is affixed

to the silicon oxide layer is smooth.

To reduce the roughness induced by the sacrificial poly-silicon layer, a chemical-

mechanical polishing (CMP) step should be included after the deposition of the poly-

silicon film to reduce the surface roughness of the poly-silicon film. The CMP step

would also eliminate the rounded bump in the aluminum film over the top of the

waveguides comprising the ring resonator (see Figure 4-6).

The sidewall roughness of the aluminum bridge is due to the aluminum etchant

preferentially etching certain aluminum crystal grain orientations. Because some

grains are etched more quickly than others, this leaves a ragged edge on the aluminum

bridge. While this edge roughness does not have any significant effect on the ring

resonator switching device or the ring resonator tuning device, it could be somewhat

reduced by using anisotropic reactive ion etching (RIE) rather than the wet (PAN)

etch that was used in our process.

4.1.4 Alignment

The alignment of the fabricated devices was off by 3 to 4pm along the length of the

bridge and 1.5pim along the width of the bridge. Rotational misalignment was not

observed. Even though these misalignments are relatively large, the most critical

requirement on the alignment of the bridge to the ring resonator structures was met,

which was keeping the bridge structure well outside of the evanescent field of the bus

waveguides.

The misalignment did place some of the etch holes above the waveguides com-

prising the ring resonator structure, as can be seen in Figures 4-1 and 4-6. The
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Figure 4-8: Schematic drawing showing the evolution of an isotropically etched film
beginning with (A) and proceeding through (B), (C), and (D) showing the resulting
undercut.

misalignment of these etch holes decreased the coverage of the ring resonator by the

MEMS structure. This led to a decrease in the absorptive loss introduced to the

optical ring resonator and thus to decreased switching contrast. 4

4.1.5 Aluminum undercut

To pattern the aluminum bridge structure, a wet aluminum etch (PAN etch) was

used. This etchant is isotropic for aluminum, meaning that it etches in all directions

at the same rate. Figure 4-8 shows a schematic representation of an isotropic etch.

To ensure that the aluminum layer was completely etched through, the aluminum

etch was allowed to proceed for approximately twice the time duration nominally

4The decreased loss from absorption caused by the misalignment of the etch holes may actually
be compensated by increased scattering losses due to the edges of the etch holes creating changes in
the effective index of the ring resonator.
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required to etch through the film thickness. This was expected to, and did, introduce

an undercut of approximately twice the thickness of the film. The undercut was

measured using SEM images and was found to be 0.82pm. This decreased the bridge

width by 1.6 4 pm, while the etch holes increased from 2.OpIm up to 3.64pIm.

The undercut effected both the optical and mechanical performance of the switch.

In the mechanical domain, the undercut tends to reduce the stiffness and mass, thus

altering the resonant frequency and switching speed. In the optical domain, the

undercut reduces the coverage of the ring resonator by the bridge from5 58% to 41%,

resulting in smaller absorptive optical loss being introduced into the ring resonator

when the bridge is in the lowered state.

4.2 Testing

The switch was tested both electro-mechanically and optically to evaluate its per-

formance. The purpose of electro-mechanical testing was to determine the pull-in

voltage of the structure. The mechanical measurements consisted of applying a con-

stant voltage and measuring the displacement of the MEMS bridge. The results of

the mechanical testing fit very well with a proposed model that takes into account

the effects of dielectric charging (see Section 4.2.1).

Optical testing demonstrated functionality of the device as a wavelength selective

switch. The spectral wavelength response of the switch was measured for both the

through and drop ports, in both states of the switch. The temporal response of the

switch was also measured by applying a square-wave actuation signal to the device

and simultaneously measuring the optical response of both the through and drop

ports at a fixed wavelength.

5 This coverage value also takes into account the reduction in coverage due to the misalignment
of the bridge structure which resulted in some of the etch holes residing over the ring resonator.
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Figure 4-9: Displacement as a function of voltage for the wavelength selective switch

device. Note the pull-in at 24 volts.

4.2.1 Actuation voltage and dielectric charging

The displacement with applied voltage of the wavelength selective switch was eval-

uated using a Zygo white light interferometer system to measure the profile of the

device as it was being actuated by an applied voltage. The profile change with applied

voltage was used to determine the change in the gap at the center of the bridge struc-

ture as a function of applied voltage. The results of this test are shown in Figure 4-9.

It can be seen that the bridge pulls in between 21 and 24 volts. This was a surprising

result. A pull-in analysis using the finite element model of the bridge developed in

Section 4.1.2 predicts that pull-in should occur only after the bridge is in contact

with the dielectric material (i.e. the bridge should be blocked from ever actually ex-

periencing pull-in by the dielectric material). The results of the finite element pull-in

analysis are compared with the experimental results in Figure 4-10. During optical

testing, the same pull-in effect of the bridge was also observed in that there was little

effect on the optical output of the switch until a voltage of 24 volts was reached. At

this point a very abrupt change in the optical output was observed.
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Figure 4-10: Finite element pull-in analysis compared with the experimental testing
results. Note the finite element analysis predicts that pull-in shouldn't occur since
the pull-in point is below the surface of the insulating oxide film.

The anomalous pull-in of the MEMS device seen in the experimental testing is

due to trap charges building up on the surface of the dielectric material between

the MEMS bridge and the substrate. This charging up of the dielectric surface is

referred to as dielectric charging. The charges are trapped in in charge trap sites of

the dielectric material when an electric field is applied. The charge trap sites are the

result of imperfections in the microstructure of dielectric materials. The charge traps

can retain the trapped charges for a significant time duration after the removal of the

electric field, anywhere from the order of seconds to days [111,147].

A simple model predicting the effect of dielectric charging on parallel plate actu-

ators has been proposed previously [147,151] that predicts an increase in the pull-in

voltage due to dielectric charging. A revised version of this model is used here to

predict and explain the experimental displacement results of the wavelength selective

switch throughout the actuation process.

A schematic of the model used for the dielectric charging analysis is shown in

Figure 4-11. The charges on the parallel plate electrodes are, of course, on the two
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Figure 4-11: Schematic representation of the model used to for the analysis of the
effect of dielectric charging on the wavelength selective switch.

opposing surfaces of the electrodes. The trapped charges on the dielectric material

are also located on the surface of the dielectric layer.

In the MEMS bridge model, a nonlinear spring was used. The nonlinear spring is

required because the bridge is fixed at both ends which introduces a nonlinear spring

effect due to stretching. The nonlinear spring used to model the stretching of the

bridge is a Duffing spring. The spring also has a linear component resulting from the

bending of the bridge.

The equation of motion for this model is

mi + bi+ kc + kdX 3 = Fe, (V, x, Qo ,), (4.9)

where Fei(V, x, Qo) is the electrostatic force due to the combined effects of the parallel

plate actuator and the charged dielectric layer, and is a function of the applied voltage

V, the displacement x, and the charge trapped on the dielectric surface Qo.

The total charge on the top and bottom electrodes is a combination of the charge

104



II dc

Ctdc

Qbdctd

Figure 4-12: Schematic drawing showing the relationship between the trapped charge
on the dielectric surface and the resulting induced charges on the two electrodes.

due to the applied voltage and the charge induced by the charged dielectric surface.

By superposition, the effective charges of the top and bottom plates can be written

as

Qt = Qta + Qtdc, (4.10)

Qb = Qba + Q, (4.11)

where Qt and Qb are the total charges on the top and bottom electrodes, respectively.

Qta and Qba are the charges on the top and bottom electrodes, respectively, due to

the voltage applied across the electrodes. Qitd and Qbdc are the charges induced on

the top and bottom electrodes, respectively, by the charge on the dielectric surface.

The charge on the electrodes due to the applied voltage is straightforward to

calculate, and is
_ EdEo AV

Qba = -Qta = dOA (4.12)
Eotd + Ed (da - x)

where Ed is the relative permittivity of the dielectric material.

To calculate the charge induced on the electrodes by the trapped dielectric charge,

it is helpful to think of the system as two capacitors in series where the trapped charge

is located on two connected plates as in Figure 4-12.

Two equations are needed to determine the induced charges on the two electrodes.

The first equation comes from the fact that the sum of the induced charges on the
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electrodes and the trapped charge on the dielectric is zero.

Qtdc + Qbdc + Qo = 0. (4.13)

The second equation relating the induced charges results from applying Kirchhoff's

voltage law to the circuit of Figure 4-12 and using the basic definition of capacitance.

This gives

Qtdc - Qbdc (4.14)
Ctdc Cbdc

By combining Equations 4.13 and 4.14 with the geometric dependence of the

capacitances,

Ctdc = cA, (4.15)
da - X

Cbdc = , (4.16)
td

we can find both Qtdc and Qbdc as functions of the trapped charge Qo and the dis-

placement x as

Q Qototd
Qtdc =d (4.17)

EdEO (da - x) - Cotd

QoCdIo (da - (4.18)
EdfO (da - x) - Eotd

The amount of charge on the surface of the dielectric material varies widely due

to a number of parameters. The trapped charge varies strongly with the strength

of the applied electric field, but is also affected by the composition, pressure, and

temperature of the atmosphere within the gap. During the testing of the wavelength

selective switch, the atmosphere was relatively constant but the electric field certainly

changed. To capture this dependence of the trapped charge on the strength of the
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electric field, the following model is proposed

ao _ o + a, +coA for Qo < QsatO(d -)+O (d- Jet
Ed Ed

Q0 = (4.19)

Qsat otherwise

This contains a linear term and a second order term that makes the trapped charge

a nonlinear function of the applied voltage. This model is based on the physics

behind dielectric charging, where the amount of ionization of the gas molecules in

the gap is nonlinearly dependent on the electric field [43,111, 151]. In addition, the

trapped charge saturation Qsat included in this model represents the fact that realistic

dielectrics have a maximum trap density for charges with a fixed energy. Beyond this

density, no additional charging is experienced.

With all of the charges in the system now known, it is possible to calculate the

electrostatic force Fei on the suspended electrode. The most straightforward method

to calculate the force resulting from the various charges is to calculate the electric

field at the position of the top electrode and use that to find the force on the electrode

due to its own charge. This gives

Fei - (Qta + Qtdc) (Qba + Qdc + Qo). (4.20)
2eOA

The system model described in the Equations 4.9 through 4.20 was implemented

in Simulink. The first step in using this model to predict the predict the pull-in

behavior seen in the experimental results is to calibrate the model to the results of

the finite element model pull-in analysis. For the calibration, the dielectric charging

effects in the lumped parameter model were set to zero. The finite element model

was used for the calibration based on the assumption that the finite element model

provides an accurate prediction of the pull-in characteristics of the device in the

absence of dielectric charging. Judging from the fit achieved between the experimental

profilometer results and the finite element model, this assumption is likely good to

within a few percent.
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Table 4.1: Parameters used with the nonlinear dielectric charging lumped parameter
model.
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Parameter No Charging Nonlinear Charging

m (kg) 6.08 x10- 13  6.08 x10- 13

b (N-s/m) 4.8 x10- 7  4.8 x10-7

k (N/m) 5.23 5.23

kd (N/m 3) 1.3x10 13  1.3x10 13

A (M2 ) 1.42x10- 9  1.42x10-9

da (m) 3.4x10- 7  3.4x10-7

td (M) 3.0x10- 6  3.0x10-6

ao (N-s/m) 0.0 0.2

ai (N s/m) 0.0 8.4 x10"

Qsat (C) 0.0 1.05 x10- 13



5 10 15 20
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Figure 4-13: Results of fitting the lumped parameter model with
results of the finite element pull-in analysis.

no charging to the

The values used in the lumped parameter dielectric charging model are shown in

Table 4.1. The mass and damping used in the model are inconsequential since the

result of interest is the equilibrium (steady state) position of the bridge. For the mass,

the generalized mass of the bridge given by the finite element analysis was used. The

damping constant was selected to place the system near critical damping (for fast

settling of the simulations). The actual area of the fabricated bridge was used for A,

and the permittivity values are those of air and silicon oxide, as given in Tables A.6

and A.3 respectively.

The two spring constants k and kd were selected to match the displacement ver-

sus voltage curve of the lumped parameter model with the the displacement versus

voltage curve of the finite element pull-in analysis results. The results of the lumped

parameter simulation using these parameters is shown in Figure 4-13.

With the lumped parameter model calibrated, the dielectric charging effect was

added to the simulation according to the dielectric charging model given in Equation

4.19. The parameters ao, a,, and Qsat were selected to match the displacement and
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Figure 4-14: Comparison of the results of the experimental actuation results with
the finite element actuation model and the lumped parameter model that takes into
account dielectric charging using the second order dielectric charging model.

pull-in observed experimentally. The values for these parameters are given in Table

4.1.

The result of the lumped parameter model simulations with the dielectric charging

effects included are shown in Figure 4-14. The results from this simulation are a very

close match to the experimental results obtained for the wavelength selective switch

device. The experimental and modelling results indicate that the trapped charge

increases nonlinearly with the applied electric field. The rate of accumulation of

the trapped charge increases due to its nonlinear dependency on the applied electric

field. As the accumulation rate of the trapped charge increases, the accumulation

rate of the charge on the top electrode decreases. Curves of the evolution of the

trapped charge Qo and the charge on the top electrode Qt versus applied voltage

for the lumped parameter model simulation are shown in Figure 4-15. The result of

these accumulation rate dynamics is that the electrostatic attraction force that the

top electrode experiences changes little with increasing voltage which leads to the

flattening of the displacement versus applied voltage curve seen in Figure 4-14 just
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Figure 4-15: Evolution of the top electrode charge and the trapped charge versus the
applied voltage for the lumped parameter dielectric charging simulation.

before pull-in occurs.

Pull-in occurs very soon after the charge trap sites of the dielectric material become

saturated. At this point, any increase in voltage results only in charge accumulation

on the top and bottom electrodes, with no increase in the trapped charge, as seen in

Figure 4-15. The charge increases rapidly on the top and bottom electrodes which

leads to pull-in very quickly.

The trapped charge density at saturation predicted by the model is 7.4xi0-5

C/m 2 and corresponds to a charge trap density of 2.6x1010 cm-2.eV- 1 . The charge

trap density value compares quite well with published charge trap density values for

silicon oxide [59, 70, 123,149]. For further comparison, the charge trap density for a

parallel plate actuator that used parylene as the dielectric material was found to be

about eighteen times greater than the value reported here [151]. The fact that the

value found for the wavelength selective switch and the device in [151] are only a little

more than an order of magnitude different seems like a reasonable difference given

that the dielectric materials are quite different (parylene is a polymeric material).

The favorable comparison of the trapped charge density of the wavelength selective
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switch with these reported values of charge density and charge trap density lends

additional validity to this model of dielectric charging.

One of the interesting results of this analysis is that for this particular device,

the effects of dielectric charging appeared to dominate the pull-in characteristics of

the device. The pull-in voltages of both bridges with etch holes and bridges without

etch holes were observed to be essentially the same, although the stiffnesses of the

structures were different. In previous work [109], it was shown that etch release holes

more strongly affected the mechanical properties of the electrostatic actuators (i.e.

stiffness, resonant frequency, and mass). The electric fields created by plates with

and without etch holes were found to be fairly similar for small sized etch holes.

Because dielectric charging is directly related to the electric fields, it is expected that

the dielectric charging characteristics would not be affected greatly by the presence

or absence of small etch holes either.

4.2.2 Optical Performance - spectral

Because of the wavelength selective nature of the switch, it was important to test both

the wavelength (spectral) response of the switch as well as the temporal response. The

spectral response of the switch was tested using the system shown in Figure 4-16.

An image of the optics used to couple the light into the wavelength selective switch

and collect the light coming out of the drop and through waveguides is shown in Figure

4-17. The image in Figure 3-5 shows an magnified image of the chip containing the

wavelength selective switch with the probes used to introduce the control voltage in

contact with the bond pad of a wavelength selective switch.

The edge of the chip where the end facets of the through and drop waveguides

were located was imaged and brought to a focus. At the focal plane of the image, an

iris was aligned with the bright spot of light coming out of either the through or drop

waveguide. Figure 4-18 is an image of the edge of the chip showing the bright spot

of light emerging from the waveguide end facet, as seen during testing.

The iris spatially filters the image and allows only the light coming from the drop

or through waveguide to pass through to the optical detector. The alignment of the
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Figure 4-16: Illustration of the set-up to test the spectral response of the wavelength
selective switch.

iris is accomplished using the video camera shown in Figure 4-16. When the iris is

aligned, a mirror is placed in the optical path routing the light to the optical detector

which is subsequently aligned to the light coming from the waveguide.

The light that is input into the device is modulated at a set frequency. The mod-

ulated signal that is imposed on the input light is also input into a lock-in amplifier

through which the output of the optical detector is also routed. The lock-in amplifier

is thus able to filter the output signal to remove noise in the signal.

The experimental results of the spectral response of the drop port are shown in

Figure 4-19. The figure shows the response of the switch in both of its states. The

different states were achieved by applying either no voltage or 30 volts. The MEMS

device changed the optical quality factor of the ring resonator from about 1200 to

less than 200, providing a switching contrast in the drop port of 13±1 dB.

The results of spectral testing on the through port are shown in Figure 4-20 for

both switch states. The two states were again achieved by applying no voltage or 30

volts. The switching contrast seen in the through port was approximately 1.5 dB.

In Figure 4-21, the results of both through and drop ports in both switch states

are plotted together. The insertion loss observed in the drop port is rather high,
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Figure 4-17: Image of the test set-up used to couple light into the input waveguide
of the device and image the output light coming from the through and drop ports.
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Figure 4-18: Image of the edge of the chip. The bright spot of light is the waveguided
light coming out of the end facet of the waveguide at the edge of the chip. The lighter
area above the bright spot is the surface of the chip, while the darker area below the
bright spot is the chip edges.

1550 1555 1560 1565 1570
Wavelength (nm)

1575 1580 1585

Figure 4-19: Spectral response of the drop port of the wavelength selective switch for
both states of the switch.
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Figure 4-20: Spectral response of the through port of the wavelength
for both states of the switch.

selective switch

around 6 10 to 11 dB. The free spectral range of the ring resonator filter is 12nm.

The high insertion loss seen for the drop port, as well as the low switching contrast

seen in the through port are a direct result of the MEMS bridge being partially pulled-

in to the evanescent field of the optical ring resonator due to residual stress (see section

4.1.2. However, the test results of the prototype achieved the goal of demonstrating

wavelength selective switching by combining an optically lossy MEMS device with

integrated optical ring resonator filters. This is the first demonstration of this kind

of capability.

Further work on controlling the residual stress should result in devices that per-

form just like static optical ring resonators when the bridge is up. Light rejection of

the switched port and insertion loss in the down state should also improve.

6 The insertion loss in the through port was not measured but is typically very small (<0.5dB)
for ring resonator filters, and should also be very small for this device, since the MEMS device does
not directly affect the through port.
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Figure 4-21: Spectral response of both the through port and the drop port of the
wavelength selective switch for both states of the switch.

