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Abstract
The first part of this thesis is concerned with the solution structure determination

problem. Whereas many biomacromolecules, such as proteins, can be adequately
characterized by a single conformation in solution, numerous other important molecules
(e.g., nucleic acids, carbohydrates, and polypeptides) exhibit conformational isomerism
and disorder. For these molecules, the term "structure" does not correspond to a single
conformation but rather to an ensemble of conformations. Given a molecular model and
experimental data, the goal of the structure determination problem is to solve for an
ensemble of conformations that is consistent with the data. Traditional computational
procedures such as simulated annealing, however, are not guaranteed to generate a unique
ensemble. The computed ensemble is often simply dependent on the user-specific
protocol employed to generate it.

As an alternative, a numerical method for determining the conformational
structure of macromolecules is developed and applied to idealized biomacromolecules in
solution. The procedure generates unique, maximum entropy conformational ensembles
that reproduce thermodynamic properties of the macromolecule (mean energy and heat
capacity) in addition to the target experimental data. As an evaluation of its utility in
structure determination, the method is applied to a homopolymer and a heteropolymer
model of a three-helix bundle protein. It is demonstrated that the procedure performs
successfully at various thermodynamic state points, including the ordered globule,
disordered globule, and random coil states.

In the second part of this thesis, a molecular model is developed and used to
investigate the properties of anionic glycosaminoglycan (GAG) molecules. GAGs are
critically important to the structure and biomechanical properties of articular cartilage, an
avascular tissue that provides a low-friction, protective lining to the ends of contacting
bones during join locomotion. The tissue consists predominantly of two types of
macromolecules, collagen and aggrecan. Aggrecan consists of a linear protein backbone
with a high mass fraction of covalently attached chondroitin sulfate (CS) GAGs, which
endow cartilage with its high compressive modulus via osmotic action. During the onset
and progression of osteoarthritis, a debilitating joint disease that affects millions in the
US alone, the chemical composition of CS (sulfate type, sulfate pattern, and molecular
weight) changes, concomitantly with alterations in the biomechanical properties of
cartilage.
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For this reason, it is of primary biological interest to understand the effects of CS
chemical composition on its conformation, titration behavior, and osmotic pressure. To
enable the investigation of these properties, a coarse-grained model of CS is developed.
Systematically derived from an all-atom description, the model enables the atomistic-
based simulation of large-scale macromolecular assemblies relevant to cartilage
biomechanics. Extensive comparison with experimental data demonstrates that this
computationally efficient model is also quantitatively predictive, despite the absence of
any adjustable parameters. 4-sulfation of CS is found to significantly increase the
intrinsic stiffness of CS, as measured by the characteristic ratio and persistence length in
the limit of high ionic strength. Average sulfate density is found to increase CS stiffness
at finite ionic strength due to electrostatic interactions that tend to stiffen the chain
backbone. Sulfation type and pattern (the statistical distribution of sulfates along a CS
chain) are not found to influence the osmotic pressure, which is found to be sensitive
primarily to the mean volumetric fixed charge density.

Thesis Committee Chairman: Alan J. Grodzinsky
Title: Professor of Electrical, Mechanical, and Biological Engineering
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Chapter 1

An inverse Monte Carlo procedure for conformation

determination of macromolecules

(published in the Journal of Computational Chemistry, 2003, 24 (7): 876-890)



1.1 Introduction

The study of macromolecular structure in solution is of central importance to

structural biology. Solution structure studies may be carried out at physiological levels of

salt concentration, pH, and temperature, enabling the study of macromolecular structure

under native conditions. Whereas many proteins can be adequately characterized by a

single conformation in solution, numerous other important biomacromolecules (e.g.,

carbohydrates, nucleic acids, and polypeptides) exhibit conformational isomerism and

disorder. Additionally, their equilibrium conformational ensembles may depend

significantly upon specific environmental conditions such as pH and salt concentration.

Examples include the pH-dependent helix-coil transition of some polypeptides (Poland

and Scheraga 1970) and the salt-concentration conformational dependence of charged

biopolymers such as DNA and anionic glycosaminoglycans (Cleland 1977; Skibinska and

others 1999). Solution structure studies are therefore particularly important for flexible

macromolecules, because x-ray crystallography typically results in a single conformation

that may not be relevant to the biologically active confomer(s) (Groth and others 2001;

Nikiforovich and Marshall 2001).

NMR and x-ray or neutron scattering are the predominant experimental

approaches to structure determination in solution. Each method yields ensemble-

averaged observables (distance and dihedral angle restraints in NMR and the molecular

structure factor in scattering) that are used as input to computational structure

determination methods. Given the experimental data and a molecular model, the goal of

the computational methods is to find the ensemble of model conformations that is

consistent with the experimental observables. A primary concern in this process regards
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the completeness and uniqueness of the generated ensemble (Bonvin and Brunger 1996;

Groth and others 2001).

Computational methods for structure determination of conformationally flexible

molecules from NMR data fall into one of two classes. In the first, the potential energy

function of the molecular model is modified to include a penalty term that accounts for

differences between model and experimental observables. Model observables are

computed either as time-averages over an adjustable window size during a single

simulation or as ensemble averages over multiple simulations (Bonvin and Brunger 1995;

Torda and others 1993). In the second approach, an initial "basis set" of conformations is

first generated using molecular mechanics (typically using systematic search or simulated

annealing followed by energy minimization). The weights of the various conformations

are then adjusted so as to maximize agreement between the model and experimental

observables (Groth and others 1999; Nikiforovich and others 1987; Shenderovich and

others 1988). Limitations of the abovementioned methods include their dependence on

molecular mechanical force fields (which may result in an incomplete conformational

basis set) and the use of adjustable parameters in the time averaging and weight

determination methods (Groth and others 2001).

Computational methods for structure determination from scattering data typically

define an objective function (analogous to the penalty term referred to above) that

represents the difference between the experimental and model structure factors. The

objective function is then employed in a conventional molecular simulation in one of two

ways. In the first, conformational search and minimize techniques, such as simulated

annealing followed by quenching, are used to minimize the objective function, thereby
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maximizing agreement between the experimental and model structure factors. Multiple

simulations of this type may be performed to generate a set of conformers to the data

(Svergun 1999). In the second approach, called Reverse Monte Carlo, a single Monte

Carlo simulation is performed using the objective function to sample statistically an

ensemble of conformations (Mcgreevy and Pusztai 1988; RosiSchwartz and Mitchell

1996). Both of the above procedures effectively replace a unique, thermodynamically

consistent ensemble of conformations with a non-unique ensemble that depends upon the

choice of adjustable parameters and the simulation protocol employed (Groth and others

1999). While this may not be a serious limitation for identifying a single best-fit

conformer, such as is often the case for folded proteins, it is unsatisfactory for describing

the correct distribution of conformers for flexible macromolecules.

In a recent communication we introduced a parameter-free Monte Carlo

procedure for determining molecular structure that is formulated in the semi-grand

canonical statistical thermodynamic ensemble (referred to hereafter simply as SGMC, for

semi-grand canonical Monte Carlo simulation) (Rutledge 2001). The inputs to the

method are the inter-molecular radial distribution function (RDF), which is directly

related to the spherically averaged molecular structure factor by Fourier transformation,

and a molecular model. The output is the (unique) structural ensemble that maximizes

the conformational entropy of the system subject to the RDF provided and

thermodynamic constraints (number of molecules N, volume V, and temperature 7). We

demonstrated its utility by applying it to a model Lennard-Jones fluid at various

thermodynamic state points. It was shown that the procedure generates an ensemble of

configurations that correctly reproduces the mean energy and heat capacity of the system
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in addition to the target RDF. We have also demonstrated how the method can be used to

analyze chain stretching during flow, as measured by orientation distributions deduced

from DECODER NMR experiments for a polystyrene melt (Colhoun and others 2002).

The goal of the present communication is to evaluate the utility of the SGMC

procedure for structure determination of macromolecules in solution. For this purpose, it

is desirable to study model biopolymers for which the exact conformational ensembles

and thermodynamic properties are known a priori. Following the approaches of Taylor

and Lipson (1996), Zhou and Karplus (1997), Zhou and Karplus (1999), and Zhou and

others (1997), we choose to model a protein as a series of N freely jointed beads, each

representing an amino acid centered at its C' position. The beads interact via non-bonded

potentials that implicitly include the effects of solvent. We employ the Metropolis Monte

Carlo (MMC) method to generate test sets of "experimental data" (residue-specific inter-

residue RDFs, hereafter referred to simply as residue-specific RDFs, the input to the

SGMC procedure) for a homopolymer and heteropolymer protein model at two state

points each, so as to test the method for both ordered and conformationally flexible

molecules (Figure 1). The utility of the SGMC procedure is then evaluated by employing

solely the residue-specific RDFs to solve the inverse problem, namely to compute

iteratively effective inter-residue interaction potentials that correctly reproduce the RDFs

in the semi-grand canonical ensemble. The accuracy of the resulting conformational

ensembles is evaluated by comparing not only the radial distribution functions but also

the mean energy and heat capacity of the "experimental" and SGMC ensembles.
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Figure 1 Instantaneous depictions of the homopolymer in its disordered globule (top left,
T'= 1.0) and random coil (top right, T* = 4.0) states and of the three-helix bundle protein
model in its native, ordered globule (RMS structure) (bottom left, T'= 0.65) and random

coil (bottom right, T = 1.5) states.

We note that although the SGMC procedure is tested on model proteins in this

study, it is by no means limited to poly-amino acids. It is generally applicable to

homopolymer and heteropolymer chain molecules. Its application to real

macromolecules, however, is currently limited by the fact that residue-specific radial

distribution functions are not readily resolved for heteropolymers in most solution

scattering measurements. Such measurements may become feasible in the future,

however, and we suggest at least one avenue for obtaining the required residue-specific

RDFs in the Concluding Discussion. Moreover, because residue-unspecific RDFs are

readily available experimentally for heteropolymers, we also test the capability of the
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SGMC procedure to predict conformational ensembles for the heteropolymer using a

single, residue-unspecific RDF in the Results section. We find promising preliminary

results for the heteropolymer in its conformationally flexible state.
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1.2 Theory and numerical methods

1.2.1 Theoretical basis of the SGMC procedure

We outline the theoretical basis of the SGMC procedure here and refer the reader

to Rutledge (2001) and Kofke (1999) for details. Consider a system of N particles in a

fixed volume V and at a fixed temperature T. Particles interact through a pair-wise

additive potential #U = # (r,rj,I,,Ij) where ri is the position of the id' particle with

respect to an inertial frame of reference and I is its speciation index, a component

designating random variable distributed according to p(I) such that p(1) is normalized and

everywhere non-negative. In this framework, the isomolar semi-grand canonical partition

function of the N-particle system is

Y (N,V,T,a*()/a, = & 1N .. fhI dI, (1)N !L A I a,fp.efJi1

where qi,, is the internal partition function and A is the de Broglie wavelength, each of

which is independent of I in the applications that follow. We also assume that the

interaction potential, #U, is independent of Iand set it equal to a predetermined "base"

interaction potential, $(r, r) = #0 (r,, rj). The configurational partition function is then,

N

ZN = exp -U(r,...,rN) Idri , where U(rl,...,rN) 0 = (rI, rj) is the potential
i=1 i<j

energy of the system. The residual activity, a* (I,), is defined to be a(I) /p(I), where

a(I) = exp[/Jp(I)], p is the chemical potential, and 6 = (kBT)', where kB is the

18



Boltzmann constant and T is absolute temperature. A reference activity, as1 = a',ep-f,

has been introduced in the partition function of the N-particle semi-grand canonical

ensemble because the total number of particles is fixed. Although the speciation index I

in Eq. (1) is a scalar variable that is typically used to label chemically distinct species, it

is not limited as such. For systems in which more than one parameter is required to

define a species (Rutledge 2001), the speciation index may equally well be written as a

vector, I. The residual activity and distribution functions then take the forms, a* (I) and

p(I), respectively. As an example, anisotropic fluid particles in a nematic liquid crystal

could be speciated according to their orientation, which would require two indices, e.g.

the polar and azimuthal angles, to characterize the species of each particle.

With reference to Eq. (1), the Monte Carlo acceptance criterion in a simulation of

N particles in a semi-grand canonical ensemble is

e[[u IeI a* (I1 ) p, (I] 1
rn s min , = 'n"w (2)

e-f"U Ia * (I, ) Pa,,( Ii
I - =W - old

where rn is a pseudorandom deviate between 0 and 1 and tar is used to differentiate

between the target (experimental) and SGMC-simulated probability distributions. To

incorporate the radial distribution function into the semi-grand canonical framework, we

first assign each particle to a unique species defined by its position relative to the (N -1)

remaining particles. We thereby associate p(I,) with the N-particle distribution function

19



g (N) (r,,,). Next, we invoke a Kirkwood-like superposition approximation,

g(N) r _ g(2) (r), where the two-particle distribution function g(2)(r) is simply
j,j'Ai

the radial distribution function g(r). The product over all particles in Eq. (2) can be

written equivalently as a product over all pairs of particles. Grouping contributions of

similar r, the number of pair-wise interactions between r and r + r is

n(r) = pNg(r)2rr2or , where p is the average number density, N/V. The acceptance

criterion in Eq. (2) then becomes

rn 5 min 1,- e [a*(r)g,,,(r)]'() (3)

where a* (r) is the residual activity function, g,r (r) is the target experimental radial

distribution function, and AU and An(r) are differences in the configurational energy

and the number of unique pair-wise interactions at distance r, respectively, between

successive configurations.

1.2.2 Extension and application of the SGMC procedure to isolated chain molecules

The preceding theory, which was applied in our previous study to a Lennard-

Jones fluid of identical molecules with periodic boundary conditions, can be extended to

the case of an isolated homopolymer chain molecule by removing the periodic boundary

conditions and treating the individual residues as fluid molecules (Taylor and Lipson
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1996). In this case, the non-bonded intra-molecular radial distribution function is given

by

N-2 N
g w (r) (4)

i=1 j=i+2

where w. (r) denotes the partial intramolecular radial distribution function between

monomers i andj. Extension of the SGMC theory to heteropolymers requires that each

pair of particles is speciated not only according to its relative separation distance, but also

by its type of chemical (pair-wise) interaction. The speciation vector I is then composed

of the sets {, r}, where q (q = 1,...,M) designates the pair-wise interaction type and r

designates the pair-wise distance index. Although in general both r and 7 may be

continuous parameters, in the present application Y is discrete. As will be seen in the

next section, M= 2 for the heteropolymer model studied in this work because it has two

distinct types of pair-wise interactions called "contacts" and "non-contacts". Moreover,

composition in q -space is fixed in the MMC and SGMC simulations because for each

pair of particles i andj, the value of % is known and held constant during the simulations

(i.e., "contacts" remain "contacts" and "non-contacts" remain "non-contacts").

In order to completely solve for the structure of a heteropolymer, the SGMC

procedure requires that each distinct interaction type has a separate target radial

distribution function, g,,. (Q, r), associated residual activity, a* (Y, r), and n(q, r) in Eq.

(3). The modified sampling criterion for multiple types of pair-wise interactions is

21



M r)

rn min 1, e- 7U 7 a*(,r)g.,(i,r)]A"(qr (5)
ql=1 r=0

where we have allowed for distinct "base" interaction potentials, b0 (Y, r), specific to

pair-wise interaction type q, so that the potential energy is now, U = (y, r,). Note
i<j

that unlike the case of a continuous liquid in which g(r) approaches one in the limit of

large r, g(r) for an isolated chain molecule approaches zero for values of r that are large

relative to the chain's root-mean-squared radius of gyration, (R . Moreover, the

average number density, p, may be arbitrarily small for an isolated (infinitely dilute)

chain, since V can be taken as large as desired.

As shown by Rutledge (2001), the residual activities, a* (17, r), that result in the

target probability distributions, ga.r(, r), are in general not known a priori, and therefore

the SGMC procedure requires iteration. Successive updates on the estimates of a* (q, r)

converge to estimates of effective pair-wise interaction potentials

(e,(r)= li # (7,r)-kBT ar (17 r)} (6)

where k is the iteration number and the b0 (q, r) were taken to be the hard-core portions

of the original MMC potentials in the present study. In alternative applications of the

SGMC procedure to problems of macromolecular structure determination it may be

desirable to include additional known potential energy terms in #0.
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1.2.3 Residual activity iteration procedure

To obtain successive updates in the unknown residual activity, a* (1, r), we

developed and implemented a multi-dimensional Newton-Raphson iteration scheme

similar to that of Lyubartsev and Laaksonen (1997). The goal of the SGMC simulation is

to find a* (, r) such that (n(r, r)) = ntar (q, r) to within statistical uncertainty for all 7

and r. For purposes of updating a*(, r), (n(Q, r)) is an ensemble average quantity that

is obtained during a single iteration of the SGMC simulation at the current a* (q, r).

n,,, (q, r) is known a priori and directly related to g,, (7, r). We begin by discretizing

the functions a* (, r), (n(7, r)), and n, (, r) in q and r-space to form three

M x (r., / Sr) matrices denoted A, (N), and N,,, respectively. Subscripts will be used

to denote components of these matrices when necessary and a parenthetical subscript (k)

will denote its kh iterative estimate. We proceed by expanding [Nta, -(N)] in a Taylor

series in A about the initial guess A = AM0 , where Ar(O) = * and a* , =1.

Note that each pair-wise interaction type q has an associated reference residual activity

a*,. Dropping nonlinear terms and setting the expansion equal to zero, we obtain the

resulting set of linear equations that is to be solved at every iteration k for the increment

in the residual activity, AA(k)I

a(N) AA [Ntar (N (7)
A =k) N ()
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where a (Ni, )aAp, = (A,, )' ((N,,rNP) - (Nr ) (N, )) (see Appendix A). The updated

residual activity, A(k+l), is computed from A(k+I) = A(k) +aAA(k), where a is a damping

factor (a = 0.5 was found to be optimal in the present study). An overview of the SGMC

structure determination procedure is provided in Figure 2.

Input gl.(j7,r)

Initialize:
a)(qkr) = r)

k=O

Run Monte Carlo simulation with acceptance criterion:

rns5min l,e- J a(* (r,r)g,,,(rq,r) Compute a(k.)(rq,r) using

a(k,) (7, r) =a~k) (q, r) +aAa(*) (q, r)

Aam(17(, r) AA(k) = J [N09.-(N )(k)]

____ g (q, - g, , r 2 Increment k
Mr., r= -

YES

Compute O(,r) and ensemble properties

Figure 2 Flow chart of the SGMC structure determination procedure utilizing inter-
residue radial distribution functions, gar (q, r), as experimental input.

1.2.4 Properties of the SGMC procedure

Formulating the macromolecular structure determination problem in a statistical

mechanical framework (namely, the semi-grand canonical ensemble) results in the

following important property of the SGMC procedure: given the fixed values
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(N(7), V, T, a* (q, r) / a* (7)), the distribution (or ensemble) of conformations produced

by the method maximizes the conformational entropy of the macromolecule subject to the

constraints q PUq = (E) and qPqnq(7,r) = (n(Q,r)), where N(r7) is the number of

pairs of type q, Pq is the probability of the q conformation, and Uqand nq(q,r) are the

corresponding energy and number of particles of type (q,r) in conformation q (Kofke

1999; McQuarrie 1975). Since iteration is performed to find the appropriate a*(q,r) that

reproduce the target p,,,r) (which in the present application are associated with the

non-bonded radial distribution function), this is equivalent to maximizing the

conformational entropy subject to the above constraints and the fixed distribution

p,,(q,r) (assuming the existence of a* (q,r) and convergence of the iterative

procedure). Thus, in the current application the method generates the unique, maximum

entropy ensemble consistent with the structural data, g,, (, r), and statistical mechanics.

