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ABSTRACT
Continental magmatic arcs are among the most dynamic. geologic systems, and

documentation of the magmatic, thermal, and tectonic evolution of arcs is essential for
understanding the processes of magma generation, ascent and crustal growth. The
primary goal of this research is to determine rates of tectonic and magmatic processes in
the mid to deep crustal levels of the crystalline core of the Cretaceous North Cascades
arc. This region was selected for study because it preserves a -10-40 km depth-section
through the arc which allows an assessment of magmatic and structural processes over a
range of crustal levels. The relatively young age of the arc (ca. 100-45 Ma) and the
inherent high-precision of U-Pb zircon dates permit absolute uncertainties of <100 ky.

Meta-supracrustal rocks of the Cascades core record some of the highest pressures
obtained in the North American Cordillera. The timing of deposition and metamorphism
of the 9-12 kbar Swakane Gneiss constrain tectonic burial models and the timescales of
large crustal displacements within an arc setting. These models involve rapid burial (-7
mm/yr) of a fore- or back-arc basin from ca. 73-68 Ma. Nd isotopic signatures of all
meta-clastic terranes of the Cascades core reflect mixing of arc- and craton-derived
sediment, and the Swakane Gneiss has the most isotopically-evolved signature of these
terranes. Nd isotopic signatures of plutons that intrude the core lack evidence of melting
of this isotopically-evolved unit. 40Ar/39 Ar and U-Pb thermochronologic data define
regional cooling patterns that suggest mid- to Late Cretaceous exhumation coincident
with contraction and crustal thickening at the deepest levels of the core, followed by
Early Tertiary extension.

High-precision U-Pb geochronology reveals internal complexities inherent in the
construction of an intrusive magmatic system. The Mount Stuart batholith was
constructed over a ca. 5.6 Myr time period with four punctuated intervals of magma
emplacement, whereas the Tenpeak intrusion was emplaced in a more continuous process
over ca. 2.7 Myr time period. U-Pb zircon dates from two elongate intrusions, the Seven-
Fingered Jack and Entiat suites, suggest that they were constructed from multiple
magmatic sheets that were partially homogenized at the level of emplacement.

Thesis Supervisor: Samuel A. Bowring
Title: Professor of Geology
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INTRODUCTION

Much of the intermediate-composition continental crust exposed today is the

result of the interaction of subduction-related basaltic magmas with pre-existing crust in

continental magmatic arcs (CMAs). However, this dynamic tectonic setting and its deep

crustal evolution, in particular, are not well understood. Magma, volatiles, and heat are

transferred upward from the mantle through the "filter" of the continental crust, and the

timescales of the construction of magmatic intrusions dictate the rate at which heat is

transferred. Unraveling the magmatic and thermal history of CMAs is essential to

understanding the maturation of arcs and ultimately the generation of continental crust.

Recent advances in geochronological techniques have made it possible to address

questions related to the evolution of CMAs with high-precision temporal constraints. In

the following chapters, I have applied high-precision, U-Pb and 40Ar/39Ar geo- and

thermochronology and isotope geochemistry to document the tectonic, thermal and

magmatic evolution of the North Cascades arc. Although these studies focus on the

evolution of a narrow time-slice (ca. 100-45 Ma) through a single arc, the results will

form a basis for which other arcs can be compared.

The metamorphic and igneous core of the North Cascades (Cascades core)

records the Cretaceous to Paleogene history of magmatism, deformation and crustal

growth along a segment of the North American margin (Monger et al., 1982; Tabor et al.,

1989). The Cascades core lies at the southern termination of the Canadian Coast Belt,

and comprises Paleozoic to Mesozoic accreted terranes of oceanic and island-arc affinity

that have undergone amphibolite-facies metamorphism during the mid-Cretaceous

(Misch, 1966; Tabor et al., 1989; Tabor et al., 1987b). These terranes were sutured

together during final, NE-SW-oriented contraction as the Insular superterrane collided

with the Intermontane superterrane (Journeay and Friedman, 1993; Monger et al., 1982;

Rubin et al., 1990), and provide the framework in which ca. 96-45 Ma arc plutons

intrude.

The North Cascades arc presents a unique opportunity to study the tectonic,

thermal and magmatic evolution of CMAs for several reasons. Cretaceous plutons in the

North Cascades crystallized at -10 to 30 km depth, and thus provide a window into
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magmatic and tectonic processes at a large range of depths within the arc (Miller and

Paterson, 2001b). These plutons were also emplaced episodically from ca. 96-46 Ma,

permitting comparisons of magma emplacement styles, composition and geochemical

characteristics over the life of the arc. Excellent exposure in this >30 km depth-section

through the arc allows an analysis of the duration, episodicity and rates at which

individual intrusions were constructed as well as burial and exhumation processes at a

range of crustal levels. In addition, the relatively young age of the arc (-100-45 Ma)

combined with the inherent high precision of U-Pb zircon dates provide the potential of

resolving absolute ages with uncertainties of less than 100 ky. Finally, the

geochronologic and isotopic data presented here can be integrated with numerous

published structural, petrologic and geochemical studies.

Meta-supracrustal terranes of the North Cascades magmatic arc record some of

the highest pressures obtained in the North American Cordillera. However, the timing of

burial of these supracrustal rocks and high-pressure metamorphism are unclear. The

terranes that comprise the Cascades core are thought to have been assembled prior to the

emplacement of ca. 96-45 Ma plutons. This assumption fails to explain the origin and

tectonic affinity of the deepest level terrane, the 9-12 kbar Swakane Gneiss, because even

though this terrane is thought to have occupied a lower crustal position during mid-

Cretaceous magmatism, the gneiss does not contain arc-related plutons, unlike all other

terranes of the North Cascades. In Chapter 1, U-Pb analyses from detrital zircons from

the Swakane Gneiss indicate that its protolith was deposited as late as 72.5+0.6 Ma, much

younger than previous age estimates and well after the juxtaposition of the other arc

terranes that comprise the Cascades core. The Swakane protolith was then

metamorphosed at 9-12 kbar (Valley et al., 2003) and intruded by ca. 68 Ma

peraluminous leucogranite sheets that may represent partial melt derived from deeper

levels of the gneiss at near- to post-peak P-T conditions (Boysun, 2004; Boysun and

Paterson, 2003; Valley et al., 2003). These data suggest rapid burial of the Swakane

protolith to depths of ca. 35 km in <5 Myr (i.e. -7mm/yr), and a variety of tectonic

mechanisms that can account for this rapid burial are discussed in Chapter 1.

In Chapter 2, the spatial and temporal variability in Nd isotope signatures across

the Cascades core are discussed. New Nd data from 46 samples spatially distributed
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within the Cascades core are compared with existing Nd data from igneous rocks of the

Coast Belt to address questions related to crustal growth in this region and the influence

of input from the North American craton. Meta-clastic rocks have eNd values that lie

between those of arc-derived and craton-derived sediment reflecting a mixture of these

two sources. Nd values of the plutons that intrude that Cascades core reflect mixing of

mantle-derived melt and melt derived by anatexis of isotopically juvenile, lower crustal

terranes.

In chapter 3, new 40Ar/39Ar and U-Pb sphene and zircon data are integrated with

the existing thermochronologic database from the region to facilitate discussion of the

evolution of this laterally-segmented and variably-exhumed arc. Patterns of cooling are

interpreted as representing mid- to Late Cretaceous exhumation coincident with

contraction and crustal thickening at the deepest levels of the core, followed by Early

Tertiary extension. The combined Late Cretaceous and Tertiary extension resulted in the

exposure of heterogeneous crustal depths over short distances at the present-day surface.

These patterns suggest that the timing of peak metamorphism and greatest burial depth

were more variable both along strike and across the arc than previously recognized, and

point out the need to distinguish between the magnitudes of Cretaceous and Tertiary

exhumation in order to develop better models of the evolution of this region.

The last two chapters focus on the duration, tempo, and rates at which individual

intrusions are constructed. In chapter 4, U-Pb zircon and sphene data from the Mount

Stuart and Tenpeak intrusions constrain the intrusive and cooling histories of these two

contrasting magma systems. Construction of the Tenpeak intrusion appears to have been

a more continuous process that occurred over a ca. 2.7 Myr time span. Texturally distinct

phases and internal sheeting are well-documented in the Tenpeak intrusion and

significant homogenization of different magma pulses is lacking. In contrast, the Mount

Stuart batholith appears to have been constructed over four discrete time periods during a

ca. 5.6 Myr time span. This intrusion exhibits gradational contacts between magma

pulses of differing composition, and similar textures and magmatic fabrics between

pulses that are significantly different in age. The differences in evolution of these two

magmatic systems may reflect different rates of magma generation and/or segregation

from their source region. Alternatively, the deeper-level Tenpeak system may represent a
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"filter" between lower crustal zones of magma generation and mixing, and upper crustal

zones of large, relatively homogeneous intrusions such as the Mount Stuart batholith.

The final chapter documents the timescales of construction of two elongate,

internally-sheeted magmatic systems, the Seven-Fingered Jack and Entiat intrusive suites.

Prior to this study, the magmatic sheets that comprise these elongate bodies were

assumed to be co-magmatic and described as a single, Entiat pluton (Miller and Paterson,

2001a; Paterson and Miller, 1998; Tabor et al., 1987a). However, U-Pb zircon dates

from several sheets indicate that this suite was emplaced over at least three distinct time

periods. At the northwestern end of the body, the oldest sheets are coeval with the

Triassic Dumbell plutons and should be considered part of that suite. Sheets with ca. 90-

92 Ma crystallization ages form the Seven-Fingered Jack suite and extend from the

northwestern tip of the body and potentially most of the length of the body. Sheets with

ca. 71-73 Ma crystallization ages comprise the Entiat intrusive suite and make up the

more homogeneous southeastern end of the body. The recognition of an approximately

20 Myr time lag between emplacement of the Seven-Fingered Jack and Entiat suites

indicates that the multiple thin sheets that form the northwestern end could not have

formed preheated pathways for the emplacement of later, more homogeneous sheets as

proposed in previous models for the construction of the intrusion (i.e., Miller and

Paterson, 2001 a). The presence of inherited zircon in several of the Entiat and Seven-

Fingered Jack samples suggests that the formation of these magmatic sheets involved

multiple intrusion and partial homogenization of sheets at the level of emplacement.

The data from these studies represent a significant contribution to the

understanding of the tectonic, magmatic and thermal evolution of the Cascades core. The

timing of rapid burial and high-pressure metamorphism of the Swakane Gneiss provide

information about the timescales of large vertical displacements of crust within an arc

setting and constrain tectonic burial models. Integration of new thermochronologic data

with existing data from the core define cooling patterns that point to different exhumation

mechanisms occurring simultaneously at a range of depths in the arc. The application of

high-precision geochronologic techniques to the study of intrusive magmatic systems, in

particular, reveal internal complexities inherent in the genesis of a "pluton" and require

careful reconsideration of thermal and mechanical models for their construction.
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ABSTRACT

The metamorphic core of the North Cascades largely comprises island arc and

oceanic terranes juxtaposed prior to ca. 96 Ma magmatism. However, the tectonic

affinity of the structurally deepest terrane, the 9-12 kbar Swakane Gneiss, is distinctly

different from other terranes in the core; it is not intruded by arc-related plutons, contains

abundant Precambrian zircons. New U-Pb analyses of detrital zircons from the Swakane

Gneiss yield dates from 73 Ma to 1610 Ma with a dominant Late Cretaceous population.

These data indicate that the Swakane protolith was deposited as late as 72.6+0.6 Ma, the

206Pb/238U date of the youngest detrital grain. Following deposition, the gneiss was

intruded by peraluminous leucogranite sheets that may represent partial melt derived

from the gneiss at near- to post-peak P-T conditions. One sheet yielded a U-Pb

crystallization age of 68.36+0.07 Ma, which indicates that the gneiss was deeply buried

within 5 Myr of deposition. Two possible mechanisms considered for this rapid burial

(-7mm/yr) are overthrusting of a fore- or back-arc basin by older crystalline rock or

underthrusting of trench sediments during low-angle subduction. The model involving

overthrusting of a fore- or back-arc basin is most consistent with thermobarometric and

isotopic data and the regional geologic setting of the Cascades core. Rapid burial of the

Swakane protolith is coincident with burial of sediments that formed the Pelona,

Orocopia and Rand schists of southern California; however, differences in peak

metamorphic temperatures indicate that conditions of burial must have varied along the

plate margin.

INTRODUCTION

Continental magmatic arcs commonly preserve evidence of significant crustal

thickening as a result of contractional deformation. In such settings, vertical

displacements of crust on the order of 20 km to >30 km have been documented [e.g.

Clarke et al., 2000; Grove et al., 2003; Valley et al., 2003; Whitney et al., 1999].

However, the rates and durations of vertical motion are usually not well-constrained, and

mechanisms proposed to account for tectonic burial are controversial. Along the

northwestern edge of North America, the >1500 km long Coast Plutonic Complex

records the history of Cretaceous to Paleogene arc magmatism and intra-arc shortening
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which resulted in burial of supracrustal rocks to moderately high pressures [McGroder,

1991; Monger et al., 1982; Rubin et al., 1990; Whitney et al., 1999]. The crystalline core

of the North Cascades forms the southernmost extent of this arc and comprises several

amphibolite-facies terranes, including the Swakane Gneiss (Figures 1 and 2) [Misch,

1966; Tabor et al., 1989; Tabor et al., 1987b]. The core is bounded by high-angle

Tertiary faults on the west and northeast [Misch, 1966] and a mid-Cretaceous thrust in

the south (Figure 1) [Miller, 1985]. These faults mark transitions between weakly-

metamorphosed regions to regions of amphibolite-grade metamorphism and Late

Cretaceous to Eocene cooling ages. The Swakane Gneiss and overlying terranes were

exhumed from >30 km depth and represent some of the deepest level rocks exposed

within the North American Cordillera [Paterson et al., 2004; Valley et al., 2003; Whitney

et al., 1999].

The generally accepted tectonic model for this region involves juxtaposition of

oceanic and island arc terranes, including the Swakane Gneiss, by 96 Ma followed by

episodic intrusion of arc plutons (96-46 Ma), dextral transpression (73-58 Ma), and then

transtension (55-45 Ma) [Miller and Bowring, 1990; Tabor et al., 1989; Umhoefer and

Miller, 1996]. This model fails to explain two important observations about the origin

and tectonic affinity of the Swakane Gneiss: 1) although the Swakane terrane is at the

center of, and occupied a position deep within, a long-lived continental magmatic arc, it

is devoid of arc-related intrusive rocks, and 2) unlike other terranes in the North Cascades

core, the Swakane Gneiss contains abundant Early to mid-Proterozoic zircons and yields

mid- to Late Proterozoic Nd depleted mantle model ages [Mattinson, 1972; Rasbury and

Walker, 1992]. These distinct features of the Swakane terrane raise the possibility that it

may have been tectonically emplaced as an exotic slice late in the history of the North

Cascades core.

The timing of deposition and subsequent high-P metamorphism of the Swakane

terrane can provide insight into the timescales of large vertical displacements of crust

within an arc setting. The relationship of this distinctive high-P terrane to the other fault-

bounded terranes in the North Cascades core constrain the development of tectonic

models. U-Pb dates obtained in this study from detrital zircons in the Swakane Gneiss

indicate that its protolith was deposited as late as 72.5+0.6 Ma, much younger than

14



previous age estimates and well after the juxtaposition of the other arc terranes that

comprise the North Cascades core. The Swakane protolith was then metamorphosed to

9-12 kbar [Valley et al., 2003] and intruded by peraluminous leucogranite sheets that may

represent partial melt derived from the gneiss at near- to post-peak P-T conditions

[Boysun, 2004; Boysun and Paterson, 2003; Valley et al., 2003]. One of these

peraluminous sheets yields a crystallization age of 68.36+0.07 Ma. These data suggest

rapid burial of the Swakane protolith to depths of ca. 35 km in <5 Myr, and thus require a

reassessment of tectonic models involving the assembly of the North Cascades core.

GEOLOGIC SETTING

Tabor et al. [ 1987b, 1989] delineated several tectonostratigraphic terranes within

the Cascades core (Figure 2). These terranes underwent amphibolite facies-

metamorphism and contractional deformation, and all terranes, except the Swakane

terrane, were intruded by 96-46 Ma plutons. Following tectonic assembly, the core was

cut by the post-metamorphic, high-angle, Tertiary Entiat fault, which divides the core

into the Wenatchee and Chelan blocks (Figure 1) [Haugerud et al., 1991]. The Swakane

terrane crops out in both blocks (Figure 2).

The Swakane terrane is composed entirely of the Swakane Gneiss, a

predominantly quartzofeldspathic biotite + garnet and muscovite gneiss with subordinant

garnet amphibolite, garnet + hornblende + biotite gneiss, garnet + kyanite + staurolite

gneiss, calc-silicate, quartzite and meta-peridotite [Cater, 1982; Paterson et al., 2004;

Sawyko, 1994; Tabor et al., 1987a; Tabor et al., 1987b; Valley et al., 2003; Waters,

1932]. The protolith of the gneiss has been interpreted as either a sequence of arc-

derived clastic sediments or a thick pile of predominantly silicic volcanic rock [Cater,

1982; Mattinson, 1972; Sawyko, 1994; Tabor et al., 1987a; Tabor et al., 1987b; Waters,

1932; Whitney et al., 1999]. Although no plutons intrude the Swakane Gneiss, several

generations of thin (<3 m) peraluminous leucogranite sheets containing muscovite +

garnet + tourmaline are present at the deepest exposed crustal levels. These sheets are

compositionally and mineralogically unlike the tonalitic sheets and plutons that intrude

the other terranes of the crystalline core. The restriction of the sheets to the deepest

structural level, their composition, geochemistry and small size suggest that they were
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locally derived from partial melting of the gneiss [Boysun, 2004; Boysun and Paterson,

2003; Valley et al., 2003]; however direct evidence of in situ partial melting at the

presently exposed crustal level in the Chelan block is lacking [Boysun, 2004; Valley et

al., 2003].

In both the Wenatchee and Chelan blocks, the Swakane Gneiss is structurally

overlain by the Napeequa Complex (formally known as rocks of the Napeequa River

area) of the Chelan Mountains terrane. The Napeequa Complex comprises a

heterogeneous assemblage of primarily amphibolite and quartzite with significant

amounts of marble, metaperidotite, and biotite schist [Cater, 1982]. Both the Swakane

Gneiss and Napeequa Complex exhibit peak P-T conditions of 9-12 kbar and 640-740 °C

and were metamorphosed along clockwise P-T paths [Sawyko, 1994; Valley et al., 2003].

The contact between these units in the Chelan block is defined by the mid-crustal

Dinkelman decollement in which the Swakane Gneiss forms the footwall [Alsleben,

2000; Paterson et al., 2004]. The dominant sense of motion along the decollement is top-

to-NNE shear, which is, in part, responsible for exhumation of the gneiss under

decreasing temperature conditions [Alsleben, 2000; Paterson et al., 2004]. This top-to-

NNE shear was pervasive in the Swakane Gneiss and formed both high temperature

ductile structures and late brittle features. In the Napeequa Complex, top-to-NNE shear

overprints sparse kinematic indicators that show early WSW-directed thrusting [Paterson

et al., 2004], but very little evidence of top-to-the-WSW directed motion is preserved in

the Swakane Gneiss [Alsleben, 2000]. It has been proposed that the original contact

between the Swakane Gneiss and Napeequa Complex was a SW-directed thrust [Hurlow,

1992; Tabor et al., 1987a] that was reactivated by N- to NNE-directed shear during

exhumation [Paterson et al., 2004]. Since there is little evidence of early top-to-WSW

kinematics in the Swakane Gneiss, the sense of motion during burial is unconstrained and

may have been accomplished along a thrust contact that is no longer exposed.

The other moderate-P, metasupracrustal units in the Chelan Mountains terrane

include the Cascade River unit and the correlative Holden assemblage (Figure 2), which

are part of a Triassic arc sequence [Tabor et al., 1989]. These units comprise

metavolcanic and metasedimentary rock (amphibolite and homblende-biotite schist) with

local metaconglomerate, metapelite and calc-silicate rock [Brown et al., 1994; Dragovich
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et al., 1989; Dragovich and Norman, 1995; Miller et al., 1994; Tabor et al., 1989].

Contact relationships between the Cascade River-Holden units and the Napeequa

Complex are not clearly defined. The Cascade River-Holden arc sequence has been

proposed to have either formed unconformably on the oceanic Napeequa Complex

[Tabor et al., 1989] or was overthrust by the Napeequa Complex [Brown et al., 1994;

Dragovich et al., 1989]. Peak P-T conditions determined from the Cascade River unit

reached 8-9 kbar and -650°C [Brown et al., 1994; Miller et al., 1993]. Farther east,

paragneisses that were likely derived from both the Napeequa Complex and Cascade

River unit protoliths [Tabor et al., 1989] are extensively injected by orthogneiss sheets in

the Skagit Gneiss Complex [Haugerud et al., 1991]. Peak P-T results from metapelitic

outcrops within the Skagit Gneiss Complex are 9-10 kbar and >700°C [Whitney, 1992;

Whitney et al., 1999]. The timing of burial metamorphism of these units with respect to

the Swakane Gneiss is discussed below.

PREVIOUSLY PUBLISHED GEOCHRONOLOGIC DATA

The protolith age and tectonic affinity of the Swakane Gneiss have been

investigated in two previous studies. Three multi-grain zircon fractions from Swakane

biotite gneiss yielded highly discordant U-Pb data with Middle Proterozoic Pb-Pb dates

[Mattinson, 1972]. Mattinson's preferred interpretation was that all zircons crystallized

>1650 Ma, were metamorphosed ca. 415 Ma and then metamorphosed again between 60

Ma to 90 Ma. This interpretation was based in part on U-Pb data from regions outside

the North Cascades core that were assumed to share a common history. However,

interpretation of the Swakane data alone is ambiguous because of the high degree of

discordance of the U-Pb data. Rasbury and Walker [1992] obtained U-Pb zircon dates

from biotite gneiss with ca 1.4 Ga and ca. 1.6 Ga Pb-Pb dates and Nd depleted mantle

model ages of 1.18 Ga and 1.27 Ga. Based on these U-Pb and Nd data, they suggest that

the Swakane Gneiss is a metaclastic rock derived predominantly from Middle Proterozoic

rocks. As a result of these two studies, the protolith of the Swakane Gneiss was thought

to be at least Paleozoic in age and had been juxtaposed with the other terranes that

comprise the North Cascades prior to the intrusion of Cretaceous plutons [Cater, 1982;
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Tabor et al., 1987a; Tabor et al., 1989; Tabor et al., 1987b]. The fact that the Swakane

Gneiss lacks Cretaceous or younger arc plutons is difficult to explain by this model.

Mattinson [1972] also obtained a 206Pb/238U zircon date from a pegmatitic sheet

that cuts across the Swakane Gneiss. The pegmatite was proposed to be generated by

melting of the gneiss at ca. 69 Ma, the 206Pb/238U date obtained from one multigrain

zircon fraction. The ca. 69 Ma date is in general agreement with data obtained in this

study; however, the uncertainties are not reported, making it difficult to compare in

detail.

Previous constraints on the timing of the juxtaposition of the Swakane Gneiss and

Napeequa Complex were derived from an 84±1 Ma (U-Pb zircon) foliated granodiorite

sill that crops out along the Swakane-Napeequa contact in the Wenatchee block [Hurlow,

1992]. Based on previous mapping, Hurlow [1992] suggested that the sill intruded the

Swakane-Napeequa contact after the terranes were juxtaposed [Hurlow, 1992].

Alternatively, the sill may have been faulted against the Swakane Gneiss, a proposal that

is consistent with observations a short distance along strike where other intrusive sheets

in the Napeequa Complex are truncated by the Dinkelman decollement [Paterson et al.,

2004]. This interpretation of the field relationships suggest that the only timing

constraint imposed by the crystallization age of the sill is that it pre-dates the latest

motion along the Napeequa-Swakane contact, rather than providing a minimum age of

the terranes.

RESULTS

Protolith Age

Zircon of varying sizes, shapes and clarity were recovered from a sample of

biotite gneiss (SW3B) collected from an outcrop in the Chelan block that contains

abundant leucogranite sheets (see Figure 2 for sample localities). All leucogranite sheets

were carefully avoided during sampling. Representative zircons were analyzed according

to methods outlined in Appendix A, and the data are reported at the 2a uncertainty level

in Table 1 and Figure 3. All analyses were performed on single zircon grains, and all

grains were heavily abraded to -50-70% of their original size in order to remove any

potential metamorphic overgrowths. These analyses yield dates that range from the Late
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Cretaceous to the Middle Proterozoic, reflecting a variety of zircon sources that

contributed to the Swakane protolith. Analyses from Middle Proterozoic zircon grains

are moderately to severely discordant (5.8%-75.9%) and yield 207Pb/206Pb dates from

1177.9±1.3 Ma to 1610.8-1.4 Ma. All but one of the analyses that yield Mesozoic or

younger dates have error ellipses that overlap concordia. The youngest zircon grains are

generally characterized by low radiogenic Pb contents (0.5 to 8 ppm), making the

206 Pb/238U date the most precise. These dates range from 72.5±0.6 Ma to 191.6+0.2 Ma.

A large sub-population of the zircons analyzed (9 of 24) have 206Pb/238U dates from

72.5+0.6 Ma to 74.4+0.2 Ma.

A second sample of biotite gneiss (SW8) was collected higher in the section from

an outcrop that lacks leucogranite sheets (Figure 2). Eight single zircon analyses yield

dates that range from 1635.1+1.6 Ma to 83.7+1.2 Ma (Table 1; Figure 3). Analyses that

yield Middle Proterozoic 207 pb/206Pb dates are moderately to severely discordant (8.5-

76.1 %). All analyses from Cretaceous grains (except zl) are normally to reversely

discordant. These analyses are characterized by low ratios of radiogenic to common Pb

which leads to large uncertainties and scatter about concordia because of the common Pb

correction.

Zircon grains from a garnet-kyanite gneiss sample (SW2) contain abundant

inclusions of biotite, graphite, garnet, quartz, feldspar, and rutile which are generally

restricted to the rim of the grain. The 206Pb/238U dates of six abraded zircons range from

97.0+0.4 Ma to 159.5I0.3 Ma (Table 1; Figure 3). All analyses are slightly discordant

which may reflect incomplete removal of metamorphic rims.

Timing of Metamorphism

Because of the lack of minerals such as monazite that could potentially date

metamorphism directly, our approach to constraining the timing of metamorphism

focused instead on determining the age of peraluminous leucogranite sheets that post-date

the initiation of foliation in the gneiss. Several generations of these sheets intrude the

Swakane Gneiss with some concordant to host rock foliation, whereas others cut foliation

but are also deformed [Boysun, 2004; Boysun and Paterson, 2002]. The composition,

geochemistry, and size of these sheets suggest that they are derived from partial melting
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of the gneiss below the presently exposed crustal level [Boysun, 2004; Boysun and

Paterson, 2002; Valley et al., 2003]. If locally derived, their crystallization ages give an

estimate of the timing of metamorphism. A more direct approach to determining the

timing of peak metamorphism such as dating the thin metamorphic overgrowths on

detrital zircons by ion probe methods was not attempted because of the low probability of

collecting unambiguous data. Uncertainties on ion probe analyses of Late Cretaceous to

Paleocene age are unlikely to be better than 2% ( a) [e.g., Grove et al., 2003]. These

relatively large uncertainties make it unlikely that the age of metamorphism would be

resolvable from the ages of the youngest detrital grains.

A medium-grained leucogranite sheet (SW1) that cuts across foliation in the

gneiss was collected from the Wenatchee block (Figure 2). Several zircon analyses lie on

or near concordia with 206Pb/238U dates that range from 68.3±0.2 Ma to 86.2±1.0 Ma

(Table 1). Six of the eleven analyses yield 206Pb/238U dates that overlap within

uncertainty (Figure 4) whereas the other five analyses yield five distinctly different dates.

The six concordant and equivalent analyses are interpreted to date zircon that crystallized

within the leucogranite sheet and yield a concordia age [i.e. Ludwig, 1998] of 68.36±0.07

Ma (MSWD of concordance and equivalence = 0.55; including decay constant errors).

The other five analyses were likely derived from zircon with cores inherited from the

gneiss and overgrowths that grew during crystallization of the sheet. Zircon grains were

analyzed from eight other leucogranite sheets in the Chelan block (see Boysun, [2004]),

but all samples yielded a distribution of inherited zircon dates rather than primary

crystallization ages.

DISCUSSION

Swakane Protolith

In order to interpret the petrologic significance of the zircon analyses, zircon

grains representing the range of morphologies from samples SW3B and SW2 were

imaged using cathodoluminescence (CL) techniques (Figures 5 and 6; Appendix A). In

nearly all cases, the imaged zircon grains have fine-scale oscillatory-zoned cores

surrounded by rims that exhibit chaotic zonation. An oscillatory zonation pattern results

from growth of zircon in the presence of melt where oscillations are controlled by an
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interplay between the stage of crystal growth, nature of the crystal-liquid interface,

degree of supersaturation of the melt, rates of diffusion, and state of oxidation [Corfu et

al., 2003; Hanchar and Miller, 1993; Hoskin, 2000; Mattinson et al., 1996; Vavra, 1990].

In extremely rare cases from eclogite facies rocks, oscillatory growth zonation has been

observed in metamorphic rims on inherited zircon, which may be related to

crystallization in local melt or supercritical fluids developed at peak metamorphic

conditions [Gebauer et al., 1997]. The Swakane Gneiss samples, however, lack evidence

of local melting, and the fact that nearly all of the imaged zircon grains display

oscillatory growth zonation indicates that the detritus that formed the Swakane protolith

was predominantly derived from an igneous source. Only SW3B analysis z25 displays

sector growth zonation typical of metamorphic zircon [Corfu et al., 2003]. The presence

of chaotically-zoned rims in both samples is best explained by recrystallization or

dissolution and reprecipitation along grain boundaries during a metamorphic event [Corfu

et al., 2003; Hoskin and Schaltegger, 2003].

Several zircons were plucked from the grain mount after imaging, heavily abraded

to remove the rim, and then analyzed (SW3B z19-z27). These grains exhibited a wide

range of crystallization dates with the oldest having a 207Pb/206Pb date of 1610.8+1.4 Ma

and the youngest having a 206pb/238U date of 73.3±1.0 Ma (Figure 5). The observation

that even the youngest zircons analyzed have oscillatory-zoned cores is consistent with

the interpretation that these grains were derived from an igneous rock. The grains were

likely incorporated into the protolith as either a ca. 73 Ma volcanic-clastic component or

as sediments derived from a nearby igneous source. There is no evidence of in situ

partial melting at the presently exposed crustal level in the Chelan block [Alsleben, 2000;

Boysun, 2004; Valley et al., 2003], and leucogranite sheets produced during melting of

the gneiss rarely crystallized primary zircon [Boysun, 2004]. Therefore, it is unlikely that

zircon with oscillatory growth zonation could have crystallized within small melt pods

produced during metamorphism of the gneiss.

The fact that all of the imaged zircons displayed chaotically-zoned rims regardless

of the age of their core suggests that the rim grew during metamorphism of the Swakane

protolith. CL images of zircon grains from the garnet-kyanite gneiss sample display

relatively thick overgrowths (Figure 6). These rims were unlikely to have been
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completely removed during abrasion, and the most reasonable interpretation of the

discordant SW2 zircon analyses is that they represent mixtures of detrital core and

metamorphic overgrowth. In contrast, metamorphic rims on zircon from the biotite

gneiss are much thinner (Figure 5) and were most likely completely removed by abrasion

which reduced the grains to 50-70% of their original size. The dates determined from

these grains are unlikely to represent mixtures of detrital core and metamorphic

overgrowth. These geochronological data then place a maximum age for the deposition

of the deepest parts of the Swakane Gneiss at 72.5±0.6 Ma, the 206Pb/238U date of the

youngest detrital grain.

The question of whether the Swakane protolith was a sedimentary rock (arkose or

greywacke) or a predominantly silicic volcanic rock has been long debated [Cater, 1982;

Mattinson, 1972; Miller et al., 2000; Sawyko, 1994; Tabor et al., 1987a; Tabor et al.,

1987b; Waters, 1932; Whitney et al., 1999]. These new geochronological data not only

constrain the timing of deposition of the Swakane protolith, but also the nature of the

protolith itself. The main piece of evidence used to support the hypothesis that the

Swakane protolith is predominantly a silicic volcanic rock is the "remarkable

homogeneity" of the Swakane Gneiss [Cater, 1982; Hopson, pers. comm. in Mattison,

1972; Sawyko, 1994]. Cater [1982] argued that the accumulation of a nearly uniform pile

of arkose on the order of the Swakane Gneiss is unlikely; however, the lack of

stratigraphic markers within the gneiss makes it difficult to estimate the degree of

structural duplication or its original stratigraphic thickness. The wide distribution of

zircon dates from the biotite gneiss and gamet-kyanite gneiss obtained in this study

(Table 1; Figure 3) indicates that sources of several different ages contributed to the

Swakane protolith. If the protolith of the Swakane biotite gneiss was a silicic volcanic

rock, then the geochronologic data require that it either inherited zircons from a highly

diverse crustal column or was contaminated by sediment from a wide range of sources at

the surface. It is unlikely that Precambrian zircon grains were derived from transport

through the crust during eruption because Precambrian crust is not present in the crustal

column until much farther east of the arc [Coney et al., 1980; Patchett and Gehrels,

1998]. This suggests that Precambrian zircons were incorporated into the Swakane
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protolith from sediment at the surface. This supports a model in which the Precambrian

zircons were incorporated into the Swakane protolith from sediment at the surface.

Source terranes for sediment of the appropriate age are present throughout the

northwest US Cordillera. The ages of the Precambrian zircons are broadly consistent

with derivation from the Yavapai and Mazatzal terranes of the southwestern US [e.g.,

Bowring and Karlstrom, 1990]. Sources of Jurassic and Cretaceous zircons are present to

the east in the Blue Mountains terranes, Idaho batholith and Okanogan Complex [Miller

et al., 1992 and references therein; Parrish et al., 1988; Walker, 1986], and to the north

and west in the Jurassic and Cretaceous arc sequences of the western Coast Belt

[Journeay and Friedman, 1993]. The youngest zircon grains in the Swakane Gneiss are

essentially coeval with plutons in these source terranes and may have been derived from

their volcanic cover.

Potential sedimentary protoliths of the appropriate age for the Swakane Gneiss are

present, but not abundant, in the region. Within the Methow Basin (Figure 2), the areally

restricted Pipestone Canyon Formation is an early Maastrichtian (71-68 Ma) sequence of

non-marine plutonic- and volcanic-clastic conglomerate and sandstone that contains

substantial detritus from the 111-114 Ma Okanogan batholith [Peterson et al., 1997]. To

the west in the Georgia Basin (Figure 7), the uppermost stratigraphic unit of the Nanaimo

Group, the Gabriola Formation, is also a Maastrichtian unit comprised of massive, thick-

bedded, coarse- to fine-grained sandstone deposited in a foreland basin [Mustard and

Monger, 1991; Mustard et al., 1995]. The detrital zircon population of the Gabriola

Formation includes Precambrian zircon, zircon of late Mesozoic age with Precambrian

inheritance, concordant 87 Ma zircon, and a predominant 72-73 Ma population of zircon

[Mustard et al., 1995]. This detrital zircon population is similar to that of the Swakane

Gneiss and suggests that the Swakane protolith may have been deposited in the same

basin or a basin of similar tectonic setting and age.

Potential Cretaceous Analogs in the US Cordillera

During the same time period that the protolith of the Swakane Gneiss was

deposited and rapidly buried, sediment along the southwestern margin of the North

American craton also followed a similar pattern of deposition followed by rapid burial.
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These sediments formed the protoliths for what are now collectively known as the

Pelona, Orocopia, and Rand (POR) schists of southern California (Figure 7). The Pelona

and Orocopia schists were buried at approximately the same time as the Swakane

sediments with detrital zircons as young as 70+1 Ma and were exhumed to shallow

crustal levels during Late Cretaceous to early Tertiary time [Grove et al., 2003; Jacobson,

1990; Jacobson et al., 2000]. In addition to a Late Cretaceous detrital zircon population,

the Pelona and Orocopia schists also contain zircons of Early Cretaceous, Triassic, and

Middle to Early Proterozoic age that are proposed to have been derived from the Mojave

Desert and Transverse Ranges of southern California [Grove et al., 2003; Jacobson et al.,

2000]. The Pelona and Orocopia schists are sometimes correlated with schists that crop

out farther north including the Rand, Portal Ridge, and Sierra de Salinas schists [Ehlig,

1981; Haxel and Dillon, 1978]. However, recent U-Pb data suggest that the protoliths of

the northern schists were deposited up to 10 Myr earlier than the Pelona and Orocopia

schists [Barth et al., 2003; Grove et al., 2000; Grove et al., 2003; Jacobson et al., 2000;

Jacobson et al., 2002].

The POR schists are interpreted to be correlatives of the Franciscan Complex or

Great Valley Group and are comprised of homogeneous quartzofeldspathic schist with

related pelitic and mafic schists, calc-silicate, and meta-ultramafic rocks similar to the

Swakane Gneiss [Burchfiel and Davis, 1981; Crowell, 1981; Dickinson, 1981; Yeats,

1968]. These schists are thought to underlie a large region beneath southern California

and into Arizona [Cheadle et al., 1986; Ehlig, 1981; Haxel and Dillon, 1978; Malin et al.,

1995].

A comparison of metamorphic conditions indicates that peak pressures of 8-10

kbar determined from the POR schists [Graham and Powell, 1984; Jacobson, 1995]

overlap the 9-12 kbar pressure range calculated for the Swakane Gneiss [Sawyko, 1994;

Valley et al., 2003]. The POR schists, however, generally yield significantly lower

temperatures of 470-570 °C [Graham and Powell, 1984] as compared to the 670-730 °C

temperatures calculated from the Swakane Gneiss [Sawyko, 1994; Valley et al., 2003].

The Sierra de Salinas and Portal Ridge schists are higher grade (i.e. mineral assemblage

includes garnet, sillimanite and potassium-feldspar) [Ross, 1976], but detailed

thermobarometry has not been carried out.
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Burial and exhumation mechanisms of the POR schists are actively debated [c.f

Grove et al., 2003; Haxel et al., 2002]. Late Cretaceous protolith ages and Paleocene

cooling dates derived from the schists are interpreted to require underthrusting of these

units beneath the Cretaceous arc to depths >20 km and exhumation to mid-crustal depths

in less than 13±10 Myr [Grove et al., 2003]. Tectonic mechanisms proposed to account

for their burial include shallow subduction of trench and/or accretionary complex

sediments, burial during collision of an exotic microcontinent, or overthrusting of either a

fore-arc or back-arc basin [c.f. Grove et al., 2003; Haxel et al., 2002]. Several of these

models invoke shallow subduction as the driving mechanism for burial. The burial

mechanism of the Swakane Gneiss need not be the same as that of the POR schists, but

the similarity in timing of burial and exhumation point to similar processes occurring

along the margin of North America during the Late Cretaceous to Eocene.

Timing of Regional Burial

In order to evaluate potential mechanisms that could be responsible for rapid

burial of the Swakane Gneiss, its depositional and burial history must be placed into a

regional context. Our new geochronologic data indicate that the Swakane Gneiss was

deeply buried between 72.5+0.6 Ma, the age of the youngest detrital grain, and

68.36±0.07 Ma, the crystallization age of a cross-cutting peraluminous sheet. The

chemical composition of these peraluminous sheets suggests that were locally derived

from partial melting of the gneiss, which indirectly ties their age to the timing of peak

metamorphism [Boysun and Paterson, 2003]. Post-peak metamorphic cooling of the

Swakane Gneiss is constrained by a hornblende 40Ar/39Ar date of 57.9±0.5 Ma [Chapter

3], a hornblende K-Ar date of 50.8+2.8 Ma [Tabor et al., 1987a], and biotite 40Ar/39Ar

dates of 49-46 Ma [Paterson et al., 2004]. The cooling and exhumation history of the

Swakane Gneiss is described in detail in Paterson et al. [2004].

The available data indicate that burial of the Swakane Gneiss post-dates deep

burial of all other terranes of the Cascades core. In the Wenatchee block and southern

Chelan block (Figure 2), burial of the Swakane Gneiss occurred at least 20 Myr after

peak metamorphism of the Napeequa Complex and Cascade River unit. In contrast,

burial of the Swakane Gneiss may post-date burial of the Napeequa Complex, Cascade
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River unit-Holden assemblage, and Skagit Gneiss Complex in the northern Chelan block

by as little as 3 Myr to as many as 15 Myr (see below).

This diachronous burial history is defined by multiple lines of evidence [Brown

and Walker, 1993; Miller et al., 1993]. In the Wenatchee block, the timing of deep burial

of the Napeequa Complex is constrained by the presence of several plutons that were

emplaced into the complex at 7-10 kbar between 96 Ma to 91 Ma [Dawes, 1993; Tabor et

al., 1987a; Walker and Brown, 1991; Zen, 1985; Zen and Hammarstrom, 1984]. The

pluton emplacement pressures were derived by Al-in-hornblende barometry and garnet-

biotite-muscovite-plagioclase barometry [Dawes, 1993], and they agree with both

qualitative indicators of high-pressure crystallization such as the presence of magmatic

epidote [Dawes, 1993; Zen, 1985; Zen and Hammarstrom, 1984] and peak pressures of 9-

11 kbar determined from their host rocks [Valley et al., 2003]. The presence of these 7-

10 kbar plutons indicate that the Napeequa Complex in the Wenatchee block must have

occupied a mid-to lower-crustal position by 96 Ma, which pre-dates burial of the

Swakane Gneiss by at least 20 Myr.

In the southern Chelan block, the burial history of the Napeequa Complex and

Cascade River unit is constrained, in part, by geochronologic and geobarometric data

from the Entiat and Seven Fingered Jack intrusive suites [Chapter 5]. These sheeted

intrusions consist of numerous tonalite to gabbro sheets emplaced at ca. 90-92 Ma

(Seven-Fingered Jack suite) and ca. 71-73 Ma (Entiat suite) [Chapter 5]. Dawes [1993]

used Al-in-homblende barometry to determine emplacement pressures of 6-7 kbar at 18

locations from both suites. The lack of a discernible difference between emplacement

pressures of ca. 90-92 Ma tonalite and ca. 71-73 Ma tonalite suggests that the Seven-

Fingered Jack and Entiat suites and their host rocks, the Napeequa Complex and Cascade

River unit, were at -6-7 kbar pressures throughout the Late Cretaceous. This supposition

is supported by the presence of magmatic epidote in several sheets [Dawes, 1993] and a 7

kbar pressure calculated from a metapelitic Napeequa schist (GASP barometry) adjacent

to the southwestern margin of the Entiat intrusion [Valley et al., 2003].

In contrast, deep burial of the Napeequa Complex and Cascade River unit in the

northwestern Chelan block occurred between 88 Ma and 76 Ma [Brown and Walker,

1993; Miller et al., 1993]. Pelitic wall rocks of the 91-88 Ma Eldorado Orthogneiss,
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which intrudes the Napeequa Complex, Cascade River unit, and Skagit paragneisses

contain andalusite replaced by kyanite indicating shallow emplacement of the Eldorado

orthogneiss followed by regional burial metamorphism. Zoned garnets from these wall

rocks indicate a pressure increase of 5-6 kbar [Brown and Walker, 1993; Miller et al.,

1993]. The pressure increase likely occurred before the intrusion of the magmatic

epidote-bearing Marble Creek pluton at ca. 76 Ma [Miller et al., 1993]. Further

constraints on the timing of deep burial of these units is derived from the 7-10 kbar

emplacement pressures of the 68 Ma Diablo orthogneiss from within the Skagit Gneiss

Complex [Wernicke and Getty, 1997]. Therefore, burial metamorphism in the northern

Chelan block occurred at least 3 Myr to potentially 15 Myr before deep burial of the

Swakane Gneiss. The question remains as to whether the burial history of the Napeequa

Complex, Cascade River unit, and Skagit Gneiss Complex in the northern Chelan block

is tectonically linked to the moderate to high pressure metamorphism of the Swakane

Gneiss.

Rapid Burial Mechanisms

Previous tectonic models of the assembly of the Cascades core assumed that the

Swakane Gneiss was juxtaposed with the surrounding terranes during mid-Cretaceous

thrusting and before intrusion of ca. 96 Ma plutons [McGroder, 1991; Misch, 1966;

Tabor et al., 1987b]. The lack of arc plutons in the Swakane Gneiss is difficult to explain

by this model. The recognition of a ca. 73 Ma protolith age of the Swakane Gneiss

invalidates earlier assumptions about the timing of juxtaposition and requires that the

tectonic model for the assembly of the core be modified. Any satisfactory tectonic model

must account for the rapid burial of the Swakane protolith (-35 km in <5 Myr =

-7mm/yr)), rapid heating of the gneiss to peak metamorphic temperatures of 670-730°C,

and timing of burial metamorphism that post-dates metamorphism in other parts of the

core by at least 20 Myr.

We consider two types of mechanisms that could accommodate rapid burial of the

Swakane protolith: 1) overthrusting of a fore-arc or back-arc basin or, 2) underthrusting

of trench sediments or accretionary complex by subduction. These mechanisms are

similar to those proposed for rapid burial of the POR schist protoliths [c.f. Grove et al.,
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2003; Haxel et al., 2002], and a schematic illustration of these mechanisms, modified

from Haxel et al., [2002], is depicted in Figure 8. The first mechanism (i.e., overthrusting

of a fore- or back-arc basin) appears most compatible with thermobarometric and isotopic

data and the regional geologic setting. The current data are not sufficient, however, to

distinguish between the variations on the first mechanism depicted in the top two panels

of Figure 8.

