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ABSTRACT

In recent years, high altitude unmanned aerial vehicles have been used to great
success in combat operations, providing both reconnaissance as well as weapon launch
platforms for time critical targets. Interest is now growing in extending autonomous
vehicle operation to the low altitude regime. Because perfect threat knowledge can never
be assumed in a dynamic environment, an algorithm capable of generating evasive
trajectories in response to pop-up threats is required. Predetermination of contingency
plans is precluded due to the enormity of possible scenarios; therefore, an on-line vehicle
trajectory planner is desired in order to maximize vehicle survivability.

This thesis presents a genetic algorithm based threat evasive response trajectory
planner capable of explicitly leveraging terrain masking in minimizing threat exposure.
The ability of genetic algorithms to easily incorporate line-of-sight effects, the inherent
ability to trade off solution quality for reduced solution time, and the lack of off-line
computation make them well suited for this application. The algorithm presented

generates trajectories in three dimensional space by commanding changes in velocity
magnitude and orientation. A crossover process is introduced that links two parent
trajectories while preserving their inertial qualities. Throughout the trajectory generation
process vehicle maneuverability limits are imposed so that the resultant solutions remain
dynamically feasible. The genetic algorithm derived provides solutions over a fixed time
horizon, and is implemented in a receding horizon fashion, thereby allowing evasion of
threat areas of arbitrary size. Simulation results are presented demonstrating the
algorithm response for a rotorcraft encountering several different threat scenarios
designed to evaluate the effectiveness of the algorithm at minimizing risk to the vehicle.

Thesis Supervisor: Brent Appleby
Title: Lecturer in Aeronautics and Astronautics
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Chapter 1

Introduction

The past decade has seen tremendous progress in the capability of unmanned

aerial vehicles (UAVs). High endurance UAVs of all sorts are available, and provide the

ultimate in remote operation platforms. The lack of an in-vehicle human operator makes

UAVs ideal for high risk missions, as well as those in which fatigue due to mission

length preclude the use of a pilot.

Inevitably, UAVs have made their way into military battlefield operation, and

have proven their value time and time again. The General Atomics Predator UAV has

provided both a high altitude reconnaissance as well as remote weapons launch platform

to great success. By outfitting the Predator with AGM- 114 Hellfire electro-optically

guided missiles, the vehicle has been able to not only gather reconnaissance from its

cruise altitude of up to 25,000ft, but also strike time-critical targets without requiring

deployment of forces [1]. The proven ability of the Predator in eight different military

Operations since 1995 has placed the UAV in ever increasing demand, and has motivated

interest in outfitting other UAV platforms with weapons systems [2, 3, 4]. Another such

vehicle is the Northrop Grumman Global Hawk, which is capable of remaining aloft for

over 35 hours at its cruise altitude of 65,000ft. The Global Hawk has likewise seen

significant military use in recent years amassing over 1,200 combat flight hours in well

over 50 missions [5, 6]. However, the very nature of the high altitude loitering
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reconnaissance mission places the vehicle at risk of being shot down by surface to air

missiles; indeed, such a mission turns the vehicle into the proverbial "sitting duck".

1.1 The future of combat UAVs

One of the best ways to mitigate this risk has been in use since the very dawn of

combat aviation, and that is simply - fly low. An aircraft flying in close proximity to the

ground is more difficult to detect, and even when detected, the response time available to

the enemy can be severely restricted. Current fixed-wing UAVs mitigate risk of shorter

range threats by flying at very high altitudes, however this strategy eliminates the

potential for missions in which reconnaissance or weapons use require low altitude

operation. In order to accommodate low altitude missions current rotorcraft tactics rely

heavily on terrain flight, defined as "the tactic of using terrain, vegetation, and manmade

objects to mask the aircraft from enemy visual, optical, electronic, and thermal detection

systems" [7]. Based on this key notion, it is no surprise that current military thinking

envisions the use of combat UAVs for low altitude penetration into enemy airspace. A

team of UAVs could conceivably scout an area for unknown threats, provide

reconnaissance, or strike key targets in order to make way for manned aircraft and ground

personnel [8].

Indeed, these ideas paint a picture of the future of unmanned combat vehicles;

however, such missions provide quite a challenge for the algorithms which autonomously

operate the vehicles. Low altitude flight, and even more so Nap-Of-the-Earth (NOE)

flight, is extremely demanding for a human pilot, typically requiring all of the pilot's

facilities to avoid crashing. Likewise, an autonomous system's ability to operate at low

altitudes is limited by its ability to generate flyable trajectories, and furthermore by the

ability of the flight control system to track said trajectories. Of course, the vehicles could

be remotely-piloted in order to reduce the complexity of the required autonomy

algorithms; however, algorithms providing behavior such as threat response are required

due to the possibility of loss of communication or to provide time for the human operator

to assess the situation and review the threat response algorithm's plan.

In addition, these vehicles will be required to operate in partially unknown threat

environments. Typically some known threat information will be available during the
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initial planning of a mission; however, it is not good enough to construct vehicle

trajectories off-line for the extent of the mission. It is common in mission planning to

characterize a threat area by a region of high cost in order to detract the vehicle from

entering the threat region. However, the initial ingress into hostile territory may be made

specifically in order to provide intelligence data on hostile threats, in which case it is

extremely unlikely that all threat locations or even types would be known a priori

(indeed, such knowledge would invalidate the need for the mission). As new threat

locations present themselves, any previously optimized plans run the risk of being

invalidated due to the possibility of losing a vehicle to the new threat. This provides a

significant hurdle to a potential planning system. It is computationally intractable to try

and pre-plan a mission with contingencies for every different possible threat encounter

scenario. Because of this, the planning system must be able to rapidly re-plan trajectories

in order to avoid new threats encountered during the mission.

Beyond this, the possibility exists that the vehicle will become aware of a new

threat while within the threat's range, in which case immediate action would be required

in order to minimize the probability of losing the vehicle to enemy fire. The very essence

of this problem requires potential response algorithms to operate in real-time. In such a

circumstance the vehicle can respond in four general ways, being; (1) the vehicle

continues along its initial path, with no update due to the impending threat, (2) the

vehicle can choose to use its weapons to strike the new threat, (3) the vehicle can suspend

its current mission plan and attempt to escape from the threat's range in a fashion that

maximizes the potential of survival, or (4) the vehicle can remain diligent to its original

plan, however it re-plans its path in an attempt to minimize the overall exposure to the

threat while heading for its goal.

The first response option described above is clearly the least attractive response

available, however if dynamic re-planning of the vehicle's trajectory is not available then

it will be the only option. In the case of offline planning only, it is highly improbable that

the trajectories determined before the knowledge of the impending threat would be the

best means to ensure the probability of vehicle survival, and hence mission success. The

second option is certainly viable, however it would have two certain implications. Firstly,

if the vehicle is indeed carrying weapons that are intended for use in striking targets, use
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of a weapon (or weapons) in order to destroy the new threat would jeopardize the ability

of the vehicle to complete its mission. Indeed, a certain amount of re-planning would be

required to determine whether the threat could be fired upon. Secondly, it is not currently

the thinking of the military to allow an autonomous vehicle with weapons to decide to

prosecute a target at will, with no human intervention. In order to reduce the risk of using

weapons on ill-identified targets, a human operator would be required to assess the threat

situation, and give the fire/no fire decision. This would inherently take a finite amount of

time, and even were the turn and fight tactic to be chosen, some intermediate response

would be required by the vehicle to reduce threat risk until the proper course of action

can be taken.

This leads to the third and fourth response options. Both involve real-time

generation of vehicle trajectories in order to minimize the probability of losing the

vehicle to enemy fire, the only difference being in the latter case the original goal

orientation is maintained. Such capabilities would certainly be highly desirable for a

vehicle operating in an environment subject to pop-up threats, providing means for the

vehicle to autonomously re-plan its trajectory in a timely fashion in order to evade the

threat through maneuvering and terrain masking.

1.2 Objectives

The main contribution of this thesis is the development of an easily adaptable

threat response algorithm for autonomous aerial vehicle trajectory generation in order to

minimize the potential for vehicle attrition due to enemy fire. This is accomplished

through trajectory refinement, exclusive of the use of countermeasures. The algorithm

provides a vehicle trajectory which seeks to minimize risk to the vehicle through evasive

maneuvering and explicit capitalization upon terrain masking in accordance to current

combat tactics [7]. In so doing, the algorithm must account for dynamic maneuvering

limits of the vehicle in order to produce flyable trajectories.

