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Abstract  
 
Thesis: Development of a tool for automatic segmentation of the cerebellum in                          
MR images of children 

 

 Author’s Name: Priya Lakshmi Narayanan                                                    Date: 09-02-2015 
 
The human cerebellar cortex is a highly foliated structure that supports both motor and 

complex cognitive functions in humans. Magnetic Resonance Imaging (MRI) is commonly 

used to explore structural alterations in patients with psychiatric and neurological diseases.  

The ability to detect regional structural differences in cerebellar lobules may provide valuable 

insights into disease biology, progression and response to treatment, but has been hampered 

by the lack of appropriate tools for performing automated structural cerebellar segmentation 

and morphometry.  

 

In this thesis, time intensive manual tracings by an expert neuroanatomist of 16 cerebellar 

regions on high-resolution T1-weighted MR images of 18 children aged 9-13 years were used 

to generate the Cape Town Pediatric Cerebellar Atlas (CAPCA18) in the age-appropriate 

National Institute of Health Pediatric Database (NIHPD) asymmetric template space. An 

automated pipeline was developed to process the MR images and generate lobule-wise 

segmentations, as well as a measure of the uncertainty of the label assignments. Validation in 

an independent group of children with ages similar to those of the children used in the 

construction of the atlas, yielded spatial overlaps with manual segmentations greater than 

70% in all lobules, except lobules VIIb and X. Average spatial overlap of the whole 

cerebellar cortex was 86%, compared to 78% using the alternative Spatially Unbiased Infra-

tentorial Template (SUIT), which was developed using adult images. 

 

Since multi atlas fusion methods account for inter subject variability and reduce residual 

errors that may arise from using an atlas developed from a different population, we were 

interested in investigating whether our pre-adolescent training data could be used to 

accurately segment an adult data set. The performance of three different methods to 

propagate labels from the pre-adolescent training data used in the construction of the 

CAPCA18 atlas to 35 adult subjects were compared in the next section. These included direct 

warping of CAPCA18, multi atlas majority voting (MAMV) and multi atlas generative model 



III 
 

(MAGM) based label fusion. Our results demonstrate that multi atlas based label propagation 

methods achieved good segmentation accuracy and consistently performed better than direct 

warping, presumably due to the fact that these methods capture more of the variation present 

in the training data. 

 

 

Finally, we compared cerebellar segmentation accuracy in the 35 adult test subjects between 

these two different multi atlas label fusion methods using the manually segmented data of 20 

training subjects that were used in the construction of SUIT. Even though the training and test 

data were collected in two different laboratories on two different scanner platforms, mean 

Dice coefficients in the test subjects were greater than 0.89 in all regions except lobules VIIb, 

VIIIa, VIIIb, and X, confirming the robustness and reliability of our multi atlas segmentation 

pipeline. 
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Preface 

 
This dissertation proposes a reliable method for automatically parcellating cerebellar 

structures in magnetic resonance (MR) images of children. This method involves the use of a 

fully automated pipeline for processing MR images and generating parcellation labels 

associated with the cerebellum. 

A comprehensive introduction provides the necessary background and context to this work. 

Thereafter, this thesis includes three independent articles that will be submitted for 

publication. The articles are presented respectively in chapters two, three and four, then a 

chapter that discusses and expands on findings and a concluding chapter that summarises 

salient points from the preceding chapters. The organisation of the work into chapters is 

designed to facilitate direct access to and concise evaluation of different methodologies, and 

follows the logical progression of the work. As a complete document, however, this thesis 

contains some necessary repetition. This is because each core chapter is presented as an 

independent article. 

For the purpose of thesis examination the contributions from co-authors are given below. 

Chapter one provides the background and rationale for the current study, as well as a 

discussion of clinical imaging modalities, MRI physics and registration, and an overview of 

recent methods of atlas-based segmentation. It also provides the background theory for image 

segmentation methods investigated in the remainder of the thesis. 

Chapter two presents the construction of the Cape Town Probabilistic Cerebellar Atlas 

(CAPCA18) from MR images of 18 healthy children aged 9 to 13 years, and its 

implementation for atlas-based segmentation of cerebellar structures, as validated on a 
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different set of children dataset. Further, the output segmentations are validated against 

manual segmentation using the standard performance metric for image analysis. Ernesta 

Meintjes supervised and directed the work covered in chapter two. The project design and 

implementation of the algorithms was that of the candidate, as well as the writing of the 

manuscript. Lilla Zöllei provided critical input on improving the validation methods. This 

chapter has been prepared as a manuscript, reviewed by all co-authors and is ready to be 

submitted for publication. 

Chapter three details work conducted by the candidate during a study visit to the Martinos 

Center for Biomedical Imaging in Boston, in which all the subjects and corresponding 

parcellations from the CAPCA18 datasets were used to yield the cerebellar segmentation on 

adult dataset (Buckner et al., 2004). We utilized a group of 35 adult test subjects to 

investigate three label propagation methods: 1) using a traditional approach with a 

probabilistic group atlas; 2) individual registration of subjects to each reference atlas, 

followed by multi atlas majority voting (MAMV) label propagation; and 3) individual 

registration of subjects to each reference atlas, followed by multi atlas generative model 

(MAGM) based label propagation. We further validated for each method using 1) 

segmentations derived from the simultaneous truth and performance level estimate 

(STAPLE) algorithm; and 2) quantitative comparison with manual tracings of three test 

subjects. Ernesta Meintjes directed and supported the work. Lilla Zöllei provided expert 

advice and systematic guidance for conducting complex registration experiments to achieve 

precise registration results. The candidate designed the study, implemented the algorithms, 

performed all the tests and analyses, and prepared the manuscript. This chapter has been 

prepared as a manuscript and will be submitted for publication. 

Chapter four presents results of experiments performed using the developed pipeline with 

datasets collected in two different labs.   We present an optimized pipeline to obtain 
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automated parcellation of 28 cerebellar structures using manually delineated atlases on a set 

of test subjects using two types of multi-atlas based segmentation. The performance of the 

methods is evaluated using the STAPLE algorithm obtained in terms of Dice coefficient on 

test subjects. In addition, the results are evaluated against manual segmentation using the 

leave-one-out cross-validation (LOOCV) strategy on training subjects. 

Chapter five is a critical discussion of the findings of the previous chapters. It identifies the 

limitations of the methods presented in the previous chapters. It also suggests possible 

improvements to the current implementation of the label propagation method in cerebellar 

structures. 

Chapter six presents the conclusions of the study, summarising all salient points. 
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Chapter 1 

Introduction 

Rationale and Motivation 

The different modalities of Magnetic resonance imaging (MRI), along with computational 

image analysis tools, have enhanced our ability to “see through” the human brain. MRI 

makes it possible to investigate brain structures and structure-related pathologies that haven’t 

previously been fully understood. It enables the investigation of, amongst others, anatomical 

structures of the brain across different age groups, helping us better understand the 

developing brains of children. With automated parcellation, it also has the potential to 

provide insight into the neurobiology of psychiatric diseases and into responses to treatments. 

This thesis aims to contribute to the development of tools for pipelining analysis of the 

cerebellum, specifically in pre-adolescent children. Many brain image analysis tools leave out 

the cerebellum and little detail about its sub-structures is available to the research community. 

Further, most atlases are developed using adult data and often perform poorly in pediatric 

data as they do not account for subtle differences in the developing brain. Subtle differences 

between white and gray matter in the cerebellum make segmentation tricky. Further, 

segmentation targeting smaller regions of the cerebellum is challenging, even for expert 

neuroanatomists. 

To date, neuroscientists rely on manual procedures, which are time consuming and 

susceptible to risks related to inter- and intra-rater reliability. Due to time and cost 

constraints, manual procedures also aren’t feasible for large samples. Because of the 

associated difficulties, manual segmentations generated for this study are employed as spatial 

priors and propagated to test performance in test subjects whose segmentations are unknown. 

In each chapter, the test subjects constitute a different sample from that used to develop the 
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algorithms. It is important for the reader to note the details of the test dataset and training 

dataset in each chapter. 

This thesis presents a reliable cerebellar atlas construction procedure, based on structural T1 

MRI images acquired at the Cape Universities Brain Imaging Centre (CUBIC) in Cape Town, 

South Africa. This work originated due to the limitations associated with structural 

segmentations of the cerebellum in children. The main objective was to obtain precise 

structural segmentation output using prior knowledge obtained from the manual 

segmentations performed on 18 subjects. The cerebellar atlas built in this study is designed to 

be used in routines to obtain cerebellar structure segmentation on any given test subject. The 

adult test subjects used for evaluation were the part of prior publication (Buckner et al., 2004) 

and the data were available with Freesurfer software package.  

 Contributions 

In this work, we present the Cape Town Pediatric Cerebellar Atlas (CAPCA18) for 

segmentation of cerebellar structures.  

1. Investigation on using CAPCA18 by evaluating on test dataset from children. 

2. Investigation of using CAPCA18 atlas images using three different label propagation 

methods by using a dedicated pipeline and analysis methods for achieving cerebellar 

structure segmentation on adult test subjects. Three methods used for label 

propagation are direct warping, multi atlas based majority voting (MAMV) and multi 

atlas based generative model (MAGM). 

3. Investigation of using spatially unbiased infratentorial template (SUIT) atlas images 

using multi atlas based segmentation for achieving cerebellar structure segmentation 

on adult test subjects. 
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1.1 Anatomy of the human brain 

The human brain comprises 100 billion neurons at birth. A child’s brain has only one fifth of 

the volume of an adult brain (Thompson et al., 2005). The cells proliferate as the child 

continues to learn and to progress through various developmental stages. The dendritic 

branching of neurons increases with the increase in number of synaptic connections, which in 

turn is influenced by the learning process, and by environmental and genetic factors. So the 

shape of a brain depends on different developmental stages. Brain development is also 

influenced by gene expression (Armstrong et al., 1995; Ashburner 2009; Panizzon et al., 

2009). 

Growth in the field of MRI has enabled researchers to study the anatomical structures of the 

brain in more detail than was possible through post-mortem autopsy. Emerging neuroscience 

studies focus on mapping the structures, physiology, functions and connectivity of brain 

structures in individuals and across different populations. Central to these tasks is the 

construction of comprehensive brain atlases for different populations.  

Brains can be anatomically divided into different regions. Based on embryonic development, 

the brain has three divisions– namely forebrain, midbrain and hindbrain. The forebrain, or 

cerebrum, is the largest part of the brain, where most information processing takes place. The 

midbrain consists of brainstem and connects the hindbrain and the forebrain. The hindbrain 

consists of brainstem, the cerebellum and the pons. 

As further context for a discussion of the cerebellum, it is important to understand the tissues 

of the brain. Gray matter (GM) comprises largely of unmyelinated neurons, most of which 

are interneurons. The gray matter regions are the areas of nerve connections and processing. 

White matter (WM) is made mostly of myelinated neurons that connect the regions of gray 

matter to each other and to the rest of the body. The white matter acts as the information 
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highway of the brain, receiving and sending information from and to every other part of the 

brain.   

The cerebellum, which is the focus of this study, is one of the major parts of the central 

nervous system. It is located at the base of the skull, above the brain stem and beneath the 

occipital lobe of the cerebral cortex. This region is part of several neuronal networks. It is 

functionally heterogeneous, or involved in multiple functions, including sensory, motor, 

cognitive and affective processing (Stoodley and Schmahmann, 2009; Schlerf et al., 2010; 

Strick et al., 2009; Schmahmann and Sherman; 1998; Makris et al, 2005; Buckner et al., 

2011). 

Lobar parcellation using the identification of major fissures allowed the cerebellum to be 

divided into three sections, as in histological images Figure (1.1). These were the anterior 

lobe, the posterior lobe and the flocculonodular lobe. The anterior lobe comprises lobules I – 

V. The posterior lobe has superior posterior and inferior posterior regions. The superior 

posterior lobe comprises lobule VI and Crus I; and the inferior posterior lobe contains the 

lobules from Crus II to lobule IX. The flocculonodular lobe corresponds to lobe X. Smaller 

parcellation in an individual cerebellar lobe is called a lobule. In each lobule of the 

cerebellum, medial structures called vermis are present closer to the midline and hemispheric 

structures are present more laterally. 

The most striking gross morphologic feature of the cerebellum is its highly convoluted 

cortical mantle (Figure 1.2). The convolutions allow a large cortical surface area to be 

contained within its volume. This distinctive property adds to the challenge associated with 

analysing the cerebellar structure and function (Van Essen et al., 2002). 

Understanding the functionalities of the cerebellum and its inter-connections with cerebral 

lobes is a challenging task, one that typically necessitates the integration of several 



5 
 

computational tools. Depending on the research problem, it’s necessary to choose from a 

disconnected array of technologies and analysis methods, and to integrate these to develop a 

streamlined approach. Drawing on multiple tools tends to yield a greater amount of useful 

information and to improve statistical observation. 

 

 

 

 
 
 
 
 

Figure 1.1 Somatotopic representation of structure and function of cerebellum (Left). (Images reproduced from 
Ermanno Manni and Laura Petrosini (2004)). Histological images (Right) representing anterior view (A & B), 
posterior view (C & D), inferior view (E & F) of the cerebellum. 
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1.2 Medical Imaging 

Developments in medical imaging have made it possible to store images from living subjects 

in digital format. In recent years, an unprecedented volume of medical images has become 

available to researchers, helping them to completely characterise the imaged anatomies. 

Information from different imaging modalities, such as computed tomography, positron 

emission tomography and MRI, makes it possible to study different tissues and their 

functional characteristics. Use of multiple acquisitions of the same subject and comparison 

across subjects or groups of subjects from the same population has become increasingly 

popular in recent years. 

Developments in medical imaging technology, acquisition devices and storage facilities have 

resulted in a need for computational tools for processing medical images. As well as in 

processing information, the computational tools must allow for the comparison of 

information across subjects. Ultimately, this type of tool should create a visual representation 

Figure 1.2 Inferior view of the cerebellum representing the vermis of the inferior posterior lobe (Left A); 
Inferior view when the region is spread open; one can see the pyramid, uvule and nodule, and the smaller 
division of vermis (Right B).   
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of the different structures present in the images, along with the overall scan and quantitative 

results. 

 

1.3 Medical Imaging Modalities 

1.3.1 Computed Tomography 

Computed tomography (CT), also known as computed axial tomography or computer-

assisted tomography (CAT), is a medical imaging procedure that uses computer-processed X-

rays to produce tomographic images or “slices” of specific areas of the body. These cross-

sectional images are used for diagnostic purposes in various medical disciplines. Digital 

geometry processing is used to generate a three-dimensional image of the imaged anatomy 

from a large series of two-dimensional X-ray images taken around a single axis of rotation. 

Historically, the images generated were in the axial or transverse plane, perpendicular to the 

long axis of the body. However, modern scanners allow this volume of data to be reformatted 

in various planes or even as volumetric three dimensional (3D) representations of structures. 

CT scanning of the head is typically used to detect infarction, tumours, calcifications, 

haemorrhage or bone trauma. Hypodense (dark) structures can indicate infarction. 

Hyperdense (bright) structures indicate calcifications or haemorrhage, and bone trauma can 

be seen as disjunction in bone windows. Tumours can be detected by the swelling and 

anatomical distortion they cause, or by surrounding oedema. Basically CT uses ionized (or X-

ray) radiation to image the region of interest. It gives less information about the soft tissues 

and more information about bone structures and calcification. 

 

https://en.wikipedia.org/wiki/X-rays
https://en.wikipedia.org/wiki/X-rays
https://en.wikipedia.org/wiki/Tomography
https://en.wikipedia.org/wiki/Geometry_Processing
https://en.wikipedia.org/wiki/Geometry_Processing
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Axis_of_rotation
https://en.wikipedia.org/wiki/Infarction
https://en.wikipedia.org/wiki/Calcification
https://en.wikipedia.org/wiki/Haemorrhage
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1.3.2 Positron Emission Tomography 

In the case of positron emission tomography (PET) imaging, short-lived radio isotopes are 

injected into the bloodstream of a living subject. Changes in regional blood flow in anatomic 

structures are quantified by the inference of radioactive decay. The output map shows the 

tissues in which the molecular tracer has become concentrated, and can be interpreted by a 

physician or radiologist in the context of the patient's diagnosis and treatment plan. 

Nuclear medicine imaging in PET is non-invasive, with the exception of intravenous 

injections, which are usually painless medical tests. Important applications of PET are in 

clinical oncology, for identifying tumours leading to metastases, and in diagnosing and 

evaluating brain disease (grading various types of dementia). PET images are usually 

acquired with low resolution. Better clinical information is obtained by fusing the images 

from different modalities, like MRI and PET. This makes it necessary to perform automatic 

registration (Woods et al., 1993) between the different modality images. 

 

1.3.3 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a safe modality that does not use any radioactive 

isotopes or ionizing radiation to image the anatomy of a structure. Instead, MRI uses the 

property of nuclear magnetic resonance (NMR) to image the nuclei of atoms inside the body. 

MRI can create more detailed images of the body than X-rays. It provides excellent contrast 

between the different soft tissues of the body, is non-invasive and can produce a volumetric, 

or three-dimensional, image. It can also produce images that are sensitive to the degree of 

blood flow in vessels, tissue oxygenation, tissue perfusion, diffusion, function and 

concentration of metabolites in tissues. 

http://en.wikipedia.org/wiki/Nuclear_medicine_physician
http://en.wikipedia.org/wiki/Radiologist
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When atomic nuclei with magnetic properties are placed in a magnetic field, they can absorb 

electromagnetic waves of characteristic frequencies. The exact frequency depends on the type 

of nucleus, the field strength, and the physical and chemical environment of the nucleus. The 

absorption and re-emission of such radio waves is the basic phenomenon utilised in MRI. 