Closure of a Fore-arc or Back-arc Basin

The Cascades core and surrounding regions document a prolonged history of

contractional deformation. The transition to dextral transpression between 73 to 58 Ma

[Umhoefer and Miller, 1996] may have initiated closure of basins, crustal thickening, and

thrusting of the Swakane protolith beneath the arc. During this time period, contractional

deformation within the Cascades core is recorded at deep levels in a narrow belt of the

Chelan block [Miller and Paterson, 2003]. Farther inboard of the arc in parts of the

Shuswap core complex of the southern Omineca Belt (Figure 1), contraction and

metamorphism are attributed to the development of a foreland-propagating fold-thrust

belt with progressive westward underthrusting of basement [e.g., Parrish, 1995].

If the Swakane protolith was deposited in a fore-arc setting, burial may have been

accommodated by underthrusting of sediments beneath a northeast-dipping thrust fault

(Figure 8a). This setting is consistent with sparse evidence of early top-to-the-SSW

kinematics on the Dinkelman decollement, which has been proposed to be a reactivated

thrust [Paterson et al., 2004]. In addition, sediments of similar age and range of detrital

zircon dates, such as the Gabriola Formation, are present in the fore-arc setting [Mustard

et al., 1995]. However, the lack of clear evidence of the direction of motion during burial

suggests that deposition of the Swakane protolith in a back-arc setting cannot be ruled

out. The "back-arc" model is depicted in Figure 8b and mirrors the model shown in

Figure 8a. Top-to-the-NNE shear has overprinted much of the earlier history on the

Dinkelman decollement, and rather than being a reactivated thrust, it may instead be a

late structure that excised the original thrust contact. The primary advantage of a back-

arc setting for the deposition and burial of the Swakane protolith is the potential for high

heat flow in the back-arc, which is necessary to explain the rapid heating (-700°C in <5
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Myr) and relatively high-T metamorphism observed from the Swakane Gneiss.

Numerical models of mantle flow patterns in a subduction zone predict that hot

asthenosphere is drawn from the back arc into the mantle wedge corner during

subduction [Andrews and Sleep, 1974; Bodri and Bodri, 1978; Furukawa, 1993]. The

upwelling of hot mantle into the mantle wedge results in temperatures >800°C at the base

of the crust underlying the arc and can result in adiabatic decompression melting on the

upwelling limb of the mantle wedge [Gaetani and Grove, 2003].

Haxel et al. [2002] also discusses a model that combines elements of the fore-arc

and back-arc models (not shown in Figure 8). The salient feature of this "Haxel" model

is that the basin in which the protolith was deposited formed one of a series of small,

short-lived basins that rapidly filled with sediment from the local area and shortly

thereafter were deformed by transpression. This model is commonly linked to a back-arc

setting; however, as it is described by Haxel et al. [2002], these small basins are not

restricted to the back-arc and their position simply reflects their relationship to a crustal

fragment outboard of the schist/gneiss package that rifted from the margin and then

shortly thereafter recollided.

This model is difficult to apply in detail to the evolution of the North Cascades

because a series of small basins has not been recognized as such. However, the

implication that Swakane protolith may have been deposited in a small, short-lived,

rapidly-filled basin is supported by Nd isotopic data from the Swakane Gneiss and

plutons that intrude the other terranes of the crystalline core [Chapter 2]. The Swakane

Gneiss is an isotopically-evolved unit with the lowest ENd values (as low as -6 &Nd at 73

Ma) observed in the Cascades core and has mid to Late Proterozoic Nd depleted mantle

model ages [Rasbury and Walker, 1992; Chapter 2]. If the Swakane Gneiss formed a

regionally extensive unit beneath the arc (as predicted by the shallow subduction model

shown in Figure 8c), the ca. 50-46 Ma plutons that intrude the core after burial of the

gneiss might be expected to have significantly lower ENd signatures than the &Nd

signatures of plutons that pre-date burial of the gneiss because of interaction with the

isotopically-evolved layer. However, the &Nd values derived from the ca. 50-46 Ma

plutons are similar to those of the lowest &Nd values from the ca. 96-88 Ma plutons.
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These data instead favor a model whereby the Swakane protolith formed in a small,

regionally-restricted basin, and thus only represents a small sliver within the arc.

The great depth to which the Swakane Gneiss was buried also requires a large

lateral translation beneath the arc. Localized burial on a steeply-dipping shear zone

would negate the need for lateral translation, but there is no evidence that a steeply-

dipping structure was active within the North Cascades at that time and burial on such a

structure is incompatible with the shallowly-dipping foliation and gently-plunging

lineation preserved in the gneiss and overlying units [Paterson et al., 2004]. The question

remains as to whether these rapid rates of both lateral and vertical motion can be

accounted for in a thrust-loading type of model such as the one discussed above. The

short time period between deposition and burial of the gneiss requires a vertical burial

rate of -7 mm/yr. This rate is at least twice as fast as rates determined by GPS and

structural and stratigraphic mapping studies in fold and thrust belts [Burbank et al., 1992;

DeCelles, 1994; Lamb, 2000; Mazzotti and Hyndman, 2002]. However, rates of crustal

thickening and vertical motion in an arc setting are not as well-documented, and rates

determined from limited fold and thrust belt cases may not be sufficiently comparable to

arcs [e.g. Paterson and Tobisch, 1992].

Burial by Subduction

A second mechanism that could account for the rapid burial of the Swakane

protolith is underthrusting of trench and/or accretionary complex sediments (Figure 8c)

as has been proposed for southern California. In this model, the ultimate driving force

for underplating sediments is low-angle, shallow, northeast-dipping subduction of the

Farallon plate during the Laramide orogeny. The low-angle subduction is proposed to

have tectonically eroded the lowermost North American continental crust and underlying

mantle lithosphere prior to accretion of the schist [Burchfiel and Davis, 1981; Crowell,

1981; Hamilton, 1987; Jacobson et al., 1996; Malin et al., 1995; Yeats, 1968; Yin, 2002].

This model predicts that the Swakane Gneiss forms a regionally extensive layer beneath

the Cascades core and is only exposed within a tectonic window.

This model can easily account for rapid burial rates. For a 30°subduction angle

and the slowest modeled plate motion determined for this region in the early Tertiary
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(-10 cm/yr) [Page and Engebretson, 1984], the Swakane protolith could be buried to

depths of 40 km in less than a Myr. Several aspects of this model, however, make it

incompatible with the burial and metamorphism history of the Swakane Gneiss. First,

burial by low-angle, shallow subduction is incompatible with the high-grade

metamorphism that the Swakane Gneiss experienced. Low-angle subduction effectively

prevents circulation of hot asthenosphere in the mantle wedge by placing cold slab

material directly beneath the arc [Saleeby, 2003]. Although it is possible that the early,

low-T/high-P history of the rocks could have been erased by later thermal events, the -5

Myr time period over which these rocks reached their peak metamorphic conditions

precludes this possibility. Second, Nd isotopic data from plutons that intrude the

crystalline core of the North Cascades after burial of the gneiss suggest that the gneiss did

not form a regionally extensive layer beneath the arc as discussed in the previous section.

Third, it is unlikely that shallow subduction occurred at the latitude of the North

Cascades. Classic Laramide structures attributed to shallow, low-angle subduction are

not present farther north than the latitude of the Idaho batholith [Allmendinger, 1992;

Miller et al., 1992], and erosion of subcontinental mantle (required by this model to place

subducted sediments in contact with lower crust) did not occur farther north than the

southernmost Sierra Nevada batholith [Dodge et al., 1986; Dodge et al., 1988; Ducea,

2001; Ducea and Saleeby, 1996; Ducea and Saleeby, 1998; Lee et al., 2001; Saleeby,

2003]. Tectonic models that propose rapid transport of rocks along the continental

margin during the Late Cretacous to early Tertiary (i.e., the Baja-BC hypothesis) could

result in northward transport of the Swakane Gneiss from a region of flat subduction.

However, the protolith ages of schist underplated during flat subduction in southern

California show a trend of older protolith ages to the northwest [Barth et al., 2003],

implying that the Swakane Gneiss would have had to originate at the latitude of the

Pelona and Orocopia schists. The differences between their peak metamorphic

conditions would have to be explained by an additional mechanism.

CONCLUSIONS

The geochronological data presented here indicate that the protolith age of the

Swakane Gneiss is much younger than previously thought and that the Swakane Gneiss
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was not accreted prior to voluminous, mid-Cretaceous arc magmatism. This conclusion

is a significant departure from previous models of the assembly of the North Cascades

core. Zircon grains in the gneiss were derived from a variety of sources including

Precambrian continental crust and Jurassic to Cretaceous arc rocks. Burial of the

Swakane protolith was rapid and is most likely accounted for by thrusting of older

crystalline rocks over a fore- or back-arc basin. This rapid burial occurred as much as 20

Myr after deep burial of the Napeequa Complex in the Wenatchee block and the

Napeequa Complex and Cascade River unit in the southwestern Chelan block, and

anywhere from 15 to 3 Myr after deep burial of the northeastern Napeequa Complex,

Cascade River unit and Skagit Gneiss. Rapid burial of the Swakane sediments is

coincident with burial of arc-derived sediments of the POR schists; however, differences

in peak metamorphic temperatures indicate that conditions of burial must have varied

along the plate margin.

APPENDIX A: ANALYTICAL METHODS

Mineral separation was carried out according to standard crushing, heavy liquid,

and magnetic separation techniques. Zircon grains were picked in ethanol under a

binocular microscope and sorted by their morphology, color, clarity, and inclusion

characteristics. Representative zircons were selected for image analysis. These grains

were mounted in epoxy and polished to approximately half their original thickness.

Cathodoluminescence (CL) imaging was carried out on grain mounts on the MIT JEOL

733 Superprobe electron microscope. Image analysis was conducted with a 15 keV

accelerating voltage and 10 to 30 nA beam current depending on the intensity of

luminescence. In select cases, zircon grains were removed from the grain mount after CL

imaging for U-Pb analysis. These zircons were selected because of their clearly

oscillatory growth-zoned cores.

All zircons selected for U-Pb analysis were air-abraded, washed in 3M HN0 3 at

50°C for 12 hours, and ultrasonicated for 1 hour. Following this cycle of cleaning, the

zircons were ultrasonicated in 3M HN0 3 for an additional hour. Each zircon was

photographed to estimate sample weight, pipetted with acetone into 300 gL Teflon FEP

capsules, washed again in 3M HNO3 at 750 C for 3 hours, and finally rinsed 3 times with
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3M HNO3. Zircons were dissolved in 120 jL HF with a mixed 205Pb-233U-235U spike and

trace HNO3 at 2200C for 48 hours, dried to salts, and redissolved in 120 pL 6M HCl at

180°C for at least 12 hours. Pb and U were separated from the sample using an HC1-

based anion exchange procedure modified after Krogh [1973] and collected in a single

beaker for isotope analysis.

Pb and U were analyzed by conventional thermal ionization mass spectrometry on

the MIT VG Sector 54 multicollector mass spectrometer. Each mixed Pb and U sample

was loaded onto previously degassed single Re filaments with a silica gel-H3PO4 mixture

[Gerstenberger and Haase, 1997]. Pb isotopes were measured either: (1) for 207Pb ion

beams >5x10-' 4 A, in a two-cycle dynamic routine with 204Pb in the axial Daly detector

and 205Pb through 208Pb in H1-H4 faraday detectors during the first cycle and 205Pb in the

Daly detector and 206Pb through 208Pb in the H 1-H3 faraday detectors during the second

cycle, providing real-time Daly gain measurement; or (2) for 207Pb ion beams <5x10 - 14 A,

by peak-jumping all ion beams into the axial Daly detector in ion-counting mode.

Uranium isotopes were measured as UO2+ in static mode with masses 270, 267, and 265

in the axial, L 1, and L2 faraday collectors, respectively. Pb isotope fractionation was

monitored throughout the study by daily analysis of the NBS-981 common Pb standard

whereas U fractionation was monitored and corrected by use of the double spike.
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Figure 1. (a) Simplified paleogeographic map of the western U.S. emphasizing Cretaceous to
Tertiary features; (b) simplified geologic map of the North Cascades, southern Canadian Coast
Mountains, and Omineca metamorphic complexes after Miller and Bowring [1990] and Tabor et
al. [1989]. Abbreviations are as follows: K, Kettle Dome; NWCS, Northwest Cascades Thrust
System (Cretaceous); OK, Okanogan Complex; RLFZ, Ross Lake Fault Zone; and V, Valhalla
Complex.
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Figure 2. Simplified geologic map of the Cascades core after Haugerud et al., [1991],
Brown and Walker [1993] and Hopson and Mattinson [1994]. Sample localities are
marked by white dots. Plutons are shown in a random dashed pattern. The largest dashes
denote ca. 96-88 Ma plutons; intermediate dashes denote ca. 79-65 Ma plutons; and the
smallest dashes denote ca. 50-46 Ma plutons. Heavy lines represent faults whereas light
lines represent depositional or intrusive contacts. Abbreviations are as follows: DD,
Dinkelman Detachment; EN, Entiat intrusive suite; SFJ, Seven-Fingered Jack intrusive
suite; and WRSZ, White River shear zone.
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Figure 3. U-Pb concordia diagrams for zircon analyses from the Swakane terrane with a) all
analyses shown, b) focusing in on Jurassic to Late Cretaceous analyses, and c) focusing in on the
population of youngest zircon analyses. Stars represent data from sample SW3B. Squares
represent data from sample SW8. Triangles represent data from sample SW2.
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Figure 4. U-Pb concordia diagram showing zircon analyses that represent the crystallization age
of a peraluminous leucogranite sheet. The concordia ellipse is shaded in light grey.

43



Figure 5. Cathodoluminescence images of zircon grains from the Swakane biotite gneiss
(sample SW3B) that were analyzed after imaging. The number in the upper left corner of
each panel corresponds to the fraction number in table 1, and its U-Pb date is shown in
the upper right corner.
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Figure 6. Representative cathodoluminescence images from Swakane garnet-kyanite gneiss.
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Figure 7. Paleogeographic and tectonic map of the western US Cordillera during the latest
Cretaceous to middle Eocene time after Burchfiel [1992]. The western margin of North America
is depicted by a bold, dashed line. Fore-arc basins are depicted with a stippled pattern. Arc
plutonic rocks are depicted with a cross-hatched pattern. The Pelona, Orocopia and Rand schist
group is shown in solid black. Other abbreviations include: SAF, SanAndreas fault; SC, Straight
Creek fault; RL, Ross Lake fault zone.

46

_�I_



Figure 8. Schematic diagram of potential burial mechanisms for the Swakane Gneiss after Haxel
et al. [2002]. See text for discussion of models. Heavy black lines represent thrust faults
responsible for burial of sediments. Light arrow in the sub-arc mantle wedge represents flow
lines.
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Chapter 2

SPATIAL AND TEMPORAL VARIATIONS IN Nd ISOTOPIC
SIGNATURES ACROSS THE CRYSTALLINE CORE OF THE
NORTH CASCADES, WA: IMPLICATIONS FOR THE TECTONIC
EVOLUTION OF A MAGMATIC ARC

50



ABSTRACT

The crystalline core of the North Cascades lies at the southern termination of the

Coast Belt and records the Cretaceous to Paleogene history of terrane accretion and

crustal growth along the North American continental margin. The nature and extent of

involvement of Precambrian continental crust in the evolution of the North Cascades has

been largely unconstrained. Arc plutons that intrude the Cascades core provide probes of

this crustal architecture. Sm-Nd data from metamorphic terranes of the North Cascades,

excluding the Swakane terrane, yield eNd values in the mid-Cretaceous that range from

+9.4 to -2.7 and indicate that involvement of evolved crustal material in the formation of

these terranes was minimal. Amphibolites from the Napeequa Complex and Chiwaukum

Schist yield near-depleted mantle aNd values in the mid-Cretaceous, which suggest that

these terranes have an oceanic affinity. Meta-clastic rocks from the Chiwaukum Schist

and Nason Ridge Migmatitic Gneiss have eNd values that lie between those of arc-derived

and craton-derived sediment reflecting a mixture of these two sources. Initial eNd values

of the Swakane Gneiss also reflect mixing of craton-derived and arc-derived sources with

a relatively more significant component of craton-derived sediments. Nd values of

plutons that intrude the Cascades core reflect mixing of mantle-derived melt and melt

derived by anatexis of isotopically juvenile terranes. The range of initial eNd values

observed from the plutons is strongly influenced by local variations in the Nd signature of

the crustal source. Initial eNd values of Chelan block plutons decreased over time

suggesting melting from increasingly more evolved crustal sources. These temporal

variations in Nd signatures are also observed between the northern and southern Coast

Plutonic Complex, and may reflect changes in the sources of crustal melting along the

length of the Cretaceous arc.

INTRODUCTION

The Coast Belt, which forms the northwestern cordillera of North America,

represents a classic example of growth of continental crust by accretion of terranes that

have had only a short crustal residence time and, thus, are isotopically juvenile terranes

(Coney et al., 1980; Monger et al., 1982; Patchett and Gehrels, 1998; Samson et al.,
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1989). At the southernmost extent of the Coast Belt, the crystalline core of the North

Cascades (Cascades core) records the Cretaceous to Paleogene history of crustal growth

along this segment of the continental margin. It has long been known that metamorphic

terranes of the Cascades core contain Precambrian zircons (Mattinson, 1972); however,

the nature and extent of this Precambrian "inheritance" is largely unconstrained. For

example, were these Precambrian zircons derived from an exotic sliver of Precambrian

crust entrained within the arc or sediment transported west from the North American

margin? Plutons that intrude the Cascades core provide probes of this crustal

architecture.

In this chapter, I discuss the evolution of magmatism at the southern termination

of the Coast Belt based primarily on Nd isotopic data from granitoid rocks and their host

terranes. New Nd data from 46 samples spatially distributed within the Cascades core are

compared with existing Nd data from igneous rocks of the southern Coast Belt to address

questions related to crustal growth in this region and the influence of input from the

North American craton. The approximately 50 Myr history of magmatism in the

Cascades core offers an exceptional opportunity to evaluate both spatial and temporal

variations in Nd isotope evolution.

HISTORY OF CRUSTAL AMALGAMATION

The Cascades core makes up the southernmost extent of the Coast Belt, one of the

five physiographic provinces of the Canadian Cordillera (Fig. 1) (Monger et al., 1982).

These physiographic provinces record the history of amalgamation of terranes to the

North American craton during mid-Jurassic orogenesis. The Omineca Crystalline Belt

records suturing of the Intermontane superterrane to the ancient North American margin

(Rocky Mountain Belt) whereas, the Coast Belt records suturing of the Insular and

Intermontane superterranes (Monger et al., 1982).

The Coast Belt is underlain primarily by the Coast Plutonic Complex, a long,

narrow belt about 1700 km long and 50-175 km wide, composed of discrete to coalescing

plutons, migmatite, gneiss and lesser, variably-metamorphosed volcanic and sedimentary

rocks (Friedman et al., 1995). The plutons are predominantly quartz diorite, tonalite, and

diorite (Woodsworth et al., 1991), and they range in age from Silurian to Miocene,
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although -95% of the bodies are Jurassic to Eocene in age (Friedman and Armstrong,

1995; van der Heyden, 1992; Van der Heyden, 1989; Woodsworth et al., 1991). In the

southern Coast Belt, the Coast Plutonic Complex intrudes small, early Mesozoic arc

(Harrison and Cadwallader) and oceanic (Bridge River) terranes, which may have

equivalents in the North Cascades.

The Cascades core is dominated by Paleozoic to Mesozoic accreted terranes of

oceanic and island-arc affinity that have undergone amphibolite-facies metamorphism

(Misch, 1966; Tabor et al., 1989; Tabor et al., 1987b). These terranes were sutured

together and form the framework into which Cretaceous to Paleogene plutons intrude.

The Cascades core is offset from the main part of the Coast Belt by the Tertiary, N-

trending, strike-slip, Fraser-Straight Creek fault and bound on the east by the Ross Lake

fault zone (Fig. 1) (Misch, 1966). The southeastern boundary is obscured by Tertiary

basin fill and the Columbia River Basalt Group. The major internal structure of the core

is the post-metamorphic, high-angle, Tertiary Entiat fault, which divides the core into the

Wenatchee and Chelan blocks (Fig. 2).

The crystalline core of the North Cascades can be divided into four separate

tectonostratigraphic terranes following Tabor et al. (1987b, 1989): 1) Chelan Mountains

terrane, 2) Nason terrane, 3) Swakane terrane, and 4) Ingalls terrane. The Chelan

Mountains terrane comprises most of the Chelan block and has been further subdivided.

The Napeequa Complex (i.e., "rocks of the Napeequa River area" of Cater and Crowder

(1967)) and the associated Twisp Valley schist (Adams, 1964) are comprised of mainly

quartz-rich mica schist, quartzite, and amphibolite with minor calc-silicate rock, marble,

and meta-ultramafic rock (Miller and Paterson, 2001; Tabor et al., 1989). This

association of rock types has been interpreted as a chert- and basalt-rich, oceanic unit

assembled in an accretionary wedge (Brown et al., 1994; Haugerud et al., 1991; Miller et

al., 1994; Miller et al., 1993; Tabor et al., 1989), and is potentially equivalent to the

Mississippian to Jurassic Bridge River complex in southwestern British Columbia (Tabor

et al., 1989). Peak P-T conditions in the Napeequa Complex reached 9-11 kbar and 640-

740°C (Valley et al., 2003). The timing of peak metamorphism is not well-established;

however, 96-91 Ma plutons that intrude the Napeequa Complex yield emplacement

pressures of 8-10 kbar and contain magmatic epidote which is consistent with high
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pressure crystallization (Dawes, 1993; Walker and Brown, 1991; Zen and Hammarstrom,

1984). These data suggest that the Napeequa Complex occupied a mid- to lower-crustal

position during mid-Cretaceous arc magmatism.

The other metasupracrustal units in the Chelan Mountains terrane include the

Cascade River unit and the correlative Holden assemblage (Fig. 2), which are part of a

Triassic arc sequence (Tabor et al., 1989). These units comprise metavolcanic and

metasedimentary rock (amphibolite and hornblende-biotite schist) with local

metaconglomerate, metapelite and calc-silicate rock (Dragovich et al., 1989; Dragovich

and Norman, 1995; Tabor et al., 1989). Contact relationships between the Cascade

River-Holden (CR-H) units and the Napeequa Complex are not clearly defined. The CR-

H arc sequence has been proposed to have either formed unconformably on the oceanic

Napeequa Complex (Tabor et al., 1989) or was overthrust by the Napeequa Complex

(Brown et al., 1994; Dragovich et al., 1989). In the eastern Coast Belt (British

Columbia), the Upper Triassic Cadwallader Group, which is potentially correlative to the

CR-H arc sequence, is faulted against the Bridge River complex, a potential correlative of

the Napeequa Complex (Rusmore, 1987; Rusmore and Woodsworth, 1991; Tabor et al.,

1989).

The CR-H units are intruded by the tonalitic, strongly-deformed, Triassic

Dumbell plutons and the Marblemount Meta Quartz Diorite to form what is known as the

Marblemount-Dumbell belt (Fig. 2). A ca. 220 Ma U-Pb zircon data represents the

crystallization age of this belt (Mattinson, 1972). These intrusive rocks form the roots of

the Holden-Cascades River arc (Miller et al., 1994; Tabor et al., 1989).

In the northeastern Chelan block, the Napeequa Complex and CR-H units are

extensively injected by granodiorite to hornblende quartz diorite orthogneiss bodies,

forming the Skagit Gneiss Complex (Fig. 2) (Haugerud et al., 1991). U-Pb zircon

analyses yield ca. 60-90 Ma crystallization ages from the orthogneiss bodies and ca. 47-

44 Ma crystallization ages from late, lineated leucogranite dikes (Haugerud et al., 1991).

Screens and rafts of paragneiss of probable Napeequa Complex and CR-H unit affinity

are widespread in the Skagit Gneiss Complex (Tabor et al., 1988). The Skagit Gneiss

Complex strikes directly into the Chelan Complex, a metaplutonic migmatite complex

(Hopson and Mattinson, 1994); however, the boundary between these units is obscured
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by the crosscutting, Eocene Cooper Mountain pluton. Several differences between the

Chelan Complex and the Skagit Gneiss Complex indicate that these complexes form

distinct units with independent histories (Hopson and Mattinson, 1994). In contrast to the

Skagit Gneiss Complex, the Chelan Complex lacks paragneiss screens and contains

greater proportions of mafic and ultramafic rock (Hopson and Mattinson, 1994). The

Chelan Complex also appears to be significantly older than the Skagit Gneiss Complex

with metatonalite bodies that yield crystallization dates in the range of 120-110 Ma

(Mattinson, 1972). These crystallization dates suggest that the Chelan Complex is

temporally more closely related to the 114-111 Ma Okanogan Range batholith (Hurlow

and Nelson, 1993) that extends to the north of the Chelan Complex (Fig. 2) than to the

other rocks of the Cascades core (Hopson and Mattinson, 1994). Overall, the Chelan

Mountains terrane appears to form a complex, N-trending antiform with the Skagit

migmatitic gneiss in its core (Tabor et al., 1989).

The Nason terrane comprises the bulk of the Wenatchee block and is made up of

the Nason Ridge Migmatitic Gneiss and Chiwaukum Schist. The Chiwaukum Schist, an

interlayered metapelitic and metapsammitic unit, underlies the Napeequa Complex along

the White River shear zone (Fig. 2) (Miller and Paterson, 2001; Tabor et al., 1987a; Van

Diver, 1967). Pressures calculated from Chiwaukum metapelitic schist increase from 3

kbar near the Mount Stuart batholith to 9 kbar near the White River shear zone

(Bendixen, 1994; Brown and Walker, 1993; Evans and Berti, 1986). At the deepest

levels of this terrane in the core of a regional antiform, the Chiwaukum Schist grades into

the Nason Ridge Migmatitic Gneiss. The protolith of the gneiss is likely the same rock

that forms the Chiwaukum Schist; however, the Nason Ridge Migmatitic Gneiss has been

extensively injected by tonalitic to trondhjemitic magma (Tabor et al., 1987a). The

composition, metamorphic history and associated plutons suggest that the Chiwaukum

Schist may be the lateral equivalent of the Settler Schist in southwestern British

Columbia (Evans and Berti, 1986; Magloughlin, 1986; Misch, 1977; Monger, 1991) or

the Late Jurassic Cayoosh assemblage (Miller et al., 2003).

The Swakane Gneiss is the only unit that makes up the Swakane terrane, which

crops out in both the Wenatchee and Chelan blocks. It is a meta-supracrustal unit

consisting predominantly of homogeneous quartzofeldspathic biotite + garnet and
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muscovite gneiss with local garnet amphibolite, garnet + hornblende + biotite gneiss,

garnet + kyanite + staurolite gneiss, calc-silicate, quartzite and meta-peridotite (Cater,

1982; Paterson et al., 2004; Sawyko, 1994; Tabor et al., 1987a; Valley et al., 2003;

Waters, 1932). Peak P-T conditions reached 9-12 kbar and 670-730 °C (Valley et al.,

2003), making it the deepest unit in the Cascades core. The Swakane Gneiss is unique in

the Cascades core because it lacks arc related plutons, although the base of the section is

intruded by thin peraluminous, granitic sheets. Until recently, the protolith age of the

Swakane Gneiss was inferred to be Proterozoic based on the presence of Precambrian

zircon grains (Mattinson, 1972; Tabor et al., 1987b); however this age assignment was

problematic because of the lack of arc-related plutons in a unit that was assumed to have

occupied a lower crustal position during mid-Cretaceous magmatism. New U-Pb

geochronology from detrital zircons in the Swakane Gneiss (Chapter 1) indicates that the

protolith age of the Swakane Gneiss is ca. 73 Ma, much younger than previously thought.

Therefore, this terrane was not part of the crustal architecture of the Cascades core until

after voluminous mid-Cretaceous magmatism.

The final terrane that comprises the Cascades core is the Ingalls terrane, which is

solely composed of the Late Jurassic Ingalls ophiolite (Miller, 1985). The ophiolite was

thrust over the Nason terrane along the Windy Pass thrust. Latest motion along the thrust

was concurrent with the emplacement of the 96-91 Ma Mount Stuart batholith (Matzel et

al., 2002; Miller and Paterson, 1992). The Ingalls ophiolite sequence represents the

shallowest level rocks involved in the Cascades core metamorphism and deformation.

Metamorphic grade ranges from prehnite-pumpellyite facies in the southern, low grade

part of the sequence, to amphibolite facies in the structurally lower part near the Windy

Pass thrust (Miller and Paterson, 2001).

MAGMATIC HISTORY

Arc magmas intruded the Cascades core from at least 96 Ma until ca. 46 Ma

(Miller et al., 1989). Magmatism occurred in three distinct pulses including the most

voluminous 96-88 Ma (Group I) pulse, a 78-65 Ma (Group II) pulse, and a 50-46 Ma

(Group III) pulse. Both the Wenatchee and Chelan blocks experienced 96-88 Ma

magmatism; however only the Chelan block contains plutons from the Group II and
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Group III pulses at the presently exposed crustal level. The compositions of plutons vary

from gabbro to granodiorite (Cater, 1982), and this variation is not restricted to a given

block. The plutons can be divided into two compositional series - a gabbro to tonalite

series and a tonalite to granodiorite series (see Dawes, 1993). Both series are observed in

the Group I plutons, but the Group II plutons predominantly fall in the gabbro to tonalite

series and the Group III plutons predominantly fall in the tonalite to granodiorite series.

In fact, the Group III plutons generally lack mafic endmembers, and the single-most

characteristic feature of this group is the presence of considerable K-feldspar (Cater,

1982). Table 1 lists the plutons sampled in this study along with their predominant rock

type(s) and their respective crystallization ages.

Sm-Nd ISOTOPIC DATA

Analytical Techniques

Analyzed samples encompass the entire age and compositional range of plutons in

the Cascades core, and provide regional coverage of the host metamorphic terranes.

Approximately 100 mg of powdered whole rock from each sample was spiked with a

mixed 14 9Sm-1 50Nd tracer and completely dissolved in 3 mL of concentrated HF and 0.5

mL of 7M HNO3 in Teflon pressure vessels at 220°C for five days. These solutions were

dried down, and completely redissolved in 6M HCl by fluxing on a hotplate at 120°C for

24-48 hours. Separation of Nd and Sm was carried out using a standard two-stage

column chemistry procedure. The REE were isolated using a cation-exchange resin

followed by separation of Nd from Sm using the LN-spec resin. Once separated, Sm was

loaded on to single Ta filaments with approximately 1 tL of 1M H 3 PO 4 and analyzed as

metal ions in static mode. Nd was loaded on to triple Re filaments with approximately 

tL of 0.1M H 3 PO 4 and analyzed as metal ions in dynamic multicollector mode with a

144Nd signal intensity of approximately 1.5x10- l A. Sm and Nd data were fractionation

corrected with an exponential law, normalizing to 152 Sm/14 7 Sm=l .783 and

146 Nd/144Nd=0.7219 respectively. Details of internal and external reproducibility of the

data are given in the caption to table 2. The uncertainty on calculated initial eNd values

for all samples is between 0.1 to 0.2 £Nd units.
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Host Terrane Data

During mid-Cretaceous times, aNd values of the terranes in the Cascades core

(excluding the Swakane terrane) cover an approximately 10 epsilon unit range from near

depleted mantle values (+8.6) to slightly negative values (-1.9) (Table 2; Fig. 3). The

trajectories of &Nd evolution are relatively flat with the difference between present day aNd

values and aNd values back-calculated to 96 Ma generally being less than one epsilon unit.

This suggests little fractionation of Sm from Nd after the formation of these terranes.

The flat Nd isotope evolution trajectories also mean that uncertainties in the age of a

given terrane make little difference in the calculated initial aNd value. Data from all

samples are given in table 2, and sample localities are plotted on figure 2.

The host terrane data can be broken out into four groups: 1) deformed pre-96 Ma

plutons, 2) Napeequa Complex of the Chelan Mountains terrane, 3) Nason terrane, and 4)

Swakane terrane. The pre-96 Ma plutons include the ca. 220 Ma Dumbell Gneiss from

the Marblemount-Dumbell belt within the Chelan block and the ca. 138 Ma Methow

Gneiss and ca. 118 Ma Alta Lake Complex along the eastern margin of the Cascades

core. A hornblende tonalite gneiss from the Dumbell Gneiss unit yields an initial aNd

value of +7.6 and an aNd value of +6.8 at 96 Ma (the timing of the earliest magmatism in

the Cascades core) (Fig. 3). Samples of the Methow Gneiss and Alta Lake Complex

yield similar initial &Nd values of +6.0 and +5.3 respectively.

Amphibolites and hornblende-biotite schists of the Napeequa Complex show a

broader range of aNd values at 96 Ma than the pre-96 Ma plutons (Fig. 3). The most

positive aNd value measured in this study (+8.6) was obtained from a Napeequa

amphibolite from the Wenatchee block. The aNd value of this sample increased slightly

with time (present day &Nd = +9.4) indicating LREE depletion during its formation. Other

amphibolite samples from the Napeequa Complex have ENd values at 96 Ma of +8.0 to

+5.1 (Fig. 3) and have £Nd values that decrease to the present day. A hornblende-biotite

schist sample yields the lowest aNd value of the Napeequa Complex at +3.4 (Fig. 3).

Samples from the Nason terrane exhibit the broadest range of aNd values from

+7.7 to -1.9 (Fig. 3). These samples include amphibolite (+7.7) and garnet-biotite schist
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(+2.6, -1.9) from the Chiwaukum Schist and garnet-biotite gneiss (+0.6) from the Nason

Ridge Migmatitic Gneiss.

The Swakane terrane samples exhibit the most negative ENd values obtained in this

study with values that range from -0.6 to -- 6.1 (Fig. 3). These values were measured

from garnet-biotite gneisses distributed throughout the Swakane Gneiss in the Chelan

block.

Pluton Data

Plutons from the Cascades core exhibit a more limited range of initial eNd data

than values from the host terranes (Table 2, Fig. 4). The Group I plutons display the

broadest range of eNd values, from +6.3 to +2.0; however, Group I plutons from the

Chelan block generally have higher initial ENd values (+6.3 to +4.6) than Group I plutons

from the Wenatchee block (+5.1 to +2.0) (Fig. 4). This difference in initial £Nd value

between the two crustal blocks does not correlate with rock type. Initial eNd values of

gabbro or diorite from a given pluton are generally more positive than tonalite from the

same pluton, as is to be expected, but gabbro or diorite samples are only higher than

tonalite samples by about one eNd unit or less (Fig. 5). This trend means that samples of

tonalite and granodiorite from the Chelan block have more positive initial eNd values than

the most mafic rocks sampled from the Wenatchee block. Initial FNd values from

granodiorites exhibit nearly the full range of &Nd values observed in the Group I plutons

(Fig. 5).

Initial eNd values from Group II plutons (only present in the Chelan block) form a

tight cluster (+4.9 to +3.8) that is less positive than initial eNd values from the Group I

plutons from the Chelan block (+6.3 to +4.6) with little overlap between groups (Fig. 4).

Again, this difference in mNd value does not correlate with rock type. The most positive

mafic sample from Group II is only slightly more positive than the most negative tonalite

sample from the Chelan block Group I plutons.

Initial Nd values from the Group III plutons form two distinct clusters on an eNd

versus time plot (Fig. 4). Five samples from plutons within the Chelan block have initial

&Nd values that range from +2.9 to +1.5, whereas two samples from plutons within the
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Ross Lake fault zone and a leucogranite dike that cuts the Skagit Gneiss Complex have

initial aNd values of +5.2 to +5.0. The samples with lower eNd values are granodioritic

whereas samples with higher eNd values are granitic (Golden Horn batholith and a

leucocratic dike) or trondhjemitic (Ruby Creek Heterogeneous Plutonic Belt).

DISCUSSION

Host Terranes

The 6Nd values of the terranes that comprise the Cascades core reflect variations in

the sources that contributed to each terrane. Overall, the positive and near depleted

mantle-like values of most samples preclude the involvement of significant amounts of

old, radiogenically-enriched, continental crust. A limit on the extent of contamination by

old continental crust can be estimated by simple two-component mixing between end

members with MORB-like and continental crustal characteristics. Calculations using ENd

of +10 and 10 ppm to represent the juvenile end-member and eNd of -15 and 30 ppm for

old crustal material (DePaolo et al., 1991) suggest that amount of old crustal material in

the host terranes averaged -10%. The pre-96 Ma pluton samples represent parts of the

Late Triassic and Early Cretaceous arc sequences, and their initial aNd values are only

slightly lower than the depleted mantle at 96 Ma. In the case of the Dumbell Gneiss, its

depleted mantle model age (ca. 260 Ma) is similar to its U-Pb crystallization age (ca. 220

Ma). These observations suggest that the pre-96 Ma plutons were derived from sources

that had a short crustal residence time. This interpretation of the Nd results is the same as

the interpretation of Nd data from similarly-aged samples of the southern Coast Plutonic

Complex (Cui and Russell, 1995; Friedman et al., 1995). The southern Coast Plutonic

Complex samples have initial ENd values that range from +2.4 to +8.0, and 80% of the

samples fall between +4 and +8 (Fig. 4).

The Napeequa Complex also has positive, near depleted mantle values during the

mid-Cretaceous. Amphibolite samples yield the highest 6 Nd values obtained in this study

and support the interpretation that the Napeequa Complex is predominantly an oceanic

unit (Brown et al., 1994; Miller et al., 1993; Tabor et al., 1989; Tabor et al., 1987b). The

Complex has been interpreted to have formed in an accretionary wedge because of the

tectonic interleaving of units (Brown et al., 1994; Miller et al., 1993; Tabor et al., 1989;
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Tabor et al., 1987b). If a clastic component was present in the accretionary wedge, the

Nd data suggest that it was derived from isotopically juvenile crust, not evolved

continental crust.

The Chiwaukum Schist and Nason Ridge Migmatitic Gneiss display the largest

range of eNd values observed from a given terrane. Amphibolite interlayered with garnet-

biotite schist of the Chiwaukum Schist yielded the most positive eNd value of this group,

and these results are similar to those obtained by Magloughlin (1993). High eNd values

and its MORB-type geochemical signature are consistent with an oceanic derivation of

the amphibolite (Magloughlin, 1993; Metzger and Miller, 1994). Clastic-derived units of

the Chiwaukum Schist and Nason Ridge Migmatitic Gneiss yield much lower aNd values

at 96 Ma than the amphibolite (Table 2; Fig. 3). Two possible end-member sources

include sediment derived locally from the Jurassic arc or nearby terranes, and sediment

derived from cratonic North America. A local arc source is consistent with geochemical

data from the schist (Anderson and Paterson, 1991; Magloughlin, 1993), and a reasonable

estimate of the aNd values of such sediment is between +5 and +8, the eNd values of Early

Permian to Middle Jurassic terranes of the southern Coast Belt (Cui and Russell, 1995;

Friedman et al., 1995). Sediment derived from cratonic North America may be expected

to have aNd values of-14 to -22 (Boghossian et al., 1996). Meta-clastic rocks of the

Nason terrane have aNd values that fall between aNd values expected from these two

sources, and a reasonable interpretation of the Nason terrane data is that the meta-clastic

units were derived from a mixture of both arc and cratonic sources. Additional evidence

supporting involvement of a cratonic sedimentary component comes from a potential

correlative of the Chiwaukum Schist, the Settler Schist in southern British Columbia,

which contains detrital Precambrian zircons (Gabites, 1985) and inherited Precambrian

zircons contained within a leucocratic sheet that intrudes the Nason Ridge Migmatitic

Gneiss (S. Bowring, unpublished data). However, the fact that 6
Nd values from the Nason

terrane are only slightly lower than aNd values expected from arc-derived sediments

suggests that the cratonic component was a relatively minor input.

The Swakane Gneiss forms the most isotopically evolved unit in the Cascades

core and the southern Coast Belt with aNd values at 73 Ma that are near zero to
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moderately negative (Table 2; Fig. 3). As is the case for clastic units of the Nason

terrane, the protolith of the Swakane biotite gneiss likely formed as a mixture of arc-

derived and craton-derived sediments. The abundance of Precambrian detrital grains

(Chapter 1) and lower eNd values as compared to the Nason terrane samples indicate that

the craton-derived sedimentary component was volumetrically more significant in the

Swakane Gneiss than in the Nason terrane. The origin and tectonic affinity of this high-

P, meta-supracrustal terrane has been the subject of much recent study (Matzel et al., in

review; Paterson et al., 2004; Valley et al., 2003). The recognition that the Swakane

Gneiss has a protolith age of ca. 73 Ma indicates that the underthrusting of this

isotopically evolved unit to the base of the arc only occurred after the most voluminous

mid-Cretaceous magmatism. Several mechanisms have been proposed to explain the

rapid burial of the Swakane protolith (Matzel et al., in review). One such model proposes

that the protolith of the gneiss was deposited in an accretionary wedge and then

subducted beneath the arc. This model predicts that the Swakane Gneiss forms a

regionally extensive layer beneath the arc. Other proposed mechanisms infer that the

protolith of the gneiss was deposited in a small back-arc or fore-arc basin that was then

overthrust during contraction of the arc. In this case, the Swakane Gneiss would only

form a laterally restricted section of the Cascades core. The addition of the Swakane

Gneiss to the crustal architecture of the North Cascades and its effect on the eNd

signatures of plutons that intrude the Cascades core are discussed in the following

section.

Plutons

Variations in the Nd data from the plutons can be explained by two end-member

models: 1) the Nd signatures are inherited from crustal sources with different SNd values,

or 2) the Nd signatures result from mixing between varying volumes of crust versus

mantle melt. In all likelihood these processes do not operate independently of one

another, and the relative effects of each are difficult to separate. In the case of the most

mafic samples, a mantle source is almost certainly required as melting of a crustal source

will produce melts that are tonalitic or more felsic in composition.
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The initial CNd values of the plutons analyzed in this study overlap those of the

terranes they intrude during the mid-Cretaceous (Fig. 4). We could hypothesize that the

Nd signatures of the plutons resulted from mixing of very small volumes of melt derived

from Precambrian continental crust with mantle-derived mafic melt; however this

hypothesis is unlikely to result in the large volumes of tonalitic magma present in the

Cascades core. In addition, there is little evidence for inheritance of Precambrian zircon

in any of these plutons. A much more reasonable explanation for the range of initial &Nd

values observed from the North Cascades plutons is that these plutons were derived from

melts of the isotopically juvenile arc terranes with input from the depleted mantle

reservoir.

This interpretation of the Nd data is supported by geochemical studies from these

plutons. Mafic complexes, sheets and enclaves found in the Group I and II plutons have

the geochemical signature of mantle-derived, high-alumina basalts that evolved to water-

rich hornblende-bearing magmas at the base of the crust and into the lower and middle

crust (Dawes, 1993; DeBari et al., 1998). The geochemistry of the tonalite cannot be

explained by simple fractional crystallization from basalt, but rather can be explained by

mixing of a mafic, mantle-derived component and silicic (trondhjemitic to tonalitic) melt

of a garnet bearing mafic source (Dawes, 1993; DeBari et al., 1998; Miller et al., 2000).

The crustal source must have contained residual garnet because the REE patterns of the

tonalite shows strong LREE enrichment and HREE depletion (DeBari et al., 1998; Miller

et al., 2000). DeBari et al. (1998) estimated that this crustal melting occurred near the

base of an overthickened crustal section at pressures of 15-17 kbar. Granodioritic plutons

that comprise the Group III plutons are composed predominantly of crustal melt that also

was derived from a garnet-bearing source (Dawes, 1993). These plutons have high 6180O

(White et al., 1988) and are thought to have been derived from metamorphosed

equivalents of either a plagioclase- and lithic-rich greywacke or altered basalt or both

(Dawes, 1993). Although mafic compositions do not comprise a significant proportion of

the Group III plutons, the involvement of mafic magmas is inferred from the presence of

mafic enclaves, and these mafic magmas likely supplied the heat necessary to generate

crustal melts.
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Mixing between crustal and mantle-derived melts is clearly indicated by the

geochemistry, but variations in the Nd isotopic signature of the plutons appear to be

dominated by the aNd value of the crustal component. Evidence for this interpretation

comes from an examination of pairs of gabbro and contemporaneous tonalite samples

from individual plutons (Fig. 5). For example, gabbro and tonalite from the ca. 91 Ma

phases of the Mount Stuart batholith have initial aNd values of +3.8 and +3.6,

respectively, and diorite and tonalite from the ca. 96 Ma phases have initial aNd values of

+3.6 and +2.0, respectively. This relationship is also observed from gabbro-tonalite pairs

from the Tenpeak pluton and Black Peak batholith. These gabbro-tonalite pairs indicate

that the mixing that produces the entire range of compositions observed in a pluton

results in no more than a 1.6 epsilon unit difference in the 8
Nd values of the end-members

of individual plutons. The crustal Nd signature also appears to dominate the aNd values of

the Group II plutons. A sample of the Riddle Peaks gabbro has an initial aNd value of

+4.9 whereas two samples of tonalite from the coeval Cardinal Peak pluton (Cater, 1982;

McPeek et al., 2002; Parent, 1999) have initial aNd values of+4.0 and +3.8.

The fact that gabbro from each suite of plutons has initial aNd values that are

significantly lower than the depleted mantle indicates that these mafic magmas must

contain a component of crustal melt, but this component must be volumetrically minor in

order to maintain its mafic composition. Mantle melt typically has a low Nd

concentration when compared to crustal melt because of the incompatibility of REEs in

typical mantle minerals. The comparatively high Nd concentration of the crustal melt

may have overwhelmed the Nd budget of the mantle-derived melt exerting a leveraging

effect on the overall Nd signature of the gabbro. When comparing gabbro-tonalite

associations from different plutons, ENd signatures from a given pluton do not overlap

other gabbro-tonalite pairs even though these pairs are compositionally similar (Fig. 5). I

would infer from this relationship that the Nd signature of a given pluton, even the most

mafic component, is controlled by local variations in the Nd signature of its crustal

component.