Furthermore, since the vehicle is assumed to be operating at low altitudes, an

extreme importance is placed on providing trajectories that are fully four-dimensional

(three spatial dimensions plus time) in order to maximize the vehicle's ability to reduce

exposure to known threats. By exhibiting four-dimensional control over the vehicle the
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algorithm can fully leverage both known information about the threat capability, as well

as known terrain features which can serve to break line-of-sight (LOS), effectively

preventing detection by the threat or breaking tracking if detected.

It is important to note the objective of this research is not to develop the full

automation vehicle planning system, nor is it to develop the flight control system required

to track a given trajectory. Rather, the intent is to identify and produce a threat response

algorithm that is easily customized for many kinds of aircraft, and provides the required

behavior based on a low altitude mission.

A genetic algorithm approach to solving the autonomous threat response

trajectory generation problem is described in this thesis, and is analyzed for feasibility

through the application to a representative low-altitude rotorcraft mission. The ability of

the vehicle to seek out low risk areas is shown through scenario case studies of low

altitude operation in the presence of threats while operating in mountainous terrain. This

provides means to assess the advantages and disadvantages of solving the trajectory

generation problem through the application of genetic algorithms. Note that genetic

algorithms inherently offer many options for implementation, however the main objective

of this thesis is to develop an appropriate algorithmic implementation and analyze its

potential for solving the problem at hand, as opposed to optimization of the algorithm

design itself.

1.3 Thesis outline

The organization of this thesis is as follows: Chapter 2 begins with an overview of

the low-altitude mission, followed by a discussion of the specific threat evasion algorithm

requirements. The chapter then goes on to review previous research in threat avoidance as

well as trajectory planning, and discusses the motivation for the selection of genetic

algorithms for threat response. Chapter 3 presents a general background into genetic

algorithms, and continues with a specific description of the implementation used to

address threat response re-planning. Chapter 4 presents a progressive set of case studies

to demonstrate the effectiveness of the evasive response planner, and analyzes the quality

of the resulting trajectories. Finally, Chapter 5 summarizes the conclusions made over the

course of the research, and suggests areas of future work.
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Chapter 2

Background

The intent of this thesis is to develop an algorithm and to demonstrate its

effectiveness in a realistic UAV mission environment. To this end the Charles Stark

Draper Laboratory's Chayton program was selected to define both mission requirements

and an overall autonomous planning architecture in which the developed algorithms

could potentially reside. This chapter provides background for an autonomous rotorcraft

mission based on the Chayton program in order to define algorithm requirements.

Furthermore, the specific threats suspected to be encountered must be identified in order

to define the specific threat response behaviors needed to enhance mission safety.

A review of threat response algorithms as well as promising trajectory generation

algorithms is also provided in order to compare and contrast the pros and cons of each

solution method. This comparison leads to the selection genetic algorithms to be used for

threat responsive trajectory generation.

2.1 Mission overview

The Chayton mission consists of a set of activity points that are to be visited over

the course of a mission by a team (or teams) of autonomous rotorcraft (AR). These

activity points are either reconnaissance points or strike points. Reconnaissance points, as

the name suggests, are points at which the vehicle is intended to arrive at and operate
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certain sensors in order to gather the required information. Likewise, strike points are

points at which certain targets are to be destroyed, requiring the vehicle to acquire the

target and fire the weapon designated for the target.

Figure 2-1 shows a typical scenario an individual AR would be faced with. The

diamonds represent reconnaissance points, the circles strike points, and the x's mark the

positions of known threats. The circles around the threats are indicative of the estimated

threat range based upon the threat type. Notice the threat in the upper right hand corner of

the figure is to be destroyed, indicated by the strike point at which weapons are to be

fired from. Although this particular threat does not encompass any other activity points, it

may be desirous to eliminate it to clear the path for following missions.

X 104

3

2.5

E

2

1.5

1

0.5

0 L
0 0.5 1 1.5 2 2.5 3 3.5 4

Crossrange (m)

Figure 2-1 Example AR mission scenario

2.1.1 Threat capabilities

The discussion thus far has assumed some a priori knowledge of both threat

locations and threat capabilities. One frequently encountered military threat that poses a
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great risk to a slow flying (relatively), low-altitude AR is the man portable anti-aircraft

device (MANPAD). The MANPAD is designed specifically in order to combat low

flying vehicles seeking to evade radar detection through terrain masking. In addition,

rocket propelled grenades (unguided rockets) and small arms fire pose risk as well [9].

While threats such as anti-aircraft fire and armored vehicles also create risk for the AR,

the ease of portability, high proliferation, and difficulty in detection make infantry based

threats the more deadly foes.

One such weapon, the SA- 14 Grail, is a common MANPAD that has been in

service since 1978 (Figure 2-2). The SA-14 is a solid motor propelled missile with a

passive infrared seeker head which flies at approximately Mach 1.75, with a range

between 4,500-6,000 meters. MANPADs typically have lower accuracy than larger radar

enabled surface to air missiles (SAM), with a probability of kill for MANPADs on the

order of 30-40% per shot. The infrared (IR) seeker performance is degraded by aircraft

orientation, which affects the IR signature of the vehicle, as well as ground heat in

low-altitude flight. The launch delay for a single weapon system is 35-40 seconds,

including reload, target acquisition, and firing time [10].

Figure 2-2 SA-14 shoulder launched missile [10]

23



Although the single shot kill probability is lower for a MANPAD than a radar

guided SAM, the MANPAD lethality is effectively increased due to the difficulty in

detecting MANPAD locations. Because the MANPAD uses IR tracking as opposed to

radar, typically the initial threat detection occurs after the first rocket has been fired.

Once a MANPAD location has been identified, the most effective strategy to reduce risk

is to break line-of-sight (LOS) through terrain masking. Firing the MANPAD requires the

human operator to first visually identify the vehicle, and then to point the rocket at the

vehicle in order to obtain IR lock. If the MANPAD operator is unable to visually acquire

the vehicle the rocket cannot be launched. The second step in risk reduction is to flee the

threat radius defined by the range of the MANPAD. While it is preferable to break LOS

first if possible, the threat range should be evacuated whether LOS can be broken or not.

This strategy of distancing the vehicle from the threat while attempting to reduce LOS

exposure is even more effective against small arms fire and rocket propelled grenades

due to the fact that both of these weapons are simply bore-sighted when fired.

2.2 Threat evasive response algorithm

Consider once again the example mission shown in Figure 2-1. Let us assume an

activity point sequencing planner (either autonomous or human) has determined the order

of execution of the activity points, and that the strike point in the upper left hand corner

of the figure is to be visited last. Once the order of execution has been established, a route

planner would be called to define a safe path for the AR to travel between the activity

points. Many algorithms for route planning around threat areas exist in the literature (see

Section 2.3.1), and therefore the topic of route planning will not be discussed in this

thesis. For our purposes it will be assumed that one such routing algorithm is called to

define a safe path for the AR to travel between the activity points which avoids the

known threats. Figure 2-3 shows the ordering of the activity points as determined by the

activity sequencer, and the general path which the route planner might select in order to

evade the threats at the most basic level.

Now consider the scenario illustrated in Figure 2-4. The AR is traveling along the

path determined by the route planner when a MANPAD threat is detected in close

proximity to the vehicle. The route planner's threat avoidance mechanism is no longer the
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best means to maximize survivability since the vehicle is well within the threat's

footprint.

Figure 2-3 Initial UCAR plan for example mission

In this instance, the threat evasive response algorithm (TERA) temporarily

assumes control of the vehicle, and the mission objectives are put on hold. Given the

current vehicle location, along with the threat type and location, the TERA planner must

determine a vehicle trajectory (including position, altitude, and velocity) that takes the

vehicle out of the threat's range while attempting to maximize survivability. Because of

the low-altitude aspect of the AR mission, TERA must also provide trajectories that

prevent the vehicle from crashing into the terrain; however, the terrain also provides the

most significant means for enhancing survivability as well. Since the ability of a

MANPAD to fire upon an AR depends on the operator's ability to visually detect and
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track the AR, breaking LOS between the threat and the AR will negate the ability of the

threat to fire upon the vehicle. Because of this, it is imperative that TERA take advantage

of terrain masking when planning trajectories. The TERA planner completes its planning

objective when the vehicle has safely exited the pop-up threat range and notified the

activity sequencing planner that a plan deviation has occurred. Once the threat has been

evaded the sequencing planner must assess whether a re-plan of the overall mission is

required.

Figure 2-4 Pop-up threat encounter during mission execution

2.3 Discussion of algorithms

A brief discussion on previous work in both threat response as well as trajectory

generation algorithms is presented in this section in order to try and identify a candidate
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TERA solution method. Of key interest in different solutions to threat response planning

is the characterization of the threat environment and the fidelity of the resultant vehicle

plans. Likewise, many achievements have been made recently towards trajectory

generation for higher dimensional problems, therefore some review of existing

technology is warranted in light of the demands of low altitude AR operation.