Hydrogen proton (1H) is the most commonly used because of its abundance in bodily tissues, 

given that they occur in water and fat. Nuclei that have at least one unpaired proton, like the 

hydrogen proton, possess inherent spins. They have magnetic properties that distinguish them 

from non-magnetic isotopes. 

A mechanical analogy to the magnetic nature of the nucleus is that it has a spinning mass 

with a small net positive charge. Because of the motion of the electric charge, a small 

magnetic field is created. The magnetic properties of the atomic nuclei make them precess 

around the external field. The frequency ω of this precessing motion is given by the following 

equation, called the Larmor equation: 

ωL = γ × B0,          (1.1) 

in which ωL is the angular Larmor frequency (unit: MHz), and γ is the gyromagnetic ratio 

(unit: MHz/T), which describes the ratio of the mechanical and magnetic properties of the 

nucleus and depends on the type of nucleus. B0 is the strength of the magnetic field in Tesla 

(T). When an electromagnetic wave of appropriate frequency (equal to the Larmor frequency) 

reaches a nuclei in a state of lower energy, the nuclei is transferred to a state of higher energy. 

This is one of the few fundamental equations to understand in relation to NMR, MRI, its 

technology and its applications. 

In the absence of a magnetic field, hydrogen protons are randomly aligned and the net 

magnetisation is zero. When a person is placed inside the powerful magnetic field (B0) of an 

https://en.wikipedia.org/wiki/Magnetic_field
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MRI scanner, the magnetic moments of many protons become aligned with the direction of 

the field, creating a net magnetisation parallel to the main magnetic field. 

A radiofrequency (RF) pulse applied to a coil perpendicular to B0, creates a small rotating 

magnetic field (B1(t)) at the Larmor precession frequency perpendicular to the main magnetic 

field. For the duration of the RF pulse, the spins will precess around B1, effectively rotating 

the net magnetisation out of the longitudinal plane into the transverse plane perpendicular to 

the B0 field. Upon termination of B1, the spins lose energy and return to their equilibrium 

state. This loss of magnetisation creates the MR signal. 

The energy loss occurs in two main ways – spin-lattice relaxation and spin-spin interactions. 

Spin-lattice interactions involve an exchange of energy between the spins and their 

surroundings. This results in the recovery of the longitudinal component of the magnetisation 

after a time (T1). 

Spins also interact with themselves in a more rapid process than spin-lattice interactions, and 

this leads to a loss of phase coherence among the spins. The time for the resulting loss in the 

transverse component of the magnetisation is called T2. In general, T2 is less than T1. 

Different tissues have different T1 and T2 time constants. For example, myelinated white 

matter has a shorter T1 than gray matter. This means that in T1-weighted MR images of adult 

brains, white matter recovers faster and therefore appears brighter in the images than gray 

matter. In T2-weighted images, gray matter will appear brighter than white matter. 

A tissue with a long T1 and T2 (like water) is dark in a T1-weighted image and bright in a 

T2-weighted image. A tissue with a short T1 and a long T2 (like fat) is bright in a T1-

weighted image but gray in a T2-weighted image. 

https://en.wikipedia.org/wiki/Magnetic_dipole_moment
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T1 contrast may be manipulated in images by varying the repetition time (TR), which defines 

the time between successive RF pulses. In this thesis, structural T1 weighted images have 

been used throughout. 

An MR pulse sequence diagram is a simple way of showing how the RF pulses and gradients 

are applied during an acquisition. Enormous numbers of pulse sequences have been 

developed, each with its own application. 

Three mutually orthogonal magnetic field gradients – namely the slice select gradient, phase 

encoding gradient and frequency encoding gradient – are usually applied in different 

combinations and at different times during image acquisition to achieve spatial encoding of 

the MRI signal to construct the MR image.  

Arbitrary orientations of the linear gradients can be achieved through the simultaneous 

application of fixed-orientation gradients in the X, Y, and Z axes. The basis for spatial 

localisation is the fact that the nuclear precession frequency is directly proportional to the 

magnetic field (eq. 1.1). The gradients induce linearly varying magnetic fields, resulting in 

spatially encoded precessional frequencies. For example, if the gradient is applied during 

excitation, only spins that match the resonance condition will be excited. In this way, an 

imaging slice is selected. Similarly, by applying the gradients during readout, the location 

from which a signal with a specific frequency and phase originated can be determined, 

yielding a “profile” image. 

In order to produce a topographic image, it is necessary to acquire multiple profile images, so 

signal excitation needs to be repeated many times, with allowances for relaxation time 

between excitation. The program that controls the timings and order that the different 

components of the imaging sequence are applied is the pulse sequence. 
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Brain MR images may be affected by various sources of noise, for example, magnetic field 

inhomogeneities, ambiguous intensity patterns inside and outside the brain and partial volume 

effects. Partial volume effects occur when the intensities of voxels are influenced by multiple 

structures, resulting in a blurring of intensity across boundaries. These effects are common in 

MRI data where the resolution of the images is relatively large compared to the brain 

microstructure and images are often not isotropic. 

Wrap-around artefacts (Figure 1.3) occur when a part of the image folds around and is visible 

on the opposite side of the image. This usually happens when the field of view is too small or 

has not been well placed. Such artefacts were found in a few datasets used in chapters 3 and 4 

of this thesis (artefacts not shown in said chapters). These artefacts were removed during the 

pre-processing stage of the pipeline.  

 

 

 

 

1.4 Image Registration 

Image registration is the process of aligning two images of the same scene or slice so that the 

output provides more information about the underlying anatomy than either of the separate 

images. In three-dimensional (3D) space, the volumetric image (target) from one coordinate 

system is aligned to a reference image in a different coordinate system. 

Registration can also be applied to multimodal images. For example, the registration of CT 

and MR images performed during image fusion (Sasikala et al., 2007) is useful to detect 

Figure 1.3 Wrap-around artefact (yellow arrow) that shows the patient nose in each of the orthogonal planes 
(sagittal, and axial) 
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localised atrophy or neuropathology associated with certain diseases, or to aid in the diagnose 

of brain tumours. The review paper by Maintz and Viergever (1998) provides a 

comprehensive overview of key concepts related to image registration. 

Registration is an important part of MRI data analysis. A typical image registration algorithm 

consists of three components that are performed in an iterative way: (see Figure 1.4) 

 an alignment measure that quantifies the quality of alignment using an objective 

function 

 a class of admissible geometric transformations that can be applied to the image or 

images; i.e., that can be employed to spatially “warp” the image(s) 

 an optimiser, which seeks the transformation that results in the best alignment, as 

quantified by the alignment measure and finally maximizes similarity. 

 

                Reference image/Target image 

                    (Source) 

 

  Source Image  

  (Moving) 

                                                                             Not converged 

                                            

                                                                   Converged 

 

 

When determining the spatial correspondence between any two images that portray the same 

scene, one image is considered fixed and referred to as the reference and the other image is 

Objective Function 

Rigid 
Transformation 

     Optimisation 

Figure 1.4 Schematic representing the three components of image registration 
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the target. The registration framework basically consists of transformation, optimisation and 

interpolation steps. Transformation helps to achieve spatial correspondence by transforming 

from one coordinate space to another coordinate space. Optimisation is used during a 

multiresolution approach when using high resolution images in order to reduce computational 

demands. Multiresolution registration refers to the process where registration is performed 

iteratively in regions of increasing spatial resolution. Multiresolution based optimization 

(Jenkinson et al., 2002) is commonly used in most registration methods. 

 

Registration algorithms are classified in terms of the following five features:  

1. dimensionality, 

2. the nature of the transformation, 

3. the basis functions used during registration, 

4. imaging modality, and 

5. whether registration is within or between subjects. 

 

Dimensionality depends on the spatial dimensions of the images involved in the registration 

process, and registration may be between images with either similar or different 

dimensionalities. For example, intra-operatively multiple 2D projection images often need to 

be registered to a 3D image acquired previously during surgical planning.  

Transformations are categorized into rigid, affine, non-linear, projectile and curved 

transformations. Linear transformations can be either rigid or affine; rigid allows only for 

translation and rotation, while affine transformations allow for translation, rotation, scaling 
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and shear between the images. Projectile and curved transformations are not used in our 

study. 

In rigid body registrations, six parameters are considered: three translations and three 

rotations. Using these parameters one image is transformed to another image. Each point 

( ) in a 2D image is mapped to co-ordinates ( ) of another image by the simple 

transformation =M . 

 

                                            

 

 

Affine registration is a type of linear geometric transformation that involves translation, 

rotation, scaling and shear. For each point (  in a 3D image, an affine mapping 

transforms these co-ordinates into coordinates (  in another space. The 

transformation is given by equations 1.2, 1.3 and 1.4. 

                   (1.2) 

                    (1.3) 

                   (1.4) 

 

 

Figure 1.5 Example of 2D image rigid registration 
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In matrix form the affine transformation is given simply by =M . (eq 1.5). 

             (1.5) 

Equation 1.6 defines a translation by p (i.e. y=x+p) and equation 1.7 a rotation  radians 

about the x axis.   

 

                           (1.6) 

    (1.7) 

 

Similarly, rotations q2 and q3 radians about the y and z axes, respectively, are given by 

equations (1.8) and (1.9). 

     (1.8)   

     (1.9)    

           

Scaling is needed to change the size of an image and also to correct for non-isotropic voxels. 

An example of scaling along the orthogonal axis is shown in eq. 1.10. 
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(1.10) 

Shear is computed using the matrix in eq.1.11. 

                  (1.11) 

Registration performed using non-linear transformations uses the image that has already been 

approximately registered with the template according to a twelve-parameter affine 

registration.  The transformation model for defining nonlinear warps uses deformations 

consisting of a linear combination of low-frequency periodic basis functions. These are the 

low-frequency components of a 3D discrete cosine transform (DCT). 

Registration using the non-linear volumetric procedure fails to align the cortical folding 

patterns because of its highly nonconvex nature of the energy functions when initialized with 

an affine transform. To achieve this finer refinement in the deformation, we can integrate the 

surface based information into a volumetric registration procedure. The resultant is a 3D 

displacement field that aligns both cortical folding patterns and subcortical structures of the 

brain (Postelnicu and Zöllei et al., 2009).  

Registration can be performed using either extrinsic or intrinsic features. Extrinsic methods 

rely on artificial objects attached to the patient. These are objects that are designed to be 

visible and accurately detectable in all of the pertinent modalities. Intrinsic methods rely only 

on patient-generated image content. Registration can be based on a limited set of identified 

salient points known as landmarks, on the alignment of segmented binary structures (most 

commonly object surfaces), or on measures computed directly from the image gray values. 
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Landmark-based registration employs a large set of points to represent a structure. It allows 

complex registration to be achieved accurately faster than volume-based registration. The 

iterative closest point method (Besl and Mckay 1992) is a widely used landmark-based 

registration algorithm. In a shape analysis study of the brains of children with fetal alcohol 

syndrome (FAS), surface models of the hippocampus and caudate nucleus from different 

subjects were registered using vertices as landmark points (Joseph et al., 2014). 

Registration methods are further categorised as either single-modality or multimodality 

methods. A single-modality method tends to register images acquired by the same scanner or 

sensor type, whereas a multi-modality registration method tends to register images acquired 

by different scanners or sensor types. In the case of MR images, however, multimodal 

registration is carried out on images that were acquired using different pulse sequences and as 

such have different contrasts. 

Finally, registration methods are categorised based on the number of subjects, i.e. intra-

subject, inter-subject or atlas registration methods. In intra-subject registration, scans of the 

same subject taken at different instants are registered. For example, the high-resolution 

Colin27 MRI brain template was created by performing intra-subject registration of the same 

subject scanned at 27 different instants. 

Inter-subject registration involves registering scans from multiple subjects and is useful for 

comparing anatomical structures in different brains. The Montreal Neurological Institute 

(MNI) used this type of registration to develop the MNI305 human brain template. MR 

images from 305 subjects were mapped into stereotactic space, intensity normalised and 

averaged on a voxel-by-voxel basis as part of the International Consortium for Brain 

Mapping (ICBM) (Evans et al., 1993). Later, 152 subjects were affinely registered to the 
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MNI305 template to create the ICBM152 template (Mazziotta et al., 2001; Mazziotta et al., 

1995). 

The ICBM152 template is widely used as a registration target during functional analyses in a 

variety of popular computational neuroimaging tools, including SPM 

(www.fil.ion.ucl.ac.uk/spm/), FSL (www.fmrib.ox.ac.uk/fsl/) and AIR (bishopw.loni.ucla.edu/air5). 

Precise registration algorithms have become critical for brain mapping applications because it 

allows comparisons of experimental findings from different subjects. 

In structural imaging, image registration methods are applied sequentially. Linear registration 

is initially used to obtain global correspondence. This is followed by non-linear parametric 

transformation yielding smooth deformations across local structures (Figure 1.6). Non-linear 

deformations range from smooth parametric deformations to high-dimensional, non-

parametric deformations. High-dimensional, non-parametric deformations are not driven by 

intensity variations, but take geometric information, curvature and other image features into 

account and follow either elastic or optical flow-based registration. 

Since human brains are highly variable and also differ depending on age, gender, race, etc., it 

may be difficult to choose a suitable registration target. Standard brain templates are often 

used to provide an anatomical reference for individual or population based assessment of 

brain structure and function. 
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(For more detail on image registration, reader can refer to Maintz and Viergever (1998), 

Crum et. al., 2004 and Crum et al., 2014.) 

1.5 Brain Template 

Brain templates are constructed from one or more representations of the brain (Toga and 

Thompson 2001). Brain templates have facilitated the increase in the number of 

investigations focusing on the structural and functional organization of the brain. 

In humans and other species, the brain’s complexity and variability across subjects is so large 

that templates are essential to manipulate, analyse and interpret brain data from multiple 

subjects. Registration helps to establish a common coordinate system for evaluation of 

different images. Images are typically registered onto a reference space via affine 

transformations (Mazziota et al., 2001). 

The reference space can be defined by a single subject as per the initial coordinate system 

proposed by Talairach (Talairach and Tournoux, 1988). The Talairach coordinate system is 

based on the post-mortem brain of a single subject. However, such an atlas template is biased 

towards the chosen reference subject space and may not represent the average geometry of 

the population. Several different approaches have been explored for using multiple subjects 

in the construction of average intensity atlases. The Montreal Neurological Institute (MNI) 

constructed the standard MNI305 whole-brain template by registering 305 scans using 9-

Figure 1.6 Average anatomical image of the cerebellum before registration (left) ; Average anatomical 
image after affine linear registration to the national institute of health pediatric database (NIHPD) template 
(middle); Average anatomical image after affine linear and non-linear registration with the NIHPD template 
(right). 
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parameter linear transformation. Their next generation template, popularly known as the 

ICBM152 template (Evans et al., 1993), was built using 12-parameter linear and non-linear 

registration in a stereotactic co-ordinate system. It also included the previously excluded 

posterior regions and reduced the complexities arising from inter-subject structure variability 

associated with individual brains. The ICBM template in MNI space is representative of the 

average brain size and shape. Cortical structures are, however, quite blurred due to the effect 

of low-pass filtering in the averaging process. The initial template covers the whole head with 

posterior regions excluding the cerebellum. The brain template is the result of an averaging 

operation after linear and non-linear registration. 

The historical evolution of different whole brain templates using linear and non-linear 

registration is well documented by Evans et al. (2012) in a review of brain templates. The 

characteristic features of available adult brain templates are listed in Table 1. In addition to 

these adult templates, the National Institutes of Health Pediatric Database (NIHPD) has 

constructed a set of age-specific paediatric templates for child populations. These were 

constructed via iterative non-linear registration (Fonov et al., 2011) and enable mapping of 

the brain using a standard co-ordinate system. 

The stereotactic co-ordinate system is one example of a widely used standard co-ordinate 

system in the neuroscience community. It uses the anterior and posterior commissure (AC-

PC) to determine the origin of the coordinate system (Figure 1.7). The X-axis is defined as 

the line passing through the AC point and perpendicular to the AC-PC line. The Y-axis is 

defined by the line connecting the most superior point of the AC and the most inferior point 

of the PC. The Z-axis is defined by the line on a vertical plane (while the horizontal plane is 

defined by the X-axis and Y-axis) passing through the inter-hemispheric fissure and the AC 

point (Chau et al., 2005). 
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The process of positional normalisation remains a mandatory step in the processing pipeline. 

Also, all brain templates are always presented in the stereotactic co-ordinate system.  

 

 

 

 

Table. 1.1 Features of different adult brain templates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PC 

AC 

Figure 1.7 The intersection of lines passing through anterior commissure (AC) and posterior commissure (PC) 
define the origin of the stereotactic co-ordinate system. The left quadrant takes negative values and the right 
quadrant takes positive values. 
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Table. 1.1 Features of different adult brain templates 
 
 

Feature Talairach 

Tournoux 

(1988) 

MNI-305 

(1995) 

Colin-27 

(1998) 

MNI-152 

(2001) 

ICBM-452 

(2003) 

No. of subjects 1 305 1 152 452 

*Gender F-1 M-239, F-66 M-1 NA NA 

Age (years) 60 23.4±4.1 NA NA NA 

Image type 2D 3D 3D 3D 3D 

Population 

specific 

No Yes No Yes Yes 

Type of atlas Non-digital Digital Digital Digital Digital 

Registration 

procedure 

Manual     
(Intra-subject) 

Linear      
(Inter-subject) 

Linear and  
non-linear 
(Intra-subject) 

Linear and  
non-linear 
(Inter-subject) 

Linear and  
non-linear 
(Inter-subject) 

Spatial 

transformation 

NA 9-parameter 
linear 

Affine 9-parameter 
affine 

12-parameter 
affine 

Coverage Excludes brain 
stem and 
cerebellum 

Does not fully 
cover top of 
head and 
cerebellum 

Full head and 
cerebellum 

Full head and 
cerebellum 

Full head and 
cerebellum 

Cortical detail 

information 

Lack of cortical 
detail 

Lack of cortical 
detail 

Improved 
cortical detail 

Lack of 
cortical detail 

Improved 
cortical detail 

Contrast 

between gray 

and 

whitematter 

Less significant Significant Significant Significant Significant 

Size (length, 

width and 

height of 

brain) 

Smaller than 
other brain 
templates 

Larger than 
Talairach 
Tournoux 

Same as 
MNI-305 

Same as MNI-
305 

Same as 
MNI-305 

*M-Male; F-Female; NA- Not applicable 

 

 

1.6 Brain Atlas 

The establishment of stereotactic space led to a framework for consolidation of statistical 

information across subjects (Evans et al., 2012). After achieving mapping to a brain template, 

individual anatomical brain structures require identification. This can be accomplished by 
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using an established atlas in which brain structures have been parcellated, often referred to 

simply as a brain atlas. A brain atlas consists of a spatial map of the relative locations of 

individual structures. It describes the underlying anatomy of a structure in terms of structural 

morphology, size and shape. Atlases are typically created from multiple subjects through 

manual segmentation of the anatomical structures of the brain. 

