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Abstract

The cheetah (Acinonyx jubatus) is by far the most manoeuvrable and agile terrestrial

animal [1]. Little is known, in terms of biomechanics, about how it achieves these

incredible feats of manoeuvrability [2]. The transient motions of the cheetah all involve

rapid flicking of its tail and flexing of its spine [3].

The aim of the research was to develop tools (hardware and software) that can be used

to gain a better understanding of the cheetah tail and spine by capturing its motion. A

mechanical rig was used to simulate the tail and spine motion. This insight may inspire

and aid in the design of bio-inspired robotic platforms.

A previous assumption was that the tail is heavy and acts as a counter balance or rudder

[4] [5] [6] [7] [8], yet this was never tested. Contrary to this assumption, necropsy results

determined that the tail was in fact light with a relatively low inertia value. Fur from the

tail was used in wind tunnel experiments to determine the drag coefficient of a cheetah

tail.

No researchers have actively sought to track the motion of a cheetah’s spine and tail

during rapid manoeuvres via placing multiple sensors on a cheetah. This requires the

development of a 3D dynamic model of the spine and tail to accurately study the motion

of the cheetah.

A wireless sensor network was built and three different filters and state estimation

algorithms were designed and validated with a mechanical rig and camera system. The

sensor network consists of three sensors on the tail (base, middle and tip) as well as a

hypothetical collar sensor (GPS and WiFi were not implemented).

The raw sensor data was filtered using the kinematic and kinetic equations generated

using Lagrange Dynamics by modelling the spine and tail as a system of interconnected

rigid beams. The filters are in the form of the Extended Kalman Filter (EKF) and

simulated in Matlab using a combination of analytical and numeric methods. The filters

are advanced to include the torque generated by the tail on the body. This required

modelling the drag effect of the cheetah’s tail.

To conclude the research, initial investigation into a single beam tail as well as a position

estimator were conducted. A single beam tail model results in fewer sensors being

placed onto the cheetah and the position estimator enables the filter and state estimation

algorithms to go from a stationary rig to a moving cheetah.
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Chapter 1

Introduction

For many years engineers and biologists have been observing the cheetah (Acinonyx
jubatus) due to its incredible high speed in rough terrain [9] and this has led to many
bio-inspired robotic platforms [1] [10] [11]. The aim of this research was to analyse and
track the motion of the cheetah’s spine and tail, see Figure 1.1, as well as to estimate
the applied torques due to flicking the tail. For a complete understanding of this animal,
high fidelity data is required for the whole body motion, which has not been previously
possible to obtain.

Figure 1.1: Image showing a cheetah chasing a gazelle. Note the rigid and straight tail as well as the
flexed spine. Image from [12].
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1.1. MOTIVATION AND BACKGROUND TO THE STUDY

1.1 Motivation and Background to the Study

Nature documentaries [13] [14] [15] involving cheetahs running in rough terrain, along
with the MIT Robo-Cheetah [11] [16] and Boston Dynamics cheetah robot “Wildcat”
[10] were the inspiration of this project and subsequent research. The cheetah is the
fastest terrestrial mammal [17] [18] yet there is little available insight as to how the
animal achieves its manoeuvrability.

Little is known about the transient dynamics (rapid accelerating, braking and turning)
compared to the steady state dynamics (walking, trotting, running etc.) of quadruped
animals [2], the cheetah in particular. As yet there are no available kinematics (the
motion of a system of bodies) or kinetics (the forces that cause motion) model of the
whole body of the cheetah that can be used to gain insight to its motion.

In order to study the motion of the cheetah accurately, wild cheetahs need to be examined.
Wilson et al. [20] and [19] are the only researchers that have attached sensors to a cheetah.
A single sensor was attached to a tracking collar and therefore only captured the animal
as a point mass and ignored the rest of the body. To date, multiple sensors have not been
attached to a cheetah in order to track the whole-body motion.

There are currently no available or feasible motion capture systems that can be used
to analyse the motion of the spine and tail of the cheetah in the wild. A Vicon [21]
camera system can be used but due to the fact that wild cheetahs need to be studied,
this method is not feasible due to the capture region limitation of the camera system.
A better understanding of how the cheetah moves will aid in many bio inspired robotic
platforms.

1.2 Aims of the Study

This research was aimed at developing a system to estimate the states of a cheetah’s
spine and tail during rapid manoeuvres using low cost MEMs sensors.

1.2.1 Objectives of the Study

The objectives of the research were to generate a kinematics and kinetics model, using
Lagrange dynamics, of the cheetah (the spine and the tail) to help analyse its motion
through animations and to calculate the torques induced onto the body due to the rapid
flicking of the tail. Insight for the development of the models, which were implemented
numerically and analytically in Matlab, came via observing the anatomy of the cheetah
with special focus on the tail. The models were used along with a unique custom built
non-invasive wireless MOCAP system along with state estimation algorithms to track
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1.3. SCOPE AND LIMITATIONS

and study the motion of the cheetah. The model shed light on the torques generated by
the tail [3] and included the recently measured aerodynamic effects of the tail.

A mechanical test rig was designed to simulate a cheetah bending its spine and flicking its
tail. The MOCAP system was placed onto the rig to simulate the data that was required
for the state estimation algorithm. The tests were performed under a camera system in
order to validate the results of the state estimation algorithm. Unfortunately the system
was not tested on wild cheetahs.

1.2.2 Purpose of the Study

The purpose of the research was to develop a dynamic model of the cheetah, which is
an endangered animal. This aids in studying the motion of the spine and tail to further
the bio-inspired and bio-logging fields of research. To date, no researchers have studied
the cheetah’s high speed manoeuvres by placing multiple sensors onto the animal. This
research will help engineers and biologists understand how the animal manoeuvres in
unpredictable and unstructured terrain.

The results from the developed motion capture system and state estimation algorithms,
which were in the form of an EKF (extended Kalman filter), will aid in studying the
cheetah’s transient manoeuvres. The algorithms also estimated the reaction torque
generated by the tail; via drag experiments, a better understanding of the aerodynamic
effect on the cheetah’s body due to the tail was obtained.

The outcome of the research will help aid many bio-inspired robots and researchers. It
is aimed at helping biologists and engineers to get a better understanding of the cheetah
by analysing the motion of the spine and tail with insight into the torque generated by
the tail. It also gives insight into the aerodynamic effects of the cheetah tail.

1.3 Scope and Limitations

The outcome of the project was an algorithm that is capable of tracking the states of a
cheetah’s tail and spine. This includes a full 3D kinematics and kinetics model of the
cheetah (spine and tail, the scope does not include the legs) along with an animation to
visualize the model.

A wireless sensor network was developed and placed onto a mechanical rig which simulated
a cheetah bending its spine and flicking its tail. The data from the sensor network was
used on the developed models, filters and state estimation algorithms. These algorithms
were validated by a camera system.

One of the limitations of this research was that sensors cannot simply be attached to a
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1.4. RESEARCH QUESTIONS

wild animal. Ethics approval was required and therefore was not part of the scope of the
project. The sensor network was tested on a mechanical rig which resulted in the legs not
being modelled. Another limitation was that a camera-based motion capture system [22]
was used to validate the results of the state estimation algorithms. Due to the fact that
a camera system was used to validate the results, the forward velocity of the cheetah was
not part of the scope.

Due to video observations [13] [14] [15], cheetah tail fur was placed in a wind tunnel
to determine the aerodynamic effects of the fur. This was then compared to a smooth
cylinder and the results from the experiment were used to determine the torque that was
generated by the tail on the body of the cheetah. This effect was modelled.

1.4 Research Questions

The following research questions were asked and answered during the study:

1. Can one estimate the states of a cheetah’s tail and spine using a low cost IMU
sensor network?

2. Is it possible to calculate an estimate of the torques induced onto the cheetah’s
body by its tail using low cost IMU sensors?

1.5 Plan of Development

The dissertation begins by explaining all the relevant and available literature with respect
to the cheetah, motion capture systems (focusing on high speed and animal motion
capture techniques) as well as the required filtering and state estimation algorithms in
Chapter 2.

The methodology, detailed in Chapter 3, discusses how the system was developed and
tested. The hardware and software design of the motion capture system was described
in detail, including the sensors used and the layout of the sensor nodes, in Chapter 4.

To determine the drag coefficient of the fur covered cheetah tail, aerodynamic tests were
performed and these were discussed in detail in Chapter 5. The filtering, state estimation
algorithms and kinematics and kinetics models of the cheetah were developed and are
described in Chapter 6 along with the results of their performance.

The discussion and recommendations section follows in Chapter 7. The dissertation then
culminates with the conclusion and future work section in Chapter 8. The layout of the
dissertation is shown in Figure 1.2.
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1.5. PLAN OF DEVELOPMENT

Figure 1.2: Layout of the dissertation.
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Chapter 2

Literature Review and Theory
Development

Evolution has played a vital role in solving many of nature’s problems and difficulties
such as flight [23], locomotion [24] and improving the strength of man made materials
[25]. From studying nature we, as humans, can get a better understanding of how to solve
problems in an engineering perspective. This has led to two dominant engineering fields
namely bio-inspiration and bio-mimicry. Bio-mimicry involves directly copying things
that are observed in nature [26], whereas bio-inspired engineering involves observing
nature and applying the underlying principle, idea or theory [27].

There are many problems with copying nature. The main problem is that animals in
nature have general features. When viewed from an engineering design perspective,
compared to man made things which have exact specifications and are duplicates of
each other, due to mass production. Animals adapt to their unique features, no two
cheetah tails are the same weight or size, whereas man made devices cannot adapt or
grow.

The latest animal of interest is the cheetah [17] [18] [28]. Studying and understanding an
animal that is considered to be the fastest and most manoeuvrable terrestrial animal [1]
has led to the design and development of many quadruped robotic platforms including
the MIT Robo-Cheetah [11] [16] and the Boston Dynamics cheetah robot, Spot [10],
Figure 2.1. The Boston Dynamics robot is currently the fastest running robot and is
capable of reaching an impressive speed of 12 m/s, while the MIT Cheetah robot’s main
focus is energy efficient locomotion. Both of these platforms have focused on steady state
locomotion and not aggressive transients that are performed by the cheetah.

There have been a few nature inspired robots that have focused on the high speed
transients such as Dima [30], TailBot [31], TAYLRoACH [32] and FlipBot [33]. These
platforms are mainly wheeled and focus on implementing a tail in order to improve their
manoeuvrability. Their inspiration has been from a combination of the cheetah and
the lizard as both these animals have been observed to use their tails to improve their
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2.1. MANOEUVRABILITY

Figure 2.1: Two quadruped robotic platforms that inspired this research. On the left is the Boston
Dynamics quadruped that is capable of running at 12 m/s and on the right is the MIT-Robo-Cheetah
quadruped that focuses on energy efficient manoeuvrability. Image from [29].

manoeuvrability.

2.1 Manoeuvrability

Manoeuvrability is defined as the ability to change the body’s velocity vector in a
controlled manner [1]. This change can be due to angular velocity (turning), scaling of
the vector (increase or decrease in size resulting in acceleration or braking respectively) or
a combination of the two. Manoeuvrability is crucial for an animal’s survival, in terms of
capturing prey for food and escaping predators [20]. Wilson et al. states that an animal’s
success in hunting is attributed to the animals ability to rapidly accelerate and to mimic
the evasive manoeuvres of its prey during a pursuit [20].

The cheetah is considered one of the most manoeuvrable and fastest land mammals
[20]. During a hunt, a slower animal can escape by performing evasive manoeuvres and
therefore the cheetah cannot only rely on its speed. The cheetah’s incredible speed and
ability to mimic manoeuvres of its prey has resulted in it having a high chase to kill ratio
in terms of hunting [20].

Williams et al. has developed an over pitch model for quadruped animals [34]. The over
pitch problem occurs when an animal (or other objects such as cars) tries to accelerate
or brake too quickly. The front of the body will rise up when rapidly accelerating and
vice versa when braking. This can cause the animal to topple over, become unstable or
lose traction with the ground. All these possible effects can either injure the animal or
hamper its maximum acceleration or braking abilities.
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2.2. THE CHEETAH

2.2 The Cheetah

It has been reported that the top speed of the cheetah is approximately 29 m/s [35]
(Wilson et al. measured a velocity of 25 m/s with accelerations of up to 18 m/s2 [20], see
Figure 2.2). The reason why little research has been done on locomotion and modelling of
transient dynamics (acceleration, braking and turning) is due to the complex dynamics
involved [2], however a dynamic model of the cheetah will help in the development of
future bio-inspired robotic platforms.

Figure 2.2: Image showing the cheetah running. The cheetah’s top speed is approximately 29 m/s [35].
Image from [36].

Currently the only research that has focused on the cheetah (excluding cheetah inspired
robots) are necropsy studies [37] along with video and behaviour analysis studies [20]
[19]. The behaviour analysis studies involved placing sensors onto a cheetah and only
two studies have been known to have done so [20] [19]. These studies used one sensor on
the collar of the cheetah and the data was used to determine if the cheetah was hunting,
sleeping, feeding or mating. The faster dynamics of the cheetah (the motion of the spine
and tail) were not part of the scope of the research.

It is hypothesized that the tail of the cheetah is used to generate a reaction torque on
the body [1] [3] [38], see Figure 2.3. This can aid in turn initiation and to counteract the
over pitch problem [34] in terms of acceleration and deceleration. Turn initiation is vital
as the cheetah has a large stride length and therefore being able to initiate a turn while
still in the air is vital to hunting [37].

According to the available literature it has been assumed that the cheetah’s tail is a heavy
tail with a high moment of inertia [7] [8], however from necropsy data, it has been shown
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2.3. MODELLING

Figure 2.3: Image showing the cheetah rapidly flicking its tail. It has been hypothesized that the tail
of the cheetah is used to generate a reaction torque on the body [1] [3] [38]. Image from [39].

that the tail is in fact a light and relatively low inertia tail [37], see Chapter 5. The author
of this thesis along with the supervisors (Dr. Amir Patel and Prof. Edward Boje) now
hypothesize that aerodynamic effects play a large role in generating the reaction torques
on the body of the cheetah. A paper confirming this hypothesis is currently under review
[40].

To the author’s knowledge there is no available kinematics or kinetics model of the cheetah
that can be used to track the states of the tail and spine in order to analyse the motion of
the cheetah. This research developed such a model that included the aerodynamic effects
of the cheetah tail. The model is discussed in future chapters.

2.3 Modelling

Before the motion of the cheetah can be accurately tracked and analysed, the dynamics
need to be modelled.

2.3.1 Kinematics and Kinetics

One way to capture the dynamics of the system is to generate a kinematics and kinetics
model [41]. Kinematics is a branch of classical mechanics which describes the motion
of a point, an object or a system of objects. The motion is described in terms of

9



2.3. MODELLING

position, velocity and acceleration. Forces, pressures and torques are not taken into
account in kinematics. These form part of kinetics, which is deduced from kinematics by
the introduction of mass [41].

There are two methods to generate a kinematics model of a system, the forward and
inverse methods [42]. With forward kinematics the position of any joint can be calculated
from the knowledge of the link connectivity, link length and joint rotation. The model is
represented by a tree of joints, each with a local coordinate frame. The position of any
point on the body can be found by traversing the tree structure.

With inverse kinematics you obtain the body posture by estimating the joint angles with
the positions of a set of joints (including at least the end effectors) known [42]. The
problem with this method is that if each link does not have a sensor, then it can lead to
a situation where multiple solutions are possible as seen in Figure 2.4.

Figure 2.4: Two possible solutions, solution 1 is in black, solution 2 is in red, when using inverse
kinematics. In inverse kinematics, the two end effectors, P1 and P2, are known and the joint angle, θ, is
unknown, which results in two solutions.

The simplest way to model the system in order to generate the kinematics and kinetics
equations is to assume that the system consists of a number of rigid beams connected
together. This drastically simplifies the system and the equations of motion. Rigid beam
simplification is a good first approximation of the system that can later be modelled as
a flexible beam or in another, more complicated manner. Another simplification that is
used is to assume the rigid beam is a point mass with its total mass located at the centre
of mass (COM).
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2.3. MODELLING

Rigid beams cannot undergo any deformation which includes bending and stretching (or
shrinking) due to applied forces or torques [42]. There are a number of errors that are
introduced when using the rigid beam assumption. These errors are only present if the
system being modelled is very flexible and undergoes large bending or deformation. These
errors can be alleviated by modelling the flexible structure with a number of rigid beams.
For example instead of modelling a flexible beam with one rigid beam, it can be modelled
with a number of rigid beams. The more rigid beams you use, the closer it will resemble
the flexible beam as seen in Figure 2.5.

Figure 2.5: Modelling a flexible beam using multiple rigid beams. The more beams used, the closer it
will resemble a flexible beam.

A multibody system consists of multiple interconnected rigid bodies. Multibody dynamics
also extends to the flexible body case. Each of the bodies are capable of rotation and
translation depending on the degrees of freedom of the joints connecting the bodies.

There are two common forms of multibody systems. These include serial chains and tree
systems [43]. A serial chain system consists of multiple bodies connected in series to each
other. A tree system consists of multiple branches with beams in parallel.

These systems can form open and closed chains. A serial chain system is considered an
open chain system. A closed system occurs when the ends of the bodies either attach to
form a loop or two ends are attached to the “ground”. These structures can be seen in
Figure 2.6.
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2.3. MODELLING

Figure 2.6: Image showing the difference between a serial chain, tree structure and a closed loop
structure.

2.3.2 Lagrange Dynamics

Lagrange dynamics is used to model the dynamics of a system of objects (a multibody
system). Lagrangian dynamics is a re-formulation of classical mechanics. It uses Newton’s
three laws of motion [44] and the principle of stationary action which is also known as
the principle of least action [45]. Lagrange dynamics can be used on a system whether
or not the system conserves energy or momentum. Often the system will be modelled as
a system of rigid beams and point masses.

The principle of stationary action is a variational principle which is used to determine
the equations of motion of a mechanical system [45]. This is done by assuming that
the mechanical system follows a path where the average difference between the kinetic
and potential energy is minimized over a specified time period. It is called “least” as
the solution to the equations of motion involve finding the path that has least change
between two points.

There are two methods to solve the Lagrange system to find the trajectory (motion) of
the objects. The first method is to solve the constraints of the system as extra equations,
often making use of Lagrange multipliers, and the second method is to incorporate the
constraints directly through the choice of generalized coordinates [46] (known as the
second kind of Lagrangian equations).

The use of generalized coordinates can drastically simplify the analysis of the system [46].
To model the system, the number of generalized coordinates used must accurately describe
the system, and incorporate all the system constraints. The kinetic and potential energies
must be written in terms of these generalized coordinates. The number of generalized
coordinates represents the number of degrees of freedom of the system.
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2.3. MODELLING

The Lagrange Equations

The system is described by the kinetic and potential energy of the bodies. The kinetic
energy due to linear velocity for a system of particles (where the rigid beams are modelled
as a point mass with the mass located at the COM of the beam) is

Tl =
1

2

n∑
i=1

miṙ
T
i ṙi (2.1)

where n is the number of rigid bodies, mi is the mass of the ith rigid body, and ṙi is the
velocity of the COM of the ith rigid beam. The T represents the transpose of the matrix.
The kinetic energy due to angular rotation for a system of rigid bodies is

Tr =
1

2

n∑
i=1

ωTi Iiωi (2.2)

where ωi is the angular rate of the ith rigid body and Ii is the moment of inertia of that
beam. The total kinetic energy is in the form:

T = Tl + Tr (2.3)

and the potential energy of the system is

V =
n∑
i=1

mig
Tp (2.4)

where g is the inertial gravity vector ([0, 0, 9.81]T ) and p is the position of the COM.
Lagrange dynamics uses the Lagrangian function, which summarises the dynamics of the
entire system and includes all the energies, generalized forces and the constraints of the
system. The Lagrangian is defined as

L = T − V. (2.5)

The solution for the system equations (solving the second kind of Lagrangian equations)
is in the form: [46]
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d

dt
(
∂L

∂q̇i
) =

∂L

∂qi
−Qi. (2.6)

There is a common representation of Lagrange dynamics that will be used throughout
this report which is the matrix representation of the above equations known as the
manipulator equation [46]. The manipulator equation is in the following form:

M(q)q̈ + C(q,q̇)q̇ + G(q) = Bτ + Q + ATλ (2.7)

where M(q) is the mass matrix, C(q,q̇) contains the Coriolis and centrifugal forces,
G(q) contains the potential energy of the system and Q represents the generalized forces
and torques. The vector q contains the generalized coordinates that describe the system.
The matrix A is the constraint Jacobian and λ is the constraint force. The vector τ is
the input torque and B is the input Jacobian.