2.3.1 Threat response algorithms

Threat response algorithms have periodically been of interest in the research

community, the first applications to autonomous aerial vehicles appearing in the literature

in the mid 1980's. These different algorithms come in a variety of flavors, but for the

most part fit into the categories of graph search, geometric, or optimal. Each of these

classes of algorithms will be analyzed with respect to the applicability to the problem at

hand.

2.3.1.1 Graph search algorithms

The first proposed algorithms for threat avoidance made use of graph search

methods exclusively. The Dynapath algorithm [11], being the first introduced in the

literature, was interestingly enough one of the few to make use of terrain to reduce threat

exposure. The effect of terrain masking was implicitly included in cost minimization

through the assumption that by penalizing altitude above sea level one could increase

terrain masking by virtue of flying low in general. The overall objective of the algorithm

was to determine a 2D horizontal trajectory following a straight line connecting

waypoints, allowing for cross-track deviation in the interest of flying in low altitude

regions. The possible flight maneuvers were characterized by fixed time step commands

consisting of a discrete set of turn rates, which were in turn used to build a tree of fixed

horizon length and constrained to a maximum cross-track deviation (Figure 2-5). This

tree was searched using Dijkstra's algorithm and appropriate pruning to respect flight

corridor constraints, and finally the vertical aspect of the trajectory was filled in using

conventional terrain following algorithms for fighter aircraft.

Stanley and Bate proposed a route planner for a fighter aircraft based on an A*

search approach [12]. In their algorithm, a coarse, 2 km cost grid is searched using A* to

27



determine a rough cut path. The cost grid for this step was determined at each point as a

function of known threat exposure in an area, as well as a cost scaled by the probability

of an unknown threats being in the region. The second planning stage followed by

searching a tree via A* formed within a set corridor of the original path using I second

maneuvers which allowed increasing, decreasing, or performing no change in turn rate.

During this stage the cost map is augmented by a penalty for the length of time exposure

in direct LOS of a known threat. One of the key advantages with this algorithm is the

explicit dependence on LOS, a factor already established as being of major importance

for threat evasion.
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Figure 2-5 Dynapath tree generation [11]

One of the key drawbacks in using a graph search based algorithm is the fact that

computational complexity explodes as trajectory resolution increases. Using A* over a

Dijkstra search can reduce run time by pruning intelligently, however if the tree were

expanded to include vertical maneuvers as well as velocity, the solution quickly becomes

intractable as the search horizon or resolution in maneuvers increases.

In addition, another issue exists which makes this approach less appealing for our

needs. Bate and Stanley noted (also mentioned in other research as well [13]), the
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determination of the optimistic cost to go heuristic needed for A* search is quite difficult.

Both [12] and [13] attempted the use of straight distance to the goal to generate the cost,

the major issue there being what happens if the straight line to the goal point passes

directly through a threat region? Another method attempted to remedy this problem was

to estimate the optimistic cost to go through the use of a backwards A* search for each

cost to go estimate. The conclusion reached was that straight line cost gave unrealistic

performance, however the more advanced backwards A* cost to go estimation increased

computational complexity unduly.

2.3.1.2 Geometric based algorithms

Several geometric based algorithms have been proposed in the literature. One

common approach is to construct Voronoi polygons about known threat emplacements to

generate a graph of possible routes through a region. Algorithms making use of Voronoi

paths typically include further processing to make the resulting paths dynamically

feasible. For example, Judd and McLain present a two-dimensional, constant velocity,

horizontal plane planner which constructs Voronoi polygons around known threats,

searches the resulting graph using Dijkstra's algorithm to find the lowest cost path, and

finally fits cubic splines between Voronoi edges in order to respect turning rate

constraints of the vehicle [14]. In this case the cost is defined as a sum of edge costs

which are proportional to 1/range 4, evaluated and summed across all edges. Similarly, in

[15] a Voronoi graph is determined, searched using Dijkstra's algorithm, and then made

feasible by adding fillets to corners. In this case velocity is assumed constant along the

path, however the magnitude is selected in order to meet time of arrival constraints. Pop-

up threats are included to force re-planning, consisting of rebuilding the Voronoi diagram

to account for the new threat.

Bortoff proposed an interesting variant of these algorithms in which the resulting

Voronoi path is used as an initial condition to a dynamic simulation intended to refine the

resultant path [16]. The path is modeled as a chain of point-masses connected in series

with springs and dashpots. Each threat is described as a repulsive force, and a simulation

is run to find the minimal energy state of the system, returning the final two-dimensional

path.
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Another method is presented in [17] which constructs paths through a threat rich

region by constructing paths that tangentially connect circles used to describe each

threat's range. In order to move from a point 'A' to a point 'B' the vehicle can move

along the circumference of a threat circle, or along straight line paths connecting circles.

As new threats are introduced the re-planning activity consists of searching for alternate

paths around any given threat that intersects the previous path solution.

One drawback to using one of the algorithms discussed is that they can be ill-

defined in regions of sparse threats. If a vehicle operating in a region with no immediate

threat coverage was to encounter a pop-up threat while within the threat's range, the

resultant Voronoi polygon would contain no edges, and hence provide no insight into

evading the threat. In addition, these methods are inherently two-dimensional, which is

not an ideal starting point for the four dimensional trajectory planning problem we wish

to solve. While altitude could be added in a secondary step (as in the Dynapath

algorithm), this decoupling reduces the power of the algorithm to exploit factors which

are extremely three-dimensional in nature (such as LOS). Perhaps the greatest weakness

is that the algorithms discussed are not easily adapted to provide detailed planning while

within a threat sphere. While it may be possible to extend algorithms of this type in order

to generate three dimensional search graphs using the edges of threat region, as the

number of edges within the graph grows it becomes intractable to perform an optimal

search over the graph.

Figure 2-6 illustrates a typical threat scenario used in a geometric formulation.

The scale of the solution shown is obviously of sufficiently low resolution that even were

the method used for vehicle routing a high resolution trajectory planner would still be

required to determine the near term trajectory response in order to increase survivability.

2.3.1.3 Optimal algorithms

Optimal control algorithms have likewise seen a good deal of interest in trajectory

optimization for threat response [18, 19, 20, 21, 22, 23]. The greatest advantage of these

algorithms is that a dynamic model of the vehicle is used as a constraint for the

minimization of a cost functional. The maneuvering limits of the vehicle can be included

by imposing further state and control constraints during the optimization, resulting in

30



trajectories which are flyable by the vehicle while providing means of proving optimality

in results.

Figure 2-6 Typical threat environment for Voronoi based planning [14]

While this appears to offer the greatest potential for providing the feasible four-

dimensional trajectories we require (computational complexity due to four states aside),

one significant hurdle remains. Each of these algorithms requires an analytically

describable and continuous cost functional in order to proceed with minimization. When

operating in the low altitude regime, LOS between the vehicle and threats becomes a

major contributor in the cost of a specific trajectory, and at any given point LOS is a

binary operator. Line-of-sight cannot be described in a continuous fashion, making any

cost function including LOS effects is inherently discrete and discontinuous in nature,

making optimal solutions impractical.
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2.3.2 Kinodynamic planning

Having explored the options available in the literature for threat avoidance and

finding none that specifically address the requirements for the TERA planner, we must

look to other areas of research in trajectory generation. The area of kinodynamic planning

has received much attention in the literature recently. The term "kinodynamic planning"

was coined to describe path planning that takes into account dynamic constraints in

addition to kinematic constraints. Traditionally, robot path planning has taken place in

the configuration space, a representation used to describe the locations of physical

obstacles in the operating environment [24]. By far the most common path planning

problem solved in the configuration space is one of determining a collision free path

through a complicated maze or set of obstacles. These paths typically are concerned with

circumventing obstacles, and less with observing the dynamic capability of the vehicle.

Kinodynamic planning on the other hand is performed in the state space

(described by both positions and velocities) and therefore is capable of incorporating

dynamic vehicle constraints as well as performing trajectory planning over velocity

dimensions. This is particularly useful to a potential threat response planner as the

probability of attrition due to a threat is generally a function of exposure time. Because of

this, a threat response planner should be able to return solutions involving control over

velocities, or alternatively, over time. Of particular interest are algorithms capable of

efficiently generating results, as the kinodynamic planning problem is thought to be at

least as difficult as the Mover's Problem which is known to be PSPACE-hard [25].