Brain atlases may be extended to include a probabilistic map of individual brain structures. A 

probabilistic atlas encodes the underlying anatomical variability in the structures across 

different subjects. A probability map of segmented structures in the standard coordinate 

system makes it possible to describe image data with significant statistical and visual power. 

Anatomical variability is determined by using data from multiple subjects during the atlas 

construction procedure. Volumetric parcellated atlases for identification of brain structures 

have been developed by various groups around the globe. Automatic Anatomical Labelling 

(AAL) is an early atlas comprising 45 volumes per hemisphere created from the Colin27 

brain, non-linearly warped to MNI152 space (Tzourio-Mazoyer et al., 2002). It included both 

cerebral and cerebellar parcellations. The Laboratory of Neuro Imaging (LONI) used 40 brain 

images to generate the LONI Probabilistic Brain Atlas (LPBA40 Shattuck et al., 2008). It is 

available to the neuroimaging community in a set of different variants in normalized 

stereotactic space. The atlas construction pipeline used different normalisation techniques to 

generate different variants of the same atlas. The probability map of LPBA40 was derived 

from manual labels using the well-established LONI protocols. 

Analysis of structural MR images using templates and atlases requires certain standard pre-

processing steps, described in the following section.   
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1.7 Structural MR Image Analysis  

Currently almost all neuroimaging software packages recommend the use of a series of 

computational tools. This is called a processing pipeline. Structural analysis of MR images is 

aided by writing in-house scripts specifically to ensure compatibility with in-house data. This 

is greatly facilitated by routines in open-source tools.  Briefly, the raw MR images (Figure. 

1.8) are skull-stripped, corrected for inhomogeneities and segmented into different tissue 

classes (Figure. 1.9), namely gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF).  These procedures are common to most of the serial processing computational tools, 

and complex model parameterisation takes care of inhomogeneity and bias correction (Pham 

et al., 2000).   

 
 

 

Figure 1.8 Sagittal, coronal and transaxial slices of 18 control children used in this study for cerebellar atlas 
construction and structure parcellation. 

 
 

Figure 1.9 MR sequential processing of structural T1 images that first extracts the intracranial cavity (ICC) 
from the background (BG), and then iteratively segments the tissue classes present in the ICC into gray matter 
(GM), white matter (WM) and cerebrospinal fluid (CSF). 
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1.7.1 MR Image Label 

Image segmentation is defined as partitioning of an image into non-overlapping, constituent 

regions that are distinct and homogeneous with respect to anatomy or a characteristic such as 

intensity. In this work, a segmentation method ideally finds the set of voxels that correspond 

to distinct anatomical structures of the cerebellum. Ώ represents the image domain and   is 

the number of segmentations in the image. 

Ώ=                                                                                                                        (1.12) 

It’s assumed that the value of k is known, based on prior knowledge of the cerebellar 

anatomy. For whole brain analyses, it is common to use k=3; corresponding to GM, WM and 

CSF tissue classes. In this study, we used k=16 as this was the number of structures 

delineated. 

 
1.7.2 Automated cerebellar structure segmentation methods 

Segmenting cerebellar structures in MR images is a challenging task because the intensity 

distributions of cerebellar gray matter differ from that in the rest of the brain, the cerebellum 

has a complex, convoluted structure with smaller substructures and physiological noise 

occurs around the structure (Diedrichsen et al., 2010). Different structures of the cerebellum 

have the same intensity profile, making it challenging to define the border between two 

structures accurately. Further, not all boundaries between structures are visible on MR 

images. Therefore cerebellar structure segmentation methods cannot rely on intensity 

information alone; additional knowledge such as the deformation warp is needed to separate 

structures of interest from the background. 



28 
 

The current brain structure segmentation literature can be broadly classified into two 

categories, based on the type of additional knowledge that they incorporate, namely atlas-

based segmentation and multi-atlas based segmentation. These are briefly introduced in the 

following sections. In practice, this categorization is not always clear-cut and a combination 

of these methods may result in superior performance. 

 
1.7.3 Atlas-based segmentation 

Atlas-based segmentation refers to the process of generating segmentation via registration of 

an atlas and a candidate image. The spatial correspondence established between the intensity 

images is used to obtain an output label map of the structure on the candidate image (Figure 

1.10). By using a non-rigid deformation field in the registration process, it is possible to 

extract information relating to subtle differences between subjects. 

An atlas-guided approach is generally suited for segmentation of structures that are stable 

over the population of study (Pham et al., 2000). It has numerous biomedical applications, 

such as quantification of tissue volumes, diagnosis and localisation of pathology, 

investigation of particular structures, treatment planning and computer-integrated surgery. 
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1.7.4 Multi-atlas based segmentation 

Multi-atlas based segmentation has proven to be one of the most competitive techniques in 

medical image segmentation (Heckemann et al., 2006, Asman et al., 2013, Wang et al., 

2013). In a multi-atlas based segmentation approach (Figure 1.11), multiple atlas images are 

registered to a target image and their segmentations are combined, to obtain segmentation of 

the target image. This approach produces robust segmentation, transferring segmentations 

from expert-labelled images, or atlases, to a target image using deformable image 

registration. Errors produced by label transfer are further reduced by label fusion, which 

Figure 1.10 Schematic of atlas based segmentation. Atlas construction is illustrated to the left of the blue line 
and atlas based segmentation to the right. Training images are registered to a standard template and the resulting 
transformation warps are applied to the individual atlases comprising the manually traced data of each subject. 
The labels in each location of the registered individual atlases are averaged to create the probability map.  
During segmentation, the test image is first registered to the template. The inverse of this transformation is then 
applied to the probability map to warp the labels to the test image.  
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combines the results produced by all atlases into a consensus solution. Regardless of the 

approach, fusion algorithms are generally dependent on large atlas sets and highly accurate 

registration.  

 

 

 

 

 

 

 
 

  

  

 

 

  

 

Training Image1 

and Atlas1 

Training Image
 18

 

and Atlas 
18

 

Test 
Image  

Registration and  
Warping 

 Registration and  
Warping 

Deformed  
Test Image 

segmentation
 1
 

Deformed   

Test Image 
segmentation

 18
 

Label Fusion 

(MAMV/MAGM) 

Consensus 
Segmentation of 

Test Image 

Figure 1.11 Schematic of multi atlas based segmentation. The segmentation of one test image is determined 
from the pairing of each training image (18 in total) with the test image. Linear and nonlinear warping is used to 
transform the test image to each training image to obtain 18 distinct segmentations based on the 18 individual 
atlases. These 18 deformed segmentations of the test image are transformed back into the test image space using 
the inverse transformations. Label fusion methods are applied to obtain the final segmentation from the 18 
distinct segmentations.   
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Abstract 

Consistent morphometry and functional localization of cerebellar cortex in a standard 

coordinate system is important for interpretation of functional data, as well as comparisons of 

results and anatomy across sites and populations. We present the first pediatric cerebellar 

atlas for improved labelling of cerebellar structures in children. The Cape Town Pediatric 

Cerebellar Atlas (CAPCA18) was constructed in the age-appropriate National Institute of 

Health Pediatric Database (NIHPD) asymmetric template space using manual tracings of 16 

cerebellar compartments in 18 healthy children aged 9-13 years from Cape Town, South 

Africa. The probabilistic CAPCA18 atlas provides both valid assignments of labels to 

specific spatial coordinate locations, as well as a quantitative measure of the uncertainty of 

such assignments. Segmentation using this atlas was validated through comparison to manual 

tracing in an independent set of 14 healthy children in the same age range and from the same 

community. Results were compared to the performance of the Spatially Unbiased Infra-

tentorial Template (SUIT) on the same dataset. Average spatial overlap of the whole 

cerebellar cortex for test images with their corresponding manual segmentations using the 

probabilistic CAPCA18 atlas was 86%, compared to 78% after normalisation to the SUIT 

template. Spatial overlap between automated and manual segmentations using the CAPCA18 

atlas of individual lobules in both hemispheres were 70% or higher for all lobules, except 

lobules VIIb and X where the overlap was on the order of 50-60%. On average, these values 

were 8% higher than those obtained using SUIT for this pediatric dataset.  

 

Keywords: Probabilistic atlas, cerebellum, brain mapping
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2.1 Introduction 

The human brain is a complex structure and mapping its functional organization presents an 

ongoing challenge. Recent findings suggest that the cerebellum is functionally heterogeneous, 

with different topological regions subserving sensory, motor, cognitive, and affective 

processing (Stoodley and Schmahmann, 2009; Schlerf et al., 2010; Strick et al., 2009; 

Schmahmann and Sherman, 1998; Makris et al., 2005). As such, it has become increasingly 

important to identify precisely which lobule is activated in functional imaging studies. Efforts 

to map cerebellar function have, however, been limited by the fact that available cerebellar 

atlases are generally limited to gross morphologic relationships (Crosby et al., 1962; 

Carpenter et al., 1976; DeArmond et al., 1976; Waddington et al., 1984; Roberts et al., 1987; 

Kretshmann and Weinrich, 1992), that the individual cerebellar lobules are generally not 

labelled, and only limited sections are depicted in either one or two of the cardinal planes 

with large gaps between these. Furthermore, the terminology used to identify the fissures and 

lobules in these atlases is not uniform and is often contradictory.  

Schmahmann et al. (2000) presented a human cerebellar atlas with sections at 2mm intervals 

in three cardinal planes based on high-resolution T1-weighted Magnetic Resonance (MR) 

images of a single human cerebellum that was coregistered to the Montreal Neurological 

Institute (MNI) template (Evans et al., 1993) and annotated using a revised and simplified 

nomenclature. Using the above MR Image Atlas of the Human Cerebellum as a basis for 

identification of landmarks and fissures, Makris et al. (2005) developed a manual method 

aided by a set of computer-assisted algorithms to facilitate the parcellation of the cerebellar 

cortex into 32 Parcellation Units (PUs) per hemicerebellum in a manageable period of time. 

In their implementation, the fissures divide the cortex into lobules, while longitudinal 
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divisions separate the vermis from the hemispheres, and subdivide the hemispheres into 

medial and lateral zones. The large lateral hemispheric region of Crus I and II is divided into 

a further two zones. The authors found that intraclass correlation coefficients (McGraw and 

Wong, 1996; Shrout and Fleiss, 1979) for both intra- and inter-rater reliability were 

significantly improved by clustering PUs according to lobar divisions, anatomical 

connectivity, or functional connectivity. Lobar clusters are widely used (Pierson et al., 2002) 

and divide the cerebellum into anterior, posterior and flocculonodular lobes that are separated 

by the primary and the posterolateral fissures, respectively. In all these studies only data 

acquired from adults were used. 

Subsequently, Diedrichsen (2006) developed the high-resolution Spatially Unbiased Infra-

tentorial Template (SUIT) of the cerebellum by normalizing individual cerebella of 20 

healthy adults non-linearly to each other before averaging, which improved specificity when 

labelling regions in functional MRI data. 

Although atlases are widely used to assign anatomical labels to locations, there is a high risk 

for error due to high spatial variability of individual cerebellar structures between different 

populations. Probabilistic atlases allow for the assignment of labels to specific regions, while 

providing a quantitative measure of the uncertainty of such assignments. Currently, whole 

brain probabilistic atlases typically treat the cerebellum as a single structure without any 

lobular divisions (Hammers et al., 2003; Shattuck et al., 2008). In 2009, the first probabilistic 

cerebellar SUIT atlas was created (Diedrichsen et al., 2009) based on manual tracings of 

lobules on T1-weighted MRI scans (1mm isotropic resolution) of 20 healthy adult 

participants (10 male, 10 female, age range 19-27 years). The SUIT atlas defines twenty-eight 

compartments: lobules I-IV and V divided into left and right hemispheres; lobules VI, Crus I, 

Crus II, VIIb, VIIIa, VIIIb, IX, and X divided into vermal sections in addition to left and right 

hemispheres. This atlas aims specifically to improve inter-subject co-registration of 
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cerebellums to yield improved specificity of cerebellar activations and valid assignments of 

functional activations to specific cerebellar lobules. Recently, Bogovic et al. (2013) described 

a method that uses multiple object geometric deformable models to perform cerebellar 

segmentation and demonstrated superior performance compared to SUIT atlas-based and 

multi-atlas fusion approaches. 

We were interested in examining cerebellar anatomy in children (age 9-13 years) from the 

Cape Coloured (mixed ancestry) community in Cape Town, South Africa. Since manual 

tracing is both time intensive and subjective, we wanted to perform automatic cerebellar 

segmentation. It has been noted previously, however, that a specialized atlas should be 

created for research in children (Diedrichsen, 2006) as the shape and ratio of gray matter to 

white matter in the cerebellums of children differ significantly from that of adults (Fonov et 

al., 2011). To our knowledge, no pediatric cerebellar atlas is currently available. 

In developing an atlas, one important decision relates to the registration target (template) to 

use. It has been shown previously that a template closer to the study population reduces 

morphometric bias and the amount of non-linear deformation required to establish spatial 

alignment (Yoon et al., 2009) between the template and subject. Previously, Wilke et al. 

(2008) developed the ‘Template O Matic’ toolbox for SPM to create an age specific whole 

brain template by initially using linear co-registration of subjects and regressing for age and 

gender in pediatric populations. The resulting template, however, appears smoothed and lacks 

anatomical detail in the areas of greatest variability. 

The unbiased nonlinear National Institutes of Health Pediatric Database (NIHPD) template 

created by Fonov et al. (2011) provides better spatial resolution and improved contrast 

compared to the classical International Consortium for Brain Mapping (ICBM152) template. 

Templates are available for different age ranges for normal brain development. In their work, 
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the pediatric population was grouped into five categories between the ages of 4.5 and 18.5 

years. For each category, two templates were constructed, one that preserves asymmetry and 

another with symmetric hemispheres. Deformation studies using these five different 

templates have shown that the average magnitude of deformation increases with increasing 

difference in age between the template used and the subject being studied (Fonov et al., 

2011). In the present study we used the NIHPD unbiased nonlinear template that preserves 

asymmetry closest to the age range of our subject population (7.5 years to 13.5 years).  

In this work, we present the probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18), 

for improved labelling of cerebellar structures in children. The atlas was constructed in the 

already established age-appropriate NIHPD template space from manual tracings of 16 

cerebellar compartments in 18 healthy children (age range 9-13 years, 6 male) according to 

the nomenclature introduced in the MRI atlas of the human cerebellum (Schmahmann et al., 

2000). The probabilistic presentations of each compartment provide a quantitative measure of 

the spatial variability. Our atlas was validated by comparing manually traced segmentations 

with automated segmentations using the CAPCA18 atlas in an independent set of 14 healthy 

children (age range 8.9-11.8 years, 10 male) from the same community.   

 

2.2 Methods 

High resolution T1-weighted structural images were acquired on a 3T Allegra (Siemens, 

Erlangen, Germany) MRI scanner using a Magnetization Prepared Rapid Gradient Echo 

(MPRAGE) sequence (TR 2300ms, TE 3.93ms, TI 1100ms, 160 slices, flip angle 12 degrees, 

1.3x1.0x1.0mm3, 6.03 minutes) in 18 healthy children (mean age 11.8±1.2 years) from the 

Cape Coloured community in Cape Town, South Africa who were recruited as typically 

developing controls for ongoing studies of Fetal Alcohol Spectrum Disorder (Jacobson et al., 
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2008). A further 14 healthy children (mean age 10.5 ± 0.8 years) from the same community 

were scanned using a volumetric navigated (Tisdall et al., 2012) multiecho (ME) MPRAGE 

sequence (van der Kouwe et al., 2008) (128 sagittal slices, TR 2530ms, TE 

1.53/3.21/4.89/6.57ms, TI 1100ms, flip angle 7 degrees, 1.3x1.0x1.3mm3). All children were 

scanned according to protocols that had been approved by the Faculty of Health Sciences 

Human Research Ethics Committee at the University of Cape Town; parents of all children 

provided written informed consent and children provided oral assent. 

 

Image Pre-processing 

The images were reoriented with the horizontal line defined by the anterior posterior 

commisure (ACPC orientation) and the sagittal planes parallel to the midline. The images 

were resampled to isotropic 1mm3 voxels using windowed sinc interpolation in Brain 

Voyager (Goebel et al., 2006). The resulting images were cropped to a fixed bounding box by 

removing the empty slices from the volume using a customised script written in MATLAB 

(www.mathworks.com). This process ensured removal of the neck and generated similarly 

oriented whole brain images. 