4.2.3 Optical Performance - temporal

Temporal testing of the switch was conducted with a fixed wavelength and a modu-

lated control voltage to allow the evaluation of the switching dynamics of the device.

The experimental test set-up for the temporal response of the switch is shown in

Figure 4-22.

The tunable laser was set to a wavelength that showed switching contrast for the

drop and through ports (i.e., a wavelength at or close to the resonant wavelength

of the device). The voltage signal applied to the device by the signal generator and

voltage amplifier was a 30 volt (peak-to-peak) square-wave signal with a 15 volt DC

bias. It should be noted that the speed of the voltage amplifier was 8kHz. (This

actually turned out to be the limiting factor of the switching speed of the device.)

The light detected by the photodetector was modulated according to the motion

of the MEMS bridge device. The output of the photodetector was input into a digital

oscilloscope in which 512 different samples were collected and averaged to reduce

noise. Note that in this set-up the lock-in amplifier was not used, and the only
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Figure 4-22: Illustration of the test set-up for testing the temporal response of the
switch.

modulation to the optical signal came from the wavelength selective switch.

The results of the temporal measurement of the through port are shown in Figure

4-23. The low points in the signal are when the bridge structure is up and the high

points are when the bridge structure is down. These results were obtained with the

control voltage modulated at 2kHz.

The results of the measurement of the drop port are shown in Figure 4-24. For

the drop port, the low points in the signal correspond to the bridge being down and

the high points in the signal are when the bridge is up. The control signal in this

case was also modulated at 2kHz.

The combined temporal switching results of both the through and drop ports are

shown in Figure 4-25.

By analyzing the results of the temporal testing, the switching speed of the device

can be obtained. The switching speed was calculated based on a 10% to 90% criteria

and was found to be 60 ps to pull down and 16 its to pull up. These switching speeds

are much slower than those predicted in Chapter 2. At present, speed is only limited

by the measurement equipment. The 60 ps for the pull-down time is directly related

to how long the test equipment takes to reach the pull-in voltage, or one half cycle
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Figure 4-24: Temporal response of the drop port of the wavelength selective switch.
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Figure 4-25: Temporal response of both the through port and the drop port of the
wavelength selective switch.

at 8 kHz which is 62.5 ps.

The pull-up time was a little better but only because the effects of dielectric

charging caused a strongly binary pull-in effect. This required only a very small drop

in voltage for the structure to pop-up to very near its unactuated height. The small

voltage drop allowed the switching to occur at a speed faster than the speed of the

voltage amplifier.

Although the temporal testing of the device was not intended to constitute a

reliability test, the device was cycled more than 5 million times without failing and

experienced switching frequencies up to 8kHz (limited by test equipment).

4.3 Discussion of results

The most significant result of the experimental testing of the device was the demon-

stration of switching an optical ring resonator using induced loss from a MEMS device.

This is a very significant new optical switching capability.
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The dielectric charging model used to predict the results of the experimental

evaluation of the actuation of the device is another significant result. This model

provides a method to predict the evolution of the charge on the dielectric surface as a

function of applied voltage and bridge displacement. This model should be applicable

to all parallel plate electrostatic actuators.

The final significant development is the method used to evaluate the residual stress

gradient in microfabricated films. This method is also widely applicable in MEMS

and in microfabrication in general to give a more complete understanding of the stress

state of thin films.

While the prototype wavelength selective switch fulfilled its primary goal of demon-

strating loss-based switching of ring resonator filters, the requirements needed to be

integrated with commercial opto-electronic integrated circuits have not yet been met.

The primary areas where it did not meet the requirements are in optical performance,

actuation voltage, and switching speed.

The optical performance was degraded due to residual stress in the aluminum

MEMS structure. In Chapter 5 titanium nitride is identified as a desirable material

to replace aluminum as the MEMS bridge material. A fabrication process for the

construction of titanium nitride MEMS bridge structures is proposed and tested,

demonstrating a significant reduction in residual stress and the resultant deformation.

By utilizing titanium nitride as the MEMS bridge structure, the optical performance

of the switch should dramatically improve.

In Chapters 6 and 7, two new MEMS switch actuation techniques are described

that would allow the switching voltage of the wavelength selective switch to be lowered

to IC voltage levels. At the same time, the switching technique in Chapter 7 would

allow switching speeds much faster than one microsecond.

By using the techniques developed in Chapters 5, 6, and 7 in conjunction with

the induced-loss concept of switching optical ring resonators, a device that is fully

compatible with an opto-electronic integrated circuit will become possible.
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Chapter 5

Residual stress manipulation and

control

In this chapter we consider the issue of residual stress in the aluminum bridge that

comprises the optical switch. As explained in Chapter 4, residual stress results in

deformation of the bridge, which in turn increases optical loss and degrades optical

performance. Therefore, it is critically important to characterize the process of stress

emergence and evolution, and understand the parameters upon which this process is

dependent. In Section 5.1, the evolution of residual stress in the aluminum film is

considered. Next, in Section 5.2, titanium nitride is proposed as a potential material

for this, and other MEMS applications. A technique for the control of residual stress

in titanium nitride is proposed and demonstrated in Sections 5.3 and 5.5, respectively.

5.1 Residual stress in aluminum films

Like most thin films, the residual stress state of the aluminum film used to create the

MEMS device can be altered and controlled by the deposition parameters [54, 71].

However, aluminum and other highly ductile metals (i.e. copper, gold, etc.) can and

usually do experience further evolution of the residual stress state of the film due to

subsequent processing steps. This evolution of the stress in the film is difficult to

work with, although it does appear to be possible as evidenced by Texas Instruments
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micromirror array, which is fabricated out of aluminum [35].

The evolution of the stress state in the aluminum film is due to annealing and/or

plastic deformation of the film. Because the melting temperature of aluminum is

rather low (650"C), the film will anneal even with fairly low temperature processes. If

the temperature of the film reaches about half the melting temperature of aluminum,

the film will experience significant atomic diffusion (annealing) which will eventually

lead to a stress free film at the elevated temperature.

The stress free nature of the film is the desired operating state (i.e. will not deform

and introduce undesired loss into the ring resonator); however, upon lowering the

temperature of the film back to room temperature, the thermal expansion mismatch

between the aluminum film and the silicon substrate very quickly causes the aluminum

film to reach its yield point and experience plastic deformation and a new residual

stress state [72,95].

The change in temperature needed to induce plastic deformation in the aluminum

film is easily estimated. The strain introduced into a material from a change in

temperature is simply

6 = aAT, (5.1)

where AT is the change in temperature, a is the coefficient of thermal expansion,

and e is the thermally induced strain. If the aluminum film and the silicon substrate

were not bonded together, their respective strains would be

FA = aAlZAT, (5.2)

Esi = asiAT. (5.3)

When the aluminum film and the silicon substrate are combined, the strain of the

system is essentially that of the silicon substrate, because the thickness and modulus

of the silicon substrate are much greater than the aluminum film. The strain results
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in stress developing in the aluminum film, equal to

EAL
UAI = (asi - axI) AT. (5.4)

1- V.1

where OA1 is the stress in the aluminum film, EA, is the Young's modulus of aluminum,

and vA! is the Poisson ratio for aluminum. It should be noted that EA, is also known
1-AI

as the biaxial modulus and UAl is actually a biaxial stress.

When UAI exceeds the yield stress ur of aluminum, the film will experience plastic

deformation. The result of the plastic deformation is a change in the residual stress

state of the aluminum film. By rearranging equation 5.4, the change in temperature

needed to induce plastic deformation is found to be

AT= ay (I Va) (5.5)
Eat (asi - aAI)(

Using the parameters of aluminum and silicon shown in tables A.1 and A.2 found

in Appendix A, and assuming no initial residual stress in the aluminum film, the film

will begin to experience plastic deformation with a AT of only ±47*C. This is a very

small change in temperature and is experienced routinely during fabrication. Even

a process as simple as an oxygen plasma etch to strip photoresist will significantly

exceed this AT.

One of the most difficult properties of this type of evolution of the stress state in

aluminum films is that it does not produce a constant stress through the thickness of

the film. A constant stress state can be relieved through the use of flexures that are

doubled back, allowing expansion or contraction of the structure to be compensated.

Another alternative to deal with a constant residual stress is to use a cantilever beam,

which can expand or contract freely to compensate for the constant stress. The stress

state that is actually produced by the plastic deformation of the aluminum film is a

combination of a constant (mean) stress and a stress gradient through the thickness

of the film.

The stress gradient in the film is a result of the aluminum being bonded to a sub-

strate that doesn't allow dislocation flow. Upon reaching the temperature necessary
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Figure 5-1: Illustrations of the dislocation pile-up experienced by the aluminum film
during thermally induced plastic deformation. (A) illustrates the film prior to plastic
deformation. (B) illustrates the film after deforming plastically due to temperature
increase. (C) illustrates the film after deforming plastically due to a temperature
decrease.

for the aluminum film to experience plastic deformation, dislocations flow through

the aluminum film but are blocked at the interface of the aluminum film and the sili-

con substrate. This causes the dislocations to pile up in the aluminum film, creating

a gradient in the plastic deformation [72, 95]. Figure 5-1 illustrates the dislocation

pile-up effect.

The plastic deformation experienced by the free surface of the film relieves the

thermally induced stress that exceeds the yield stress of the aluminum film. The

constrained (bottom) surface of the film is not allowed to plastically deform and

therefore maintains all of the thermally induced stress. This difference in stress
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states between the top of the and bottom surfaces of the film creates a stress gradient

through the thickness of the film [72,951. As shown in Figure 5-1, the sign of the

stress gradient in the film is different depending on whether a temperature increase

or a temperature decrease caused the plastic deformation.

5.2 Titanium nitride for MEMS applications

Due to the low temperature change that can induce plastic deformation in aluminum,

efforts to modify the deposition parameters to achieve a stress free film appear to be

futile since subsequent processing will change the stress state. In addition, efforts

to achieve a stress free film by annealing do not succeed either, since the decrease in

temperature from the anneal temperature to room temperature would cause a residual

stress gradient to develop. For these reasons, a new bridge material was sought whose

stress state could be more readily controlled.

In selecting a material that eliminates the evolution of the stress state that was

experienced by the aluminum film, several requirements need to be met. First of

all, the material needs to be CMOS compatible to allow integration of the optical

switch with CMOS integrated circuits. Next, to eliminate the evolution of the stress

state, either the coefficient of thermal expansion of the material needs to match that

of silicon, or the material needs to not plastically deform. The latter would be the

case for a brittle material or a material with a very high yield stress. Moreover, the

material needs to be electrically conductive to both function as an electrode for the

MEMS actuator and to introduce optical loss into the ring resonator.

Of the materials commonly available in CMOS fabrication, titanium nitride was

the best match with the requirements. Although titanium nitride is commonly used

in CMOS fabrication [32,42,74,106], this work represents the first use of titanium

nitride as an electro-mechanical structural material in MEMS.
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5.2.1 Titanium nitride versus other MEMS materials

Titanium nitride has some very appealing mechanical properties for MEMS appli-

cations. These properties include a high modulus, high melting temperature, high

strength, high stiffness to density ratio, excellent chemical stability, superior anti-

stiction characteristics (low surface adhesion energies), high hardness, and wear (abra-

sion) resistance [75,82,106]. It is due to these outstanding mechanical properties that

leads titanium nitride to be used in its second common application area, as a wear

resistant coating for machine tools [75,82].

What makes titanium nitride particularly interesting is that, in addition to these

mechanical properties, it is also electrically conductive and is thus part of a unique

group of materials called electroceramics. This unique combination of electrical and

mechanical properties has the potential to be very useful in MEMS devices. To

achieve similar properties, usually a bimaterial structure is required. For example,

bridges made of a bilayer of silicon nitride and aluminum have been created to achieve

a mechanically stiff structure that is electrically conductive [4]. Titanium nitride

would allow a simpler bridge constructed of a single material that retains the high

mechanical stiffness and is electrically conductive.

5.3 Fabrication techniques for titanium nitride

As mentioned previously, titanium nitride is commonly used in CMOS fabrication as

an adhesion layer and diffusion barrier. It is also used as a wear-resistant coating

for machine tools. Because of these applications, much is already known about the

fabrication processes (deposition, etching, etc.) for titanium nitride.

5.3.1 Deposition

Titanium nitride deposition techniques include sputtering, CVD, evaporation, and

arc evaporation [42,64,75,82,106]. Of these deposition techniques, the most common

in microfabrication is sputtering, which is also the technique that was used in this
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work.

Sputtering of titanium nitride can be accomplished in a number of ways. RF

magnetron sputtering or inductively coupled plasma DC magnetron sputtering can

be used. In addition, the sputtering target can be either titanium nitride, or, more

commonly, a titanium target with a nitrogen gas flow into the chamber. The titanium

reacts with the nitrogen and the resulting deposited film is titanium nitride. In

addition to the nitrogen, argon is also usually flowed into the chamber. Argon is inert

and doesn't participate in the reaction that creates the titanium nitride but does

provide a means to control the pressure of the chamber.

Titanium nitride is unique in that many material properties of the film can be

varied over a wide range by changing the deposition parameters. Specifically, the

Young's modulus can be controllably altered from 100 GPa up to 640 GPa. The

density can also be changed from 3700 kg/m 3 up to 5700 kg/m 3 . In addition, similar

to many materials, the residual stress can be altered by changing the deposition

conditions. For a more complete list of material properties of titanium nitride, see

Table A.5 in Appendix A.

5.3.2 Etching

Titanium nitride can be patterned by a number of different techniques including wet

etching, reactive ion etching (RIE), and lift-off. Wet etching of titanium nitride can

be accomplished using a variety of chemistries. For example, the RCA standard clean

1 (SCI, NH 4 0H+H 20 2 +H 20) can be used to selectively etch titanium nitride [19],

or just NH 4 0H+H2 0 2 [118]. In addition, dilute HNO 3 can also be used [21] or

H2SO 4+H 2 0 2 [19].

RIE of titanium nitride is also widely practiced. Chemistries that have been used

for RIE of titanium nitride include BC13/C1 2 [1], SiCl4 [52], and C12/Ar/CHF 3 [1]-

Lift-off has also been used to pattern titanium nitride [153]. In this work, the titanium

nitride layer was etched using a BC13 /C1 2 RIE chemistry.
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5.3.3 Residual stress management

Residual stress can be controlled by adjusting the deposition parameters (i.e., pres-

sure, applied power, field strength, gas flow rates, temperature, etc.) [32,42, 64, 82].

Residual stress may also be modified by interrupting the columnar grain growth of

titanium nitride by depositing a thin amorphous material layer between subsequent

titanium nitride depositions [75]. Residual stress has also been diminished by high-

energy ion bombardment pulses during the deposition [10].

One of the most interesting techniques involves a low temperature anneal of the

titanium nitride. Typically, the temperature required to anneal ceramic materials is

roughly half of the melting temperature of the material [95]. However, in the case

of sputtered titanium nitride, where there is a high density of defects (vacancies, in-

terstitials, dislocations, etc.) in the crystal lattice, the anneal temperature can be

significantly lower than half the melting temperature of titanium nitride. Tempera-

tures anywhere in the range of 100 to 600*C have been reported to allow annealing

to occur [32,42,74]. The approach to residual stress reduction used in this work was

based on this low temperature anneal capability of sputtered titanium nitride.

5.3.4 Sacrificial materials

Since titanium nitride can be deposited at low temperatures (<200-C) [32,64,106],

polymers are an obvious choice for a sacrificial material for titanium nitride. SU-8,

polyimide, and photoresist are all potential candidates. Polymeric sacrificial mate-

rials can be removed by oxygen plasma (ashing) or possibly Nano-StripT M to leave

the titanium structures free standing. Polymers do have some drawbacks as sacrificial

materials. In the very high vacuums that titanium nitride is deposited in, the poly-

mers may significantly outgas. Also, if annealing of the titanium nitride is desired to

remove residual stress, the polymer material would limit the anneal temperature.

A second option as a sacrificial material for titanium nitride is silicon (amorphous,

polycrystal, or single crystal). One possible release etch for a silicon sacrificial material

'Nano-Strip T M is a commercially available solution that removes polymeric material such as
photoresist from wafers.
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Figure 5-2: Illustration of the fabrication process used to create the titanium nitride
MEMS bridges. (A) A silicon oxide film is first grown, followed by deposition of a
polysilicon film. (B) The poly-silicon sacrificial layer is patterned and etched with
contact photolithography followed by reactive ion etching (RIE). (C) The titanium
nitride film is deposited by sputtering. (D) The titanium nitride film is patterned
and etched using contact photolithography and etched by RIE. (E) The sacrificial
poly-silicon layer is removed using a gas phase xenon difluoride etch.

is a gas phase xenon difluoride etch. Using silicon as the sacrificial material allows for

better fabrication compatibility than a polymeric sacrificial material. In addition, the

silicon allows higher titanium nitride anneal temperatures to be reached. In addition,

if amorphous silicon is used, the deposition temperature can be quite low. For the

titanium nitride MEMS bridges fabricated in this work, poly-silicon was used as the

sacrificial material.

5.4 Fabrication process

To evaluate titanium nitride as a potential material for MEMS applications, and

specifically for use in the wavelength selective optical MEMS switch, some prototype

bridge structures were fabricated out of titanium nitride. The fabrication process for

the bridge structures was very similar to that used for the aluminum bridges that were

integrated with the ring resonator filters. Therefore, direct integration of the titanium

nitride bridges with optical ring resonators in the future will be straightforward.

The fabrication process for the titanium nitride prototype bridge structures is

shown in Figure 5-2, with details given in Table 5.1. The key differences in this
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process as compared with the process for the aluminum device is that RIE was used

to etch the titanium nitride rather than a wet etch. Also, the dicing and packaging

requirements were much more relaxed because there were no waveguides incorporated

in these structures.

The anneal step (step 24) was included for only some of the bridge devices to de-

termine the effects of the anneal on the titanium nitride as compared with unannealed

structures.

Table 5.1: Fabrication process for the titanium nitride

prototype bridge structures.

Step Machine Process Notes

1 Wet station RCA clean

2 Diffusion tube Grow 250 nm thermal oxide film

3 Wet station RCA clean

4 Low-pressure diffusion tube Deposit 1.1 pm poly-silicon film

5 HMDS oven Vapor-phase deposition of HMDS

6 Spin coater Coat wafer with 1.3 pm of photo-resist

7 Oven Pre-bake photoresist for 30 min at 90 0 C

8 EV620 Aligner Align mask and expose photoresist

9 Wet station Develop photoresist

10 Oven Post-bake photoresist for 30 min at 120'C

11 Lam 490B Reactive ion etch (RIE) polysilicon

12 Oxygen plasma asher Strip photoresist

13 Wet station Piranha clean and HF dip

14 Endura 5500 Sputter 250nm of titanium nitride

15 HMDS oven Vapor phase deposition of HMDS

16 Spin coater Coat wafer with 1.0pm of photoresist

continued on next page
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Table 5.1: continued

5.5 Experimental characterization of titanium ni-

tride

The prototype titanium nitride bridge structures were very encouraging. Optical

microscope images of fabricated structures are shown in Figure 5-3 where it can

be seen that xenon difluoride etching released very effectively the titanium nitride

bridges without noticeable etching of the bridges. Annealing of the titanium nitride

was found to be effective for significantly reducing the residual stress of the structure.