In order to solve the above equation for the equations of motion of the system, Equation
2.7 is re-arranged and solved for q̈ as seen in Equation 2.8. This is then integrated to
solve for q̇ and integrated again for q.

q̈ = M(q)−1(−C(q,q̇)q̇−G(q) + Q + Bτ + ATλ) (2.8)

If there are any constraints then

λ = −(AM(q)−1AT )−1(AM(q)−1(Bτ −C(q,q̇)q̇−G(q) + Q) + Aq̈) (2.9)

is used to solve for the constraint force [47].

D’Alemberts Principle and Generalized Forces

D’Alemberts principle deals with the generalized forces by introducing the concept of
virtual work which is a result of the applied forces and inertial forces [48]. The virtual
work of a particle is:

δW =
n∑
i=1

(Fi −mir̈i).δri = 0 (2.10)
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where n is the number of particles and δri is the virtual displacement of the ith particle.
The term δri can be expanded to [48]:

δri =
l∑

j=1

∂ri
∂qj

δqj (2.11)

Therefore the virtual work thus can be re-written in terms of generalized forces as [48]:

δW =
l∑

j=1

n∑
i=1

(Fi −mir̈i).
∂ri
∂qj

δqj = 0 (2.12)

where there are l generalized coordinates. This is then converted into the generalized
forces by dividing the virtual work by δq as follows:

Qj =
δW

δqi
=

n∑
i

Fi.
∂ri
∂qj

(2.13)

where n is the number of forces, Fi is the ith applied force, ri is where the force acts and
qj is the jth generalized coordinate, where j = 1 . . . l for an l degree of freedom system.

2.3.3 Aerodynamics

The motion of the cheetah tail and spine needs to be captured and analysed. From
necropsy data it was determined that the tail is in fact light and has a relatively small
moment of inertia value [37]. The tail was noted to be very furry with especially long
hair at the tip. Aerodynamic tests were performed on the cheetah fur to determine its
effects on the torque generated by the tail. The experiments and results are discussed in
detail in Chapter 5. The aerodynamic effects need to be included in the Lagrange model
using D’Alemberts principle and generalized forces.

Aerodynamic Force

When a fluid flows past a cylinder, or a cylinder moves through a fluid, it experiences a
normal overall force. The perpendicular force is due to the pressure difference between
two sides of a body and the force is in the direction from high pressure to low pressure
[49].

15



2.3. MODELLING

Figure 2.7 shows the force coefficient versus Reynolds number for a smooth cylinder. The
coefficient varies with the velocity of the object through the medium (or the velocity
of the medium past the object). In this case the medium is air. There is a general
trend which decreases at high velocities and eventually breaks down [50]. The mean force
coefficient of an infinite cylinder is less than a finite cylinder due to the effect of the air
flowing over the ends of the cylinder which tends to increase the force [50]. This effect
must be taken into account when modelling the aerodynamic effect of the tail as the tip
of the tail is furrier then the rest and therefore a different coefficient will emerge for the
tip component to the rest of the tail.

Figure 2.7: Image showing textbook data of a smooth circular cylinders force coefficient versus
Reynold’s number. Notice the breakdown at high Reynolds number. Image from [51].

The equation to calculate the aerodynamic force of an object 2.14 is

FD =
1

2
ρv2CDA (2.14)

where ρ is the density of the medium (air). The velocity of the body of medium is
represented by v, CD is the force coefficient and A is the reference area. The reference
area is not important as long as the same reference area is used throughout all experiments
and comparisons [52]. The resulting coefficient will be in terms of this reference area.
Thus when quoting an aerodynamic coefficient it is important to specify what area was
used.
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Reynolds Number

Reynolds numbers are used to compare two objects of different dimensions, at different
velocities or in different fluids [49]. The equation to calculate the Reynolds number 2.15
is

Re =
ρvl

µ
(2.15)

where ρ is the density of the fluid, v is the characteristic velocity, l is the characteristic
diameter and µ is the dynamic viscosity of the fluid.

Laminar flow occurs at low Reynolds numbers (low velocities) whereas turbulent flow
occurs at higher Reynolds numbers [50]. Laminar flow is considered smooth and ordered
flow while turbulent flow is chaotic in nature. The one problem with fluid flow is that a
small change in surface texture and shape can drastically change the flow and resulting
Reynolds numbers. This must be kept in mind when comparing two objects with different
surface textures and dimensions.

2.4 Rotation Matrices

In order to use Lagrange dynamics to model the system, the attitude of each of the rigid
bodies must be known in order to calculate the position and velocity of the COM of each
body, which determines the kinetic and potential energy. A rotation matrix must be
generated to rotate vectors and rates between the body and inertial frames.

There are a number of different ways to represent the attitude of a body. Attitude is
defined as the roll, pitch and yaw of an object (its orientation in space), and specifies
how the body frame is orientated with respect to the inertial reference frame. There are
a number of methods of rotating the body frame vectors to the inertial frame and vice
versa. The three most common ways are described below:

2.4.1 Euler Angles

Euler’s rotational theorem states that any two independent orthonormal coordinate frames
can be related by a sequence of rotations (no more than 3 rotations) about a coordinate
axis, where no two successive rotations may be about the same axis [53]. Representing an
order of rotations, this leads to twelve possible rotation combinations as shown in Table
2.1.
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Table 2.1: Different Euler rotations

Symbol Order
RX(φ) RY (θ) RZ(ψ) Roll, Pitch, Yaw
RY (θ) RZ(ψ) RX(φ) Pitch, Yaw, Roll
RZ(ψ) RX(φ) RY (θ) Yaw, Roll, Pitch
RX(φ) RZ(ψ) RY (θ) Roll, Yaw, Pitch
RY (θ) RX(φ) RZ(ψ) Pitch, Roll, Yaw
RZ(ψ) RY (θ) RX(φ) Yaw, Pitch, Roll
RX(φ) RY (θ) RX(φ) Roll, Pitch, Roll
RY (θ) RZ(ψ) RY (θ) Pitch, Yaw, Pitch
RZ(ψ) RX(φ) RZ(ψ) Yaw, Roll, Yaw
RY (θ) RX(φ) RY (θ) Pitch, Roll, Pitch
RZ(ψ) RY (θ) RZ(ψ) Yaw, Pitch, Yaw
RX(φ) RZ(ψ) RX(φ) Roll, Yaw, Roll

The roll rotation about the X axis is represented by Rx(φ), Ry(θ) is a pitch rotation
about the Y axis and Rz(ψ) is a yaw rotation about the Z axis, see Figure 2.8. These
three rotations represent how the body reference frame is orientated with respect to the
inertial frame. Each rotation is based on the new reference frame that was obtained from
the previous rotation [53]. The advantage of using Euler angles is that it is simple and
intuitive. It also uses three parameters for three degrees of freedom and can be used
directly.

The disadvantage of the Euler representation is that it suffers from a singularity known as
gimbal lock. Gimbal lock is defined as the loss of one degree of freedom in a three degree
of freedom system. This occurs when two axes are driven into a parallel configuration.
This results in a loss of a degree of freedom. If a sensor with its three axes perpendicular
(roll, pitch and yaw angles each zero) and the sensor pitches to 90 degrees, then the
sensors yaw axis becomes parallel to the inertial roll axis and therefore changes in inertial
yaw cannot be determined. The roll, pitch and yaw rotations are as follows:

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (2.16)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.17)

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.18)
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Figure 2.8: Image showing the roll, pitch and yaw axes. Image from [54].

2.4.2 DCM: Direction Cosine Matrix

The second common method for representing rotations is the DCM (direction cosine
matrix) which requires 9 parameters (a 3 by 3 rotation matrix) to represent three degrees
of freedom [55] and is formed using three Euler rotations. The DCM rotates a body
frame vector to the inertial frame and the transpose rotates it back due to the matrix
being orthonormal (orthogonal and normal, therefore RRT = I, where I is the identity
matrix). The roll-pitch-yaw Euler sequence DCM matrix can be expressed as:

R =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 (2.19)

2.4.3 Quaternion

The quaternion is an extension of complex numbers. Quaternions are represented by a
vector of 4 elements which represents three degrees of freedom [56]. This makes them
less efficient than Euler angles but they do not suffer from a singularity. The quaternion
consists of a real scalar and a three dimensional “imaginary” part [56].

In terms of mathematical operations the quaternion is more efficient as it only uses
product and addition operators compared to Euler angles and the DCM which rely on
trigonometric functions (which take longer to compute on a microprocessor).
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The main disadvantage of the quaternion is that it is not intuitive and they cannot be
analysed directly. The three dimensional imaginary part is a unit vector and the constant
represents how much it rotates around the unit vector [56] as shown in Figure 2.9.

Figure 2.9: Image showing the quaternion unit vector, n̂, and θ which is a quaternion rotation about
this vector. Image from [57].

Euler’s rotational theorem is used with quaternions. The theorem states that the coordinate
frames of two systems can be described by a single rotation about a single fixed axis [56].
The quaternion represents this rotation and axis.

2.4.4 Vector Rotation Comparison

Euler angles, the DCM and quaternion rotation matrices are compared in Table 2.2.

Euler angles were chosen as the singularity was not reached in the model, they are very
intuitive and can be used directly. Due to the fact that all processing is done offline, the
computational complexity of Euler angles was not an issue and neither was the memory
problem.
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Table 2.2: Comparison of the different ways to represent attitude

Category Euler DCM Quaternion
Memory usage (elements) 3 9 4
Intuitive very average not
Computational intensity average very simple
Ease of use simple average hard
Singularity yes no no

2.4.5 Rotation of Angular Rates and Gyroscope Measurements

The above methods can only be used to rotate vectors between two reference frames.
This works for the position, velocity and acceleration vectors however it does not work
for angular rates.

The angular rates from the gyroscope represent a measurement in the body reference
frame. In order to integrate the angular rates to calculate the attitude (roll, pitch and
yaw angle) the rates need to be rotated into the inertial reference frame. Due to the fact
that the angular rates are rates of change about an axis (roll, pitch and yaw axis) they
require a different rotation matrix [58].

When the Euler sequence [roll, pitch, yaw] is applied, the Euler roll angle, which is applied
first in this sequence, is not the final roll axis as the yaw and pitch rotations have moved
the axis [58]. The first Euler angle (roll) undergoes two additional rotations, while the
second Euler angle (pitch) undergoes only one additional rotation. The third Euler angle
(yaw) undergoes no additional rotations [58]. The rotation matrix is in the form:

ωbody = R(φ)R(θ)

 0
0

ψ̇inertial

+ R(φ)

 0

θ̇inertial
0

+

φ̇inertial0
0


ωinertial =

 0
0

ψ̇body

+ R(ψ)

 0

θ̇body
0

+ R(ψ)R(θ)

φ̇body0
0

 (2.20)

2.5 MOCAP: Motion Capture

Once the system has been modelled, the motion needs to be tracked and analysed. This
can be done using a MOCAP system. There are three general approaches to capturing the
motion of an animal or system. These include a vision system, wearable sensors and floor
sensors (for gait analysis). Each approach has its own advantages and disadvantages.

Motion tracking and motion capturing has become popular in many different fields, such
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as stroke rehabilitation, gait analysis and motion monitoring [59]. Floor sensors have been
used by biologists to determine an estimate of the power and reaction forces transferred
between the body (or the leg) and the environment (commonly the ground) during gait
analysis [60].

Motion capture has been used in many fields of robotics, virtual reality, health care (gait
analysis), sign language interpolation and tele-presence (giving the effect that someone is
present when they aren’t through telerobotics [61]). It also has many advantages in the
medical field such as determining the severity of a stroke, Parkinson’s disease, multiple
sclerosis and examining the degradation of the nervous system[62] (due to age, trauma
or disease).

Motion capturing combines a number of sensors (gyroscopes, accelerometers, cameras,
light sources, rotary encoders, etc.) to capture the motion of a system. Most available
motion capturing systems are targeted at high accuracy motion capturing of relatively
slow moving objects. These systems are expensive and difficult to calibrate, like the Vicon
system [21], and generally have a small capture volume and are not suited to outdoor
activities. The capture volume is described as the volume of space where the system can
accurately locate the position of the point.

The MOCAP system that was developed for this research needed to be as small as possible
as animals behave differently in the presence of humans and objects that are not found
in their natural environment [63]. The cheetah will also be in the wild and therefore the
MOCAP system cannot rely on emissions from sources and there must be no capture
volume limitations.

2.5.1 Types of MOCAP Systems

There are a multitude of motion capture systems that operate on various principles. A
few of the more common types are discussed in brief detail below:

1. Mechanical System [65]

Mechanical motion capture systems involve attaching an exoskeleton to the system
being tracked. The negative aspect of a mechanical system is that they are expensive
and they restrict the motion of the object being tracked. These systems can only
track one body at a time and require some form of global localization. Mechanical
systems use rotary encoders or potentiometers on each of the joints.

2. Magnetic System [65]

These systems require field from an artificial magnetic source. They use sensors that
measure the low frequency magnetic field. Using triangulation one can determine
the attitude of the sensor relative to the magnetic field and therefore track the body
that the sensor is attached to.
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3. Optical System [65]

Optical motion capture systems rely on line of sight and are often influenced by the
environment’s ambient light. These systems are hard to use in real time due to the
processing of each image from each camera. A popular (and expensive) system is the
Vicon system that uses a number of cameras. These systems need to be calibrated
and take a long time to set up, have small capture volumes and require emissions
from a source. The larger the capture volume the more cameras that are required
and therefore more processing is required. Due to the line of sight element, often
the object being tracked will block the tracking marker; this reduces the accuracy
of the system. Due to the cameras this system is not feasible for outdoor motion
tracking.

4. Acoustic System [65]

This system also requires emissions from a source. Audio transmitters are attached
to the system and an external receiver measures the time it takes to receive a known
signal. Using triangulation the position of the system can be determined.

5. Inertial and Magnetic System [65]

Magnetometers, accelerometers and gyroscope sensors are becoming increasingly
popular due to MEMs technology. These sensors are becoming smaller, more
efficient, more accurate and cheaper. This type of motion capture system does
not suffer from capture volume and line of sight limitations and does not require
emissions from a source. They are, however, prone to drift and other errors.

6. Camera traps [66]

A stationary camera that is activated using motion sensors captures footage of
bypassing animals. The cameras are often camouflaged and therefore do not effect
the animal or make it behave differently due to the presence of a foreign object.
Due to the fact that the cameras are not on an animal they do not have to be small
and can have large batteries.

2.5.2 List of MOCAP Requirements

Below is a list of the requirements for a MOCAP system to track the motion of the spine
and tail of a cheetah:

1. The system must be non-invasive and must not irritate the cheetah.

2. The system must be marker-less and not rely on emissions from a source.

3. The sample rate of the system must be higher than or equal to 100 Hz, see Section
4.2.1.

4. The sensors must be fully wireless.

5. The system must be low cost.

6. The system must not suffer from a capture volume limitation.
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2.5.3 Feasible MOCAP System

With the requirements in mind, an inertial and magnetic system was used for the motion
capture system. These systems are the most feasible because they do not suffer from
capture volume limitations and no emissions from a source are required. MEMs sensors
are small and therefore the system was made to not interfere with the motion of the
cheetah. The sensors were non-invasive and strapped onto the cheetah (the mechanical
rig).

2.5.4 Available Inertial and Magnetic Motion Capture Systems

There are a number of different commercially available inertial and magnetic motion
capture systems. In this section the advantages and disadvantages of each system will be
presented.

1. The VN-100 system [67]

This is a single IMU unit that has an AHRS (attitude heading reference system)
filter. The sensor contains a 9 axis IMU and a pressure sensor. The size of the
sensor is 36 × 33 × 9 mm and has a weight of 13 grams. The output rate is 300 Hz.
This sensor has a good output rate but is a single unit. If there was a network of
sensors this rate would decrease. All the filtering algorithms, as well as the dynamic
model of the system still need to be generated to link the sensors together.

2. The Xsens MVN system [68]

This system consists of seventeen IMU sensors which are either wired together or
communicate wirelessly. The wired system has an output rate of 240 Hz and the
wireless system has an output rate of 60 Hz which is too slow to track a cheetah’s
movements, see Section 4.2.1. The sensors are also fairly bulky. The system consists
of a lycra suit or large sensor straps. Each sensor implements an attitude EKF filter
to determine the orientation of the appendage and there is no full body dynamic
model. Xsens quote a 3 degree error in the measurement but do not mention if this
is during static motions or during high speed dynamic motions. The system only
has a range of 150 m for the wired system and 50 m for the wireless system.

3. The Shadow system [69]

The Shadow system also consists of 17 IMU sensors and each sensor is 35 × 25 × 10
mm. The sensors are connected via wires to a central controller that is 80 × 40 ×
20 mm and requires a battery of 93 × 46 × 25 mm. This results in a total on body
mass of 1.11 kg. The negative aspects of this system are that it is not wireless and
has a large mass. The controller wirelessly transmits the data to the base station.

4. The Tech IMU CV4 system [70]

This system has up to 16 IMU sensors and has an output rate of up to 200 Hz. The
sensors are 36 × 26 × 11 mm and weigh 9 grams. The network is a wired network
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with wireless communication to the base station. This network would be perfect if
the individual sensors were slightly smaller and wireless.

5. “Alpine system” [71]

This system combines 13 IMU sensors, 2 GPS devices and 2 cameras to track the
position of an Alpine Ski Racer. This is not feasible as cameras cannot be attached
to a cheetah and the cost of this system with differential GPS, along with two
cameras, is not considered low cost.

6. Opal sensors [72]

The Opal sensor is a research grade wearable and wireless sensor network. It can
have up to 24 sensor nodes and has a 16 hour battery life. The data rate of the
sensors is variable from 20 Hz to 128 Hz. At US $ 2000 per sensor, the network is
not considered a low cost solution.

7. Moca Sensor Network [73]

This is “motion capture with accelerometers” (MOCA). It has four nodes and a
acquisition board. The data output rate is 100 Hz and is a wired configuration
which is not suitable to be placed onto a cheetah.

8. LynxNet [74]

The LynxNet is a motion tracking system that has a single sensor (a tracking collar)
on an animal and can track multiple animals at the same time. For this dissertation,
multiple sensors are needed on a single animal and therefore this network is not
feasible.

The above commercially available systems are not feasible to be placed onto a cheetah.
The closest competition to the developed sensor network and the most feasible available
system is the Xsens [68] system which is too large to be placed on the cheetah tail, see
Figure 2.10. There is also a chance that the sensors on the tail will get damaged or
bitten off and therefore the sensors must be low cost. A quote was obtained for the Xsens
system and is shown in Appendix A.14. The sensor network itself costs e 11 500 for the
wireless system and e 6 990 for the wired system. This is approximately1 R 163 896 and
R 99 620 respectively.

The above systems often come with their own software (such as MotionLab, MT Software
Suite or MVN Studio). The problem with this is that one does not get access to the
raw data to use with state estimation algorithms. Xsens systems use the MVN Studio
software. There is a licence fee in order to use their software. A lifetime licence (with
support for 3 years) costs e13 900 which is approximately1 R198 101.

A custom built low cost MOCAP system along with the filtering and state estimation
algorithms was developed to track the motion of the cheetah. The MOCAP system
consisted of the wireless sensor network, filtering process and state estimation algorithms.

1Using an exchange rate of R14.25 to e1.
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Figure 2.10: Image showing the Xsens sensor. Note that it is too large to be placed onto the cheetah
tail without interfering with the cheetah. Image from [68].

2.6 Sensors: MEMs and GPS

The MOCAP system uses low cost MEMs sensors and a GPS module for global position
localization. Sensors are used to sense a characteristic in its environment or to detect an
event.

MEMs stand for Microelectromechanical systems and is the technology of very small
devices [75]. The size of a MEMs device generally ranges from 20 micrometres to a
millimetre. In its most general form MEMs technology can be defined as miniaturized
mechanical and electro-mechanical elements such as micro sensors, micro actuators, micro-
electronics and micro structures. This research focuses on the application of micro sensors
in terms of MEMs.

Common attitude determination techniques rely on accelerometers, magnetometers and
gyroscopes [76] [77] [78]. These sensors, along with their advantages and disadvantages
are described in detail below:

1. Gyroscope

A gyroscope measures the angular rate of the sensor. Low cost MEMs gyroscopes
suffer from drift, bias and noise errors. These errors can be reduced by temperature
calibrating the sensors. The advantages of the sensor is that by integrating the rate
one can get the attitude of the sensor given the initial conditions of the sensor with
no offset in the measurement (the sensor must be calibrated).