 

Manual Tracing 

The cerebella of the 18 input subjects were manually traced in native space according to the 

revised nomenclature defined by Schmahmann et al. (2000) using Multitracer (Woods et al., 

2003) software on a tablet PC by an expert neuroanatomist (CW) who was blind to the age 

and sex of the children. Although tracings were largely performed in the sagittal view, all 

three planes were used to ensure three dimensional (3D) continuity. Tracings performed in 

the coronal and axial planes appeared as dots in the sagittal view and were used to define 
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lateral boundaries of structures. Tracings were performed at four times magnification. The 

following lobules of the cerebellum were traced on both the left and right hemispheres: 

lobules I-V, VI, Crus I, Crus II, VIIb, VIII, IX and X. 

The right hemispheres of 10 randomly selected subjects were re-traced at a later time by CW 

in order to compute intra-rater reliabilities. Cerebella of 14 test subjects were traced by a 

different neuroanatomist (NB) using the same protocol. Inter-rater reliabilities for lobules of 

eight cerebellar hemispheres traced by both neuroanatomists were compared using intraclass 

correlation coefficients (ICC). 

The midline slice was defined as the sagittal slice in which the cerebral aqueduct was most 

clearly visible. Left and right hemispheric subregions were traced separately. The anterior 

lobe comprises lobules I-V; lobule VI, Crus I and II, and lobule VIIb form the superior-

posterior lobe; and lobules VIII, IX and X comprise the inferior posterior lobe. For each 

lobule, the areas demarcated by the drawn contours as belonging to that lobule were masked 

on all relevant slices and combined to construct a 3D volume of each lobule. The resulting 

volumes and their surfaces were inspected visually to identify and correct tracing errors 

(examples shown in Figure 2.1) in an iterative way. The resulting masks define 16 cerebellar 

compartments, 8 in each hemisphere, each of which was labelled with a unique integer value. 

Tracings for one hemisphere of one brain are shown in the sagittal plane in the right panel of 

Figure 2.2, with the corresponding masked areas and their color representations shown in the 

middle and left panels, respectively. For each subject we also generated a cerebellar mask 

comprising the sum of the gray matter parcellations and the total cerebellar white matter. 
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Construction of the Probabilistic Atlas 

The T1 weighted images of the 18 training subjects were spatially normalized to the age-

appropriate NIHPD asymmetric template (Fonov et al., 2011) using discrete cosine non-linear 

deformation. We used the SPM5 unified segmentation (Ashburner and Friston, 2005) method 

Figure 2.1 Illustration of Crus II volumes for the 18 training subjects with tracing errors in two (indicated by the 
black arrows), which were manually corrected by the expert neuroanatomist.  

 

Figure 2.2 Cerebellar lobules and their color representations. Left and right hemispheric structures are 
represented using the same colors and unique labels. The image on the right shows manually traced contours in 
the sagittal view for one subject, while the middle panel shows the corresponding masked areas and their color 
representations on the left. 
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that uses a mixture of Gaussian models to simultaneously perform spatial normalization, bias 

correction, and tissue classification. The tissue probability maps (gray/white/cerebrospinal 

fluid (CSF)) of the template were used to classify tissues as gray matter, white matter and 

CSF. Further, all SPM's default settings were used. Following alignment of the T1 images to 

the template, individual lobular masks and cerebellar masks of each subject were resampled 

into the template space using nearest neighbour interpolation. 

Co-registered cerebellar masks were averaged in the NIHPD template space to generate an 

average cerebellar mask. In this work, we chose to set probabilities of voxels with values of 

0.3 or less equal to zero, as these voxels were part of the cerebellum in only 30% or fewer of 

the subjects, and values greater than 0.3 equal to unity. Using a threshold helps to reduce the 

effects of outliers and individual subject variance. The average of the whole brain images of 

the input subjects normalised to the NIHPD template space was multiplied by the resulting 

cerebellar mask to construct an average cerebellar image (Figure 2.3A).  

In a similar way, resampled lobular masks in normalised space were averaged across subjects 

to generate probability maps for each structure, where the value in each voxel location 

denotes the probability of a voxel belonging to said structure. Typically, there is spatial 

variability of individual cerebellar structures between subjects even after alignment to a 

reference template. The probability maps indicate the proportion of subjects in whom a 

specific lobule occupies a location in the reference space and as such also quantifies the 

spatial variability in different regions. This enables one to visualize both the spatial extent of 

individual sub-regions and their spatial variability. Figure 2.3B shows the maximum 

probability map generated by combining the averaged lobular masks in normalised space. 

Each voxel is assigned a value equal to the maximum probability for that location. Further, 

voxels for which the maximum probability is 0.3 or less are set to zero as this indicates that 
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these voxels belonged to a cerebellar lobule in 30% or fewer of the subjects in the initial 

dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 A. Average cerebellar image in normalised space, R-Right, L-Left; B. Maximum Probability maps 
of individual structures; bright colors (white) indicate voxels with high probability and darker (red) colors 
indicate voxels with lower probability. C.Maximum likelihood labellings superimposed on the average image 
generated after spatial normalization with the NIHPD (7.5-13.5 years) asymmetric template. The colors 
represent the lobules of the cerebellum as per the color look up table in Figure 2.2. The coronal slices range 
from MNI coordinates -75 to -33. 
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From the maximum probability map, we also constructed an atlas of maximum likelihood 

labellings, which assigns to every voxel a label indicating the individual cerebellar structure 

located at that voxel most often. At the boundaries between structures, where a voxel may 

have equal probability of belonging to two different lobules, the label that occurs most often 

in a 3x3x3mm3 region surrounding the voxel was assigned to the voxel (Figure 2.3C).  

 

Validation 

The images of the 14 test subjects were pre-processed using the same pipeline as the training 

subjects. To segment the cerebella of the 14 test subjects using our CAPCA18 cerebellar 

atlas, the unified normalisation algorithm in SPM5 was applied to simultaneously perform 

tissue classification and normalisation of each subject’s whole-brain images to the NIHPD 

asymmetric template. Labels from our CAPCA18 atlas were resampled to subject space using 

the inverse of the deformation warps obtained during normalisation. 

We computed for each test subject both individual lobular volumes and total cerebellar gray 

matter volume. We compared the percentage of total gray matter volume that each lobule 

occupies in children from our study with values previously reported for adults (Makris et al., 

2005). 

For comparison, labelling was also performed using the SUIT cerebellar atlas that is available 

in SPM5 and was developed using adult data. Briefly, each subject’s images were cropped to 

the region of the cerebellum after co-registration to the ICBM152 template. Individual 

cerebella were normalised to the SUIT template to obtain deformation maps for each subject. 

Manual editing was required around the anterior borders between the cerebellum and the 

temporal and occipital lobes for 8 of the test subjects. After editing, the cerebellar cortex 

achieved 78% average overlap with the SUIT template, which is higher than the 75% 

previously reported (Diedrichsen et al., 2009). Normalisation was repeated after manual 
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editing and the labels from the SUIT atlas were resampled to the cropped test subject space 

using the inverse of the deformation warps obtained during normalisation. Finally, labels 

were resampled to native test subject space using the suit_reslice command. 

Cerebellar parcellations derived from manual tracings were compared to those generated 

using our CAPCA18 atlas and the SUIT atlas using both volumetric measurements and the 

Dice coefficient as a measure of spatial overlap (Dice et al., 1945). CAPCA18 atlas-based 

labelling was compared to manual tracings in all 16 hemispheric regions. SUIT labelling 

differs from the conventions followed in this paper, in that the vermis is defined as a single 

medial entity in SUIT, while it was not traced separately in our work and as such was 

included in our hemispheric regions. In order to avoid errors due to omission or inclusion of 

the vermal regions when comparing data from SUIT to manual tracings, the left and right 

SUIT hemispheric regions and the SUIT vermal region were combined for each lobule to 

define whole lobules and compared to whole lobules (left plus right) from the manual 

tracings. As such, SUIT atlas-based labelling was compared to manual tracings in 8 whole 

lobules, comprising both hemispheric and vermal regions combined.  

 

2.3 Results  

Intra-rater reliabilities for 10 right hemispheres traced on two separate occasions by CW 

yielded ICCs ranging from 0.72 to 0.96 for different structures (Table 2.1). Only in the small 

lobules IX and X were ICCs below 0.85. Furthermore, inter-rater reliabilities for lobules of 

eight cerebellar hemispheres traced by two different neuroanatomists show ICCs greater than 

0.8 in five of eight lobules traced. ICCs in VIIb and X were unacceptably low, indicating that 

these regions are difficult to trace reliably. 
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Table 2.1 Intra-rater reliability for 8 regions in 10 right hemispheres traced on two separate occasions by an 
expert neuroanatomist, and inter-rater reliability for eight lobules in eight hemispheres traced by two different 
neuroanatomists. 

Cerebellar 

Lobules 
ICC 

Intra-
rater 

ICC 

Inter-
rater 

I-V 0.91 0.92 
VI 0.87 0.83 
Crus I 0.85 0.81 
Crus II 0.89 0.69 
VIIb 0.85 0.43 
VIII 0.96 0.88 
IX  0.83 0.87 
X 0.72 0.46 

 

 

Table 2.2 gives the average lobular volumes for the 14 test subjects after automatic 

segmentation using the CAPCA18 atlas. Volumes are expressed as a percentage of total 

cerebellar gray matter volume. The average gray matter volume for our test subjects is 113.2 

± 11.5cm3, which compares favourably with gray matter volumes of 112.9 ± 18.9cm3 

reported by Makris et al. (2005) in adults. Crus I, Crus II and lobule VIIb together occupy 

49.4% of the total cerebellar gray matter. For comparison, percentage lobular volumes 

reported by Makris et al. (2005) for adults are included in Table 2.2. Proportionally, lobules 

VI, VIIb and X comprise smaller fractions of the total cerebellar gray matter in children, 

while lobule IX is proportionately about 50% larger than in adults. 
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Table 2.2 Mean and standard deviation (SD) of lobular volumes generated from automatic segmentation of the 
cerebella in 14 test subjects using the CAPCA18 atlas. Volumes are expressed as a percentage of total cerebellar 
gray matter volume. 
 
 

Lobule Right 
Hemispheric 

Volume          
(% of total 

cerebellar gray 
matter volume) 

Left 
Hemispheric 

Volume          
(% of total 

cerebellar gray 
matter volume) 

Total 
Hemispheric 

Volume          
(% of total 

cerebellar gray 
matter volume)    

Total Hemisphere 
Volume (Makris 

et al., 2005)       
(% of total 

cerebellar gray 
matter volume) 

% Difference 
between relative 
lobular sizes in 

pediatric and adult 
cerebella 

Mean SD Mean SD Mean Mean  
I-V   5.9 0.3   6.7 0.4 12.6 12.1 4.1 
VI   6.4 0.4   7.0 0.5 13.4 16.3 -17.8  
Crus I 12.5 1.4 12.2 1.5 24.7 23.5 5.1 
Crus II   9.3 1.2   8.5 1.2 17.8 16.4 8.5 
VIIb   3.3 0.4   3.7 0.5 6.9 9.0 -23.3 
VIII   7.2 1.0   6.6 0.8 13.8 14.9 -7.4 
 IX   4.7 0.5   4.9 0.5 9.6 6.4 50.0 
 X   0.6 0.1   0.6 0.0 1.2 1.4 -14.3 
Total 49.9 4.8 50.2 5.0 100.0          100.0  

 
 

Table 2.3 compares the mean lobular volumes for the 14 test subjects obtained from manual 

tracing with those generated from automatic segmentation with the CAPCA18 atlas. Volumes 

of lobule X were larger bilaterally after automatic segmentation compared to manual tracing 

(paired Student’s T-test), as were left Crus I, left VIIb, and left IX. Left Crus II is the only 

region that was significantly smaller following automatic segmentation compared to manual 

tracing.  

In Figure 2.4, we present Dice coefficients comparing spatial overlap of automatic 

segmentations using the CAPCA18 atlas with manual tracings for the 16 hemispheric 

regions. The box and whisker plots indicate that, on average, spatial overlap between manual 

and automatic segmentations are 70% or higher in all regions, except lobules VIIb and X 

where it is of the order of 50% and 60%, respectively. Notably, these are the two regions 

where inter-rater reliabilities for manual tracings were unacceptably low. 
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Table 2.3 Comparison of mean and standard deviation (SD) of lobular volumes from manual tracing and 
automatic segmentation with the CAPCA18 atlas in 14 test subjects. 
 

Cerebellar 

Lobules 
Right Left 

Volume from 

Manual 

Tracing (cm3) 

Volume from 

Automatic 

Segmentation

(cm3) 

t 

 

Volume from 

Manual 

Tracing (cm3) 

Volume from 

Automatic 

Segmentation

(cm3) 

t 

 

I-V   6.3 (1.1)   6.1 (0.3) 0.9 6.5 (1.2) 6.7 (0.3)    -0.8 
VI   6.8 (1.1)   6.5 (0.1) 0.8 6.7 (1.2) 7.0 (0.1)    -1.2 
Crus I 12.0 (2.1) 12.5 (0.2)   -1.3 11.0 (1.2) 12.1 (0.2)    -4.1* 
Crus II   9.5 (1.9)   9.2 (0.2)    0.9 10.4 (2.9) 8.4 (0.2)  3.9* 
VIIb   3.6 (0.4)   3.3 (0.0) 2.3† 3.0 (0.4) 3.7 (0.1) -4.3* 
VIII   7.5 (1.2)   7.1 (0.2)    1.4 7.2 (2.0) 6.6 (0.0) 1.5 
IX    4.2 (0.5)   4.6 (0.1)   -2.1† 4.3 (0.3) 4.9 (0.1) -3.7* 
X  0.4 (0.0)   0.6 (0.0) -9.4*** 0.4 (0.0) 0.6 (0.0) -12.9*** 

Values are Mean (SD); †p<0.1; *p<0.05; **p<0.001; ***p<0.0001 

 

 

Figure 2.5 presents a color map of the Dice coefficients in the 16 hemispheric cerebellar 

regions for all 14 test subjects, where cold colors (cyan) denote poor spatial overlap and 

warm colors (red) denote high spatial overlap (>0.7). It is evident that spatial overlap drops 

below 0.6 in most subjects bilaterally in lobules VIIb and X. For the remaining regions, Dice 

Figure 2.4 Box-and-whisker plots of Dice coefficients that quantify spatial overlap in 14 test subjects 
between manual tracing and automatic segmentation using the CAPCA18 atlas. Red represents the right 
hemisphere and blue the left hemisphere.  
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coefficients are typically above 0.7 in most subjects. Spatial overlap of manual and automatic 

total cerebellar gray matter was 86%. 

 

 

 
Table 2.4 Comparison of mean and standard deviation (SD) of volumes of cerebellar lobules obtained from 
manual tracing and SUIT segmentation in 14 test subjects. 
 

Cerebellar 

Lobules 
Cerebellar hemispheric volumes 

Volume from 

Manual        

Tracing   

(cm3) 

Volume from 

SUIT 

Segmentation

(cm3) 

t 

 

I-V 12.8 (2.1) 14.3 (2.5) -1.6† 
VI 13.5 (2.0) 18.3 (3.0) -5.9*** 
Crus I 23.0 (1.8) 20.0 (4.4)  2.5* 
Crus II 19.9 (1.7) 15.0 (4.2)  3.8** 
VIIb 6.7 (0.9) 7.5 (1.9) -1.5† 
VIII 14.7 (2.2) 14.0 (3.2)  0.8 
IX  8.6 (1.2) 5.8 (1.2)  5.3*** 
X 0.8 (0.1) 0.9 (0.2) -1.6† 

Values are Mean (SD); †p<0.1; *p<0.05; **p<0.001; ***p<0.0001 

 

Table 2.4 presents a comparison of mean whole lobular volumes (left and right hemispheres 

and vermis combined) in the 14 test subjects from segmentation using the SUIT atlas with 

Figure 2.5 Colormap of Dice coefficients of spatial overlap between automatic segmentation using CAPCA18 
and manual tracing for 14 test subjects (TS) bilaterally in 8 hemispheric cerebellar regions. 
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volumes obtained from manual tracings. Hemispheric volumes from SUIT segmentation were 

significantly different to those from manual tracing in four of eight lobules (paired Student T-

test), and tended to be larger, although below conventional levels of significance, in a further 

three lobules. Volumes were equivalent only in lobule VIII. Notably, one of the regions that 

SUIT overestimates is lobule VI, which is proportionately smaller in children than in adults, 

while lobule IX which is underestimated with SUIT is proportionately larger in children. 

Figure 2.6 compares Dice coefficients that quantify spatial overlap in the 14 test subjects 

between manual tracing and automatic segmentation using either the SUIT (red) or 

CAPCA18 (blue) atlases in 8 whole lobules, when left and right hemispheres (and vermal 

regions in the case of SUIT) have been combined. CAPCA18 performs significantly better 

(Student T-test) than SUIT in lobules I-V, VI, CrusI, VIII and IX. 

Figure 2.7 compares in 14 test subjects for total cerebellar gray matter spatial overlap 

between manual tracing and automatic segmentation using SUIT (green) with spatial overlap 

between manual tracing and automatic segmentation using CAPCA18 (yellow). In all except 

one subject, spatial overlap of manual tracings with CAPCA18 segmentations are higher than 

Figure 2.6 Box-and-whisker plots of Dice coefficients that quantify spatial overlap in 14 test subjects 
between manual tracing and automatic segmentation using either SUIT (red) or CAPCA18 (blue) for 
whole lobules. †p<0.1; *p<0.05; **p<0.01; ***p<0.001 
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between manual tracings and SUIT segmentation. On average, gray matter spatial overlap 

using SUIT before and after manual editing were 75% and 78%, respectively, while it was 

86% using the fully automated CAPCA18 atlas.  