5.5.1 Titanium nitride anneal

The titanium nitride was annealed in a KLA Tencor FLX-2320 stress measurement

machine. This allowed constant monitoring of the stress of the titanium nitride during

the anneal process. Figure 5-4 shows a typical result from the anneal process where

the temperature was ramped from room temperature up to 5000 C at a rate of 2"C per
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Step Machine Process Notes

17 Oven Pre-bake photoresist for 30 min at 90*C

18 EV620 Aligner Align mask and expose photoresist

19 Wet station Develop photoresist

20 Oven Post-bake photoresist for 30 min at 120*C

21 Lam Rainbow 9600 RIE titanium nitride

22 Oxygen plasma asher Strip photoresist

23 Cleave wafer

24 KLA Tencor FLX-2320 Anneal titanium nitride film

25 Xenon difluoride etcher Release etch poly-silicon
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Figure 5-3: Optical micrographs of a variety of prototype titanium nitride bridges
structures.
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Figure 5-4: Plot of the titanium nitride film stress as a function of temperature during
the anneal process.

minute. After reaching 500"C, the temperature was ramped down at 2*C per minute

until it reached room temperature. There was no dwell time at 500*C.

As can be seen from Figure 5-4, the initial stress of the titanium nitride film

was -822.6 MPa. At the end of the anneal the stress was 40 MPa. The film begins

annealing at about 200*C, indicating that the anneal process could thus be run at a

temperature as low as 200C to anneal the titanium nitride film. The lower anneal

temperature would require a longer time for the process.

While other researchers have reported success with annealing titanium nitride in

air [32], some of our samples (~25%) experienced significant oxidation of the titanium

nitride film during the anneal process. Using an atmosphere that does not contain

oxygen, such as forming gas, during the anneal process is probably a better approach.

Ammonia has also been reported as a beneficial gas for annealing titanium nitride [74].

A second challenge associated with the anneal was the formation of a thin layer

of titanium silicide at the interface of the titanium nitride and the silicon sacrificial
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layer. This was the result of some interdiffusion of silicon and titanium nitride at

their interface. The interdiffusion can be minimized by reducing the temperature and

increasing the time of the anneal step or by using an appropriate diffusion barrier

between the titanium nitride and the silicon.

The anneal step had a significant impact on the deformation of the bridge struc-

tures. Bridges that were unannealed buckled due to the very high compressive stress

in the structures. Annealed bridges were quite flat. Figure 5-5 compares surface con-

tours along the length of annealed and unannealed bridges to illustrate the significant

reduction in deformation achieved due to the anneal.

5.6 Discussion

This is the first example of titanium nitride being used as a structural material in

a MEMS device. The ability to control the stress state with a low temperature

anneal while still possessing all of the very unique properties mentioned in Section

5.2.1 makes titanium nitride a very desirable material for subsequent versions of the

wavelength selective switch. In addition, titanium nitride has advantages over most

typical MEMS materials for a wide range of other MEMS devices [124]. It is hoped

that the preliminary characterization and demonstration of titanium nitride as a

structural material for MEMS bridges carried out in this thesis will result in a much

wider adoption of this material in future MEMS processes.
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Figure 5-5: Contours along the center and edge (as illustrated in (A)) of an unannealed
and an annealed titanium nitride bridge. The deformation of the annealed bridge is
much less than that of the unannealed bridge.
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Chapter 6

Dynamic pull-in

One of the requirements to integrate the wavelength selective switch into an opto-

electronic integrated circuit is CMOS compatibility, i.e. the actuation voltage should

be the same as that used within CMOs integrated circuits. This is typically about five

volts. The prototype wavelength selective switch required 24 volts for actuation. In

this chapter a new technique is described that makes use of the dynamic characteristics

of the mechanical bridge to significantly reduce the required actuation voltage.

Typically the analysis of the pull-in phenomenon associated with parallel plate

actuators is performed using quasi-static assumptions. However, it has been experi-

mentally shown that under dynamic conditions, the pull-in voltage can be different

from what the quasi-static analysis predicts. Sattler et al, found that for a torsional

electrostatic switch, the quasi-static pull-in voltage was 8V; however, when the voltage

was applied as a step function, the pull-in voltage was 7.3V [119].

In this chapter, analytical and numerical models exploring dynamic pull-in of

both parallel plate and torsional actuators are presented. Pull-in due to a step input

voltage is first examined and shown to be in agreement with the results of Sattler et

al. The analysis is then extended to a case where a modulated voltage is applied and

pull-in is experienced after a number of mechanical oscillations.

For pull-in to occur, a certain amount of energy needs to be injected into the

system [13,99]. The modulated voltage pull-in technique relies on energy being accu-

mulated in the mechanical system during the pull-in process. This allows the energy
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required for pull-in to be input over a number of mechanical oscillations rather than

all at once. The modulated pull-in technique thus requires less power for pull-in, and

leads to substantially lower voltage level requirements. The trade-off for this lower

actuation voltage is that the time for pull-in to occur becomes longer.

Our analysis of dynamic pull-in indicates that the pull-in points for both the step

voltage case and the modulated voltage case are dependent on dissipation, also rep-

resented by the quality factor of the mechanical system. For critically damped or

overdamped structures, it is found that the quasi-static analysis adequately describes

pull-in, regardless of the applied potential function. However, for underdamped sys-

tems, the dynamic behavior can have a significant effect on the pull-in voltage.

6.1 System Model

To explore the dynamic response and pull-in of both parallel plate and torsional elec-

trostatic actuators, lumped parameter models have been used. All of the mechanical

terms (inertia, damping, and stiffness) have been assumed to be linear. The electro-

static force term is, of course, nonlinear for both the parallel plate and the torsional

actuator cases. The important assumptions made in selecting this model are related

to the squeezed film effect, the motion and shape of the moving plate, and, for dou-

bly clamped parallel plate structures, the axial stretching effect. Additionally, the

charging and discharging of the capacitor formed by the two plates was assumed to

be fast relative to the mechanical system.

The squeezed film effect can cause both the damping and the stiffness terms to

become nonlinear [125,135,141]. For the lower quality factors discussed in this chapter

(Q < 10), the validity of the linear damping and stiffness assumption depends very

much on the geometry of the structure. For example, the moving plate needs to

have adequate squeeze film damping holes to make the nonlinear squeezed film effects

negligible. For the higher quality factors discussed in this chapter, the structures

would need to be in a vacuum, which significantly reduces the squeezed film effect

regardless of the geometry of the structure.
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In the two models that we propose, the motion of the plates has been idealized.

It is assumed that the parallel plate only displaces in the dimension perpendicular to

the plane defined by the fixed electrode, and that the displacement is the same for

all points on the movable plate (i.e., the plate is ideally rigid). The motion for the

torsional case is assumed to be strictly rotational about the point where the torsional

springs are attached. How well these assumptions hold depends predominantly on

the geometry of a particular device [152].

For a doubly clamped plate in a parallel plate actuator, axial stretching can intro-

duce a nonlinear term into the mechanical stiffness of the structure. This nonlinear

effect is called the Duffing nonlinearity. The relative significance of this nonlinear

term depends on the geometry of the structure, and the residual stress present in the

plate [14,152].

In addition to these assumptions related to the parameters of the mathematical

model, there are also assumptions implied by the model about the electrical drive

components. The assumption is that the RC time constant of the capacitor formed

from the parallel plate actuator is much smaller than the mechanical time constant.

This allows the direct application of step voltages and other waveforms. If the electri-

cal and mechanical time constants are similar, the voltage across the parallel plates

would have a significant rise time as compared with the mechanical response [13].

In this case, the instantaneous force on the actuator should be calculated from the

accumulated charge on the electrodes, rather than the applied voltage.

While these modelling assumptions certainly do leave out a subset of electrostatic

structures, the dynamic pull-in analysis provided in this paper should still provide

some qualitative intuition into how those structures behave. For many electrostatic

structures, the work presented in this paper should be directly applicable.

6.1.1 Parallel Plate Model

The lumped parameter model for the parallel plate actuator is shown in Figure 6-1.

It is composed of a movable electrode with mass m, a spring k, a damper b, and a

fixed electrode. A voltage is applied across the two electrodes to cause the movable
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m

Figure 6-1: Lumped parameter model of a parallel plate actuator.

electrode to displace x. This model includes the assumptions discussed in Section

6.1. The equation of motion associated with this lumped parameter model is

min+bi+kx= -oAV2) 2  (6.1)
2 (do-_X)2

The quasi-static behavior of this model was analyzed in Section 2.4. The key

relationships resulting from that analysis that will be used here are the applied voltage

versus displacement equilibrium equation

2kx (do -x) 2
V = , ' (6.2)

0o A

and the pull-in voltage equation

8kdo
i= 27 (6.3)

Equation 6.2 is plotted in Figure 6-2 and indicates the pull-in position and voltage,

and illustrates the bifurcation experienced for applied voltages increasing from zero

to above the pull-in voltage (this figure is also shown in Figure 2-5).
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Figure 6-2: Quasi-static equilibrium curve for the parallel plate actuator from Equa-
tion 6.2. The arrows showing the evolution of the equilibrium positions for increasing
and decreasing voltage indicate the bifurcation in the system. When the pull-in volt-
age is reached, the movable plate tries to jump to the equilibrium position to the right
of the fixed electrode position. The isolation layer between the two electrodes will, of
course, limit the plate's displacement so it won't reach the theoretical equilibrium po-
sition. The thickness of the isolation layer determines the voltage required to maintain
the movable plate in the pulled-in state, referred to as the "hold" voltage [22].
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Figure 6-3: Lumped parameter model for a torsional electrostatic actuator.

6.1.2 Torsional Model

Figure 6-3 shows a simple model for a torsional electrostatic actuator with the same

assumptions as the parallel plate model. From this model, the following equation of

motion can be derived using a small angle approximation (Lt > do) [119],

I#+ b6+k9 =owtV2 [ L I Lt\
I02b[dk = +ln --292 [d0 - L1o do 'i (6.4)

where I is the mass moment of inertia about the center of rotation, wt is the width of
the torsional plate, 0 is the rotational displacement, Lt is the length of the plate from
the center of rotation to the plate tip, and do is the initial separation of the plates.

The torsional actuator also experiences pull-in. By again using a quasi-static

assumption (# = 0 = 0), the following equation describing the voltage required for a
given equilibrium position is found,

Vo=4 2k93 (do - Lt9)

cowt [LtO + (do - LtO) In 1 - t
do

(6.5)

By numerically calculating the maximum of Equation 6.5, the

to be [119]
pull-in point is found

0;~ 0.440400, (6.6)
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Figure 6-4: Quasi-static equilibrium curve for the torsional actuator from Equation
6.5. The arrows showing the evolution of the equilibrium positions for increasing and
decreasing voltage indicate the bifurcation in the system. When the pull-in voltage
is reached, the movable plate tries to jump to the equilibrium position to the right of
the fixed electrode position. The isolation layer between the two electrodes will, of
course, limit the plate's rotation so it won't reach the theoretical equilibrium position.
The thickness of the isolation layer determines the voltage required to maintain the
movable plate in the pulled-in state, referred to as the "hold" voltage [22].

where 0 0 is the maximum torsional angle (00 ; do/Lt). The pull-in voltage associated

with this point is given by

v ~0.827VP fowt L3
(6.7)

The voltage versus equilibrium curve for Equation 6.5 is shown in Figure 6-4. This

curve is in many ways similar to the curve shown in Figure 6-2. The main difference

being that the local maximum (indicating the pull-in point) of the torsional curve is

shifted slightly to the right of the the maximum for the parallel plate case.
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6.2 Step voltage response and pull-in

Perhaps the most common signal applied to parallel plate or torsional electrostatic

MEMS devices is a step voltage. For underdamped systems, the response of the

structure to a step input causes the structure to overshoot the equilibrium position.

If the overshoot is large enough, pull-in could potentially occur at voltages lower than

Vpi.

For the step response analysis, the applied voltage will take the form

V(t) = V0U(t), (6.8)

where U(t) is a unit step function and V is the magnitude of the voltage.

Due to the nonlinear nature of the parallel plate and torsional models, finding an

analytical solution for the step response is difficult. However, by analyzing the energy

of the system, the important features of the system response, such as overshoot and

pull-in, can be identified.

Initially, the system is at rest and has no stored energy. When the step voltage

is applied, energy is injected into the system. The system stores this energy as both

kinetic and potential energy. Over time, the stored energy above that associated with

the equilibrium position is lost to damping. The energy balance of the system at any

instant in time can thus be written as

Einjected = Ekinetic + Epotentia + Edissipated. (6.9)

The lowest possible pull-in voltage occurs when the overshoot has its maximum

value. The overshoot can be maximized by setting the damping equal to zero. Under

this condition, no energy is lost to dissipation and, hence, the energy dissipation term

in Equation 6.9 can be neglected.

When the system is at its point of maximum overshoot, all of the stored energy

is in the form of potential energy. The velocity and, therefore, the kinetic energy are

zero at that point. By analyzing the energy of the system at this instant, the decrease
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in the voltage required for pull-in can be calculated. We will use this technique to

analyze pull-in due to a step input for both the parallel plate and the torsional

actuators.

6.2.1 Step Voltage System Response - Parallel Plate Case

For the parallel plate actuator case, the stored potential energy can be expressed as

1
Epotential = 1 kx 2  (6.10)

2 max'1

where xmna is the maximum overshoot.

The energy injected into the system by the applied voltage can be found by inte-

grating the force of the actuator over the displacement as

Einjected = 2 dx = . (6.11)
o 2 (do - x) 2do (do - xmax)

Combining Equations 6.9, 6.10, and 6.11, and setting the kinetic and dissipated

energy terms to zero, gives the following expression for the step voltage as a function

of maximum overshoot

kdoxmax (do - xmax)
V0 = .O (6.12)

Taking the derivative of Equation 6.12 and setting it to zero = 0) gives

ddx

Xmax = -, (6.13)
2

which is the position of the local maximum of Equation 6.12 in the range of 0 < x < do.

It turns out that this corresponds to the largest maximum overshoot that can be

achieved without pull-in occurring. Any increase in the step voltage would theoret-

ically result in a maximum overshoot above do, due to a bifurcation similar to the

quasi-static pull-in analysis. The step voltage associated with this maximum over-

shoot is, therefore, analogous to the quasi-static pull-in voltage expressed in Equation

6.3. For this reason, we will refer to the step voltage associated with the overshoot

147



expressed in Equation 6.13 as the step pull-in voltage. It is given by

kd3
Vspi - eoA (6.14)

Taking the ratio between the step pull-in voltage, Vpi, and the quasi-static pull-in

voltage, Vpi, gives

Vi 27
~Zt 0.919, (6.15)

which indicates that the step pull-in voltage, for the ideal case of no damping, is

about 91.9% of the quasi-static pull-in voltage. Since this solution was derived for

the ideal case of no damping, it represents a lower limit on the step pull-in voltage

levels. The upper limit is provided by the quasi-static pull-in analysis.

Numerical simulations performed in Simulink of the response of the system in

Figure 6-1 with non-zero damping to a step voltage signal indicate that for moder-

ate to low damping (Q > 10), the step pull-in voltage stays relatively close to the

theoretically predicted fraction of 91.9% of the quasi-static pull-in voltage.1 As the

system damping increases, the step pull-in point follows the quasi-static equilibrium

curve up until it reaches the quasi-static pull-in point, as shown in Figure 6-5.

6.2.2 Step Voltage System Response - Torsional motion

The approach used to analyze the step response of the torsional actuator is essentially

the same as that used with the parallel plate actuator. The energy relation given by

Equation 6.9 is again used to examine the energy at the point of maximum overshoot.

For the torsional case, the energy injected into the system up to the point of maximum

overshoot is given by

Omax. Cow V2 LtO LtO
Einjected = +mIn I - d

[ 202 do - Lto do ) d
1 [1l LteG 1= owEv2 1In 1 - max + L (6.16)
2 [0max do do

'For example, numerical simulations give the ratio between the step pull-in voltage to the quasi-
static pull-in voltage as .937 for a system quality factor of 10.
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Figure 6-5: Plot of the required voltage for a given maximum overshoot for various
levels of damping (Q values). As the quality factor of the system decreases, the step
pull-in voltage moves from the ideal step pull-in voltage with no damping to the
quasi-static pull-in voltage value.

The energy stored in the system at the maximum overshoot is

Epote1tia= - kt0 . (6.17)
2

If we assume no damping in the system, then the energy injected will always equal

the energy stored. Solving Equations 6.16 and 6.17 for the voltage gives the following

relation between the max overshoot and the step voltage

-k03
Vo = ( " +a.x. (6.18)

fowt In 1 - Lt0max LtGmax

The maximum of Equation 6.18 gives the maximum overshoot achieved before

pull-in occurs. The location of this maximum is found numerically to be

Omax ~ 0.64500o. (6.19)
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This overshoot corresponds to a step pull-in voltage of

kdo
VSPi 0. 6869 cowtL 3 (6.20)

The ratio of the step pull-in voltage to the quasi-static pull-in voltage gives

~ 0.9114. (6.21)
VP

Again this solution was developed for a system with no damping and therefore repre-

sents a lower boundary on the decrease in pull-in voltage level required due to a step

voltage input. Numerical simulations done in Simulink of the torsional system with

increasing amounts of damping show that the step pull-in point follows the quasi-

static equilibrium curve up until, at about a quality factor of one, the step pull-in

occurs at the same point as the quasi-static pull-in, very much like the parallel plate

actuator case. Figure 6-6 shows the analytical solution with no damping as well as

the numerical solutions for various damping values compared with the quasi-static

solution.

Sattler et al. [119] experimentally demonstrated the decreased pull-in voltage re-

quired when applying a step voltage to a torsional RF MEMS switch. They found

that the quasi-static pull-in voltage for their device was 8.OV while the step pull-in

voltage was 7.30V. These values give a ratio of 0.913 between the step pull-in voltage

compared to the quasi-static pull-in voltage. As expected, this ratio is above the

lower boundary defined by our analysis. However, the step pull-in point appears to

be at about 0.5800 for their experiments, which, based on our model, corresponds

to a quality factor of about 3.75. For this quality factor, our analysis predicts the

ratio of the quasi-static pull-in voltage to the step pull-in voltage to be 0.958, an

over-prediction of the experimentally observed values by about 4.5%. The small dis-

crepancy is likely due to a combination of small errors due to the assumptions made

in our model, a lack of knowledge of the exact experimental conditions used in [119],

and general experimental uncertainty.
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Figure 6-6: Plot of the required voltage for a given maximum overshoot for various
levels of damping (Q values) for the torsional actuator. As the quality factor of the
system decreases, the step pull-in voltage moves from the ideal step pull-in voltage
with no damping to the quasi-static pull-in voltage value.
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6.3 Modulated voltage system response and pull-

in

The analysis of the step voltage pull-in indicates that by making use of the energy

storing capabilities of the mechanical system, pull-in can be achieved at voltages

lower than the levels predicted by the quasi-static analysis. This idea of leveraging

the energy stored in the mechanical system can be taken even further by applying a

voltage signal that is modulated according to the rule

= Vo if the velocity (i or 9)> 0 (6.22)

0 otherwise.