Frazzoli presents a dynamic programming based motion planning algorithm

which is capable of real-time trajectory generation [26]. This algorithm ensures dynamic

feasibility by generating a set of maneuvers and trim conditions using a dynamic model

of the vehicle. The algorithm then "stitches" these maneuvers and trim conditions

together in order to build a trajectory. By generating each trim and maneuver based on

the dynamics of the vehicle, the resulting trajectories are guaranteed to be feasible. This

method provides a bottom up approach to trajectory planning, as opposed to the

traditional top down approach of imposing simplified constraints in an attempt to

generate solutions that can hopefully be tracked by the flight control system. The

algorithm is based on the fact that many vehicles are invariant to certain group
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translations, in particular, disregarding effects of atmospheric density, the time required

for a certain helicopter maneuver is invariant to the initial (x, y, z) position. Therefore, a

library of maneuvers which connect various trim conditions, their time costs, and a

cost-to-go matrix can all be computed a priori, and on-line trajectory generation can be

performed through application of Bellman's "principle of optimality". The result is a

time-optimized, dynamically feasible trajectory which can be computed in real-time, and

is capable of capitalizing on the agility of the vehicle.

The method devised by Frazzoli provides an excellent means to generate real-time

trajectories to the full extent of the vehicle's capability; however, the base assumption of

invariance to group translation in the configuration space can only be made for the

solution of minimum time trajectories. When threat range and LOS are factored into the

trajectory cost calculation, maneuver cost become entirely dependent upon position.

Because of this, Frazzoli's algorithm is not a viable option for threat evasion.

Much of the research as of late in kinodynamic planning has been in randomized

planners, due to the success of Probabilistic Roadmap (PRM) techniques for high

dimensional planning in configuration space [27]. These techniques typically involve the

construction of a roadmap of free paths through random sampling of the configuration

space. This is accomplished through connection of randomly placed nodes, or

"milestones". The resulting graph, or probabilistic roadmap, is then searched for an

obstacle free path.

The concept of PRM's was extended to the state space by LaValle and Kuffner in

a method named randomly-exploring random trees (RRT) [28]. Since then several

variations of the RRT algorithm have been introduced [26, 29] in attempts to generate

more probabilistically complete algorithms. Essentially, RRTs form a roadmap in the

state space by placing milestones with varying levels of randomness (depending on the

version). In [28] the tree is formed by repeatedly placing a random milestone in the state

space, picking the node on the existing tree that is closest in some sense (Euclidean

distance, for example) to the milestone, and applying the control that moves the state

towards the milestone for some fixed length. In [26] the tree is formed by first selecting a

random milestone in the state space. An optimal control is then applied beginning at each

node in the existing tree in an attempt to connect a node to the milestone. Once a feasible
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solution to the endpoint is found, the emphasis changes to minimizing the cost of the

solution. By introducing intermediate milestones and selectively pruning the tree based

on cost, the algorithm is able to refine the solution in order to reduce the solution cost.

The primary focus of the RRT-like algorithms is to find a clear path through an

obstacle field while incorporating dynamic constraints of the vehicle. However, the

typical battlefield mission will not be flown through a field of floating obstacles, hence

the uniform exploration of the space is not as important for TERA. The actual goal is to

direct the search toward minimizing the cost of threat exposure in a setting where the

terrain provides the only kinematic constraint (the constraint being that trajectories

cannot fly underground). An RRT based algorithm for threat response could possibly be

created through the introduction of heuristics to guide the search towards the required

goal; however, this would serve to reduce the exploratory ability which is the

fundamental purpose of the RRT. In addition, the quality of the solution would certainly

depend on the connectivity of the search tree, which could require an exceedingly large

number of milestones since no goal state exists for threat evasion (see Section 2.2).

2.3.3 Genetic algorithms

The success of randomized kinodynamic algorithms for trajectory generation in

high dimensional space suggests that searches including a random element are preferable

to enumeration. Genetic algorithms (GA) are another class of algorithms that use a

randomized directed search to generate solutions. Genetic algorithms have proven

effective in generating configuration space [30, 31, 32], as well as kinodynamic solutions

[33] for vehicle routing. In [30], the authors develop a robot path planner that proves

adept at determining collision-free paths through complex mazes. The authors of [33]

create a genetic algorithm for three-dimensional (horizontal plane plus velocity) UAV

motion planning in environments with uncertain obstacle locations.

Genetic algorithms have several characteristics that make them favorable for

trajectory generation for threat response. One of the significant differences between GAs

and other optimization schemes is that GAs do not take advantage of any known structure

of the cost function undergoing minimization. Instead, the GA simply makes use of the

cost value of each potential solution, which can come from a cost function of any form.
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Many optimization methods require the use of derivatives of the cost function in order to

develop a solution. The fact that GAs do not use cost function knowledge such as

derivates turns out to be quite beneficial in the threat response planning problem.

Optimization methods that require use of derivative information typically require the cost

function to be finitely differentiable to a certain order, which restricts the form of the cost

function. In threat response, if LOS to a threat is broken the cost of the threat effectively

becomes zero. This binary cost multiplier makes the perspective cost function non-linear

and highly discontinuous. Furthermore, the effect of LOS cannot easily be expressed

analytically, as it is a function of terrain which is constantly changing as the vehicle

travels. The effect of LOS is easy to determine, however, if a trajectory is presented and

the cost is merely to be evaluated. This is precisely the way genetic algorithms operate,

making them convenient for the problem at hand.

Along with the cost function restrictions gradient methods impose, unless the cost

function is known to be globally convex (or concave), the use of derivatives inevitably

introduces the potential for finding local minima (or maxima). While the possibility

exists that a GA will find a local minimum of a problem, there exist processes in their

operation which assist in the search for the global optimal solution. Fundamentally, a GA

is a directed randomized search that works a set of complete candidate solutions in

parallel. The intent of working with a set of solutions is that the solution space can be

more readily searched out in order to allow the GA to localize onto a likely solution for

the global optimum.

Some graph based search algorithms are capable of determining the globally

optimal solution to the resolution of their discretization. Dynamic programming, for

example, pre-computes the optimal controls and costs to go between various points in the

state space which are then used to create an online feedback controller guaranteed to find

the optimal solution. The A* algorithm performs a similar process to dynamic

programming, however cost to go is estimated via a heuristic. Under certain conditions

upon the heuristic, A* is also guaranteed to generate the globally optimal solution.

However, due to the enumerative nature of both A* and dynamic programming, they

suffer from the "curse of dimensionality", i.e. they quickly become too computationally

intensive if the dimension of the search space becomes large. Genetic algorithms, on the
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other hand, require no off-line computation or knowledge about behavior of threat risk

throughout the state space. This is an advantage in a dynamic threat environment in

which changes in threat knowledge have the potential to invalidate previous risk

information. The lack of offline computation allows the GA to readily adapt to any

changes in the threat environment. Additionally, because GAs are not enumerative in

nature, they do not suffer the "curse of dimensionality".

Ultimately, the desired result of a threat response planner is a system which can

trade off between "good enough" and "fast enough". Here the old adage, "a bird in hand

is worth two in the bush" applies in spades. A non-optimal solution returned in time for

the vehicle to react intelligently to the threat is more desirable than an optimal solution

returned too late. Genetic algorithms inherently offer a tradeoff between efficacy and

efficiency. As will be discussed in Chapter 3, GAs begin with candidate solutions and

work iteratively to reduce the cost of the best solution. This gives the user the control to

balance the quality of the solution with timeliness. Should the algorithm need to be

stopped prematurely for any reason a solution will still be provided (i.e., it is an any-time

algorithm); however, the more time that can be afforded to the algorithm, the better the

solution will be.

2.3.4 Comparison of algorithms

Table 2-1 shows a comparison chart of all of the classes of algorithms discussed

in Section 2.3. The table compares the algorithms based on the ability to include a high

number of states, whether the results are deterministic, whether the algorithm finds the

guaranteed optimal solution, whether the algorithm can be stopped at any time and still

yield a solution, the ability of the algorithm to handle LOS in the cost function, the ability

to include dynamic constraints, and whether the algorithm is an optimization in the sense

that the goal is to minimize a cost function.

It is clear that no one algorithm outperforms the other for all circumstances, which

is to be expected. The table does, however, provide insight into which algorithm offers

the most promise for TERA. Based on the requirements of TERA we know that a

potential algorithm must be able to (1) solve a four-dimensional trajectory generation

problem, (2) include LOS in the cost analysis, and (3) include dynamic constraints. Based
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on these minimal requirements the only two classes of algorithms suited for TERA are

either the RRT-like algorithms or genetic algorithms. However, the fact that the RRT-like

algorithms are intended for uniform exploration of space in order to find a solution, as

opposed to optimization of a cost function, makes them a weak contender for TERA.