In the current application, the SGMC procedure amounts to computing a pair-wise

additive Hamiltonian [ Heff = Z Oeff (%, r,)] (Eq. (6)) for the macromolecule that
i<j

reproduces the target RDFs, g,, Q7,(r) . Although in the present study Heff coincides with

the original, full Hamiltonian of the system, H, this will not be the case in applications of

the method to real macromolecules. The full Hamiltonian, H, of the macromolecular

system (protein or other solute + solvent) under study will typically depend upon n

"interesting" degrees of freedom (x,; i = 1,...,n) (taken to be the positions of the C"

atoms in the current application) and m "uninteresting" degrees of freedom

(y,; i = n +1,..., n + m) (taken to be the positions of the remaining protein atoms and all
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solvent atoms). Averaging H over the "uninteresting" degrees of freedom results in a

new, averaged Hamiltonian, H*, that explicitly depends upon only the "interesting"

degrees of freedom (Roux and Simonson 1999). In general, the new Hamiltonian (a

potential of mean force) will not be a pair-wise additive function of the interesting

degrees of freedom, but will contain multi-body terms. The superposition approximation

employed in the SGMC theory (sec. 2.1), however, assumes that this new Hamiltonian is

well approximated using solely pair-wise interaction terms Hff H*. Although it is

difficult at present to state how good an approximation this will be in the general case,

two important attributes of Hfg have been proven. First, of the set of Hamiltonians that

reproduce the target RDFs, there is only one that is pair-wise additive (up to an additive

constant) (Henderson 1974). Second, of the set of Hamiltonians that reproduce the target

RDFs, the pair-wise additive one gives maximum conformational entropy to the system

(Lyubartsev and Laaksonen 1997).

The distinguishing feature between applications of the SGMC method to real

macromolecules and the simplified square-well models used here is the source of the

radial distribution functions employed and the corresponding implicit (solvent + non-C'

solute atoms) information that they contain.
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1.3 Protein models

Each protein model consists of N freely jointed spherical monomers with hard-

core diameters ae, connected by bonds of fixed length. The monomers interact via

spherically symmetric square-well non-bonded potentials with square-well diameter ad=

1.5ae. For the homopolymer studies, the interaction potential has a well depth of c, and

its thermodynamic state is therefore defined by the single dimensionless parameter T*

kBTIE, the reduced temperature of the system. The hard-core diameter and all bond

lengths are set to be equal and all distances are rendered dimensionless (Zhou and others

1997) upon scaling by a.

The heteropolymer is an off-lattice model of the three-helix bundle fragment of

Staphylococcus aureus protein A (PDB ID: 1BDD). The model consists of 46 spherical

monomers that interact via two different non-bonded square-well potentials of the G6-

type (Taketomi and others 1975). In this model, a distinction is made between "contact"

interactions and "non-contact" interactions; the difference in interaction is set by the

"bias gap" g =(1- BO/BN), where BNe is the square-well depth of contact pair

interactions and BOe is the square-well depth of non-contact pair interactions (BN <0,

e >0, and BO > BN). For values of g near or greater than 1 the model strongly favors its

native (crystal) structure, whereas for g -*0 the model degenerates to a homopolymer.

As demonstrated by Zhou and Karplus (1997, 1999), the model is capable of reproducing

not only the three-helix structural motif of the native protein, but also the thermodynamic

transitions exhibited by real proteins. The two relevant thermodynamic parameters in the

heteropolymer model are the reduced temperature, T* = kBT/e, and the bias gap, g. As

was the case for the homopolymer, T* accounts for the effects of temperature, or
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equivalently solvent quality, on the heteropolymer's state, and g accounts for the relative

strength of interaction between contacts and non-contacts in the model. Although square-

well potentials are not very representative of true interaction potentials, their

discontinuous nature together with the multiple state points analyzed in this work provide

for a challenging test of the SGMC method.

Following Zhou and Karplus (1997), several steps were required to determine the

parameter values of the heteropolymer model. First, 46 spherical monomers were placed

at the C' positions of residues 10 through 55 of Staphylococcus aureus protein A. All

bond lengths were fixed at their initial Ca-C" lengths (average bond length 3.79 A) and

the hard-core monomer diameter, oc, was chosen to be equal to the minimum non-bonded

distance between any two Ce's in the model (ac = 4.27 A). This determined the square-

well diameter, ad, to be 6.41 A. Next, we define two non-bonded residues to be in

"contact" in a given conformation if their inter-residue distance is within the square-well

diameter ad. Using this definition, it was determined that there were 97 pairs in contact in

the initial conformation. In order to obtain reasonable packing in the model in the

absence of any side chains, the model was subsequently annealed in four successive

MMC simulations from T*= 1.0 to 0.001, while only imposing that the 97 initial contacts

remain intact (i.e. within the distance ac to ad) and that the remaining non-bonded pairs

satisfy the hard-core portion of the square-well potential. This was achieved by rejecting

Monte Carlo moves that violated either of these conditions. After annealing, the total

number of non-bonded pairs in contact had increased from 97 to 216*. The resulting 216

pairs were assigned to be "contacts", interacting with a square-well depth BNc, whereas

* 254 final contacts resulted from the annealing simulations of Zhou and Karplus (1997) because they were
obliged to allow the bond lengths in their model to vary between 0.9 ob and 1. 1ab in performing Discrete
Molecular Dynamics, thus enabling even closer packing.
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the remaining non-bonded pairs were assigned to be "non-contacts", interacting with a

square-well depth of Boc, thus completing the heteropolymer model definition.

In mathematical form, the non-bonded interaction potentials, u(i, r), for the

homopolymer and heteropolymer models are

Homopolymer:

00, r < c

u(r) = -. c, c-, :5 r < o-d

0, ad <

uq;

u(rq,r)= - .

B0;

V17,
q= contact,,

7= non-contact,

V 7,

(8)

r < c-

-cd5 r < rd

a-c 5 r <ad-

29

(9)

Heteropolymer:



1.4 Simulation protocol and results

Two state points were selected for each model to evaluate the utility of the SGMC

procedure for macromolecular solution structure determination. The two state points

chosen for the homopolymer, T = 1.0 and 4.0, correspond to disordered globule and

random coil states, respectively, and the two heteropolymer state points, g = 0.70, T*=

0.65 and 1.5, correspond to the native, ordered globule and random coil states,

respectively (Figure 1).

For each state point, a conventional MMC simulation was first performed in the

canonical ensemble with the square-well interaction potentials turned on to generate

target radial distribution functions for the respective models and state points. The SGMC

procedure was then employed with the attractive portion of the interaction potentials

turned off (as mentioned earlier, the "base" SGMC interaction potentials, z$(qr),

coincided with the respective hard-core portions of the MMC potentials, u Q,r)) to test

the ability of the method to solve the inverse problem and regenerate the original

interaction potentials employing only the target RDFs as input. The total non-bonded

RDF was used as input for the homopolymer and the individual contact and non-contact

RDFs (i.e., "residue-specific" RDFs) were used for the heteropolymer. In addition, a

second simulation was performed for the heteropolymer using solely the total non-

bonded RDF (i.e., "residue-unspecific" RDF). The latter simulation was performed in

order to test the ability of the method to reproduce the target conformational ensemble in

the absence of fully resolved, residue-specific experimental data. To evaluate the

accuracy of the ensemble (or distribution) of conformations generated by the SGMC-

generated effective interaction potentials, the mean energy and heat capacity per residue,
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E* = (E)/(eN) and C,* = C, /(kBN) = /82 [(E2) - (E)2 ]/N, were computed for each

ensemble as measured by the original interaction potentials. This measure was chosen

because it provides for an unambiguous comparison of the similarity between the MMC

and SGMC structural ensembles up to the second moments of their distributions in

energy.

For each Monte Carlo simulation (MMC and at every iteration of SGMC), initial

molecular conformations were generated using a self-avoiding random walk. The models

were then equilibrated using 0.25 -3.0 xl 06 moves, after which 10 -25 x 106 moves were

used to compute structural and thermodynamic averages, as well as the derivatives in

Eq.(7) (SGMC only). Trial conformations were generated using the "translate-jiggle"

algorithm of Dickman and Hall (1986). The move consists of selecting a bead at random

along the chain, displacing the bead by a random displacement vector (the maximum

magnitude of which is adjusted to maintain an acceptance/rejection ratio between 0.4 -

0.6), reconnecting the bead to the previous bead in the chain by normalizing the relevant

bond vector to its original length, and rigidly translating the remaining portion of the

chain to reconnect it to the displaced bead. Discretization in r-space was chosen for each

simulation such that r = L/1200, where L denotes the contour length of the relevant

chain. ret= L/2 for g(q, r) in each simulation whereas r, = 4a, and 3c, for a* (Y, r) and

the acceptance criterion in the homopolymer and heteropolymer models, respectively.

Prior to applying the SGMC procedure to the MMC-generated RDFs, we confirmed that

the thermodynamic averages computed using the MMC algorithm were in excellent

quantitative agreement with the results of Zhou and Karplus (1997) and Zhou and others

(1997) (data not shown).
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1.4.1 Homopolymer

Figure 3 shows the agreement between the homopolymer target (MMC) and

converged SGMC RDFs for the two simulated state points, T*= 1 and T'=4 after seven

iterations.

T* =1.0
ST* = 4.0

0.8 -

U 0.6-

0.4-

0.2-

0
1 2 3 4 5 6 7

r/ac

Figure 3 Target MMC (lines) and reconstructed SGMC (symbols) homopolymer non-
bonded radial distribution functions for T* = 1.0 (- -) and 4.0 (-), corresponding to the

disordered globule and random coil states, respectively. SGMC results required 7
iterations (a = 0.50) for each state point.

Evidence of the random coil nature of the homopolymer at T*= 4 is provided by its RDF

which exhibits significantly reduced first and second neighbor peaks as compared with its

disordered globule (* = 1) RDF, as well as a slowly decaying tail that remains non-zero

for distances as large as r = 7ac. The convergence histories of the effective interaction

potentials (iteration numbers k = 0, 1, 3, and 7) are illustrated in Figs 4a and 4b for T* = 1

and 4, respectively. The relative agreement between the MMC and SGMC RDFs is seen

to be better than the agreement between the effective interaction potentials, particularly
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for the high temperature, random coil case. These features illustrate the insensitivity of

the RDF to certain details of the interaction potential, particularly for higher temperatures

(or equivalently, better solvents) as entropic effects begin to dominate over the

interaction energy. The MMC and SGMC ensemble average mean energies and heat

capacities as measured by the original MMC interaction potentials are provided in Table

1.

Table 1 MMC and converged SGMC thermodynamic averages for the homopolymer.
Statistical uncertainties evaluated using the blocking method (Flyvbjerg and Petersen

1989).

E * C,*

T* MMC SGMC MMC SGMC

1.00 -2.41 ±1.3 x10-2 -2.39 ±9.7x10- 1.27 1.30

4.00 -0.73 ±9.1 x10' -0. 7 3 ± 8 .Ox10~4 8.43x10-2 8.50x10-2
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Figure 4 Convergence history (k = iteration #) of the SGMC-reconstructed effective
potential and the square-well target potential (thick solid line) for T* = 1.0 (a) and T* =

4.0 (b), corresponding to the disordered globule and random coil states, respectively.
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1T* = 0.65
- T* = 1.5
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Figure 5 Target (MMC: lines) and reconstructed (SGMC: symbols) heteropolymer (g =
0.70) radial distribution functions for contact (o) and non-contact (A) pair interaction
types at T*= 0.65 (- -) and 1.5 (-), corresponding to the native, ordered globule and

random coil states, respectively. SGMC results required 13 and 8 iterations (a = 0.50) for
the low and high temperature cases, respectively.

1.4.2 Heteropolymer with residue-specific RDFs

Figure 5 shows the agreement between the heteropolymer target (MMC) and

converged SGMC RDFs for contact and non-contact pairs types at the two simulated

state points, T* = 0.65 and 1.50. Contact pair residues are seen to reside within about 3 a,

of each other at each state point, with a strong peak corresponding to the square-well

region of r = 1-1.5 c. In contrast, non-contact pair residues exhibit considerably less

close-range order due to their relatively weaker interaction energy, particularly in the

high temperature case. The SGMC-reconstructed contact and non-contact effective

interaction potentials are compared with their target potentials in Figure 6.
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Figure 6 Target (MMC: lines) and reconstructed (SGMC: symbols) heteropolymer (g =

0.70) contact and non-contact effective interaction potentials for the ordered globule, T*=

0.65 (a) and random coil, T* = 1.5 (b) states. SGMC convergence required 13 and 8

iterations (a = 0.50) for the low and high temperature states, respectively.
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The regenerated contact interaction potentials are in better agreement with their targets

than the non-contacts, which we attribute to the lower relative sampling of the latter (non-

contacts pairs are within the square-well distance of each other less frequently than

contact pairs, resulting in a poorer estimation of the relevant derivatives in Eq. (7)). The

effect of temperature on the accuracy of the generated potentials is also illustrated by the

relatively low degree of noise in the T* = 1.5 case, with respect to the T* = 4.0 case of the

homopolymer (Figure 6b vs. 4b), which is nearer to the transition temperature T* = 1.0.

Finally, Table 2a demonstrates the ability of the SGMC effective interaction potentials to

reproduce the target distribution of conformations for the heteropolymer.

Table 2a MMC and converged SGMC thermodynamic averages for the heteropolymer
employing each partial radial distribution function (contact and non-contact) to solve for

distinct residual activities for those pairs.

E * C*

T* MMC SGMC MMC SGMC

0.650 -3.33 ± 2.2 x10-2 -3.28 ± 2.4 x10-2 2.99 3.15

1.50 -1.26 ± 1.6 x10-3 -1.26 ± 2.6 x10-3 0.56 0.56

The mean conformational energies (E*) correctly reproduced by the SGMC

procedure in the homopolymer and heteropolymer cases is a simple consequence of the

identity between the MMC and SGMC radial distribution functions

M
<E >=I f u(q, r)goi, r)4)-r 2dr, (10)

)7=1
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where u(q, r) denotes the original MMC interaction potential for pair-type q, which is

satisfied by construction. More importantly, the correctly reproduced heat capacities

(C,) are indicative of the fluctuations in energy due to sampling of the structural

ensemble. The fact that these too are correctly reproduced by the SGMC procedure is a

strong indication that the distribution of conformations at a particular thermodynamic

state point is correctly sampled (at least up to its second moment). This feature

distinguishes the SGMC method from other structure determination procedures.

1.4.3 Heteropolymer without residue-specific RDFs

As noted earlier, current experimental limitations make it difficult to obtain

residue-specific radial distribution functions for macromolecules in solution. Typically,

only the total radial distribution function is readily accessible from wide-angle x-ray

scattering, for example. To test the ability of the SGMC procedure to accurately compute

structural ensembles for heteropolymers employing only the total, residue-unspecific

RDF (i.e., ignoring the distinction between different types of pair-wise interactions) we

next employ the total non-bonded RDF of the heteropolymer model to compute a single

non-bonded effective interaction potential for each state, T*= 0.65 and T*= 1.5, and

evaluate the resulting ensembles.
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Figure 7 Target MMC (lines) and reconstructed SGMC (symbols) heteropolymer (g =
0.70) total non-bonded radial distribution function at T*= 0.65 (- -) and T* = 1.5 (-).

SGMC results required 10 and 9 iterations (a = 0.50) for the low and high temperature
cases, respectively.

Figure 7 demonstrates that the SGMC-computed effective interaction potential is

capable of reproducing the target, total non-bonded heteropolymer RDF at each state

point. In order to evaluate the accuracy of the corresponding structural ensembles,

however, it is necessary to compare the SGMC contact and non-contact RDFs with their

counterparts in the target MMC case (Figure 8), as well as their respective

thermodynamic averages, shown in Table 2b. While considerable disagreement is seen to

exist in Figure 8 between the contact and non-contact RDFs as well as in the

thermodynamic averages in the low temperature, ordered globule state, the SGMC

procedure performs reasonably well at the higher temperature state. At T* = 1.5, the

mean energies per residue of the MMC and SGMC systems are -1.26 and -1.16,

respectively, and the heat capacities per residue are 0.56 vs. 0.55. Apparently the
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disagreements present in the non-bonded RDFs at close range (within the square-well

region) do not incur a serious penalty in the computed thermodynamic averages.

Table 2b MMC and converged SGMC thermodynamic averages for the heteropolymer
employing the total non-bonded radial distribution function, assuming a single pair-type

interaction.

E * C,*

T* MMC SGMC MMC SGMC

0.650 -3.33 +2.2 x102 -2.17 6.8 x10-2 2.99 2.09

1.50 -1.26 1.6 x10-3 -1.16 3.1 xi0 3 0.56 0.55

(a)
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(b)
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Figure 8 Target (MMC) and reconstructed (SGMC) heteropolymer (g = 0.70) radial
distribution functions for contact (o) and non-contact (A) pair interaction types at T*=

0.65 (a) and 1.5 (b), corresponding to the model protein's native, ordered globule and
random coil states, respectively. SGMC results were obtained employing a single

residual activity applied to all pair types.

To further investigate the differences between the MMC and SGMC structural

ensembles, we compare the bond and dihedral angle distribution functions, P(9) and

P((p), in Figs. 9a and b, respectively. While the bond angle distribution is in good

overall agreement at each state point (Figure 9a), in part due to the hard-core repulsion

constraint between residues, the distribution in dihedral angles in the low temperature

SGMC case is in considerable disagreement with its target, MMC counterpart (Figure

9b). Dihedral angles are in good agreement, however, in the denatured state, T* = 1.5,

further demonstrating that the SGMC procedure is capable of producing accurate

structural ensembles for conformationally flexible heteropolymers employing solely the

total non-bonded radial distribution function.
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Figure 9 Target (MMC) and reconstructed (SGMC) heteropolymer (g = 0.70) bond (a)

and dihedral (b) angle distributions at T*= 0.65 and 1.5, corresponding to the model

protein's native, ordered globule and random coil states, respectively. SGMC results
were obtained employing a single residual activity applied to all pair types.
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In modeling the heteropolymer as a homopolymer, we impose a weaker constraint

on the system than in the previous application in which residue-specific RDFs are used.

In effect, we require that the total non-bonded RDF equal the sum of the individual

contact and non-contact RDFs, as opposed to imposing that the contact and non-contact

pairs individually satisfy their respective RDFs. Since the SGMC method maximizes

conformational entropy subject to these constraints, the resulting structural ensembles as

represented by the distribution of bond and dihedral angles in Figure 9 are predicted to be

somewhat less ordered at each state point and the mean energies are correspondingly

lower in magnitude. The fact that the residue-specific RDFs are better reproduced at the

higher temperature state point may be attributed to the diminished distinction between

contacts and non-contacts at this state point.
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1.5 Concluding discussion

A novel numerical method for the determination of macromolecular structure in

solution has been presented and evaluated. The procedure generates effective, residue-

specific interaction potentials from the corresponding radial distribution functions by

simulating a model macromolecule in a semi-grand canonical ensemble. When provided

with each residue-specific radial distribution function corresponding to distinct pair-wise

interactions, the procedure generates a structural ensemble that reproduces the mean

energy and heat capacity of the macromolecule in addition to the input RDFs, indicating

the accuracy of the generated distribution of conformations for random coil, disordered

globule, and ordered globule states. When only provided the total, residue-unspecific

inter-residue radial distribution function for a heteropolymer, the procedure generates

molecular ensembles that can generally be considered as less ordered than their

previously mentioned counterparts due to the lack of sufficient experimental data and

because it is a maximum entropy approach.