Of the crustal terranes that we have Nd data from in the Cascades core, the

Napeequa Complex and potentially the deepest structural levels of the Chiwaukum

Schist/Nason Ridge Migmatitic Gneiss have P-T-t estimates that indicate that these rocks
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were deep within the crust during the time period when the bulk of the arc magmatism

took place (Valley et al., 2003). More importantly, these units have more evolved end-

members than the pre-96 Ma arc terranes, and if melts of the Napeequa Complex and

Nason terrane were mixed with a depleted mantle melt, this mixing would result in the

Nd signatures that we observe in the arc plutons. Both the Napeequa Complex and

Nason Ridge Migmatitic Gneiss contain small-scale leucosomes produced by in situ

melting of biotite schists and abundant sheets of tonalitic magma making up an estimated

30% of the outcrop area (Miller and Paterson, 2001). The ultimate source of the tonalitic

sheets is not known, but a reasonable explanation is that they are derived from somewhat

deeper levels of the terranes or other unexposed juvenile terranes.

If we examine the Nd signatures of plutons from the Chelan block, an interesting

pattern emerges. The intitial ENd values of plutons in each age group systematically

decrease with time (Fig. 4). The exceptions to this trend are samples from Group III that

intrude the Ross Lake fault zone on the eastern edge of the Cascades core. Once again,

the fact that mixing between mantle-derived mafic melt and crustal melt produces less

than a 1.6 epsilon unit difference in &Nd values between end-members of a given pluton

(Fig. 5) suggests that the --5 epsilon unit trend in ENd values from the Chelan block

plutons is more likely produced by variations in the Nd signature of the crustal source.

This interpretation implies that an increase or decrease in the input of mantle melts is not

resolvable in the data. It also suggests that crustal melts produced to the east of the Ross

Lake fault zone have a distinctly different crustal source than those inside the Cascades

core.

The interpretation that the decreasing Nd trend of the Chelan block plutons results

from changes in the Nd signature of the crustal component leads to the interesting

possibility that deep burial of the Swakane Gneiss, the most isotopically-evolved terrane

in the Cascades core, may have influenced the evolution of the Nd signatures of Group III

plutons. One tectonic model proposed to account for rapid burial of the Swakane Gneiss

involves underthrusting of sediments beneath the arc during shallow, low-angle

subduction (c.f. Chapter 1). If this model is correct, then the Swakane Gneiss would

form a regionally extensive layer beneath the Cascades core. Could underplating of the

gneiss after the intrusion of the Group II plutons be responsible the low initial eNd values
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of the Group III plutons? Nd data from Wenatchee block plutons suggest that these

special circumstances are not required. Group I plutons from the Wenatchee block show

the entire range of aNd values that are observed in the Chelan block. This suggests that

whatever crustal source melted to form the group III plutons in the Chelan block also

underlay the Wenatchee block prior to 96 Ma and likely contributed to the oldest

Wenatchee block plutons.

The process that caused a shift to melting of different crustal sources in the

Chelan block over time is unclear. Continued convergence during the Cretaceous almost

certainly modified the crustal architecture of the North Cascades, and this modification

may have caused a change in the sources available for melting. The Wenatchee Block

was exhumed to mid to upper crustal levels before the emplacement of Group II plutons,

and thus occupied a higher structural position during Group II and Group III magmatism.

As crustal magmatism continued over the life of the arc, the fertility of different crustal

sources would also be expected to evolve.

Based on the Nd data obtained in this study, several parallels may be drawn

between the Cascades core and the Coast Plutonic Complex (CPC). In the southern CPC,

most plutons are Late Jurassic to Late Cretaceous in age (ca. 100-180 Ma), and have

initial aNd values that are similar to the pre-96 Ma plutons of the North Cascades (Cui and

Russell, 1995; Friedman et al., 1995). The southern CPC exhibits a relatively restricted

range of initial aNd values from +2.4 to +8.0 with -80% of the samples between +4 and

+8 (Fig. 4) (Cui and Russell, 1995; Friedman et al., 1995). These high, positive initial

aNd values, which overlap the eNd values of the terranes that the southern CPC intrudes

(Samson et al., 1989; Samson et al., 1990), indicate that the southern CPC samples were

not significantly contaminated by old, isotopically-evolved, continental material (Cui and

Russell, 1995; Friedman et al., 1995). Like the petrogenetic models presented here for

the generation of the Cascades core plutons, models for the formation of the southern

CPC involve mixing of mantle melt with anatectic melt of the isotopically juvenile

Alexander, Wrangellia and Stikine terranes (Cui and Russell, 1995; Friedman et al.,

1995).

The Nd data from the northern CPC illustrate a distinctly different picture of the

evolution of the batholith. Plutons from the northern CPC are typically Late Cretaceous
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to Eocene in age (ca. 70-45 Ma) (Gehrels et al., 1991), therefore a direct comparison

between the northern CPC and the Group III plutons of the Cascades core can be made.

Initial eNd values from the northern CPC -2-7 epsilon units lower than the lowest eNd

value measured from the Group III plutons and range from -0.2 to -5.4 with

crystallization ages between 49 Ma and 68 Ma (Fig. 4) (Arth et al., 1988; Samson et al.,

1991). The Alexander, Wrangellia and Stikine terranes have eNd values of -0 to + 10

during the Eocene (Samson et al., 1989; Samson et al., 1990), therefore the initial eNd

values of the plutons are too low for the plutons to have been derived from anatexis of the

nearby arc terranes or by mixing of depleted mantle melts with melts of the terranes

(Samson et al., 1991). The Nd data from the northern CPC therefore require a component

of old, evolved, continental crust in their genesis unlike the Group III plutons from the

Cascades Core (Samson et al., 1991). These data are supported by the presence of an

inherited, Proterozoic Pb component in zircons from many of the northern CPC plutons

(Gehrels et al., 1990). Samson et al. (1991) proposed that the evolved crustal component

was likely derived from the Yukon-Tanana terrane in a model where the plutons formed

as a delayed result of the underthrusting of the Alexander-Wrangellia terrane beneath the

Yukon-Tanana and Stikine terranes during mid-Cretaceous orogenesis.

CONCLUSIONS

The Nd values obtained in this study indicate that only a minor component of

Precambrian crustal material could have been involved in the genesis of the host terranes

and plutons of the North Cascades core. Amphibolites from both the Napeequa Complex

and Chiwaukum Schist have near depleted mantle values, suggesting that these terranes

have an oceanic affinity. Meta-clastic rocks from the Chiwaukum Schist and Nason

Ridge Migmatitic Gneiss have eNd values that lie between those of arc-derived and

craton-derived sediment reflecting a mixture of these two sources. Initial eNd values of

the Swakane Gneiss also reflect mixing of craton-derived and arc-derived sources with a

relatively more significant component of craton-derived sediments in the Swakane Gneiss

than in the Nason terrane samples.

&Nd values of the plutons that intrude that Cascades core reflect mixing of mantle-

derived melt and melt derived by anatexis of isotopically juvenile terranes. Mixing of the
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mantle and crustal-derived melts results in less than a 1.6 epsilon unit difference between

the compositional end-members of individual plutons. This suggests that the range of

initial eNd values observed from the plutons is more strongly influenced by local

variations in the Nd signatures of the crustal source rather than varying amounts of

crustal versus mantle input.

Chelan block plutons show a trend of lower initial eNd values with decreasing

crystallization age suggesting melting from more evolved crustal sources over the life of

the arc. However, plutons that intruded the Wenatchee block exhibit the entire range of

CNd values observed from plutons in the Chelan block even though the Wenatchee block

plutons all intruded during the 96-84 Ma pulse of magmatism. This suggests that the

evolution of Nd signatures in the Chelan block plutons may reflect differences in the

depth of crustal melting and the availability of more evolved crustal sources. These

temporal variations in Nd signatures are also observed between the northern and southern

Coast Plutonic Complex, and may reflect changes in crustal melting along the length of

the Late Cretaceous to Eocene arc.
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Figure 1. Simplified terrane map of the northwestern North American
Cordillera after Friedman et al. (1995) and Mahoney et al., (1995).
Inset shows the five physiographic provinces of the Canadian Cordillera.

73



Figure 2. Simplified geologic map of the Cascades core after Haugerud et al., (1991),
Brown and Walker (1993) and Hopson and Mattinson (1994). Plutons are shown in a
random dashed pattern. The largest dashes denote ca. 96-88 Ma plutons; intermediate
dashes denote ca. 79-65 Ma plutons; and the smallest dashes denote ca. 50-46 Ma
plutons. Early Cretaceous plutons adjacent to the eastern margin of the core are filled
with a plus sign pattern. Sample localities are represented by red dots numbered
according to table 1. Heavy lines represent faults whereas light lines represent
depositional or intrusive contacts. Abbreviations are as follows: A, Alma Creek pluton;
ALC, Alta Lake Complex; BL, Bench Lake pluton; BP, Black Peak pluton; BR, Bearcat
Ridge pluton; CL, Cyclone Lake pluton; CPB, Cloudy Pass batholith; MB, Mount
Buckindy pluton; CV, Chaval pluton; CO, Cooper Mountain batholith; CP, Cardinal Peak
pluton; DC, Downey Creek intrusion; DD, Dinkelman Detachment; DF, Dirtyface pluton;
DH, Duncan Hill pluton; EN, Entiat intrusive suite; EL, Eldorado pluton; GH, Golden
Horn pluton; H, Haystack pluton; HL, Hidden Lake pluton; JL, Jordan Lake pluton; MC,
Marble Creek pluton; MSB, Mount Stuart batholith; MG, Methow Gneiss; NRG, Nason
Ridge Migmatitic Gneiss; OP, Oval Peak pluton; RC, Railroad Creek pluton; RP, Riddle
Peaks pluton; SC, Sloan Creek pluton; SFJ, Seven-Fingered Jack intrusive suite; SM,
Sulphur Mountain pluton; TP, Tenpeak pluton; WRG, Wenatchee Ridge Gneiss; and
WRSZ, White River shear zone.
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Table 1. Sample, rock type, location and age.
ID Sample Pluton/Unit Rock Type Age (Ma) Reference
1 DB1 Dumbell Gneiss Tonalite gneiss 220 Mattinson, 1972

a 2 MT 1 Methow Gneiss Granitic gneiss 118 Miller et al., in review
3 ALl Alta Lake Complex Trondhjemite 138 Miller et al., in review
4 SCP Black Peak Tonalite 90 Miller et al., in review
5 MAF Black Peak Gabbro 90 Miller et al., in review
6 LU-13-1 Bearcat Ridge Tonalite 89 Miller et al., in review
7 EN42 Entiat Tonalite 92 Chapter 5
8 DF1 Dirtyface Diorite 91 Hurlow, 1992
9 WRO2 Wenatchee Ridge Trondhjemite 93 Matzel, unpub. data
10 MS2 Mount Stuart Gabbro 91 Chapter 4
11 MS5 Mount Stuart Tonalite 96 Chapter 4

E: 12 MS 17C Mount Stuart Diorite 96 Chapter 4
' 13 MS31 Mount Stuart Tonalite 91 Chapter 4

14 TP11 Tenpeak Tonalite 92 Chapter 4
15 TP30 Tenpeak Diorite 92 Chapter 4
16 TP-524-1 Tenpeak Tonalite 90 Chapter 4
17 SP3 Sulphur Mtn Granodiorite 96 Walker and Brown, 1991
18 HP1 High Pass Granodiorite 88 Matzel, unpub. data
19 BC 1 Buck Creek Granodiorite 84 Hurlow, 1992
20 CM1 Clark Mtn Granodiorite 85 Walker, unpub.data
21 EN41 Entiat Gabbro 79 Chapter 5

o 22 EN23 - Entiat Tonalite 73 Chapter 5
23 NHO1 Newhalem Orthogneiss Tonalite 65 Haugerud et al., 1991

,- 24 Ho-64-1 Riddle Peaks Gabbro 77 McPeek et al., 2002
25 PI-110-2 Cardinal Peak Tonalite 77 McPeek et al., 2002
26 PM-165-1 Cardinal Peak Tonalite 77 McPeek et al., 2002
27 OP-D Oval Peak Tonalite 65 Miller and Bowring, 1990
28 LLP Larch Lakes Granodiorite 47 Bowring, unpub. data
29 RC 1 Railroad Creek Granodiorite 46 Bowring, unpub. data
30 CMB Cooper Mtn Granodiorite 48 Fawcett et al., 2003
31 DH5 Duncan Hill Granodiorite 46 Dellinger and Hopson, 1986

- 32 RM1 Rampart Mountain Granodiorite 47 Cater, 1982
33 GHI Golden Horn Granite 47 Petro et al., 2002

3 34 NC 19-1 Leucogranite Dike Granite 46 Haugerud et al., 1991
35 NC22-1 Ruby Creek Belt Trondhjemite 48 Miller et al., 1988
36 NQ2 - Napeequa Amphibolite Jurassic? Tabor et al., 1989
37 NQ 19 Napeequa Amphibolite Jurassic? Tabor et al., 1989
38 NQ21 Napeequa Amphibolite Jurassic? Tabor et al., 1989
39 NQ31 Napeequa Biotite schist Jurassic? Tabor et al., 1989

H 40 SW3B Swakane Biotite gneiss 73 Chapter 1
41 SW4 Swakane Biotite gneiss 73 Chapter 1

~o 42 SW8 Swakane Biotite gneiss 73 Chapter 1
43 CW13 Chiwaukum Gamet-biotite schist Jurassic? Miller et al., 2003
44 CW19__ Chiwaukum Amphibolite Jurassic? Miller et al., 2003
45 CW24 Chiwaukum Gamet-biotite schist Jurassic? Miller et al., 2003

___ 46 BG2B Nason Ridge Gneiss Gamet-biotite gneiss Jurassic? Miller et al., 2003

79



Table 2. Sm-Nd isotopic data.
147Sm* 143 Ndt TDM

ID Sample No. Sm (ppm)* Nd (ppm)* 4- 4 Nd TD) M
_ _ _ _ ___ Nd TNd ~ Nd(O) £Nd (Ma)&

>96 Ma I DB1 2.71 9.62 0.1700 0.512989 ±3 6.84 7.60 261
plutons 2 MT1 2.33 11.09 0.1269 0.512890 ±4 4.91 5.96 303

3 ALl 1.50 6.70 0.1351 0.512854 ±4 4.22 5.31 397
4 SCP 2.05 11.34 0.1094 0.512863 ±3 4.39 5.40 292
5 MAF 2.60 10.85 0.1448 0.512928 ±3 5.66 6.25 298
6 LU-13-1 3.17 20.55 0.0932 0.512840 ±2 3.95 5.12 282
7 EN41 2.35 6.81 0.2087 0.512912 ±4 5.34 5.20 -
8 EN42 2.91 11.95 0.1475 0.512845 ±4 4.04 4.62 487
9 DFI 2.97 11.93 0.1505 0.512770 ±3 2.57 3.11 679
10 WRO2 8.02 42.43 0.1142 0.512784 ±4 2.85 3.83 421
11 MS2 2.89 12.04 0.1450 0.512832 ±4 3.78 4.38 498
12 MS5 2.41 12.63 0.1153 0.512688 ±4 0.98 1.98 567
13 MS17C 2.72 11.12 0.1478 0.512790 ±3 2.96 3.56 609
14 MS31 2.58 11.55 0.1348 0.512821 +3 3.57 4.29 457

V 15 TPI 1 1.85 9.59 0.1164 0.512853 ±4 4.2 5.14 327
16 TP30 3.67 17.90 0.1240 0.512785 ±4 2.87 3.72 463
17 TP-524-1 4.25 23.64 0.1087 0.512786 ±4 2.88 3.90 397
18 SP3 4.32 20.90 0.1251 0.512848 ±3 4.09 4.97 366
19 HP1 2.38 14.30 0.1005 0.512692 ±4 1.06 2.09 491
20 BC1 5.32 28.72 0.1120 0.512702 ±3 1.25 2.16 530
21 CMI 4.12 22.68 0.1098 0.512757 ±3 2.33 3.27 441
22 EN23 2.96 14.73 0.1214 0.512582 ±3 -1.1 -0.41 772
23 NHOI 4.39 17.67 0.1501 0.512815 ±4 3.45 3.84 573
24 Ho-64-1 3.79 12.39 0.1847 0.512885 ±3 4.81 4.93 854

A 25 PI-1 10-2 3.72 18.13 0.1240 0.512797 ±4 3.1 3.82 443

26 PM-165-1 4.56 24.06 0.1145 0.512803 ±3 3.22 4.03 394
27 OP-D 2.88 15.22 0.1146 0.512804 ±3 3.23 3.92 393
28 LLP 2.73 12.91 0.1280 0.512710 ±4 1.41 1.82 610
29 RCI1 4.63 25.26 0.1108 0.512762 ±3 2.42 2.92 439

0
30 CMB 4.12 22.11 0.1126 0.512690 +3 1.02 1.51 550
31 DH5 4.36 23.25 0.1133 0.512742 +3 2.04 2.53 478
32 RM1 3.15 15.26 0.1248 0.512747 ±4 2.12 2.54 529

33 GH1 5.93 32.23 0.1113 0.512881 ±3 4.73 5.23 272
34 NC19-1 4.97 21.74 0.1382 0.512878 ±3 4.69 5.03 367
35 NC22-1 1.00 4.50 0.1342 0.512877 ±4 4.67 5.04 351
36 NQ2 6.27 21.22 0.1786 0.513037 ±3 7.78 8.00 136
37 NQ19 5.41 20.68 0.1583 0.512876 +3 4.64 5.11 496
38 NQ21 2.92 6.67 0.2648 0.513119 ±4 9.39 8.56 155
39 NQ31 17.20 82.01 0.1268 0.512766 ±3 2.49 3.35 509
40 SW3B 2.83 14.58 0.1173 0.512325 ±3 -6.11 -5.37 1137
41 SW4 3.88 16.94 0.1385 0.512641 ±3 0.06 0.60 825

o 42 SW8 9.16 47.64 0.1162 0.512395 ±3 -4.74 -3.99 1017

43 CW13 4.14 19.39 0.1291 0.512500 ±3 -2.69 -1.86 982
44 CWI9 4.66 17.12 0.1646 0.513013 ±3 7.32 7.72 167

45 CW24 3.50 15.99 0.1322 0.512732 ±4 1.83 2.62 601
46 BG2B 5.57 26.68 0.1263 0.512622 ±3 -0.31 0.55 746

Concentrations determined by isotope dilution.
*Internal errors in measured '47

Sm/1
44

Nd are <0.1% (2a s.e.).
+Measured 

14 3Nd/144 Nd with internal error (20 s.d.); long-term reproducibility of Nd isotopic standards is <20 ppm (2c
s.d.), which propagate into an average reproducibility of FNd(t) of approximately +0.5 epsilon units.
#Nd calculated with (14 7Sm/1 44Nd)cUR=0. 1967 and ( 4 3Nd/ Nd)cHuR=0.512638; £Nd(t) calculated at the crystallization
or protolith age listed in table I except when the protolith age was not sufficiently well-known (i.e. Chiwaukum Schist,
Nason Ridge Gneiss and Napeequa Complex) where FNd(t) was calculated at 96 Ma.
&TDM(Ma)=(1/X147)*ln[(( 43 Nd/ 

1 4 4
Nd)samie-( 1

43Nd/ 44
Nd)DM)/(( 47SM/ 

44
Nd)sampe- (

147 Sm/144
Nd)DM))+ I] *1000}; present

day (143Nd/ 44 Nd)DM=0.513151, ( 47Sm/14 Nd)Dm=0.2137.
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Chapter 3

EVIDENCE FOR LATERAL SEGMENTATION AND VARIABLE
RATES OF EXHUMATION FROM U-Pb and 40Ar/39Ar
THERMOCHRONOLOGY OF THE CRETACEOUS CORE OF THE
NORTH CASCADES ARC, WA
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ABSTRACT

The metamorphic core of the North Cascades arc records the burial and

exhumation history of the southern termination of the Coast Plutonic Complex. New

hornblende, muscovite and biotite 40Ar/39Ar data and titanite and zircon U-Pb data are

integrated with the existing thermochronologic database from the region to define core-

wide cooling and exhumation patterns and document discontinuities in cooling histories

related to post-metamorphic fault systems. In general, the youngest cooling ages and the

greatest amount of exhumation are approximately centered on the regions that preserve

the highest metamorphic pressures (Paterson et al., 2004; Wernicke and Getty, 1997;

Whitney et al., 1999). Cooling patterns can be broken into NW-trending lateral segments

between fault boundaries. New data from opposing sides of one such fault boundary, the

White River shear zone, indicate that the shear zone was active during the Late

Cretaceous. Hornblende cooling dates are similar in age on either side of the shear zone

whereas biotite cooling dates are -10 Myr to 15 Myr younger to the northeast in the

Tenpeak intrusion. The difference between biotite cooling dates across the shear zone

diminishes to the north of the Tenpeak intrusion consistent with field observations that

the amount of slip on the shear zone also decreases to the north. Similarly, early Tertiary

biotite cooling dates are not significantly different across the northern contact between

the Napeequa Complex and the Swakane Gneiss, two of the most deeply buried units in

the North Cascades. These data contrast with K-Ar and 40Ar/39Ar hornblende and biotite

dates from the Chelan block that show at least a 10 Myr difference in age between the

Napeequa Complex and the Swakane Gneiss (Paterson et al., 2004; this study). These

cooling patterns suggest that exhumation began in the North Cascades by ca. 90 Ma and

was coincident with contraction and crustal thickening. A second phase of exhumation

was accommodated by Tertiary N-S extension. The combined Late Cretaceous and

Tertiary exhumation resulted in heterogeneous crustal depths exposed over short

distances at the present erosional level. These patterns suggest that the timing of peak

metamorphism and greatest burial depth are more variable both along strike and across

the arc than previously recognized.
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INTRODUCTION

Metamorphosed supracrustal rocks of the crystalline core of the North Cascades

(Cascades core) record some of the highest pressures obtained in the North American

Cordillera (Brown and Walker, 1993; Valley et al., 2003; Whitney, 1992; Whitney et al.,

1999). P-T paths constructed from mineral assemblages and reaction textures indicate

that the metamorphic and thermal evolution of this magmatic arc was strongly influenced

by large-scale vertical tectonic motion (Whitney et al., 1999). P-T paths are broadly

similar along the length of the arc (Whitney et al., 1999); however, the timing of burial

and exhumation are not well-constrained and may vary along the length of the arc. Burial

and crustal thickening began during the mid-Cretaceous with the collision of the

Intermontane and Insular superterranes (Journeay and Friedman, 1993; McGroder, 1991;

Monger et al., 1982; Rubin et al., 1990) and continued until ca. 68 Ma in some parts of

the core (Miller and Paterson, 2001b; Miller et al., 1993; Chapter 1). Subsequent

exhumation followed nearly isothermal decompression paths of up to 5 kbar (Wernicke

and Getty, 1997; Whitney, 1992; Whitney et al., 1999), and was accomplished both by

erosion and extension along a low-angle normal fault (Paterson et al., 2004). Similar

metamorphic histories have been reported from other contractional magmatic arcs (e.g.

Cretaceous arcs of Fiordland, New Zealand and Japan, and the Late Jurassic to Early

Cretaceous arc of the North American Cordillera), suggesting similar burial and

exhumation mechanisms that may be common to arcs (Whitney et al., 1999).

This study is focused on gaining a better understanding of patterns of cooling and

exhumation throughout the Cascades core. Comparatively few detailed studies of the

cooling and exhumation histories of magmatic arcs exist, and numerical models that aim

to explain the evolution of such systems do not account for simultaneous crustal

thickening, exhumation and the advection of heat by magmatism as occurs in

contractional arcs. A case study such as this is useful in exploring the potential for

different exhumation mechanisms occurring simultaneously within an arc. New

40Ar/39Ar and U-Pb titanite and zircon data add to the existing thermochronologic

database from the region. In particular, thermochronologic data were obtained along

several transects that cross major terrane boundaries in order to document discontinuities

in cooling histories that might imply the position, significance and age of post-
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metamorphic fault systems. All data are integrated into a core-wide view to facilitate

discussion of the evolution of this laterally segmented and variably exhumed orogen.

GEOLOGIC SETTING

The Cascades core lies at the southern termination of the Coast Plutonic Complex

(Fig. 1). It is comprised of Paleozoic to Mesozoic accreted terranes of oceanic and island-

arc affinity that have undergone amphibolite-facies metamorphism (Misch, 1966; Tabor

et al., 1989; Tabor et al., 1987b). These terranes were sutured together during final, NE-

SW oriented contraction as the Insular superterrane collided with the Intermontane

superterrane (Journeay and Friedman, 1993; Monger et al., 1982; Rubin et al., 1990).

These terranes form the framework in which ca. 96-45 Ma arc plutons intrude.

The Cascades core is offset from the Coast Belt by the Tertiary, N-trending,

strike-slip, Fraser-Straight Creek fault and bound on the east by the Ross Lake fault zone

(Fig. 1) (Misch, 1966). The southern margin is obscured by Tertiary sediments and the

Miocene Columbia River flood basalts. The major internal structure of the core is the

post-metamorphic, high-angle, Tertiary Entiat fault, which divides the core into the

Wenatchee and Chelan blocks (Fig. 2). The boundaries of the metamorphic core mark

transitions between weakly-metamorphosed regions to regions of amphibolite-grade

metamorphism and Late Cretaceous to Eocene cooling ages. The transition is abrupt

across the NE margin (Baldwin et al., 1997; Haugerud et al., 1991; Kriens and Wernicke,

1990; Miller et al., 1993) but is more gradual along segments of the southern and W-NW

margins (Brown and Walker, 1993; Duggan and Brown, 1994; Paterson et al., 1994).

Widespread thrusting and magmatism occurred along the length of the Coast-

Belt-North Cascades system until ca. 85 Ma (Journeay and Friedman, 1993; Rubin et al.,

1990; Rusmore and Woodsworth, 1991; Umhoefer and Miller, 1996). Within the core,

regional but diachronous crustal loading associated with local thrusting and widespread

folding that deformed earlier thrusts occurred until ca. 68 Ma (Miller et al., 1993;

Paterson et al., 2004; Wernicke and Getty, 1997; Chapter 1). At the same time, parts of

the metamorphic core along the southern and western margins were being exhumed.

Localized magmatism continued within the Chelan block from ca. 79-45 Ma (Mattinson,
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1972; Tabor et al., 1987a; Chapter 5) concurrent with exhumation of the deepest levels of

the Cascades core (Wemicke and Getty, 1997; Whitney et al., 1999).

Miller and Paterson (2001b) constructed a schematic crustal section that shows

the relationship between the various terranes that comprise the Wenatchee block (Fig. 3).

They infer that this crustal section was established during the mid-Cretaceous assembly

of the metamorphic core, although I have since shown that the Swakane Gneiss did not

become part of the crustal section until after ca. 73 Ma (Chapter 1). At mid-crustal levels

of this section, the Chiwaukum Schist, a meta-pelitic and psammitic unit, was intruded by

the Mount Stuart batholith (Fig 2). Following emplacement of the ca. 93 Ma phases of

the Mount Stuart batholith, the northwestern portion of the Mount Stuart region

experienced a -2-4 kbar regional increase in pressure (Brown and Walker, 1993; Evans

and Berti, 1986; Evans and Davidson, 1999) attributed to loading by thrust sheets

(Whitney et al.., 1999) or shallower plutons (Brown and Walker, 1993).

At progressively deeper structural levels, the Chiwaukum Schist was extensively

injected with tonalitic to trondhjemitic sheets forming the Nason Ridge Migmatitic

Gneiss (Tabor et al., 1993). The deepest structural level of the Mount Stuart domain is

preserved in a regional antiform in which the trondhjemitic Wenatchee Ridge Gneiss

forms the core (Miller and Paterson, 200 lb). The base of the Wenatchee Ridge Gneiss is

not exposed, but Miller and Paterson (2001b) infer from thermobarometric data that

during the mid-Cretaceous, the gneiss was underlain by the Napeequa Complex, a

heterogeneous metamorphosed oceanic assemblage dominated by amphibolite and

quartzite (metachert) (Cater and Crowder, 1967; Miller and Paterson, 200lb; Tabor et al.,

1989).

The Napeequa Complex now structurally overlies the Chiwaukum Schist along

the reverse-slip, White River shear zone. This shear zone is a post-peak metamorphic,

NE-dipping, reverse fault marked in part by retrograde greenschist facies mylonites

(Magloughlin, 1993; Van Diver, 1967). The shear zone divides the Wenatchee block into

what are informally known as the Mount Stuart and Tenpeak domains. The amount of

slip on the fault is poorly constrained. Limited K-Ar data from opposing sides of the

shear zone at its SE end suggest a discontinuity in the crustal section.
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The Swakane Gneiss represents the deepest structural level exposed in the

Cascades core. The gneiss underlies the Napeequa Complex in the SW-dipping limb of a

regional synform in the Wenatchee block, whereas it forms the core of a regional

antiform in the Chelan block (Fig. 2). The contact between the Swakane Gneiss and the

Napeequa Complex in the Chelan block is described as the Dinkelman decollement, and

is thought to be a SW-directed thrust that was reactivated during top-to-N extension

(Paterson et al., 2004).

Peak temperatures of regional metamorphism in the Wenatchee block were

achieved just prior to, or at the same time as, voluminous ca. 96-88 Ma magmatism.

These temperatures range from approximately 550-650°C near the Mount Stuart batholith

(Brown and Walker, 1993; Evans and Berti, 1986; Stowell and Tinkham, 2003) to 650-

675°C north of the White River shear zone (Valley et al., 2003). Peak temperatures in

the Napeequa Complex and Swakane Gneiss in the Chelan block are broadly similar to

each other, ranging from 640°C to 740C (Valley et al., 2003); however, the peak

temperature of the Swakane Gneiss was not obtained until after 73 Ma, the protolith age

of the Swakane Gneiss (Chapter 1).

THERMOCHRONOLOGY RESULTS

Sampling Strategy

Homblende, muscovite, and biotite were separated from samples collected in a

broad N-S swath across the Wenatchee block and the southwest comer of the Chelan

block (Fig. 2). Titanite and zircon were also separated from a limited number of samples

for U-Pb analysis. These samples were selected to improve the lateral distribution of

cooling dates in the region for the purpose of developing region-wide cooling patterns

and as a qualitative evaluation of nearby K-Ar dates. In particular, sample selection

focused on major terrane boundaries in order to document the timing of slip on key

exhumational structures.

Samples from the Wenatchee block form a transect from mid-crustal (-3-4 kbar)

depths to progressively deeper crustal levels from southwest to northeast. This transect

crosses the southeastern part of the Nason-Chelan Mountains terrane boundary, which is

marked by the White River shear zone. Samples were collected on either side of the
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shear zone in order to compare and contrast cooling histories near the fault. These

samples are compared with samples adjacent to the terrane boundary further to the NW to

document the extent of the White River shear zone.

Samples were also analyzed from both the Wenatchee and Chelan blocks to better

quantify differences in cooling history across the Napeequa-Swakane contact. Paterson

et al. (2004) defined a distinct difference in cooling history between the Swakane terrane

and the overlying Napeequa Complex of the Chelan Mountains terrane, which they

attributed to exhumation by a low-angle normal fault called the Dinkelman decollement.

It is unclear, however, whether this detachment surface extends along the same contact

within the Wenatchee block. In addition, numerous tonalitic to granodioritic sheets

intrude the Napeequa Complex, and are truncated by the Dinkelman decollement. U-Pb

analyses of zircon from three sheets were obtained to provide an upper timing constraint

for motion on the decollement.

Peak temperatures determined from the metamorphic terranes are in excess of the

closure temperatures of the minerals analyzed by the 40Ar/39Ar method, therefore unless

otherwise noted, the 40Ar/39Ar and K-Ar dates quoted in the text are interpreted as

cooling ages through the nominal closure temperatures of-500-550 ° C for hornblende,

-350-415°C for muscovite, and -300-350°C for biotite (Hodges, 2003). U-Pb titanite

analyses are also interpreted as cooling ages through a nominal closure temperature of

-600-650°C (Hodges, 2003). In contrast, the high closure temperature of zircon to Pb

diffusion (>900°C; Hodges, 2003) indicates that U-Pb zircon analyses represent either

igneous crystallization ages or timing of metamorphic growth.

40Ar/9Ar Analytical Methods

Samples of biotite and muscovite weighing 60-100 mg and hornblende weighing

100-150 mg were washed in distilled water and methanol, and packed into an Al foil

cylinder. The cylinders were then loaded into Al disks, shielded with Al foil and

irradiated at the research nuclear reactor at McMaster University, Ontario, Canada.

Corrections for interfering reactions were based on a combination of synthetic and natural

salts. The neutron flux during irradiation was monitored with Taylor Creek sanidine
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(28.34±0.16 Ma; Renne et al., 1998). The neutron flux parameter, J, varied with position

along the length of the irradiation package, and is known to 0.2 to 0.4% precision.

Samples were analyzed at the Scottish Universities Environmental Research

Centre (SUERC), East Kilbride, using double-vacuum resistance-furnace and step-

heating procedures similar to those described in Singer et al. (1999). Isotopic

measurements were performed on a MAP215-50 mass spectrometer using a Faraday cup

collector. 40Ar/39Ar data were reduced using the ArArCALC routines of Koppers (2002),

and ages were calculated assuming decay constants recommended by Steiger and Jager

(1977). All data are reported at the 2o uncertainty level. For each increment of gas

extracted, a 40Ar/39Ar date was calculated assuming that the non-radiogenic 40Ar/36Ar

component is that of atmosphere (295.5). The results for each step are plotted on a

conventional release spectrum diagram as a function of cumulative 39ArK released during

the experiment.

40Ar/'9Ar Data Analysis

The incremental-heating method can aid in the interpretation of 40Ar/39Ar data by

revealing correlations between the 40Ar/39Ar ratio of Ar released at certain temperatures

and possible impurities in the mineral separate. Moreover, it is a powerful technique for

identifying and correcting for excess 40Ar contamination, which is defined as parent-less

radiogenic Ar incorporated into the mineral during crystallization, introduced into the

mineral lattice by subsequent diffusion or occluded within fluid or melt inclusions within

the mineral (Kelley, 2002). The initial, low-temperature steps of all the data presented

here contain only small amounts of radiogenic Ar and have correspondingly large

uncertainties. For most samples, the initial low-temperature steps also yield lower

apparent ages than later steps, which could be attributed to degassing of impurities. In

particular, the presence of biotite in the hornblende separates is suggested by high K/Ca

ratios observed in the initial hornblende degassing steps. Several hornblende samples

have anomalously old, low-temperature steps which may be attributed to release of

excess 40Ar from defects and/or fluid/melt inclusions. The last one or possibly two steps

of some mica samples have very low K/Ca ratios and anomalously old apparent ages,

which may represent degassing of more retentive, high-Ca inclusions such as apatite or

88



hornblende. These anomalously old or young steps were excluded from calculation of a

plateau date. In all cases, a weighted mean plateau date was calculated using three or

more contiguous steps comprising at least 50% of the total 39ArK released, each step of

which yields an age within 2o of the mean without contribution from the error in J (e.g.,

Dalrymple and Lanphere, 1974). The uncertainty on the plateau date includes the error

associated with the J value, but does not include systematic error such as decay constant

errors. These plateau dates are considered statistically valid if the MSWD (mean squares

weighted deviate) of the mean lies within the 2a uncertainty level of the expected value

of 1.0 (Wendt and Carl, 1991).

Isotope correlation diagrams (36Ar/40Ar vs. 39Ar/40Ar) were also constructed. The

data yield linear arrays reflecting mixtures of radiogenic and non-radiogenic components

and, in ideal cases, may be regressed to determine 40Ar/39Ar isochron dates without the

need to assume an initial 40Ar/36Ar ratio (Roddick et al., 1980). These isochron dates are

considered statistically valid if the MSWD calculated from the regression of appropriate

steps lies within the 2c uncertainty level of the expected value of 1.0 (Wendt and Carl,

1991).

Weighted mean plateau and isochron dates from each sample are listed in Table 1,

and the preferred age is shown in bold-face type. The selection of the preferred age is

largely based on the initial 40Ar/36Ar ratio obtained from the isochron fits. If the initial
40Ar/36Ar is within uncertainty of the atmospheric value (295.5), then the assumption

inherent in the calculation of a weighted mean plateau is validated, and I take the more

precise plateau date as the best estimate of the cooling age. If the initial 40Ar/36Ar is

greater than 295.5 outside of uncertainty, then I infer the presence of excess 4Ar which

makes the plateau date unreliable and accept the isochron date as the best estimate of the

cooling age. In certain cases, the initial 40Ar/36Ar is slightly less than 295.5 outside of

analytical uncertainty. No obvious geologic process can account for an initial ratio less

than the atmospheric value, and this low ratio may instead be an analytical artifact of the

analysis. In these cases, I refer to the weighted mean plateau date as the best estimate of

the cooling age.

When a statistically significant plateau or isochron date cannot be determined

from the data, but several steps approximate a plateau, then I quote this "pseudo-plateau"
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as an approximate cooling age. Multiplication of the uncertainty on the weighted mean

date by the square root of the MSWD gives a minimum estimate of the uncertainty

attributed to the scatter of the data (York, 1969).

40Ar/9Ar Results

For ease of discussion, 40Ar/39Ar results are presented in small groups according

to their similarity in age and geographic position from south to north. The cooling ages

determined from each data point are shown on a map of the Cascades core in Figure 2

and the data are reported in Table 1.

Southern Wenatchee Block

From the southern Wenatchee block, four samples were analyzed and all yield

both weighted mean plateau and isochron dates with initial 40Ar/36Ar ratios within

uncertainty of 295.5 (Fig. 4; Table 1). Biotite from the oldest, ca 96.0 Ma phases of the

Mount Stuart batholith (U-Pb crystallization ages from Chapter 4) yielded 87.2+0.4 Ma

(MS5) and 90.7+0.8 Ma (MS1 7C) 40Ar/39Ar dates. Biotite from Chiwaukum garnet-

biotite schist (CW7) in the contact aureole of the Mount Stuart batholith yielded an

86.2+0.4 Ma date. Across strike to the northeast, muscovite from the Wenatchee Ridge

Gneiss (WR02) recorded an 86.9±0.4 Ma date from the deepest levels of the Wenatchee

block southwest of the White River shear zone.

Tenpeak Intrusion and Host Rock

Across the White River shear zone directly to the north of the first set of samples,

hornblende and biotite ages were determined from the 90-92 Ma Tenpeak intrusion and

its host rock, the Napeequa Complex. Hornblende samples yielded complicated Ar

release spectra, and only two hornblende samples (TP19B and NQ31) yielded both

weighted mean plateau and isochron dates.

Regression of all but one step from hornblende sample TP19B, an amphibolite

raft within the Tenpeak pluton, yields an isochron date with an initial 40Ar/36Ar within

uncertainty of 295.5. Because the initial 40Ar/36Ar is within uncertainty of the

atmospheric value, then the assumption inherent in a plateau analysis is validated. Five
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of eight steps from TP19B define a weighted mean plateau date of 90.5+0.8 Ma (Fig. 5).

I regard the weighted mean plateau date as the best estimate of the cooling age of the

hornblende sample.

The release spectrum from hornblende of Napeequa Complex sample (NQ31) is

complicated by an anomalously old first step and two anomalously old steps near the end

of the step-heating experiment (Fig. 5). Six of eight steps yield an isochron date of

81.8+1.6 with an initial 40Ar/36Ar of 594.5+28.2. This isochron date best represents the

cooling age of the sample. The high initial 40Ar/36Ar suggests the presence of an excess
40Ar trapped component, making a plateau analysis invalid.

The steps from hornblende of tonalite sample TP-524-1 form a cluster of

radiogenic analyses on an isotope correlation diagram (Fig. 5). An isochron date of

94.5+1.7 Ma can be defined, but the initial 40Ar/36Ar is poorly constrained, and the

isochron date is several Myr older than the U-Pb zircon crystallization age of that sample

(89.74±0.09 Ma; Chapter 4). A statistically significant plateau date cannot be defined,

but the last five steps approach a plateau with a mean date of ca. 88.9 Ma and a minimum

uncertainty of -3.1 Myr This pseudo-plateau hornblende date agrees with its U-Pb zircon

crystallization age, and best approximates the cooling age of this sample.

The remaining two hornblende samples from the Tenpeak pluton (TP31 and

TPI 1) also exhibit complicated release spectrum (Figs. 5 and 6), and isotope correlation

diagrams for these samples indicate contamination by excess 40Ar. The 40Ar/36Ar of the

non-radiogenic component of each sample is not well-constrained. As a consequence,

geologically meaningful ages cannot be determined from the data.

Biotite dates from the southern Tenpeak pluton are approximately 15 to 20 Myr

younger than hornblende cooling ages from the same or nearby samples and biotite

cooling ages from the Mount Stuart region (Fig. 2). Data from biotite samples TP31 and

TP-524-1 yield isochron dates with initial 40Ar/36Ar ratios within uncertainty of 295.5

(Fig. 6). The more precise plateau dates of 68.1+0.4 Ma and 75.2+0.4 Ma for samples

TP31 and TP-524-1, respectively, best represent the cooling age of each sample. An

isochron date can also be defined from biotite sample TPJ 1; however, the initial

40Ar/36Ar is lower than 295.5 outside uncertainty. As discussed in the previous section,

no reasonable geologic process can result in an initial 40Ar/36Ar lower than the
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atmospheric value of 295.5, and this low initial ratio is probably an artifact of the

experimental analysis. Therefore, I assume that the non-radiogenic Ar component

present in sample TPI I is best approximated by the atmospheric value and use the

weighted mean plateau date (67.0+0.6 Ma) as the best estimate of the biotite cooling age

of this sample.

Nason-Chelan Mountains Terrane Boundary and the White River Shear Zone

Two additional sets of samples from the northernmost Tenpeak pluton,

Chiwaukum Schist and Napeequa Complex constrain cooling histories from opposing

sides of the Nason-Chelan Mountains terrane boundary. One set includes biotite from

Chiwaukum garnet-biotite schist (CW22B) and hornblende from an amphibolite layer

(TP-749-1) within the same outcrop (Fig. 2). These samples were collected about 1 km

across strike southwest of the boundary. Data from the Chiwaukum samples are

compared to hornblende and biotite from the northernmost Tenpeak intrusion collected

-1.25 km on the northeast side of the terrane boundary.

Only hornblende sample TP-749-1 yielded a Late Cretaceous cooling age. Five

of eight steps define an isochron, but the initial 40Ar/36Ar is significantly less than 295.5,

and I must assume that the non-radiogenic Ar component is best approximated by the

atmospheric value. Acknowledging this assumption, I use a plateau analysis to determine

the cooling age of the sample. The first five steps on the Ar release spectrum show a

gradual increase in apparent age (Fig. 7). The remaining three of eight steps comprise

77.1% of the 39ArK and define a plateau of 88.5+1.0 Ma (Fig. 7). Biotite from the same

outcrop exhibits a concave Ar release spectrum, and neither an isochron nor a plateau can

be defined. The spectrum does approximate a plateau in the range of 30-32 Ma with a

weighted mean of 30.9 Ma and a minimum uncertainty of -1.0 Myr (Fig. 7). This sample

was collected within -3 km of the ca. 20-23 Ma Cloudy Pass batholith, and I would

interpret the biotite systematics as partially reset by this intrusion.

From the northernmost Tenpeak pluton, hornblende from sample TP27 exhibits a

complicated release spectrum with no obvious plateau and a poorly-defined, nearly

horizontal, linear trend on an isotope correlation diagram (Fig. 7). The data array does

not constrain the 40Ar/36Ar of the non-radiogenic component, and as a result, a
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geologically meaningful age cannot be obtained from this sample. In contrast, biotite

from the same sample defines both an isochron and a plateau date. The intial 40Ar/36Ar is

within uncertainty of 295.5; therefore it is valid to use the more precise plateau date of

23.0±0.2 Ma (Fig. 7). This date agrees within uncertainty of a K-Ar biotite date from the

Cloudy Pass batholith (Tabor et al., 2002).

The second set of samples that constrains cooling histories on either side of the

Nason-Chelan Mountains terrane boundary was collected -12 km along strike to the

north of samples TP-749-1, CW22B and TP27 (Fig. 2). This set includes biotite from

Chiwaukum garnet-biotite schist (CW24) collected -1 km across strike southwest of the

Chiwaukum-Napeequa contact, and hornblende and biotite from a Napeequa amphibolite

(NQ18) collected -0.5 km across strike northeast of the contact. These samples yield

both isochron and plateau dates with initial 40Ar/36Ar ratios within uncertainty of the

atmospheric value; therefore the more precise plateau dates represent the preferred

cooling ages (Fig. 8). Four of seven steps from NQ18 hornblende define a plateau date of

88.9±1.1 Ma. One step from the middle of the plateau has a significantly large

uncertainty but accounts for only 0.3% of the 39ArK released, and therefore this step has

not been considered in calculation of the plateau date. NQ18 biotite and CW24 biotite

yielded plateau dates of 68.8±0.6 Ma and 70.0±0.4 Ma, respectively. The similarity of

biotite cooling ages from either side of the shear zone indicate that little, if any,

differential motion occurred along this segment of the Nason-Chelan Mountains terrane

boundary.

Chelan Mountains-Swakane Terrane Boundary (Wenatchee Block)

The next group of samples was collected from the deepest structural levels of the

Wenatchee block across the Napeequa-Swakane contact (Fig. 2). Both hornblende and

biotite were analyzed from a sample of Napeequa amphibolite (NQ2) collected -1.3 km

across strike from the Napeequa-Swakane contact. From the Swakane Gneiss, muscovite

was analyzed from a 68.4 Ma deformed leucogranite sheet that cuts the gneiss (SWI;

Chapter ), and farther south, biotite was analyzed from garnet-kyanite gneiss (SW2).

NQ2 hornblende yielded both isochron and plateau dates. The plateau date of

79.1±0.9 Ma is the preferred cooling age. If three outliers are excluded from NQ2 biotite
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data, an isochron date of 57.0+0.7 Ma can be defined with an initial 40Ar/36Ar within

uncertainty of 295.5. The Ar release spectrum from NQ2 biotite is slightly concave, and

a plateau with contiguous steps cannot be defined (Fig. 9). Therefore, the isochron date

represents the best estimate of the cooling age of the biotite sample.