The voltage signal will input energy into the mechanical system over a number of

mechanical oscillations. This technique leads to larger displacements than would

be possible with an unmodulated actuation signal at the same voltage level [8]. In

addition to the injected energy, a certain amount of energy is lost to damping during

each cycle. After some number of cycles, there are two possible outcomes. Either

the system will reach a limit cycle where the energy input equals the energy lost per

cycle [138], or the system will reach a pulled-in state. First let us assume that the

system reaches a limit cycle. The energy balance of the system at the limit cycle is

Einjected = Edissipated. (6.23)

Deriving expressions for both terms in Equation 6.23 leads to expressions for the

modulated voltage levels needed for pull-in to occur. This modulated actuation tech-

nique will be explored for both the parallel plate actuator and the torsional actuator.
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6.3.1 Modulated Voltage System Response - Parallel Plate

Case

For the parallel plate case, the energy injected per period is

Einected =Ema 2 dx = 0  (6.24)
Jm. 2 (do - (d - 6.x24

where xmax refers to the amplitude of the limit cycle.

The energy dissipated is found indirectly by using the definition of the quality

factor along with the stored energy in the system. The quality factor definition is

Q = 27r Estore. (6.25)
Edissipated

By using this definition in the derivation, we are implicitly assuming that the dis-

placement is sinusoidal in time. Due to the nonlinearities of the system, this is not

exactly true. However, for moderate to high quality factors (Q > 10), the assumption

is quite reasonable. 2

The energy stored in the system is, in general, the sum of the kinetic and potential

energy at any given instant in time. However, at the point of maximum displacement

xmx, all of the stored energy is in the form of elastic potential energy. The stored

energy can thus be expressed as

Estored = -kx2a. (6.26)

By combining Equations 6.23, 6.24, 6.25, and 6.26, it is possible to find a relationship

for the modulated voltage level, V, required for a given amplitude limit cycle. This

relationship is

Vo = rkzma(d-xma). (6.27)
EO( AQ

The amplitude of the limit cycle that corresponds to the maximum voltage that

2An alternative derivation where a sinusoidal displacement is assumed explicitly and the dissi-
pated energy is calculated directly gives identical results.
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leads to a limit cycle can be found by taking the derivative of Equation 6.27 and

setting it to zero (dvO = 0). This gives

d0
Xmax = ~ 0.5774do. (6.28)

The voltage associated with the limit cycle amplitude in Equation 6.28 is referred

to as the modulated pull-in voltage, Vmpi. For any voltage V above this voltage

the system will pull-in after some number of mechanical oscillations. By combining

Equations 6.27 and 6.28, the modulated pull-in voltage is found to be

27k3
Vmpi = Qk . (6.29)

3V/50 AQ

The ratio of the modulated pull-in voltage, Vmpi to the quasi-static pull-in voltage,

VPi, is

Vmpi _ 3V'5ir 1= ~ 2.02 -. (6.30)
VPi V4Q Q

This indicates that for a system with a quality factor of 100, the modulated pull-in

voltage would be only 20% of the quasi-static pull-in voltage. This is a significant

decrease in the required pull-in voltage. Systems with higher quality factors can lead

to even lower voltage level requirements. Figure 6-7 gives the curves for the parallel

plate actuators response to the modulated voltage for quality factors of 10, 100, and

1000. The quasi-static and ideal (no damping) step response curves are also included

for comparison. Figure 6-8 shows displacement with time and phase-space plots from

numerical simulations of the parallel plate actuator response to applied modulated

voltages that are below and just above the modulated pull-in voltage.

6.3.2 Modulated Voltage System Response - Torsional Case

We now analyze the response of a torsional electrostatic actuator to an applied voltage

that follows the rule given in Equation 6.22. The analysis for this case follows the same

approach for the parallel plate case. A limit cycle occurs when the energy injected
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Figure 6-7: Numerical and analytical curves of the modulated voltage required for
particular limit cycle amplitudes for parallel plate systems with quality factors of 10,
100, and 1000. The analytical solutions, from Equation 6.27, are the solid lines. The
numerical simulation results are given by the data points. For Q = 10, the numerical
and analytical solution show some discrepancy due to the sinusoidal motion assump-
tion used in the analytical derivation. For comparison, the quasi-static equilibrium
curve (Equation 6.2) and the step response curve (Equation 6.12) are also plotted.
The peak of each curve defines that curve's pull-in voltage and position.
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equals the energy dissipated (see Equation 6.23) [138]. The energy dissipated is found

indirectly by combining the definition of the quality factor (see Equation 6.25) of the

system with the energy stored in the system at the limit cycle. The energy stored

at the limit cycle is calculated at the peak amplitude of the oscillation (Omax), when

all the energy is stored as elastic potential energy. The equation for the total stored

energy is

Estored k02 (6.31)
2 max

The energy injected over one oscillation at the limit cycle is

[m EWtV
2  Lt0 L0O

Einjected = +In 1 - d
f_00. 202 [do - LtO do

fowt V2 L0
= -- 2o In 1 - d2 (6.32)

mm 0

By combining Equations 6.23, 6.25, 6.31, 6.32, the solution for the voltage required

for a given limit cycle is found to be

27rkO3
Vo = L mx2 . (6.33)

(owtQln 1 L )

The maximum of this function gives the pull-in point of the torsional actuator.

Calculating the maximum of Equation 6.33 numerically indicates that the pull-in

limit cycle amplitude is

00 ~mx 0.7305, (6.34)

which corresponds to a modulated pull-in voltage of

kdo
Vmpi - 3.21 3. (6.35)

OWt QLt

The ratio of the modulated pull-in voltage to the quasi-static pull-in voltage gives

Vpi 1.97 . (6.36)
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Figure 6-9: Numerical and analytical curves of the modulated voltage required for
particular limit cycle amplitudes for torsional systems with quality factors of 10, 100,
and 1000. The analytical solutions, from Equation 6.33, are the solid lines. The
numerical simulation results are given by the data points. For Q = 10, the numerical
and analytical solution show some discrepancy due to the sinusoidal motion assump-
tion used in the analytical derivation. For comparison, the quasi-static equilibrium
curve (Equation 6.5) and the step response curve (Equation 6.18) are also plotted.
The peak of each curve defines that curve's pull-in voltage and position.

Figure 6-9 shows the effect of the quality factor on the limit cycle curves and

pull-in points versus the quasi-static equilibrium curve and the system step response.

The modulated voltage leads to significant reductions in the voltage requirements

for pull-in of the torsional electrostatic actuator, very much like the parallel plate

actuator.

6.3.3 Discussion

In torsional and parallel plate modulated pull-in and step pull-in, the quality factor of

the system is the key parameter affecting the decrease in required actuation voltage.

Figures 6-10 and 6-11 show the effect of the quality factor on the ratio of the dynamic

pull-in voltages (step and modulated) with the quasi-static pull-in voltage. It is
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Figure 6-10: Vpi and Vmpi as a function of the quality factor for a parallel plate
electrostatic actuator. For all values of Q greater than one, the modulated pull-in
voltage is less than the step pull-in voltage.

interesting to note that for all damping levels the modulated pull-in voltage is less

than or equal to the step pull-in voltage.

The modulated pull-in technique described here can lead to pull-in voltages that

are significantly lower than the quasi-static pull-in voltage typically used as a min-

imum actuation voltage. This reduction in voltage needs to be balanced with the

thickness of the insulating layer required between the two electrodes to maintain iso-

lation. If the insulating film between the electrodes is too thick, the modulated pull-in

voltage level won't be able to hold the structure in the pulled-in state. This is related

to the "hold" voltage which is often used in parallel plate actuators and is illustrated

in Figures 6-2 and 6-4 [22].

The waveform used in the modulated pull-in analysis provides the greatest transfer

of energy, and hence the lowest pull-in voltage, of any waveform in a voltage limited

situation; however, in principle any waveform that provides a net positive injection of

energy with each cycle could be used. These alternative waveforms should also lead

to a decrease in the voltage levels required for pull-in.
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Figure 6-11: Vpi and Vmpi as a function of the quality factor for a torsional electrostatic
actuator. For all values of Q greater than one, the modulated pull-in voltage is less
than the step pull-in voltage.

Torsional electrostatic actuators commonly have two fixed electrodes in symmetri-

cally opposite positions, such that the movable electrode can be pulled-in by rotating

in either the positive or negative 0 directions [119]. In fact, some parallel plate actu-

ators have also been fabricated with top and bottom fixed electrodes, enabling two

pulled-in positions as well [107]. For electrostatic switches with two opposing fixed

electrodes, the modulated pull-in performance can be enhanced by applying a modu-

lated voltage to both fixed electrodes. This allows energy to be input throughout the

entire mechanical oscillation and would lead to a further decrease in the modulated

pull-in voltage by a factor of 1 (for fixed electrodes that are symmetrically located

relative to the moving electrode.)

6.4 Conclusions

In this chapter, we have shown that the dynamic nature of parallel plate and torsional

electrostatic actuators can have a significant impact on the voltage needed to pull-
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in the actuator. In particular, it was shown that for the ideal case of no damping

an applied step voltage can achieve pull-in with only 91.9% of the quasi-statically

predicted pull-in voltage for parallel plate actuators, and for torsional actuators only

91.2% of the quasi-statically predicted pull-in voltage is required. It was also shown

that by applying a voltage that is modulated at the mechanical resonance of the

actuator, significant decreases in voltage levels needed for pull-in can be achieved.

For instance, for a system with a quality factor of 1000, the voltage level required for

pull-in is less than 10% of the quasi-static pull-in voltage for both parallel plate and

torsional actuators. The decrease in pull-in voltage for both the step and modulated

input voltages is strongly dependent on the damping in the system.

The impact of these dynamic pull-in techniques could be very significant for elec-

trostatic parallel plate and torsional actuators used as switching structures in mi-

crowave, RF, or optical MEMS applications. To create reliable switching structures,

it has been necessary to have a high actuation voltage, much higher than levels used

by integrated circuits. By utilizing these dynamic pull-in techniques, low voltage ac-

tuation can be achieved without sacrificing mechanical stiffness and reliability. This

would allow direct integration of reliable MEMS switching structures into standard

integrated circuits without the need of voltage up-converters.

161



162



Chapter 7

Strain-energy MEMS switching

Switching speed is one of the most significant limitations of the MEMS wavelength

selective switch, and MEMS switching in general. When compared with semiconduc-

tor and opto-electronic switches, MEMS switching is far slower. This is a significant

disadvantage for MEMS switching.1

Another issue for the prototype wavelength selective switch is the operating volt-

age. To be able to integrate the wavelength selective switch with standard integrated

circuits, the operating voltage needs to be at the level of the integrated circuit (i.e.

CMOS compatible). The technique described in Chapter 6 allowed the operating

voltage of a parallel plate actuator to be reduced significantly below that of a stan-

dard parallel plate MEMS actuator, thus allowing actuation voltages at IC levels.

However, modulated pull-in technique of Chapter 6 operates over a number of me-

chanical cycles, leading to a switching time that is slower than actuation by a high

DC voltage.

In this chapter, a completely new actuation technique for MEMS will be described

that allows significantly faster switching speeds than any other MEMS actuation

technique and requires much lower voltage than parallel plate electrostatic actuation 2

'Other important factors in integrated optical switching include fabrication and operation cost,
power dissipation, and optical performance. In these categories MEMS based devices are competitive
with, and even outperform opto-electronic switches.

2Parallel plate electrostatic actuation was the fastest MEMS actuation technique prior to the
development of this technique.
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Figure 7-1: Switching voltage versus switching speed for a number of RF MEMS
switches that have been developed [111].

The proposed technique is based on using stored elastic potential energy to drive the

mechanical switch between stable states. This approach creates an actuator with both

high energy and power densities, leading to the extremely fast switching capability

at low operating voltage.

7.1 Current parallel plate MEMS switching

For parallel plate electrostatic switching, the required actuation voltage is generally

high (typically greater than 20 volts). Figure 7-1 shows the voltage versus switching

speed of a number of radio-frequency (RF) MEMS switches that have been developed

using parallel plate electrostatic actuation [111].

The switches in Figure 7-1 have displacement requirements that are similar to what

is required of the wavelength selective switch (~ 1pm). Because of this, the perfor-

mance of these RF MEMS switches gives insight into wavelength selective switches

based on electrostatic parallel plate actuation.

There is a definite trend in the performance of the MEMS switches seen in Figure
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7-1; higher actuation voltage is required to increase the switching speed. This rela-

tionship is also obvious from looking at the pull-in voltage equation for parallel plate

actuators (see also Equation 6.3)

v - 8kdo
VP= 0A. (7.1)

The speed of the switch is directly related to the stiffness, k, through the resonant

frequency, w,, = k/rm. The mass m and the overlap area A effectively cancel each

other out. Since the initial gap do for RF MEMS as well as the wavelength-selective

optical switch needs to be greater than about one micron, this cannot be decreased

to increase switching speed. This means that the only way to get a faster switch

is to increase the actuation voltage. This fundamental scaling property of electro-

static parallel plate actuation strictly limits the design space of MEMS electrostatic

switches.

There are other MEMS actuation techniques, specifically piezoelectric, thermal,

magnetic, and shape memory, that have been used in MEMS devices. However, none

of these have achieved the switching speeds at similar displacements that have been

demonstrated by parallel plate electrostatic MEMS devices.

7.2 Strain-energy actuation technique

The new actuation technique makes use of stored elastic potential energy to drive

the motion of the device during switching. The switching function is accomplished

between an equilibrium state and two pull-in states. The actuation principle is shown

in Figure 7-2. In operation, the switch is initially pulled in to one of the two fixed

electrodes. In this situation, there is a significant amount of elastic potential energy

stored in the device. As described in Section 2.4, when the switch is in the pulled-in

state, a hold voltage that is less than the pull-in voltage can be used to maintain the

switch in the pulled-in state. This arises from the nonlinearities of the electrostatic

actuation.
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Figure 7-2: Schematic diagram of one possible implementation of the ultra-fast switch.
(A) shows the movable electrode in its equilibrium state with no applied voltage. (B)
and (C) show the movable electrode in its two switch states during normal operation.

If the mechanical damping of the device is low (i.e. if the device is packaged in
vacuum), the movable electrode will significantly overshoot its equilibrium position in-

between the two fixed electrodes upon the release of the hold voltage. The overshoot

of the moving electrode will bring the moving electrode very close to the second fixed

electrode. At this point, a voltage applied to the second fixed electrode that is at or

just above the hold voltage level will be able to pull-in and hold the movable electrode.

This switching procedure can be repeated indefinitely without ever requiring the

application of a high pull-in voltage.

The initial pull-in of the switch can be done by using either a standard high

voltage pull-in or by a low voltage using the modulated pull-in technique described

in Chapter 6. Beyond that initialization step, the device operates at low voltage, as

described earlier.

Using the strain-energy switching principle, several switch designs were developed.

Figure 7-3 shows a figure comparing the switching speeds and voltages of the RF

MEMS switches shown in Figure 7-1 with those of the strain-energy switch designs.
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Figure 7-3: Comparison of the switching speed and actuation voltage of a number
of RF MEMS switches with switch designs that utilize the strain-energy switching
technique.

The three strain-energy switch designs are expected to be 1000 times faster than

switches with comparable actuation voltages and 10 times faster than the fastest RF

MEMS switch.

A similar macroscale technique has been developed to independently control the

valves in an internal combustion engine [161. For this device, the nonlinearity in the

system is achieved by using a unique cam design to catch and hold the valves in their

two open and closed states. This device also uses a resonant technique to initially

"pull-in" the system (i.e. load the mechanical springs with elastic potential energy).

7.2.1 Strain-energy switch implementations

There are a number of implementations for the strain-energy actuation technique. The

basic criterion is that the device needs to have at least two fixed electrodes located

relative to the movable electrode in such a way that the fixed electrodes are at the

extreme positions of the resonant mode of the movable electrode. This arrangement
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can be achieved using a structure very similar to the parallel plate actuator used in

the wavelength selective switch by adding a top fixed electrode to the structure, as

shown in Figure 7-2. In this arrangement, the movable electrode would switch up and

down between the fixed electrode on the substrate and the fixed electrode above the

device.

A second implementation of the strain energy switching technique is to use the

torsional resonant mode of a device similar to a torsional electrostatic switch. This

implementation is shown in Figure 7-4. This structure is essentially identical to stan-

dard electrostatic torsional switches, such as Texas Instrument's DMD mirrors [35].

The key differences in design choices would be to reduce the damping significantly,

and use the stored elastic potential energy to drive the switching rather than energy

introduced from the electrostatic actuator. This arrangement is a simpler structure

to fabricate than the parallel plate version shown in Figure 7-2. The simplicity is

derived from having only one sacrificial layer, with both fixed electrodes anchored to

the substrate.

A third implementation is similar to the parallel plate actuator in Figure 7-2

except it uses side-to-side motion instead of up-and-down. Figure 7-5 is a schematic

representation of this device. This approach is the simplest of the three techniques

to fabricate. In addition to requiring only one sacrificial layer, only one material

layer and one photolithography step is necessary to define the fixed and movable

electrodes. This particular arrangement lends itself to fabrication using a silicon-on-

insulator (SOI) wafer with the silicon device layer being used to create the fixed and

movable electrodes, and the oxide layer creating the sacrificial layer.

The side-to-side device allows more complex structural arrangements. For exam-

ple, the device can be forced into operating at higher resonant modes, thus increasing

speed further. Also, the fixed electrodes can be shaped to mimic the mode shape of

the movable electrode. By matching the mode shape, the fixed electrodes require a

lower hold voltage and, upon release, the stored elastic potential is more efficiently

directed into the desired resonant mode. Figure 7-6 shows a schematic drawing where

the fixed electrode is shaped to match the mode shape of the movable electrode.
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Figure 7-4: Schematic diagram of a torsional implementation of the ultra-fast switch-
ing technique. (A) shows the movable electrode in its equilibrium state with no
applied voltage. (B) and (C) show the movable electrode in the two switch states
used during normal operation.
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Figure 7-5: Schematic diagram of a side-to-side motion implementation of the ultra-
fast switching technique. (A) shows the movable electrode in its equilibrium state
with no applied voltage. (B) and (C) show the movable electrode in the two switch
states used during normal operation.
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Figure 7-6: Schematic diagram of the side-to-side motion implementation with elec-
trodes that are shaped to match the mode shape of the movable electrode. (A) shows
the movable electrode in its equilibrium state with no applied voltage. (B) and (C)
show the movable electrode in the two switch states used during normal operation.
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Although only fixed-fixed beam implementation have been shown in Figures 7-2,

7-5, and 7-6, cantilever beam implementations of the strain-energy switch can also

be realized in both the up-and-down and side-to-side parallel plate implementations.