2. Magnetometer
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A magnetometer measures the local magnetic field. It is generally used to determine
the heading of the sensor. The Earth’s magnetic field is considered locally constant.
The disadvantages of the magnetometer is that it also picks up other magnetic fields
from ferrous material, magnets and electric current. A magnetometer needs to be
calibrated before it is used as it suffers from bias errors.

3. Accelerometer

The accelerometer measures all forms of acceleration including the gravity vector
and linear acceleration. When the sensor is not accelerating (stationary or constant
velocity) it measures the gravity vector that can be used to determine the pitch and
roll of the sensor. The accelerometer needs to be calibrated to reduce the bias and
offset in the sensor. When the sensor is accelerating the gravity vector is no longer
recoverable and therefore the pitch and roll of the sensor is lost.

It should be noted that all MEMs sensors suffer from noise, bias, offset, quantisation error
and sampling frequency errors. These will be addressed in the forthcoming sections.

A GPS module will also be used in the sensor network. GPS is a space based system
that uses satellites to accurately determine the position and velocity of a GPS sensor [79].
GPS measurements suffer from atmospheric (ionospheric and tropospheric) errors along
with other errors due to multipath signals, satellite geometry and system clock errors [79].
These errors are calibrated out using embedded software, multiple frequencies and the
correct antennas. A problem with GPS devices is that their update rate is slow compared
to the update rate of MEMs sensors.

To improve the accuracy of the common GPS module from meters to centimetre accuracy,
an RTK GPS module can be used. RTK stands for Real Time Kinematic and the GPS
module relies on the phase of the carrier wave instead of the information contained on
the carrier wave. This device also only relies on a single reference station (which can be
an interpolated virtual station) in order to provide real time corrections with centimetre
accuracy.

2.7 Prediction, Estimation and Sensor Fusion

Filtering a random process is called estimation which is a well-defined statistical technique
[80]. There are two kinds of state estimation techniques, the linear case and the non-linear
case.

Whenever the states of a system need to be predicted using noisy data from sensors, an
estimation technique is used. All estimators that will be employed in this research are
discrete estimators as they will be implemented in software.

Prediction and estimation requires mathematical equations that capture the dynamics of
the system and a set of equations that relate the measured data to the dynamics (states)
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of the system. The states of a system provide a complete representation of the system
behaviour at any given instant of time. These equations will be generated using Lagrange
dynamics described previously.

2.7.1 The Kalman Filter and the Extended Kalman Filter

The Kalman filter (KF) and the extended Kalman filter (EKF) are efficient mathematical
approaches to estimating the state of a process which lead to the least square error of the
state estimate being minimized [81]. The statistical description of the noise that corrupts
the signals [82] (model and measurement noise) is taken into account in the algorithm.

The EKF is the non-linear version of the Kalman filter and comprises two parts. The
first part is to predict the new (a priori) state estimate using the previous state estimate
and the covariance matrix. This is known as the prediction stage. The second part
(a posteriori) is to update the predicted state estimate using data from the sensors and
the filter measurement equations. This is called the update stage. The filter acts as a
form of sensor fusion where information from multiple sensors are fused to generate more
meaningful data that the individual sensors cannot measure on their own [83].

The EKF works on the basis that the linearised dynamics approximately equals the true
non-linear dynamics in the local region of operation [81]. The KF and the EKF work
on the assumption that the process and measurement noises are Gaussian (a normal
distribution in the time domain with an average time domain value of zero), white (zero
mean and uniform power across the frequency band) noise [83].

The residual of the filter is the difference between the predicted measurements and the
actual measurements. The Kalman gain matrix (K) is the blending factor that gives the
optimal weight between the predicted states and the measured outputs.

The state covariance matrix in the filter is a measure of the degree to which two variables
change or vary together. If the value is positive then they vary in the same direction.

The drawback of the EKF is that the filter can become unstable if the assumption of
local linearity is violated (for example if the actual and estimated state vector are too far
apart). Obtaining the Jacobian matrix (see Equation 2.30 and 2.31) is also a non-trivial
task and can lead to implementation difficulties and often numeric methods are used to
solve the filter. There are other possible filters such as the UKF [84] (unscented Kalman
filter), particle filter [85] or H-Infinity filter [86]. The EKF was chosen due to the fact that
it is an optimal filter under certain conditions such as locally linear, must have observable
states and the process and measurement noise must be zero mean Gaussian white noise
[83].
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KF and EKF Equations [87]

Consider a non-linear system with the following transition and observation models:

xk+1 = f(xk,uk) + w(k)

zk = Hxk + v(k)
(2.21)

where x is the state vector and u is the control vector. The zero mean white process
noise is w(k) and v(k) is the zero mean white measurement noise. The process and
measurement noise has the following covariance:

Q(k) = E[w(k)w(k)T ]

R(k) = E[v(k)v(k)T ]
(2.22)

where E[] is the expected value. The prediction equations are therefore:

The predicted state estimate: x̂k|k−1 = f(x̂k−1|k−1,uk−1) (2.23)

The predicted covariance estimate: Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1 (2.24)

The update equations are:

The innovation or measurement residual: ỹk = zk − h(x̂k|k−1) (2.25)

The innovation or measurement covariance: Sk = HkPk|k−1H
T
k + Rk (2.26)

The Kalman gain: Kk = Pk|k−1H
T
kS−1k (2.27)

Updated state estimate: x̂k|k = x̂k|k−1 + Kkỹk (2.28)

Updated covariance estimate: Pk|k = (I−KkHk)Pk|k−1 (2.29)

For the non-linear case, the state transition and observation matrices are defined as
follows:

Fk−1 =
∂f

∂x
|x̂k|k−1,uk−1

(2.30)

Hk =
∂h

∂x
|x̂k|k−1

(2.31)
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The F matrix is used to update the predicted covariance after the prediction stage and
the H matrix is used to calculate the Kalman gain matrix (K) along with updating the
measurement covariance. A flow diagram depicting the recursive nature of the Kalman
filter is shown in Figure 2.11.

Figure 2.11: Image showing the recursive nature of the Kalman Filter. Note the two stages of the
filter, time update and measurement update. Image from [88].

Numeric Integration

Due to the complexity of many multibody systems, the equations of motion are often
calculated (numerically) during each time step instead of using a symbolic expression of
the equations. If a numerical method is used then the equations need to be numerically
integrated for the states of the system and numerically partially differentiated for the
Jacobian matrix in the Kalman filter. For fixed step discrete time integration, the
following formula is used to integrate a variable with respect to time:

qi = qi−1 + ∆tq̇i (2.32)

where i is the time step and ∆t is the sample interval.

Numeric Differentiation

Partial numeric differentiation is used to calculate the F matrix in the Kalman Filter.
The format for the F matrix is:
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F =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 (2.33)

There are three methods for numeric differentiation [89] [90]. These are shown below:

1. Forward difference:

y
′ ≈ yi+1 − yi

xi+1 − xi
(2.34)

2. Backwards difference:

y
′ ≈ yi − yi−1

xi − xi−1
(2.35)

3. Centralized difference:

y
′ ≈ yi+1 − yi−1

2h
where h = xi − xi−1 = xi+1 − xi

(2.36)

For partial numeric differentiation to generate the F matrix the above formula is modified
(using the centralized method):

∂f

∂x
≈ F

′

t(:, i) ≈
ft(xt + εei)− ft(xt − εei)

2ε
(2.37)

Where e is the basis vector with all entries equal to zero except for the ith element which
is equal to one and is the variable that is being partially differentiated. x is the current
states of the filter. ε is chosen to be a small number, but not too small to avoid numerical
issues. The magnitude of ε is dependent on the rate of change that is expected.

2.7.2 TRIAD (Triaxial Attitude Determination) Algorithm

The TRIAD algorithm can either be used as an attitude filter on its own or it can be
used as the update measurement for the Kalman filter. This drastically simplifies the KF
update stage as the TRIAD algorithms output represents the states of the Kalman filter.
The disadvantage of this algorithm is that linear accelerations corrupt the estimates as
it relies on only reading the gravity vector, and not linear accelerations.

The TRIAD algorithm requires two vectors that are known in the inertial frame, for
example the Earth’s gravity and magnetic vector, and can be measured in the body
frame [91] [92]. The inertial frame vectors must not be parallel or antiparallel. Assume
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there are two vectors in the inertial frame, R1 and R2, and the corresponding two vectors
measured in the body frame are r1 and r2. The body and inertial vectors are related by
a rotation matrix as seen below:

Ri = Ari (2.38)

where A is the rotation matrix that transforms the body vectors to the inertial frame
and i = 1, 2. The rotation matrix has the following properties:

ATA = I

det(A) = 1
(2.39)

It must be noted that the matrix also transforms the cross product as follows [91] [92]:

R1 ×R2 = A(r1 × r2) (2.40)

The TRIAD algorithm estimates the DCM by the following set of equations [93]:

[R1
... R2

... (R1 ×R2)] = A[r1
... r2

... (r1 × r2)] (2.41)

where the vertical dots separate the column vectors, following the same notation as [91].
Therefore to solve for the TRIAD rotation matrix the following equation is used [91] [92]:

A = [R1
... R2

... (R1 ×R2)][r1
... r2

... (r1 × r2)]
′ (2.42)

For a system that contains noise, the following equation is used to solve for the rotation
matrix [91] [92]:

A =
[

R1

|R1|
... R2

|R2|
... (R1×R2)
|(R1×R2)|

] [
r1
|r1|

... r2
|r2|

... (r1×r2)
|(r1×r2)|

]′
(2.43)

where A represents [93]
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A(φ, θ, ψ) =

cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + cosφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ


(2.44)

The disadvantage of the TRIAD algorithm is the fact that it relies on two locally
constant vectors that can be measured in the body frame and known in the inertial
frame. Typically the Earth’s magnetic vector and gravity vector are used as they are
known in the inertial reference frame. Accelerometers and magnetometers are used to
measure the vectors in the body frame. A problem arises due to the fact that the sensors
measure other parameters as well. Accelerometers measure the linear acceleration as well
as the gravity vector. The magnetometer measures the Earth’s magnetic vector as well
as fields due to ferromagnetic material. This affects the TRIAD algorithm and makes it
less accurate as it does not take these disturbances into account. As such, the TRIAD
algorithm works better during slow movements with low linear accelerations.

2.8 Wireless Network

The wireless network is the heart of the required MOCAP system. Each sensor is a
stand-alone device that wirelessly transmits its data to the base station. This enables
the sensors to be small and independent of each other.

2.8.1 Wireless Communication Devices

There are a number of different wireless communication devices and protocols that can be
used in the sensor network to communicate the data. Some common and feasible devices
are compared in Table 2.3 and listed below.

1. Nordic module (NRF24L01) [94]

The Nordic chip operates in the ISM band at 2.4 GHz and has a data transmission
rate of 2 Mbps. It has a low current draw of 11.3 mA for transmission and 13.5 mA
for receiving data. In standby mode the chip draws 22 µA. The device communicates
with the microcontroller through SPI with a baud rate as high as 10 Mbps. It is
capable of transmitting a 32 byte bi-directional packet.

2. Xbee/Zigbee [95]

The Xbee and Zigbee protocols run on the 802.15.4 standard and are capable of 250
kbps (non continuous data transmission). Xbee packetizes the data and has a fairly
inefficient protocol. The range for an Xbee is 30 m indoors and 90 m outdoors.
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Zigbee has more freedom with respect to the protocol and has a range of 100 m
outdoors.

3. WiFi [96]

There are a number of different wireless standards that are available and the benefits
depend on the standard that has been employed. The theoretical data rate for WiFi
is 1 Mbps to 6.75 Gbps. There are a few key factors to consider when selecting a
WiFi protocol and module. These are data rate, range and power consumption.

The 802.11a standard runs at 5.3 GHz or 5.8 GHz with a range of 30 m. The data
rate is 54 Mbps with a typical throughput of 18 to 22 Mbps.

The 802.11b operates at 2.4 GHz with a range of 30 m and a throughput of 6 Mbps.

The 802.11g operates at 2.4 GHz with a throughput of 22 Mbps.

WiFi is used for large data rates and is not idea for small sensor devices due to
the power required (over 370 mA for transmitting data and over 110 mA to receive
data). The modules are also generally larger than standard communication devices.

4. Bluetooth LE [97]

Bluetooth is generally the replacement for Xbee for larger data rates and quantities.
Bluetooth LE or version 4 is a low energy protocol that boasts an efficient protocol
of 66% efficiency (66 % of the transmitted bytes contain the required data, 44 %
contains the address and error checking bytes). Bluetooth has a data rate of 24
Mbps. The different classes of the module effect the range of transmission (class
1 has a range of 100 m, class 2 has a range of 50 m and class 3 has a range of
10 m). Each class has a different power rating and therefore a different current
consumption.

2.8.2 Comparison of Communication Protocols

A comparison of the communication protocols is given below:

Table 2.3: Comparison of communication protocols

Category Xbee Nordic Bluetooth LE WiFi
Range 90 m 100 m 100 m 30 m
Data Rate 250 kbps 2 Mbps 24 Mbps 54 Mbps
Tx current 340 mA 11.3 mA 15 mA 370 mA
Rx current 55 mA 12.3 mA 15 mA 110 mA
Price R 385 R 68 R 239 R 207
Package size 24.38 × 27.61 mm 34 × 14 mm 15 × 15 mm 30.5 × 19.4 mm
Interface UART SPI I2C, UART, SPI I2C, UART, SPI
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2.9 Summary of Literature

The required available literature has been reviewed in the above chapter. As can be
seen, little research has focused on studying the cheetah’s spine and tail dynamics which
justifies this study. Additionally, the available MOCAP systems are not feasible to track
the motion of wild cheetahs. The literature review covered all the relevant background
required to design and build a low cost MOCAP system and to develop the state estimation
and filtering algorithms.
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Chapter 3

Methodology

There are two main problems that were addressed in this research. The first is the
design (hardware and software) of the sensor network that was used to obtain data from
the cheetah (the mechanical rig), and the second was the filtering and state estimation
algorithms which used the data from the sensor network to track the motion of the
cheetah’s spine and tail (the mechanical rig) and required a dynamic model of the system.

This chapter explains the research, design and implementation process that was followed
in this thesis to solve the above problems and to answer the questions stated in Section
1.4.

3.1 Modelling and Simulating the System

The dynamic system (the cheetah spine and tail) was modelled using Lagrange dynamics
[44] [98] and the rigid beam assumption [42]. The tail and spine were each modelled with
two rigid beams as seen in Figure 3.1.

From video analysis of a cheetah flicking its tail during rapid manoeuvres [13], it can
be seen that the tail is kept fairly rigid, see Figure 3.2, and therefore the rigid beam
assumption for the tail is a reasonable starting point. The spine of the cheetah has also
been observed in video footage [14], and it has been noted that the spine flexes near the
rear while the front section remains fairly rigid. Therefore by modelling the spine with
two rigid beams, of different lengths, this effect was captured.

It is assumed that the two rigid beams that represent the tail can only pitch and yaw,
whereas the spine rigid beams can roll, pitch and yaw. From necropsy data, of a cheetah
that was euthanized due to renal failure [40], it was observed that the tail is powered by
four large muscles (two muscles on the top, and two at the bottom, as seen in Figure
3.3. The two muscles responsible for pitch torques are the M. sarcocaudalis dorsalis
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Figure 3.1: Image showing the rigid beams used to model the spine and tail. Two beams were used to
model the spine and two for the tail. The white squares represent the sensors that are placed onto the
cheetah. Image modified from [99].

Figure 3.2: Image showing a cheetah chasing a gazelle. Note the rigid tail. Image from [100].

medialis and lateralis muscles [38]. The two muscles responsible for yaw torques are the
M. coccygeus medialis and lateralis muscles [38]) and therefore the tail is not capable of
generating a roll motion. The spine is powered by a more complex array of muscles and
can therefore roll, pitch and yaw.

The tail was noted to be extremely furry and therefore aerodynamic experiments were
performed. The fur was attached to a rig and placed in a wind tunnel as shown in Figure
3.4. The force generated was recorded using a scale (Camry EK3252 electronic scale)
and the drag coefficient of the fur was calculated. The scale measured the force required
to keep the middle cylinder of the rig in its initial position. The drag effect is discussed
in more detail in Chapter 5. The aerodynamic effects were taken into account when
generating the Lagrange model of the tail.
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Figure 3.3: Necropsy images of the tail. Note the four main tendons (the white streaks down the tail
that connect the four main muscles to the tail vertebrae) on the left and the diameter of the tail and
fur on the right. The tip becomes increasingly thin and the fur becomes increasingly thick. Images from
[38].

The system was simulated in Matlab using a combination of analytical and numerical
methods. The filtering and state estimation algorithms were designed using the kinematics
and kinetics models that were developed using Lagrange dynamics. The algorithms are
developed in Chapter 6.

3.2 Data Capture

The developed filters and state estimation algorithms require sensor data that can be
related to the motion of the system. A sensor network was developed to capture the
dynamics of the cheetah. The data from the sensor network was then used in the
algorithms to estimate and predict the motion of the cheetah (or the mechanical rig).
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Figure 3.4: Cheetah fur placed on the two wind tunnel rigs. Fake fur (the white fur on the left) was
used to remove the boundary layer effects. The reason for the fake fur was due to the scarcity of cheetah
fur. The rig on the left is used for the cylinder test, the rig on the right is used for the tip test.

The sensor network is developed and discussed in detail in Chapter 4.

From video analysis [13] [14] [15], it was decided to have a sensor on the collar of the
cheetah, one at the base of the tail, one in the middle of the tail and another at the tip
of the tail as can be seen in Figure 3.1. From this configuration the 3D motion of the
cheetah can be captured.

From the literature, motion sensing often makes use of multiple 9 axis IMUs [76] [77]
[78] that contains a three axis accelerometer, a three axis magnetometer and a three axis
gyroscope. Therefore each sensor will contain a 9 axis IMU and the collar will have an
additional GPS module for absolute position determination. All sensors were wirelessly
connected.

3.3 Testing the Algorithms and Models

In order to test the models, filters and state estimation algorithms that were generated, a
mechanical rig to simulate a tail flick and spine motion was built and the sensor network
was placed onto the rig. Multiple rigs were designed and built to test the different
algorithms. The first rig simulated a tail flick for the pitch case, while the second rig
simulated a tail flick as well as spine motion for the pitch case. The tail and spine of the
rig were made of a hollow foam cylinder and a plastic pipe respectively. This allows for
the spine and tail to slightly flex during a tail flick as observed when a cheetah flicks its
tail.

The tail rig flicks the tail from a vertically down position, to a vertically up position and
back down again. The cheetah generally flicks its tail just over 90 degrees and therefore
if the sensor network can track a 180 degree flick it will be able to capture the motion
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of the cheetah tail. The tail rig can be seen in Figure 3.5. A flow diagram depicting the
operation of the mechanical rig is shown in Figure 3.6.

(a) Side view (b) Front view

(c) The rig performing a 180 degree flick up and then back down again.

Figure 3.5: Images of the tail pitch rig. The LEDs are tracked by the camera system and represent the
position of each sensor. The red LED comes on when the data is being logged by the sensor network.
This is used to synchronize the camera data to the sensor data. Image c shows the tail rig during a flick.

The spine and tail rig flicks the tail from a horizontal position, to a vertical position and
back again. The rig also allows passive bending of the spine. The rig can be seen in
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Figure 3.6: A flow diagram depicting how the mechanical rig operates. The motor is actuated after
the user pushes a button. The motor pitches the tail until it reaches 80 degrees (horizontal is 0 degrees)
and then the motor turns off and the momentum keeps the tail going until it hits the limit switches at
the 90 degree mark. The direction of the motor is then reversed. The same occurs for the downward
motion.

Figure 3.7.

A DC motor (Maxon DCX-35L, gear ratio of 26, motor torque constant of 13.7 mNm/A,
12 V motor with a no load speed of 8140 rpm) was used to simulate the spine bending
and the tail flicking. A rotary encoder and mechanical end stops with limit switches were
used to control the flick of the tail. An LED was used to synchronize the camera data to
the logged sensor data. One of the LEDs on the rig turned on when the sensor network
started data logging and turned off when it stopped logging. This was picked up by the
camera system. A current sensor (ACS714) was attached to the motor and the current
was logged. This reading was used to calculate the motor torque to compare it to the
estimated torque from the state estimation algorithms. It was only used on the tail rig
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Figure 3.7: Spine and tail rig. The rig rotates the tail from the horizontal position seen on the left to
the vertical position seen on the right. Note the LEDs/blobs that are tracked by the camera system and
the bending of the spine. Image at the bottom shows how the motor flicks the tail and bends the spine.
Note the DC motor covered in mu metal.

as the estimated torque state is a tail torque. The tail and spine rig used a single DC
motor to actuate the spine and the tail and therefore the motor current cannot be used
to compare to the estimated tail torque.

