
Parametrized Maneuvers for Autonomous Vehicles

by

Christopher Walden Dever

B.S., Mechanical Engineering, University of Kentucky (1996)

M.S., Mechanical Engineering, M.I.T. (1998)

Submitted to the Department of Mechanical Engineering
1 P C~1101 P 1 1e

in partial fuillment of the requirements for the degree

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOG

MASSACHUSETTS INSITUTE
OF TECHNOLOGY

MAY5200

LIBRARIES

September 2004

@ Christopher Walden Dever, 2004. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part.

A u th or
Dpartment of Mechanical Engineering

August 8, 2004

Certified by..............................
Eric Feron

Associate Professor of Aeronautics and Astronautics
Thesis SuDervisor

C ertified by
Mart/McConley

Principal Member, Technical Staff, Draper Laboratory
Thesis Supervisor

C ertified by
Samir Nayfeh

Assistant Professor of Uechanical Engineering
Thesis Supervisor

A ccepted by
Ain A. Sonin

Chairman, Department Committee on Graduate Students

BARKER

2

Parametrized Maneuvers for Autonomous Vehicles
by

Christopher Walden Dever

Submitted to the Department of lechanical Engineering
on August 8, 2004. in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a method for creating continuously parametrized maneuver classes
for autonomous vehicles. These classes provide useful tools for motion planners,
bundling sets of related vehicle motions based on a low-dimensional parameter vector
that describes the fundamental high-level variations within the trajectory set. The
method follows from a relaxation of nonlinear parametric programming necessary con-
ditions that discards the objective function, leaving a simple coordinatized feasible
space including all dynamically admissible vehicle motions. A trajectory interpola-
tion algorithm uses projection and integration methods to create the classes, starting
from arbitrary user-provided maneuver examples, including those obtained from stan-
dard nonlinear optimization or motion capture of human-piloted vehicle flights. The
interpolation process, which can be employed for real-time trajectory generation, ef-
ficiently creates entire maneuver sets satisfying nonlinear equations of motion and
nonlinear state and control constraints without resorting to iterative optimization.

Experimental application to a three degree-of-freedom rotorcraft testbed and the
design of a stable feedforward control framework demonstrates the essential features
of the method on actual hardware. Integration of the trajectory classes into an ex-
isting hybrid system motion planning framework illustrates the use of parametrized
maneuvers for solving vehicle guidance problems. The earlier relaxation of strict
optimality conditions makes possible the imposition of affine state transformation
constraints, allowing maneuver sets to fit easily into a mixed integer-linear program-
ming path planner. The combined scheme generalizes previous planning techniques
based on fixed, invariant representations of vehicle equilibrium states and maneuver
elements. The method therefore increases the richness of available guidance solutions
while maintaining problem tractability associated with hierarchical system models.
Application of the framework to one and two-dimensional path planning examples
demonstrates its usefulness in practical autonomous vehicle guidance scenarios.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Marc McConley
Title: Principal Member, Technical Staff, Draper Laboratory

3

4

Acknowledgments

No thesis can be completed without the input and support of many people. The
following individuals, and many more, have greatly enriched my experience in the
doctoral program.

This research bears the mark of my committee members in particular. Professor
Eric Feron has simultaneously been an enormous free-thinking creative influence and
rational scientific evaluator behind the methods of this thesis. His constant inputs,
from the original maneuver class formulation to his advocacy of using the method to
enhance hybrid motion planning, have greatly improved this work. I wish to thank
Marc McConley for his unwavering support throughout my entire program and for
his keen insights into many of the finer technical aspects of the thesis. Marc's steady
presence throughout my research program has always made me feel secure in my
endeavors. Professor Jovan Popovid helped me immensely, particularly during the
early formulations of the thesis methods. His ideas and insights opened my eyes to
new approaches for tackling technical problems, many of which directly influenced the
final outcome. Professor Samir Nayfeh served not only as committee chair, counseling
me on many programmatic matters, but also taking great interest in the work, quickly
diving to the essence of the research and asking critical questions. Finally, my good
friend and colleague Bernard Mettler has been an enormous contributor to virtually
every aspect of this work. It's impossible to overstate how much I have benefited from
his experience, from his high-level conceptual insights to his willingness to discuss
and pour over numerous fine technical details. Many features of this thesis bear his
mark, in particular the interface between maneuver classes and the MILP planning
framework.

Many people at Draper Laboratory provided the professional and personal support
that is essential for rewarding thesis work. I wish to express my heartfelt gratitude
to Brent Appleby, George Schmidt, Loretta Mitrano, Milt Adams, Neil Adams, and
Joe Sarcia for their contributions my program.

From the MIT Mechanical Engineering Department, Leslie Regan, Joan Kravit,
and Professor Ain Sonin have been constant resources for both Institute and personal
matters. They make the MIT academic world feel like home, an enormous comfort
to one who often feels overwhelmed by it all.

My understanding of helicopter maneuvering was greatly enriched by discussions
with Vlad Gavrilets, while the time and patience of Tom Schouwenaars. the true
Lion of Flanders, allowed me to grasp the details of MILP-based motion planning.
In addition, John Plump and Rodin Lyassof helped me understand the Draper and
MIT helicopter simulations, respectively.

I wish to express my gratitude for the time and scientific thoughts of Leena Singh,
John Hauser. Scott Rasmussen. Bruce Persson, Bill Hall, Sommer Gentry. Zhi-Hong
Mao. and Air Force Reserve Captain Tyson Anderson, who all helped in the basic
method formulation.

Many thanks go out to Masha Ishutkina and David Robertson for their help with
the Quanser experimental apparatus and to Steve Hall and the MIT Aeronautics
and Astronautics Department for the design of, and access to the machine as well.

5

Greg Mark graciously provided technical assistance during filming of the closed-loop
helicopter flights.

Many people, including Julie Whatlev, Angela Copyak, Lisa Gaumond, Lauren
Clark. Yves Etheart. and Brvt Bradley, have helped with countless administrative
matters and kept things fun and personal. My sincerest thanks go out to you all.

To my mechanical engineering qualifier study friends Cagri Savran, Ryan Jones,
Alisa NMorss. Ephi Most. Dan Mazzucco, and Dave Dussault, there's nothing I can say
to fully express what a great pleasure it was to face the exams by your side. Thanks
for the discipline, the motivation, and above all, the humor. You were there at the
hardest of times.

Finally, to my family, you have been there through everything. My father Gar-
land, sister Marie. and grandfather George are my true foundation. I look forward
every single day to seeing you again. I dedicate this thesis to the memory of my
mother, Karen.

8 August, 2004

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under Inde-
pendent Research and Development Project Number 13177.

Publication of this thesis does not constitute approval by Draper Laboratory of the
findings or conclusions contained therein. It is published for the exchange and stim-
ulation of ideas.

6

[This page intentionally left blank].

7

8

Contents

1 Trajectory Design Overview
1.1 Flexible laneuvers for Autonomous Vehicles

1.1.1 Trajectory Generation
1.1.2 O bjectives
1.1.3 Approach

1.2 Existing Methods
1.2.1 Optimal Control in Aerospace
1.2.2 R obotics .
1.2.3 Computer Animation
1.2.4 Biological Motion Analysis
1.2.5 Dimensionality Reduction
1.2.6 Parametric Programming in Control Systems

1.3 Hierarchical Motion Planning
1.3.1 Emerging Methods
1.3.2 Benefits of Flexible Maneuvering

1.4
1.5

Thesis
Thesis

Contributions
O utline .

2 Parametrized Maneuvers
2.1 Trajectory Design via Nonlinear Optimization

2.1.1 Problem Formulation
2.1.2 Nonlinear Programming Optimality Con

.C

2.1.3 Nonlinear Programming Considerations .
2.2 Nonlinear Parametric Programming

2.2.1 Problem Formulation
2.2.2 Revised Optimality Conditions
2.2.3 Implicitly-Defined Solutions
2.2.4 Continuation Methods
2.2.5 Parametric Programming Outline

2.3 Interpolation of Feasible Trajectories
2.3.1 Coordinate Chart for Maneuvers
2.3.2 Known Feasible Motions
2.3.3 Parametrized Maneuver Formulation . .
2.3.4 Interpolation with Equality Constraints (
2.3.5 Equality and Inequality Constraints . . .

43
. 44
. 44

ditions 47
. 50
. 50
. 5 1
. 52
. 52
. 54
. a55
. 59
. 59
. 60
. 6 1

)nly 62
. 65

9

19
. 20
. 20
. 22
. 23
. 25
. 26
. 28
. 29
. 32
. 33
. 34
. 35
. 35

37
. 39
. 40

2.3.6 The Multivariable Case . . .
2.4 M\'aneuver Motion Capture
2.5 Alternative Formulations

2.5.1 Model Interpolation
2.5.2 Known Disturbances
2.5.3 Parametrized Inequalities

2.6 Relationship to Existing Methods

3 Trajectory Interpolation Properties
3.1 Optimality Gap

3.1.1 Problem Definition
3.1.2 Optimal Cost Functions . .
3.1.3 Trajectory Parametrization
3.1.4 Specific Cases

3.2 Computation Bounds
3.3 Continuity
3.4 Applicable Systems

4 Application to a Three Degree-of-Freedom Helicopter
4.1 Vehicle Description .
4.2 Trajectory Design .

4.2.1 Signal Parametrization
4.2.2 Solution for Input Signals
4.2.3 Trajectory Dynamic Feasibility
4.2.4 Boundary Value Equality Constraints
4.2.5 State and Control Inequality Constraints

4.3 Example Trajectory Generation
4.3.1 Nonlinear Programming
4.3.2 Motion Capture

4.4 Tracking Controller Design
4.4.1 Linearized Models
4.4.2 Gain-Scheduled LQ-Servo Design

4.5 Maneuver Class Examples
4.5.1 Bounded-Control Quick-Stops
4.5.2 Bounded-Control Climbing Maneuver
4.5.3 Maneuver "Interpolability"
4.5.4 Pilot-Demonstrated Reposition Maneuver . . .
4.5.5 Pilot-Demonstrated Dash-Accelerations

5 Maneuver
5.1 Mixed

Classes in Hybrid Motion Planning
Integer-Linear Programming for Trajectory Planning

5.1.1 Basic Definitions
5.1.2
5.1.3
5.1.4

Linear Operating Modes and Binary Decision Variables
Parametrized Maneuver Class Representation
M ode Switching .

10

. 67

. 68

. 70
. 70
. 70

. .. . 71

. .. . 71

73
74
74
75
78
80
86
89
90

93
94
96
96
98
99

100
103
105
105
106
108
108
109
111
112
117
122
123
127

133
134

. 134
136
137
137

.5.1. Minimum Time Formulation 138
5.1.6 Minimum State Error formulation 139
5.1.7 Other Existing Constraint Types 140

5.2 Application to the 3-DOF Helicopter 142
5.2.1 LTI M odels . 143
5.2.2 Affine Transformation Maneuver Design 144
5.2.3 Considerations for Real-Time Maneuver Generation 146

5.3 1-D Example: Sudden Direction Reversal and Return to Hover State 147
5.4 2-D Example: Stealthy Flight Through an Obstacle Field 157

6 Conclusions 169
6.1 Discussion of the Method. 169
6.2 Future Directions and Applications 172

A Helicopter Modeling 175
A.1 System Description . 175
A.2 Linear Modeling and Identification 177
A.3 Nonlinear Modeling and Identification 183.

A.3.1 Actuation and Elevation Pendulum Effects 183
A.3.2 Thrust Vector Tilting . 185
A .3.3 Static Offsets . 186
A.3.4 Aero Damping and Lift . 186
A.3.5 Equations of Motion . 188

B Splines in B-form 191
B.1 Basic Construction . 191
B.2 Differentiation of Parametrized Signals 193

Bibliography 197

11

12

List of Figures

1-1 An autonomous vehicle with a flexible maneuver family. 22
1-2 The main concepts behind parametrized maneuver classes. 23
1-3 Flexible maneuvering classes result from detailed off-line system anal-

ysis, example trajectory selection. and family creation. 25

2-1 Integration and predictor-corrector methods for the curve F(w, a) = 0. 55
2-2 Constraint switching during parametric solution of a linear program-

m ing problem . 56
2-3 The general maneuver space. 60
2-4 Projection method for choosing a unique feasible direction. 63
2-5 The second the third methods for handling multivariable a 68

3-1 Cost performance of parametrized reposition maneuvers. 82
3-2 Interpolated control signals corresponding to Figure 3-1. 82
3-3 Cost performance when maneuver time is constrained to follow a sub-

optim al curve. 83
3-4 Interpolated control signals corresponding to Figure 3-3. 83
3-5 Cost performance of interpolated trajectories for a two-sided reposition

m aneuver. 84
3-6 Interpolated control signals corresponding to Figure 3-5. 84
3-7 Cost performance of interpolated trajectories for a two-sided reposition

maneuver when the trajectory time is constrained to follow a user-
selected T (a) curve. 85

3-8 Interpolated control signals corresponding to Figure 3-7. 85

4-1 Three degree-of-freedom helicopter from Quanser Consulting. 94
4-2 Closed-loop LQ-servo design . 110
4-3 Velocity profiles for quick-stop maneuver class. 115
4-4 Pitch profiles for quick-stop maneuver class. 115
4-5 Collective voltage profiles for quick-stop maneuver class. 116
4-6 Cyclic voltage profiles for quick-stop maneuver class. 116
4-7 Trajectory profiles for parametrized climbing maneuver. 118
4-8 Collective voltage input constrained above 0.85 V for climb maneuver

class. 119
4-9 Cyclic voltage input constrained below 0.70 V for climb maneuver class. 119
4-10 Collective voltage input for unconstrained climb maneuver class. . . . 120

13

4-11 Cyclic voltage input for unconstrained climb maneuver (-lass. 120

4-12 Trajectory profiles for looping climb maneuver class. 121
4-13 Pitch profiles for looping climb maneuver class. 122
4-14 Overhead view of reposition maneuver interpolation. 124
4-15 Motion capture result for -367' reposition maneuver. 125
4-16 Input behavior for -367' reposition maneuver. 126
4-17 Velocity profiles for reposition maneuver class. 126
4-18 Pitch profiles for reposition maneuver class. 127
4-19 Visualization of demonstrated and interpolated reposition maneuver

data........ 128
4-20 Motion capture result for dash-acceleration to -70 deg/sec maneuver. 129
4-21 Velocity profiles for dash-acceleration maneuver class. 130
4-22 Pitch profiles for dash-acceleration maneuver class. 130
4-23 Closed-loop execution of pilot-inspired dash from hover to -50 deg/sec. 131

5-1 Affine maneuver transformations are dynamically feasible, although
typically suboptim al. 145

5-2 Path planning travel position solution for one-dimensional retreat-to-
hover scenario. 153

5-3 Path planning velocity solution for one-dimensional retreat-to-hover
scenario. 153

5-4 Comparison of MILP velocity solutions for parametrized and fixed ma-
neuver classes 154

5-5 Comparison of MILP position solutions for parametrized and fixed ma-
neuver classes . 155

5-6 lission scenario for the two-dimensional planning problem. 158
5-7 Velocity profiles for fast-advance maneuver class 161
5-8 Bounded pitch profiles for fast-advance maneuver class. 161
5-9 Bounded elevation profiles for fast-advance maneuver class. 162
5-10 MILP planner solution with -30 degree high obstacles and x,oal = -800

d eg . 164
5-11 Reference and closed-loop tracking of helicopter velocity, elevation, and

pitch guidance solutions. 164
5-12 Actual closed-loop tracking of MILP reference path in Figure 5-10. . 165
5-13 MILP planner solution with 10 degree high obstacles and xoal = -550

d eg . 16 6
5-14 Reference and closed-loop tracking of helicopter velocity, elevation, and

pitch guidance solutions. 166

A-1 Three degree-of-freedom helicopter from Quanser Consulting 176
A-2 Collective-to-elevation magnitude frequency response. 180

A-3 Collective-to-elevation phase frequency response. 180
A-4 Cyclic-to-pitch magnitude frequency response. 180
A-5 Cyclic-to-pitch phase frequency response. 181
A-6 Cyclic-to-velocity magnitude frequency response 181

14

A-7 Cyclic-to-velocity phase frequency response. 181
A-8 Fit of steady collective-elevation coefficients from experimental data. . 185
A-9 Fit of steady cyclic-pitch-travel coefficients from experimental data. . 187
A-10 Time domain validation of velocity and pitch nonlinear system responses. 188

15

16

List of Tables

5.1 Minimizing total trajectory times for fixed initial velocity direction
reversals. 156

5.2 MILP solution times for various planning horizon lengths. 156

A.1 Identified parameters for 3-DOF helicopter linear model. 182
A.2 Estimated parameters for 3-DOF helicopter nonlinear model. 189

17

18

Chapter 1

Trajectory Design Overview

Autonomous aerial vehicles often possess remarkable dynamic capabilities, with com-
pact size and ample actuation combining to make for extremely agile systems. These
vehicles, such as miniature rotorcraft and small-scale fixed-wing airplanes, possess
enough control authority and structural rigidity to undergo massive accelerations,
rapid direction changes, and even aerobatic flight. Such motions take advantage of
physical nonlinearity and, from a modeling viewpoint, drive the system state well
outside the range of steady and linear dynamics.

Human pilots operating agile systems at many scales, from military fighter pilots
to expert radio-control hobbyists, learn to fly their vehicles through some combination
of training, experimentation, and pure insight. They develop the ability to simply
visualize and execute motions with their particular aircraft, almost crossing the line
between man and machine. As such, experience creates a familiarity with vehicle flight
dynamics, so that executing an acceleration or a direction change becomes a routine
matter performed to order, not explicitly thought of in terms of control inputs and
sensor outputs. The specific amount of acceleration or heading-change, for example,
is simply a matter of degree; within a given type of maneuver, the control strategy
is often the same, but with the exact state change coming through a subtlety of the
control sticks and pedals.

While describing agile maneuvering for human-flown systems may be straightfor-
ward, with verbal expressions and body language conveying geometric ideas, math-
ematical nonlinearity makes the corresponding task for unmanned systems anything
but easy. The vehicle becomes a dynamic model, the flight path becomes a trajectory
signal, and the control inputs are the results of precisely designed algorithms. Much
recent research has expanded the engineer's ability to describe agile maneuvers and
other motions that enter the realm of nonlinear dynamics. Specifically, numerical
methods now exist to find system trajectories meeting exact boundary conditions for
many system types and there are even examples of developing advanced aerobatic
controllers by decomposing recorded pilot-machine interactions. These efforts illus-
trate the enormous promise of directly addressing system nonlinear dynamics and
finding powerful control designs.

In this spirit, a needed innovation is the ability to bundle sets of related trajecto-
ries into intuitive maneuver classes. Just as a helicopter pilot might think of the set of

19

quick-stops as a known maneuver having a knowNii execution strategy with the amount
of cyclic input and pitch flare dictated by the initial speed, autonomous vehicles can
benefit by an analogous engineering understanding of motion control strategies. The
ability to cast maneuvers as a continuously-varying family of behaviors can greatly
aid many on-board systems. Reference trajectories can then be generated as single
instances of a given maneuver type, avoiding the need to "solve" the motion prob-
lem from scratch using a large number of trajectory parameters. Similarly, motion

planners will be able to make guidance decisions considering the types and ranges
of possible maneuvers, as opposed to selecting fixed, static motion elements from a
given library.

This thesis addresses the problem of designing parametrized maneuver classes
for autonomous vehicles described by nonlinear equations of motion. The flavor of
analysis is much as a human pilot might follow: testing out a few maneuvers within
a given type and thus learning how to perform similar motions in future settings.
The goal is a simple real-time algorithm that allows on-board systems to "think" in
terms of general maneuvers and motions, with the execution details coming as a fairly
simple by-product.

This chapter introduces this problem in engineering terms, defining what is meant
by a maneuver and by trajectory generation. The specific objectives are given and the
solution approach outlined. An extensive literature review describes the traditional
and state-of-the-art methods for computing useful motions of nonlinear systems. In-
vestigation of related fields, including robotics, computer animation, and biomechan-
ics, reveals that motion description and manipulation are ever-present tasks, with
many insights to be learned from ongoing research. A review of hybrid motion plan-
ning techniques them makes clear the need for and benefits of maneuver-level trajec-
tory descriptions. The final sections list the specific thesis contributions and outline
the overall document structure.

1.1 Flexible Maneuvers for Autonomous Vehicles

Fortunately, there are many existing tools for designing motions of nonlinear systems.
The traditional methods of optimal control and numerical optimization provide the
right language to cast the flexible maneuvering problem and offer a point-of-departure
for the techniques of this thesis. This section describes what is meant by "trajectory
generation" and how it interacts with higher-level motion planning and lower-level
control. Specific thesis objectives and a sketch of the solution method then follow.
A review of relevant source material from aerospace engineering and general motion
analysis appears in subsequent sections.

1.1.1 Trajectory Generation

By their very nature, agile motions require a system to undertake rapid and large
state changes, possibly using large-magnitude control inputs. As such, simple output
error-driven feedback control loops are insufficient to guarantee repeatable and crisp

20

maneuver execution, allowing too much time delay in the system response. A more
effective approach is a feedforward control strategy (sometimes referred to as a "two
degree-of-freedom" design [102. 149. 1.53]), which designs an output-space reference
trajectory for tracking and simultaneously applies a dynamically consistent control
input to drive the system. Feedback control may then be used for stabilization pur-
poses, providing small perturbational control inputs to regulate small output errors
while performing the agile motion. Such output-space errors naturally arise from in-
accuracies in the nonlinear model and external disturbances pushing the vehicle away
from its desired path.

In this thesis, the expression "trajectory generation" refers to the process of finding
a consistent set of control, state. and output signals that produce a motion satisfying
given boundary conditions. Specifically, the term "maneuver" will denote a trajectory
where the vehicle both begins and ends the motion at an equilibrium, or trim, state.
For example, it might be desired to perform a rapid direction reversal maneuver,
with initial and final velocity vectors given as boundary conditions. The trajectory
generator must then provide the appropriate control and state trajectory histories for
the maneuver.

As will be discussed in Section 1.2 and Chapter 2, the trajectory generation task for
general systems is nontrivial, but there are many existing methods for casting precise
problem formulations with known algorithmic solutions. When dealing with general
nonlinear systems of the form ,± f(x, u), (x is the state vector; u is the control
input), the mathematics must necessarily be in terms of nonlinear relations, making
closed form solutions impossible and thus requiring iterative numerical methods.

Perhaps the most well-established solution method is nonlinear programming
(NLP), appearing in virtually every venue of trajectory generation, from traditional
aerospace and astrophysics problems to modern agile maneuvering applications. The
basic method involves parametrizing a general continuous time system behavior z(t),
(depending on x(t), u(t), and/or some system output y(t)) in terms of a finite param-
eter vector p, thus obtaining a lower-dimensional representation z (t; p). The vector p
is then optimized over some set of feasible candidate motions. Equality and inequal-
itv constraint functions, h(p) and g(p), respectively, enforce dynamic consistency and
initial and final boundary conditions while giving admissible ranges of state and con-
trol variations. An objective function f(p) helps select a particular behavior z(t; p)
out of all candidate feasible motions, typically seeking to minimize some duration,
control, or energy metric. The result is a generic nonlinear program of the form

min f (p)
P

subject to h(p) 0
g(p) 0

whose minimizing feasible point p* solves the trajectory generation problem.

While nonlinear programming is an extremely effective and general method of
finding optimal motions, it has several liabilities when considered for real-time tra-
jectory generation of agile maneuvers. First, it is an iterative numerical method,

21

P(a "
cc eA

' .=ftx u)

Figure 1-1: An autonomous vehicle with a flexible maneuver family. The low-
dimension vector a indicates the particular maneuver instance required while p(a)
gives to corresponding open-loop trajectory details.

with no guarantee of convergence or even attainment of a feasible solution in finite
time. Second, it is only possible to find locally minimizing solutions, which are there-
fore extremely sensitive to initial parameter guesses P0. The choice of Po in a given
problem instance critically influences the final solution, so that poorly considered Po
guesses can adversely affect the trajectory generation outcome. Third, the trajec-
tory parametrization p is often far too general when considering vehicle motions at
the maneuver level; the large dimension of p adds extra complexity to the iterative
solution process and robs the procedure of a pilot-like feel for subtle variations in
maneuvering characteristics.

In addition, nonlinear programming is by definition driven by an objective func-
tion, seeking optimal solutions while often producing infeasible iterates during the
solution process. As such, there is no straightforward way to easily manipulate useful
feasible motions in the spirit of a human pilot tweaking and bending maneuvers to
achieve some goal. Other than the initial solution estimate P0, there is no appar-
ent way to directly introduce human pilot knowledge of vehicle dynamics into the
trajectory generation process. Example motions flown on real hardware by expert
operators provide enormous insight into useful vehicle operating modes while directly
demonstrating the corresponding feasible nonlinear control inputs. Since such exam-
ple motions typically do not minimize a mathematical function, their inclusion as
a simple P0 suggestion vector in NLP can seem somewhat inconsistent with a given
objective function f (p).

1.1.2 Objectives

Based on the above limitations of nonlinear programming as a real-time trajectory
generator, this thesis seeks a method that retains the rigor and basic formulation of
NLP while allowing greater flexibility, faster solution, and the ability to incorporate

22

motion capture &
pilot inspiration

,-,dimensionality
reduction

dynamic inversion
(numerical optimal control

through NLP

parametric trajectory motion primitives
interpolation

i o hybrid system planning

Figure 1-2: The main concepts behind parametrized maneuver classes.

known feasible motions in the design of user-selected maneuver classes. Define the
vector a as a reduced-dimension descriptor of a specific maneuver type, listing only
the fundamental conceptual or boundary condition variations in vehicle motion. For
example, if the maneuver is a simultaneous climb and direction change, a would give
only the net elevation gain and heading angle modification. If the maneuver is a
dash-acceleration from hover, then a is only a scalar final velocity value. In terms of
the "trajectory parametrization" p and the so-called "maneuver parametrization" a,
the specific thesis objectives are as follows:

* Create parametrized maneuver trajectory generators of the form p(a). Given
a specific admissible maneuver instance a c A, return the general trajectory vector
p and thus z(t; p), providing the complete control, state, and output behavior of the
vehicle. The set A bounds the allowable variations of a within a particular maneuver
class. See Figure 1-1.

e Allow incorporation of any feasible example motions in the creation of the ma-
neuver functions p(a). These example maneuvers must be able to include solutions
derived from off-line nonlinear programming as well as observations of pilot-flown
trajectories.

" Make trajectory generation a real-time process.
" Demonstrate the use of parametrized maneuvers in an existing hierarchical mo-

tion planner.

1.1.3 Approach

Figure 1-2 illustrates the various mathematical concepts necessary to attain the goals
of Section 1.1.2. Since NLP is an established, rigorous method of nonlinear system
trajectory generation, the thesis essentially develops several useful adaptations and
relaxations to obtain a highly flexible real-time algorithm. The resulting method

23

allows general manipulation of feasible system trajectories and solves for new motions
without any iterative optimization.

To begin, general NLP's are recast as nonlinear parametric programs. in which

the objective and constraint functions may explicitly include the lower-dimensional
vector a. indicating what specific maneuver is desired within a class. Parametric
programming methods begin with a single known optimal solution p* for a given
a value and then systematically trace out an optimal solution family p*(a) using
continuation methods and tests for solution type and constraint switching points.

To create a trajectory generator capable of producing any general feasible mo-
tions, the Karush-Kuhn-Tucker optimality conditions that underlie parametric pro-
gramming are relaxed, with knowledge of multiple user-selected trajectories replacing
the objective function as a means for defining maneuver classes. A dynamic interpo-
lation algorithm, based on continuation methods combined with a feasible projection
operation, then allows access to a parametrized family p(c), essentially creating an
entire maneuver class from a finite number of example motions.

As chosen in this thesis, the trajectory variable p describes the vehicle output space
behavior, with control inputs obtained by dynamic model inversion. If the system is
difficult to invert from a small number of outputs, p is expanded to include enough
system states necessary to solve for controls, with suitable constraint functions added
to maintain dynamic consistency.

Because the trajectory interpolation algorithm works between any suitable feasi-
ble points, example motions may come from rigorous off-line nonlinear programming
solutions or motion capture of pilot-flown maneuvers. Thus, human knowledge and
intuition of vehicle dynamics and useful trajectory shapes may be directly accommo-
dated when defining a maneuver class.

Figure 1-3 illustrates how the parametrized maneuver families and trajectory in-
terpolation can be used in practice. Off-line, the user models the system, chooses
a trajectory descriptor p. defines a conceptual maneuver type, and selects a low-
dimension maneuver parameter a that describes the desired motion variations. Then.
example maneuvers may be generated by nonlinear optimization or piloted-flight mo-
tion capture. Another option for creating example maneuvers is to simply "sketch" a
motion by manually selecting some Po and then using NLP to find the closest feasible
motion to Po. With the examples in place, the interpolation algorithm creates the
parametrized family p(a). On-line, the process works as a practical trajectory gener-
ator, with a higher-level motion planning algorithm requesting a particular maneuver
within the class based on overall vehicle guidance needs.

To demonstrate the usefulness of parametrized maneuvers for higher-level hybrid
system motion planning, this thesis shows that p(a) sets may be easily integrated as
"motion primitives" into a mixed integer-linear programming (MILP) path planner.
When combined with the ability of MILP methods to command continuously varying
state trajectories for effective linear closed-loop system models, flexible maneuvering
creates an extremely general guidance framework. There is no need to restrict the
flight envelope to discrete sets of trims and/or maneuvers as required in some existing
planners.

Finally, application to a three degree-of-freedom helicopter allows experimental

24

(Off-line) (Off-line)
Vehicle Modeling Maneuver class

Maneuver Concept definition
Trajectory Parametrization optimize / tcartp.a) over some

Data Capture I Example Generation PXASI hat)O, g(P,4)

(On-line)
(On-line) Fast feasible p(a) (On-line)

Planner a maneuver generation reence Controller
request given aE A, fid p E P st. trajectory

h(p,a)=O, g(p,a)s0

Figure 1-3: Flexible maneuvering classes result from detailed off-line system analysis,
example trajectory selection, and family creation. On-line, a motion planner requests
a particular maneuver within the family and the appropriate reference trajectory is
passed to the control algorithm.

validation and demonstration of all thesis concepts. Emulating the longitudinal dy-
namics of a full-scale helicopter, the rotorcraft system provides a challenging nonlin-
ear model, while allowing both controller-driven and human-piloted flight with signal
data acquisition.

1.2 Existing Methods

This section gives a literature review of techniques useful for trajectory generation,
motion design, and control of nonlinear systems. The greatest emphasis is placed
on the traditional and emerging methods of aerospace engineering, especially those
geared toward real-time trajectory design for autonomous vehicles. Additionally,
there are examples of using human-inspired state machines to control aerobatic he-
licopter flight. Interestingly, other fields such as robotics, computer animation, and
biomechanics also deal with complex nonlinear systems and place value in capturing,
and then manipulating, demonstrated motions to achieve new effects. Frequently,
motion elements are broken into flexible building blocks called "motion primitives".
A review of selected works from these disciplines gives insights into ways of manip-
ulating motions of complex systems without redesigning trajectories from scratch.
These approaches often achieve a reduced parametrization of the trajectory space;
a discussion of two interesting mathematical approaches to dimensionality reduction
therefore provides additional insight. Finally, this section gives examples of emerging
linear and quadratic parametric programming methods in control systems, inspired
by goals very much akin to those of this thesis.

25

1.2.1 Optimal Control in Aerospace

The historic and current practices of aerospace engineering provide most of the guide-
posts for the methods of this thesis. The flexible maneuvering approach sits as the
beneficiary of a variety of tools for dealing with nonlinear systems. Examples in-
clude modeling and system identification, constraint specification, separation of the
guidance and control functions, discretization of continuous time problems into finite
dimensions, and hierarchical systems theory. Combined, these methods coalesce into
a clear picture of how to pose the general trajectory generation problem.

The main foundations of trajectory design lie in optimal control theory, where
open and closed-loop system behaviors are derived from general nonlinear equations
of motion, studied from the viewpoint of the calculus of variations and Pontryagin's
principle [25, 26, 116]. A common outcome of an optimal control analysis is an exact
statement of the necessary and sufficient conditions for a trajectory and control to
optimize an engineering objective function.

In some cases the conditions admit analytic solutions, but for many problems the
solution must come from an iterative numerical procedure. A useful approach is to
cast the continuous-time optimal control problem in a finite-dimensional nonlinear
programming setting [14]. The relationships between optimal control and nonlinear
programming (NLP) run very deep, as noted in the close duality between the in-
finite and finite-dimensional necessary conditions. Fortunately. there are numerous
methods for casting an optimal control problem in NLP format, with interesting vari-
ations including direct, indirect, transcription (collocation), and shooting methods.
References such as [16] and [17] give detailed discussions of these different problem
types, with indications of what method to choose based on the engineering objec-
tive and available problem information. Additional sources give supporting material
on casting continuous time problems into finite-dimensional optimization frameworks
[18., 63, 68]. Interestingly, reference [136] discusses the technique of differential inclu-
sion for abstracting system dynamics, so that NLP may be used to design feasible
motions without computing detailed state and control histories, a viewpoint similar
to many current hierarchical motion planners.

Focusing on autonomous vehicle applications, many trajectory optimizers rely on
the availability of control schemes capable of tracking given reference trajectories, in
particular those deviating widely from the linear operating range. A common ap-
proach is a feedforward tracking design, in which reference control and state histories
are computed based on open-loop equations of motion and then fed to a linear or
nonlinear tracking controller. These methods are particularly relevant for aggres-
sive or agile maneuvering, where error-driven controllers are likely to perform poorly.
Several references discuss in detail the feedforward control problem for interesting
aerospace systems. Examples include [153], which designs linear robust controllers
for a simulated Westland Lynx combat helicopter. Reference [137] expands on this
approach by investigating the merits of several control design methodologies for ai
autonomous helicopter. These methods range from a linear robust design to a fuzzy
logic controller to a nonlinear tracking formulation based on feedback linearization of
an approximate system model. This last approach is found to be particularly effective

26

when linear models simply cannot provide enough predictive fidelity for agile motions.
Reference [83] takes a similar approach, designing a bounded-error output-tracking
helicopter controller based on a state-input linearizable approximate vehicle model.
Other formative examples include [72], which discusses a finite horizon control Lya-
punov function method for tracking reference trajectories obtained from a simplified
system model and [149], which considers the trajectory generation and control prob-
lem for the class of so-called differentially flat systems. These systems are extremely
useful, in that motions can be designed in the output-space, with corresponding con-
trol inputs obtained by fairly simple analytic model inversion expressions.

The notion of an invertible nonlinear system is not limited to flat models, and
there are earlier works considering the approach for control of large-angle aircraft
maneuvers. Reference [78] examines airplane maneuvers through a detailed inversion
of the nonlinear kinematic and dynamic equations of motion. Reference [87] treats
a similar problem from a traditional optimal control approach, deriving control laws
based on detailed optimality conditions. The system inversion philosophy is certainly
appropriate to rapid trajectory design, when the prospect of forward integration and
iterative perturbation of candidate control signals is too daunting for real-time appli-
cations.

Returning to flat and near-flat systems, the model inversion technique is partic-
ularly relevant for autonomous vehicle trajectory design, especially when given the
availability of stable closed-loop tracking methodologies that compensate for mod-
eling errors or approximations. References [48, 105, 106, 149, 150, 151] collectively
give a detailed treatment of the theory and practice of differentially flat robotic and
aerospace systems. Forming a critical example for the methods of this thesis, these
works place considerable emphasis on the numerical trajectory generation problem,
often using spline-based output signal parametrizations for real-time and near real-
time nonlinear programming. Works giving specific examples of these methods include
[113], which considers a multi-state mathematical example system; [30], which looks
at a planar, wireless fan-driven air-bed vehicle; [101] and [102], which treats a three
degree-of-freedom ducted fan; [42] which designs motions for a V-22 Osprey model;
and [152], which treats an AV-8B Harrier aircraft. Note that these spline-based
methods form a dynamics-conscious generalization of polynomials as descriptors of
helicopter maneuvers [143].

There are other related works, each with a slightly different approach to the tra-
jectory generation process, but still well-suited for feedforward control schemes. Ex-
amples include [64], which uses a homotopy-based "morphing" of system models in
place of flat characterizations to obtain reference trajectories for complex nonlinear
systems. Another is [80], which uses feedback linearization to transform a nonlinear
longitudinal helicopter model to linear form, applies the aforementioned differential
inclusion-based optimization to generate reference trajectories, and finally transforms
them back to the original nonlinear system. Reference [27] is an example of actually
parametrizing an input signal for NLP-based optimization, finding useful forward
maps between inputs and outputs for a class of polynomial nonlinear systems and
then applying the method to a vertical-takeoff-and-landing system model. Collec-
tivelv, all of these inversion and model-specific optimization methods provide numer-

27

ous options for trajectory generation, especially when there is an available controller

and sufficient time to compute solutions.

However, they do not emphasize using known system behaviors to speed up so-

lution time or directly design useful trajectory characteristics. It is reasonable to

expect that having computed one solution or obtained an example feasible trajectory.
it would be considerably easier to find related motions without having to resort to

new optimizations from scratch. Fortunately, this notion is well-established in cer-

tain classical optimal control settings and is beginning to find acceptance for modern

vehicle guidance algorithms.
The idea of using known optimal trajectories to find solutions for closely related

problems is the driver behind neighboring extremal control [26, 71]. In this setting.
first-order optimality conditions are differentially perturbed into second-order condi-

tions and used to find nearby optimal solutions, often employing some sort of feedback

on perturbational states. Other examples include [71, which uses known solutions for

a given initial condition to speed up dynamic programming for neighboring starting

conditions.

Another interesting approach is a homotopy of models, as seen in [65] and [72],
where trajectories may be obtained for complex dynamic systems by first designing

similar motions for comparatively simpler models and then transforming the feasible

behavior back to the original system. A related approach is that of [73], which

examines the trade-off between solution time and optimality in a receding horizon

control setting. Here, strict optimality is not enforced in the early phase, as an

aid to finding a reasonable starting feasible solution. Subsequent iterations can then

progressively improve the solution performance, gradually getting closer to optimality.

Finally, forming an important example for this thesis, is the practice of directly

taking specific pilot-flown trajectories and studying them for autonomous execution

under closed-loop control. References [55] and [114] give a discussion of inferring

human control strategies for classes of aerobatic helicopter maneuvers and encoding

them as finite state machines. This process avoids the daunting task of devising

aggressive trajectory design and control from scratch, and instead observes "real-

world" instances to determine the appropriate control strategy. Other references

follow up on the promise of this method by rigorously modeling and testing system

flight control geared for helicopter aerobatics [57, 58] and then demonstrating the

method in actual flight [54, 56].

1.2.2 Robotics

Similar to the aerospace examples just outlined, research into robotic systems often

deals with planning and optimizing the motions of highly complex nonlinear systems.

There are several works worth mentioning that discuss solutions to problems involving

nonlinear dynamics, motion basis sets, and system constraints. Notably, several resort

to the methods of model inversion and the idea of perturbing known feasible motions

or learning-by-exanple to obtain new motions.

In some situations, a robot end-effector geometric trajectory has been previously

computed and the challenge is to find a suitable path time-parametrization that does

28

not violate state and control bounds. In [67]. the system constraints arise from robot
lower and upper joint torque limits. Because of nonlinearity, motions that are ei-
ther too fast or too slow can violate the input constraints, and the problem cannot be
solved by simply tweaking the time scaling in one direction until feasibility occurs. An
efficient algorithm results by considering the system inverse dynamics and devising a
method for torque recomputation exploiting known candidate path scalings without
having to successively re-invert the equations for motion from scratch at each itera-
tion. Reference [12] works in a similar spirit with a goal of finding a minimum-time
traversal to a terminal configuration subject to state and input voltage constraints.
Designed for on-line implementation. a receding horizon control algorithm performs
a scalar optimization over fixed look-ahead intervals. The simplicity of the prob-
lem formulation allows numerous solution properties to be considered, including the
provable ability to find a safe path parametrization in real time.

In other situations, a path is not given and the task is to plan a motion in the
presence of geometric obstacles. Similar to some current aerospace research, reference
[38] considers a point-mass system operating with velocity and acceleration bounds
and searches for a feasible path around obstacles subject to certain safety criteria.
The presented solution exploits a grid-like network description of the motion space,
using a directed-graph algorithm that allows an explicit trade-off between planning
time and path optimality.

In some situations, robotic systems are sufficiently complex to warrant use of
machine learning-type methods to construct new motions. Control of a bipedal hu-
manoid walking robot in [32] is aided by direct use of human motion capture data.
The work employs a nonlinear inverse dynamics representation and the notion of a
zero moment point to design and control periodic walking patterns of a four degree-
of-freedom robot. Reference [129] further explores the merits of robot learning from
human example in the context of an anthropomorphic robot performing pole bal-
ancing and inverted pendulum swing-up tasks. Noting that humans rarely learn
control strategies without some sort of known example, the work uses physical data
to "prime" the solutions of linear (Q-learning) and nonlinear (V-learning) reinforce-
ment learning algorithms. Exploring alternatives to basis functions and spline-based
signal representations, references [70] and [130] present sets of parametrized nonlinear
systems for capturing and modifying demonstrated motions. Inspired by discrete and
rhythmic components of human arm movements, the system building blocks perform
motion capture with a recursive least squares matching procedure and then allow
manipulation of output space behaviors and the corresponding controls.

1.2.3 Computer Animation

Curiously, the field of computer animation shares many commonalities with main-
stream aerospace and robotics practice. Historically, animation required the rather
laborious task of keyframing, where snapshots of motion were rendered individually
and then brought into continuous time through operations such as spline interpola-
tion. Not only did this process often result in physically unsatisfying motions, but
it required manual edits of many keyframes to make even simple alterations to the

29

overall movement sequence.

While developing more sophisticated techniques to automate this tedious process
and free up the animator for more creative endeavors, computer science researchers
typically find themselves working with many of the staples of traditional engineer-
ing analysis. These include signal parametrization, nonlinear system kinematics and
dynamics, and constrained optimization. Differences occur. however, in the required
level of modeling detail, as animated motions need only be perceptually plausible,
not necessarily exactly feasible dynamically.

This subsection surveys relevant animation research in three categories. The first
is perception-based motion editing, where equations of motion are not considered
and the focus is on manipulating purely kinematic variables. Here the emphasis is on

working with existing motions, especially those obtained from motion capture. The

second set of methods are physics-based animations, where equations of motion are

explicitly included, but where movements are designed from scratch, without knowl-

edge of"existing trajectories. Finally, physics-based motion capture methods combine
the ability to edit demonstrated motions while employing the rigors of physical mod-

eling and dynamic feasibility. These methods are particularly relevant as examples
for designing flexible maneuvering schemes for autonomous vehicles.

Perception-based motion editing

Not surprisingly, the animation methods that tend to bypass nonlinear equations of
motion and work directly with output space kinematics often treat an exceedingly
complex dynamic system: the human body. Still, working with torso and limb mo-
tion geometry often entails complicated nonlinear relations and the need for motion

capture to provide reasonable starting points is clear. In an interesting parallel to
motion planning as discussed in Section 1.3, these methods often treat the move-
ment space hierarchically, with flexible motion elements providing the basic tools for
dynamic or combinatorial planners.

A typical example of such methods is reference [6], which takes existing human
motion sequences, determines points at which they may be spliced together, and then

develops a directed-graph representation based on these switching points. To gener-
ate new animations, a combinatorial method using randomized searches recombines

portions of the original motion sequences and applies a smoothing operation to reduce

any perceived discontinuities. Reference [84] presents a similar method for animation

synthesis based on graph representations and a thresholding mechanism for determin-
ing likely switching points between existing data sequences. The user can enrich the

motion database by providing examples with different character displacements and

activities.

Other works include [24], which applies multiresolution filtering and other signal
processing tools to blend styles of existing motions using mathematical operations

such as time warping and frequency domain filtering; references [59] and [155] take

data from various human motions (jumps, walks, slides, etc.) and then allow the user

to specify desired keyframe edits to the figures, forming a nonlinear problem whose

solution bends to original sequences to satisfy the edits.

30

A different approach is taken in [89], where motion "textons". linear statistical
models of individual human dance segments, form the basic elements for a state tran-
sition matrix representation of motion planning. The matrix elements correspond
to likelihoods of switchings between the individual textons, allowing motion synthe-
sis from highly varying elements. Finally, reference [86] uses a hierarchical B-spline
representation coupled with inverse kinematics to synthesize new motions based on
user-imposed constraints., providing tools for editing an existing data set. Appli-
cations include selection of new geometric paths, reassignment of sampled motions
to new characters, character geometric distortion, and movement style transitions,
similar to those seen above in [84].

Physics-based motion generation

In some settings, it is possible to use physics-based modeling to improve the per-
ceived motion realism and allow the animator to design sequences using more tradi-
tional constraints and objective functions. A representative example of this method
is reference [154], which models the dynamics of a joint torque-driven animated lamp
character and applies nonlinear optimization to find the minimum power input signal
satisfying a number of user-chosen equality constraints. A related method appears in
[23], where physics-based methods provide a dynamically feasible keyframe interpo-
lator. This technique allows the animator to optimize a simulated linear state-space
model in a series of terminal constraint problems (thus avoiding a difficult multipoint
boundary value problem), with a goal of minimizing control effort and a perceptual
"nonsmoothness" index.

Reference [85] allows a direct user handle of animations through proportional-
derivative controlled physical models of articulated lamps, cats, and humanoid char-
acters. State machines then provide a method to combine these user-produced motion
primitives into longer compound or repetitive motions. Finally, reference [81] uses an
inverse dynamic model of a 97 degree-of-freedom humanoid figure to provide direct
balance and comfort control while creating dynamically sound walking motions with
variations in gait, motion path, and figure size.

Physics-based motion editing

There are also methods which combine physics-based modeling with motion capture,
providing a way for users to directly influence nonlinear equations of motion and
infuse trajectory manipulation schemes with quantitative knowledge of the animation
objectives. These approaches most closely resemble the methods of this thesis, where
demonstrated vehicle trajectories provide guideposts for parametric descriptions of
feasible maneuvers.

Reference [121] reexamines the problem of humanoid animation, taking motion
capture data parametrized to a highly detailed system model and then mapping
these samples to a feasible point of a simplified lower-dimensional model. Applica-
tion of spacetime constraints then allows the animator to edit and distort motion to
produce new effects. Finally, a constrained optimization problem re-maps the edited

31

motion back to the full-order system, using knowledge of muscle force-articulated
body dynamics to create realistic animations of human athletic activities.

In a similar spirit, reference [120] gives a method for manipulating physical sim-
ulations of moving and colliding objects. A forward simulation is parametrized in
terms of initial conditions, elasticity coefficients, and surface normals. The animator
may then directly edit the simulation output behavior, with a nonlinear optimiza-
tion routine computing the corresponding perturbations to the simulation physical
parameters. The method is useful for creating animations with seemingly unlikely
effects, such as objects colliding in mid-air and then falling into perfectly placed con-
tainers. This approach continues in [119] where initial trajectory guesses may come
from human-demonstrated examples. A multiple shooting methodology allows inter-
active editing of motion capture examples for tumbling and colliding objects. The
demonstrations provide the spirit of the motion while the interactive manipulation
can be used to enforce the exact animation effects, such as objects falling into perfect
arrangement after collisions or objects tumbling in seemingly impossible ways.

Finally, there are several examples of physical animation that closely resemble the
aerobatic maneuvering control methodologies discussed at the end of section 1.2.1.
Large change of pose animations of humanoid characters in reference [43] follow from
stable feedback control algorithms with state-machine governed switching points, sim-
ilar to the pilot-inspired logic of [54, 55, 56, 57, 114].

Similar efforts appear in reference [66], where velocity error feedback drives hu-
man characters during athletic activities using rules derived from real-world strategies
for multiphase or periodic motions, including gymnastics, running, and cycling. The
rule-based control schemes apply to individual actors as well as larger collision-free
group behaviors (for example a cycling peloton navigating a curve or road obsta-
cle) and could find application to guidance of swarms of autonomous vehicles. In a
highly complex demonstration of such methods, reference [157] applies feedback logic
to muscular models of physics-based bird flight animations that include body articu-
lations and detailed flapping wing aerodynamic models. The animator may specify a
particular flight path and flight style with the animation algorithm determining the
numerous wing-beat parameters necessary to produce the motion.

1.2.4 Biological Motion Analysis

The field of biomechanics is another area where analysis of collected motion data is
important, with emphasis placed on concise ways of describing and explaining motor
control. Here the term "motion primitive" is often used to describe a flexible, fun-
damental building block from which general movements, particularly those of human
beings, are constructed. Although there is no universally agreed upon definition of
a motion primitive, a common thread is that such basic elements are not just con-
venient ways of describing motion, but actually capture fundamental physiological
mechanisms. The references in this section confirm that motion analysis is a common
problem across many branches of applied science and that the hierarchical systems
used to command and actuate biological systems share much in common with the
man-made path planning systems to be discussed in Section 1.3.1. From this view-

32

point, the flexible maneuvering elements that are the subject of this thesis are similar
to the flexible motion primitive methods discussed here: each attempts to compactly
represent dynamic system behavior for use by a higher-level planner.

Examples of work in biological motion analysis include [4], [5]. and [74], each of
which treats anthropomorphic arm and joint movements, performing dimensionality
reduction on motion capture data and decomposing observed behaviors into multi-
layer primitives. The lower levels describe pure physical action while the higher
levels attempt to capture the behavioral algorithms for organizing the lower levels
into useful tasks. Each of the references takes a slightly different approach, with the
first emphasizing self-ordered maps to discover the relationship between the lower
and higher levels, the second applying probabilistic hidden Markov models, and the
third using spatio-temporal decomposition. Each of these works extends the motion
analysis problem into a control problem by synthesizing new motions from the derived
primitives and demonstrating their techniques on human mock-up systems.