In principle, the SGMC procedure can reconstruct the correct structural ensemble

and effective potentials if given sufficient input information, e.g., in the form of residue-

specific RDFs. However, the ability of the SGMC procedure to recreate accurate target

interaction potentials (at all values of r for each pair-type r7) rests on its ability to

compute accurately the derivative matrix in Eq. (7). In certain situations, this step may

encounter practical limitations, making very long simulations necessary. One such

situation occurs when the system structure is determined primarily by entropy. In this

case, the RDFs input to the simulation are insufficiently sensitive to the underlying

interaction potentials, making their accurate determination a laborious task of long
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simulations and low allowable errors in X'. Another situation, which turns out to be the

case in the low temperature, surface molten solid state of Zhou and Karplus,' occurs

when regions of the RDFs are essentially unpopulated due to a combination of

unfavorable interaction energies associated with those regions and weak entropic effects.

As in the entropy-dominated case, very long simulations are required here to sample

these regions of r-space with sufficient statistical accuracy to ensure convergence of the

effective potentials to their true values.

Two future avenues for application of the current methodology to real

macromolecules are envisioned. In the first, homopolymers exhibiting helix-coil

transitions depending upon pH level [for example poly-L-lysine and poly-L-glutamic acid

(Muroga 2001)] may be studied using the current methods applied to dilute solution

wide-angle x-ray scattering data of Grigoryev and others (1971). Similar studies may be

performed on carbohydrates or DNA utilizing scattering data and treating sugar or

nucleic acid monomers or larger chemical subunits as "residues". Following the

approaches of Diaz and others (1993) and Svergun and others (2001), the

macromolecular structure factor may be obtained by modeling each "residue" as a

monomer with an effective scattering intensity equal to the spherically averaged

scattering intensity of the entire chemical sub-unit. The inverse Fourier transform of the

experimental structure factor (the structure factor is directly related to the intensity of x-

rays scattered by the macromolecule) yields the inter-residue radial distribution function.

Taken together with an adequate molecular model, the experimental RDF may be used as

input to the SGMC procedure to compute a thermodynamically consistent ensemble of

conformations without any adjustable parameters, as demonstrated in this study.
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Moreover, application of the method is not limited to equilibrium state points, but may

include non-equilibrium state points as well. In the second application envisioned,

selective C' labeling (heavy atoms or deuterons) may be used in conjunction with

scattering (x-rays or neutrons) to obtain residue-specific radial distribution functions that

would enable heteropolymeric systems to be studied, either in their entirety or only in

specific regions of interest (e.g. conformationally flexible loop regions in proteins).

Though theoretically feasible, current experimental limitations to this approach will

determine the degree of its future success.
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Appendix A Evaluation of a(N)/aA

Referring to Eq. (5) and the notation of Section 2 we begin by defining

Q(q) = e-," 171 (a* (q, r)g,, (q, r))
q=I r=0

where U and n(Q,r) are each implicitly functions of the conformation variable q. (N)

is then

X N(q)Q(q)

(N)= q

q

where the dependence of N on q has been made explicit. The derivative

(N) aN(q)(q)
[ q

aA aA X(q)I
L q J

can be evaluated by first separately computing the derivatives of the numerator and

denominator as

A Z N q,(q)A(q) = I EaAUTI I AIrq

and(q) =- N,,(q) (q)
aA Ir I Ax q

and then using the product rule to obtain the final result
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Chapter 2

A coarse-grained molecular model for anionic glycosaminoglycans:

Application to chondroitin sulfate and hyaluronan



2.1 Introduction

Proteoglycans are high molecular weight comb biopolymers that play a

fundamental role in the biomechanical properties of the extra-cellular matrices (ECM) of

various tissues, including articular cartilage, skin, and corneal stroma. They consist of a

linear protein backbone with covalently attached linear glycosaminoglycan (GAG)

chains. Of particular interest is aggrecan, the predominant proteoglycan in articular

cartilage. A single aggrecan molecule consists of- 100 anionic chondroitin sulfate (CS)

GAGs (each 10-30 kDa, 20-60 disaccharides, or 200-600 A contour length) covalently

linked to serine-glycine residue pairs on its - 300 kDa protein backbone (- 4000 A

contour length), as well as ---60 keratan-sulfate (KS) oligosaccharides of considerably

lower molecular mass. With the aid of link protein, aggrecan associates non-covalently

with the high molecular mass anionic GAG hyaluronan, which serves to retain aggrecan

in the ECM. The abundance of charged CS present on aggrecan generates an osmotic

swelling pressure that is opposed by tensile stresses in the elastic collagen network. The

combination of these effects provides cartilage with its unique biomechanical properties,

namely a very low coefficient of sliding friction even under substantial compressive

loads, which serves to protect the ends of bones from wear during joint locomotion.

Interestingly, the sulfation type (4- vs. 6-sulfation of chondroitin disaccharides),

pattern, and molecular weight of CS chains present on aggrecan varies significantly with

disease (osteoarthritis or rheumatoid arthritis), age, depth within the cartilage layer, and

anatomical site (Bayliss and others 1999; Hardingham 1998; Lewis and others 1999;

Plaas and others 1998; Plaas and others 1997; Platt and others 1998; Roughley and Lee

1994) concomitantly with the biomechanical and biochemical properties of articular
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cartilage. For these reasons of biomechanical and biological relevance, it is of interest to

characterize the solution conformation and osmotic pressure of chondroitin sulfate under

physiological conditions, as well as to investigate their dependencies on sulfation type,

MW, pH, and ionic strength. Although ultimately our aim is to simulate multiple

aggrecan molecules interacting in solution at physiological concentration, in the present

study we focus on developing a systematically coarse-grained GAG model that is a

stepping-stone towards that goal. We develop and apply the model to single GAGs (i.e.,

in infinitely dilute solution) in the present study, and examine the effects of finite,

physiological GAG concentration, in addition to sulfation pattern, on CS conformation

and osmotic pressure in a subsequent work.

Unlike chondroitin sulfate (CS), the solution conformation and titration behavior

of HA has been extensively characterized by a variety of experimental techniques

including light scattering, neutron scattering, viscometry, and potentiometric titration

(Buhler and Boue 2003; Buhler and Boue 2004; Cleland 1977; Cleland 1991; Cleland

and others 1982; Fouissac and others 1992; Ghosh and others 1990; Gribbon and others

2000; Hayashi and others 1995; Hayashi and others 1996; Mathews and Decker 1977;

Reed and others 1989; Scott and Heatley 1999; Tsutsumi and Norisuye 1998). The

intrinsic persistence length (the persistence length in the limit of infinite ionic strength)

has been measured by various groups to be between 40-90 A (Buhler and Boue 2004;

Cleland 1977; Fouissac and others 1992; Ghosh and others 1990; Hayashi and others

1995), and the apparent persistence length (the persistence length in the presence of long-

ranged, excluded volume interactions) has been measured to be proportional to I-',

where K is the inverse Debye length (Ghosh and others 1990). On the theoretical side,
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Reed and Reed (1991) used an off-lattice Monte Carlo simulation algorithm to simulate

HA in solution and found agreement with the K' persistence length scaling. More

recently, Almond and coworkers performed a series of meticulous studies using fully

atomistic models of solvated HA di- (Almond and others 1997), tetra- (Almond and

others 1998), and decasaccharides (Almond and others 2000) to illuminate the trans-

glycosidic linkage hydrogen-bonding structure and its effect on glycosidic linkage

flexibility. Conformational results from the decasaccharide simulation were extrapolated

to estimate a persistence length for HA of 139 ± 22 A in the absence of added salt or

cations. The effects of physiological ionic strength on conformation, however, were not

examined. At the other extreme, Haxaire and others (2000) studied the infinite ionic

strength conformation of HA, finding an intrinsic persistence length of 75 A. They also

performed a detailed study of the stability of various helical forms of HA in the solid-

state by comparing with fiber diffraction data. Almond and Sheehan (2000) also studied

the conformation of chondroitin tetrasaccharides using an explicit solvent model without

added salt and contrasted its behavior with that of HA.

Several simplified, coarse-grained models of HA in solution have been developed

to study of its titration behavior and conformation. One of the earliest models employed

RIS theory to simulate its unperturbed state (Cleland 1971). The model was later

extended to simulate the titration behavior of HA using an extended Bragg-Williams

approximation for the discrete charge site Debye-Htickel interaction energy together with

either a rigid worm-like chain approximation or the Metropolis Monte Carlo method

(Cleland 1984). The aforementioned work was limited to studying the titration behavior

of HA in finite ionic strength solutions and did not study HA conformation. As
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mentioned previously, a Metropolis Monte Carlo algorithm with a three-state RIS model

and Debye-Htickel theory was used to simulate HA titration and conformational

properties simultaneously (Reed and Reed 1991; Reed and Reed 1992). That model was

not based on an underlying atomic model of HA, however, and was therefore incapable

of predicting the intrinsic persistence length of HA ab initio, instead treating it as an

adjustable fitting parameter. With regards to chondroitin sulfate, there is only one study

we are aware of that examined its solution conformation (Rodriguez-Carvajal and others

2003). In the limit of infinite ionic strength, C4S was determined to be stiffer than CH,

which in turn was found to be stiffer than C6S. The finding that C4S is intrinsically

stiffer than C6S is in contradiction to experimental results of Tanaka (1978a) who found

the reverse to be true. The present study may be viewed as an extension of that of

Rodriguez-Carvajal and others (2003) in that we examine the effects of finite ionic

strength and pH on the conformation and titration behavior of CH, C4S, and C6S, in

addition to presenting results for the high ionic strength limit.

The goal of the present study is to develop a molecular-level model for CS that

simultaneously predicts its titration behavior, solution conformation, and osmotic

pressure. A conventional, all-atom simulation of the polysaccharide and its suspending

solvent (water plus counter ions and added salt ions) could, in principle, provide the

conformational and thermodynamic properties of interest, but that approach is precluded

by the large system sizes of interest. For that reason, we developed a coarse-grained

model that is similar in spirit to the aforementioned models of HA as well as models for

other aqueous polysaccharides such as pullulan, xythan (Perico and others 1999),

cellulose, and laminaran (Cleland 1971). We begin with explicit, all-atom models of the
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constituent GAG disaccharides. Through systematic coarse-graining we arrive at a

molecular model that is free of adjustable parameters and capable of predicting

quantitatively the solution titration behavior, conformation, and osmotic pressure of CS

solutions of physiologically relevant molecular weight and concentration, while retaining

the molecular-level identity of the individual monosaccharides (e.g., the sulfate type and

pattern). The linearized Poisson Boltzmann equation is used to calculate the electrostatic

energy, where it is assumed that each GAG is suspended in an aqueous 1:1 salt solution

that is in osmotic equilibrium with a reservoir of fixed ionic strength. The model is

applied to HA in addition to CS because of the relevance of HA to cartilage and synovial

fluid biomechanics, as well as to provide an experimentally well-characterized

benchmark molecule with which to validate our GAG modeling approach.
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2.2 Modeling

Chondroitin is a linear (unbranched) polysaccharide consisting of repeating

disaccharide units of D-glucuronic acid (GlcUA) and N-acetyl-galactosamine (GalNAc),

alternately linked in 8l,3 and 8l,4 glycosidic linkages, respectively (Figure 1). C4S

and C6S consist of repeating chondroitin disaccharides that are sulfated at the 4- or 6-

carbon of N-acetyl-D-galactosamine, respectively (Figure 1). Hyaluronan is similar in

chemical structure to chondroitin, consisting of repeating disaccharide units of D-

glucuronic-acid and N-acetyl-D-glucosamine (GlcNAc) (Figure 1), but is typically of

very high molecular mass, ranging from 105 to 106 Da, equivalent to about 250 to 2,500

disaccharide repeat units. For ease of notation, A, B, C, D, and E, will be used to refer to

the monosaccharide units, GlcUA, GalNAc, GlcNAc, GlcNAc4S, and GlcNAc6S,

respectively.

(a) (b)
COO- CH2OH Co- CH 2OH

HO 0 03SO
4 0 H 1 3 , 0 ~ 4 0OH '

OH NHAc OH NHAc

GlcUA GalNAc GlcUA Ga1NAc4S

(c) (d)
COO- CH 2 0SO3- Co- CH 2OH

O4j HO 0 1,0 - 0 1160 1j

00HOH NHAc OH HO NHAc

GlcUA Ga1NAc6S GIcUA GlcNAc

Figure 1 Disaccharide repeat units of chondroitin (a), chondroitin 4-sulfate (b),

chondroitin 6-sulfate (c), and hyaluronan (d).
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2.2.1 Topology

Following previous polysaccharide modeling studies (Brant and Goebel 1975;

Perico and others 1999), the coarse-grained model backbone is defined by the sequence

of chemical and virtual bonds depicted in Figure 2.

(a)

/ /

/ ''

(b)

C6. ~ - ---- C5 0
/C 6

Figure 2 Definition of the coarse-grained model bonded backbone structure (thick solid
lines) based on the all-atom disaccharide representation for i,3 (a) and /11,4 (b)

linkages.

Each monosaccharide unit (A-E) consists of three backbone sites that coincide with

atoms CJ, Cl, 01, (J= 3 for units B-E and J= 4 for A) and define the polysaccharide

topology (Figure 2). Additional center of charge and repulsive Lennard-Jones sites (not

shown in Figure 2) are used to model non-bonded electrostatic interactions and steric

interactions, respectively, and are described in the subsequent modeling section. All

bond lengths, valence angles, and dihedral torsion angles in the coarse-grained model are

treated as rigid, except for the glycosidic torsion angles, which provide the majority of

the conformational flexibility in polysaccharides (Brant and Goebel 1975; Cleland 1971;

Perico and others 1999; Rodriguez-Carvajal and others 2003).
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Figure 3 Cremer-Pople ring puckering parameter probability distributions for GlcUA at
the non-reducing end of a CH 11,3 disaccharide.

Cremer-Pople ring puckering parameters may be used to measure the equilibrium

conformation of pyranose rings (Cremer and Pople 1975). Six membered pyranose rings

require the three puckering parameters, (Q, 0, #), where a value of 9=0' indicates a

stable 4C1 chair conformation. Analyses of the (Q,0,#0) probability distributions

computed from all-atom solvated disaccharide simulations demonstrate that each type of

ring in the GAGs studied is stable in a slightly distorted 4C1 chair conformation (e.g.,

Figure 3), independent of whether it is located at the reducing or non-reducing terminus

(Table 1), thus lending support to the rigid-monosaccharide assumption.
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Table 1 Mean values of the Cremer-Pople puckering parameters for each pyranose ring at
the reducing and non-reducing ends of each disaccharide (HA, CH, C4S, C6S). The

mean value of the third puckering parameter, $, is not included because it was uniformly

distributed between 0 and 900 in every case (e.g., Figure 3). 0=0* indicates an exact
chair conformation (Cremer and Pople 1975) and the absence of error estimates indicates

that the estimated error was less than the smallest significant figure shown.

At Reducing Terminus At Non-reducing Terminus

Q (A) (") Q (A) 0(C)

G1cUA 0.58 8.7 : 0.4 0.574 ± 0.002 8.6 0.3

GlcNAc 0.58 8.4 E 0.3 0.574 ± 0.002 8.7 ± 0.3

CH GlcUA 0.58 8.6 0.3 0.574 ± 0.002 8.8 ± 0.2

GalNAc 0.57 8.7 ± 0.4 0.580 ± 0.001 8.2 ± 0.4

C4S G1cUA 0.58 8.6 ± 0.2 0.573 ± 0.00 8.8 ± 0.3

GalNac4S 0.58 8.1 0.6 0.576 +.0.003 8.0 0.2

C6S GlcUA 0.58 8.6 10.4 0.574 0.001 8.7 h 0.3

GaINac6S 0.57 9.1 ± 0.5 0.581 ± 0.002 8.2 0.5

Values of the internal degrees of freedom of the coarse-grained model were

assigned from the corresponding mean values obtained from equilibrium room

temperature all-atom simulations of isolated, solvated disaccharides (Table 2). In the

disaccharide simulations water was treated implicitly as a uniform dielectric medium

with dielectric permittivity, s = 78.5. In this somewhat crude approximation for the

solvent, the effects on conformation induced by the low dielectric of the sugar region, the

hydrophobic effect, as well as the counter-ions associated with the carboxylate and

sulfate groups were neglected. We opted not to use one of the more recent implicit

solvent models (Roux and Simonson 1999) such as the Generalized Born treatment of

electrostatics with the Solvent-Accessible-Surace-Area (SASA) model for the

hydrophobic effect due to the lack of well-validated parameter values for

polysaccharides.
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Table 2 Coarse-grained model bond lengths, b, valence angles, 0, and dihedral torsion
angles, v. A prime denotes that the atom belongs to the reducing sugar terminus. # and

V denote the glycosidic torsion angles, the only flexible internal degrees of freedom
present in the model. Q denotes the center of charge site used to model electrostatic

interactions between charged monosaccharide units and V denotes the repulsive Lennard-
Jones site used to model steric interactions between monosaccharides.

Internal Coordinate GlcUA GlcNAc GalNAc Ga1NAc4S Ga1NAc6S
(A, degrees) J=4,I=3 J=3,I=4 J=3,I=4 J=3,I=4 J=3,I=4

b(O1'--CJ') 1.42 1.42 1.42 1.42 1.42

b(CJ'-Cl') 2.89 2.52 2.52 2.52 2.53

b(CI'-01') 1.41 1.41 1.41 1.41 1.41

b(C1'-V') 1.69 1.51 1.37 1.72 1.48

b(C1'-Q') 3.31 na na 5.78 5.90

0(C1-01 -CJ') 117.5 117.7 117.6 117.2 117.7

9(O1-CJ'-C1') 147.8 144.0 145.1 144.4 145.0

0(CJ'-CI'-O1') 148.4 144.6 144.4 144.4 144.2

0(CJ'-C1'-V') 6.1 7.2 10.0 19.4 26.3

9(CJ'-C1'-Q') 42.8 na na 53.0 86.3

#(CI-C1-01-CJ') -173.2 -110.9 -111.1 -112.2 -111.8

V/(CI-01-CJ'-C1') -179.6 -123.2 -142.6 -137.0 -145.9

v(01-CJ'-C1'-01') 171.4 2.0 -1.7 -0.9 -1.6

v(01-CJ'-C1'-V') -76.7 -84.9 -31.8 -74.7 -113.4

v(O1-CJ'-C1'-Q') 93.5 na na -73.9 -116.4

2.2.2 Bonded energy

In the limit of infinite ionic strength, the conformational energy and statistics of

successive glycosidic linkage torsion angles are assumed to be independent. This

modeling assumption implies that specific chemical interactions (e.g., hydrogen bonding)

occur only across single glycosidic linkages and is justified by the presence of the nearly

rigid intervening sugar monomers that provide spatial separation between successive

linkages (Brant and Christ 1990). Individual torsion angles, # and yV, within a given
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linkage, however, are typically highly interdependent and were treated as such. Simple

Boltzmann inversion was used to compute and tabulate potentials of mean force (PMFs)

for the glycosidic torsion angles from equilibrium probability distributions obtained from

the isolated all-atom disaccharide simulations, F B (0, V/) = -kBT I PH (0, V), where k and

I refer to the monosaccharide types A, B, C, D, or E, and there are eight different PMFs

for the GAGs modeled (AB, AC, AD, and AE for the 81,3 linkage; BA, CA, DA, and

EA for the 61, 4 linkage). The tabulated free energies were subsequently employed in

the coarse-grained simulations and implicitly include the effects of covalent, van der

Waals, solvent-mediated electrostatic interactions, and hydrogen-bonding occurring

across a single glycosidic linkage, as well as the configurational entropy of the internal

disaccharide degrees of freedom. The total bonded free energy of a GAG consisting of N

monosaccharide units in a conformation specified by the set of glycosidic torsions {#, y}

is given by,

N-i N-i

F"{,Z) B Bj1 (k0j., W)-B=' (10 Vj =~ -k E l hi(k)j(,)(OIV) (1)

j=i+I j=i+I

where a single summation is performed over all glycosidic linkages, with the constraint

that for each monomer i, j = i + 1, and i(k) and j(l) denote the types of monomers (k, 1)

at linkage (i, j).