Furthermore, once the any-time ability of genetic algorithms is factored in, the decision

to develop TERA using GAs becomes clear.

Table 2-1 Comparison chart of

TERA Graph
reauirements search

algorithms discussed

Geometric Optimal RRT GA

R = required
D = desirable
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Attributes
easily extendable to R X X X
high number of states

deterministic D X X X

optimal D X X X

can yield feasible D X
solution at any time

can handle
discontinuous cost R X X X
function (for LOS)
ability to incorporate R X X X
maneuvering limits

goal of algorithm to R X X X X
minimize cost
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Chapter 3

Algorithm Implementation

This chapter presents a genetic algorithm design for solving the threat evasion

response problem discussed in Chapter 2. The first part of the chapter provides the

necessary background in GA operation. The remainder of the chapter is dedicated to

discussing the specific GA design for TERA application, and in particular how dynamic

feasibility is ensured during the trajectory generation process.

3.1 Overview of genetic algorithms

Genetic algorithms are surprisingly simple in their general mechanics of

operation. In short, GA's work with a set of candidate solutions to the optimization

problem in an iterative process designed to refine the solutions in the direction of lowered

cost. The GA analogy is of a simplistic evolutionary survival-of-the-fittest process. Each

candidate solution, or chromosome, is a part of the larger set of solutions maintained

during each iteration. As per the analogy, the set of solutions is known as the population,

while each successive step in the iteration process is a generation. Those chromosomes

that stand out from the population receive a higher chance of having some or all of their

"genetic material" reproduced in the following generation. Those population members

that perform poorly with respect to the optimization rubric are less likely to be used in the
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next generation, and hence the population has a tendency to better itself as the number of

generations increase.

The chromosomes as defined above are each representative of a possible solution

to the optimization. As such, they must contain a method of fully describing a solution to

the problem at hand. In general, a chromosome is comprised of a string of numerical or

binary values which can be interpreted as a complete solution. For example, to minimize

the cost function f(x) = (x-5) 2 in the interval 0 < x 5 50 the user may choose to represent

each value of x by a fixed bit length binary string. Indeed, much flexibility exists in the

way chromosomes are represented, which is a direct result of the problem being solved.

Chromosome representation will be discussed in greater detail in Section 3.1.1.

As in nature, there exists several means of which good population members can

be propagated to the next generation. Genetic algorithms make use of reproduction,

crossover, and mutation as the primary mechanisms for population refinement during

each generation. In reproduction a chromosome is simply copied directly into the

population of the next generation. In crossover two parent chromosomes are combined to

produce an offspring. This is achieved by copying a portion of one chromosome and a

portion of the other chromosome and concatenating these portions to produce a new

chromosome, typically of the same length as the two parent chromosomes (the crossover

operation will be discussed more in Section 3.1.3). The mutation operator selects a single

element, or gene, of a chromosome and changes the gene value randomly with some

small probability. While the reproduction and crossover operators are intended to

propagate "good" genetic material into the next generation in an attempt to better the

chromosomes, the mutation operator is generally not used in a deliberate action to

increase a chromosomes value. Rather, mutation offers the possibility of boosting

performance by shaking the algorithm out of a local minimum.

So far it has been assumed that some chromosomes are better than others, and

therefore deserve to be reproduced in some fashion in the next generation. As in any

optimization routine, some form of cost function exists which is to be minimized over.

The GA is no exception to this, and therefore each chromosome's cost, or fitness, is

evaluated via a user-defined cost function. In the example used above, the cost function is

f(x) = (x-5) 2, for which a binary chromosome string representing the value 6 has a better
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fitness than a chromosome representing the value 42. Notice here that the cost function

requires the input of a number rather than a binary string. This illustrates the concept of

input space and output space, used often in genetic algorithms. The input space refers to

the format in which the chromosome is represented, in this case as a binary string, while

the output space refers to the format of the desired output. When these are different some

decoding is necessary to map the chromosome to the domain of the cost function. In the

example given the user may want to map a given binary chromosome to a real number to

use in the cost function, instead of using binary arithmetic.

In order to describe a full GA implementation it makes sense to first describe in

more detail some of the specific mechanisms used. Once this has been done we will

discuss a simple GA in order to illustrate the application of the algorithm.

3.1.1 Representation

One of the main advantages in using GA's is the flexibility in representation of

the solutions in the chromosome; however, determining what representation to use can

often be the most difficult part in developing a GA. Each gene can be comprised of a

single value, or of a set of multiple values that when taken together are representative of

an element of the solution. Furthermore, a gene element can be expressed as a number (or

character), or as a fixed length binary string. One of the drawbacks to binary

representation, however, is that it takes away intuition of some of the GA operators.

Binary representation was favored in the early days of GA research, however many

researchers have turned to non-binary representation because of the insight gained in

intuition without loss of generality of the GA.

As a concrete example of representation, consider the path planner presented by

Xiao et al in [30]. The goal of the GA was to generate a path for a ground based mobile

robot from given points 'A' to 'B' while avoiding obstacles. Each chromosome contains

a path represented as a set of waypoints leading from start to finish. Each gene consists of

three values describing a waypoint in the path. The first two values are the x and y

locations of the waypoint, while the third value conveys whether the waypoint or the path

leading from the waypoint intersects an obstacle. Furthermore, the order of the genes

within the chromosome depicts the order in which the waypoints are visited. Figure 3-1

41



shows two possible chromosomes. Note that even though both chromosomes contain the

same waypoints, the solution path is different due to the different orderings. This

illustrates another tool the GA designer has available in that the location of the gene

within the chromosome can carry significance. This is very prevalent in problems where

the chromosome describes a temporal sequence in which case gene location is indicative

of time ordering of the solution.

Yet another tool the GA developer has available for chromosome representation is

used by Xiao, this being variable length chromosomes. In the path planning example this

means the GA has control over not only the waypoint locations and ordering, but also the

number of waypoints visited. Allowing the chromosome length to vary effectively

increases the search space of the algorithms, and typically some limit must be set on the

overall length of the chromosome. Variable length chromosomes are not as common in

application as fixed length, however length remains as an option in representation.

chromosome #1:

chromosome #2:

xl, yl

xl x2 x3 x4 x5
yl p y2 y3 o y4 - - y5
bl b2 b3 b4 b5

[r i [- -"i ["""-- [~ i [r -I

x | x4 x2 | x3 | x5

bi | b4 | b2 :b3 | b5|

x3, y3 x4, y4

x5, y5
-

/ .X B

x2, y2

Figure 3-1 Chromosome representation for path planning

3.1.2 Selection

In order to ensure "better" chromosomes are reproduced in some fashion from one

generation to the next, higher performing population members must be shown
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preferential treatment during crossover and reproduction. Many options exist for

selection of individuals based on fitness, each providing slightly different probabilistic

performance.

The most common method is via roulette wheel selection. In roulette selection

each chromosome receives a proportional number of slots on the roulette wheel to the

percentage of total population cost possessed by that member (see Figure 3-2). A random

number is then drawn simulating a roll of the roulette wheel, and a population member is

chosen based on the value of the random number. In this way chromosomes with higher

fitness will be selected with probability commensurate with their relative performance. In

the case of minimization, the reciprocal of the chromosome cost is used to generate the

roulette wheel so that chromosomes with low fitness have a higher chance of selection.

#1
14%

#2 #5 "Spin" via
14% 33% random number

draw
#3

14%
#4

25%

Figure 3-2 Roulette wheel for chromosome selection

Many other selection schemes exist which can be used for fine-tuning the

convergence properties of the GA. For information about other selection methods the

reader is referred to Goldberg [34].

During initial generations in the GA it is common to have a few chromosomes

that vastly outperform others in the population. If the roulette wheel (or any other)

selection scheme were used, it is apparent that these individuals would tend to be selected

most frequently and therefore dominate the generation, possibly leading quickly to a local

minimum. As the number of generations increase a very different behavior becomes

possible. As the GA begins to converge the average fitness of the population becomes
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close to the best fitness. In this instance the selection process will wander between

population members as better solutions don't stand out dramatically.

One way to address this problem is through linear fitness scaling (LFS). In LFS

the fitness values are mapped by the linear relation:

f ' = mf + b (Eqn 3-1)

Nominally, the values m and b are selected in order to meet the following requirements:

fna x =K(Eqn 3-2)

where K in effect defines the amount of linear spread among the scaled fitness values. It

is possible that some value scalings will cause the minimum scaled cost to become

negative (Figure 3-3). In this case K must be reduced to prevent negative fitness from

occurring. This can easily be accomplished in the implementation of the LFS algorithm

by introducing logic to scale K so that fmins > 0. The desired effect is achieved by

reducing the dominance of outstanding chromosomes early in the algorithm through

limiting the ratio of fCmax/favg. Later in the process the scaling increases variance among

the population members allowing slightly better chromosomes to stand out, thus

enhancing convergence [34].