A closely related method is that of [49], which uses a classic dimensionality re-
duction technique, principal components analysis, to form linear basis sets describing
arm motions. The linear decomposition is useful for classifying new data sets based
on sample clustering methods.

Working with human-produced two-dimensional reaching and drawing motions,
reference [36] defines "movemes" as a motion primitive analogy to phonemes in spo-
ken language. Mathematically, a moveme is the output of a parameterized linear
system designed and trained to produce a certain type of motion, such as reaching
or pointing. These systems are shown to possess independence and segmentability
properties, making them useful for both movement analysis and synthesis problems.

Paralleling the notions of invertible and flat systems as discussed in Section 1.2.1,
reference [140] applies inverse kinematics to test two interesting hypotheses concerning
human arm control during drawing tasks. A counterexample to a control segmentabil-
ity theory is presented using an anthropomorphic robot arm acting under continuous
control. In the end, oscillatory pattern generators similar to those of reference [70] in
Section 1.2.2 are suggested as a natural way of producing and controlling rhythmic
motions.

Lastly, [107] applies the inverse dynamics approach as a tool for uncovering basic
neurological motor commands and experimentally studies frog and rat limb move-
ments. It is shown that central nervous system interactions with muscle actuators
can be conveniently defined in terms of force-field motion primitives. Interestingly,
the reference discusses several of the leading theories on muscular limb control, in
particular the distinction between feedforward and feedback control, especially when
visual feedback is present. Just as with aerospace control of agile vehicle maneuvers,
a combination of feedforward and feedback seems an essential way of specifying and
controlling motion in the real-world.

1.2.5 Dimensionality Reduction

The motion primitive and motion building block methods seen above in biological and
animated motion analysis perform a useful function in reducing planning complexity.

33

The problem of synthesizing new movements is made vastly easier when the general
motion space is reducible to simpler, flexible elements. The concept of dimensionality
reduction is useful as a general mathematical tool and there are two specific techniques
which contribute to this thesis as examples.

The first is principal components analysis (PCA). which uses an eigenvalue decom-
position of a covariance matrix to decompose a large sample population into a much
smaller number of dominant variations [76]. The level of dimensionality reduction
depends on the number of terms retained in a linear expansion of the so-called princi-
pal components. Reference [49] above demonstrates the PCA technique for analyzing
and classifying human arm movement data while reference [37] applies the method
for characterization of helicopter aerobatic flight data. While principal components
are easy to use, their linear series format makes them difficult to apply to trajectory
generation for nonlinear systems.

A method that attempts to work directly with nonlinearity is the locally linear
embedding (LLE) approach [127, 142]. Here, an analysis algorithm processes a general
nonlinear data set into its dominant variations, first locally and then globally. The
outcome is a something of a coordinate chart representation of the population, whose
coordinate axes describe continuous modulations in the data. The references use the
technique to concisely characterize large sets of hand-drawn characters and images of
facial expressions. Interestingly, LLE provides a very similar function to parametrized
maneuvering (as presented in this thesis), where a small number of variables can be
used to chart and manipulate larger-dimensional vectors on continuous, nonlinear
surfaces.

1.2.6 Parametric Programming in Control Systems

Applying the notion of dimensionality reduction to the trajectory generation problem,
this thesis uses a relaxed version of nonlinear paraietric programming to map out
the feasible maneuver space of autonomous vehicles. The discipline of parametric
prograniming is gradually finding a place in modern control practice; this section
examines several recent works that have used this optimization subspecialty for system
feedback control.

References [9] and [117] consider the model predictive control/receding horizon
control (MPC/RHC) problem for linear systems, noting that control synthesis typi-
cally entails on-line solution of a quadratic program. In many situations, an initial
vehicle state forms a parametric description of the quadratic program. Therefore, a
parametric map of the corresponding solution provides a computationally simpler al-
ternative to iterative optimization. These works develop a multiparametric quadratic
programming (mp-QP) formulation, where optimal solutions can be computed off-
line as piecewise-affine representations, reducing the on-line control procedure to an
explicit function evaluation. The solution space breaks into partitions since the vari-
ations in the problem initial conditions force changes in the optimal solution active
constraint set.

Reference [147] studies and improves the algorithms for solving the off-line mp-QP
problem., while [21] presents algorithms for more efficient on-line function evaluation.

34

Noting that large numbers of constraints can fracture the solution space into an
exceedingly complex array of affine function partitions, [10] simplifies the solution
process by relaxing the Karush-Kuhn-Tucker optimality conditions and provides a
simple scalar tuning variable to govern the solution complexity. In one extreme, this
variable fully relaxes the quadratic programming problem, resulting in a static linear
control law; in the other extreme the full mp-QP solution is applied, resulting in
maximum segmentation of the solution space.

Reference [20] fully discusses the corresponding theory for various control scenar-
ios, including MPC and RHC, constrained robust control, and hybrid plants posed
as mixed logic-linear dynamical systems. Finally, [75] applies the method to more
general systems by approximating nonlinear MPC as a series of local linear problems
allowing application of the mp-QP approach.

1.3 Hierarchical Motion Planning

As is apparent in the above literature review of trajectory and motion processing
methods, a multilayer approach to planning is common to aerospace, robotic, ani-
mated, and biological systems and is an extremely active research topic in all these
fields. Indeed, as discussed in [1], hierarchical decomposition is logical, if not critical,
when both natural and man-made systems interact with their surrounding worlds.
The clear benefit is a decoupling of information and computing challenges into effi-
cient and tractable subproblemns.

For autonomous vehicles, it is reasonable to expect that a high-level view of guid-
ance should not be concerned with the detailed "inner-loop" interactions of dynamics
and control, but instead use a more abstracted approach of simply considering what
motions types are available and then using them as building blocks to solve a given
problem. In this context, continuously parametrized maneuver classes provide the
desired level of abstraction for motion planners, with underlying detailed algorithms
computing the dynamics-based system control and reference trajectories.

This section briefly reviews several current methods for autonomous vehicle motion
planning, emphasizing those techniques that employ hybrid system representations. It
is then discussed how flexible maneuvering is a natural contribution to the decoupled
planning problem.

1.3.1 Emerging Methods

Loosely speaking, a hybrid system model combines continuous-valued state equations
(in either continuous or discrete time) with the ability to switch among a purely dis-
crete collection of operating modes. For example. one might think of an aerospace
system switching between different tasks, such as take-off, cruise flight, maneuver-
ing modes, and landing, each requiring a specialized model and control design. As
shown in the following references, hybrid systems are extremely useful in planning
and controlling dynamic systems. and often take advantage of "motion primitive"
abstractions of low-level dynamics.

35

The notions of hybrid and hierarchical systems are closely related, with the lat-
ter being a logical way of organizing information, typically employing the former
to represent specific system dynamics. In the case of motion control, reference [22]
mathematically outlines various structures of hybrid systems, pointing out that mo-
tion control is often a feedback system based on trajectory geometry and physical
force-displacement behaviors. Similar to [1] above, the work points out hybrid sys-
tern commonalities between man-made and biological systems.

As a useful model for various engineering devices, reference [11] considers mixed
logical-dynamical (MDL) systems, useful for describing combinations of linear dy-
namics with integer decision variables, all subject to linear constraints. Specific
topics include stability criteria and tracking of reference trajectories, with mixed
integer-quadratic programming (MIQP) providing the main optimization workhorse
for receding horizon control of MDLs.

Looking specifically at robotic and aerospace motion planning applications, there
are several recent works advocating multiscale and hybrid approaches. An important
example is reference [2], which demonstrates the benefits of planning at multiple
levels, so that higher layers can focus on the strategies of motion while lower levels
handle the specific execution details from a system dynamics input-output viewpoint.
The reference illustrates guidance of a nonholonomic ground robot through a known
maze-like obstacle field, gradually refining the results of a randomized, exhaustive
search algorithm.

Hierarchical principles also appear in reference [29], which considers particular
classes of second-order underactuated mechanical systems, defining notions of sys-
tem controllability and illustrating a two-level kinematic planning and path-scaling
approach for finding collision-free trajectories. This method places the path time-
parametrization algorithms seen earlier for robotic applications ([12, 38, 67]) in a
larger motion planning context.

Employing an explicit notion of motion primitives for mechanical dynamic sys-
tems, [28] considers the class of underactuated mechanical systems evolving on Lie
groups, defining two specific control-based primitives for maintaining and changing
velocity. Using these basic building blocks, motion planning algorithms then deter-
mine how to reposition and reorient example systems. A mathematical definition of
motion primitives also appears in [51] and [53], which focus on autonomous vehicle
models similar to that seen in [28]. Here an abstracted system configuration vector
is given and controlled by executing combinations of motion primitives, defined as
a fixed set of trim states (i.e. equilibria) and static maneuvers. A hybrid system
representation, termed a "maneuver automaton", then captures the configuration
and motion primitives in a single framework, allowing path planning via dynamic
programming and randomized search algorithms. Demonstrated applications of the
method include navigation through a dynamically changing obstacle field and guid-
ance of an agile rotorcraft, seen in [100]. Reference [52] shows how the maneuver
automaton extends into a formal language, useful for obtaining explicit solutions to
optimal planning problems with on-line solution sets based on linear programming
methods.

Another example of motion primitive-based guidance of rotorcraft is given by ref-

36

erence [41], where the primitives correspond to intuitive flight modes, such as take-off.
steady cruise, and turning. Motion planning involves casting the vehicle dynamics as
linear system representations of primitives, which are themselves controlled by non-
linear methods such as the differentially flat model inversion approach, as referenced
in section 1.2.1. To navigate through a set of wavpoints, the planner selects a path
made up of sequences of primitives, minimizing the overall vehicle state error relative
to the given waypoints.

The final hybrid system examples cast path planning as a mixed integer-linear
programming (MILP) problem, akin to the MDL framework seen above in [11]. Sim-
ilar to the maneuver automaton notion, the general flight envelope is represented
by sets of linearly-controlled modes and fixed maneuvering elements. The main dif-
ference lies in the automaton's requirement that non-maneuvering modes be fixed
equilibrium conditions (of variable time duration) while the MILP framework allows
the system to operate in continuously evolving linear system modes, often approxi-
mating command-following closed-loop systems. However, the maneuver automaton
admits off-line solution by dynamic programming over a wide ranging set of initial
conditions. Storage of the corresponding cost, or value, function makes for extremely
efficient in-flight implementation while MILP requires on-line optimization.

Extensive discussion and examples of the MILP method appear in [133, 134], which
consider rotorcraft guidance scenarios subject to acceleration and velocity-dependent
turn rate constraints while including the use of aggressive maneuvers, such as those
developed in [54] and [56]. Reference [125] illustrates MILP for finding minimum-time
aircraft paths through waypoints and obstacle fields and also multiple aircraft flying
in proximity subject to collision avoidance constraints. Other problem variations ex-
ist, as shown in [8], where MILP plans now include a terminal cost map, obtained by
building up visibility-to-goal-state cost functions with a Dijkstra's algorithm-based
search procedure. This added feature aids airplane navigation through obstacle fields
in receding horizon mode. Reference [132] augments the receding horizon imple-
mentation to guarantee safe trajectories, avoiding a catastrophic collision with an
obstacle previously outside the finite planning horizon. Finally, [95] integrates MILP
into a higher-level dynamic programming approach designed to navigate clusters of
autonomous agents through partially-known urban environments. Guidance is cast
as a graph traversal problem with a lower-level MILP function performing shortest
path waypoint navigation subject to kinematic and dynamic constraints.

1.3.2 Benefits of Flexible Maneuvering

The above discussion of hierarchical and hybrid motion planning methods demon-
strates the advantages of breaking a general dynamics and control problem into mul-
tiple layers. Overall strategies to reach a set of waypoints or navigate an obstacle
field can be handled at a high level by considering the basic vehicle capabilities. In-
termediate levels can produce the required reference trajectories, using knowledge of
system dynamics, while lower levels can process sensor information and close control
loops. For best efficiency. it is important that each level considers only the informa-
tion necessary to perform its specific function, without having to "'overmodel" the

37

immediate problem and include details that are better handled at other levels.
For those methods that employ notions of motion primitives, the representation

and richness of the primitives is crucial to creating effective planning schemes. Math-
ematical representation involves choosing a concise set of variables that represent the
essence of the primitive and allow easy manipulation in other frameworks, such as
optimization settings. The benefits of richness are intuitive: the more flexible the

primitives. the greater the number of possible motions a planner can choose from and
the lower the cost of the overall guidance objective.

Chapter 5 demonstrates the application of parametrized maneuvers as motion
primitives in the existing mixed integer-linear programming planner. As continuous
mappings p(a), parametrized maneuvers add tremendous richness to motion planners
by capturing an infinite number of maneuvers within a single class. In previous
versions of the MILP framework, individual fixed maneuvers were each assigned a
binary decision variable that indicates when a given maneuver is to be executed.
Therefore every motion in a set of fixed maneuvers would require its own binary
variable, its own characteristic state transformation matrix, as well as its own set
of required initial conditions, such as a vehicle speed or elevation angle. Given the
branch-and-bound algorithms typically used to solve MILP optimization problems,
introduction of large numbers of maneuvers can greatly hinder the ability to quickly
solve planning problems, potentially negating the potential benefits of including them.

As will be shown in Chapter 5, parametrized maneuver classes p(a) allow an
infinite number of maneuvers with a continuous range of boundary conditions to be
represented by a single binary decision variable and transition matrix. Thus problem
dimensionality is kept in check while simultaneously enriching the scope of possible
motions and representing similar maneuvers as a unified class. Naturally, since MILP
has a linear programming structure. maneuver families have to obey a single linear
transformation relation. However, as will be shown, the linearity requirements appear
siml)lv as additional components in a parametrized equality constraint vector h(p, a),
thus restricting motions to specific submanifolds within the overall feasible maneuver
space. For motion planners with requirements different than MILP, the appropriate
elements can be added to h(p, a). In the formulation of Chapter 5, the vehicle state
at the instant of a decision to maneuver determines the specific value of a and thus,
through p(a), the entire maneuver state and control history.

Although MILP is not the only optimization framework that can be adapted to
handle maneuvers, it is chosen in this thesis as an example motion planner for four
reasons. First, the required modifications to the existing path planning formulations
are essentially trivial. Flexible maneuvers now have the same representation as pre-
viously static motions, so richness is added with virtually no extra complexity in
problem formulation. This feature also makes it easier to compare performance with
and without parametrized maneuver families.

Second, for the planar three degree-of-freedom helicopter application of Chapters
4 and 5, the closed-loop system behavior is easily captured as a command follow-
ing linear time-invariant modes. Changes in speed and elevation are straightforward
system inputs in the MILP formulation. Note that for general helicopters in three-
dimensional space and with six degrees-of-freedom, it would be necessary to approx-

38

imate nonlinear body-to-inertial frame transformations in a manner amenable to lin-
ear programming. Because of the restriction to longitudinal dynamics of the example
system, there is no need for such approximations in the given MILP formulation.

Third, the mixed integer-linear programming framework allows a number of in-
teresting problem formulations. Features include minimum-time and minimum state-
error objective functions, inclusion of polyhedral obstacles, specification of a wide
variety of maneuver initiation requirements. and the ability to impose numerous state
and control vector constraints.

Finally, introduction of parametrized maneuvers into the IILP framework creates
a fully flexible motion primitive-based planning method, with no restriction to either
discrete trim state or discrete maneuver objects. The MILP analogy of the equilibrium
state is a linearly controlled system that approximates the closed-loop operation of
the system in command-following mode. This approximation needs to include only
those states necessary for planning purposes and relegates detailed system modeling
to lower-level control algorithms.

1.4 Thesis Contributions

Overall, this thesis presents an application-oriented method of continuously parametriz-
ing vehicle maneuvers. The technique is of interest both as a general simplification
of nonlinear dynamics into characteristic behavior sets and as a useful aid to exist-
ing motion planning algorithms. The point-of-departure is the traditional nonlinear
programming approach to numerical optimal control and the ultimate payoff is an
easily formulated method for real-time flexible trajectory generation. The following
is a listing of the primary contributions.

. The thesis develops a trajectory interpolation framework, in which example vehi-
cle motions of any origin define continuously parametrized maneuver families. These
families reduce the real-time trajectory generation problem for nonlinear systems to
a much simpler numerical integration procedure. The interpolation method directly
addresses three classic challenges of nonlinear programming:

(1) extreme sensitivity of local minima to initial trajectory guesses: In-

stead of using initial guesses to indirectly influence the outcome of a
single laborious nonlinear programming solution, example trajectories
now allow the user to directly shape an entire maneuver class.

(2) nonguaranteed convergence: Removal of iterative optimization from
the on-line algorithm results in a fast trajectory generator.

(3) unnecessary generality: Rather than have a nonlinear programming
solver operate on a large number of free trajectory variables (that
describe virtually the entire flight envelope), the trajectory interpola-
tor uses only as many free quantities as there are intuitive variations
within a maneuver class, achieving a large dimensionality reduction.

39

* Elimination of an explicit objective function from the interpolation framework
allows parametrization both optimal and suboptimal trajectories, giving the user
control over many useful vehicle motions.

* Relaxation of the strict optimality necessary conditions reduces the problem
dimension by roughly half in comparison to full nonlinear parametric programming,
the finite-dimensional analog of neighboring extremal control.

e The ability to use human-piloted flights as example motions provides a way

of incorporating expert operator knowledge of system dynamics directly into the
maneuver definition process.

* Despite elimination of the objective function from the trajectory generation

procedure, the user can retain control of the cost performance of a given maneuver

class by imposing suitable equality constraints.

e The continuously parametrized maneuvers capture the full state and input be-

havior of a given trajectory, thus providing a direct interface with feedforward non-

linear control methods.

9 A complexity analysis gives lower and upper bounds on the computing load of

the trajectory generation algorithm.

e The parametrized maneuvers are demonstrated in an existing mixed integer-
linear programming hybrid motion planning scheme, capturing an entire maneuver

class with a binary decision variable and affine state transformation model.

* Parametrized trajectory families eliminate the need to individually encode dis-
crete maneuvers in most planning schemes, thus preventing a build-up in problem

dimensionality while simultaneously improving the overall planning performance.

* Experimental demonstration on a three degree-of-freedom helicopter validates

the essential features of flexible maneuvering and hybrid motion planning methods. In
particular, parametrized trajectories, piloted-flight motion capture, and feedforward

control design are demonstrated on a nontrivial nonlinear system.

1.5 Thesis Outline

The dissertation progresses from traditional trajectory optimization methods, such as

optimal control and nonlinear programming, to a set of problem relaxations allowing

manipulation of any feasible trajectories, to experimental demonstration of flexible

maneuvers in an existing hybrid motion planner.

Chapter 2 establishes the method for creating flexible and feasible maneuvers. Be-

ginning with the nonlinear programming necessary conditions, the chapter examines

the motivations behind parametric programming and summarizes the most useful

mathematical tools behind it: parametrized solution sets and continuation meth-

ods. Relaxations of the optimality conditions then make it possible to easily create
parametrized maneuver families, with knowledge of multiple known system behaviors

replacing optimality as the continuation process driver. It is shown how to create

families of feasible system trajectories with a motion interpolation process, using a

small set of variables to describe intuitive maneuvering effects. The chapter then out-

lines a method for capturing observed real-world system motions as feasible points,

40

in particular those demonstrated by human pilots.
Chapter 3 highlights various properties of the interpolation method. Of greatest

interest is the consequence of discarding optimalitv as the foundation of parametric
programming. Through a series of examples, the discussion shows that. in some cases,
optimality is recovered even though not explicitly enforced. In other situations, the
user can exert direct control over the shape of the maneuver families, helping to
close the optimality gap. In addition, a numerical analysis considers the number
of elementary operations required for trajectory interpolation, taking into account
an active set switching mechanism. The result is a lower and upper bound on the
expected computing load for trajectory generation. The last two sections discuss
the continuity properties of parametrized motion families and review some of the
interesting applicable nonlinear system types.

Chapter 4 gives an in-depth experimental application to a three degree-of-freedom
tabletop-mounted helicopter, emulating the challenges of working with nonlinear
rotary-wing systems. Casting the vehicle trajectory in terms of a spline basis and
developing a model inversion relationship results in a parametrized feasible space
with a large number of nonlinear equality and inequality constraints. The chapter
then discusses example trajectory generation for typical helicopter motions, using
both off-line nonlinear programming and motion capture to define flexible maneuver
families.

Chapter 5 gives an application of flexible maneuvering to hybrid motion planning.
While not the only candidate path planner, mixed integer-linear programming (MILP)
provides a near-ideal setting for integrating flexible maneuvers with general unsteady
flight of a stability-augmented system. The chapter shows how to adapt flexible
trajectories to meet the specific requirements of ILP. One and two-dimensional
scenarios then illustrate the combined path planning and trajectory generation scheme
in interesting scenarios.

Chapter 6 concludes the thesis by discussing the method attributes and reviewing
the remaining technical questions of interest. A number of future applications and ex-
pansions are proposed, including demonstration on other vehicles, use of parametrized
maneuver families as a method for human-machine learning, and integration into other
guidance schemes.

Two appendices provide necessary supporting material. Appendix A gives a de-
tailed discussion of the linear and nonlinear helicopter modeling and system identi-
fication. Appendix B first discusses the construction and elementary properties of
B-spline basis functions and then derives several differentiation rules useful for the
methods of Chapters 2, 4, and 5.

41

42

Chapter 2

Parametrized Maneuvers

The preceding chapter laid out the fundamental motivations for creating parametrized
maneuver classes. Representation of complex vehicle motions by low-dimensional sets
is a logical way to organize the general vehicle flight envelope and serves as a valuable
tool for motion planning. In addition, generation of system trajectories from scratch
is a nontrivial problem in general, often involving considerable computing resources
and making clear the need for faster methods for obtaining feasible motions. But the
matter would not be solved even if trajectory optimization algorithms ran arbitrarily
fast. Many vehicle motions, such as aggressive or aerobatic maneuvers, may not
minimize an obvious objective function and existing solution methods do not readily
exploit known, reproducible system behaviors. There is a need for methods that
combine the rigor of traditional trajectory optimization with a greater flexibility to
work with any feasible system motions, including those observed in motion capture
data. A clear merit of such methods would be the ability to take existing system
trajectories, of any type, and alter them to meet new needs, all while satisfying
underlying equations of motion.

This chapter presents such a method, beginning with the well-established prob-
lem formulations of continuous-time optimal control and finite-dimensional nonlinear
programming. Examination of the optimality conditions from a perturbational view-
point indicates a clear method for creating classes of parametrized extremal motions.
A relaxation of the first-order necessary criteria to include all trajectories, not just
optimal ones, then makes apparent a tool to feasibly manipulate maneuvers with
great flexibility. The resulting framework starts with multiple user-selected exam-
ple motions and produces low-dimensional feasible maneuver families, retaining the
attributes of the examples.

The chapter begins with two background sections that provide a foundation for
creating maneuver families. Section 2.1 reviews trajectory optimization by nonlin-
ear programming while Section 2.2 introduces nonlinear parametric programming and
numerical continuation methods as techniques for finding families of optimal trajecto-
ries. The remaining sections then use these mathematical programming formulations
to develop the new methods of this thesis. Section 2.3 develops the parametrized ma-
neuver framework, beginning with a relaxation of optimal parametric methods that
allows access to the entire vehicle flight envelope. Section 2.4 presents a motion cap-

43

ture technique for mapping observed real-world vehicle motions to the feasible space
of a nonlinear model: Section 2.5 discusses interesting alternative problem formula-
tions; and Section 2.6 relates the specific techniques of this thesis to existing tools of
nonlinear optimization.

2.1 Trajectory Design via Nonlinear Optimization

Feasible trajectory generation for nonlinear systems naturally requires nonlinear meth-

ods, typically in the form of iterative optimization algorithms. The intimately related

fields of continuous time optimal control and finite-dimensional nonlinear program-

ming (NLP) provide the tools for casting such problems, obtaining rigorous optimality

criteria, and deriving solution methods. This section briefly reviews the trajectory

optimization problem statement, emphasizing the NLP framework, thereby laying out

the specific techniques needed for trajectory manipulation.

2.1.1 Problem Formulation

When modeling a nonlinear aerospace or mechanical system, it is necessary to de-

rive physics-based equations of motion. identify initial (and perhaps terminal) system

states, and describe operational constraint limits. The resulting mathematical expres-

sions typically appear as continuous time equations and inequalities, and are therefore

well-suited for standard optimal control methods. The field of continuous time op-

timal control is certainly immense and includes many possible problem formulations

[16. 26]. To set the properly stage for the methods of this thesis, it is necessary to

start with a general problem statement.

Traditional Optimal Control

In what follows, assume the general system equations of motion are smooth, deter-

ministic, and of the form i = f(x, u), where x is the system state and u is the control

input. A general descriptive system behavior z(t) may be defined as some general

function of state and/or input:

z (t) = z (X(t), U (t)). (2.1)

When finding a useful system behavior, one typically desires an optimal motion that

obeys the dynamics and limits of the system. This task is cast as the general mathe-

matical program

min M(z(t)) (2.2)
z(t)

subject to z(t) E Z,

where Z represents the set of dynamically feasible motions that obey the system

constraints.

44

References [16]. [26]. and [116] provide tools to more exactly frame this problem.
Typically, one seeks a behavior z(t) that minimizes some objective metric of the
motion quality over a time interval [0. tj]. often measured by a cost function J based
on a terminal cost expression 6f and a running path penalty function 1:

J =f(X(tf), tfI) + l(x(t), u(t), t)dt. (2.3)

The general behavior set Z includes the requirement of satisfying the equations of
motion

f(t) = f(xt), u(t)), (2.4)

which are assumed here to be autonomous, that is, time invariant. Additional ele-
ments of Z may dictate the initial and final boundary conditions of the motion in
terms of some vector functions 0o and <f, obeying some upper and lower bounds:

0o,lb o(X (0), U(0)) < 0Vub (2.5)

Vflp ' $(x(t5), U(tf)) <_ 'f.ub.

Setting corresponding components of ')Olb and 0,ub to the same value results in a
strict equality constraint, and similarly for ,flb and "f,ub. In addition to the boundary
constraints, there may exist running constraints during some portion of, or along the
entire trajectory. Such constraints typically involve transforming the system behavior
of Equation (2.1) and its time derivatives according to some time-varying nonlinear
vector function 0 with associated lower <lb and upper 'ub bounds:

'1b(t) < <(x, X , x' ,) , ...- , (k), t) Pb(t) V t E [0, tf]. (2.6)

The function < might include general holonomic and nonholonomic path constraints
as well as the frequently employed time-invariant state and control bounds, written
explicitly here as:

XIb < x(t) Xub V t G [0, tf] (2.7)

Uib Ut(t) < Uub V t E [0,tf].

Unbounded components of x occur when the corresponding elements of Wib and Xub

are negative and positive infinity, respectively. Similar considerations apply to Ulb

and Uub as well.

The generic problem statement of Equations (2.2) through (2.7) includes many
classic trajectory optimization problems and is addressed by the methods of vari-
ational calculus [31, 116]. useful for obtaining the so-called Euler-Lagrange neces-
sarv conditions for optimality. References [2.5]. [26], and [116] discuss the variational
problem in detail and give procedures for deriving necessary conditions. as well as
sufficiency conditions and even analytic solutions in some special cases. Since the
present goal is a real-time trajectory generator, it is appropriate to now discuss a
corresponding finite-dimensional framework.

45

Finite Parametrization

In most practical cases, a trajectory parameter vector p reduces the above continuous
time optimization problem to one in finite dimensions. That is. the general system
behavior z(t) is expressed as z(t; p), where p represents z in terms of some polynomial,
spline, exponential, wavelet, or other finite basis. The clear benefit is a reduction of
the infinite-dimensional optimization problem (2.2) to one of optimizing over p in a
finite space, a setting better suited for nonlinear programming methods and modern
computing resources.

References [16]. [17]. [18]. [61 [68], and [102] describe many techniques for trans-
forming optimal control problems to parameter optimization problems. The trans-
formations often take either a direct form, where the goal is to minimize J without
regard to the continuous time necessary conditions, or an indirect form, where the
emphasis is on satisfying the Euler-Lagrange relations. Another distinction comes be-
tween transcription methods (also known as collocation) and shooting methods. The
former involve using p to parametrize both x(t) and u (t) simultaneously and enforcing
dynamic consistency between the two through an approximation of the equations of
motion. The latter methods typically involve parametrizing only u(t) in terms of p,
so that the equations of motion (2.4) must be integrated to find x(t).

For now, it is assumed that some general p E R" parametrizes the system behavior.
The NLP must contain a scalar objective function f : R' - R that provides some
measure of trajectory quality. Examples include functions measuring trajectory time,
energy, control effort, position error, and threat exposure.

In addition to the objective f, there are typically n scalar equality constraint
functions hi : R' --+ R, each of the form hi(p) = 0. These are frequently combined
into a single vector function h : R' -- R" defined by h(p) [h, (p),-- h, (p)]T and
expressed collectively as h(p) = 0. Of course, there must be available degrees-of-
freedom in p, i.e. m < n, to have a well-posed optimization problem.

The equality constraint components typically have one of two roles, the first being
to maintain dynamic feasibility. Sometimes referred to as zero-defect, collocation, or
consistency constraints, these components of h make sure some finite approximation
of the equations of motion are satisfied. This class of constraints typically includes
any holonomnic and/or nonholonomic equality constraints present in the system [31].
The other primary of role of h(p) is to enforce boundary condition constraints, such
as the initial and final state and control setpoints.

In addition to h, there may be r scalar inequality constraint functions g : R' -+ R
corresponding to single scalar bounds gj(p) < 0. Similar to h, these are concatenated
into a single vector inequality g(p) < 0 with g : R" - R'. Such constraints typically
arise from discretization of Inequalities (2.5) through (2.7).

With the objective and constraint functions in hand, the general nonlinear pro-
gramming optimization problem is

min f (p)
P

. h(p) = 0
subject to . (2.8)

g(p) 0

46

The eventual method for creating parametrized maneuvers will be in terms of oper-
ations on the finite vector p and is based on the optimality conditions of Program
(2.8). References [14], [18]. [47], and [141] discuss how to solve the above nonlinear
programming problem.

2.1.2 Nonlinear Programming Optimality Conditions

First-order optimality conditions indicate when a given vector p is an extremum of
Program (2.8) while second-order conditions help classify the candidate point p by
type, that is, whether it is a local minimizer, maximizer, or other critical point.

This subsection will not derive the general NLP optimality conditions but instead
briefly review them to provide motivational background material. References on the
theory and practice of NLP optimality conditions, especially those involving Lagrange
multiplier theory, include [14], [46]. [47], and [141].

Several definitions and notations will be useful throughout this chapter. The first
are those of first and second-order derivatives. For a vector x E R' and a function
F : R" -+ R1, the derivative, or Jacobian, of F with respect to x is a mapping
DxF : R' -+ R"' and is given by the array of first partials DXF = [D 1 F, . . . , D, F].
The gradient of F with respect to x is the transpose mapping VxF : R" - R"'<
given as the array VxF = (DxF)T. For a scalar function G : R' -± R the Hessian is a
mapping VxxG : R" - R" " and is the matrix of second partials V' G = Dx(V.G).

The standard Lagrangian function L: R' x R"' x R' - R has the definition

L(p, A, p) = f (p) + ATh(p) + p'g(p), (2.9)

where A E R' and i E R' are vectors of equality and inequality constraint Lagrange
multipliers, respectively. In addition, for a feasible point p of the nonlinear program
(2.8) the active set at p is the set JO of component indices for those inequalities not
strictly satisfied at p:

Jo = {j g(p) = 0}. (2.10)

Let gjy(p) denote the corresponding active set vector, which is simply the ordered
components of g that are individually active at p. Let r0 denote the dimensionality
of Jo, that is, the number of active components in g. Note that in general, 0 < ro <
n - m.

A feasible point p of (2.8) is called a regular point if the equality constraint
gradients. V hi(p) with i E {1, . . . m}, and active inequality constraint gradients,
Vpgj0 (p), are all linearly independent. Finally, it is assumed that h and g are suffi-
ciently differentiable to compute the needed quantities in the remainder of the chapter.

The Karush-Kuhn-Tucker (KKT) first-order necessary conditions for optimality
state that if p* is both a local extremum of the nonlinear program (2.8) and a regular
point, then there exist Lagrange multiplier vectors A* = [A*.... A*]T and *
[*,i4. ... *]T such that

VPL(p*, A*, p*) = 0 (2.11)

47

with

p5 > 0 V j (2.12)

p = 0 V j J0 .

Further, if p* is a local minimizer of (2.8), then the second-order Hessian relationship

T . V L(p*, A*, p*) y > 0 (2.13)

must hold for any nonzero y E RP that is a first-order feasible direction at p*, that is,
a direction y such that

Dphi(p*) y = 0 Vi= 1, . .. ,m (2.14)

Dpgj (p*) y 0 VjE JO.

These conditions can be derived in a number of ways, virtually all of which follow
from casting the constrained optimization problem in an unconstrained form and then
examining the corresponding unconstrained optimality conditions [14]. The Lagrange
multipliers typically have the interpretation of dual variables to Program (2.8) and
are useful in examining the sensitivity of the cost function to changes in constraint
problem data. Specifically, if Program (2.8) is considered as a member of the class of
general problems

min f (p)
P

subject to I (P= U (2.15)
Y(p) V

one can consider an optimal solution family p*(u, v) for small variations in vectors
u C R"' and v E R". It can be shown that the optimal multipliers to the original
problem satisfy

A* = -V7f(p*(u, V))(U=O,v=O) (2.16)

P* -Vf (p*(u, V))1(U=O,1=O),

giving them the interpretation of cost sensitivities with respect to changes in the
problem data. For the equality constraints, a positive multiplier A* > 0 implies
that increasing the right hand side of hi (p) = ui (where ui = 0 in the nominal
problem case) takes the solution point p* closer to an unconstrained local minimum
of f(p), thus decreasing the cost f(p*). A negative multiplier A* < 0 has the opposite
interpretation: increasing ui greater than 0 moves the solution point p* farther from
a local minimum of f, thus increasing the cost f (p*). A zero multiplier A* = 0 implies
that the equality constraint is locally redundant, that is, that the solution to Program
(2.8) would not change if hi(p) = 0 were removed from the constraint set.

Considerations for the inequality constraints follow similarly based on Equations
(2.16), so that p* > 0 for all j since increasing the right hand side of any gj (p) < vj

48

constraint can only relax the constraint set and lower the objective function value.
Note that pj = 0 must hold for all j V Jo since these constraints are not active and
thus play no role in determining the solution point p* and therefore no role in the
local cost sensitivity. For the remaining active inequality constraints, it is typical
that p* > 0, but p* = 0 may occur for those j E Jo that happen to be redundant to
the problem statement, just as with the equality constraints.

For completeness, the second-order sufficient conditions for a local minimum of
Program (2.8) state that if p* is a feasible point satisfying

VPL(p*, A* *) 0 (2.17)

with

> 0 Vj E Jo (2.18)

= 0 V j Jo

and
yT - L (*, *) y > 0 (2.19)

for any y # 0 such that

Dphi(p*) -y = 0 V i= 1 m (2.20)

Dpgj(p*) -y = 0 V Jo

then p* is a strict local minimizer of Program (2.8). This criterion fulfills the usual
interpretation of a local minimizer as a zero derivative point with strictly positive
second derivative, although here the curvature is restricted to only those directions
that are locally feasible to first-order. Note that, in contrast, the necessary conditions
only require a nonnegative second derivative along feasible directions.

Often, a more compact version of the first-order necessary conditions of Equations
(2.11) and (2.12) is given by the system of n + m + r equations

VPL(p*, A*. p*) 1
h(p*) = 0, (2.21)

where ~~M p*~p =-gia~pp*.

where M(p) =diag(pi,... , pr) is a diagonal matrix of inequality Lagrange multi-
pliers. The last r components of this vector equation enforce the so-called comple-
mentary slackness condition. That is, for every j E {1. . . . , r} it must hold that

ptjgy(p*) = 0, as follows from the definition of the active set Jo and Equations (2.12).

These collected necessary conditions. along with the sufficiency condition of Equa-
tions (2.17) through (2.20), enumerate the criteria nonlinear programming algorithms
attempt to satisfy. They form the point-of-departure for nonlinear parametric pro-
gramming, the method which provides the tools for creating parametrized maneuver
families. Note that the final algorithms will not follow parametric programming in
its strict form, but instead relax the optimality conditions to provide access to all

49

syst em trajectories, not just those that are mathematically optimal.

2.1.3 Nonlinear Programming Considerations

The previously cited references on NLP solution methods give many different tech-
niques for solving the generic optimization problem. Although the procedures come

in many different varieties (sequential quadratic programming methods. penalty and

barrier function methods, primal-dual interior point methods. etc.), they have several

aspects in common. Specifically, they start with an initial guess of the solution (or

solve a subproblem to determine one) and then proceed iteratively to find a point sat-

isfying the necessary and sufficiency conditions. From a trajectory generation point

of view, the general NLP approach is very attractive for its extreme generality and

applicability to countless classes of systems.

However, there are several key limitations to nonlinear programming for real-time

trajectory solution. First, the necessary and sufficiency conditions only guarantee

locally optimal solutions and cannot make any assertions about the global standing of

a solution point p*. As such, and due to the nature of iterative algorithms, a solution

point p* is extremely sensitive to its initial guess iJo. Thus, there is a tremendous

burden placed on the engineer to find good initial estimates of trajectory profiles.

Secondly, NLP solver convergence is not guaranteed in general. Based on the

quality of the initial guess and the algorithm properties, the method may not converge

to a satisfactory solution or even find a candidate feasible point.

Finally. the parametrization p of the trajectory may be too general and not specific

enough for the desired qualitative solution type. That is, p may have too many

degrees-of-freedom for an NLP solver to sort through quickly, thus wasting valuable

time that could go towards finding useful solutions.

As discussed in Chapter 1. these three considerations, among others, are some of

the prime motivators for developing parametrized solution families p(a), where here

"parameter" refers not to p, but to an a vector that indicates exactly what motion

is sought within a maneuver class. The necessary conditions covered so far will now

help define a method of parametrically describing optimal solution families p* (a) once

one single optimizer is known for some value of a. A relaxation of these techniques

will then allow creation of more general families p(a), where all feasible points p will

be allowed.

2.2 Nonlinear Parametric Programming

Now comes a transition from the general nonlinear program (2.8) to the general non-

linear parametric program. From this point forward, the vector p, earlier termed the

finite trajectory "parametrization", is simply referred to as a "trajectory", "maneu-

ver", or "solution point". The new variable a E Rq gets the name "parameter" and

acts (when q < n) as a lower-dimension descriptor of a class of feasible trajectories

p(a), the central object of this chapter. One might call p(a) a "parametrization of a

parametrization", which would be accurate, but the main emphasis is on developing

50

a concise way of representing feasible maneuvers in terms of a small number of vari-
ables. The payoff will be a concise representation of motion classes that easily makes
possible parametrized maneuver sets. starting from a few known feasible instances.
All on-line computation can then be spent evaluating p(a) for the desired feasible
motion, and not resorting to on-line nonlinear programming., which has no conver-
gence guarantees and is therefore hard to certify for real-time use. Instead, nonlinear
programming can be used off-line to generate high-quality example motions. In ad-
dition, motions exhibited by the vehicle in testing and pilot evaluation can be cast as
feasible points and used to design the parametrized families p(a).

This section begins the transformation from nonlinear programming to what will
be termed trajectory, or solution, "interpolation", the main algorithm behind creat-
ing the p(a) maneuver classes. The key intermediate step is nonlinear parametric
programming (NLPP), in which a vector a appears explicitly in the optimization
problem statement, and captures a set of problem data which might vary over a
fixed set. As a varies, one would expect the solution p* to vary in some smooth
fashion, with A* and p* varying as well. The parametric programming field, docu-
mented extensively in [44], [45], [61], and [92], gives precise algorithms for tracing
functions of the form p*(a), A*(a), and p*(a) starting from a known optimizing so-
lution set p*(ao),A*(ao),i*(ao), for some a = ao. When a is viewed as a varying
boundary condition for the trajectory generation problem, the NLPP appears as the
finite-dimensional analog of neighboring extremal control [26, 71], generating a set of
optimal maneuvers over a range of initial or final conditions.

This section outlines the main points of parametric programming, leaving the

(considerable) algorithmic details to the aforementioned references. Instead, once
the main mathematical tools of parametrized solutions and solution pathfollowing
methods are introduced, the parametric program for optimality will be significantly
relaxed by discarding the objective function and Lagrange multipliers. This simpli-
fication drastically reduces the problem dimension and makes accessible the general
optimal and suboptimal trajectory space, all while retaining the ability to functionally
describe solution sets.

2.2.1 Problem Formulation

To define the general parametric programming problem, introduce a vector of vari-
able parameters a E Rq to each of the nonlinear functions in the original Program
(2.8). Specifically, redefine the objective as the map f : R' x Rq -+ R, the equality
constraints as the map h : R' x Rq -+ R", and the inequality constraints as the
map g : R' x Rq -± R'. The optimization problem then assumes the parametric
formulation

min f (p, a')
p

subject to h(p, a) (2.22)g (p. a) < 0

51

Note that parametric programs are useful as trajectory generators, but also find
application in chemical equilibrium problems [19], chemical process dynamics [135],
structures and loading problems [92], inventory management [44], and as feasibility

analysis tools for on-line convex optimization algorithms [98].

2.2.2 Revised Optimality Conditions

Parametric programming algorithms work by tracing solutions of the first-order opti-

mality conditions, so now reconsider the relations of Section 2.1.2. Since the objective

and constraint sets contain an a argument, the Lagrangian L must as well, so define

the parametrized Lagrangian L R" x R' x R" x Rq -+ R as

L(p, A, p, a) f(p, a) + AT (,) + a). (2.23)

The Karush-IKuhn-Tucker first-order necessary conditions for p* to be a local ex-

tremum are still the n + m + r equations[VL(p*, A*,p* o) 1
h(p*, O) =0, (2.24)

_ (p*)g (p*, a) J
but now containing the a vector. As before, the inequality Lagrange multipliers must

obey

> 0 Vj (2.25)

= 0 V j Jo.

If p* is in fact a local minimum, then

yT V6 L(p*,A*p*a) y > 0 (2.26)

for any nonzero y E R" such that

Dhi=(p*, a) y 0 V i =1, ... m (2.27)

Dpgj (p*, a)y 0 V j Jo,

as before.

2.2.3 Implicitly-Defined Solutions

Equation (2.24) is a set of I + m + r scalar equations in n + m + r + q unknowns.

It is reasonable to expect that given the q components of a it is possible to solve

for the remaining n + in + r variables, accounting for Equations (2.25). Indeed, this

expectation is the basis behind most NLP solvers in the previous, nonparametric case.

Even further, under certain conditions it is possible to exactly trace solution sets

p*(a) A*(a), and p*(a), starting from a single known solution and using a as a

52

coordinate variable. Functionally solving for p*. A*, and p* in terms of a achieves a
(large) dimensionality reduction and avoids the need to resolve Program (2.22) for
new instances of a. The mathematical basis for this approach is the implicit function
theorem. Consider a function F : R^"- x RN- -+ R^- satisfying F(uw, a) = 0. The
theorem statement is:

Implicit Function Theorem ([104, 139]) Let A be an open set in
R^W x RAO and let F : A -± R^W be of class C'. Write F in the form
F(w, a) with w E R^W and a E R^O. Suppose that (wo, ao) is a point
in A such that F(wo, ao) 0 and det Dw(wo, ao) : 0. There exists a
neighborhood B of ao in R^" and a unique function g : B -± R^W of class
C' such that g(ao) = wo and F(g(a), a) = 0 for all a E B.

The theorem provides a very useful tool for dealing with systems of nonlinear equa-
tions as well as being the basis for implicit differentiation, as seen in the relation
Dcw = -(DwF)- 1 DcF.

Now view Equation (2.24) through the lens of the theorem, defining the composite
vector w - [pT AT pT]T with Ni = n+ m + r, and letting N, = q with the result:

V L(p*. A* p* a) 1
F(p*, A*,* a) = (p* a) = 0 (2.28)

L - H(p*)g(p*1 a) _

Under the conditions of the theorem, if det DwF(w. a) z 0, there is a implicit function
w* (a) defining a parametrized family of optimal trajectories.

Before outlining the specific algorithm used to trace w*(a). It is helpful to modify
Equation (2.24) and the function F to ensure numeric stability, following the practices
of reference [92]. First, recall that there are only ro active inequality constraints, where
ro depends on p at any given instant. It is therefore possible to economize the first-
order conditions of Equation (2.28). By dropping the inactive inequality constraints
from g(p*, a), the vector equation is reducible to n + m + ro components. Note that
the inactive constraint multipliers are zero from Equations (2.25), so corresponding
elements of Equation (2.24) were already trivially satisfied. For the active inequalities,
retain the corresponding rows of g(p*, a) but with the p* multipliers divided out.
These active constraint multipliers will still appear in the Lagrangian and contribute
to the first-order optimalitv condition.

The second modification is to introduce a new multiplier pi* > 0 in the objective
function, leading to a modified Lagrangian:

mn r
L(p, A, y, a) = pof (p, a) + E Aihi(p, a) + p: ujgj(p, a), (2.29)

i=1 j=1

where the vector p is now of the form p = [po,.. , r]T E Rro+l and the active set
JO has the expanded definition Jo = {0, Jo, . . . ,JO.o}. The addition of po formally
transforms the KKT system to a so-called Fritz John optimality condition [14], which
among other subtleties, removes the need for p* to be a regular point of the nonlinear

53

program at every instant. This consideration is important for the technical practice
of detailed parametric programming algorithms.

The introduction of p0 disturbs the balance between the number of equations and
number of unknowns, so an additional normalizing constraint of the form ATA+1py, -

42 = 0 restores the balance and keeps the multipliers real and bounded during path
following; the constant # is a user-chosen sufficiently large, fixed positive number.
Note that this constraint (as well as the Lagrange multipliers) will not figure into the
maneuvering framework of the next section but is included here for completeness and
to motivate the eventual algorithm simplifications.

With these two alterations, the parametrized necessary conditions take the form
of a nonlinear equation set : Rn+nl+ro+l x Rq -+ R n+m+ro+1 given by

VPL(p*, A*, p*.. a)~
-1 (P*. a)F(p*, A*, p*, a) = ;; = 0. (2.30)

A *T A* + p*T * 2

When coupled with the multiplier conditions

> 0 V j (2.31)

0 V j Jo

Equation (2.30) satisfies the hypotheses of the implicit function theorem when DF
has rank i + m + ro + 1.

2.2.4 Continuation Methods

Given a parametrized nonlinear equation set such as that in Equation (2.30), the con-
tinuation and solution path-following methods provide specific algorithms for tracing
curves of the form w*(a) (recall that p*(a), the set of extremal trajectories, is a, com-
ponent of w*). The general continuation problem is treated rigorously in references

[3], [91], [92], and [124], so only the basic ideas necessary for trajectory parametriza-
tion are mentioned here.

The main continuation approaches generally fall into one of three categories: in-
tegration methods, predictor-corrector methods, and piecewise linear methods. See
Figure 2-1 for a simple illustration of the integration and predictor-corrector variants
for a function of the form F(w, a) = 0. All three methods start from a known solution
F(wo, ao) = 0 but differ in how to proceed in finding neighboring solutions.

Integration methods trace curves w(a), accumulating differential changes in w by
essentially numerically integrating both sides of the equation Dw = -(D,,F)- 1 DaF.
The key benefit is knowledge of the entire curve w(a') but with a cost of possibly slow
progress along the solution arc.

Predictor-corrector (PC) methods exploit the contractive properties of solution
neighborhoods for the equation F(w, a) = 0, making larger jumps along the tangent
to the solution surface and then correcting back with iterative Newton methods. This

54

0 j_1 2L

F(w,a)=0

Figure 2-1: Integration and predictor-corrector methods for the curve F(w, a) 0.
Integral methods track the entire parametrized curve to obtain w(a). Predictor-
corrector algorithms make jumps from one solution point (Wk. aGk) to the next

(wk+1, ak+1) with a tangent prediction step Pk and a (typically orthogonal) correction

step Ck.

approach quickly moves to distant solution points, determining only a few intermedi-

ate feasible solutions. Many of the details of PC methods revolve around computing

the tangent direction and making the appropriate prediction step-size. This method

is best suited when large variations in a are required and when there is little chance

of encountering singularities in DF.

Finally, piecewise-linear methods take the approach of not actually working with

exact solutions, but instead riding along triangularized approximations of the solution

manifold. Corrections back to the surface are only made near the final goal point.

In the context of parametric programming, PC methods are quite common and

the following subsection outlines at a very high level how to apply them to Equations

(2.30) and (2.31). Only details relevant for either appreciating the subtleties of full-

scale parametric programming or for deriving a method for more general maneuver

parametrization are presented.

2.2.5 Parametric Programming Outline

This subsection gives a rather coarse outline of the full parametric programming algo-

rithm incorporating the predictor-corrector path-following technique. Although not

fully apparent here, the details can become quite involved, as the constraint set can

change, the solution path may bifurcate into multiple solutions of differing types (or

collapse into single solutions), and/or the solution type might change from minimum

to maximum without bifurcation. In contrast, the approach taken in Section 2.3 will

by-pass these nuances by dropping the objective function explicitly, and using two

known solutions, instead of one, to define a unique path-following direction. The

benefits include: an elimination of the need to trace the Lagrange multipliers (a re-

duction in problem dimension by roughly half); the ability to work with suboptimal

trajectories if desired, including those obtained from motion capture; and a signifi-

55

feasible space

a increasing g2() C 0

h (a) 4'

cost minimizing
direction infeasible space

Figure 2-2: Constraint switching during parametric solution of a linear program-

ming problem. As a increases from ao to a,, the solution point must switch active

constraints from g, to 92. The parametrized equality constraint is h(p, a) = 0.

cantly simpler algorithm, since there is no need to check for solution-type changes

and bifurcations.