The peak angular velocity of the tail was calculated to be approximately 17 rad/s from
video footage [101] of wild cheetahs. This value was used to select the speed of the motor
for the tail flick. The tail on the mechanical rig flicked at 8 rad/s for the tail rig and
11 rad/s for the spine and tail rig. The models were developed for tame cheetahs that
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flick their tails at a lower angular rate which was determined to be 11 rad/s from footage
filmed at Cheetah Outreach in Somerset West, South Africa. Figure 3.8 shows a captive
cheetah flicking its tail at 11 rad/s.

Figure 3.8: Images filmed at Cheetah Outreach. Note how bushy and straight the tail is. The frame
rate was 120 fps and the images span over 17 frames. The cheetah can be seen performing a 90 degree
flick in 0.1417 seconds.

A testing procedure was developed and followed for each test performed on the mechanical
rig. The procedure is as follows:

1. Set up the mechanical rig in its initial position.

2. Turn on the camera system.

3. Turn on the mechanical rig.

4. Begin data logging on the camera system.

5. Begin data logging on the sensor network attached to the mechanical rig (synchronization
light turns on).

6. Perform the tail flick.

7. Stop data logging on the sensor network (synchronization light turns off).

8. Stop data logging on the camera system.

9. Shut down all systems.

3.4 Verification of the Developed Algorithms

To verify the accuracy of the filters, the mechanical rig was placed under a MOCAP
camera system. The camera system is capable of tracking the position of red, green and
blue LEDs. A bright LED (red, green or blue) was placed inside a table tennis ball
and attached to each sensor that was on the rig. Therefore the position generated by
the developed algorithms can be compared to the position generated from the MOCAP
camera system. The LEDs can be seen in Figure 3.5 and Figure 3.7. Four Playstation
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Eye cameras were used in the camera MOCAP system. The system and all the camera
code was developed by Mr. Yashren Reddi [22].

Two cost functions were developed to compare the performance of the developed algorithms.
The first cost function was the mean square error between the estimated position and
the position from the camera system (the Euclidean distance). The formula for the cost
function is expressed as:

cost =

√∑n
i=1 (pFilter − pcamera)

2

n
(3.1)

where n is the number of samples. The cost function is in metres. The second cost
function involves taking the camera system position data and calculating what the pitch
and yaw angles should be. The cost function is then the mean square error between the
camera data angles and the estimated angles. The formula for the cost function is shown
in Equation 3.2. This cost function does not work for the 3D tail and spine algorithms
as the roll angle cannot be determined with the camera system.

cost =

√∑n
i=1 (θFilter − θcamera)2

n
× 180

π
(3.2)

where n is the number of samples. The cost function is in degrees.

3.5 Limitations

The mechanical rig that was used to simulate the motion of the spine and tail used a
large DC motor that saturated the magnetometers that were part of the sensor network.
The magnetometer data was simulated from camera data in Simulink. This however is
not a crucial problem as there will be no magnetic interference when the sensor network
is deployed on wild animals.

Mu metal [102] was used in attempt to shield the magnetic field from the motor. However,
Mu metal only blocks low frequency magnetic fields (such as permanent stationary
magnets) and does not block the magnetic field generated by the current that is flowing
through the motor (the current/voltage was pulsed at 8 kHz to control the motor). The
effects of the motor magnetic field on the magnetometer can be seen in Figure 3.9.

Additionally, the camera system [22] used to validate the results operated at 60 Hz
compared to the 100 Hz of the developed sensor network. Therefore the data from
the camera system was interpolated to 100 Hz, using a Simulink rate transition block, to
enable comparison. The rate transition block implements a linear interpolation algorithm.
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Figure 3.9: Image showing the magnetometer error. Data is of the magnitude of the magnetometer
data during a tail flick. The magnitude should remain constant. Note how the magnetometer magnitude
changes when the motor turns on. The green line represents the state of the motor. When it is 1, the
motor is on, when it is zero, the motor is off.

There is also noise present in the camera system data that was not quantified and taken
into account. The camera system data was assumed accurate and was used as the absolute
position of the sensors. The sensor network system can thus, at best, only be as accurate
as the camera system.

The camera system was designed to track a triangle of known dimensions, with a bright
light (one red, one blue and one green) at each of the corners of the triangle. This
configuration allows for extremely accurate position and attitude tracking (millimetre
precision) [22]. The precision of the system is lost when a single light source is used.
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Chapter 4

MOCAP Sensor Network

In recent years MEMs sensors have become increasingly popular [75] due to their ever
decreasing cost and use in many every day devices such as cell phones, remote controls
(for games and many flying toys), tablets and smart watches to name but a few. This has
driven the prices of these devices down. MEMs sensors are becoming smaller, cheaper,
more accurate, efficient and easily available. This makes them the ideal types of sensors
for a low cost, high speed and small motion capture system.

The purpose of the sensor network was to be placed onto a cheetah or the mechanical
test rig and to capture the dynamics of the system. The data was then used with the
generated algorithms to track the motion and states of the cheetah tail and spine (or the
mechanical rig) which was then further analysed. The sensor network is flexible in that
by changing the models, the sensor network can be used to track a different configuration
of bodies.

There are a number of available MOCAP systems such as the Xsens [68] system, but as
discussed in the literature review, Section 2.5, they are not feasible for this research for
several reasons. Therefore a custom MOCAP system was designed and built.

In this chapter the low cost, high speed and flexible motion capture sensor network
(hardware and software) that was developed is explained and discussed in detail.

4.1 Hardware Design

4.1.1 The Sensors

The sensor network consists of a distributed array of MEMs sensors. The network consists
of one collar sensor, three tail sensors and a base station. A tail sensor is placed at the
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base, the middle and at the tip of the tail. This configuration was shown to adequately
capture the spine and tail states.

The tail sensors consist of an INEMO-M1 and a Nordic NRF24L01 RF transceiver for
communication. The collar consists of an STM32F4, an INEMO-M1, a Nordic NRF24L01
RF transceiver, a WiFi module (not implemented, but used to communicate to the PC, a
wired connection was used during testing) and a GPS module (not implemented). These
will be implemented at a later stage.

INEMO-M1

Four INEMO-M1, Figure 4.1, SOB (system-on-board) chips were available and therefore
were used in the sensor network. The advantages of the chip were that it was small (13
mm × 13 mm × 2 mm) and came with all the required sensors on one board. The only
additional component needed was an RF device to transmit the data. The cost of the
sensor, see Section 4.3, was outweighed by the ease of development.

Figure 4.1: The INEMO chip is shown on the left. Image from [103]. The functional block diagram of
the chip is shown on the right. Image from [104].

The INEMO-M1 has a 9 axis IMU, a temperature sensor, a 32 bit ARM Cortex M3 micro
controller and a voltage regulator (LDS3985M33R, which is an ultra-low drop and low
noise, 300 mA regulator) on board. The 9 axis IMU consists of a 6-axis digital e-compass
module (LSM303DLHC that contains a 3 axis magnetometer and a 3 axis accelerometer)
and a 3 axis digital gyroscope (L3GD20). The INEMO-M1 draws 46 mA when active
(wile reading IMU data with all 9 axes active) and 0.22 mA when in sleep mode.

The e-compass is capable of ± 2g, ± 4g and ± 8g settings for the accelerometer and ±
1.3 gauss to ± 8.1 gauss settings for the magnetometer. The gyroscope can be set to ±
250 degrees per second (dps), ± 500 dps or ± 2000 dps. The micro controller allows for
on board processing and data handling before the data is transmitted.

The mechanical test rig that the sensors were attached to, rotates the tail at 11 radians
per second as discussed in Section 3.3. Therefore the gyroscope was set to ± 2000 degrees

47



4.1. HARDWARE DESIGN

per second as 11 radians per second equals 630 degrees per second. At this angular rate, a
sensor at the tip of the tail will experience about 70 m/s2 normal acceleration (an = ω2r)
and therefore the accelerometers were set to the ± 8g setting.

Nordic NRF24L01 RF module

From a comparison of the available wireless modules in the literature review, Section 2.8,
the Nordic NRF24L01 RF module was considered the most feasible device to be used due
to its power consumption, baud rate, low cost and package size.

This module operates in the 2.4 GHz ISM (industrial, scientific and medical) band and
was used to communicate and transmit data between the tail sensors and the collar. The
module is capable of an over the air baud rate of 2 Mbps and the INEMO-M1 interfaces
to the module via SPI with a maximum baud rate of 10 Mbps. The RF module comes
with a built in chip antenna which made the circuitry design for the tail sensor much
simpler.

The size of the module is 34 mm by 14 mm. The module performs on-board CRC (cyclic
redundancy check, a form of error checking) computation along with data packetization,
handles acknowledgements and can be programmed to re-transmit the data if it gets
corrupted while transmitting. The module can be synchronized to receive data from up
to six other devices, each with its unique data pipe and address.

Each packet can be up to 32 bytes long, and can be attached to an acknowledgement
byte for bi-directional communication. The data packet is appended to a larger packet
that is transmitted by the module. The packet consists of a preamble byte, a five byte
address, the payload (up to 32 bytes) and a two byte CRC value. The packet is shown
in Figure 4.2.

Figure 4.2: Image showing the packet that the Nordic NRF24L01 RF chip transmits.

During transmission the chip draws 11.3 mA of current and while it is receiving data it
draws 13.5 mA of current. The devices standby current is 22 µA. It has a range of 100
m on its maximum power setting. The module is shown in Figure 4.3.

The Battery

Due to the low power consumption of the sensor module, a single cell Lipo battery (1S,
20C) will be used to power the device. The battery has the correct voltage range for the
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Figure 4.3: Image on the left is of the Nordic chip that was used. The chip has a chip antenna and is
34 mm by 14 mm. Image from [105]. Image on the right shows the functional block diagram of the chip.
Image from [106].

INEMO-M1 and therefore an additional regulator was not required. The INEMO accepts
2.4 V to 3.7 V and the Nordic NRF24L01 chip accepts 3.3 V as the input voltage.

The battery is rated at 3.7 V and is a 138 mAh battery. The size of the battery is 32
× 20 × 7 mm and it weighs 8 grams. The battery will allow the sensor to last for over
two hours of constant data transmission (sensor only transmits for a maximum of 1 ms
for every 10 ms and takes 2 ms to read the data from the MEMs sensors. The rest of the
time it is in low power mode, and therefore will last longer).

The battery would be adequate for testing on tame cheetahs at Cheetah Outreach, but
not for wild cheetahs. For the wild tests some form of energy harvesting technique will
be required as the sensors will need to operate for months at a time. This could be
implemented using solar panels on the collar as done in [20]. This is big and bulky and
will not work for the tail sensors. The tail sensors will require a high energy density
battery in combination with clever software and electronics to maximise its efficiency and
operating time.

4.1.2 PCB Design

A development board for the INEMO-M1 was designed in Altium Designer and developed
in order to test the sensor code, MEMs sensors and RF module. The board is shown in
Figure 4.4a. A second revision of the board was developed once all the components were
finalized and the code was working. This board is smaller (31.6 × 17.6 mm) and has all
the peripherals on one board. This board is shown in Figure 4.4b and the block diagram
of the board is shown in Figure 4.5b.

A prototype collar sensor was also developed. This was developed on Vero board as
the WiFi and GPS modules were not implemented. The collar consisted of an INEMO-
M1, NRF24L01 chip, STM32-F4 microprocessor and a wired connection to the PC base
station. The block diagram of the collar sensor is shown in Figure 4.5a.
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(a) Development board 1 track layout. (b) Development board 2 track layout.

(c) The two development boards. The board on the right has
the NRF24L01 chip as a daughter board.

Figure 4.4: INEMO development boards.

4.1.3 Sensor Network Layout

The sensor network consists of three different components. There is the base station, the
collar sensor and the three tail sensors. The base station can only communicate with the
collar sensor and receives all the sensor data from the collar. The base station consists
of a PC that runs an application that was developed to check that the communication
between the collar and the tail sensors is functioning and all the received data is displayed
onto the computer screen in real time.

The collar sensor is the master and communicates with the three tail sensors via the
NRF24L01 RF chips. The tail sensors are the slave sensors. The layout of the system is in
the form of a common star topology as seen in Figure 4.6. Each tail sensor communicates
wirelessly with the master which in turn communicates wirelessly with the base station
via WiFi. The wireless base station was not implemented in this project, instead a wired
connection was used.
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(a) Collar sensor block diagram.

(b) Tail sensor block diagram.

Figure 4.5: The top image shows the block diagram of the collar sensor. The WiFi and GPS modules
were not implemented. The bottom diagram shows the block diagram for the tail sensor.
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Figure 4.6: Image showing the topology used for the sensor network.

4.2 Software Design

The master sensor (the collar sensor) runs an RTOS (Real time operating system) called
freeRTOS [107]. The RTOS has two main tasks. The task with the highest priority is the
task responsible for communicating with and getting the data from the tail sensors. The
reason why this task has the highest priority is due to the fact that the data from the
tail sensors need to be synchronized, which is handled by this task. The second task is
responsible for sending the data back to the base station. This task has a lower priority
as the data received on the PC was not time critical. An RTOS ensures that the networks
sensor data is captured every 10 ms (a frequency of 100 Hz and a sample interval of 10
ms).

The collar sends out a request to all the tail sensors, at the same time, for them to read
the MEMs data (the 9 axis IMU). This ensures that the data from all the sensors are
synchronized. The collar then individually sends a request to each sensor requesting its
data. This data is then collated and sent to the PC. An activity diagram of how the
collar sensor works is shown in Figure 4.7.

The tail sensor begins by setting up its required peripherals and then waits for the request
to read the MEMs sensors. Once it has read all the data it waits for the request to send its
data to the collar sensor. Each tail sensor has a unique request code and a common read
data code. When the tail receives data on the NRF24L01 chip, an interrupt is generated
and wakes up the processor. An activity diagram of how the tail sensor works is shown
in Figure 4.8.

A PC application was developed in Visual C# that allows for data logging functionality
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(a) Activity diagram of the collar sensor. (b) Activity diagram of the
request sensor block.

Figure 4.7: Image on the left showing the activity diagram of the collar sensor. Due to complexity
and repetition, the request sensor (S1, S2, S3 and S4) activities have been removed and are shown on
the right. A success byte was transmitted to the PC to determine which sensor packet was received
successfully. Note S4 is the collar sensor, while S1 to S3 are the tail sensors.

and to check if the communication between the collar and the tail sensors is functioning.
The data is displayed on the application for the user to see and the GUI (graphical user
interface) is shown in Figure 4.9. Due to the fact that the application can log data, the
collar did not have data logging functionality. The collar receives data from the slaves,
added its own IMU sensor data, packetizes it and transmits it to the base station. The
sensors were calibrated before the tests were performed. The calibration algorithms are
discussed in detail in Appendix A.1.

4.2.1 MOCAP Frequency Validation

Consider the case of a sensor at the tip of the tail, while the tail is rotating. The length
of the tail is 0.7 m and has a peak angular rate of 11 rad/s (see Section 3.3). Two rates
are compared, 60 Hz (the frequency of the camera system) and 100 Hz (the frequency of
the sensor network). The angular displacement in one time step of the sensor at the tip
of the tail (0.6 m from the pivot point) is as follows:
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Figure 4.8: Image showing the activity diagram of the tail sensor.

Figure 4.9: Image showing the C # application that was used to data log the data from the sensor
network. The application runs on the base station.

∆θ = ω∆t =
ω

f

∆θ100 Hz =
11

100
= 0.11 radians = 6.3 degrees

∆θ60 Hz =
11

60
= 0.1833 radians = 10.5 degrees

(4.1)

where f is the frequency, ω is the angular rate and ∆t is the sample interval. This
corresponds to an arc length per time step of:
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s = rθ

s100 Hz = 0.6× 0.11 = 0.066m

s60 Hz = 0.6× 0.1833 = 0.11m

(4.2)

where s is the arc length, r is the radius from the pivot point to the sensor and θ is
the angular displacement. Therefore by having the system operate at a higher frequency
the maximum displacement that needs to be tracked is 0.066 m compared to 0.11 m.
This will help improve the accuracy of the system and enable it to track higher speed
manoeuvres. With the use of a real time operating system the network is capable of data
logging at 100 Hz.

4.3 Cost of the Sensor Network

Cost along with ease of development were two of the chief design goals for the motion
capture network. As such, special care was taken to select the components. The individual
prices for all the components of the tail sensor are listed in Table 4.1 and the individual
prices for all the components of the collar sensor are listed in Table 4.2:

Table 4.1: Cost per tail sensor and bill of materials

Item Quantity Price
INEMO 1 R 700
PCB 1 R 47
NRF24L01 1 R 68
Pin header 1 R 2.57
Battery 1 R 25
10K 0603 resistor 5 R 0.30
4u7 0805 capacitor 2 R 1.74

TOTAL R 844.61

The base station can use the built in WiFi module which is found in most laptops. The
total cost of the network is 3 × 844.61 + 1821.95 = R 4 354.83. The cost of the Xsens
sensor network (with software and a lifetime licence) was quoted at approximately R 361
997 (Appendix A.14).

A cheaper sensor network can be developed using a surface mount IMU and a simple
low power 8-bit microcontroller instead of the available INEMO-M1 boards. This will
increase the complexity of the PCB design and will make assembling and developing the
boards much harder. Therefore the cost of the INEMO-M1 is outweighed by its ease
of development. With mass production the cost of the components (especially the PCB
boards) will drastically decrease resulting in a cheaper sensor network.
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Table 4.2: Cost per collar sensor and bill of materials

Item Quantity Price
STM F4 1 R 190
WiFi 1 R 207
GPS (NEO-6) 1 R 445
INEMO 1 R 700
PCB 1 R 67
NRF24L01 1 R 68
Pin header 1 R 2.57
Battery 1 R 130
10K 0603 resistor 10 R 0.60
4u7 0805 capacitor 4 R 3.48
lm317 1 R 7
resistors 10 R 1.30

TOTAL R 1 821.95
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Chapter 5

Cheetah Fur Experiments

During the course of this research a cheetah was euthanized due to renal failure at the
National Zoological Gardens in Pretoria, South Africa and the tail became available for
this research. It was hypothesized that the fur had aerodynamic effects and this effect
was tested and quantified using a tail mock-up rig in a wind tunnel. The aerodynamic
experiments performed, along with COM and inertia calculations, are described in this
chapter.

The research conducted in this chapter was performed by the author along with Dr. Amir
Patel and Prof. Edward Boje. This is a brief revision as to why the aerodynamic effect
of the tail was modelled. Further and more detailed research and discussion was done
in Dr. Amir Patel’s PhD [38] and in a journal paper that is under revision [40]. The
author’s contribution to this work was to construct the wind tunnel rigs and to perform
the experiments. The author also wrote the Matlab code to calculate the drag coefficient,
centre of mass and moment of inertia of the tail.

5.1 The Cheetah

Dr. Amir Patel (supervisor of this research) got the opportunity to observe the necropsy
and to help record the data that was used for this research. The cheetah tail fur was
then brought back to Cape Town, South Africa, to be examined.

The cheetah was 12 years old and weighed 27 kg. Other than renal disease the cheetah
was examined by an expert vet and was determined to be anatomically normal. The tail
length of the cheetah was 74 cm and the length of the body (from the neck to the base
of the tail) was measured to be 77.5 cm. The mass of the skinless tail was 519.5 g and
the mass of the fur and skin was 162 g. The total tail mass was approximately 2.5 % of
the body mass.
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5.2. COM AND INERTIA CALCULATIONS

From images of before the necropsy, the cheetah tail was assumed to be a cylinder of
roughly uniform diameter as seen in Figure 5.1, but from the necropsy results it was
observed that the tail gets increasingly thin towards the tip. The fur at the tip of the
tail was noted to be the longest and thickest. Due to this observation, it was decided to
investigate the effects of the fur on the torque produced by the tail on the body of the
cheetah. After the experiments the fur was preserved using Borax salt.

Figure 5.1: Image of the fur from the necropsy. Note the long and thick tip fur. Image from [38].

5.2 COM and Inertia Calculations

The moment of inertia of the tail (about the base of the tail) and the COM of the tail
were calculated from the necropsy data. The necropsy data included all the relevant
measurements (mass of the bones, mass of the muscles, size of the bones and location of
the bones).