Cantilever beam implementations have an advantage in that they are shorter for a

given stiffness, thus minimizing the area of the wafer used. However, the fixed-fixed

beams tend to have a better stiffness to area ratio, which allows a lower actuation

voltage for a design of a given stiffness.

7.3 Modelling of strain-energy switching

The strain-energy technique takes advantage of the dynamics of the MEMS system

to achieve high-speed, low-voltage switching. Because of this, the system needs to

be carefully designed to match the performance of the electrical and mechanical sub-

systems. In this section, a lumped parament model of the strain-energy switching

technique will be constructed and analyzed as the first step towards the design of a

prototype MEMS device that utilizes the strain-energy switching technique.

7.3.1 Lumped parameter model

Figure 7-7 is the lumped parameter model used to analyze the performance of the

strain-energy switching technique. The equations of motion for the strain-energy
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Figure 7-7: Lumped parameter model for the strain-energy actuation technique. Note
the switch is designed to be symmetric, therefore the two resistors have the same
resistance R and the two parasitic capacitors have the same capacitance C,.

switch, as derived from the model in Figure 7-7, are

V = VCi + ( 1 + ,1) R

V2 = Kc2+ (02 + ,2) R

M + bi+ kx =2
2EOA 2,EOA

Qi=

Q1i=do - x

V 2EcoA
do + x

Q,1 = CVi

QP2 = CpVc2, (7.2)

where Vi and V 2 are the voltages across the two capacitors created by the actuator

and the two parasitic capacitors. Qi and Q2 are the charges that are stored in the

two capacitors created by the actuator. Q,1 and Qp2 are the charges that are stored

on the two parasitic capacitors. The other parameters are as defined in Figure 7-7.

Many of the same modelling assumptions discussed in Section 6.1 are used here as

173



well, with the exception of the assumption related to electrical resistance. Resistance

was included in this model because the switching speeds that are possible with this

technique could become close to speeds of the electronic circuit. Parasitic capacitance

was also included in this model for the same reason.

The model also only shows a linear elastic term. For the implementations that

used a fixed-fixed beam as the movable electrode, a nonlinear elastic term should be

included to capture the effects of the beam stretching as it deforms. The nonlinear

term is called a Duffing spring and is kdX3 . For more detailed design involving fixed-

fixed structures, this term should be included, however, for the general discussion of

the strain-energy switch, this term will be excluded.

7.3.2 Hold voltage

During normal operation, the movable electrode transitions between being pulled in

to one fixed electrode to being pulled in to the second electrode. The elastic potential

energy stored in the device drives the movable electrode from one position to the

other. To hold the electrode in the pulled in position to either of the two fixed

electrodes requires a minimum voltage of

2k ' do - &) (d) 2
Ed Ed

Vh = (7.3)
fO A

where td is the thickness of the dielectric layer and Ed is the relative permittivity of

the dielectric. To reduce the hold voltage, the thickness of the dielectric layer can be

decreased and/or a dielectric with a higher permittivity can be selected. The primary

limiting factor for the minimum hold voltage is the point where the dielectric material

experiences break-down and allows current to flow. A secondary limiting factor is di-

electric charging, which increases as the electric field across the air/dielectric interface

increases, as described in Section 4.2.1.
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7.3.3 Actuation voltage

During the switch operation, where the movable plate transitions between the two

pulled-in states, stored elastic energy is converted to kinetic energy and then back

to stored elastic energy. During this process, there is some energy lost to mechanical

damping. In addition, since the movable plate and fixed plate do not discharge

immediately upon the release of the movable plate, the residual charge acts as a

damper to the mechanical motion of the movable plate. Thus, additional energy is

lost due to the electrical circuit's resistance.

To compensate for the energy lost to both damping mechanisms, a voltage will

need to be applied to the other fixed electrode to inject new energy into the system

as the movable electrode moves toward that electrode. Ideally, the electrical and

mechanical damping should be minimized so that only a small amount of energy

needs to be injected during a switch operation relative to the total energy of the

system. Mechanical damping can be minimized by packaging the device in a vacuum.

The electrical damping effect can be minimized by making the electrical system much

faster than the mechanical system, thereby allowing the charge on the electrodes to

be dissipated before substantial mechanical motion is achieved.

The interactions between the mechanical motion and the electrical and mechanical

damping are fairly complicated. To allow some level of insight through analytical

evaluation, the effects of the mechanical damping will be analyzed separately and

then combined with the electrical damping through computational modelling. In

these derivations, the fixed electrode to which the movable electrode is initially pulled-

in to will be referred to as the first electrode. The electrode to which the movable

electrode becomes pulled-in to after the switch operation will be called the second

electrode. This is, of course, only for clarification during this discussion since the

system is symmetric and switching in either direction is identical.

To analyze the effects of mechanical damping, the speed of the electrical system

will be assumed to be much greater than that of the mechanical system. The strength

of this assumption will be discussed later when the electrical damping effect is ana-
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lyzed. Under these conditions, the energy lost to mechanical damping can be found

through the use of the definition of the quality factor

Q = 27r- Estored
Edissipated

Using this quality factor definition in this analysis implicitly makes the assumption

that the velocity of the movable plate during the switching operation is sinusoidal.

Similar to the analysis of the modulated pull-in, this assumption is best applied to

systems with mechanical quality factors greater than about ten. For quality factors

less than ten, the assumption overestimates the energy lost to damping, leading to an

overestimate of the voltage needed for actuation. Still, the approximation is useful

as an upper bound on the required voltage.

The total energy stored in the mechanical system is

12
Estored = kxma- (7.5)

Since the switching operation lasts only one half of a cycle, the total energy lost

is one half of the dissipated energy in the quality factor definition. The energy lost

to mechanical damping during switching is, therefore,

Emd = Qrkxma, (7.6)
2Q

The energy injected into the system by the applied voltage is found by integrating

the force over the displacement, and is

(' o AV2 CO AV82xma
Einjected = 2 dx = .2X2 (7.7)

-xm. 2 (do - x) (d - Xax)

For the switch to operate properly, the injected energy must at least equal to the

energy lost to damping. By equating Equations 7.6 and 7.7, the minimum voltage

176



10

10

10

10

0 0.1 0.2 0.3 0.4 0.5 0.6
td /(dd0)

Figure 7-8: Curve of the minimum required quality factor for a given effective dielec-
tric thickness normalized by the total effective gap that allows switching by the use
of a voltage no higher than the hold voltage.

required for switching is found to be

V = rk (d2 - xm) Xmax (7.8)
vs V cAQ (

Ideally, the voltage required for switching should be no greater than the hold

voltage. This allows the same voltage level to be used both for switching the movable

electrode and for holding the electrode in place. This leads to the relationship

r (2 - --

Eddo

between the necessary quality factor and the thickness of the dielectric layer sepa-

rating the electrodes. Figure 7-8 shows the curve given by Equation 7.9. The curve

is only shown up to a value of td = 2 since a dielectric thickness greater than this
Eddo 3

value would prevent the movable electrode from pulling in.
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Figure 7-9: Curve of the minimum required actuation voltage for a system with the

dimensionless quantity RC J, comparing the effect of the RC time constant relative
to the resonant frequency of the mechanical structure.

The effect of electrical damping of the mechanical system is more complicated.

The charge decreases with time according to the time constant of the circuit, however,

the capacitance during the discharge is not constant because the gap is changing. In

addition, the velocity of the movable plate will be a complicated function due to the

two nonlinear electrostatic forces acting on the plate due to the evolving charges on

it and the two fixed plates.

To model the effects of the electrical damping, a model of the strain-energy switch

was implemented in Simulink. Simulations were run for a range systems whose di-

mensionless quantity RC - varied over a range of 0.01 up to 100.0. The resultsm

of these simulations are shown in Figure 7-9, where the actuation voltage required

for the different systems is shown. The RC time constant begins to have an effect

on the overall system when the RC time constant is in the range of 10 to 50% of

the mechanical time constant, defined by sqrtm. Therefore, by designing a system

with an RC time constant that is less than 10% of the mechanical time constant, the
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electrical damping can be eliminated.

7.3.4 Switch initialization

Prior to the normal operation of the switch, where the stored elastic potential energy

drives the switching, the movable electrode needs to be pulled in to one of the two fixed

electrodes from its unactuated equilibrium state. This can be done by either applying

a DC voltage that exceeds the pull-in voltage of the device or by the modulated pull-in

technique described in chapter 6.

Although it requires more control electronics, the modulated pull-in technique has

a number of advantages. First of all, the required voltage for pull-in is much lower

than a standard DC pull-in voltage and can be essentially the same as the actuation

voltage required for the standard operation of the strain-energy switch. This is an

important point because it would allow integration of this kind of MEMS switch with

integrated electronic circuits. This provides the means to attain the goal of IC level

actuation voltage for the wavelength selective switch. Low voltage operation is also

important for a number of other MEMS switch applications, for example, RF MEMS

switches in cellular phones.

A second advantage of the lower initialization voltage resulting from the modulated

pull-in technique is that it allows a much thinner dielectric layer to be used. The

dielectric layer needs to be thick enough to withstand the maximum applied voltage.

If a thinner dielectric layer is possible because of lower applied voltages, then the hold

voltage is also reduced. The result of this is that the actuation and hold voltages can

be dramatically reduced compared with standard electrostatic actuation.

7.3.5 Switching speed

Estimating the switching speed of the device is relatively straightforward since it is

essentially the time required for one half of an oscillation. This neglects the nonlinear

effects in the system resulting from electrostatic forces. However, a well designed

switch would minimize the electrostatic forces during switching, thus minimizing the

179



effect of those on the switching speed.

If the mechanical system is linear, the switching speed base on the resonant fre-

quency is simply

t, = 7r ,(7.10)

for zero to 100% switching.

If the mechanical system has a nonlinear term, such as a Duffing spring term, the

switching speed is more difficult to calculate and requires knowledge of the maximum

displacement of the movable electrode to calculate. The Duffing nonlinear spring

results from using a fixed-fixed beam as the moving electrode and can increase the

switching speed by as much as 30% or more, depending on the ultimate strength of

the materials being used. This method can be effective for increasing the switching

speed.

7.4 Strain-energy prototype switch design and fab-

rication

Because the strain-energy based switching concept is a completely new idea for MEMS

actuation, a prototype device was designed and fabricated to demonstrate the actu-

ation technique. Because the device was only for the demonstration of the switching

technique, it only required two fixed electrodes and one moving electrode. The ap-

proach used for the switch prototype was the implementation shown in Figures 7-5

and 7-6.

7.4.1 Prototype design

The prototype switch structures were designed to be very simple to fabricate. A range

of devices were designed with a variety of dimensions for the movable electrode in

terms of the width and the length. The gaps between the electrodes was also varied.

Finally, some of the devices were designed with curved fixed electrodes, as in Figure

7-6, and some were designed with flat fixed electrodes, as in Figure 7-5.
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The SOI wafers used for the fabrication had a 5.0 ±0.5pm thick silicon device

layer on top of a 3.0pm thick oxide layer. The resistivity of the device layer was given

in the wafer specifications as 2.7 - 5.0 0-cm.

The dimensions of the prototype switch structures that were fabricated and tested

are given in Table 7.1 along with the shape of the fixed electrode and the resonant

frequency of the movable electrode. 3

The resonant frequencies of the different beam designs were calculated using finite

element analysis. The finite element calculation of the resonant frequencies is based

on small deformations. Therefore, it does not take into account the nonlinear Duffing

spring effects that these beams experience at the larger deformations that they are

subject to. The Duffing spring effect will increase the resonant frequency above the

value reported by the finite element analysis.

The finite element analysis also did not take into account the silicon oxide layer

grown on the surface of the movable electrode. The thermally grown silicon oxide has

a compressive stress of approximately 300 MPa, which tends to decrease the resonant

frequency.

The pull-in voltages of these devices were designed to run between 75 and 125

volts with the hold voltage being roughly equal to one half to two thirds of the pull-in

voltage. The high hold voltage level was required due to the thick dielectric layer

needed to withstand the high pull-in voltages.

The switching speed of these devices can be calculated from their resonance fre-

quency by Equation 7.10. For the devices listed in the Table 7.1, the predicted

switching speeds ranged from 98 to 424 ns.

To avoid developing high stresses during the actuation of these devices, the anchors

of the movable electrodes were rounded to reduce any stress concentration locations.

Through finite element analysis, the maximum stress expected during actuation was

about 1 GPa for the device with the highest stress. Most device designs should

experience stress levels no greater than 500 MPa.

3A number of other device designs were also fabricated; however, they were unsuitable for testing.
Most notably, all of the device designs that had a 1pim-thick movable electrode buckled during the
growth of the final thermal oxide film, so they became unusable (see Section 7.5.1).
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Table 7.1: Design details of prototype switch structures.

Device Length Width Gap Electrode Resonant
(pim) (pIm) (ptm) shape frequency

I_ I (MHz)

A 120.0 2.0 0.75 curved 1.2

B 120.0 2.0 1.0 flat 1.2

C 120.0 2.0 1.0 curved 1.2

D 100.0 2.0 0.75 flat 1.7

E 100.0 2.0 0.75 curved 1.7

F 70.0 1.5 0.75 curved 2.6

G 60.0 1.5 0.5 flat 3.5

H 60.0 1.5 0.75 curved 3.5

I 60.0 2.0 0.5 flat 4.7

J 50.0 1.5 0.5 flat 5.1

K 80.0 1.5 0.75 flat 2.0

L 70.0 2.0 0.5 flat 3.5

M 70.0 1.5 0.75 flat 2.6
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7.4.2 Fabrication

The fabrication process to create the prototype switch was simple due to the use of

an SOI wafer. The fabrication process is illustrated in Figure 7-10. A detailed list of

steps is given in Table 7.2.

The advantage of using SOI wafers is that both the sacrificial layer and the struc-

tural layers are already in place. In addition, the single crystal silicon of the device

layer is ideal for MEMS devices since the layer is stress-free, and has the desirable

mechanical properties of single crystal silicon.

The design calls for gaps as small as 0.5pm. To be able to resolve these gaps,

a Nikon projection lithography stepper was used. This stepper can resolve down to

just under a half micron. For etching the final thermally grown oxide layer, contact

lithography was used, since the resolution required was much lower, on the order of

tens of microns.

To achieve straight sidewalls for the silicon device layer etch, an STS DRIE ma-

chine was used. Straight sidewalls are important for the device, since the sidewalls

form the contact surfaces of the movable electrode and the fixed electrodes.

The purpose of the aluminum layer was to allow wirebonding to the bond pads for

applying the control signals to the electrodes. The aluminum film had the potential

to create short circuits between the bond pads that were intended to be isolated.

To avoid this, the aluminum layer was specified to be very thin (-10nm) and to

be deposited by electron-beam (E-beam) evaporation. E-beam evaporated films are

deposited in a directional manner; therefore, the sidewalls and especially the undercut

regions would have very little if any aluminum deposited. Also, by having a very thin

film, the film would not be able to coalesce into a completely continuous film. This

means that if a short circuit happens to be formed by the aluminum, the short will

have a very small cross-sectional area and will quickly, and benignly, burn up as

current starts to flow.

Finally, it is noted that the movable electrodes are released fairly early in the

fabrication process, as compared with typical MEMS fabrication processes. Typically,
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Figure 7-10: Cross-sectional view of the fabrication process used for the strain-energy
switching prototype. (A) fabrication process begins with an SOI wafer. (B) thermal
oxide is grown on the wafer. (C) thermal oxide is patterned with photolithography
and RIE. (D) silicon device layer is etched with Deep RIE (DRIE). (E) thermal oxide
mask and oxide sacrificial layer are etched away with BOE. (F) thermal oxide layer is
grown to create dielectric layer to separate electrodes. (G) thermal oxide is patterned
and etched with photolithography and BOE to provide access to bond pads. (H) thin
aluminum film is deposited by electron-beam evaporation.
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the release step is the last step before packaging. In this case, the movable electrodes

are stiff enough to withstand significant additional processing without any fear of

the structures breaking from spin drying, or experiencing stiction due to the surface

tension of liquids pulling the electrodes together.

Table 7.2: Fabrication process for the prototype MEMS

switch based on the strain-energy technique.

Step Machine Process Notes

1 Wet station RCA clean

2 Diffusion tube Grow 500 nm thermal oxide film

3 Wet station RCA clean

4 Coater Track Apply HMDS and 1.0 pm photo-resist,

then soft bake

5 Nikon stepper Expose photoresist

6 Coater Track Develop photoresist and hard bake

7 AME Precision 5000 Reactive ion etch (RIE) thermal oxide

8 Oxygen plasma asher Strip photoresist

9 Wet station Piranha clean and HF dip

10 STS DRIE Etch through SOI device (Si) layer

11 Oxygen plasma asher Remove residual PTFE passivation layer

12 Wet station Piranha clean and HF dip

13 Wet station BOE etch oxide mask and SOI oxide

layer for release (15 min)

14 Wet station RCA clean

15 Diffusion tube Grow 80 nm thermal oxide film

16 Wet station BOE etch oxide 15nm

17 HMDS oven Vapor phase deposition of HMDS

continued on next page
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Table 7.2: continued

Step Machine Process Notes

18 Spin coater Coat wafer with 8.Opm of photoresist

19 Oven Soft-bake photoresist for 30 min at 95"C

20 EV620 Aligner Align mask and expose photoresist

21 Wet station Develop photoresist

22 Oven Post-bake photoresist for 60 min at 95*C

23 Wet station BOE etch oxide 65nm

24 Oxygen plasma asher Strip photoresist

25 Wet station Piranha clean and HF dip

26 E-beam evaporator Deposit 10nm aluminum

27 Cleave wafer

28 Wire-bonder Package device in test chip

7.4.3 packaging

The strain-energy switching technique requires low damping for good performance.

The only way to reduce mechanical damping to the levels required for optimal perfor-

mance is to operate the switch in a vacuum. While the initial prototypes of this switch

will be tested in vacuum chambers, commercial devices will require some form of vac-

uum packaging. Vacuum packaging of MEMS devices has been a point of research for

a number of years because MEMS resonant filters also require low damping for good

performance. These techniques have not yet been applied to MEMS switches.4 How-

ever, the vacuum packaging techniques that have been developed should be readily

applicable to strain-energy switching devices.

Vacuum packaging research has focused on three different approaches. The first

4MEMS switches based on current actuation technique typically operate best at near critical
damping, where the settling of the switch after it is released is minimized. For this reason, vacuum
packaging of MEMS switches has previously not been desired.
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(A)

(B)

(C)

Figure 7-11: Schematic illustration of the wafer bonding vacuum packaging approach.
(A) device wafer and capping wafer prior to bonding. (B) wafer stack after bonding.
(C) individual chips after bonding and dicing.

is chip level packaging, where the chips are fabricated and diced from a wafer, after

which the chips are sealed in a vacuum package [68,132]. This technique mimics the

packaging technique used for most ICs; however, the process and materials are much

more expensive.