3.1.3 Crossover

The crossover operation is the backbone of the GA. It allows the recombination of

solutions which provides the potential for offspring solutions that perform better than

either parent chromosome. Figure 3-4 shows two different types of crossover. In single

point crossover two parent chromosomes are selected for mating. A string location is

randomly selected as the break point. The genes from the first parent preceding the

crossover point are then combined with those genes from the second parent that succeed

the crossover point. A similar process is performed using the genes from the second

parent first if the operation is to create two offspring (depending on implementation only

one offspring may be required). Note the crossover point does not have to be the same for

the second offspring.
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Figure 3-4 Crossover operation

In multi-point crossover q string locations are randomly selected as crossover

points. The value for q can be set by the user or can be a random variable. Once the
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locations are selected, the genes from the parent chromosomes are swapped as shown in

Figure 3-4 for q = 2.

3.1.4 Mutation

During mutation a gene's value is randomly altered to a new value. Figure 3-5

shows an example of a mutation for the path planning problem in which case the third

gene in the chromosome is selected for mutation. After selecting the third gene for

mutation, within the gene the y coordinate value is randomly selected and replaced with a

new, random value y'. In cases like this where multiple optimization parameters are

present in each gene, the number of parameters altered in a given mutation remains a

tuning factor for the designer.

Figure 3-5 Mutation in robot path generation

3.1.5 A simple genetic algorithm

Now that all of the required mechanics have been defined for the GA it is possible

to describe a basic implementation method in order to finalize the operation of the GA.
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The following pseudo-code describes a complete genetic algorithm using the concepts

already discussed. Assuming the chromosome representation has been defined, and given

the user inputs of (1) population size, (2) probability of crossover, (3) probability of

mutation, and (4) the maximum number of generations the GA proceeds as follows:

initialize the population by randomly seeding each chromosome

gens = 0

while gens < max number of generations {
score each chromosome to determine fitness

Choose 2 chromosomes by roulette wheel. Select a random
number, b, in the interval (0, 1). If b < probability of crossover
perform crossovers and create 2 new offspring for new population,
else copy chromosomes into new population. Repeat this until the
new population contains the proper amount of chromosomes.

For each gene in each chromosome generate a random number c in
the interval (0, 1). Mutate gene if c 5 probability of mutation.

gens = gens + 1

end while

return lowest fitness trajectory generated

3.1.6 Constrained optimization

The discussion into GA operation so far has ignored the possibility that

constraints exist which limit the feasible solution space. Constraints can be violated

during population initialization, crossover, or mutation within the GA. Constraints are

typically handled in one of three different fashions in the implementation of a GA.

The first method enforces feasibility by immediately deleting any solution that

breaks a constraint. While this method is very fast for removing infeasibility since no

time is spent in a repairing process, there are two major drawbacks. The first problem is

that if a population size is to be maintained, every time an infeasible chromosome is

created and deleted, another one must be made to take its place. Since there is no

guarantee that the new chromosome will be feasible, it may be deleted as well. Because

of the stochastic nature of the crossover and mutation operations this won't always be the

case; however, the possibility of spending a significant effort in repeatedly creating

chromosomes to fill a population exists with a finite probability. The other main concern
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with this approach is that promising genetic material can be lost when a chromosome

with a minor infeasibility, but otherwise good performance, is deleted from the

population. This method tends to be ill-advised because of the limiting effect it can have

on the creation of new genetic material.

In the second method for constraint handling, solutions are allowed to break

constraints, however infeasibility is penalized in the fitness evaluation, making infeasible

chromosomes less favored for reproduction. This method is widely used because it

removes any restrictions from the crossover and mutation operations. The only drawback

is that it can be difficult to create a fitness function for weeding out infeasibility. The

fitness of any infeasible chromosome is typically desired to be worse than even the worst

feasible solution, however the infeasibility penalty can't be too high or else the infeasible

chromosomes will never be selected for reproduction. This often motivates the need for a

measure of the degree of "infeasible-ness". In addition, some logic must be included to

prevent the algorithm from stopping before a feasible solution is found (that is to say, it is

possible all solutions are infeasible in a population).

The third method ensures feasibility by limiting the crossover and mutation

operations to only produce feasible solutions, or by repairing infeasible solutions

generated. An example of how this might be done is presented in [30] for the robot path

planning problem, where a mutation operator is introduced that identifies an infeasible

waypoint in a chromosome (one that is in an obstacle) and moves the waypoint to a new

location outside the perimeter of the obstacle. The intent is to take an infeasible

chromosome and make it feasible. The downside of this method is immediately apparent,

in that it requires the development of customized crossover and mutation operations that

are capable of either producing only feasible solutions, or that are capable of repairing

infeasibilities. On the other hand, maintaining feasibility reduces the time spent operating

upon and evaluating solution which are infeasible.

3.2 Trajectory generation implementation

The intent of this thesis is to apply the GA principles as discussed in Section 3.1

to the problem of trajectory planning per the TERA requirements discussed in Chapter 2.

We define a trajectory as a sequence of three spatial dimensions expressed in an inertial

48



coordinate system and an associated time at each point. The inertial reference frame is

defined as x, y, z, where x is aligned with East, y with North, and z with altitude. All

trajectories described in this thesis have a constant At spacing associated with

consecutive points within the trajectory, however the value of At can be varied to the

required resolution. Since the trajectory is the desired output of the TERA algorithm, the

output space of the GA will be defined as the space spanned by all possible four-

dimensional (three spatial plus time) trajectories.

3.2.1 Representation

The first step in creating a GA implementation is to determine the representation

of a solution in the input space (that is to say, figure out how to characterize the solutions

within the GA). One approach would be to define the input space as the set of positions

and velocities at each point in time that define the trajectory, meaning the input space

would be the same as the output space. This leads to a waypoint formulation similar to

that in [30], with the additional dimensions of altitude and time associated with each

waypoint. The drawback with this approach is that a method must be determined to

calculate the way the vehicle would traverse from waypoint to waypoint in order to

determine whether the commanded waypoints are feasible or not.

An alternative formulation begins by describing the vehicle state in terms of speed

(V), heading angle (T), and flight path angle (yn) at a given time tn, as shown in

Figure 3-6. Here speed is defined by the relation:

V v 2 +v.2 +V 2  (Eqn 3-3)

where vx, vy, and vz are the components of the velocity in each of the inertial coordinate

directions x, y, and z, respectively. The velocity heading angle is measured positive

counter-clockwise from the x axis within the x-y plane, and the flight path angle is

measured from the x-y plane. The following equations provide the relations between

heading and flight path angles and the velocity:
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VI=tan '-1:Y

7=tan _

(Eqn 3-4)

Figure 3-6 Velocity description for chromosome representation

This description of vehicle velocity orientation leads to the convenient instruction

list chromosome representation, as described in [35]. The instruction list formulation

consists of a string of commanded changes in speed, heading angle, and flight path angle

that take place over a finite amount of time. Let us define an instruction for transition

from time tk to time tk+I as:

(Eqn 3-5)

Assume for the time being (this will be discussed in Section 3.4) that each instruction in

any given instruction list takes place over a fixed time interval defined as Atk = (tk+I - tk).

With this, the instruction list can be described in general form as:

{I,[At,], I2[At2 ], la[At3 ], .... , I,,,[At,,] I
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where m represents the number of instructions in the list. Table 3-1 gives an example of

an instruction list of m = 5. If each command were to take place over a five second

interval, then a trajectory 25 seconds in length would be produced. Note that the

trajectory in the table ends up with the same speed, heading, and flight path angle as it

initiated with.

Table 3-1 Example instruction list chromosome

Time (sec) AV (kts) AT (deg) Ay (deg)

0-5 +8 0 0
5- 10 0 +10 0

10- 15 -16 0 +2

15-20 0 -15 +6
20-25 +8 +5 -8

The GA representation for TERA can thus be described as follows; each

chromosome is simply a string of instructed state transitions over a discrete time interval,

with each gene consisting of three values (not-binary) relaying the desired changes in

speed, heading angle, and flight path angle. By varying the number of instructions in the

list and the Atk for the instruction transitions within the list, the total time length of the

trajectory as well as the dynamic resolution can be dictated.

While the chromosome representation described is straightforward and will prove

to be convenient for imposing dynamic constraints, it is not a useful representation for

evaluating the fitness of each population member. Although the exact fitness functions

have yet to be described, we know intuitively that at least LOS and range to threats will

affect survivability. Because of this, the fitness evaluation will need to take into account

the location of the vehicle with respect to the threats within the inertial frame. The

chromosome representation as shown in Table 3-1 obviously does not contain the inertial

location of the vehicle, so a mapping between input and output space is required for

fitness evaluation within the GA.