In the present section, the optimality-based parametric program method is high-

lighted for two reasons. First. it introduces several of the methods required in Section

2.3 and obviates the simplifications made there. Second, NLPP is a completely vi-

able method of parametrizing extremal trajectories and provides a finite-dimensional

alternative to neighboring extremal control (NEC).

References discussing theory and specific, implementable algorithms include [44],
[45], [61], [92], and [123]. Analytical discussions concerning the detection, nature,
and classification of solution bifurcation points appear in references [92], [118], and

[144]. More theoretical discussions of the nature of deformable nonlinear programs

and their general structure are found in [77], [82]. and [126].

Sensitivity and Stability

The terms sensitivity and stability refer, respectively, to the problems of tracing the

local behavior of the solution curve w(a), and of determining if the constraint set

and/or qualitative solution type (minimum, maximum, saddle) is changing. This

distinction can be seen by considering the standard linear programming polytope, as
shown in Figure 2-2. Here, a parametrizes an equality constraint h(p, a) = 0. As a

increases marginally from ao, the solution point p* moves along the currently active

constraint boundaries (sensitivity). Once a increases substantially, up to and above

a 1 , then the solution must switch hyperplanes from inequality constraint gi(p) < 0 to

92(P) < 0 and now proceed in new direction (stability). Recall that such constraint

switchings are integral to the simplex method [141], although the matter can become

significantly more complicated in the general nonlinear case.

56

Predictor-Corrector Iterates

The basic steps of the PC method are as follows. Define the combined solution-
parameter vector v c R"inI+r-t+-++q according to

W = (2.32)

and let Vk denote a feasible 7 at an iteration k. The basic predictor step is to find
a direction Tk approximating the solution surface to first-order, that is, a vector
satisfying

DvF(Vk) - Tk = 0. (2.33)

Note that the null space of D, will have dimension q but that exact direction and
orientation of' Tk in R" is uniquely determined by the desired vector change in a, also
in Rq. The vector Tk then forms the basis of a first-order Euler prediction step of the
form

Vk +l- AskT, (2.34)

where Ask is a step-size variable, typically chosen by comparing with the desired
variation in a and the local behavior of the Equations (2.30).

The correction step back to the feasible surface solves the equation system

Gk(v) = = 0 (2.35)

using an iterative Newton root-finding technique. Here, N2,\(v) is an added constraint
enforcing orthogonality between the prediction and correction steps and typically
takes the form

N (V) - (v - v)TT. (2.36)

The Newton correction proceeds by the standard iterations

V'+1 = Ve't - (DvG(vc'))-G(v '1) (2.37)

beginning with 77' 1 = VI.

Singularity Detection

Iteration of the predictor-corrector steps as presented is a fairly simple matter. How-
ever, recall that the implicit function theorem requires that D.F be nonsingular, a
condition frequently violated in nonlinear parametric programs. Any point w* where
DwF loses rank will be called a singular point. These points occur for three primary
reasons, which each have geometric interpretations from an optimization viewpoint.
First, from Equation (2.30), the Jacobian of F with respect to w is

57

V ,L Vh ... V/Im V~f VJgJ01 - Vpgj0 ,0
Dph, 0 0 0

- DhI 0 0 0
DDF . (2.38)

Dpgj 0 ,0 0 0 0
0 2A .-- 2A... 2po 21Joi --- 2 pJ0,r

and helps to illustrate the three conditions for D.F to lose rank, as proved in [92].

The first cause of singularity is a loss of strict complementarity in that either a
previously inactive constraint gj(p. a), where j (Jo, becomes active, or a multiplier
for a currently active constraint gj(p. a), where j E Jo, vanishes. In these cases, the
matrix in Equation (2.38) loses rank and the continuation algorithm must modify the
active constraint set JO.

The second possibility is a loss of the so-called linear independence constraint
qualification (LICQ), meaning that the active constraint derivative vectors
Vph 1 .i. - Vphm, Vg,10 . -7- - , Vj7, 0 40 have become linearly dependent and/or the ob-
jective multiplier po has vanished. In such settings, a solution bifurcation occurs and
the new candidate path-following directions must be classified by type and a partic-
ular direction selected. Note that a practical discussion of constraint qualifications
can be found [14] while [112] gives an extensive treatment of the subject.

Finally, the third cause of singularity is a change in the inertia of the Hessian
matrix VPPL along the feasible tangent directions. The matrix inertia for a symmetric
matrix is defined as the number of positive, negative, and zero eigenvalues [60]. As
with the second condition, an inertia change implies a bifurcation or a change in
solution type (transition from a local valley to a local peak or local saddle point).

Detailed parametric programming algorithms must search for these various sin-
gularities while performing the predictor-corrector steps of Equations (2.33) through
(2.37). Although it is possible to define iterative algorithms that perform these tasks,
the mathematics can become quite cumbersome and the resulting parametrized solu-
tion arcs must remain extremal by construction.

For the remainder of this thesis. the strict optimality conditions are dropped for
simplicity, greater flexibility, and real-time implementation. This relaxation allows

the design of very simple algorithms for finding parametrized maneuver sets. The
removal of the optimality conditions provides extra design freedoms to the user, and
as will be shown in Chapter 3, there do exist cases where optimality is retained, even
if not explicitly required.

58

2.3 Interpolation of Feasible Trajectories

Fortunately, it is possible to create continuously parametrized trajectory families of
the type p(a) without resorting to the full rigor of nonlinear parametric programming.
A drastic simplification arises by dropping the first-order optimality conditions of
Equations (2.30) and (2.31) and replacing them with a simple set of parametrized
feasibility conditions, namely h(p, a) = 0 and g(p) < 0. The benefits are a reduction
in the problem size by roughly half (since there is no need to trace the paths A(a) and

a drastic algorithmic simplification since there is no need to test for bifurcation
and solution type changes, and the freedom to work with any general feasible p,
including those arising from maneuver motion capture. These simplifications enable
useful on-line trajectory generation algorithms and give the engineer greater flexibility
in designing motion characteristics, since up to n - m extra trajectory degrees-of-
freedom arise from the relaxation of strict optimality.

Whereas the specific path p* (a) originating from a known solution was uniquely
determined by the optimality conditions in parametric programming, now there is
no unique direction. Instead, the method here is based on knowledge of two known
solutions that together define the endpoints of a path p(a). Tremendous freedom is
granted to the engineer in the selection in the bounding "example" trajectories. If a
set of agile motions is desired, then the user should provide fast vehicle example tra-
jectories. If the goal is to observe and generalize maneuvers observed in human-piloted
demonstration, then two (or more) sets of motion capture data can be processed into
trajectory feasible points and used as known solutions (see Figure 2-3). Since the
feasible path connecting the two examples will result from a simple projection oper-
ation seeking the most direct arc between the known solutions, the resulting family
p(a) tends to retain the characteristics of the examples. The strengths of nonlinear
programming may now be dedicated to creating the example trajectories, while a
much simpler interpolation method generates the continuous maneuver family p(a).

Before proceeding to the interpolation algorithm, so-called because it finds dynam-
ically feasible trajectories that are in some sense "between" the endpoint examples,
it is worthwhile to restate the feasibility conditions. In most cases of interest, the
variable maneuver descriptors a specify the initial and/or final boundary states of
a vehicle, and thus occur in the equality constraints [16, 26, 68, 102]. Therefore,
consider the feasible space to be defined by the maps h : R' x RNO -* R' and
g : R' - R', giving the basic feasibility relations:

h(p, a) = 0 (2.39)
g(p) < 0.

2.3.1 Coordinate Chart for Maneuvers

One may think of a as giving the intuitive "coordinates" of a maneuver, such as initial
and final velocities, altitude gain, heading-change, etc., while p(a) captures the entire
trajectory. Recall that p is a finite-space descriptor of the continuous time system
behavior z(t; p).

59

cost function] (p)

p coordi

h(p, a) defines
a nonlinear surface feasible

maneuver set

boundaries

A/

Pl

~(a) level sets give
initial & final trajectory states

(equality constraints)

Figure 2-3: The general maneuver space. Feasible maneuvers p1 and P2 can come from
any source, including nonlinear programming or motion capture. The parametrized
family of feasible maneuvers based on these examples is given by the curve p(a).

In general, a may contain N1 initial coordinates, Nf final coordinates, and possibly
even a coordinate dictating the time duration of the maneuver, so that N = q =
,i + Nf + 1. This general a takes the form

= i 1 Nf]Ta, ~ ~ 0 --['- O . . f ~ TJ (2.40)

Note however, that one should only include as many components in a as there are
desired degrees of variability in the maneuver family: the fewer components of a, the
greater the dimensionality reduction.

When it is necessary to work with multi-component a vectors, it is always possible
to reduce a again to a scalar variable using some map of the form Y : R -+ R^O
where a = -(o) and - is an appropriate, user-selected smooth function. Use of such
dimensionality reducing -y functions is common practice in multiparametric nonlinear
continuation [92].

2.3.2 Known Feasible Motions

As stated previously, the idea of trajectory interpolation is to replace parametric opti-
mality conditions with knowledge of multiple feasible maneuvers. These motions may
be optimal, suboptimal, derived from motion capture, or come from other sources.
However, in the notation of the feasible model of Equations (2.39), all feasible ma-

60

nate 11r21met

neuvers take the form of a vector t, E Rvi+A'Q defined simply as

V = .l (2.41)

When creating a parametrized maneuver family p(A), the known feasibles are motions
of the same type but satisfying differing boundary conditions a. Therefore, a set of
example motions for a given maneuver type exist as discrete vectors

LVk- Pk] k=1 2)... (2.42)

where it is understood that the Pk describe similar trajectories but with variations
due to the different boundary conditions ak. For example, one might think of a set
of aggressive heading-change maneuvers for a fixed-wing aircraft, but where a = AO
is used to indicate the specific heading change value.

2.3.3 Parametrized Maneuver Formulation

Given the feasible space of Equation (2.39), the equality constraint vector h(p, a)
generally takes the form

h(p, a) = (P) (2.43)[ha(p, a)

The partition he : R' -s RNhe gives equality constraints not involved in specifying
boundary conditions. Instead, these components ensure that the system nonlinear
equations of motion b = f(x, u) are satisfied and/or enforce holonomic and non-
holonomic path constraints. Note that these constraints often arise in transcription

(collocation) formulations when it is not possible to invert the system dynamics or
easily forward integrate them. In such cases, p describes both state and input com-
ponents of z(t;p), with

P P], (2.44)

requiring that the free state and input parameters be made consistent through discrete

approximations of the equations of motion [16, 68]. In other cases, such as that seen in

Chapter 4, the vector p describes more system states than the number of inputs. Then

he(p) must enforce consistency between the state signals via a discrete sampling of a

modified differential equations of motion. Finally. he(p) might also enforce holonomic

constraints, such as fixed state arcs, or nonholonomic path equality constraints, such
as zero sideslip conditions for aircraft and rolling wheel kinematics for ground robots.

The second component in Equation (2.43) is the boundary condition vector hbc :
R" x RN- - RN b,, dictating the maneuver initial and final conditions. Although the

number of possible forms of hbc is too large to enumerate here, it is useful to consider

an example case with a E R 2 and of the form a = [ai af]T. The hbc partition then

61

appears as

h((p.a)= hi(pai) . (2.45)

hf (p, af)

The function ho : R" -- R 'bc enforces boundary conditions that do not depend on

the particular values of ai and (f. For example. these components might enforce

altitude conditions when the a's are used to designate speed and/or direction.

The remaining components take the form hi(p. oi) =i(p)-#i(ai) and hf(p, a)=

f(P) - Of(af)I where all vectors have the consistent numbers of components. For

all but the simplest systems, the functions hi, <i, and #i are vector-valued, even if

a- E R (and similarly for the terminal functions hf, ,f, and #f). For example, if o'

is an initial helicopter trim velocity, it is necessary to enforce steady values of speed,
vehicle pitch, rotor pitch. and possibly all four of the control inputs, all depending

on the scalar ai. The mapping (i : R' -> R", extracts these quantities from a

candidate p. The function Pi : R -> R'i maps the specific initial coordinate ai to

the required physical settings, often using trim relations derived from a steady-state

analysis of s = f(x, v). Note that both #i and @i are nonlinear in general. Chapter

4 gives a detailed example of these relations in practice for a three degree-of-freedom

helicopter.

As mentioned previously in Section 2.3.1, another possible option, is to control

the time-duration of a maneuver. One then sets a = G'f E R so that h(p. a) takes

the form

h(p, a [=](2.46)
ht, (p. at,)

with htf (p, at,) =tf (p) - #tf (at,). The V) and # functions play similar roles as in

the initial and final condition case, with i extracting the maneuver duration from p

and #) converting atf into a trajectory duration. These operations allow a maneuver

to be flown at variable speed, depending on scheduling or tactical requirements.

For now, the inequality constraints are assumed to be a-invariant and thus simply

of the form g(p). As discussed in Section 2.1, these inequalities typically enforce path,
state, and control limits, such as those in Inequalities (2.6) and (2.7).

2.3.4 Interpolation with Equality Constraints Only

This section describes the specific trajectory interpolation method, first for the case

of equality constraints only; Section 2.3.5 then completes the story by adding inequal-

ities. It is useful to begin with the equality constraint-only case since it illustrates the

simple projection scheme for defining feasible directions and is itself a useful algorithm

in practice.

The maneuver model reduces to the simple expression h(p, a) = 0 with h E R '

and p E R". For now, assume that a E R (or equivalently that there is a map a -y(o)
that replaces a by a scalar o-). In general, this maneuver space has 71 - rn available

degrees-of-freedom and it is not possible to apply the implicit function theorem to

determine a unique family p(a).

62

Null] D h(p=, 0 g (p) 0

V2

Figure 2-4: Projection method for choosing a unique feasible direction. The difference
vector u is projected onto the local tangent hyperplane to obtain n, a tangent vector
for the feasible path p(a). The path must consider any inequality constraints 9k(P)

occurring between vi and v2.

Using the notation of Section 2.3.2, let v, denote a known maneuver satisfying
h(p, a) = 0. Given another feasible v2 , it is possible to define a unique feasible
direction "towards" v2 from v1 . To do so, simply take U = 2- v, and project it onto
the constraint tangent plane at v1 .

Specifically, Dvh(pi, a,) E R"n('+) must have a null space of at least dimension
n + 1 - m. Let Z = [..., n+-n with zi c Rn+l denote a basis for Null(Dvh)
and take the projection of u onto Z, expressed as f = Projzu. Then ii is a first-
order feasible direction from v, towards v2 , and by extension from trajectory pi (with
boundary condition a,) towards trajectory P2 (with boundary condition a 2). See
Figure 2-4, assuming for the time being that the indicated inequalities do not yet
exist. All that remains to create a maneuver family p(a) is to trace this first-order
direction towards v2, differentially updating the projected direction while moving
along the path.

Letting s denote the arc length in R'+ 1 space along this feasible path, the resulting
path has the form v(s) = [p(s); a(s)]. Generally, the example trajectories v, and v2 are
taken to be of the same type, so that the projection operation is well-posed and the arc
v(s) actually reaches v2 without getting stuck at intermediate feasible points. Finding
a general set of conditions under which the trajectory set is in fact "interpolable"
without problems is a hard proposition. However, assuming in engineering practice
that v, and v2 are chosen so that v(s) can reach v2., then a(s) is a monotonic function,
implying that the inverse map s(a) exists, and thus giving p(s) = p(s(a)) = p(a),
as desired. Noting that after projection, n+1 = dcv/ds. and thus a multiplication
of fii by U,-i, will ensure that s = a identically and therefore p(s) = p(a) follows

63

automatically.
A slightly different viewpoint is to write h(v(s)) = h(p(s), a(s)) = 0 and note that

dh Oh dp Oh do
ds Op ds Oa ds

Oh (1h P7
(2.47)

dv
= D9h(v)-i-

ds
= 0.

Therefore any vector in the null space of D1,h is a well-defined first-order feasible

direction; the obvious choice is simply to take d/ds = fi= Projza. If the projection

method is the standard least squares minimization of I -' 2, then

a = Z"u = Z (ZTZ) 1 Z(v2 - "1). (2.48)

Expressing these operations as an integration continuation method gives the following
trajectory interpolation algorithm, posed as starting from vi = [pi; a1] and seeking a
maneuver p(ago) with a1 ago1 02.

Pseudo-code for Algorithm 1
o Obtain feasible maneuvers vi = [p 1 ; a1] and v2 = [p2; a 2] of the same type but
satisfying numerically different boundary conditions.

o Integrate 'b(s) = L(s, v) with independent variable s along [0, agoal - CA with initial
condition v(0) = vi and 'a(s, v) at any point s given by the following logic:

1: u(s) = '2 - 'C(s) direct difference
2: evaluate Dh(v(s)) local equality derivatives
3: Z = basis of Null(Dh) tangent space basis
4: i = Projzu project difference vector
5: h, < t - (da/ds)-- normalize arc length

Typically, the most costly operation in Algorithm 1 is the evaluation of Dvh(v(s)). It
is preferable to compute these partial derivatives analytically instead of numerically
when possible, saving effort and giving more accurate quantities. Appendix B derives
tools for computing these derivatives for B-splines and general nonlinear constraint
functions h and g, and will prove useful for the specific application in Chapter 4.

Fortunately, it is reasonable to only update this matrix periodically, say, at some
fixed interval a', and not at every forward integration step. The suitable interval Aa
can easily be found empirically, since solution trajectories p(a) can be tested against
the equations of motion : = f(x, u) to verify fidelity. In addition, reference [17] dis-
cusses various rank-one Broyden updating rules to further economize the computation
of Dvh.

64

Finally, recalling from Section 2.2.5 that continuation methods can be accelerated
by using a predictor-corrector format. the following Algorithm 2 gives a PC version of
Algorithm 1. The notable difference is the inclusion of the function G : Rn+l - R"1+1
given by

Gk(v) Gk(p a) [p) (2.49)

with Nk(v) - (v - VP)T nk, similar to Equations (2.35) and (2.36). Now it is un-
necessary to normalize the prediction vector (first-order feasible direction), since the
a-value at the next iteration will follow from the Newton root-finding procedure,
which again utilizes a pseudo-inverse (DvG)+ since 7n < n. Choice of step size 6k
is left to the user, although references [3], [14]. [91], and [124] give numerous crite-
ria for step size selection. The quantity c is taken to be suitable small number for
terminating the iterative corrector process. The predictor-corrector algorithm is as
follows.

Pseudo-code for Algorithm 2
o Obtain feasible maneuvers vi = [p1; a1] and v2 = [P2; a2] of the same type but
satisfying numerically different boundary conditions.

o Obtain a feasible sequence Vk = [Pki, ak] with k = 1, 2, ... by iterative repetition of
the following predictor-corrector steps:

1: Uk -- V2 - Vk direct difference
2: evaluate Dvh(vk) local equality derivatives
3: Z = basis of Null(Dh) tangent space basis
4: fl = ProjzUk project difference
5: Vk = Vk + 3 sk - k predictor point
6: set v 1 V first corrector point
7: while h(p" .') ; a
8: v +1 = vc' - (DvGk(v))+G(v) Newton correction steps

9: end
10: Vk+1 -- V'i+1 next feasible point

Now what is needed is a simple and reliable way of including inequality constraints.

2.3.5 Equality and Inequality Constraints

The addition of inequalities back into the problem returns the parametrized feasible
space to the form of Equations (2.39). Now, logic must be added to the trajectory
interpolation algorithm to detect inequalities that are becoming active and drop those
going inactive. These steps can be challenging to add to predictor-corrector methods,
since the prediction step may jump over a point where the active set changes and
the active set can potentially change during each of the Newton corrector iterations.

65

Therefore. in the context of this thesis, it is preferred to modify the integration-based
method of Algorithm 1.

For continuation purposes, define the active set feasible space at a point v [p; 0]
as

Fo(p, a)= [(p, =) 0
L 9JO(p) I-0

g (p) 0 (2.50)

where J0 depends explicitly on the current trajectory point p. A parametrized curve
p(a) then must obey

Fo(p(a), a) = 0, g(p) < 0 V 01 a 12.

Now, when computing the tangent plane for projection of u, it is necessary to include
the components of gj0 . Components are added to gj0 when a constraint gy (p) becomes

active along p(o). An active constraint gyj(p) is dropped when n = Projzu no longer

violates it to first-order. that is. when the Degj - < 0. One may interpret this

condition as the feasible "line of sight"' vector 'a to 112 no longer crossing the tangent

to gj (see Figure 2-4). The following algorithm performs integration-based trajectory

interpolation with both equality and inequality constraints.

Pseudo-code for Algorithm 3
o Obtain feasible maneuvers ?i = [p1; a1] and V2 = [p2;a21 of the same type but

satisfying numerically different boundary conditions.

o Integrate 'b(s) = i(s, v) with independent variable s along [0. a 0 -a 1] with initial

condition r(0) = v, and '(s. v) at any point s given by the following logic:

u(s) - 'C2(s) - v(s)
evaluate Doh(v(s))
Z basis of Null(Dh)
fito Projzu
0 <- io - (da/ds)-'

Ji {ilgi(p) ;> 0}
if J, - 0

'a = n
else

J2= j JI Dvg - 'ao > 0}
if J2 = 0

e = lO
else

Z' = basis of Null ([Dh; DVgj 2])
i = Projz,u
i +- 'a (da/ds)-

nd

direct difference
local equality derivatives
tangent space basis
project difference
normalize arc length
test for active inequalities
none active

test 1st-order inequality behavior
none active to 1st-order

follow 1st-order active inequalities
re-project difference
normalize arc length

66

(2.51)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

e

end

As before, assume that ' = [pi; a 1] and v2 = [p2; a2] are well-chosen maneuvers of
the same type, but with differing boundary conditions, so the algorithm can run to
completion.

Note that in Algorithm 3, the tangent plane and its basis Z now have dimension
n+1--M-ro, so that active inequalities reduce the degrees-of-freedom of the maneuver
during projection. This fact is consistent with intuition, since each active inequality
acts essentially as an equality, reducing the dimension of the local feasible space by 1.
A fully active set of inequality constraints occurs when ro = n - m and the tangent
direction has dimension 1. In such cases, the projection operation i = Projzu reduces
to simply choosing the correct orientation on a one-dimensional curve. Any additional
constraints that become active (typically for numerical reasons) are disregarded. since
DpFo is then square and the extra derivatives cannot contribute any additional rank
to the projection problem.

2.3.6 The Multivariable Case

Algorithms 1, 2, and 3 as stated assume that a is of dimension 1. However Section
2.3.1 discussed the more general, and desirable, notion of using vector-valued a,
allowing greater freedom over maneuver design and making the family p(a) more
general. This subsection briefly discusses three mathematical techniques for handling
a multivariable coordinate chart.

The first method is to use the algorithms exactly as given, modifying only the
interpretation of the arc length variable since a now has several components. One
can either choose to scale f relative to a particular component of a or simply normalize
ii according to ft +- it/ I . These operations take place in line 5 of Algorithm 1 and
lines 5 and 16 of Algorithm 3. With this approach, the constraint formulations are
allowed to contain multiple chart components, as in Equation (2.45). Note, however,
that this method will not allow the user to explicitly control the variations between the
components of a. Since the interpolation algorithm seeks the closest projection in the
feasible space of dimension n+N, it does not enforce specific differential relationships
between the last q components of v, making the exact chart path between vi and v 2
hard to predict.

A second method addresses this concern and has been mentioned in previous

subsections. Reduce the vector a, with the general components of Equation (2.40),
to a single parametrization by choosing a differentiable mapping, or coordinate path,
of the form y : R -+ R^', with a = -y(u) and a E R. Note that the feasible

space technically is then of the form h(p, a) = 0. g(p) < 0 and the symbol a replaces

a in Algorithms 1 through 3. This approach is common in the multiparametric

programming literature [92] and is fairly intuitive. The interpolation can still take

place in one process and use two known solutions v, and v 2 as guides.

The third method is to perform multiple scalar interpolations, one component of a
at a time. The first interpolations would be performed to obtain the desired value of

a1 , the second set to obtain the desired value of a 2 , and so on. This approach therefore

requires 2 ^'0 example trajectories and 2 ^- - 1 scalar interpolations. Although not

realistic for maneuvers of high-dimension, it can be effective when N is 2 or 3.

67

3 V4

V,

Figure 2-5: The second the third methods for handling multivariable a. The goal
maneuver is at (a*, a*) and known maneuvers are at vi, v 2, v 3 , and v4 . The second

method, uses a nonlinear mapping a = -y(-) between vi and v4 . The third method
uses three single-variable interpolations, with (1) and (2) producing intermediate
maneuvers Va and Vb and (3) then achieving (a*, A*).

See Figure 2-5 for an illustration of the second and third methods for treating a
case with a E R2. For a general multidimensional maneuver class, the most reasonable
approach is to store a set of many known trajectories, exploring reasonable variations
in a but employing a single a - 7(o) parametrization to generate new maneuvers.
Then for the algorithms, choose the maneuvers with chart variables "closest" to the
desired a as the seeds v, and v2 for interpolation.

2.4 Maneuver Motion Capture

The maneuver interpolation procedures in Algorithms 1, 2, and 3 use feasible ma-
neuvers as examples in creating parametrized families p(a). As seen in Figure 2-3,
such feasible points may arise from off-line nonlinear optimization or come by cap-
turing real-world human-piloted vehicle motions. The notion of using demonstrated
flight performance as a guide for autonomous vehicle trajectory design has been ex-
plored in [54]. [55], [56], and [114] for the case of aerobatic helicopter maneuvers.
These works study multiple examples of a single maneuver and infer feedback state
machines for closed-loop recreation of specific motions. Inspired by those examples,
this thesis takes the viewpoint of using multiple observed maneuvers over varying
boundary conditions to describe a continuously parametrized set of motions, capable
of generalizing the finite examples sets. Thus the maneuver classes give an effective
way of exploiting known system behaviors, taking advantage of the considerable flight
capabilities of human pilots.

68

This section gives a brief and high-level discussion of transforming flight data into
feasible maneuver points of the type v = p)TT]". The specific procedure for a given
application will be vehicle and sensor-dependent. Chapter 4 fills in several of the
details. working with real experimental data and performing interpolated maneuvers
in closed-loop.

For now, assume that a vehicle model ± = f(x. u) and finite behavior parametriza-
tion z(t; p) have been selected and that the system constraint specifications are known
and given in the form of Equation (2.39). The goal of motion capture is to turn ob-
served system behavior Zdata(t) into a point Pdata in the parametrized trajectory space.
That is, the mapping Zdata (t) --+ Pdata moves from a feasible point of the true system
to a feasible motion of the parametrized system model.

First. it is useful to obtain a reasonable estimate of p by a pure data matching
procedure. Tools for data fitting are common for splines, exponentials, wavelets, and
other types of basis functions. The initial estimate typically takes the form

N

PdataO = arg min E Zdata (tk) - Z(tk ; p)| |w, .5
k=O

where tk indicates discrete sampled data, N is the number of data points, and 1k is
a user-selected weighting function employed to highlight particular signals of interest
or perform time windowing. This matching procedure often takes the form of a
projection or least-squares operation [14, 141].

What remains is to find the best point in the nonlinear feasibility program of
Equation (2.39), which by definition includes model knowledge. Since processing of
motion capture takes place off-line, it is appropriate to solve an explicit nonlinear
program, whose objective is to match the data using an error metric e. The program
itself is

min e(p)
P

subject to h(p, adata) = 0 (2.53)
g(p) < 0

where adata gives the maneuver boundary conditions as observed in the data. This
vector does not have to be exact since some trajectory initial and final variables may
be hard to estimate. However, the closer Gdata is to the actual data, the better the
performance of the motion capture process. The error metric can attempt to match
the p estimate of Equation (2.52), as in

e (p) = |[p - PdataO I. (2.54)

However, it is generally more effective to the use the flight data explicitly in the

objective function, as with

Nk

e(p) = S ||Zdata(tk) - Z(tk ;p)| w, (2.55)
k=O

69

using P(ataO from Equation (2.52) as an initial guess for Program (2.53). Thus the
motion capture process can be performed in two phases with the same error criterion.
The first step obtains an initial guess of p and the second step rigorously fits the
nonlinear model. Since nonlinear programming is generally very sensitive to initial
guesses, using Pdata,O from Equation (2.52) tends to be far more effective than using
some manually selected estimate. Indeed, if the model fidelity is high, the optimal p*
from Program (2.53) and Pdatao will be very similar.

2.5 Alternative Formulations

Section 2.3.1 assumed that the vector a describes only boundary condition variations
and time length of the maneuver. However, there are several other problem variations
where trajectory interpolation is useful for system analysis and control. The following
three subsections give brief descriptions of alternative interpolation objectives.

2.5.1 Model Interpolation

The preceding discussion has assumed a fixed vehicle model of the form = f (x, u).

However, it is possible that trajectories are known for one system model but then
the model changes, due to a hardware modification, system reconfiguration, or even
a variable physical parameter, such as air density. In such cases, generalize the equa-
tions of motion to the form ± = f(x, u, a). Recall from the discussion of Equations
(2.43) and (2.45) that the functions h, and hb depend directly on the system model
since it is necessary to maintain dynamic feasibility as well as satisfying trim bound-
ary conditions, obtained from a steady-state analysis of the equations of motion. As
such, the appropriate modifications to these equations are

/1 - h(P(p, a) 1
h (p, hp, a) and h (p, a) = h(p, a) , (2.56)

-aL h(P, a) _

where now a represents a physical model parameter. It assumed that the model
alterations are smooth and do not affect the state and control bounds so that the
inequalities remain in the form g(p) < 0. Trajectory interpolation then proceeds
using the as-stated algorithms.

2.5.2 Known Disturbances

A similar situation occurs when a known disturbance of variable magnitude and/or
direction is present in the system. Examples include prevailing winds, water currents,
and unknown ground surface inclinations for robotic devices. In principle, a robust
controller can handle some degree of uncertainty but maneuver interpolation can
be used to modify the reference trajectory (including inputs), making the control
task more manageable. The parameterized disturbance enters the model in the form

70

= f(x. u., a), just as in the preceding subsection. leading to the same modifications
of he and hb.

2.5.3 Parametrized Inequalities

A third alternative is that of variable inequalities. One might conceive of an obstacle
avoidance motion, executing a jump over a previously unknown solid object or threat.
Over short time intervals, a linear controller might not be able to modify a linearized
trajectory rapidly enough to avoid collision. Here. the variable inequality requires
the trajectory to pass over a wall or around a threat, with a giving the amount of
deviation from nominal. The feasible space notation then has the form

h(p) -0 (2.57)
g (p, a) < 0

with known solution v, corresponding to the nominal, unimpeded trajectory, and
with v2 storing knowledge of a dynamically feasible but extreme avoidance maneuver.
In practice, sensors detect obstacle size and location, allowing calculation of a. On-
line interpolation then produces a vehicle-preserving motion somewhere between the
nominal and extreme motions. Modifications to Algorithm 3 would involve skipping
lines 3, 4, and 5 and setting ii to 0 in line 8.

2.6 Relationship to Existing Methods

The interpolation algorithm presented in this chapter is not an optimization method.
Since the goal is a real-time trajectory generator capable of describing any feasible
system trajectories, the emphasis is placed on using the known examples as implicit
measures of maneuver quality or usefulness. If an objective function is clear for a
given class of motion, then example maneuvers can be generated off-line via non-
linear programming. If the goal is to take human-piloted motions from real-world
observation and then generalize them for use by autonomous agents, then motion
capture is the appropriate starting point. However, once these trajectories are cast
as feasible points, then they are in some sense "equal" from the perspective of tra-
jectory interpolation, and an explicit objective function f(p) is no longer required.
However, the spirit and practice of the interpolation algorithms do share some simi-
larities optimization-specific methods that are worth noting.

Recall that Algorithms 1, 2, and 3 follow from a generalization of nonlinear
parametric programming, which is itself a finite-dimensional analog of neighboring
extremal control. Both NLPP and NEC start with known optimal solutions and
perturb them by differentiating the first-order optimality conditions (Karush-Kuhn-
Tucker conditions for NLPP, Euler-Lagrange conditions for NEC). Thus, by taking a
derivative of a derivative, they are both second-order methods and must be concerned
with extremum type during perturbation. The interpolation algorithm here is a first-
order method, taking only single derivatives of constraint (feasibility) functions to

71

allow perturbations. However, note that the method presented here is a practically-
motivated relaxation of both NLPP and NEC, since the vectors p and a' exist in
finite-dimensions while describing an infinite-dimensioned continuous time behavior

z(t; p).
The interpolation procedure is similar to projective gradient methods since the

primary subproblem is the projection of a direction vector onto a convex subset using
a second-order error metric [14]. The difference comes in that the guide direction is a
difference vector '= 'v2 - 'vI instead of a gradient, and the projection is onto a convex
feasible tangent plane instead of a convex interior set.

Note that the difference vector projection accounts for the locally active set, mak-
ing the maneuver pathfollowing similar to manifold suboptimization methods [14].
which seek a minimizing point while following feasible paths along constraint bound-
aries. While tracing a feasible arc through the general maneuver space, active in-
equality constraints switch "'on" and "off" depending on where they are encountered.

Similar to sequential quadratic programming, a method applicable to general non-
linear, nonconvex spaces, the constraint tangent plane is always a local approximation
to the underlying nonlinear constraint surface [14. 17, 18]. A key difference lies in
that sequential quadratic programming can produce infeasible iterates as it seeks to
solve the first-order necessary conditions, while trajectory interpolation uses either
small differential motions or correction steps to maintain a strictly feasible path.

Finally, some primal-dual interior point methods, in particular those used to
trace central paths of barrier functions in semidefinite programs, utilize predictor-
corrector pathfollowing methods [14, 103, 148, 156]. In those cases the central path is
parametrized in terms of a barrier function homotopy variable instead of a maneuver
chart vector a. However in both cases, the objective is to trace a strictly feasible

path through a nonlinearly-constrained space.

72

Chapter 3

Trajectory Interpolation Properties

The trajectory interpolation algorithms presented in Chapter 2 provide a simple
method to create continuously parametrized maneuver classes, starting from user-
selected feasible example trajectories. However, there are several questions to address
before the method's merits can be ascertained.

In particular, it is important to consider the consequence of dropping the opti-
mality condition from traditional parametric programming and moving into the more
general feasible space. The tangent plane projections that supplant the nonlinear
Karush-Kuhn-Tucker equations were chosen to provide an intuitively simple tool for
maintaining performance fidelity to the given example maneuvers. The first section
of this chapter investigates the cost behavior of parametrized families p(a) using
position-change maneuvers of a double-integrator system as an example. The lessons
learned in this case study will then be applied directly to motion design for a more
complex nonlinear system in Chapters 4 and 5.

The second section determines bounds on the expected number of computations
required to carry out trajectory interpolation. By analyzing the individual steps of
Algorithm 3 in detail, it is possible to determine the effect of problem size on the
number of elementary operations required to compute specific maneuvers within a
class. The results give insight into the complexity of the method and useful techniques
for applying it to on-line trajectory generation. Since the interpolation algorithms
are based on a numerical integration procedure with known initial conditions, it is
possible to obtain specific computation bounds, in contrast to nonlinear programming
algorithms where iteration solution procedures are highly dependent on initial guesses.

The third section briefly takes up the topic of continuity in the parametrized
family p(a). Since Algorithms 1 and 3 compute this family by integral methods,
intuitive but useful statements can be made about the nature of p(a) as a connected
path between two bounding examples tLi and v2.

Finally, the fourth section discusses the system and constraint types for which
the interpolation method is and is not applicable. The main requirement is differ-
entiability of the maps h(p, a) and g(p), which makes the method useful for a large
number of nonlinear models commonly used to describe autonomous vehicles and
robotic systems.

73

3.1 Optimality Gap

The integration-based methods of Section 2.3 made no explicit provision for the cost

performance of the parametrized family p(o). The projection approach considers only
the general feasible space. made up of equality and inequality constraints, and does
not include the necessary conditions or knowledge of the Lagrangian function L. As
such, there is no hard guarantee that the optimality gap, defined here as the differ-
ence between the cost performance of the feasible family p(o) and the corresponding
optimal family p*(a)., will be zero or even remain small. (Note that the term "opti-
mality gap" may have other meanings in different contexts [14, 148]). Fortunately,
as this section will show, using examples of certain minimum-time maneuvers, the
optimality gap approaches zero in some situations and can be directly controlled in
others. The ability to govern the time duration of maneuvers will be a consequence
of a trajectory parametrization p that explicitly includes the maneuver duration T.
Just as important. the extra degrees-of-freedom created by dropping the Lagrange
multipliers and their necessary conditions allow the user direct control over many
useful behaviors of p(o). In particular, for a vector p with n components subject
to i, equality constraints, one can include up to n - in additional constraints to in-
fluence the trajectory interpolation process. This ability will be crucial in Chapter
5, where a specific hybrid motion planner requires parametrized maneuver classes
to have linearly-varying boundary conditions. a property unlikely along a general
optimal maneuver manifold. As will be shown there, the optimal cost curve can
be investigated off-line, and a suitable linear boundary condition function chosen to
closely approximate optimality, allowing an intuitive trade-off between quick solution

time and maneuver cost performance.

3.1.1 Problem Definition

In the present setting. consider a unit-mass double-integrator system of the form

:(t) = u(t) (3.1)

undergoing rest-to-rest "reposition" maneuvers from the origin to a variable final
position a = xf. The maneuvers occur over a time interval t C [0, tf], with tf

depending on a. Dynamic equilibrium is enforced at the beginning and ending of the
trajectory, so that u(0) = u(tf) = 0. To keep the problem well-posed, bound the
control signal between Umax= u and um,= --- , where 7 is a positive number.

Although simple, this system is worth considering for several reasons. First, it
is possible to determine analytically the form of the optimal minimum maneuver
time t* as a function of a. In addition, one may determine the effect of -, giving

a combined optimal time relationship of the form t*(a, U). Second, even though the
equation of motion (3.1) is linear, the specific trajectory parametrization p will lead
to nonlinear equality and inequality constraints, making the maneuver interpolation
procedure nontrivial. Finally, autonomous vehicles operating under bounded control
often behave approximately as single or double integrators when regarded as mappings

74

between control inputs and the outermost kinematic states. Therefore. the lessons
learned in this section are directly applicable to more complex nonlinear systems.

Assuming a finite trajectory parametrization x(t: p), the minimum-time reposi-
tioning problem takes the following form when expressed as a general mathematical
program in continuous-time variables:

min tf

subject to:

x(0) 0

x(t5) -a = 0

,(0) 0

X(tf) = 0 (3.2)

u(0) 0

U(tf) = 0

-f - (t) < 0

u(t) - - < 0.

Here, the inclusion of a allows a variable final position; the equality constraints
enforce zero initial and final velocity; the u equality constraints enforce initial and
final equilibrium; and the inequalities maintain bounded control.

Previous work in the optimal control field shows that the minimizing trajectory
solution for Problem (3.2) follows a bang-bang strategy: applying a saturating control
to accelerate the system for the first half of the motion, and then decelerating to a rest
state using a saturating control of opposite magnitude [26, 51]. Given the existence
of such an optimal solution for a nominal final position fx, it is possible to infer the
form of the general optimal maneuver time as a function of a, that is, t* (a). Although
this relationship has been derived in other works, it is worth approaching here from
the general viewpoint of this thesis: that given one known solution of a trajectory
generation problem, it is possible to uncover other related solutions without having to
reoptimize from scratch. This is the same principle behind parametric programming,
where knowledge of a single optimal solution made possible an entire parametrized
optimal family, as well as behind trajectory interpolation in Chapter 2, where two
known solutions are enough to define a continuous feasible family.

3.1.2 Optimal Cost Functions

Seeking an optimal cost function t*(a), begin with a single optimal solution to Prob-
lem (3.2) for a = xf,. The "n" subscript denotes the "nominal" problem and let x",(t)
and u, (t) denote the optimal state and control solutions to this problem, respectively.
The minimizing time in the nominal case is denoted as t*>,.

The velocity of the optimal trajectory at any time s satisfying 0 < s < t*., follows

75

from the control as

?7 (s) = In (0) +J u) (7)d7 = Up ()d7 (3.3)

where 4 (0) = 0 and T is dummy variable of integration. The final (nominal) position
follows similarly as

X = (t*) = x,(0) + j i>(s)ds (3.4)

= un(r)drds
0 0

where x,(0) = 0.
Now consider the case of a reposition from the origin to a general final position

xf., expressed as a real, positive multiple k of the nominal final position:

x. = kxn. (3.5)

Now. without loss of generality, the optimal time t* to reach equilibrium at a general
.f depends on k and is related to t* in terms of a premultiplying function c(k) by

t* = c(k)t*, (3.6)

where c(k) > 1 if k > 1, and c(k) < 1 if k < 1. To reach the final position Xf subject
to the same control bounds, the strategy will be identical to the nominal bang-bang
case, but scaled in time by a factor dependent on c(k). That is, the control will still
saturate to accelerate, switch at the midpoint, and then reverse-saturate to decelerate,
so that the general control u(t) follows

v(l) = u,(t/c(k)) (3.7)

in accordance with Equation (3.6). This relation gives the boundary values u(0) =

Un(0) = 0 and u(t*) = u(t*/c(k)) = u,(t*>n) 0, corresponding to equilibrium at
the initial and final positions. For k > 1, the maneuver must take longer and there
is a time expansion; for k < 1, a time contraction occurs.

To determine c(k), use the control relation of Equation (3.7) to compute xf in
terms of xf,n. The velocity at a general time 0 < r < t* is given by

= ±(0) + j u(t)dt = J 71n(t/c)dt (3.8)

where i:(0) = 0, the k-dependence of c has been temporarily suppressed, and T = t/c

is a change of time variable. The final position follows accordingly:

xf = x(0) + J' f(Tr)dr = c u'(T)dsdr

76

t*lc s -

= c2 f/ J U(T)drds = c2 1./f - () S (3.9)
JO 0 0 .0

C2
-C 2Xfn

where x(0) = 0. s is the change of variable s = r/c, and Equation (3.4) allows the
final simplification to xf.,. Comparing to Equation (35), it follows that c(k) = k,
so that

t*= k-t* (3.10)

giving a square root profile. Using the symbol a for the variable final position gives
k = a/xfo, so that t* o a.

Following a similar line of analysis, it is possible to find the explicit dependence
of t* on the control bound 7 as well. Assume now that the control bound varies as
u = L-, where 7, is the bound for the nominal problem and K > 0 is a real, positive
scaling factor. For this derivation, assume that xf = xf,, (same final position), so
that if K > 1, there is less control authority available and t* > t*,. Conversely,
K < 1 allows greater control authority so that t* < t*,. As before, the optimal times
must obey a relationship of the form t* = d(K)t*,,, using d as a function symbol now
instead of c. A similar "same strategy" hypothesis indicates that the general control
signal relates to the nominal through

1
u(t) = -un(t/d(K)), (3.11)

K

where the premultiplying 1/K factor handles the varying control bounds and the
argument of u, gives the appropriate time scaling.

Proceeding similarly to the variable-final position case, the velocity at any time
0 < r < t* is given by

r = ±(0) + a(t)dt = f u,(t/d)dt (3.12)
M () f K 0

d rd

K 0

where ±(0) = 0 and - is the change of variable T = t/d. The position follows as

Xf x(t*) = x(0) + fz ±(r)dr

d I** r/d d2
= t- /un(T)drdr = -un(7)drds (3.13)
K JO K fJ 0

d2 Xfn
K

where x(0) = 0, s is the change of variable s = r/d, and Equation (3.4) again gives
the simplifying expression for Xfn. The underlying stipulation that Xf = Xf,,, implies

77

d 2/ = 1 so that d(K) =/ , giving

t* - Ft*, (3.14)

another square-root scaling coefficient. Combining this result with the above variable
final position results gives that, in general

t*0 (7- K. (3.15)

3.1.3 Trajectory Parametrization

Given these analytic results for the behavior of t*(a, K). it is now possible to parametrize

the motion of Equation (3.1). carry out the interpolation procedures of Section 2.3

and observe how the family p(a) behaves in terms of the maneuver time cost function.

Proceed by choosing a B-spline expansion of :r(t) following the examples of [30,
102. 113]. The simplicity of the double integrator system allows easy solution for

the control signal u in terms of x. Note that this signal parametrization will closely

match that of the three degree-of-freedom helicopter example in Chapter 4. although

the model inversion there will be far more complicated due to the highly nonlinear

system dynamics.

The spline parametrization relies on a normalized time variable T defined as

T = t/T. (3.16)

where T = t is the maneuver duration and will also be a free parameter, giving

tremendous freedom over the shape of the trajectories. Now express the normalized-

time position X(7) signal in terms of a B-spline expansion of the form

N

x(7) = Z Bi,k(7), (3.17)
i=1

where the spline order k is chosen as 6. The spline knot sequence is

S = {06, 0.1, 0.2,.. .. , 0.8, 0.9, 16}, (3.18)

where 06 and 16 denote knots of multiplicity six at 0 and 1, respectively, allowing

for nonzero initial and final positions and resulting in N = 15. See Appendix B

for a detailed discussion of B-spline constructions and their properties. References

[33, 34, 35] give a more comprehensive overview of B-spline methods.

Now choose the total trajectory parametrization p as the concatenation of the 15

spline coefficients ci and the maneuver time variable T to obtain

p p { ci}E, T , (3.19)

giving p E- R 16. Expressed in the normalized time variable -r. the equations of motion

78

are
X " () = u (7) (3 .2 0)

T
with the prime notation indicating differentiation with respect to T. Spline derivatives
can be taken using Equation (B.10), although many software packages contain tools
to automate the differentiation process [3-].

Now it is necessary to cast the general optimization problem of Program (3.2) in
the form

min f (p)
P

subject to h(' V) - 0 (3.21)
g(p) < 0.

consistent with the methods of Chapter 2. The constraint functions h and g define the
parametrized feasible maneuver space (with "parameter" now referring to the variable
final position a = xf). Because the p vector contains the maneuver duration T as
one of its elements. the minimum time objective function is simply f(p) = T = eT
where e16 is the 16-element vector of 15 zeros followed by a 1.

The equality constraints in Program (3.2) dictate the initial and final positions,
velocities, and accelerations. Therefore h(p, a) takes the form

x(0)
x(1) - a

h(pa)= T , = 0, (3.22)I x(1)

7x"(0)
.#x"(1)_

where X = x(T;p) is given by Equations (3.17) and (3.19).
The inequalities in Program (3.2) apply for all time t - [0, T], making them

infinite-dimensional constraints impossible to express as a finite system g(p) < 0.
Therefore, take a finite mesh sampling {0, rk, 2 T7 1} of the unit time interval to
obtain

-H - zx"(0)

-H X"(k)

-= -2 _ <1 0. (3.23)
Lx (0) - H

TX"(TX) - a

where the control is cast explicitly in terms of the parametrized position signal x
according to u(T) = (1/T 2)X"(7). Choice of a suitable time mesh interval Tk is
problem dependent, often influenced by the system dynamics and the number of

79

spline coefficients. For this study, Tk 1/20 is a satisfactory mesh.

3.1.4 Specific Cases

With the repositioning maneuver problem definition, optinal cost relationships, and
trajectory parametrization in hand, it is possible to illustrate the interpolation method
in practice with a (dimensionless) numerical example and observe how it performs.
Consider the case of control bound v = 10 and the class of "one-sided" reposition
maneuvers where a > 0. Specifically, design off-line two example trajectories, one
suboptimal for a = 5 and the other optimal for a 35. The suboptimal trajectory
is obtained by solving an optimization problem for 77 9, thus making it slower than
the corresponding motion for 77 10.

Figures 3-1 and 3-2 show the resulting cost performance and control profiles for
the family of reposition maneuvers, created through application of Algorithm 3. Note
that beginning with a suboptimal value at a = 5. the parametrized family with
cost tf(a) integrates toward the known optimal solution at A = 35. first using only

equality boundary constraints (Equation (3.22)), and then, around a = 8, encounters
the control bound inequality constraints (Equation (3.23)) and adds them to the
active set. From this point on, the parameterized maneuver family rides along the
optimal cost square root profile on the way to the goal trajectory, spanning a family
of fully saturated bang-bang profiles. In this case, the feasible maneuver projection
(lines 1 through 4 of Algorithm 3) directs the integral solution towards, and then
into, the control constraints, making the parametrized family p(o) an optimal family
over a large portion of the solution arc, despite nonenforcement of the Karush-Kuhn-
Tucker (KKT) optimalitv conditions. The example trajectories are close enough
to the performance limit that the projection operation (occurring in the space of
t =paT]T) encounters the nonconvex optiniality curve.

Note, that continually testing for and then introducing the inequality constraints
to the active set does not come without some cost. As is clear in Algorithm 3 and
will be quantified in Section 3.2, the introduction of active inequality constraints adds
dimensionality to the tangent plane computation. However, this additional load is
still less than that required for full nonlinear parametric programming, which tracks
a vector (including Lagrange multipliers) essentially double the size of p. Fortunately,
as shown in Figures 3-1 and 3-2, the additional computation may come at the benefit
of producing high-quality, that is, low cost maneuvers.

However, if in a given situation it is preferable to either avoid testing for inequal-
ities or to apply more direct control on the behavior of p(a), it is possible to impose
suitable user-selected equality constraints. Beginning with the same example trajec-
tory at a = 5, but instead using a suboptimal example at a = 35 (again obtained by
solving a nonlinear program with a = 35 and la = 9), one can add a maneuver time
constraint of the form T(a) = f(a) for some feasible, differentiable f function. Note
that such user-added constraints are possible since there are n - m = 16-6 = 10 extra
degrees-of-freedom available after relaxing the KKT optimality conditions. Figures

3-3 and 3-4 show the result when choosing f (a) = k* (10/9) -a where k* is a con-

80

stant such that t* (a) = k*a. The continuous maneuver family interpolates without
encountering the optimal performance bound and thus never saturates the controls.
improving the algorithm speed (see Inequality (3.27) below). As will be shown in
Chapter 5. this ability to directly prescribe T(a) constraints is essential to creat-
ing maneuver classes amenable to planning with mixed integer-linear programming.
In cases of other motion planners with different maneuver cost and shape require-
ments. the appropriate user-constraints can be added to h(p, a) =0 providing exact
compatibility between path planning and trajectory generation.