To calculate the moment of inertia of the tail the following formula was used for the kth

vertebra (modelled as a cylinder):

ICOMk
=

1

12
mk(3r

2
k + l2k) (5.1)

where mk is the mass of the kth bone and muscle, rk is the radius of the cylinder that the
bone was modelled as and lk is the thickness of the bone. ICOMk

was then shifted to find
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5.3. CHEETAH FUR EXPERIMENTS

the moment of inertia about the base of the tail using the parallel axis theorem which is
as follows:

Ibasek = ICOMk
+mkH

2
k (5.2)

where Hk is the distance from the base of the tail to the COM of the kth bone. This
is summed over all the bones to find the total moment of inertia of the tail. The total
moment of inertia of the tail about the base was calculated to be 0.0588 kgm2.

The following formula was used to calculate the distance, LCOM , from the pivot point to
the COM of the tail:

LCOM =

∑n
k=1mkHk

mnet

(5.3)

where there are n vertebrae, mk is the mass of the kth bone and muscle, Hk is the distance
from the base to the COM of the kth vertebrae, mnet is the total mass of the tail and
LCOM is the distance from the pivot point to the COM of the tail. It was calculated that
LCOM was 18.61 cm from the base of the tail and the total length of the tail was 74 cm
long. This resulted in the COM of the tail being 26 % of the tail’s length away from the
base of the tail.

These values are plausible as they fall in the range of other known data for the COM
and inertia of the tail from [37]. The mean moment of inertia of the five tails in [37] was
0.045 kgm2 with a standard deviation of 0.012 kgm2 and the mean COM was 20 cm with
a standard deviation of 3 cm.

From the necropsy data, the tail was shown to not be as heavy as may be expected from
the literature [7] [8] and the COM was close to the base of the tail resulting in a relatively
low inertia value. Therefore the assumption that the tail is heavy and has high inertia is
incorrect.

It was then hypothesised that the aerodynamic forces could produce significant torque
on the body in combination with the inertial torques. Aerodynamic experiments were
thus performed to validate this hypothesis.

5.3 Cheetah Fur Experiments

The aerodynamic effects of the cheetah tail during dynamic rapid manoeuvres is still
unknown. It was observed that the tail becomes thin towards the tip whereas the fur
gets longer. The tip of the tail travels at the highest velocity when the tail is flicked. It
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5.3. CHEETAH FUR EXPERIMENTS

was therefore decided to perform an experiment to quantify the aerodynamic effects of
the cheetah fur.

Two different experiments were performed. The first experiment used the fur from the
middle of the tail and the second experiment used the fur from the tip of the tail. The
second experiment investigated the effects of the angle of attack of the tail. Due to the
fact that the cheetah is running forward and flicking its tail, the angle of attack of the
tip varies drastically over a 90 degree flick. This is due to the forward velocity vector
being added to the angular velocity vector of the tail as seen in Figure 5.2. More details
on this experiment can be found in [38] and [40].

Figure 5.2: Image showing the velocity vector components. Note how the forward velocity component
due to the cheetah running changes the angle of attack of the net velocity experienced by the flicking
tail. Image filmed at Cheetah Outreach, Somerset West, South Africa.

5.3.1 Test Rig

Only the results from the first experiment that used the fur from the middle of the tail
was needed to accurately model the aerodynamic effects for the dynamic models of the
spine and tail. The reason why the angle of attack experiment results were not needed
was due to the fact that the mechanical rig was stationary and therefore Vbody in Figure
5.2 was zero and the resulting drag force was always perpendicular to the tail. A rig to
calculate the force generated by the tail was designed and built. The rig consisted of
three cylinders of 50 mm PVC pipe placed vertically in a row in the wind tunnel. The
top and bottom cylinders were fixed to the wind tunnel and were used to remove/reduce
the boundary layer and end effects. By removing end effects we are assuming the cylinder
is infinitely long. The rig can be seen in Figure 5.3.

The middle cylinder was free to move and was attached to a centre beam that went
through the top cylinder and out the top of the wind tunnel. This was connected to a
pivot and transferred a force on a scale as seen in Figure 5.3.

The wind speed of the wind tunnel was adjusted from 10 m/s to 30 m/s in 5 m/s intervals,
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(a) Image showing how the rig works. (b) The cylinder rig with cheetah fur.

Figure 5.3: Image showing how the cylinder rig works. Note the three cylinders and the scale to
measure the force generated. The middle cylinder is free to rotate. It is attached to a beam that pivots
above the wind tunnel. The force that the scale exerts to keep the centre cylinder in position is recorded.
The arrows represent the direction of the wind. The other two cylinders are attached to the wind tunnel
and are used to remove the boundary layer effects.

and nine measurements of the force exerted by the lever arm onto the scale, which keeps
the middle cylinder in line with the other two cylinders, was recorded. The temperature
and humidity were also recorded at the time of the experiment.

To ensure the rig accurately measured the drag force, and the drag coefficient was
calculated correctly, the experiment was first run using the smooth cylinders with no fur.
The results were compared to known textbook data of a smooth cylinder to validate the
rig set-up and calibration. Reynolds numbers were required and it was determined that
the rig accurately measures the drag force. The comparison of textbook and experimental
drag coefficients versus Reynolds number can be seen in Figure 5.4.

The cheetah fur was then attached to the middle cylinder and fake fur (furry material
from a fabric shop to simulate cheetah fur) on the other two cylinders using quick drying
glue. Fake fur was used due to the scarcity of cheetah fur and helped emulate an infinite
cylinder by removing the end effects.

5.4 Wind Tunnel Results

It was hypothesized that the hair on the tail helps generate a reaction torque on the body
of the cheetah due to its aerodynamic properties. The fur gives the tail a larger effective
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Figure 5.4: Image showing the comparison of the smooth cylinder and text book data. As can be
seen the test results follow the same general curve of known textbook data [51]. This validates the wind
tunnel rig set up and calculations.

area (see Section 5.4.1 for more detail) which is beneficial as fur is lighter than muscle. If
the tail was the size of the effective diameter and hairless, it would increase the mass of
the tail and require larger muscles and more energy to actuate the tail. This will effect
the maximum acceleration of the tail. A lighter tail allows for faster motion and larger
drag forces.

It must be noted that the fur was observed to collapse at higher wind velocities. From
wildlife footage this effect was not observed. This has lead to the belief that some form
of piloerection [108] function may be used to keep the fur from collapsing.

The results of the experiment are shown in Figure 5.5. As can be seen the drag coefficient
of the cheetah fur was higher than the smooth PVC cylinder. The drag coefficient also
remained relatively constant across the different wind speeds. The smooth cylinder results
start to break down at higher velocities. The diameter of the furry cylinder that was used
was 0.057 m. This was measured using a vernier and clamping the sides of the cylinder
with fur on it. This however is not valid as there is no distinct fur-air boundary and the
diameter was taken as the skin boundary. This introduced the effective diameter that is
discussed in Section 5.4.1.

62



5.5. DRAG VERSUS INERTIA TORQUE

Figure 5.5: Graph showing the drag coefficients calculated from the cylinder tests. As a reference the
smooth cylinder data is also included. Note that the furry cylinder drag coefficient is much higher than
the smooth cylinder. The diameter of the smooth cylinder was 50 mm and the diameter of the furry
cylinder was taken as the skin boundary of 57 mm.

5.4.1 The Effective Diameter

Due to the fact that the cheetah tail with its fur does not have a distinct fur-air boundary
an effective area was defined. This area made the drag force at 10 m/s match that of the
smooth cylinder. This effective area can then be compared to the area of the skin which
was measured with a vernier. This indicates what size smooth cylinder must be used to
generate the same force as the smaller, furry cylinder.

The actual diameter of the cylinder with fur was 0.057 m but to get the measured data
to line up with smooth cylinder data, an effective diameter of 0.0835 m was used which is
46 % larger. This resulted in the graph shown in Figure 5.6. As can be seen the cheetah
fur drag does not break down at the same Reynolds number as the smooth cylinder.

5.5 Drag versus Inertia Torque

A simulation of a cheetah flicking its tail while running forwards at 20 m/s was developed
in [38]. The simulation compared the inertial and aerodynamic torques generated by the
tail. The results are shown in Figure 5.7. As can be seen the aerodynamic torque plays
a vital role in the net torque generated by the tail.

As can be seen the aerodynamic effect of the tail plays a vital role in generating a reaction
torque on the body. Therefore the aerodynamic and inertia effect, relatively low inertia
and the position of the COM, were taken into account when modelling the cheetah tail.
The advantages of the fur is that the tail has a smaller mass cost and the aerodynamic
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Figure 5.6: Graph comparing the calculated drag coefficients of the furry cylinder using the effective
area compared to the drag coefficient of a smooth cylinder. Note how the smooth cylinder collapses
before the furry cylinder does.

Figure 5.7: Drag torque versus inertia torque. Note how the inertia torque tends to zero as the drag
torque increases. Image from [38].

effects from the fur break down at higher Reynolds numbers compared to a smooth
cylinder.
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Chapter 6

Filtering and State Estimation

In order to track the states of the spine and tail of a cheetah (or the mechanical rig), a
sensor network was attached to the system and data from the sensors (accelerometers,
magnetometers and gyroscopes) were logged. The data, along with the dynamic model of
the system, was used in the filtering and state estimation algorithms that are developed
in this chapter.

6.1 Aim of the State Estimation Algorithms

The aim of the state estimation algorithms were to track the positions of the sensors and
therefore the motion of the spine and tail. The sensors were placed onto a mechanical rig
which was situated under a camera system. The camera system provided a ground truth
that was used to validate the performance of the algorithms using two cost functions.

The first cost function was the RMS error between the estimated position of the sensor and
the ground truth of the sensor. The second cost function was the RMS error between the
estimated angular states and the angles calculated from the ground truth measurements.

The mechanical rig flicked the tail and bent the spine in order to generate sensor data
that was used in the state estimation algorithms. The data was logged at 100 Hz and
the camera system data was logged at 60 Hz, and interpolated to 100 Hz.

6.2 Tuning the Filter Covariance

The filter covariance was tuned using Matlab’s Fmincon and GlobalSearch optimization
functions. These two Matlab functions optimize a cost function by finding the global
minimum. For consistency, only the angular rate noise covariances were tuned in this
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procedure. The angle noise covariances were set to zero as they are kinematically
dependent on the angular rates. The torque covariances are derived and discussed
in Section 6.2.1. Two cost functions were developed, see Section 3.4, to compare the
performance of the algorithms. The algorithms were optimized using the RMS error of
the position of the sensors cost function. These tuned values formed a diagonal process
covariance matrix that was required by the Kalman filter. The measurement covariance
matrix of the Kalman filter was obtained from the sensor datasheets.

6.2.1 Tuning the Torque Covariance

To get the covariance coefficients for the torques, the expected accelerations were modelled.
It was assumed that a 90 degree flick, in 0.5 seconds, must be tracked. The angle of the
tail during a flick was modelled as a ramp and contains two acceleration steps that are
shown in Figure 6.1. The commanded torque to achieve this acceleration is modelled as a
step (according to Newton’s law of motion, Jα = τ , therefore a step acceleration results
in a step torque). The resulting angular velocity of the tail was therefore modelled as
two ramp functions.

Figure 6.1: Image showing the acceleration steps, applied torque, velocity and position of the tail. A
90 degree flick was modelled as shown in the red line. The green line is the modelled angular velocity of
the tail. The blue line is the modelled torque profile and the black arrows are the modelled acceleration
spikes.

Using the standard angular position equation, θ2 = θ1 +w1t+ 1/2αt2, the acceleration at
the halfway point, 45 degrees, can be determined. This occurs at 0.25 seconds and the
angular acceleration is α = 25 rad/s2 (the initial conditions are zero).

Therefore the applied torque for an acceleration of 25 rad/s2 is 25J where J is the moment
of inertia of the tail. This is the expected torque value. The covariance of the expected
values is the square of the value. Due to the fact that the system is a discrete system,
the expected value was discretized and resulted in the following covariance value:

covariance = τ 2(∆t)2 = (25J)2(∆t)2 (6.1)
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where ∆t is the sample interval of the system.

6.3 The Tail System

The tail was modelled using two rigid beams. Three algorithms were developed: TRIAD
KF ; Multibody ; and Multibody with torque. These algorithms track the motion of the tail
in the 2D case, shown in Figure 6.2a, and were then extended to the 3D case, shown in
the Figure 6.2b. In the 2D case the beams can only pitch while in the 3D case they can
pitch and yaw. The algorithms are developed below. The subscript 1 represents the first
beam of the tail (closest to the body) and subscript 2 represents the second beam. θ is
the pitch angle and ψ is the yaw angle.

The difference between the three types of algorithms that were developed was that the
TRIAD KF algorithm relies on the TRIAD algorithm as the update for the KF. The
TRIAD algorithm [109] was explained in detail in the literature review (see Section 2.7.2).
The difference between the Multibody and Multibody with torque algorithm was that the
Multibody algorithm assumes that the applied torque on the tail, due to the tail muscles,
is equal to the potential energy and aerodynamic torques and therefore cancel each other
out. In other words the applied torque, potential energy and aerodynamic effect are set
to zero. The Multibody and torque algorithm models the potential energy, aerodynamic
force and applied torque.

6.3.1 Algorithm 1: The TRIAD KF Algorithm

The first algorithm that was developed was the TRIAD KF algorithm. This algorithm
used the TRIAD algorithm to generate the update measurements for the Kalman Filter.
The gyroscope measurements were used for the prediction equations. The TRIAD algor-
ithm is one of the most common attitude determination algorithms and is frequently used
in the literature [91] [92] [109].

The outputs of the TRIAD algorithm were θ1 and θ2 for the 2D system and θ1, θ2, ψ1

and ψ2 for the 3D case, as seen in Figure 6.2, and were used as the measurement data for
the Kalman filter. The TRIAD output noise covariance (the Kalman filter measurement
noise covariance) as well as the Kalman filter process noise was determined using Fmincon
and GlobalSearch, see Section 6.2. The layout of the TRIAD KF algorithm is shown in
Figure 6.3. The TRIAD KF algorithm results are used as the benchmark and the other
filters are compared to its results.
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(a) 2D tail system. The beams can only pitch.

(b) 3D tail system. The beams can pitch and yaw

Figure 6.2: 2D and 3D System diagrams for the tail models

2D System

A pseudo code algorithm for the TRIAD algorithm is shown in Appendix A.8. The state
variables of the Kalman filter are x =

[
θ1 θ2

]′
. The prediction equation is as follows:
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Figure 6.3: Block diagram showing the gyroscope measurements and outputs of the TRIAD algorithm
feeding into the KF algorithm. The magnetometer and accelerometer measurements feed into the TRIAD
algorithm.

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆t
[
ωinertial1 ωinertial2

]′ (6.2)

where ωi is the respective angular rate from the gyroscope reading rotated into the inertial
frame and ∆t is the sample interval of the filter. The H matrix is the identity due to
the fact that the measurement data was in the same form as the states which is shown
in Equation 6.3. This is one of the advantages of having the TRIAD algorithm feed into
the Kalman filter. It drastically simplifies the measurement update stage.

zk = h(xk)

zk = [TRIADθ1 TRIADθ2 ]

Hk =
∂h

∂x
|x̂k|k−1

Hk = I

(6.3)

The algorithm was optimized using the camera data and data from the sensor network
that was placed on the mechanical rig during a simulated tail flick. The results of the
algorithm are shown in Figures 6.4 and 6.5. A cumulative distribution function of the
error is shown in Figure 6.6. The two cost functions equated to an RMS error of 20.36
degrees and an RMS error of 0.16 metres. The results are discussed and compared further
in Section 6.5.
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Figure 6.4: 2D tail TRIAD KF estimated positions results.

Figure 6.5: 2D tail TRIAD KF estimated angles results.
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Figure 6.6: A cumulative distribution function of the angular error.

3D System

The 3D version of the TRIAD algorithm is very similar to the 2D version. The state
variables of the Kalman filter are x =

[
θ1 ψ1 θ2 ψ2

]′
. The prediction equation is

shown below:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆t
[
ωθ1I ωψ1I

ωθ2I ωψ2I

]′ (6.4)

The inertial angular rates are derived in Appendix A.2.1. The F matrix is:

F =
∂f

∂x
|x̂k|k−1,uk−1

F = I + ∆t
∂diag[ωθ1I ωψ1I

ωθ2I ωψ2I
]

∂x
|x̂k|k−1,uk−1

(6.5)

The H matrix is calculated as follows:
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zk = h(xk)

zk = [TRIADθ1 TRIADψ1 TRIADθ2 TRIADψ2 ]

Hk =
∂h

∂x
|x̂k|k−1

Hk = I

(6.6)

The results are shown in Figures 6.7 and 6.8. A cumulative distribution function of the
angular error is shown in Figure 6.9. The algorithm resulted in an RMS error of 49.2
degrees which is equivalent to an RMS error of 0.23 metres. The results are discussed
and compared further in Section 6.5.

Figure 6.7: 3D tail TRIAD KF estimated positions results.
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Figure 6.8: 3D tail TRIAD KF estimated angles results.

Figure 6.9: A cumulative distribution function of the angular error.

6.3.2 Algorithm 2: The Multibody Algorithm

The Multibody algorithm does not rely on the TRIAD algorithm, instead it utilizes the
dynamic model of the system to predict the future states. These states then get updated
using the measurement equations. The dynamics of the system are first modelled using
Lagrange dynamics and then applied to the filter algorithms.
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2D System

The generalized coordinates, see Section 2.3.2, for the Lagrange dynamics are q =[
θ1 θ2

]′
as seen in Figure 6.2. The kinetic energy for the system is shown in Equation

6.7. The velocity of the COM of the rigid beams is required. The equations to calculate
the position, pi, and velocity, ṗi, of the COM are shown in Appendix A.3.

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
)

Trotation =
1

2
(J1θ̇

2
1 + J2θ̇

2
2)

(6.7)

where mi is the mass of the relevant beam and Ji is the moment of inertia of the ith

beam, about the point of rotation. The potential energy, generalized forces and applied
torques due to the tail muscles were set to zero from the assumption that the applied
torque equals the effect of the potential energy and aerodynamic force and therefore
cancel each other out. The M(q) and C(q,q̇) matrices are calculated in Appendix A.4
and are defined in Section 2.3.2. Equation 6.8 is used to solve for the equations of motion
as derived in Section 2.3.2.

q̈ =

[
θ̈1
θ̈2

]
= M(q)−1(−C(q,q̇)q̇) (6.8)

where M(q)−1 is the inverse of the mass matrix. The matrices are described in Section
2.3.2. The Kalman filter now needs to be derived. The state variables of the Kalman
filter are x =

[
θ̇1 θ̇2 θ1 θ2

]′
. The prediction and update equations are provided by

Equation 6.9 and Equation 6.10 respectively.

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆t
[
θ̈1 θ̈2 θ̇1 θ̇2

]′ (6.9)

zk = h(xk)

zk =
[
acc1X acc1Z ω1Y acc2X acc2Z ω2Y

]′ (6.10)

where θ̈1 and θ̈2 come from the equations of motion and the update equations (acc1X etc.
are derived in Appendix A.6). The results of the algorithm are shown in Figures 6.10
and 6.11 with the cumulative distribution function of the error shown in Figure 6.12.
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The angle cost function equated to an RMS error of 14.64 degrees while the position cost
function equated to an RMS error of 0.13 metres. The results are discussed and compared
further in Section 6.5.

Figure 6.10: 2D tail Multibody estimated positions compared to the camera system.

Figure 6.11: 2D tail Multibody estimated angles compared to angles calculated using the camera system
data.
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Figure 6.12: A cumulative distribution function of the angular error.

3D System

The 3D system is very similar to the 2D system except that, instead of having each rigid
beam only being able to pitch, they can now pitch and yaw (no roll as discussed in the
methodology, Section 3.1). The Lagrange generalized coordinates are

q =
[
θ1 ψ1 θ2 ψ2

]′
. The kinetic energy is

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
)

Trotational =
1

2
(Jmid(RgyroItoB(0, θ1, ψ1)

 0

θ̇1
ψ̇1

)2 + Jtip(RgyroItoB(0, θ2, ψ2)

 0

θ̇2
ψ̇2

)2).