If we make the simplifying assumption that the changes in speed take place at a

constant acceleration over the transition interval, and that changes in heading and flight

path angle take place at constant turn rates, i.e.:
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YV(Atk AV(Atk
Atk

(Atk) AT(Atk)
Atk

.(At) A Y(Atk)
AtA

(Eqn 3-7)

then a very convenient analytical mapping can be derived. Begin with the speed of the

vehicle, which can be described in the inertial coordinate frame as:

V(t)cos(y)cos(V)

V = V(t)cos(y)sin(T)

V(t) sin(y)

Since the

expressed

(Eqn 3-8)

acceleration and turn rates are assumed constant, the speed and angles can be

at any time t > to as:

(Eqn 3-9)
V (t) =V (t")+ 1'(t - t)

T(t) = (t") +*q(t - t")

y(t) ) (to )+ f(t - t"')

Substituting Equation 3-9 into Equation 3-8 and then integrating over time using known

boundary conditions V(to)=V0 , T(to)= To, y(to)= yo, x(to)=xo, y(to)=yo, and z(to)=zo yields

equations for x(t), y(t), and z(t). These can be simplified without loss of generality (since

we will only care about deltas in x, y, and z) by setting to = 0 to give:

x(t) = xO+

Y cos[(f-*). t + , - Y-Y cos(y, - T,)- +

2(V+ -V)sinQy0 -',)
V (k+t)(f*sin(+t ,+

(Eqn 3-10)
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y(t)= Y +

(V +YV t)( -*+)cos[ (? )- t + y , -,

1 Y sin (?-+)- t + y,, -T,+ sin(y, - +

V) (? -)cos(, - )

- (V" +Y1 .tx f+5)Cos[( +f+) -t + ry, + To+

1 2 Ysin[(f + +)-t + y(, +T,)- Ysin(y) + To)+
2(? + I')2 V (f+*)cos(y) +'To)

V
z(t)= Z( - [cos(y, + f . t) - cos(y )] +

V V-t
[sin(y,) + f -t)- siny,)]- . cos(y0 + ? .t)

?27

(Eqn 3-11)

(Eqn 3-12)

Equations 3-10, 3-11, and 3-12 thus provide the means to map a given instruction

list to a trajectory. Figure 3-7 illustrates the use of these equations to decode the

instruction list found in Table 3-1. The O's represent the trajectory points found at each

five second increment, while the solid line demonstrates how a higher resolution

trajectory (in this case 20 Hz) can be found using the same equations.

V(t) = 60kts, Psi(t) = 0 deg, Gamma(t ) = 0 deg

130

If 120 --

110 - -

00 100e
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Crossrange (m)
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Crossrange (m)

Figure 3-7 Trajectory created by instruction list from Table 3-1
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3.2.1.1 Dynamic constraints

The requirements for TERA call for the creation of dynamically realizable

trajectories. This can be achieved by limiting the range of command values at any given

time to those values physically realizable by the vehicle. The fundamental need

throughout the population initialization, crossover, and mutation operations is to be able

to determine the allowable AV*, AV, Ay', Ay-, AT', and AT- based on the vehicle's state

I = [Vi Ti yi] at the beginning of instruction i (here A refers to the max increase in state

and A refers to the max decrease in _). By setting the limits on command magnitudes,

the GA is free to take actions such as random instruction selection without the possibility

of creating dynamically infeasible trajectories. It is important to note that even though the

discussion in this thesis pertains to a rotorcraft, the form of the command limits is general

enough to make the GA trajectory generation method applicable to fixed wing aircraft as

well. The dynamic limits must simply be altered appropriately for the vehicle.

The first step in determining the feasible set of commands for a specific

instruction is to select Avxy* and Avxy-, with vxy as defined in Equation 3-4 (this is

because the maneuvering bounds will be given on forward acceleration as opposed to rate

of change of overall speed). By approximating the acceleration during a given instruction

as constant, the required limits can be expressed as:

Av * = -At
(Eqn 3-13)

Av? =f -At

where 9,* represents the maximum forward acceleration, and 9' represents the

maximum forward deceleration. Figure 3-8 illustrates an example acceleration profile for

a helicopter. The deceleration profile was modeled as a first order system response in

velocity due to the lack of actual helicopter data. The first order time response is given

by:

vJ (t) = e x'I (0) (Eqn 3-14)

Differentiating with respect to time then yields the deceleration as:
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I
X - = -- e H- (0) (Eqn 3-15)
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Figure 3-8 Acceleration profile for simple rotorcraft

The values used to define the bounds in Equation 3-13 are thus found from the

acceleration limits shown in Figure 3-8. The overall change in speed once the value of

Avsy has been chosen is given by:

V + Av,
AV=

cos(, + Ay)
(Eqn 3-16)

where Ay is selected from within the bounds on feasible flight path angle changes, which

will be discussed next.

The AT and Ay commands are coupled through a 2.5G maximum load factor on

the vehicle, therefore the feasible range of values cannot be determined independently for

T and y. We thus assume that during gene selection the values of Ay* and Ay~ are

determined, the Ay command selected, and the values of AT+ and AT- then selected. The
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value of Ay- can be determined by approximating the downward acceleration the vehicle

is capable of to IG (this turns out to be a reasonable assumption for helicopters). By

allowing the vehicle to pull -I G vertically over the time interval At the flight path angle is

reoriented by a maximum of:

v * g-At
Ay = t-70 (Eqn 3-17)

A-=tan -r'+A

where Avxy is the value selected from the range previously computed. For forward

velocities other than zero there would be an absolute maintainable limit on the negative

flight path angle, however due to the low altitude aspect of the threat avoidance problem

no limit is imposed. When flying at very low altitudes the trajectory would become

infeasible from ground strike before the terminal downward velocity is reached.

While the limit of Ay~ is determined by the downward acceleration the vehicle is

capable of, the bottleneck which limits Ay' is due to the relatively shallow rate of climb

(ROC) capability. Figure 3-9 shows the ROC limit used, which is a function of speed.

Using this information the value of A-y* is given by the relation:

Ay+ =sin'_ ROCmax (Y) - (Eqn 3-18)
v x., + AvX,)

Given the value of Ay selected from within the feasible range as described above,

the range of feasible heading angle changes can be determined by noting the vehicle

maximum turn loading of 2.5G's. Subtracting the centripetal loading due to the

commanded Ay gives the remaining loading available for heading changes. The limits on

AT are thus:

= (2.5. g) 2  _ At
At

max = -

ATP+= +Ymax* At (Eqn 3-19)

AT= -AT'
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Figure 3-9 Rate of climb capability for rotorcraft

Once the feasible range on changes in heading angle has been determined, the

value of AT can be selected, yielding the feasible gene values:

Ii(At,) = {AV, AT, Ay} (Eqn 3-20)

3.2.2 Population initialization

In order to begin the generational refinement process within the GA, an initial

population must be provided. If each individual in the initial population is feasible and

the crossover and mutation actions are forced to respect dynamic limits, then all

trajectories generated through successive generations will remain dynamically feasible.

We will thus require the population initialization to provide trajectories respecting

maneuvering limits (ground constraints will be discussed in a moment).

The population initialization is achieved by randomly seeding each chromosome.

Since the dynamic constraints can be expressed as an allowable range of AV, AT, and Ay

based on the current V and y, feasibility can be maintained in a given chromosome by

simply starting with the first gene and seeding toward the last gene while keeping track of

the magnitude of V and y. The values of AV, AT, and Ay for a given gene are randomly
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selected from a uniform distribution spanning the feasible range of values for the specific

command, determined by the velocity and flight path angle at the initiation of the

instruction being seeded. This consecutive random gene seeding process is performed for

the desired length of each chromosome, and for the number of chromosomes desired for

the population.

In addition to dynamic feasibility, care must be taken to reduce the number of

ground strikes within the initial population. As will be discussed in Section 3.3, ground

collisions are treated using soft constraints, i.e., trajectories that hit the ground will not be

immediately pruned, but rather penalized within the fitness evaluation. Care must

therefore be taken to prevent many or all of the initial population members from colliding

with the terrain. Too many collision-infeasible trajectories would adversely affect the GA

convergence by requiring the algorithm to spend much of its effort in eliminating ground

strikes rather than reducing threat exposure. Ground strikes are reduced in the

initialization by defining a maximum and minimum preferred altitude of operation. Each

time a gene is seeded in a chromosome, the resulting inertial position is found using

Equations 3-10, 3-11, and 3-12. If the trajectory is found to exceed one of the limits, the

subsequent Ay is limited to the maximum or minimum feasible value depending on if the

trajectory breaks the acceptable floor or ceiling altitudes, respectively. The minimum

altitude can be set to ground level or some other small value to force the trajectories to

pull up prior to hitting the ground. This concept is illustrated in Figure 3-10. Instruction In

causes the trajectory to go below the minimum altitude, causing the value of Ay* to be

selected for gene InI. Likewise, Ay ~ would be selected if the maximum altitude was

broken.