 

2.4 Discussion 

We have presented a probabilistic three dimensional cerebellar atlas for children with 

parcellations into 16 macroanatomic structures and performed validations comparing manual 

tracing with automatic segmentation using either the SUIT atlas or our new CAPCA18 atlas 

using both volumetric measurements and Dice coefficients. The probabilistic cerebellar atlas 

encodes the individual subject variability in different cerebellar structures, while the 

maximum likelihood labelling assigns to each voxel a unique label according to the label 

most often assigned to a voxel in that location. Average spatial overlap of the whole 

cerebellar cortex for pediatric test images with their corresponding manual gray matter 

segmentations using our probabilistic CAPCA18 atlas was 86%, compared to 78% after 

Figure 2.7 Spatial overlap of total cerebellar gray matter from manual tracing with total cerebellar gray 
matter from automatic segmentation using either SUIT (green) or CAPCA18 (yellow) in 14 test subjects.   
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normalisation to the SUIT template. This finding suggests that our pediatric cerebellar atlas 

helps to reduce bias and segmentation errors that might occur from using an atlas constructed 

from adult data. 

We also computed spatial overlap in individual cerebellar lobules and achieved spatial 

overlap in both hemispheres of 70% or higher in all lobules, except lobules VIIb and X where 

it was of the order of 50-60%. Notably, these are the smallest cerebellar lobules, comprising 

only 1.2% (lobule X) and 6.9% (lobule VIIb) of the total cerebellar gray matter, so that even 

small differences will result in low Dice coefficients. These are also regions that are difficult 

to trace reliably as evidenced by the poor inter-rater reliabilities in these regions. The 

accuracy of structure segmentation depends on its spatial location and tissues surrounding the 

structure. The inferior lobe VIIb comprises a very thin layer of gray matter and the inclusion 

of additional white matter in the manual tracing of this structure in the training subjects 

appear to have resulted in lower accuracies when automatically segmenting this area. Lobe X 

is the smallest structure in the cerebellum making it very sensitive to errors.  

In all regions except lobules VI and IX, Dice coefficients for the children in our study using 

CAPCA18 compare favourably to values reported in adults by Bogovic et al. (2013) who 

used an automatic classification of cerebellar lobules algorithm that employs an implicit 

multi-boundary evolution (ACCLAIM) approach. The ACCLAIM method relies on good 

contrast between CSF and GM and high spatial resolution (0.828x0.828x1.1mm3) and as such 

may perform less well in our pediatric data. 

Fissures in an average child brain are not as clearly distinguishable as in an average adult 

brain and the gray matter to white matter ratio also tends to vary in this population (Fonov et 

al., 2011). As a result, improved co-registration and segmentation results are expected using a 

cerebellar atlas for children. To our knowledge, this is the first pediatric cerebellar atlas with 
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16 parcellations that can serve as a better spatial prior to analyze cerebellar morphometry in 

children. 

The average percentage gray matter volume occupied by each lobule in the cerebellar 

hemispheres were compared with values previously reported by Makris et al. (2005) to 

examine potential relative size differences in children compared to adults. It was found that 

lobule IX is proportionately larger in children, while lobules VI, VIIb and X are 

proportionately smaller. The increased volume in lobule IX in children may be due to 

increased gray matter around the posterior lobes of the cerebellum. It has been shown 

previously, when deforming pediatric brains to the adult ICBM152 nonlinear template, that 

gray matter around the posterior lobe is increased in children and that the shape and ratio of 

gray and white matter in children is different to that of adults (Fonov et al., 2011), with 

differences ranging from 4 to 23%. The good spatial overlap achieved between manual 

tracing and automated parcellation using CAPCA18 in lobule IX provides further support for 

the fact that this region is relatively larger in children.  

We have used publicly available SPM software to construct the atlas, which ensures that our 

CAPCA18 atlas can be easily used for both segmentation and localisation in morphometric 

and functional imaging studies, respectively.  

For the data used in the current study no manual editing was required when performing 

segmentation using the newly presented CAPCA18 cerebellar atlas. It is, however, important 

to check the images generated after initial pre-processing as well as after each intermediate 

step to ensure that no errors are introduced in the pipeline when computing the deformation 

between the atlas and test subject.  

One limitation of the present study is that the number of boys and girls were not equal in 

either the training or test data sets. In the training data set there were twice as many girls as 
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boys, while 70% of the test subjects were boys. This could have introduced bias into the atlas, 

which may have resulted in poorer segmentation performance in the test subjects. We 

examined gender differences by comparing lobular volumes from manual tracings in boys 

and girls. Although lobular volumes in both hemispheres were equivalent between boys and 

girls (all p’s > 0.1) in this small sample, we expect that the atlas may be improved if the 

training data set had equal numbers of boys and girls. 

 

2.5 Conclusion 

This paper presents the CAPCA18 pediatric cerebellar atlas which can be used to 

automatically segment the cerebella of children into 16 lobules. The segmentation was 

validated in 14 test subjects from the same age group as children whose data were used in the 

construction of the atlas. We believe that the maximum probability maps and the maximum 

likelihood labellings will be a useful tool in analysing the cerebellum in structural and 

functional imaging studies in children. Future work will focus on improving the accuracy of 

individual parcellations and performing validation in a larger number of subjects. Higher 

dimensional registration and using multiple atlases for label fusion can potentially improve 

the segmentation. 
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Abstract 

Effective methods for the propagation of cerebellar labels from structural atlases facilitate 

studies of cerebellar morphometry. The cortical cerebellar structures in our atlas were 

manually labelled in 18 healthy pre-adolescent children (training data) and comprise 8 labels 

per hemisphere. Typically, labels are propagated from a single probabilistic atlas or from 

individual atlases of the training dataset (multi atlas approach). Here we propagate the 

training data labels generated from a pre-adolescent population to 35 adult test subjects after 

establishing spatial correspondence between them using efficient and robust linear and 

nonlinear registration tools. This paper compares the performance of three different label 

propagation methods for labelling cerebellar structures. First we use a probabilistic atlas 

constructed from the training dataset and propagate the atlas labels to test subjects by warping 

the label map directly on to the test image. We compare this direct warping approach to two 

different multi atlas label propagation methods: multi atlas majority voting (MAMV; 

Heckemann et al., 2006) and multi atlas generative model (MAGM) based label propagation 

(Iglesias et al., 2012). Every training image is first registered to each test image in a pairwise 

manner (Postelnicu-Zöllei et al., 2009), generating 18 registered training atlases for each test 
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image. Label propagation on each test image is achieved by combining the deformed output 

segmentations iteratively for all structures. The improved final multi atlas segmentation is 

thus derived from 18x35 segmentations for the whole test dataset. The resulting 

segmentations from these three methods were compared with manual tracings available for 3 

test subjects using the Dice coefficient, the modified Hausdorff distance, and volumetrics. 

Further, the performance of the three methods was evaluated using the simultaneous truth and 

performance level estimate (STAPLE) (Warfield et al., 2004). Results indicate that multi 

atlas based label propagation methods consistently perform better than direct warping. The 

multi atlas based segmentation captures all possible variations present in the training data and 

helps to achieve precise segmentations closer to manual segmentations. 

3.1 Introduction 

Magnetic resonance imaging (MRI) is a non-invasive method to study neuroanatomical 

structures of the brain in vivo and is useful to advance our understanding of neurological 

disorders (Thompson et al., 2004) and evaluate longitudinally (Reuter et al., 2012; Bernal-

Rusiel et al., 2012) neuropathology and treatment (Thompson et al., 2007; Gering et al., 

2001). In general, parcellated brain atlases are generated by manual delineation of structures 

of interest on MR images acquired from a group of subjects by an expert neuroanatomist 

adhering to standard protocols. This manual method is extremely time consuming and subject 

to inter- and intra-rater variations. To eliminate this, automatic parcellation of structures can 

be performed using already parcellated brain atlases that produce reproducible and consistent 

results compared to manual segmentation. Only a few whole brain parcellated atlases, such as 

the automated anatomic labelling atlas (Tzourio-Mazoyer et al., 2002) and LONI 

probabilistic brain atlas LPBA40 (Shattuck et al., 2008), are publicly available for 

parcellation/segmentation of brain structures. Popular software packages like FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/fswiki) are often used in brain mapping to study cortical 

http://surfer.nmr.mgh.harvard.edu/fswiki
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thickness and perform morphometric analysis over the whole brain. However, the automated 

parcellation is limited to cerebral structures limiting its usefulness for morphometric analyses 

of cerebellar structures. Using recent advances in registration and label propagation methods, 

this work aims to improve methods for automatic parcellation of cerebellar structures. 

 

Average intensity images (templates) are usually presented in a stereotactic coordinate 

system, such as Montreal Neurological Institute (MNI) or Talairach space. The standard 

whole brain MNI305 template was constructed by registering 305 scans using 9-parameter 

linear transformation. The next generation template released by MNI, popularly known as the 

International Consortium of Brain Mapping (ICBM152) template (Evans et al., 1993), was 

constructed from co-registration of images from 152 subjects. Templates built in stereotactic 

coordinate systems aid inter-subject comparisons and alleviate the complexities arising from 

structural variability between individual brains. The historical evolution of different whole 

brain templates using linear and non-linear registration has been well documented by Evans 

et al. (2012). The ICBM152 template serves as the registration target in analysis tools such as 

SPM (Ashburner et al., 1999) and FSL (Smith et al., 2004). The template, however, has poor 

signal to noise ratio (SNR) and lacks anatomical detail to distinguish the subregions of the 

cerebellum. Recently, unbiased non-linear age-specific templates for children in various age 

categories have been made available by Fonov et al. (2011) along with their corresponding 

tissue priors. These templates have higher SNR and increased resolution compared to the 

classic ICBM152 template.  

 

Parcellations on an average template image serve as a map of the spatial arrangement of 

anatomical structures of the brain and is called an atlas. Maximum likelihood label maps 

indicate the label that occurs in a specific voxel in the largest number of subjects during atlas 
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construction, while probabilistic maps provide a measure of the uncertainty of a specific label 

assignment. The CAPCA18 atlas used in our study provides labels for 16 distinct cerebellar 

structures, 8 in each hemisphere, namely lobules I-V, VI, Crus I, Crus II, VIIb, VIII, IX and 

X.  

 

Label propagation refers to the process of transferring labels from an atlas to a test image 

following some sort of spatial transformation and is highly dependent on the registration 

framework that is used to initially establish the spatial correspondence. Registration 

algorithms (Woods et al., 1993; Ashburner et al., 1999; Fischl et al., 1999; Jenkinson and 

Smith 2001; Joshi et al., 2004; Postelnicu-Zöllei et al., 2009) differ primarily in their 

objective function, the optimization method used, the degrees of freedom, and the number of 

parameters used. Registration methods are primarily classified into volume- or surface-based 

where the former uses intensity differences and the latter uses topological properties and 

geometric features of the cortex to guide the registration.  A recent study comparing surface- 

and volume-based registration (Ghosh et al., 2010) clearly demonstrated the superior 

performance of surface-based approaches. The spatial transformation generated from 

registration is then applied to the label map to propagate the labels to the test image. The 

accuracy of the resulting segmentation decreases if the anatomy of the atlas is very different 

from that of the test subject. In such cases, one possible solution is to use multi atlas based 

segmentation methods that better capture the underlying anatomical variation by using 

multiple registrations. The multiple atlas concept was originally demonstrated for segmenting 

microscopy images of bee brains (Rohlfing et al., 2004).  Label propagation in human brain 

images using multi atlas majority voting (MAMV; Heckemann et al., 2006) is achieved by 

registering several atlases to the test image and then combining the resulting segmentations to 

obtain the final segmentation of the test image. Recently, a multi atlas generative model 
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(MAGM) approach (Iglesias et al., 2012; Iglesias et al., 2013) was used to apply the final 

enhanced segmentation of the test subject. This method is independent of the intensities of 

the training images and exploits the relationship between the volume of the test image and its 

propagated labels. Previous studies have shown that multi atlas approaches increase the 

accuracy and robustness of cortical segmentations with label fusion (Wang et al., 2013; 

Asman et al., 2013). 

 

The cerebellum, which is much smaller than the cerebrum, is functionally heterogeneous with 

different topological regions responsible for various sensory, motor, cognitive, and affective 

processing (Stoodley and Schmahmann, 2009; Schlerf et al., 2010; Strick et al., 2009; Makris 

et al., 2005). The cerebellar atlas in MNI coordinate space developed by Schmahmann et al. 

(2000) details the gross morphology of the cerebellum and its arrangement of fissures. 

Diedrichsen et al. (2009) constructed a probabilistic atlas of the cerebellum and brainstem, 

popularly known as the Spatially Unbiased Infratentorial Template (SUIT), by warping 

images of 20 healthy adults into MNI space. This probabilistic atlas provides the probability 

with which labels occur at each spatial location as opposed to segmentation per se. Recently, 

cerebellar segmentation in adults using SUIT was compared with multi object deformable 

models that were custom built from manual delineations of cerebellar structures (Bogovic et 

al., 2013). Performance of the latter was shown to be superior compared to both SUIT atlas-

based segmentation and multi atlas approaches. 

 

To our knowledge, the performance of different automated label propagation methods has not 

been established for cerebellar segmentation. The present study aims to compare the accuracy 

of cerebellar segmentation in 35 adult test subjects using three different label propagation 

methods applied to the CAPCA18 atlas that was constructed from manual tracings of 
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cerebellar structures in 18 healthy pre-adolescents. Volumes are compared in the 16 

cerebellar regions, 8 in each hemisphere. Finally, we evaluate the segmented output using the 

Dice coefficient and the modified Hausdorff distance metric in 3 representative test subjects 

compared to manual segmentations by an expert neuroanatomist (CW). 

 

3.2 Materials and Methods 

CAPCA18 Atlas 

The details of the CAPCA18 atlas construction are provided in the previous chapter. Briefly, 

high resolution T1-weighted images were acquired on a 3T Allegra MRI scanner (Siemens, 

Erlangen, Germany) in the sagittal plane using a magnetization-prepared rapid gradient echo 

(MPRAGE) sequence in 18 healthy pre-adolescent children (mean age 11.8±1.2 years, range 

9-13 years, 6 males) who had been recruited as control subjects for on-going studies on fetal 

alcohol spectrum disorders (Jacobson et al., 2011) in Cape Town, South Africa. The cerebella 

of the 18 children were segmented into 16 regions, 8 in each hemisphere, by an expert 

neuroanatomist (CW) using Multitracer software (Woods et al., 2003) according to the 

nomenclature defined by Schmahmann et al. (2000). Each cerebellar region includes some 

white matter due to the fine branching structure of the cerebellar white matter making it 

difficult to exclude during the delineation process. Each child’s brain was warped to the age-

appropriate NIHPD asymmetric template using the SPM5 unified segmentation approach. 

Co-registered images were averaged to generate an average cerebellar image in normalised 

space. Further, the same transformations were applied to the individual lobular masks and the 

cerebellar masks of each subject, which were then averaged to construct the probabilistic 

atlas and the maximum likelihood label maps in the NIHPD template space.  
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MRI protocol for adults (test dataset) 

High resolution MRI scans were acquired on a 1.5T Vision system (Siemens, Erlangen, 

Germany) for 35 adult subjects as part of studies being conducted at the Washington 

University Alzheimer’s Disease Research Center (ADRC) in St. Louis. T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) scans were obtained according to the 

following protocol: two sagittal acquisitions, FOV = 256, matrix = 256 x 256, resolution = 

1x1x1.25 mm3, TR 9.7ms, TE 4ms, flip angle 10 degrees, TI 20ms, TD 200ms. The two 

acquisitions were averaged to increase the contrast-to-noise ratio. Descriptions of these 

images have appeared in prior publications (e.g., Buckner et al., 2004; Fotenos et al., 2005).  

             

Label propagation using direct warping  

Skull stripped intensity normalised images of the test subjects were co-registered to the 

average image generated from the co-registered training images. The image volume of each 

test subject was registered to the target image using a two-step volumetric registration. First 

we applied linear registration using FLIRT (http://fsl.fmrib.ox.ac.uk/fsl/), followed by non-

linear volumetric (MRI_NL_ALIGN) registration in Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/fswiki). The deformation field was geometrically driven 

and diffused to the volume based on elasticity to align the volumetric images (Postelnicu-

Zöllei et al., 2009). 

 

The registration yields a deformation from each test image to the atlas. By applying the 

inverse transformation, the maximum likelihood label map of the CAPCA18 atlas was 

warped to the native coordinate system of the test image and could be used directly to 

propagate individual labels to the test subject. Figure 3.1 illustrates the steps involved in 

http://fsl.fmrib.ox.ac.uk/fsl/
http://surfer.nmr.mgh.harvard.edu/fswiki
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generating the automated segmentation of the cerebellar structures for a test subject using this 

direct warping approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flow chart showing the steps involved in propagating cerebellar labels onto the image of a test 
subject using direct warping. 

 

Label Propagation using multi atlas segmentation 

The images of each of the training subjects and their respective label maps generated from 

the manual tracings are collectively referred to as the multi atlas. 

 

The images of the training subjects were processed using Freesurfer software 

(http://surfer.nmr.mgh.harvard.edu/). The processing steps included skull stripping (Ségonne 

et al., 2004), intensity normalisation (Sled et al., 1998), cortical and sub-cortical structure 

segmentation, surface generation, registration to the spherical atlas, and cortical thickness 

calculation (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999). The surfaces were 

superimposed on the normalised T1 weighted images and visually assessed for correctness of 

gray-white and gray-CSF boundaries. White matter boundaries were edited manually to 
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ensure the correct surface generation. Freesurfer quality control procedures are described in 

detail at the following link 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData. The surfaces of 

the training subjects were edited to aid the surface registration and to achieve better 

alignment of the folding patterns between the brains of different subjects.  