Two alternative approaches for computing FkI(0, V) that are frequently employed

in polysaccharide simulations were also investigated. These were: (1) treating each

monosaccharide as rigid in its minimum energy configuration and stepping incrementally

through (#, y) -space to compute the bonded energy at every grid point and (2)
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performing the same procedure as (1) followed by a constrained energy minimization at

every grid point to obtain a local energy minimum. In each of these approaches, the

configurational entropy of the non- (#, y) internal degrees of freedom is neglected. The

first approach immediately proved inadequate due to steric clashing of the bulky side

groups present in neighboring monosaccharides, which artificially precludes normally

accessible regions of (#, y/) -space. Energy minimization employed in the second

approach relieved the problem of steric clashing encountered in (1). However

appreciably different energy surfaces were obtained with respect to the finite temperature

simulations, due to the effects of configurational entropy of the non- (0, y) degrees of

freedom included in the latter. For this reason, we opted to employ the finite temperature

simulation approach to compute F ($, V).

In general, FH (, y) will depend on environmental conditions such as

temperature, ionic strength, and external pH, the latter two of which may affect the

protonation state of the carboxylate group on GlcUA and hence specific inter-glycosidic

linkage interactions such as hydrogen bonding between the carboxylate group and the

adjacent monosaccharides. Since our interest is limited to room temperature conditions

in this study, we only tested the effects of ionic strength and pH on F (0, V) by

repeating each disaccharide simulation (1) with a protonated carboxylate group and (2) at

1 M ionic strength using an all-atom Debye-HUckel interaction energy implemented in

CHARMM. Interestingly, the various F (0, v) obtained were insensitive to both the

protonation state of the carboxylate group and ionic strength. Accordingly, the generally
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solvent-dependent F(#,y) were approximated to be independent of pH and ionic

strength, for the purposes of this study.

The insensitivity of Fu (0, §i) to ionic strength is attributed within the context of

the present, simple implicit solvent model to the energetic dominance over electrostatic

interactions of (1) covalent interactions occurring across glycosidic linkages, including

the exo-anomeric effect, (2) steric interactions due to trans-glycosidic linkage van der

Waals interactions, and (3) trans-glycosidic linkage hydrogen bonding, which is modeled

in CHARMM by a combination of van der Waals and Coulombic terms, both of which

are present in our implicit solvent model at 1 M ionic strength because the Debye length

is 3 A and hydrogen bond interactions take place over length scales that are < 3 A. The

insensitivity of F I(#, y) to the protonation state of the carboxylate group on GlcUA is to

be reasonably expected in our model because protonation did not significantly alter the

partial charge distribution on the carboxylate group, so that hydrogen bonds between it

and groups belonging to adjacent monosaccharides were not disrupted. Further analysis

of the specific energetic contributions to FmB(#b, ), as well as their sensitivity to the

particular solvent model employed, is certainly warranted but beyond the scope of the

present study.

At this point we make a necessary digression to point out that two definitions for

the glycosidic torsion angles are required in this study: (1) the conventional hydrogen

bond definition: #H (HI - Cl- OJ'- C') and y"11 (Cl - OJ'- CJ'- HJ'), advocated by

the (Nomenclature 1971), where a prime denotes an atom belonging to the reducing sugar

and J' =3' or 4' depending on the linkage type and (2) a definition based on the virtual
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bonds in the coarse grained model, namely v (CI - CI-OJ' - CJ') and

Vv(CI - OJ- CJ'- C'), where I= 3 when J'= 4' and I= 4 when J'=3'. To be

consistent with convention we employ the first definition for the presentation of results

from this point forward, and therefore drop the use of superscripts. To afford the most

accurate mapping from the all-atom model to the coarse grained model, however, we

employed the virtual bond definition to define the coarse-grained model topology and the

glycosidic torsion angle potentials of mean force. Glycosidic torsion angle results

computed using the coarse-grained model may be subsequently transformed to the

hydrogen bond definition for purposes of presentation using the following torsion angle

offsets that were computed as ensemble averages from the all-atom disaccharide

simulations, A$(H" -') and A (yH (Table 3)

Table 3 Offsets in hydrogen bond and virtual bond glycosidic torsion angle definitions.

Monosaccharide A# (deg) A y (deg)

GlcUA 234.9 174.9

GlcNAc 175.5 126.9

GalNAc 174.4 126.1

GalNAc4S 174.7 125.3

GalNAc6S 174.5 126.3

2.2.3 Non-bonded energy

A charge site (Q) was defined for each charged monosaccharide (GlcUA,

GalNAc4S, GalNAc6S) by computing its mean center of charge from the explicit atom

disaccharide simulations and defining its mean virtual bond length, valence angle, and
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dihedral torsion angle (Table 2). Electrostatic interactions between charge sites were

computed using a Debye-Huckel interaction potential assuming zero ionic radii,

uDH(r) =kBT2B (2)

where k, is the Boltzmann constant, T is temperature, K is the inverse Debye length

K 2 = 8fABNAc, where NA is Avogadro's number, c, is molar ionic strength of the fully

dissociated 1:1 electrolyte, AB = e2 /kBT, is the Bjerrum length, defined to be the

distance at which the Coulombic interaction energy of two monovalent charges

embedded in a uniform dielectric medium is equal to kBT, where e is dielectric

permittivity, e is the electronic charge (AB = 7.14 A in water at 298 K), r. is the distance

of separation between center of charge sites i andj, and all charge sites have been

assumed to have charge -e (monovalent sulfate and carboxylate groups). Higher order

intra-molecular non-bonded electrostatic interactions such as dipole-monopole, dipole-

dipole, etc. were neglected in this approximation. Non-bonded van der Waals and

hydrophobic interactions were also ignored, which implicitly assumes that bonded and

non-bonded electrostatic interactions dominate in determining the conformation of

anionic GAGs. The neglect of van der Waals, hydrophobic, and higher order electrostatic

interactions will be most valid at Debye lengths that are larger than the monosaccharide

length scale of 5-10 A.

The Debye-Htckel interaction potential in Eq. (2) is derived from the electrostatic

potential solution to the linearized Poisson Boltzmann equation, also called the Debye-
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Htickel equation (Debye and Htickel 1923), assuming spherical symmetry and

linearization about a zero electrostatic potential (McQuarrie 1975). The Poisson-

Boltzmann equation, and therefore the Debye-HUckel interaction potential as well,

implicitly assumes uniform electrochemical potentials of the salt species. In modeling a

single GAG using the Debye-Htickel potential, we are therefore implicitly assuming that

the polyelectrolyte is suspended in a salt solution in which the salt species are in

electrochemical equilibrium with a salt reservoir of fixed molarity, where the reference

electrostatic potential is assumed to be zero. Moreover, the Poisson-Boltzmann equation

assumes that the chemical (non-electrostatic) contribution to the activity coefficients of

the salt species is unity (ideality). In using the Debye-Htckel interaction potential with

zero ionic radius we have neglected several potentially important effects. These include

the low dielectric and salt exclusion of the GAGs, as well as the distributed, asymmetric

charge distributions of the various monosaccharides, as noted above. We have

nonetheless employed Eq. (2) to model electrostatic interactions, as is common in the

literature, with the zero ionic radii assumption as a first modeling attempt to keep the

physical model as simple as possible with no adjustable parameters. The current model

may be extended in a straightforward manner to account for the aforementioned higher

order effects without altering the basic modeling formalism.

According to the Manning criterion (Manning 1969), if the equivalent line charge

density of a polyelectrolyte, = AB /d , is greater than unity, where d is the inter-charge

spacing, counterions will "condense" on the polyelectrolyte until its effective charge

density is reduced to unity. Whereas chondroitin and hyaluronan have equivalent line

charge densities of 0.7 (assuming an inter-charge spacing equal to the approximate

71



disaccharide repeat unit length of 10 A) and therefore meet the criterion for full

ionization, chondroitin sulfate has an equivalent line charge density of 1.4, and would

therefore be partially deionized to reduce its effective line charge density to unity,

according to Manning's theory. In utilizing the Debye-Hickel equation to model the

electrostatic free energy of chondroitin sulfate, one would therefore be required to scale

down the carboxylate and sulfate charges to 0.7e in order to strictly abide by Manning's

criterion. (The alternative of solving the non-linear Poisson-Boltzmann equation for

every configuration of chondroitin sulfate sampled is intractable given current

computational resources and the molecular weight range of interest in this study.)

Manning's criterion, however, is strictly valid only for idealized systems such as line

charges and cylindrical cell models, neither of which takes into account the detailed

molecular nature of chondroitin sulfate, including the distribution of atomic partial

charges and its molecular shape. It is our view that the linear charge density of

chondroitin sulfate is close enough to the borderline case of unity that in order to

accurately determine the validity of employing the Debye-HUckel equation with fully

ionized charge groups one would need to perform a detailed analysis employing the non-

linear Poisson-Boltzmann equation and an atomic-level model that accounts for the

distribution of atomic partial charges in chondroitin sulfate as well as the shape of its low

dielectric and salt-excluding domain. Such a level of analysis is beyond the scope of the

present study; we retain the fully ionized charge values of the carboxylate and sulfate

groups in analyzing the conformation of chondroitin sulfates using Eq. (2).

A van der Waals site (V) was defined for each monosaccharide by computing its

mean center of geometry (defined as the center of mass with a unit mass weighting for
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each atom type) from the explicit atom disaccharide simulations and defining its mean

virtual bond length, valence angle, and dihedral torsion angle (Table 2). Steric

interactions between monosaccharides are modeled using the standard repulsive Lennard-

Jones potential,

0 12 _ ' 6

4.c- - - +-r<rc
UR)W(r) r 4 (3)

0; r >r

where rc = 2'16a is the cut-off radius, and e and a are the van der Waals energy and

radius parameters. a was equated with the sphere radius obtained from equating the

volume of a sphere with that obtained from the molecular volume of a monosaccharide (a

= 3.29, 3.56, 3.56, 3.66, and 3.66 A for GlcUA, GalNAc, GlcNAc, GlcNAc4S, and

GlcNAc6S), calculated using a 1.4 A spherical probe. e was taken to be the value for

carbon-carbon interactions (0.15 kcal/mol = 0.253 kBT).

Accounting for bonded and non-bonded interactions, the free energy of the GAG

model in a conformation defined by the set of glycosidic torsion angles {#, V/} is,

F({#,V})= I FyB((p,V) + Z[uDH (.+ RLJ r](4
i,j=i+I i<j

where the first summation is a single summation over all glycosidic linkages in the model

and the second summation is a double summation over all pairs of monosaccharides,

excluding nearest-neighbors, whose electrostatic interaction is included in the bonded
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PMF. It is noted that the Debye-Hfckel energy is zero if either monosaccharide has zero

net charge and the repulsive Lennard-Jones potential need not be activated.

2.2.4 Titration

The theoretical study of the titration of macromolecules has been modeled and

studied extensively using discrete site models for proteins and nucleic acids (Bashford

and Karplus 1990; Beroza and others 1991; Havranek and Harbury 1999; Hill 1956;

Tanford 1957; Tanford and Kirkwood 1957) as well as for polyelectrolytes (Jonsson and

others 1996; Sassi and others 1992; Ullner and Jonsson 1996), such as hyaluronic acid

(Cleland 1984; Reed and Reed 1992). Titratable sites in polyacids interact

electrostatically due to the spatial proximity that is imposed by backbone connectivity,

leading to markedly different titration behavior from isolated monoacids. Unfavorable

electrostatic interaction involving titratable sites present in polyacids is relieved by

protonation, which manifests in a variable apparent acidity that increases with increasing

degree of ionization. Salt screening and conformational flexibility directly mediate the

strength of electrostatic interactions, introducing additional complexity into the titration

behavior of polyacids.

The apparent acidity of a polyacid is expressed by defining an apparent

dissociation constant, pKPP that, unlike for monoacids, is a function of the average

degree of ionization of the polyacid, a = , where a, is the ionization state (0 or 1

for deionized or ionized, respectively) of the i'h titratable site,
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pKAP pH-log a (5)
1-a

To model the titration of GAGs, we follow (Reed and Reed 1992) and (Ullner and

Woodward 2000) in employing a semi-grand canonical ensemble in which the titrating

sites are the chemical 'species'. The titrating sites in CH, CS, and HA are the weak acid

carboxylate groups present on glucuronic acid monomers. The sites are assumed to have

a variable state of protonation, x, = {0, 1}, where x, denotes the number of protons bound

to the Ih site. The sulfate groups present in CS are strong acids and are thereby assumed

to remain ionized at all pH. For a given conformation, {#,y}, of a GAG with a total of N

titrating and non-titrating monosaccharide units, the free energy associated with

protonation of a sub-set of P titrating sites may be written:

P N

F"({#,y});{jx})= px,+ Z '"ec(q,,qq) (6)
i=1 <j

where F. '"(q,, qj) is now the electrostatic interaction energy between the charge sites on

monosaccharide units i andj, including all charge group pairs (nearest neighbors,

whether protonatable or not), P is the number of titratable sites, and

p = , -H = kBT[ln 1 0](pH - pK:"') is the total chemical potential associated with

protonation. pH = -k8 T ln(10)pH is the free energy change of protonation associated

with removal of a hydrogen ion from solution and q, = -kBT In(10)pK"' is the intrinsic

free energy change associated with protonating site i in an otherwise electrically neutral
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molecule (Beroza and others 1991). As pointed out by (Beroza and others 1991), 6, is a

constant in rigid macromolecules that accounts for free energy contributions due to

solvation, electrostatic interactions of the site with the fixed charge on the polyacid

backbone, and standard-state quantum mechanical bonding effects. In conformationally

flexible molecules such as those considered here, however, e, will generally be a

function of conformation. Despite this complicating factor, we follow (Ullner and

Jonsson 1996) and (Reed and Reed 1992) in treating 6, as an ensemble averaged quantity

that is measured experimentally and expressed in terms of the intrinsic dissociation

constant, pK'"'.

The intrinsic dissocation constant of hyaluronic acid has been measured

experimentally to be pK'"' = 2.9 ± 0.1, (Cleland and others 1982). In the present study

we assume that chondroitin has the same pK'' as hyaluronic acid. This assumption is

justified because the molecules are chemically nearly identical, differing only in the

stereochemistry of the hydroxyl group at the C4 of GlcNAc. The preceding titration

model may then be used directly to study the titration of both chondroitin and chondroitin

sulfate by performing single site protonation/deprotonation moves, in which proton

exchanges with a hydrogen ion reservoir of fixed pH are simulated, in addition to

conformation-altering moves. The protonation/deprotonation moves are accepted or

rejected according to the standard Metropolis criterion, rn min{1, e-P'E }, where rn is

a pseudo-random deviate between 0 and 1 and 8 = (kBT)'. Configurational and

thermodynamic averages, including the mean overall degree of ionization, a , are
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computed as ensemble averages over the equilibrium distribution of states in protonation-

configuration space.

77



2.3 Simulation protocol

2.3.1 All-atom disaccharide simulations

All-atom disaccharide simulations were performed using CHARMM (Brooks and

others 1983) employing the all-atom polysaccharide force field provided with Quanta by

MSI Inc. The Metropolis Monte Carlo method in the canonical ensemble was used to

sample equilibrium configuration space. Dihedral torsion angle and Cartesian

displacement moves were performed with equal frequency. 106 moves were used for

equilibration followed by 3 x 10' moves to compute averages. Isolated disaccharides

were simulated at 298 K using atom-based van der Waals and Coulombic interactions

with dielectric permittivity equal to that of water (se = 78.5) and no cut-offs.

2.3.2 Coarse-grained GAG model simulations

The Metropolis Monte Carlo (MMC) algorithm in the canonical ensemble was

employed to simulate single isolated GAGs consisting of up to 1000 disaccharides. Trial

configurations were generated using the pivot move, in which a glycosidic torsion angle

was selected at random and changed by a random amount between [ Ar,'

where Affm. was adjusted on the fly to maintain an acceptance/rejection ratio between

40% to 60%. The pivot algorithm was first introduced by (Lal 1969) and later shown to

be highly effective for the simulation of self-avoiding random walks by (Madras and

Sokal 1988). 106 cycles were used to equilibrate the molecule followed by 106 cycles to

compute equilibrium conformational and thermodynamic properties. Each cycle

consisted of performing N pivot moves, where N is equal to the number of glycosidic

linkages in the GAG. A non-bond electrostatic cut-off of three Debye lengths was used

78



and the Debye-Hnckel energy shifted to equal zero at the cut-off. Configuration-altering

moves were accepted according to the standard Metropolis criterion, rn 5 min{1, e~},

where AF == F"" - F"d is the difference in configurational free energy between the new

and old configurations.

For the titration simulations, single site protonation/deprotonation moves were

performed in addition to configuration altering pivot moves. The

protonation/deprotonation moves simulate the exchange of protons with a hydrogen

reservoir of fixed pH and hence chemical potential, as described earlier.

Protonation/deprotonation moves and pivot moves were selected at random to satisfy

detailed balance and were performed with a relative frequency of P: 1, where P is the

number of titratable sites in the molecule. 25 x 10' cycles were used to equilibrate the

molecule followed by 50 x 106 cycles to compute equilibrium averages, where a cycle

now consists of N pivot moves + NP protonation/deprotonation moves. As opposed to

previous Monte Carlo titration studies of proteins, in which strong coupling between

titrating sites (Beroza and others 1991) required intramolecular proton exchange moves,

efficient sampling was achieved in the present study using single site bulk-exchange

moves.
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2.4 Results

2.4.1 Glycosidic torsion angle potentials of mean force

The glycosidic dihedral angle potentials of mean force computed from all-atom

disaccharide simulations are shown in Figure 4 for each disaccharide (CH, C4S, C6S, and

HA) and linkage type (f81,3 and f11,4). Contour lines of constant energy are drawn in

increments of kBT above the minimum energy conformation which is denoted by an 'X'

in the plot. We reiterate that trans-glycosidic Coulombic interactions between sulfate and

carboxylate groups have a negligible influence on the C4S and C6S PMFs. This implies

that trans-glycosidic covalent bonded, van der Waals, and hydrogen bond interactions

were the primary determinants of the PMFs.

The PMFs for the 131,4 linkages are highly similar across all disaccharide types

(Figure 4, b, d, f, h). The reason for the similarities is that the chemical perturbations at

the C4 and C6 of GlcNAc and GalNAc are located distal to the 8i, 4 linkage region and

thus do not influence the specific trans-glycosidic interactions. Even the influence of

Coulombic repulsion between the sulfate and carboxylate groups in C4S and C6S is

negligible on the linkage flexibility.

Turning to the 81,3 linkages, the CH and C6S PMFs are similar because the

sulfate group in C6S is located distal from the linkage region (Figure 4 a and e). The

PMF for CH is notably different from that of HA, however, which has a smaller

minimum energy well (Figure 4 a and g). The observed difference is a consequence of

the difference in stereochemistry of the hydroxyl group at the C4 position in GlcNAc and

GalNAc, which interacts with the ring oxygen on GlcUA via hydrogen-bonding (Almond

and others 1997). The most significant difference in the 81, 3 PMFs, however, is seen
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for C4S, in which the sulfate group is located proximal to the /il, 3 linkage (Figure 4, c).