Biotite from Swakane garnet-kyanite gneiss (SW2) yielded both isochron and

plateau dates of which the plateau date of 54.00.3 Ma is the preferred cooling age (Fig.

9). Muscovite from the leucogranite sheet that cuts the Swakane Gneiss (SW1) displays

more complicated systematics. The first six steps yield anomalously low apparent ages

and are outliers on an isotope correlation diagram (Fig. 9). Neither a plateau nor an

isochron can be defined, but the last five steps approach a plateau with a weighted mean

date of 58.3 Ma. Multiplication of the uncertainty on the weighted mean by the square

root of the MSWD results in a minimum uncertainty of 0.8 Ma.

Chelan Mountains-Swakane Terrane Boundary (Chelan Block)

The final group of samples was collected from opposing sides of the Napeequa-

Swakane contact in the Chelan block (i.e., the Dinkelman decollement). Hornblende

from a Napeequa amphibolite in the upper plate of the decollement yielded a plateau date

of 70.4+0.8 Ma (Fig. 10). This cooling age contrasts with homblende from an

amphibolite layer at the structurally deepest level of the Swakane Gneiss that yielded a

plateau date of 57.9+0.5 Ma (Fig. 10). Biotite from the Swakane sample yielded a

plateau date of 49.5+0.3 Ma.

U-Pb Results

Details of the preparation, dissolution, and analysis of zircon and titanite grains

are given in Chapter 4. The data are presented in Table 2 and Figure 11. The first three

samples were collected from tonalitic to granodioritic orthogneiss bodies that intrude the

Napeequa Complex southwest of the Entiat intrusion and can be traced for several

kilometers in length. The uppermost sheet (LShl) is the largest and most homogeneous

body, although internal contacts between texturally distinct phases are present. Six U-Pb

zircon analyses obtained from near the center of this sheet spread out on a trend that is

nearly parallel to concordia with 206Pb/238U dates ranging from 84.9+1.4 to 88.8+0.8 Ma.
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The youngest analysis is a reasonable estimate of the crystallization age of this sheet,

whereas the slightly older analyses may reflect inheritance of earlier crystallized portions

of the sheet.

A structurally-lower orthogneiss sheet (LSh2) displays well-defined internal

layering characterized by textural and compositional variations and zones of boudinaged

host rock rafts (Paterson et al., 2004). Five U-Pb zircon analyses from a tonalitic layer in

this sheet yield a large range of 206 Pb/238U dates from 90.5±0.2 to 100±0.1 Ma. Three

analyses overlap concordia, but the youngest and oldest analyses are discordant and may

represent mixtures between mid-Cretaceous and Mesozoic(?) grains inherited from the

Napeequa Complex. It is unlikely that any of these analyses represent the crystallization

age of this sheet. The most reasonable interpretation is that the sheet is younger than the
206Pb/238U dates of the above analyses, although just how much younger is unconstrained.

The lowest orthogneiss sheet sampled (LSh4) also displays well-defined internal

layering. U-Pb zircon analyses from a tonalitic layer in the sheet yield four concordant

analyses with 206Pb/238U dates from 77.1±0.6 to 78.6±0.4 Ma and one highly discordant

analysis (89%) with a Middle Proterzoic 207 Pb/206Pb date. A minimum age for the

crystallization of this sheet is best estimated by the youngest concordant analysis.

U-Pb titanite analyses from a Napeequa garnet amphibolite sample (NQ21) also

yield Late Cretaceous 206Pb/238U dates from 70.4+0.4 to 71.5±0.1 Ma. This sample was

collected from the Chelan block near the Dinkelman decollement, and the U-Pb dates

likely reflect cooling of this block after peak metamorphism.

The final sample selected for U-Pb analysis is amphibolite of the Napeequa

Complex (NQ4) collected in the Wenatchee block within -200 m of the Napeequa-

Swakane contact. Zircon grains analyzed from this sample are characterized by low Pb

concentrations (0.2-0.4 ppm) and very low Th/U ratios (0-0.02). All three analyses plot

slightly below concordia suggestive of U-Th disequilibrium. The crystallization age of

these zircons is probably best represented by the 207Pb/235U dates at ca. 67 Ma.
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DISCUSSION

Comparison of Published K-Ar and 40Ar/9Ar Data

The development of a core-wide view of cooling patterns in the North Cascades

core requires assessment of all K-Ar and 40Ar/39Ar dates published from the region. This

assessment must first address issues related to the quality of the K-Ar data. A critical

evaluation of the K-Ar dates is necessary because it is possible to obtain spurious dates if

one of several assumptions is not met. These assumptions include: 1) closed-system

behavior of the sample for both K and Ar throughout the history of the sample, 2) an

initial 40Ar/36Ar ratio equal to that of the atmosphere (i.e. 295.5), and 3) a pure mineral

separate that lacks inclusions or any alteration products. Any later thermal disturbance or

alteration of the minerals of interest violates the closed-system assumption, resulting in

dates that fall somewhere between the ages of primary and secondary geologic events and

have no geologic significance. The incorporation of excess, non-radiogenic 40Ar at some

time during the history of the mineral violates the assumption of a known initial

40Ar/36Ar, resulting in anomalously old dates that, again, have no geologic significance.

In practice, it is difficult, if not impossible, to evaluate whether these assumptions

are valid for a given K-Ar date. Unlike the incremental-heating method, no opportunity

exists in the K-Ar method to identify or isolate excess 40Ar contributions or inspect for

potential impurities. In the North Cascades, most biotite K-Ar dates are -10-15%

younger than nearby 40Ar/39Ar biotite dates, and less than half of the K-Ar dates agree

with nearby 40Ar/39Ar dates within uncertainty. However, the 40Ar/39Ar data presented

here indicate that excess 40Ar is not a widespread problem in the region. The K-Ar data

are included in the complication for comparative purpose, but are given less weight when

considering region-wide cooling patterns.

The accuracy of 40Ar/39Ar dates is dependent upon intercalibration between

samples, neutron fluence monitors of known age, and primary 40Ar/40K (or other external

standards) (e.g. Renne et al., 1998). Comparisons of 40Ar/39Ar dates determined with

respect to different fluence monitors can result in a bias between dates if the monitors are

not calibrated against each other. Renne et al. (1998) measured several intercalibration

factors and developed a mathematical formulation to recalculate 40Ar/39Ar dates so that

all dates can be referenced to the same primary standard. The information required to use
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this mathematical formulation includes which flux monitor was analyzed and the age that

was assigned to that monitor. Unfortunately, this information is not available for all of

the North Cascades studies. When the information was available (i.e. Miller et al., in

review; Paterson et al., 2004; Wernicke and Getty, 1997), I recalculated previously

published 40Ar/39Ar dates to the primary standard GA-1550 at an age of 98.79±0.54 Ma

(Renne et al., 1998). The revised dates are 0.5-1.5% older than the previously published

ages which has little influence on the regional cooling pattern. Dates from the study by

Evans and Davidson (1999) could not be recalculated, but are still considered in the

discussion of core-wide cooling patterns with the knowledge that these dates may be -1%

too young when compared to the other 40Ar/39Ar dates.

Regional Cooling Patterns

All Late Cretaceous to early Tertiary K-Ar and 40Ar/39Ar dates available from the

Cascades core are plotted on figure 12, and figures 13 and 14 show the data contoured for

hornblende and biotite cooling ages respectively. Contours were not drawn across the

Entiat fault because of significant differences in the thermal histories of the Wenatchee

and Chelan blocks. These differences resulted, in part, because magmatism continued

episodically in the Chelan block until ca. 45 Ma, whereas it had ceased in the Wentachee

block by ca. 88 Ma (Tabor et al., 1987a). The difference in cooling history between the

blocks is also a function of the relative amount of early Tertiary exhumation as discussed

in the following sections. Significant crustal thickening and loading of plutons occurred

throughout much of the core between 90 Ma and 72 Ma (Miller et al., 1993; Wernicke

and Getty, 1997; Whitney et al., 1999). The region of youngest cooling ages and the

greatest amount of exhumation is approximately centered on the region that records the

highest metamorphic pressures (Paterson et al., 2004; Wernicke and Getty, 1997;

Whitney et al., 1999).

Wenatchee Block

The new 40Ar/39Ar dates presented here support the previously noted general trend

of decreasing hornblende, muscovite and biotite cooling dates across strike to the NNE

(Figs. 13 and 14) (Brown and Walker, 1993; Paterson et al., 2004; Whitney et al., 1999).
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In the Wenatchee block, K-Ar and 40Ar/39Ar dates post-date voluminous Late Cretaceous

magmatism, therefore the dates likely reflect regional cooling trends as a result of

exhumation. These trends are locally disrupted around the Miocene Cloudy Pass

batholith and Mount Buckindy intrusion, as noted for biotite samples CW22B and TP27.

Dates that yield Miocene or younger ages are not shown on figure 12, and were ignored

for the purposes of contouring the hornblende and biotite dates.

This cooling pattern is superimposed on a baric gradient that increases from

pressures of 3-4 kbar in the Chiwaukum Schist at the southwestern end of the Mount

Stuart batholith (Evans and Berti, 1986; Plummer, 1980) to 7-9 kbar pressures in the core

of the Wenatchee Ridge antiform (Brown and Walker, 1993) to 9-11 kbar peak pressures

in the Napeequa Complex northeast of the Tenpeak pluton (Sawyko, 1994; Valley et al.,

2003). This baric gradient forms the basis for construction of the mid-Cretaceous crustal

section (Fig. 3) (Miller and Paterson, 2001b).

The decrease in cooling ages across strike within the Wenatchee block is

compatible with the observation that rocks exhumed from the greatest depth (i.e.

Napeequa Complex and Swakane Gneiss) have the youngest cooling ages. This suggests

that exhumation of the Wenatchee block proceeded from the margin of the core inward

(Paterson et al., 2004). Hornblende, muscovite and biotite dates from the deepest

structural levels of the Mount Stuart domain suggest that exhumation began by ca. 90 Ma

(Engels and Crowder, 1971; Evans and Davidson, 1999; this study). Hornblende and

biotite K-Ar dates are within uncertainty of each other along the southwestern margin of

the Mount Stuart batholith (Fig. 12). The similarity between hornblende and biotite dates

and U-Pb zircon crystallization dates (Chapter 4) most likely reflects rapid cooling

following emplacement into shallow level rocks.

The area from the northwestern, hook-shaped region of the Mount Stuart batholith

to the White River shear zone experienced a -2-4 kbar pressure increase (Brown and

Walker, 1993; Stowell and Tinkham, 2003) after emplacement of the ca. 93 Ma portions

of the Mount Stuart batholith (Evans and Davidson, 1999; Chapter 4). Biotite 40Ar/39Ar

and titanite U-Pb dates from the northwestern hook-region of the Mount Stuart batholith

and its host rock are consistent with relatively rapid cooling (-30-40°C/Myr) of this

region after loading. The Chiwaukum Schist on the northwest side of the Mount Stuart
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batholith records temperatures of 600-650°C following emplacement of ca. 96 Ma phases

of the Mount Stuart batholith (Stowell and Tinkham, 2003). A biotite 40Ar/39Ar date

from near that locality (sample CW7) indicates that the temperature had decreased to

<350°C by 86.2±0.4 Ma (this study). Within the Mount Stuart batholith, secondary

titanite growth is associated with breakdown of biotite to chlorite at ca. 89-86 Ma

(Chapter 4), which also supports decreasing temperatures soon after loading. Hornblende

40Ar/39Ar dates from the Chiwaukum Schist and Nason Ridge Migmatitic Gneiss north of

the batholith range from 86.7±3.0 Ma to 83.0±0.8 Ma (Evans and Davidson, 1999).

Biotite 4Ar/ 39Ar dates range from 86.2±0.4 Ma to 80.6±0.4 Ma (Evans and Davidson,

1999; this study). The youngest cooling ages in the Mount Stuart domain were obtained

from the deepest levels of the Nason Ridge Migmatitic Gneiss (Fig. 12).

Across strike to the NNE of the Mount Stuart batholith, rocks of the Tenpeak

domain represent deeper levels of the crustal section. Hornblende K-Ar and 40Ar/39Ar

dates from the Tenpeak pluton and its host rock, the Napeequa Complex, range from

90.5±0.8 Ma to 79.1±0.9 Ma (Engels et al, 1976; this study). U-Pb titanite cooling dates

from the Tenpeak pluton are less than 1 Myr younger than their respective zircon

crystallization ages of ca. 92-90 Ma, and overlap in age with the oldest hornblende

40Ar/39Ar date from the pluton (Chapter 4). The titanite and hornblende cooling dates

exhibit a similar range in age as hornblende 40Ar/39Ar dates immediately to the SSW

across the White River shear zone in the Nason Ridge Gneiss. The hornblende ages from

the Tenpeak pluton are also similar in age to hornblende 40Ar/39Ar cooling ages of

88.5±0.9 Ma and 88.9±1.1 Ma obtained from Chiwaukum amphibolite (TP-749-1) and

Napeequa amphibolite (NQ 18), respectively, (Fig. 12; this study). This similarity of

hornblende cooling ages on either side of the Nason-Chelan Mountains terrane boundary

indicates that there was little to no differential movement on this boundary before the

terranes cooled through 500-550°C (i.e., the hornblende closure temperature).

In contrast, biotite K-Ar and 40Ar/39Ar cooling ages are on average 10 Myr to 15

Myr younger in the Tenpeak pluton than in the Chiwaukum Schist and Nason Ridge

Gneiss SSW of the shear zone (Fig. 12). This difference in cooling ages across the shear

zone suggests that after ca. 85 Ma exhumation of the Tenpeak domain was most likely

accommodated by uplift of these rocks in the hanging the White River shear zone
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coupled with erosion. Biotite cooling ages from samples that straddle the Nason-Chelan

Mountains terrane boundary to the north of the Tenpeak pluton, however, are not

significantly different from each other, which imply that motion on the shear zone dies

out to the NNW. This scenario is consistent with our field observations and observations

made by Tabor et al. (2002) of a progressively decreasing width to the shear zone to the

northwest of the Tenpeak pluton.

The Swakane Gneiss comprises the structurally deepest level in the Wenatchee

block (Fig. 3), but the gneiss differs from the other units in the Cascades core in that it

did not become part of the crustal section until after 73 Ma, the approximate depositional

age of the Swakane protolith (Chapter 1). Whereas the other units in the crustal section

record mid-Cretaceous metamorphism and mid- to late Cretaceous cooling and inferred

exhumation, the Swakane Gneiss records much younger peak metamorphism and partial

melting at ca. 68 Ma (Chapter 1) coincident with cooling of the Tenpeak pluton through

the biotite closure temperature. The Napeequa Complex overlies the Swakane Gneiss

along the SW-dipping limb of a regional synform. A hornblende 40Ar/39Ar date of

79.1±0.9 Ma was obtained from Napeequa amphibolite (NQ2) within 1.5 km of the

Napeequa-Swakane contact (this study), but unfortunately, no hornblende dates are

available from the Swakane Gneiss to make a comparison. A biotite 40Ar/39Ar date of

57.0+0.7 Ma was obtained from the same Napeequa sample (NQ2). This date is

comparable to a ca. 58 Ma muscovite 40Ar/39Ar date from a leucogranite dike that cuts the

gneiss. The Napeequa biotite date is also only -3 Myr older than a 54.0-0.3 Ma

40Ar/39Ar biotite date obtained from Swakane garnet-kyanite gneiss (SW2) collected -5

km to the south (this study). The similarity in age of the Napeequa and Swakane samples

suggests continuity in cooling history across the Napeequa-Swakane contact.

Metamorphic zircon was recovered from a sample of Napeequa amphibolite collected

within -200 m of the Napeequa-Swakane contact about 2 km along strike to the north of

sample NQ2. U-Pb analyses were obtained for one single zircon and two multi-grain

fractions (Table 2; Fig. 11). These analyses are interpreted to reflect growth of

metamorphic zircon, perhaps related to fluid infiltration along the contact, at ca. 67 Ma.

On the northwestern margin of the core, the available K-Ar data appear to conflict

with the hypothesis that exhumation began at the margins of the core in the mid-
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Cretaceous. In the Jordan Lakes region (Fig. 2), Brown and Walker (1993) document a

similar baric gradient to the Mount Stuart region. Peak metamorphic pressures increase

from -3 kbar in the northwestern part of the Wenatchee block to -7-9 kbar near the

Sulphur Mountain pluton (Fig. 2). Unlike the Mount Stuart region, however, hornblende,

muscovite, and biotite K-Ar dates do not exhibit a coherent trend of decreasing age with

increasing peak pressures (Fig. 12). The ca. 92 Ma Chauval pluton (Walker and Brown,

1991) exhibits K-Ar hornblende dates from 81.7±0.8 Ma to 63.8±1.4 Ma over an -10 km

distance (Tabor et al., 2002). K-Ar hornblende dates from other intrusions in the region

range from 73.7±1.0 Ma to 58.9±0.6 Ma, and K-Ar biotite dates range from 61.4±0.6 Ma

to 44.7±1.6 Ma (Tabor et al., 2002). Some of the published K-Ar dates published were

not plotted on figure 12 because they were assumed to be reset by the Miocene Mount

Buckindy intrusion (Tabor et al., 2002).

Nearly all of the thermochronologic data from this region were derived from

intrusions in which the emplacement ages are poorly constrained. The Bench Lake and

Downey Creek intrusions are described as swarms of gneissic, tonalitic to granodioritic,

sills and dikes (Tabor et al., 2002). An apophysis of the Bench Lake intrusion yielded a

U-Pb zircon date of ca. 96 Ma (Fluke, 1992). Discordant U-Pb zircon dates from the

Jordan Lakes intrusion were interpreted as representing a ca. 73 Ma emplacement age

with ca. 90 Ma inheritance (Tabor et al., 2002; Walker and Brown, 1991). The lack of a

clear pattern of decreasing K-Ar dates with the increasing baric gradient may reflect a

more prolonged history of magmatism in this region and widespread disturbance of the

K-Ar system by Miocene dikes and intrusions.

Chelan Block

The Chelan block also displays a general trend of younger K-Ar and 40Ar/39Ar

dates to the north (Fig. 12); however, a more distinct pattern of cooling dates is difficult

to define. One reason for this difficulty is that thermochronologic data are lacking from

the Skagit Gneiss Complex, which makes up much of the Chelan block. Based on data

from one sample locality in the northern Skagit Gneiss Complex, Wernicke and Getty

(1997) documented two phases of cooling that occurred slowly between 68-60 Ma at

mid-crustal depths and amphibolite facies conditions, and then rapidly between 50-45 Ma
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as indicated by hornblende and biotite 40Ar/39Ar dates that nearly overlap within

uncertainty (Wernicke and Getty, 1997). Unfortunately, there are few thermochronologic

data from the Skagit Gneiss Complex to the south to document the regional extent of

these two proposed unroofing events.

Another reason that distinct cooling patterns are difficult to recognize in the

Chelan block is because Late Cretaceous to Paleogene cooling patterns have been

disrupted by shallow level Eocene magmatism. From ca. 45-50 Ma, several intrusions

including the Duncan Hill, Railroad Creek, Golden Horn and Cooper Mountain plutons

were emplaced at relatively shallow crustal levels of the Chelan block (Fig. 2) (Hopson

and Dellinger, 1989). Hornblende and biotite K-Ar dates from these intrusions

commonly agree within uncertainty and may reflect rapid cooling after emplacement into

rocks at or near the biotite closure temperature (Engels et al., 1976).

The clearest evidence of a Late Cretaceous cooling and exhumation history

similar to that of the Wenatchee block can be found in the southern Chelan block.

Limited K-Ar data suggest that the oldest cooling ages are preserved in the Chelan

Migmatite Complex, which forms the core of a broad regional antiform along the

southeast margin of the Chelan block. The Chelan Complex is directly on strike with the

Skagit Gneiss Complex, but the cooling histories of these two complexes appear to be

significantly different. Hopson and Mattinson (1994) concluded that magma was

emplaced into the Chelan Complex at 6-10 kbar between 100-120 Ma (U-Pb zircon

crystallization dates) followed by cooling through the hornblende closure temperature by

70-80 Ma and the biotite closure temperature between 60-70 Ma. The contacts between

the Chelan Complex, the 8-9 kbar Cascade River - Holden - Twenty-Five-Mile-Creek

units (herein referred to as the Cascade River unit) and the 9-11 kbar Napeequa Complex

are obscured by magmatism, as is also the case for the contact between the Cascade River

unit and Napeequa Complex in the southern Chelan block. Limited U-Pb titanite

analyses from amphibolite of the Napeequa Complex yield ca. 71 Ma dates (Table 2; Fig.

11), which overlap the hornblende K-Ar and 40Ar/39Ar dates from this unit within

uncertainty. These U-Pb dates are also comparable to 70-87 Ma titanite dates from the

Chelan Complex (Hopson and Mattinson, 1994; Mattinson, 1972). Both hornblende and

biotite K-Ar and 40Ar/39Ar dates from the Napeequa Complex and the intervening ca. 71-
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73 Ma portions of the Entiat intrusion overlap in age with the youngest dates from the

Chelan Complex. Taken together, the U-Pb titanite and hornblende and biotite K-Ar and
40Ar/39Ar dates suggest continuity in the cooling and exhumation history between the

Chelan and Napeequa complexes.

In contrast, the Swakane Gneiss displays a much younger cooling history than the

overlying Napeequa Complex. In the Chelan block, the Swakane Gneiss lies in the core

of a broad regional antiform, and the contact between the Swakane Gneiss and the

Napeequa Complex is described as the Dinkelman decollement (Alsleben, 2000; Paterson

et al., 2004; Valley et al., 2003). This low-angle normal fault truncates lithologic units in

the Napeequa Complex, including tonalitic to trondhjemitic intrusive sheets, as it cuts up-

section along strike in a SE direction (Paterson et al., 2004). U-Pb zircon analyses from

three intrusive sheets (this Chapter) indicate that the sheets were emplaced during the

Late Cretaceous and are as young as 77.1±0.6 Ma. Additional U-Pb zircon analyses from

other intrusive sheets in the area yield discordant results that are interpreted to represent

crystallization dates as young as 66.7+2.4 Ma (Paterson et al., 2004). These results

suggest that the latest motion on the decollement occurred after ca. 67 Ma. Biotite
40Ar/39Ar dates from the Swakane Gneiss immediately below the decollement range from

ca. 46-49 Ma and are -10 Myr younger than biotite dates in the overlying Napeequa

Complex (Paterson et al., 2004; this study). A single hornblende 40Ar/39Ar date of

57.9±0.5 Ma from the Swakane Gneiss also supports a -10 Myr difference in cooling

ages across the decollement (this chapter). Paterson et al. (2004) used the available

thermochronologic data, along with assumptions about hornblende and biotite closure

temperatures (510°C and 350°C, respectively) and a geothermal gradient (30°C/km), to

estimate >4 km of excision along the decollement. The new thermochronologic data

obtained in this study help tighten these constraints. If I use the same closure temperature

estimates, but a lower geotherm of 20°C/km (see Chapter 6) and the more precise cooling

ages from this study, I estimate at least 8 km of excision along the decollement. The

thermochronologic data are also consistent with the observation that by ca. 45 Ma, the

Swakane Gneiss was at the surface and supplying sediment to the Eocene Chumstick

basin (Evans, 1994; Johnson, 1985).
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The available hornblende and biotite K-Ar and 40Ar/39Ar dates from the northern

and central parts of the Chelan block suggest that much of the Chelan block was not

exhumed until the early Tertiary. Hornblende K-Ar and 40Ar/39Ar dates range from 50-58

Ma along the eastern edge of the Chelan block and in the Cascade River unit near the

Duncan Hill and Cardinal Peak intrusions (Miller and Bowring, 1990; Miller et al., in

review). Across the NE margin, high pressure rocks with Tertiary cooling ages in the

Skagit Gneiss Complex contrast with an abrupt transition to low pressure rocks with Late

Cretaceous cooling ages in the Ross Lake fault zone and the Methow Basin (Baldwin et

al., 1997; Haugerud et al., 1991; Kriens and Wernicke, 1990; Miller et al., 1993).

Based on the available thermochronologic data, Paterson et al. (2004) speculated

that the Swakane Gneiss and Skagit Gneiss Complex in the Chelan block and the

Tenpeak domain of the Wenatchee block formed the footwall of a Cascades-wide system

of younger Eocene exhumation in which the Dinkelman decollement formed one

segment. The older, already partly-exhumed regions along the margins of the core (i.e.,

the Mount Stuart domain of the Wenatchee block, and the Napeequa Complex, Cascade

River unit, and Chelan Complex in the Chelan block) were proposed to have formed the

hanging wall. This model requires "bounding structures" along which the Eocene

exhumation could be accommodated. These structures would ideally be marked by

discrete Tertiary cooling and pressure gradients that have -30-40 km of vertical

separation. Paterson et al. (2004) proposed that the Ross Lake fault zone on the east and

the White River shear zone on the west as two possible bounding structures. The new

thermochronologic data present here, however, indicate that the White River shear zone

could not be a bounding structure. Exhumation of the Tenpeak domain occurred in the

latest Cretaceous to early Tertiary as indicated by biotite dates ranging from 75-54 Ma.

These dates place the Tenpeak domain in the hanging wall of any proposed Cascades-

wide Eocene extensional structure. There are no other obvious candidates for a western

bounding structure. Significantly more thermochronologic data are needed from the

Napeequa Complex, Cascade River unit and Skagit Gneiss Complex to document the

extent of early Tertiary exhumation and identify any possible discontinuities in the

regional cooling patterns.
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Low Temperature Thermochronologic Data

Reiners et al. (2002) utilized (U-Th)/He and fission track methods on apatite and

zircon to obtain data for low temperature (-70-180 °C) cooling and exhumation history

of the Cascades Range. Their discussion of the "east flank" region covers the areas

around the Mount Stuart batholith and Tenpeak pluton in the Wenatchee block. An age-

elevation transect within the Mount Stuart batholith yields a relatively, slow apparent

exhumation rate of 0.15-0.25 km/Myr through most of the Oligocene to Early Miocene

(Reiners et al., 2002). Cooling ages in the southeastern Mount Stuart batholith indicate

that exhumation was limited to <-2-3 km since the early Tertiary (Reiners et al., 2002)

consistent with the observation from the higher temperature thermochronology that the

Mount Stuart region had been exhumed through the biotite closure temperature by at least

85 Ma (Fig. 14). Differences between apatite fission track and apatite (U-Th)/He ages,

also from the Mount Stuart region, require slow time-averaged cooling (--1-2 °C/Myr) in

the early to mid-Tertiary. Reiners et al. (2002) argued that the distribution of the (U-

Th)/He and apatite fission track ages from their entire study region support a general

model of slow exhumation from the Eocene to the Late Miocene (0.25 km/Myr) and

rapid Late Miocene exhumation. Their study area, however, did not include the northern

Skagit Gneiss Complex which shows evidence of rapid exhumation in the early Eocene

(Wemicke and Getty, 1997). Reiners et al. (2002) also note that their model is consistent

with exhumation histories for the Coast Mountains which involve slow cooling and little

to no exhumation from the Eocene through the Late Miocene, followed by accelerated

exhumation beginning at ca. 10 Ma.

IMPLICATIONS OF THE THERMOCHRONOLOGIC DATA

Integration of all the available thermochronologic data defines distinct patterns of

cooling and inferred exhumation of the Cascades core. These patterns can be explained

by the following exhumation history, which is illustrated in schematic block diagrams in

figure 15. Exhumation began in the Cascades core by ca. 90 Ma. This exhumation

appears to have been accomplished by rotation of the Wenatchee block on a roughly NW-

SE axis which resulted in a decrease in cooling ages from SW to NE. This exhumation

was coincident with contraction and crustal thickening that continued until ca. 68 Ma
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(Miller et al., 1993; Miller and Paterson, 2001a; Paterson et al., 2004). Along the margin

of the core, slow exhumation (<1 mm/yr) may have been driven by erosion coupled with

isostatic adjustments (Willett, 1999; Willett and Beaumont, 1994; Zeitler et al., 2001).

Presumably, similar exhumation was occurring at higher crustal levels that have since

been removed.

The Wenatchee block had cooled through the hornblende closure temperature

(500-550°C) by ca. 85 Ma. After ca. 85 Ma, differential relief cause by high-angle

faulting along the WRSZ may have led to accelerated erosion of the Tenpeak pluton and

Napeequa Complex. The new 40Ar/39Ar dates determined from this study indicate that

slip on this structure dies out to the NW. During this time period, sediments of the

Swakane Gneiss were underthrust beneath the arc.

A second phase of exhumation is proposed to have begun with the transition to

dextral transtension at ca. 55 Ma (Paterson et al., 2004; Umhoefer and Miller, 1996).

This early Tertiary extension exhumed much of the Chelan block including the Swakane

Gneiss and Skagit Gneiss Complex. Exhumation of the Swakane Gneiss was

accomplished in part by top-to-N shear on the Dinkelman decollement (Alsleben, 2000;

Paterson et al., 2004). The Ross Lake fault zone may have accommodated exhumation of

the Skagit Gneiss Complex on its northeastern margin; however, structures that may have

accommodated Eocene exhumation of the Skagit Gneiss Complex on its eastern and

southern margins have not yet been recognized. Similar periods of Tertiary extension in

other parts of the Coast Belt were proposed to have been driven by gravitational collapse

of thickened crust during dextral shearing (Klepeis and Crawford, 1999; Parrish et al.,

1988). Paterson et al. (2004) point out that gravitational collapse should produce NE-SW

extension away from topographic highs rather than N-S extension. They call upon an

additional mechanism of differential stretching or arching along the arc coupled with

differential erosion to account for heterogeneous N-S extension (e.g. Wells et al., 1999).

The proposed causes of the along strike variability may be related to tectonic

thickening/stretching, spatially variable erosion rates or underthrusting of buoyant

materials such as the Swakane Gneiss. The low-temperature thermochronologic data

from the Cascades core indicate slow cooling and exhumation following Eocene
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extension until the Late Miocene, which is consistent with exhumation histories

determined from other parts of the Coast Mountains (Reiners et al., 2002).

Magnitudes of Cretaceous exhumation range from <10 km at the margins of the

core to -30-40 km at the center of the core. Paterson and Miller (2000) and Paterson et

al. (2004) estimate a long-term exhumation rate from thermochronologic data from the

Swakane Gneiss. Assuming exhumation from -40 km depth in 25 Myr, they calculate a

maximum exhumation rate of -1.6 km/Myr. These rates are comparable to rates of 2.0

km/Myr estimated by Hollister (1982) from the Coast Plutonic Complex. If I use the

same assumptions, but use the thermochronologic data from the Napeequa Complex

instead, I calculate -30 km of exhumation from ca. 91 Ma, the crystallization age of the

7-9 kbar Tenpeak pluton, and ca. 59 Ma, the biotite cooling age of the deepest level

Napeequa sample. This results in a slower average exhumation rate of 0.9 km/Myr.

The thermochronologic data indicate that exhumation processes operated during

both early thrust loading and crustal thickening and during later arc-oblique extension

and crustal thinning. Variations in exhumation rates and mechanisms operating from the

margins to deeper crustal levels of the arc contributed to laterally-segmented cooling

patterns. The thermochronologic data also indicate that even though units such as the

Napeequa Complex and Swakane Gneiss followed similar P-T paths, their burial and

exhumation occurred over distinctly different time periods. The combined Late

Cretaceous and Tertiary extension resulted in heterogeneous crustal depths exposed over

short distances at the present day surface. Additional thermochronologic data from the

Chelan block, in particular the Skagit Gneiss Complex, are necessary to fully explore the

interplay between Cretaceous and Tertiary exhumation. These patterns suggest that the

timing of peak metamorphism and greatest burial depth was more variable both along

strike and across the arc than previously recognized, and point out the need to distinguish

between the magnitudes of Cretaceous and Tertiary exhumation in order to develop better

models of the development of this arc.
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ALA

Figure 1. Sketch map of Mesozoic and Paleogene arc plutons in the western North
American Cordillera (after Miller et al., 2000). Inset emphasizes distribution of
metamorphic rocks (speckled pattern) and plutons (dark grey). Also shown are the Coast
Belt thrust system (CBTS), lower-grade rocks of the Eastern Cascades fold belt (ECFB),
and Northwest Cascades fault system (NWCS). The dextral Fraser-Straight Creek (SCF)
fault offsets the Cascades core from the main part of the Coast Belt. The Ross Lake fault
zone (RLFZ) marks the eastern boundary of the core. The Entiat fault is a Tertiary, high-
angle fault that divides that Cascades core into the Wenatchee and Chelan blocks.
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Figure 2. Geologic map of the Cascades core after Brown and Walker (1993) and
Haugerud et al. (1991). Plutons are shown in a random dashed pattern. The largest
dashes denote ca. 96-88 Ma plutons; intermediate dashes denote ca. 79-65 Ma plutons;
and the smallest dashes denote ca. 50-46 Ma plutons. Heavy lines represent faults
whereas light lines represent depositional or intrusive contacts. Abbreviations are as
follows: A, Alma Creek; BL, Bench Lake; BP, Black Peak; BR, Bearcat Ridge; CL,
Cyclone Lake; CO, Cooper Mountain; CP, Cardinal Peak; CPB, Cloudy Peak batholith;
CV, Chaval; DC, Downey Creek; DD; Dinkelman decollement; DF, Dirtyface; DH,
Duncan Hill; EN, Entiat; EL, Eldorado orthogneiss; GH, Golden Horn; H, Haystack; HL,
Hidden Lake; JL, Jordan Lakes; MB, Mount Buckindy; MC, Marble Creek; MSB, Mount
Stuart; OP, Oval Peak; RC, Railroad Creek; RLFZ, Ross Lake fault zone; RP, Riddle
Peaks; SC, Sloan Creek; SG, Swakane Gneiss; SM, Sulphur Mountain; TP, Tenpeak;
WRG, Wenatchee Ridge Gneiss. 4 Ar/39Ar dates obtained in this study are shown with
an "h" denoting hornblende, "m" denoting muscovite, and "b" denoting biotite.
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Figure 2. Caption on opposite page.
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Figure 10. Ar release spectrum and inverse isochron plots from Napeequa and Swakane amphibolite
samples collected in the Chelan block. Symbols are the same as figure 4.
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Figure 2. Geologic map of the Cascades core after Brown and Walker (1993) and
Haugerud et al. (1991). Plutons are shown in a random dashed pattern. The largest
dashes denote ca. 96-88 Ma plutons; intermediate dashes denote ca. 79-65 Ma plutons;
and the smallest dashes denote ca. 50-46 Ma plutons. Heavy lines represent faults
whereas light lines represent depositional or intrusive contacts. Abbreviations are as
follows: A, Alma Creek; BL, Bench Lake; BP, Black Peak; BR, Bearcat Ridge; CL,
Cyclone Lake; CO, Cooper Mountain; CP, Cardinal Peak; CPB, Cloudy Peak batholith;
CV, Chaval; DC, Downey Creek; DD; Dinkelman decollement; DF, Dirtyface; DH,
Duncan Hill; EN, Entiat; EL, Eldorado orthogneiss; GH, Golden Horn; H, Haystack; HL,
Hidden Lake; JL, Jordan Lakes; MB, Mount Buckindy; MC, Marble Creek; MSB, Mount
Stuart; OP, Oval Peak; RC, Railroad Creek; RLFZ, Ross Lake fault zone; RP, Riddle
Peaks; SC, Sloan Creek; SG, Swakane Gneiss; SM, Sulphur Mountain; TP, Tenpeak;
WRG, Wenatchee Ridge Gneiss. 40Ar/39Ar dates obtained in this study are shown with
an "h" denoting hornblende, "m" denoting muscovite, and "b" denoting biotite.
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Figure 12. Caption on opposite page.
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Figure 13. Geologic map of the Cascades core after Brown and Walker (1993) and Haugerud et
al. (1991) emphasizing biotite K-Ar and 40Ar/39Ar dates. Heavy, dashed red lines are contours of
the data. Data sources are the same as in figure 13.
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Figure 14. Geologic map of the Cascades core after Brown and Walker (1993) and Haugerud et
al. (1991) emphasizing hornblende K-Ar and 40Ar/39Ar dates. Heavy, dashed red lines are
contours of the data. Data sources are the same as in figure 13.
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Chapter 4

TIMESCALES OF THE CONSTRUCTION OF INTRUSIVE
MAGMATIC SYSTEMS AT DIFFERING CRUSTAL LEVELS:
EXAMPLES FROM THE MOUNT STUART AND TENPEAK
INTRUSIONS, NORTH CASCADES, WA
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ABSTRACT

High-precision, U-Pb geochronology is used to document the duration and

episodicity of the construction of two contrasting intrusive magmatic systems, the Mount

Stuart and Tenpeak intrusions. Petrologic and textural variations, internal magmatic

contacts and local magma mingling indicate that the Mount Stuart and Tenpeak intrusions

were constructed from multiple batches of magma during the development of the North

Cascades continental magmatic arc.

The shallow-level (<4 kbar) Mount Stuart batholith (MSB) was emplaced from

ca. 96.4-90.8 Ma over four punctuated intervals. Within the MSB, internal contacts

between magma pulses of differing composition are gradational, and contacts between

tonalite pulses of differing age are difficult to delineate. The U-Pb zircon dates suggest a

general NW to SE trend in the timing of emplacement. Magmatic fabrics vary smoothly

between magma pulses of differing age suggesting a nearly constant strain field over the

duration of magma emplacement. U-Pb dates from primary magmatic titanite are <1.5

Myr younger than the respective zircon crystallization age of the sample, indicating rapid

cooling (-10 0 C/km) of the batholith after emplacement.

In contrast, the Tenpeak intrusion was emplaced from ca. 92.4-89.7 Ma with <0.5

Myr time intervals between magma pulses. Within the Tenpeak intrusion, texturally and

compositionally distinct phases form well-defined internal magmatic contacts, and

suggest only limited mixing between magma pulses. U-Pb titanite dates indicate that the

oldest phases of the intrusion cooled below the solidus <1 Myr after emplacement.

Magmatism plays a key role in the thermal evolution of a magmatic arc as an

efficient mechanism of heat transfer from the lower to upper crust. Time-averaged,

minimum magma emplacment rates are 2. lx10 4 km3/yr and 1.2x10-4 km3/yr for the MSB

and Tenpeak intrusion, respectively. These rates are comparable to estimates of other

continental magmatic arcs. The differences between intrusive histories of these two

magmatic systems may be tied to the rate at which magma is generated and/or segregated

from its source region. Alternatively, the deep-level Tenpeak intrusion may serve as a

conduit that supplied a more homogeneous upper level system. At the resolution of these

dates, emplacment processes appear more episodic than continuous, which supports that

idea that magma is emplaced in discrete batches. The geochronologic data from the MSB
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and Tenpeak intrusion suggest that magma pulses in both systems remained distinct

phases and challenge the view that these systems ever formed a single, convecting

magma chamber.

INTRODUCTION

Much of the intermediate-composition continental crust exposed today is the

result of the interaction of subduction-related basaltic magmas with pre-existing crust in

continental magmatic arcs (CMAs). However, this dynamic tectonic setting, and in

particular its deep crustal evolution, is not well understood. Heat and magma are

transferred upward from the mantle through the "filter" of the continental crust.

Unraveling the magmatic and thermal history of CMAs is essential to understanding the

maturation of arcs and ultimately the generation of continental crust.

Recent advances in geochronological techniques have made it possible to address

questions related to the magmatic and thermal evolution of CMAs with high-precision

temporal constraints. Modem low-blank, high-precision U-Pb geochronology permits the

determination of crystallization ages of igneous rocks to a precision approaching 0.1%,

but application of these techniques to the study of CMAs has been underutilized.

Specifically, unresolved issues include the duration, episodicity, and rates at which

individual intrusions are constructed, and the scale of compositional and temporal

heterogeneity of a given magmatic system. For example, are composite intrusions

constructed by continuous emplacement of small batches of magma (e.g. Coleman et al.,

2004; Glazner et al., 2004) or during more punctuated intervals? For this reason, I used

high-precision U-Pb geo- and thermochronology to elucidate the magmatic and thermal

history of two composite intrusions within the crystalline core of the Cretaceous North

Cascades arc, the Mount Stuart batholith (MSB) and the Tenpeak pluton. This study is

one of the first to provide a large number of precise temporal constraints that document

the intrusive history of an individual magmatic system.

The North Cascades arc presents a unique opportunity to study the thermal and

magmatic evolution of CMAs for several reasons. Cretaceous plutons in the North

Cascades crystallized at -10 to 30 km depth, and thus provide a window into magmatic

and structural processes at a large range of depths within the arc (Miller and Paterson,
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2001b). Excellent exposure in this >30 km depth-section through the arc allows an

analysis of magma emplacement styles, thermal structure, and rates of magmatism at

varying crustal levels. In addition, the relatively young age of the arc (-100-45 Ma)

combined with the inherent high precision of U-Pb zircon dates allow the potential of

resolving absolute ages with uncertainties of less than 100 ky. This precision, coupled

with an intensive sampling regime, allow an assessment of the episodicity of arc

magmatism at a high resolution. Although this study focuses on the evolution of a

narrow time slice through a single arc, the results will form a basis for which other arcs

can be compared.

The results presented here indicate that construction of the MSB occurred over a

ca. 5.6 m.y time period with at least four punctuated intervals of magma emplacement.

In contrast, the Tenpeak intrusion exhibits episodic emplacement over a ca. 2.7 Myr time

span with much shorter intervals (<0.5 Myr) between magma pulses. The U-Pb zircon

dates reveal the complexity in the construction of each magmatic system and caution

against oversimplification in interpreting geochemical or structural patterns. The use of

the term "pluton" for the Tenpeak intrusion, in particular, is misleading because it implies

that different compositional and textural phases are co-magmatic and that the entire body

was once a single, convectingmagma chamber. I will argue that this is not the case for

the Tenpeak or the MSB and will use the more general terms "intrusion" or "magmatic

system" instead to reflect the internal complexities. Each system evolved with

chemically, texturally, and temporally distinct phases which may be related through their

source region and/or level of emplacement.

GEOLOGIC SETTING

The crystalline core of the North Cascades (Cascades core) lies at the southern

termination of the 1700 km long Coast Plutonic Complex, which documents the Jurassic

to Eocene history of arc magmatism in the Canadian Cordillera (Friedman and

Armstrong, 1995; Friedman et al., 1995; van der Heyden, 1992; Van der Heyden, 1989;

Woodsworth et al., 1991) and records the final suturing of the Insular superterrane to

North America (Fig. 1) (Monger et al., 1982). The Coast Plutonic Complex forms one

segment of the Mesozoic-Cenozoic arc that is exposed along the length of the western
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margin of North and South America and comprises the largest single concentration of

plutonic rock on the western North American margin (Friedman et al., 1995).

As part of this greater than 100 Myr history of arc magmatism, the North

Cascades arc comprises predominantly Late Cretaceous to Eocene intrusions, of which

the Mount Stuart and Tenpeak intrusions are volumetrically significant members. Both

magmatic systems were emplaced into amphibolite facies metamorphic terranes of the

Wenatchee crustal block, which comprises the western half of the Cascades core between

the high-angle, Tertiary Entiat fault and the core-bounding, strike-slip, Straight Creek

fault (Figs. and 2). The Wenatchee block displays increasing peak metamorphic

pressure from 3-4 kbar pressures in the Chiwaukum Schist at the southwestern end near

the MSB (Fig. 2) (Evans and Berti, 1986; Plummer, 1980) through 7-9 kbar peak

pressures in the Nason Ridge Migmatitic Gneiss and the Chiwaukum Schist at the core of

the Wenatchee Ridge antiform (Brown and Walker, 1993) to 9-11 kbar peak pressures in

the Napeequa Complex northeast of the Tenpeak intrusion (Valley et al., 2003). Miller

and Paterson (2001) used this barometric gradient along with "unfolding" of major

regional folds to construct a -10-40 km crustal section through the Wenatchee block (Fig

3). The NE-dipping, reverse White River Shear Zone (WRSZ) forms a structural break

along the southwestern margin of the Tenpeak intrusion and is marked, in part, by

greenschist facies mylonites that clearly postdate peak metamorphism (Magloughlin,

1993; Van Diver, 1967). The WRSZ divides the Wenatchee block into two domains that

may have experienced somewhat different metamorphic and exhumation histories

(Brown and Walker, 1993; Miller et al., 1993; Chapter 3). These domains are informally

referred to as the Mount Stuart and Tenpeak domains.

The Mount Stuart and Tenpeak intrusions are the largest of a suite of 96-84 Ma,

tonalitic to granodioritic, intrusions that intrude the Wenatchee block including the

Sulphur Mountain, High Pass, Clark Mountain, Chaval, Dirtyface, and Sloan Creek

intrusions (Fig. 2) (Hurlow, 1992; Walker and Brown, 1991). The MSB was emplaced

into the Chiwaukum Schist, an interlayered metapelitic and metapsammitic unit, at mid-

crustal levels of this crustal section (Fig. 3). Andalusite and cordierite are well-

documented in the contact aureole of the batholith (Evans and Berti, 1986; Plummer,

1980). This dynamothermal metamorphism was closely followed by a regional
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Barrovian-style loading event that increased pressure to staurolite grade at the

southeastern end of the MSB and kyanite grade along the northeastern edge of the MSB

(Brown and Walker, 1993; Evans and Berti, 1986; Evans and Davidson, 1999). This

increase in pressure has been attributed to crustal shortening (Evans and Davidson, 1999;

Whitney et al., 1999) or alternatively, magma loading (Brown and Walker, 1993).