 

After pre-processing, the surfaces from the training subjects were used as the moving sources 

and the surfaces of the test subjects as the targets for combined volume- and surface-based 

(CVS) registration. Every training subject’s surface was registered to each test subject’s 

surface (i.e. 18x35 registrations). The robust CVS registration tool (Postelnicu-Zöllei et al., 

2009) achieves good correspondence between cortical folding patterns and between the 

subcortical structures of the brain. The method uses the geometric information from the warp 

and incorporates volume registration using Navier elasticity. The resulting non-linear 

displacement fields are used to register both cortical and subcortical structures. We 

performed the complex registration on a high performance computer cluster facility which 

has 127 batch nodes, two quad-core Xeon 5472 3.0 GHz CPUs and 32 GB RAM. All nodes 

were running the 64-bit version CentOS 6. The pair-wise registration between the training 

and test surfaces yielded 630 (18x35) registered outputs and their associated deformation 

morphs. 

 

To obtain the final segmentation of each of the 35 test subjects, we combined the multiple 

registered atlases resulting from the CVS registration (volume resampled output) of the 

training atlases. Two different label propagation techniques were used: multi atlas majority 

voting (MAMV) (Heckemann et al., 2006) and multi atlas generative model based label 

propagation (MAGM; Iglesias et al., 2012).  Figure 3.2 shows a flow chart of our processing 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
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pipeline for multi atlas based segmentation.  

 

 
 

 

Figure 3.2 Flow chart showing the processing pipeline for multi atlas based segmentation. Every image in the 
training set is registered to the individual test subject’s image, whereafter the resulting deformation is applied to 
each training atlas. Two different label fusion strategies are used to propagate labels from the registered training 
atlases to the image of the test subject. 
 

 

Majority voting assigns a label to each voxel of the test image by determining the label that 

occurs most frequently in the corresponding voxel on all the registered training atlases. All 

training images are weighted equally and it is assumed that each training atlas represents an 

accurate segmentation.  The effects of independent noise associated with a particular label are 

reduced using this approach.  

 

The generative model approach uses probabilistic modelling of segmentations from a set of 

segmented images to generate a second set of final segmentations. The model is independent 

of the intensity of the training images. The intensity of the test image and the respective 

deformed outputs are used to model the final segmentation of the test image. The 

mathematical formulation of the model was derived from the implementations by Sabuncu et 

al. (2010) and Iglesias et al. (2012).  The model includes a single model parameter β, where β 
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= 0 treats each voxel independently, β =  corresponds to a single label map, and β = finite 

value yields the combined output. Typically, in our experiments we used β=0 to obtain the 

fused output from MAMV and β=0.3 for MAGM. 

 

Validation  

 

Spatial overlap 

We validated the segmentation in three randomly selected test images using the Dice 

coefficient as a measure of spatial overlap between automatic segmentations using the three 

different label propagation approaches and manually traced regions. The Dice coefficient 

(Dice et al., 1945) is given by 

       L=1, 2, ... 16, 

where M represents the manual segmentation, T represents the automated segmentation of the 

test image, and L represents the number of labels, i.e. the number of distinct segmented 

regions. The three test images were manually traced by the same expert neuroanatomist (CW) 

who performed the manual tracings of the training images. Further, lobular volumes were 

computed and compared in the three test subjects for segmentations generated using the 

different label propagation methods and manual tracings. Analysis of variance (ANOVA) 

was used to examine volumetric differences between the different methods.  

 

Modified Hausdorff Distance 

The modified Hausdorff distance computes similarity of shapes (Dubuisson and Jain, 1994) 

and was used to compare for the same three test subjects automated segmentations achieved 

using the three different label propagation approaches with manual segmentations.  

denotes the modified Hausdorff distance between the manual and automated segmentations, 
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 is the distance of the manually traced surface M from the automated segmentation 

surface T, and  is the distance of the surface T from the surface M. The modified 

Hausdorff distance is given by: 

 

 , where 

 and 

 

 

 is the number of elements in the set. Typically, the distance is calculated from the 

boundary voxels of M to its nearest boundary voxel in T and vice versa for individual label 

volumes. If the boundaries of segmentations match, the distance will be zero and will 

increase as the differences in the boundary increase.  

 

Validation using STAPLE  

The structural segmentations of the 35 test images resulting from the three different label 

propagation methods were further compared using the Simultaneous Truth and Performance 

Level Estimation (STAPLE) algorithm (Warfield et al., 2004). The STAPLE algorithm 

effectively estimates the probabilistic true segmentation and also measures the performance 

of the algorithm/rater, given the input segmentations from the different rater or segmentation 

algorithms of an image. It uses expectation maximization for estimating the true 

segmentation and determines the performance parameters of the results from a collection of 

segmentations and a prior model. The Dice coefficient was recorded using STAPLE.   
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3.3 Results 

Table 3.1 presents average lobular volumes for three test subjects using each of the label 

propagation methods compared to manual tracing. Other than lobules left I-V and left VIIb, 

volumes using the four different methods are similar. In left I-V, direct warping yields 

inflated volumes, while volumes of VIIb were smaller for all the automated segmentation 

methods compared to manual tracing. 

 

Spatial overlap and modified Hausdorff distances 

Figure 3.3 shows box-and-whisker plots comparing the Dice coefficients and modified 

Hausdorff distance metrics for automated segmentations using the three different label 

propagation approaches, each compared to manual tracings, in three test images for right and 

left cerebellar lobules. Except for lobule VIIb, Dice coefficients are at least as good or better 

for the two multi atlas approaches compared to direct warping. Except for lobule VIIb, 

Hausdorff distances are lowest for MAGM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Box and whisker plots of Dice coefficients (top row) and Hausdorff distances (bottom row) in 
three randomly selected test subjects for 8 structures per cerebellar hemisphere for automated 
segmentations using three different label propagation strategies, each compared to manual tracings. (1): 
Direct warping (magenta); (2): multi atlas majority voting (MAMV; green); (3): multi atlas generative 
model (MAGM; blue). 
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Table 3.1 Comparison of average lobular volumes for three randomly selected test subjects obtained using 

manual tracing and the three different label propagation methods.  

Label 
ID 

 
Structure 
names 

                             Segmentation Method 

F 

 
 

p 

      

  
  Manual 

Tracing 
Direct 

warping 
MAMV 
Lobular 

MAGM 
Lobular   

  

  
  Lobular 

volumes 
Lobular 
volumes 

volumes volumes 
  

  

                

    (mm3) (mm3) (mm3) (mm3)     
Left Hemisphere   

1 I-Va  4506     (577)   5892    (939)   4410   (188)    4784   (151)     4.4*
 0.04 

2 VI  7078     (428)   5785  (1354)    5716   (596)   6411   (537)   1.8 0.2 
3 Crus I 11520  (2732) 13890  (1981) 11353 (1816) 11709 (1886)   0.9 0.4 
4 Crus II   8148  (2464)   9889    (535) 11185   (790) 10596 (1248)   2.4 0.1 
5 VIIbb   4322    (404)   3239    (217)   2628     (76)   2908   (261)      23.2**

 0.0002 
6 VIII   7357    (830)   7949    (998)    7077   (124)   6601   (622)   1.8 0.2 
7 IX   2892    (809)   4283    (546)   3778   (463)   3883   (625)   2.6 0.1 
8 X     482    (121)     498    (102)     367     (86)     435     (78)   1.1 0.4 

Right Hemisphere   
9 I-V   6227  (1011)   6599    (978)   5288    (637)   5695    (458) 1.5 0.2 

10 VI   7744    (300)   6512  (1704)   5546  (1299)   6286  (1092) 1.7 0.2 
11 Crus I 11804  (3133) 14408    (971) 11673    (419) 12217    (512) 1.7 0.2 
12 Crus II   8452  (2278) 10071    (323) 11148    (610) 10846    (804) 2.7 0.1 
13 VIIb    3478   (521)   3922    (217)   2762    (887)   2627    (699) 2.8 0.1 
14 VIII   7096   (261)   7350    (776)   6076    (687)   6008    (541)   3.9† 0.05 
15 IX   4236   (787)   5962    (572)   5422    (836)   5604    (770) 2.8 0.1 
16 X     446   (100)     480      (90)     436      (83)     579    (122) 1.2 0.3 

Values are Means (standard deviations) †p<0.1; *p<0.05; **p<0.001; ***p<0.0001 
aDirect warping > manual (p=0.01), Direct warping > MAMV (p=0.01), Direct warping > MAGM (p=0.04) 
bManual > Direct warping (p=0.001), Manual > MAMV (p<0.001), Manual > MAGM (p<0.001) 

 

 

Visual Assessment of lobule I-V boundaries for different segmentation approaches 

In Figure 3.4 is shown superimposed on an intensity normalized test image the contours from 

the three different label propagation methods and manual tracing (shown in blue) for left 

lobule I-V. The contours are shown on a coronal (top) and mid-sagittal (bottom) slice. 

Visually, differences between manual tracing (blue) and the multi atlas label propagation (red 

and white) contours are smaller. Direct warping (yellow) appears to overestimate the area by 

erroneously including voxels around the boundary of the cerebellum. MAGM produces the 

best results and is the only one of the automated methods that successfully excludes some of 

the finer white matter branches evident on the sagittal slice.  
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Figure 3.4 Boundaries for segmented left lobule I-V superimposed on an intensity normalised structural T1 
image on a single coronal (top) and sagittal (bottom) slice. The colour overlays indicate the boundaries obtained 
using the different segmentation methods: manual tracing (blue), direct warping (yellow), multi atlas majority 
voting (MAMV; red), and multi atlas generative model label fusion (MAGM; white). 
 
 
In Figure 3.5 we compare the area of left lobule I-V as per the different segmentation 

methods on all the sagittal (top) and coronal (bottom) slices on which it appears in a single 

test subject. We observe that in most of the slices, except near the edges of the structure, the 

difference in area between manual tracing and direct warping tends to be larger than for the 

two multi atlas label propagation methods.  
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Figure 3.6 shows for two different coronal slices (a and b) of one test subject the maximum 

likelihood label maps and their associated boundaries as generated using direct warping (left), 

MAMV (middle), and MAGM label fusion (right). While all three methods achieved good 

spatial overlap with the cerebellum as a whole, it is evident that the transverse sinuses 

(indicated by the yellow arrows) are erroneously included as part of the cerebellum only in 

the direct warping segmentation. By contrast, the two multi atlas methods that benefit from 

additional information related to inter-subject variability correctly exclude the sinuses. The 

red arrows indicate regions where segmentation using MAGM label fusion generates 

contours that more closely follow the cerebellar gray matter boundary than the other two 

methods. 
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Figure 3.5 Bar plot of the area of left lobule I-V for the different segmentation methods on 
different sagittal (top) and coronal (bottom) slices: Manual segmentation (Blue); Direct warping 
(Cyan); MAMV (yellow); MAGM (brown).  
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Figure 3.6 Maximum likelihood label maps and their associated lobular boundaries for two 
different coronal slices (a and b) superimposed on normalised T1 images of one test subject. 
Segmentations were generated using direct warping (left), multi atlas majority voting (MAMV; 
middle), and multi atlas generative model label fusion (MAGM; right). The look up table and 
colours representing each structure are listed in Figure 2.2. The visualization and the colour 
overlay was generated using Freeview software (http://www.nmr.mgh.harvard.edu/martinos). 
Yellow arrows indicate the transverse sinuses that are erroneously included in Crus I using direct 
warping segmentation. The red arrows indicate areas where MAGM contours follow the 
cerebellar gray matter boundaries more closely.  

 

Direct Warping Multi atlas majority voting Multi atlas generative 

model 

http://www.nmr.mgh.harvard.edu/martinos


71 
 

 

 

Figure 3.7 presents the Dice coefficient in terms of box and whisker plots between the ground 

truth estimate from STAPLE and label propagated segmentations using the three different 

methods for the 35 test subjects. The STAPLE method allows one to assess overall 

performance of segmented outputs in the absence of manual delineations for all subjects. 

MAGM consistently produces the highest Dice coefficients across all cerebellar lobules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Box and whisker plots for right (top) and left (bottom) cerebellar lobules of Dice 
coefficients comparing the STAPLE truth estimate for 35 test subjects to segmentations obtained 
using 1. direct warping (magenta); 2. MAMV label propagation (green); and 3. MAGM label 
propagation (blue).  
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3.4 Discussion 

 

In this work we present results for three different label propagation strategies, namely direct 

warping, MAMV, and MAGM label fusion, to automatically segment 16 cerebellar lobules in 

35 adult test subjects using our CAPCA18 atlas. For three subjects that had been manually 

traced, Dice coefficients that assess spatial overlap for each cerebellar structure with the 

manually traced ground truth were typically higher for the two multi atlas approaches, while 

Hausdorff distances that assess deviations in shape from the ground truth were lowest for 

MAGM. Further, it was shown for lobule I-V that the segmented areas on nearly all slices 

from the two multi atlas approaches are more similar to those computed using manual 

tracing, while direct warping consistently overestimates the area. Dice coefficients comparing 

segmentation results in all 35 test subjects with the STAPLE truth estimate consistently 

yielded higher values for the two multi atlas approaches, with the highest values for MAGM.  

 

These results demonstrate the power of multi atlas label propagation strategies that are able to 

account for the underlying anatomical variability between subjects. The accurate alignment of 

cortical surfaces that is achieved through the pairwise combined volume and surface based 

registration helps to capture all possible variations among the training subjects. One 

advantage of multi atlas methods is that they are less sensitive to age related differences, 

which might otherwise result in poor segmentation accuracy in situations where the ages of 

the test subjects are very different to those of the training subjects used in creating the atlas. 

This is evident in the high Dice coefficients (>0.9 in all lobules except lobule VIIb, >0.8 in 

lobule VIIb) achieved in the present adult data set when comparing segmentations to the 

STAPLE truth estimate, considering that the atlas was created from 18 pre-adolescent 

children. 
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These results also serve to demonstrate that multi atlas approaches (especially MAGM) work 

well in situations where the training and test data were acquired using different sequences on 

different scanners. The method does not depend on the similarity of intensities across the 

atlases and the test volume, but on the consistency of intensities within regions in the test 

volume. This quality makes the method well suited to parcellation of cerebellar data acquired 

using different MR modalities.  

 

In the three test subjects for whom gold standard manual tracings were available, the 

segmentation accuracy was worse for the two multi atlas approaches than direct warping only 

in lobule VIIb. Anatomical variability in this region and the intersection of white matter 

fibers posterior to the neighbouring structure poses difficulties in determining the border 

voxels of this structure and may contribute to inaccuracies in this area. Further, lobule VIIb is 

a small region sandwiched between two larger lobules, Crus II and lobule VIII. In this region, 

the surface to surface distance metrics for the two multi atlas approaches are high, as might 

occur due to differing boundaries across the entire structure, suggesting that the entire region 

may be displaced.  

 

3.5 Conclusion  

In this paper we have presented and compared three different label propagation strategies for 

automatic cerebellar segmentation using the CAPCA18 atlas. Multi atlas based approaches 

were shown to consistently perform better than direct warping, both in terms of higher Dice 

coefficients and reduced Hausdorff distances.  
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Abstract 

Multi atlas based segmentation has recently become popular in medical image segmentation. 

Atlas based segmentation framework allow one to incorporate prior segmentation knowledge 

by exploiting spatial information gathered via registration of images from multiple previously 

analyzed subjects. However, limited knowledge is available about spatial locations that 

exhibit large inter-subject variability. In this study, we present an optimized pipeline to obtain 

automated cerebellar segmentations of 35 test subjects using manual delineations of 28 

cerebellar structures in 20 training subjects and two different multi atlas label fusion methods. 

We assess the accuracy of our segmentation for the 20 hemispheric cerebellar regions in the 

test data using simultaneous truth and performance level estimates and Dice coefficients of 

spatial overlap. We also evaluate segmentation accuracy using leave-one-out cross-validation 

in our training data for which gold standard manual tracings are available. The training and 

test data were collected in two different laboratories on two different scanner platforms. 

Mean Dice coefficients in the test subjects were greater than 0.89 in all regions except lobules 

VIIb, VIIIa, VIIIb, and X. 
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4.1 Introduction 

 

Magnetic Resonance images (MRI) require a reliable pipeline to generate segmentations of 

various brain structures for quantitative analysis. Typically, a series of steps are performed 

before one can analyse the structure of interest (Pierson et al., 2002; Gouttard et al., 2007; 

Powell et al., 2008; Diedrichsen et al., 2009; Bogovic et al., 2013). These include brain 

extraction, also known as skull stripping, which is the process of removing non-brain tissue 

(Shattuck et al., 2001; Smith et al., 2002; Segonne et al., 2004; Sadananthan et al., 2010) and 

dura from the images, followed by intensity normalisation (Sled et al., 1998), bias correction, 

spatial normalisation and tissue classification (Ashburner and Friston 2005). 

 

Atlas-based techniques have been used for the segmentation of various structures on images 

acquired from a range of non-invasive imaging modalities (Gouttard et al., 2007; Shattuck et 

al., 2008). These approaches are supervised methods where spatial priors are used to guide 

the segmentation. Conventionally, a single atlas image that comprises different labelled 

structures is used to generate the segmentation on an unknown (test) image. However, this 

method allows no control over errors that arise from poor registration when the test image is 

very different to the atlas image (Aljabar et al., 2009), which may result in incorrect labels 

being assigned to voxels. 

 

Multi atlas based approaches rely on independent pairwise registrations between every atlas 

and the individual test image. Deformed segmentation labels are generated by warping every 

atlas image to the test image. The warped label maps arising from every deformed 
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segmentation act as individual classifiers and the final segmentation of the test subject is 

obtained after label fusion. One widely used fusion technique is majority voting label fusion. 