The sulfate group is capable of making direct van der Waals contact with the neighboring

GlcUA residue, thereby significantly restricting the flexibility of the C4S 81,3 linkage

relative to CH and C6S. The reduction in flexibility is illustrated by the considerable

narrowing of the contour lines around the minimum energy point in Figure 4c with

respect to Figure 4a and e.
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Figure 4 Glycosidic torsion angle potentials of mean force for the various disaccharides
and linkage types (a) CH fi1,3 (b) CH 81,4 (c) C4S /31,3 (d) C4S pi,4 (e) C6S 61,3 (f)
C6S /i,4 and (g) HA 81,3 (h) HA 81, 4. An 'X' is used to denote the minimum energy

conformation and contours are drawn in increments of k8T above the minimum. H-bond
definitions are used for # and §v .

2.4.2 Fully ionized conformation

Characteristic ratio, CN

The characteristic ratio, CN, is a standard measure of the effects of local chemical

structure and bonded interactions on the overall dimensions of a polymer in its 0-state.

It is defined as the dimensionless ratio of the mean square unperturbed end-to-end

distance of the real chain to the hypothetical mean squared end-to-end distance of an

equivalent Gaussian chain,

(r 2)(
CN 20

Nl,,
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where (r2)o is the mean square unperturbed end-to-end distance of the real chain, N is

the number of bonds in the chain and , is the root-mean-square bond length (, = 5.2 A

for HA, CH, C4S, and C6S), where the subscript v denotes "virtual" because we utilize

the conventional glycosidic oxygen-to-glycosidic oxygen virtual bond definition (Cleland

1971); (Brant and Goebel 1975) in analyzing the conformation of GAGs in this study.

Utilizing this definition, each virtual bond is rigid in the current model and spans a single

monosaccharide. The room temperature unperturbed state is achieved in the context of

the current model by switching off all non-bond interactions. This is equivalent to taking

the limit of infinite concentration of added salt, since the bonded PMFs are assumed to be

independent of ionic strength.

The dependence of CN on chain length is shown in Figure 5 for up to 512

monosaccharides for CH, C4S, C6S, and HA. CN necessarily attains a limiting value at

long chain lengths, C. = lim CN, because it does not contain the effects of excluded

volume (Table 4). The model predicts that CN is considerably larger for C4S than for the

other GAGs, with a limiting value of C. that is ~ 40% larger. There are two

contributions to CN in the current model: the bonded backbone chemical structure and

the glycosidic torsion potentials of mean force. Noting that the bonded backbone

chemical structures of the GAGs are similar (Table 2) leads one to conclude that it is the

lack of flexibility present in the 81,3 PMF of C4S that leads to the observed differences.

The effect on C, of the sulfate group at the C6 position of GalNAc is minor because of

its distal location from the 1,3 and 81,4 linkage regions. Interestingly, the CN of HA

is similar to those of CH and C6S despite the notable differences in the 81,3 PMF of
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HA. This result is attributable to the fact that theflexibility of the 81,3 linkage of HA is

similar to CH, unlike C4S. To ensure that the foregoing conclusions regarding CN are

insensitive to the choice of virtual bonds, the preceding calculations were repeated using

the n (= 3N) backbone virtual bonds of the coarse-grained model (Figure 2). The results

obtained were qualitatively similar, although clearly the numerical values of C,, were not

equivalent to those of CN .
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Figure 5 Unperturbed characteristic ratios, CN , as a function of molecular weight

(number of monosaccharides) for the four GAGs studied.

Table 4 Limiting GAG characteristic ratios, C,, and intrinsic persistence lengths, ao.

GAG C. ao (A)

HA 28 71± 3

CH 27 70 4

C4S 38 96± 6

C6S 28 71± 4
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Persistence length

The persistence length, a, of a polyelectrolyte may be decomposed into two

contributions: intrinsic, a0 , and electrostatic, a,. ao is strictly defined to be equal to the

persistence length of the polyelectrolyte in the limit of infinite ionic strength, ao lim a.

Like CN, a0 is attributable to the bonded chain structure and short-range non-

electrostatic bonded interactions. As its name implies, a, is due to electrostatic

interactions occurring along the chain backbone, which lead to additional stiffening of the

chain backbone. The total persistence length may be computed from the chain structure

using (Flory 1988),

(i, -R,,)a =- (2)

where i is the first bond vector in the chain, l is its root-mean square value, Re is the

end-to-end vector, and brackets are used to denote ensemble average. For polymers in

the 9-state, a and CN both necessarily attain limiting values with increasing molecular

weight due to the absence of excluded volume effects and are related by C, = 2a /l -1.

For polymers and polyelectrolytes that are not in the 9-state, however, long-range

interactions will eventually lead to excluded volume effects that cause a to increase with

increasing molecular weight. This artifact will lead to the observation of an apparent

persistence length that is greater than the true persistence length, the latter of which is

due solely to local interactions leading to back-bone stiffness. For this reason, it is
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important to exercise care in computing the persistence length of polymers that are not in

the 9-state, such as the polyelectrolytes considered here at finite ionic strength.

For each GAG and salt concentration studied, a attains a limiting value for L ~ 4-

6a, where L denotes the contour length (Figure 6). This result is intuitive because for

contour lengths on the order of a persistence length, the chain will remain relatively

extended, ensuring that long-range intramolecular interactions are absent.
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N (# sugars) N (# sugars)

Figure 6 Ionic strength and molecular weight dependence of the total persistence length,
a, of chondroitin (left) and chondroitin 4-sulfate (right).

The following expressions were obtained by a least-squares fit of the data for

persistence length versus salt concentration,

aA= 71+145c,0.
56

ac, =70+153c 0 59

aC4s=96+ 447c- 67

a =71+397c-0
64
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where a is in units of A, c, is in mM, R2 > 0.99 for each fit, and persistence length data

for N = 128 and 256 sugars were used for HA/CH and C4S/C6S, respectively. As an

alternative to using the 'microscopic' definition in Eq. (2), the persistence length may be

inferred from the mean square radius of gyration assuming a worm-like chain model

(Ullner and others 1997),

2 La 2 3 n
4  

-
s2 La +2 a-2-a(_- (4)

3 L L2

where L is the contour length, assumed to be 10 A per disaccharide for each of the GAGs

studied here. Indeed this is the approach typically taken experimentally because the

radius of gyration is the usually the relevant observable (e.g., scattering experiments).

The solution to Eq. (4) for HA and CH (128-sugars) and C4S and C6S (256-sugars)

yields (R2> 0.99),

aHA 7 2 +17 2C-56

acH =71+19lc;*(

aC4s= 100+ 4 80c-0.61

ac6s 74 + 463c;- 6 0

While the intrinsic persistence lengths and salt concentration exponents are similar in

Eqs. (3) and (5), significant differences exist between the numerical pre-factors

multiplying the salt concentration dependent terms. Thus, quantitative differences occur

in the predicted persistence length depending on whether the 'microscopic' (bond

vectors) or 'macroscopic' (radius of gyration) definition is employed.
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Although there is no clear consensus on the conformational behavior of

polyelectrolytes in the presence of salt, the electrostatic persistence length is typically

reported to be c i~6, where p ~1 for flexible chains and p ~ 2 for stiff chains such as

DNA (Ullner 2003; Ullner and Woodward 2002). Molecular simulations of flexible

Debye-Hfickel chains (Reed and Reed 1991; Ullner and others 1997; Ullner and

Woodward 2002) and experiments on HA and other flexible polyelectrolytes have

reported p ~1 (Ghosh and others 1990; Reed and others 1991) as well as a linear

dependence of the electrostatic persistence length on the linear charge density, 4, below

the threshold value of 4=1. A more precise value of a =1.2 has also been reported for

simulations of Debye-HUckel freely jointed chains, where the slightly higher exponent

was attributed to excluded volume effects (Ullner and Woodward 2002). The reported

results of a, oc c-1-", agree very will with the observed, a, oc c-.6 found in the

present study, where it is noted that K c C?5 . We do find, however, a significantly

stronger than linear dependence of a, on 4. In going from HA and CH to C4S and C6S

the linear charge density doubles, whereas the electrostatic persistence length pre-factor

changes by between (2.4 - 3.1).

Comparison with experiment

The persistence length of HA in high ionic strength aqueous solution has been

measured experimentally using a variety of methods including light scattering, neutron

scattering, x-ray scattering, and viscometry (Table 5). Results from different studies

exhibit considerable deviation ranging from 40 to 90 A between 0. 1-1.0 M NaCl, with no
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consensus on the correct value of ao. The spread in the experimental data brackets the

results predicted by Eq. (3), namely 74-83 A at 0.1-1.0 M NaCl, although clearly the

comparison does not represent a stringent test of the predictive capabilities of the model.

Ghosh and others (1990) published the ionic strength dependence of the apparent

persistence length of 1 MDa HA, but as its name suggests, their persistence length

measurements included excluded volume effects not believed to be present in the

persistence length results presented in Eqs. (3) and (5). Their results are therefore not of

utility in validating our model predictions.

Table 5 HA experimental persistence length at high ionic strength.

a (A) [NaCI] (M) Experimental Method Reference

40 0.2 SAXS (Cleland 1977)
40 0.5 viscometry

90 1.0 light scattering (Ghosh and others 1990)

80 0.3 light scattering (Fouissac and others 1992)

42 0.2 viscometry
(Hayashi and others 1995)

41 0.5 viscometry, light scattering

90 0.1 neutron and light scattering (Buhler and Boue 2004)

To further test the model, we probe its ability to predict the ionic strength

dependence of the radius of gyration of HA in the range 0.01 to 1.0 M NaCl (Table 6).

We also compare the theoretical root-mean-square end-to-end distance, r, with the only

solution conformation experimental data known to the authors for C4S and C6S (Table

7). Experimental methods include light scattering in the cases of Esquenet and Buhler

(2002), Fouissac and others (1992), and Hayashi and others (1995) as well as viscometry
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in the study of Hayashi and others (1995). Although disagreement between the

theoretical and experimental results for HA is as large as 30% in some cases,

disagreement between the various published experimental studies is also within that

range. While these circumstances make a quantitative comparison difficult, it is the best

that can be done given the existing experimental data.

Table 6 Experimental and theoretical root-mean-squared radius of gyration, s, for HA.

MW [NaCl] S (A) Difference Reference
(kDa) (M) Experimental Theoretical ( R r

130 0.01 557 388 + 12 -30 (Fouissac and others
1992)

130 0.06 444 331 ± 12 -26 (Fouissac and others
1992)

130 0.3 424 302 ±15 -29 (Fouissac and others
1992)

104 0.5 228 234 ±10 3 (Hayashi and others
1995)

69 0.5 173 207 10 20 (Hayashi and others
1995)

85 0.1 270 20 250 ± 9 -7 (Esquenet and Buhler
2002)

Table 7 Root-mean-squared end to end distance, r, for C4S and C6S.

GAG MW NaCI] r (A) Differenc Reference
(kDa) Experimental Theoretical e (%)

C4S 27 0.2 273 324 25 19 (Tanaka
C6 I 44_2_ 396_2_ -3 1978b)

C6S 44 0.2 408 396+±21 -3 (Tanaka
___ __ ___ __ __ __ __ __ ___ __ 1978b) -
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2.4.3 Titration

Theoretical titration curves at physiological ionic strength (0.15 M NaCl)

demonstrate the effect of increasing pH on dissociation of the carboxylate group on

GlcUA in CH, C4S, and C6S (40-disaccharides each) (Figure 7, left). As a increases,

further dissociation becomes increasingly difficult due to unfavorable anionic-anionic

electrostatic interactions, as demonstrated by the increasing apparent acidity, pKPP

(Figure 7, right). The pKPP is significantly larger in C4S and C6S than in CH due to the

presence of the sulfate groups, which interact unfavorably with ionized carboxylate

groups and drive the equilibrium towards the more associated, or protonated, state.

Interestingly, the titration behavior observed for the 4- and 6- sulfated forms of

chondroitin are highly similar, except for a very small shift of about 0.04 pK units of C4S

over C6S (Figure 7, right).

-CH - CH
1 - --- C4S C4S

. S 0.5 -...----
C6S- .. .. CB

0.8 .

0 .6 - ..2 *
~0. 3

0.4/02

0.22,i

0.2- 0.1 -

1 :2 3 4 5 6 7 0.2 0.4 0.6 0.8
pHa

Figure 7 Theoretical titration curves of 40-disaccharide GAGs (CH, C4S, C6S) at
physiological ionic strength (0.15 M).

These findings may be rationalized by examining mean carboxylate-carboxylate and

carboxylate-sulfate group separations (Figure 8). Figure 8 demonstrates that the mean

carboxylate-carboxylate group spacing is ~ 10 A in both C4S and C6S, whereas the mean
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carboxylate-sulfate spacing in C4S is smaller than in C6S by a bit more than an

Angstrom. The resulting increased electrostatic interactions lead to the larger observed

shift in the pK of the carboxylate group in C4S. Finally, ApK"PP depends linearily on a

for each GAG, except for very small a in C4S and C6S (Figure 7). When a ~ 0 there is

a large change in electrostatic energy due to deprotonation, ApK = I !, because of

the reference state employed.

1 - ,C(r) C4S
-- ,(r) C4S

gcc(r) C6S
0.8- 9CS(r) C6S

0.4-

0.2-

0 --- -

0 5 10 15 20
r (Angstroms)

Figure 8 Intramolecular carboxylate-carboxylate, gcc(r), and carboxylate-sulfate, g#s(r),
charge group radial distribution functions at 0.15 M NaCl and pH 4 for 40-disaccharide

GAGs of CH, C4S, and C6S.

For any given GAG (e.g., C4S), the strength and range of electrostatic interactions

between charged groups increase with decreasing ionic strength, shifting the titration

curve towards lower a at all pH (Figure 9). In contrast, as the ionic strength approaches

1.0 M the Debye length is reduced to ~ 3 A, effectively screening almost all electrostatic

interactions and neighbor site coupling so that the Langmuir isotherm of the acid is nearly

reproduced with pK"'"= 2.9.
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Figure 9 Ionic strength dependence of titration curves for CH (left) and C4S (right).

In analyzing the effects of pH on GAG conformation, we first consider the infinite

ionic strength limit. At infinite ionic strength, non-bonded electrostatic interactions

between charged monomers are absent, so that GAG conformation is determined

exclusively by the bonded structure and glycosidic PMFs. As noted in the modeling

section, however, the bonded PMFs were assumed to be independent of pH and ionic

strength. For this reason, pH will not affect GAG conformation in the limit of infinite

ionic strength.

For finite ionic strengths, non-bonded electrostatic interactions are present.

Decreasing the pH from the physiological value of 7 will cause carboxylate groups to

tend towards their protonated, deionized state. This will directly affect GAG

conformation by decreasing intra-molecular electrostatic repulsion, which will shift the

equilibrium distribution of states to more compact conformations due to the disordering

effects of entropy. The effects of pH on conformation will be weaker, however, for

higher ionic strengths since electrostatic interactions will already be screened in that case.
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The perturbed characteristic ratio, C80  (r )Nl , for CH (Figure 10, left) and

C4S (Figure 10, right) demonstrate the aforementioned effects. At 1.0 M ionic strength

the pH has no noticeable effect on the conformation of chondroitin due to the screening

of electrostatic interactions (Debye length ~ 3 A). Indeed, short-range electrostatic

interactions along the chain backbone are almost entirely absent because 10 A (- 3 Debye

lengths) is the minimum carboxylate-carboxylate spacing in CH. Long-range

electrostatic interactions are also minimal because the contour length, L ~ 400 A, is only

about 6aO, implying that the chain adopts a more or less extended state. In contrast, the

pH has a noticeable, albeit small, effect on C4S conformation at 1.0 M ionic strength, due

to the higher linear charge density present on that molecule. Interestingly, at 0.001 M,

the lowest ionic strength considered, C80 reaches a plateau in the case of CH but not C4S,

because a does not reach its full value of 1 at pH 7 in the latter case (Figure 9).

45 - 5
- 0.001 M - 0001 M
--- 0.01 M - 0.01 M

40- 0.1 M 50 - 0.1 M
- 1.0 M --- 1.0 M

45
35

U~ L)40-

30 !...--"

251
--- a..

2051
1 2 3 4 5 6 .'27 3 4 5 6 7

pH pH

Figure 10 Dependence of conformation on pH at different ionic strengths for CH (left)

and C4S (right).
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Comparison with experiment

(Cleland and others 1982) employed potentiometric titration [as well as various

theoretical approaches including a discrete site Monte Carlo model similar to that

developed in this work (Cleland 1984)] to study the titration properties of HA. They

found that pK'' and ApKPP depend linearly on a for ionic strengths greater than 0.001

M, a result that was also found in the present study (Figure 11, left). In Figure 11 (right)

we compare the theoretical slope of ApKPP vs. a as a function of ionic strength as

computed using the present model for HA and from experimental results of Cleland and

others (1982). The model tends to over-predict the slope with respect to experiment at

low ionic strengths and under-predict it at high ionic strength. Disagreement at low ionic

strength may be attributed to the overestimation of electrostatic interactions by the

Debye-Hickel interaction potential. At high ionic strengths, the Debye length becomes

small so that only short-range electrostatic interactions contribute to ApKPP. When

short length scale interactions dominate the electrostatic energy, the model's failure to

account for molecular detail such as the low dielectric and salt exclusion properties of the

GAG domain gain importance, offering a source of discrepancy between the model and

experiment.
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Figure 11 Theoretical titration curves of hyaluronic acid at four different ionic strengths
0.001 - 1.0 M NaCi (left). Slopes of experimental (Cleland and others 1982) and

theoretical titration curves of hyaluronic acid as a function of ionic strength (right).
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2.5 Concluding discussion

A computationally efficient, coarse-grained molecular model is developed for the

investigation of the conformational and titration properties of chondroitin sulfate and

hyaluronan, two anionic glycosaminoglycans that play a central role in articular cartilage

biomechanics. Predictions for the intrinsic persistence length and the ionic strength

dependence of the radius of gyration and 8ApKPP / 8a are shown to be in quantitative

agreement with experiment, despite the absence of any adjustable parameters. The

predictive capabilities of the model are attributed in part to its being based on an

underlying all-atom model that uniquely defines the topology and energetic interactions.

Short-ranged, chemically specific trans-glycosidic interactions between monosaccharides

are included using a bonded potential of mean force that is obtained from all-atom

simulations of isolated disaccharides. Long-ranged electrostatic interactions between

monosaccharides are modeled using a Debye-Hfckel interaction potential applied to the

monosaccharide centers of charge.

Interestingly, 6-sulfation is not found to affect the inherent stiffness of

chondroitin, as measured by C. and ao, whereas 4-sulfation has a considerable stiffening

effect. C. increases from 27 and 28 to 38 and ao from 68 and 71 to 96 A in going from

CH and C6S to C4S, respectively. This finding is attributed to the proximity of the

sulfate group in C4S to the 81,3 linkage, where it sterically restricts glycosidic flexibility

by interacting with GlcUA. In contrast, the sulfate group in C6S is distal from both the

,#1, 3 and 81, 4 linkages so that it does not significantly alter glycosidic linkage

flexibility with respect to CH. Our finding for C4S is consistent with a recent study by

(Rodriguez-Carvajal and others 2003), but our result for C6S is in contradiction with that
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work, in which C6S was found to be more flexible than CH. The present study goes

beyond the work of Rodriguez-Carvajal and others (2003) by accounting for long-range

electrostatic interactions and pH on conformation and titration properties. 6- and 4-

sulfation are equally found to significantly increase the electrostatic persistence length at

all ionic strengths due to increase in CH charge density associated with sulfation, and the

electrostatic persistence length of HA is found to be similar to that of CH.