The second vacuum packaging approach is a wafer-level packaging scheme where

the devices are fabricated on a wafer and then a second capping wafer is bonded to

the device wafer [20,60,76,77,133]. The bonding process seals the MEMS devices in

a vacuum. After bonding, the wafers are cut into chips with the vacuum seal intact.

The third vacuum packaging approach is also a wafer-level packaging process that
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uses thin film deposition to create a vacuum sealed cavity around the device [47,63,

83, 134]. This is all done on one wafer and uses fairly standard CMOS fabrication

steps. After sealing, the chips can be diced from the wafer and packaged in standard

plastic IC packages.

Any of these three techniques could be used for devices based on the strain-

energy actuation technique. For low-cost applications, such as RF MEMS switches

for cellular phones, the thin film deposition or the wafer bonding approaches are likely

the best choice. For devices that are required to be very rugged and reliable, and where

cost is less of an issue (i.e., military applications and satellite telecommunications),

encapsulating the chip in a vacuum package at the chip level is probably the best

option.

7.4.4 Control electronics

Because the strain energy based switch utilizes the dynamic behavior of the system

to achieve switching, the control electronics need to be well designed so as not to

inadvertently alter the dynamics. During the switching process, the electronics need

to switch the applied voltages on and off much faster than the mechanical response.

In addition, a pathway for the rapid discharge of the electrodes is also required.

The proposed control circuit is shown in Figure 7-13. The speed of the transistors

is critical for the strain-energy switch to operate. The switching time of the transistors

should be much faster than the mechanical switching time. In addition, the timing of

the different control signals Vc, 1 , 2, V, 3 , and Ve, 4 needs to be carefully controlled.

Figure 7-14 illustrates how the control voltages should be manipulated for the strain-

energy switch to operate properly. The time delay to between the switching of the

control voltages is to give time for the stray capacitances associated with the second

electrode to become charged up. This reduces the effects of the stray capacitances on

the electrode toward which the movable plate is moving. The parasitic capacitance

related to the first electrode will still affect the movable electrode as it moves away

from the first electrode.

The control voltage pairs Vc,,, Ke 2; and V, 3, V,, 4 are shown in Figure 7-14 to
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Figure 7-12: Schematic illustration of the thin film vacuum packaging approach.
(A) device wafer with the fabricated MEMS devices. (B) wafer after deposition
and patterning of the packaging sacrificial material. (C) wafer after deposition and
patterning of the first capping thin film. (D) wafer after the removal of the sacrificial
material and the deposition of the final capping film. (E) final chips after dicing.
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Figure 7-13: Schematic drawing of the switching circuit for the strain-energy actuation
technique.
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Figure 7-14: Timing of the control voltages for the strain-energy switch circuit for
a switch operation where the movable electrode moves from being pulled-in to fixed
electrode one to being pulled-in to fixed electrode two.

switch at the same instant. This will work for the circuit but can be relaxed a little

bit to be te1  te, 2 and te 4 < tCV3 , as long as the delay between the switching of the

two signals is not long enough for the leakage currents of the capacitors to discharge

the capacitors enough to cause the movable electrode to release from the pulled-in

state. In addition, the two transistors should never both be on at the same time as

this would connect voltage sources directly to ground.

7.5 Fabrication and experimental results

The testing of the prototype devices involved characterizing their electrical and me-

chanical properties. Electrical characterization consisted of measuring resistance to

calculate the charge and discharge rates. In addition, the pull-in and hold voltages of

the devices were measured in both air and in vacuum. One of the significant, albeit

expected, results of these tests was that the dielectric charging experienced during

operation in air was not seen in vacuum.
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7.5.1 Fabrication results

To evaluate the fabrication results, optical and scanning electron-beam microscopy

was used. Through this examination, a number of variations from the ideal process

were observed.

One of the variations observed was that the etch of the silicon device layer widened

the gaps by 200 to 300 nm over what was designed. The effect of wider gaps was to

create devices with thinner movable electrodes and larger displacements. Secondary

effects included increasing the resistance of the electrode due to a reduced cross-

sectional area, and reducing the resonant frequency. The widening of the gap could

have resulted from the lithography, the etching of the oxide mask, the etching of the

silicon device layer itself, or a combination of these steps.

Another problem observed with the silicon layer etch was footing, or undercutting

of the movable electrodes [81]. Footing became apparent when some of the movable

electrodes buckled to the side after the silicon device layer etch. Buckling was a result

of being undercut combined with the residual compressive stress in the oxide mask

layer. The effect of the undercut on the device is to increase resistance by reducing

the cross-section of the movable electrode. The effects of undercut on the stiffness and

mass cancel each other out, resulting in zero net change in the resonant frequency.

After the oxide mask layer was etched away, the buckled electrodes returned to their

unbuckled state.

An additional variation was that the oxide film grown as the dielectric layer in

between the electrodes was grown thicker than the design value . This layer was

etched back a little (see Table 7.2) to compensate for the overgrowth. The effect

of this was minimal, creating a slight increase in the device resistance and a slight

decrease in the resonant frequency.

An additional effect of the oxide growth on the electrodes was the introduction

of sufficient compressive residual stress into the movable electrodes to cause all of

the devices that had been designed with a one micron width to buckle. The buckled

structures became unusable at this point.
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The aluminum layer performed as anticipated and described earlier. There were

some undesired electrical paths created. However, the paths quickly burned up upon

application of a voltage. This was observed by the creation of dark patterns in the

aluminum film.

7.5.2 Device resistance

The resistance of the moving electrode was measured between the wire-bonded pads

on either side of the moving electrode, see Figure 7-5. The movable electrode is the

main source of resistance in the device because of its small dimensions. The resistance

of the device was predicted using according to

R Lp, (7.11)
Wtb

where pe is the resistivity of the silicon, L is the length of the electrode, w is the

width of the electrode, and tb is the thickness of the electrode. Table 7.3 shows the

resistance values measured for a number of devices and the predicted values based on

the device dimensions as designed, and the resistivity value of the SOI wafer's device

layer given by the manufacturer.

The devices that show significantly less resistance than the predicted values have

a secondary electrical path created by the thin aluminum film (-10nm) that was

deposited on the wafer to enable wirebonding. In the devices that show a com-

parable resistance to the predicted value, the aluminum does not have a complete

path between the bond pads; and thus the resistance increase results from the silicon

comprising the movable electrode. A few devices not listed in Table 7.3 were open

circuited. This result is likely due to a bad wirebond connection on one of the two

bondpads.

7.5.3 Pull-in/hold voltages and dielectric charging

The prototype devices were tested to determine the pull-in and hold voltages of the

various designs. Testing consisted of applying a voltage between one fixed electrode
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Table 7.3: Resistance measurements and calculations for the prototype strain-energy
switching structures.

and the movable electrode and increasing the voltage until the movable electrode

pulled-in. At this point, the voltage was decreased until the movable electrode was

released. The test sequence was repeated several times with each device. To observe

the effects of dielectric charging, the polarity of the voltage was switched between

some pull-in and release cycles during the testing.

Table 7.4 shows the pull-in and hold voltage results of the tested devices. These

values given are averaged over a number of pull-in and release testing cycles. For the

tests conducted in air, significant dielectric charging was observed, leading to large

standard deviations. In some instances, polarity was switched after every pull-in and

release cycle. This sequence minimized the effects of dielectric charging. For example,

device K was tested in air in this manner, which led to its low standard deviation

values. Device K was also tested in vacuum with some random switching of polarity,

and it still displayed better stability over a number of iterations than any of the

devices tested in air.

It is interesting to compare the ratio of the hold voltage over the pull-in voltage

for the different devices. The lowest ratio for any of the devices tested in air was
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Device Measured (Q) Predicted (Q)

B 1.0x10 6  0.6 x106

D 1.9x10 6  0.5x10 6

E 700 0.5x106

G 750 0.4x10 6

I 466 0.3x10 6

J 0.86x10 6  0.33x10 6

K 6.6 x106  0.53x10 6

M 880 0.47x 106



Table 7.4: Pull-in and hold voltage results of several of the switch prototypes.

Device Pull-in voltage (V) Hold voltage (V) ratio v-

standard standard
mean deviation mean deviation

C (air) 66.0 15.5 49.5 14.2 0.75

D (air) 85.5 6.64 69.6 7.27 0.81

E (air) 68.5 7.73 55.7 5.33 0.81

F (air) 71.2 8.44 67.8 8.51 0.95

G (air) 80.0 4.95 70.0 3.50 0.87

K (air) 59.2 3.58 45.6 3.36 0.77

K (vacuum) 86.5 3.81 43.5 3.17 0.50

M (air) 81.3 5.59 72.3 4.86 0.89

0.75, for the device tested in vacuum, the

(K) tested in air had a ratio of 0.77.

ratio was 0.50. Moreover, that same device

)ne of the effects of dielectric charging in

this case is to reduce the contrast between the hold and pull-in voltages. For the

strain-energy switch, the contrast between pull-in and hold voltages is important for

low voltage operation. For this reason, the fact that the vacuum tested device has a

better contrast carries added significance. 5

Comparing the pull-in and hold voltages of devices D and E is particularly in-

teresting since the two devices have identical lengths, widths, and gaps. The only

difference between the two is that in D the fixed electrodes are flat whereas in E the

fixed electrodes are curved. The difference in the pull-in and hold voltages shows

that the curved electrodes do reduce the pull-in and hold voltages for the device, as

expected. The switching speed of the two devices should be essentially the same since

the resonant structure have the same dimensions.

As mentioned above, testing the devices in air showed significant dielectric charg-

5For a more in depth discussion on the origins of dielectric charging and its effect on parallel
plate actuators, see Section 4.2.1.
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Figure 7-15: Pull-in and hold voltages for a series of switching cycles of device "C."
The + and - signs above the bars indicate the polarity of the iterations. These pull-
in and release iterations were performed in air. Note the strong dielectric charging
effects.

ing. This was observed by increased or decreased (in the cases of switched polarity)

pull-in and hold voltages on subsequent pull-in and release cycles. The following plots

show a series of pull-in and release cycles, with some polarity switching for a number

of devices. The effects of dielectric charging are significant.

Figure 7-15 shows the results of the testing of device C in air. In this test, there

are a series of iterations where two pull-in and release cycles were performed, after

which the polarity of the applied voltage was switched. It is seen that the second of

the two pull-in voltages during the two pull-in polarity cycle is significantly higher

than the first of the two pull-in voltages. This is also true of the release voltages.

This increase in the pull-in voltage is due to dielectric charging on the silicon oxide

separating the fixed and movable electrodes.

Figure 7-16 shows the results of testing device K where the polarity of the pull-in

voltage was switched after each pull-in and release cycle. The interesting thing to note

in this case is that the pull-in voltages for both polarities appeared to be converging

to a particular value. The convergence results from the charges on the surfaces of
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Figure 7-16: Pull-in and hold voltages for a series of switching cycles of device "K."
The + and - signs above the bars indicate the polarity of the iterations. In this
case, the polarity is reversed with each cycle and the pull-in and hold voltages for the
different polarities appear to be converging to a constant value.

the oxide layers becoming saturated with roughly an equal number of positive and

negative charges. These essentially cancel out the effect of the trapped charges, and

also prevent the collection of additional charge on the oxide surface.

Figure 7-17 shows testing results for the second fixed electrode of device K. (The

first fixed electrode results are shown in Figure 7-16.) The same polarity switching

scheme was followed and the same number of pull-in cycles was performed as in the

case of the tests on the first electrode. This was done to verify by comparison that

the pull-in and hold voltages were essentially the same for the two fixed electrodes.

Very similar values and trends were seen between the two tests, validating that the

devices were indeed symmetric in terms of electro-mechanical response.

Figure 7-18 shows a series of pull-in and release cycles performed inside an SEM

under vacuum. The dramatic dielectric charging seen in the tests performed in air

are not seen. This is a very encouraging result, since it indicates that by using one of

the vacuum packaging schemes discussed in Section 7.4.3 the performance and relia-

bility problems associated with dielectric charging will be eliminated or significantly

reduced. However, the SEM causes a different artifact. If the electron beam impinges
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Figure 7-17: Pull-in and hold voltages for a series of switching cycles using the second
fixed electrode of device "K" (Figure 7-16 used the first fixed electrode of device "K").
The same polarity cycling strategy was used in this case as in Figure 7-16 and the
results are similar. This indicates that the symmetry of device "K" is good.
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Figure 7-18: Pull-in and hold voltages for a series of switching cycles of device "K."
The + and - signs above the bars indicates the polarity used for that pull-in and
release cycle. These pull-in and release tests were conducted in a vacuum within the
chamber of an SEM. The dielectric charging seen in Figures 7-15, 7-16, and 7-17 is
not observed in these tests. (The release voltages of iterations 6 and 18 were not
recorded.)
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on the device during operation, it can charge ungrounded parts of the device. This

resulted in an artificial increase of the pull-in voltage observed inside the SEM in our

experiments (see Table 7.4).

7.5.4 Discussion of results

These particular devices were not tested in a fashion that would allow the demon-

stration of the strain-energy switching technique. Further development of the control

circuit is required before the technique can be demonstrated. However, a number of

interesting results were obtained.

First of all, a fabrication process was developed by which strain-energy based

switches can be easily fabricated using the device layer of an SOI wafer to create the

structure.

It was also shown that by operating in vacuum, dielectric charging is eliminated.

This results from having no air to ionize to thus cause dielectric charging. An ad-

ditional result shown is that the device in the vacuum had a much higher contrast

between the pull-in and hold voltages.

Finally, it was shown that by designing the fixed electrodes to be curved to match

the mode shape of the movable electrode, the pull-in and hold voltages can be reduced

as compared to a device that has flat fixed electrodes. This allows more efficient, and

lower voltage operation of the devices.

7.6 Applications of strain energy switching

The strain-energy based actuation technique, allows switching of MEMS devices 10

to 1000 times faster than any other MEMS actuation technique, and at the same time

reduces the required voltage and energy for actuation. These performance character-

istics are ideal for a number of switching applications. Two of the most significant

applications for this switching technique are optical switching and RF switching.
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7.6.1 Optical switching

The switching speeds that are possible with the strain-energy based method easily

provide the capability to meet the goal of one microsecond switching at IC level

voltages. In addition, with either higher voltages or by using smaller displacements,

it may be possible to reach switching speeds of 10 ns or less, allowing free-space or

integrated optical MEMS switches based on strain-energy switching to be used for

packet switching as well as switching for network protection and lightpath provisioning

(see Table 2.1). These switches could also be used for optical interconnects for high-

performance computing [50].

The benefits of using these MEMS switches for optical switching applications are

many. They would be inexpensive to operate since the power consumption is very low.

They would be inexpensive to manufacture since they can be made using conventional

CMOS fabrication techniques. In addition, because they are CMOS compatible, they

can be integrated directly with CMOS electronic chips.

For the wavelength selective ring resonator switch, the capabilities offered by the

strain-energy switching method enable the switch to meet or exceed all of the per-

formance requirements identified necessary for the switch to be used as an integrated

switch in commercial applications. Indeed, no other switching mechanism provides

the same combination of speed, actuation voltage, actuation power, and low cost

CMOS compatible manufacturing.

7.6.2 Radio Frequency (RF) switching

RF switching is currently performed by PIN (positive-intrinsic-negative) diodes, FETs

(field-effect transistors), or coaxial RF switches. These are either solid-state, semiconductor-

based switches; or electromechanical switches with discrete, macroscopic components.

Both kinds of switches suffer from natural performance impediments. The semicon-

ductor switches inefficiently transmit current in their closed state because of the limi-

tations of semiconductor materials. This results in dissipated power and insertion loss

weakening the signal as it passes through the switch. The macro-electromechanical
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switches have much better RF performance but are slow, large, expensive, and use

a lot of power. This has led researchers to look toward MEMS technology for RF

switching that has good RF performance but is still small and inexpensive [111].

Several RF MEMS switches have been developed over the last 10 years. Unfortu-

nately, technical and cost problems have kept these from being commercialized. Many

of the problems RF MEMS switches have faced are directly related to the limitations

of the actuation methods they use.

Actuation mechanisms have been electrostatic, piezoelectric, thermal, magnetic,

or some combination of these. All of these actuation techniques have advantages and

disadvantages. None have yet produced a switch that provides adequate functionality

and reliability for widespread commercial application.

As previously mentioned, electrostatic-based switches typically require very high

operating voltages (30 to 80 volts). A major limitation is that these voltage levels are

not compatible with CMOS integrated circuits. In addition, due to the high operating

voltages creating high electric fields, these electrostatic switches have reliability issues

related to dielectric charging. Some electrostatic switches have been designed to be

mechanically compliant and thus require a lower voltage (10 to 20 volts). However,

the low compliance of these switches leads to problems with stiction (when the moving

and fixed electrodes stick together) and switching speed.

RF MEMS switches based on other actuation techniques also have limitations.

Thermal- and magnetic-based switches require a high current for actuation, which

leads to a very high operating power. These types of switches also tend to be very

slow. Piezoelectric actuators provide high force, but very small strains. This means

the actuators must either be very large or must be coupled to some sort of transmission

that amplifies the actuators' motion. Either method leads to relatively slow switching

speeds. Additionally, typical materials used in magnetic and piezoelectric actuation

are not CMOS compatible.

For all types of RF MEMS switches currently under development, reliability prob-

lems have been one of the prime barriers to commercialization. Current RF MEMS

switches fail for one or more of the following reasons: contact resistance increase due
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to contamination and/or high impact velocities; stiction (moving part becoming stuck

to a non-moving surface) due to inadequate mechanical restoring force (stiffness); or

dielectric charging, which inhibits the actuation of the switch. The strain-energy

actuation technique either directly addresses or significantly minimizes all of these

reliability concerns.
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Chapter 8

MEMS tuning of Optical ring

resonator filters

In addition to switching optical ring resonator filters on and off, it would be very

useful in integrated optical circuits to have a tunable ring resonator filter. A tunable

filter would allow the circuit to select which wavelength (channel) is dropped from the

through waveguide to the drop port. To achieve tuning of an optical ring resonator,

the optical path length of the light in the ring resonator needs to change. This can be

achieved by changing the index of the material using carrier injection [30,56,57,140].

However, the carriers introduce loss into the ring resonator. This, in turn, changes the

filter characteristics (i.e. quality factor) with tuning. Carrier injection also requires

a significant amount of energy input to maintain the tuning and the tuning range is

quite limited (~5nm).