(6.11)

The rotation matrices are derived in Appendix A.2 along with the velocities of the COM,
ṗi, in Appendix A.3. The diagonal matrices containing the moment of inertia values
about the point of rotation (roll, pitch and yaw axis) are Jmid and Jtip. The relevant
mass of the beam is mi. The potential energy and the generalized forces, including the
applied torque from the tail muscles, are zero. The equations of motion of the system are
shown in Equation 6.12, and were derived in Section 2.3.2.

q̈ =


θ̈1
ψ̈1

θ̈2
ψ̈2

 = M(q)−1(−C(q,q̇)q̇) (6.12)
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The M(q) and C(q,q̇) matrices are derived in Appendix A.4 and discussed in Section
2.3.2. The state variables of the Kalman filter along with the prediction and update
equations are shown in Equations 6.13 to 6.15.

xk =
[
θ̇1 ψ̇1 θ̇2 ψ̇2 θ1 ψ1 θ2 ψ2

]′
(6.13)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.14)

zk = h(xk)

zk = [acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z . . .

acc2X acc2Z mag2X mag2Y mag2Z ω2Y ω2Z ]′
(6.15)

where the measurement equations (acc1X etc. are derived in Appendix A.6). The results
of the algorithm are shown in Figures 6.13 and 6.14 with the cumulative distribution
function of the angular error shown in Figure 6.15. The cost functions for the algorithm
equated to an RMS error of 15.98 degrees and 0.12 metres. The results are discussed and
compared further in Section 6.5.

Figure 6.13: 3D tail Multibody estimated positions compared to the camera system data.
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Figure 6.14: 3D tail Multibody estimated angles compared to the angles calculated using the camera
data.

Figure 6.15: A cumulative distribution function of the angular error.

6.3.3 Algorithm 3: The Multibody and Torque Algorithm

The aerodynamic effect of the fur was determined to be significant, and therefore this
effect was modelled using generalized forces and D’Alemberts principle as discussed in
Section 2.3.2. An applied torque on the tail due to the tail muscles was also modelled
along with the potential energy. See Figure 6.2 for location of the torques.
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2D System

The Lagrange generalized coordinates are q =
[
θ1 θ2

]′
. The potential energy is no longer

zero. It is shown in Equation 6.16 along with the kinetic energy.

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
)

Trotation =
1

2
(J1θ̇

2
1 + J2θ̇

2
2)

U = m1gp1COM
+m2gp2COM

(6.16)

where g is equal to [0, 0, 9.81] m/s2, mi is the mass of the ith beam, Ji is the moment of
inertia of the beam and ṗi is the velocity of the COM which is derived in Appendix A.3.
Generalized forces take into account the aerodynamic effects. This is shown below.

Qgeneralized forcej =
n∑
i

fi.
∂ri
∂qj

(6.17)

The aerodynamic force was modelled as a point force by integrating over the length of
the beam. The point force acts at the centre of pressure (COP). The force, f, and length,
lCOP , (the distance from the pivot point to the COP) is derived in Appendix A.5. The
position where the force acts, r, are derived in Appendix A.10.

The vector Q contains the generalized forces and the applied torques due to the tail
muscles and therefore Equation 6.17 gets modified to:

Q = Qgeneralized forces +

[
τ1
τ2

]
(6.18)

where τ1 and τ2 are the applied torques due to the tail muscles. The pseudo code algorithm
to calculate the generalized forces is in Appendix A.5.1. The equations of motion derived
in Section 2.3.2 are as follows:

q̈ =

[
θ̈1
θ̈2

]
= M(q)−1(−C(q,q̇)q̇−G(q) + Q) (6.19)

The matrices are derived in Appendix A.4. The filter state variables, the prediction
equation and update equation are shown in Equation 6.20 to Equation 6.22.
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xk =
[
τ1 τ2 θ̇1 θ̇2 θ1 θ2

]′
(6.20)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.21)

zk = h(xk)

zk =
[
acc1X acc1Z ω1Y acc2X acc2Z ω2Y

]′ (6.22)

where τ̇1 and τ̇2 from ẋ, Equation 6.21, are equal to zero. The applied torque on the tail is
unknown and therefore was modelled as a random walk [110]. The definition of a random
walk process is an integration process driven by a zero mean white noise function. The
measurement equations (acc1X etc.) are derived in Appendix A.6.

The results of the algorithm are shown in Figures 6.16 and 6.17. The cumulative
distribution function of the angular error is shown in Figure 6.18. An RMS error of
14.16 degrees and 0.13 metres was achieved by this algorithm. The results are discussed
and compared further in Section 6.5.

Figure 6.16: 2D tail Multibody and torque estimated positions compared to the camera system positions.
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Figure 6.17: 2D tail Multibody and torque estimated angles compared to the angles calculated using
the camera system data.

Figure 6.18: A cumulative distribution function of the angular error.

The estimated torque, τ1, was compared to the logged motor torque and is shown in
Figure 6.19. As can be seen, the logged torque and the estimated torque follow the same
general shape. Readers should note that the motor torque is obtained from a current
reading, and using the motor constant, it is converted to a torque. The efficiency, motor
gearbox and mechanical end stops are not modelled. The torque estimate in the state
estimation algorithm was modelled as a random walk.
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Figure 6.19: A comparison of the motor torque and the estimated torque. The graphs follow the same
general trend. Readers must remember that the motor efficiency and gearbox was not modelled. The
mechanical end stops were not modelled.

3D System

The Lagrange generalized forces are q =
[
θ1 ψ1 θ2 ψ2

]′
. The kinetic and potential

energy are as follows:

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
)

Trotational =
1

2
(Jmid(RgyroItoB(0, θ1, ψ1)

 0

θ̇1
ψ̇1

)2 + Jtip(RgyroItoB(0, θ2, ψ2)

 0

θ̇2
ψ̇2

)2)

U = m1gP1COM
+m2gP2COM

(6.23)

where the rotation matrices are defined in Appendix A.2, mi is the mass of the ith beam,
Jmid and Jtip contain the moment of inertia of the beam in the relevant axis (roll, pitch
and yaw axis) and g is [0, 0, 9.81] m/s2. The position of the COM, pi, and its velocity, ṗi,
are derived in Appendix A.3. Using generalized forces, Equation 6.24, the aerodynamic
force was modelled as a point force by integrating over the length of the beam. The point
force acts at the centre of pressure (COP).

Qgeneralized forcej =
n∑
i

fi.
∂ri
∂qj

(6.24)
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The f vector contain all the applied point forces and is derived in Appendix A.5 along
with lCOP . The length, lCOP , is the distance from the pivot to the COP, where the point
force is applied. The distance r is defined in Appendix A.10. The applied torques due to
the tail muscles are appended to the Qgeneralized forcej matrix as follows:

Q = Qgeneralized forcej
+


τ1pitch
τ1yaw
τ2pitch
τ2yaw

 (6.25)

The equations of motion that were derived in Section 2.3.2, are as follows:

q̈ =

[
θ̈1
θ̈2

]
= M(q)−1(−C(q,q̇)q̇−G(q) + Q) (6.26)

The pseudo code algorithm to calculate the generalized forces is in Appendix A.5.1.
The calculation of G(q), M(q) and C(q,q̇) is shown in Appendix A.4 and discussed in
Section 2.3.2. The Kalman filter state variables are shown in Equation 6.27, followed by
the prediction and update equation.

xk = [τ1pitch τ1yaw τ2pitch τ2yaw ...

θ̇1 ψ̇1 θ̇2 ψ̇2 θ1 ψ1 θ2 ψ2]
′ (6.27)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.28)

zk = h(xk)

zk = [acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z . . .

acc2X acc2Z mag2X mag2Y mag2Z ω2Y ω2Z ]′
(6.29)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figures 6.20 and 6.21 with the cumulative distribution
function of the angular error shown in Figure 6.22. An RMS error of 13.20 degrees and
0.12 metres was achieved by this algorithm. The results are discussed and compared
further in Section 6.5.
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Figure 6.20: 3D tail Multibody and torque estimated positions compared to the camera system positions.

Figure 6.21: 3D tail Multibody and torque estimated angles compared to the angles calculated using
the camera system data.

84



6.4. THE TAIL AND SPINE SYSTEM

Figure 6.22: A cumulative distribution function of the angular error.

The estimated torque for τ1pitch was compared to the logged motor torque and is shown
in Figure 6.23. As can be seen the logged torque and estimated torque follow the same
general curve.

Figure 6.23: A comparison of the motor torque and the estimated torque. The graphs follow the
same general trend. Readers must note that the motor efficiency and gearbox were not modelled. The
mechanical end stops were not modelled.

6.4 The Tail and Spine System

A 2D spine was added to the 2D tail system described above and the algorithms were
modified to take the additional dynamics into account. The 2D spine and tail system is
shown in Figure 6.24a. This was then extended to the 3D case (shown in Figure 6.24b).
In the 2D case, the beams can only pitch while in the 3D case, the spine beams can roll,
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pitch and yaw while the tail beams can only pitch and yaw. A subscript 1 represents the
first beam of the spine, subscript 2 represents the second beam of the spine, subscript 3
represents the first beam of the tail and subscript 4 represents the second beam of the
tail. The roll angle of the beam is represented by φ, θ is the pitch angle of the beam and
ψ is the yaw angle of the beam.

(a) 2D spine and tail system. The beams can only pitch.

(b) 3D spine and tail system. The two spine beams can roll, pitch and yaw. Where
as the two tail beams can only pitch and yaw.

Figure 6.24: System diagram for spine and tail models.

The 3D case resulted in a number of challenges. The equations of motion were too large
to differentiate, the F matrix for the Kalman filter could not be generated and the mass
matrix could not be symbolically inverted. To solve these problems, the algorithm was
implemented numerically [89] [90] instead of analytically. This involves calculating the
mass matrix numerically every time step, then inverting it and calculating the equations
of motion. These were then numerically partially differentiated to solve for the F matrix
for the Kalman filter. The numeric differentiation and integration is discussed in Section
2.7.1 and derived in Appendix A.7. Due to the poorer performance of the TRIAD KF
algorithm, it was not extended to the spine.
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6.4.1 Algorithm 1: The Multibody Algorithm

The Multibody algorithm utilizes the model of the dynamics of the system to predict
the future states. These states then get updated using the measurement equations. The
dynamics of the system are first modelled using Lagrange dynamics and then applied to
the filter algorithms. The aerodynamic effect, potential energy and applied tail torques
are set to zero as it is assumed that the applied torque is equal to, and cancels out, the
aerodynamic and potential energy effect.

2D System

The generalized coordinates for the Lagrange dynamics system are q =
[
θ1 θ2 θ3 θ4

]′
and the kinetic energy is:

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
+m3ṗ

T
3COM

ṗ3COM
+m4ṗ

T
4COM

ṗ4COM
)

Trotational =
1

2
(J1θ̇

2
1 + J2θ̇

2
2 + J3θ̇

2
3 + J4θ̇

2
4)

(6.30)

where mi is the mass of the ith beam and Ji is the moment of inertia of the beam
with respect to the pivot point. The velocity, ṗi, terms are derived in Appendix A.3.
The potential energy of the system, the applied torque from the tail muscles and the
aerodynamic effects are set to zero because it is assumed the applied torque cancels
out the potential energy and the aerodynamic torques. The equations of motion are as
follows:

q̈ =


θ̈1
θ̈2
θ̈3
θ̈4

 = M(q)−1(−C(q,q̇)q̇) (6.31)

The calculation of M(q) and C(q,q̇) is shown in Appendix A.4 and discussed in Section
2.3.2. The state variables of the Kalman filter are shown in Equation 6.32 followed by
the prediction and update equation.

xk =
[
θ̇1 θ̇2 θ̇3 θ̇4 θ1 θ2 θ3 θ4

]′
(6.32)
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x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.33)

zk = h(xk)

zk = [acc1X acc1Z ω1Y acc2X acc2Z ω2Y . . .

acc3X acc3Z ω3Y acc4X acc4Z ω4Y ]′
(6.34)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figures 6.25 and 6.26. The cumulative distribution function
of the angular error is shown in Figure 6.27. The cost functions of the algorithm resulted
in an RMS error of 14.84 degrees and 0.15 metres. The results are discussed and compared
further in Section 6.5.

Figure 6.25: 2D spine and tail Multibody estimated positions compared to camera system positions.
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Figure 6.26: 2D spine and tail Multibody estimated angles compared to angles calculated using the
camera system data.

Figure 6.27: A cumulative distribution function of the angular error.

3D System

The generalized coordinates for the Lagrange dynamics are
q =

[
φ1 θ1 ψ1 φ2 θ2 ψ2 θ3 ψ3 θ4 ψ4

]′
. The kinetic energy is
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Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
+m3ṗ

T
3COM

ṗ3COM
+m4ṗ

T
4COM

ṗ4COM
)

Trotational =
1

2
(J1(RgyroItoB(φ1, θ1, ψ1)

φ̇1

θ̇1
φ̇1

)2 + J2(RgyroItoB(φ2, θ2, ψ2)

φ̇2

θ̇2
φ̇2

)2 . . .

· · ·+ J3(RgyroItoB(0, θ3, ψ3)

 0

θ̇3
φ̇3

)2 + J4(RgyroItoB(0, θ4, ψ4)

 0

θ̇4
φ̇4

)2)

(6.35)

where mi is the mass of the ith beam and Ji is a matrix containing the moment of inertia
about the pivot point of the beam. ṗi is derived in Appendix A.3. The rotational matrices
are derived in Appendix A.2. The potential energy and the generalized forces are zero.
The equations of motion are as follows:

q̈ =
[
φ̈1 θ̈1 ψ̈1 φ̈2 θ̈2 ψ̈2 θ̈3 ψ̈3 θ̈4 ψ̈4

]′
= M(q)−1(−Cq̇) (6.36)

The calculation of M(q) and C(q,q̇) is shown in Appendix A.4. The state variables
of the Kalman filter are shown in Equation 6.37 followed by the prediction and update
equations.

xk = [φ̇1 θ̇1 ψ̇1 φ̇2 θ̇2 ψ̇2 θ̇3ψ̇3 θ̇4 ψ̇4...

φ1 θ1 ψ1 φ2 θ2 ψ2 θ3 ψ3 θ4 ψ4]
′ (6.37)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.38)

zk = h(xk)

zk = [acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z . . .

acc2X acc2Z mag2X mag2Y mag2Z ω2Y ω2Z . . .

acc3X acc3Z mag3X mag3Y mag3Z ω3Y ω3Z . . .

acc4X acc4Z mag4X mag4Y mag4Z ω4Y ω4Z ]′

(6.39)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figure 6.28 with the cumulative distribution function of
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the position error shown in Figure 6.29. Due to the limitations of the camera system
(the roll angle cannot be calculated due to the camera system tracking a single point)
the RMS error, of the angles, could not be calculated. The angles are shown in Appendix
A.9. The position cost function equated to an RMS error of 0.12 metres. The results are
discussed and compared further in Section 6.5.

Figure 6.28: 3D spine and tail Multibody estimated positions compared to the camera system positions.

Figure 6.29: A cumulative distribution function of the angular error.

6.4.2 Algorithm 2: The Multibody and Torque Algorithm

The aerodynamic effect of the fur was determined to be significant and was modelled
using generalized forces and D’Alemberts principle. An applied torque on the tail due to
the tail muscles was also modelled and so was the potential energy. Due to the fact that
only the tail torque was of interest, the potential energy, aerodynamic force and applied
torque for the spine were set to zero. Figure 6.24 shows where the torques act.
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2D System

The generalized coordinates for the Lagrange model are q =
[
θ1 θ2 θ3 θ4

]′
. The

kinetic and potential are as follows:

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
+m2ṗ

T
2COM

ṗ2COM
+m3ṗ

T
3COM

ṗ3COM
+m4ṗ

T
4COM

ṗ4COM
)

Trotational =
1

2
(J1θ̇

2
1 + J2θ̇

2
2 + J3θ̇

2
3 + J4θ̇

2
4)

U =m3gp3COM
+m4gp4COM

(6.40)

where mi is the mass of the ith beam, Ji is the moment of inertia of the beam and g
is [0, 0, 9.81] m/s2. The position, pi, and velocity, ṗi, are derived in Appendix A.3.
The reason why there is no potential energy for the spine is because the spine torque is
unknown and not modelled. Therefore we assume that the applied torque is equal to the
potential energy of the spine and the aerodynamic effect on the spine. The focus of this
research is to calculate the torque that is transferred from the tail onto the body. Using
the principle of generalized forces, Equation 6.41, the aerodynamic force was modelled as
a point force by integrating over the length of the beam.

Qgeneralized forcej =
n∑
i

fi.
∂ri
∂qj

(6.41)

The aerodynamic point force acts at the COP. The force, f, is derived in Appendix A.5
along with lCOP . The position where the force acts, r, is derived in Appendix A.10. The
Qgeneralized force matrix is appended with the applied torques due to the tail muscles
as follows:

Q = Qgeneralized force+


0
0
τ1
τ2

 (6.42)

The equations of motion derived in Section 2.3.2 are as follows:

q̈ =


θ̈1
θ̈2
θ̈3
θ̈4

 = M(q)−1(−C(q,q̇)q̇−G(q) + Q) (6.43)
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The pseudo code algorithm to calculate the generalized forces is in Appendix A.5.1. The
calculation of G(q), M(q) and C(q,q̇) is shown in Appendix A.4. The state variables
of the Kalman filter are shown in Equation 6.44, followed by the prediction and update
equations.

xk =
[
τ1 τ2 θ̇1 θ̇2 θ̇3 θ̇4 θ1 θ2 θ3 θ4

]′
(6.44)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.45)

zk = h(xk)

zk = [acc1X acc1Z ω1Y acc2X acc2Z ω2Y . . .

acc3X acc3Z ω3Y acc4X acc4Z ω4Y ]′
(6.46)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figures 6.30 to 6.32. A cumulative distribution function
of the angular error is shown in Figure 6.33. The angle cost function equated to an RMS
error of 14.94 while the angle cost function equated to an RMS error of 0.16 metres. The
results are discussed and compared further in Section 6.5.

Figure 6.30: 2D spine and tail Multibody and torque estimated positions compared to the camera
system positions.
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Figure 6.31: 2D spine and tail Multibody and torque estimated angles compared to the angles calculated
using the camera system data.

Figure 6.32: 2D spine and tail Multibody and torque estimated tail torques.
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Figure 6.33: A cumulative distribution function of the angular error.

3D System

The generalized coordinates for the Lagrange model are q = [φ1 θ1 ψ1 φ2 θ2 ψ2 θ3 ψ3 θ4 ψ4]
′.

The Kinetic and potential energy of the system are as follows:
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U =m3gp3COM
+m4gp4COM

(6.47)

where mi is the mass of the ith beam, g is [0, 0, 9.81] m/s2 and the rotation matrices are
derived in Appendix A.2. Using the principle of generalized forces, Equation 6.48, the
aerodynamic force was modelled as a point force by integrating over the length of the
beam.

Qgeneralized forcej =
n∑
i

fi.
∂ri
∂qj

(6.48)
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The point force acts at the COP. The force, f, is defined in Appendix A.5 along with
lCOP . The f vector contains all the aerodynamic point forces. The rotation matrices are
defined in Appendix A.2. Where r is defined in Appendix A.10.

The Qgeneralized force matrix is appended with the applied torques due to the tail muscles
as follows:

Q = Qgeneralized force +
[
0 0 0 0 0 0 τ1pitch τ1yaw τ2pitch τ2yaw

]′
(6.49)

The equations of motion derived in Section 2.3.2 are as follows:

q̈ =
[
φ̈1 θ̈1 ψ̈1 φ̈2 θ̈2 ψ̈2 θ̈3 ψ̈3 θ̈4 ψ̈4

]′
= M(q)−1(−C(q,q̇)q̇−G(q) + Q)

(6.50)

The pseudo code algorithm to calculate the generalized forces is in Appendix A.5.1. The
calculation of G(q), M(q) and C(q,q̇) is shown in Appendix A.4. The state variables
of the Kalman filter are shown in Equation 6.51 followed by the prediction and update
equations.

xk = [τ1pitch τ1yaw τ2pitch τ2yaw φ̇1 θ̇1...

ψ̇1 φ̇2 θ̇2 ψ̇2 θ̇3 ψ̇3 θ̇4 ψ̇4 φ1...

θ1 ψ1 φ2 θ2 ψ2 θ3 ψ3 θ4 ψ4]
′

(6.51)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1
(6.52)

zk = h(xk)

zk = [acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z . . .

acc2X acc2Z mag2X mag2Y mag2Z ω2Y ω2Z . . .

acc3X acc3Z mag3X mag3Y mag3Z ω3Y ω3Z . . .

acc4X acc4Z mag4X mag4Y mag4Z ω4Y ω4Z ]′

(6.53)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figure 6.34 and 6.35. A cumulative distribution function
of the position error is shown in Figure 6.36. Due to the limitations of the camera system
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6.4. THE TAIL AND SPINE SYSTEM

(the roll angle cannot be calculated due to the camera system tracking a single point) the
RMS error, of the angles, could not be calculated. The RMS error equated to 0.11 metres
for the above algorithm. The results are discussed and compared further in Section 6.5.

Figure 6.34: 3D spine and tail Multibody and torque estimated positions compared to the camera
system positions.