Despite the advances made in the present study towards our ability to

quantitatively model GAG conformation and titration, several modeling deficiencies

remain. Principal among them are the neglect of the low dielectric and salt exclusion of

the GAG domain and the effects of Ca cations on electrostatic interactions. Moreover,

internal monosaccharide degrees of freedom as well as glycosidic bond lengths and

valence angles were fixed at their mean values obtained from isolated disaccharide

simulations. In future studies it would be prudent to further investigate the effects of

these assumptions on the predicted properties. Unfortunately, well-established

experimental conformational and titration data are scarce for anionic GAGs, in particular

for CS, and detailed atomistic simulations are too computationally expensive to be

performed for the molecular weight range of interest, posing inherent difficulties in

discriminating between various coarse-grained modeling assumptions.
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Chapter 3

Osmotic pressure of chondroitin sulfate glycosaminoglycans:

A molecular modeling investigation



3.1 Introduction

Articular cartilage is an avascular tissue that provides a low-friction, protective

lining to the ends of contacting bones during joint locomotion. The tissue consists of a

dense extra-cellular matrix of aggrecan and type II collagen that is maintained by a sparse

volume fraction (- 2%) of cells. Aggrecan is a high molecular weight proteoglycan (1-

3.5 MDa) that consists of a linear protein backbone (~ 300 A) with roughly 100

covalently bound anionic chondroitin-sulfate (CS) glycosaminoglycans (GAGs), as well

as a smaller molecular weight fraction of keratan-sulfate GAGs and other

oligosaccharides (Doege and others 1991; Hascall and Hascall 1981). The high negative

charge density presented by the CS-GAGs on aggrecan generates an osmotic swelling

pressure that maintains articular cartilage in a hydrated state even under substantial

compressive loads, playing an important role in determining its unique biomechanical

properties.

The CS-GAGs present on aggrecan vary in chemical composition depending on

the state of health or disease of articular cartilage [Osteoarthritis (OA) or Rheumatoid

arthritis (RA)], anatomical site, depth within the cartilage layer, and age of the organism

(Bayliss and others 1999; Hardingham 1998; Lewis and others 1999; Plaas and others

1998; Plaas and others 1997; Platt and others 1998; Roughley and Lee 1994). For

example, the fraction of 6-sulfated CS disaccharides in human femoral condyle cartilage

increases with age from about 0.5 to 0.8 from birth to the age of 20 years with a

concomitant decrease in 4-sulfation, after which it plateaus. Additionally, the

concentration of 6-sulfated CS disaccharides in knee synovial fluid was observed to be

significantly lower in RA and OA than in healthy tissue (Lewis and others 1999) and the
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concentration of 4-sulfated CS disaccharides higher in osteoarthritic hip cartilage, with

only slight changes in overall GAG content (Mankin and Lippiello 1971). Considering

the important role that CS plays in determining the mechanical properties of articular

cartilage and the significant differences observed in CS chemical composition, it is of

significant biological interest to understand the connection between CS chemical

composition and osmotic pressure in detail.

The objective of the present study is to investigate the effects of CS chemical

composition, namely sulfation type and pattern and molecular weight, on CS osmotic

pressure at physiological ionic strength (0.15 M NaCl). To this end, a recently developed

coarse-grained molecular model of CS is employed that enables the efficient computation

of conformational and thermodynamic properties of anionic GAGs in solution. In a

previous work the model was applied to isolated GAGs in infinitely dilute solution and

the effects of sulfation type, ionic strength, and pH on their conformation and titration

behavior was studied. In the current work it is demonstrated that the model can be used

to compute directly CS osmotic pressure and thereby investigate its dependence on CS

sulfate composition, molecular weight, and concentration. Although the ultimate aim of

this ongoing research project is to study the mechanical properties of aggrecan, the

current coarse-grained modeling investigation into the behavior of CS solutions is viewed

as a valuable and necessary stepping-stone towards that end, in part because the modeling

of proteoglycans has no precedence in the molecular simulation community.
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3.2 Modeling

Chondroitin (CH) is a linear (unbranched) polysaccharide consisting of repeating

disaccharide units of glucuronic acid (GlcUA) and N-acetyl-galactosamine (GalNAc),

alternately linked in f1,3 and ,1,4 glycosidic linkages, respectively (Figure 1). When the

4- or 6-carbon of N-acetyl-D-galactosamine is sulfated, chondroitin is termed chondroitin

4-sulfate (C4S) or chondroitin 6-sulfate (C6S), respectively (Figure 1). The chondroitin-

sulfates that are covalently bound to aggrecan typically range in molecular mass from 10

to 30 kDa, equivalent to about 20 to 60 disaccharide units.

COO- CH2OH C00- CH 2OH
O HO 00 03S0

0 04  30" 4 0 H 3 f

OH NHAc OH NHAc

GlcUA GaINAc GlcUA Ga1NAc4S

Co- CH20SO3
HO

O0H 6 \O

OH NHAc

GlcUA GaINAc6S

Figure 1 Disaccharide repeat units of chondroitin (top left), chondroitin 4-sulfate (top
right), chondroitin 6-sulfate (bottom).

3.2.1 GAG model

The polysaccharide model is topologically defined by the sequence of chemical

and virtual bonds depicted in (Figure 2). All internal degrees of freedom, including bond

lengths, valence angles, and dihedral torsion angles are treated as rigid except for the

glycosidic torsion angles, which provide the majority of conformational flexibility to

polysaccharides. Values of the rigid internal degrees of freedom are computed from
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equilibrium all-atom simulations of solvated disaccharides. The isolated disaccharide

simulations are also used to compute bonded, glycosidic torsion angle free energies for

each linkage and type of GAG, e" (#,y), that include the effects of specific chemical

interactions (e.g., hydrogen bonding) occurring across each glycosidic linkage, as well as

the effects of the configurational entropy of all degrees of freedom other than the

glycosidic torsions, (#, V). Electrostatic non-bonded interactions are modeled using a

simple Debye-HUckel interaction potential between monosaccharide center-of-charge

sites and the effects of non-electrostatic steric interactions are included using a purely

repulsive Lennard-Jones potential between the centers of geometry (= center of mass with

all atoms weighted by unity) of monosaccharides. In the following section we describe

how the foregoing model may be applied to compute the osmotic pressure of

concentrated solutions of anionic GAGs.

(a)

c Ce

(b)

05 0 /4 C6

cN \

\ C-/ -/C

C / C2 ~3~2

901

Figure 2 Definition of the coarse-grained model bonded backbone structure (thick solid
lines) based on the all-atom disaccharide representation for (a),81,3 and (b),81,4 linkages.
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3.2.2 Osmotic pressure

To derive the appropriate expression that is used to calculate the osmotic pressure

of a solution of flexible polyelectrolytes, we begin by considering N identical negatively

charged colloids in a volume Vat temperature T, suspended in a solution of fully

dissociated 1:1 electrolyte in water. The colloid result is then directly extended to treat

polyelectrolytes. Consistent with the framework of Poisson-Boltzmann (PB) theory,

water is treated as a uniform dielectric with dielectric permittivity e, and the mobile ion

species as spatially varying fields with number densities, na (r) (a = ±). Each mobile ion

species is in osmotic (electrochemical) equilibrium with an electrolyte-water reservoir of

fixed ionic strength and electrolyte electrochemical potentials, p, = kT In n,, where

na =n, and pa = p, (a = ±) are the mean number densities and electrochemical

potentials of the electrolyte species in the reservoir. Within the PB framework, the free

energy of the colloidal solution is given by (von Grfnberg and others 2001),

F(N, V,T;p,) = -kBTln I 3N JdRNe-({RN)) (1)

where 2 = U - TS - 1 paNa is the grand potential, or equivalently the effective

Hamiltonian or potential of mean force, of the system when the colloids are in

configuration {RN } ,B is the Boltzmann constant, T is absolute temperature,

p8 = (kBT)-', and A is the de Broglie wavelength. U is the total internal electrostatic

energy, S is the mobile ion entropy, and the electrochemical potential terms ensure

osmotic equilibrium with the electrolyte reservoir. 92 is aftee energy that depends both

116



on the colloid configuration {RN } and the thermodynamic state (N, V, T, p,) and

includes the averaged effects of the 'fast' mobile ion degrees of freedom on colloid-

colloid interactions. The electrostatic internal energy, U, is (Belloni 2000; Deserno and

von Grinberg 2002; Trizac and Hansen 1996),

U = I J[p, (r) + p (r)](r)dr (2)
2V

where pf,, (r) is the colloidal (fixed charge) density p (r) is the mobile ion charge

density, V(r) is the electrostatic potential, arbitrarily set equal to zero in the reservoir.

The dependence of pj, p, and y on (RN} is implicit, but has been dropped for

notational clarity. The volume integral in Eq. (2) is carried out over all space. The

mobile ion entropy, S, corresponding to non-linear PB theory is,

S=-kB fna (r) [Inn(r)-1]dr (3)
a=± y

where the mobile ions are treated as an inhomogeneous ideal gas. To be consistent with

linearized PB theory, S[na (r)] must be expanded to quadratic order about a suitable

expansion point, ha. Only then will the functional minimization of Q, subject to the

constraints of Poisson's equation and electroneutrality, yield the linearized PB equation

(Deserno and von GrUnberg 2002). In the present study we choose, nha =n,

corresponding to linearization of the PB equation about the reference potential in the
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reservoir. Although this is by far the most common choice employed in the literature, it

has been shown that the optimal expansion point corresponds to the Donnan potential and

its corresponding number densities (Deserno and von Grflnberg 2002; Tamashiro and

Schiessel 2003; von Granberg and others 2001). Functional expansion of S to quadratic

order yields (Appendix A),

S -VkB(n a) nnr VkBn r tna ( r 12 dr (4)
a=± ( n,

where Wa = V- J na (r)dr is the mean mobile ion number density and all volume

integrals are carried out over the space accessible to the solvent. Finally, the

electrochemical potential terms are,

ZPaNa =XkBT hnr fn(r)dr (5)
a a v

where equality of the electrochemical potentials in the solution and reservoir has been

employed.

To obtain a closed-form analytical expression for K that can be employed in

molecular simulations requires analytical expressions for V/(r), pf, (r), na (r), and

p, (r). The mean-field Boltzmann relation in linearized form relates na (r) to V(r),

na(r) = n, [I-p8vaeV(r)] (6)
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where v, is the valence of mobile ion species a. The fixed and mobile ion charge

densities are,

pf,(r) =-el 3 (r-R)
i=1 (7)

p,(r)= e[n.(r)-n_(r)]

where the colloids have been assumed to have zero radius and a 1:1 electrolyte has been

assumed (e.g., NaCl). Poisson's equation relates the electrostatic potential to the charge

density for any configuration of colloids {RN)}

V2V(r)= [pfc(r)+p,,(r)] (8)

The solution to Eq. (8), subject to the charge source terms in Eq. (7) and the far field

boundary condition, V(Irl -+ o) =0, is given by a superposition of Debye-HUckel

potentials,

N -~r-R

y(r;{R N }) =
= r r-R,|I(

where, K = (8;r2Anr)1 2 is the inverse Debye length (equal in the colloid compartment and

reservoir due to our choice of expansion point for S), AB- e2 / 6kBT is the Bjerrum

length, and the dependence of y on the colloid configuration has been made explicit.
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The previous expressions may be used to evaluate the separate contributions to

the dimensionless grand potential, X2, (Appendix A),

3 Nei +RA
flU=--NxctB B~ I1

4 ikj Ru 2

1 1
/JTS = 2Vn,In n, - 2nV +-NAB +-1 B-e~ (10)

4 2 ,<j

I j, Na = -2Vnr In nr
a=

yielding the final result for /%Q = 8U - PTS - PE p1aNa,

I N -K~i
X2= Nx2B+ 2BJ - 2nV.

2 ij R(

The first term in the grand potential is the favorable electrostatic internal self-energy of

the point charge colloids that is due to the local electrostatic energy well that each colloid

resides in due to its surrounding oppositely charged mobile ion cloud. The second term is

the standard Debye-HUckel interaction energy between colloids i andj, and the third term

is the pressure contribution due to the mobile ion translational entropy. Interestingly, the

electrostatic internal self-energy of the mobile ion charge clouds (-NKAB / 4) as well as

the interaction of charge cloudj with the electrostatic field due to colloid i in Eq. (10) for

U have cancelled with equal contributions to the entropy of the opposite sign.
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The expression in Eq. (11) can be derived in a more straightforward manner yet

with less physical insight by employing the generalized grand potential of linearized PB

theory presented by (Deserno and von Granberg 2002) (their Eq. 20),

-in2, = Pf(r)Y(r)dr -2nV (12)
2V

where the expansion point, 7 =0, Na = n, has been assumed (an overbar is used in their

notation to denote the expansion point, not a volume average, and their nb is equal to our

n,). Evaluation of the integral in Eq. (12) leads directly to Eq. (11) (Appendix A).

The foregoing theory may be directly applied to polyelectrolytes by noting that

each charge site on the chain is bonded to the chain backbone and interacts with other

charge sites via conventional Debye-Hfickel interactions. The effective Hamiltonian for a

specific configuration of polyelectrolytes is assumed to consist of independent

electrostatic, non-electrostatic, and kinetic energy contributions,

Heff = eec + Fo"ec + K (13)

where Keec = C2 from the colloid result and F n I contains the non-electrostatic

bonded contributions as well as the repulsive Lennard-Jones non-bond potential if

included in the model. It should be noted that the latter assumption neglects the effect of

excluded volume on the grand potential. F"''eec is expressed as a free energy because it
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contains the glycosidic torsion angle potential of mean force, FB ($, V/), in the GAG

model,

F = FBjj (q( V/) + E U" (r,) (14)
i,j=i+I i<j

where the first summation is over all glycosidic torsion angle pairs (i, j), where i(k)

denotes monomer type k at position i and j(l) denotes monomer type 1 at positionj, and

the second summation is over all non-bonded monosaccharide pairs and models the

effects of steric interactions between monosaccharides utilizing a repulsive Lennard-

Jones (RLJ) potential.

The osmotic pressure, H, is defined as the difference in pressure between the

colloid and reservoir compartments,

OF' OF"
H =- + (15)av av

OVN,T,pr T,p,

where - F" / V = 2nrkBT is the pressure in the reservoir in the van't Hoff

approximation, consistent with PB theory. The pressure in the polyelectrolyte solution is

(Appendix B),

WF' N / aHeff (16)
S =-kBT (V

N ,T,purI
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where N/V is the mean number density of polyelectrolyte interaction sites. The

evaluation of Eq. (16) using the standard atomic virial theorem is precluded in the current

GAG model due to the presence of rigid internal degrees of freedom, including bond

lengths, angles, and torsions. For this reason, the molecular virial theorem is employed

for which only intermolecular interactions are required (Theodorou and others 1993).

Using the molecular virial theorem for the pressure in Eq. (16) the osmotic pressure is,

I Nb MDH
I = nPkBT - R- Ir\, (17)

\3 V i (8qr,

where n, is the average number density of polyelectrolytes, uDH (r) is the standard

Debye-HUckel interaction energy, Rcj is the distance between the centers of mass of the

polyelectrolyte to which non-bond sites i andj belong, and the summation is over only

intermolecular non-bonded interactions. When the minimum image convention is

employed to simulate periodic boundary conditions care must be taken to ensure that the

summation in Eq. (17) is over all possible non-bond sites present in the system, including

interactions between sites that are on different images of the same chain. In this case,

Rc,,j is the still the distance between the centers of mass of the chain images to which

non-bond sites i andj belong. It is worthy of note that the mobile ion ideal gas

contribution due to translational entropy present in Eq. (11) has cancelled with the

reservoir pressure and that the self-energy in Eq. (11) does not contribute to the osmotic

pressure because it does not depend on volume (K is fixed at its reservoir value).
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Finally, when the repulsive Lennard-Jones interaction potential is utilized in the model

the appropriate interaction force is added to the virial equation in Eq. (17).

Model validation

To demonstrate the validity of Eq. (17), we compute the excess osmotic pressure

of a system of point-charges on an FCC lattice. The spherical cell model solution to the

linearized PB equation [sub-optimal linearized theory to be consistent with Eq. (17)] is

used as a benchmark. The spherical cell model is commonly used to model the Wigner-

Seitz cell of an FCC lattice (von Grflnberg and others 2001) and an analytical solution to

the linearized PB equation exists for that geometry (Deserno and von GrUnberg 2002).

An FCC configuration of spatially fixed point-charges is considered, wherein the

translational entropy, or ideal gas, contribution to the osmotic pressure in Eq. (17) is zero.

The finite radius of the colloid in the cell model is chosen to be 0.1 A, which is much less

than the two relevant length scales in the problem: R, the outer cell boundary and rD, the

Debye length. The cell model therefore approximates the point charge model, in this

case. Results for the two models are compared in Figure 3 for reservoir ionic strengths of

0.01, 0.1, and 1.0 M NaCl. As shown in the figure, agreement between the two models is

perfect up to very high fixed charge densities, demonstrating the validity of Eq. (17).
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Figure 3 Osmotic pressure predicted by spherical cell model with radius 0.1 A and Eq.
(17) for point charges in an FCC lattice configuration (100 mg/ml fully sulfated CS-GAG

has an equivalent fixed charge density of 0.44 mEq/ml).
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3.3 Simulation protocol

GAG concentrations up to 100 mg/ml are simulated at room temperature (298 K)

in a cubic cell employing periodic boundary conditions. The equilibrium distribution of

states in the constant (N, V, T) -ensemble is generated using the conventional Metropolis

Monte Carlo algorithm and the standard acceptance criterion, rn min l,e-fieff }, where

rn is a pseudo-random deviate e]0, 1] and AHff is the change in the effective

Hamiltonian between old and new configurations. Although the simulation appears to be

carried out in a standard canonical (N, V, T) ensemble, a semi-grand canonical ensemble

(N, V, T, p,) is actually simulated by use of Heff, because it implicitly includes the

averaged, thermally equilibrated effects of the mobile ion degrees of freedom on GAG-

GAG interactions and thermodynamic properties.

Configuration space is sampled using the pivot move applied to glycosidic torsion

angles (Madras and Sokal 1988; Sokal 1996), rigid chain translation moves, and rigid

chain rotation moves with relative frequencies of 0.4, 0.4, and 0.2, respectively, and rigid

rotations were performed about the chain center of mass. Detailed balance is satisfied by

selecting move types at random and by applying the pivot move to random glycosidic

torsion angles. Maximum move sizes are adjusted on the fly to maintain an acceptance

ratio between 40 - 60% for each move type. Finite size effects on GAG conformation

and osmotic pressure were investigated, and it was found that at least 100 chains must be

simulated for the highest GAG molecular weight (40 disaccharides) considered in this

study. The Debye-Htickel potential was truncated at 3 Debye lengths and shifted by a

constant factor to equal zero at the cut-off.
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Initial configurations of 100 helical GAGs were generated with random

orientations and locations in the simulation cell. 104 cycles were subsequently used to

equilibrate the system and 104 cycles were used to compute averages, where a cycle

consisted of N configuration-altering moves, where N is equal to the number of

monosaccharides in the system. Although coarse-graining the atomistic description of

GAGs is in part responsible for enabling the simulation of the large system sizes

considered in this study, the computational efficiency of the model is largely due to the

use of mean-field PB theory for the solvent and microion degrees of freedom. Use of the

effective Hamiltonian eliminates the need to treat long-range Coulombic interactions

using computationally expensive algorithms such as (Particle Mesh or conventional)

Ewald summation and it eliminates the "fast" moving degrees of freedom that would

otherwise restrict efficient sampling of the "slower" moving GAG degrees of freedom

that are of principal interest in this study. The speed-up obtained by coarse-graining the

solvent is better of course at dilute GAG concentrations; as one moves to higher GAG

concentrations the speed-up achieved by eliminating solvent proportionately decreases.