A second approach uses the thermo-optic effect, where the ring resonator is heated

to create the change in the optical path length [88]. The change in path length is due

to a combination of thermal expansion and change in refractive index. Thermal tuning

does not introduce loss into the ring resonator but does have a limited tuning range

and also requires a significant amount of energy to maintain the tuning. Thermal

tuning is quite slow, on the order of tens of milliseconds. The range of either the

carrier injection technique or thermal tuning can be expanded by using the vernier

effect if only one wavelength is of interest in the optical circuit.
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A third technique that utilizes MEMS to tune the optical ring resonator filters is

proposed here. This technique is similar to the wavelength selective optical switch

described previously but, instead of a lossy membrane, a dielectric membrane is sus-

pended over the ring resonator. For tuning, the dielectric membrane would be con-

trollably moved in an analog fashion within the evanescent field of the optical ring

resonator. The position of the of the dielectric membrane determines the effective

refractive index of the ring resonator. The effective index, in turn, sets the optical

path length of the ring resonator filter. Thus, by controlling the position of the ring

resonator filter, the ring resonator filter can be tuned through a wide spectral range

(-30nm) [145].

By using an electrostatic MEMS actuator, the energy required for tuning is very

small compared to both thermal and electro-optic techniques. The response can be

up to a thousand times faster than thermal tuning and no loss is introduced into

the ring resonators (as is the case with carrier injection). In this chapter, we carry

out a feasibility study of this type of MEMS-tunable optical ring resonator filter to

determine if the necessary functionality can be achieved and commercialized.

8.1 Design Requirements

For tuning through the entire range of interest of wavelength-division-multiplexed

optical communications (-30nm), the dielectric membrane needs a travel range of 50

to 500nm away from the ring resonator. The required displacement stability of the

device, at its most strict location of 50nm away from the ring , is ±0.07 nm. Because

of the exponential nature of the evanescent field, the displacement stability becomes

much less strict as the gap between the ring resonator and the dielectric membrane

becomes larger.

The response time of the tuning device is not as critical as that of the switching

device. The desired response time of the filter is ims or faster [116]. The actuation

voltage is restricted to 5V, the standard voltage available from an integrated circuit.
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(A) (B)

Figure 8-1: Illustration of the operation of the MEMS ring resonator tuning device.
(A) and (B) show the ring resonator tuned to drop different channels (wavelengths).

8.2 Device Description

The tuning principle is illustrated in Figure 8.2. As the position of the dielectric

membrane is moved within the evanescent field of the ring resonator, the resonant

wavelength is changed from one channel to another.

The proposed MEMS structure to control the displacement of the dielectric mem-

brane is illustrated in Figure 8.2. This is the structure that will be used in the

feasibility analysis of this chapter. The movable structure consists of the dielectric

slab composed of a thin layer of magnesium oxide and a backing layer of silicon ox-

ide. The silicon oxide stiffens the dielectric slab so that it does not deform during

actuation. The magnesium oxide provides a higher refractive index than the that of

silicon oxide and is thus more effective at tuning the ring resonator than the silicon

oxide.

The dielectric slab is suspended by two or more flexures that are electrically con-

ductive. The flexures allow the dielectric slab to displace vertically. The flexures, in

conjunction with the top electrodes, provide an electrostatic force that controls the

displacement. Together with the bottom electrodes, the flexures are also be used for

capacitive displacement sensing. This allows feedback control of the displacement to
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Figure 8-2:
electrodes,

Schematic of the MEMS structure, including both the control and sensing
integrated with the optical ring resonator.

be implemented, rejecting thermal mechanical noise and other disturbances.

The placement of the sensing (bottom) and actuation (top) electrodes takes advan-

tage of the fact that the stability requirement becomes less stringent as the dielectric

slab moves away from the ring resonators. Parallel plate electrostatic actuation is

nonlinear with the smallest displacement per voltage increment occurring when the

structure is at its initial position. Placing the fixed actuation electrode above the

moving structure allows the finest control where it is needed most.

The sensing electrode provides the highest sensitivity (large voltage changes for

small displacements) when the plates are closest to each other. The sensing electrode

is therefore placed underneath the structure to allow the most sensitive measurements

where they are needed most.

8.3 Device modelling and design

Figure 8.3 shows a lumped parameter model of the device illustrated in Figure 8.2.

This model is used as the basis for the device design and performance analysis. The
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Figure 8-3: Schematic of the lumped parameter model based on the MEMS structure
illustrated in Figure 8.2.

equation of motion resulting from this model is

.. +oAV 2  EoA V8
2

m+b ±kx * 2( *x2  (8.1)
2 (do _ X)2 2 (d, + X )21

Where V is the control voltage signal, do is the initial gap between the fixed control

electrode and the movable electrodes, V, is the sensing voltage signal, d, is the initial

gap between the fixed sensing electrode and the movable electrode, A is the overlap

area of the sensing and the control electrodes (assumed to be the same), and Eo is the

permittivity of air.

We apply a sensing signal

V, = Vo sin (wt), (8.2)

where the frequency w, is much higher than the mechanical resonant frequency of

the structure. The effect of the sensing signal on the bridge is essentially the same

as applying a DC voltage at the RMS value of . The control voltage will need toVst
compensate for this effect, as well as displace the structure to the desired location.
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By assuming quasi-static conditions, the required control voltage is

v72kx(dox)2 V 2 (do -x) 2
VC = O '+ ._ (8.3)

C A +2 (d8 + x)2

The total control voltage is a combination of the bias voltage and a voltage signal to

displace the structure to the desired location.

To design the structure to operate at a maximum of 5 volts, we set the pull-in

voltage of the control signal at 5 volts. In addition, since we know that the maximum

displacement needs to be 450 nm from the equilibrium position, we assume this is

the pull-in displacement. At this displacement, the gap between the structure and

the fixed sensing electrode has increased by a factor of ten (50nm to 500nm). This,

combined with the fact that the sensing signal is small, allows us to neglect the

effect of the sensing signal on the structure at pull-in. Using these known quantities

combined with the pull-in voltage equation

8kdO
Vpi = 80 (8.4)

27foA

allows the calculation of the required stiffness to area ratio for the device

k 27EoV?2
- = (8.5)A 8dO

This will be the same stiffness to area ratio that the sensing electrodes operate

with as well. If we require that the sensing signal does not exceed the pull-in voltage

in the absence of the control voltage, the maximum sensing signal amplitude would

be

2Ve id 3
d= 8 (8.6)

0

Since all parameters in Equation 8.6 have been defined already, VO is calculated

to be 50 mV. This value is consistent with our assumption that VO is small compared

with the pull-in voltage of the control signal.

The next design step is to select a structure that provides a stiffness to area ratio
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equal to that given in Equation 8.5.

To work off of the success of the wavelength-selective switch, a solid bridge struc-

ture will be used. Although it does not take into account the effects of the stepped-up

anchors, we will assume that the bridge behaves as a fixed-fixed structure. The stiff-

ness of the fixed-fixed bridge is
1EWt3

k = 16E , (8.7)

and the area of the bridge is

A = wL. (8.8)

The material used for the bridge in this analysis is titanium nitride (see Chapter

5). The value of the Young's modulus E is selected to be 300GPa. 1 Setting the width

w of the bridge to 15pm and length to 2 5 0 Mm on either side of the dielectric slab (i.e.

L = 500ptm) requires that the thickness tb be 1.58pm.

The resonant frequency of the movable bridge can be calculated using Rayleigh's

energy method [136] which gives

k
S= (m a + ,gfb (8.9)(mn + 13 ()

where md is the mass of the dielectric slab and mb is the mass of the bridge. Combining

the mass of the dielectric slab and the mass of the bridge according to the denominator

of Equation 8.9 gives the effective mass meff for the lumped parameter model. The

dielectric slab is composed of silicon oxide and is given dimensions of 45pm by 45ptm

by 41Lm. This allows for adequate overlap over the ring resonator so that the edges

of the slab do not induce loss. The slab is also thick enough that it should admit

very little deformation. As mentioned before, a thin layer (~100nm) of a high index

material added on the bottom of the slab for more effective tuning of the ring.

To reduce the effects of Brownian noise2 from the system and reduce dielectric

charging, the system will modelled as if it is packaged in a vacuum [36]. A mechanical

'Titanium nitride gives designers the unique ability to pick a value for the Young's modulus
based on the deposition parameters of the film.

2Brownian noise is due to collisions of air molecules with the mechanical structure.
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Table 8.1: Mechanical parameters for the ring resonator tuning
model.

lumped parameter

quality factor of Q = 100 will be assumed. This estimate is conservative for vacuum

packaged MEMS devices. The damping constant is

b = meffWn
Q (8.10)

Table 8.1 lists the numerical values of all of the mechanical parameters used in

the ring resonator tuning lumped parameter model.

8.3.1 Noise sources

Potential noise sources for the mechanical structure include mechanical vibrations,

thermal mechanical noise, Brownian noise, and noise resulting from noise in the ap-

plied electrical signals. External vibrational noise can be rejected by using proper

packaging techniques that only allow low-frequency vibrations to pass through to the

device. Low-frequency vibrations will have a very small effect on the device since

it has a relatively high resonant frequency. Brownian noise has been significantly

reduced through the use of vacuum packaging [36], as already mentioned above. The

remaining thermal mechanical noise and the mechanical noise resulting from the noise

in the applied control and sensing signals will be the two primary sources of noise in

the device.
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Parameter Value

Stiffness k (N/m) 2.28

Area A (m 2 ) 7.5x 10- 9

Effective mass meff (kg) 3.84x10-1

Resonant frequency f, (kHz) 38.7

Damping constant b (N-s/m) 9.35x 10-8



Thermal mechanical noise is a result of the thermal energy contained within the

structure [40,58,66,120]. In each vibration mode, the thermal noise is equal to !kbT,

where kb is Boltzmann's constant and T is the absolute temperature of the device.

In equilibrium, the thermal energy equals the energy present in the structure in the

form of mechanical vibrations, giving

1 1
-k(X2 = -kbT. (8.11)
2 2

Using this equation with the stiffness value given in Table 8.1 and a maximum

temperature of 125*C gives a RMS noise value of 0.5A, indicating that the open-

loop noise-limited positional accuracy is below specification; i.e., the structure will

regularly exceed the 0.7A range imposed by the optical design. Electronic noise which

we have yet to consider would lead to even worse performance.

The thermal noise can be expressed as a stochastic force with RMS value,

Fn = 4kbTbAf, (8.12)

where A/f is the frequency band of interest, and combined with the system equation of

motion. In this case, Af is set to the mechanical bandwidth of the system. Equation

8.12 is the mechanical equivalent of the Johnson noise resulting from resistors in

electrical circuits.

8.3.2 Feedback control system

In this section we explore the potential of feedback control for bringing the positional

of the tuning element back to within specification for our design. In other words,

we seek to use feedback to eliminate positional disturbances due to thermal and

electrical noise. For this purpose, a linearized model of the system is adequate, since

the displacements about the operating position are small.

We linearize the system equations about the operating positions found from Equa-
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tion 8.3

= kx (d - +- x)
('= + ._ _ (8.13)toA 2(d +x2

The linearized electrostatic force terms are

Fat (x,Vc ) = -+AVo2+ sO
2 (do - xO )2 4 (d + xo)2

c Ax 0Vo co Ax 0V

(do - xo)3  2 (ds + xo) 3

+_oAV__o coAV23+ (oX3x + ,
(do- x )* 2 (ds + xo)x

+EoAVo
+ -

2 v (8.14)
(do - xo)2

For these linearized equations, we have assumed that the noise in the sensing

signal is negligible. Since this signal is set at a constant amplitude and frequency,
it requires very little bandwidth and can be band-pass filtered to further reduce the

noise. This is in contrast to the control signal that needs to be at the bandwidth of

the system, and therefore will be subject to much greater noise. For this reason, the

assumption that the sensing signal is constant (noiseless) is valid.

The terms that depend on x in Equation 8.14 result in what is called the spring-

softening effect in parallel plate actuators. When these linearized terms for the ac-

tuator force are combined with the terms describing the dynamics of the mechanical

system, the stiffness term becomes

[k - OAVo _ AV X, (815)
[ (do - xo)3  2 (d, + xo)3 (

indicating that the stiffness of the system decreases as voltage is applied to the system.

This spring softening effect amplifies the stiffness-dependent thermal-mechanical noise

of the structure. Amplification of the thermal mechanical noise occurs in all parallel

plate actuators, even in the absence of the sensing signal (i.e. V 0 = 0) [46].3

The point of greatest interest and concern is when the dielectric slab structure
3 For a further discussion of the thermal-mechanical noise in parallel plate actuators, see Appendix

E.
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Figure 8-4: Block diagram of the feedback control system used for the tunable ring
resonator filter.

is closest to the ring resonator filters (i.e., xo = 0). It is at this location that the

requirements for stability are the strictest.

For xo = 0, we can combine Equations 8.1, 8.3, and 8.14 to get

. oAQ (de + d Aco
mJ + b± + (k - od,+ do)) dV V. (8.16)

dsdo do

This is the linearized equation of motion about the operating point defined by £o = 0,

Vo = 50my, and Vco = 0.95V. At this operating point, the effective spring constant

is 1.56N/m. This increases the RMS thermal noise to 0.6A.

This equation is used in the feedback control model shown in Figure 8.3.2. Included

in the block diagram are the thermal-mechanical noise as well as the electronic noise

from the sensing circuit and the noise from the control circuit. The control circuit

used in this analysis is a standard PID controller with transfer function of

K-
Ge(s) = Kp + + Kds. (8.17)

One possible circuit implementation of a PID controller is shown in Figure 8-

5 [103]. The proportional gain, integral gain, and derivative gain resulting from this
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Figure 8-5: PID controller circuit [103].

circuit are

SR 4 (RIC1 + R2 C 2 ) (8.18)
R3 R 1 C2

Ki = R4 (8.19)
R 3 R1 C2

R4R2 C1Kd = R - (8.20)

8.3.3 Capacitive sensing

Sensing for the feedback system is provided by a capacitive sensing circuit. The

sensing signal is applied to the capacitor formed between the fixed sensing electrode

and the movable bridge electrode. The result of the applied sensing voltage signal is

a current flow that is dependent on the capacitance. Since the capacitance depends

on the gap between the plates, a measure of the relative position of the movable plate

can be obtained indirectly from the current. A simple circuit for the capacitive sensor

is shown in Figure 8-6 [7].

The output voltage of the circuit is

Eo = V . (8.21)
Cjws - 1/R(

The maximum output voltage of the circuit should not exceed 5V, because of the

CMOS compatibility requirement. Using this constraint, along with the capacitance
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Figure 8-6: Capacitive sensing circuit [7].

Table 8.2: Parameters for the capacitive sensing circuit.

of the sensing capacitor as determined by the device dimensions selected in Section 8.3,

the rest of the parameters were calculated and are shown in Table 8.2. The parasitic

capacitance Cg is estimated based on a reasonable value for integrated circuit parasitic

capacitance.

The sensing circuit noise is the dominant electronic noise in the closed-loop system

because this noise is amplified by both the sensing circuit and the control circuit. The

noise from the control circuit is only amplified by the control circuit, and is thus less

of a concern, although this noise source was retained in the simulation for safety.

The noise resulting from the sensing circuit is a combination of the Johnson noise

from the resistor and the current and voltage noise associated with the op-amp. These

noise sources are combined and amplified by the circuit. The total noise in the output
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Parameter Value

C, 1.3pF

CQ 13fF

Rf 100.OMQ

C 10fF



Table 8.3: Simulation results of open-loop and feedback control of the ring resonator
tuning structure.

signal is

E2 _ En2Af (1/Rf + jwsCs + jwCg + jwCf) 2

1/Rf + jwsCf

- 2

+ 4kbTRfAf
1 - jwC R

+ ./2 A f 2 (8.22)
1/ Rf + jwsCf

Using the values En = 4.5nV/v/Hiz, In = 1.7pA/Viz [102] for the op-amp noise

sources along with the parameters given in Table 8.2 gives a total noise at the output

of the circuit of 277pV at a temperature of 125*C and with a sensing signal frequency

of 100MHz. Comparing this noise with the sensitivity of the capacitive sensor in-

dicates that the sensor can resolve a change in capacitance of 7.2x10- 1 F, which

corresponds to a displacement of 2.7pm. These results are in line with experimental

demonstrations of capacitive sensing [7,125].

8.3.4 System performance

Using the parameters derived in the preceding sections, the feedback control sys-

tem model shown in Figure 8.3.2 was implemented in Simulink. The results of the

simulations are shown in Table 8.3. The open-loop simulation included only the

thermal-mechanical noise of the system and, consistent with the analysis and associ-

ated assumptions, the results of the simulation give an RMS value of the displacement

noise of 0.6A.
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Table 8.4: PID controller parameters used in closed-loop simulations.

For the closed-loop simulation, thermal-mechanical noise and circuit noise for both

the sensing circuit and the control circuit was included. The sensing circuit noise was

set to 271pV (RMS), according to the analysis performed above. The control circuit

noise was set to 2.71 mV. The noise from the control circuit should actually be much

less. However, our choice represents the value at which the control circuit noise started

to influence the mechanical stability of the MEMS structure. The thermal-mechanical

noise was same as included in the open-loop simulation.

The parameters selected for the PID controller in the closed loop simulation are

shown in Table 8.4. The control signal fluctuations applied to the structure had an

RMS value of 1OOmV. These fluctuations were the result of the feedback control loop,

with the PID controller parameters determining the amplitude of the fluctuations. It

was necessary to keep the fluctuations in the control signal small since the bulk of

the control signal is used to displace the structure to its desired operating position.

8.4 Nonlinear control

MEMS parallel plate actuators are nonlinear systems. In the analysis and simulations

performed above, the system was linearized about one particular operating point.

Control parameters were selected to minimize the noise of the structure while also

meeting the other specifications. However, when the tunable ring resonator structure

is desired to be set at a different operating position, the control parameters will need

to change to be able to accommodate the changes that occur in the system parameters
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Parameter Value

Kp 1x104 V/V

Ki 5x10 2 V/(V.s)

Kd 2x10- 5 V-s/V



due to the nonlinearities of the system.

One way to construct a nonlinear controller is to design a number of PID con-

trollers at a number of operating positions of the system. As the actual operating

position of the system moves between the operating positions for which controllers

were designed, the parameters for the instantaneous controller can be estimated by

interpolation. This kind of nonlinear control is called piecewise linear control [61].

A second nonlinear control method that can be used is to use the controller to

compensate for the nonlinearities of the system. For parallel plate actuators, the

nonlinearity in the system is created by the dependence of the electrostatic force on

the square of the applied voltage and the inverse of the square of the displacement

of the plate. The nonlinear dependence of the force on the voltage squared is easily

resolved by simply calling the input to the system voltage squared, rather than just

voltage. The dependence of the force on the inverse of the displacement squared

requires that the controller have a dependence on the square of the displacement as

well. This arrangement cancels the nonlinearity of the system.

In theory, this type of nonlinear controller can control the parallel plate actuator

in a stable fashion throughout its entire range of motion, even in the range where pull-

in would normally occur. Actually achieving the full range of motion is difficult since

the calibration of the controller would need to be very accurate. The performance

of the controller is further limited by the speed of the controller. The latter also

becomes a limiting factor as the movable electrode approaches the fixed electrode.