The Tenpeak intrusion was emplaced into the Napeequa Complex (formally

known as rocks of the Napeequa River area), a heterogeneous assemblage of amphibolite,

quartzite, marble, metaperidotite, and biotite schist (Cater and Crowder, 1967). Garnet

amphibolite from this region records peak P-T conditions of 9-11 kbar and 625-675°C

(Valley et al., 2003). The exact timing of this high-P metamorphism is not well-

constrained; however several independent lines of evidence suggest that the Napeequa

Complex was deeply buried before the emplacment of the Tenpeak intrusion. Al-in-

hornblende barometry from the 96-84 Ma intrusions in the southern part of the Tenpeak

domain (i.e. Tenpeak, Sulphur Mountain, High Pass and Clark Mountain intrusions)

yields emplacement pressures of 7-9 kbar, and garnet-biotite-muscovite-plagioclase

thermobarometry from the High Pass and Clark Mountain intrusions yields pressures of

7-10 kbar (Dawes, 1993). In addition, the same intrusions contain euhedral, magmatic

epidote (Dawes, 1993; Zen and Hammarstrom, 1984), which suggest that these intrusions

crystallized at pressures >6 kbar (Dawes, 1993; Zen and Hammarstrom, 1984). The deep

crustal evolution of the Tenpeak intrusion contrasts with the more shallowly-emplaced

MSB and forms an important point of comparison for later discussion.

Thermochronologic data from the Mount Stuart domain indicate that cooling from

magmatic conditions and peak temperatures occurred relatively rapidly after intrusion

emplacement. K-Ar and Ar-Ar hornblende cooling dates from the MSB, and the adjacent

Chiwaukum Schist and Nason Ridge Migmatitic Gneiss range from 93 to 83 Ma (Engels

and Crowder, 1971; Evans and Davidson, 1999). K-Ar and Ar-Ar biotite cooling dates

from the same region fall within nearly the same range of ages from 95 to 82 Ma (Tabor

et al., 1987; Tabor et al., 1993; Evans and Davidson, 1999; Chapter 4). Cooling dates

from the Tenpeak domain are generally younger than those of the Mount Stuart domain,

which is consistent with cooling from the higher P-T conditions achieved in the Tenpeak

domain. Hornblende K-Ar cooling ages from the Tenpeak intrusion range from 93-85
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Ma and biotite K-Ar and Ar-Ar cooling ages range from 75-68 Ma in the Tenpeak

intrusion and 69-58 Ma in the surrounding Napeequa Complex (Engels et al., 1976;

Chapter 3).

Mount Stuart Batholith

The MSB is the largest composite intrusion in the Cascades core and comprises

mulitple bodies that are predominantly tonalitic in composition (Fig. 4). The largest

(-700 km 2 ) northeastern body is the best-studied geochemically and structurally, and will

be the focus of further discussion. Several smaller, satellite bodies are also mapped as

part of the MSB with the largest being the heterogeneous, mafic, Big Jim Complex. The

distinct shape of the northeastern body makes it easily recognizable on any map of the

North Cascades. The southeastern part of this body will be referred to as the "mushroom-

shaped" region connected by a sill to a "hook-shaped" northwestern region (Fig. 4).

The MSB ranges in composition from two-pyroxene gabbro (1-2% of the map

area) through hornblende gabbro-diorite (5%), quartz diorite-tonalite (77%), trondhjemite

(2%), granodiorite (13%) and granite (1%) (Erikson, 1977; Paterson et al., 1994). The

mushroom-shaped region consists predominantly of coarse-grained, biotite-hornblende

tonalite that grades into biotite granodiorite in the center and encloses two-pyroxene

gabbro and homblende-orthopyroxene gabbro-diorite along the southeastern side (Fig. 4).

In the hook region, slightly finer-grained biotite tonalite grades into a central region of

granodiorite and minor volumes of peraluminous granite.

Geochemical data from MSB samples indicate that it is a medium-K, calc-alkaline

intrusion with geochemical characteristics typical of other Cascades intrusions (Paterson

et al., 1994); however, the MSB has unusually high MgO for a given SiO 2 content (6.1-

7.6% at 56% SiO 2) (Paterson et al., 1994). In fact, it has one of the highest Mg trends for

batholiths in the Cordilleran orogen (Paterson et al., 1994). The MSB is also the only

Cascades core intrusion to contain orthopyroxene as a stable phase in tonalite. The high

Mg trend is characteristic of all phases of the magmatic system and suggests a common

parental magma or source region for these different magmas. Several models have been

proposed to explain the origin of the Mount Stuart batholith (Anderson, 1992; Erikson,

1977; Kelemen and Ghiorso, 1986; Miller et al., 2000; Paterson et al., 1994; Pongsapich,
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1974). The new U-Pb zircon dates indicate that parts of the batholith that were assumed

to be co-magmatic formed at distinctly different times, and cast doubt on models that

infer continuous processes to generate the compositional variations observed in the

batholith.

Tenpeak Intrusion

The Tenpeak intrusion is elliptical in map view (aspect ratio of -5:1) with an

eastern (White Mountain) lobe (Fig. 5). The outer parts of the intrusion form a

discontinuous zone of sheeted and mingled gabbro and tonalite (referred to as mafic

complex) (Cater and Crowder, 1967; Tabor et al., 1987). The interior of the intrusion is

primarily composed of tonalite, and two of the largest pulses form texturally distinct

phases that are informally referred to as the Schaefer Lake and Indian Creek phases

(Miller et al., 2000). Both phases are composed of hornblende-biotite tonalite with

coarse-grained titanite (0.2-0.8 mm) and euhedral, magmatic epidote; garnet is locally

common (Cater, 1982). Biotite is more predominant than hornblende in the medium-

grained Schaefer Lake phase. These minerals wrap subhedral and rounded plagioclase,

giving the rock a "popcorn" texture. In contrast, hornblende and biotite are coarse-

grained and euhedral in the Indian Creek phase (Cater, 1982; Dawes, 1993). The Indian

Creek phase truncates an interior sheeted complex of felsic and mafic tonalite (defined by

differences in color indices and ratios of biotite to hornblende) and an interlayered unit

composed of tonalite with numerous rafts of Napeequa amphibolite host rock. Xenoliths

of Napeequa amphibolite and meta-peridotite are also widely scattered outside the

sheeted zones and are up to km in width.- Contacts between the sheeted zone, mafic

complex and Schaefer Lake tonalite are generally gradational. The White Mountain lobe

is texturally similar to tonalite of the Schaefer Lake phase, but is separated from this

phase by a zone of large Napeequa rafts and deformed tonalite referred to as "flaser

gneiss" by Cater and Crowder (1967). This highly-deformed, protomylonitic tonalite

gneiss forms a wide zone along the northeast margin of the intrusion. Diorite and biotite-

hornblende tonalite form in the northern portion of the intrusion.

Geochemical studies have demonstrated that the mafic rocks represent mantle-

derived magmas, whereas tonalites likely formed by mixing of mantle- and crust-derived
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melts (Dawes, 1993; DeBari et al., 1998). This geochemical modeling is supported by

Nd isotope data as well (Chapter 2). The two modeled end-members have distinct

geochemical signatures. The mantle-derived magmas are typically basaltic and crop out

as heterogeneous gabbros within the mafic complex and as mafic sheets and enclaves

within tonalitic phases (Miller et al., 2000). They contain 49-52 wt.% SiO2 and 5-8 wt.%

MgO, and have flat to slightly light REE-enriched patterns (Miller et al., 2000). The

crust-derived end-members are felsic tonalites and trondhjemites which crop out only

rarely within the intrusion. In contrast to the mafic end-member, the crust-derived end-

member has high SiO2 (68-72 wt.%) and steep REE patterns and was most likely derived

by partial melting of a garnet-bearing lower crust (Miller et al., 2000). The tonalitic to

dioritic compositions within the intrusion can be modeled as mixtures between these two

end-members (Dawes, 1993; DeBari et al., 1998; Miller et al., 2000).

Each of the distinct textural and compositional phases of both magmatic systems

were sampled for U-Pb geochronology. These samples were selected to cover the largest

possible areal extent and provide an assessment of the duration and episodicity of

construction of each magmatic system.

ANALYTICAL TECHNIQUES

Separation of heavy minerals from all samples was carried out according to

standard crushing, heavy liquid, and magnetic separation techniques. Zircon and titanite

crystals were picked in ethanol under a binocular microscope and sorted by their

morphology, color, clarity, and inclusion characteristics. Representative zircons were

selected for image analysis. These grains were mounted in epoxy and polished to

approximately half their original thickness. Cathodoluminescence (CL) and

backscattered electron (BSE) imaging were carried out on grain mounts on the MIT

JEOL 733 Superprobe electron microscope. Image analysis was conducted with a 15

keV accelerating voltage and 10 to 30 nA beam current depending on the intensity of

luminescence. In select cases, zircon grains were removed from the mount after CL

imaging for U-Pb analysis.

All zircons selected for U-Pb analysis were air-abraded, washed in 3M HNO3 at

50°C for 3-12 hours, and ultrasonicated for at least 1 hour. Following this cycle of
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cleaning, the zircons were ultrasonicated in 3M HNO3 for an additional hour. Each

zircon was photographed to estimate sample weight, pipetted with acetone into 300 gL

Teflon FEP capsules, washed again in 3M HNO3 at 75°C for 1-3 hours, and finally rinsed

3 times with 3M HNO3. Titanite single- and multi-grain fractions were not air-abraded

prior to dissolution. Each titanite fraction was weighed, ultrasonicated in high-purity

H 2 0 for 30 minutes, washed in 3M HNO3 at 75°C for approximately 10 minutes, rinsed

three times with high-purity H20 and finally pipetted into 500 gL Telfon capsules.

Zircon and titanite fractions were dissolved in 120 gtL concentrated HF and trace HNO3

with a mixed 2 05Pb-23 3U-235U spike at 220°C for 48-72 hours, dried to salts, and

redissolved in 120 pL 6M HCl at 180°C for at least 12 hours. Pb and U were separated

from the sample using HCl-based (zircon) and two-stage HBr-HCl-based (titanite) anion

exchange procedures modified from Krogh (1973).

Approximately 1-2 mg-sized fractions of hand-picked, optically-clear plagioclase

feldspar grains from two samples of the MSB and two samples of the Tenpeak intrusion

were progressively leached following methods modified from Housh and Bowring

(1991). Leaching was carried out in PFA Teflon beakers on at hotplate at -50°C. After

each leach step, the feldspar grains were rinsed twice with 500 tL of high-purity H 20,

and the H 2 0 rinse was subsequently added to the leachate. Seven sequential leach steps

were performed. The first two steps involved short leaching times of about 5 minutes in

6M HC1 and 7M HNO3 respectively. These short leach steps were followed by three

leach steps of 1M HF for 20 minutes each, and then two leach steps of 1M HF for 40

minutes each. Each HF-step leachate was dried down, redissolved in 6M HC1, dried

down again, and redissolved in 1.1 M HBr for separation of Pb by HBr-HCl based anion

exchange chemistry. Total procedural blanks are estimated at <20 pg Pb, which

represents a negligible contribution to the sample Pb.

Pb and U were analyzed by conventional thermal ionization mass spectrometry on

the MIT VG Sector 54 multicollector mass spectrometer. Both Pb and U samples were

loaded onto previously degassed single Re filaments with a silica gel-H3PO4 mixture

(Gerstenberger and Haase, 1997). Pb isotopes were measured either: (1) for 207Pb ion

beams >5x10'-14 A, in a two-cycle dynamic routine with 2 04Pb in the axial Daly detector

and 205Pb through 208Pb in Hl-H4 faraday detectors during the first cycle and 205Pb in the

140

__



Daly detector and 206Pb through 208Pb in the HI -H3 faraday detectors during the second

cycle, providing real-time Daly gain measurement; or (2) for 207Pb ion beams <5x10-1 4 A,

by peak-jumping all ion beams into the axial Daly detector in ion-counting mode.

Uranium isotopes were measured as UO2
+ in static mode with masses 270, 267, and 265

in the axial, LI, and L2 faraday collectors, respectively. Pb isotope fractionation was

monitored throughout the study by daily analysis of the NBS-981 common Pb standard

whereas U fractionation was monitored and corrected by use of the double spike.

DATA ANALYSIS

Zircon and titanite U-Pb data from the Mount Stuart and Tenpeak intrusions are

presented at the 2c uncertainty level in tables 1 and 2, respectively. In general, these

relatively young zircon and titanite grains are characterized by low radiogenic Pb

contents (>70%O of the analyses have Pb contents <5 ppm), making the 206Pb/238U date the

most precise. The U-Pb zircon data from these samples typically yield clusters of dates

on or near the concordia curve, and are thus amenable to calculation of concordia ages

(Ludwig, 1998). For a suite of U-Pb data points, the concordia age method provides the

best estimate of age and age uncertainty by determining the probability of concordance as

well as equivalence. In this method, a weighted mean age is calculated from all three

isotope ratios (20 6Pb/ 2 38U, 207 Pb/23 5U, and 207 Pb/2 06 Pb) and statistical evaluation

determines how similar they are to each other (i.e. equivalence) and how closely they

overlap concordia (i.e. concordance). This method is preferable to the traditional

approach for young samples of using just the weighted mean of the 2 06Pb/238U dates.

Table 3 lists the concordia ages calculated for each sample with the corresponding

MSWD (mean square of weighted deviates) of concordance and equivalence. The

uncertainty on the MSWD (Wendt and Carl, 1991) was also calculated to determine if the

MSWD derived for a given concordia age is statistically significant, and in all cases, the

MSWD of concordance and equivalence falls within the 2cy uncertainty. The weighted

mean of concordant 2 06Pb/2 38U dates and the corresponding MSWDs are also listed in

table 3. For most samples, there is no difference between the weighted mean 206Pb/238U

date and the concordia age, and in all cases, the two ages agree within uncertainty.
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Decay constant uncertainties and spike U/Pb calibration uncertainty are not

included in the discussion of the data presented below. It is unnecessary to include these

systematic errors when comparing data from the same isotopic system collected within

the same lab. However, table 3 also lists the full uncertainty on each concordia age for

completeness of the data analysis and future reference.

Unlike zircon analyses, U-Pb ratios from titanite analyses commonly require large

corrections to the measured Pb ratios because titanite may incorporate significant

amounts of initial common Pb into its crystal structure during crystallization. The

isotopic composition of this initial common Pb can be estimated in a variety of ways.

The simplest method is that inferred from the two-stage Pb evolution model of Stacey

and Kramers (1975). A more direct method involves measuring the Pb isotopic

composition of a co-existing, low-U mineral such as feldspar (Housh and Bowring,

1991). Pb isotopic compositions of plagioclase feldspar from both the MSB and Tenpeak

intrusions are given at the 2a uncertainty level in Table 4. These isotopic compositions

were measured from the last 4 of 5 HF leach steps (labeled as L2 through L5); however,

Pb ion beam intensities from steps L2 and L3 were very small, possibly as a result of

suppressed ionization from interfering Ca ions. High measurement errors make the data

from most of these steps unusable. Leach steps 4 and 5 yielded more precise data. The

data from all leach steps from the four samples agree within error. The average of the

four reported leach steps from samples MS6 and MS13 is the best estimate of the initial

Pb isotopic composition of the MSB. The average of the five reported leach steps from

samples TP20 and TP-524-1 is the best estimate of the initial Pb isotopic composition of

the Tenpeak intrusion.

U-Pb RESULTS FROM THE MOUNT STUART BATHOLITH

Twelve samples from the MSB were analyzed (Fig. 4) including two samples

from granodiorite that crops out in the hook and mushroom regions (MS6 and MS13

respectively), a sample of tonalite from the hook region (MS5), three tonalite samples

from the sill region (MS24, MS26, and MS3 7), a sample of diorite from the Big Jim

Complex (MS 7C), two samples of hornblende gabbro from the mushroom region (MS2

and MS4), two samples of tonalite fromthe mushroom region (MS31 and PC-F), and one
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sample of a tonalite sheet that intrudes the surrounding Ingalls Complex (JR-I). The data

are presented roughly in order from northwest to southeast, and the results are listed in

table 1 and summarized in table 3.

Zircon Data

Ten whole grains and fragments of zircon were analyzed from granodiorite

sample MS6 from the hook region of the batholith. All zircon grains were from a

population of euhedral, elongate prisms that are commonly colorless, and inclusion- and

crack-free. Cathodoluminescence (CL) images from selected grains revealed brightly

luminescent cores with dark rims sometimes surrounded by yet another brightly

luminescent rim (Fig. 6). All zircon images displayed oscillatory (magmatic) zoning, and

this zoning appears concordant between older cores and younger rims with only rare

truncations of the zoning pattern. Analyses of abraded whole zircon grains (zl -z3 and

z5-z7) are variably discordant (1.0-7.1%) with the most concordant analysis having a
206Pb/238U date of 95.97+0.26 Ma (Fig 7). The discordance of these analyses is most

reasonably interpreted as resulting from mixtures of slightly older, inherited magmatic

cores with slightly younger, magmatic rims. In order to obtain more concordant analyses,

I broke two zircon grains into tip and core fragments (Fig. 6). Analyses of the zircon tips

are more concordant than most of the whole zircon analyses, and one tip yielded a

concordant analysis with a 206Pb/238U date of 95.68+0.05 Ma. A core fragment yielded

the most discordant analysis (15.6%) and the highest 206Pb/238U date of 97.18+0.05 Ma.

The variable degrees of discordance of these analyses make it difficult to obtain a precise

crystallization age from this sample. The best estimate of the crystallization age comes

from the concordant tip analysis (z9a) at 95.68+0.05 Ma.

Five zircon grains and fragments were analyzed from tonalite sample MS5, also

from the hook region. Whole grain analyses from this sample yielded discordant results

(1.6-6.1%) similar to the nearby granodiorite sample MS6. CL images from

representative zircon grains (Fig. 6) revealed brightly luminescent cores and dark rims

also similar to sample MS6. Analysis of one zircon fragment yielded a concordant

analysis at 96.03+0.05 Ma (Fig. 7), which is interpreted to represent the crystallization

age of this sample.
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All zircon grains analyzed from tonalite samples of the sill region (MS26, MS37

and MS24) were colorless, euhedral, elongate prisms. Five zircon analyses from MS26

yielded concordant and equivalent results at 96.42±0.08 Ma (Fig. 8). Five zircon

analyses from MS37 also gave concordant and equivalent results at 92.61±0.17 Ma (Fig.

8). Six zircon analyses from MS24 gave concordant and equivalent results at 92.78±0.07

Ma (Fig. 8). The relatively straightforward U-Pb systematics of these three samples

make me confident that the calculated concordia dates represent the crystallization age of

each sample.

Sample MS1 7C, a quartz diorite from the Big Jim Complex on the northeastern

margin of the batholith, contains clear, colorless, euhedral zircon prisms with stubby

terminations. Eleven whole zircon analyses yielded results that are slightly reversely

discordant to slightly normally discordant (-2.1% to 3.7%) although all of the error

ellipses overlap concordia (Fig. 7). The concordia age of all analyses is 96.00±0.03 Ma,

which I interpret to date the crystallization age of the Big Jim Complex.

Near the mushroom region, sample JR-1 was collected from a tonalite sheet

emplaced as an early phase of the MSB into Ingalls Complex host rocks. These tonalite

sheets are deformed in the imbricate zone above the Windy Pass thrust which placed the

Ingalls Complex onitop of the Chiwaukum nSchist (Miller, 1985). Six zircon grains

yielded variably discordant results (-5.2% to 10.6%), but all analyses except one overlap

concordia (Fig. 8). The concordia age of the five concordant analyses is 94.62±0.12 Ma.

The sixth, discordant analysis may have experienced minor Pb loss.

Tonalite sample PC-F from within the mushroom region exhibits strong, gently-

dipping magmatic foliation typical of the MSB near the Windy Pass thrust (Miller and

Paterson, 1992; Paterson and Miller, 1998a; Paterson et al., 1994). Ten zircon analyses

yielded variably discordant analyses (-11.0 to 32.9%) with more complicated systematics

than the other samples (Fig. 8). Seven analyses are concordant. One analysis (zl 0) is

normally discordant and significantly younger than the other analyses. Another analysis

(z2) is 32.9% discordant, most likely because of the presence of an inherited core. A

third analysis is 11.0% reversely discordant, but its 206Pb/238U date agrees within error of

four other analyses. The cause of the reverse discordance of this grain is unclear (c.f.

Mattinson, 1996), but it may reflect incomplete dissolution. The concordia age of all
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analyses but the two normally discordant analyses discussed above is 94.50+0.22 Ma.

There is more scatter among the analyses of this sample than of the other samples, which

is reflected in a MSWD of 2.00. The 206Pb/238U dates of all analyses included in the

concordia age calculation range from 94.20±0.61 Ma to 94.83+0.41 Ma, and this spread

of dates suggests that these zircons may not belong to one single age population.

However, there is no a priori reason to exclude any of the analyses from this cluster of

data, and the concordia date is considered the best estimate of the crystallization age.

Zircon crystals obtained from two samples of MSB gabbro in the mushroom

region (MS2 and MS4) form stubby multi-faceted prisms. Eight zircon analyses from

sample MS2 yield results that overlap concordia, except for one analysis (z2) that is 8.0%

reversely discordant (Fig. 9). The 206Pb/238U date of this reversely discordant analysis

overlaps 6 of the 7 other analyses, therefore I consider it valid to use this analysis in our

calculation of the crystallization age of the sample. Inclusion of all analyses in a

concordia age calculation results in an unreasonably high MSWD (6.9) and a statistically

insignificant age. The high MSWD is a result of the inclusion of z9 in the regression,

which has a 206Pb/238U date that falls outside of the uncertainty of all but two of the least

precise analyses and may have experience post-crystallization Pb loss. If z9 is excluded

from the regression, a concordia age of 90.91±0.03 (MSWD=l.20) is obtained. This

statistically significant date best represents the crystallization age of this sample.

Seven zircon analyses from MS4 gabbro (mushroom region) overlap concordia

except for one analysis (zl 1) (Fig. 9). The concordia age of all analyses, including the

discordant analysis, is 91.02±0.06 Ma. This date is the same within error as the date

calculated excluding the discordant analysis. Therefore, the concordia age calculated

from all analyses is a reasonable representation of the crystallization age of this sample.

Sample MS13 is granodiorite collected from the mushroom-shaped region of the

MSB. Seven zircon analyses yield results that are -12.7% to 4.4% discordant; however

the error ellipses from all but one analysis (z6) overlap concordia (Fig. 9). This reversely

discordant analysis also has the lowest ratio of radiogenic Pb to common Pb, and its

position with respect to concordia is sensitive to the amount of common Pb that is

attributed to laboratory blank Pb. Inclusion of z6 results in an unreasonably high
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MSWD. If z6 is disregarded, the concordia age is 90.79±0.10 Ma (MSWD=0.77), and is

therefore the best estimate of the crystallization age of this sample.

The final sample studied from southeastern part of the mushroom region (MS31)

is a medium-to coarse-grained biotite-hornblende tonalite. Of the six zircon analyses

obtained from this sample, all overlap concordia except one analysis (z7) (Fig. 9).

Inheritance of a slightly older core is the most likely interpretation of this discordant

analysis. The concordia age of all the concordant analyses is 90.84+0.04 Ma.

Titanite Data

A subset of samples from the MSB was selected for U-Pb analysis of titanite.

Because titanite has a nominal closure temperature for Pb diffusion of-600-650°C

(Hodges, 2003), U-Pb titanite analyses have the potential to constrain the high

temperature cooling history of the intrusion. All but one analysis (MS37 s 1) are from

small, multigrain fractions consisting of either a population of irregularly-shaped grain

fragments with one or more crystal faces or a population of completely anhedral grains

(i.e., no clear crystal faces). Both populations are clear, light yellow in color and

sometimes contain inclusions of opaque minerals. A given sample typically contains

only one of the populations described above. For example, sample MS2, MS31, MS37

and PC-F all contain irregular fragments with some crystal faces whereas samples MS5,

MS6 and MS24 only contain anhedral grains. This distribution of grain morphology does

not appear to be geographically restricted or controlled by rock type.

Most of the titanite analyses have ratios of radiogenic Pb to common Pb (Pb*/Pbc)

that fall in the range of 0.2--to 2.2, although two analyses (MS5 s3 and PC--F s3) have

Pb*/Pbc ratios of 4.4 and 8.4 respectively. The generally low Pb*/Pbc ratios of these

titanite grains requires a significant common Pb correction, and the choice of the of the

initial common Pb isotopic composition is particularly important. If a Stacey and

Kramers (1975) model Pb isotopic composition is used, then the analyses are all several

percent reversely discordant. When the Pb isotopic composition measured from

coexisting plagioclase feldspar crystals is used (Table 4), then the analyses plot on

concordia (Fig. 10), indicating that the feldspar-derived correction is more appropriate.

Eight additional titanite analyses obtained from these samples are not reported in Table 1
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because low Pb*/Pbc ratios (<0.1) make the analyses too sensitive to the common Pb

correction to be reliable.

The titanite analyses exhibit a wide range of 206Pb/238U dates from 95.41±0.08 Ma

to 86.55±0.31 Ma, but only two of the eighteen analyses are older than 90.52 Ma (Table

1; Fig. 10). These analyses can be discussed in terms of two different groups: 1) five

analyses have dates that are the same as, or within 1.5 Myr of, the zircon crystallization

age and, 2) thirteen analyses have dates that are several Myr younger than the zircon

crystallization age of the sample. The oldest two analyses have 206Pb/238U dates that are

either the same as the zircon crystallization age within error (MS37 s 1) or, at most, 0.75

Myr younger than the zircon crystallization age (MS5 s3). Two additional samples

(MS13 and MS31) have titanite analyses that are less than 1.5 Myr younger than the

zircon crystallization age of the respective sample, but do not overlap the zircon

crystallization age within error. In contrast, three samples (MS6, MS24, and PC-F) have

titanite analyses that are all several Myr younger than the zircon crystallization age of the

sample. Sample MS6 has the largest difference between titanite dates (86.74 Ma to 88.30

Ma) and the zircon crystallization age (95.68±0.05 Ma). Samples MS2 and MS5 each

have one analysis that is only slightly younger than the zircon crystallization age but

other analyses that are significantly younger than the zircon crystallization age. In the

case of MS5, the analysis that is similar in age to the zircon crystallization age has higher

Th/U and Pb*/Pbc ratios than the younger analysis. In the case of MS2, however, all three

analyses have similar Th/U and Pb*/Pbc ratios. In fact, there appears to be no correlation

for any of these samples between geochemical indices such as Th/U or Pb*/Pbc ratios and

the difference between zircon crystallization age and titanite date (Fig. 11).

In summary, several titanite analyses yield dates that are <1.5 Myr younger than

the zircon crystallization age of the sample, and therefore require rapid cooling

(-1 00°C/km) of the intrusion. Other titanite analyses are significantly younger than their

corresponding zircon crystallization age which may reflect cooling, isotopic resetting or

secondary mineral growth. The significance of these analyses is explored within the

discussion of the MSB cooling history.
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IMPLICATIONS OF THE U-Pb DATA FOR THE INTRUSIVE AND COOLING
HISTORIES OF THE MOUNT STUART BATHOLITH

Intrusive History

Our new U-Pb zircon analyses from the MSB indicate that the batholith was

emplaced over a ca. 5.6 Myr time period. Previously published U-Pb zircon dates from a

sample of the Big Jim Complex (Tabor et al., 1987) and a diorite sample from the sill

region (Walker and Brown, 1991) suggested that the most mafic magmas were emplaced

earliest and were then followed by an episode of predominantly tonalitic magmatism

(Tabor et al., 1987). Samples MS1 7C and MS24 were collected from nearby the sample

localities of the previously published data. The zircon crystallization age of MS] 7C

overlaps within error of the ca. 95.5 Ma age reported in Tabor et al. (1987). Sample

MS24 also yielded a crystallization age that closely agrees with a previously reported age

of ca. 93 Ma (Walker and Brown, 1991). However, our additional samples indicate that

the intrusive history of the MSB is not as simple as emplacement of early mafic magmas

followed by voluminous tonalitic magmatism.

The high density of sampling for geochronology makes it possible to divide the

intrusion of the MSB into at least four age groups: 1) 96.4-95.7 Ma, 2) 94.6-94.5, 3) 92.8-

92.6 Ma, and 3) 91.0-90.8 Ma (Fig. 12). These four age groups follow a general NW to

SE trend in the timing of emplacement although this trend is reversed in the southeast end

of the sill region (Fig. 4). The oldest phases crop out in the hook region and in the Big

Jim Complex along the NE side of the sill region. The oldest age domain is defined by

four samples (MS5, MS6, MSI 7C, and MS26), and includes granodiorite, tonalite and the

mafic Big Jim Complex (Fig. 4). Samples with intermediate ages (MS24, MS37, PC-F,

and JR-I) are tonalitic in composition and were collected from the sill and mushroom

regions. The youngest ages are confined to the mushroom region, and the four samples

that define this age domain (MS2, MS4, MS13, and MS31) range in composition from

gabbro to tonalite to granodiorite.

Paterson and Miller (1998) infer that the complex shape, petrological variations,

internal magmatic contacts, and local magma mingling indicate that magma ascended in

variably-sized (hundreds to thousands of cubic meters) and variably-shaped batches that

were assembled at the site of emplacement. The new age data, which show gaps in the
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range of crystallization ages and a distinct geographic distribution of ages, support this

idea of construction of the batholith from multiple batches of magma of varying age, size

and composition.

Contacts between different compositional phases within an age domain are

gradational, and in the field, internal magmatic contacts between the different

compositional phases are difficult to delineate. The gradation from tonalite to

granodiorite is defined by a gradual decrease in hornblende content, a concomitant

increase in biotite content, and the presence of potassium feldspar. Contacts between

tonalite, diorite, and gabbro in the mushroom region are also gradational, although it is

common to observe local, feathery, net-veining of tonalite and diorite into gabbro (e.g.

Paterson et al., 1994).

Contacts between magma pulses of different age are also difficult to delineate.

The bold dashed lines on figure 4 mark the approximate placement of contacts between

tonalite of different age domains, but I have not been able to confirm the location of these

contacts in the field. The contact between the oldest age domain (hook region) and the

intermediate ca. 92.6-92.8 domain is only constrained by two samples (MS26 and MS37)

from the sill region, which are -10 km apart. I infer that the contact is nearer to sample

MS3 7 at the point where the sill appears to thin at the surface and to the southeast of a

small mafic body that may be coeval with the ca. 96 Ma Big Jim Complex. The contact

between ca. 92.6-92.8 Ma tonalite and ca. 94.5-94.6 Ma tonalite is inferred to lie between

samples MS24 at the southeast end of the sill region and the Windy Pass thrust for

reasons discussed in the next paragraph. A contact between ca. 94.5-94.6 Ma tonalite and

ca. 90.8-91.0 Ma tonalite is inferred to lie between tonalite sample PCF near the center of

the mushroom region and granodiorite sample MS13 and gabbro sample MS2.

The orientation of magmatic fabrics can give insight into the relationships

between different phases of the batholith (Paterson and Miller, 1998a; Paterson et al.,

1994). The term "magmatic fabric" refers to foliations, mineral lineations, and associated

microstructures that formed during crystal alignment in the presence of a melt. These

fabrics are preserved late in the crystallization history of the intrusion and record the final

increments of strain while -20-40% melt remains (Paterson et al., 1998). In the MSB,

magmatic fabrics are defined by aligned mafic microgranitoid enclaves and euhedral
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igneous minerals such as plagioclase, pyroxene, hornblende and biotite (Paterson and

Miller, 1998a; Paterson et al., 1994). Magmatic foliation in the mushroom region dips

steeply and defines margin-parallel, "onion-skin" patterns (Paterson et al., 1994). This

foliation pattern is continuous across phases of different composition in the ca. 90.8-91.0

Ma age domain from granodiorite to tonalite and into diorite and gabbro without an

apparent deflection (Fig. 4). This pattern is interrupted by strong, gently-dipping

foliation near the Windy Pass thrust, which is semi-continuous with thrust-related ductile

fabrics in the Ingalls Complex and Chiwaukum Schist. Miller and Paterson (1992, 1994)

inferred that the batholith was deformed by thrusting while melt-dominated, but upon

reaching its solidus, locked up displacement on the thrust. The gently-dipping magmatic

foliation is preserved in the 94.50±0.22 Ma sample PC-F, and appears to continue

smoothly into ca. 91 Ma phases of the batholith without deflection. In the sill region,

magmatic foliation defines complex patterns of large and small magmatic folds with

subhorizontal, NW-SE trending axes (Paterson and Miller, 1998a). Magmatic foliation is

similarly folded by decameter- to kilometer-scale folds in the hook region, and the hook

shape itself may reflect a large-scale fold (Benn et al., 2001; Paterson and Miller, 1998a).

These magmatic fabrics are also continuous with fabric in the host rock and are locally at

high angles to the batholith margin. Therefore, the magmatic fabrics are interpreted to

reflect regional strain rather than magmatic flow lines during emplacement (Miller and

Paterson, 1992; Paterson and Miller, 1998a; Paterson et al., 1994). Once again, the

magmatic fabric in the hook region is continuous with the fabric in the adjacent age

domain.

The smooth variation of magmatic fabrics and lack of observable contacts

between tonalite of different age are problematic. However, several possibilities may

explain this apparent lack of distinct contacts. If the strain field that controls the

orientation of the magmatic fabric remained constant throughout the emplacement of the

MSB, then magmatic fabrics would appear continuous across different pulses of magma

even though those pulses locked in their respective magmatic fabrics at different times.

There may be distinct, sharp contacts between tonalite pulses of different age, but the

differences in composition, texture, and/or fabric orientation are so subtle as to be missed

in the field. Alternatively, moderately slow cooling of the batholith (- 15°C/Myr) may
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allow earlier pulses of magma to stay partially molten until the next pulse of magma

intruded. This possibility is considered in the upcoming discussion of the titanite data

and the cooling history of the intrusion.

Cooling History

Interpretation of titanite data from the MSB must address the question of whether

the -9 Myr time span represented by the U-Pb titanite dates records cooling ages,

isotopic resetting or secondary mineral growth. These three interpretations have

distinctly different implications for the evolution of the MSB.

The cryptic contacts between different age domains and the smooth variation of

magmatic fabrics across internal magmatic contacts suggest that a slow-cooling model

may explain the data. However, if the titanite dates are interpreted as cooling ages, this

requires differential cooling between the hook and mushroom regions. More importantly,

it requires that the MSB remained above the titanite closure temperature (600-650 °C;

Hodges, 2003) for as long as 9 Myr in the hook region and as long as 4 Myr in the

mushroom region. These time spans are much longer than cooling times predicted by

simple thermal models which suggest that even large intrusion should cool below the

solidus in hundreds of thousands of years rather than millions of years (e.g. Jaeger, 1957,

1961; Harrison and Clarke, 1979).

Titanite textures observed in thin section and back-scattered electron imaging

make a much stronger case for secondary grain growth. In most thin sections examined

from the MSB, titanite grains occur as long, thin crystals along cleavage planes or grain

boundaries of biotite and amphibole that have been partially replaced by chlorite (Fig.

13). These textures indicate that titanite growth likely occurred as a result of Ti release

during hydration of biotite to chlorite (Ferry, 1979) or breakdown of primary igneous

hornblende to ferro-actinolite, titanite and albite (Gibbons and Horak, 1984). These

greenschist facies reactions likely took place well below the closure temperature of

titanite. The hook region, in particular, appears to have undergone a low-temperature

subsolidus alteration of hornblende rims to actinolite as a result of the regional loading

event (Ague and Brandon, 1996). In some of the more mafic, orthopyroxene-bearing

rocks, titanite growth may have occurred during hydration of pyroxene to hornblende
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(Frost et al., 2000). Textures that suggest primary magmatic growth, such as inclusion of

titanite in primary plagioclase and potassium feldspar are present (Fig. 13), but not

common.

In light of the textural evidence suggesting both primary and widespread

secondary titanite growth, the large spread of titanite analyses along concordia is most

reasonably interpreted as resulting from mixtures of primary and secondary titanite.

Titanite analyses that are <1.5 Myr younger than their corresponding zircon

crystallization age most likely date primary titanite and reflect rapid cooling after

emplacement. Assuming an emplacement temperature for MSB tonalite of 800°C

(Paterson et al., 1994) and a titanite closure temperature of -650°C, a cooling rate of

100°C/Myr is estimated.

Several previous studies have noted that titanite of secondary origin is typically

pale yellow in color and has lower U concentrations and lower Th/U ratios than

coexisting dark brown, primary titanite (Abraham et al., 1994; Aleinikoff et al., 2002;

Corfu and Stone, 1998; Getty and Gromet, 1992; Ketchum et al., 1997; Verts et al., 1996)

although some reversals of this trend do occur. There is no discernible difference in color

or morphology between primary and secondary titanite in the MSB mineral separates.

However, certain samples, such as MS5, do exhibit a difference in U content and Th/U

ratios between titanite analyses that yield dates that are close in time to the zircon

crystallization age and those that are much younger. Samples in which both the biotite

and amphibole are extensively chloritized, such as granodiorite sample MS6, yield titanite

dates that are much younger than the zircon crystallization age and have some of the

lowest Th/U ratios of all the analyses. This-trend is-not present-in all MSB samples and

may reflect that the overall variation in U content and Th/U ratio is more dependent on

the composition of the host rock (Corfu and Stone, 1998).

Potential triggers for the breakdown reaction recorded by the titanite grains

include release of fluids from the youngest pulses of magma or from metamorphic

reactions occurring in the host rocks during post-emplacement loading of the MSB. The

majority of titanite dates from the MSB, however, are several Myr younger than the

youngest recognized pulse of MSB magmatism. The timing of loading is not well-

established, but Sm-Nd dates of garnet in the Chiwaukum Schist near the hook region

152

___



suggest garnet growth during loading at 86-88 Ma (Stowell and Tinkham, 2003). The

time period of garnet growth overlaps the youngest MSB titanite dates even though these

reactions most likely took place under considerably different metamorphic conditions.

Hornblende and biotite K-Ar and Ar-Ar cooling dates also fall within this time period

(Fig. 4), and suggest rapid cooling of the region. It is unclear from the titanite textures or

the U-Pb data if the secondary titanite growth represents one discrete episode of growth

or multiple phases of growth occurring by more than one mechanism. It is also important

to note that samples from the mushroom region, which did not experience significant

crustal loading, contain evidence for secondary titanite growth.

The available cooling data and titanite textures argue against slow cooling as a

mechanism to produce the lack of distinct contacts between tonalite of different age

domains. The failure to recognize these cryptic contacts because of the similarities in

composition, texture, and/or fabric orientation of tonalite of different ages suggest similar

sources and/or processes involved in the generation of tonalite over this ca. 5.6 Myr time

period. Mapping of subtle variations in trace element and isotope geochemistry in

addition to detailed geochronology may be necessary to fully understand the scale of

heterogeneity of this batholith.

U-Pb RESULTS FROM THE TENPEAK INTRUSION

Eight samples from the Tenpeak intrusion were analyzed (Fig. 5) including a

sample of felsic tonalite from the sheeted zone (TP1), two samples of Schaefer Lake

phase tonalite (TP11 and TP20), one sample of Indian Creek tonalite (TP-524-1), a

tonalite sample from the northernmost part of the intrusion (TP27), a sample of diorite

from the mafic complex (TP30), a sample of tonalite from the White Mountain lobe

(TP31) and a sample of protomylonitic tonalite gneiss from the northeastern margin of

the intrusion (TP29). Data from the more voluminous phases are presented first,

followed by data from marginal phases and the sheeted zone. The results are given in

table 2 and summarized in table 3.
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Zircon Data

Sample TP27 is a medium-grained, biotite-hornblende tonalite collected from the

northernmost part of the intrusion. This region had been mapped as part of a large diorite

body (Tabor et al., 2002), but diorite was not observed at the northernmost tip of the

intrusion. Zircon from this sample comprises colorless, elongate prisms. All except one

of seven zircon analyses are concordant (Fig. 14) with a concordia age of 90.72±0.04 Ma

interpreted as the crystallization age of this sample. The one discordant analysis has

younger 206Pb/238U and 207Pb/235U dates, which can be interpreted as minor Pb loss.

Five concordant zircon analyses from tonalite sample, TP-524-1, yield a

concordia age of 89.74±0.09 Ma (Fig. 14) that represents the crystallization age of the

Indian Creek phase. In contrast, zircon analyses from tonalite samples of the Schaefer

Lake phase yield consistently older ages. Eight concordant and equivalent analyses from

TP20 yield a concordia age of 92.21±0.03 Ma (Fig. 15). Six concordant and equivalent

analyses from sample TPI I yield a concordia age of 92.37±0.06 Ma (Fig. 15).

Four zircon grains were analyzed from sample TP31, a tonalite from the White

Mountain Lobe of the Tenpeak intrusion. The analyses have low ratios of radiogenic Pb

to common Pb and consequently have large uncertainties. Three of the four analyses

overlap concordia (Fig. 15), and the concordia age of these three analyses is 92.04±0.73

Ma. The fourth analysis is normally discordant, most likely a result of an inherited zircon

core. Sample TP30 is a diorite collected from the mafic complex that is in contact with

tonalite of the White Mountain Lobe. Six zircon analyses overlap concordia (Fig. 15)

with a concordia age of 92.15±0.18 Ma (MSWD=0.32). Considering that magmas of the

mafic complex (TP30)-and tonalite of the White Mountain Lobe (TP31) were mingled on

the outcrop scale, and that both yield zircon analyses within error, the crystallization age

of the White Mountain Lobe is best represented by the more precise concordia age of

sample TP30.

Six zircon analyses from tonalite gneiss sample TP29 along the northeast margin

of the body are concordant (Fig. 14) and yield a concordia age of 91.31±0.13 Ma. Six

zircon analyses from sample TPI (Fig. 14), a felsic tonalite from the southernmost

sheeted zone, yield concordant analyses with a concordia age of 91.87±0.08 Ma.
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Titanite Data

U-Pb analyses of titanite fractions from six of the eight Tenpeak samples are

presented in table 2. Analyses from a seventh sample (northernmost tonalite sample

TP2 7) had Pb*/Pbc ratios that were too low to give reliable results. The titanite analyses

are a mix of multigrain and single-grain fractions as noted in table 2. The grains are

generally clear and vary from dark yellow to brown. All grains form anhedral fragments,

but the grains analyzed from samples TPJJ and TP29 are commonly lentil-shaped and

aligned with the fabric.

The Tenpeak titanite analyses generally have higher Pb*/Pbc ratios than the

titanite analyses from the MSB. Most of the Pb*/Pbc ratios fall between 1.6 and 5.3

except for one sample (TP-524-1), which has a Pb*/Pbc ratios of 0.2-0.6. Even with the

higher Pb*/Pbc ratios, the analyses are still sensitive to the Pb isotopic composition used

for the common Pb correction. Unlike the MSB titanite analyses, however, the Tenpeak

analyses are normally discordant from 3% to 72% (except TP-524-1 s3 which is severely

reversely discordant) when the Pb isotopic composition that was determined from

plagioclase feldspar is used (Table 4). Rather, the analyses are concordant when the

Stacey and Kramers (1975) model Pb isotopic composition at 90 Ma is used for the

correction (Fig. 16). Plagioclase feldspar may incorporate minor amounts of U into its

crystal structure (Housh and Bowring, 1991; Oversby, 1975), and it is possible that the

Pb isotope composition measured from Tenpeak plagioclase feldspar is more radiogenic

than the true initial Pb isotopic composition of the magma. Therefore, the Stacey and

Kramers (1975) model Pb isotopic composition was used for the common Pb correction

of the data in table 2. It is important to note, however, that the common Pb correction has

little effect on the 206Pb/238U dates of samples in this age range, effectively shifting the

analyses along nearly horizontal trajectories on a concordia diagram. For this reason, the

20 6Pb/238U dates of the titanite analyses are likely valid regardless of the common Pb

correction used.

Titanite analyses from the Tenpeak intrusion have 206Pb/238U dates that range

from 88.54±0.19 Ma to 92.27±0.07 Ma (Table 3; Fig. 16). Individual titanite analyses

are, at most, 1.1 Myr younger than the respective zircon crystallization age of the

samples, and the majority of the analyses (13 of 17) are less than 0.5 Myr younger than

155



the zircon crystallization age. However, the titanite analyses of individual samples

scatter outside the range of ages expected from analytical uncertainties such that a

statistically significant weighted mean 206Pb/238U age of the titanite analyses cannot be

determined from any sample. There is no correlation between the titanite 2 06 Pb/2 38U date

and geochemical indices such as Th/U or Pb*/Pbc ratios.

IMPLICATIONS OF THE U-Pb DATA FOR THE INTRUSIVE AND COOLING
HISTORIES OF THE TENPEAK INTRUSION

Intrusive History

In contrast to the MSB, emplacement of the Tenpeak intrusion took place on a

shorter timescale with an approximately 2.7 Myr difference in age between the youngest

and oldest phases of the intrusion. The intrusive history suggests that emplacement of the

Tenpeak intrusion was a much more continuous process than emplacement of the MSB

(Fig. 12). The oldest phases include the Schaefer Lake phase tonalite in the southeastern

portion of the intrusion (TPJ and TP20) dated at 92.37±0.06 Ma and 92.21±0.03 Ma,

and the mafic complex (TP30) near the White Mountain lobe dated at 92.15±0.18 Ma.

The zircon crystallization age of tonalite from the White Mountain lobe (TP31) also

overlaps in age with the Schaefer Lake and mafic complex samples, but the large

uncertainties on the White Mountain age make the timing relationships between these

pulses difficult to assess. Field relationships, however, suggest that the White Mountain

lobe truncates the Schaefer Lake tonalite. The sheeted complex (TPI) intruded at

91.87±0.08 Ma, less than 0.5 Myr after emplacement of the voluminous Schaefer Lake

tonalite. These dates are consistent with the observation that the sheeted zone is

gradational with the Schaefer Lake tonalite. The protolith of the tonalite gneiss (TP29)

intruded at 91.31±0.13 Ma, closely after development of the sheeted zone on the opposite

side of the intrusion. The gneissic texture may reflect late strain localization developed

along the northeast margin of the intrusion. At 90.72+0.04 Ma, approximately 0.6 Myr

after the emplacement of the tonalite gneiss protolith, tonalite was emplaced in the

northernmost parts of the intrusion (TP27). Within a Myr, the youngest phase of the

intrusion, the Indian Creek tonalite (TP-524-1) was emplaced at 89.74±0.09 Ma. The

Indian Creek tonalite truncates both the sheeted and interlayered complexes and the
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Schaefer Lake tonalite. This relationship implies that these phases had cooled enough to

remain rheologically distinct phases during intrusion of Indian Creek tonalite.