The GAG concentrations and system sizes considered in the present study are in a regime

where a coarse-grained treatment of both the solvent and polysaccharide degrees of

freedom is required to obtain a computationally tractable model in terms of both memory

and CPU-time requirements.
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3.4 Results

The osmotic pressure of chondroitin 4-sulfate solution in contact with a 1:1 salt

reservoir at physiological ionic strength (0.15 M) demonstrates a strong dependence on

molecular weight for chain lengths less than 16 disaccharides, after which it attains a

limiting dependence on c (Figure 4).

300
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250 - 16-dis
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Figure 4 Dependence of C4S osmotic pressure on concentration and molecular weight (4

- 32 disaccharides or 1.8 - 14.6 kDa) at physiological ionic strength (0.15 M). Statistical
error is < 1% for all data.

The osmotic pressure exhibits clearly non-ideal behavior for each molecular

weight considered. A virial expansion may be used to quantify the extent of non-ideality,

cT= A + A2c+ A3c 2  (18)
cRT
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where A, = 1/M., M, is the number average molecular weight, R = 8.3145 x 103

Pa-I/K-mol is the molar ideal gas constant, c is concentration (g/l or mg/ml) and the virial

equation has been truncated after the third virial coefficient, A3 . A, is due solely to the

ideal gas or van't Hoff contribution to the osmotic pressure, which is physically due to

the translational entropy of the chains. The data in Figure 4 was fit using a least-squares

regression to obtain the virial coefficients in Table 1. As expected, 1/A, is equal to R..

The second virial coefficient, A2, represents the contribution of two-body GAG-GAG

interactions to the osmotic pressure. The ratio A2 /A increases significantly with

molecular weight, indicating that the relative contribution of intermolecular GAG

interactions to the osmotic pressure increases with increasing molecular weight (Table 1).

This result is to be expected because at any given mass concentration, increasing the

molecular weight decreases the GAG number density and thus the total translational

entropy in the system.

Table 1 Osmotic pressure virial coefficients for C4S solution in contact with a 0.15 M
NaCl reservoir.

A, x 104  A2 x 10-6  A 3 x 108

# of kDa (mol/g) (mol-H/g 2) (mo-12/g 3

disaccharides

4 1.83 5.45 6.92 4.56

8 3.66 2.74 5.16 5.43

16 7.32 1.37 4.30 5.74

32 14.6 0.67 3.98 5.83

Increasing the ionic strength of the salt reservoir from 0.15 to 1.0 M NaCl

significantly reduces the osmotic pressure due to the increased screening of
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intermolecular GAG electrostatic interactions (Figure 5, left). Further increasing the

ionic strength to 5.0 M results in a nearly complete elimination of electrostatic effects on

rl. In the infinite ionic strength (or 9-state) limit, the van't Hoff equation applies. In

that limit, H is due solely to the translational entropy of the homogeneous 'ideal gas' of

GAG molecules, H = nGAGkBT , where nGAG is the average number density of GAG

molecules.

200 200
- 0.15M - 0.15 M
-.--- 1.0 M ---- 1.0 M

5.0 M 5.0 M
150- - 'lid 150

a. 0.
V100 - _W100

50-.- 50-

00 20 40 60 80 0 20 40 60 80
c (mg/ml) c (mg/ml)

Figure 5 Dependence of C4S (16-disaccharides) osmotic pressure on ionic strength.
Debye-HUckel non-bonded interactions only (left) and Debye-Hickel only (DH) as well

Debye-Htickel plus steric non-bond interactions (DH-RLJ) (right).

Intermolecular center-of-mass radial distribution functions (RDFs) for 40-

disaccharide C4S-GAGs demonstrate that at 0.15 and 1.0 M NaCl chains are maximally

spaced due to electrostatic repulsion (Figure 6, left and right, respectively). Decreased

electrostatic interactions at 1.0 M with respect to 0.15 M result in a higher population of

small-r states in the former, because thermal energy is able to bring chains into closer

proximity. At both salt concentrations, however, as the GAG concentration is increased

the population of chains at close distances (r <25 A) increases, resulting in the observed

increases in H.
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To quantify the effects of non-electrostatic, steric intermolecular interactions on

H , H was recomputed with the repulsive Lennard-Jones interaction potential included

(Figure 5, right). Interestingly, at 0.15 M NaCl steric interactions do not have an

observable effect on H . At 0.15 M NaCl intermolecular electrostatic interactions

dominate over the disordering effects of thermal energy, causing GAG molecules to be

maximally spaced from one another and thereby avoid the close contact required for

steric interactions. The intermolecular center-of-mass RDFs discussed previously lend

support to this interpretation. At higher ionic strengths, however, repulsive electrostatic

interactions are diminished so that the disordering effects of entropy allow GAGs to

come into close proximity. This leads to a noticeable contribution of steric interactions to

H with respect to the Debye-Hiickel only model at high ionic strength (Figure 5,

compare 5 M NaCl left and right).

0.8 0.8

0.6 -0.6-

0.4- 0.4

0.2- c = 10 mg/m 0.2- -c = 10 mg/ml -
C = 40 mg/ml --- c = 40 mg/ml
c=80mg/ml -c=80 mg/ml

0 50 100 150 200 250 300 0 50 100 150 200 250 300
r (Angstroms) r (Angstroms)

Figure 6 Intermolecular center-of-mass radial distribution functions for 40-disaccharide
C4S-GAGs as a function of GAG concentration and ionic strength: 0.15 M NaCl (left)

and 1.0 M NaCl (right).

Interestingly, the root-mean-squared radius of gyration, s, of 40-disaccharide

C4S-GAGs does not exhibit a dependence on GAG concentration between the

physiological concentration range of 20-80 mg/ml (Figure 7). While the conformation of
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semi-flexible polyelectrolytes in the semi-dilute regime is not well understood (Barrat

and Joanny 1996), it is postulated that the insensitivity of s to GAG concentration is due

to the fact that at ionic strengths greater than or equal to 0.15 M, electrostatic interactions

are already highly screened (Debye length < 10 A). CS-GAGs therefore adopt their

nearly unperturbed conformation even in dilute solution, and additional screening effects

due to increased GAG concentration are insignificant.

120-

110-

-100-

(0

80
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600 20 40 60
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Figure 7 Root-mean-squared radius of gyration, s (s2 , vs.

40-disaccharide C4S chains at 0.15 and 1.0 M

GAG concentration for

NaCl.

As discussed in the Introduction, the chondroitin-sulfate chains in aggrecan are

typically sulfated at either the C4 or C6 position of the GalNAc monosaccharide. To

gauge the effects of 4- vs. 6-sulfation on H, pure solutions of 16-disaccharide C4S-

GAGs and pure C6S-GAGs were studied (with steric interactions turned off). The effects

of sulfate type on H were found to be insignificant (Figure 8, left). This result is rather

intuitive if one considers that the two relevant length scales in the system, the Debye
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length (- 10 A) and the intermolecular spacing (- 20 - 40 A) are much greater than the

difference between the C4 and C6 sulfate positions (- 2 - 3 A).

In addition to the sulfation type, the sulfation pattern may also vary in CS-GAGs,

as well as in other sulfated GAGs that are relevant to tissue biomechanics, such as

keratan-sulfate (KS). The statistical description of sulfate patterns in CS-GAGs is

described using a traditional first-order Markov model of random copolymerization

(Appendix C). GAGs consist of two monomer types, sulfated and unsulfated

disaccharides, represented by the letters A and B, respectively. The two parameters

(f, A) fully describe the statistical distribution of copolymers in the system, where

f p(A) denotes the overall fraction of sulfated disaccharides and

A p(A A) + p(BI B) -1 (-1 A 1) is a coupling parameter that describes the

copolymer sequence. As described in Appendix C, A = -1 denotes ideal alternating AB

copolymers, 2 = 0 denotes random AB copolymers, and A =1 denotes a mixture of A

and B homopolymers.

The effect of sulfate pattern on H is investigated for 24-disaccharide C4S-GAGs

by settingf= 0.5 and varying A between -1 and 1 (Figure 8, right), again in the absence

of steric interactions (no repulsive Lennard-Jones potential). Somewhat surprisingly, H

is found to be relatively insensitive to A, varying by less than 10% at even the highest

computed concentration of 80 mg/ml. If one considers that the fraction of sulfated

chondroitin disaccharides in aggrecan is 90% (f 0.9) in human articular cartilage

(Bayliss and others 1999), it is clear that the CS sulfate pattern will have an even smaller

effect in articular cartilage. Nonetheless, the effect of A on H forf= 0.5 is still of

interest for understanding the biomechanical properties of other tissues where GAG
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sulfation may be less prominent. Results of this study clearly indicate, however, that the

sulfate pattern does not significantly affect the osmotic pressure of sulfated GAGs. In

other words, only the fixed charge density matters, an observation that has been made

previously by several experimental groups (Ehrlich and others 1998; Maroudas and

Bannon 1981; Urban and others 1979). Insight into this somewhat surprising result may

be gained by examining intermolecular charge-group (carboxylate-carboxylate,

carboxylate-sulfate, and sulfate-sulfate) RDFs, as explained next.
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- C4S -- X =-1
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Figure 8 Effect of sulfate type (4 vs. 6) (left, 16-disaccharide MW) and 4-sulfation
pattern (right, 24-disaccharide MW) on CS osmotic pressure at physiological ionic

strength (0.15 M NaCl) (CS-GAGs are 100% sulfated).

As shown by Eq. (17), in the absence of steric interactions LI is fully determined

by GAG translational entropy (the 'ideal gas' term) and intermolecular Debye-Htickel

interactions. Since monodisperse samples of 24-disaccharide CS-GAGs are considered

here, the ideal gas contribution to HI is invariant across different samples. Differences in

intermolecular Debye-Htickel interactions are therefore solely responsible for observed

differences in H caused by changes in A. For this reason, intermolecular charge group
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radial distribution functions (RDFs) may be examined to explain the insensitivity of I~I to

2 .

Each intermolecular charge group RDF exhibits the same sigmoidal-like curve as

was seen for the GAG center of mass RDFs, in which it is clear that electrostatic

interactions maintain charge groups maximally separated. If one tentatively assumes that

the equilibrium distribution of GAG conformations is unaffected by 2, then it follows

that gcc(r) is insensitive to A because the distribution of carboxylate groups is unaffected

by A. This observation is borne out in Figure 9, where it is seen that gcc(r) is insensitive

to 2.
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Figure 9 Intermolecular charge group radial distribution functions at 80 mg/ml solution of
24-disaccharide C4S-GAGs at 0.15 M NaCl. gcc(r), gcs(r), and gss(r) denote the

carboxylate-carboxylate, carboxylate-sulfate, and sulfate-sulfate RDFs, respectively.
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The intermolecular carboxylate-sulfate group RDF, g#s(r), is also relatively

insensitive to A, despite the variation in sulfate patterns affected by A. Only the sulfate-

sulfate group RDF, gss(r), is noticeably affected by A, exhibiting a definitive decrease at

small r (r 40 A) in the limit that A =1. As A -> 1, sulfate patterns become

increasingly 'blocky' as higher and higher proportions of sulfate groups are located on

part of the same chain. This results in an increase in the proportion of sulfate groups

making intramolecular interactions in the system and proportionately decreases the

fraction involved in intermolecular interactions, only the latter of which contribute to HI

(ignoring interactions between sulfate group on different images of the same chain, an

effect that goes to zero as the box size becomes large compared to the chain length). This

effect leads directly to the observed decrease in the intermolecular gss(r) for A = 1 and the

concomitant reduction in [I affected by these 'deactivated' sulfate groups.

As with our earlier line of reasoning for gcc(r), the foregoing explanation of the

observed changes in gss(r) hinges on the assumption that the equilibrium distribution of

GAG conformations is unaffected by A. Although this assumption is reasonable because

we consider fully mobile, untethered chains, one could argue that chains with higher net

charge will on average be spaced further from one another than from chains of lower net

charge. This effect, however, would tend to further decrease gss(r) as A -+ 1, however,

lending further credence to the foregoing explanation.
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Figure 10 Comparison of theoretical C4S-GAG (16-disaccharide MW) osmotic pressure
with the RLJ potential activated (DH-RLJ) and experiment (unknown MW) (Ehrlich and
others 1998). Note: 0.44 mEq/ml CS fixed charge density is equivalent to 100 mg/ml of

fully sulfated C4S.

Comparison to Experiment

The osmotic pressure of CS solutions has been measured experimentally as a

function of NaCl concentration using equilibrium dialysis (Ehrlich and others 1998).

Although the overall CS sulfation fraction was measured to be 80% in that study, CS

molecular weight was not measured. Considering that H was found in the present study

to have a significant dependence on molecular weight, use of the experimental results as

a basis for model validation may reasonably be questioned. Notwithstanding, the

theoretical model (16-disaccharide C4S-GAGs) is seen to somewhat underpredict H at

0.15 and 2.0 M NaCl (Figure 10). Because 16-disaccharides represents a lower bound on

the chain length of CS-GAGs present on aggrecan in cartilage (from which the

experimental CS was obtained), the model results in Figure 10 represent the best possible

agreement with experiment, since it was shown that H decreases with increasing
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molecular weight (see Figure 4). The origin of the discrepancy between the model and

experimental data in Figure 13 are attributed to a neglect of the low dielectric

polysaccharide molecular domain and the use of sub-optimal Debye-Htickel theory

(Appendix D).
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3.5 Concluding discussion

To the best of my knowledge, the present study represents the first realistic

molecular modeling attempt to predict the conformation and osmotic pressure of CS-

GAGs in physiological ionic strength solution. Although the CS-GAG and solvent

models are coarse-grained in order to achieve computational efficiency, each is based on

an underlying atomistic model and therefore has no adjustable parameters. The GAG

model accounts for the conformational flexibility of the glycosidic linkages, retains the

chemical identity of the carboxylate and sulfate chemical groups, and models both

electrostatic and steric non-bond interactions. The suspending 1:1 aqueous salt solution

is in osmotic equilibrium with a reservoir of fixed (0.15 M) ionic strength and is modeled

using linear PB theory, which is based on a mean-field approximation to the primitive

model of electrolytes.

As discussed in the Introduction, the chemical composition of CS-GAGs present

on aggrecan varies considerably with the anatomical site and depth of articular cartilage,

as well as with the age of the organism and disease state of the tissue. Considering that

CS-GAGs play a fundamental role in determining the compressive mechanical properties

of the tissue and that chondrocytes, the cells that maintain the matrix, are continuously

subject to compressive mechanical loading in their biomechanical environment. It is of

primary biological interest to understand how changes in CS chemical composition affect

its mechanical properties. Interestingly, the findings of this study suggest that while the

average fixed charge density of CS-GAGs affects their osmotic pressure, the disaccharide

sulfation type (4 vs. 6) and sulfation pattern do not.
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In calculating the osmotic pressure of CS-GAGs at physiological ionic strength

(0.15 M NaCl), previous authors have alternatively assumed either that steric

intermolecular interactions make no contribution (i.e. the osmotic pressure is fully

determined by electrostatic effects) (Buschmann and Grodzinsky 1995) or that the steric

contribution is independent of ionic strength and is therefore equal to its contribution in

the high ionic strength limit (Ehrlich and others 1998). To test these hypotheses the

osmotic pressure was computed at 0.15 M NaCl with steric interactions alternatively

turned on and off in the model. It was found that the osmotic pressure curves coincided,

from which it is concluded that steric interactions do not contribute to the osmotic

pressure at physiological ionic strength, lending credence to the assumption of

Buschmann and Grodzinsky (1995).
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Appendix A Analytical evaluation of the grand potential, 0

Three integral results are required to evaluate C2. The results are provided here and the

details of their evaluation are provided at the end of this appendix.

Integral result 1

Integral result 2

N e-Kir-R,| 41rN

, 1= r-R, K

N -xjr-Rj N -ArIr-RjI 2
Ae ___dr = N+Le -KI

ir- R,| ,r - Rjl K=
jWf

Electrostatic internal energy, U

The electrostatic internal energy, U, may be divided into two contributions, that

due to the colloid fixed charge density, Uf, = (1 / 2)f p, (r)y(r)dr, and that due to the

mobile ion charge density, U,, = (1 / 2) f p (r)V(r)dr, where,

fpey(r;{RN N, eBKjrRI

r-Rd

pf,(r) = -eX 3 (r - R,)
j=1

(21)

(22)
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p,,(r) = -2fnre2 t(r) = i- N, eKir-Ril (23)
41,r r -RI

where the relations pm (r) = e[n, (r) - n (r)] and n, (r) =nr [1- Ivaeyt(r)] have been

used to obtain Eq. (23). Substitution of the foregoing relations results in the mobile ion

contribution to the electrostatic internal energy yields (in dimensionless form),

f. 1m BN -rR, N -K r-R

u C- E e dr (24)
'" 81r ,Vi r-Rj. = r-Rj

which becomes,

hUm =- NKB _)B e~Y (25)
4 2 ,<,

upon use of Integral Result 2, and the fixed charge density contribution,

1 N ~KR,

UfC =--N K +, E e (26)
2 k~j Ry

where the result, V/ 0 = -eK /,c, has been employed to evaluate the colloid self-energy,

where VO is the electrostatic potential at the center of a negatively charged (unit valence)

point ion due to its surrounding cloud of positively charged mobile ions (Eq. 15-42 in

McQuarrie, Statistical Mechanics, 2000). The self-energy and VO do not include the
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screened potentials due to the other (j # i) colloids, that contribution is included in the

second, Debye-Hiickel interaction term in Eq. (26).