Note that one should not be under the impression that every interpolated ma-
neuver is similar to that in Figures 3-1 and 3-2, always encountering the feasibility
bounds and discovering a large family of optimal maneuvers for 'free". Consider
the same maneuver type, but now in a "two-sided" form, where a may be either
negative or positive. Begin with suboptimal example maneuvers for a = -30 and
a = 30. Give these maneuvers the same time duration and interpolate between them
as shown in Figures 3-5 and 3-6. The difference vector u(s) = V2- v(s) has a zero
in the maneuver time component that the projection operation will not perturb. As
such, the interpolation modifies the geometric shape of the trajectory and control sig-
nal, but never improving its performance. In fact, as seen in Figure 3-6, the control
loses the bang-bang strategy, so that the given examples, even though suboptimal,
did not endow the maneuver class with any useful attributes.

However, exploiting the already demonstrated extra degrees-of-freedom, the user
can add a differentiable constraint of the form T(a) =(a) as shown in Figure 3-7
to take advantage of the available control authority for this class of maneuvers. (The
selected f(o,) was of the form c1 - c2/(c 3a2 + 1) in this example, with each ci a positive
real number). Figure 3-8 shows the effect on the control strategy, where u(r), and
thus u(t), take a more intuitively beneficial approach to driving the system, achieving
improved performance over a much wider range of the parametrized family.

Based on these examples, there are several useful practices to adopt when dealing
with general trajectories of nonlinear systems, where it is impossible to exhaustively
investigate interpolation performance. For example, in those situations where it is
important to obtain low cost maneuvers in real-time, an effective strategy is to explore
the optimal cost boundaries off-line with batch nonlinear programming, while compu-
tational resources are abundant. From this effort, it is possible to then select example
trajectories that lead to on-line interpolation paths at or near the performance limit.
In cases where on-line resources are at a premium, for example on expendable vehicles
or when emergency maneuvers are required, extra constraints similar to T(a) f(a)
can be introduced to avoid inequality boundaries and speed up computation.

For cases where pilot motion capture gives example trajectories, and there is no
external objective function, interpolation pursues a feasible trajectory path through
the flight envelope, encountering and dealing with inequalities as necessary.

81

4.5-

4-- feasible trajectory space

3.5- optimal ending
trajectory at x, = 35

3- Locus parametrized by control upper
bound = 1 0!'; ,I

2.5 T

suboptimal starting interpolation

2 trajectory at x - direction

infeasible trajectory space
1.5 -

Locus of optimal times for -10 : u(t) 10
(12

1 /t;(xf) f 1(a) a(2

0.5
0 5 10 15 o o = a 25 30 35 40

Figure 3-1: Cost performance of parametrized reposition maneuvers. Beginning with
a suboptimal maneuver at a = 5, the trajectory interpolation scheme integrates
toward the known optimal maneuver at a 35, encountering the control bounds
around a = 8.

Umax =10 upper bound

15

interpolation direction
upper bound encountered

10

5

0 0

-5-

control strategy ls a
-10 - continuous bang-bang profile

lower bound encountered

- 5 3 -10 lower 09und.-.6 0.8

10 10.6.
25 0

final position x = a normalized timer

Figure 3-2: Interpolated control signals corresponding to Figure 3-1. Horizontal axes
are normalized time T and final position a (increasing right-to-left). The control
signals encounter, and then ride along the upper and lower bounds.

82

I I I I I I I

0 1 1 1

suboptimal ending
4.5 - - trajectory at x 35

feasible trajectory space
4-

3.5-
ot cus parametrized by control upper

3-bound =10/K, x I 1
3-

2.5 - ---
snterpolation path with T(x) = T(a)

trajectry sta ing constrained to a follow a fixed optimality gap
2 -

infeasible trajectory space

Locus of optimal times for -10 u(t) 10

0.5'
0 5 10 15 fia 25 30 35 40final pos1Iton xf a

Figure 3-3: Cost performance when maneuver time is constrained to follow a subopti-
mal curve. The extra degrees-of-freedom created by dropping the Lagrange multipliers
allow the user to add constraints affecting the shape of p(a). Here, a path constraint

T(a) = 10/9 -t(a) is added to avoid evaluating inequality constraints.

- u =10 upperbund

10 interpolation direction -

8 -
Prescribed T(xf) = T(a) profile

6 -- prevents Interpolation
41 fil/ from hitting inequality bounds

C 2-

0-

-2 I

-6

control strategy is a..
-8 continuo na n prof1.e

-10 --

35u -10 lower bound. 0.8
30 25 2 mi0.

15 0.4
15 10 0.2

final position x = C 5 0 normalized time r

Figure 3-4: Interpolated control signals corresponding to Figure 3-3. The control
signals maintain the bang-bang strategy of the bounding examples while staying away
from the saturation bounds.

83

suboptimal trajectory interpolation

feasible trajectory space

- a

infeasible trajectory space

-30 -20 -10 .0
final position x~ = (X

ending
ending.
tra'ectory

7

/

Locus of optimal times for -10 5 u(t) :

tt(xl) = t;(a) |a|1/
2
)

infeasible trajectory space

10 20 30 40

Figure 3-5: Cost performance of interpolated trajectories for a 2-sided reposition
maneuver. The example trajectories have the same time duration tf, so therefore all
the intermediate motions do as well. The maneuver cost curve T(a) clearly does not
exploit the large potential for improved performance.

final trajectory z: 0 to 30

0

initial trajectory z: 0 to -30
-5- rversa votro proMWe

-10>
40

20
- 0.8

0 0.6
-20 0.4

0.2
final position x, = X -40 0 normalized time r

Figure 3-6: Interpolated control signals corresponding to Figure 3-5. The control
profile becomes nonaggressive over much of the maneuver family, first losing and
then reobtaining the bang-bang strategy of the known examples.

84

starting
trajectory

- /4

3.5 F

3

2.5 F

2

1.5 F

0.5 F-

-40

10

1

1

-30 -20 -10 0
final position x = a

4

10 20 30 40

Figure 3-7: Cost performance of interpolated trajectories for a 2-sided reposition
maneuver when the trajectory time is constrained to follow a user-selected T(a)
curve. The specific curve is chosen to take advantage of available control authority
for intermediate maneuvers.

final trajectory z: 0 to 30

15-

10-

5-

-10-

20 0.8
0.6

0 0.4
-20 0.2

final position xf = a -40 0 normalized time r

Figure 3-8: Interpolated control signals corresponding to Figure 3-7. The selection
of a function T(a), made possible by available degrees-of-freedom, leads to more
aggressive performance over the entire maneuver family without having to resort to
full nonlinear parametric programming.

85

4.5

starting endin
trajectory trajec

N -7- -

feasible trajectory space

-/

suboptimal trajectory
interpolation with

\\ T(a) user-constrained //

Locus of optimal timc

- t1 (x1) = t (a) = (1|

infeasible trajectory space infeasible traject

I --

3.5

3

2.5

2

1.5

-4
-4

endin

es for -10 u(t) 10

ory space

r

0

1

0.5

3.2 Computation Bounds

The maneuver interpolation algorithms of Section 2.3 present a simple alternative for
on-line trajectory generation. Using known feasible motions as guides, all computa-
tion invested in the integral methods of Algorithms 1 and 3 goes towards producing
members of a feasible maneuver class p(o). This feature is in contrast to nonlin-
ear programming, where much effort can be spent searching before a single feasible
solution is found.

This section determines bounds on the expected computational load when gener-
ating maneuvers according to the interpolation scheme. Here, computation is defined
in terms of the number of elementary operations. that is, multiplications and ad-
ditions. These bounds are useful in assessing the overall complexity of trajectory
interpolation and for determining efficient ways to implement it on-line. The present
analysis method is to pose the interpolation process of Algorithm 3 as a numerical
integration problem. where the majority of the work goes into computing Li derivative
vectors. A lower bound on the derivative calculation occurs when there are no ac-
tive inequalities, and the tangent plane involves only equality constraints, giving the
maneuver the maximum possible number of degrees-of-freedom. The algorithm com-
putation obtains the upper bound when the maximum allowable active set dimension
(given by the number of components in p minus the number of components in h(p, a)
[14, 92]) occurs throughout the entire interpolation process. Note for comparison,
that a full parametric programming effort would essentially double the dimensional-
ity of the present path-following algorithm, since Lagrange multipliers for all equality
and active inequality constraints must be traced as well.

The computational bounds serve as guidelines based on the problem dimension-
ality. Many specific options, such as the choice of numerical integration method and
algorithms for null space and projection operations, depend on the platform and
available software. Further, it is difficult to quantify the effort in computing both
the constraint values and first derivatives for a general trajectory parametrization
p. Therefore. make the assumption that the calculation of a given component, say
hi (p, a) or gj (p), requires effort on the order of the argument size, that is, the number
of components in p and/or a. If better estimates for these calculations are available,
then they can be inserted into the appropriate places below.

Define the following nomenclature for the dimensions of quantities in Algorithm
3:

C = number of elementary operations during interpolation

N, = number of integration steps to reach goal maneuver

Np =number of trajectory parameters

V, =number of maneuver coordinates/parameters

NI = total number of interpolation variables =N + N, (3.24)

NA = number of equality constraint components

N9g number of inequality constraint components

86

Nq = niumber of currently active inequality constraints

. = derivative update interval, in number of integration steps.

For a well-posed problem it must hold that N < N. while the inequality constraints
obey 0 N90 < Np - N. as noted above.

The variable N, gives the number of integration steps required to reach the goal
trajectory from the given examples. making it a coarse measure of how far o',es is

from either a, or a 2 . Naturally. one should proceed from whichever a endpoint is
-closer" to agoal.

The computation estimates here are based on a fourth-order Runge-Kutta integra-
tion method with fixed step size As, chosen for this analysis because of its generality
and widespread use. In practice, the specific integration algorithm used is software
and platform dependent. Improvements can be made by using variable-step size inte-
gration methods, accelerating the interpolation process and implicitly retaining some
of the benefits of predictor-corrector methods. In addition, the quantity AJ is in-
cluded in the calculations, highlighting the possibility of only updating the derivative
information periodically. Other schemes such as periodic Broyden derivative updates
are possibilities for reducing computational overhead as well [17].

In Algorithm 3, the numerical integration applies to an equation of the form
dv/ds = i(s, v). The basic Runge-Kutta step [158] is an iterative process following

Vk+1 = V± -6 (qi + 2q 2 + 2q 3 + q4), (3.25)
6

where each qj is an evaluation of ii(s, v). Specifically,

qi = l (sk, Vk)

q2= jsi + A vk + q1 (3.26)2 2

= + (s Vk -q2

q4 = i(sk+1, vk + q3) .

Based on Equation (3.25), it will take C = N, ((yL) N + 8Nv) elementary operations
to reach the goal maneuver. Here, N denotes the computation load in computing
the qj quantities, which follow directly from Algorithm 3. The remaining 8NA com-
putations come from the basic algebra of Equation (3.25).

To obtain the desired bounds, it is required to evaluate N for two cases: equality
constraints only (lower bound) and equality plus maximum inequality constraints
(upper bound). Proceeding through each line of Algorithm 3 gives the following
subcalculations.

* Line 1 is simple difference, taking N operations.

" Line 2 differentiates the equality constraints h with respect to v. As mentioned
above, assume the evaluation of a single equality constraint takes of order N com-
putations so that evaluating the entire h vector takes k1 N1, NA operations, with ki a

87

positive number. If the derivative matrix Doh is calculated numerically by a simple
forward difference method, it will require N,,+1 evaluations of h (one nominal case and

N perturbations) followed by N, differencings of h and its perturbations, each time

dividing by a small number. The procedure totals to kihNT,, + Ni,(kiNAN + 2N,)

operations. If the differentiation is performed analytically (by evaluating a derived

expression) and assuming that the vector &h/Oak with k E {0,. . ., N,} takes the same

effort as evaluating h, the required computation for D1,h is kNAN7 .

9 Line 3 computes the null space of the matrix D1,h (tangent hyperplane to equal-

ity constraint surface). The singular value decomposition D,h UZ 'is an effective

method for doing so, with the last (at least) N, - N, columns forming an orthonor-

mnal basis set Z for Null(D,,h). There are many algorithms to compute the SVD or

(reduced SVD). However most require k2 Na + k3 N elementary operations, where

k2 and k3 are positive integers between 1 and 20 [60].
e Line 4 projects a vector iu E R Tr onto the range space of a matrix Z, which is

generally a member of R^ -^* Assuming a standard 2-norm least-squares error

projection, the computational load is k4 N-4A,(- NA1) + k5 (, - N 1)3, where k 4 and

k5 are positive numbers between 1 and 15, depending on the particular elimination

algorithm used [60].
" Line 5 is a simple scaling, requiring N comiputations.

" Line 6 checks the values of all inequality constraints, and is assumed to take

Npg + NV operations (evaluation of N9 constraints, each dependent on N' elements

of p, followed by a sign check for all components of g).
* Line 10 computes the derivatives of up to N, - NA,, additional inequality con-

straints. Following the discussion of Line 2 above, this will take k (N - N,1)N, +

N,(kV(N, - NA)N,- + 2(-, - NA)) operations, where k6 is a positive number analogous

to ki in the discussion of line 2. (Note that there are only NI - N, components to

evaluate and only N, nontrivial derivatives to compute, the last N columns of the

Dogj being identically zero.) This derivative matrix is then multiplied by a vector

of dimension N, and compared to zero, requiring 2(Nv - N , + (N\ - N,) more

operations.

* Line 14 follows similarly to Line 3, giving k2NpN2 + kN operations, the max-

imum possible number of rows for [Doh; Dgj,] being NA.

* Line 15 follows similarly to Line 4, giving k4 N,,N, + k5N3 operations, the min-

imum dimension of the null space being NJ - NA = N.
* Line 16 is a simple scaling, taking N computations.

Given these subresults and Equation (3.25), it is now possible to sum the number

of operations for each step and obtain the desired bounds. The lower bound for the

equality constrained case uses lines 1 through 6. The full equality and inequality

upper bound uses all of lines 1 through 16. The result is as follows:

Clb < C < Cub (3.27)

where

Cib = N 4Nl+8) (3.28)

88

Cub =AN 8 4Auwb + 8N)

and

NA.Ll = 2AN, + Ng+ NN g+ (2 + k1)N AN + (k1 + k 2)NN

+ k3A + k4 N(NY - Nh) + k5 (A - N7\)'
N\,ub -- Notlb + ATN, + (NV - N) + 2(A N - N h)Nv + k 4 N A N (3.29)

+k 2 N/Np + (2 + k6) (N, - Nh)Np + k6 (N - Nh)AN2

+k3i+ k5!N .

Based on this result, it is worth noting that the interpolation algorithm load is
a polynomial function of the problem size variables. An efficient implementation for
on-line use would involve first precomputing the parametrized family p(a) off-line
and saving a number of interpolated solution points, instead of just the bounding
examples v, and v2 . The storage load would be small since p is typically of vector
of fewer than 100 numbers for an autonomous vehicle. Then on-line, the trajectory
generation would proceeded as in Algorithm 3, but with interpolation occurring over
a much shorter interval, reducing the multiplying factor N, in Equations (3.28). As
stated before, another large savings comes from choosing 31 as large as possible
without degrading fidelity to the nonlinear model.

3.3 Continuity

The parametrized family p(a) that results from Algorithms 1 and 3 comes from an
integrated feasible path of the form v(s). Typically, proper scaling sets s equal to a
(line 5 of Algorithm 1, lines 5 and 16 of Algorithm 3) so that p(s) = p(a) identically.
Assume here that a is scalar without loss of generality, since a differentiable mapping
y: R -+ RN may be chosen as a = -y(a) with a E R, as noted in Section 2.3.6.

The integrated vector v takes the form

v(s) = S) -[P] + s d (a') du' (3.30)
cc(S) I Ia 1 0 ds

where o' is a dummy variable of integration and s may be interpreted as da, making
it possible to integrate exactly to a desired maneuver p(agoai).

As the output of an integral function, v(s) is a continuous function [1281. even
though the derivative dv/ds may not be continuous throughout [0, s]. In particular,
any time the active set changes, it is likely that the local tangent vector makes a
sudden jump, as seen in Figure 2-2 for a linear programming polytope. Assuming
that dv/ds is smooth between active set switching points (which holds when h(p, a)
and g(p) are continuously differentiable in their arguments), then a finite number of
active set changes is sufficient [104] to guarantee that v(s) in Equation (3.30) exits
on the interval [0, s].

89

Assuming that the feasible maneuver space is "well-posed" in that 'c(s) will ac-
tually reach 'V2 without getting stuck in any local entrapments (a condition that is
extremely hard to guarantee for arbitrary systems and maneuvers but seems to hold
in practice when the projection inner product f'u stays well away from 0), then all

components vi(s) are continuous functions with boundary values vij and 'Ci, 2 . From

the intermediate value theorem, each tci must therefore assume all values between vj 1

and 'i 2 [128]. If the system behavior z(t;p) is a continuous function of p. then the

state and input functions will vary continuously with the integration variable s.

Lastly. any continuous functions f(p) and f(a) will vary continuously with s as

well. This includes most standard cost functions, such as maneuver duration. control

energy, and fuel consumption. Therefore, if the example maneuvers vi and v2 were

generated off-line according to nonlinear optimization of the f and/or f functions,
then the on-line interpolation must assume cost values intermediate to the two ex-

amples. What is not guaranteed however, is that f and .f will vary monotonically,

assuming no values outside the range of the examples. If monotonic behavior is re-

quired, then the parametrized functions f(p(o)) and f(a) must be checked and the

example trajectories modified until the desired behavior is observed.

3.4 Applicable Systems

The trajectory interpolation method introduced in Chapter 2 applies to nonlinear

systems whose trajectory feasible space can be expressed by the relations

h(po) = 0 (3.31)
g(p) < 0.

The nonlinear equations of motion i = f(x. u) must be either implicitly or explicitly

included in Equations (3.31). Recall from Section 2.3.3 that the he(p) partition of

h(p. o) = 0 often serves as a finite-dimensional approximation of i = f((x, u).

The essential requirements for interpolation algorithm applicability to a system

are that there exist a parameter vector p such that z(t; p) is differentiable with respect

to p and that the functions h(p, a) and g(p) are continuously differentiable in their

arguments.

The methods of this thesis will not apply to systems that do not have smooth

signal parametrizations z(t; p) or that do not have differentiable maps h and g. Many

system models contain nondifferentiable terms, look-up tables, discrete mode switch-

ing, or gain scheduling and will not fit the method requirements without some sort

of approximation or revision.

Of those systems that are amenable to the methods of Chapter 2, there are sev-

eral special model classes worth mentioning, especially since they are commonly for

autonomous vehicles. Of particular interest are cases where the vector p describes

the output or trajectory-space signals of a vehicle, with model inversion used to

obtain intermediate states and control inputs. For invertible and near-invertible sys-

tems, it is preferable to have greatest possible control over the output space behavior.

90

Parametrization of input signals only, while mathematically possible. require forward
integrations (shooting methods) to obtain the state x and any outputs y, a numer-
ically costly process that does not lend itself to rapid constraint differentiation and
maneuver interpolation [16].

Differentially flat system models are an emerging method for vehicle trajectory

design [48, 102, 106, 113, 149]. They allow for parametrization of output signals
and algebraic solution for inputs signals, making them almost ideal for trajectory

interpolation. A key requirement is that the number of so-called flat outputs equals

the number of system inputs, where the output depends on the state, the input, and

ni input derivatives according to

y = y(x, . . . , (n). (3.32)

For some systems, it can be difficult to actually determine the flat outputs even if

they can be proven mathematically to exist. For those systems where y can be found,
solution for the state and input involves algebraic operations on the output and its

first n 2 time derivatives:

x fx(y, y. y(nl2)) (3.33)

a = f 1 (y4y. .. y")

To design parametrized trajectories for such systems, one would pick p as a suffi-

ciently smooth parametrization of y so that y = y(t; p), making x and u differentiable

functions of p as seen in Equations (3.33). In this case, there is no need for the he(p)

partition of h(p, a) = 0, since the system model is explicit in the system inversion

functions fx and ft.
It can be shown that flat systems include the class of full-state feedback linearizable

systems [79, 106, 138, 150]. another plant model amenable to trajectory interpolation.

For these systems there exists a (diffeomorphic) change of variables (T(x) and a

nonlinear state feedback relation of the form

U = a(x) + 3(x)v (3.34)

such that the state-transformed system is a controllable, linear system:

S= + Bv. (3.35)

(The a appearing in Equation (3.34) should not be confused with the maneuver

parametrization vector appearing throughout this thesis). In this setting, a clear

trajectory parametrization is = ((t; p), since the transformed input can be put in

the form v(p) directly from Equation (3.35) and the state put in the form x(p) using

the inverse mapping x(p) = T-4((p). Finally a differentiable u(p) is then available

from Equation (3.34). Again there is no need for a h,(p) partition since the system

equations of motion directly influence the choice of T, a, and 3.

In many situations, it is hard to find flat or linearizable outputs such that x and

u are readily available through simple algebraic operations. Inversion of the system

91

model may involve nonlinear terms that are impossible to invert or would require
numerical, rather than analytic, solution. In such cases. it may still be possible
to find a workable signal parametrization that requires a nonholonomic constraint
relation [31, 102]. Specifically, there may be a vector of (non-flat) outputs where the
inputs and states can be found according to Equations (3.33) but also requiring an
equality constraint of the form

71(y, ,. . . y("l3) = 0, (3.36)

involving y and n3 of its time derivatives. This situation arises when y contains more
components than the number of system inputs, so a differential constraint of the form
of Equation (3.36) is required to enable the "extra" degrees-of-freedom in y. Here.,
choose a parametrization y = y(t.p) and now some h,(p) enforces Equation (3.36)
along a discrete time mesh of the motion interval. Chapter 4 presents a detailed
example of this type of system model.

Finally, for systems where it is impossible to find a useful output., it may make
sense to use transcription (collocation) methods. which parametrize both the system
state and input [16]. That is, the state and input are individually cast as x = x(t; PX)
and u u(t; p,), and vector p contains two partitions:

p = . (3.37)

Again, since p appears to take more degrees-of-freedom than the system equations
of motion will allow, it is necessary to impose discrete constraints of the form ck -
X(tk+1) - x(tk) -- Atf (Xk, Uk) = 0, based on a forward-Euler approximation to ± =

f (x, u) with time step At. A collected mesh of these so-called "defect" constraints
then makes up the components of h,(p). If desired, higher-order approximations to
the sampled equations of motion may be used.

92

Chapter 4

Application to a Three

Degree-of-Freedom Helicopter

The preceding chapters laid out the motivation, derivation, and properties of a practi-
cal trajectory interpolation method and the resulting parametrized maneuver classes.
It is now worthwhile to study the framework in practice on a nontrivial experimental
rotorcraft. The three degree-of-freedom helicopter from Quanser Consulting [122]
provides an easy-to-work-with dual-rotor helicopter platform amenable to system
identification, piloted-flight motion capture, control design, and maneuver execution.
Appendix A gives a detailed description of the helicopter's operating principles, the
coordinate frame and state vector used for analysis, and the procedure employed to
select and numerically identify descriptive linear and nonlinear models. The result-
ing nonlinear equations of motion, coupled with a specific trajectory parametrization
vector p to be introduced presently, form the foundation for creating continuous he-
licopter maneuver classes.

This chapter opens by briefly discussing the nonlinear system model and the at-
tributes of the Quanser vehicle as a research platform. The next section then dis-
cusses the technical details of trajectory parametrization, input signal calculation
from model inversion, and selection of equality and inequality constraints. With the
vector p and constraint functions h(p) and g(p) in place, one can then select in-
teresting maneuver coordinate parameters a and find example trajectories through
off-line nonlinear programming or piloted-flight motion capture. The chapter then
discusses an intuitive feedforward control tracking design., making it possible to exe-
cute interpolated maneuvers on the vehicle, and finally concludes with four example
parameterized trajectory classes. These maneuvers, a flaring quick-stop. a climbing
maneuver, a dash-acceleration, and a hover-to-hover reposition motion, employ all the
previously presented tools to compactly describe motions useful for typical rotorcraft
operations. The following chapter then illustrates the integration of parametrized
maneuvers into an existing hybrid motion planning framework. creating an extremely
flexible vehicle guidance capability.

93

travel, velocity axes

elevation arm

counterweight

elevation axis

+Z=-

twin rotors

z=0 (le%

tabletop

pitch axis

+0

helicopter body

el)

0
+XV (CW from above)

Figure 4-1: The three degree-of-freedom helicopter from Quanser Consulting. The
instantaneous vehicle configuration is given by the travel angle x, pitch angle 0, and
elevation angle z (downward), alternatively y (upward).

4.1 Vehicle Description

The rotorcraft considered in this chapter is the three degree-of-freedom (3-DOF)
tabletop-mounted helicopter from Quanser Consulting (see Figure 4-1). Instead of
the full six primary degrees-of-freedom seen in full-scale airborne helicopters (3 trans-
lational, 3 rotational), the Quanser experimental platform has three angular degrees-
of-freedom based on the hinged motions of an essentially rigid arm and a main motor
platform. As seen in the figure and discussed in-depth in Appendix A, the admissible
motions are elevation (denoted by angular position z, measured positive downwards
from horizontal), travel (denoted by angular position x or velocity v, measured pos-
itive counterclockwise from an arbitrary zero point when viewed from above), and
pitch (denoted by angle 0, measured positive clockwise from horizontal when viewed
radially inward). These three degrees-of-freedom emulate the two translational DOFs
and one rotational DOF present in full-scale helicopter longitudinal motion, with the
elevation variable z acting as an altitude.

Similar to standard rotorcraft, collective and cyclic input channels drive the
Quanser system, with the collective signal providing a common voltage Vcol to two
DC motors, each driving a fixed-blade pitch rotor. This input governs the net thrust
produced by the twin rotors, tending to raise the vehicle when 0 is close to zero
or accelerate the system in the travel direction when 0 has larger magnitude. The
cyclic input channel provides a differential voltage VIyc to the two motors, changing

94

the relative thrust of the two rotors and thus tending to rotate, or pitch, the vehi-
cle. Similar to full-scale rotorcraft, the cyclic is particularly useful for reorienting
the thrust vector and changing the horizontal acceleration component. See Appendix

A for an in-depth discussion of the system operating principles as well as physical

modeling and experimental identification of the input channels and vehicle dynamics.

As seen in Appendix A, and Equation (A.19) in particular, the system nonlinear

equations of motion are as follows:

x - V

i> = -a1v - a2 elusin(O-Oa) (4.1)

0 -b 10 - b2 sin(0) + bo + b3v v| + b4I'/ 0 IV'e'Ye
z -d 1j: + d2cos(z) - d3sin(z) - d5v

2
- d4 ilcos(0),

where x, v, z, and 0 are defined as above and are measured in angular units. The
input signals V'coll and Vcyc are voltages and the remaining aj, bi, and di quantities are
constant coefficients, with numerical values given in Table A.2.

Note that the structure of Equation (4.1) contains many similarities to standard
rotorcraft vehicle models [54, 58, 88, 99]. There are numerous trigonometric terms
to account for thrust vector tilting, kinematic effects, and a nonlinear pendulum
restoring force on the pitch angle. In addition, there are linear damping terms on
travel rate, elevation, and pitch, as well as a nonlinear vjvj term that governs the
speed-dependent effects of vehicle travel on pitch dynamics (see Section A.3.4). This
latter term has the same mathematical form as many common nonlinear translational
damping terms in helicopter and fixed-wing aircraft models [58]. Finally, as seen in
line 2 of Equation (4.1), one input term appears as a product with a function of the
vehicle state, a nonlinearity often occurring in helicopter rotor dynamic models [99].

However, there are also several complicating terms and effects not seen in full-scale
rotorcraft models. First, as seen in the second and fourth lines of Equations (4.1), the
collective voltage enters as a quadratic expression instead of the usual linear term,
due to the steady-state relationship between rotor angular speed and the resulting
thrust magnitude. In addition, the collective and cyclic appear as a product in the
third line, a fairly rare occurrence in rotorcraft literature and certainly a complicating
factor in this case, as it will necessitate working with V)11 directly instead of Vl,
thus requiring a square root during model inversion. Finally, because of the nonlinear
pendulum action associated with the three degree-of-freedom helicopter, the vertical
altitude dynamics (fourth line) are highly elevation-dependent, meaning that the
static thrust inputs to maintain a hover state depend explicitly on z, adding a further
complication. Note that such elevation, or altitude, dependence can appear when
considering air density variations for rotorcraft and fixed-wing aircraft flight over
large altitude ranges [13, 88].

The above commonalities and differences with full 6-DOF helicopters make the
vehicle of Figure 4-1 worthy of study from a maneuver interpolation viewpoint. The
model nonlinearities will help validate the thesis methods and demonstrate that ex-
tension to existing aerobatic vehicle testbeds should be straightforward, especially

95

as many agile maneuvers of interest take place in only two spatial dimensions. In
addition, given the availability of reliable control systems, it is sometimes possi-
ble to employ further simplified special-purpose representations of vehicle dynamics

[54, 55. 57, 1141.

4.2 Trajectory Design

This section develops a finite trajectory parametrization p for the helicopter system
of Figure 4-1. The emphasis is on finding a compact representation that will allow
easy interpolation of the output-space behavior while enabling analytic solution for
dynamically consistent input voltages. Fortunately. references [101] and [102] provide
an effective B-spline-based design example useful for flat and near-flat vehicle models.
The task then becomes one of tailoring these existing methods for the helicopter under
current consideration, determining means to guarantee dynamic feasibility and model
invertibility, and finding appropriate constraint functions to allow parametrization of
interesting maneuvers. Together, these efforts cast the helicopter system into the
finite-dimensional optimization framework of Section 2.1.1.

4.2.1 Signal Parametrization

In Equation (2.1), a behavior signal z(t) gives a continuous-time description of the
overall system trajectory and is a function of the state and/or input vectors. In the
present context, use the bold symbol z to denote the system behavior to avoid confu-
sion with the elevation state z in Equation (4.1). A suitable behavior choice for the
helicopter is z = [v, z, O]T, meaning that z directly gives the values of all three DOFs.
Experimentation with smaller dimension behaviors, such as z =[', z]T or z = [z, /]T
generally lead to difficulties with model inversion or required awkward forward inte-
grations to determine travel behavior, thus nullifying the benefits of working directly
in the output space.

Given a choice of z(t), the task is then to find a finite parametrization vector p and
thus z (t; p), making each output signal an explicit function of time, given a particular
value of p:

v(t) = v(t;p)

z(t) = z(t~p) (4.2)

a(t) O(t;p).,

where t C [0, T] and the scalar T is the (finite) time duration of a trajectory. As
demonstrated in references [101] and [102], it is extremely convenient to work with a
unit time scale, so that the T may be extracted and used as a free variable. To this
end, define the normalized time variable T as

T = -, (4.3)
T

96

where T E [0, 1] throughout a maneuver. Given the unit time scale. define each of the
behavior components as a B-spline function of T E [0,1] according to

v(T) = ca VBi (T. i i + k)

z(T) = (CTB r, j(: j+ k) (4.4)
j=1

0(7) = cl,oBi,k (7, :1 1+ k)
l=1

See Appendix B for a discussion of B-spline construction., terminology, and properties.
For the current work, each spline basis in Equation (4.4) is distributed on the same
uniform knot sequence:

SV = S2 = So {06, 1/10, 2/10, . . . , 9/10, 161, (4.5)

where the exponent 6 at 0 and 1 denote endpoint knots of multiplicity 6, thus allowing
discontinuities from zero (i.e. nontrivial trim conditions) at the beginning and end
of any maneuver. In addition, assign each spline in Equation (4.4) order k = 6,
meaning that each basis function B.,k is actually a continuous polynomial of order 5.
These selections of knot sequence and order are sufficiently rich to describe interesting
maneuvers without inflating the problem order excessively. The consequence is that
each expansion in Equation (4.4) therefore has 15 terms:

n = n2 = no = 15. (4.6)

A reasonable finite behavior parameter vector p is then the concatenation of the spline
coefficients c.,. with the trajectory duration T to give:

p =[{ci,vc}, {c,}>-, {Clo}i",, T], (4.7)

where the superscript T denotes a column vector. This vector has 15 components to
describe the shape of each system DOF as well as a scalar time parameter to control
the maneuver duration, making for a total vector p C R46

As seen in Equations (4.2) and (4.4), it is sometimes useful to give the standard
time argument t and other times the normalized argument T. In the sequel, when
discussing a system signal, the specific argument will either be explicit or will be clear
from context. Note that differentiation of system signals with respect to time must
be properly described. A standard dot notation denotes a derivative with respect to
t, as in y', and a prime superscript denotes differentiation respect to T, as in y'. These
derivatives scale according to the chain rule relations

97

1,
T

j(t) T2 y"(T) (4.8)

sinceT - t/T. In Equation (4.8), the left-hand sides are evaluated at some t E [0, T]
while the right-hand are evaluated at the corresponding T = t/T E [0. 1].

4.2.2 Solution for Input Signals

Given the system behavior paramnetrizations of Equations (4.2) and (4.4), it is a
fairly simple matter to invert the system dynamnics in Equations (4.1) and solve for
the two input voltages. The inversion process is fairly easy given that all three
system degrees-of-freedom r. z, and 9 are -free" variables in terms of p. If the
system behavior z contained only z and 9, for instance, solution for I u would first
require a numerical forward integration to obtain i'. This procedure is undesirable
since it is generally advantageous for real-time computing methods to have analytical.
noniterative expressions for the control inputs in terms of p. Similarly, a choice of z
containing only v and z would require solution of complicated simultaneous inverse
trigonometric expressions for 9. again precluding the possibility of realistic analytic
inversion.

Given the choice of z = [v, z, 0]T, an expression for the collective voltage on the
unit time scale follows easily from manipulations of the fourth line of Equation (4.1),
substituting standard time derivatives for their normalized-time equivalents:

(,/T2)l +) (1/T)z' - d2cos(z) + d3 sin(z) + d5v 2

-d 4cos(0)

This expression is well-defined when 9 6 ± r/2 rad, that is, when the helicopter is not
oriented vertically up or down. The (T; p) arguments appear on the left-hand side to
emphasize that the control input time history is explicitly a function of the trajectory
parametrization p, which includes the maneuver duration T as its last component.

Given this expression for Vl 1, (7: p), a simple manipulation of the second line in
Equation (4.1) gives the cyclic voltage expression

(1/T 2)0" + b1 (1/T)9' + b2 sin(9) - bo - b3 (1/T 2)vIv|
cy.; bp)Q= , (4.10)CYC (T i P)b4 1/coll

which is well-defined for 541 # 0. As noted in Appendix A, the helicopter hovers at
a collective setting of 1.64 V and can operate entirely in the VoIl > 0 input domain.
Motions requiring 1c01 < 0 are not encountered in this thesis but could easily be
prevented by suitable imposition of control input inequality constraint bounds. It is

98

worth noting that Equations (4.9) and (4.10) are highly nonlinear expressions in v,
z, and 0 and therefore in the vector p, preventing the use of linear superposition-type
methods for creating parametrized maneuver classes, thus necessitating the methods
of Chapter 2.

4.2.3 Trajectory Dynamic Feasibility

Given that z has three signal components and the helicopter system has only two
inputs, it is necessary to impose a continuous-time equality constraint among the
"free" quantities v(t), z(t). and 0(t) (and ultimately as a constraint on the vector p)
to ensure dynamic feasibility. Such a constraint was seen as the he(p) partition in
Equation (2.43) and typically arises when enforcing physical feasibility of candidate

p vectors [16] or when expressing nonholonomic path constraint functions, such as
those often seen in ground robotic systems [2, 311.

In the present case, begin with a continuous-time constraint function ie of p based
on a continuous time function f of v, z, and 0 evaluated over the entire maneuver
duration:

he(t; p) f(v (t; p), z(t; p), 0(t; p)) = 0 V t E [0, T]. (4.11)

These functions can then be converted to equivalent unit time functions h, and f by
appropriate substitution of T for t and introduction of T according to Equations (4.3)
and (4.8):

he(7; p) - f(v('r; p), z(7; p), 0(T;p),T) - 0 V T E [0, 1]. (4.12)

For the nonlinear helicopter system, the desired function f follows from elimina-
tion of 1/ 2

1 from the second and fourth lines of Equations (4.1), giving a suitable
relation containing all three components of z:

f(v, z, 0) = d4('i + aiv)cos(0) - a2 (2 + d~i - d2cos(z) + d3 sin(z) + d5 v2)sin(0 - 0a).
(4.13)

Normalizing this relation to unit time gives the (nonlinear) f function:

f(v, z, 0, T) = d4 -v' + aiv cos(0) (4.14)
T

-a 2 ('Z + dT z' - d2 cos(z) + d3sin z) + d2 sin(0 - Oa).

Of course, Equations (4.12) and (4.14) are in continuous time and must be downsam-
pled to a finite grid, or mesh, to be useful for nonlinear programming and trajectory
interpolation. Therefore, to obtain a finite-dimensional vector constraint function
h,(p), evaluate he on a user-selected mesh Se:

he(T;p) = 0 V T E Se (4.15)

where some suitable Se = {71 T.n} C [0, 1] can be found through experimentation.
A candidate Se mesh is not sufficiently dense for a given trajectory vector p if the

99

control inputs obtained from Equations (4.9) and (4.10) do not forward-integrate
through Equations (4.1) to the predicted v(t;p), z(t;p), and O(t;p) signals. For the
3-DOF helicopter, the alnost-uniform mesh

Se = {0, 1/30, 1/15. 2/15, 14/15. 29/30, 59/60} (4.16)

provided sufficient dynamic consistency (a mesh point at 7 1 turned out to be
redundant given the vehicle final trim state equality constraints covered in the next
subsection). Combining the mesh-point evaluations of he into a single constraint
vector gives the desired he function:

he (p) - e (p) = 0. (4.17)

where the intermediate mesh sample function hs has definition

[he p)
i'' (P) = .(4.18)

Ite (Ta; p) _

Note that in the case of differentially flat systems, where it is possible to find an
invertible system behavior z with exactly as many components as system inputs
[48, 105. 106]. it is unnecessary to enforce dynamic consistency constraints in the
form of Equation (4.11).

4.2.4 Boundary Value Equality Constraints

Now consider the boundary condition equality constraint partition hb,(p) of Equation
(2.43). This vector is necessary to specify the initial and final conditions of a given
trajectory (or trajectory set) and generally plays the greatest role in defining the
fundamental variations within a maneuver class.

In this thesis, all maneuvers begin and end at a vehicle equilibrium, or trim,
state. Examination of Equations (4.1) indicates that a steady velocity-elevation pair is
sufficient to define the entire vehicle trim state (pitch , collective, and cyclic settings).
Let an overbar denote a steady-state quantity and note that, in standard time domain
notation, the initial (subscript i) and final (subscript f) vehicle trim states are defined
entirely by the following four relations:

v(0) =

v(T) = f (4.19)

z(0)

z(T) = Zf.

Here, t = 0 denotes the beginning of the maneuver while t = T denotes the maneuver
end time. A steady trim state requires that the velocity and elevation signals have

100

zero-valued initial and final time derivatives as well:

,i (0) = 0

(4.20)

f(0) 0

z(T) 0.

Further, at a trim condition, the pitch angle must assume its steady-state value
and have zero time derivative; the collective and cyclic voltages must take on their
equilibrium values. Expressing these four conditions in standard time at both ends
of the maneuver gives

0(0)

0(T)
0(0)

0(T)

I C'ol(0)

I,;Coll(T)

Vcyc(0)
Vcyc(T)

= i

= 0

(4.21)

= VITColl'i

- Vcoiilj

-Tcyc,2

- '1CYCJf

where the steady pitch and input voltage values are functions of the steady velocity
and elevation, as given by:

= 7(z), 2) (4.22)[I coil

.IScyc .

for a trim state mapping q obtained from the steady-state equations of motion.

As noted previously, analytic solution for 0 in terms of v and z is not straightfor-
ward and requires and iterative numerical solution. To proceed, consider the steady-
state version of Equation (4.13), given by

a2Sin(O - 00)(d 2 cos(;) - d 3 sin(f) - d5i 2) + aid4pcos(O) = 0, (4.23)

and use an iterative root-finding technique to solve for 0 [14]. Such methods generally
work best when given a reasonable initial solution guess, which in this case follows
from a steady-state solution of line 2 in Equation (4.1):

00 = Oa + sin -
a2 .c 1,

(4.24)

with the collective voltage initial guess fc011. coming from a small-0 approximation

101

to line 4 of Equation (4.1):

1 coilcos 0 - dssin(z) - dow2 (.3[WcC, (Z = .3 1 (4.25)
d4

Note that iterative trim state solutions are common in helicopter dynamic modeling,
such as the recursive thrust-inflow iterations required to compute a main rotor steady-
state condition [88]. Fortunately, numerical solution for 9 is only necessary when
generating feasible example trajectories, not during the actual maneuver interpolation
process. since in this latter setting, only differential expressions for 0 are required,
and follow from an analytic implicit differentiation of Equation (4.23).

Proceeding to the steady voltage calculations, once the quantity 0 is available from
solution of Equation (4.23). 1co and Vcyc follow from the steady-state standard time
analogs of Equations (4.9) and (4.10):

d2 cos(2) - desin(E) - d5'c2

Icoll = 2 (S () (4.26)
\ d4cos'08 ()

and
- b2 sin() - bo - b(4.27)

b4 V o11

Combining the initial and final vehicle boundary conditions of Equations (4.19),
(4.20), and (4.21) into a single constraint vector hbc gives

v(0;p) - ~

'1(T p) - vf
z(0; p) -
(T: p) -5

0(0;p) - Oi
O(T;p) - Of

hbc (P) = 'V7o(O;p) - =cou,i = 0, (4.28)
c -V0u(T; p) - Vcolf

Vc(;p) - T cc,
Vcyc(T;p) - Vcyc,f

(0;p) -0
(T; p) - 0

0(0; p) -0
0(T; p) -0

where the p notation is included to differentiate the quantities that depend on the
free vector p from those that are constants depending on the 4-tuple (,i, 'Uf, 7,7y).
Note that i(0) = 0 and i,(T) = 0 trim conditions are excluded since they proved
redundant, given the trim voltage constraints.

Conversion of the above vector to normalized time gives the desired constraint
relation:

102

'L(O;p) - U

'v(1; p) - j
z(0; p)
z(1 p) -
O(Op) 0i
0(1; p) O

hbc(P)-- (;) -_ CO11 = 0. (4.29)I/Co (l ; p) - Colt.f

cyc (0; P) - Vcyc,2
Icyc(I; p) - "cycf
(1/T)z'(0;p) - 0
(1/T)z'(1;p) - 0
(1/T)0'(0;p) - 0
(1/T)0'(1;p) - 0

Note that the last eight rows of this equation are nonlinear in p. In Section 4.5, a
maneuver parameter a, typically equal to an initial or final velocity and/or elevation,
will be introduced in Equation (4.29) to create a parametrized maneuver class. To-
gether with he(p) from Equation (4.17), hbc(p) forms the needed equality constraint
set to design interesting vehicle trajectory sets.

4.2.5 State and Control Inequality Constraints

Finally, in addition to the equality constraints, it is useful to impose a vector inequal-
ity constraint g(p) < 0 as discussed in Section 2.3.5. For the three degree-of-freedom
helicopter, the useful continuous time bounds on system states include upper and
lower bounds on the elevation variable

Zmin z(t; p) Zmax V t E [0, T] (4.30)

preventing contact with both the supporting tabletop (at z . 25 degrees) and the
upper mechanical restraints (at z . -37 degrees). Recall that z is positive downwards
from a level horizontal origin. It is also useful to bound the pitch deflection to avoid
singularity in Equation (4.9) and prevent the motor platform from hitting its hard
mechanical limits, which occur around ±90 degrees:

Omin < O(t p) < Omax V t E [0.T]. (4.31)

Particularly useful are constraints on the input voltage, especially given the highly
nonlinear expressions in Equations (4.9) and (4.10). Here, the continuous standard
time inequalities take the form

I/col.min VCol (t;p) Vcoii,max V t E [0, T] (4.32)

103

and
V'cyemin V'Cyc(t; p) < I CycOrax V t E [0, T]. (4.33)

For now, the specific "min" and "max" bounds are given symbolically for generality.

The specific values typically will depend on the particular maneuver class of interest.

To be useful for nonlinear programming and trajectory interpolation, it is nec-

essary to consider Inequalities (4.30) through (4.33) on the unit time interval and

sample them on a discrete mesh, as practiced with the dynamic feasibility equality
constraint in Equation (4.17). Consider user-selected time meshes Si.1 through S,4 for
each of the four inequality constraints above, obtaining the following discrete bounds

Zmin < -(; Tp) < 'max V T E SiI C [0, 1]

0min < 0(7;p) < 0max V T E Si.2 C [0, 1] (4.34)

"col<,min 1 0 io(7;p) Vcoi.rnaa V 7 E Si,3 C 0, 11

Vc'Y.rin < cyc(T; _) X ycjax V T Si 4 C [0. 1].

For the maneuvers of interest in this thesis, it is generally sufficient to consider an

identical 21-point uniform mesh of [0, 1] for each of the inequality constraint types,
that is, take

Si = S i.2 = Sz, 3 = Si,4= {0. 1/20. 1}. (4.35)

Naturally, there is a trade-off in mesh density between the ability to approximate the

continuous time (infinite-dimensional) bounds of Inequalities (4.30) through (4.33)
and the dimensionality of the trajectory generation and interpolation algorithms.

To place the eight sampled upper and lower bounds of Inequalities (4.34) into the

required vector format, simply choose the vector function g(p) defined as

-min - P)

zSi'1(p) Zax

0mmn - (si p
QSi, 2(p) - Omax

g(P) =s, (0, (4.36)

Iol colI,max

VCycmin - CYC (p)Vck (p) -Vcu x

L VeC (P) - Vcycmax.

where the superscript set notation has the same meaning as in Equations (4.17) and

(4.18). Together with the equality constraint vector h(p) = [hc(p); hbc(P)] = 0, the

inequality expression g(p) < 0 defines a feasible vehicle trajectory space and forms the

foundation for defining parametrized maneuver classes. This chapter now continues

with a discussion of generating feasible example motions, tracking trajectories on the

experimental apparatus, and then presenting examples of interpolated maneuvers.

104

4.3 Example Trajectory Generation

With the helicopter trajectory parametrization and constraint functions in place., it

is now possible to generate example motions as the starting points for maneuver in-
terpolation. Recall from Chapters 2 and 3 that, within a given maneuver type, the
example motions are allowed to be any related feasible trajectories, whether opti-
mal or suboptimal. This section briefly discusses two of the most useful techniques
for creating example trajectories: nonlinear programming and piloted-flight motion
capture. The motivation for these methods was laid out in earlier chapters, so the
emphasis here is on application to the three degree-of-freedom helicopter.

4.3.1 Nonlinear Programming

One very useful method for creating example trajectories is off-line nonlinear program-
ming (NLP). The considerable computational resources available in NLP solvers can
be applied to rigorously design prototype motions that then define entire maneuver
classes. As the trajectory interpolation algorithms do not employ an explicit objec-
tive function, but instead use a projection method to form families in the spirit of
the examples, nonlinear optimization is an opportunity to find prototype maneuvers
meeting some mathematical engineering objective.

As noted in Section 2.1.1, the generic trajectory nonlinear program takes the form

min f (p)
P

s.t. h(p)=0 (4.37)

where f is the objective function, and h and g are the equality and inequality con-
straint functions. respectively, all defined in terms of the vector p. Sections 4.2.3 and
4.2.4 demonstrated how to create the equality constraint set for the helicopter, where
the h in Program (4.37) is the concatenation of the dynamic feasibility and boundary
condition partitions:

[he(p)1
h(p) h . (4.38)

The vector h,(p) comes from Equations (4.17) and (4.18); the vector hbc(p) follows
from Equation (4.29). The inequality constraint vector g is defined in Equation (4.36).

Choice of objective function depends on what quality of maneuvers are of interest.
In this thesis, agile and aggressive motions are most often considered, since they are
typically useful for autonomous vehicles in dynamic urban settings or in time-critical
reconnaissance and search-and-rescue missions. Such rapid example motions typically
follow from a minimum-time objective function:

f(p) = cp = T (4.39)

where eN is a unit vector with unity as its Nth component, with N = n,+ n, + no + 1.
Naturally, to keep minimum time solutions well-posed, bounded control is required,

105

where the specific numeric bounds are set in Inequality (4.36).
As general practice in this document, the control bounds during nonlinear pro-

gramming example generation are set slightly tighter than those employed when using
Algorithm 3 of Section 2.3.5 for maneuver class interpolation. This technique gen-
erally allows the projection algorithm the greatest freedom in choosing the initial
feasible path towards other known motions, preventing excessive numbers of initially
active inequality constraints (which function as strict equalities) from reducing the
projection dimension and increasing the algorithm computational load (see Section
3.2). However, as seen in Section 3.1.4, if the projection interpolation path imme-
diately leads into the bounded control constraints, they will be added back into the
local active set.

Most nonlinear programming solvers allow for an initial solution guess Po, which
typically has a large effect on the final optimal solution p*. given the presence of
local minima in general nonlinear programming settings. In the majority of cases,
an initial guess Po with linear state transitions between the initial and final trim
conditions is adequate for eventual convergence to agile motions [30, 102]. However,
other methods for choosing po may be advantageous in some settings and can be
obtained, for example, by initial polynomial profiles of a candidate system behavior
z(t: Po). or by choosing PO to match a "sketch" of the desired solution.