Contacts between magma pulses of differing age are much easier to delineate in

the Tenpeak intrusion than in the MSB, in part because each phase is texturally distinct.

Discrete mafic bodies are generally restricted to the outer margins of the intrusion, and

form some of the earliest phases. A sharp boundary exists between Schaefer Lake

tonalite and coarse-grained Indian Creek tonalite. A more gradational contact exists

between the sheeted zone and the Schaefer Lake tonalite. These discrete contacts and the

distinct textures of different pulses of the Tenpeak intrusion contrast with the evolution of

the MSB. The lack of homogenization and mixing of pulses of Tenpeak magma are

somewhat surprising given that these magmas were emplaced over a shorter timespan

than the MSB with less time (-0.5 Myr) between pulses. In addition, Tenpeak magmas

yielded emplacement pressures of 7-9 kbar (Dawes, 1993), and intruded host rock that

records peak P-T conditions of 10-11 kbar and 625-675°C (Valley et al., 2003), although

it is unclear when the peak temperatures were attained prior to the emplacement of the

Tenpeak intrusion. These factors should have promoted slower cooling than the MSB

and greater potential for mixing and homogenization. However, the thermochronologic

data from the Tenpeak intrusion, as discussed in the next section, indicate that cooling

following emplacement was rapid which inhibited mixing between magma pulses.

Cooling History

Both the U-Pb zircon data and field relationships suggest that the earlier phases of

the Tenpeak intrusion (Schaefer Lake tonalite, mafic complex, White Mountain lobe, and

sheeted complex) cooled enough that they were rheologically distinct phases before

intrusion of later pulses of magma (protolith of the tonalite gneiss, northwestern

diorite/tonalite body, and Indian Creek tonalite). Titanite U-Pb analyses from these

samples place further constraints on the high temperature cooling history of the intrusion.

Titanite analyses from the Tenpeak intrusion display an approximately 3.7 Myr

range of dates along concordia, although titanite dates from individual samples generally

range from the respective zircon crystallization age to about 0.5 Myr younger (Fig. 16).

Titanite occurs as large, euhedral to subhedral crystals contained within plagioclase,
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suggesting primary magmatic growth (Fig. 13). Unlike the MSB, textural evidence of

secondary titanite growth is lacking. The dispersion of titanite dates along concordia

most likely records either cooling ages or the timing of isotopic resetting.

Titanite grains recovered from these samples are irregularly-shaped fragments,

and it is unclear if there is a variation between age and grain size that would indicate

diffusional Pb loss above the titanite closure temperature (e.g. Dodson, 1973).

Alternatively, the dispersion of the titanite dates along concordia may indicate that the

titanite grains have been partially reset to varying degrees. All of the samples from the

southern, oldest part of the intrusion (TP11, TP20, TP31, TPI) have titanite dates that

cover a range of ages, but are no younger than 91.3 Ma. It is possible that the thermal

pulse associated with intrusion of later pulses of magma were responsible for partially

resetting titanite grains throughout the southern part of the intrusion. However, this fails

to explain why titanite dates from the youngest phase, the Indian Creek tonalite, are up to

1.1 Myr younger than the respective zircon crystallization age. This tonalite is among the

youngest known magmatism in the Wenatchee block.

Regardless of whether the dispersion of titanite data along concordia records

cooling ages or the timing of isotopic resetting, the thermochronologic data indicate that a

substantial volume of the intrusion had solidified and cooled below the titanite closure

temperature by 91.3 Ma, within a Myr of emplacement. These observations are

supported by cooling dates recorded by the diffusion of Ar from hornblende (Tc-500-550

°C; Harrison, 1981; McDougall and Harrison, 1988) that are less than one Myr younger

than the U-Pb titanite dates (Engels et al., 1976; Chapter 3). The earliest formed pulses

of the intrusion (Schaefer lake tonalite, mafic complex, White Mountain lobe tonalite,

and sheeted complex) acted as rheologically distinct units and did not mix with or

become homogenized with later magmas. These data also suggest that the Napeequa

Complex had cooled from its peak thermal conditions of 625-675°C (Valley et al., 2003)

to below the closure temperature for Ar diffusion in hornblende before emplacement of

the Tenpeak intrusion.
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RATES OF MAGMA EMPLACEMENT

Magmatism has long been known to play a key role in the thermal evolution of

continental magmatic arcs as an efficient mechanism to transfer heat from the lower to

upper crust. The timescales of magma chamber construction dictate the rate at which

heat is transferred. The geochronologic data presented here along with estimates of the

volumes of these intrusions provide a way to quantify magma emplacement rates through

this segment of the continental magmatic arc.

The areas of each compositional phase of the MSB and Tenpeak intrusions were

calculated using GIS software. Geophysical data, which would constrain the depth of

each intrusion and hence volumes, are lacking; however, the topographic relief in this

region is great enough that at least a 2.5 km thick section of the MSB and at least a 2.0

km thick section of the Tenpeak intrusion are exposed. These thicknesses provide

minimum constraints on the volume of each pulse of magma (Table 5). Gravity

modeling of intrusions in a variety of tectonic settings suggest that most intrusions form

relatively thin (<10 km) tabular bodies with gently-dipping roofs and floors (Am6glio

and Vigneresse, 1999; Am6glio et al., 1997; Cruden, 1998; Hodge et al., 1982;

McCaffrey and Petford, 1997; Petford et al., 2000; Vigneresse, 1990; Vigneresse et al.,

1999). This modeling is at odds, however, with the steep nature of the contacts between

the both the MSB and Tenpeak intrusion and host rock (Miller and Paterson, 1999;

Paterson and Miller, 1998b). Because of the uncertainty in the depth and geometry of

each intrusion, only minimum rates corresponding to the known thicknesses of the MSB

and Tenpeak intrusion exposed at the surface are calculated. The minimum volume of

each intrusion emplaced over the entire duration of magmatism in each intrusion yields a

minimum time-average rate for the MSB of 2.1 x10-4 km3/yr and a minimum time-average

rate for the Tenpeak intrusion of 1.2x 10-4 km3/yr.

The average rates calculated for the MSB and Tenpeak intrusion are comparable

to rates estimated from other continental batholiths and batholithic belts (Crisp, 1984;

Francis and Rundle, 1976). Average magma emplacement rates determined by Crisp

(1984) for outcrop areas between 10 3 to 10 4 km2 range from >2.1x10 4 km3/yr for the

Guichon Creek batholith, B.C. to up to 63(+3)xlO-4 km3/yr for the Boulder batholith.

Average rates for outcrop areas at least 104 to > 105 km2 are generally higher and range
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from 1.9x10-3 km 3 /yr for the entire Sierra Nevada batholith to 14x10-3 km3/yr for the

entire Coast Range Plutonic Complex (Crisp, 1984). The average magma emplacement

rate determined from the Coastal batholith of Peru is 3.3xl 0-4 km3 /yr assuming a tabular

shape with a 5 km thickness (Francis and Rundle, 1976). All of Crisp's estimates for

continental batholiths are greater than the rates determined for the MSB and Tenpeak

intrusion. This is likely due in part to the fact that Crisp (1984) used an arbitrary 10 km

thickness for all measured areas when determining intrusion volumes. If I make the same

assumption, the rates are comparable. In addition, the durations of magmatism used in

both studies are considerably longer than the duration of the MSB or Tenpeak

magmatism, which may be an artifact of the less precise geochronologic data that was

available prior to these studies. Considering the large uncertainties in estimated volumes,

it seems noteworthy that the average magma emplacement rates of the MSB and Tenpeak

intrusions are within an order of magnitude of earlier estimates from continental

batholiths.

The density of sampling from the MSB makes it possible to estimate the magma

emplacement rate through each age domain. Rates from the hook and sill age domains

are lower than the estimated rates from the youngest age domain. Volumes of the hook

and mushroom age domains are comparable (Table 5); therefore, the difference in rates is

dominantly a result of the inferred longer duration of magmatism in the hook region. The

uncertainties on these magma emplacement rates are difficult to quantify. The

uncertainty of the thickness and geometry of each pulse, as well as the uncertainty in the

position of the boundaries between different age domains in the MSB, is unknown.

Uncertainty in the time it takes for each magma pulse to be emplaced is also a critical

factor. Even with the high density of sampling for geochronology, these rate calculations

are based on the assumption that emplacement of magma was continuous for the time

period represented by the geochronological data for a given age domain. Geodetic data

from the regions above active crustal magma chambers reveal episodic uplift (infilling)

and subsidence on timescales from days to years (Dvorak and Dzurisin, 1997) reflecting

rates that are orders of magnitude greater than those estimated here. Petford et al. (2000)

calculated volumetric intrusion filling rates of 0.01 to 100 m3/s using reasonable values of

magma viscosity, wall rock/magma density differences, and feeder dike morphologies.
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These filling rates predict that an intrusion roughly the size of each age domain of the

MSB could be emplaced in as little as a few hundred years to up to roughly a Myr. The

large range of estimates for the duration of emplacement of any given magma pulse make

the value of calculating the magma emplacement rates through a specific age domain

uncertain. In contrast, comparisons between long term or average rates of magma

addition are probably more valuable to understanding rates of magma generation and heat

transfer through the crust than are short period rates from volcanic systems which are

influenced by factors such as vent and conduit geometry (Crisp, 1984).

COMPARISON OF THE MOUNT STUART AND TENPEAK INTRUSIONS

Comparison of these two magmatic systems can lead to a better understanding of

how processes that control the construction of intrusions change with depth. These

systems are similar in terms of their range of compositions, timing of emplacement

during regional deformation, and rapid cooling after emplacement. However, significant

differences between these systems must be explained. Construction of the Tenpeak

intrusion appears to have been a more continuous process yet texturally distinct phases

and internal sheeting are well-documented and there does not appear to be significant

homogenization of different magma pulses. In contrast, the MSB appears to have been

constructed over four discrete time periods yet it shows gradational contacts between

magma pulses of differing composition, and similar textures and magmatic fabrics

between pulses that are significantly different in age.

The differences between these two systems may be related to the rate at which

magma is generated and/or segregated from its source region. At relatively slow rates of

intrusion relative to cooling, magmatic systems may consist mostly of mush and

relatively evolved melt (Shaw, 1985; Sinton and Detrick, 1992). At higher rates of

intrusion, magma recharge may be frequent, which sustains the magma reservoir and may

result in appreciable magma mixing (Koyaguchi and Kaneko, 2000; Reid, 2003). The

Tenpeak system is more likely examples of a slow rate of intrusion because higher

proportions of mush relative to liquid inhibit mixing and result in texturally distinct

magma pulses. Less frequent recharge also implies a greater degree of cooling between

magma pulses, also encouraging distinct textures. When magma is generated at a slower
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rate or cannot be as efficiently separated from its source region, then only small batches

of magma are available to periodically ascend through the crust, and the limited thermal

energy these magma batches controls their level of emplacement. The rate of intrusion of

the MSB may be faster, encouraging homogenization of different magma batches during

ascent.

Miller et al. (2000, 2003) and Miller and Paterson (2001a) describe an alternative

model in which mid- to lower-crustal intrusions, such as the Tenpeak intrusion, represent

a "filtering system" between lower crustal zones of magma generation and mixing, and

upper crustal zones of large, relatively homogeneous intrusions, such as the MSB. These

deep-level magma reservoirs are dynamic systems with early mafic sheets solidified

along the sides and large volumes of magma passing upwards to higher chambers where

they may become thoroughly hybridized. The deep-level magma chambers act as

conduits to upper crustal sites of magma collection and serve as a snapshot of the ascent

of magma through the crust. If such systems are linked, then it is unclear from this model

why magma emplacement in the mid- to upper-crustal system (i.e. MSB) shows more

punctuated evolution whereas the lower-crustal system (i.e. Tenpeak intrusion) shows

more continuous development.

It is clear from the petrologic variations, internal magmatic contacts, and local

magma mingling that the MSB and Tenpeak intrusion were constructed from multiple

batches of magma. Most, if not all, intrusions from similar tectonic settings can be

argued to have been constructed in this fashion. However, the recent assertion that only

small volumes of melt are present in a magma chamber at any given time (Coleman et al.,

2004; Glazner et al., 2004) is at odds with the U-Pb data from the MSB. The

thermochronologic data suggest that the entire MSB never formed a single convecting

magma chamber, but in the case of the mushroom-shaped region, at least 520 km3 of

magma was emplaced in 200-400 thousand years, necessitating a magma reservoir (both

mush and liquid) of considerable size. This contrasts with the Tenpeak intrusion, in

which any magma chamber was smaller in size and potentially more ephemeral in nature.
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CONCLUSIONS

The petrologic diversity, internal magmatic contacts and local magma mingling

observed from the MSB and Tenpeak intrusion indicate that these intrusions were

constructed from multiple batches of magma. For the MSB, construction of the batholith

took place over a ca. 5.6 Myr time period with four discrete episodes of magma

emplacement. Construction of the Tenpeak intrusion took place over a shorter time span

of ca. 2.7 Myr with <0.5 Myr between emplacement of different magma pulses.

Different compositional phases of the Tenpeak intrusion cooled and solidified within -1

Myr after emplacement as evidenced by both field relationships and the U-Pb data. The

cooling history of the MSB is comparable. Several titanite dates from the MSB are

similar in age to the respective zircon crystallization age of the sample; however,

secondary titanite also grew by breakdown reactions of hornblende and biotite,

potentially as a response to regional loading of the MSB. The interpretation of the

intrusive history of the MSB, and magmatic fabric orientations in particular, are obscured

by cryptic contacts between pulses of tonalite of differing age. Smooth variations in

magmatic fabric patterns between different age domains require that the strain field was

constant during emplacement of the batholith and that deflections of the magmatic fabrics

are too subtle to be detected in the field. Average magma emplacement rates calculated

from these two intrusions are similar to those calculated from other continental

batholithic belts. The magma emplacement rates calculated from the mushroom-shaped

region, in particular, suggest that a relatively large volume of melt was present in the

middle to upper crust for at least a 400 thousand year time period. Compositional and

textural similarities of tonalite from different age domains of the MSB suggest a greater

degree of homogenization of tonalitic magma, whereas the diversity of rock types and

textures observed from the Tenpeak intrusion show a lack of mixing and homogenization.

These textural differences may reflect different rates of magma generation and/or

segregation from their source region. Alternatively, the deeper-level Tenpeak system

may represent a "filter" between lower crustal zones of magma generation and mixing,

and upper crustal zones of large, relatively homogeneous intrusions such as the Mount

Stuart batholith.
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Figure 1. Sketch map of Mesozoic and Paleogene arc plutons in the western North
American Cordillera (after Miller et al., 2000). Inset emphasizes distribution of
metamorphic rocks (speckled pattern) and plutons (dark grey). Also shown are the Coast
Belt thrust system (CBTS), lower-grade rocks of the Eastern Cascades fold belt (ECFB),
and Northwest Cascades fault system (NWCS). The dextral Fraser-Straight Creek (SCF)
fault offsets the Cascades core from the main part of the Coast Belt. The Entiat fault is a
Tertiary, high-angle fault that divides that Cascades core into the Wenatchee and Chelan
blocks. Light grey box in inset outlines the area of figure 2.
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Figure 2. Geologic map of the
Wenatchee Block. Plutons shown in
a light grey random dash pattern.
Abbreviations are as follows: BL,
Bench Lake; CL, Cyclone Lake;
CM, Clark Mountain; CS,
Chiwaukum Schist; CV, Chaval; DC,
Downey Creek; DF, Dirtyface; HP,
High Pass; IC, Ingalls Complex; JL,
Jordan Lakes; MSB, Mount Stuart;
NRG, Nason Ridge Migmatitic
Gneiss; NQ, Napeequa Complex;
SC, Sloan Creek; SG, Swakane
Gneiss; SM, Sulphur Mountain; T,
Tertiary sediments; TP, Tenpeak;
TVI, Tertiary volcanics and
intrusives; WRG, Wenatchee Ridge
Gneiss.
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Figure 3. Schematic diagram of the North Cascades crustal section modified firom Miller and
Paterson i(2001b). Random dashes denote plutons with mostly magmatic fabrics, whereas bold
horizontal dashes denote intrusive rocks with strongly developed solid-state defobrmation and/or
intense magmatic foliation. Other lenses in the Chiwaukum and Napeequa units are amphibolite,
metaperidotite and mninor marble, and half-arrows show areas with non-coaxial shear Vertical
dashed lines are aults in the Ingalls Complex. Numbers on right side of diagram list
representative temperatures (C) and pressures (kbar) summarized in Miller and Paterson
(2001b). Abbreviations are the same as in figure 2.
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Figure 4. Map of the MN/lount Stuart batholith showing internal petrologic variations,, regionral foliation patterns and
geochronologic data (after Paterson et at., 1994). Dates with an asterisk are UI--Pb zircon dates from previously
published studies (Tabor et al., 1987; Walker and Brown, 1991). K-Ar and '"Ar-'Ar dates (Chapter 3; Evans and
Davidson, 1999; Tabor et a. 1987;. Tabor et al.. 1993) are denoted with a "h- for hornblende, a "' for muscovite
and Sb" for (biotite), K-Ar dates are in italics. Foliation measurements are depicted by a strike line with filled
square dip=0-29"), with illed triangle (dip=30-59 °) or without dip symbol (dip=60-90°). Foliation symbols in the
host rock represent average orientations of the most ervasive foliation in the region. Heavy dashed lines
approximate the boundaries of different age domains, The Windy Pass thrust is labeled as WPT.
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48' :

121

Figure 5 Map of the Tenpeak pluton showing internal petrologic variations, regional foliation
patterns and geochronologic data. U-Pb zircon dates labeled with sample numbers, K-Ar
dates (in italics) and 4"Ar-"'Ar dates are denoted with a "h" for hornblende, "n" for muscovite
and 'b" for biotite (Chapter 3 Dragovich and Norman, 1995; Tabor et a., 1987; Tabor et al.,
1993. Tabor ct al., 2002).
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Figure 6. Cathodoluminescence
images of zircons from samples
MS5 and MS6. Dashed red line
approximates where each grain
was broken into fragments for U-
Pb analysis.
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Hook Domain Zircon
Concordia Diagrams

0.0153

Figure 7. U-Pb zircon concordia diagrams for samples from the hook-shaped region of the MSB.
All samples are plotted at the same scale and the axes of each diagram step up and to the right.
Concordia ellipses are represented by heavy black lines.
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Figure 8. U-Pb zircon concordia diagrams for samples from the intermediate age groups of the
MSB. All samples are plotted at the same scale and the axes of each diagram step and to the
right. Concordia ellipses are represented by heavy black lines.
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Figure 9. U-Pb zircon concordia diagrams from samples from the mushroom-shaped region of
the MSB. All samples are plotted at the same scale and the axes of each diagram step and to the
right. Concordia ellipses are represented by heavy black lines.
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Figure 10. U-Pb titanite concordia diagrams for MSB samples. Ellipses for a given sample have
the same fill color. The fill color alternates in color between samples so that each sample is
distinguishable from the next. For comparison, zircon concordia ellipses or the most concordant
zircon analysis (for MS5 and MS6) are outlined in red.
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Figure 11. Variations in Th/U and Pb/Pbc ratios of titanite grains versus difference in zircon
crystallization ages and titanite dates.
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Figure 12. Histograms (heavy gray lines) and probability density functions (heavy black
lines) of zircon U-Pb concordia ages from the a) Mount Stuart batholith and b) Tenpeak
intrusion. Probability density functions are constructed by summing the probability
distribution of each datum with normally distributed errors.
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Figure 13. Back-scattered electron images of titanite grains from the MSB (a-e) and
Tenpeak pluton (f). mage (d) is a close up of the area outlined in the box in image (c).
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Figure 14. U-Pb zircon concordia diagrams from the youngest four Tenpeak samples. Concordia
ellipses are represented by heavy black lines.
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Figure 15. U-Pb zircon concordia diagrams from the oldest four Tenpeak samples. Concordia
ellipses are represented by heavy black lines.

183

I



0 0 CD CD0 C 0- C 0 0

\o a, 00 O1 e'J 0- 

(7- 5' CS 0% %0 Q/ W '1%

0 0 ~0 c> 0 CD0 r- IfC

00,0 CS 0 Z, CS 0% 000 0% 00 00

0% 0 n N7 en ON~ 0 r 000 r.
C0 0 0D 0D 0D 0 CD 0 -o 10 (1-

a, 0% 01 0% (ON CS CS a, 00 00 00

C! O r' Q0

N- 't 0% *'I-e~ 0 lrn
0 0% -0 CD0 e'" 0%

*IC 0%4 0%~ In r- OR

00 t14 a,0 CD 0
00 a, 0% % ON ON 0

c'I �.0 00 �.0 00 �.0 N
0% -� 0% 0% e� 000
0-00--0
0% 0% 0% 0% 0% 0% 0%

0% - SrI N �j- � 0%0%-0%0% 0 000
0-00--0
0% 0% 0% 0% 0% 0% 0%

e'� SrI �* �.0 00 %0 %0
- r�I � r� r� -

-0 ".0 e - l

'I 0W 0 If% r. "

(Z ND N0 CD CD 0 

- e'I 0% �I- SrI N �

0% 0% 0% 0% 0% 0% 0%

- -0- '�** ttl

0% 0% 0% 0% 0% 0% 0%

�.0 �O �.0 \0 N � 0%
00000 0%

r- rn N en 4. 0 C5 : 

ON 00 W '0 00 1- W'f 0 WIa, 0 0%, me N- hf% "D' 

en 00010 C.0 00 11 wi W I 

.21 ON'ONr C, ,0,-

00 %0 en Cq 00 cr 0 0Ci 0000i %00000~~1If % N~~I I~ rIO

0% 0 0 C% 0% 0 %0%0

-1 -0 -. -e -0 N 000 - --

0000000000WW 00 0 000000all0 C 0 0 000
66666-- 6666 6or- r r r C- oooooo6 Wt-r- C W(- -0 66 6 6 t 666ooo V

- e- -% SrI 0 ;rI - '- -e 0- 00 '-40 me C 0 0 0 al 0000 N'- 0% . . .ee N Iel 00 N e

e0n en 0 0 enl 0 a 0 0%0 0 0 e en0 en aa,,0 0 % 0 , 0 00 00%alON a a, eemaOel00N as as sma a as %0%0%0%0%00eel al 00%0%0%0%0%0000a-a,

ooooo666oooo Qo 66 6 6 6 66 6 6 6 6 66 6oo6 666 6Q6
0 -:. 0 0. 0% 0 e - - I %. N-000 r~lenl -0 ee~.l l

0% - 00 - 00 - 0
all N W 'T 1-NC \0 N N SrI r 00 N

000000 'W
N0-7 . : -%00 SIn-;rI~00-:~ .- " 0000 

CD CD 000W I "- a, eel0- "C14~ CD enen"C ' - CZ, 0000%51% n 0%00, ... :;; : nInO ... . 00C0 %- 0 a ; %C"a000% a,0%0%0%0%
0 0 0 0 0 0 0 0 0 00-- m m 'I 'T IT't' 000 00 0000000 0000000000'I ' In't t'I ' -'66666ooooo6 666666 GGdooO 6666666666

- ski %0 - N 0 N~~~1 - I-
M - % -0 00 NIc C' n 

0I ee el 4 Ik ee %00 m-

CD 0 CD C C -0Ceel

SrI CD - C

0 0%~ enl c - W)1 Cy, '. m e m ee6Ztn kn o oC; li06M6 o .7

00 't 0 eel C% c~ r- Sr 0 -, t-

,S Z 00 0 

000 0

I N0 ~.0 00 SD 0eI OnR %l
=~c CD<-~=

0)
-I a rI r- m ee r- 

0 0 C! i eel '. 0 0 0
W) al - Wiee 'IOJ 't Iet

"IV

0
W)

q m I n 10 r W a, " m ci e
N N N N N N ! ' N N N N N

0 0 0 00

N -q 0%Zeel0

Ci 0 i 0 0%'
- :I-e e 6 N - 0

- enl ci-

(C)00 0" -I - 0 -:C
666=6666 C ( C

0' 00 N NO ee 0 0 0 -

0000 0~00CD0

6666666666

- - -0 ~ .i -C 0 0 e'I %000 - 0 I -

cn 00 0 Nc. . .;0

N- r% '.0 -t0 '.0 

wi 4. '.0- SI 06 '.0 0%.0o " "D 0--N4 (
e el eel - c i Sr c

- Cu .0 e
mNN

I 000I C~"i -el - eI N~ N- 11

eq -- -ci-ci-

-;~ c i eel S I ' 0 N
NN N N N N

000
N N No t

184

~0 
009

00
00

Cu

nI
15
Cu

.01�p
IFI-�. "I.1

flags

0gi.0

N N1

0

.
0

, 00 0% N"

l --

0 0 0 0

fIp

N N

uc I:

0.

Cu
I-

.

.

0

VS 0

0 0

I~: $

.

.0
Cu

H2

0

II



00 r- rt '/N
-00

ON -> N N m X/ 0o 0 .00 . .. 0 -

00 ON 0000 C 00 00 ' o 

r- In - t 0' - r- o x n c', iooo 0000 In In r- a' t r- -
00. "C - 0000 CD I C) o- 6 o 6 o o
000000000 DO O C, C, c, ,,O

l '.0 I '.0 00 It ~t "C000 r- 000 o r- r- I
o o o - o - N -

c~ N: r~i- N~ - r:- -m C - 4 - -
_' _ _- _: _ _ - _ /

Cl 00 e~~~ Cl al N0 -~

0- Co - ct ct ON00 r- O
-0 °. -00 N 00 N '( N 00

ol N C l C' C -CN -0 N
NC 'O W O '.o '. r0 N ON 1 '- 'Io

ON ON ON l ON ONO O N NO ON
00000ON r- rO -000 aON ON ON ON ON ON ON ON ON ON-Ocr~ ~~~~~0 Cl o. ' N l 00ONOCL C, CD 7 C C~ = C~ C> C

ON ON ON ON ON ON ON ON O O ONW) Wo W) "ofo " o £v

N I N N - C - N c 0 ON
0 -00o-0o- -- 00o

0 qi -: 'I Nm r- Cl

N0 rN ' ' N r-
ON - ONE -0 - I C

00 0l r r - CN N

ft o ~ bio _C7,WC-E C C C 0- O ClO

oo o~ I'D r- r- 1 ) r- oiON ON ON ON ON ON o 0000C C C Cl C C 0 CO C

000 N N 'IN c- N r-lr

ON ON ON ON ON ONON 00 Co

0 r- N r- ItClN r ClN - N- ¢t 'N e

00' 'D.0 cN m -N c o 0 In cl W- 00ON Ic ' m c c r- O
r O O N O 0 00 N C O OO 0 00 00 00 00 00 00 000 N O00N0 00 N- N - N- N O O O

-
- 00 -

-
00 N N - N

-
O

-
O- O O- O O O00000o00000000 0 00 'IT o0 'IT0o0oItoIoto'IT It Ito o 0- 00 oo66666 66666 66 66 66666 66 66CDooo

, C _l ,~0 0 'C INn rl . 't W- 't " C O. l r. -00 cl - . 0 - t ON 0 Cl -- Cl- -
- O 0 0 - 7 - -

r- o o O1l a' C o C "C c0 r- In o c" - t ,C m m - tt ,C I T 't t 't i -t IC O "I 0>'~t 7r I-t SD I-r- t W) st c " A C) " - In - -r- r- W.) r- ms Cn ct 1o-C~ I - - m In n ol llC~) W-) W

C, CO C> C C, C C C) C C I7 C C, C, C C) CI C:B C, C, C, C C C C C, CD C C~ I I C C-oN -oe Nr ONNNNNNOOO o oo oo o o oo oo oo oo oo ON0OOO ONNNNOOOO ONNNNNNOOOOO o boo ooooooooooooNoNoNoNooooo

0 0 O N C l I - - Cl
t Cl '.0 M Cl 't Cl - '0 0 O 0 t 0 -0 - - o 0---------.. -a /a 'I N l- . 0 00i~- -) vr v! _= °, 

- o r- - 0000c l'IN- e'N'r, , -000 0,- r- ED 'I Nc0-0o ,c'. '( zt N 0 0 NONCl 0 0 C l N CON N N O O - m N O N In ' 0 C l-r all 0 0 - C r- C,, rq cro r- - I B-c r- c~ c c ocr- vN r r- -t ~- - t t -( J Nf -( --IN O( N ot ct c c c o o ot CI t zt C)I
…l … … …, r7 CD …, …, C , …, … …, …, v0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ _ 0 0 0 0 0 0 0 0 06 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66°° ° ° ° ° ° ° ° ° °

c, In It - r-~ C?:

C,-. Cl r- Cl
' t - C " 4In CC 'C t l

.1C

= u2 7Z I't v)

0 O N _ C, c 0-

- ON C -0 O 0 C

-0…~~00 o N 0 N t N

-'.0 st ON 0L v t v

Cl 'I 4s n N

t 0b st nt 00 't 't OI

C C C C C l 0 0 O t C O N

C C - - C lO- C CO C m 

- viC 00 0 000- C

-0 r- -B I- C -
_ 2-° vi,. r- ° v r

- Clm t ') '. r-
N N N N N N N =

000 ' N - - IN t 00 IN '
IN 'IN t s t 'IN w - '.0 'IN IN '. 'IN66666666666

0 ' N C C ' 0 'I - O N C-C, t - m 00 N N - -
N Ct -N Cl 0

Cl N- t Cl st st 'N - st t 0

- M - 0 -l 00 r-
2- "t N C m' C c i '. c -

CC 0 N- 't st 0 'IN Cl '.0 '.00

ON N 'N 'N N mt -0 ON -00t 

N.

O 7 t - '. N- r- - 0 't C Mi W)io a -m In - It C) W)r-0 o vor "t C" Nc m
N 0 N l 0 . m N CC

Cl 00 0 C 00W r- N t '.0 O - -
CC O Cl Cl - '. Cl vi C Cl

- m 't 'IN '.0 N 00 O 0
N N N N N N N N N

00 ON 0 ) - 0 ' ON-0 0 0 00 000
ON- 0 0 NCl rN- '.0 cON Cl c'. 6 

t vn ° o xIn .C V-
0 0 0 C C Cl 0 't 0. N- 'N 0 vi r

- C C C C Cf C N 0 N00 In '. 0 r- - ' . 'In
N- t - 'IN '. C l N 0 '

'C? N 0 N '. 0 ON _ C N

-t Cl l - C l °C '7 0 '.0

_ f - C C N '. 6 ' t 0 

c °~m I Instr-cm 00 4 Bv -o

v' Ct- - _ ctf _ 00

- C l C C V i- ' N O N CN N N N N N -- y r

185

-o 

o <0 C

cc
C.

.0 -

r- r- -- - C
ON r-l °

r- 'T n -G CN o (-- CD
/ a IN ' CD I

CA I - I: o~6 C, 0 006ON o 00 00 

cO

:
c2

a
- N N0 r- N
00 I'D IC 00 r-
00 00 C0 00 00

_7' G ,- , 
Nq " , 

;~6 ' 0 *''t r- ' c -zt

'.0 C C Cl1 r
- llN - --

°c -Cr

0. 0.

* -

CO

0

o~a
0

0.,,-

-OC,
o0

CiN

0
c~

tvo0

C_

o-E
,0 0

.:oCJ E

0-0 -
0

- Ot ON Cl 000 0 0 0 0

0 00 C, "0V

-t00 It r-N 

0 0 'o "I 0,

O N~ 4 'IN 0 0, c .
r0 -00 n
st '. 00 N- 'N
n - 0 0 CT

z st O 1 0 00

K

-

CO

1-1



1 6 R I 60

0 -0000 Cl 0
'( o '( ON '(N 00 

00 C> N, '(N C, '0C7
0 -a 00 O Or
O O O ON ON ON N

'.0 C 0 .0 It '0
O 00 O O Cl '(6 6 6 6-ON~ C
ON ON N ON ON N 00

ON .t -0 . - .( 
- - C l -0C

0~ -t 0000cC'

'. 0000060 '( r

*CON " a, 7= C
0

- CD 0 Cl Cl 0

ON O O N ON o3E rq C> rq °i _

'.0 '( It N r ON

all C C C C ClON ON ON ON ON ON

'.0 N r) ' ON O
vC V) un r- fn u

ON ONl ON1 ON ONl ON

a o~ (oE cz 6
' C 00 t N
Cl t O ' ON Cl

, lc en r! Co c
*- 1= *6 u - 6

N t It C 000 0

'(N 00 C'~I t 0D 00
r It en 6 rli o
CO O N O ON ON

(7 n - 0 00 oo

ON, ON ON ON ONl ON

'.0 Cl C '( 00
'(N N- 000 N~ N- 

O ON 0 7 x

m o ) _ ) 
_-; -: _ 7o} -: 

0,0

o O Cl '(N r' -0

- '( CD > C> CD 0 'I r> I

ON 00 I 00 aO - 00

- N 00 '( N ND '(^N ON
C> C ) 

I t 't It 'T t It - t

ON ON, ONO ONl ON ON O NO'.0 0 '(N n Cl 00 '. '. 0c > N 00 Cl 00 ON N'N ClC

ON ON ON ON ON ON o ON ON ON

rON -s} Cle '.0 d' ON -Cl

_ C "t Cl Cl e _----------

,OTN'.0C O0 ON OCD r- en , ON O x0
) rn n 't _ 4 M r4 l ~t O, 0, m r- 4 r- 1D It

0 o C O O 00 00000000 00 00 00 00 00 
NNNNN N NN N - N 00 NN NN N > 00

'T 'T It 'T " It 'T 'IT It - 'T It It It 'T 'T It T
00000 00 0 0 00 O O O O CD

6666 o o o c 6 6 66 66 6 6 c CD

_ N 0 C -
- _l 0C ON_

O ON N 00 '0 00
Cl - l Cl 0 Cl r

" , " 0( m C, cq "O D n - t oo m oo

Nq 0 oON ' " 0N OXO NN r O n
N00_CD00NNN 00N00N00NNN r C, 7,00N

0-00 0 00r-r 00 000000w - - -00 roo6 6oo666oooooo ox00 >x I It t t t t Zt t t t IT r
CD CD x ) .) C) C> C, CD- 

/ ___ 

_ x0 t CD a,0o ; - t t T .0 0 'IT0 r T t tom t oN oot 0'I INt ' ON

rVNC> .c IfN ' (v( N X t N NN00NN N0 0N X0 0w o o - oN x t VN ,,

0000000 ' - I W)-r e W f r-r 000000 00000 (I 00r00 -000r-.0-I0.-9I

oooo o6 o o o o6 ooo o o o o o o o o o o o o
-~ C ~ 0 '(N r~ eh Cl 00 I C 0

- x 7- Z:r o 

ON CI C, t 0 X 0 0 00 O 00 t 00 't ) t-
0 0) f) X V - 00 0 - 0 - 0 0 C, 0O O 6 O O " -c - ' '66 6 6t 6 t t
V) - In In n t n Nrt t 7t ^ m :t : t t t t

____ ___ __ ______00 0 ~ 0 0 ~ :~C ~ ~
6 6 6 6 6 6 6 6 6 6 6 C> C> ( C C) ) C)

-~ a '0 . ~ a
_ n ,C -~ , 

_/; _ _: Z: _ _

- - oo - - - - -0> "T 00 Cl m~ - '.0 N- - I(n

'IO '( "0 It "0 t Cl C 
____ - - ___ -__ 

r- -t x0 c c rq V ) (7 °D - W, ( N=

00000 00 0 X X 00 0 X 000 0

oo6 6 6 66666 6 666oooo0

Cl - -Cl o - -ON- "C 'T W) ; x G w I- -t Cn °~ C, > OC >m_ 
oCFl , 

ClN -0 NOl r- ( 0 0

"~ '(fN Cl Cl

m - Cl "~

N E N N N

6 6 C _

N C N ' -.0 O 0

CO ' '(n 0 0 O (N

C1 I t C 
C0 0 0 - C>l 0 Nt

0 '.0 '.0 t 00 0 t2
- CfN - sr -

6 6 6 6 6 6 6 O 

CfN'(NN>O - fNOhN lNlON'0O

~~~ ~~~~ 00 0

O C 0_ xC 7E X X *N X
0 O N° .- ' X .o O N . <

0 0
fn In

C t 'n '.0 N _
N N N N N N-

t - Cl t C 0
N n 00 t ' t

't C, o o 

000 ,00-t N 0 q '

00 0l "C 6
- N N C - N

000 '.m c 0 Cl

00O00 00 '.0 '(N
N '. 'N Cf '. Cf

Cl '( - '. '. e^

'(N Cf '( - '. O

00m- 00N Cl '(N

00 ON N '( Cl 0 
'(N-Cl-- s 

00 cn 00 In 0 '.
00 00 O 00 N

0000 '() C Cl -
'N 0 ( ON Cl 00

'( ,C 'N Cl ') I

X0 dT r - O> -
00 't N 0 _

ON Cl Cl '.0 O
N- ON 00 t N- O

en ON '( 00 ON 00
t V r C 'T rnNt 'N N ON N C

C Cl Cl Cl Cl Cl
6 6 0 0 00C : o
0- R O N 

0 0
.~

t '(N ONN '. '

t '.0 r - Cf 00

ON Cl 00 :t t C

'( " N '( rt 0

- C N t N ONN N N N N N

-

C,
=1~

0.,

R oo m r- r O t

N Cl '0 - Cl t O C 'D

'. '.0 C - C N t -

c'N '(N Cl ON'.wN- '. wf

0 m 1(N C r m 0 0- 

Cf C) _fC CD C C' 0 m 0

O n t Cl 00 m CC C'- -

Cn o -nC l_ _ _

N l ON C)0 ON 0 ° 0 N

. '(N t - 00 ( N '(N

Cl x r t '( '. t 2

N N N N N N N N N N

186

-o
0

.C.
C.

N- 00 - c6= C 6 6 -

00 Cl It 00 00
00 N O Cl It
00 N- 00 I'D0 t
0 > 0 C 00

O> ON ON ON O
oN o o01 a, o

o a
u C.

.0.0P

x en t VN '0 0m C 0 't ) 
N enNNN ON oo O cO o N 

CN C,0 (7D (3D C,0 07 al a, 0, 0N -

V) m - In Cl

00C 'C 0I N- rrC

- - 00

.C1N

N - C_ '( ')
'(N '( 'N N t
ON ON r ON O
o O C ON ON

0 0 0 0 o
o CD o o 

'. ON O C) C)

a F F -'(
_ _ ln --- C!

C)

._

C

Cc

0.

A I

.0

-0

0

E

>,0

m0

0
C.)

4!20

.01 p
-P-l

h~ O - 5;

L.

rlM'tV 4



I Y ~~~Q '-C
0.~~o 0; °C

S,_, ~0d~; > c 0C-M M 0.

· ° ::i ~ ~ ~

, ~ ~ ~ C Cu ; Q 5 v Q S X t
U ~ ~ C C" 1's Cu 02

CZ Q )Z G °C mvq 
Cu~

o .- 1c ._. . -°E. a ~ o UVIo
.o1)): C *CZ

E . o a cCCZ - CaLl Ca ~ C*01 3 ~ _I CCu 4 _*
CZ r m c,E . ~ . -.U M U ~ ~ [ICuZ

ct~ ~' toCu0 _0 c10 o- 8 -C)C 0.
C) 1/-,.C-,U

E~~~~~~ *.o -o"

Cu~- ~ ..~ ,~ o

0 Cu~ CC~ 01) o~ 
'__ '.u -_ . ,-

Cu Cu~ Cu~'~'~ ~.~
01 Cu~~~~~

.-~
o c
c) r

CC

-c
o Ca
c) I

Cu,

C)Cu

1t

o Ix.I ,.

?0 |

C)

t

av

-~.0

-0 Cu

~0 II

rl n

°" ,F-'

o0 |-

I .U _f-cA0.1 -

I IU* -

CLE

0.

D
0.

D 0>
_~

C7,

6c

N C

,t oc

- C..c c
00 0

IC ocCR00 

500N) C

C)O~ C

V' C"c
N C"

0 C

C

t tt

O -

C C

-C

C

N
_

C

"i
_"

O0
00

_ V

"1 r

1

0

CU

Cu
Cu~0

c

0C)

0

1 - Cu
v" .2

Mu 0.

0 0
0 U

_O 

r

0
,C)

.0 CuMD C 
E c

187



w - C'o "C M) Mj -

00> > q '9 
o - N Ct -, ci 
N wD ' . 'I '.0 w w

o 00 ON cO e N 00

C - ON - r C, ON "

00 O Nn ONONO0000 ON 'N N 00 O x. 'ON ON 0 N N O N '.O O O ON ON ON ON ON-cN N _i r_'I 

No N N N N N N N)
_t 'e >t CE n 

0000000

66666666 m 

-0 N ON ' N 00o
Xi oo 00 X~ oo oo0

- m ' . o t o t 00
6 o> C? o 6 m C o _

- '. 0 'IN ON ON ON - N 0

N 0 'IT '. 'IN I C)

0 00 O N ci 'IN - ci -

ON N ON C (ON O N ON o

c ci ci ciE ci c c - -ON ON ON ON ON ON ON ON ON

'IN ti 00 N N - 'I 0

ci ci cr ci ci ci ci - -

ON ON ON ON ON ON ON ON ON

-I o0-'.- 'r ci 'N - 'I
_ S E _ _ _t'I_

cr 'IN IN OrN 00 - C 00 0
O OON00 '.0 '.0 '0 ci 0-

'.0 '0 'IN '. '0 '0 'IN 'I sr c 

00 'IN 'IN N 0 ' N N M 'IN 'I

. . . . . . . . . .- t 'IN e} ci Ci -0 o i 00 X ON ON ON ON ON ON ON ON ON ONO

_i N ,N -. Nt -'.0 N -00

ON ON ON ON ON ON ON ON ON ON ON

o ci- oc -O N cr i'INe

O ON ON O ON ON ON ON ON ON O

O 0 -0 0 Nci'. 'N 

C;- a, a- E 

'IN N ON : c~ N 0ci o - ci N 0 ON\0N 0 ON '. 'I 'r0
- N N O_ ON ON ON

'.0 - 'I ON 00 

'0 N N 00 N 00 N

D C> C)x C> 

00 0 0 0 t- N ON

Ci> N C) 00 N ND0

ci 'I Nt e ^ 00x
ci r - ci c -0o

" oo _ xt "C .0NWN ciN m GN en I - -;t o 0 o ci C
"C I ' . 'IT - m - t C x In '. e'N i o0000 WI Nt In It t

00 00 0000ONON00000 00ON,,O,,00 00 00 00 00 00O00 0 00 0000 0000 00

T 'T t It t t "T I tt ". tIt ~ t 'T It t It 'It t t t It It It 'T It It
NNNNNNNNN NN C>NNNNNN
00 0 0 0 0 = O . O C . O O O O C 00 C0 00 00 0 00 000
666666666C)0C~C C ~ )C D(=C 66 66 66 6 6666666 C C C

'I ci O & 'I O O
C4 _ rn , .I m -I bn

_ _ _ _/ _4 _ :, 

_i 0 N t 0 at 0 - c^ N rN
_ _: _ _: _ _i _ c 00r I" _

x - a O " -
0 t _ 0n No -_

ci _t _. 'I rN

'n Cr c> o n oo C, t m " O .C :t C m "C

1D 1-- e In IC r- It " - -; M O C, " I
,t -t It It It It It It In I n n In It 'IT
ONON O ON NO OO ON ON o OO O O O

0 0 C, C 0 * 0* 0 CD * =0 00
66666666C>= ~ ~ = C C C = 6666C 

r£n M N c n r_ N O
-N ON 0ON N 0-

ci ON 0o '. 0 c L 0 'I

CD0CD C C) 

'IN a o iD O O uD

0E '. ON - N i xD

t m t O £ .O 
ON'.0*N * 0

C e'n - CN ON C t 0
N 0 t - t ci 'INo

O~~ -i tN t Oi -

(D 6 6 _ _C-) C)

0- t- °i -0 c' '.2
00 00 000 N

ci-

'. 'C
'T al m C ~O ON o _ Ns
CO C en O N

0
'.0No 

- 0
; Z

s- ci 0 0 -
NN N N

0000 X o O
cio c .. c - o

,-o N' zt " = "t O _> 'n c," x N o m -' " D
C>) _, ; 'n CD C, o 0~ I on r t t It 0 In It

,t WI W) unm n It Irt In It m m m m m m m
O O O O O O O O O O, O O ON O O O O, O

0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0

o o o - i 0 o
- - 0o o0 r'

C, It xc v" l- lc~ 1 r- " -n " m e" m r , C,, O> 10 " m al c, In C OD X
cit--ci-000 ON0-ONONN-0 0'.0'.OONN0.

'IT It I t I t " M m It IT "T t n T f - O c - ci - 0 N

- : :- - - t :i - I- :i n - - - - - - -o. o o o ~.o oo oo o o.o oooo. o o o o o o
= 0 CD 0 0 0 0 0 0 0 0 0 C 0 CD 0 C> 0 0 0 0 0 0 0D

o = C CoN> = CD CX0N 0 N ON - N 00

'N '0 cq ci, '.0 r- ci 'IN

0000 >

_ n , , N
-o i X-oo - o - o cr

rol "C - T ,C - o - o"ON 00 O O N V 0 1 o o~ oi oN N o Noo'I ci m oi o oi - ci

_ ) - o CM o * n
_ - - _i

- °. -0 ci 0 '. N 00 6oooo6666

_~ 00 ON 0'. 00 x N o ~ ~ ~ ~ ~ ~ ~ r~0 . i 0

s s ss s sN O 

N - - ' N 00 oo 'N 00X
N- - 00 0 N N N 00 0 ON ON

OI - Oi N O - N 0 'IN r) 

OO c ^ snoor f 

c' ci t t - O 00 O $2 
N 90 t V) X VD O .0 t ON

-0 00 0 N ON -'.0tb n 

ON N cN m N ci 0 r o 

>t 000 N - c - ci o o

^ O e N i oo - o

I t '. - ci x N n N _I 'I _t

N _t ON N 0 c N 0- ' 0 o
i S i 00 S ciSS -

'.0 00 'N.0 N 'I00C0000

-en 0
2 -0- N0 ' N 0"C "C It 0 C m V)u) n x o kn C--

'N 00 n 0 ON c

-00 ci -~0 -:

0 N 00 N o.0 N

'I 000cC '0tN oN N 

- '. 0 cr x6 (e x

'. ci i 'I ci 00O
'I 0 ci - N b

- ci C' cat 'IN '. N

No N N N) N N N

188

-o 

o-0 

o a

0 0
o 8

CO

Co

, I

uC;

C
.

C

0

a)
0.

C c

o
C, 01- 0)

C)
0

-

cE0)O

H-

44

q
�1111

, 44
t�

i...14

.47
21I
1-:4

11

e1

:9 e

1'

I

e

1114

C



qo r-? ov o> N r-
o - 0 ci ci 6 o 'i

00 Y000 O o0 o tC 0 O oo- r-0 N- N- \ crall ON , 00 N 00 t Cl0
o 0 N '1 N 'N o/N N-6 0o o6 x ocx

OONO0000 ONON0

In I:B ri< nr

ricO 00 tONc000_ H__- - O

00 0t0 000 ci 00 c r aectc cin ci -00ON ON ON ON oN ON ON ON'IN ON 00 'IN N IN - x_ - c< -, _ - -o

- r' N- - Nr- c' \Os

N N N] N N N N N

N N xI 0 r.0- ooN xr-

(" 'i '0 00 Ci '/ - _

N- 0- ~t t N-
Cm 00 Yt 'I O

O) O7 o On oO

N . / r, '0

m f) r- c-0 ON '. - N 00ci - ci ci ci ciON ON ON ON ON ON

000 o- r m

ON bi N 'i ri N
(n cn I/N Nz 00

'N (N N- W) '0 00 "I' 'C6-- I {iC
- '.0 '.0 t t 0 0 -
'. ON - cn I 0 N N

r-0 r -1 C .C, , 000ON o O o o O O

ci N ON 0 'O ci - N

ON -0- O o ON -. 0-

c - ON -/ ci 00 'I O

00 ct 00 ON o. 0 

O O ON O O ON ON o

tN r'N_ s _t

-O c'N -> 

_ " ' o m c o c
N o o 0 , "C 0 cVt xoc r- - ,I: - t 7
C) '. N 'I c; IC5 Io 

C, o o O O OO
- ON cilr N °. m =

6O cr ir °o 

i - '.0 00 I/N "i~N -. 00 N I/N 0 0 C

=r c = C, cc czo 

o o r- o o R o r
Ch cr, C7 C, c, cr .xa

00 cw w w r -xOc

fn _" -l - , 

q = V)t "C r- 0 t o t u T m m I o r- r- "C x m Cx 00 C, 00 r- r- 00 0 n 00 0 c r- - - n ,C r- m c, r- r- r - r- x 66 x xx - CIt It It 'rr r- r- x0 r- r- r- r- r- r-- r- r- r- r- x0 t <c

C) ° ° ° C, o o= o o o o, o C, o o o3 o o C>' O O' c

'n in r- cr ON -
_ _ _7 -:_/

x~~~~~1 Ix "C r- - u n
_ N O t N _ _ t - Cz00 ON T

_S _ vL _

o r- rOi NcC r-'m .ODNONmc r-x Nci'. oIC 0n xci 00 x.o MNN- " -- - - -0-'n 00 00 O C It r- oNC i C, r- r- It CciNcO I r-"ct t t 'T - I t I t I V1 /N ' V (-- It 'I It t It .c. . CI" "i' acc,, cr all cr C, c,, cr, all cC all cC Ch Ch Ce c,, all c, cr c, Cr c,, c, c,, cr Ca c, cy cr ocOOOoONoO OONONOOO ONONONONOOOO ONONONONONONO C0 0 000000 0 0 00 O O O C,000 0000000C66666666 > = ,CC~~=C 6666 66666666 = )0>~=C,~= C)00oC

r" 1-1 cI< - ON t '. I
en '( IN N- - tJ 0 0 * '- o -r- 0 00 0 

_: _~- _ - _ : _ _/

'I " N- - 00 N " 00
- i ~t - 'IN en ci n

c, O o -- - "C r- 00 OC In m 00 00 T x00 c c m r- r- r- all -00 oo 00 0" ' n c C 00 r- o n m r- 00 o r- r- ;- 00 -Oci n m ollcr N" c 'l 1 -. ' .- n '-I - e -t .n e n n n C . ) O . O O c 00 00~t n 7~ 7t 7t ~~ 7 t It t t t - tt _mn mmmm
O O o O O O O O O O O 0O O O O O O O O O OO o o o o o o o co C; … O O O O O O O O O O O O O O O O O O O O O O O C C…00000000 ~C)C = ,C>C , , CC > >C 00 00 0 00 00 00000000 C ~ C C

I m 'I t V - 'I

0 0r00 -0

r- 00 'N x N. 00 r-

N -N ci 00 0 Di
ci i e ~t - en't -.

m t r- t t ° m C .
'.0 O'.N.ci N o ~.o

0_ _t _t 0, cI 00 m

e r r Ch _C r

viojc xDc D rci-

xn 00 ot m 0 oO
0 0N 'N ON N N 000

_n ci Nt mt en '.0

00 ON; t en t -~ ONc

N Ns Ns Ns N r- -C-

't I0 - 'N 0 C
00 r- I r- c c

00000

o O - x O Ncr cr -n c

ON ON x - 0- ON

ci i 000n ON- N- 'I t '. en

~t ON 00 e -00
CIA e 'IN n 00l

N c - c N N

en O O c O O

N 0r en -N -c

- o, nf 00-8
00 N I/ N -en
xi x - - c r- 

ON 'N _i _ N ON

er n en i - -r

- ci'. N 00 ON

N N N N N N

000 N r.0 0 t 0-
o N e I/m - 0 m

---- 00 0V- - 0 'N oi o - >N ND Oien N N ON_

_ o- om 000

r - N N - -_t N ON'NO N0 .r-ooo x_66_6r
00 ° t °/ 0 cr I/ N

N 00 '. No 0

tt r-cr N cr x 

~t e n N 00 ON - 00

-. - O N Dk

n _t -.0 O e tco m t t N N N n

"C r- It - r- 0 ' m
N- 00 00 ON 0-

0000-~000

O rOO- O O C,

NN N IN 0e-D ON t -; en o t. '

00o-000 o- en]

°i t Dci }° 

'.0 c - tP '0 0 'I 0
en N- ' 00 e n - -

oi i i i on 000 

N- t 0 n ~t 00 O t

Cr Nsr O ci cr -

x~~~ enor (jS 

_n _

-s N - - se2n tI

0E

-bCO-C)r

00o -

O E

t N

C.'-o0 r

0

Co

_ OO C
0) -N

,C

CO 

o 
1
t

ao =

C

-0O

0) C

0) 

'> 0

. 0)

C 0)

CO_ /f

P

0)

v-0-

":
0._-
0

C)Vto-EEC)
01
0l

0)

2CO.
0) j-OC-0

._CO-
-DP-

CO

to
.m

00

2

0
CO

C.)

C)

0)

>
Ci)

1=;0)

p

-o-00E
E
0

C)-O

0.CO

Qto
._

C)
0

C)

*

-0
C"

189

o

ti $
o I
C)

-o

'IF,

t
uI

IL|

0.

* -
-C

Ca

0

oc

O0F-0)

a-

C'. c

C-CO

-o0,;0
-0

C.O

H6

4�
1-4k

81I

z

It
E-"�11

9::�

nn
q

r.
Q
n

6-�



A

'~i 0 -0 _3 0 .) o

.O o

o IC,4~~~~~~Cc)~~~~~~~0

o~ 0
_ so o o o~~a 0

E
0 ICO3

v

76Cl3Do \ 0 

cm* E CZ Toa O > =0 v

Er D0 Cz t )

190° 0 ° '

= * , C C t V

CO 0 ° 00O.0 