8.5 Discussion

The primary goal of the analysis provided in this chapter was to determine if a

MEMS tunable ring resonator filter is feasible with the strict requirements on the

positional accuracy of the bridge structure. Our results indicate that MEMS tuning

of integrated optical ring resonators is feasible according to first principles, using

closed-loop feedback control. This system would require the integration of the control

electronics directly with the MEMS tunable filter in the same chip to be able to achieve
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the necessary circuit speed and to reduce stray capacitance to the point where the

circuit would perform as designed. The benefit of our feedback scheme is that it can

also compensate for variations due to fabrication errors within limits (e.g. lithography

resulting in shapes slightly different than predicted), and tim variant errors (e.g. due

to temperature variations). A complete analysis of such errors and design of the

calibration (system identification) procedures and robust control schemes for this

goal were beyond the scope of this thesis. These steps would constitute a natural

next step in an effort to reduce the proposed devices to practice.

The proposed devices and control methods may have a significant impact on in-

tegrated photonics. A tunable filter based on these design parameters would have a

very wide tuning range, wide enough to cover an entire 30nm communication band.

The speed at which the wavelength could be tuned would be on the order of tens of

microseconds. Because the tuning mechanism is independent of the materials used

for the cladding and core of the ring resonator filter, the optical performance of the

device can be as good as the best performing ring resonator filters currently available.

If the requirements for either the tuning range were relaxed or if the available

actuation voltage were increased, the complexity of the control circuitry would be

significantly reduced because of the exponential nature of the evanescent field and

the dependence of the thermal-mechanical noise on the stiffness of the system. It

may even be possible to operate the device using open-loop control to control the

device after rigorous calibration, similar to Lucent's micro-mirror arrays [3].
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Chapter 9

Conclusions and future work

The purpose of this thesis has been the development of MEMS switchable and tunable

ring resonator filters for integrated optical circuits. To this end, a number of contri-

butions have been described herein. A MEMS-switchable ring resonator filter device

has been designed, fabricated, and tested to show wavelength-selective switching us-

ing MEMS devices combined with ring resonator filters. The switch was operated at

30V (24V pull-in) with switching speeds of 16ps to pop-up and 60pPs for pull-down.

The optical switching contrast was 13dB in the drop port and 1.5dB in the through

port. The insertion loss in the drop port was 10dB. This is the first demonstration of

an integrated wavelength-selective MEMS optical switch and the first demonstration

of a ring resonator being switched on and off (rather than detuned).

The work to characterize this particular device led to a better understanding of

the residual stress challenges associated with working with aluminum. In addition,

a model for dielectric charging has been proposed that shows the trapped charge

dependence of the dielectric surface on the electric field applied to the air in the gap

between the parallel plates forming the MEMS actuator and matches well with the

experimentally observed behavior. The model correctly predicted the behavior of the

MEMS bridge during pull-in and provided a measure of the charge trap densities of

the silicon oxide that is comparable to values obtained by other experimental means.

Because of the difficulties associated with residual stress in aluminum, titanium

nitride was developed as a new material for MEMS applications. Titanium nitride
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has a number of appealing properties including high hardness, high stiffness, electrical

conductivity, high melting point, chemical inertness, wear resistance, and low surface

adhesion (i.e. anti-stiction capacity). Poly-silicon was shown to be an effective sacri-

ficial material for titanium nitride, with xenon difluoride as the etchant to remove the

sacrificial material. To control the residual stress in titanium nitride, it was shown

that annealing at a relatively low temperature could reduce the residual stress in the

titanium nitride to acceptable levels. We expect these contributions to be significant

for MEMS applications beyond integrated optics that was the focus of this thesis.

To allow integration of the wavelength selective switch with integrated circuits

where the voltage is limited to low values (-5V) and to provide switching speeds

faster than one microsecond (both key requirements for commercialization of the ring

resonator switch), two new complementary actuation techniques for MEMS switching

were developed. In the first actuation technique, the mechanical system resonance is

excited by a modulated voltage signal until enough energy is stored in the mechanical

system to allow pull-in of the movable plate at a significantly reduced voltage as

compared to applying a DC voltage to the device.

The second actuation technique switches a movable plate from being pulled-in to

one fixed electrode to being pulled-in to an opposing fixed electrode. The energy for

switching this device comes from the energy stored in the mechanical system when

it is in the pulled-in state. This also allows operation at a much lower voltage than

using a standard MEMS parallel plate actuator but it also provides switching speeds

that are significantly faster than one microsecond.

MEMS tuning of ring resonator filters was also explored and a feasibility analysis

was performed. The proposed design moves a dielectric slab incrementally in the

evanescent field of the ring resonator. Different operating positions of the dielectric

slab correspond to different WDM channels. For the operating position closest to

the ring resonator, the positional accuracy of the dielectric slab for proper optical

operation is less than an angstrom. This was demonstrated to be feasible according

to first principles by use of capacitive sensing and feedback control. One of the key

discoveries from this analysis that has wide application is that for parallel plate MEMS
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actuators there is an amplification of the thermal-mechanical noise as the actuator

is displaced from its equilibrium position. Therefore, to achieve better stability, it is

best to operate the movable electrode as close to its equilibrium point as possible.

9.1 Future work

Much work still needs to be done to apply the results of this thesis towards the creation

of practical MEMS switchable and tunable ring resonator filters. The irresistible

appeal of integrating guided-wave optics, electronics, and opto-mechanics in the same

micro-system is a major driving force for the continuation of this endeavor.

For the wavelength selective switch, the next steps would be to design and fab-

ricate a second generation prototype that incorporates the use of titanium nitride

to reduce the negative effects of residual stress, and makes use of the new actuation

technique to show both low voltage operation and high-speed switching. In addition,

the fabrication process for this device needs to be refined in such a way as to allow

integration with a variety of optical elements.

The MEMS tunable ring resonators require a significant amount of work. The

next step is to fabricate an initial prototype device to demonstrate filter tuning using

the dielectric slab approach. This should be with a simple MEMS device, where the

dielectric slab is pulled-down rather than up as shown in the device whose performance

was analyzed in Chapter 8. Once demonstrated, a more complex device incorporating

more of the design elements of the device in Chapter 8 should be created and tested.

After these devices have been demonstrated and refined, an integrated device where

the control electronics are integrated together with the device should be created. This

is a rather complex system to integrate together. For this reason, the step by step

approach described here is the best approach to maximize the chance of success.

As these, and other, integrated optical devices are refined, integrated optical cir-

cuits for a variety of functions need to be designed, fabricated, and characterized.

Through these optical circuits, the impact promised by the results described herein

will be realized.
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Appendix

Material Property Tables
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Table A.1: Aluminum (Al) Material Properties
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Property Value Source

Young's Modulus (E) 70 GPa [125]

Poisson Ratio (v) .33 [12]

Density (p) 2697 kg/m 3  [125]

Yield Strength (ay) 17 - 200 MPa [12,72]

Coefficient of Thermal Expansion (a) 22.5 - 24.0 pstrain/*C [12,117,1251

Optical Index (A = 1550nm) (n) 1.44+i16 [121]

resistivity 2.74 - 2.78 pQ-cm [12,117]

Melting Point 646 - 658 *C [12,117]

Specific Heat 0.9 J/g-0C [117]

Thermal Conductivity 210 - 231 W/m-*C [12,117]



Table A.2: Silicon (Si) Material Properties

Property Value Source

Young's modulus' 160 GPa [93]

Poisson ratio 0.22 [93]

Density (p) 2400 kg/M 3  [93]

Failure Strength (oy) 7 GPa [93]

Coefficient of Thermal Expansion (a) 2.6 pstrain/*C [93]

Optical Index (A = 1531.941nm) (n) 3.4784 [121]

resistivity varies with doping

Dielectric Strength 2  3 MV/cm [93]

Relative Permittivity 11.8 [93]

Melting Point 1415 *C [93]

Specific Heat 0.7 J/g-*C [93]

Thermal Conductivity 157 W/m-*C [93]
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Table A.3: Silicon Oxide (Si0 2) Material Properties
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Property Value Source

Young's modulus 73 GPa [93]

Poisson ratio 0.17 [93]

Density (p) 2300 kg/M 3  [93]

Failure Strength (oy) 8.4 GPa [93]

Coefficient of Thermal Expansion (a) 0.55 pstrain/"C [93]

Optical Index (A = 1469.5nm) (n) 1.44497 [121]

Dielectric Strength 5-10 MV/cm [93]

Relative Permittivity 3.8 [93]

Melting Point 1700 *C [93]

Specific Heat 1.0 J/g-C [93]

Thermal Conductivity 1.4 W/m-*C [93]



Table A.4: Silicon Nitride (Si 3N4) Material Properties

Property Value Source

Young's modulus 323 GPa [93]

Poisson ratio 0.25 [93]

Density (p) 3100 kg/m 3  [93]

Failure Strength (ay) 14 GPa [93]

Coefficient of Thermal Expansion (a) 2.8 pstrain/*C [93]

Optical Index3 (A = 1239.8nm) (n) 1.998 [121]

Dielectric Strength 5 - 10 MV/cm [93]

Relative Permittivity 4 [93]

Melting Point 1800 *C [93]

Specific Heat 0.7 J/g-*C [93]

Thermal Conductivity 19 W/m-*C [93]

Table A.5: Titanium nitride (TiN) Material Properties

Property Value Source

Young's modulus 106 - 640 GPa [32,64, 75,82,106]

Poisson ratio 0.295 [32]

density 3700 - 5700 Kg/m 3  [64,74,82,106]

residual stress -10.1 - 5.5 GPa [10, 32,64,75,82]

resistivity 25 - 40 pQ-cm [42]
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Table A.6: Properties of air (at standard temperature and pressure).

Property Value Source

Viscosity (A) 1.78xi0-5 kg/(m*s) [39]

Density (p) 1.23 kg/M 3  [39]

Pressure (p) 101.3 kPa [39]

Relative Permittivity 1.0 [73]

Optical index 1.00029 [48]
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Appendix B

List of Symbols

B.1 List of Symbols

Symbol Definition

r Radius of optical ring resonator

n

A

N

FSR

Qopt

m

b

k

6O

A

do

da

td

Ed

V, Vo

continued on next page

Refractive index

Wavelength of light

Integer value

Free spectral range

Optical quality factor

Mass of the moving parallel plate electrode

Damping coefficient

Spring stiffness

Permittivity of free space

Overlap area of movable and fixed parallel plates

Initial effective gap between plates

Air gap between parallel plates

Thickness of the dielectric material between plates

Relative permittivity of the dielectric material

Applied voltage
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Symbol

x

Vpi

Vh

fn

tpi

y'

L

We

wn

Wd

fd

tr

Q
AL

p

Ahi, Ah 2

C

M

E

Ia

continued on next page

Definition

Displacement of the movable plate

Velocity of the movable plate

Acceleration of the movable plate

Quasi-static pull-in voltage

Hold voltage

Mechanical resonant frequency in cycles/sec

Pull-in time

Viscosity

Length of the movable plate

Maximum distance to a free plate edge

Damping ratio

Mechanical resonant frequency in radians/sec

Damped mechanical resonant frequency in radians/sec

Damped mechanical resonant frequency in cycles/sec

Rise time

Mechanical quality factor

Length difference between adjacent cantilevers

radius of curvature of cantilever beams

Angular measure of difference between cantilever

beam tips. Also, angular displacement

of the movable torsional plate

Change in heights of cantilever tips

Chord length associated with AL

Angular measure of cantilever tip displcement

Bending moment applied to beam

Young's modulus

Poisson ratio

Area moment of inertia
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Symbol

o-xx

y

kd

Qo

Qt

Qta

Q tdc

Qb

Qba

Qbdc

Ctdc

Cbdc

ao, a,

Qsat

6

a

AT

Eal

6 8iasi

Ual

continued on next page

Definition

Stress in cantilever beam

Distance from neutral axis of beam

Duffing spring constant

Trapped charge on dielectric surface

Total charge on movable electrode

Charge on movable electrode resulting from

applied voltage

Charge on movable electrode resulting from

charge on dielectric

Charge on the bottom electrode

Charge on fixed electrode resulting from

applied voltage

Charge on fixed electrode resulting from

charge on dielectric

"Capacitance" between movable electrode

and dielectric surface

"Capacitance" between fixed electrode

and dielectric surface

Fitting parameters for dielectric charge model

Maximum charge accepted by dielectric surface

Strain

Coefficient of thermal expansion

Change in temperature

Strain in aluminum

Coefficient of thermal expansion of aluminum

Strain in silicon

Coefficient of thermal expansion of silicon

Stress in aluminum
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Symbol

Eal

Val

Lt

Wt

I

Xmax

0 max

00

Vspi

Vmpi

Einjected

Ekinetic

Epotential

Edissipated

Estored

V

continued on next page

Definition

Young's modulus of aluminum

Poisson ratio of aluminum

Yield stress

Angular velocity of the movable torsional

plate

Angular acceleration of the movable torsional

plate

Length of the moving torsional electrode from

rotation center to tip

Width of the moving torsional electrode

Mass moment of inertia of the moving

torsional electrode

Maximum overshoot (step response) or limit

cycle amplitude

Maximum overshoot (step response) or limit

cycle amplitude

Maximum possible angular displacement of

movable torsional plate

Step pull-in voltage

Modulated pull-in voltage

Energy input into the system

Kinetic energy stored in the system

Elastic potential energy stored in the system

Energy lost from the system due to damping

effects

Total energy stored in the system (kinetic plus

elastic potential)

Voltage source associated with fixed electrode 1
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Symbol

VCi1

Qi

R

V2

Vc2

Q2

Qp2

C,

V

ts

Vci, Vcv2, Vv3, Vcv4

to, tcvli, tcv2, tev3, tev4

Pe

w

tb

VC

ds

Vs

Vs0

continued on next page

Definition

Voltage across fixed electrode 1 and

movable electtrode

Charge stored on capacitor formed by fixed

electrode 1 and movable electrode

Charge stored on parasitic capacitor associated

with fixed electrode 1

Value of the resistances in circuit

voltage source associated with fixed electrode 2

Voltage across fixed electrode 2 and

movable electtrode

Charge stored on capacitor formed by fixed

electrode 2 and movable electrode

Charge stored on parasitic capacitor associated

with fixed electrode 2

Value of the parasitic capacitances in the circuit

Voltage required for switching strain-energy switch

Switching time required for strain-energy switch

Control signals for the strain-energy switch

Relative switching times of the strain-energy

switch control signals

Electrical resistivity

Width of movable beam

Thickness of movable beam

Control voltage signal

Effective gap between movable plate and fixed

sensing plate

Sensing voltage signal

Sensing signal amplitude
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Symbol

WS

t

vcpi

md

mb

meff

kb

T

Fn

Af

Vco

Fact

Ge(s)

K,, Ki, Kd,

R1, R2, R3, R4

C1, C2

Eo

CS

Cf

C9

R

En

In

Definition

Sensing signal frequeqncy

Time

Pull-in value for the control voltage

Mass of the dielectric slab

Mass of the bridge

Combined effective mass of the bridge

and dielectric slab

Boltzmann's constant

Absolute temperature

Thermal-mechanical noise force

System bandwidth

Operating position for linearized system

Control voltage operating value for

linearized system

Linearized electrostatic force

Transfer function of PID controller

Gain parameters of the PID controller

Resistances of the PID controller circuit

Capacitances of the PID controller circuit

Output signal of sensing circuit

Capacitance that is measured by sensing circuit

Feedback capacitance of sensing circuit

Parasitic capacitance of sensing circuit

Feedback resistance of the sensing circuit

Voltage noise source in sensing circuit

Current noise source in sensing circuit
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Appendix C

Residual stress gradient

measurements

Table C.1: Radius of curvature, residual stress gradi-

ent measurements, and stress difference between top and

bottom of aluminum film

Measurement Radius of Residual Stress Stress

Number Curvature Stress Gradient Difference

(mm) (MPa/pim) (MPa)

1 -0.7 98.1 34.4

2 -1.0 69.6 24.4

3 -1.3 54.0 18.9

4 -1.3 53.9 18.9

5 -1.0 71.1 24.9

6 -1.7 41.1 14.4

7 -2.2 31.9 11.2

8 -1.8 39.2 13.7

9 -1.1 64.3 22.5

continued on next page
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Table C.1: continued

Measurement Radius of Residual Stress Stress

Number Curvature Stress Gradient Difference

(mm) (MPa/pm) (MPa)

10 -3.1 22.7 7.94

11 -1.8 38.2 13.4

12 -1.0 72.0 25.2

13 -1.3 53.7 18.8

14 -0.7 96.7 33.8

15 -0.5 140.0 48.9

mean -1.4 63.1 22.1
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Appendix D

Linear dielectric charging model

A linear model for the evolution of the trapped charge on the air/dielectric interface

is given by

Q0 = ao VE A (D.1)Qo Q(d)±E+d

This model simply states that the trapped charge increases linearly with the electric

field, with ao as the proportionality constant.

This model has the advantage of being linear and is sufficient to obtain a rough

match to the experimental results. However, the nonlinear model in Section 4.2.1

provides a much better match to the experimental results.

The parameters use in the linear lumped parameter dielectric charging model are

shown in Table D.1. The parameter ao was assigned such that the pull-in voltage

matched up with the pull-in voltage observed in the experimental results. The rest

of the parameters are the same as for the simulations done in Section 4.2.1.

The results of the linear dielectric charging simulation are shown in Figure D-1.

The results of the simulation using the linear dielectric charging model given by

Equation D.1 are a better match to the experimental results than the results obtained

by the finite element and lumped parameter models with no dielectric charging. The

pull-in voltage is correctly matched to the experimental results. However, the dis-

placement at pull-in is not accurate, nor is the shape of the displacement versus

voltage curve.
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Table D.1: Parameters
model.

0.4

0.3

E=L
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0

0. 1

0.

0.0

used with the linear dielectric charging lumped parameter

0 5 10 15 20
Applied Voltage (V)

Figure D-1: Comparison of the results of
the finite element actuation model and the
account dielectric charging using the linear

25 30

the experimental actuation results with
lumped parameter model that takes into
dielectric charging model.
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e linear Charging

m (kg) 6.08 x10- 13

b (N s/m) 4.8 x 10- 7

k (N/m) 5.23

kd (N/m 3) 1.3x10 13

A (M2 ) 1.42x10-9

dg (M) 3.4 x10-7

dd (M) 3.0 x10- 6

ao (N s/m) 0.37

lumped parameter model
EXDerimental results

.. Finite element model

3 -
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2 -

5-

5 -

Parameter
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Appendix E

Thermal-mechanical noise

amplification in parallel plate

actuators

An additional result of this analysis that is worthy of note is the amplification of

thermal noise experienced by parallel plate actuators as the are displaced. This is an

important result for all MEMS devices that use parallel plate actuators to displace

the movable plate in an analog fashion (rather than utilizing pull-in to create a binary

structure). For a general parallel plate actuator, the thermal noise varies according

to

(X 2  kbT
X k _ V2 -(E.1)

The RMS fluctuations due to thermal-mechanical noise are maximum at the pull-

in position (x = do/3). The fluctuations become higher by a factor of v 2 than when

the structure is at its equilibrium position with no voltage applied.
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