For the helicopter maneuvers encountered in this thesis, solution of Program (4.37)
involves a parameter vector p with dim(p) = 46, an equality constraint vector with
dim(h(p)) ~ 30 and an inequality constraint vector with dim(g(p)) ~ 168. NLP
solution times varied widely depending on the particular maneuver of interest and
the closeness of the linear initial guess to the ultimate locally optimal solution p*.
However, the majority of solution times seemed to fall between one minute and ten
minutes on a Pentium III 930 MHz processor running the MATLAB@ version 2.2
optimization toolbox [97]. These solution times, while essentially insignificant for
off-line trajectory generation are certainly too long for any real-time implementation,
thus helping to motivate the need for faster methods such as trajectory interpolation.

Section 4.5 will discuss specific maneuver instances and examples of introducing a
class parameter a into the boundary condition equality constraint function, as seen in
Equation (2.43). Then, given the choice and desired range of variation in a, specific
nonlinear programs of the form (4.37) for creating prototype maneuvers are evident.

4.3.2 Motion Capture

Section 2.4 discusses a two-step procedure for capturing human pilot-flown flight
data as a model feasible point. This method gives a viable alternative to pure NLP
as a means of creating example trajectories; note that the second step does use a
NLP solution, however one whose objective function attempts to match an observed
pilot-flown system behavior. Section 4.5 will illustrate two parametrized maneuver
families created from pilot data. In each case, two bounding motions for trajectory
interpolation were found through the methods of Section 2.4.

The three helicopter signals of interest during motion capture are velocity, eleva-
tion, and pitch angle, the exact three components of the system behavior vector z.

106

Given the definition of the trajectory parametrization p in Equation (4.7), the motion
capture task is to find a model-feasible p vector, closely matching a system behavior
expressed in flight data Zdata.

Following the first step of Section 2.4, the initial task is to obtain a reasonable
estimate vector Pdata,0 based purely on a data matching procedure, without regard to
the underlying system dynamics. Given that the free vector p contains the maneuver
time T as its last element, the corresponding element of PdataO is set exactly to match
the duration of the observed pilot-trajectory, that is, T = Tdata. Then, treating
each of the three signal partitions of p individually and in succession, a least squares
data matching objective of the form of Equation (2.52), applied with a set of unit-
time boundary condition equality constraints, fills out the remaining elements of
Pdata,O. The solution procedure for these signal partitions, say - p',a and
P0ata. follows from a nonlinear least squares procedure. The boundary condition
constraints are user-selections employed to enforce the desired trim signal values, as
seen in Equation (4.29). These trim conditions are known from the maneuver type
under consideration and the specific maneuver instance adata being captured, which
follows from the maneuver class descriptor a.

The final step is to use this data matching initial guess

Pdata,O

Pdata,O = ata,O (4.40)
Pdata,O

L Tdata .

as the starting point of a model feasibility NLP in the form of Program (2.53), re-
peated here:

min e (p)
P

subject to h(p' adata) = 0 (4.41)
g(p) < 0

Of the two proposed objective functions in Equations (2.54) and (2.55), the latter,
which attempts to match the recorded behavior data seems to work best for the
3-DOF helicopter system. That objective,

NA

e(p) = J ||Zdata(tk) - z(tk;p)|myV, (4.42)
k=O

seeks a feasible point p that closely matches the motion capture data, which in this
case is 100 Hz samples of velocity, elevation, and pitch signals. Since the data sample
interval is fixed, the number of data points Nk depends on the maneuver duration.
A fixed, diagonal weighting matrix W1 , = diag(3, 3, 1) is useful for normalizing the
error between the three measured signals (whose numerical values vary over different
ranges) and is found to produce satisfactory fitting results

Sections 4.5.4 and 4.5.5 present results of the motion capture procedure and then

107

apply trajectory interpolation to create new maneuver instances.

4.4 Tracking Controller Design

The trajectory parametrization p has been selected in Equation (4.7) so that knowl-
edge of p and the helicopter model implies complete knowledge of both the system be-
havior z(t; p) = [Y(t; p), z(t: p), 0(t; p)]T and the voltage inputs V, 01(t; p) and Vcy((t; p).
Since the system signals exist in terms of the simple B-spline basis elements of Equa-
tion (4.4), knowledge of related system signals x(t: p), (t; p), and ' (t: p) is available

through simple analytic integrations or differentiations (see [34, 35] and Appendix
B). These collected time domain signals provide a complete reference input and state
history, essential for a feedforward maneuver tracking control design. With dynam-

ically feasible input signals available, the control system's burden becomes not one
of error-driven command following [108], but instead one of regulating fairly small
state perturbations and compensating for inevitable nonlinear modeling errors. This
section reviews the fundamentals of a gain-scheduled linear-quadratic (LQ) servo de-
sign [26. 93] for tracking reference maneuvers produced by trajectory interpolation.
The first subjection reviews the linearized model; the second section discusses the LQ
design itself.

4.4.1 Linearized Models

In this thesis, parametrized maneuver families by definition involve a nonlinear system
that cannot be approximated by a single linearized state-space model. However,
for any given maneuver, a dynamically feasible input-output reference is available,
making it possible to design a set of LQ-servos scheduled over a wide range of system
operating conditions. Each of these servo designs requires a locally accurate linear
system model.

Examining the nonlinear helicopter equations of motion (4.1), a reasonable system
state x and control input u for a first-order linear state-space model are given by:

x

x 0 u J1 . (4.43)

For a linearized model, it is necessary to define a perturbed state 6x(t) = x(t) - Xcmnd

and perturbed input 6u(t) - u(t) - Ucmd relative to some known state Xemd and
dynamically consistent control input Ucmd. Each component of these difference vectors
is then a perturbed version of the corresponding components in x and u, as in

108

6x
&I

8x 0 8 V0116x = 6U = 1 . (4.44)
6 ~ ~ 6cyc

8z

Recalling from Section 4.2.4 that a steady system state is completely defined by a
steady pair (7, ,). the linearized state-space matrices are then functions the steady
velocity and elevation, as in

6x = A(, f)6x + B(V, Z)6u. (4.45)

By analytically linearizing Equations (4.1) and using the steady pitch and voltage
relations of Equations (4.22) through (4.27), the linearized state and input matrices
follow easily as

0 1 0 0 0 0
o -a, -a 2 011cos(# - a) 0 0 0

0 o 0 1 0 0
0 2b 3 J|J -b2cos(O) -b1 0 0
0 0 0 0 0 1
o -2d 5ii d4 I7lsin(6) 0 -d 2sin() - d3cos(2) -d1 _

(4.46)
and

0 0
-2a 2VQcousin(6 - Oa) 0

0 0
B z =~l'ol .(4.47)

b4Vc b4Ven C
0 0

-2d4Voucos(0) 0 _
These matrices then form the basis for a control design scheduled on any desired
partition of the vehicle flight envelope.

4.4.2 Gain-Scheduled LQ-Servo Design

Given the linearized state-space matrices of Equations (4.46) and (4.47) and a parti-
tioning of the flight envelope, it is possible to design a gain-scheduled LQ-servo loop
based on standard multivariable feedback design principles [26. 93]. The servo de-
sign takes the form shown in Figure 4-2, where the control loop essentially regulates
state perturbations 6x around the commanded maneuver state trajectory Xcmd using
control perturbations 6u about the dynamically consistent commanded control signal
Ucmd.

To help minimize error in tracking the reference position, velocity, and elevation

109

xm (12SUcmn(+ U ..0 /-, x = -,r ,

vehicle

6UCL + Xcid

meeas

gain schedule

append integrators

Figure 4-2: Closed-loop LQ-servo design.

states. the controller uses an augmented system design state 6 Xde, given by

6 Xdes -

Sf 6x -

f 6z
6x

60
60

6z,

(4.48)

where the f 6x and f 6z denote integrator states on travel position and elevation. The
design state matrices are then augmented forms of those given in Equations (4.46)
and (4.47) with additional rows and columns to account for the integrators:

Ades = 02:2 [
06x2

0 0 0. 0
0 0 0 1)

A(70esi -es)

0
0 II Bdes -- 02x2 I

B(7F1 cs , es)

Here, (e, Zes) denotes a velocity-elevation setpoint design pair. The local full-
state feedback gain K comes from a standard linear quadratic regular (LQR) Riccati
solution, minimizing the infinite time horizon cost functional

j (6Xe>Qxdes + 6uTRou)dt. (4.50)

In this thesis, the state and control weighting matrices, Q and R, respectively, are
specified in a simple diagonal form: Q = diag(ql,..., q88) and R = diag(rij, r22).
The specific scalars qj and rjj depend on the particular design point and follow from

110

(4.49)

I

an iterative design process of gain calculation, response evaluation, and numerical
revision. The weights are generally chosen to provide reasonable tracking of velocity
v and/or elevation z, with less emphasis placed on tracking pitch 0 and the time
derivatives 0 and i.

As shown in Figure 4-2, when operating in closed-loop, the system state mea-
surement xm,s is differenced with the reference state trajectory Xcmd to obtain the
measured perturbed state according to

6xmeas = Xmeas - Xcmd. (4.51)

The helicopter experimental apparatus allows direct measurement of x, z, and 0
from which simple and reliable estimates of v, %, and 0 follow from transfer func-
tion approximations of continuous-time differentiators cascaded with low-pass filters
to reduce noise. In the current experimental configuration, this state measurement
approach provides performance comparable to Kalman filtering and is implemented
to avoid the necessity of scheduling an additional set of estimator gains.

Continuing with the figure, the measured perturbed state is then augmented
through two integrators on position and elevation, obtaining the measured design
state [f 6 Xmneas,1 [6xmeas]

6 Xdes,meas f 3 xmeas,5 f z , (4.52)
_

6
Xmeas _ [6Xmeas _

where the subscripts 1 and 5 denote the first (position) and fifth (elevation) elements of
6Xmeas. The closed-loop control 6UCL then follows by a gain-scheduled multiplication
of the design state, expressed in equation form as

U Ucmd + 8 UCL (4.53)

= Ucmd - K(Vmeas)6Xdes,meas.

Note from the figure and from line 2 of Equation (4.53) that the gain is sched-
uled on velocity only and thus the actual K matrix in closed-loop depends only
on the currently measured velocity Vmeas. Experimentation with various flight en-
velope partitions showed that it is sufficient to use a fixed, zero elevation design
value Zdes 0 while varying the design velocity Vdes over a series of nine set points
given by {-80, -60. -40, -20, 0, 20, 40, 60, 80} deg/sec. During on-line closed-loop
operation, changes between the nine servo designs occurred at the switching points
Vmeas = {-70, -50, -30, -10,10, 30, 50, 70} deg/sec with a 4 deg/see hysteresis bound
placed about each switching point to prevent control system limit-cycling.

4.5 Maneuver Class Examples

The preceding sections of this chapter demonstrated trajectory parametrization and
constraint formulation for the helicopter testbed, similar to the framework one might
employ for a full-scale autonomous vehicle. With the mathematical tools of a spline

111

signal basis set, an invertible system model, and a well-defined feasible space in hand,
it is now possible to give examples of continuously parametrized maneuver classes.
This section presents four such examples. illustrating the applicability of the ma-
neuvering framework to useful trajectories common in real-world helicopter flight.
The first two cases, a flaring quick-stop and an elevation change maneuver, interpo-
late example motions generated from nonlinear programming. The second two cases,
a hover-to-hover position change and a hover-to-cruise dash-acceleration motion, use
prototypes obtained from motion capture of human-piloted examples. In each of these
cases, an intuitive scalar maneuver class parameter a describes a variable initial or
final boundary condition. In Chapter 5, where maneuver classes are integrated into a
hybrid system model to create a flexible motion planning scheme, the a variable will
be used to capture multiple and/or simultaneous variations in initial and final trim
states.

4.5.1 Bounded-Control Quick-Stops

A quick-stop maneuver involves transitioning the helicopter from a steady cruise state
to a steady, resting hover state. In this section, choose a = 1 to create a maneuver
class continuously parametrized by initial trim speed 7 . To complete the initial trim
state, take .7 = 0 to be fixed, so the helicopter starts at a "level" elevation. Define
a final hover state with velocity Vf = 0 and Z = 0, so the vehicle comes to rest at a
level elevation. During the maneuver, the helicopter feedforward controls must apply
a collective-cyclic combination to pitch the helicopter "backward", develop a strong
thrust to slow the vehicle down, and then pitch the vehicle forward again to reach a
steady resting state.

Recall that over a general maneuver class, the trajectory equality constraint vector
takes the form h(p) = [h,(p); hbc(P, a)] as seen in Equation (2.43). (The semicolon
notation denotes here the vertical concatenation of two column vectors). For all
helicopter maneuvers, Equations (4.17) and (4.18) define the he(p) model feasibility
partition. Now, to create a maneuver class, the boundary constraint partition 144)

must include a second argument a and take the form hbc(P, a) as discussed in Section
2.3.3.

Here, given the variable initial velocity a = Vi, modify the boundary condition
constraint definition of Equation (4.29) by introducing a to obtain

112

v(0;p) - a
v(1:p) -0
z(0; p) 0
z(;p) 0

(; p) - 9(a)
0(1; p) - iov

hbc(p, i) = "(0; p) - uco,i(a) =0. (4.54)
Uc11(1; p) I coullo,

cyc(0; P) - V cycix)
Vcyc(1;p) - Vcyc,hov

(1/T)z'(0;p) - 0
(1/T)z'(1;p) - 0
(1/T)O'(O;p) - 0
(1/T)0'(1; p) - 0

Note that a must appear in each of lines 1, 5, 7, and 9 in Equation (4.54),
since as noted in Equation (4.22), the initial trim pitch 9j, trim collective Vcoll,i,
and trim cyclic 1cyc,i all depend on the initial trim speed a = Ti. Therefore, over
the continuous quick-stop maneuver class, each of the four vector components will
vary in some continuous fashion, according to the behavior of Ti(a, 0). (Note that
the third row of Equation (4.54) implies that z(0; p) = 0 over the maneuver class, as
dictated by the assumption of initial level elevation). The final trim state quantities
are fixed at their hover values, according to [hov, V coll,hov, Vcyc,hovlT = r(0, 0). The
inequality constraint vector expression g(p) < 0 is unaltered by the quantity a since
the elevation, pitch, collective and cyclic bounds are fixed over the entire maneuver
class.

Creation of the parametrized quick-stop maneuver class follows from application of
Algorithm 3 of Section 2.3.5, which requires the computation of the Jacobian matrices
Dvh and Dgj0 . Therefore, the equality constraint derivative takes the form

D,h(p, a) = .epp) (4.55)
' Dphbc(p, a) Dahbc (,A)

Any of these derivative matrices can be found numerically by applying small per-
turbations to the arguments of the constraint functions he(p) and hbc(p, a) and then
dividing the appropriate forward difference vectors by the perturbation step size [158].
A faster method with less numerical error is to derive the derivative expressions once
and then simply reevaluate then during interpolation. This practice generally speeds
up the evaluation of Deh and Dogj0 by a factor of roughly 3, a considerable savings
given that derivative computation is by far the most costly operation in Algorithms
1. 2, and 3.

Analytic derivative expressions for components of Dphe(p), Dphbc(p, a), and Dpgjo(p)
follow by applying the spline differentiation rules for nonlinear functions of B-spline
coefficients (derived in Section B.2 of Appendix B) to the nonlinear functions in Equa-
tions (4.9). (4.10), (4.12), (4.14), (4.18), and (4.36), using the signal spline expansions

113

of Equations (4.4).
The remaining derivative partition is a vector of the form Dhbc(p. a). involving

derivatives of boundary condition trim values with respect to a. From Equation
(4.54), only four components of D(,hb(. are nonzero. However, these components are
critical to the interpolation process since they fundamentally drive the continuation
algorithm along the desired maneuver class.

The partial derivative D0i/9a = Oi/1Ts follows from an implicit differentiation of
Equation (4.23) keeping in mind that 7 -- 0 over the entire maneuver class. Similarly,
the expressions &V(.O,i/Oa = >0Tcw1i/,ii and OVcYci/a" = DV/877- can be found
using Equations (4.26) and (4.27), respectively, while reusing the above result for
&0/Oifs. Note that since the continuation process is driven by differential curve
tracing methods from a known solution, there is no need to iteratively solve Equation
(4.23) during the integration process; knowledge of the example feasible trajectories
contains all the necessary information about the numeric values of .

Figures 4-3 and 4-4 show the velocity and pitch profiles, for a class of quick-stops
over a range o' - 7i E [-50, -10] deg/sec. Horizontal axes give the variable initial
velocitv a =_ i and time t. Vertical axes give the signal values in degree units. (Note
that because the helicopter has a twin-rotor symmetric fore-aft design, a negative ve-
locity or position value simply indicates the flight direction sign-convention, and does
not imply the system is traveliiig "backwards"). Two bounding prototype trajectories
can be generated by solving minimum time nonlinear programs of the form of Pro-
gram (4.37) with the equality constraint definition of Equation (4.38) for A = -10
deg/sec and 02 = -50 deg/sec. Trajectory interpolation Algorithm 3 then produces
the entire family. As seen in Figure 4-3, the initial trim speed varies continuously
over the maneuver class with the overall velocity profile showing a smooth transition
to a resting hover state. The pitch profile in Figure 4-4 has a smoothly transitioning
initial trim value (from Oi = 6.5 deg for a = -10 deg/sec to Oi = 14.70 deg for
a = -50 deg/sec) while demonstrating a substantial flare to reverse the thrust vector
horizontal component and decelerate the helicopter.

As seen in the corresponding control profiles of Figures 4-5 and 4-6 (plotted ver-
sus normalized time for visual clarity) the collective and cyclic voltage work at the
beginning of the maneuver to first pitch the helicopter backwards, then apply a large
collective (i.e. thrust) and pitch-sustaining cyclic to reduce velocity, and finally bring
the vehicle to an equilibrium hover state. During the interpolation, the collective
and cyclic voltages occasionally encounter and ride along the enforced constraint
boundaries. Note that following the methods of Section 4.3.1, the bounding example
maneuvers are created from nonlinear programming with control limits slightly tighter
than those employed during interpolation, giving the projection algorithm maximum
freedom in choosing the initial feasible projection path. Note that the pitch signals
never approach the enforced ±88 deg limits.

While Figures 4-5 and 4-6 have a normalized time scale 7, Figures 4-3 and 4-
4 have a standard time scale t and demonstrate that over the maneuver class, the
quick-stop motions exhibit continuous monotonic variation in time duration. That is,
T(a) follows the logical behavior of becoming longer as the initial speed magnitude
increases since, with bounded control, it takes longer to make a larger state change.

114

Velocity profiles for quick-stop maneuver class

10,

0

(D-1 0-,

30

-40,

-50>
-10

0-

Figure 4-3: Velocity profiles for quick-stop maneuver class.

Pitch profiles for quick-stop maneuver class

interpolation direction

7, / /

-20

-30 6

4
-40 2

a = V0 (deg/sec) -50 0 time (sec)

Figure 4-4: Pitch profiles for quick-stop maneuver class.

115

- interpolation direction.

-20

-306

-44-40
2

a = v (deg/sec) -50 0

/ // //7 y/ ~ / ti

20-

10

0

3-10

-

-40

-50

-60
-10

8

8

m11 (sec)

Collective voltage profiles for quick-stop maneuver class

2.0 Volt upper bound (enforced) interpolation direction

2-

1.5-

-1

~-WJJ>~1 0 Volt lower bound (enforced)

20 0
-30 - 0.4 0

-40 0.2
50 0

a =e (deg/sec) normalized time

Figure 4-5: Collective voltage profiles for quick-stop maneuver class.

Cyclic voltage profiles for quick-stop maneuver class

0.6 0.5 Volt .upper bound (enforced)

0.4

0.2

0 -

-4> 0 .

-. ,

a~ =V --(d g/-)-5-- .

-06.8 '" :

a v 0 (degsec)normalized time t

Figure 4-6: Cyclic voltage profiles for quick-stop maneuver class.

116

a)

0

1

4.5.2 Bounded-Control Climbing Mlaneuver

Now consider a maneuver with the same initial and final velocity. but with variable
net elevation change. Specifically, consider Vi = Vf = -30 deg/sec but with -77 0
and a =Zf as a variable final boundary condition. This a-parametrization achieves
a continuous class of climb (or descent) maneuvers for the helicopter.

As with the previous quick-stop maneuver, the h,(p) and g(p) constraint vectors
are unmodified by the presence of a. However, the boundary condition partition
hbc(P, a) must have a second argument as shown in the following equation:

v(0; p) - -f
V(:p) - cf

z(l:p) - a
O(O;p) -0Z
(1p) - Of (a)

hb(p, a) - =0. (4.56)
VCol(1; p) - V coI,f (a)

Vcyc(0 P) - 7cyci

VTcyc(; P) - VcyCf(a)
(1/T)z'(0; p) - 0
(1/T)z'(1 p) - 0
(I/T)0'(0; p) - 0
(I/T)0'(1; p) - 0

Note that again, a must appear in the expressions for the final pitch, collective, and
cyclic settings since, as seen in Equation (4.22), system trim values depend on both
the steady velocity and elevation. For the case of an airborne helicopter operating
over a small altitude range (and thus with essentially constant air density p), there
would be no need to modify the final trim settings with a since the vertical dynamics
would not depend on altitude. However, for the 3-DOF helicopter of this thesis, the
elevation dynamics themselves depend substantially on z, as seen in Equations (4.1).
As such, the requirement that -j = 0 is important over this class of maneuvers, since
a variable initial elevation would require an additional component of a, making for
a multidimensional maneuver class. Note that Chapter 5 will introduce a variable
initial (and final) elevation maneuver with simultaneous and independent variations
allowed in initial (and final) velocity as well.

For the present, consider the variable climb from level flight as defined by the
boundary condition of Equation (4.56) over a range a E [-35, -10] deg. Recall that
z is defined positive downwards, so a negative elevation change implies a climbing
motion. This section uses two types of prototype motions generated by minimum time
nonlinear programming solutions. The first is a pair of "ordinary" or "standard"
climbs, one for al = -10 deg and another for a 2 = -35 deg. For the second set
of prototypes, a temporary ad-hoc final position boundary constraint can be used to
induce a nonstandard, loop-like motion during the climb. This difference will illustrate

117

35 -

30

25

0)
0)

~0

El

20 -

15-

10-

5

evation above horizontal

rrajectory shapes for standard
cIimb maneuvers

interpolation directio

Travel P

n

osition

0 10 20 30 40 50 60 70 80 90 100
-x (deg)

Figure 4-7: Trajectory profiles for parametrized climbing maneuver.

the fundamental point that the outcome of trajectory interpolation depends critically
on the "style" of the example motions, giving the engineer tremendous flexibility
in designing maneuver classes. The interpolation process then generates continuous
trajectory families in the same style of the prototypes; the ad-hoc position constraint
used during loop example generation is unnecessary during interpolation since the
bounding examples contain all information necessary to define a maneuver style. Note
that for all climb maneuvers, analytic partial derivative calculation follows exactly
the same lines as discussed in Section 4.5.1, but with the Dahb, vector now based the
defining Equation (4.56).

Figure 4-7 shows several samples of the continuously parametrized "standard"
climbing motion, generated using Algorithm 3. The climbs at either extreme came
from NLP solutions Pi and P2 while all other trajectories followed from interpolation,
thus possessing similar position-elevation profiles. (Note that the horizontal axis plots
-x and the vertical axis plots -z, so that the motions appear in their correct, physical
rightward-upward direction). Figures 4-8 and 4-9 show the constrained collective and
cyclic control profiles for this maneuver family. The collective profile follows a bang-
bang-type strategy, inducing a rapid upward acceleration followed by a deceleration to
achieve vertical equilibrium at the new cruise elevation. The cyclic profile essentially
keeps the vehicle pitch angle 0 (not shown here) near the initial and final trim values
and the helicopter velocity close to -30 deg/sec throughout the climbing motion.
(Maximum pitch variation over the maneuver class was around 10 deg; maximum
velocity variation was around 1.5 deg/sec).

The numerical control bounds are slightly changed relative to the quick-stop ma-
neuver, allowing greater authority in producing upward accelerations. The collective
upper bound and cyclic lower bounds are unnecessary during interpolation for this
particular maneuver class and are relaxed to speed up computation time. Naturally,

118

3

Constrained collective input for climb maneuver class

2.5

interpolation direction 'KlN111

0.5)
-10

-0 0 0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S= z~ (deg) normalized time

Figure 4-8:
class.

1.2,

0.8-,

0.6,,

0.4 s
>0

01)

0)

C) ON

-0.2 ,

-0.4 N

-10

a = z, (deg

I

Collective voltage input constrained above 0.85 V for climb maneuver

Constrained cyclic input for climb maneuver class

0 0.1 0.2 0.3 U.4 U.0

normalized timer

Figure 4-9: Cyclic voltage input constrained below 0.70 V for climb maneuver class.

119

>0

0)

0

0)

C)
0)

.5
C)

)

interpolaion direction

-20

-3 n 7 n a 09 1

3-

Unconstrained collective input for climb maneuver class

2.5

2-
-\AA .* I\\ '4: \V',-x~ X\K

-1004

-20

-30 wHN 0.111

-0 -40 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 0.9 1

=zdgnormalized time t

Figure 4-10: Collective voltage input for unconstrained climb maneuver class.

1.2

1 CUncostrained cyclic input for climb maneuver class

0.8

-1 i- 0 nterpolat on direction 1ITW.i

-320

-3 40 0 0 02 0 04 05 06 07 0.8 0.9 1
- 0 0.1 0.2 0.3 0.4 -

a = z (deg) normalized time t

Figure 4-11: Cyclic voltage input for unconstrained climb maneuver class.

120

40 r

30 -

20 - -~-

interpolation direction

10 -

0-

Trajectory shapes for looping climb maneuvers

Travel Position
-20 1 1

-10 0 10 20 30 40 50 60 70 80
-x (deg)

Figure 4-12: Trajectory profiles for looping climb maneuver class.

full upper and lower bounds are necessary during NLP-based example generation to
keep the minimum-time solution well-posed. In many situations, because the inter-
polation process attempts to generate maneuvers in the same style of the examples,
control magnitudes stray little over the entire family, allowing reasonable relaxation
of some bounds and thus less computational burden, as discussed in Section 3.2.

However, for comparison, Figures 4-10 and 4-11 show the control signal behavior
over the maneuver class when the collective and cyclic bounds are lifted. Nonlineari-
ties in the p-to-voltage mappings of Equations (4.9) and (4.10) allow large, unreason-
able swells in the control profiles, taking the input signals outside of their modeled
ranges and excessively violating the assumptions behind Equations (A.8) and (A.9).

Figure 4-12 shows samples of the climb maneuver (-x, -z) profile when the bound-
ing examples have the nonstandard, or looping nature. Note that although one might
not be interested in using such a climbing strategy in practice, the emphasis here is
that the interpolation algorithms create maneuver families in style of the known fea-
sible solutions. Recall, that the ability to easily define a maneuver family "style" by
simply providing a small number of example motions is one of the primary motivations
for trajectory interpolation; see Section 1.1.2.

Unlike for the standard climb maneuver, the vehicle pitch angle for the looping
climbs undergoes large excursions, as seen in Figure 4-13. From the figure, it is again
apparent that the entire maneuver family retains the physical characteristics of the
feasible examples and that the interpolation process is well-suited for motions outside
the range of linearized vehicle dynamics.

121

80

Pitch profiles for looping
60 climb maneuver class

40,

20,
interpolation direction

0

-40

-60

-80

-100

0 2

-40 0 1 2 3 4 5 6 7 8 9 10

a = z (deg) time (sec)

Figure 4-13: Pitch profiles for looping climb maneuver class.

4.5.3 Maneuver "Interpolability"

It is important to note that not all feasible maneuvers can be interpolated with the
methods of Algorithms 1 through 3. For example, taking one of the above standard
climb maneuvers to final elevation a, = Zf = -10 deg and one of the loop-style
climbs to final elevation a2 = Zf = -35 deg, attempts to create parametrized climb
families generally fail. These motions are clearly not of the same qualitative style

(even given the inexact use of that term), since the velocity and pitch profiles differ
widely between the two examples. The interpolation process generally fails to drive
the maneuver chart variable a = .7 in the correct direction, since velocity and pitch
coefficient differences, rather than elevation coefficient differences, dominate the pro-
jection operation, resulting in mathematically unreasonable control profiles (swing-
ing erratically through double-digit magnitude changes even over small variations in
a = Zf).

Put another way, these two maneuvers, while achieving similar net vehicle state
changes, use very different strategies to accomplish the change. As such, when the
interpolation algorithm uses the difference projection to compute a first-order feasible
direction, the difference vector primarily reflects the velocity and pitch profile dispar-
ities, not the elevation variations. In this case, the projected difference has a small
elevation component compared to the other variables, leading to a poorly conditioned
projection onto the tangent plane and a subsequently infeasible maneuver class, with
nonsensical control profiles.

In other situations, the user-chosen example maneuvers may be of such different
types that there does not exist an intermediate connected space in which to com-

122

pute a feasible interpolation path. In still other cases, the maneuvers may be of the
same general type, but the solution surface geometry leads into the constraint entrap-
ments, typically because of solution path "dead-ends" created by numerous or highly
nonlinear inequality constraints. In both of these cases, the interpolation algorithm
stalls, resulting in no feasible projection or a "null" projection where v ~1Tj 0 in
Algorithms 1 through 3. Loosely speaking. such situations arise because of an ex-
cessively high manifold curvature or a topological inconsistency between the example
motions in the full-dimension trajectory vector v-space, making it difficult to trace a
feasible arc with the simple homotopy-based projection methods [62, 110]. Possible
solutions in such situations include specialized algorithm modifications, such as using
a matrix-weighted projection operation to obtain a modified n vector, working exclu-
sively in subspaces of the v that avoid topological entrapments, or by changing the
algorithm more fundamentally, using pathfollowing and homotopy algorithms based
explicitly on manifold curvature tensors [109] that follow even feasible arcs exhibiting
the uTii ~ 0 "orthogonalitv" condition.

For now, the main engineering guideline for creating maneuver classes is to choose
example motions that use the same fundamental control strategy and trajectory char-
acteristics. A general guide for practical use of the interpolation algorithms is to
monitor the behavior of the projection inner product uTji along the feasible solution
arc. If this quantity approaches zero, it is possible that the as-given algorithms will
create unsatisfactory maneuver families. Off-line solution for another "intermediate"'
feasible maneuver can help fix this situation, providing another trajectory guidepoint
and allowing the interpolation algorithm to trace shorter arcs through the possibly
highly nonlinear feasible interior space.

4.5.4 Pilot-Demonstrated Reposition Maneuver

The next two helicopter maneuver examples illustrate the process of using pilot mo-
tion capture data to create a pair of known, feasible trajectories. Through the interpo-
lation process, these maneuvers then define a parametrized maneuver class, members
of which can be flown under closed-loop control architecture of Section 4.4, demon-
strating the entire maneuver design process on real hardware.

In this section, consider a pilot-demonstrated reposition maneuver, where a hu-
man operator flies the three degree-of-freedom helicopter via a joystick input [122],
demonstrating two hover-to-hover position change motions. As seen in the overhead
pictorial of Figure 4-14, the first position change is "short", with a displacement of
xf - xi = -47 degrees; the second position change is "long" with an angular offset
of -367 degrees. (Note: these particular numbers correspond to a specific sample
maneuver pair from a batch of "satisfactory" demonstrations, with fairly smooth
motions and a clean deceleration to the final hover state. The goal was to collect
maneuvers with offsets of around -45 and -360 degrees). As noted in the figure, once
these two maneuvers are available as prototypes, it is then possible to perform trajec-
tory interpolation and fly any reposition maneuver with offset between -47 and -367
degrees.

For a hover-to-hover reposition maneuver, it is necessary to add an extra row to

123

-1800

-2700

general interpolated
position

continuous range of
interpolable maneuvers

pilot nlight 1:
pilot flight 2: 470

-3670

,? ehicle

starting
position

O*,-36OO flight direction

-900

Figure 4-14: Overhead view of reposition maneuver interpolation.

the standard boundary condition equality constraint of Equation (4.29). The addi-
tional constraint integrates and scales the p-parametrized unit time domain velocity
to obtain an a-parametrized final position constraint with a = xf = x(T) (it is
understood that xi = x(O) - 0):

hbc(p, a) =

v(0;p) - 0
v(1;p) - 0
z(O;p) - 0
z(1;p) - 0

0(0; P) - 0hov
0(1; P) - hov

Veou(0; p) - Vcoll,hov

Vcoll(1; p) - Vcoll,hov

Vcyc(0; p) - Vcyc,hov

Vcyc(1; p) - Vcyc,hov
(1/T)z'(0; p) - 0
(1/T)z'(1;p) - 0
(1/T)6'(0; p) - 0
(1/T)6'(1; p) - 0

Tf v(,T; p)dT - a

= 0. (4.57)

This last row has the same general form as isoperimetric constraints often seen in
variational optimization problems [115].

Unlike the previous examples, the initial and final hover trim states do not require

124

C,

0,

'E

C
0
CO

CD

Model feasible point solution for -3670 reposition maneuver

-10 -

-20F

-30 -- pilot motion capture data
- model fitting result

0 2 4 6 8 10 12 14 16 18 20 2
time (sec)

-4

2~-/

-2- N I-6-

-81 L L0 2 4 6 8 10 12 14 16 18 20 2
time (sec)

60
40-

20 -

0 ~ I
-20 -

-4n

2

2

0 2 4 6 8 10 12 14 16 18 20 22
time (sec)

Figure 4-15: Motion capture result for -367 reposition maneuver.

any a functions and simply use the static trim settings [hov -A/coll,hovVcychl =

q(0, 0). Analytic derivatives with respect to p of the integral position constraint follow

from integration of each of the B-spline basis element in the first line of Equation (4.4),
with numerical tools found in the spline literature [34] or in software toolboxes [35].

Motion capture of pilot-flown helicopter trajectories follows by recording the sys-

tem behavior (here, 100 Hz sampled data of velocity, elevation, and pitch) and apply-

ing the methods of Section 4.3.2. Figure 4-15 shows the result when finding a model

feasible point P2 corresponding to the "long" a 2 = -367 deg motion. The model fea-

sible system behavior appears as the smoother dash-dot signal and matches closely

the recorded (solid line) data. Note that as part of the feasibility Program (4.41),
vehicle trim conditions impose exact initial and final hover state, so that "imperfect"

or slowly drifting hover states observed in flight data get mathematically corrected

to zero velocity and zero elevation.

Figure 4-16 shows the corresponding voltage input signals for the piloted run

and the resulting feasible point. Note that as discussed in Section 4.3.2, the motion

capture error metric e(p) is a function of the system behavior z = [v, z,]T only
and does not attempt to match the input signals. Therefore Figure 4-16 gives an

interesting viewpoint on the model fidelity as well as the specific method the pilot

uses to fly the particular motion. Interestingly, the pilot input shows no use of

collective during the maneuver, using only the cyclic input channel to accelerate and

decelerate the helicopter. In general, open-loop use of collective can easily excite the

lightly-damped elevation mode, making it difficult to return the helicopter to a hover

trim state without significant overshoot in velocity and elevation. The feasible model

inputs (dash-dot curves in Figure 4-16) very closely match at lower frequency the pilot

125

- pilot motion capture data
- model fitting result

Model feasible point solution for -3670 reposition maneuver

2 4 6 8 10 12
time (sec)

14 16 18 20 22

0 2 4 6 8 10 12 14 16 18 20 22
time (sec)

Figure 4-16: Input behavior for -3670 reposition maneuver.

Velocity profiles for reposition maneuver class.

interpolation direction

Z,/,

00

-200

-300 1 8 2
An 0 12 14 16 1 20

time (sec)

Figure 4-17: Velocity profiles for reposition maneuver class.

126

2

1.9

1.8

1.7
0

1.6

1.5

0.6

0.4

0.2

C-,

0

0

-0.2

-0.4

-0.6

-0.8

- -

/6 --
r \ ---

I I I I N

-5\

-10\

-15\
2:1 1
Cd

-25

-30

-35

-40

0

0

22
- 60 2 4a = x, (deg)

50

40 Pitch profiles for reposition maneuver class.

30

20

0 10
VN

0
interpolation direction

-10

-20

-30

0

-200

a =x (deg) 0 2 4 6 8 10 12 14 16 18 20 22

time (sec)

Figure 4-18: Pitch profiles for reposition maneuver class.

cyclic input while using some collective input to increase thrust and accelerate the
helicopter. Motion capture plots for the pi feasible point corresponding to a, = -47
deg closely resembles the plots shown here.

Once the feasible points pi and P2 are available, trajectory interpolation fills out
the entire reposition maneuver family. Figures 4-17 and 4-18 show the correspond-
ing a-parametrized velocity and pitch profiles, respectively. It is then possible to
select and fly, in closed-loop, the intermediate maneuvers corresponding to the values
a = -180 deg and a = -270 deg. Taking sensor data snapshots of the corresponding
motions on the actual helicopter gives the visualizations seen in the second and third
plots of Figure 4-19. The first and fourth plots show snapshots of the pilot-flown
a1 and a 2 trajectories. The interpolated closed-loop trajectories very clearly resem-
ble their generating examples, giving an experimental validation of the methods of
Section 2.3.

4.5.5 Pilot-Demonstrated Dash-Accelerations

This subsection gives another example of piloted-flight motion capture, creating a
parametrized family of hover-to-cruise dash-acceleration maneuvers. Here, the heli-
copter begins at a level hover state with Ti = 0 and 2j = 0. The final elevation is also
fixed at Zf = 0 but the final steady cruise speed is variable with a = f E [-70, -22.5]
deg/sec. These bounds follow from the particular recorded pilot maneuvers deemed
to have satisfactory attributes, such as steady accelerations, little-to-no overshoot of
the final velocity, and small elevation excursions from level.

Following the earlier maneuver examples of this section, the parametrized bound-

127

20

0

-20

20
_0

o 0

0-20

I I I I I

-350 -300 -250 -200 -150 -100 -50 0
position (deg) --- Demonstrated maneuver to -470

IL I I I I 1

-350 -300 -250 -200 -150 -100 -50 0
position (deg) --- Execution of interpolated maneuver to -1800

0-

20

-20

20

-350 -300 -250 -200 -150 -100 -50 0
position (deg) --- Execution of interpolated maneuver to -2700

-350 -300 -250 -200 -150 -100 -50 0
position (deg) --- Demonstrated maneuver to -3760

Figure 4-19: Visualization of demonstrated and interpolated reposition maneuver
data.

128

0)

a)

0)

Pilot Demonstration-

Execution of interpolated maneuver

0)
0)

_0

0)

_0

0

CZ

Execution of interpolated maneuver
" -'-- "- -- - -. - - -~ ~ -~ -~ ~

Pilot Demonstration

'~ <-''H

-

-0 ---
-20

20

0

-20

-40

3 -60

-80

5

0

-15

60

2 4 6 8
time (sec)

0 2 4 6 8
time (sec)

6

10 12 14 16

10 12 14 16

Figure 4-20: Motion capture result for dash-acceleration to -70 deg/sec maneuver.

ary condition constraint takes the form

hbc(p. G) =

v(O;p) - 0
v(1;p) - a
z(0;p) - 0
z(1;p) - 0

O(0;p) -#ho
(1;p) -Of(a)

col i(0; p) -_T
7 coIlhov

Vcoll(1;p) - ;co7lf (a)
/cyc(0; p) - Vcyc,hov

cyc (; P) - /cyC.f (a)

(1/T)z'(0; p) - 0
(1/T)z'(1; p) - 0
(1/T)O'(0; p) - 0
(1/T)0'(1: p) - 0

=0 (4.58)

where there is no need for the final position constraint of the preceding reposition
maneuver.

Figure 4-20 shows the system behaviors of the second piloted motion prototype,
corresponding to a 2 = -70 deg/sec, and the resulting model feasible point, arrived
at through the methods of Section 4.3.2. Figures 4-21 and 4-22 show the velocity and
pitch profiles of the resulting dash-acceleration family. respectively. It is interesting
to note that as the maneuver duration T increases with decreasing a (that is, with

129

-- pilot motion capture data
- model fitting result ~

Model feasible point solution for 0 to -70 deg/sec dash-acceleration maneuver

0 2 4 6 8 10 12 14 1
time (sec)

0

7 N

N ,7/~
/7

0)
0)
-D
-c
C-)
a

40

20

0

7

-~ 7 7 N.

'1

-
-

Velocity profiles for dash-acceleration maneuver class

10\

-0
n rp atio

0

_1-7
-5

20 2
0) K K Kinterpolation

-30-'~'< direction

0

> -50- -20

-600
-701

0 2 5601
21

16 -70 a = v (deg/sec)

time (sec)

Figure 4-21: Velocity profiles for dash- acceleration maneuver class.

60- Pitch profiles for dash-acceleration maneuver class

50 --

40

30

20 j

interpolation
10 direction -20

-30
-40

07 -50
0 2 4 6-60

6 8 10 12 14 16 7
a = v, (deg/sec)

time (sec)

Figure 4-22: Pitch profiles for dash-acceleration maneuver class.

130

-20

00

=-20 -

40-

-6

0

ci1

5

4

3

2

C.1

00 2 4 6 time (sec) 8 10 12 1

0

0 - -

0 -

0r

:4Closed-loop execution of dash-acceleration to -50 deg/sec
nh based on interpplation of pilot motion gapture dat
0 2 4 6

time (sec)
8

4

4

10 12 14

Figure 4-23: Closed-loop execution of pilot-inspired dash from hover to -50 deg/sec.

larger final velocity magnitude) the pitch signals display more oscillation periods.
This behavior makes intuitive sense, as the linear hover pitch period is roughly 5
seconds (see Appendix A) so that longer maneuvers allow more time for this mode
to develop. Similar behaviors hold for the parametrized elevation profiles (not shown
here), which through nonlinear coupling to the pitch dynamics (see Equations 4.1),
tend to oscillate with a roughly 5 second period. This behavior is evident in the single
maneuver motion sample of Figure 4-20.

Just as with the parametrized reposition family, it is straightforward to take
a particular maneuver instance from the continuous family p(a) and execute it in
closed-loop on the helicopter. Such "playback" demonstrates the end result of the
trajectory interpolation process. It also helps illustrate a potential training tool for
machine learning algorithms that use human-demonstrated examples to provide gen-
eral motion primitives for autonomous systems. Figure 4-23 shows the reference and
closed-loop tracking behavior for a dash-acceleration with a = -50 deg/sec. As
discussed in Section 4.4, state and control weights for the gain-scheduled LQ-servo
design emphasize velocity tracking, leading to fairly small errors in the first subplot
of the figure. However, the (lower weight) feedback on elevation and pitch tracking
still maintains reliable performance for z and 6, with typically no more than 3 degrees
of error in elevation and 10 degrees of error in pitch for this maneuver class.

131

commanded
actual closed-loop-

132

Chapter 5

Maneuver Classes in Hybrid
Motion Planning

With the parametrized maneuver framework established, it is now possible to use
trajectory families for hierarchical vehicle path planning. High-level hybrid system
motion planners often use abstracted dynamic models to generate vehicle guidance
solutions. In the present context, the dynamics-based algorithms of Chapter 2 allow
high-level planners to consider maneuver classes as both simple motion building blocks
and inner-loop reference trajectory generators for low-level tracking controllers.

This chapter illustrates the use of parametrized maneuvers as motion primitives
in an existing mixed integer-linear programming (MILP) optimization framework.
As noted in Section 1.3.1, MILP-based methods provide powerful tools for formu-
lating diverse vehicle guidance problems. These techniques accommodate simplified
high-level representations of inner-loop control systems, offer a natural interface for
including agile maneuver elements, and have been successfully demonstrated in nu-
merous practical vehicle guidance settings [8, 95, 131, 132, 133, 134]. The MILP
problem formulation uses continuous-valued state variables to describe a system's
configuration space and discrete, binary variables to capture mode-switching opera-
tions as well as logic-based and combinatorial constraint sets. However, to date, most
MILP planners have only employed static maneuvering elements with fixed, invariant
maneuver boundary conditions [133]. With the parametrized trajectory capability,
it is now possible to generalize the maneuvering operation, thus adding richness to
the existing guidance framework and creating an extremely flexible path planning
capability.

This chapter begins with a brief introduction to the MILP guidance framework,
giving an overview of objective function and constraint types useful for planning mo-
tions of the three degree-of-freedom helicopter. This overview follows from examples
provided by numerous MILP-based rotorcraft and fixed-wing references [8, 40, 95,
125, 132, 133, 134], and is included here to provide sufficient background and to
demonstrate the versatility of the MILP method.

The chapter then illustrates how to both simplify the system model of Equations
(4.1) for planning purposes and adapt the parametrized maneuvering constraint for-
mulations of Chapters 2, 3, and 4 to the MILP format requirements. Finally, the

133

last two sections use the combined guidance-maneuvering framework to solve inter-
esting one and two-dimensional planning problems. The one-dimensional case shows
the benefits of parametrized maneuver boundary conditions and details the specifi-
cation of nonlinear system motions that meet MILP constraint requirements. The
two-dimensional case illustrates the ease with which interesting maneuver classes can
be designed for particular mission requirements. Both of these cases solve MILP
problems using the CPLEX@ optimization software [69] and an AMPL@ encoding
language preprocessing environment [50].

5.1 Mixed Integer-Linear Programming for Tra-
jectory Planning

The core of the mixed integer-linear programming framework is a set of discrete-time
linearly controlled system models, representing a vehicle in closed-loop operation.
The linear model states need only include those quantities, such as vehicle position
and velocity, necessary for solving a guidance problem. As a means of reducing
problem dimensionality without sacrificing high-level model fidelity, many inner-loop
quantities, such as pitch angle for the 3-DOF helicopter or pitch and rotor states for
airborne helicopters, can be excluded from the MILP formulation.

Accompanying the linear system closed-loop models are a set of binary variables.
taking values of either 0 or 1 at any given decision step. These variables allow for
switching between different closed-loop models (as might be appropriate in differ-
ent regions of a vehicle flight envelope), decisions to execute agile maneuvers, and
complex constraint sets possibly involving conditional logic. These binary variables
can appear in both the objective and constraint functions, often activating or deac-
tivating expressions that correspond to the different system models, maneuver state
transformations, and physical guidance constraints.

This section presents several useful MILP objective function and constraint tools
for constructing interesting vehicle guidance problems, based on examples in the liter-
ature [8, 40, 95, 125, 132, 133. 134]. The discussion begins with a review of the basic
problem variables, including the planning decision horizon, state and binary vari-
able types, and linear command-following dynamic system models. Then the novel
parametrized maneuver class representations, generalizing existing fixed maneuver
elements, appear as additional planning alternatives to complement the linearly con-
trolled modes. With these problem building blocks in place, the section concludes by
reviewing existing minimum time and minimum state error objective functions and
other useful constraint types.

5.1.1 Basic Definitions

The MILP hybrid system model operates on a discrete decision-step planning horizon,
with each individual decision opportunity given an integer index t. In general, this
index variable does not represent the system at some time t but a decision made
at step t (one may use the symbol k in place of t, if preferred). When operating

134

in a linearly-controlled mode (a so-called "linear-time invariant mode" (LTI-mode)),
the decision step intervals coincide with the sampling rate T, of the linear models.
However, when executing a maneuver trajectory. the decision steps correspond to the
actual duration of the maneuver, since it is only at maneuver completion that the
next guidance decision can be made. This distinction between time step and decision
step will be important particularly when solving minimum time guidance problems.

Consider a discrete planning horizon over H decision steps, each denoted by indices
t with

tE{0, 1, 2,. .,H}. (5.1)

Define a closed-loop continuous-valued system state vector x with N components.
This variable gives the high-level vehicle state at any given decisions step t according
to

x1 [t]
X t] -(5. 2)

xXAlx .t

The components of this vector typically correspond to closed-loop vehicle states, in-
cluding accelerations, velocities, and positions, but do not include detailed "internal"
states unnecessary for the guidance problem. (Note that the bold vector quantities
of this chapter do not correspond to the boldface vectors in Section 4.4). Similarly,
define a closed-loop continuous-valued system command input vector u with N,, com-
ponents, given at each decision step t according to

ui[t]

u[t] = (5.3)
UtN, [t]

The components of u typically correspond to commands issued to the closed-loop
system, such as velocity or position setpoints.

Define the following four index sets to denote the entire integer decision horizon, a
decision horizon excluding the final decision step H, the set of state vector component
indices, and the set of input vector component indices, respectively:

H = O.. .. HI

H1= {,. .. ,H- 11 (5.4)

X = {..,N}

U = {1..I.,N,}

These notations will be useful later for describing the discrete domains of the problem
binary variables.

Further. given an ordered subset of n < N state indices S = {si,..., s} C X.

135

define the corresponding state component vector xs[t] at step t as

xs] . (5.5)

Similarly, for an ordered subset of m < N,_ input indices P ={pi.....pm} C U,
define the corresponding state function up[t] at step t as

up It] = . (5.6)

5.1.2 Linear Operating Modes and Binary Decision Variables

In a general MILP planning problem, the system may switch between L linearly-
controlled models (LTI-modes) [133, 134]. These models may correspond to different
control architectures or to different controller gain selections over various system
operating regions. As such, define an LTI-mode index set L as

L = {1,. ... , L}. (5.7)

For each LTI-mode and each decision step up to but excluding step H, define a binary
variable bi a value of either 0 or 1:

bi[t] E {0. 1} V t E H_1 ,V i E L. (5.8)

Here, bi[t] =1 if the system is in LTI-mode i at step t. Alternatively, bi[t] = 0 if
the system is not in LTI model i at step t. For each LTI-mode and each decision
step, there exists a set of linear constraints with state matrix Ai and input matrix
Bi describing the closed-loop system state evolution. That is, V t E H_ 1,V i E L it
holds that

x[t + 1] - Ax[t] - Bju[t] < K(1 - bi[t]) (5.9)

-x[t + 1] + Aix[t] + Bju[t] < K(1 - bi [t])

where K is an appropriately sized vector of large positive numbers, many times greater
than the typical problem data. The role of the binaries is made clear by Inequalities
(5.9). If bi[t] = 1 at step t., then the right hand sides both equal zero and the system
must obey the state transition of the ith LTI-mode, that is, x[t+1] = Ax[t] + Bju[t].
Alternatively, if bI[t] = 0 at step t, the right hand sides are equal to vectors of large
numbers, meaning that the constraints of Inequalities (5.9) are relaxed.