~~~~~~~~0- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~9

IC



- l - -'r -- - N - _

e N N 1 N :~ N . NNNNN N N NN
I.0 N N N " !"

N N N N N

N N N-. NN N_o "~~~ - , -
N Cm O C' . N NNN~

N ' N N8 , IN 4 t! N CN . . 00 . . .- - -- --

O N N
~) \ i 0 i 0 C)- 0 C )r )C_ __ __ __ 

o> .- 'O ,000 O. O C 0 C -- O,- ...
C ,U CD 0 C) cl l, > C 0 L ,0 C C C

, - H, -H - H + -H +1 -H -H11 -Hl -H+ --H -H -H -H6 - O C O -- o O O O O _~~~~~r 0 o C> 0 X 1 t 0 I> C~ 0 0 ',, ',:J 1- :: +0 (:0 ~0 r". ~. ('". ,,-. 0 ~o r,' b-- '-

r- , , ,.,X"-,sN o ,.- C m ,g ,:'- O m 
0 0 , C l - 00 C- ., 0C C C, 0

" -- , 0
~_ _ _ __ - -- 0 Cl- ONl Cl , -- 0 0 , -- 00- ~,-0 Cl ,- r'-H - -H -H -H -o -H - -H -H -H o -H -m -H~~ Cl 0 4 C 0o DeO N O N DFONO NON OOONNNOOONNNO_ x 0 Cl c00r- r c m o4 x0- r-0 0-X o o cs o. o o o o)o )-.o. o ' °H, ° , ° ,) , ,, °H - , , °H C,, °H, c ,, rH °H °H .

'~ ~~~~~~ ~~~~~~~, ~ ~.0 C -
ON ONONONONNONO, O N oNN ON cr·N00,0:~~~~~~~~~~~~~~~~C 0M - I …- In C, m cC) n x o on t oo

CD CD C5 d CO 
CD ~ ~ ~ ~ ~ ~ 0 CS 1: o N o o o o ENO~ O~ Of O ; 

0 71

* _ Cn ~ -mr k oA t v n.
c In o :Fs -o 

a)

C3S

cdE

CCO

aI)0

00

E

0

°-C,1o

0

0
z5

0

CO

0

CO

CO
._

0
0

CO

0%
0
a0
0

191



Table 4. Pb isotopic composition of plagioclase feldspar from the MSB and Tenpeak pluton.

Sample Name

MS6

206b/ 204pb

L3 18.778

L4 18.828

%SE 207

0.084
0.010

MS13 L4 18.745 0.034
L5 18.742 0.019

TP20 L3 18.720
L4 18.769
L5 18.714

0.137
0.026
0.034

TP-524-1 L4 18.745 0.041
L5 18.717 0.021

MSB Ave
Tenpeak Ave

18.773
18.733

7pb/04pb %SE P208b/204Pb %SE

15.579 0.085 38.396 0.079
15.621 0.011 38.491 0.012

15.579 0.027 38.342 0.027
15.584 0.019 38.339 0.019

15.561
15.613
15.575

0.139
0.027
0.036

38.348
38.454
38.332

0.142
0.028
0.035

15.582 0.043 38.391 0.042
15.560 0.021 38.329 0.022

15.591
15.578

38.392
38.371

192

=I



Table 5. Volumes and ma ma emplacement rates of different pulses of the MSB and Tenpeak pluton.

"Pulse" Estimated Volume (km3) Emplacement Rate (km 3/yr)
Total MSB NE Body 1200 2.1x10- 4

Hook Domain 485 6.8x 10-4

ca. 96 Ma granodiorite 270
ca. 96 Ma tonalite 180
Big Jim Complex 35

Intermediate Domains 195
Mushroom Domain 520 2.4x10-3

ca. 91 Ma granodiorite 80
ca. 91 Ma tonalite 290
ca. 91 Ma gabbro 150

Total Tenpeakpluton 394 1.2x10-4

Schaefer Lake tonalite 110
White Mountain Lobe 45
Mafic Complex 7
Sheeted Complex 20
Interlayered Unit 13
Flaser Gneiss 14
NW Body 95
Indian Creek tonalite 90
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Chapter 5

TEMPORAL EVOLUTION OF MID-CRUSTAL SHEETED
INTRUSIONS: EVIDENCE FROM U-Pb GEOCHRONOLOGY OF
THE ENTIAT AND SEVEN-FINGERED JACK INTRUSIVE SUITES,
NORTH CASCADES, WA
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ABSTRACT

The Seven-Fingered Jack and Entiat intrusive suites (North Cascades,

Washington) provide a natural laboratory for study of the construction of mid-crustal

sheeted intrusions. Prior to this study, these intrusive suites were assumed to be coeval.

Models for their construction involved emplacement of thin magmatic sheets at the

northwestern end of the intrusion which then formed "preheated pathways" for the

development of a more homogeneous magma chamber. U-Pb zircon grains from thin

tonalite and diorite sheets at the northwestern tip yield ca. 90-92 Ma dates and belong to

the Seven-Fingered Jack suite. In contrast, coarse-grained tonalite and fine-grained

diorite from the southeastern end of the body yield ca. 71-73 Ma dates and belong to the

Entiat intrusive suite. The contact between these suites is not well-mapped but probably

extends southeast of sheeted, biotite granodiorite that forms the center of the body. These

geochronologic data indicate that the Seven-Fingered Jack sheets could not have formed

preheated pathways for the more homogenous tonalite of the Entiat intrusion because of

an approximately 20 Myr time lag between the emplacement of each intrusion. Zircon

inheritance in nearly all samples indicates that sheets incorporated host rock near the

level of emplacement and that early-formed sheets were intruded by, and partially mixed

with, slightly younger sheets. These zircon inheritance patterns suggest that the Seven-

Fingered Jack and Entiat suites were each constructed over a ca. 2-3 Myr time period.

This timespan is much longer than predicted by dike emplacement models, but is shorter

than predicted by proposed models of incremental pluton growth. Well-developed folds

of magmatic foliation indicate that both suites formed during regional NE-SW, arc-

perpendicular contraction. The orientation of the regional strain field was remarkably

constant between these two time periods. This regional strain field may be responsible,

in part, for the consistent orientation of sheeted bodies in the North Cascades during the

Late Cretaceous. In addition, the structural anisotropy generated by the Seven-Fingered

Jack sheets may have focused flow during the emplacment of the Entiat suite.
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INTRODUCTION

Zones of highly elongate plutons are a common feature of some continental

magmatic arcs (i.e., Caledonides, Hercynian, Lachlan, Coast Plutonic Complex). These

internally-sheeted bodies intrude varying levels of the crust and are constructed by

injection of multiple "dike-like" sheets of magma (Hutton, 1992; Ingram and Hutton,

1994; Pitcher and Berger, 1972). The tectonic significance of these zones is unclear. For

example, is this distinctive intrusive style controlled by the regional stress field, pre-

existing structural anisotropy or ascent along fault zones (i.e. Hutton, 1992; Paterson and

Schmidt, 1999)? Furthermore, the timescales over which such systems form is debated.

Dike emplacement models predict rapid pluton filling rates (median rate of-I m3/s)

(Petford et al., 2000). At this rate, the ages of multiple magmatic sheets determined by

even the most precise geochronological techniques should overlap within uncertainty. In

contrast, geochronological evidence from the Tuolumne Intrusive Suite in the Sierra

Nevada has been interpreted to reflect incremental assembly over a period of -10 Myr

(Coleman et al., 2004; Glazner et al., 2004). Thermal models of incremental pluton

growth predict an initial stage of emplacement of multiple, thin magmatic sheets. Once

"preheated pathways" are established, a central, more homogeneous, steady-state magma

chamber develops (Hanson and Glazner, 1995; Yoshinobu et al., 1998). These models

have yet to be thoroughly tested with precise geochronologic data from natural systems.

Chemical, textural or compositional homogeneity are proposed to be inherited from the

source region because little time is available in these models for chemical evolution

during ascent or mixing at the level of emplacement (Coleman et al., 2004; Glazner et al.,

2004; Petford et al., 2000).

The Coast Plutonic Complex and its southeastern extension, the crystalline core of

the North Cascades (Fig. 1), contain numerous, highly elongate plutons constructed from

multiple magmatic sheets. Within the Chelan structural block of the North Cascades, this

intrusive style is particularly well-developed in a 20-25 km wide zone (Fig. 2). Mid-

crustal magmatic sheets mapped as the Entiat and Seven-Fingered Jack plutons (Cater

and Crowder, 1967; Cater and Wright, 1967; Tabor et al., 1987a) are the focus of this

study. These sheeted complexes provide a natural laboratory for examining an intrusion

constructed by multiple pulses of magma and provide a direct test of the models proposed
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based on field relationships and thermal modeling. Samples for U-Pb dating were

collected in several transects across multiple sheet contacts that parallel the NW-SE strike

of the body. Dates from these samples can be used to constrain the duration over which

this system was active. These dates also make it possible to test the prediction of thermal

models that thin sheets along the margins are the oldest and grade inward to a younger,

more homogeneous central sheet. The new geochronological data indicate, however, that

the Entiat pluton as mapped is not one simple system. Rather, the intrusive sheets can be

separated into at least three temporally distinct suites. The oldest sheets are

contemporaneous with the elongate Triassic Dumbell plutons which form the host rock

for later sheets. The second suite predominates at the northwestern and central portions

of the intrusion and is referred to as the Seven-Fingered Jack suite. The third suite forms

the southeast end of the intrusion and is referred to as the Entiat intrusive suite. High-

precision, U-Pb geochronology data demonstrates the problems inherent in delineating

sheeted complexes and the need for precise geochronology in interpreting their structural

and chemical evolution. Consideration of the timescales over which such systems are

active can give insight into the mechanisms by which magma is transported through the

crust.

REGIONAL SETTING

The crystalline core of the North Cascades records the Cretaceous to Paleogene

history of magmatism, deformation and crustal growth along a segment of the North

American margin (e.g., Monger et al., 1982; Tabor et al., 1989). The core is composed of

a series of Paleozoic to Mesozoic oceanic and island-arc terranes that were accreted prior

to the intrusion of arc-related plutons starting at ca. 96 Ma (Misch, 1966; Tabor et al.,

1989; Tabor et al., 1987b). The Entiat and Seven-Fingered Jack intrusions are part of a

zone of ca. 92-46 Ma elongate plutons that intrude the Chelan structural block of the

Cascades core (Fig. 2). The Chelan block is bound on the west by the high-angle,

Tertiary Entiat fault and on the east by the Ross Lake fault zone.

Two tectonostratigraphic terranes, the Swakane and Chelan Mountains terranes,

make up the Chelan block (Tabor et al., 1989; Tabor et al., 1987b). The Swakane terrane

is composed almost entirely of biotite gneiss (Tabor et al., 1989; Waters, 1932). It is a
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metasupracrustal unit that was rapidly underthrust beneath the Napeequa Complex of the

Chelan Mountains terrane from ca. 73-68 Ma (Chapter 1). The Napeequa Complex,

which is intruded by both the Entiat and Seven-Fingered Jack intrusions along their

western margins, is an oceanic unit comprising amphibolite, quartzite (metachert),

hornblende-biotite schist and minor calc-silicate, metaperidotite, leucocratic gneiss and

biotite schist (Cater and Crowder, 1967; Tabor et al., 1987a; Tabor et al., 1989). The

other major supracrustal units of the Chelan Mountains terrane include the Cascade River

unit and a correlative unit, the Holden assemblage, which are part of a Triassic arc

sequence (Tabor et al., 1989). At the northwestern end of the zone of elongate intrusions,

the Cascade River unit and Holden assemblage are intruded by the tonalitic, strongly

deformed, Triassic Dumbell plutons, which form the roots of the Holden-Cascade River

arc (Miller et al., 1994; Tabor et al., 1989). At the southeastern end of the zone of

elongate magmatism, the Holden assemblage is injected by numerous dikes and grades

into the orthogneiss dominated Chelan Complex (Hopson and Mattinson, 1994; Tabor et

al., 1987a). Tonalitic sheets intrude the Chelan Complex along the southeastern margin

of the Entiat intrusion, whereas the tonalitic to dioritic sheets intrude the Holden

assemblage and the gneissic Dumbell plutons along the northeastern margin of the Seven-

Fingered Jack intrusion. Also along the eastern margin of the intrusions, the Entiat and

the Seven-Fingered Jack bodies are intruded by the ca. 46 Ma Duncan Hill pluton (Fig. 2)

(Dellinger, 1996; Tabor et al., 1987a).

Peak metamorphic conditions of the Napeequa Complex in the Chelan block

reached 10-11 kbar and 640-740°C (Valley et al., 2003). One metapelitic Napeequa

schist adjacent to the Seven-Fingered Jack intrusive suite, however, yielded a pressure of

7 kbar (GASP) at 650°C (Valley et al., 2003). This pressure estimate is consistent with

Al-in-hornblende pressures of 6-7 kbar determined from several localities in both the

Entiat and Seven-Fingered Jack suites (Dawes, 1993), and suggests that the-Napeequa

Complex had experienced -3-5 kbar of unroofing before emplacement of the Seven-

Fingered Jack sheets.
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ENTIAT AND SEVEN-FINGERED JACK INTRUSIVE SUITES

The Entiat and Seven-Fingered Jack intrusive suites form a single elongate body

that is -80 km in length and -8 km wide at its widest point (Fig. 3). The southeastern

end of this body is obscured by the Miocene Columbia River basalts. It narrows to the

northwest where steep sheets are abundant, and ends in several narrow, steep,

overlapping bodies (Figs. 3-5) (Cater and Crowder, 1967; Cater and Wright, 1967; Miller

and Paterson, 2001a; Paterson and Miller, 1998b). Typical sheet thicknesses at the

northwestern end of the body range from -1 -2 m thick but are locally Os of m thick.

These meter-scale sheets coalesce to form composite sheets that are 1-2 km in width.

Cater and Crowder (1967) and Cater and Wright (1967) mapped the northwestern

end of the body on a 1:62,500 scale. Hornblende quartz diorite gneiss sheets and

hornblende diorite and gabbro sheets were described as the Seven-Fingered Jack plutons,

whereas the term Entiat pluton was restricted to hornblende-biotite tonalite sheets (Fig.

4). This distinction between different plutons was abandoned during later 1:100,000

scale mapping because these distinctions were unclear to the southeast (Dragovich and

Norman, 1995; Tabor et al., 1987a). The new U-Pb geochronology presented below

indicates a distinct difference in age between the northwestern and southeastern sheets. I

propose a return to the term Seven-Fingered Jack intrusive suite to describe the

northwestern sheets and retain the use of the term Entiat intrusive suite for only the

southeastern end of the body. The boundary between these two intrusive suites is

discussed below.

Both the Entiat and Seven-Fingered Jack intrusive suites are predominantly

tonalitic in composition (Fig. 3). The typical mineralogy is hornblende + biotite +

plagioclase (An38-35) + quartz + titanite + epidote + K-feldspar (Cater, 1982; Dawes,

1993). Tonalitic sheets throughout the Seven-Fingered Jack are typically medium-

grained. Tonalite of the Entiat suite is typically much coarser grained with hornblende

crystals up to one cm in length.

The Entiat and Seven-Fingered Jack suites exhibit a general trend from mafic to

felsic from the margins of each intrusion to the interior and from the northwest to

southeast (Cater, 1982; Dawes, 1993; Miller and Paterson, 2001a). Mafic rock (i.e.,

hornblendite, gabbro and diorite) is particularly abundant in the northwestern, intensely-
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sheeted end of the Seven-Fingered Jack where mafic sheets are not restricted to the

margins of the intrusion (Fig. 4). Heterogeneous sheets of leucocratic biotite granodiorite

form the southeastern extent of the Seven-Fingered Jack suite (Dawes, 1993; Tabor et al.,

1987a).

Heterogeneous mafic "contact" complexes are developed along the margins and

between sheets at the northwestern tip of the Seven-Fingered Jack intrusion (Cater and

Crowder, 1967; Cater and Wright, 1967; Dawes, 1993; Miller and Paterson, 2001a).

Textures vary from fine-grained to pegmatitic. Hornblende gabbro and diorite are the

most abundant rock types, but hornblendite, quartz diorite, tonalite, trondhjemite,

granodiorite and widespread host-rock inclusions are also present. Within the contact

complexes, mafic rock generally formed first and then was mixed with or brecciated by

later tonalitic to trondhjemitic magma (Fig. 6) (Cater and Crowder, 1967; Cater and

Wright, 1967; Dawes, 1993; Miller and Paterson, 2001a). In contrast, diffuse, swirled

and locally crenulate contacts indicate mingling of mafic and tonalitic magmas (Dawes,

1993; Miller and Paterson, 2001a). A body of two-pyroxene gabbro and diorite forms

along the eastern margin of the Entiat intrusion. This body is finer-grained and distinct

sheets are not well-defined. It grades into the central tonalite sheets (Tabor et al., 1987a).

Prior to this study, most of the available U-Pb dates were from tonalite from the

southeastern end of the Entiat intrusion. Discordant, multi-grain, zircon fractions from

two tonalite samples displayed a range of possible U-Pb crystallization dates from 75-85

Ma (Tabor et al., 1987a). More recent U-Pb zircon data is also discordant, but an

estimate of the crystallizafion age of the tonalite sheet can be made from the 2 06Pb/2 38U

date ofthe oldest concordant fraction at 73.2.4 Ma (Paterson et al.; 2004).

Tonalite sheets of the Seven-Fingered Jack intrusion are texturally and

petrologically more homogeneous than the mafic complex. Tonalite sheets from the

Entiat intrusion are thicker than the Seven-Fingered Jack sheets, with most being >50 m

thick, and sheet contacts are more difficult to define (Miller and Paterson, 2001 a). In

both intrusions, trails of host rock inclusions sometimes mark internal contacts between

sheets with slightly different composition and texture. In some localities, tonalite sheets

are separated by host rock, but then coalesce along strike. The existence of sheets with

diffuse, cryptic contacts is suggested by widespread zones of schlieren, narrow (<5 m
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wide) zones of finer-grained tonalite, and subtle changes in orientation of magmatic

foliation across planar boundaries (Miller and Paterson, 2001 a).

Several types of internal structures are displayed in the both intrusive suites.

Sheets and layers are defined by the ratios of felsic to mafic minerals, and are the earliest

structures. The sheets and layers dip steeply in the northwestern tip and gently southward

in the wider southeastern end (Fig. 5). Foliation and compositional layering in the

Napeequa Complex mostly dip <50 ° away from the sheets, but steepen and bend

downward into subparallelism with the moderately northeast-dipping margin in a -500 m

wide aureole (Fig. 5) (Miller and Paterson, 2001a). At the northwestern tip of the Seven-

Fingered Jack, sheets intrude parallel to the axial planes of upright, northwest-trending,

gently-plunging folds, cutting the folded host rock foliation (Fig. 5) (Paterson and Miller,

1998b).

Magmatic foliation is well-developed throughout the sheets of both suites and is

in most cases stronger than subsolidus foliation. In some cases, magmatic foliation is

parallel to layers and sheets, but in many other places, it cuts these structures at small to

moderate and locally high angles (Miller and Paterson, 2001 a). Magmatic foliation,

layering, and sheets are folded by both small scale folds (wavelengths of 5 cm to 3 m)

and map-scale folds (Miller and Paterson, 2001 a). An axial planar magmatic foliation is

also formed locally, and fold axes are generally subparallel to magmatic lineations and

the length of the intrusion (Miller and Paterson, 2001a; Paterson and Miller, 1998b).

Miller and Paterson (2001) argue that these folds developed during emplacement of the

intrusion because the folds are accompanied by only minor subsolidus deformation, have

an axial planar magmatic foliation and axes that are parallel to magmatic lineation, and

because folded host-rock foliation is continuous with magmatic foliation.

U-Pb RESULTS

Thirteen samples were selected for U-Pb analysis. Eight of these samples were

collected from the northwestern sheets that cover the entire compositional range observed

in the Seven-Fingered Jack intrusion. The remaining five samples were collected from

widely-spaced localities that represent the variety of compositions present in the central

and southern sheets. Sample localities are plotted on figure 3, and the results are given in
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Table 1 at the 2c uncertainty level. If a statistically significant concordia age can be

determined (Ludwig, 1998; Wendt and Carl, 1991), then the age is shown on the

concordia diagram. Analytical techniques are the same as described in Chapter 4. Zircon

analyses are of single grains, whereas titanite analyses are small multi-grain fractions. In

the following paragraphs, the data are presented from northwest to southeast.

The first sample (Ho-52-1) was collected from the northwestern-most body

mapped as one of the Seven-Fingered Jack plutons by Cater and Crowder (1967). This

sample comprises hornblende quartz diorite with a strong magmatic foliation. Two

zircon U-Pb analyses overlap within uncertainty and yield a concordia age of 91.45±0.08

Ma (MSWD= 1.16) interpreted as the crystallization age of this sheet (Fig. 7a). A third

analysis has a 207Pb/206Pb date of 189.1+2.2 Ma. This body intrudes the ca. 220 Ma

Dumbell Gneiss, and the third zircon analysis most likely reflects inheritance from the

gneiss.

Moving to the southeast, the next five samples comprise a northeast to southwest

transect across most of the major sheets mapped at the northwestern end of the intrusion.

Sample EN41 is hornblende gabbro collected from a sheet emplaced near the northeastern

margin of the intrusion. Three concordant zircon analyses yield a concordia age of

79.05±0.23 Ma (MSWD=l.40) (Fig. 7b). This-date is interpreted as-the crystallization

age of the sheet, and is the youngest age obtained from the northwestern end of the

intrusion. The age of this sheet is distinctly different than other sheets of the Seven-

Fingered Jack or Entiat intrusive suites and should be viewed as a separate body.

Sample EN42 was collected from a hornblende-biotite tonalite sheet that is

separatedfo-m the-pre-vi-ous-sample by a -0.6kmn wide zone of mafic complex. This

tonalite sheet was originally referred to as part of the Entiat intrusion (Cater and

Crowder, 1967). Four zircon analyses from this sample yield an array of concordant and

near-concordant results with 206Pb/238U dates from 90.48+0.06 Ma to92.34+1.20 Ma (Fig

7c). The crystallization age of this sample is probably best represented by the youngest

concordant analysis, and older analyses most likely represent inheritance of zircon from

earlier formed sheets. These dates suggest that this tonalite sheet is contemporaneous

with the northern quartz diorite body (Ho-52-1) and should be considered part of the

Seven-Fingered Jack suite. A distinct intrusive contact should be present between the ca.
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79.0 Ma hornblende gabbro sheet and the nearby ca. 90.5 tonalite sheet, but this contact

is difficult to recognize because of the heterogeneity of the intervening mafic complex.

To the southwest, samples EN28 and E-281 were also collected from the same

hornblende-biotite tonalite body as sample EN42. Six zircon analyses from EN28 yield

concordant and equivalent results with a concordia age of 91.69±0.06 Ma (MSWD=l.41)

interpreted as the crystallization age of this sample (Fig. 7d). A seventh analysis is

slightly younger than the others outside of uncertainty which is more difficult to interpret.

This zircon may have been disturbed by Pb loss.

Five zircon analyses from E-281 yield concordant results that overlap within

uncertainty (Fig. 7e); however a statistically significant concordia age cannot be

determined because the analyses spread out along concordia. The crystallization age of

this sample is probably best represented by the youngest analysis at 90.99±0.09 Ma, and

the other analyses may represent inheritance of earlier formed sheets.

The last sample in the transect was collected from a hornblende quartz diorite

gneiss sheet along the western margin of the intrusion. This sheet differs from the

previously described sheets in that it displays a strong subsolidus fabric. Five zircon U-

Pb analyses display a range of Triassic 2 06Pb/238U dates from 206.44+0.13 Ma to

221.52±0.16 Ma (Fig. 7f). Three analyses are concordant. If the youngest concordant

analysis (z2) is not included, the other four analyses define a discordia line

(MSWD=l1.73) with an upper intercept of 222.8±2.4 Ma and a poorly constrained lower

intercept of 114.8±28.0 Ma. This discordia line is consistent with the interpretation that

this sheet is actually part of the ca. 220 Ma Dumbell Gneiss not the Seven-Fingered Jack

plutons as mapped by Cater and Crowder (1967) and Cater and Wright (1967). The

crystallization age of the sheet is probably best represented by the age of the oldest

concordant analysis (z3). The other analyses most likely reflect the presence of mid-

Cretaceous or Late Triassic overgrowths. Overgrowths of varying thickness are

observable in cathodoluminescence (CL) images of representative grains (Fig. 8).

Southeast of the transect, sample E-498 was collected from a ductilely-deformed

dike that cuts across a diorite sheet. Five concordant and equivalent zircon analyses from

this sample yield a concordia age of 46.39±0.06 Ma (MSWD=0.64) (Fig. 7g). This age is

interpreted as the crystallization age of the dike, and it overlaps within uncertainty the
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crystallization age of the Duncan Hill pluton (Tabor et al., 1987a). Strain is strongly

partitioned into the dike and indicates that ductile deformation was ongoing in this region

until the Eocene.

Farther southeast, sample E-436 is hornblende-biotite tonalite collected from an

outcrop that displays well-developed magmatic folds (Paterson et al., 1998). Four zircon

analyses display a wide range of 206Pb/238U dates from 90.75+0.05 Ma to 216.25+0.29

Ma (Fig. 7h). The crystallization age of this sheet is probably best represented by the age

of the youngest concordant analysis at 90.75+0.05 Ma. The other zircons analyzed likely

contain Triassic grains overgrown to varying degrees by ca. 91 Ma magmatic

overgrowths. Again, overgrowths of varying thickness are observable in CL images (Fig.

8).

Sample EN65 is a medium-grained hornblende-biotite tonalite collected -12 km

to the southeast along strike from sample E-436. This sample is near the mid-point of the

presently exposed length of the two intrusive suites. Five concordant zircon analyses

form a nearly bimodal distribution with 206Pb/238U dates from 89.85+0.07 Ma to

92.01+0.08 Ma (Fig. 7i). CL images show fine-scale oscillatory zoning and lack obvious

overgrowths (Fig. 8). The youngest analysis most likely represents the crystallization age

of this sheet, whereas the three older analyses-probably represent a disaggregated, ca. 92

Ma sheet.

Six zircon analyses from the southeastern extent of the central biotite granodiorite

body (EN3) spread out along concordia from 103.80±0.73 Ma to 162.50±0.35 Ma (Fig.

7j). Magmatic fabrics in the granodiorite body are continuous with magmatic fabrics in

thehost-tonalite sheets and locally cut the contact at a high angle, implying that the

tonalite and granodiorite are co-magmatic and that the magmatic fabric reflects regional

strain (Payne, 2001). I infer that the tonalite adjacent to the granodiorite tip was

emplaced at ca. 90 Ma based on the previously described sample.- Therefore, it seems

unlikely that any of the analyses from EN3 represent the crystallization age of the

granodiorite body. The fact that all the analyses overlap concordia suggest these grains

do not represent mixtures of Late Cretaceous and Triassic zircon as analyses from

samples Ho-52-1 and E-436 are interpreted. Early Cretaceous dates such as those

obtained from EN3 are relatively uncommon in the Cascades core. The only other region
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in the Cascades core where Early Cretaceous ages have been obtained is in the Chelan

Complex (Mattinson, 1972), which the Entiat intrudes along its southeastern margin. A

reasonable interpretation of these zircon analyses is that they represent zircon inherited

from the Chelan Complex.

Sample EN1 6 is a fine-grained tonalite that displays a gradational contact with the

fine-grained two-pyroxene diorite body along the eastern-central margin of the intrusion.

Three concordant and equivalent zircon analyses yield a concordia age of 72.57±0.03 Ma

(MSWD=0.97) (Fig. 7k). This age is interpreted to represent the crystallization age of

this sample and the relatively homogeneous diorite body as a whole.

Sample EN1I represents the coarse-grained, more homogeneous, hornblende-

biotite tonalite sheets typical of the southeastern end of the intrusion. Eight zircon U-Pb

analyses define an array with concordant analyses as old as 72.91+0.13 Ma and

discordant analyses with 206Pb/238U dates as young as 71.21±0.07 Ma (Fig. 71). Six of the

eight analyses form a concordant cluster; however there is enough dispersion in the

analyses that a statistically significant concordia age cannot be defined. Again, I interpret

the youngest concordant analysis at 72.51 ±0.10 Ma as the best estimate of the

crystallization age of the sheet and the slightly older analyses as zircon crystallized in

slightly older sheets. The two discordant analyses may reflect post-crystallization Pb

loss. Four titanite multi-grain fractions define a concordant cluster that yields a

concordia age of 66.47±0.08 Ma (MSWD=1.3) (Fig. 7m). This concordia age is

interpreted as the time of cooling through the titanite closure temperature for Pb (600-

650°C; Hodges, 2003) and reflects moderate cooling (15-30°C/Myr) after emplacement

of this tonalite sheet.

The final sample analyzed (E-25) was collected from the mylonitized southwest

margin of the Entiat intrusion. Three concordant and equivalent zircon analyses yield a

concordia age of 71.42±0.12 Ma (MSWD=0.09) interpreted as the crystallization age of

the sample (Fig. 7n).
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DISCUSSION

Temporal History of Sheet Emplacement

The new geochronologic data from this study indicate that magmatic sheets

mapped as the Entiat and Seven-Fingered Jack intrusions actually represent at least three

different episodes of magma emplacement. The earliest sheets are Triassic in age and

contemporaneous with the ca. 220 Ma Dumbell plutons at the roots of the Cascade River-

Holden arc. Hurlow (1992) also obtained two discordant zircon fractions with

207pb/206pb dates of 215-218 Ma from a mylonitic biotite-hornblende quartz diorite sheet

mapped as part of the northwestern tip of the Seven-Fingered Jack intrusion by Cater and

Crowder (1967). Based on the available data, the Triassic sheets appear restricted to the

northwestern end of the Seven-Fingered Jack intrusion and can be distinguished from

adjacent sheets by their strong subsolidus fabric and gneissic texture.

The next phase of magmatism forms the Seven-Fingered Jack intrusive suite and

is represented by ca. 90-92 Ma sheets. These sheets range in composition from quartz

diorite to hornblende-biotite tonalite. Mafic contact complexes developed in between ca.

90-92 Ma sheets. Tabor et al. (1987a) also mapped banded migmatitic tonalite gneiss and

mafic amphibolite along the northeastern margin which they describe as equivalent to the

mafic complexes of Cater and Crowder (1967) and Cater and Wright (1967). These

rocks are tentatively included in the Seven-Fingered Jack suite although it may actually

be part of the Chelan Complex host rock instead. Textures within the contact complexes

suggest that hornblendite and hornblende gabbro were emplaced first and then

disaggregated by later tonalitic to trondhjemitic magmas. Angular blocks of tonalite or

hornblende quartz diorite similar to adjacent-sheets were not identified. This observation

suggests that the contact complexes do not significantly post-date the adjacent sheets and

are more likely co-magmatic with the ca. 90-92 Ma sheets.

The final phase of magmatism is termed the Entiat intrusive suite and is

represented by ca. 71-73 Ma coarse-grained tonalite sheets at the southeastern end of the

body, mylonitized sheets along the southwestern margin, and diorite along the eastern-

central margin (Fig. 3). Internal sheet contacts are less distinctive within this suite, and

coarse-grained tonalite is much more volumetrically significant than other rock types.

The ca. 73 Ma diorite body that crops out along the eastern-central margin is distinct
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from the earlier contact complexes because of its relative homogeneity. The ca. 79 Ma

hornblende gabbro sheet within the northwest tip region is not considered part of the

Entiat suite because it is at least 6 Myr older than the southeastern Entiat sheets and

because it is more similar in age to the nearby ca. 77 Ma Riddle Peaks gabbro (Fig. 2)

(McPeek et al., 2002).

The contact complexes, quartz diorite, and tonalite sheets present in the

northwestern tip of the Seven-Fingered Jack intrusion cover a much wider compositional

range than the later, more homogeneous southeastern Entiat tonalite sheets. In general,

the ca. 71-73 Ma sheets are also coarser grained than earlier sheets. These characteristics

are used to infer the approximate location of the contact between the Seven-Fingered

Jack and Entiat suites. However, the location of this contact is insufficiently mapped

because of a lack of field observations and geochronological data through the center of

the body. The discussion about the location of a contact between the Seven-Fingered

Jack and Entiat suites is focused on textural differences from southeast to northwest

implying a NE-SW trending contact, but the contact in all likelihood may parallel sheet

margins in a NW-SE trend. The presence of a distinct ca. 79 Ma hornblende gabbro sheet

within the northwest tip also highlights the possibility that previously unrecognized

"Entiat-aged" sheets may discontinuously intrude the Seven-Fingered Jack intrusion

along its length, making a clear geographic distinction between the intrusions difficult.

Withstanding the stated uncertainties of the location of a contact, I would place an

approximate contact with a roughly N-S trend to the west of the two pyroxene diorite

body (Fig. 3). Coarse-grained tonalite typical of the Entiat intrusive suite crops out at the

farthest southeastern extent of the body and as far north as the ca. 73 Ma diorite body. At

least one coarse-grained tonalite locality (marked by an x on figure 3) contains angular

blocks of medium-grained tonalite which are interpreted as xenoliths of ca. 90-92 Ma

sheets. Medium-grained tonalite more typical of the northwestern ca. 90-92 Ma sheets

crops out at least as far southeast as the ca. 90 Ma sample EN65. Observations that

magmatic foliation within the granodiorite body is continuous with magmatic foliation in

the surrounding tonalite (Payne, 2001) suggests that ca. 90 Ma tonalite is present at least

as far southeast as the southeast tip of the granodiorite body. More fieldwork and

geochronological data are necessary to better define this boundary.
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Thermal models of the construction of sheeted intrusions predict an initial stage

dominated by the emplacement of thin magmatic sheets, followed by the development of

a central, more homogeneous, steady-state magma chamber (Hanson and Glazner, 1995;

Yoshinobu et al., 1998). Miller and Paterson (2001a) proposed a similar scenario for the

construction of the Entiat intrusion without the benefit of high-precision geochronology.

(Note that Miller and Paterson also included the Seven-Fingered Jack sheets as part of the

Entiat intrusion.) This scenario involved initial emplacement of thin mafic sheets,

followed by emplacement of early tonalite sheets at the northwestern end of the intrusion.

These early sheets were proposed to have served as a planar anisotropy which controlled

the ascent of subsequent bodies and acted as preheated pathways for larger, more felsic,

"diapir-like" batches of magma at the southeastern end. This geochronologic study

indicates, however, that the Seven-Fingered Jack sheets are unlikely to have formed

"preheated pathways" for the emplacement of more homogeneous tonalite of the Entiat

intrusion because of the -20 Myr time lag between emplacement of each intrusion. Their

proposed model may explain the transition from multiple, thin, compositionally-diverse

sheets at the northwestern tip of the Seven-Fingered Jack intrusion to the thicker tonalite

sheets near the center of the body. Zircon U-Pb dates from the widely-spaced Seven-

Fingered Jack samples suggest, however, are not sufficiently precise to discern an age

difference between the thin northwestern sheets and thicker tonalite sheets that make up

the center of the body.

If the differences in sheet characteristics between the northwestern and

southeastern ends are not a result of an evolving thermal regime, then some other

mechanism must beresponsible. Although the dimensions of the sheets within the

southeastern end of the body are not well-defined because sheet contacts are not easily

recognized, the sheets at the southeastern end are generally thicker and have lower aspect

ratios than the Seven-Fingered Jack sheets (Miller and Paterson, 2001 a). The final aspect

ratio and internal sheet characteristics of each body may reflect an interplay between

regional deformation and ascent mechanisms that are transitional between elastic dikes

and "visco-elastic" diapirs (Paterson and Miller, 1998b). The possibility that ascent of

the Entiat and Seven-Fingered Jack sheets was controlled by faults was considered by

Paterson and Miller (1998b) and Miller and Paterson (2001a), but both studies indicated
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that there is no evidence of faulting associated with sheet emplacement. Alternatively,

the crustal anisotropy developed by the Seven-Fingered Jack sheets may have formed

vertical walls that potentially focused later rise of magma and influenced the sheet

characteristics of the Entiat suite (Paterson and Miller, 1998b).

Implications of Zircon Inheritance for the Construction of Sheeted Intrusions

Unlike other intrusions in the Cascades core (including the Mount Stuart batholith

and Tenpeak intrusions; Chapter 4), nearly all samples from the Seven-Fingered Jack and

Entiat intrusions show evidence of zircon inheritance. This inheritance is most easily

recognized when analyses fall on a discordia line that points to a ca. 220 Ma upper

intercept. Several discordant analyses from samples from the northwestern tip of the

Seven-Fingered Jack intrusion can be interpreted in this way and indicate that the

Dumbell Gneiss was incorporated into these sheets during emplacement. The vertical

extent of the Dumbell Gneiss in the crustal column is not well-constrained; however, the

Cascades core is generally viewed as a stack of relatively shallowly-dipping thrust sheets

(McGroder, 1991; Miller and Paterson, 200 lb) and the Dumbell Gneiss is not thought to

extend into the source region of the Seven-Fingered Jack and Entiat sheets. This implies

that the Dumbell Gneiss was partially assimilated by the Seven-Fingered Jack sheets near

the level of emplacement.

Evidence of zircon inheritance in other tonalite and quartz diorite sheets is more

subtle, and would be entirely missed by lower precision geochronologic techniques.

More detailed work on zircon grains imaged by cathodoluminescence is necessary to test

this hypothesis. These sheets yielded zircon analyses that span 2-3 Myr along concordia.