Figure 6.35: 3D spine tail Multibody and torque estimated tail torques.
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Figure 6.36: A cumulative distribution function of the angular error.

6.5 Summary of Cheetah Model Results

The above results are summarized in Table 6.1. These results are based on the data set
that was used to tune the filter.

Table 6.1: Summary of cheetah model results on tuned data set

Algorithm RMS error (degrees) RMS error (metres)
2D tail Multibody 14.64 0.13
2D tail Multibody and torque 14.16 0.13
2D tail TRIAD KF 20.36 0.16
3D tail Multibody 15.98 0.12
3D tail Multibody and torque 13.20 0.12
3D tail TRIAD KF 49.20 0.23
2D tail and spine Multibody 14.84 0.15
2D tail and spine Multibody and torque 14.94 0.16
3D tail and spine Multibody NA 0.12
3D tail and spine Multibody and torque NA 0.11

A number of other tests were performed. The covariances that were determined, by using
a data set to tune the filter, were then applied to other data sets to determine how well
the filter performed on unseen data. Five additional tail flicks were performed and four
additional spine and tail flicks were performed. The results are shown in Appendix A.11.
The average of the results are shown in Table 6.2 and represented graphically in Figure
6.37 and 6.38.
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6.5. SUMMARY OF CHEETAH MODEL RESULTS

Table 6.2: Summary of cheetah model results (Average)

Algorithm RMS error (degrees) RMS error (metres)
2D tail Multibody 14.38 0.12
2D tail Multibody and torque 7.99 0.10
2D tail TRIAD KF 19.07 0.13
3D tail Multibody 15.85 0.12
3D tail Multibody and torque 7.92 0.11
3D tail TRIAD KF 42.20 0.21
2D tail and spine Multibody 7.68 0.07
2D tail and spine Multibody and torque 8.13 0.07
3D tail and spine Multibody NA 0.12
3D tail and spine Multibody and torque NA 0.13

Figure 6.37: A graphical representation of the angular RMS error for the above algorithms.

Figure 6.38: A graphical representation of the position RMS error for the above algorithms.
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As can be seen by the results the TRIAD KF algorithm did not perform as well as the
other two tail algorithms. This is due to the linear accelerations affecting the TRIAD
algorithm. Due to the poor performance of the TRIAD KF algorithm, it was not extended
to the spine model.

The filters were tuned, see Section 6.2, for position accuracy and not angular accuracy
due to the flexing in the tail and spine. Therefore the angles generated by the filters were
used to calculate the positions assuming rigid beams for the spine and tail which were
compared to the positions from the camera system. The cost functions were derived in
Section 3.4.

As can be seen by these results, two algorithms were developed that can track the motion
of the cheetah tail and spine with an RMS error in metres of less than 0.15 m in all cases.
These algorithms also estimated other states of the system such as the angular rates and
torques generated by the tail.

The tail states can be accurately tracked by the algorithms, but when the spine was
introduced in Section 6.4, the accuracy of the system fell due to the fact that the spine was
a lot more flexible than the tail and therefore the rigid beam model could not accurately
track the motion. As discussed in Section 2.3.1, it is recommended that more rigid beams
should be used to track the state variables of the cheetah’s spine.

The algorithms were also capable of estimating the torque of the tail. The estimated
torque was compared to the motor torque, which was calculated using the current drawn
by the motor multiplied by the motor constant. It was shown that the estimated torque
has the same general shape as the motor torque. The estimated torque does not track
the motor torque exactly due to the fact that the motor efficiency along with the gearbox
and mechanical end stops were not modelled. The applied tail torque in the algorithms
were modelled as a random walk.
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Chapter 7

Discussion and Recommendations

The main aim of the research was to develop a system to estimate the state variables of
a cheetah’s spine and tail using low cost MEMs sensors. This required the development
of a wireless MOCAP system along with dynamic models of the tail and spine. Three
algorithms were generated to track the motion of the tail and due to their performances
only two were extended to track the motion of the spine. The network was placed on a
mechanical rig that simulated the motion of the cheetah and the algorithms were validated
using a camera system. Deploying the sensors in the wild was out of the scope of this
research.

As seen by the results in Section 6.5, two algorithms were generated that can successfully
track the motion of the cheetah’s spine and tail. The algorithms were able to track a
spine and tail flick, in 3D, with an RMS error of less than 0.15 metres. Insight into the
tail torque was also gained, and compared to the logged motor torque, from the Multibody
and torque algorithm.

The Xsens sensor network that was discussed in Section 2.5 is the closest competitor to
the developed sensor network. Xsens boasts an RMS error of 3 degrees per sensor yet they
do not say whether it is a static or dynamic error. The algorithms that were developed
were for an entire system of rigid bodies and achieved an RMS error of less than 16
degrees in all cases for dynamic tests using a much cheaper sensor network system (the
developed network costs under R 5 000 while the Xsens network without the software
costs R 163 896). The filters were tuned to optimise their position estimates and not
their angles; the reason for this was due to the flexibility of the cheetah spine and tail.

From necropsy data, COM and inertia calculations were performed and the results were
found to coincide with published values in [37]. These results go against the commonly
assumed idea that the cheetah tail is heavy with a large moment of inertia value [4] [5] [6]
[7] [8]. From aerodynamic experiments the coefficient of the cheetah’s tail was determined
and was included in the state estimation algorithms.

The algorithms became increasingly complex (for the 3D spine and tail case) and were
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therefore implemented using numerical techniques instead of generating the equations
of motion analytically. To determine if the numeric implementation was functioning
correctly, a 2D tail filter was implemented analytically and numerically and the results
were compared. The analytical cost function (RMS error of 0.1251 m) for the position
error is better than the numerical (RMS error of 0.1354 m) version. For a slight loss
in accuracy, the algorithms can be easily implemented. As can be seen the numerical
implementation of the filters is an accurate and viable solution to handle the increasingly
complex dynamic equations.

There are three main limitations to the research performed. The first limitation is the
camera system that was used to validate the results. The camera system operated at 60
Hz compared to the 100 Hz of the developed sensor network. Therefore the data from
the camera system was interpolated to 100 Hz. There is also noise present in the camera
system data that was not quantified or taken into account. The camera system data was
assumed accurate and was used as the absolute position of the sensors. It is recommended
to use a more accurate camera system such as the Vicon system to validate future results
or to perform a thorough calibration of the camera system and to quantify the accuracy
of the system.

The second limitation was due to the mechanical rig that was built to test and simulate
motion for the developed sensor network. The mechanical rig used a large DC motor that
saturated the magnetometers that were part of the sensor network. The magnetometer
data was simulated from camera data. This however is not a crucial problem as there
will be no magnetic interference when the sensor network is deployed on wild animals.

The third limitation is with regard to the torque estimate. From the results, the algorithms
containing a torque estimate generally performed better. The limitation is that the torque
covariance is tuned for a certain flick profile. As soon as the tail flicks faster or slower,
the algorithm will no longer be able to track the motion reliably as it will result in a
different torque profile.

These limitations do have an impact on the presented results. Although good results were
achieved, due to the camera system having noise in the measurements, the algorithms
cannot be tuned correctly as the camera data is assumed to be the absolute position of
the sensor with no noise. Therefore the developed algorithms can only be as good as the
camera system. The algorithms that have a torque estimate can only track a single flick
profile. The data can either be analysed beforehand to determine the torque profile and
then select a torque covariance to match the flick or the pure kinematics models can be
used instead as it can track multiple flick profiles.

It is recommended to keep the sensor as small and as light as possible. The current
version of the sensor weighs 10 grams and is 32 × 19 mm. If the sensors are too big and
heavy they will alter the dynamics of the cheetahs tail along with irritating the cheetah.
This could change how the cheetah behaves. The sensors must also be firmly attached
to the cheetah in order to stop them from either slipping off or moving/rotating during
a rapid manoeuvre. One problem that will need to be solved is that the sensors will not
be mounted perfectly straight and will need to be rotated so that the sensor axes line
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up with the body axes. A method to attach the sensors to the cheetah must still be
determined.

In order to place the sensors onto a cheetah, the animal will need to be captured and
sedated. This is a complex and expensive task that is not enjoyed by the animal, therefore
the sensors must be extremely robust and have sufficient battery life to last for a few
months at a time. It is recommended that the sensors be switched off during the day and
night and left in sleep mode during sunrise and sunset, when the cheetah is most active.
During these times the sensors can be woken up by an interrupt that is generated by an
accelerometer spike, indicating that the cheetah has started running. This concept was
used by [20] on their cheetah collar.

A limitation of the current developed sensor network is that the collar needs to be within
100 metres of the base station (when WiFi is implemented). Future versions of the collar
will contain a GSM module in order to upload the data to the internet.
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Chapter 8

Conclusions and Future Work

A state estimation and prediction algorithm was developed to track the motion of the
cheetah spine and tail. This required the development of a MOCAP system and dynamic
models. To date, no researchers have developed a system that can be used to analyse and
study the dynamic motion of the cheetah. The research of this MSc engineering study
has answered the questions that were stated in Section 1.4 as follows:

1. One can estimate the states of the cheetahs tail and spine using a low cost IMU
sensor network.

2. It is possible to calculate an estimate of the torques induced onto the cheetah’s
body, by its tail, using low cost IMU sensors.

As can be seen by the results obtained in Section 6.5 which were discussed in Chapter
7, a state estimation algorithm was generated that can accurately track the motion of
the spine and tail of the mechanical rig using data from a custom built, low cost motion
capture system. The algorithms were validated using a camera system and achieved an
RMS error of less than 16 degrees in all cases (not including the TRIAD KF algorithm
that was not used due to its poor performance).

These algorithms can be used to analyse the motion of the spine and tail and will provide
insight into the motion. It was determined that the tail cannot perform a roll motion due
to the layout of the muscles that power the tail. The spine however is powered by a more
complex array of muscles and can therefore roll, pitch and yaw. It was also observed that
the spine bends near the rear, with the front half remaining relatively rigid. This effect
was captured in the model of the cheetah using two rigid beams of different lengths.

The tail was observed to flick rapidly during the transient motions performed by the
cheetah. The aerodynamic and inertial effects of the tail were modelled and it was
determined that the aerodynamic effect plays a vital role in the generated torque. Due to
the fact that the aerodynamics and inertia of the tail were modelled, a torque state was
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included in the algorithms to estimate the applied torque (which is equal to the reaction
torque on the body). The literature assumed that the tail was a heavy and high inertia
tail [4] [5] [6] [7] [8] but it was discovered that the tail was in fact fairly light (about 2.5
% of the body mass) and that it has a relatively low inertia value.

To date, the motion of the cheetah has not been rigorously analysed or studied. There
is also little knowledge on the effects of the spine and tail on the manoeuvrability of the
animal. This research has generated an initial model that can be used to analyse the
motion and to gain further insight into the animal.

The next step is to develop these algorithms further and to perform field tests on wild or
captive cheetahs. The motion of the spine and tail can then be fully analysed. As can be
seen, it is possible to track the motion of a cheetah tail and spine using a low cost (less
than R 5 000) motion capture system costing a fraction of the cost of available systems.

8.1 Future Work

Future work should involve developing the system with the aim of deploying the sensor
network onto cheetahs in the wild. This will involve modifying the developed algorithms
to take into account the linear motion of the animal. Initial investigation and planning
has been done and is described below.

8.1.1 GPS Integration

The algorithms were designed and developed on a stationary mechanical test rig as
discussed in the introduction, Section 1.2.1. When the sensor network is placed onto
the cheetah, it will not remain stationary. The filter algorithms need to be modified to
take this into account. A position estimate filter was designed on simulated GPS (at 10
Hz) and IMU (at 100 Hz) data. The simulation included the cheetah accelerating and
braking along with angular rates simulating the bending of the spine. The results are
shown below. The equations for the filter are derived in Appendix A.13.

This is just an initial investigation into the position filter that will allow the developed
algorithms to move from a stationary rig to a moving animal. The results are summarized
in Table 8.1.

Table 8.1: Summary of position filter results

GPS RMS error in metres
GPS 1.7897
no GPS 87.0966
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8.1.2 Investigation Into Fewer Sensors

Due to the fact that placing sensors onto a wild animal is a challenging task, the fewer
sensors placed onto the animal the better. It was therefore decided to conduct the initial
investigation into what results would be achieved if the tail was modelled as a single
beam. The Multibody and Multibody with torque tail algorithms were modified (for the
3D case only).

The equations of the modified algorithms are shown in Appendix A.12.1. The results
can be seen in Figure 8.2 and Figure 8.3. As can be seen the tip position of the tail is
tracked fairly accurately and will give a good enough approximation of the tail movement
compared to the systems derived in Chapter 6. Further investigation must still be done.

The average RMS error in metres of the one beam Multibody algorithm was 0.1242 and
for the Multibody and torque algorithm the average was 0.1214. When these results are
compared to the 3D tail algorithms they achieved an average RMS error of 0.1194 and
0.1077 respectively. As can be seen accurate results using fewer sensors were obtained.

The MOCAP system will be further developed to a state that it is ready to be deployed
into the wild. The developed algorithms will be modified, as modelling the applied torque
as a random walk is not a valid solution that works for all tail flick profiles. Therefore
a pure kinematics model, that estimates the forces and torques using accelerometer data
as an input to the prediction stage of the Kalman filter, will be developed and tested.
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(a) position filter with 10 Hz GPS update.

(b) position filter with no GPS update.

Figure 8.1: Position filter results.
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Figure 8.2: Position results for the one beam Multibody algorithm.

Figure 8.3: Position results for the one beam Multibody and Torque algorithm.
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Appendix A

A.1 Calibration of MEMs

Before the MEMs sensors can be used, they need to be calibrated. The calibration
removes static biases that are present and also ensures that the sensor axis lines up with
the PCB/body axis. The calibration also removes co-axis coupling that occurs when the
sensor axes are not perpendicular to each other.

A.1.1 Gyroscope Calibration

A static calibration algorithm was applied to the gyroscope raw data. In order to calibrate
the sensor, data was logged at 100 Hz for ten minutes with the sensor stationary. The
angular rate in all three axes as well as the temperature from the temperature sensor was
logged.

The sensor was placed in the sun while the data was logged. This ensured that the
temperature changed while the data was logged. A graph of the angular rate (which
ideally should be zero) versus the temperature was plotted and is shown in Figure A.1.
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A.1. CALIBRATION OF MEMS

Figure A.1: Graph showing the angular rate versus the temperature. Note how the angular rate bias
changes with temperature.

A straight line was fitted to the data. This straight line is used to find the bias at a
specific temperature, as the bias of the sensor changes with the change in temperature.

The line has the form y = mx + c where c is the zero degree Celsius bias and m is
the gradient of the temperature dependence. The current temperature is x and y is the
temperature dependent bias of the gyroscope. This value needs to be subtracted from
the gyroscope reading to get the actual angular rate.

Further dynamic calibration of the gyroscopes can be performed using a turn table
that rotates at a known angular rate. This rate can be compared to the angular rate
determined by the gyroscope and any deviances can be calibrated out.

A.1.2 Accelerometer Calibration

There are many different calibration algorithms that can be used to calibrate the accelero-
meter. A static calibration algorithm was used. This means that the calibration algorithm
will try to approximate the gravity vector as closely as possible in the relevant axis.

Some common algorithms include the 6 parameter, 12 parameter and 15 parameter
calibration algorithms [111]. The 12 parameter algorithm was used and takes into account
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A.1. CALIBRATION OF MEMS

the cross axis interactions and any rotation due to mounting the sensor on the PCB
incorrectly. It is the most general linear calibration of accelerometers and uses a total of
12 parameters to calibrate the sensor.

The sensor is placed in six different positions (one at a time) and data is logged at 100
Hz for at least a minute in each position. The six positions are the positive gravity vector
in each of the three axes and the negative gravity vector in each of the three axes. The
format of the calibrated data is expressed as:

YxYy
Yz

 =

wxx wxy wxz
wyx wyy wyz
wzx wzy wzz

Gx

Gy

Gz

+

VxVy
Vz

 (A.1)

where Y is the calibrated data, G is the raw data, w are 9 of the parameters that form the
gain and rotation matrix and V are the biases (the remaining 3 calibration parameters).
This equation can also be written in the following form:

[
Yx Yy Yz

]
=
[
Gx Gy Gz 1

] 
wxx wxy wxz
wyx wyy wyz
wzx wzy wzz
Vx Vy Vz

 (A.2)

This is shortened to

Y = GX (A.3)

where Y is the calibrated data, G is the raw data with a 1 appended to it and X are the
12 calibration parameters. To calculate the twelve calibration parameters the following
formula is used:

X =
[
GTG

]−1
GTY (A.4)

Where G is a 3 by n matrix of all the logged raw data from the 6 different positions and
Y is a 3 by n matrix which corresponds to what the accelerometer should be measuring
(There are six possible values it can measure: [0,0,±1],[0,±1,0] and [±1,0,0]). The sum
of the number of measurements, n = n1 +n2 +n3 +n4 +n5 +n6, corresponds to the total
number of samples logged in the six different positions.

118



A.1. CALIBRATION OF MEMS

A.1.3 Magnetometer Calibration

The magnetometer is subjected to hard and soft-iron disturbances due to ferrous magnetic
material. A calibrated magnetometer that is rotated through all the angles will give
readings that form a sphere centred at the origin with a radius equal to the length of the
magnitude of the local magnetic vector.

The disturbances and errors due to cross axis interference and mounting misalignment
cause the measurements to generate an ellipsoid, as seen in Figure A.2, that is not centred
about the origin. The calibration takes this ellipsoid and maps it to a sphere about the
origin.

119



A.1. CALIBRATION OF MEMS

(a) uncalibrated magnetometer.

(b) calibrated magnetometer.

Figure A.2: Image showing the uncalibrated magnetometer data at the top and the calibrated data at
the bottom. Note how the calibrated data is more spherical and centred around the origin. Also note
the magnitude of the sphere. The black lines show the location of the origin.
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The calibration consists of 10 parameters. Three are to model the hard iron effect, 6
model the soft iron effect and one takes into account the local magnetic strength [112]
(the length of the magnetic vector).

To calibrate the magnetometer, the three axes of the magnetometer were logged for a
few minutes while the magnetometer was rotated slowly in 3D space. The reason the
magnetometer was rotated was to try and generate a sphere of measurements. The
magnetometer calibration code was edited from [112].

A.2 Rotation Matrices

There are two different types of rotation matrices that are required for the Lagrange
dynamic equations. The first is to rotate vectors from the body frame to the inertial
frame and back again. The second type is to rotate angular rates from the body frame
to the inertial frame and back again.

A.2.1 Relevant Versus Absolute Angle

There are two ways to define the angles in a system. There are relevant and absolute
angles. A relative angle is when the attitude of a body is defined with respect to the
previous body. An absolute angle is where the attitude of a body is defined with respect
to the inertial frame.

To compare the difference in the complexity between relative and absolute angles, the
position of the COM of the second beam, shown in Figure A.3, is calculated and compared.
The positions are shown in Equation A.5 and, as can be seen, the relative equation is
more complex. This is only a simple example and becomes more complex when there are
more beams. The position is used to calculate the velocity, acceleration and the energy of
the system. Therefore, by simplifying the position equation, one simplifies the equations
of motion of the system.
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Figure A.3: Absolute angles versus relative angles.

prelative = RZ(ψ1)RY (θ1)RX(φ1)RZ(ψ2)RY (θ2)RX(φ2)

l20
0

+ RZ(ψ1)RY (θ1)RX(φ1)

l10
0


pabsolute = RZ(ψ2)RY (θ2)RX(φ2)

l20
0

+ RZ(ψ1)RY (θ1)RX(φ1)

l10
0


(A.5)

In this dissertation, all the systems were modelled using absolute angles instead of relative
angles.

Rotating Vectors

The Euler sequence that is used is the roll-pitch-yaw sequence [113]. The rotation matrix
that is used is:

RBtoI(φ, θ, ψ) = RZ(ψ)RY (θ)RX(φ)

RItoB(φ, θ, ψ) = RBtoI(φ, θ, ψ)′
(A.6)

where the roll, pitch and yaw rotations are defined in Equation A.7 to A.9.
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A.3. CALCULATING POSITION, VELOCITY AND ACCELERATION OF A RIGID
BEAM

RX(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (A.7)

RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (A.8)

RZ(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (A.9)

The BtoI stands for body frame to inertial frame and ItoB stands for inertial frame to
body frame. If a particular angle is not used (for example if the rigid body cannot roll)
then its individual rotation matrix is replaced with the identity matrix.