136

5.1.3 Parametrized Maneuver Class Representation

As a planning alternative to the LTI-modes, a vehicle may execute a member of an
agile maneuver family at decision step t. Consider a set of .1 parametrized maneuver
classes, each given an index j and define the corresponding maneuver index set M as

M={1 M}. (5.10)

For each maneuver class and decision step, define a corresponding maneuver binary
variable ni[t] according to

m j[t] c {0, 1} V t E H-1 ,V j E M. (5.11)

These binaries play essentially identical roles to the LTI binaries of Equation (5.8),
with nj [t] =1 if a maneuver from class j is executed at step t and nj [t] = 0 if a
maneuver from class j is not executed at step t. Similar to the LTI-mode control-
driven state transitions of Inequalities (5.9), a set of inequalities describe the state
transitions of the entire jth maneuver class. That is, employ a set of maneuver
constraints V t E H_ 1,V j C M such that

x[t + 1] - As1,x[t] - Me - x[t] ; K(1 - my[t]) (5.12)

-x[t + 1] + M1, x[t] + Mj + x[t] < K(1 - mj[t]).

with the constraint interpretation and role of K identical to that in Inequalities (5.9).
Note that these constraints imply that the jth maneuver class obey a set of affine
state transitions (with transition matrix M8 , and constant vector M.) based on the
state x[t] at decision step t. Later sections of this chapter will describe how this
affine transformation requirement can be stipulated for parametrized maneuvers of
nonlinear systems. It is important to note that this affine representation of maneuver
classes mimics existing methods for including single, fixed maneuver elements [133,
134]., and therefore provides a means of adding richness to set of available guidance
solutions without significantly altering the basic problem formulation.

5.1.4 Mode Switching

Further, it is clear that a vehicle cannot operate in more than one LTI-mode or
maneuvering motion at a given decision step. Therefore, it is necessary to impose a
mutual exclusivity summation constraint on the LTI-mode and maneuver binaries at
each decision step, so that, V t E H_1

L Al

Zbi[t] + Ena [t] = 1. (5.13)
j=1

In a given problem, if there is only one LTI-mode, Equation (5.13) can be dropped
for simplicity, with a maneuver binary summation of the form K E m11 1 "[t] replacing
the right-hand side of Inequalities (5.9).

137

5.1.5 Minimum Time Formulation

Given a vehicle initial condition and a desired goal state, two useful objective functions
for MILP guidance problems are those minimizing either vehicle arrival time or an
accumulated state error function [132. 133, 134]. To compute minimum time solutions.
first introduce an additional binary variable d[t] for every decision step. according to

d[t] E{0, 1} V t C H. (5.14)

Let xgoal denote the desired system terminal goal state. with a subset S C X used to

select the specific components of x contained in xqoaI. (For example, the goal condition
may involve only a position, even though the full planning state x contains both

position and velocity). Now add the following terminal state inequality constraint
functions V t E H:

xs[t] - xool < K(1 - d[t]) (5.15)

-xs[t] + Xgoai < K(1 - d[t]).

In coordination with the binary variable definition of Equation (5.14), when d[t] 1.,
the system must be in the goal configuration at decision step t, with xs[t] xgoal.

For any step where the system state is not consistent with the goal. it must hold that
d[t] = 0. To require that the goal state be reached at a unique step in the planning
horizon H. introduce the binary equality constraint

H

E d[t] = 1. (5.16)
t=O

This uniqueness specification is necessary to pose the minimum time objective func-
tion J in the form

H H-1 M

J =Z d[t]tTs + E (<t] - E m[t]T'). (5.17)
t=O t=O j=1

The first term sums the elapsed time to reach the goal state Xgoal assuming the

guidance solution is entirely composed of LTI-modes with fixed sampling interval T,.
The second terms corrects the summation using the Al maneuver binaries mr[t] and
a special cm [t] cost term in case any maneuvers (whose durations are not equal to T,
in general) are employed during the problem solution. This novel maneuver duration

Cm[t] term equals the actual time duration of a maneuver executed at decision step t
and is set according to the following constraints, specified V t E H-1, V j c M:

Crn[t] - J8,x[t] - Jcj < K(1 - m[t]) (5.18)

-cm[t] + JSix[t] + Jcj < K(1 - mj.[t]),

and

138

M

Cm[t] < K mj [t] (5.19)
j=1
M

cm[t] < K m[t].
j=1

Inequalities (5.18) update the maneuvering cost using a 1 x N vector Jj and scalar

Jcj for each maneuver class j according to cm [t] = J ,x[t]+Jc 1 (if m[t] =1). The Js<i
and Jc,j indicate that the maneuver duration is an affine function of the system state
at the commencement of the maneuver. Similar to the affine state transformations
of Inequalities (5.12), the linear duration requirement can be imposed during the
design of maneuver families, as will be illustrated later in this chapter. Note that if a
maneuver is not executed at decision step t, then Inequalities (5.19) set cm[t] = 0, and
the cost function J then instead counts the LTI-mode sampling interval T. at time
t. Given the objective function of Equation (5.17), the binary variables of Equations
(5.8), (5.11), and (5.14) and the continuous-valued, decision-step state variables of
Equation (5.2) and control variables of Equation (5.3) and finally the maneuvering
cost cM[t], the minimum time guidance problem statement is [40, 133, 134]:

min J. (5.20)
bi [t],mj [t],d[t];x[t],u[t],cm [t]

The constraint set comes from the equalities and inequalities given so far and any
additional constraint appearing in later subsections used to describe a particular
guidance scenario.

Note that it is occasionally useful to add a term of the form EzY1 zNu eILiU[t]I to
the cost function of Equation (5.17), where Eu is a small number satisfying 0 < cu < 1
[133]. This expression helps prevent undesired erratic or oscillating control inputs
when there might be a smoother, more intuitive control profile that drives the system
to the same goal state with roughly the same cost performance. Note that this
correction term contains a nonlinear absolute value expression that, at first glance,
does not appear to satisfy the linearity requirement of a MILP problem statement.
References [15, 17] discuss the introduction of linear slack variables to model the
absolute value function.

5.1.6 Minimum State Error formulation

While the minimum time formulation is fairly intuitive and straightforward to imple-
ment, it requires the introduction of the d[t] binaries at every decision step and the use
of the linear maneuver cost function cm [t]. These additional terms add complexity to
the problem formulation and can increase solution time, an important consideration
for prospective real-time applications. In addition, the requirement of linear time
variation within a maneuver class requires an optimality gap for most useful motions.,
thus inducing an inherent performance degradation.

139

A useful alternative in some settings is an accumulated state error metric [134].
similar to an integral 1-norm objective in continuous-time problems. Here., the MILP
objective function takes the form

H

J Z |xerr[t] 1, (5.21)
to

where Xer,[t] gives the error between the system state x[t] at time t and a desired goal
state xgoal, according to the following constraints V t E H

Xerr[t] - (xE[t] - Xgoal) < 0 (5.22)

-Xerr[t] + (XE[t] - Xgoal) < 0.

Like the subset S in Inequalities (5.15), the subset E c X is useful for extracting
those system state components required to define the guidance error. The W1 in
Equation (5.21) denotes a diagonal weighting matrix used to normalize state physical
dimensions and/or emphasize some error components over others. The vector 1-norm
in Equation (5.21) naturally includes scalar absolute value functions which can again
be accommodated using the slack variable methods of references [15, 17].

Given these definitions, the minimum error problem statement, is:

mil J, (5.23)

which does not contain the d[t] and Cm[t] free variables seen in Equation (5.20).

5.1.7 Other Existing Constraint Types

In addition to the above system representations and objective functions, there are
many other constraint formulations useful for fully modeling a guidance optimization
problem. This subsection reviews some of the standard constraint types in vehicle
planning problems with previous examples available in the literature [8, 40, 95, 125,
131, 132, 133, 134].

Naturally, it is necessary to specify an initial system state x0 and control command
vector uo. In addition, for minimum time problems, it is useful to set the maneuvering
cost function cm[t] to zero at the problem outset. These three conditions are given
by the simple assignments:

x[0] = x0 , u[0] = u0 , cm[0] = 0. (5.24)

To impose a global (i.e. at every decision step) upper bound R on a index subset
ST C X of the state vector and. similarly, a global lower bound x on an index subset
S_ C X, apply, constraints, V t E H, of the form

xs[t] - x < 0 (5.25)

-xsX[t] + x < 0.

140

Global control bounds. often necessary for well-posed optimization problems. follow
identically to Inequalities (5.25) and. V t E H, take the form

us[t] - T 0 (5.26)
-us"[t] +u < 07

with U giving the upper bound on an index subset S- C U of the control and u giving

a lower bound on an index subset S,, C U.

An extremely useful set of bounds are restrictions on the vehicle initial conditions

for the 11 maneuver classes. If a certain maneuver is only parametrized or feasible

over some finite range of initial states (for example, over certain velocity or altitude

range), it is necessary to impose these restrictions on the MILP-based guidance solu-

tion. Fortunately, such bounds are easy to specify and are based on a user-provided

upper bound 5ryO over an index subset Ij C X of the state vector for the jth maneu-

ver, with corresponding lower bounds and index subset given by xjjo and Ij c X,
respectively. These "maneuver authorization" constraints then take the following

form V t E H_ 1 ,V j E M:

xy [ti] - Rj,o < K(I - mT [t]) (5.27)

-x [tI] + j,o < K(1 - mj [t]).

Recalling the interpretation of the maneuver binary variables from Equation (5.11),
the right-hand sides of Inequalities (5.27) enforce the authorization bounds for a

maneuver executed at step t. Note that in other contexts, constraints of this type

can also be employed using LTI-mode binaries bi[t]. forming a partition of the state

space that triggers switchings between the various state-space models of Inequalities

(5.9) [133, 134].
Bounds on the number of maneuvers executed during a particular guidance solu-

tion are easily imposed with linear summation constraints on the maneuver binaries

themselves. For example, to place an upper bound Nm on the total number of ma-

neuvers executed, specify a constraint of the following form V t E H 1 :

H-1 M

E 5 m[t] < Nm. (5.28)
t=O j=1

It is a simple matter to impose such bounds on individual maneuver classes by split-

ting this summation into multiple constraints.

Finally, and particularly useful for many interesting guidance problems, is the

ability to place obstacles in a vehicle flight space, thus forcing a solution path to

navigate around the obstacles while obeying the (dynamically feasible) closed-loop

system dynamics. References [131, 1331 describe a method for approximating general

nonpolytopic constraints by a set of feasible half-planes.

The example in this thesis will treat only 4-sided rectangular obstacles (which re-

quire the planning state x to contain at least two physical position components). Con-

sider the qth member of a set of Q rectangular obstacles. This obstruction will have

141

four faces. denoted here by the symbols fi, f2, fa, f4. For each face, define obstacle
face binary variables at each decision step and denote them by b[t], [tj, bq [t], b q[t]

with b> E {0, 11 V t E H. A given face binary is 0 if the constraint enforcing no
penetration of that face is active; the binary is 1 if the no collision constraint is inac-
tive. Now, in very general notation, express the total rectangular obstacle avoidance
condition as the inequalities

k(M Xq t] - P) < Kb b [t]

k(M X s [t] - pf2) < Kbf[t] (5.29)

(j[Xs t] - pq) Kb [t]

k(iXs [t] - ph) < Kbj [t],

where the .IM9 and P" are vectors and constants, respectively, to the describe the

orientation and position of the ith face of the qth obstacle: the Sq C X are the

index subsets necessary to compute vehicle position with respect to the faces; and

the ± notation allows generality in choosing the face orientations (i.e. which sides

of the faces are the obstacle interior or exterior). In actuality, it is impossible for a

feasible vehicle path to satisfy all four of these constraints simultaneously. Instead,
all that is required is to satisfy at least one of the constraints at every decision step

[131. 133]. Therefore, the following obstacle face binary upper bound must accompany

the Inequalities (5.29), so that, t C H:

4

b b [t] < 3. (5.30)

Note that Inequalities (5.29) and (5.30) only enforce obstacle avoidance constraint

satisfaction at, times corresponding to decision steps t E H; the ultimate continuous-

time guidance trajectory between decision step t and t+1 may actually clip constraint

faces, especially near corners of polyhedral obstacles. This inter-step violation is a

natural consequence of working with a discrete decision step horizon. In general,
when solving guidance problem with a MILP framework, it is necessary to artificially

expand the obstacle boundaries by some margin-of-safety depending on the sampled

system dynamics, sampling time T8, and obstacle physical dimensions [132]. In many
cases, it is possible to use the state and control bounds to bound the inter-decision

step constraint violation.

5.2 Application to the 3-DOF Helicopter

Given the basic mixed integer-linear programming tools of the preceding section,
it is now possible to consider some of the specific terms for the three degree-of-

freedom helicopter. In particular, this section describes the LTI-modes used to plan

helicopter motions, the requirement of affine maneuver class state transformations

and time durations as seen in Inequalities (5.12) and (5.18), and techniques useful for

142

generating parametrized maneuvers quickly. Together. these discussions will set up
the one and two-dimensional motion planning examples of the following sections.

5.2.1 LTI Models

The most basic element of MILP-based motion planning is the LTI-mode, which ap-

proximates a vehicle operating in a closed-loop command-following configuration. For

the helicopter, the same control architecture used for nonlinear maneuver tracking,
as discussed in Section 4.4, may be used for nominal velocity, position, and elevation

control. As will be seen shortly, the helicopter LTI-mode commands are sequences of

velocity and elevation setpoints. To apply the methods of Section 4.4 for control of

LTI-modes, simply take the MILP-solved state vector sequences, apply correspond-

ing quasi-static collective and cyclic profiles based on Equation (4.22), and apply the

feedback loop of Figure 4-2 with 0
cd = crnd = Zcmd 0. Note that for the helicopter

operating under gain-scheduled control, a single LTI-mode (L = 1) is sufficient to

describe virtually the entire useful flight envelope.

The first motion planning scenario below involves one-dimensional helicopter mo-

tion, in which elevation z is assumed equal to 0. As such, flight is restricted to the

positive and negative travel directions only. In this case, a suitable planning state

vector in the form of Equation (5.2) is

x[t] [[t] (5.31)
X [t]_

where the ii component allows for easy bounds on vehicle acceleration. With elevation

reduced to level flight only, the LTI-mode system input is simply a velocity command:

U[t] = Vcnd[t]. (5.32)

The inclusion of position x in Equation (5.31) allows for specification of vehicle initial

and final position, even if velocity is the only command component. To form a

corresponding LTI model of the form x[t + 1] = Ax[t] + Bu[t], simply approximate
the continuous-time velocity tracking loop as a unit-gain lightly-damped second-order

system with an additional integrator for position. That is, let the velocity control

loop be approximated as

d K = 1 0 0 [] + 0 Vcmd, (5.33)
' X 0 1 0 X 0

where wn and (may be tuned to match the observed system closed-loop performance.

In the control design of this thesis, it is suitable to choose Wn = 1.5 rad/sec and C =

1.0. The LTI-mode A and B matrices then follow from a zero-order hold continuous-

to-discrete transformation of state equations (5.33) using a T, = 1 sec sample time.

In the second motion planning example, the restriction to level-only elevation is

143

lifted, allowing for both velocity and elevation commands. In this case, choose the
five-dimensional LTI-mode state vector

~ i~t]-
'It]

x[t] = x[t] (5.34)

[t]
I t]

and two-dimensional input command vector

u[t] = c den[tl 1 (5.35)
zemind t]

Now augment to the continuous-time state-space model of Equation (5.33) to include
an additional unit-gain second-order elevation response channel:

-1 2 0 0 0 2 0

d 1 0 0 0 0 ? 0 0-
x 0 1 0 0 0 x + 0 0 ?emd

dt -2n2 n2 0 '2 crrnddii0 0 0 -2(2L'n,2 -a),.2 n,2o

0 0 0 1 0 0 0
(5.36)

where the velocity and elevation tracking loops are taken to be decoupled. Set the
modeling constants Lo, = 1.5 rad/sec and (I = 1.0 as above for the velocity tracking
loop. Elevation setpoint tracking occurs somewhat faster but with more overshoot,
leading to values of Wn,2= 2.0 rad/sec and (2= 0.3. Again, obtain LTI-mode matrices
A and B by continuous-to-discrete conversion of Equation (5.36) with a sampling time
of ', = 1 sec.

5.2.2 Affine Transformation Maneuver Design

Because MILP-based path planners and solution algorithms can only accommodate
discrete binary variables and continuous real variables subject to linear constraints,
maneuver classes must perform affirte transformations of the state vector. This fact is
evident in Inequalities (5.12), which imply the following affine equality relation when
a maneuver from class j is activated at decision step t (i.e. when n1 [t] = 1):

x[t + 1] = M 8,x[t] + Mc. + x[t]. (5.37)

In addition, if the maneuver class is considered within a minimum time problem
statement, the maneuver duration must also be affine in the initial state., as seen in
Inequalities (5.18), which imply that

c4[t] = JS Ix[t] + JCJ (5.38)

when mj [t] = 1.

144

a~X, a)v

Figure 5-1: Affine maneuver transformations are dynamically feasible, although typ-
ically suboptimal.

However, a general parametrized maneuver class p(a) for a general nonlinear sys-
tem may not necessary obey Equations (5.37) and (5.38) "naturally". That is, given
an arbitrary maneuver class p(a) based on prototype trajectories p, and P2, it is not
likely that the physical state transformation and motion duration will be affine in
the MILP planning vector x[t]. (Note that in a given planning problem, the ma-
neuver class variable a must be some function of the vector x[t], so that x[t] at the
commencement of the motion uniquely defines the specific element of the maneuver
class).

Indeed, the example of Figures 3-1 and 3-2 shows a case where the maneuver time
duration T varies as the square root of the initial velocity Ti = a and is clearly not
an affine function of the initial state. However, as was discussed in Section 3.1 and
illustrated in Figures 3-3 and 3-7, it is possible to use available degrees- of-freedom in p
to impose additional user-selected constraints on the trajectory family, achieving some
useful property for p(a). In the cases of the figures, an additional equality constraint
of the f'orm T(a) =- f(a) =_ 0 made possible user-selected profiles of maneuver time
throughout the entire family. In the case of Equation (5.37) (and Equation (5.38) for
minimum time problems), it is a simple matter to impose extra equality constraints
to enforce affine state transformations and affine maneuver times.

To show that these extra constraints do not interfere with dynamic feasibility,
consider a bounded control quick-stop maneuver, such as that discussed in Section
4.5.1. Bounded control implies that the system can generate only a finite, bounded
thrust, magnitude to decelerate the system. An optimal minimum-time quick-stop
maneuver will employ this maximum thrust regardless of the initial trim velocity
a =7t-,,. As a first-order approximation, a vehicle decelerating under constant thrust

obeys essentially constant acceleration kinematics for sufficiently large -u2 so that the

145

optimal stopping distance x*0 .(o) is approximately parabolic in a (assume xi = 0
without loss of generality) and the minimizing time T,,(a) is approximately linear i

a, as illustrated in Figure 5-1. However, by building a constant initial delay AT into

each maneuver, during which the helicopter cruises at its initial speed vi = a:, it is a

simple matter to create a suboptiial maneuver class with duration T(a) T*,(a) +

AT and with displacement xf(a) = x*ot(a) + Ax(a) = x*.t(a) + a T. Then it
is possible to (conservatively) enforce affine constraints to define a further maneuver

class with affine duration function TmnrrVr(() = k 1a > TO*t(a) + AT and affine final
displacement function xrf rmr (a) = k 2a < x* 0,(a)+ oAT for some constants k1 , k2 >

0. Note that other important planning variables are easily affine functions of T = a

for the quick-stop maneuver. For example, the final trim velocity Cf is identically 0,
and is therefore trivially an affine function of a. Further, the final vehicle acceleration

is also zero since the final state boundary condition constraints of Section 4.2.4 enforce

equilibrium conditions at both beginning and end of maneuvers.

This design exercise illustrates two important points regarding maneuver classes

in MILP-based path planners. First. it is a fairly simple matter to create feasible,
affine maneiuver transformations given the interpolation framework of Chapter 2, the

instructive examples of Chapter 3, and the specific trajectory variables of Chapter 4.

Secondly, the affinity requirement of MILP-based planners forces the parametrized

maneuver class to have suboptimal performance, in general, relative to common cost

functions. Such a "degradation" is typically not a major concern though since: (1)

the optimal maneuver family can be computed off-line and affine state transforma-

tions chosen specifically to minimize the optimality gap; and (2) the performance

degradation may be trivial compared to alternative planners which use only a few

static maneuver elements with fixed boundary conditions, therefore forcing the ve-

hicle to spend time reaching the required maneuver initial state and thus incurring

additional cost. If desired, it is always possible to break a maneuver class up into

smaller families to further reduce the overall optimality gap. The consequence then

is an increase in the number of maneuver class binary variables in the MILP problem

statement.

As a final note. the parametrized maneuver framework of Chapter 2 can be made

to suit the requirements of very general motion planners, simply by imposing the

necessary constraints on available degrees-of-freedom in p, a luxury made possible by

having access to the entire space of feasible maneuvers.

5.2.3 Considerations for Real-Time Maneuver Generation

As shown in Figure 1-3, a reasonable procedure for building parametrized maneuver

classes into a combined motion planning and control scheme is as follows. First, define

a conceptual maneuver class and decide what constraints are necessary to describe

it. For MILP-based solutions, this process may involve introducing affine state trans-

formation constraints, such as those discussed in Section 5.2.2, to the usual vehicle

dynamic feasibility and boundary condition constraints. It is of course necessary to

generate feasible example maneuvers which form the guidepoints for trajectory in-

terpolation. As discussed in Section 4.3 with regards to the 3-DOF helicopter, these

146

example motions may come from off-line nonlinear programming or motion capture

(or even motion capture methods applied to mathematical "sketches" of desired tra-

jectories). These methods can take many minutes to perform, given that nonlinear

programming is a somewhat uncertain process with no guarantee of convergence for

a given trajectory. Thus it is clearly necessary to generate the examples off-line.

With several known feasible motions in place and constraint functions well-defined,

it is then possible to generate a continuous maneuver class by carrying out the tra-

jectory interpolation algorithms of Section 2.3. The expressions of Section 3.2 give

bounds on the expected number of elementary operations involved in interpolation

but actual computing times are naturally platform and application dependent. For

the helicopter maneuvering examples of Section 4.5, once a reasonable update interval

(in a) for constraint derivatives is found (from experimentation, thus revealing the

degree of nonlinearity in the constraint functions), an entire maneuver class involving

only equality constraints can take 10 to 15 seconds to generate; incorporating full

inequality constraints (without using any engineering judgment to trim superfluous

components of g(p)) requires 1 to 3 minutes to fill in the entire maneuver class, using

MATLAB@ software and a 930 MHz Pentium III processor. Here, generation of the
"entire" class implies continuation of the interpolation algorithms across the entire

interval [I1, 02], thus obtaining a complete function p(a). Note however that this

process, which sits in the upper right-hand block of Figure 1-3, generates a family of

many feasible trajectories in roughly the same time (and often less) than it takes to

find a single feasible motion with nonlinear programming or motion capture.

Finally, with the entire maneuver family in hand, it is reasonable to store a se-

quence of maneuvers {p(ai)}, where {a} is some gridding, or mesh, of the interval

[a 1, a 2] of the same resolution as the constraint derivative update rate used in obtain-

ing p(a). Then, given the availability {p(ai)}, it is possible to generate any new p(a)
for any a E [ai, 02 with only a single constraint set differentiation, making the tra-

jectory generation process extremely fast and reasonable for real-time applications.

For the maneuvers of Section 4.5 and those of the following sections, this process

requires 2 to 4 seconds depending on the maneuver type and number of constraints

involved. It is this operation which occurs in the bottom center block of Figure 1-3.

5.3 1-D Example: Sudden Direction Reversal and
Return to Hover State

It is now possible to integrate the helicopter maneuver parametrizations of Chapter

4 into the MILP-based hybrid system framework of Section 5.1 to create a highly

flexible vehicle path planning capability. This section considers a simple but infor-

mative case of a helicopter at an initial, steady cruise state traveling in the negative

travel direction, but then being required to return, in minimum time, to a resting

hover state at a position originally behind it. This scenario presents a good oppor-

tunity to employ two highly useful helicopter maneuvers, a direction reversal and a

flaring quick-stop motion (similar to that seen in Section 4.5.1). The case is similar

147

to circumstances autonomous helicopters encounter in cluttered urban environments
requiring aerobatic direction-reversing motions [133], or rapid retreat scenarios where
a vehicle encounters a sudden, forward-positioned threat.

For this example, the helicopter is at a near-level elevation state throughout the
entire motion, so employ the 3-component planning state vector of Equation (5.31),
the scalar velocity command input of Equation (5.32). and the continuous-time LTI-
mode closed-loop system model of Equation (5.33). In light of the gain-scheduled
closed-loop servo design of Section 4.4, it is sufficient to consider a single LTI-mode.,
that is, L = 1. Therefore, drop the i subscript notation from Inequalities (5.9) and
refer to the discrete state and input matrices simply as A and B, respectively. Note,
however, that because there are two available maneuvers (II 2), it is necessary to
retain the j subscripts for all maneuver variables.

Consider an initial, steady cruise state defined by the state vector

0
XO [-50] (5.39)

0

where all angular units are given in degrees: the initial acceleration is 40[] = 0
deg/sec2 , the initial velocity is v[0] = -50 deg/sec, and the initial position is selected
to be x[0] = 0 deg. The goal state to be reached in minimum time is

0
Xgoa

0
= 0 , (5.40)

'00_

corresponding to a steady hover state at xgoal = +500 deg, and thus requiring a
change in helicopter direction. Note that since the goal state xgo involves all three
components of x. it follows that S = X = {1, 2, 3} in Inequalities (5.15).

Define the initial velocity command input as uo = -50 deg/sec, in accordance
with the problem initialization of Equations (5.24), so that the vehicle will continue
at a steady velocity to the first decision step of t = 1 where x[1] x[0]. Additionally,
the first maneuver cost term follows as c,,[0] = 0, simply verifying that no maneuver
occurs at the t = 0 (problem initialization) decision step.

Now, since L =1 and 1 = 2, the constraints of Inequalities (5.9) and Equation
(5.13) simplify algebraically to

x[t + 1] - 4x[t] - Bu[t] < K(mI[t]+ M 2 [t]) (5.41)

-x[t + 1]+ Ax[t] + Bu[t] < K(1ni[t]+ m,2 [t]),

so that if no maneuver occurs at decision step t (i.e. 'mI[t] = m 2 [t] = 0), the planning
dynamics follow the LTI-mode equation x[t + 1] = Ax[t] + Bu[t]. Otherwise, if a
maneuver occurs (either rm[t] = 1 or m 2 [t] = 1), then Inequalities (5.41) are trivially

satisfied thanks to the vector K of large numbers.
To form a well-posed guidance problem, impose 0.5 deg/sec2 magnitude bounds

on the vehicle acceleration 0t]; in terms of Inequalities (5.25), it follows that ST =

148

$ = f{1} and x = -x = 0.5 deg/sec2 . In addition. impose 60 deg/sec magnitude
bounds in the commanded velocity, giving S-= = {1} U with U = -u = 60
deg/sec. based on Inequalities (5.26).

Now, consider a simple direction reversal maneuver (given index j = 1) resulting
in a helicopter velocity in the opposite direction but with no net physical displace-
ment. That is, the helicopter decelerates to zero velocity while traveling in its initial
direction, and then accelerates in the opposing direction, achieving a steady cruise
state at the exact maneuver initiation position. Of course in general, there are still
several indeterminate boundary condition degrees-of-freedom for the motion, with the
maneuver parameter vector a therefore taking the form a = [mj vf, T]T, where the
steady initial and final speeds as well as the maneuver duration can vary. However,
the maneuvering transition requirements of Inequalities (5.12) dictate that the vehi-
cle post-maneuver state x[t + 1] depend on the pre-maneuver state x[t] in an affine
manner. As such, it is possible to apply a dimensionality reducing map of the form
a = y(a) as discussed in Section 2.3.6, so that the maneuver state transition obeys
the form of Inequalities (5.12) as well as the affine cost map of Inequalities (5.18).
Therefore, set o _ ji and choose

a = y(i) =y(u) [-u j, (5.42)
CiOr + C2_

achieving a one-dimensional reversal maneuver class with final velocity exactly op-
posite the initial velocity and with duration T affine in the initial velocity. Analysis
by the method of Section 5.2.2 shows that reasonable choices for the constants in
Equation (5.42) are ci = -14.99 deg- 1 and c2 = 3.69 sec, based on user-selected
feedforward control bounds of V7 ou,max = 2.0 V, VcoI,min 1.0 V and Vcyc,max

Vyc7min = 0.6 V. Note that this analysis is based conceptually on the right-hand
plot in Figure 5-1, since the physical displacement function for the time-optimal re-
versal maneuver class is chosen constant with value 0 deg.

Given the map of Equation (5.42), it is a straightforward matter to determine the
maneuver state transformation and cost matrices as

0 0 0

Ms.1= 0 -2 0
0 0 0

0
1 = 0 (5.43)

0

J, = 0 c1 0

Jc.1 C2 ,

149

giving the state transformation

i[t + 1] 1
x[t + 1] = 'r[t + 1]

x[t + 1] _

0
-V It]
x It]

I (.5.44)

and affine cost function
Cn[t] = c1v [t] + c2 (5.45)

To create the reversal maneuver class, parametrized by u -T , impose the follow-
ing nonlinear boundary condition function, based on Equations (2.43) and (4.38),
replacing the symbol a by o to obtain:

hbc (p.) =

v(0; p) - 0
v(1; p) + (

z(0 p) -0
z(1 p) -0

O(0;p) - Oi(a)
0(1;p) - 07 (-o)

lcou(O; p) - I conia
1Ico"i AP) I cout'i(()
Cllc(P) - Co r)
i'yc(0;P) -I cyci ()

(1/T)z'(; p) 0
(1/T)z'(1:p) - 0
(1/T)0'(O;p) - 0
(1/T)0'(1; p) - 0
T JJ' v (T; p)dT -0

T - (cI(+ c2)

Comparison to the boundary condition vectors of Section 4.5 makes obvious the ad-
dition of the last two components of Equation (5.46), allowing for the zero net dis-
placement and affine time constraints.

Finally, it is necessary to impose initiation bounds, so the helicopter satisfies a
reasonable range of initial velocities before executing the maneuver. Choose an initial
velocity requirement of -65 < o = U < -5 deg/sec giving, in the terminology of
Inequalities (5.27), 71 I = {2} with x1,o = -5 deg/sec and x. = -65 deg/sec.

A similar procedure allows for the design of quick-stop maneuver (given index
j = 2), similar to that of Section 4.5.1 but now satisfying the requirements of the
MILP-based planning framework. The quick-stop final state is defined to be a steady
hover condition, leaving available the maneuver degrees-of-freedom given by a=

[Lu, xf, T]T. Here, xf denotes the net maneuver displacement, which is clearly not
equal to zero across the maneuver class. unlike the reversal maneuver.

This time, choose a dimensionality reducing map of the form a = -(a), with

150

(5.46)

o -- Tj again, but this time given by

a =(s) = (u) [cuO +] . (5.47)
C5 U + C6

Note the affine expressions for displacement xf and duration T in terms of the initial
velocity. Again. imposing helicopter control bounds IVcol.max = 2.0 V, Vcollmin = 1.0
V. and 1 . max= = 0.6 V, and then following an analysis identical to
that in Section 5.2.2, gives constants for Equation (5.47) as follows: c3 =.8 9 sec,
C4 =-33.40 deg, c5 = 7.58 sec 2 /deg, and c6 = 4.08 sec.

The maneuver transformation and cost matrices then follow as

0 0 0~

1s.2= [0 -1 0

0 C3 0

0

K]c2 0 (5.48)

C4_

Js,= [0 C5 0

Jc,2 C6 ,

with the resulting state transformation

~ *;[+ 1] 1 0 ~
x[t + 1] = V[t + 1] 0 (5.49)

x[t + 1] _c 3v[t] + C4

and cost function
Cm[t] = c5V[t] + c6. (5.50)

As in Equation (5.46), add position change and maneuver duration components
to the standard nonlinear boundary condition constraints to obtain:

151

v(0; p) - a~
'r(l;p) - 0
z(0;p) - 0
z(1; p) - 0

O(f; P) - i (or)
(1; p) - Of,hov

I ou(O;p) - coui(a)

he(P, 1) I(; P) - collhov 0 (5.51)
IYC (0 I) cyc.(U70
1 yc(1; p) - Vcychov
(1/T)z'(0 p) - 0
(1/T)z'(1; p) - 0
(1/T)0'(0 p) - 0
(1/T)O'(1;p) - 0

TJo v(T;p)dr - (c3c7 + C4)
T - (c 5 u + c6)

which then defines the quick-stop maneuver class for the trajectory interpolation
algorithms.

A reasonable maneuver initial speed range is 10 < a - Ti < 60 deg/sec so that
12 = 12 = {2}, x2,o = 60 deg/sec, and _X2,o = 10 deg/sec, in the terminology of
Inequalities (5.27).

With the helicopter one-dimensional LTI-mode and two parametrized maneuver
classes defined, it is now possible to summarize the formal minimum time problem
statement as:

min J. (5.52)
m1W[t],M2[t],dFt];x[t],u[t,cI[t] '

where Equation (5.17) defines the guidance trajectory time cost function J. The
MILP constraints are: the LTI-mode dynamics of Inequalities (5.41); the maneuvering
state update relations of Inequalities (5.12); the goal state requirement of Inequalities
(5.15): the goal uniqueness requirement of Inequalities (5.16); the maneuvering cost
Inequalities of (5.18) and (5.19); the state bounds of Inequalities (5.25); the command
bounds of Inequalities (5.26); the maneuver authorization bound of Inequalities (5.27);
and finally the (optional) maneuver execution limits of Inequality (5.28), with Nm = 2
selected for this problem instance.

Note that a guidance decision horizon of H = 20 is sufficient to find a solution,
since the goal state is reached at t = 9. Figures 5-2 and 5-3 give the resulting optimal
reference position and velocity guidance trajectories, respectively. After the required
initial one decision step hold (due to the initial control selection of uo = -50 deg/sec),
the helicopter immediately executes a reversal maneuver with T = -50 deg/sec,
then cruises in a slowly-varying LTI-mode until a quick-stop maneuver, executed at
Ti = +48.48 deg/sec, brings the vehicle to an exact rest at x = +500 deg.

In the figure, the solid line gives the MILP solution references while the dashed
line shows the actual experimental closed-loop tracking performance for the heli-

152

600, 1 1 1

500

400

300

-200
0) e

- MILP-solution reference
actual closed-loop

5 10 15 20 time 2sec) 30 35 40 45 50

Figure 5-2: Path planning travel position solution for one-dimensional retreat-to-
hover scenario.

bUi I I I I
- MILP-solution reference

actual closed-loop

LTI-mode
(hold x[])

quick-stop
reversal maneuver LTI-mode maneuver final hover state

0 5 10 15 20 time2 ec) 30 35 40 45 50

Figure 5-3: Path planning velocity solution for one-dimensional retreat-to-hover sce-
nario.

153

- I

reversal maneuver LTI-mod4

- LTI-mode i quick-stop
(hold x[O]) maneuver final hover stat

FF

-I -

- o /

hl!

100x

(0

0
0

-100-

-200

-300

-400'
0

40

20

0
.)8

-20

-40

I I

,

LTI-mode LTI-mode

reversal mnvr. at
v. = -30.0 deg/sec

/quick-stop
vi = +43.1 de

60

40

20

0

-40 F

-60

0

fixed reversal mnvr. at
v. = -45.0 deg/sec

LTI-mode
- MILP soln. w/ parametrized reversal

MILP soin. w/ fixed -450 reversal

10 20 30 40 50 60 70
time (sec)

Figure 5-4: Comparison of MILP velocity solutions for parametrized and fixed ma-
neuver classes.

copter. Note that since
values are held constant
from linear interpolation

there is no acceleration tracking loop, LTI-mode velocity
between decision steps while the position reference follows
of the MILP solutions. For the maneuvers, reference signals

follow from continuous-time spline evaluations, as discussed in Chapter 4. As seen in
Figures 5-2 and 5-3, the overall tracking performance validates the feasibility of the
combined parametrized maneuver-MILP guidance framework. The control system
corrects position and velocity errors at the end of each maneuver segment; nonlinear
tracking methods superior to the LQ-servo design of Section 4.4 would only lead to
better real-world performance.

As mentioned in Section 1.3.2, the addition of parametrized maneuvers to hy-
brid motion planners allows for increased flexibility in vehicle guidance problems.
Specifically, when the preceding one-dimensional scenario is solved for a wide range
of initial velocity conditions, the planner repeatedly executes the reversal maneuver
at the first available decision step, then cruises in an LTI-mode before executing a
final quick-stop maneuver. In several existing hybrid motion planners, such as those
of references [51, 100, 133], maneuvers are fixed objects with specific, invariant ini-
tial conditions. As such, if the helicopter initial condition were fixed at a constant
in the present planner that did not exactly match the reversal boundary conditions,
then the MILP optimal solution would require an initial LTI-mode segment to reach
the reversal velocity requirement, increasing the overall trajectory time and taking
the helicopter initially further away from its goal state. Figures 5-4 and 5-5 show
the reference velocity and position solutions, respectively, for a comparison for a

154

quick-stop mnvr. at
vi = +59.4 deg/sec

final hover state at x = -720*
mnvr. at
g/sec

.)
0

-20

80

final hover state at x = -720*

600/

400 LTI-mode quick-stop mnvr. at
v =+43.1 deg/sec quick-stop mnvr. at

v. = +59.4 deg/sec

200 reversal mnvr. at
'a v. = -30.0 deg/sec

c 0,7

-200 - LTI-mode

fixed reversal mnvr. at
v = -45.0 deg/sec-400 /

-600 -

LTI-mode - MILP soln. w/ parametrized reversal
- MILP soln. w/ fixed -450 reversal

-800
0 10 20 30 40 50 60 70

time (sec)

Figure 5-5: Comparison of MILP position solutions for parametrized and fixed ma-
neuver classes.

parametrized reversal family versus a fixed reversal maneuver with a required initial
velocity of -Ti = -45 deg/sec. (Note that for the figures, the helicopter initial cruise
state is x[0] [0, -30, 0]T, the initial command hold is uo = -30 deg/sec, the goal
state is xgoa = [0, 0, - 7 2 0]T and the LTI-mode acceleration bounds are T = -x = 1
deg/sec2).

Table 5.1 shows the optimal total trajectory time for a series of fixed initial con-
dition reversal maneuvers (based on the problem initial and goal variables discussed
above parenthetically). If the invariant maneuver initial velocity Vi,fixed agrees ex-
actly with the helicopter initial velocity of v[0] = -30 deg/sec, the planning solution
exactly matches the parametrized reversal case (solid line solution of Figures 5-4 and
5-5) the minimum planned trajectory time is 36.30 sec. However, when Vi,fixed does
not match v[0], the trajectory time must increase since the vehicle must first fly in
an LTI-mode to reach the reversal maneuver initiation speed.

Of course, for the planners of [51, 100, 133], it would be advisable to include a
set of fixed reversal motions, not just a single instance, thus placing a bound on the
optimal trajectory times in the second column of Table 5.1. However, each additional
maneuver requires and extra binary variable at every time step in the cases of [133],
or an increase in dynamic program dimensionality in [51, 100].

However, as a caution on a shortcoming of the MILP-based planning method
(not necessarily on the parametrized maneuver approach), Table 5.2 shows the MILP
solution computing times for various planning horizon lengths H on a Pentium IV
processor. For the v[0] = -30 deg/sec case with final goal position of xgoal = +720

155

Table 5.1: Minimizing total trajectory times for fixed initial velocity direction rever-
sals.

Table 5.2: MILP solution times for various planning horizon lengths for the v[01 = -30
deg/sec, including the parametrized reversal and quick-stop maneuvers.

156

Fixed Uig.fs ed (deg/sec) 'Total Trajectory Time (sec)
-10 64.89
-15 58.14
-20 51.41
-25 44.71

-30 = v[0] 36.30
-35 44.52
-40 51.35
-45 58.38

66.07

Horizon H [Solution Time (sec)

17 1.6
20 2.5
30 17
40 99

deg, the goal position is reached at the seventeenth decision step. i.e. t = 17. As seen
in the table. if H is set to 17 exactly. the MILP solution time is low, since there are
exactly as many binary variables (one per decision step for each of mi[t]. M 2[t]. and
d[t]) as required for a well-posed problem. However, as H increases, the computing
time increases essentially exponentially, making clear the need for careful selection of
H in general problem instances, most likely as part of a receding horizon guidance
implementation as seen in references [132] and [134].

5.4 2-D Example: Stealthy Flight Through an Ob-
stacle Field

For the second vehicle guidance example, consider the full travel and elevation capa-
bilities of the three degree-of-freedom helicopter in an interesting tactical situation.
Figure 5-6 illustrates a scenario in which the helicopter emulates an airborne vehicle
moving through an obstacle field in a hazardous, adversarial environment. The heli-
copter must move efficiently from its starting position, noted at the left of the figure
by a circle, to a safe goal position, noted right-of-center by a star, while passing over
obstacles and maintaining a low profile when exposed to a threat. This threat could
be a radar sensing station or weapons emplacement, requiring the helicopter to fly
with a very low pitch profile above a certain elevation (shown in the figure as the
"threat zone". above the dash-dot boundary line at elevation ZB). In contrast, while
in the "safe zone" (below elevation ZB) the vehicle is free to advance rapidly, with
large horizontal accelerations and large pitch angles.

This section will illustrate the use of a specially designed "fast-advance" maneu-
ver to help the helicopter reach the goal state efficiently while subject to a velocity
limit in the threat zone. This maneuver begins and ends at the same cruise state,
parametrized by a velocity-elevation pair, but invokes a rapid acceleration and decel-
eration to quickly cover the horizontal space between obstacles. This maneuver class
can easily accommodate bounds on vehicle elevation and pitch angle, if desired, help-
ing to minimize the helicopter threat exposure. Although this scenario does involve
a parametrized maneuvering capability, this time in terms of independent velocity
and elevation boundary conditions, the emphasis here is on using the MILP planning
framework and specialized maneuvers to address interesting tactical challenges.

Unlike the preceding one-dimensional example, this planner will use the minimum
error objective formulation of Equations (5.21) through (5.23). As will be seen, the
threat zone thresholding and obstacle avoidance requirements introduce several binary
variables at each decision step t and thus increase the MILP optimization solution
time. Therefore, it is useful to avoid introducing the goal attainment binary variable
d[t] and instead let an accumulated error function drive the helicopter towards the
goal state. In addition, unlike the minimum time formulation. which required the
maneuver class duration cm[t] to be an affine function of the initial maneuvering
state. the minimum error framework uses only state values at individual decision
steps, as seen in the objective function J of Equation (5.21). Therefore, the maneuver

157

velocitylpitch restricted while
flight boundary exposed ('threat zone')

"threat zone" threat

"threat zone" (z< ZB)

(X0 ,ZO) (Xgoal.Zgoal)
x star posIon "safe zone" J end state

Z obstacle obstacle obstacle obstacle

flight boundary velocity/pitch unrestricted while
invisible to threat Csafe zone')

flight direction

Figure 5-6: Mission scenario for the two-dimensional planning problem.

class time duration may be as low as possible, subject to vehicle control and state
bounds, as long as the net state transition is an affine function. Since the fast-advance
maneuvers of this section will involve jumps over a fixed horizontal displacement, the
affine state transition requirement is easy to enforce.

As with the preceding one-dimensional planning example, it is sufficient to con-
sider a single LTI-mode (L = 1), since the system operates under the gain-scheduled
closed-loop control architecture. However, the LTI model is now a discrete-time sam-
pled version the five-state planning dynamics of Equation (5.36) with the combined
travel-elevation state vector of Equation (5.34) and the velocity-elevation command
input vector of Equation (5.35).

There will be only one fast-advance maneuver class, but, as will be seen shortly,
the ability to execute the motion in different physical regions of the planning horizon
will necessitate two maneuver binary variables, m1 [t] and m 2[t], giving M = 2.

Consider the helicopter trajectory beginning at a steady, hover state at the (x, z)
coordinate frame origin, so that x0 = [0, 0, , 0, O]T. As seen in Figure 5-6, the he-
licopter mission goal state is given by the two-component position vector xgoal =

[Xgoal, "goal]T, so that E = {3, 5} C X in terms of the error state relations of Inequal-
ities (5.22). Note that in the minimum error planning formulation, it is sufficient to
specify a final position only since, as seen in Equation (5.21), the cost accumulates
over the entire planning horizon H, tending to favor solutions in which the helicopter
has low velocity in a neighborhood of the goal position.

As discussed above and illustrated in Figure 5-6, it is desirable to keep a low
vehicle pitch angle (and speed) when in the threat zone. In terms of the vehicle
planning variables of Equation (5.34), a fixed speed limit at high elevations takes the
form lv[t]l < Vbound when z[t] < ZB, for some suitable "speed limit" Vbound. (Recall
that the z coordinate is positive downwards, so z[t] ZB corresponds to a vehicle

158

elevation above zB). To build this elevation-dependent velocity bound into the \IILP

planner, introduce a binary variable A[t] V t e H. with A[t] = 1 if z[t] zB and
A[t] = 0 otherwise. The speed bounds then follow easily. V t C H. as

XB 1 [t] - Vbonmd < K(I - Aft]) (5.53)

-XB 1 [It] - Vbound < K(1 - A[t])

with B= {2} C X extracting only the velocity component of x. To ensure that AIt]
makes the desired switch between 0 and 1 when the vehicle crosses over elevation ZB.
employ a constraint set, V t E H, of the form

XB 2Et] - ZB < K(1 - A[t]) (5.54)

-XB It] +ZB I KIA[t],

where B 2 = {5} C X. This sort of state-dependent binary variable switch was

seen earlier for maneuver initiation bounds (Inequalities (5.27)) and is also useful for

switching between different LTI models, as in Inequalities (5.9).

Now, considering the fast-advance maneuver design for this scenario, the agile mo-

tion involves a rapid acceleration and deceleration from cruise, covering a horizontal
distance much faster than could be accomplished in the linearly controlled LTI-mode.

In the scenario of Figure 5-6, the motion has the utility of quickly moving (at low

elevation) across the horizontal space between obstacles. For an airborne helicopter

in a dangerous combat or reconnaissance mission, similar maneuvers might involve

rapidly dashing through open, exposed spaces that lie between shielding obstacles

(such as across streets or through open glades, for example).

In the present case, the fast-advance maneuver is defined as a rapid motion across
a fixed, horizontal displacement A. The variable boundary conditions then involve

the velocity and elevation values at the beginning and end of the motion, so consider a

four-dimensional maneuver parameter a f, [, f, Ej]T. Note that there is no need

to explicitly control the maneuver duration in the MILP error minimization frame-

work, so the duration T depends on a implicitly through the trajectory interpolation

process.

To enforce an affine maneuvering state transformation as well as reduce interpo-

lation dimensionality, apply a map of the form a = y(a) where the new independent

argument has two components equal to the initial velocity and elevation, according to

[O, G2]T [,]T. Then simply choose the final velocity and elevation to match

the corresponding initial quantities according to -y(O) = [Ui, u 2, u1 - 0 2]T. Interpolation

of this maneuver class follows from one of the methods of Section 2.3.6, Figure 2-5.

by performing three single-variable interpolations based on four prototype example

trajectories generated from minimum-time (i.e. agile motion) nonlinear programming

solutions.

In terms of the two components of o, the parametrized maneuver boundary con-

159

dition takes the form

v(0;p) - cr1

c(1;p) - or

z(0;p) - -2

z(1;p) - (2
O();p) - Oi(1 (72)
0(1; p) - Of ((T, 72)

7ou(; p) - Coll,i (o1 , (-2)

col1 (1; p) - Ico.f(O, (-2)
I c(0;(p) - VCyi(o1, (72)

VCyc(l; p) - VCYc(o-1 , (2)

(1/T)z'(0;p) - 0
(1/T)z'(1; p) - 0

(1/T)O'(0; p) - 0
(1/T) '(1; p) - 0

TJ" v(7; p)d7 - AT

where the two-argument dependence of the pitch and voltage
lows from Equation (4.22). For the fast-advance motion, the
(5.12) take the particularly simple form

-1
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0

-1
0

0
0
0
0
0

boundary conditions fol-
matrices for Inequalities

0
0

A
0
0

(5.56)

leading to the following state transition between decision steps:

x[t + 1]

i7[t +
v[t +
x[t +
z[t +
z[t +

1]1
1]
1]1
1]1
1]1

0
v [t]

= x[t]+AX
0

_ z[t]

(5.57)

Note that during the interpolation process, it is possible to impose certain state
bounds that may be useful in keeping the helicopter concealed. For example, corre-
sponding to the maneuver velocity profiles of Figure 5-7 (which shows the interpola-
tion along the or = -i axis; note the bell-shaped acceleration-deceleration profile), the
helicopter pitch may be bounded, if desired, as seen in Figure 5-8, and the elevation
signal itself can be bounded below the z ZB boundary, as seen in Figure 5-9. In
that figure, and those that follow, ZR -5 deg, that is, ZR is 5 degrees above the
"level" elevation.