The scatter in the dates is too great to be attributed to analytical error and suggests that it

has real geologic significance. This type of inheritance pattern could result from the

following scenario: 1) a magmatic sheet is emplaced and begins to cool and crystallize

zircon, 2) while the sheet is still partially molten, it is intruded and partially disaggregated

by the next sheet emplaced along the same magma pathway, 3) the sheets mix and

become either partially or completely homogenized, 4) the hybridized sheet begins to

cool and crystallize zircon, 5) steps 2-4 may be repeated, and 6) final crystallization locks

in the most recent magmatic fabric.
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This process has the potential to result in significant chemical evolution of the

system during ascent and emplacement, and the timescale of this evolution is recorded

episodically in the zircon systematics. Other samples which do not record a similar

inheritance pattern may represent rapidly cooled sheets that were not disturbed by later

sheet emplacement, or mixing between sheets on a short enough timescale that different

age populations are not resolvable. The heterogeneous contact complexes likely

represent the situation when the first sheets emplaced are very different compositionally

from later sheets and mixing is difficult because of viscosity contrasts (Sparks and

Marshall, 1986). The presence of angular mafic blocks in the contact complexes reflects

the fact that the earliest sheets emplaced in the mafic complexes were hornblendite and

hornblende gabbro.

The zircon inheritance patterns place important constraints on the evolution of

these magmatic systems. Coleman et al. (2004) and Glazner et al. (2004) argue that large

magma chambers (comparable to the size of the Entiat and Seven-Fingered Jack

intrusions) rarely, if ever, exist, and that the chemical and textural variations observed in

many intrusions must be inherited from the source region because little opportunity exists

for mixing at the site of emplacement. I agree with Coleman et al. (2004) and Glazner et

al. (2004) that a single, large, convecting magma chamber did not existed during the

construction of the Seven-Fingered Jack or Entiat intrusions. However, I disagree with

their proposal that chemical and textural variations are derived from the magma source

region. The patterns of zircon inheritance in the Entiat and Seven-Fingered Jack samples

imply that mixing between early-formed, partially-solidified sheets and later sheets was

an-importantprocess irr the evolution of these systems.- Incorportation of host rock near

the site of emplacement also resulted in zircon inheritance and presumably chemical

modification of the sheets.

The evolution of both the Seven-Fingered Jack and Entiat intrusions appears to

have taken place over an approximately 2-3 Myr time period as indicated by the

dispersion of dates within a given sheet. This timespan is much longer than predicted by

dike emplacment models (e.g. Petford et al., 2000). The length of time that each system

was active may be controlled by the rate of magma generation at the site of melting

and/or the rate that space can be made for the growing intrusion.
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Interpretation of Magmatic Fabric Patterns

The recognition that magmatic fabrics attributed to the formation of a single

Entiat "pluton" (Miller and Paterson, 2001 a) actually formed over two discrete time

periods -20 Myr apart requires a re-evaluation of conclusions drawn from the magmatic

fabric patterns. Miller and Paterson (2001 a) note that magmatic foliation is well-

developed throughout the entire body (i.e., both Seven-Fingered Jack and Entiat suites),

and is subparallel to moderate- to high-temperature subsolidus foliation and/or lineation.

The magmatic foliation is also commonly discordant to sheet contacts, reflecting the fact

that the foliation records the orientation of strain late in the crystallization history of the

sheet rather than magmatic flow fabrics during emplacement. At the northwestern end,

foliation dips moderately to steeply northeast, whereas foliation dips are generally

shallower at the southeastern end (Fig. 5) (Miller and Paterson, 2001 a).

Magmatic folds of foliation, layering, and sheets are also well-developed

throughout the body (Miller and Paterson, 2001 a; Paterson and Miller, 1998b). At the

northwestern tips of certain Seven-Fingered Jack sheets, magmatic foliation defines well-

developed, upright, gently-plunging folds that mimic the orientation and style of folds in

the surrounding host rock (Paterson and Miller, 1998b). Locally, the sheet margins are

subparallel to the axial plane of host rock folds, whereas host rock foliation dips more

gently than the sheet margins in other locations (Paterson and Miller, 1998b). At the

southeastern end in the Entiat intrusion, map-scale folds at the scale of intrusion define a

broad, asymmetric, southwest-vergent antiform and macroscopic folds lie on the limbs of

the large antiform (Miller and Paterson, 2001 a). Gently-plunging, fold axes throughout

the body have northwest trending axial traces that are subparallel to the length of the

intrusion (Miller and Paterson, 2001a).

Miller and Paterson (2001 a) argue that several relationships indicate that folding

occurred during emplacement. 1) Folds deform magmatic foliation in domains with only

minor subsolidus deformation. 2) Locally, magmatic folds defined by aligned

hornblende and plagioclase are overgrown by igneous hornblende oriented parallel to the

axial plane of the fold (Paterson and Miller, 1998b). 3) Fold axes are subparallel to
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magmatic lineation. 4) Folds within the intrusion have similar styles and orientations to

host-rock folds, and folded host-rock foliation is continuous with magmatic foliation.

The fact that these magmatic folds developed in both the Seven-Fingered Jack and

Entiat suites has important implications for the regional tectonic history. Folding of the

Seven-Fingered Jack sheets was coincident with folding of other mid-Cretaceous

intrusions within the Cascades core (e.g., Miller and Paterson, 1992; Paterson and Miller,

1998a). This folding is part of larger-scale, core-wide NE-SW contraction, vertical

thickening and arc-parallel, sub-horizontal extension (Miller and Paterson, 1992;

Paterson and Miller, 1998a). The presence of similarly oriented folds in the Entiat

intrusion and the nearby ca. 76 Ma Cardinal Peak intrusion indicate that regional NE-SW

contraction continued into the latest Cretaceous. The orientation of the strain field was

remarkably constant over these two time periods. The coincidence of the orientation of

magmatic fabrics has sometimes been used to argue that two phases of an intrusion are

co-magmatic; however, this case clearly shows that foliation patterns cannot be

interpreted without caution.

CONCLUSIONS

U-Pb dates from several sheets ofwhat has previously been described as the

Entiat pluton indicate that this "pluton" is composed of at least three distinct intrusive

suites. Use of the term "pluton" implies that these sheets are co-magmatic or closely

spaced in time, and therefore, should no longer be used to describe these systems. The

oldest intrusive suite is coeval with the emplacement of the Dumbell Gniess and should

be-considered a member ofthat suite. Sheets witlca.- 92-Ma-crystallizationages form

the Seven-Fingered Jack suite whereas sheets with ca. 71-73 Ma crystallization ages

comprise the Entiat intrusive suite.

The recognition of an approximately 20 Myr time lag between emplacement of

the Seven-Fingered Jack and Entiat suites indicates that the multiple thin sheets that form

the northwestern end of the body could not have formed preheated pathways for the

emplacement of later, more homogeneous sheets. The geochronologic data are not

precise enough to evaluate the predictions of thermal models (i.e., Hanson and Glazner,

1995; Yoshinobu et al., 1998) that sheets should decrease in age from the margins to the
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center of the intrusion. The sheeting characteristics of each intrusion may be controlled

more by regional deformation or variations in ascent mechanism rather than an evolving

thermal regime.

The presence of inherited zircon in several of the Entiat and Seven-Fingered Jack

samples suggests that the formation of these magmatic sheets involved multiple intrusion

and partial homogenization of sheets at the level of emplacement. Seven-Fingered Jack

sheets also incorporated zircon from the Dumbell Gneiss and potentially the Chelan

Complex. This model for the growth of sheeted intrusions conflicts with other proposals

that chemical and textural homogeneity in sheeted intrusions must be inherited from the

source region rather than evolve during ascent and emplacement (i.e., Coleman et al.,

2004; Glazner et al., 2004). The dispersion of dates within a given sheets suggests the

emplacement of both the Seven-Fingered Jack and Entiat suites took place over a 2-3

Myr time period. This timespan is much longer than predicted by dike emplacement

models in which an entire intrusion could be constructed in much less than one Myr. The

2-3 Myr timespan, however, is shorter than predicted from the incremental assembly

model described by Coleman et al. (2004) and Glazner et al. (2004). Documentation of

the timescales of the construction of sheeted intrusions is important for constraining

potential ascent mechanisms and/or rates of deformation of host rocks to accommodate

the growth of the intrusion.

Magmatic fabric patterns in the Seven-Fingered Jack and Entiat suites suggest

that both suites were emplaced during regional NE-SW, arc-perpendicular contraction

that was active throughout the Late Cretaceous. The presence of a 46.4 Ma mylonitic

dike (E-498) that cuts a Seven-Fingered Jack sheet also indicates that ductile deformation

continued until at least ca. 46 Ma. The orientation of magmatic structures indicates that

the strain field was remarkably constant during this time period. These dates also caution

against concluding that sheets are coeval simply based on the similarity in orientation of

their respective magmatic fabrics.

The application of high-precision U-Pb geochronology to sheeted magmatic

systems indicates such systems are more complicated in both space and time than

previously recognized. Useful avenues of future research include documenting the

chemical and isotopic evolution of sheeted magmatic systems, constraining the
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fundamental control on the initiation of a sheeted system, and understanding why sheeted

magmatism persisted through this zone of the Cascades core from ca. 92-46 Ma.
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Figure 1. Sketch map of Mesozoic and Paleogene arc plutons in the western North
American Cordillera (after Miller et al., 2000). Inset emphasizes distribution of
metamorphic rocks (speckled pattern) and plutons (dark grey). Also shown are the Coast
Belt thrust system (CBTS), lower-grade rocks of the Eastern Cascades fold belt (ECFB),
and Northwest Cascades fault system (NWCS). The dextral Fraser-Straight Creek (SCF)
fault offsets the Cascades core from the main part of the Coast Belt. The Entiat fault is a
Tertiary, high-angle fault that divides that Cascades core into the Wenatchee and Chelan
blocks. Light grey box in inset outlines the area of figure 2.
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Figure 2. Geologic map of the southwestern Chelan block emphasizing the zone of elongate
sheeted intrusions. Abbreviations are as follows: BR, Bearcat Ridge; CO, Cooper Mountain; CP,
Cardinal Peak; DH, Duncan Hill; EN, Entiat; RC, Railroad Creek; RLFZ, Ross Lake fault zone;
RP, Riddle Peaks; and SFJ, Seven-Fingered Jack. Numbers below the abbreviated pluton names
are approximate crystallization ages of each intrusion (McPeek et al., 2002; Tabor et al., 1987b;
this study).
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Figure 3. Map of the compositional variation and sheet characteristics of the Seven-Fingered
Jack (SFJ) and Entiat intrusions after Miller and Paterson (2001 a). Note that the north arrow
points at an angle off to the right. Red dots mark geochronology sample localities. Dashed line
marks approximate location of contact between the Seven-Fingered Jack and Entiat suites. Box
surrounding the northwestern tip region marks the outline of figure 4. Lines of cross-section are
shown in figure 5.

218



Figure 4. Map of sheets that comprise the northwestern tip of the Seven-Fingered Jack intrusion
after Cater and Crowder (1967) and Cater and Wright (1967). Red dots mark geochronology
sample localities. U-Pb zircon dates from samples EN24B and EN41 indicate that these sheets
should no longer be considered part of the Seven-Fingered Jack suite. Red star marks
geochronology sample locality of Triassic sheet dated by Hurlow (1992).
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Figure 5. Cross-sections through the Seven-Fingered Jack and Entiat intrusions after Miller and
Paterson (2001 a). Thin lines within units mark interpreted foliation patterns based on numerous
foliation measurements. Thick lines mark contacts between lithologic units. Shaded regions
with light vertical lines mark parts of the intrusions that are composed of multiple, thin sheets.
Random dash pattern marks Tertiary intrusions that post-date the Seven-Fingered Jack and Entiat
intrusions.
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a)

b,)

c)

Figure . Photographs of textures from mafic complex outcrops. Angular blocks of
gabbro (a and b) are contained within a leucocratic, fine-grained matrix. More diffuse
contacts (c) indicate miglin between mafic and tonalitic magmas.
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Figure x. Cathodoluminescence images of zircons from the Seven-Fingered Jack intrusion.
(a-c) from sample EN24B, (d-e) from sample E-436, (f-g) from sample EN65, and (h-i) from
sample EN3.
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GEOCHRONOLOGIC CONSTRAINTS ON GRANITIC MAGMATISM

INTRODUCTION

Granitoid rocks are the most volumetrically significant part of continental

magmatic arcs and contain a complex record of magma generation, transport, and crustal

growth. Processes by which heat and mass are exchanged between ascending magmas

and pre-existing crust are intimately linked to the development of composition

heterogeneities and their distribution within the crust. Understanding the evolution of

these processes, therefore, provides insight into the dynamics of crustal growth. The

important role of granites (sensu lato) in formation of continental crust was

acknowledged by Hutton in 1785 in his book The Theory of the Earth, and many of the

questions he posed are still relevant today. In the following sections, I will first provide a

historical perspective on the study of magma generation and transport, followed by a

brief summary of the data from chapters 4 and 5. I will then discuss how these data

provide insight into the construction and evolution of intrusive magmatic systems and the

effect of these systems on the thermal structure of a continental magmatic arc.

GRANITE CONTROVERSIES: A HISTORICAL PERSPECTIVE

By the 1830s, geologists had reached the consensus that granite slowly

crystallized at great depth from "subterranean lava" (see Pitcher, 1993). This consensus

was pioneered by Charles Lyell and drew upon work by Poulett Scrope in 1825 that

provided the first scientific basis to describe magma as a crystal suspension with an

essential vapor content and a viscosity controlled by composition (see Pitcher, 1993).

Over the last 50 years, several controversies have focused the debate on the processes by

which granite forms and how it arrives at a certain position within the crust. One of the

most contentious debates was argued between H.H. Read and N.L. Bowen in the 1950s.

The central issue lay in the question: was granite formed by in situ transformation of

other rock types (i.e. granitization), by partial melting of crustal rocks, or by fractional

crystallization of mantle melts? Tuttle and Bowen (1958) determined phase relationships

within the NaAlSi3O8 - KAlSi3O8 - SiO 2 - H20 system and concluded that granitic

liquids may be generated from melting of quartzo-feldspathic rock but under conditions
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that seemed unlikely to occur naturally. Not until the first experiments on dry melting in

pelitic systems were carried out by Brown and Fyfe (1970) and Thompson (1982) was it

demonstrated that granitic melts could be generated by incongruent melting of hydrous

phases (micas and amphiboles). This work was consistent with field relationships linking

pelitic migmatite to larger granitic bodies. Further experimental, geochemical, and

isotopic work firmly established the crustal input to granite genesis and the role of mantle

melts in the generation of intermediate composition granitoids (e.g., Patifio Douce, 1995,

1999; Pitcher, 1982; Chappell and White, 1974).

Another long-standing controversy that has dominated geologic debate is the so-

called "room problem": the question of how space is created for the intrusion of magma

into the upper crust. Proponents of granitization argued that space-generating

mechanisms were not necessary, whereas others cited field evidence for forceful

emplacement of magma. This controversy can be traced back to lively field discussions

in 1835 by Norwegian petrologist Baltazar Keithau and Charles Lyell (see Pitcher, 1993).

In the 1930s, Hans Cloos and co-workers focused on structural investigations of granitic

rocks, and these developments were combined with microfabric studies (see Castro et al.,

1999). Structural studies focused on the role of stoping, magma emplacement along

structural discontinuities, and the interaction between intruding magma and the

deforming envelope of country rock.

In the late 1970s and 1980s, new developments in structural geology concerning

theories of flow and deformation in geologic materials led to a renewed interest in the

room problem. Increasingly sophisticated analogue and computational models describing

the rheological development of both magma and host rock have focused the modern

debate. A key issue is whether magma ascent is accommodated by diapiric rise or ascent

through dikes. The traditional idea of a buoyant granitic magma ascending through the

continental crust as a slow-rising, hot Stokes diapir or by stoping was called into

question. Marsh (1982) numerically modeled the effects of heat transfer between a rising

diapir and the surrounding rock using a hot Stokes flow model whereby host rock is

heated enough to ductilely flow around the diapir. Mahon et al. (1988) performed a

similar study with ascent through a temperature-varying, non-isoviscous wall rock. Both

studies reached the conclusion that diapiric ascent velocities at normal crustal
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temperatures are so low that ascent into upper crustal levels is not possible on timescales

less than the freezing times of large plutons (i.e., -105 yrs). In contrast, Weinburg and

Podladchikov (1994, 1995) show that heat transfer alone need not be the rate-limiting

step controlling diapiric ascent, and the process is more effective if the rheology of the

crust is considered non-Newtonian. In this model, the mechanism required to soften the

crust is not thermal, as in the hot Stokes case, but dependent upon strain rate, which

lowers host rock viscosity in the vicinity of the rising diapir. These power-law diapirs

are proposed to reach within 10 km of the surface. Miller et al. (1999) proposed the new

term visco-elastic diapir to describe magma ascent through host rocks with a complex

rheology that ranges from elastic to viscous and varies both temporally and spatially.

These diapirs may consist of one or more magma batches. Host rock deforms by both

brittle and ductile processes, and ascent is driven by buoyancy plus regional stress.

An alternative to diapirism is ascent through narrow conduits, either as self-

propagating dikes (Clemens and Mawer, 1992), along pre-existing faults (Hutton, 1992;

Petford, 1996) or as an interconnected network of active shear zones and dilational

structures (Brown and Solar, 1998; Collins and Sawyer, 1996; D'Lemos et al., 1993).

The greatest difference between these models and diapiric ascent is the difference in

magma ascent rate. Ascent in dikes may be up to a factor of 106 faster depending on the

viscosity of the magma and the conduit width (Clemens, 1998; Petford, 1996). Given the

possible rapid ascent of magma in dikes, timescales of pluton growth could also be

geologically fast (<<1 Myr), even for large plutons (i.e., 1000-3000 km3) (Clemens and

Mawer, 1992; Petford, 1996), unless growth is limited by magma supply or by the

mechanics of magma emplacement (Clemens, 1998; Johnson et al., 2001). In addition,

chemical and thermal interactions between magma within dikes and the host rock are

minimal, and there may be little evidence of the passage of large volumes of magma

through the crust.

Even with centuries of study and debate, several important aspects of magma

generation and transport are still unknown. Questions include: 1) Are composite

intrusions constructed by continuous emplacement of small magmatic pulses or during

more punctuated intervals? 2) At what level in the crust is textural and chemical

homogeneity developed? 4) How long can a viscous mixture of melt and crystals reside
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in the middle crust? Recent advances in geochronological techniques have made it

possible to address these questions with high-precision temporal constraints. Modem

low-blank, high-precision U-Pb geochronology permits the determination of

crystallization ages of igneous rocks to a precision approaching 0.1%, but application of

these techniques to the study of magma generation and transport has been underutilized.

Specifically, unresolved issues that will influence the debate include the duration,

episodicity, and rates at which individual intrusions are constructed, and the scale of

compositional and temporal heterogeneity of a given magmatic system. Only when we

can accurately and precisely describe the temporal evolution of magmatic systems, can

we begin to make progress in solving the questions listed above. For this reason, I used

high-precision U-Pb geochronology to elucidate the magmatic history of four composite

intrusions within the Cretaceous North Cascades arc.

SUMMARY OF RESULTS FROM THE NORTH CASCADES

Chapters 4 and 5 present data from four composite intrusions in the North

Cascades. These intrusions include the 3-4 kbar Mount Stuart batholith (MSB), the 7-9

kbar Tenpeak intrusion, and the 6-7 kbar Entiat and Seven-Fingered Jack intrusive suites

(previously mapped as the Entiat pluton - Each- intrusion displays a distinctive intrusive

history that gives insight into the nature of magmatic systems.

Twelve samples from the MSB indicate that magma was emplaced during four

punctuated intervals over a ca. 5.6 Myr time period (Chapter 4 - Fig. 12). These

emplacemient intervals occurred at 96.4-95.7 Ma, 94.6-94.5 Ma, 92.8-92.6 Ma and 91.0-

90.8 Ma (Chapter 4). The oldest phases crop out in the NW hook-shaped region and the

youngest phases crop out in the SE mushroom-shaped region. This intrusion exhibits

gradational contacts between magma pulses of the same age but differing composition.

The boundaries between age domains are poorly constrained because the predominantly

tonalitic magmas are texturally and mineralogically similar even though they formed at

significantly different times. Titanite analyses from primary grains in the hook and sill

regions of the batholith approximate the time that these magma pulses cooled to near-

solidus conditions. The titanite analyses yield dates that are within 1.5 Myr of the zircon

crystallization age of the samples (Chapter 4 - Fig. 10), suggesting that magma within
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each age domain had cooled below the closure temperature of titanite (i.e., -650°C;

Hodges, 2003) and near the H20-saturated solidus (Wyllie, 1983) before emplacement in

the adjacent age domain.

Eight samples from the Tenpeak intrusion were collected from a range of

composition and textural phases (Chapter 4). These phases have been mapped as discrete

bodies that comprise a single pluton, and contacts between the bodies vary from

gradational to sharp (Cater and Crowder, 1967; Crowder et al., 1966; Dragovich and

Norman, 1995; Tabor et al., 2002; Tabor et al., 1987). Distinct textural and mineralogical

differences such as plagioclase grain shapes and percentage of biotite versus hornblende

define boundaries between magma pulses. The total duration of magma accumulation

documented by these samples is 2.7 Myr, and the distribution of dates indicate that

magma was emplaced at regular intervals with only short time periods (<0.5 Myr)

between magma pulses (Chapter 4 - Fig. 12). Field relationships indicate that magma

pulses were rheologically distinct from each other. The ca. 91.9 Ma internally-sheeted

zone and the ca. 92.2-92.4 Ma Schaefer Lake tonalite are clearly truncated by later ca.

89.7 Ma Indian Creek tonalite.

In contrast to the Mount Stuart and Tenpeak intrusions, the Entiat and Seven-

Fingered Jack intrusive suites are comprised of multiple elongate magma bodies/sheets

that range in composition from gabbro to biotite granodiorite. These two intrusions had

previously been mapped as one pluton; however, U-Pb zircon dates from fourteen

samples indicate that these sheets were emplaced over at least three distinct time periods

(Chapter 5). At the northwestern end of the body, the oldest sheets are coeval with the

Triassic Dumbell plutons and should be considered part of that magmatic system. Sheets

with ca. 90-92 Ma crystallization ages comprise the Seven-Fingered Jack suite and

extend from the northwestern tip of the body and potentially most of the length of the

body. Sheets with ca. 71-73 Ma crystallization ages comprise the Entiat intrusive suite

and make up the more homogeneous southeastern end of the body. I was unable to

obtain precise crystallization dates from several samples because of the presence several

different age populations of zircon within a sample. The implications of these results for

the origin and evolution of sheeted magmatic bodies are discussed below.
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NATURE OF INTRUSIVE MAGMATIC SYSTEMS

Characteristics of Magma Reservoirs

The first question one must ask when studying intrusive magmatic systems is

what constitutes a batholith, pluton or magma chamber? These terms are commonly used

in the geologic literature, but their connotations are often unclear and their definitions

need to be revised. The standard definition of a batholith (Bates and Jackson, 1987) is a

large, generally discordant plutonic mass that has more than 100 km2 of surface exposure

and no known floor. Technically, a batholith only differs from a pluton in its size, but

more commonly, the term batholith implies an intrusion composed of multiple plutons

representing multiple magma pulses in a chemically related system. Earlier plutons may

cool and solidified before emplacement of the next pulse, but all plutons are temporally

or chemically related.

The term pluton was coined during the late 18th century debate between

Neptunists who argued that granite formed as a chemical precipitate from a primordial

ocean, and Plutonists who argued that granite formed as a consequence of fluid and heat.

The standard definition of apluton - an igneous intrusion (Bates and Jackson, 1987) - is

non-specific and originally signified only deep-seated or plutonic bodies of granitoid

texture. However, the use of this term in the geologic literature generally implies that a

pluton is composed of a single magma pulse or multiple magma pulses that were

emplaced closely enough in time that the entire volume of the pluton existed in a

magmatic state as one large magma chamber. This long-held view has been challenged

recently by Glazner et al. (2004), and data from this thesis bear on this issue as discussed

below.

Perhaps a more appropriate description of a pluton is a magma reservoir (c.f.

Reid, 2003; Fig. 1). A magma reservoir consists of two portions - liquid and mush (e.g.,

Marsh,-- 1989; Reid, -2003- Sinton and Detrick, 1992; Vigneresse et al., -- 996). The liquid

regime behaves as a liquid in the mechanical sense and may contain up to 25-40%

crystals, whereas the mush regime consists of a dense suspension containing up to 50-

75% crystals that can resist shear deformation (Reid, 2003). A magma reservoir is

distinct from a magma chamber in that the latter term implies an enclosed space more

aptly compared to the liquid regime of the reservoir. As defined by Reid (2003), the
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magma reservoir does not include the melt-impregnated regime (<25-50% melt) that is

closer to the magma solidus than the mush state. As depicted in figure 1, only a limited

portion of the magma reservoir is liquid at one time, and the boundaries of the magma

reservoir are transient features. These boundaries broadly correspond to the conditions at

which differential movement of crystals and melt, and therefore appreciable chemical

modification of the magma, is likely to cease (Reid, 2003). In this more dynamic view of

a pluton/magma reservoir, multiple pulses of magma are both spatially and temporally

distinct, and multiple liquid reservoirs may exist in communication with the mush and

melt-impregnated regimes.

Figure 1 likely represents a snapshot at any one time in the history of the Tenpeak

or Mount Stuart intrusions. In the case of the Tenpeak intrusion, early-formed phases

such as the Schaefer Lake tonalite intruded and then formed a mush region in which later

sheets (i.e., elongate magma pulses) were emplaced as the sheeted zone and proto-

mylonitic gneiss. Eventually these phases crystallized to the point that later pulses such

as the Indian Creek tonalite truncated, rather than mixed with, earlier phases of the

intrusion. These rheological and temporal differences suggest that the Tenpeak intrusion

never existed as a single, convecting magma chamber.

The MSB also experienced a similar intrusive history, although longer time

intervals existed between intrusion of different magma pulses. Titanite analyses suggest

that magma pulses within the hook and sill domains had reached near solidus

temperatures and effectively ceased to be part of the magma reservoir before the

emplacement of the mushroom domain. Zircon dates from the mushroom-shaped domain

range from 90.79+0.13 Ma to 91.02±0.10 Ma and constrain potential rates of magma

emplacement into the MSB reservoir at its largest volume (-520 km3; Chapter 4, Table

5). This magma reservoir comprised several different magma pulses that range in

composition from gabbro to granodiorite and must have co-existed over the 230±130 kyr

time span represented by these dates. Magma emplacement rates for just the mushroom-

shaped domain are estimated at 2.4x10-3 km3/yr, which is comparable to rates derived

from other batholithic belts (Crisp, 1984). This rate estimate is also of the same order of

magnitude as that derived from estimates of the rates of magma influx into the Mt. Shasta

reservoir, the largest volcano of the Cascades chain, at 6.3x1 0-3 km3/yr over the last 200
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kyr (Grove et al., in press). The long term emplacement rates of the entire MSB and the

Tenpeak intrusion are approximately an order of magnitude less at 0.2x 10-3 km3/yr and

0. xli 0 3 km3 /yr, respectively (Chapter 4, Table 5).

The construction of the Entiat and Seven-Fingered Jack magma reservoirs most

likely differed from figure 1 in that the contacts between magma pulses and host rock are

steep and form sheets that are elongate in the vertical direction (Miller and Paterson,

2001; Paterson and Miller, 1998b). In this case, there is no clear evidence of where

"ascent" processes ended and "emplacement" processes began. Multiple magma sheets

coalesce to form elongate bodies that are 1-2 km in width. Sheets contacts within these

elongate bodies are often cryptically marked by trails of host rock inclusions, zones of

schlieren and/or subtle changes in orientation of magmatic foliation across planar

boundaries.

These four systems present several different views of what constitutes a magma

reservoir. All are composed of multiple magma pulses of varying composition, texture,

and shape. Each system was constructed over at least 2 Myr up to 5.6 Myr time period.

The differences between the systems relate to their internal magmatic contacts and the

episodicity of magmatism. These differences may result from differing rates of intrusion

or magma supply. At relatively slow rates of intrusion relative to cooling, magmatic

systems may consist mostly of mush and relatively evolved melt (Shaw, 1985; Sinton and

Detrick, 1992). At higher rates of intrusion, magma recharge may be frequent, which

sustains the magma reservoir and may result in appreciable magma mixing (Koyaguchi

and Kaneko, 2000; Reid, 2003). The Tenpeak system, and to some extent the Mount

Stuart system, are more likely examples of a slow rate of intrusion because higher

proportions of mush relative to liquid inhibit mixing and result in texturally distinct

magma pulses. Less frequent recharge also implies a greater degree of cooling between

magma pulses, also encouraging distinct textures. The Entiat and Seven-Fingered Jack

intrusions more likely represent the case of higher rates of intrusion to cooling. This is

supported by evidence of transfer of zircon crystals between different regimes of the

magma reservoir as discussed in the next section. The ultimate control on the rate of

intrusion may be a result of the rate of melt generation and magma supply (Petford et al.,

2000). In cases where melt generation is limited, slow rates of intrusion may result.
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Physical Processes within Magma Reservoirs

The geochronologic data from these four magmatic suites also constrain the

timescales over which the magma reservoir evolves. In figure 1, different possible

sources of crystals entrained in magma are depicted. Crystals such as zircon may be

inherited from the surrounding country rock during ascent or upon emplacement.

Crystals may also be transferred into the liquid regime from both the mush regime and

the solidified margins of earlier phases depending upon the temperature of the mush and

melt-impregnated regimes, the viscosity and volatile content of the magma and the extent

of syn-magmatic deformation (Barboza and Bergantz, 2000; Renner et al., 2000;

Vigneresse et al., 1996). These co-genetic crystals may be discernible from co-magmatic

crystals (crystallized within the liquid regime) if there is a large enough age difference

between the mush and melt-impregnated regimes and the liquid.

Transfer of crystals between the mush, melt-impregnated and liquid regime may

be accomplished in several ways. Bergantz (2000) modeled the dynamics of mixing by

recharge of a magmatic system. This modeling indicated that preservation of sharp

internal contacts between magma pulses requires not just a large heological contrast, but

a high absolute viscosity of the host magma/mush. This, in turn, requires that the host

magma/mush has a sufficiently low melt fraction so that grain-grain contiguity occurs. If

the melt fraction is high enough within the mush regime, intrusion of a new magma pulse

results in mixing and transfer of crystals between the liquid and mush. Along the nearly-

solidified margin of the intrusion, emplacement of a new magma pulse may erode, or

scour this contact back to a region where the solid fraction is high enough to be

effectively rigid. This scouring would disaggregate portions of the mush and melt-

impregnated regime and mix it with the intruding magma (Bergantz, 2000).

The timescales over which mixing occurs following reintrusion are on the order of

the cooling time for the body of host magma/mush. The time, t, it takes for a magma

sheet of thickness 2a and initial temperature, To, to cool below its solidus, Ts, at the center

of the sheet can be described by the equation:

BT- a )
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where Thr is the temperature of the host rock or mush, B is a constant that

accounts for the latent heat of crystallization, and a is the thermal diffusivity (i.e. -106

m2/s). If I assume T0 =800°C, Thr=600°C (i.e., just below the solidus), and Ts=650°C,

then a sheets that is 1.75 km thick will cool below the solidus in 1 Myr. The cooling rate

will increase with convection in the sheet, fluid circulation in the host rock and/or other

shapes of magma pulses that allow for heat loss out of the sides of the body.

Another mechanism that has been proposed to rejuvenate or remobilize mush and

nearly solidified portions of the magma reservoir is referred to as gas sparging

(Bachmann and Bergantz, 2003). Rejuvenation, and hence the potential for mixing

between partially-solidified and newly intruded magmas, occurs by the upward

percolation of hot gas which acts as a "defrosting" agent for mush that has reached its

rheological locking point. This mechanism is proposed to operate by shallow intrusion of

volatile-rich mafic magma that stalls at the base of cooler, more silicic mush and exsolves

a vapor phase. The vapor then advects heat upward through the mush at a potentially

faster rate than by pure conduction. Numerical simulations show that if the temperature

increase required for remobilization is limited to a few tens of degrees and the

crystallinity of the mush is <70%, the volume of the volatile-rich mafic recharge required

to cause rejuvenation is -40% of the mush volume. The process by which mixing is

thought to occur within the remobilized mush is referred to as convective self-mixing

(Couch et al., 2001). Gas sparging may be an effective process for rejuvenation of

shallow crustal magma reservoirs, such as proposed for the Fish Canyon tuff (Bachmann

et al., 2002), but its effectiveness for remobilizing mid-crustal or deeper magma

chambers remains to be proven.

In the case of the Tenpeak intrusion, nearly all samples display a tight cluster of

concordant U-Pb zircon-analyses as indicated by MSWDs near one (Chapter 4 - Figs. 14

and 15, Table 3), suggesting that each sample contains only one age population of zircon.

This, in turn, suggests that the dates represent a single zircon crystallization event rather

than zircon crystallization over a time period greater than the uncertainty on individual

dates (typically ±0.28 Myr). Communication between the liquid and older, solidified

parts of the system must also have been limited. In contrast, samples from the Mount
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Stuart, Entiat and Seven-Fingered Jack intrusions show varying degrees of

communication between different parts of the system.

Cathodoluminescence (CL) images of zircon from two samples from the hook

region of the MSB (MS5 and MS6) show brightly luminescent magmatic cores with dark

magmatic rims (Chapter 4 - Fig. 6). U-Pb zircon dates from core and rim fragments plot

on poorly-constrained discordia lines between a ca. 96 Ma lower intercept defined by rim

fragments and a Middle Proterozoic upper intercept. These results suggest that the zircon

cores were inherited from the host rock. One other sample from the MSB (PC-F)

displays a range of zircon crystallization dates from 94.20+0.61 Ma to 94.92-0.58 Ma

(Chapter 4 - Fig. 8, Table 1). This distribution suggests that sample PC-F contains more

than one zircon age population, and may represent mixing between different pulses in the

liquid regime of mixing between liquid and mush. The remaining samples form the MSB

exhibit tight, concordant clusters of analyses similar to the Tenpeak samples (Chapter 4 -

Figs. 7-9, Table 1).

The MSB differs from the Tenpeak intrusion in that even though the zircon dates

suggest only limited transfer of crystals between liquid and mush regimes (PC-F),

tonalitic magmas emplaced at distinctly different time periods in the MSB are texturally

and mineralogically similar such that discrete contacts between age domains are difficult

to define. One of the more surprising results of this study is that such similar and

homogeneous tonalitic magmas were emplaced over the 5.6 Myr duration of MSB

magmatism, whereas the Tenpeak intrusion developed varying textures over a shorter

duration. Because the titanite data suggest that earlier magma pulses had cooled below

the solidus prior to emplacement of later, adjacent magma pulses, then the observed

textural homogeneity cannot be explained by magma mixing processes at the level of

emplacement. This implies that such homogeneity was either inherited from the source

region or developed during ascent.

The mineralogic and textural characteristics of the Entiat and Seven-Fingered

Jack intrusive suites present a different picture. Three samples from the Seven-Fingered

Jack intrusion yielded ca. 220 Ma dates or dates that can be explained by mixing between

ca. 220 Ma cores and ca. 92-90 Ma magmatic overgrowths (Chapter 5 - Fig. 8). Zircon

from three other Seven-Fingered Jack sheets (EN42, E-28 1, and EN65) and one sample

239



of the Entiat intrusion (ENI 1) show a 1-2 Myr range of crystallization dates that suggests

they are co-genetic crystals remobilized from the mush or partially solidified parts of the

magma reservoir. CL images from one of these samples (Chapter 5 - Fig. 8) lack any

evidence of partial resorption of grains or magmatic overgrowths. The lack of these

features suggests that the zircon grains introduced from the mush or melt-impregnated

regime may have been isolated from the liquid inside early formed crystals. This

distribution of dates indicates that remobilization of a partially-solidified reservoir is

possible on timescales between 0.7 to 2.2 Myr. This distribution of dates also indicates

that mixing and homogenization were occurring in the magma reservoir at the level of

emplacement in constrast to the MSB system.

GEOTHERMAL GRADIENTS IN ARCS

The thermal structure of the crust plays a key role in the heological, geochemical,

and isotopic evolution of continental magmatic arcs. The distribution of heat influences

the locations of crustal melting and strain partitioning (e.g. Paterson and Tobisch, 1992;

Wyllie, 1979), and exhumation histories derived from thermochronology are dependent

upon assumptions about how temperature changes with depth (i.e., the geothermal

gradient or geotherm) (e.g., McDougall and Harrison, 1988). Estimating geotherms in

arcs is complicated by the fact that much of the heat is advected by magma. The thermal

histories that result from such heating differ from those of classical metamorphic

terranes, where regionally extensive heat sources in the lower crust or upper mantle drive

metamorphism (e.g., England and Thompson). Numerical models that aim to explain the

evolution of continental magmatic arcs do not account for simultaneous crustal

thickening, exhumation and advection of heat by magmatism. A key question is how the

emplacement of voluminous magmatic intrusions influences the geothermal gradients of

arcs.

The absence of well-studied examples of the deeper crustal levels of arcs requires

extrapolation of geothermal gradients inferred from shallow depths (up to 10-15 km) to

higher pressures. Shallow geothermal gradients are estimated from surface heat flow

measurements in active arcs (e.g., Blackwell et al., 1982, 1990; Morgan, 1984) and low-

pressure thermobarometric data (e.g., Turner, 1981). These estimates range from 30-
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35°C/km in the upper 35 km (Giese, 1994; Morgan, 1984) and up to -50°C/km in the

upper 12 km (Henry and Pollack, 1988). However, seismic velocities and other

geophysical data indicate that these geotherm estimates do not translate sensibly to the

lower crust because they predict widespread melting and temperatures in excess of

1200°C at the base of the crust (Giese, 1994). These observations suggest that

geothermal gradients are not constant with depth in active arcs, and that shallow

geothermal gradients reflect a perturbation from some steady-state geotherm.

The emplacement of plutons in the crust creates thermal perturbations of host

rock, and the magnitude of the perturbations varies depending upon the proximity to the

pluton. As a result, the crust experiences localized contact metamorphism during short-

lived events that, when integrated over the life of the arc, give the appearance of a

regionally metamorphosed terrane at moderate to high temperatures (Barton and Hanson,

1989; Rothstein and Manning, 2003). In reality, there is a "background" advective

geothermal gradient in the arc that characterizes much of the crust throughout the

duration of magmatism. At any given time, only a fraction of the crust is at temperatures

elevated above this background geotherm, and host rock temperatures will return to the

background geotherm after being perturbed by magmatism (Rothstein and Manning,

2003). Because peak metamorphic temperatures decrease with distance from a pluton,

the minimum host rock temperatures will represent the smallest excursion from the

ambient host rock temperature during magmatism. These minimum host rock

temperatures then define a maximum background geotherm that represents the highest

possible ambient temperature at a given depth during magmatism.

Rothstein and Manning (2003) utilized thermobarometric data from several

continental magmatic arcs to estimate this background geotherm. These P-T data defined

a maximum background geotherm of -22°C/km at depths of 10-25 km. The actual

background geotherm lies somewhere between the upper limit defined by the maximum

background geotherm and a geothermal gradient that was present prior to the magmatism.

They take 18°C/km as a conservative lower limit because it is broadly characteristic of a

stable continental lithosphere.

Thermobarometric data from the host rocks of the Mount Stuart and Tenpeak

intrusions yield geothermal gradients consistent with the observations of Rothstein and
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Manning (2003). Peak P-T data adjacent to the 3-4 kbar MSB (Bendixen, 1994; Brown

and Walker, 1993; Evans and Berti, 1986; Stowell and Tinkham, 2003) yield a transient

geotherm of 30-35°C/km to locally -55°C/km. P-T data at a deeper level of the arc from

host rock of the 7-9 kbar Tenpeak pluton (Valley et al., 2003) yield a geothermal gradient

of-20°C/km, which much more closely approximates the geotherm of Rothstein and

Manning (2003). The duration of magmatism represented by the MSB and Tenpeak

intrusion place time constraints on the longevity of the thermal perturbations to the crust.

The overall duration of these magmatic systems ranges from 3 to 6 Myr, but the input of

individual pulses is on the order of 1 Myr or less.

The continental magmatic arcs that Rothstein and Manning (2003) used to

constrain their model were selected because they represented a range of crustal depths

and the available structural and thermochronologic constraints indicated relatively simple

thermal histories dominated by magmatic heating rather than tectonic thickening. These

arc terranes include the eastern Peninsular Ranges batholith of southern California and

Baja California, the Sierra Nevada batholith, and the Ryoke metamorphic belt, Japan.

The North Cascades arc does not have such a simple tectonic history. Deformation in the

Mount Stuart region occurred pre-, syn- and post-emplacement (Miller and Paterson,

1992; Paterson and Miller, 1998a). Syn- to post-magmatic tectonism will, to varying

degrees, result in departures from the idealized thermal structure assumed by this model;

however, the fact that the geothermal gradient estimated from the deep levels of the arc

closely approximate the background geotherm defined by Rothstein and Manning (2003)

suggests that crustal thickening in the North Cascades does not invalidate the model.

CONCLUSIONS

The data presented in chapters 4 and 5 provide high-precision temporal

constraints on the intrusive histories of four contrasting magmatic systems in the North

Cascades arc. These data support the view that magma reservoirs consist of a mush

regime and potentially one or more liquid regimes. Communication between regimes

may be limited if the rate of intrusion or magma recharge is slow relative to cooling. The

Tenpeak intrusion likely represents this type of system, whereas the Entiat and Seven-

Fingered Jack intrusions have characteristics more typical of a fast rate of intrusion or
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magma recharge. Zircon grains from several samples of the Entiat and Seven-Fingered

Jack intrusion display a range of crystallization ages within a given sample. These results

suggest that zircon crystals were transferred between the mush and/or melt-impregnated

regimes into the liquid phase. This transfer may have occurred by scouring of virtual

"walls" created by the liquid-mush transition during recharge (i.e., Bergantz, 2000).

These data have implications for the questions posed within the granite

controversies section and are addressed below:

1) Are composite intrusions constructed by continuous emplacement of small magmatic

pulses or during more punctuated intervals? These intrusions contain abundant evidence

that they were constructed from multiple pulses of magma. The geochronologic data

from the MSB and Tenpeak intrusion suggest that these pulses remained distinct phases

and challenge the view that these systems ever formed a single, convecting magma

chamber. At the resolution of these dates, emplacment processes appear more episodic

than continuous, which supports that idea that magma is emplaced in discrete batches.

2) At what level in the crust is textural and chemical homogeneity developed?

Geochronologic data from the Entiat and Seven-Fingered Jack systems suggest that

mixing between different regimes of the magma reservoir took place at the level of

emplacement. In contrast, the lack of distinct internal contacts between tonalite of

different age domains in the MSB suggests that, in this case, textural and chemical

homogeneity was either inherited from the source region or developed during ascent. In

addition, samples from both the Seven-Fingered Jack intrusion and the MSB contain

zircon grains that have cores inherited from the surrounding country rock; however, the

depth at which these crystals were introduced into the magma system is unconstrained.

3) How long can a viscous mixture of melt and crystals reside in the middle crust?

Thermal models predict that with frequent recharge silicic liquid and/or mush may be

maintained in the crust for several Myr (Annen and Sparks, 2002; Koyaguchi and

Kaneko, 2000); however, the exact timescales are controlled by several assumptions

including the frequency of recharge, geothermal gradient, and the temperatures of mush

and recharge magma. The Entiat and Seven-Fingered Jack intrusions represent natural

examples of magma reservoirs that remained active for 0.7 Myr to up to 2.2 Myr. These

reservoirs may have existed entirely in the mush regime until recharge disaggregated the
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mush and mixed with co-genetic, but distinctly older crystals. Natural examples such as

these form important constraints on the longevity of magmatic systems.

In continental magmatic arcs, magmatic advection is the predominant heat

transport mechanism that influences temperatures in the upper and middle crust (Barton

and Hanson, 1989), and estimating geothermal gradients from metamorphic P-T-t paths

in continental magmatic arcs is complicated by this fact. Thermobarometric data from

the Mount Stuart region are consistent with shallow level, advective geotherms estimated

from surface heat flow measurements in active arcs (Blackwell et al., 1982; Blackwell et

al., 1990; Morgan, 1984). In contrast, P-T data from the Tenpeak region yield a

-20°C/km gradient, which is consistent with the maximum background geotherm of

Rothstein and Manning (2003). The duration of magmatism represented by the MSB and

Tenpeak intrusion place time constraints on the timescales of the thermal perturbations to

the crust. These data also suggest that it is inappropriate to use geothermal gradients

inferred from short-lived peak temperatures recorded in contact metamorphic

assemblages to interpret exhumation processes that operate over longer timescales.

FUTURE WORK

The application of high-precision U-Pb geochronology has proved a useful tool in

the study of the nature of magmatic systems and crustal evolution processes. The

geochronologic results from chapters 4 and 5 reveal several new avenues of research that

can be explored. In particular, interpretation of U-Pb zircon dates would be greatly

enhanced if the petrographic setting of each grain could be defined prior to analysis.

With this knowledge, we may be able to determine when in the crystallization history

zircon began to crystallize and how this relates to the rheological state of the magma. It

may also be possible to distinguish zircon grains from different parts of the magma

reservoir based on their inclusion in specific minerals. -

Future work must also focus on the development of realistic numerical models

that describe the timescales of cooling of these magma systems. The models need to

address variations in shape of magma pulses, rates and episodicity of recharge and an

accurate assessment of host rock temperatures. These parameters can be better

constrained with more detailed thermochronology. Titanite data from the MSB and
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Tenpeak intrusion yielded important controls on the magmatic evolution of these

systems; however, careful consideration of the nature of titanite growth (i.e., primary or

secondary) is necessary to interpret the results.

Finally, a multi-disciplinary approach must be taken to further develop our

understanding of magmatic systems. Advances in geochronology techniques have added

a sophisticated tool with which to study intrusions, but these data need to be fully

integrated with field, geophysical, isotopic, geochemical and rheological studies.
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Figure 1. Cartoon of a magma reservoir illustrating the possible sources of
crystals contained within a magma (after Reid, 2003).
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