Multi atlas based label fusion was first applied to segmentation of brain structures 

(Heckemann et al., 2006). A weighted voting approach has been demonstrated for 

segmentation of cardiac structures (Isgum et al., 2009), while a more sophisticated variational 

expectation maximisation approach that constructs a generative model (Iglesias et al., 2013) 

has been used to fuse segmentations from multiple atlases in individual structures. These 

established approaches have not been evaluated for segmentation of cerebellar structures. To 

date, there are no cerebellar parcellations available in Freesurfer 

(http://surfer.nmr.mgh.harvard.edu) which is a popular tool for automatic whole brain 

segmentation based on probabilistic information. We propose to design a framework using 

manual labels to introduce cerebellar parcellations in the Freesurfer software. 

 

The cerebellum is located at the rear of the brain, underlying the occipital and temporal lobes 

of the cerebral cortex (Figure 4.1). Although the cerebellum accounts for approximately 10% 

of the brain’s volume, it contains over 50% of the total number of neurons in the brain. The 

cerebellum consists of four major lobes, namely the anterior lobe (lobules I-IV and V), the 

superior posterior lobe (lobules VI and Crus I), the inferior posterior lobe (Crus II and lobules 

VIIb, VIIIa, VIIIb and IX), and the flocculonodular lobe (lobule X). These regions contribute 

to various functional domains. The lobular subdivision helps to better understand the 

structure and function of the cerebellum.  Although the majority of the cerebellar outputs are 

to the motor system of the brain, it is also involved in other higher order brain functions like 

cognitive, sensory, affective and effective processing (Stoodley and Schmahmann, 2009; 

Schlerf et al., 2010).  

http://surfer.nmr.mgh.harvard.edu/
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Parcellation of the cerebellum into different sub divisions has proved to be useful to study 

quantitative morphological characteristics of cerebellar structures (volumetry) and to achieve 

improved anatomical localization and inter-subject coregistration in functional imaging 

studies (Makris et al., 2005; Diedrichsen et al., 2009). Automated segmentation of the 

cerebellum and its structures remains difficult due to its highly convoluted lobules, small 

volumes of some structures (Buckner et al., 2011), and comparatively different intensity 

distribution of cerebellar gray and white matter compared to the cerebrum (Datta et al., 2009; 

Bogovic et al., 2013).  

 

The Schmahmann cerebellar atlas was the first to depict the gross morphology of the 

cerebellum with both fissures and individual cerebellar lobules. Later a probabilistic 

representation of the cerebellum comprising 28 parcellations from both hemispheres was 

constructed from 20 healthy subjects by affine registration to the ICBM152 template, 

followed by normalisation to the colin27 template (Diedrichsen 2006). The average 

deformation warp from the colin27 template to individual subjects resulted in the spatial 

unbiased infratentorial cerebellar template (SUIT). However, the segmented output using the 

SUIT atlas frequently suffers from inclusion of the transverse sinus and part of the bone 

marrow (Diedrichsen et al., 2009).  

 

The primary aim of this study was to develop a method to achieve more accurate automated 

parcellation of cerebellar structures using a multi atlas based approach. More specifically, we 

wanted to (1) improve the segmentation accuracy of individual cerebellar hemispheric 

structures compared to a single atlas approach, (2) quantitatively evaluate our output 
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segmentation accuracy in test subjects using simultaneous truth and performance level 

estimates (STAPLE), and (3) perform leave one-out cross validation of our training subject 

segmentation to compare manual and automated segmentations. To obtain feasible functional 

localisation, the automatic segmentation algorithm should produce accuracy comparable with 

manual segmentation performed by an expert neuroanatomist. The major contribution of this 

work is the construction of a multi atlas segmentation pipeline for cerebellar structures and its 

evaluation using two different datasets. To the best of our knowledge this study is one of only 

a few studies to evaluate automated cerebellar segmentation using a multi atlas based 

approach.  

 

4.2 Methods 

Training and Test Data Sets 

High resolution structural T1-weighted images from two different centers were used in this 

study. The training data set (N=20) was acquired on a 3T Philips Intera system using an 

MPRAGE sequence with field of view 256x256x150 mm3 and 1x1x1mm3 resolution. The 

age range of the subjects was 22 to 45 years. The cerebella of the training data were 

previously manually delineated into 28 cerebellar structures for the construction of the SUIT 

atlas (Diedrichsen et al., 2006; Diedrichsen et al., 2009). In this paper we refer to the 28 

cerebellar segmentations as label maps. The 28 cerebellar structures and their corresponding 

colors for visualization are illustrated in Figure 4.1 and Table 4.1, respectively. 
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Figure 4.1   Three dimensional surface representations of cerebellar cortex in the posterior (left) and anterior 
(right) views. The middle image shows a two dimensional coronal slice with the manual tracings for one 
training subject.  

 

Table 4.1 The 28 cerebellar structures and their color representations as used in the current study 
 

 

Left I_IV 

 

Left CrusI 

 

Vermis VIIb 

 

Right VIIIb 

Right I_IV Vermis CrusI Right VIIb Left IX 

Left V Right CrusI Left VIIIa Vermis IX 

Right V Left CrusII Vermis VIIIa Right IX 

Left VI Vermis CrusII Right VIIIa Left X 

Vermis VI Right CrusII Left VIIIb Vermis X 

Right VI Left VIIb Vermis VIIIb Right X 

 

 

In this work, each training subject’s label map constitutes one atlas image in our multi atlas. 

Of the 28 available structures, we used the 20 hemispheric structures, excluding the eight 

vermal regions, to validate our multi atlas segmentation accuracy. The vermal regions were 

excluded due to their small volumes.  

 

Our test data set (to be segmented) comprised 35 high resolution T1 structural scans acquired 

using a magnetization prepared rapid gradient echo (MPRAGE) sequence on a 1.5T Vision 

system (Siemens, Erlangen, Germany) as part of ongoing studies at the Alzheimer’s Disease 

Research Center in St. Louis and have appeared in prior publications (Buckner et al., 2004; 

Fotenos et al., 2005).  The field of view is 256x256x224mm3 with 1x1x1.25mm3 spatial 

resolution. The age range of the subjects was 21.5 to 78.2 years. 
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Image pre-processing 

All training and test images were processed using the Freesurfer 

(http://surfer.nmr.mgh.harvard.edu) software package. The processed surfaces of the test 

subjects were already available. All except one of the image volumes from the training data 

set were successfully processed using the Freesurfer recon pipeline and their surfaces 

constructed. The image volume of the one subject for whom the recon pipeline failed was 

excluded from further analyses. For six of the training subjects the Freesurfer brain extraction 

pipeline included portions of dura and exterior regions of the skull that were subsequently 

corrected by introducing the graph cut (GCUT) algorithm into the pipeline (Sadananthan et 

al., 2010). Very few voxels remained that required manual correction after skull stripping.  

 

Registration  

After computing the gray and white matter surfaces of the training subjects, each training 

subject was registered to every test subject using non-linear combined volume and surface 

based registration (Postelnicu-Zöllei et al., 2009). This tool achieves better alignment of both 

the cortical and subcortical folding patterns between the two datasets. This step was 

performed using a multi-CPU cluster running Linux. The resulting deformation warps were 

then used to segment the test images.  

 

Multi Atlas labelling 

We used a multi atlas based approach to obtain the most likely segmentation of each test 

subject from the classifier set which comprised 19 deformed outputs. The intensity of the test 

image and the respective deformed outputs were used to model the final segmentation of the 
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test subject. Both multi atlas majority voting (MAMV) and multi atlas generative model 

based (MAGM) label fusion were used to obtain 28 cerebellar labels for each test subject 

(Iglesias et al., 2012). The parameterization of the model is based on iterative variational 

expectation maximization (Iglesias et al., 2013) and finally uses β to generate the most likely 

segmentation label. The parametrization value of β was adapted from a mathematical 

formulation that appeared in prior literature (Sabancu et al., 2010; Iglesias et al., 2012). In our 

work we used β=0 to obtain the fused output from MAMV and β=0.3 for MAGM. The model 

captures all possible prior knowledge about the spatial location, shape and extent of the 

individual atlas labels to model the posterior probability distribution of the output label on the 

test subject.  

 

Dice Coefficient 

The Dice coefficient (Dice et al., 1945) is a widely used voxel-wise evaluation measure that 

assesses the spatial overlap between two regions where 1 indicates perfect overlap and 0 

indicates no overlap. In our study we only computed Dice coefficients for the 20 hemispheric 

structures of the cerebellum (excluding the vermal regions) as previous studies have shown 

lower reliability in finer parcellated structures (Makris et al., 2005). The Dice coefficient is 

given by 

      Label=1, 2, ... 20 
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STAPLE evaluation 
 

For all the test subjects, we compared the multi atlas based segmentations for the 20 

hemispheric cerebellar structures achieved using MAMV and MAGM label fusion, 

respectively, with the probabilistic truth estimate derived from the Simultaneous Truth and 

Performance Level Estimation (STAPLE) algorithm (Warfield et al., 2004). The STAPLE 

algorithm effectively estimates the probabilistic true segmentation and also measures the 

performance of the algorithm given a set of input segmentations of an image. It uses 

expectation maximization to estimate the true segmentation and determines the performance 

parameters of the output from a collection of segmentations. For each of the 20 hemispheric 

cerebellar regions we computed the Dice coefficient comparing the automated segmentation 

using MAMV and MAGM, respectively, with the STAPLE estimate in the 35 test subjects. 

Leave-one-out cross validation (LOOCV) 

 

To further validate our multi atlas approach, we used LOOCV on the training dataset for 

which the ground truth segmentations were available. The LOOCV uses 18 atlases from the 

training dataset to determine the segmentation of the remaining training image volume. This 

was done iteratively for all 19 training subjects to yield automated final fused segmentations 

of each training subject using multi atlas segmentation based on the other 18 training data 

sets. Dice coefficients were computed to compare manual and automated segmentations for 

each subject.  

In order to assess the effect of varying the number of atlases used in the multi atlas 

segmentation, we also evaluated the accuracy of our output segmentation in our cross 

validation experiment when using a subset of only 14 atlases (instead of 18) from the training 

data set. 
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4.3 Results 

STAPLE evaluation 

In Table 4.2 we present for the 20 hemispheric cerebellar regions the mean Dice coefficients 

of spatial overlap between the STAPLE estimates and the automated segmentations using 

multi atlas majority voting and generative model based label fusion, respectively, in the 35 

test subjects. For both MAMV and MAGM label fusion, the mean Dice coefficient was 

greater than 0.89 bilaterally in the anterior lobe (I-IV and V), superior posterior lobe (VI and 

Crus I) and parts of the inferior posterior lobe (Crus II and IX). The remaining lobules of the 

inferior posterior lobe (VIIb, VIIIa and VIIIb) and the flocculonodular lobe (X) exhibited 

lower Dice coefficients. These results are presented as box-and-whisker plots in Figures 4.2 

and 4.4 for the 10 hemispheric left and right cerebellar structures, respectively. Dice 

coefficients achieved using the two different label fusion methods were compared using the 

Wilcoxon signed-rank test. Bilaterally in Crus I, CrusII, VIIIb and IX MAGM label fusion 

yielded higher Dice coefficients than MAMV. In contrast, the MAMV approach achieved 

better segmentation overlap with STAPLE bilaterally in I-IV and X, in left V and in right VI. 

 

Table 4.2 Mean Dice coefficients in 35 test subjects of spatial overlap between the STAPLE estimate and 
automated segmentations in 20 hemispheric cerebellar regions using multi atlas majority voting (MAMV) and 
multi atlas generative model based (MAGM) label fusion, respectively. 

 

Cerebellar 
Structure 

Mean Dice coefficient 
MAMV MAGM 

Left  Right Left  Right 
I-IV   0.93     0.93    0.91        0.92 
V   0.90        0.89    0.89       0.89 
VI   0.92       0.92    0.92       0.91 
Crus I   0.92        0.93    0.93  0.94 
Crus II   0.89        0.91    0.93    0.95 
VIIb   0.78        0.81    0.79       0.84 
VIIIa   0.86        0.87    0.84       0.84 
VIIIb   0.86        0.84    0.87      0.88 
IX   0.89        0.89    0.91   0.92 
X   0.77    0.64    0.73       0.54 
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Figure 4.2 Box-and-whisker plots of the Dice coefficients in 35 test subjects between the STAPLE estimate and 
segmentations achieved using multi atlas majority voting (MAMV; red) and generative model (MAGM; blue) 
label fusion for left hemispheric cerebellar structures. Asterisks indicate significant differences between MAMV 
and MAGM and the color of the asterisks indicate the method that yielded the higher Dice coefficient. *p<0.05; 

**p<0.01; ***p<0.001 

 

 

In order to give more insight into the distribution of different Dice coefficients across the test subjects 

in each of the cerebellar regions, we present in Figures 4.3 and 4.5 clustered plots of the Dice 

coefficients for the left and right hemispheric regions, respectively. Each color block gives the range 

of Dice coefficients in a subset of the test subjects. Each subset comprises 20% (i.e. 7) of the test 

subjects. This allows one to assess the number of test subjects in whom Dice coefficients were either 

above or below a certain threshold in each of the regions. It is evident from these plots that although 

mean Dice coefficients were low in lobules VIIIa and VIIIb, Dice coefficients were below 0.8 only in 

about 20% or fewer of test subjects, compared to lobules VIIb and X where low Dice coefficients 

were evident in 40% or more of test subjects. 
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Figure 4.3 Clustered plot representation of the Dice coefficients of spatial overlap with the STAPLE estimate 
for automated segmentations based on majority voting (1) and generative model based (2) label fusion for the 
left hemispheric cerebellar structures. 

  

 

 

 

Figure 4.4 Box-and-whisker plots of the Dice coefficients in 35 test subjects between the STAPLE estimate and 
segmentations achieved using multi atlas majority voting (MAMV; red) and generative model (MAGM; blue) 
label fusion for right hemispheric cerebellar structures. Asterisks indicate significant differences between 
MAMV and MAGM and the color of the asterisks indicate the method that yielded the higher Dice coefficient. 
*p<0.05; **p<0.01; ***p<0.001 
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Figure 4.5 Clustered plot representation of the Dice coefficients of spatial overlap with the STAPLE estimate 
for automated segmentations based on majority voting (1) and generative model based (2) label fusion for the 
right hemispheric cerebellar structures. 

 

Leave-one-out cross validation (LOOCV) - 18 fused segmentations 

 

Table 4.3 presents the mean Dice coefficients for the 19 training subjects of the spatial 

overlap between manual tracing and automated segmentation achieved with label fusion of 

the other 18 training subjects using MAMV and MAGM, respectively, in the 20 hemispheric 

cerebellar regions. Although the same regions as before (lobules I-IV, V, VI, Crus I, Crus II, 

and IX) achieved higher spatial overlap bilaterally, Dice coefficients of spatial overlap with 

the ground truth manual tracings were significantly lower than those obtained in the test 

subjects using the STAPLE validation (Dice coefficients > 0.67 here compared to Dice 

coefficients > 0.89 in the test subjects using STAPLE). In contrast to the results in our test 

subjects, where MAGM typically performed better than MAMV, the Wilcoxon signed-rank 

test revealed higher Dice coefficients in our training subjects using MAMV bilaterally in 

lobules V, VIIIb and X, as well as left VIIb. Only bilaterally in Crus 1 did MAGM yield 

higher Dice coefficients than MAMV. These results are illustrated in box-and whisker plots 

for left and right hemispheric cerebellar regions in Figures 4.6 and 4.7, respectively. 
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Table 4.3 Mean Dice coefficients in 20 hemispheric cerebellar regions of spatial overlap between manual 
tracings and automated segmentations using MAMV and MAGM label fusion, respectively, in 19 training 
subjects. 

 

Cerebellar 
Hemisphere 
Structures 

Average of Dice coefficient  
MAMV MAGM 

Left Right Left Right 
I-IV  0.77      0.78     0.76      0.78 
V  0.70   0.69     0.68      0.67 
VI  0.80        0.78     0.79      0.78 
Crus I  0.77        0.78     0.79    0.81 
Crus II  0.73        0.73     0.72      0.73 
VIIb  0.48   0.48     0.37      0.45 
VIIIa  0.56        0.57     0.58    0.52 
VIIIb  0.59    0.61     0.44        0.45 
IX  0.71        0.73     0.69      0.69 
X  0.62       0.69     0.48    0.58 

 

 

 

 

Figure 4.6 Box-and-whisker plots of the Dice coefficients in the 19 training subjects of spatial overlap between 
manual tracings and automated segmentations using multi atlas majority voting (MAMV; red) and generative 
model based (MAGM; blue) label fusion, respectively, for left hemispheric cerebellar structures. Asterisks 
indicate significant differences (Wilcoxon signed-rank test) between MAMV and MAGM and the color of the 
asterisks indicates the method that yielded the higher Dice coefficient. *p<0.05; **p<0.01; ***p<0.001.  
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Figure 4.7 Box-and-whisker plots of the Dice coefficients in the 19 training subjects of spatial overlap between 
manual tracings and automated segmentations using multi atlas majority voting (MAMV; red) and generative 
model based (MAGM; blue) label fusion, respectively, for right hemispheric cerebellar structures. Asterisks 
indicate significant differences (Wilcoxon signed-rank test) between MAMV and MAGM and the color of the 
asterisks indicates the method that yielded the higher Dice coefficient. *p<0.05; **p<0.01; ***p<0.001. 

 

 

Figures 4.8 and 4.9 show the distribution of the Dice coefficients for left and right 

hemispheric cerebellar regions, respectively, in subsets of the training subjects where each 

subset comprises 20% of the subjects.  

  

Figure 4.8 Clustered plot representation of the distribution of the Dice coefficients of spatial overlap with 
manual tracings for automated segmentations based on majority voting (1) and generative model based (2) label 
fusion, respectively, for the left hemispheric cerebellar structures. 
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Figure 4.9 Clustered plot representation of the distribution of the Dice coefficients of spatial overlap with 
manual tracings for automated segmentations based on majority voting (1) and generative model based (2) label 
fusion, respectively, for the right hemispheric cerebellar structures. 