Combining the mobile ion and fixed charge contributions yields the final result

for the dimensionless electrostatic internal energy,

3 N ( KRu
/BU=- Ni2B+XBX (27)

4 R 2

Mobile ion entropy, S

In nonlinear PB theory the mobile ion entropy is given by that of an

inhomogeous, non-interacting ideal gas,

S =-kB fa(r) [nna (r) ]dr (28)
a=± V

where the volume integral extends over the space accessible to the mobile ions. To be

consistent with linearized PB theory Eq. (28) is expanded to quadratic order about the

reservoir densities, n,

S= -VkBa lnnr + VkBfr - -B J[na( r ]2dr (29)
r V
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where n-, = V-' f n, (r)dr is the volume-averaged mobile ion density in the

colloid/polyelectrolyte solution. Expanding the quadratic term in the integral in Eq. (29)

and using the result, j i, = 2n [Eq. (39)], yields,

S=_2Sdr Z f[,(r)2dr -2nn V +n2V (30

where Sidr = Vkn (Inr -1) has been defined. The quadratic term in Eq. (30) may be

evaluated by noting that the mobile ion densities are given by,

n,(r) = nr [1-fpvaeyl(r)] (31

which, upon substitution of the electrostatic potential in Eq. (21), result in,

na (r)= n, I+ vaB (32
j= r- R,j)

)

)

so that,

-i ejr-Rj
n, + 2va AB r2r ~ r - R,j

N e-KIr-Ri| N -Kir-RI

Sva Xenr I dr
-=1 jr-R, j=1 r-R 

Eq. (33) may be simplified to,
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fn,(r)2dr =
V

N - r-Ri| N -Kj-Rd

Vn2+ ABn2 fje Ie dr
r n~rvj= r- Ri I j1 ir-Rild

upon anticipation of the results, Za v, =0 and v, =1. Use of Integral Result 2 and

K = (87fABr) 1
/
2 finally yields,

fi
- xR,1N+ e

i=1
j;6l

Substitution of this result back into Eq. (30) results in the final expression for the mobile

ion entropy (in dimensionless form),

(36))6TS = 2flTSid,, I IB B
4 4 i=1

jwi

Electrochemical potential terms, paNa

The mobile ion electrochemical potential terms may be written,

ilX paNa = piltnV ln n, (37)

where equality of the electrochemical potentials in the solution and reservoir has been

used, p,, = p,, and the electrochemical potential in the reservoir is given by,

Pr = kBT n, , in the van't Hoff approximation, consistent with PB theory. Volume-
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na(r)2 dr = Vn,2+ 1AB,
4

(35)



averaging the linearized Boltzmann relation using Integral Result 1 for the mobile ion

densities,

iV = nV (I -- 8vae@)

results in,

iV = nV +-v, N
2

which upon substitution into Eq. (37) yields the electrochemical potential terms in

dimensionless form,

SZpuN, = 2Vn, ln n

Putting together Eqs. (27), (36), and (40) yields the dimensionless grand potential of

linearized PB theory,

,00 =-NKAB + B eR
2 j,- R.
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Evaluation of integral results 1, 2, and 3*

Integral result 1

Utilizing spherical polar coordinates and choosing the origin of the basis to

coincide with R we have,

e r 4= 4rN 0re-"rdr
v j1 Ir - RJ1

where it is assumed that the volume integration is performed over all of space

(V"' >> Ki). Integration by parts yields,

4 jr N Krdr = 4f N
417N freK 2

(42)

(43)

Thus Integral Result 1 is,

fN ejr-Rjdr = 4;N
|L 2

V i r-RJ K

Integral result 2

We begin by splitting the summation into two integrals involving only self- and cross

terms

N IKr-Ri N -Kr-RI N -21r-Ri|

dr=Z e 2 dr
Sr-Ri= =1 r-Ri i=1 v r-R,

N -KIr-Ri -Kr-Rj

+Z e e-- ,dr.
j=1 r-R, r-R
j iI

* The aid of Dr. Wonmuk Huang in evaluating the following integrals is gratefully acknowledged.
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The self-term integral is

N -21ir-Ri|

I j 2 dr =4rN Je2dr
71 vr-R, 0

which is evaluated directly as,

47rN e-2'dr =
0K

(46)

(47)

where the approach used to evaluate Integral Result 1 has been employed.

To evaluate the cross-terms (i w j), we begin by defining the vectors, r'= r - R,, and,

R.. R. - R, so that,

N - rlr-RI - cr-Rj N -Kiri -K r'-Rj

I. ( "dr = -dr'.
' Xj*.J iii je~ *y

J 1= r-l- r r -

(48)

Next, we employ spherical polar coordinates, r '- R= r+ R - 2r 'R cos 0 , to

obtain,

N CO )r -K r'+4 -2rRj cos)

I, s2r dr idn re-Ki
i 0 0 r2 +R -2rR.cos0j~i V

(49)
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where we have dropped the primes on r' for convenience, and we were able to integrate

over, p, because we aligned r' with the z-axis. Next we use the substitutions,

and b - R , to obtain,

N 0 ; -KbIa-cos 0

10= S2;r dr dI re-' e sin
i=.0 0 b a-cos0
js;

Next we use, x = cos0 and dx = -sin OdO , to obtain

N 00 -1 e-Kb r--

Iu =-2;r fdr fdx re-''
-1 0 1ba -x,j*i

0) .

and then we finally
dx

use, y a -x and dy = - , to yield,
2,faY-x

or

I1 = -4; 0dr e(r e
0

Substituting back a and b yields,
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r 2 +R R,
a -

2rR,

(50)

(51)

4u = 4;r fdr rb f e- bdy
0 -I

(52)

-b.. +I
_-eKb~44 .) (53)



N 2 dre - -K + +2rR -K r +R, -2rR

i=1
Jt,

NI 2r Jd -Kr (eK4Ir-jI -Kl+j

J i

or equivalently,

JU N 27r jdr -Kr-Klr-RI _e-Kr-Kr+RijlI

J 1

Next we split the first integral into two parts to account for the absolute value sign,

N2z
N I -KR 0 -2Kr+K 0021r-tcrR

I =f e-KIR dr + fe-2+ dr - e- dr

which yields upon integration,

NU 2;f e KR

I, = 2 -

1~'
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(54)

(55)

(56)

(57)

(58)



The final result for Integral Result 2 is then,

Ne- l Ne -ir-Rj N
dr =-N+-- e

AfrRi iK K j=1
V =1Ir-RI =Ir-RI xj

Evaluation of 0 from generalized grand potential of linear PB theory

Eq. 20 from (Deserno and von Grtnberg 2002) is (using our notation),

fin,eq = 1 (r)y(r)dr - 2n,.V

where the integral term is simply given by Eq. (26),

p,(r)§(r)dr =--NXAB
S , p b2

so that, upon substitution, Eq. (60) becomes,

N -KS

jB
k<j RU

1
Xin,eq =--NldB2

N 
-

A2B e 2flrV
k<j Ry
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(60)

(61)

(62)



which is the same result as in Eq. (41).
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Appendix B Evaluation of the polyelectrolyte pressure

Consider a system of N particles in volume V at temperature T interacting with the pair-

wise additive and volume-dependent effective Hamiltonian, Hff = u (V)+ U(rj).

Using the statistical mechanical result, F = -kBT In Y, where Y is the partition function,

(63)
= N 4 N fdrN exp[-,IHeff({rN))]

and A is the de Broglie wavelength, the thermodynamic pressure may be written,

aF = BlnT
P=--=kT .

Following Smith (1987), Eq. (64) may be evaluated using the scaled coordinates,

r =Vys, so that the volume dependence of T becomes explicit viz.,

T= N 3 N JdsN exp[-Heff({13SNI)], as,

alnY I _Y N

av Y aV V K 8Heff
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Finally, using the transformation, dV = 3Vdr, / r. (at fixed s, perform a homeothetic

rescaling of the volume so that, r = VXs, becomes, dr = sV1 13 dV / 3), the volume

derivative of the effective Hamiltonian becomes,

Heff -+- r. .au(r) (66)aV aV 3V,< 8; ar,

so that the pressure may be written,

P=nkT au(r.) (67)
OV 3V (< j.C arj

where n= N/V is the average number density of interacting particles in the system and

nkBT is their ideal gas contribution to the pressure.

Turning to the polyelectrolyte model considered in the present study, in which

u0 = -2nVkBT, and employing the molecular virial theorem (Theodorou and others

1993), the pressure in the polyelectrolyte compartment is,

P' =nkBT2kBT + R' m)(R) (68)

where nP is the mean number density of polyelectrolytes, n'r is the reservoir mobile ion

density, the outer summation (m) is over the different types of non-bonded interaction
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potentials present in the model (the Debye-Hfickel and the repulsive Lennard-Jones

potential when activated), the inner summation (ij) is over all intermolecular non-bond

sites in the system (including non-bond interactions between sites on different images of

the same chain), and R, is the distance between the centers of mass of the chain images

to which non-bond sites i andj belong.
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Appendix C Statistical description of CS-GAG copolymers

A traditional first-order Markov model is used for the statistical description of

CS-GAG copolymers (Odian 1981). Following Fredrickson and Milner (1991) and

Fredrickson and others (1992), copolymers consist of two types of monomers, A and B.

In the present context A and B represent sulfated and unsulfated disaccharide

'monomers', respectively, where each chain has the same degree of polymerization, N.

The copolymer sequences are statistically determined by the overall fraction of A,

f = p(A), and the transition probability matrix,

Fp(AIA) p(A|B)1
p(BIA) p(BIB)-

where p(KI L) is the conditional probability that a monomer of type K immediately

follows a monomer of type L on the chain. Conservation of probability requires that,

p(A A) + p(BI A) =1 and p(BI B) + p(A B) =1, and stationarity of the Markov process

requires that, f = fp(A A) + (1- f)p(A B), be satisfied. These three constraints leave

only one degree of freedom in p, which is chosen to be the linear combination,

A a p(A A) + p(BI B) -1. The two parameters (f, 2) then fully specify the statistical

description of AB copolymers in the system, where (0 s f 1 ) and (-1 2 1).

As demonstrated by (Fredrickson and others 1992), A denotes the strength of the

chemical correlations along the chain. A = -1 requires that p(A A) = p(BI B) =0 ,
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resulting in an alternating AB copolymer where there is only one molecular species

present. When A =0 there are no chemical correlations between A and B monomers,

resulting in a mixture of ideal random AB copolymers. Finally, A =1 results in a mixture

of A and B homopolymers with population fractionsfand (1-f), respectively.
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Appendix D Evaluation of model shortcomings in predicting rl

There are two primary shortcomings of the current GAG model as pertains to the

computation of osmotic pressure, (I) use of the Debye-Htckel equation instead of the

nonlinear PB equation and (II) neglect of the effects of GAG low dielectric and salt

exclusion on the electrostatic internal energy.

I. Linearized Poisson-Boltzmann theory

Linearized PB theory is employed to compute the osmotic pressure of GAG

solutions in osmotic equilibrium with a 1:1 salt reservoir of fixed ionic strength. In

deriving Eq. (17), we employed the conventional, Debye-Hfickel linearization of the PB

equation, where linearization is performed about the reference (zero) electrostatic

potential in the reservoir and the corresponding reservoir mobile ion densities, n,.. This

choice requires that, eyl(r) < kT, be satisfied everywhere in the spatial domain, r.

In order to gauge the error in rl associated with linearization of the PB equation we

compare the osmotic pressure predicted by the linear and nonlinear PB equation in the

context of the cylindrical cell model, for which a numerical solution to the nonlinear PB

equation may be obtained.

The cylindrical cell model consists of an inner cylinder of radius, a, with uniform

charge density, a, and a concentric outer cylinder of radius R where the component of the

electric field normal to the surface is zero by Gauss' law (electroneutrality in the cell).

The analytical solution for the osmotic pressure for the ( 7 =0) linearized PB equation in
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the context of the cylindrical cell model and a 1:1 electrolyte is given by (Deserno and

von Griinberg 2002),

fI = nr2Y2 kBT - 2nrk8T (70)

where 9= W / 2nr, W is the average counterion density in the cell and nr is the mobile

ion reservoir density. The parameter, y M(1 - )/(2DO" 2), where # = (a /R) 2 is the

volume fraction and D = K, (xo)II (X) - K, (X)I2(xo), where xO = a and X =K R are

the dimensionless inner and outer radii, respectively. Finally, I, and K, are first order

modified Bessel functions of the first and second kind, respectively.

An analytical solution is not available for the nonlinear Poisson-Boltzmann

equation with added salt for the cylindrical cell model, so we utilize a simple finite

difference scheme with Newton-Raphson iteration to obtain its solution. The nonlinear

PB equation with its appropriate boundary conditions on the inner (Sin) and outer (Su,)

cylindrical surfaces is (in dimensionless form),

V/2 =2 sinh y in V,,,,

n - V=4raO- on Snr (71)

.i -V =0 on S.,,r

where i is the surface unit normal. A standard finite difference representation of the

Laplacian in (71) in cylindrical coordinates assuming cylindrical symmetry (8/ 09=0)

and spatial invariance in the axial direction (a / az =0) yields,
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ViI -2V,+v1.1 + , -K1-= 2 sinh /. (72)
2(Ar) 2  rAr

which may be written in matrix form as Kxi = R(%V), where x is the discretized vector

of V/ values on the domain [a, R] and R denotes the nonlinear forcing term, sinh(Vt,).

The boundary conditions are applied on xV by imposing the first-order spatial derivatives

provided in Eq. (71). Newton-Raphson iteration may be used to solve for '(k+) given

W(k) using,

K - a] AN = -[Ky - R](k) (73)

where A! =''(k+1) - W(k). Once the converged solution to the electrostatic potential is

obtained, the osmotic pressure is calculated from the boundary density rule (Deserno and

von Grfnberg 2002),

fI= n,(R)-2n, (74)

where n, (r) = nre-A'').

We choose the following cell model parameters for chondroitin-sulfate: a =6 A

(Ogston and others 1973) and b= 5 A, where 2b is the average length of a CS-GAG

disaccharide, found to be 9.5 A in this study (the disaccharide length was computed to be

9.5 A from the rod-like configuration end-to-end distance of C4S- and C6S-GAGs). The

surface charge density is related to a and b by, a = e /(2yrab). The outer cell radius is
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related to the CS concentration by, R = (2 bNAyrccs / Mcs)-2, where NA = 6.022x 10" is

Avogadro's number, Mcs = 457 g/mol is the molecular weight of a CS disaccharide, and

ccs is the CS concentration.

Figure 11 demonstrates that the linear PB solution considerably over-predicts the

osmotic pressure with respect to the nonlinear solution, particularly for higher

concentrations, where the relative error, e =(H,,, - LI,,, i)/' ,,, is nearly 0.6! Although

the cylindrical cell model is clearly only qualitatively similar to the discrete-site,

conformationally flexible CS-GAG model employed in the present study, it does provide

a qualitative understanding of the magnitude of the error that is involved in utilizing the

Debye-Hickel potentials to compute HI.

400 0.6-40 .. .... Unear PB (H

350 -- Nninear PB
0.5

300-

250 04.

a- 200

150 0.3

100.
0.2

50

00 20 40 (Mg/m) 60 80 0 20 40 (mg/m1) 60 80

Figure 11 Osmotic pressure (left) as computed from the cylindrical cell model employing
the linear and nonlinear PB equation and cell model parameters corresponding to CS-

GAGs (a = 5.5 A and b= 5 A) and relative error, e, (right) between the linear and
nonlinear PB-based solutions.

Interestingly, if linearization of the PB equation is performed about the optimal,

Donnan potential, 7, then the criterion, e(VI(r) - 7) < kBT, must be satisfied throughout

the domain, r (Deserno and von GrUnberg 2002). This criterion is less strict than the
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foregoing Debye-Hickel criterion, ey < kBT, and may certainly be satisfied in cases

when the latter is violated. Optimal linearization will perform particularly well with

respect to Debye-Hiickel linearization when the Debye length is on the order of or less

than the inter-molecular spacing. Application of optimal linear PB theory to the

polyelectrolyte model contained herein is in progress.

11. Effect of neglecting the low dielectric and salt-exclusion of the GAG molecular

domain

In the current study GAGs are treated as a series of bonded point charges, which

ignores the fact that the GAG molecular domain (1) excludes mobile salt ions and (2) has

a dielectric permittivity between 1-4, significantly lower than that of water (78.5).

The ramifications of this assumption are best illustrated by the completely general

result for C2 of linearized PB theory (07 = 0, h, = n,) presented by (Deserno and von

Grftnberg 2002) (their Eq. 20),

MfDin,eq = (r);v(r)dr - 2Vn,. (75)
2V

Thus only the fixed charge density contribution to the electrostatic internal energy needs

to be considered. Moreover, as shown in the Modeling section the self-energy

contribution to the GAG osmotic pressure is independent of volume, and therefore only

the GAG-GAG interaction contribution to Eq. (75) needs to be considered. This
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fortuitous result is a consequence of the fact that when linearized PB theory with ( 7 =0,

, = n,.) is used, the mobile ion entropy cancels with the mobile ion electrostatic internal

energy and some terms of the electrochemical potential (see Appendix A), leaving only

those terms shown in Eq. (75).

To approximate the effects of the GAG molecular domain on the electrostatic

interaction (internal) energy, the linear PB equation was solved in 3D using an all-atom

representation of GAGs. An additional complication arises in the evaluation of,

p,(r)y/(r)dr , because of the non-linearity introduced by the dielectric and ionic

strength discontinuity between the solvent and GAG domains. As a first approximation

to obtaining a pair-wise additive interaction energy for use in the Monte Carlo

simulations the molecular configuration corresponding to two parallel helices was

chosen. The electrostatic interaction energy of the helices was computed as a function of

the distance separating their central axes using (A) the coarse-grained GAG model as

presented in the Modeling section and (B) the continuum linear PB equation with explicit

partial atomic charges, low dielectric, and salt exclusion accounted for using the finite

difference program DELPHI (Nicholls and Honig 1991).

The electrostatic interaction energy per sugar computed using the coarse-grained

GAG model is shown to significantly underestimate the all-atom PB solution (Figure 12,

left). This is most likely due to the electric field-line focusing that occurs between the

two interacting helices when the low GAG dielectric is accounted for. It was verified that

the disagreement is not due to the monopole approximation utilized in the coarse-grained

model. Verification was performed by comparing the coarse-grained model interaction
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-I

energy to that of the all-atom GAG model using a pair-wise atomic Debye-Htickel

interaction potential implemented in CHARMM (Brooks and others 1983).

In order to correct for the dielectric/salt exclusion effect in the coarse-grained

model, the electrostatic non-bond potential was empirically adjusted in order to match the

all-atom PB result. As it turns out, a Debye-HUckel interaction potential with a dielectric

permittivity of E = 37.4 fits the all-atom model results very well for the three helix

orientations considered. It is emphasized that there is no (to the best of the author's

knowledge) physical reason why a Debye-Hfickel potential with a dielectric permittivity

of c= 37.4 matches the all-atom results. Additionally, further work is required to test

whether the effective E obtained is predictive at other salt concentrations than that which

it was parameterized at (0.1 M).

-e-- Continuum LPB: 0, = 0 02 =0 -e- Continuum LPB: 0, = 0 02 =0

S1 Continuum LPB: 0, = = 180-- Continuum LPB: 0, = 0 02= 180
Continuum LPB: 0, = 18002 = 0 o Continuum LPB: 01 = 180 02 =0

.8 CG Model: 0 = 0 02 = 0 CG Model: 0, = 0 02 = 0
CG Model: 0 = 0 02 = 180 -E- CG Model: 0, = 002 = 180

...6 1 CG Model: 01 = 180 02 =0 .- CG Model: 0, = 180 02 = 0
0.4 0.4

d(Angstroms) d (Angstroms)

01

O 2'5 3 .0 35 40 45 50 0 2'5 30 35 40 45 50

Figure 12 Electrostatic interaction energy for two identical parallel C4S helices (16-
disaccharide MW) at different relative orientations specified by 0, and 02 computed

using the continuum 3D linear PB (LPB) equation and the simple Coarse-grained model
Debye-Hickel potentials assuming a uniform dielectric of 78.5 (left) and 38.5 (right).

The ionic strength is 0.1 M.

The osmotic pressure was recomputed for 16-disaccharide C4S-GAGs at 0.15 M

using the parameterized Debye-Hilckel non-bond potential with e = 37.4 (Figure 13) and
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compares better with experiment, as expected since the interaction potential is

considerably stronger now. There are two points to make. First, the comparison with

experiment is not rigorous nor strictly valid because we do not know the molecular

weight of the sample used in the experiment. Second, the non-bond Debye-HUckel

potential was parameterized to the all-atom PB solution at 0.1 M NaCl and subsequently

employed at 0.15 M NaCl. The inverse Debye length, K, was, however, not adjusted to

match the PB solution and therefore it is hoped that the empirical potential is transferable

to other salt concentrations. Further work is required to test this hypothesis.

600
- CG Model: s = 78.5

------ CG Model: e = 37.4
500 -o Ehrlich et al., (1998)

400-

0-~300 -

200-

100-

0 0.1 0.2 0.3 0.4
FCD (mEq/mMol)

Figure 13 Comparison between experimental (Ehrlich and others 1998) and theoretical
osmotic pressure for the original, simple Debye-Hilckel coarse-grained model (e = 78.5)

and the 'continuum Poisson-Boltzmann-corrected model' (e = 37.4).
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