Rotating Angular Rates

To rotate angular rates the following formula was used [58]:

ωbody = R(φ)R(θ)

 0
0

ψ̇inertial

+ R(φ)

 0

θ̇inertial
0

+

φ̇inertial0
0


ωinertial =

 0
0

ψ̇body

+ R(ψ)

 0

θ̇body
0

+ R(ψ)R(θ)

φ̇body0
0

 (A.10)

This is explained in detail in Section 2.4.5.

A.3 Calculating Position, Velocity and Acceleration

of a Rigid Beam

The position of the COM of each rigid body is defined in the body reference frame and
then rotated into the inertial frame. The position of the COM in the body reference
frame is shown in Equation A.11 and the position of the COM in the inertial frame is
expressed as:
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pbodyi =

li0
0

 (A.11)

pinertiali = RBtoI(φi, θi, ψi) ∗ pbodyi +
i−1∑
j=1

pinertialj (A.12)

where
∑i−1

j=1 pinertialj is the offset due to the previous bodies in the kinematic chain. The
rotation matrix that is used to rotate the position is defined in Appendix A.2. The
velocity of the COM is calculated by differentiating the position with respect to time (in
the inertial reference frame) as follows:

ṗinertial =
∂pinertial
∂q

dq

dt
= jacobian(pinertial,q)q̇ (A.13)

The acceleration of the COM is calculated by differentiating the velocity of the COM as
follows:

p̈inertial =
∂ṗinertial
∂q̇

dq̇

dt
= jacobian(Ṗinertial, q̇)q̈ (A.14)

A.4 Lagrange Matrices Calculation

The pseudo code to generate the M(q), C(q,q̇) and G(q) matrices are shown below. The
M(q) matrix is the mass matrix, the C(q,q̇) matrix contains the Coriolis and centrifugal
accelerations and the G(q) matrix contains the potential energy terms.

M: Mass Matrix

The Mass matrix is calculated as follows [46]:

M(q) = jacobian(jacobian(Ttotal, q̇)′, q̇) =
∂(∂Ttotal

∂q
)′

∂q
(A.15)

Where the Jacobian function is defined as follows:
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jacobian(f, ẋ) =
∂f

∂x
=
[
∂f
∂x1

. . . ∂f
∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 (A.16)

C: Coriolis and Centrifugal Matrix

The following psudo code algorithm was used to calculate the C(q,q̇) matrix [46]:

for i = 1 : length(q)

for j = 1 : length(q)

for k = 1 : length(q)

if(k == 1)

C(i, j) = 0.5 ∗ (diff(M(i, j),q(k)) + diff(M(i, k),q(j))...

...− diff(M(j, k),q(i))) ∗ q̇(k);

else

C(i, j) = C(i, j) + 0.5 ∗ (diff(M(i, j),q(k)) + diff(M(i, k),q(j))...

...− diff(M(j, k),q(i))) ∗ q̇(k);

end

end

end

end

(A.17)

Where the diff function is as follows:

diff(f,x) =
∂f

∂x
(A.18)

G: Potential Energy Matrix

The following psudo code algorithm was used to calculate the G(q) matrix [46]:

for i = 1 : length(q)

G(i) = diff(Vtot,q(i));

end

(A.19)
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Where Vtot is the total potential energy of the system.

A.5 Generalized Forces

Using D’Alembert’s principle and generalized forces, the aerodynamic force was modelled
as a point force by integrating over the length of the beam. D’Alembert’s principle is as
follows:

Qgeneralized forcej =
n∑
i

fi.
∂ri
∂qj

(A.20)

The point force acts at the centre of pressure (COP). The variable, lCOP , is the distance
from the pivot to the COP, where the point force is applied. The r vector contains all
the positions of where the above forces act. The position is with respect to the origin in
the inertial frame. The vector, r, takes into account the translation of the second beam
due to the rotation of the first beam. The force, f, is defined as follows:

f1inertial
= RBtoI(0, θ1, ψ1)

 0
f1y
f1z


f2inertial

= RBtoI(0, θ2, ψ2)

 0
f2y
f2z


f1y =

1

2
ρCdA1ψ̇

2
1BlCOP1

f1z =
1

2
ρCdA1θ̇

2
1BlCOP1

f2y =
1

2
ρCdA2ψ̇

2
2BlCOP2

f2z =
1

2
ρCdA2θ̇

2
2BlCOP2

f =
[
f1inertial

f2inertial

]

(A.21)

where fiy and fiz (with i=1,2) are the relevant aerodynamic force components in the body
frame. The f vector contain all the applied point forces. The required rotation matrices
are derived in Appendix A.2. To calculate the COP point and lCOP , the following formula
was used:
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lCOP1 =
τ

F
=

∫ l1
0
xf1(x)dx∫ l1

0
p1(x)dx

f1(x) =
1

2
ρCdθ̇1

2
x

lCOP2 =
T

F
=

∫ l2
0
xf2(x)dx∫ l2

0
p2(x)dx

f2(x) =
1

2
ρCdθ̇2

2
x

(A.22)

A.5.1 Generalized Force Matlab Code

To calculate the generalized forces the following pseudo code was used:

F1 = RBtoI(φ, θ, ψ) ∗ [Fx;Fy;Fz]

F2 = RBtoI(φ, θ, ψ) ∗ [Fx;Fy;Fz]

r1 = distance to F1;

r2 = distance to F2;

f = [F1, F2];

r = [r1, r2];

counter = 1;

for j = 1 : 1 : length(q)

for i = 1 : 1 : length(f(1, :))

dr(:, counter) = diff(r(:, i), q(j));

Q(j) = Q(j) + sum(f(:, i).dr(:, counter));

counter = counter + 1;

end

end

(A.23)

Where f is the vector of point forces in the inertial frame and r is the vector of where the
forces act with respect to the inertial frame.

A.6 Kalman Filter Measurement Equations

The Kalman filter update stage compares the sensor data to a prediction of the data
using the current states of the filter. The prediction equations for the MEMs sensors that
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are used are:

accelerometer = RItoB(φ, θ, ψ)

0
0
g

+ RItoB(φ, θ, ψ)p̈sensor

gyroscope = RgyroItoB(φ, θ, ψ)

φ̇θ̇
ψ̇


magnetometer = RItoB(φ, θ, ψ)

magV ecXmagV ecY
magV ecZ


(A.24)

where the analytic equations for p̈ are derived from Appendix A.3.

A.7 Numeric Implementation

To numerically integrate a variable, it was multiplied by the sampling time. The algorithm
below was used to partially numerically differentiate with respect to one variable.

systemEquations1 = M(q)′(−C(q,q̇)+ε ∗ q̇+ε −G(q)+ε + Q+ε)

systemEquations2 = M(q)′(−C(q,q̇)−ε ∗ q̇−ε −G(q)−ε + Q−ε)

f ′x = (systemEquations1− systemEquations2)/(2 ∗ ε)
(A.25)

Where the matrices are calculated with either ε being added to the variable or subtracted
from the variable that you are partially differentiating with respect to.
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A.8 TRIAD Algorithm Psudo Code

The following code is a psudo code algorithm for the TRIAD algorithm [109]:

gi = [0; 0; 9.81]

mi = [magV ecX magV ecY magV ecZ]′

gb = [accX accY accZ]′

mb = [magX magY magZ]′

ir = gi/norm(gi)

jr = (cross(ir,mi))/norm(cross(ir,mi))

kr = cross(ir, jr)

ib = gb/norm(gb)

jb = (cross(ib,mb))/norm(cross(ib,mb))

kb = cross(ib, jb)

Cbn = [ib jb kb] ∗ ([ir jr kr]
′)

φ = atan(Cbn(2, 3)/Cbn(3, 3))

θ = −1 ∗ asin(Cbn(1, 3))

ψ = atan2(Cbn(1, 2),Cbn(1, 1))

(A.26)

Where gi is the gravity vector in the inertial frame, gb is the measured gravity vector in
the body frame, mi is the magnetic vector in the inertial frame and mb is the measured
magnetic vector in the body frame.

A.9 Multibody Estimated Angles

The estimated angles for the Multibody Algorithm is shown in Figure A.4.
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Figure A.4: 3D spine and tail Multibody estimated angles. The reader should note that the tail can
only pitch and yaw.

A.10 Calculating r for the Applied Force

Below are the equations used to calculate where the applied force, due to the aerodynamic
effect, acts. This position is described from the origin to the COP in the inertial frame.
The rotation matrices are defined in Appendix A.2.

A.10.1 2D Tail System r Equation

r1 = RBtoI(0, θ1, 0)

lCOP1

0
0


r2 = RBtoI(0, θ2, 0)

lCOP2

0
0

+ RBtoI(0, θ1, 0)

l10
0


r =

[
r1 r2

]
(A.27)
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A.10.2 3D Tail System r Equation

r1 = RBtoI(0, θ1, ψ1)

lCOP1

0
0


r2 = RBtoI(0, θ2, ψ2)

lCOP2

0
0

+ RBtoI(0, θ1, ψ1)

l10
0


r =

[
r1 r2

]
(A.28)

A.10.3 2D Spine and Tail System r Equation

r1 = RBtoI(0, θ3, 0)

lCOP1

0
0

+ RBtoI(0, θ1, 0)

l10
0

+ RBtoI(0, θ2, 0)

l20
0


r2 = RBtoI(0, θ4, 0)

lCOP2

0
0

+ RBtoI(0, θ1, 0)

l10
0

+ RBtoI(0, θ2, 0)

l20
0

+ RBtoI(0, θ3, 0)

l30
0


r =

[
r1 r2

]
(A.29)

A.10.4 3D Spine and Tail System r Equation

r1 = RBtoI(0, θ3, ψ3)

lCOP1

0
0

+ RBtoI(φ1, θ1, ψ1)

l10
0

+ RBtoI(φ2, θ2, ψ2)

l20
0


r2 = RBtoI(0, θ4, ψ4)

lCOP2

0
0

+ RBtoI(φ1, θ1, ψ1)

l10
0

+ RBtoI(φ2, θ2, ψ2)

l20
0

+ . . .

+ RBtoI(0, θ3, ψ3)

l30
0


r =

[
r1 r2

]
(A.30)

A.11 Additional Results

The results for the tail Multibody algorithm are shown in Table A.1, the tail Multibody
and torque algorithm in Table A.2 and Table A.3 for the tail TRIAD KF algorithm. The
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spine and tail results for the Multibody algorithm are shown in Table A.4 and Table A.5
for the Multibody and torque algorithm. Note that the results that are quoted in this
section are for the entire system of rigid bodies.

Table A.1: Results for the Tail Multibody algorithm

Data Set RMS error (degrees) RMS error (metres)
2D tail Multibody
data 1 15.82 0.12
data 2 13.33 0.11
data 3 13.31 0.11
data 4 14.87 0.12
data 5 14.61 0.11
3D tail Multibody
data 1 17.07 0.12
data 2 15.58 0.12
data 3 15.00 0.11
data 4 15.66 0.12
data 5 15.94 0.12

Table A.2: Results for the Tail Multibody and torque algorithm

Data Set RMS error (degrees) RMS error (metres)
2D tail Multibody and torque
data 1 9.05 0.10
data 2 7.61 0.11
data 3 7.27 0.10
data 4 8.22 0.10
data 5 7.84 0.11
3D tail Multibody and torque
data 1 8.85 0.10
data 2 7.55 0.12
data 3 7.35 0.10
data 4 8.13 0.11
data 5 7.77 0.11

A.12 One Beam Tail

Placing a number of sensors onto a wild cheetah, especially the tail which is rapidly
flicking, is not feasible and could irritate the cheetah. Investigation into modelling the
tail as a single beam was therefore conducted. The algorithms in Chapter 6 were modified
for this case and described below. Only the 3D case was analysed.
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Table A.3: Results for the Tail TRIAD KF algorithm

Data set RMS error (degrees) RMS error (metres)
2D tail TRIAD KF
data 1 26.10 0.15
data 2 18.39 0.15
data 3 19.33 0.09
data 4 15.05 0.12
data 5 16.46 0.13
3D tail TRIAD KF
data 1 42.08 0.21
data 2 40.72 0.22
data 3 40.67 0.18
data 4 42.40 0.22
data 5 42.12 0.23

Table A.4: Results for the Tail and Spine Multibody algorithm

Data set RMS error (degrees) RMS error (metres)
2D tail and spine Multibody
data 1 7.76 0.08
data 2 9.40 0.08
data 3 5.31 0.05
data 4 8.25 0.06
3D tail and spine Multibody
data 1 NA 0.14
data 2 NA 0.13
data 3 NA 0.12
data 4 NA 0.09

A.12.1 Algorithm 1: The Multibody Algorithm

The tail was modelled as a single beam that can pitch and yaw (no roll as discussed in

the Methodology, Section 3.1). The Lagrange generalized coordinates are q =
[
θ1 ψ1

]′
.

The kinetic energy is shown below followed by the Lagrangian equation:

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
)

Trotational =
1

2
(J(RgyroItoB(φ, θ, ψ)

 0

θ̇1
ψ̇1

)2)
(A.31)

L = Ttranslation + Trotational (A.32)
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Table A.5: Results for the Tail and Spine Multibody and torque algorithm

Data set RMS error (degrees) RMS error (metres)
2D tail and spine Multibody and torque
data 1 8.21 0.08
data 2 9.74 0.08
data 3 5.68 0.05
data 4 8.92 0.06
3D tail and spine Multibody and torque
data 1 NA 0.13
data 2 NA 0.11
data 3 NA 0.13
data 4 NA 0.15

The potential energy, applied torque due to the tail muscles and the generalized forces
are set to zero. The equations of motion of the system that were derived in Chapter 2
are shown below:

q̈ =

[
θ̈1
ψ̈1

]
= M(q)−1(−C(q,q̇)q̇) (A.33)

The M(q) and C(q,q̇) matrices are derived in Appendix A.4. The state variables of the
Kalman filter along with the prediction and update states are shown below:

xk =
[
θ̇1 ψ̇1 θ1 ψ1

]′
(A.34)

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1

F =
∂f

∂x
|x̂k|k−1,uk−1

(A.35)

zk = h(xk)

zk =
[
acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z

]′
Hk =

∂h

∂x
|x̂k|k−1

(A.36)

where the measurement equations (acc1X etc.) are derived in Appendix A.6. The results
of the algorithm are shown in Figure A.5.

134



A.12. ONE BEAM TAIL

Figure A.5: 3D tail Multibody estimated position results.

More results for this algorithm are shown in Appendix A.12.3.

A.12.2 Algorithm 2: The Multibody and Torque Algorithm

The Lagrange generalized coordinates are q =
[
θ1 ψ1

]′
. The kinetic and potential energy

followed by the Lagrangian equation is as follows:

Ttranslation =
1

2
(m1ṗ

T
1COM

ṗ1COM
)

Trotational =
1

2
(J(RgyroItoB(φ, θ, ψ)

 0

θ̇1
ψ̇1

)2)

U = m1gp1COM

(A.37)

L = Ttranslation + Trotational − U (A.38)

The generalized forces are defined below:
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Qgeneralized forcej
=

n∑
i

fi.
∂ri
∂qj

(A.39)

The aerodynamic force was modelled as a point force by integrating over the length of
the beam. The point force acts at the centre of pressure (COP). The force, f, is defined
in Appendix A.5. The f vector contain all the applied point forces. The length, lCOP , is
the distance from the pivot to the COP, where the point force is applied and is derived
in Appendix A.5. The variable r is defined as:

r = RBtoI(φ, θ, ψ)

lCOP1

0
0

 (A.40)

The r vector contains all the positions of where the above forces act. The position is with
respect to the origin in the inertial frame. The Q matrix is combined with the applied
torques.

Q = Qgeneralized force +

[
τ1pitch
τ1yaw

]
(A.41)

The equations of motion are:

q̈ =

[
θ̈1
θ̈2

]
= M(q)−1(−C(q,q̇)q̇−G(q) + Q) (A.42)

The matrices are derived in Appendix A.4. The state variables of the Kalman filter are:

xk =
[
τ1pitch τ1yaw θ̇1 ψ̇1 θ1 ψ1

]′
(A.43)

The prediction and update equations are as follows:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1

F =
∂f

∂x
|x̂k|k−1,uk−1

(A.44)
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zk = h(xk)

zk =
[
acc1X acc1Z mag1X mag1Y mag1Z ω1Y ω1Z

]′
Hk =

∂h

∂x
|x̂k|k−1

(A.45)

Where the τ̇i states in ẋ are set to zero. The results of the algorithm are shown in Figure
A.6. More results for this algorithm are shown in Appendix A.12.3.

Figure A.6: 3D tail Multibody and torque position results.

A.12.3 Summary of Results

The Table A.6 shows the position errors of the algorithms on five different data sets.

The average RMS error for the one beam Multibody algorithm is 0.1242 compared to
0.1194 for the two beam algorithm. The average RMS error for the one beam Multibody
and torque algorithms is 0.1214 compared to 0.1077 for the two beam algorithm. As can
be seen that the results of the single beam algorithm are fairly accurate. This allows for
fewer sensors to be placed on the cheetah and still maintain accurate results.
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Table A.6: Single beam algorithm errors

Multibody RMS error in metres
data 1 0.13404
data 2 0.11836
data 3 0.11489
data 4 0.13092
data 5 0.12297
Multibody and torque RMS error in metres
data 1 0.13265
data 2 0.11593
data 3 0.11256
data 4 0.12586
data 5 0.12022

A.13 GPS Filter

To determine the absolute position of the cheetah, a simple position filter was generated.
The filter made use of the collar IMU and a GPS module. Due to the fact that this was
tested indoors the data was simulated in Matlab. The GPS data was simulated at 10 Hz
and the IMU data was simulated at 100 Hz. Noise was added to the data and the IMU
was made to oscillate to simulate a cheetah running.

The state variables of the Kalman filter were x =
[
φ θ ψ vx vy vz px py pz

]′
where the angles are the angles of the IMU sensor, the v terms are the linear velocity
states and the p terms are the position states. The prediction and update equations are
as follows:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

x̂k|k−1 = x̂k−1|k−1 + ∆tˆ̇xk−1|k−1

F =
∂f

∂x
|x̂k|k−1,uk−1

(A.46)

zk = h(xk)

z1 =
[
ax ay az ωx ωy ωz magx magy magz

]′
z2 =

[
ax ay az ωx ωy ωz magx magy magz GPSx GPSy GPSz

]′
Hk =

∂h

∂x
|x̂k|k−1

(A.47)

Due to the fact that the IMU update rate and GPS update rate were different, there
were two update equations. The second update equation only runs when the GPS data
is available.
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A.14 Xsens Quote

Attached is the Xsens quote obtained on 2015-03-30.

Dear Callen Fisher, 
  
Thank you for your request and your interest in our technology. 
  
As you probably know, the Xsens MVN portfolio consists of full-body, wearable motion capture 
(Mocap) solutions, to be sure you have the full overview of our portfolio and all the option, see 
below all details: 
  
The Hardware 
We actually have 2 different products: 
  
The Awinda = 6 990€ hardware price 
This System is fully wireless, all the Motion Trackers have their own battery inside, and a docking 
station to charge them. 
This system is delivered with straps (include by default in the package), there is no Lycra suit for this 
model. 
More convenient for many different size of people. All specs details below. 
  
The Links = 11 500€ hardware price 
This system has all motion trackers wired inside the lycra suit (include by default in the package) and 
a battery pack on the back of the suit. 
This system fit for high demanding environment. 
All data are sent wireless to the computer. 
 All specs details below. 
  
Hardware specs: 
 

 
Note that we can use both Links and Awinda together simultaneously. 
  
The Software 

Figure A.7: Xsens quote, Mon 2015-03-30, page 1
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We have 2 versions of our software. 
MVN Studio Standard 
MVN Studio Pro 
Our software version is delivered with a subscription, different model are available, see below all 
details 
 Software specs: 

 
  
Software Subscription for 1 year 

 
Subscription per year give you the access to the software and support for 1 year. 
At the end of this period, you are not able to continue using the software you have to renew your 
subscription. Note that you can after a year upgrade to the lifetime license 
  
Software Subscription for 3 years, lifetime license 

 
 
This subscription give you the support for 3 years and include all the new features and new version. 
After the 3 years, if you do not want to renew your subscription, you can still use the license, as it is 
a lifetime license. Of course, you will be able to use the latest download eligible version you have. 
  
It will be a pleasure to give you more in depth info on the systems and pricing. 
Please let me know the best time to set up a call or a Skype demo. 
Looking forward to hearing from you. 
Regards 
  
Sebastien TERRA 
Entertainment Sales Manager 
+31 88 97367 36  Work 
+31 61 17273 63  Mobile 

Figure A.8: Xsens quote, Mon 2015-03-30, page 2
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