 

Leave-one-out cross validation (LOOCV) - 14 fused segmentations  

To investigate the impact of altering the number of fused segmentations used to generate the 

output segmentation, we compared in the 19 training subjects the Dice coefficient of spatial 

overlap with manual tracings obtained in each hemispheric cerebellar region for automated 

segmentation based on 18 atlases with that obtained using 14 atlases. The 14 atlases were 

selected from the training dataset based on how clearly border pixels between cerebellar 

lobules could be identified visually. Figure 4.10 presents a comparison of the Dice 

coefficients in the 20 hemispheric cerebellar regions based on 14 (red) and 18 (blue) fused 

segmentations for MAMV (top row) and MAGM (bottom row), respectively. 

 

Using 14 or 18 fused segmentations in the 19 training subjects yielded similar values for the 

Dice coefficient in most regions using both label fusion methods. Only in VIIb and VIIIb 

were Dice coefficients somewhat higher using 14 atlases than with 18 atlases for MAGM 

label fusion – this difference was only significant in right VIIIb. Also, the pattern of the data 
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is consistent with that seen previously with lower Dice coefficients in posterior lobules VIIb, 

VIIIa, VIIIb and X.  

 

 

 

Figure 4.10 Comparison of Dice coefficients of spatial overlap in 19 training subjects of automated 
segmentations generated using either 14 (red) or 18 (blue) fused label maps with manual tracing in left (left) and 
right (right) hemispheric cerebellar regions. The top row shows results for MAMV and the bottom row for 
MAGM. Dagger and asterisks indicate significant differences (Wilcoxon signed-rank test) between using 14 and 
18 atlases and the color indicates the method that yielded the higher Dice coefficient. †p<0.1; *p<0.05. 

 

4.4 Discussion 

In this work, we compared automatic segmentation using MAMV and MAGM label fusion 

and assessed segmentation accuracy using two different approaches in both our training and 

test data sets, which were acquired at two different sites on different scanner platforms. 

Although both MAMV and MAGM in both datasets yielded good segmentation accuracy in 

all regions except lobules VIIb, VIIIa, VIIIb and X, Dice coefficients of spatial overlap with 
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manual tracings in the training data were typically lower than those achieved in the test data 

with STAPLE. Except for bilateral lobules I-IV and X, left V and right VI, MAGM achieved 

similar or better spatial overlap with the STAPLE estimate in the test subjects compared to 

MAMV. In contrast, MAGM performed better than MAMV only bilaterally in Crus 1 in the 

training data set. The fact that the volume of lobule X is smaller than the other cerebellar 

structures, penalizes the Dice coefficient and may account for the low spatial overlap 

achieved in this region.  

 

The cerebellum is a complex structure with fine parcellations. To date, only a few studies 

have used SUIT or manual delineation to perform cerebellar segmentation (Bogovic et al., 

2013; Makris et al., 2005; Pierson et al., 2002). A previous study using manual delineation 

emphasized the trade-off between achieving fine parcellations and reliability and finally used 

only 24 parcellation labels excluding the vermal structures of lobule VI, Crus I, Crus II and 

VIIb. In the present work, we similarly only evaluated our segmentation accuracy in the 20 

hemispheric regions, excluding the smaller vermal regions in which reduced accuracy is 

expected. 

 

It has previously been reported (Diedrichsen et al., 2009) that the subjects used in the SUIT 

atlas construction exhibited anatomical variability in Crus II, VIIb and IX. Notably, VIIb is 

one of the structures that consistently yielded low Dice coefficients in both the test and the 

training data sets in our study. Using both MAMV and MAGM, the structures located 

posteriorly in the cerebellum (VIIb, VIIIa, VIIIb, IX and X) generally achieved lower 

segmentation overlap compared to more anterior regions. Amongst these posterior regions, 

VIIb, VIIIa and VIIIb achieved the lowest Dice coefficients. Increased variability in posterior 
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lobules VIIb and VIIIb amongst different raters has also been reported by Bogovic et al. 

(2013). 

 

Poor contrast often makes it difficult to locate borders during manual delineation of 

cerebellar structures, so that tracings are based on relative spatial position and contours on 

adjacent slices rather than boundaries per se. We suspect that cerebellar structures VIIb, VIIIa 

and VIIIb in the training data may have suffered from these problems in the delineation phase 

resulting in poor segmentation accuracy in these regions. This may explain why MAMV 

generally performed better in the training data than MAGM, as MAMV exploits knowledge 

of relative position rather than voxel intensity distributions. Other studies (Artaechevarria et 

al., 2009) using multi atlas parcellation have also reported better performances for different 

methods (for example, majority weighting and local weighting) in different data sets. We also 

observed intensity variations among the training data, which may have contributed to the 

boundary estimation problem in the posterior cerebellar lobules. 

 

Using fewer atlases appears to have increased the Dice coefficient in the posterior lobules 

VIIb and VIIIb using MAGM. It may be that excluding from the training data set atlases in 

which border pixels between different anatomical regions were not clearly visible due to poor 

contrast, reduced the variability in these regions resulting in better segmentations and 

increased Dice coefficients.  

 

To date, very little work has been done on automatic cerebellar parcellation. Using available 

delineated images we developed an optimised pipeline to achieve reliable cerebellar 

segmentation. Although both the training and test data exhibited better and worse 



93 
 

performance in the same cerebellar regions, Dice coefficients were higher in all regions in the 

test data than the training data. This may be due to greater similarities between multi atlas 

based segmentation and the STAPLE estimates, compared to ground truth manual tracings 

that may vary significantly between subjects. Further, segmentation accuracy was reduced in 

the posterior cerebellar lobules, presumably due to greater inter-subject variability in these 

regions and poor contrast resulting in uncertainty in identifying boundaries during manual 

delineation. 

4.5 Conclusion 

In this paper we present a reliable method to achieve automated cerebellar segmentation 

using multiple atlases. The approach was implemented and evaluated using STAPLE in our 

test dataset and compared to manual tracings using leave-one-out cross validation in our 

training data. Although performance of MAMV and MAGM label fusion were generally 

similar, MAGM performed better in most regions in the test data and MAMV mostly 

performed better in the training data. Automated segmentation accuracy was generally poor 

in lobules VIIb, VIIIa and VIIIb and further work is needed to improve segmentation 

accuracy in these areas. 
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Chapter 5 

Discussion 

 

This thesis investigates different techniques and approaches to the development of a robust 

tool for segmentation of cerebellar structures on magnetic resonance (MR) images and 

different validation strategies, with the aim to develop a robust pipeline for use in large 

population imaging studies. The idea of constructing a pediatric cerebellar atlas and 

combining it with different label propagation methods to achieve cerebellar segmentation was 

one of the first of its kind and has rarely been addressed in the literature. In the previous 

chapters we presented the results obtained using these different methods for the segmentation 

of cerebellar structures in single or sequential images. The methods used were evaluated on 

various datasets collected from different imaging centres well-known for their work in MRI.  

 

Anatomical delineation of cerebellar structures 

 
Although manual delineation is extremely labour intensive, it is still considered the gold 

standard for volumetric assessment. Observer bias may, however, affect the results whenever 

a manual method is used. Prior studies of the cerebellum have emphasized the challenges 

associated with manual delineation of CrusII, lobules VIIb and VIII (Diedrichsen et al., 2009; 

Bogovic et al., 2013) and that raters should consider different image features like size, depth 

of fissures, location of the fissure, starting and ending points of the fissure, and lobule 

boundaries when deciding where to draw boundaries. Our expert rater completed manual 

tracing of individual lobules of a complete cerebellum in roughly 30-60 minutes. Intra-class 

correlation coefficients (ICCs) of individual lobules traced at two different times by the same 

tracer were computed to assess the variability of manual tracings.  
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Probabilistic maps of cerebellar structures 

 
Probability maps show the extent, shape and arrangement of regional cerebellar structures. 

The map also gives an indication of the certainty with which a given voxel can be assigned to 

a specific structure, based on the frequency with which that voxel was assigned to said 

structure in a set of images. The spatial distribution of our probability map reveals that 

individual structures superimpose accurately in medial regions, but that uncertainty increases 

as one moves laterally in the structures. CAPCA18 yielded 16 maximum likelihood labels 

derived from the maximum probability atlas.  

 

Quantitative evaluation of the CAPCA18 atlas 

Spatial overlap between automatically segmented cerebellar structures of a pediatric data set 

using the CAPCA18 atlas and manual tracings of the same data set yielded values above 70% 

bilaterally in lobules I-V, VI, crusI, crusII, VIII and IX, which compares favourably with 

previous results (Bogovic et al., 2013). Spatial overlap of regions derived from CAPCA18 

segmentation and manual tracing were consistently higher than spatial overlap of SUIT 

segmentation and manual tracing, with significant improvement in lobules I-V, VI, CrusI, 

VIII and IX cerebellar structures. It has been noted previously that direct comparison of 

quantitative segmentation results across publications are difficult and not always fair due to 

inconsistencies in the manual segmentation protocol, the quality of the imaging data,  and 

differences in the patient populations (Collins et al., 2010 ; Wang et al., 2012). Despite these 

limitations, the present work demonstrates that cerebellar segmentation using the CAPCA18 

atlas consistently achieved greater segmentation accuracy in the present pediatric data set 

than segmentation using the SUIT atlas. 
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Since there is no previous literature on cerebellar segmentation in children, our results help to 

establish baseline values for future studies. Furthermore, it helps to highlight the significant 

complexities associated with automatic segmentation of certain regions of the cerebellum. In 

prior studies of brain structure segmentation, Shattuck et al., (2008) suggest that variability in 

manual tracing data can also be used as a guide in determining the spatial overlap that would 

be considered acceptable from an automated segmentation. To this end, we have reported in 

all structures both Dice coefficients and ICCs obtained from inter- and intra-rater reliability 

tests. As expected, Dice coefficients and inter-rater ICCs were low and high in the same 

regions.  

 

When comparing the average percentage of gray matter volume occupied by each lobule with 

previously reported values in adults (Makris et al., 2005), we found that lobule IX occupied a 

relatively greater volume in children than adults, while lobules VI, VIIb and X were 

relatively smaller in children. Fonov et al. (2011) compared deformations when normalising 

to an adult template compared to a pediatric template and reported greater deformation when 

using an adult template for pediatric data as the shape and ratio of gray matter and white 

matter near the posterior lobe of the cerebellum differ between children and adults. We also 

observed in our data that segmentation using CAPCA18 yielded significantly better spatial 

overlap in lobule IX compared to SUIT, and that the volume of lobule IX obtained from 

SUIT segmentation (SUIT was developed using adult data) was significantly smaller than 

that obtained from manual tracing. It is possible in the future to address more directly 

questions relating to relative differences across cerebellar regions in different populations 

using Jacobian maps of deformation.  
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Comparing different label propagation methods to achieve cerebellar segmentation of 

an adult dataset 

 

The quality of the manual labels forces an upper bound on the quantitative metrics — an 

automatic procedure can't agree with a manual rater or the segmentation from the same rater 

at two instants cannot agree leaving subtle discrepancies and limiting the accuracy achievable 

by any automated method (Shattuck et., 2008; Collins et al., 2010 ; Wang et al., 2012). 

Keeping this in mind, we compared segmentation accuracy achieved using our CAPCA18 

atlas with three different label propagation strategies to manual segmentation in 8 structures 

per hemisphere in 3 adult subjects in terms of spatial overlap and modified Hausdorff 

distances (Figure 3.3). The distance metric indicated that multi atlas based generative model 

(MAGM) label fusion consistently performed better than the other two methods in all regions 

except lobule VIIb. Previous studies (Ghosh et al., 2010) in younger children have 

demonstrated that surface based registration introduce significantly less bias and that cortical 

alignment is better in surface based methods compared to volume based registration. Overall, 

combining deformable registration using cortical surfaces and multi atlas based label fusion 

improved accuracy compared to direct warping in our study. 

 

In chapter 4, we used the cerebellar parcellations that were available for 20 adult subjects that 

had been used in the construction of the SUIT atlas (Diedrichsen et al., 2009) combined with 

two different multi atlas based segmentation methods (MAMV and MAGM) to automatically 

segment the cerebella of 35 test subjects, in order to evaluate the accuracy achievable when 

using adult training data to achieve segmentation of adult test subjects (compared to the 

pediatric training data used in the previous chapter). We compared spatial overlap between 

automated segmentations in the test data and their STAPLE estimates, and performed leave 

one out cross validation to segment each training subject using the remaining training atlases 

for comparison with available manual tracings. Lobules I-IV, V, VI, crus I, crus II and IX 
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achieved spatial overlaps greater than 0.7. Differences in signal intensity in the training 

images negatively impacted accuracy in the posterior regions of the cerebellum for both 

MAMV and MAGM resulting in low spatial overlap in these regions.  

Furthermore, we examined the impact on segmentation accuracy of varying the number of 

training atlases (14 versus 18) used to generate the final fused image. In contrast to previous 

studies (Heckemann et al., 2006; Lötjönen et al., 2009), we found that Dice coefficients of 

fused outputs from 14 and 18 atlases were similar in most structures using both MAMV and 

MAGM. Unexpectedly, Dice coefficients were somewhat higher using 14 atlases than 18 

atlases in VIIb and VIIIb for MAGM label fusion – a difference that was only significant in 

right VIIIb. This bias might be due to the intensity difference mentioned previously or inter-

subject variability in this region and requires further investigation.  

 

Comparison of CAPCA18 and SUIT Atlases  

The SUIT atlas (Diedrichsen et al., 2009) developers mention the presence of high inter-

subject variability in the posterior lobes of the cerebellum, which one would expect to 

translate into lower segmentation accuracy in these regions. This may explain why in chapter 

4, which uses the manual tracings that were used in the construction of the SUIT atlas to 

segment 35 adult test subjects, spatial overlap in lobules VIIb, VIIIa, VIIIb and X are 

consistently lower than in other regions. In comparison, spatial overlap was low compared to 

other regions only in lobule VIIb when using the CAPCA18 atlas to segment the same 35 

adult test subjects. 
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Computational complexity and performance time 

Regardless of which multi atlas fusion method was used, the time to perform the combined 

volume and surface based registration between the atlases and the test image, was 

approximately 24 hours without parallelization. This time can be reduced by using 

parallelization. The time to generate the fused images was negligible compared to that 

required for the multi atlas registrations. It is worth emphasizing, however, that the additional 

computational investment significantly improved the resultant segmentation accuracy 

compared to direct warping. 

 

Limitations 

Labelling accuracy depends on the quality of the images, the pre-processing steps the images 

were subjected to, the registration algorithms used, the label propagation pipeline (atlas/multi 

atlas), and the methods used to evaluate performance. With regards the first three, we 

assumed that each data set comprised a group of normal individuals whose brain images were 

acquired, pre-processed, and labelled in a consistent manner.  

 

We are not aware of any comparisons in literature between the registration of interpolated 

versus non-interpolated (bias-field corrected and uncorrected, intensity normalized and non-

normalized, etc.) images. Images from the subjects used in the construction of the CAPCA18 

atlas were linearly interpolated using BrainVoyager before pre-processing in SPM. All of the 

images in this study were linearly interpolated twice, once to linearly register each brain to a 

template, and a second time to linearly register each source brain to a target brain in the 

template space, prior to nonlinear registration.  
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Regarding the registration methods themselves, each one has a similarity measure, 

transformation model, regularization method, and optimization strategy. A superior 

transformation model coupled with an unsuitable similarity measure, for example, would 

most likely lead to suboptimal results. We ensured that the output of individual registrations 

was precise to carry out the label propagation. In the context of combined volume and surface 

based registration, we followed the optimal parameter settings as per the advice from the 

author of the tool. 

 

Finally for the reslicing of the subjects label volumes, we used nearest neighbour 

interpolation to preserve the label values and ensure more consistent behaviour at the edges 

of individual structure. 

 

Future work  

We used images from healthy Cape Coloured children who were typically developing 

controls in a different study to construct the CAPCA18 atlas. The accuracy of automated 

segmentation using CAPCA18 was evaluated in a different group of healthy children from 

the same ethnic group. It would be interesting to assess the performance of the CAPCA18 

atlas both in children from different ethnic groups and in children in whom there may be 

some underlying pathology, such as children prenatally exposed to alcohol. Longitudinal 

studies of this nature would allow one to detect pathology-related changes over time rather 

than differences that may exist between the individual’s brain and the template. CAPCA18 

cerebellar parcellations can also be useful in accurately labelling cerebellar regions in 

functional MRI studies.  

The demand for tools for robust structural analysis of MR images continues to grow. Given 

the interest and prevalence of data from different populations from different laboratories, 
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large-scale multi-site experiments are becoming more routine and are producing more data 

than before. Multi-centre studies and meta-analyses of cerebellar structures using our 

CAPCA18 atlas has the potential to improve our understanding of the structure and function 

of the cerebellum and how it may be altered/affected in different conditions. 
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Chapter 6 

Conclusions 

 
This thesis presents the first tool for automated segmentation of the cerebellum on 3D MR images 

of children. The CAPCA18 atlas has been shown to provide precise and consistent output 

segmentations. In this work, we used improved registration algorithms and compared different 

multi atlas label fusion methods to obtain the final segmentations. The data generated reveals 

differences between adult and child cerebella.   

 

The evaluation of the proposed atlas demonstrates that it can be used with success in both 

pediatric and adult data sets. Segmentation accuracies are shown to be comparable or better than 

values previously reported using SUIT. 

 

Factors that may impact the cerebellar segmentation accuracy have been described and 

limitations highlighted. To date, the cerebellum is rarely studied. Construction of a user-

friendly tool using the CAPCA18 atlas combined with multi atlas label fusion techniques will 

help facilitate research on cerebellar structural abnormalities that accompany various 

conditions and can greatly advance our understanding of the role of this region, which is still 

not very well understood.  
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