As seen in Figure 5-6, the helicopter must avoid three obstacles on its way to the
goal state, necessitating the collision avoidance methods of Inequalities (5.29) and

160

hbc(p, () = (5.55)

-5

/ Ii 7>'iBounded pitch pro
parametrized adva

L/Ii

Lower pitch bound of -450 tI

N""

files over
nce maneuver class

-10
-20

-30 0 2 4 6 8 10 12

, (deg/sec) time (sec)

Figure 5-8: Bounded pitch profiles for fast-advance maneuver class.

161

-10

,

-15N

-20,
CM

-25,

-30

-35

-40

-45,

-50

a, = V, (de

Velocity profiles over parametrized
advance maneuver class

-"-

10
-15

-20

-25 810 12

g/sc -30 0 2 4 6 8
g/sec)

time (sec)

Figure 5-7: Velocity profiles for fast-advance maneuver class.

Upper pitch bound of +45*
50 ,

40

30,

20

0

-10

-20

-30

-402

-50
0

O1 =

14

0 ,

14

-0.5

-1

Bounded elevation profiles over
parametrized advance maneuver class

N -3,

-5,-4.5 <x

-5

-15 Lower pitch bound of -5
-20 1

-25 6 8 10

-30 0 2a1 = Vi (deg/sec) time (sec)

Figure 5-9: Bounded elevation profiles for fast-advance maneuver class.

(5.30). In the present case, the obstacle boundaries align exactly with the planning
coordinate directions, eliminating the need for the direction-orienting vectors MI and
making the constraint formulation particularly simple.

For example, consider the leftmost obstacle in Figure 5-6 and assign it index
q 1. Assume that its left vertical face sits at x = Xa; its right vertical face sits at
x = Lb. and the top face sits at z = z,. (In the present scenario, the obstacles extend
into the lower flight limit of z = +10 deg, making consideration of a fourth face
unnecessary). In terms of Inequalities (5.29), the planning requirement x[t] > La

becomes -(XS1 [t] - Xa) < Kb1 [t], with = {3} c X. Similarly, x[t] Xb

becomes +(xs[t] S Xb) < Kb2 [t], with S = {3} C X; and z[t] < z, becomes

+(xsy,[t] - ze) < Kb3 [t], with S = {5} C X.

In any planning situation, it is useful to place maneuver initiation requirements on
the state vector x[t] so that the ensuing state transition makes physical sense and is
consistent with the domain of the parametrized maneuver class p(a). In the preceding
one-dimensional study, the maneuver authorization bounds required the helicopter to
be in a certain speed range. In the present case, speed ranges are also useful, where a
minimum initiation speed vmin satisfying Vminv > IVboud implicitly guarantees that
the fast advance maneuver will not occur in the "threat zone".

In addition, position requirements xmin < x[t] Lmax based on known obstacle
locations and the advance displacement value Ax ensure that the planner will not
use the maneuver to jump "through" the obstacles, clearly a physical impossibility.
Such bounds maintain the real-world feasibility of the MILP solution while helping

162

to reduce the overall optimization search space. In the parlance of Inequalities (5.27).
choose I = L = {2,.3} c X with R3,O = [Vznaxa, Xmax,]T and 2j.O [Vrmin. XmTin]
as the general fast-advance initiation bounds.

Examining the physical layout of Figure 5-6, it is possible to execute advance
maneuvers in the two "safe zones" between obstacles 1, 2, and 3. Since the position
bounds xsin,, and Xmax,j for these two zones define a disjoint set, use two maneuver
binaries m 1 [t] and m 2 [t]. each with the same state transition of Equation (5.56), to
define the two possible fast-advance opportunities. (An alternative is to use a single
maneuver binary n[t] to cover both regions, but the "exclusive-or" logic required to
define a nonconvex initial position set will itself require another binary variable).

Given the mission scenario of Figure 5-6 and the constraint and maneuver types
just discussed, the minimum-error MILP guidance problem statement can be sum-
marized as follows: perform the optimization

min J, (5.58)
mI [tl,m 2[tl,A[tl;X[tluk]

where Equation (5.21) defines the guidance error cost function (use TV = I22 to
weight x and z errors equally). The constraint sets are: Inequalities (5.22) which de-
fine the guidance error function; Inequalities (5.41), defining the LTI-mode dynamics;
Inequalities (5.12), giving the maneuvering state transitions based on the matrices
of Equation (5.56); Inequality (5.28), which limits the number of maneuvers allowed
(here, allow only two fast-advances); Inequalities (5.25), used to define upper and
lower flight space elevation bounds; Inequalities (5.26), used to enforce bounds on
velocity commands; extra linear bounds on input magnitude changes for both veloc-
ity and elevation (to prevent erratic motions that might expose the vehicle to the
threat as well as limit inter-sample obstacle constraint violation); Inequalities (5.53)
and (5.54), which limit the helicopter speed in the "threat zone"; Inequalities (5.29)
and (5.30), applied for all three obstacles; and finally, Inequalities (5.27.) to enforce
the maneuver initiation velocity and position bounds.

Figure 5-10 shows the MILP planner solution for a problem instance where the
three obstacles are all 360 degrees apart (1 travel revolution), 40 degrees wide, -30
degrees high (i.e. 30 degrees above a level elevation), and the helicopter speed above
the zB = -5 deg visibility line is restricted to Vbound =10 deg/sec. As is clear from
the figure, the helicopter uses a sequence of LTI-modes and advance maneuvers to
reach the goal position at (xgoali, Zgoai) (-800, 0) deg, corresponding to a total travel
of 2.2 revolutions. The minimum error objective function, even though not explicitly
penalizing trajectory time, induces the vehicle to move as rapidly as possible, subject
to the vbound restriction in the threat zone. The MILP solution drives the helicopter
velocity v to exactly the 10 deg/sec bound while flying over each of the three obstacles.
The large position jumps between the obstacles and at the speed threshold elevation
correspond to two executions of the fast-advance maneuver, designed here with Ax =

-270 deg, or three quarters of a revolution. (In the MILP solution space, these
large jumps correspond to activations of the maneuver binaries: m1[11] = 1 and
m 2 [21] = 1).

163

35

0 100 200 300 400 500
neg. position -x (deg)

60(

h LTI-mode over LTI-mode over
obstacle 1 obstacle 2

I spee

advance
advance maneuver maneuver

n

Figure 5-10: MILP planner solution with -30 degree high obstacles and xgoal -800
deg.

CD,
a)

0

-C

CD

0

-20

-40

40

20

0

-20

-40

50

0

-50

~LTmode advance LTI-rnode advance LTI-mode
Nm maneuver maneuver

N-

MILP reference
velocity tracking actual closed-loop

0 5 10 15 20 25 30 35 40 45 50 5
time t (sec)

obstacle 1 obstacle 2 obstacle 3
MILP reference

elevation tracking actual closed-loop

0 5 10 15 20 25 30 35 40 45 50 5
time t (sec)

pitch tracking

45 deg bounds
on pitch magnitude -- MILP reference
during maneuver actual closed-loopI.I -I If I -cullsdlo

0 5 10 15 20 25 30
time t (sec)

5

5

35 40 45 50 55

Figure 5-11: Reference and closed-loop tracking of helicopter velocity, elevation, and
pitch guidance solutions.

164

L ri-moae
lover
obstacle 3

T r-

d thresh d
evation

goal
Dosition

700 800 900

30 -

25

20

15

10

0)

C

a)
a)
CD

5

0

sta4
positic

-1
-100

40 11 11LTI-mode LTI-mode - actual closed-loop
over obstacle 1 over obstacle 2 - MILP reference

35- -
LTI-mode fii

over obstacle 3
30 -

~25 -

CO

~20 -

15 1
speed threshold

elevation
10 -

0- advance maneuver advance maneuver

stat poition goal position
-100 0 100 200 300 400 500 600 700 800 900

neg. position -x (deg)

Figure 5-12: Actual closed-loop tracking of MILP reference path in Figure 5-10.

Figure 5-11 fills in the trajectory details, showing the extraction of the discrete de-
cision step MILP solution into continuous-time reference trajectories (solid lines) for
each of the velocity, elevation, and pitch signals. In addition, the dashed line shows
the actual closed-loop tracking performance of the experimental helicopter. As is
clear from the first subplot, the helicopter accelerates rapidly during the advance ma-
neuvers, more than quadrupling its speed to over -40 deg/sec in accordance with the
interpolated maneuver class (see Figure 5-7). As seen in the second subplot of Figure
5-11, closed-loop elevation tracking generally falls within ±4 deg error bounds, with
best performance occurring during the three, slower LTI-mode segments. Interest-
ingly, the third plot shows the pitch reference over the entire flight, with the advance
maneuvers obeying the ±45 deg pitch bounds, as required in Figure 5-8. The pitch
reference during the LTI-mode segments, as well as input voltage references, follow
from a quasi-steady approximation of the overall helicopter state given by Equation
(4.22). This approximation leads to fairly conservative pitch references during the
LTI-modes, but is highly useful in providing low-magnitude pitch references in light
of the stealthiness, low-profile tactical objective when flying above the visibility line.
Indeed, the closed-loop pitch angle magnitude never exceeds 20 deg during any LTI-
mode, while more than doubling up to 45 deg during the acceleration portion of the
advance maneuver, illustrating the aggressiveness of the motion and the need for
nonlinear methods in describing these agile maneuvers.

Figure 5-12 combines travel and elevation tracking signals into an experimental
closed-loop verification of the MILP solution in Figure 5-10. Overall position tracking
quality is high, with the greatest error of around 4 deg in elevation occurring during

165

LTI mode over
obstacle 1

speed threshold
elevation

\

advance
maneuver

LTI mode over
obsta

LTI mode over
obstacle 3

cle 2

advance I
maneuver

goal
position

0 100 200 300 400 500 600
neg. position -x (deg)

Figure 5-13: MILP planner solution with 10 degree high obstacles and xgoa = -550
deg.

aavance L il- auvance' I I TImnrja
I maneuver imode I maneuver .

F -'

17 - -

-- aknMILP reference
velocity trackirg actual closed-loop

0 5 10 15 20 25 30 35 40 4
time t (sec)

10 - stacle c

--. MILP reference
- - actual closed-loopelevation tracking

0 5 10 15 20 25 30 35 40 4
time t (sec)

- pitch tracking

~ 60 deg pitch
magnitudes MILP reference

- during maneuver actual closed-loop

5

5

0 5 10 15 20 25 30 35 40 45
time t (sec)

Figure 5-14: Reference and closed-loop tracking of helicopter velocity, elevation, and
pitch guidance solutions.

166

25

20 F

15

N
I

C

.2

CU

CD

101-

5

0

start
positior

_0
-100

10

0)
CD

V 10

-20

o -30

-40

20,a
CD

N

> -10

-20

- -30

k
0)
C)
V

0

V

50

0

-50

7-

the advance maneuvers. (It is logical that tight tracking performance is most, difficult
during rapid accelerations as opposed to the slower LTI-inodes). However, the overall
performance is satisfactory, and the helicopter center of mass effectively stays at or
below the visibility line during the maneuver segments.

Figures 5-13 and 5-14 show the MILP solution and the corresponding closed-
loop tracking performance for a slightly different scenario, with xgoal = -550 deg.
Ax = -150 deg, and substantially lower obstacles (the obstacles in the preceding
scenario are near the maximum of the experimental hardware physical flight space).
Again the threat zone velocity is bounded by boand = 10 deg/sec, while the MILP
guidance solution accelerates the vehicle in the safe region between the first and
second obstacles, executing the first advance maneuver at -17.6 deg/sec. As such,
the maneuver accelerates the helicopter up to -35 deg/sec using a pitch motion of
up to 60 deg in amplitude, which is successfully tracked in closed-loop. Note that
pitch flare magnitude is unrestricted in this example since the obstacles are fairly
low, increasing the vehicle threat exposure, and making necessary the availability of
highly aggressive motions.

If in a given situation the obstacle spacing is highly irregular, it may be desirable
to include advance maneuvers of variable travel length (instead of a fixed Ax value).
To create a fast-advance maneuver class with displacement coupled to initial speed,
simply change the last component of the vector constraint in Equation (5.55) to T-
f v(r; p)dT - f(Ti), where f is some desired (differentiable) velocity-to-displacement
sensitivity function.

167

168

Chapter 6

Conclusions

This thesis motivates, develops, and applies a practical method for parametrizing
interesting maneuvers for autonomous vehicles, subject to underlying nonlinear equa-
tions of motion and nonlinear constraints on state and control signals. Section 1.4
lists the fundamental contributions of the research; the current chapter summarizes
the specific parametrization technique, termed "trajectory interpolation", and draws
conclusions about its performance and merits. The chapter then outlines some of
the interesting directions for further investigation, listing first the topics that would
improve the technical performance of the interpolation method and then considering
future applications and theoretical developments.

6.1 Discussion of the Method

A common approach for executing agile autonomous vehicle maneuvers is to apply
a feedforward control method. The first step in this approach is to find a feasible
reference input-output trajectory satisfying the nonlinear vehicle equations of motion,
state and control bounds, and maneuver-defining boundary conditions. The second
step is to supply these dynamically feasible references to a tracking controller, which
then drives the vehicle with the given inputs while simultaneously regulating errors
about the prescribed output signals.

The tracking problem is fairly well understood, given the wide variety of existing
linear and nonlinear control methodologies. However, the first problem, frequently
referred to as "trajectory generation", is a particularly active research area, given the
need to guide agile autonomous vehicles through dynamic environments while satisfy-
ing real-world computing limitations. Many modern approaches to vehicle trajectory
generation employ efficient specialized representations, often using invertible dynamic
models which allow easy computation of feedforward inputs given a candidate output-
space trajectory. In many cases. real-time trajectory generation requires embedding
these invertible system models into nonlinear programs, casting the output-space sys-
tem behavior in terms some basis functions, and then attempting to quickly find an
optimal trajectory (minimum travel time or output error, for example) that meets
motion boundary condition requirements.

169

Although this method is fundamentally sound from a system dynamics point of

view, when considered for real-time applications, it suffers from several classic prob-

lemns associated with nonlinear optimization. First, nonlinear optimizers are iterative

by nature and are not guaranteed to converge to an optimal. or even feasible, so-

lution in real-time. Second, the final trajectory solution typically only corresponds

to a local minimum of the objective function and is therefore highly influenced by

initial solution guesses. This extreme sensitivity places a large burden on the en-

gineer to provide initial trajectory estimates that both resemble the desired motion

vet and dynamically realistic. Third. output space signal basis sets are often overly

general, containing many more variables than are needed to describe frequently used

motion types. This overparametrization inflates the dimensionality of the nonlinear

optimization process, increasing the computation time and preventing iterative al-

gorithms from quickly finding useful solutions. Last, there is no direct method of

infusing known vehicle behaviors into the optimization process. In many cases, ex-

pert human operators can quickly test a vehicle through a human control interface

and determine useful operational modes and associated control strategies. However,

at present, there are few methods. other than using motion capture samples as initial

solution guesses, for incorporating such a priori knowledge of vehicle maneuvering

characteristics into the nonlinear optimization process.
This thesis directly addresses these drawbacks by combining the aforementioned

invertible vehicle models and output-space signal bases into a novel low-dimensional

parametric description of the vehicle flight envelope. The method follows from a

relaxation of standard nonlinear parametric programming, discarding the objective

function while retaining nonlinear equality and inequality constraints. Introduction
of a low-dimensional descriptive parameter set into the boundary condition equal-
ity constraint vector then creates a highly concise and intuitive description of an

entire maneuver class. Further, whereas nonlinear parametric programming traces

only solution points that strictly satisfy Karush-Kuhn-Tucker optimality criteria (a

high-dimensional process requiring many checks for solution bifurcation and other

switching phenomena), the parametrized feasible space approach allows access to the

entire feasible flight envelope.
While an objective function may be absent from this more general feasible space

representation, the engineer can now implicitly specify a maneuvering objective by

selecting known feasible motions that define the range and attributes (e.g. agility,
control effort, flight path shape) of a given trajectory class. Using techniques sim-

ilar to the continuation methods of full nonlinear parametric programming, a tra-

jectory interpolation algorithm applies an intuitive feasible projection method and

numerical integration process to trace out an entire maneuver class, based on a few

user-provided example motions. This procedure completely eliminates the need for

on-line iterative optimization and abstracts an entire set of motions into a concise,
parametric representation, all while maintaining dynamic feasibility. In this frame-

work, the engineer may choose interesting maneuver instances off-line, exploiting the

full resources of nonlinear programming or pilot motion capture while computational

resources are abundant. On-line, the trajectory interpolation process then finds fea-

sible vehicle motions maintaining the attributes of the examples but satisfying the

170

particular boundary conditions dictated by higher-level vehicle motion planners.
Naturally, this method has its limitations. in that the trajectory interpolation

process will not discover new strategies for maneuver execution or synthesize feasible
maneuver classes from widely varying, dissimilar example motions. However, a key
strength of the approach is that any method can be used to rigorously find useful
example motions while the interpolation process then quickly generalizes them to
meet future planning requirements. In addition, the interpolation process is a simple
integration procedure, capable of exploring an entire maneuver class in the same time
it takes to find a single maneuver instance off-line through nonlinear programming.
In on-line practice, trajectory generation follows from a low-dimensional table lookup
and integration over a short interval, taking just a few seconds to run, at most.

Overall, the parametrized feasible space and trajectory interpolation method com-
bine the modeling rigor of traditional and modern aerospace techniques with the
ability to manipulate and alter sample motions. a key capability in the robotics and
computer animation fields. The resulting maneuver classes form something akin to
motion primitive elements, often seen in biological motion research. Here, they pro-
vide a compact representation of large motion families which can then be combined
using a higher-level motion planner to achieve vehicle mission objectives.

The thesis explores several useful attributes of trajectory interpolation, showing
that for many useful maneuver classes, the optimality gap induced by discarding the
objective function can be directly controlled through user-imposition of additional
equality constraints. In some situations, proper selection of the example trajectories
leads to zero optimality gap over the maneuver class, so that the integration pro-
cess produces a set of optimal maneuvers without resorting to iterative methods. In
addition, upper and lower bounds on the number of elementary operations for tra-
jectory interpolation illustrate that the process computational load is polynomial in
the dimensions of the problem quantities, making it a viable approach for real-time
trajectory generation.

Experimental application to a three degree-of-freedom helicopter validates the
overall method on a challenging nonlinear system whose equations of motion exhibit
the typical nonlinearites encountered in airborne aerobatic helicopter models. Exam-
ple motions generated from both nonlinear programming and human-piloted motion
capture are used to define various example maneuver classes. "Playback" of spe-
cific trajectories from these classes under closed-loop control illustrates the combined
trajectory generation-feedforward control methodology in practice.

Finally, the thesis incorporates the parametrized trajectories into a mixed integer-
linear programming (MILP) motion planning framework. This exercise shows that,
with the addition of suitable equality constraints during interpolation, entire dynam-
icallv feasible maneuver sets can be easily described by a single affine state transfor-
mation and binary decision variable. A clearly defined process illustrates how to cast
useful vehicle motions into the MILP planning framework, which when combined
with existing linear approximations to closed-loop flight control systems, creates a
highly flexible guidance framework. Although the MILP planning approach itself
relies on on-line optimization, the addition of parametrized maneuver classes imme-
diately generalizes existing hybrid schemes restricted to fixed, discrete equilibrium

171

and maneuver sets, and can therefore find vehicle guidance solutions with lower cost
and over a wider range of initial and final vehicle states.

6.2 Future Directions and Applications

With the experience gained by working with parametrized maneuver classes, applying
them to a real nonlinear system, and integrating them into a hybrid system motion

planner, it is now useful to list reconmiendations for continuing work. The first set of
ideas pertains to the technical details of creating maneuver classes. The second set
deals with future applications and theoretical developments.

Technical improvements

e The trajectory interpolation algorithms follow from a feasible projection of the

direct algebraic difference between two feasible trajectory vectors, as seen in Figure
2-4. Intuitively, it seems that the resulting integrated arc takes something near the

shortest geometric path between i'1 and v2 and thus results in a maneuver class with
members straying very little from the "style" of the given examples. However, it is an

open question of how close this solution arc comes to approximating a true geodesic
path [110] in the high-dimensional parameter space. Perhaps more important, it is

relevant to ask why choosing such a path leads to maneuver families with similar
attributes. Answering these questions will lead to better projection methods and
better selection of the example motions.

* Algorithms 1 and 2 of Chapter 2 both interpolate trajectories when no inequal-
ity constraints are present. They differ in that the first algorithm uses continuous
numerical integration methods while the latter uses large-jump predictor-corrector
methods. It is not entirely clear when one is preferable to the other. It would be

useful to quantify the relative complexity to the two methods, giving a clear indi-

cation over what interval lengths in a it is more efficient to use predictor-corrector
instead of integral methods. Further, as yet, there is no predictor-corrector analog of

Algorithm 3 that easily handles changes in the active inequality constraint set. Such
an algorithm could be highly useful for speeding up the interpolation process as well

as developing better methods of detecting changes in the active set Jo.

* Along similar lines, it would useful to employ higher-order feasible arc projec-

tions steps in both the integral and predictor-corrector methods [91, 126]. Although

such methods would likely involve constraint derivatives of second-order and higher,
the corresponding payoff could improve interpolation fidelity and lead to a better

understanding of the underlying nonlinear feasible space.
* Constraint derivative computation is the most costly operation in the interpola-

tion process. In many situations it is not necessary, or even practical, to update the

derivative matrices at every time step. In this thesis, derivatives are updated over

some regular, user-selected interval in a. However, intelligent updating rules exist

in the literature [14, 17] and could be applied here to reduce computational load,
perhaps even performing low-rank updates of the Jacobian matrices. In addition,

172

it would be beneficial to study the local curvature of the feasible projection arc for
insights into the integration process and feasible space nonlinearity.

* All helicopter maneuver classes in this thesis use the same B-spline output
representation with identical knot sequences as given by Equations (4.4) and (4.5).
However, these choices can be specialized further based on a particular maneuver
type. For instance, if a given maneuver involves significant control or state activity
over a particular portion of the trajectory time horizon, it is possible to reduce the
knot sequence density in other areas, reducing the dimensionalitv of p, and thereby
improving interpolation speed, as quantified in Section 3.2.

* At present, Algorithm 3 has no provision for preventing a maneuver class from
activating more inequality constraints than there are degrees-of-freedom in the tra-
jectory parameter p (given by the dimension of p minus the number of components in
h(p)). In all of the examples of Chapters 4 and 5, the number of active constraints is
fairly small. However, in the optimality gap example of Section 3.1, Algorithm 3 ac-
tivates as many inequalities as there are available degrees-of-freedom. An important
improvement would be to intelligently handle such cases and prevent the projection
operation from driving the feasible arc further towards constraint violation, especially
for general nonlinear system models. There is likely much to learn on the matter from
detailed nonlinear programming methods [14].

* A logical algorithmic contribution would be to directly apply the parametric
programming methods of Section 2.2 and references [44, 45, 61, 92] to create a true
nonlinear parametric programming method of vehicle trajectories. Such an algorithm
would, of course, be concerned only with strictly optimal trajectories but would be
useful as a finite parameter space analog of neighboring extremal control [26].

Future applications and theory

e Of clear practical benefit is the application of parametrized maneuver classes beyond
the three degree-of-freedom helicopter and into the world of airborne autonomous
vehicles. An obvious candidate application is helicopter aerobatics, with a goal of
creating flexible agile motions, especially threat evasion, urban warfare, and air-to-
air combat maneuvers for military vehicles. Existing work based on analysis of expert
human operator control strategies has investigated maneuver parametrizations use-
ful for describing hammerhead, split-S, and aileron roll maneuvers [54, 56]. The
mathematical variables in these parametrizations, typically analytical descriptions of
fuselage angular rate reference trajectories, are obvious candidates for components of
p. In addition, this basis set would involve working not with the bare airframe equa-
tions of motion, but instead with a stability-augmented closed-loop system model,
thus demonstrating maneuver classes on a different system representation.

e Of related interest is the creation of partitioned, or segmented, maneuver classes.
These motions would have multiple reduced-dimension parametrizations a' corre-
sponding to different, parametrized phases of a larger compound motion. For exam-
ple, such methods could describe a highly complex aerobatic motion, such a helicopter
using an articulated hammerhead motion to rapidly turn corners in dense, urban en-
vironments. In addition, segmented motions could involve different physical models

173

over different flight phases, such as a helicopter transitioning from a cruise state to
an autorotative descent and then using the autorotation to land at a particular loca-
tion. Such techniques would also be highly useful for creating parametrized computer
animations., adding another capability to the existing methods of Section 1.2.3. In
animation applications, systems are often dynamic models of humanoid characters
with many degrees-of-freedom or even simpler rigid-body systems experiencing mul-
tiple collisions with surrounding objects. By designing coupled, segmented maneuver
classes that treat successive phases of larger compound motions, it would be possible
to describe entire feasible dynamic simulations with a small set of parameters.

e A fascinating theoretical contribution would be an analysis of general "trajec-
tory interpolability" conditions for useful classes of nonlinear systems. As mentioned
in Section 4.5.3. a key assumption underlying the creation of parametrized maneu-
ver classes is that example motions are similar in some manner, reflecting different
instances of the same basic motion type but with numerically different boundary con-
ditions. This assumption is critical, allowing the integration process to span the full
space "between" the given examples, creating a well defined trajectory class. Discov-
ery of interpolability conditions for arbitrary trajectories would likely involve some
sort of topological and/or differential geometric view of the general feasible motion

space. A potential payoff includes an analytical method for efficiently partitioning the
vehicle flight envelope, allowing creation of a minimal number of generalized maneuver
classes.

* A related endeavor that instead treats the flight envelope from an experimental
viewpoint is a systematic identification and maneuver-based segmentation of flight
data sets. In this scheme, an expert human pilot, or even a stable, randomized control
algorithm, explores the vehicle flight envelope unburdened of an overarching mission
objective. Afterwards, an automated analysis algorithm examines the recorded flight
data and searches for interesting motions that can then define maneuver classes.
Similar to the above "interpolability" study, a key outcome is a breakdown of the
flight envelope into essential maneuver pieces (or even more basic atomic motion
primitives), that can then be used to construct trajectories to meet future motion
planning needs. Existing work [317] has explored the basic problem of finding and
classifying maneuvering elements by type in a given flight data record. The maneuver
class viewpoint of this thesis provides tools for the next phase of the general flight
data analysis problem.

* Finally, a clear and practical research area is the continuing integration of ma-
neuver classes into both MILP-based and other hybrid system motion planners. In
the domain of MILP-based methods, ongoing work on objective function selection,
nonlinear constraint approximation, and efficient methods for solving minimum time
problems provides great promise that the combination of LTI-modes and parametrized
maneuver classes can become a robust and certifiable method for real-time, on-line
motion planning. In the realm of non-MILP planners, integration of continuous ma-
neuver sets into dynamic programming-based methods, such as the maneuver automa-
tori of references [51, 53, can provide a useful method of generating off-line cost maps
that enable highly efficient oi-line guidance laws and randomized search algorithms.

174

Appendix A

Helicopter Modeling

The experimental platform for the trajectory generation ideas presented in this thesis
is the three degree-of-freedom helicopter, manufactured by Quanser Consulting [122].
This nonlinear system, actuated by a pair of twin rotors, emulates the longitudinal-
vertical dynamics of an airborne helicopter and presents a challenging application for
continuous maneuver parametrization and real-time control. This appendix describes
the main dynamic features of the helicopter, subsequently referred to as the "quanser",
and the efforts taken to obtain descriptive linear and nonlinear models.

A.1 System Description

The quanser helicopter is a tabletop-mounted rotorcraft designed for guidance and
control systems research. Depicted in Figure A-1, it consist-s of a twin-rotor-equipped
main helicopter body, a counterweight, and three essentially rigid links each of which
rotates about a single axis.

The first rotation. called "travel", occurs about a vertical axis perpendicular to the
tabletop. The travel angle x gives the rotational position of the elevation arm when
viewed from above. This circular degree-of-freedom, with angular velocity v = i, is
measured positive in the clockwise direction when viewed from above. The position
origin may be chosen arbitrarily since the system dynamics are essentially invariant
with respect to x.

The elevation arm is an angled rod with the helicopter body at one end and a heavy
counterweight at the other. The counterweight's position may be adjusted along the
arm to modify the helicopter's equilibrium elevation position. The elevation angle
is roughly analogous to helicopter altitude and is taken as zero when the helicopter
end of the arm is horizontally level. The variable y gives the helicopter's angular
elevation, measured positive upward. Equivalently, the variable z = -y gives the
elevation measured positive downwards and is similar to the downward translational
position coordinate common in helicopter and fixed-wing body frames.

The final degree-of-freedom is the helicopter pitch angle 0, a rotation about the
elevation arm. A zero pitch angle occurs when the helicopter body is horizontally
aligned, placing the two rotors at equal height above the tabletop. Figure A-i shows

175

travel, velocity axes

cour

elevation

elevation arm

terweight

axis

+Z-

twin rotors

z=O (lev

pitch axis

+0

helicopter body

el)

tabletop

+X, V (CW from above)

Figure A-1: Three degree-of-freedom helicopter from Quanser Consulting. The in-
stantaneous vehicle configuration is given by the travel angle x, pitch angle 9, and
elevation angle z (positive downward), or alternatively, y = -z (positive upward).

the sign convention for 9: positive when the helicopter rotates clockwise when viewed
radially inward. The pitching behavior is directly analogous to the longitudinal pitch
of a full-scale helicopter.

Each of the twin rotors is a fixed-blade pitch propeller attached to a voltage-driven
DC motor. The "forward" motor is at the front the helicopter (to the right when
viewed radially outward from the central vertical travel axis) and provides a positive
pitching moment. Alternatively, the "rear" motor is at the aft end of the helicopter (to
the left when viewed from the travel axis) and provides a negative pitching moment.
The two motor voltage channels are organized into a collective voltage Vcu and a
cyclic voltage Vcyc. The collective voltage provides a common voltage signal to the
two motors, developing the same rotor speed, and thus generating a thrust that lifts
the helicopter without pitching it. The cyclic voltage is a differential voltage signal
superimposed on the collective but with opposite signs for each motor, tending to
pitch the vehicle. The input channel relations are expressed in equation form as

1
Vfront = ((A.u V1))

1
rear - 2 coi - CYC)

The input channel terminology mimics that of full-scale helicopters: the collective
input governs the amount of lift developed, while the cyclic input is a perturbation

176

(A. 1)

to the collective intended to pitch the vehicle, and thus rotate the thrust vector to
achieve translational accelerations. Note that as the quanser system has only three
rigid-body degrees-of-freedom (compared to six for a full-scale helicopter), there is
only one channel of cyclic input, a reduction from the two-channel longitudinal and
lateral cyclics present in standard helicopters.

For experimental operation, the quanser real-time software is driven from a special
MATLAB@ Simulink@ model environment [96] that specifies input collective and
cyclic voltages (from user-chosen signal generators, closed-loop control designs, or two-
channel pilot joystick inputs), records travel, elevation, and pitch angular positions
with data encoders mounted on the rotation arms, and allows the design of automatic
feedback and feedforward control systems.

A.2 Linear Modeling and Identification

Mathematical modeling of the quanser helicopter begins with the experimental iden-
tification of a linear hover model. This model serves both as a stepping stone to more
detailed nonlinear models and as an aid to linear control designs. The vehicle is in a
basic hover state when the travel velocity v = ± is zero and the elevation arm is level
and at rest, expressed as y = 0, y = 0. Note that during the experiments related to
this research, the counterweight sits at a radial position such that the hover state is
obtained by the steady input voltage pair (7,. V) = (1.64 V, 0 V). In the hover
state, steady pitch angle is approximately 4.7 degrees. This slight offset from zero
is necessary since the combined angular momentum of the twin-rotors (which spin
in the same direction) creates a small travel moment on the overall system. If the
pitch angle were exactly zero, the helicopter would precess with a small nonzero travel
velocity.

About the steady hover condition, one may identify the local system linear dy-
namics, where the inputs are perturbations from trim equilibrium voltage inputs and
the system states are perturbations from their corresponding steady values. For the
inputs, define 6VcX,,l = V7, 11c-1.64 and 6 17Jc = Vc-0. For the system states, which are
taken as the primary three degrees-of-freedom v, y, and 0 (and their time derivatives),
the linear perturbations are 6v = v -0, 6 y = y -0, and 60 = 0-4.7'. Throughout this
section, the "6" prefixes are dropped since all discussion is understood be in terms of
the linear model.

A combination of lumped-parameter modeling, experimental observation, and ad-
hoc experimentation reveals that around hover, the system follows three primary
dynamic modes. First, the helicopter elevation acts as a lightly damped oscillator
with a period of around ten seconds. Perturbations in the y direction lasted for
several cycles while slowly decaying in amplitude. Second, the pitching motion also
behaves as a lightly-damped oscillator with a period of around five seconds. Lastly,
when the helicopter pitches, the thrust vector tilts, resulting in a small component
that accelerates the vehicle. This travel component of thrust is proportional to sin(0),
which is approximately 0 for small pitch angles. Recalling that DC motor angular
rates typically behave as first-order systems in response to voltage inputs [1081, some

177

first-order actuation behavior is expected in the collective and cyclic input channels.
Taking in all of these considerations, the linear system equations of motion about
hover are as follows:

'O a -1U - a2 0
0 = -b 1 - b20 + b,,cy, (A.2)

Tcyc -C1Tcy(+ C21cyc

Q -d1 - d2y + d3Tcol

Tcoi - - l TcoU - e21 col-

The first two lines of Equations (A.2) express the travel dynamics as a damped
double integrator angular system with driving torque proportional to the horizontal
thrust component, which is itself proportional to 0. The coefficient a, represents the
helicopter travel danping and the 02 coefficient has a negative sign as a consequence
of the sign conventions for v and 0 (see Figure A-1).

The third and fourth lines of Equations (A.2) give the pitch dynamics as a standard
second-order system with input torque Tcc, governed by the aforementioned first-order
actuation dynamics in response to Vc.c. The last two lines provide the same general
dynamics for the elevation motion: a second-order mechanical system with input
torque Tcoll and first-order actuation dynamics between Vuol and Tcou1. Note that a

key feature of Equations (A.2) is the separation of the dynamics into two channels: the

first being the combined pitch-travel dynamics governed solely by V . and second
being the elevation motion governed solely by Kcoi. This decoupling is convenient
and intuitive for operation near the hover state but will be an unreasonable model
for more general nonlinear behavior.

With the form of Equations (A.2) in place, the task shifts to finding the numer-
ical coefficient values. To this end, the well-established rotorcraft industry system
identification package CIFER ® provides the desired tools. CIFER®, (Comprehensive
Identification from FrEquency Responses) is a two-phase linear identification pack-

age used for model identification of full-scale helicopters [143, 146]. First, sample
system responses to increasing-frequency chirp inputs are time-frequency windowed

and transformed into nonparametric frequency response curves. Second, the software
fits user-provided parametric linear models (in either state-space or transfer function

form) to the frequency responses using nonlinear optimization methods.

Given the decoupling of linear dynamics, the quanser's elevation channel is identi-

fiable separately from the pitch and travel behavior. The damping and period of the

elevation motion were estimated from simple initial condition time responses, provid-

ing an estimate of the frequency-domain response range of the collective-to-elevation
transfer function:

y(s) __ d3 .C_2_. (A.3)
1/c011(s) s 2 + dis + d2 s + e1

This transfer function follows directly from the last two lines of Equations (A.2).
From there, sets of increasing-frequency chirp inputs (both joystick-driven and signal-

178

generated) over the expected response frequency range produced the magnitude and
phase profiles seen as the solid line plots in Figures A-2 and A-3. The experimental
data verifies the lightly damped second-order characteristics.

Once a set of satisfactory response data (wide frequency range. high coherence)
were in hand, the linear model in Equation (A.3) provided the template for a para-
metric data fit. The resulting nonlinear optimization-based match produced the nu-
merical values tabulated in the last five rows of Table A.1. These coefficients apply
to Equations (A.2) with y in units of radians, Tii in units of Newton-meters, and
V oii in Volts. The coefficient e2 was manually set to 1 during fitting, since Equation
(A.3) shows that e2 cannot be identified independently of coefficient d3 . It follows
from this data that the elevation damping ratio is 0.0789, corresponding to a lightly
damped system, and the oscillation period is 8.85 seconds., in agreement with casual
observation. The first-order actuation pole is at ci = 6.16, giving a time constant of
about 0.16 seconds, indicating a relatively fast thrust response. Careful examination
of the highest decade in Figure A-2 reveals the presence of this pole.

Note that Table A.1 also gives statistical measures of confidence in the model
parameter estimates. The Cramer-Rao (CR) bound gives the minimum possible vari-
ance in estimating a parameter taken over all possible unbiased estimators [111]. The
table reports the CR-bounds as standard deviations (square root of variance) and as
percentages of the parameter estimates. The rightmost column gives the insensitivity
of the estimation cost function in terms of single parameter variations, taking into
account any correlations with other parameters [145]. A low insensitivity means that
the cost function is in fact sensitive to the parameter estimate, indicating that even
small parameter variations will cause large degradations in fitting accuracy.

As previously mentioned, the decoupling of linear system dynamics allowed the
identification of the pitch-travel modes separate from the elevation behavior. In fact,
the second-order pitch dynamics were identifiable in exact analogy to the elevation dy-
namics, while the pitch-to-travel first-order dynamics (second line of Equation (A.2))
came last. Following the same technique as above, the second-order pitch frequency
response range was evaluated from rough estimates of the damping ratio and period,
then multiple pilot-flown and signal generated sweeps in Vc1 y used to drive the system
and collect time-domain response data of 0.

Figures A-4 and A-5 show the resulting frequency-domain-transformed response
magnitude and phase, respectively, as solid line plots. Once again, the second-order
oscillator behavior with first-order actuation was verified and then numerically fit
with the transfer function

0(s) b3 C2 (A .4)
1,/- . (A.4

Vcyc(s) s2 + bis + b2 s + c1

Finally, the remaining first-order pitch-to-travel transfer function was identified
by collecting time-domain response data with Vcyc as input and v as output. The
low-frequency content of the input signals had to be significantly increased since the
travel damping coefficient was known to be quite low (corresponding to a long time
constant). Figures A-6 and A-7 give the empirical frequency response of velocity

179

FREQUENCY (RAD/SEC)

Figure A-2: Collective-to-elevation magnitude frequency response.
perimental response shape; dashed line is identification fit.

101
FREQUENCY (RAD/SEC)

Solid line is ex-

101100

Figure A-3: Collective-to-elevation phase frequency response. Solid line is experimen-
tal response shape; dashed line is identification fit.

10-2 10- 100
FREQUENCY (RAD/SEC)

10, 10'

Figure A-4: Cyclic-to-pitch magnitude frequency response. Solid line is experimental
response shape; dashed line is identification fit.

180

U

z

10-1 101 101

(1-

10-2

z
U
*0z

10-2

10-F

Figure A-5:

I - 10 1
FREQUENCY (RAD/SEC)

Cyclic-to-pitch phase frequency response.

01 102

Solid line is experimental
response shape; dashed line is identification fit.

a

U-
H

(0

101
FREQUENCY (RAD/SEC)

Figure A-6: Cyclic-to-velocity magnitude frequency response.
mental response shape; dashed line is identification fit.

10-2 10-1 E
FREQUENCY (RAD/SEC)

Solid line is experi-

IOU 101

Figure A-7: Cyclic-to-velocity phase frequency response. Solid line is experimental
response shape; dashed line is identification fit.

181

4

1 100

Table A.1:

Parameter Estimate CR Bound CR% Insensitivity%

a1 0.0839 0.00828 9.87 4.03
a2 0.257 0.0164 6.41 2.06
b1 0.163 0.0504 30.9 14.8
b2 1.58 0.0528 3.35 1.24
b3 16.2 1.98 12.2 1.43

Ci 7.32 0.993 13.6 1.48

C2 It - - -

di 0.112 0.0300 26.8 12.9
d2 0.504 0.0188 3.72 1.61
d3 1.34 0.242 18.1 2.03
ei 6.16 1.20 19.4 2.11

e2 it - - -

Identified parameters for the three degree-of-freedom helicopter linear
model. tThese values set identically to 1.

to frequency sweeps in VYC. Note that the pitch dynamics are necessarily included

in these response shapes meaning that all the coefficients from the first six lines of

Equation (A.2) are identifiable simultaneously.

To this end, the pitch transfer function of Equation (A.4) was cascaded with the

pitch-to-trav'el transfer function

V(s) _ -a 2

0(s) s + a1
(A .5)

and numerically fit to the responses of Figures A-6 and A-7. The numerical values
produced by a preliminary independent cyclic-to-pitch fitting gave the initial esti-
mates for the coefficients b1 , b2, b3, ci, c2. Note that again, c2 was set equal to 1 since

it was not identifiable independent of b3 . The first seven rows of Table A.1 give the
resulting final coefficient values for the pitch-travel dynamics. Similar to the elevation
channel, 0 is in radians, t is in radians/sec, Tcy, is in Newton-meters, and V4 is in
Volts.

Note that the pitch damping ratio is 0.0648, indicating a lightly damped mode
and the oscillation period is 4.99 seconds, in agreement with casual observation. The

velocity damping coefficient corresponds to a (comparatively) longer time constant of
around 11.2 seconds.

The model form of Equations (A.2) and the experimentally identified coefficient
set of Table A.1, provide a working system model around hover. This model is useful

of system analysis and control design as well as providing a point-of-departure for the
nonlinear modeling necessary for aggressive trajectory generation.

182

A.3 Nonlinear Modeling and Identification

\Vith a baseline linear system model in place, one may now modify and augment it to
obtain a more widely descriptive nonlinear model. As will be shown in the following
subsections, the dominant nonlinear effects in the helicopter dynamics come from
rotor thrust generation, thrust vector-tilt kinematics, static equilibria offsets, and
aerodynamic lift and damping. Once the vehicle model contains the appropriate
mathematical expressions for these effects, realistic aggressive trajectory generation
is possible.

A.3.1 Actuation and Elevation Pendulum Effects

Given that the earlier system model of Equations (A.2) applies only to flight around
the steady hover condition, it is reasonable to assume linear actuation terms. Here,
"actuation" refers to the relationship between the input voltage signals, Vcou and

'cyc, and the rotor thrust forces and torques that drive the system mechanically. For
operating conditions away from hover, it is necessary to account for nonlinearities
associated with the combined DC motor-propeller rotor design. In addition, it is
generally preferable to work with "absolute", as opposed to the perturbed "W" inputs
required for linear models.

To begin, note that the linear actuator model poles correspond to very short time
constants compared to the overall system dynamics. The collective actuation pole in
Table A.1 is el = 6.16 (time constant of 0.16 seconds) and the cyclic pole is ci = 7.32
(time constant of 0.14 seconds). Since these time scales are small, the dynamics of
thrust generation may be neglected for the nonlinear model, and the thrust values may
be approximated by their steady state values. However, the nonlinear relationship
between input voltage and thrust magnitude is important.

Recall that at steady-state, a voltage-driven DC motor's shaft speed is propor-
tional to its input voltage [108], so that the two quanser motors obey

Qfront c Vfront (A.6)
Q rear 0C Vrear

where Q denotes the motor shaft angular speed. However, propellers generally exhibit
a quadratic relationship between speed and thrust [88], giving rise to the relations

Tfront o Qfront|Qfron|t

IX Iront I'roro|j (A.)

Trear OQ Qrear|Qrear|

OC 1V rear|IV1rear|

where the T's are the rotor assembly thrusts, taken as positive if upward and negative
if downward in Figure A-1. The absolute values in this equation provide an upward
thrust vector for positive voltages and downward vector for negative voltages.

Now, assuming a pitch angle 0 = 0, the collective torque tending to rotate the

183

quanser about its elevation axis is proportional to the sum of the two rotor thrusts.
Recall that the helicopter is in a hover equilibrium state at (VcO , Vcyc)= (1.64 V, 0 V).
The useful input range of the vehicle is generally within the bounds
0.9 V < Vcoi < 2.0 V and -0.6 V < V' K 0.6 V so that the following simplification
of collective torque is possible over these voltage ranges:

Tcoll Oc Tfront + Trear

0C (co il + V ccyc) -'Coll + I I (I coll - I Cyc) I Col - Cyc

= (Vcol + V Cyc) 2 + (Vcoi -cyc)2 (A.8)

C)C v1,/-1 + 1/2
Co +cyc

e w Cll.

The last approximation is reasonable since loi is usually larger than V, especially
for trajectories of interest in this thesis. This input simplification also helps avoid
tricky solution logic when inverting the final vehicle model yet still accurately rep-
resents the dominant quadratic nonlinearity in thrust generation. This quadratic
relationship between thrust magnitude and collective voltage can also be seen in
Quanser product literature plots [122].

A similar set of steps gives an expression for the cyclic torque over the above input
voltage ranges:

Teyc c Tfront - Trear

c (110Cll, + VCYl) lcoll + v Kcyc - (col - I oII (A.9)

- (U 1 + 1)2 -(l _.1 4)2

O /ClcoilVcyc.

In this case, there is no reasonable way to separate Vcoli and V," so both of these
input channels will be present in pitch motion channel.

The quadratic collective actuation term of Equation (A.8) can be verified and
the linear restoring term of Equation (A.2, line 5) generalized simultaneously by
performing a static measurement test. While maintaining a near zero pitch angle
with 14. = 0, the collective voltage Vcol was set to various steady values between
0 and 2.2 Volts. Measurement of the steady-state elevation angle (circle-line plot
in Figure A-8) shows a nonlinear relationship between voltage and deflection. Note
that in the sequel, the elevation angle is coordinatized as z = -y (that is, z positive
downwards) to be more consistent with standard rotorcraft body frame notation. The
quadratic collective-to-thrust relationship is not sufficient to fit the data set of the

figure, mainly since the linear restoring force for the hover model is not valid over
large angle excursions. Therefore, generalize the restoring force from a linear term
in z to a -cos(z) + sin(z) trigonometric expression. The sine term is common for

nonlinear pendulums; the cosine term accounts for the offset counterweight at the
far end of the elevation arm. With these modifications, the steady-state elevation
behavior follows:

0 = d2 cos(z,8) - d3 sin(z 8) -- d4 1 ,,,, (A.10)

184

30

20-

(10-

N

Ca

steady, level condition at
-1 -V = 1.64 V z 00_ 10 - col

-20- -

-30I
0 0.5 1 1.5 2 2.5

VC011 (volts)

Figure A-8: Fit of steady collective-elevation coefficients from experimental data.

where z8, denotes the steady angle and Vcoi,ss denotes the steady collective input. A
nonlinear regression fit for the coefficients (d2 , d3 , d4) gave the numerical values listed
in Table A.2. Reinsertion of the acceleration and velocity damping terms gives a
(temporary) equation of motion:

2 -diz + d2cos(z) - d3sin(z) - d4VC$0 . (A.11)

As seen in the table, the d, coefficient value remains the same since the voltage-
deflection test did not measure any dynamic effects.

A.3.2 Thrust Vector Tilting

Similar to the trigonometric nonlinearities added to the elevation equation, sine and
cosine terms are necessary to account for thrust vector-tilting. When the helicopter
pitch angle assumes large values, the thrust vector resulting from the twin rotors
rotates, contributing a larger component to travel acceleration and smaller component
to elevation.

Recall that line 2 of Equation (A.2) assumes a constant hover thrust and small
pitch angles 6. Modification for nonlinear actuation leads to

-aiv - a2Vc
2
1 6 (A.12)

185

experimental data
experimental data
nonlinear fitting

with the following alteration for large pitch angles:

'V = -0i0 - 2 isin(6). (A.13)

Estimation of 01 and a2 for the nonlinear model follows shortly.

Additionally, Equation (A.11) requires a cosine factor to account for the reduced

lift effect, bringing that equation to its final form:

= -d + -I+ d2 cos(z) - d sin(z) - d4I olcos(O). (A.14)

A.3.3 Static Offsets

Recalling that the nonlinear model is in terms of absolute coordinates, whereas the

linear model uses perturbed "F" variables, it is possible to explicitly include the small

precessing effect from the twin rotor's combined spin rate. The 0 variable is offset by
a small 0, = 4.740 = 0.0827 rad constant:

C-ai - a2 O asin(0 - 0) (A.15)

Further. the helicopter itself is slightly imbalanced. with a static offset of around 5
degrees when no inputs are applied. Note that this imbalance is essentially identical

to the above rotor spin offset. It is therefore necessary to add a small constant bo to

the pitch equation of motion:

0 -biO - b2 si'n(0) + bo + b4 1V'colllcyc. (A.16)

The nonlinear cyclic actuation effect replaces the previously linearized simple 7ey,

term of Equation (A.2, line 3). Reidentification of the b2 and b4 coefficients follows
in the next subsection.

A.3.4 Aero Damping and Lift

The final nonlinear effects to include involve aerodynamics of forward and reverse

flight. Taken together, Equations (A.15) and (A.16), comprise a complete model of

the pitch-travel dynamics. By considering a sequence of steady (Vcou, 1cyc) commands.

a comparison can be made between the predicted and observed steady-state velocity

and pitch angles. Casting Equations (A.15) and (A.16) into a regression format, it

is possible, assuming a value for a1, to estimate the coefficient set (a2, b2, bo, b4) with

linear regression. For various data sets, the predicted pitch angle was consistently

too large for a given speed, indicating the presence of a speed-damping term in the 0

dynamics. By hypothesizing and then testing various forms of the damping expres-

sion, it was possible to identify an effect of the form tIvl and then introduce it into

the pitch equation of motion as follows:

0 = -b1O - b2 sinM(0) + bo + b3 v VI + b4 VI'eI Cl . (A.17)

186

0
experimental data
experimental data
nonlinear fitting

- Experimental data collected from-40- V =0.15 volts to V 0.6*volts

-60 -

-80 -

-100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

VCYC (volts)

20-

15 -

5 experimental data

Unforced pitch offset is around 4.70 experimental data
nonlinear fitting

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

VCye (volts)

Figure A-9: Fit of steady cyclic-pitch-travel coefficients from experimental data.

Once the form of the term was finalized, a linear regression analysis gave estimates
of an expanded coefficient set (a 2, b2, b0 , b3, b4). Figure A-9 shows the corresponding
steady-state velocity and pitch angle fits for the negative velocity travel direction

(corresponding to Vy,,, > 0). Table A.2 gives the resulting coefficient estimates. Due
to asymmetries in the velocity dynamics, possibly related to the static pitch offset,
the resulting fit did a poor job of describing the pitch angle in the positive velocity
direction (where Vy,,, < 0). Therefore the form of the equations was maintained but
the coefficients resolved using positive-velocity data only. In addition, a combined-
direction identification fit produced a coefficient set with reasonable fit for both travel
directions, although with slightly more steady-state error than the highly-tuned one-
sided cases. Table A.2 gives the numerical coefficients for each case. Note that only a2
and b3 need to be modified in each setting, since they account for the pitch damping
effect more than any other terms. The final value of a1 was adjusted manually to give
a good fit of the dynamic velocity response to a staircase-like Vy, input profile. See
Figure A-10 for the time domain verification. Since b1 cannot be identified from the
steady-state regression, the previous linear identification value was assumed.

Finally, a translational lifting effect was observed during steady forward and re-
verse flight. At a given speed, the steady elevation could be as much as 5 degrees
higher the predicted value. A v2 term in the equations of motion provides a bidirec-
tional lift:

2 = -d 1 + d2 cos(z) - d3sin(z) - d5 v 2 - d4 V 2 cos(O). (A.18)

Note that other nonlinear forms such as jvJ or v would give a better fit to

187

I- I I

0 -- prediction
- experimental data

-20-

-40-

-60-

-80

0 50 100 150 200 250 300 350 400 450
time (sec)

30 -

20-

10

0
prediction
experimental data

-10 I I
0 50 100 150 200 250 300 350 400 450

time (sec)

Figure A-10: Time domain validation of velocity and pitch nonlinear system re-
sponses. Input is an increasing staircase of 17yc values from 0.05 V to 0.6 V.

the observed lifting effect, especially since it tends to level off with increasing speed.
However, for the purposes of retaining a differentiable set of system equations, the
v2 term can be suitably tuned over the speed range of interest. An alternative is to
simply add a constant lift terms, corresponding to a mean offset slightly less than 5
degrees, although it would overpredict the steady elevation near the hover condition.

A.3.5 Equations of Motion

Combination of all the nonlinear effects into one set of equations gives:

x = V

v -a1v - a2 sin(O - 0a) (A.19)

6 = -b1 - b2 sin(0) + bo + b3vIv| + b4V4011Vcyc
z = -d1 + d2cos(z) - d3sin(z) - d5v

2 - d4 e1%1cos(O)

These equations of motion, with numerical coefficients in Table A.2, represent a
general flight model of the three degree-of-freedom helicopter, and are the basis for
nonlinear trajectory generation. Position x is in radians, velocity v is in rad/sec,
pitch angle 0 and elevation angle z are in radians. Collective and cyclic inputs are in
Volts. The system model has two desirable properties. First, given time histories of
v(t), 6(t), and z(t), it is possible to invert the model and explicitly solve for Vc01 (t)
and Vcyc(t). Second, the system model is differentiable in terms of its states, making

188

Parameter t < 0 Estimate v > 0 Estimate General Estimate

01 0.02.52 same same
02 0.0525 0.0408 0.0439
Oa 0.0827 same same
bo 0.131 same same
b1 0.163 same same
b2 1.58 same same
b3 0.449 0.188 0.259
b4 1.42 same same
d 0.112 same same
d2 0.243 same same
d3 0.504 same same
d4 0.0905 same same
d5 0.0400 same same

Table A.2: Estimated parameters for the three degree-of-freedom helicopter nonlinear
model. Due to system asymmetries, model is broken into two operating regions: v < 0
travel and v > 0 travel. Parameters a2 and b3 can be specifically tuned for either case
or set to a general bidirectional value. Units correspond to a system with angles in
radians and inputs in Volts.

it amenable to trajectory interpolation.
The model of Equations (A.19) is reasonably complete for the purposes of this

thesis, however there remain several unmodeled nonlinear effects which could become
relevant in other contexts. Among them are: first-order rotor inflow dynamics, vari-
able rotational inertia of the helicopter depending on elevation angle, ground effect of
the rotors near the tabletop, vibrational modes of the long, slender elevation arm, and
a variable restoring moment on the pitch angle as a function of z. An early attempt
at nonlinear modeling through a complete Lagrangian formulation quickly produced
many complex high-order terms, and was used for insight purposes only.

Note that there are alternative methods of nonlinear identification, providing a
more systematic approaches method than the ad-hoc vehicle-specific procedure given
here. Examples include nonlinear black box., regression, and fuzzy techniques [90 as
well as Volterra series [39].

189

190

Appendix B

Splines in B-form

This thesis expresses system output and state signals in terms of B-spline bases, since
linear spline combinations form a very natural trajectory parametrization. B-splines
are by no means the only option for casting time domain signals in a compact form.
Other basis options include polynomials and piecewise polynomials [63, 68], wavelets
[94], exponential functions [41], and even nonlinear subsystem output signals [70].
However, B-splines have certain properties well-suited for the systems of present inter-
est and have been shown quite useful for trajectory generation for numerous nonlinear
systems [30. 102. 113]. For example. B-splines combine the generality of polynomials
with the ability to capture varying levels of detail over localized regions, similar to
multiresolution formats. In addition. higher-order continuity throughout the interval
of definition is easy to guarantee, eliminating the need for large numbers of interior
continuity conditions that sometimes hinder piecewise polynomial bases. Finally, re-
cursive evaluation of higher-order splines in terms of lower-order ones provides numer-
ical stability and computational speed during evaluation [34], making them attractive
in applications as diverse as geometric design, computer graphics, data fitting and
storage, and even typography [33]. Reference [34] gives a comprehensive discussion of
spline properties and algorithms, as well as tensor spline extensions to multivariate
data sets.

The following discussion will be concerned only with univariate splines as applied
to time domain signals. The first section will highlight elementary properties and
follow notation similar to that of references [34, 35]. The second section examines
the signal dependence on basis coefficients as independent variables, deriving explicit
formulae for analytic differentiation, a frequently used computation in trajectory in-
terpolation and optimization.

B.1 Basic Construction

Consider a univariate function f with independent variable x expressed in terms of a
B-spline basis expansion:

f(x) = ZaBk(x). (B.1)
2Z=1

191

Here. f is called a "spline in B-form" while the n basis functions B.,k are the actual
B-splines, each of order k. The a are combination coefficients and may be adjusted
to change the shape of the function f. A B-spline Bi.k of order k is actually a locally
defined polynomial of order k - 1. That is, a first-order spline is a locally defined
constant, a second-order spline is a locally defined linear function. and so on.

The overall function f is zero everywhere outside of a basic interval [a, b]. Essential
to the designation of a spline in B-form is the knot sequence

S = {x, ... ,Xm} (B.2)

which is a, nondecreasing sequence of m scalars, called "knotpoints". in the interval

[a, b] satisfying the properties
xi = a,

X7 = b > a, (B.3)

xi < xi+i.

Note that knotpoints may be repeated at a general point x E [a, b] but only a finite
number of times and satisfying the upper bound

mult(x) < k, (B.4)

where mult(x) is the "multiplicity" of knotpoints at x, i.e. the number of repetitions
of x in S. The ith individual B-spline is defined only on the interval [xi, .Xi+kl and is
therefore often denoted by

Bi.k(x) Bl~k (x I Xi : Xi+k) (B.5)

for every i E {1, ... , n}. Since this interval of definition involves k + 1 knotpoints, it
follows from Equations (B.3) and (B.4) that i < .7,+k, meaning Bi~k is supported on
a interval of positive measure. that is.

supp Bi.k(x xZ : Ti+k) - [xi, Xi+k]. (B.6)

Since there are in knotpoints and each of the n B-splines Bi,k "covers" k + 1 of them,
it follows that

m = n + k. (B.7)

A feature of the B-spline format is that two neighboring splines Bi.k and Bi+1.k overlap,
both being supported on the common interval [x. 1, ,i+k]. Alternatively, only one

these pair is supported on each of the intervals [xi, xi+1] and [xi+k, Xi+k+1]. In addition,
Bi,k will overlap Bi+2,k on the interval [xi+2, i +kl, and so forth. This property allows

the collective splines to richly cover the entire basic interval [a, b] while maintaining
linear independence.

Further, since each kth-order spline is actually a (k - 1)th-order polynomial in
its interval of definition, f will be infinitely differentiable away from knotpoints (that

is, f E C' if x S). At knotpoints x E S, where neighboring splines overlap, the

192

multiplicity of x will govern the continuity of f. Specifically,

f C Ck-mult(x)-1 at x if x E S (B.8)

where f E CP at x denotes a function with p continuous derivatives at x. Here. f C C'
at x indicates a function that is merely continuous at x but not differentiable while f E

C 1 at x indicates a discontinuous function at x. These continuity conditions allow

the user to pick a knot sequence S to meet function approximation needs throughout

the basic interval [a., b]. For example, if a function f is required to assume a nonzero

value at a, then take mult(a) = k. (Recall that f is defined to be 0 outside of [a, b]).

Similarly, an interior discontinuity at a point a < x < b is accommodated by taking

mult(x) = k. Lesser degrees of discontinuity are handled by taking mult(x) < k. The

simple choice mult(x) =1 implies that f C Ck-2 at x, since f at that knotpoint is

an overlap of two (k - 1)th-order polynomials.

Of occasional use is the finite partition of unity property of B-splines. Recall that

a partition of unity (finite or infinite) is a set of functions who sum identically to 1

over some superset that includes the support sets of each [104]. Given a knot sequence

S and an order k, setting ai 1 for every i E {1E n} has the consequence that

f (x) = 1 at every x c [Xk XmA] = [Xk, X,] C [a, b].

By picking mult(a) = k and mult(b) = k, f will obey

f (x) - 1 at every x c [a, b]

when all ai = 1.

B.2 Differentiation of Parametrized Signals

With the fundamentals of basic construction in place, it is assumed that a knot se-

quence S and order k have been chosen and that the function f is a time domain

signal with x = t. Such signals expressed in terms of B-spline bases are the funda-

mental objects for trajectory interpolation in this thesis and are evaluated at times t

but parametrized by the coefficient set {ai}. As such, f is a function of n + 1 total

variables:

f(t) = f (t; a1 , ... , a,) = aiBik(t). (B.9)

Partial differentiation of f with respect to t follows by differentiating each of the

individual B-splines with respect to t. Of course, the derivative of a kth-order spline

(a (k -1)th-order polynomial) gives a resultant (k -1)th-order spline (a (k -- 2)th-order

polynomial) as shown by

a f n OB~ n/

- = a (t) = a' Bk_(t). (B.10)
at i=1 at ii-~)

193

That is, Of/1t is just another function expressed in terms of a lower-order spline
basis. As a spline in B-form, Of/t must still obey the algebraic relation of Equation
(B.7) between the number of knotpoints. number of elements. and spline order. That
is,

m'= in' + k'

but now with
k' = k - I

and
m' = m - Nk.

Here. Ak is number of original knotpoints in S with multiplicity k. Since the B'_ 1
are (k - 1)th-order splines and the multiplicity constraint of Inequality (B.4) must
hold, the knot sequence S' of Of/t is the same as S, but with any knotpoints of
original multiplicity k reduced to multiplicity k - 1. It follows from the above relations
that ' m - - k + 1.

Considerably less obvious is the relationship between the coefficient sets {a} and

{ai}. Fortunately, reference [34] provides the following recursive difference relation-
ship:

a = (k. - 1) a - - (B. 11)
Ti+k-1 - i

where ao, a7+1 = 0. Such easy and numerically stable relationships between bases of
differing order are one the primary reasons for the wide popularity of B-splines [33].

Just as important for the purposes of continuous trajectory parametrization is
the differentiation of f(t1 a1 , a,) with respect to the coefficient set {ai}. Since
the spline coefficients directly parametrize the motion of a system, it is important
to understand the first-order behavior of f in terms of any given ai. What follows
is a simple and progressive discussion of the differentiation of f with respect to any
given ai. The derived analytic relationships eliminate the need for numerical differen-
tiation of trajectories, thus reducing computational burden and improving numerical
accuracy.

First, it is easy to see that the partial derivative of f with respect to the ith
coefficient a, evaluated at a point to is equal to the value of the ith B-spline at to:

(to) = Bi,k(to)
Oai

= f(to;0,.1 ,...,0)

Sf (to; ei) (B.12)

S f (t; ei)I tt

where e is the i-th unit vector in R'. The latter two lines of Equation (B.12) illustrate
that the evaluation of the partial derivative of f at to is nothing other than a simple
evaluation of a reduced form of f at that point. The "reduced form" is merely the
ith B-spline component of f. Further, letting f(") denote the m-th time derivative

194

of f. that is. with the definition

f(" m(t; a1 an) (t; (B.13)

then the partial derivative of f("') with respect some ai is given by first replacing
f(t; ai, a) by its ith component f(t; ei), differentiating with respect to time, and
then evaluating at the desired point to:

aa, (to; a ,. a) (Y() (t ei))

= f(") (t;1 ei) It__to.

The t = to outside of the time differentiation indicates that the time evaluation comes
last. Note that f(") is indeed an explicit function of the {ai} because of Equation
(B.11).

Naturally, linear combinations of spline functions of {ai} obey the usually linearity
of differentiation. That is, if fi and f2 are two spline functions of the same parameter
set {a}. as in

(B.15)

- (to; a,, a.) + (to: a,. a7)
-~~t a.(t;)1 o

ai fai

= fI "0 (t ;1 e-i) | =t + f2"" (t;. ei) |t=to. (B.16)

This result follows directly from linearity and Equation (B.14). A simpler case occurs
when g is a function of two different parameter sets {ai} and {bi}, by virtue of being
a linear combination of two independent splines, as in

g(t; a,.... , an; b1, . . . , b,) = f1 (t; a,, . . . , an) + f 2(t; bi, . . . , b,). (B.17)

Then the following relations hold:

a((to.ab.b)
(t ; i,. ., n; bi r)

= aflM (to; a, . . .an)
a

(B.18)

and

(to; 1,.. _.,an*bi,.br) =fObn (to;bi...,br)

= 2 (t e)It=to

195

(B.14)

then

(B.19)

g (t; a,, . . . , a.) = fi(t; a,, . . . , an) + f2 (t; a,, ,,,,)),

ag("0
Oa (to; ai,.., an)

In situations where y(t) is actually some nonlinear function h of the values of the mth
time derivative of a spline f, then g is explicitly a function of {ai} as well:

g (t; a,, . . . , an) = h(f (") (t; a , an)). (B.20)

In such cases, the partials of g with respect to a given ai follow from an application
of the standard multivariable chain rule [104]:

Og (to a1,.. .,a) = I (f (m)(to; a1. . . ,an)) - (to;ai, .. .a)
Oaj n Of (Tn) Oai t

7 (f("0 (to; ai,. . . , an)) -f "(t; ei) to. (B.21)

It is important to note that the evaluation of Dh/Dff(m) involves the full spline faw)
while the evaluation of Of(")/Oai involves only its ith spline component.

Finally. expressions may arise where g depends on the product of two related
spline-dependent functions, each similar in form to that of Equation (B.20). Partial
differentiation then follows the usual product rule, given the chain rule of Equation
(B.21), so that

g(t 01 an) =g f (t; a, . . . , an)) - 2 (fj"2(t; a1 a)) (B.22)

has partial derivatives

___ 092 .r12 t 0) f(71, (;)

&ai(to; a) y 1 (f (to a)) -f (f " (to;(i)) 2 (t; ei) t=to

(in "I (to; a)) 9 fO(;e)tt 2(f "' (o a)), (B. 23)

where a denotes the general n-tuple set {a1 ,. .. , an}. The case where f, and f2 are

splines dependent on different parametrizations a and b is easier (with b denoting a
general r-tuple set {bi, . . . , b,}). Here, g takes the form

g(t; a; b) = (f("r (t; a)) -9 2 (f ")(t; b)) (B.24)

with partial derivatives given by

(to a; b) = (f(Tn")(to a)) -f(T")(t; ej) t=to - 92(f2) (to; b)) (B.25)

and

(to; a; b) = (f "")(t a)) 0 (f ")(to b)) ff"n)(t e y (B.26)

196

Bibliography

[1] Albus, James S. "Outline for a Theory of Intelligence", IEEE Transactions on
Systems, Man, and Cybernetics, Vol.21, No.3, May/June 1991, pp.473-509.

[2] Albus, J., A. Meystel, and S. Uzzaman, "Multiscale Motion Planning"", Proceed-
ings of the 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation, 1997, pp.19-26.

[3] Allgower. Eugene L., and Kurt Georg, Numerical Continuation Methods, An
Introduction, Springer-Verlag, Berlin, 1990.

[4] Amit, Ramesh, and Maja J. Matarid, "Parametric Primitives for Motor Repre-
sentation and Control" , Proceedings of the International Conference on Robotics
and Automation (ICRA-2002), Washington DC, May, 2002, pp.8 6 3-8 6 8 .

[5] Amit, Ramesh, and Maja J. Matari6, "Learning Movement Sequences from
Demonstration" , Proceedings of the International Conference on Development
and Learning (ICDL-2002), Cambridge, MA, June, 2002, pp.3 0 2-3 0 6 .

[6] Arikan, Okan, and D.A. Forsyth, "Interactive Motion Generation from Exam-
ples", Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 2002), ACM SIGGRAPH, San Antonio,
TX, July, 2002, pp.483-490.

[7] Atkeson, Christopher G., "Using Local Trajectory Optimizers To Speed Up
Global Optimization in Dynamic Programming", Advances in Neural Informa-
tion Processing Systems, edited by Jack D. Cowan, Gerald Tesauro, and Joshua
Alspector, Vol.6, Morgan Kaufmann Publishers, Inc., 1994, pp.6 6 3-6 7 0 .

[8] Bellingham, John, Arthur Richards, and Jonathan P. How, "Receding Horizon
Control of Autonomous Aerial Vehicles", Proceedings of the American Control
Conference. Anchorage, AK, May, 2002.

[9] Bemporad, A., N.A. Bozinis, V. Dua, M. Morari, and E.N. Pistikopouls, "Model
Predictive Control: A Multi-Parametric Programming Approach", European
Symposium on Computer Aided Process Engineering. Florence, Italy, May, 2000.

197

[10] Beinporad, A. and C. Fillipi. "Suboptimal Explicit Receding Horizon Control
via Approximate Miiltiparametric Quadratic Programming", Proceedings of the

40th IEEE Conference on Decision and Control, Orlando, FL., December, 2001,
pp.4851-4856.

[11] Bemporad, Alberto, and M\Ianfred Morari, "Control of Systems Integrating
Logic, Dynamics, and Constraints", Automratica, Vol.35, 1999, pp.407-427.

[12] Bemporad, A., T.J. Tarn, and N. Xi, "Predictive Path Parameterization for
Constrained Robot Control", IEEE Transactions on Control Systems Technol-
ogy, Vol.7, No.6, November, 1999, pp.648-656.

[13] Berry, D.T., "National Aerospace Plane Longitudinal Long-Period Dynamics",
Journal of Guidance, Control, and Dynamics, Vol.14. No.1. January-February,
1991. pp.205-206.

[14] Bertsekas, Dimitri P., Nonlinear Programming, Second Edition, Athena Scien-
tific, Belmont, MA, 1999.

[15] Bertsimas, Dimitris and John N. Tsitsiklis, Introduction to Linear Optimization,
Athena Scientific, Belmont. MA, 1997.

[16] Betts. John T., "Survey of Numerical Methods for Trajectory Optimization"
Journal of Guidance, Control, and Dynamics, Vol.21, No.2, March-April, 1998,
pp.193-207.

[17] Betts, John T., Practical Methods for Optimal Control Using Nonlinear Pro-
gramming, Society for Industrial and Applied Mathematics, Philadelphia, PA,
2001.

[18] Betts, John T., and William P. Huffman, "Path-Constrained Trajectory Opti-
mization Using Sparse Sequential Quadratic Programming", Journal of Guid-

ance, Control, and Dynamics, Vol.16, No.1, January-February, 1993, pp.5 9-6 8 .

[19] Bigelow, James H., and Norman Z. Shapiro, "Implicit Function Theorems for
Mathematical Programming and for Systems of Inequalities", Mathematical
Programming, Vol.6, North-Holland Publishing Company, 1974, pp.1 41-156.

[20] Borrelli, Francesco, Constrained Optimal Control of Linear and Hybrid Systems,
Springer-Verlag, 2003.

[21] Borrelli. Francesco, Mato Baotic, Alberto Bemporad, and Manfred Morari, "Ef-
ficient On-Line Computation of Constrained Optimal Control", Proceedings of
the 40th IEEE Conference on Decision and Control, Orlando, FL, December,
2001, pp. 1 1 8 7-1 19 2 .

[22] Brockett. Roger W., "Hybrid Models for Motion Control Systems", Essays
on Control: Perspectives in the Theory and its Applications, edited by H.L.
Trentelman and J.C. Willems, Birkhiuser, Boston, 1993, pp. 2 9 -5 3 .

198

[23] Brotman. Lynne Shapiro, and Arun N. Netravali, "Motion Interpolation by
Optimal Control", Proceedings of A CM SIGGRAPH 1988, ACM SIGGRAPH.
Vol.22, No.4, August, 1988, pp.309-315.

[24] Bruderlin, Armin, and Lance Williams, -Motion Signal Processing", Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 1995), ACM SIGGRAPH, Los Angeles, CA, August, 1995.
pp.97-104.

[25] Bryson, Arthur E.. Dynamic Optimization. Addison Wesley Longman, Menlo
Park, CA, 1999.

[26] Bryson, Arthur E., and Yu-Chi Ho, Applied Optimal Control: Optimization,
Estimation, and Control, Revised Printing, Taylor & Francis, New York, NY,
1975.

[27] Bullo, Francesco, and W. Todd Cerven, "On Trajectory Optimization for Poly-
nomial Systems via Series Expansions", Proceedings of the 39th IEEE Confer-
ence on Decision and Control, Sydney, Australia, December, 2000, pp. 77 2 -7 7 7 .

[28] Bullo, F., and N.E. Leonard, "Motion Primitives for Stabilization and Control of
Underactuated Vehicles", Nonlinear Control Systems Design Symposium. IFAC,
Vol.1, July, 1998, pp. 13 3-13 8 .

[29] Bullo, Francesco, and Kevin M. Lynch, "Kinematic Controllability and De-
coupled Trajectory Planning for Underactuated Mechanical Systems", IEEE
Conference in Robotics and Automation, Seoul, Korea, April, 2001, pp.3300-
3307.

[30] Chauvin, Jonathan, Laure Sinegre, and Richard M. Murray, "Nonlinear Tra-
jectory Generation for the Caltech Multi-Vehicle Wireless Testbed", 2003 Eu-
ropean Control Conference, Submitted, 2003, http://www. cds. caltech. edu/ mur-
ray/papers.

[31] Crandall, Stephen H., Dean C. Karnopp, Edward F. Kurtz, Jr., and David
C. Pridmore-Brown, Dynamics of Mechanical and Electromechanical Systems,
Krieger Publishing Company, Malabar. Florida, 1968.

[32] Dasgupta, Anirvan, and Yoshihiko Nakamura, "Making Feasible Walking Mo-
tion of Humanoid Robots from Human Motion Capture Data", Proceedings of
the 1999 IEEE International Conference on Robotics & Automation, Detroit,
MI, May, 1999, pp.1 0 4 4 -10 4 9 .

[33] Davis, Paul, '"B-Splines and Geometric Design", SIAM News, Vol.29, No.5,
June, 1996.

[34] de Boor, Carl, A Practical Guide to Splines, Revised Edition, Applied Math-
ematical Sciences, Vol.27, edited by J.E. Marsden and L. Sirovich, Springer,
New York, NY, 2001.

199

[35] de Boor, Carl. Spline Toolbox User's Guide, The MathWorks, Inc., Natick. MA,
2003.

[36] Del Vecchio, Domitilla, Richard M. Murray, and Pietro Perona. "Primitives
for Human Motion: A Dynamical Approach", IFAC World Congress., CDS
Technical Report 01-009, 2002.

[37] Dever, Chris, Bernard Mettler, Marc McConley. and Eric Feron, "Singular
Direction Characterization of Vehicle Maneuvers", C.S. Draper Laboratory,
CSDL-C-6540, Cambridge, MA, April, 2004.

[38] Donald. Bruce Randall. Patrick G. Xavier, John F. Canny, and John H. Reif,
"Kinodynamic Motion Planning". Journal of the Association for Computing
Machinery, Vol.40, No.5, 1993, pp.1 04 8 -10 6 6 .

[39] Doyle, Francis J., Ronald K. Pearson, and Babatunde A. Oqunnaike, Identifi-
cation and Control Using Volterra Models, Springer, London. 2002.

[40] Earl, Matthew G. and Raffaelo D'Andrea. "Modeling and Control of a Multi-
Agent System Using Mixed Integer Linear Programming", Proceedings of the

41st IEEE Conference on Decision and Control, Las Vegas, NV. December,
2002, pp. 10 7- 1 1 1 .

[41] Egerstedt, M., T.J. Koo, F. Hoffman, and S. Sastry, "Path Planning and Flight
Controller Scheduling for an Autonomous Helicopter", Lecture Notes in Com-
puter Science 1569, edited by J. H. van Schuppen and F. V. Vaandrager,
Springer-Verlag, Germany, 1999, pp.91-102.

[42] Faiz, Nadeem, Sunil K. Agrawal, and Richard M. Murray, "Trajectory Plan-
ning of Differentially Flat Systems with Dynamics and Inequalities", Journal
of Guidance, Control. and Dynamics, Vol.24. No.2. March-April, 2001, pp.219-
227.

[43] Faloutsos, Petros, Michiel van de Panne, and Demetri Terzopoulos. "Com-
posable Controllers for Physics-Based Character Animation", Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2001), ACM SIGGRAPH, Los Angeles, CA, August, 2001,
pp.251-260.

[44] Fiacco, Anthony V., Introduction to Sensitivity and Stability Analysis in Non-
linear Programming, Mathematics in Science and Engineering, Volume 165,
Academic Press, New York, NY. 1983.

[45] Fiacco, Anthony V., Ed., Sensitivity, Stability, and Parametric Analysis, Math-
ematical Programming Study 21, The Mathematical Programming Society, Am-
sterdam, The Netherlands, 1984.

[46] Fletcher, Roger, Practical Methods of Optimization, Volume 1: Unconstrained
Optimization, Wiley, Chichester, England, 1987.

200

[47] Fletcher, Roger. Practical Methods of Optimization, Volume 2: Constrained
Optimization. Wiley. Chichester, England. 1987.

[48] Fliess, Michel, Jean Levine., Philippe Martin, and Pierre Rouchon, "Flatness
and Defect of Non-Linear Systems; Introductory Theory and Examples", Inter-
national Journal of Control, Vol.61, No.6, 1995, pp. 1 3 2 7 -13 6 1 .

[49] Fod, Ajo, Maja J. Matarid, and Odest Chadwicke Jenkins, --Automated Deriva-
tion of Primitives for Movement Classification", Autonomous Robots, Vol.12,
No.1, January. 2002, pp.3 9 -5 4 .

[50] Fourer, Robert, David M. Gay, and Brian W. Kernighan, AMPL: A Model-
ing Language for Mathematical Programming, Second Edition, Duxbury Press,
Brooks/Cole Publishing Company, 2003.

[51] Frazzoli, Emilio "Robust Hybrid Control for Autonomous Vehicle Motion Plan-
ning", Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, MA,
2001.

[52] Frazzoli, Emilio, "Explicit Solutions for Optimal Maneuver-Based Motion Plan-
ning", invited paper, IEEE Conference on Decision and Control, 2003.

[53] Frazzoli, Emilio, Munther A. Dahleh, and Eric Feron, "Real-Time Motion Plan-
ning for Agile Autonomous Vehicles", Journal of Guidance, Control, and Dy-
namzcs, Vol.25, No.1, JanuaryT-February, 2002, pp.1 1 6 -1 2 9 .

[54] Gavrilets, Vladislav, "Autonomous Aerobatic Maneuvering of Miniature Heli-
copters", Doctoral Thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2003.

[55] Gavrilets, Vladislav, Emilio Frazzoli, Bernard Mettler, Mike Piedmonte,
and Eric Feron, "Aggressive Maneuvering of Small Autonomous Helicopters:
A Human-Centered Approach", International Journal of Robotics Research,
Vol.20, No.10, pp.795-807, 2001.

[56] Gavrilets, Vladislav, loannis Martinos, Bernard Mettler, and Eric Feron, "Con-
trol Logic for Automatic Aerobatic Flight of a Miniature Helicopter", AIAA
Guidance, Navigation, and Control Conference, Monterey, CA, August, 2002.

[57] Gavrilets, Vladislav, loannis Martinos, Bernard Mettler, and Eric Feron,
"Flight Test and Simulation Results for an Autonomous Aerobatic Helicopter"
AIAA/IEEE Digital Avionics Systems Conference. Irvine, CA, October, 2002.

[58] Gavrilets, Vladislav. Bernard Mettler, and Eric Feron. "Nonlinear Model for
a Small-Size Acrobatic Helicopter", AIAA Guidance, Navigation, and Control
Conference. Montreal, Canada, August, 2001.

201

[59] Gleicher, Michael, "Motion Editing with Spacetiine Constraints". Proceedings of
the 1997 Symposium on Interactive 3D Graphics, Providence. RI, 1997. pp. 1 3 9-
148.

[60] Golub, Gene H., and Charles F. Van Loan, Matrix Computations, Third Edition.
The John Hopkins University Press, Baltimore, MD, 1996.

[61] Guddat, Jiirgen. F. Guerra Vazquez. and H. Th. Jongen, Parametric Optimiza-

tion: Singularities, Pathfollowing and Jumps, John Wiley & Sons, Ltd., West
Sussex, England, 1990.

[62] Guillemin, Victor. and Alan Pollack, Differential Topology, Prentice-Hall, En-
glewood Cliffs, NJ. 1974.

[63] Hargraves, C.R., and S.W. Paris, "Direct Trajectory Optimization Using Non-

linear Programming and Collocation", AIAA Journal of Guidance, Vol.10, No.4,
1987, pl).338-342.

[64] Hauser. J., and A. Jadbabaie, "Aggressive Maneuvering of a Thrust Vectored

Flying Wing: A Receding Horizon Approach", Proceedings of the IEEE Con-
ference on Decision and Control, Sydney, Australia, 2000.

[65] Hauser, J., and D. Meyer, "Trajectory Morphing for Nonlinear Systems", Pro-

ceedings of the American Control Conference, June, 1998.

[66] Hodgins, Jessica K.. Wayne L. Wooten, David C. Brogan, James F. O'Brien,
"Animating Human Athletics", Computer Graphics, Vol.29., 1995. pp. 71-78.

[67] Hollerbach, John M., "Dynamic Scaling of Manipulator Trajectories", ASME
Journal of Dynamic Systems, Measurement and Control, Vol.106, 1984, pp).1 0 2 -

106.

[68] Hull., David G.. "Conversion of Optimal Control Problems into Parameter Op-

timization Problems", Journal of Guidance. Control, and Dynamics, Vol.20.

No.1, January-February, 1997, pp.57-60.

[69] ILOG, Inc., IL OG CPLEX 7.0 Reference Manual, URL: www. ilog. com, ILOG,
Inc., 2000.

[70] Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal, "Trajectory For-
mation for Imitation with Nonlinear Dynamical Systems", Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS2001), 2001, pp.752-757.

[71] Jacobson, David H. and David Q. Mayne, Differential Dynamic Programming,
American Elsevier Publishing Company, New York, NY, 1970.

[72] Jadbabaie, Ali, "Receding Horizon Control of Nonlinear Systems: A Control

Lyapunov Function Approach", Doctoral Thesis, California Institute of Tech-

nology, Pasadena, California, 2000.

202

[73] Jadbabaie, Ali. and John Hauser. "Relaxing the Optimality Condition in Re-
ceding Horizon Control", Proceedings of the 39th IEEE Conference on Decision
and Control. Sydney. Australia. December. 2000.

[74] Jenkins, Odest Chadwicke, and Maja J. Matarid, "Deriving Action and Behav-
ior Primitives from Human Motion Data", Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS-2002), Lau-
sanne. Switzerland. September. 2002, pp. 2551-2556.

[75] Johansen, Tor. A., "On Multi-Parametric Nonlinear Programming and Explicit
Nonlinear Model Predictive Control"', Proceedings of the 41st IEEE Conference
on Decision and Control, Las Vegas, NV, 2002.

[76] Jolliffe, I.T., Principal Component Analysis, Second Edition, Springer-Verlag,
New York, 2002.

[77] Jongen, Hubertus Th., and Gerhard-W. Weber, "On Parametric Nonlinear Pro-
gramming", Annals of Operations Research, Vol.27, 1990, pp.2 5 3 -2 8 4 .

[78] Kato, Osamu, and Ichiro Sugiura, "An Interpretation of Airplane General Mo-
tion and Control as Inverse Problem", Journal of Guidance, Vol.9, No.2, 1985,
pp.198-204.

[79] Khalil, Hassan K., Nonlinear Systems, Second Edition, Prentice Hall, Upper
Saddle River, NY, 1996.

[80] Kim, S.K., and D. Tilbury, "Trajectory Generation for a Class of Nonlinear
Systems with Input and State Constraints", ACC01-AIAA1043, 2001.

[81] Ko, Hyeongseok, and Norman I. Badler, "Animating Human Locomotion with
Inverse Dynamics", IEEE Computer Graphics and Applications, Vol.16, No.2,
1996, pp. 5 0 -5 9 .

[82] Kojima, Masakazu, and Ryuichi Hirabayashi, "Continuous Deformation of Non-
linear Programs", Mathematical Programming Study, Vol.21, North-Holland
Publishing Company, 1984, pp. 15 0 -19 8 .

[83] Koo, T. John and Shankar Sastrv, "Output Tracking Control Design of a He-
licopter Model Based on Approximate Linearization". Proceedings of the 37th
IEEE Conference on Decision & Control, Tampa, FL, December, 1998, pp.3635-
3640.

[84] Kovar, Lucas, Michael Gleicher. and Frederic Pighin, "Motion Graphs", Pro-
ceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 2002), ACM SIGGRAPH, San Antonio. TX. July,
2002, pp.4 7 3-4 8 2 .

203

[85] Laszlo, Joseph, Michiel van de Panne, and Eugene Fiume. "Interactive Control
for Physically-Based Animation", Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 2000), ACM
SIGGRAPH. New Orleans, LA. July, 2000, pp.201-208.

[86] Lee, Jehee, and Sung Yong Shin, "A Hierarchical Approach to Interactive Mo-
tion Editing for Human-like Figures". Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH 1999),
edited by Alvn Rockwood, ACM SIGGRAPH. Los Angeles, CA, August, 1999,
39-48.

[87] Lee, Suchang, and Youdan Kim. "Solution of the Inverse Simulation Problem
by Optimization Techniques and Its Applications to Aircraft Nonlinear Large
Angle Maneuvers", AIAA-96-3701-CP, 1996.

[88] Leishiman, J. Gordon, Principles of Helicopter Aerodynamics, Cambridge Uni-
versity Press, Cambridge, UK. 2000.

[89] Li, Yan, Tianshu Wang. and Heung-Yeung Shum, "Motion Texture: A Two-
Level Statistical Model for Character Motion Synthesis". Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH 2002), ACM SIGGRAPH, San Antonio, TX, July, 2002, pp.465-472.

[90] Ljung, Lennart. System Identification: Theory for the User, Second Edition,
Prentice Hall PTR, Upper Saddle River, NY, 1999.

[91] Lundberg, Bruce N., and Aubrey B. Poore. "Variable Order Adams-Bashforth
Predictors with an Error-Stepsize Control for Continuation Methods", SIAM
Journal on Scientific and Statistical Computing. Vol.12, No.3, May. 1991,
pp.695-723.

[92] Lundberg, Bruce N., and Aubrey B. Poore, "Numerical Continuation and Sin-
gularity Detection Methods for Parametric Nonlinear Programming", SIAM
Journal on Optimization, Vol.3, No.1, February, 1993, pp.1 3 4 -1 5 4 .

[93] Maciejowski, Jan Marian, Multivariable Feedback Design, Addison-Wesley,
Wokingham, England, 1989.

[94] Mallat, Stephane, A Wavelet Tour of Signal Processing, Second Edition, Aca-
demic Press, San Diego, CA, 1999.

[95] Martinos, Ioannis, Tom Schouwenaars, Jan De Mot, and Eric Feron, "Hierarchi-
cal Cooperative Multi-Agent Navigation Using Mathematical Programming",
Proceedings of the 41st Annual Allerton Conference on Communication, Con-
trol, and Computing, Monticello, IL, October, 2003.

[96] The MathWorks, Inc. Using Simulink, Model-Based and System-Based Design,
User's Guide, Version 5, The MathWorks Inc., Natick, MA, 2003.

204

[97] The MathWorks., Inc. Optimization Toolbox For Use with Matlab, User's Guide.
Version 3, The MathWorks Inc., Natick. MA, 2004.

[98] McGovern. Lawrence K., "Computational Analysis of Real-Time Convex Op-
timization for Control Systems", Doctoral Thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2000.

[99] Mettler, Bernard, Identification Modeling and Characteristics of Miniature Ro-
torcraft, Kluwer Academic Publishers, Norwell, MA, 2003.

[100] Mettler, Bernard, Mario Valenti. Tom Schouwenaars, Emilio Frazzoli, and Eric
Feron, "Rotorcraft Motion Planning for Agile Maneuvering", Proceedings of the
58th Forum of the American Helicopter Society, Montreal, Canada, June, 2002.

[101] Milam, Mark B., Ryan Franz, and Richard M. Murray, "Real-Time Constrained
Trajectory Generation Applied to a Flight Control Experiment", IFAC Confer-
ence, 2002.

[102] Milam. M., K. Mushambi. and R.M. Murray, "A New Computational Approach
to Real-Time Trajectory Generation for Constrained Mechanical Systems", Pro-
ceedings of the 39th IEEE Conference on Decision and Control, Vol.1, 2000,
pp.845-851.

[103] Monteiro, Renato D.C. and Ilan Adler, "Interior Path Following Primal-Dual
Algorithms, Part II: Convex Quadratic Programming", Mathematical Program-
ming, Vol.44. No.1, pp. 4 3-6 6 .

[104] Munkres, James R., Analysis on Manifolds, Westview Press, 1991.

[105] Murray, Richard M., Joel W. Burdick, Scott D. Kelly, and James Radford,
"Trajectory Generation for Mechanical Systems with Application to Robotic
Locomotion" , Proceedings of the 3rd International Workshop on Algorithmic
Foundations of Robotics, Houston, TX, 1998.

[106] Murray, Richard M., Nluruham Rathinam, and Willem Sluis, "Differential Flat-
ness of Miechanical Control Systems - A Catalog of Prototype Systems", ASME
International Mechanical Engineering Congress and Exposition, 1995.

[107] Mussa-Ivaldi, F., and E. Bizzi, "Notor Learning Through the Combination
of Primitives". Philosophical Transactions for the Royal Society of London,
Vol.355, 2000. pp. 1753 -1 7 6 9 .

[108] Nise, Norman S., Control Systems Engineering, The Benjamin/Cummings Pub-
lishing Company, Inc., Redwood City. CA, 1995.

[109] O'Neill, Barret, Semi-Riemannian Geometry with Applications to Relativity,
Academic Press, San Diego, CA, 1983.

205

[110] O'Neill, Barrett. Elementary Differential Geometry. Second Edition, Academic
Press, San Diego, CA, 1997.

[111] Papoulis, Athanasios, and S. Unnikrishna Pillai, Probability, Random Variables
and Stochastic Processes, Fourth Edition, McGraw-Hill Series in Electrical and
Computer Engineering, McGraw-Hill, Boston, MA, 2002.

[112] Peterson, David W.. "A Review of Constraint Qualifications in Finite-
Dimensional Spaces", SIAM Review, Vol.15, No.3, July, 1973, pp.639-654.

[113] Petit, N., Ml. Milan, and R. Murray. "Inversion Based Constrained Trajectory
Optimization", 5th IFAC Symposium on Nonlinear Control Systems, 2001.

[114] Piedmonte. Mike, and Eric Feron, "Aggressive Maneuvering of Aerial Vehi-
cles: A Human-Centered Approach", International Symposium on Robotics
Research, Snowbird, UT. October, 1999.

[115] Pierre, Donald A., Optimization Theory uwith Applications, Dover Publications.
Inc., New York, NY, 1986.

[116] Pinch. Enid R., Optimal Control and the Calculus of Variations, Oxford Uni-
versity Press, Oxford, England, 1993.

[117] Pistikopoulos, Efstratios N., Vivek Dua, Nikolaos A. Bozinis, Alberto Bempo-
rad, and Manfred Morari, "On-Line Optimization via Off-Line Parametric Op-
timization Tools", Computers and Cherical Engineering, Vol.26, 2002, pp.175-
185.

[118] Poore. A.B. and C.A. Tiarht, "Bifurcation Problems in Nonlinear Parametric
Programming", Math ematical Progra-mming, Vol.39, 1987, pp.1 8 9-2 05.

[119] Popovi6, Jovan, Steven M. Seitz, and Michael Erdmann, "Motion Sketching for
Control of Rigid Body Simulations" ACM Transactions on Graphics, Vol.22,
No.4, 2003, pp.1034-1054.

[120] Popovi6, Jovan, Steven M. Seitz, Michael Erdmann, Zoran Popovi, and An-
drew Witkin, "Interactive Manipulation of Rigid Body Simulations". Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2000), ACM SIGGRAPH, New Orleans, LA, July, 2000,
pp.209-217.

[121] Popovid, Zoran, and Andrew Witkin, "Physically Based Motion Transformna-
tion", Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1999), AC M SIGGRAPH, Los Angeles,
CA, August, 1999, pp. 1 1-2 0 .

[122] Quanser Consulting, "3D Helicopter System (with Active Disturbance)", User's
Manual, Quanser Consulting, Markham, Ontario, 2003.

206

[123] Rakowska. Joanna, Robert T. Haftka. and Layne T. Watson, "An Active Set
Algorithm for Tracing Parametrized Optima". Structural Optimization. Vol.3.
1991, pp. 2 9 -4 4 .

[124] Rheinboldt, Werner C., Numerical Analysis of Parametrized Nonlinear Equa-
tions. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol-
ume 7, John Wiley & Sons, New York, NY, 1986.

[125] Richards, Arthur, and Jonathan P. How, -Aircraft Trajectory Planning with
Collision Avoidance Using Mixed Integer Linear Programming", Proceedings of
the American Control Conference, Anchorage, AK, May, 2002.

[126] Robinson, Stephen M., "Local Structure of Feasible Sets in Nonlinear Pro-
gramming, Part I: Regularity", Numerical Methods, edited by V. Pereyra and
A. Reinoza, Springer-Verlag, Berlin, 1983. pp.240-251.

[127] Roweis, Sam, and Lawrence Saul, "Nonlinear Dimensionality Reduction by Lo-
cally Linear Embedding", Science, Vol.290, No.5500, December, 2000, pp.2323-
2326.

[128] Rudin, Walter, Principles of Mathematical Analysis, Third Edition, McGraw-
Hill, Inc.. New York. NY, 1964.

[129] Schaal, Stefan, "Learning from Demonstration", Advances in Neural Informa-
tion Processing Systems, edited by Michael C. Mozer, Micheal I. Jordan, and
Thomas Petsche, Vol.9, MIT Press, Cambridge, MA. 1997, pp.1040-104G.

[130] Schaal, Stefan, Shinya Kotosaka, and Dagmar Sternad, "Nonlinear Dynamic
Systems as Movement Primitives", CD-Proceedings of Humanoids2000, First
IEEE-RAS International Conference on Humanoid Robots, Cambridge, MA,
September, 2000.

[131] Schouwenaars, Tom, Bart De Moor, Eric Feron, and Jonathan How, "Mixed In-
teger Programming for Multi-Vehicle Path Planning", European Control Con-
ference, Porto, Portugal, 2001.

[132] Schouwenaars, Tom, Eric Feron, and Jonathan How, "Safe Receding Horizon
Path Planning for Autonomous Vehicles", 40th Allerton Conference on Com-
munication, Control and Computing, October, 2002.

[133] Schouwenaars, Tom, Bernard Mettler, Eric Feron, and Jonathan How, "Hybrid
Architecture for Full-Envelope Autonomous Rotorcraft Guidance", American
Helicopter Society 59th Annual Forum, Phoenix, AZ, 2003.

[134] Schouwenaars, Tom, Bernard Mettler, Eric Feron, and Jonathan How, "Hybrid
Architecture for Receding Horizon Guidance of Agile Autonomous Rotorcraft".
16th IFAC Symposium on Automatic Control in Aerospace, St. Petersburg,
Russia. June. 2004.

207

[135] Seferlis, Panagiotis, "Collocation Models for Distillation Units and Sensitiv-
ity Analysis Studies in Optimization", Doctoral Thesis. McMaster University.
Hamilton, Ontario, Canada, April, 1995.

[136] Seywald, Hans. "Trajectory Optimization Based on Differential Inclusion",
Journal of Guidance, Control, and Dynamics, Vol.17, No.3, May-June, 1994,
pp.480-487.

[137] Shim, H., T.J. Koo, F. Hoffmann. and S. Sastry. "A Comprehensive Study
on Control Design of Autonomous Helicopter", Proceedings of the 37th IEEE
Conference on Decision and Control. Tampa., FL, December, 1998., pp.3653-
3658.

[138] Slotine. Jean-Jacques E. and Weiping Li. Applied Nonlinear Control, Prentice
Hall, Englewood Cliffs. NJ, 1991.

[139] Spivak, Michael, Calculus on Manifolds, Perseus Books Publishing, 1965.

[140] Sternad, Dagmar, and Stefan Schaal, "Segmentation of Endpoint Trajectories
Does Not Imply Segmented Control", Experimental Brain Research, Vol.124,
No.1, pp. 1 1 8-1 3 6 .

[1411 Strang, Gilbert, Introduction to Applied Mathematics, Wellesley-Cambridge
Press. Wellesley, MA, 1986.

[142] Tenenbaum, J.B., V. de Silva, and J.C. Langford, "A Global Geometric Frame-
work for Nonlinear Dimensionalitv Reduction'", Science, Vol.290, No.5500, De-
cember, 2000., pp. 2 3 1 9-2 3 2 3 .

[143] Thomson, Douglas G., and Roy Bradley, "The Mathematical Definition of Heli-
copter Maneuvers", Journal of the American Helicopter Society, October, 1997,
pp.307-309.

[144] Tiahrt, C.A. and A.B. Poore, "A Bifurcation Analysis of the Nonlinear Para-
metric Programming Problem", Mathematical Programming, Vol.47, 1990,
pp.117-141.

[145] Tischler, M.B., and M.G. Cauffnan, "Comprehensive Identification from Fre-
que'ncy Responses: Flight Applications to BO-105 Coupled Rotor/Fuselage Dy-
namics"', Journal of the American Helicopter Society, Vol.37, No.3, 1992., pp.3-
17.

[146] Tischler, M.B., and M.G. Cauffman, "Comprehensive Identification from Fre-
quency Responses: An interactive facility for system identification and verifica-
tion, Class Notes and User's Manual", NASA Ames Research Center, Moffett
Field, CA, September, 1994.

208

[147] Tondel. Petter. Tor Arne Johansen. and Alberto Bemporad. "An Algorithm
for Multi-Parametric Quadratic Programming and Explicit MPC Solutions".
Automatica, Vol.39, No.3., 2003. pp.489-497.

[148] Vanderberghe, Lieven, and Stephen Boyd, "Semidefinite Programming". SIAM
Review, Vol.38. No.1, 1996. pp.49-95.

[149] van Nieuwstadt. M., "Trajectory Generation for Nonlinear Control Systems"'
Doctoral Thesis, California Institute of Technology, 1997.

[150] van Nieuwstadt. M., and R. Murray, "Outer Flatness: Trajectory Generation
for a Model Helicopter", Proceedings of the European Control Conference, 1997.

[151] van Nieuwstadt, M., M. Rathinam, and R.M. Murray "Differential Flatness and
Absolute Equivalence of Nonlinear Control Systems", SIAM Journal on Control
and Optimization, Vol.36, No.4, 1998, pp. 1 22 5 -12 3 9 .

[152] Verma, A.J., and J.L. Junkins, "Trajectory Generation for Transition from
VTOL to Wing-Bourne Flight Using Inverse Dynamics", 38th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, January, 2000.

[153] Walker, D.J., and I. Postlethwaite, "Advanced Helicopter Flight Control Using
Two-Degree-of-Freedom Ho Optimization", Journal of Guidance, Control, and
Dynamics, Vol.19, No.2, March-April, 1996, pp. 4 6 1-4 6 8 .

[154] Witkin, Andrew, and Michael Kass, "Spacetime Constraints", Proceedings
of ACM SIGGRAPH 1988, ACM SIGGRAPH. Vol.22, No.4, August, 1988,
pp.159-168.

[155] Witken, Andrew, and Zoran Popovid, "Motion Warping", Proceedings of 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH 1995), edited by Robert Cooke, ACM SIGGRAPH, Los Angeles, CA,
August, 1995, pp.105-108.

[156] Wright, Stephen J., Primal-Dual Interior Point Methods, SIAM, Philadelphia,
PA, 1997.

[157] Wu, Jia-chi, and Zoran Popovid, "Realistic Modeling of Bird Flight Anima-
tions", Proceedings of the 30th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 2003), ACM SIGGRAPH, San Diego, CA,
July, 2003, pp. 88 8-8 9 5 .

[158] Zwillinger, Daniel, Editor-in-Chief, CRC Standard Mathematical Tables and
Formulae. Thirtieth Edition. CRC Press. Boca Raton. FL. 1996.

209