3.2.3 Crossover

Much of the power of the GA as a global directed random search agent comes

from the crossover operation [34]. However, if not implemented intelligently based on

the problem to be solved, crossover can lose much, if not all of its intended utility.

Consider the waypoint chromosome representation discussed in Section 3.1.1. Each

chromosome is comprised of an ordered list of waypoints to follow. It is assumed that the

vehicle travels any given path in straight line segments connecting each waypoint. With
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Figure 3-10 Heuristic for minimizing ground collisions in initialization

Figure 3-11 Crossover result for waypoint formulation

this representation a single point crossover has the effect illustrated in Figure 3-11. This

crossover procedure was used in [30] to successfully navigate very complicated mazes. In

this case the crossover operation preserves the inertial position of the portions of each
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chromosome that are recombined in the resulting offspring. Figure 3-11 makes it clear

that two infeasible chromosomes can be combined through crossover to create a feasible

offspring.

Now consider the result of a simple single point crossover using the instruction

list formulation. Each gene in the chromosome gives a relative change in V, ', or y

applied over the time span of the gene. When two chromosomes are simply split and re-

combined the effect is to shift the trajectory created by the latter portion of the second

parent chromosome to line up with the end of the initial portion of the first parent (see

Figure 3-12). Depending on the nature of the problem to be solved, this may or may not

be the desired result. For our purposes fitness is a function of inertial location along a

trajectory, as range and LOS affect risk. If a piece of a well performing trajectory were to

be shifted to a new location it would no longer retain its desirable characteristics, and

thus turn the crossover operation into a random mechanism, as opposed to a directed one.

Parent Trajectories Before Crossover

120-

10 10 20 30 40 50C0 0 0 0

S80-

60-
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020-

-20L
0 100 200 300 400 500 600 700 800 900
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-50-
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Figure 3-12 Crossover result for instruction list formulation
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The crossover method used for TERA retains the inertial location of the original

parent trajectories (as is the case in Figure 3-11) in order to preserve positive trajectory

traits. In the waypoint formulation this was achieved by connecting the two chromosome

segments with a straight line and calling the job done; however, the instruction list

formulation makes the problem more difficult. Since TERA is required to maintain

dynamic feasibility while transitioning from one trajectory segment to another, a process

which extends the work presented in [33] to include altitude was developed to generate

the additional transition instructions.

3.2.3.1 Crossover patching

The general problem that must be solved during the crossover patching operation

is to join the end of one segment of trajectory (Sl) with the beginning of a different

trajectory segment (S2). This requires the generation of a set of genes to transition the

vehicle from a given initial state x, to a final state x2 defined by the trajectory segments

to join, where x [x y z V T y]. An example chromosome patching problem is shown in

Figure 3-13. Both trajectories are restricted to the x-y plane for ease of illustration,

however fully 3D trajectories will be discussed as this section progresses.

The crossover patching operation proceeds in two phases. The first phase consists

of a series of acceleration or deceleration instructions which are added to the end of Sl in

order to match up the velocity at the end of the new SI with S2. The second phase

consists of the generation of constant velocity turning instructions for joining the

remaining five states. The velocity matching phase appends one gene at a time to the end

of S 1. Each gene commands the maximum acceleration (or deceleration) until the speed

at the end of the last gene added equals the initial speed of S2. If the difference in speed

can be achieved in one At, then only one gene will be added during the first phase. In

addition, T and y are commanded to point the velocity vector in the direction of the initial

(x, y, z) location of S2. Figure 3-14 shows the resulting phase one instructions for the

example problem presented in Figure 3-13 (velocity matching instructions are labeled

with diamonds).
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Figure 3-13 Initial crossover patching problem

Figure 3-14 Result of velocity matching phase in crossover patching
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The second phase requires the use of one or both of two different geometric point

joining methods, first proposed in [33]. Both methods form a 2D solution joining two

points with corresponding heading angles with circular segments. The first method,

which will be referred to as the 'S' curve method (SCM), is shown in Figure 3-15. Two

circles of equal radius R are formed such that each point (PI and P2 in figure) is on the

circumference of one of the circles, and the heading angle of each point is tangent to the

adjoining circle. The radius is defined such that the circles touch at exactly one point,

labeled 'C' in the figure.

Figure 3-15 'S' curve method for 2D point joining

From the geometry we can define five scalar equations with five unknowns:

A = P, +R - i

B=P 2 + R -j

R = -
2

(Eqn 3-21)
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where A, B, and unit vectors i and j are defined as illustrated in Figure 3-15. Solving

these equations leads to a quadratic which yields the value of R:

0=(-4+ii -2-i T i+ jTj)- R 2 +

(2.P i-2-P j-2i+P2 +2-P T j). R+ (Eqn 3-22)

(PP-2.P +PP )

The second geometric solution method, which will be referred to as the circle-in-

circle method (CCM), is shown in Figure 3-16. As in SCM, two circles are formed

tangent to the points to be joined, however, in CCM one circle is contained within the

other circle. The two circles touch at exactly one point, which is denoted as C in

Figure 3-16. The circle construction begins by forming the lines t], t2 , and t 3

(Figure 3-16). The lines t1 and t2 have the heading angles corresponding to P1 and P2,

respectively, and line t3 intersects points P1 and P2 . The line t4 is formed such that it is

parallel to t3 , and the distances |Cql = |Piq| and |Chl = |Pahl, where q and h are defined as

the intersection points of t1 with t4 and t2 with t4 , respectively. Finally, the line t5 is

defined as the line passing through points C, N, and M, where N and M define the centers

of the two circles as illustrated in Figure 3-16. Due to the geometry of the formulation t5

is perpendicular to line t3. This allows the definition of the unit vector j (as shown in the

figure) which will be used in the determination of R, and R2.

In this case, two sets of four equations in four unknowns can be defined by noting

that the points N and M can each be described in multiple ways:

N-= +R1 -- r (Eqn 3-23)
N =W +r7- j

M = P, + R2 -s 
(q -4M =W/3.j(Eqn 3-24)M=W +$- j

where the unit vectors r and s are unknown, and R1, R2, ri, and $ are unknown scaling

factors. The following expression for R, can then be found by simultaneously solving the

four equations in Equation 3-23, with the unknown scalar il being substituted out of the

equation during the algebraic manipulations:
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Figure 3-16 Circle-in-circle method for 2D point joining

, j, + P j, -W j, - P j,
r, j - r, j i

Likewise, solving Equation 3-24 for R2 after substituting p out yields:

(W, - P2 )j, +(P 2 y -W, ) j,
sj, -sjX

(Eqn 3-26)

In order to solve for R, and R2 we must know the location of point W. The point

W can be described in relation to the point P using the unit vector pointing from P to P2,

and the fact that W lies on the line connecting P to P2 :

w =P +I.w P - P
( P) T (P -P 2)

(Eqn 3-27)

where the length |P1W is given by the relation:
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SW- = (Eqn 3-28)
tan(, /2)

and the length |CW| given by:

(PFI - PI(1 P2) tan(6, /2)
CW = (Eqn 3-29)

tan(0, /2)
1+

tan(2 /2)

Here the 0 measures the angle between P~q and PW, and 02 measures the angle

between P~h and P1W. Equations 3-28 and 3-29 are derived from the geometry in

Figure 3-16, specifically the fact that line t4 is parallel to line t3 , and that t5 is

perpendicular to both of those.

The SCM and CCM form the heart of the joining phase of crossover patching.

The chromosome joining proceeds in two steps. The first step begins with joining the

final (x, y, T) of the appended SI with the initial (x, y, T) of S2 through the use of the

SCM or CCM. The method used is chosen based on whether the initial turning direction

from S I is the same as the turn direction approaching S2 (CCM), or whether the turning

directions are opposite (SCM). The solution returned represents the path to follow if the

transition were confined to the horizontal plane, and provides the AT instructions

required for the transition. The radius of each circle determines the turning rate required

while traveling along the arc segment defined by circle i via the relation:

*Pi =V / R, (Eqn 3-30)

where V is the constant speed during the transition.

The amount of time for which the constant turning rate is applied is found by

dividing the length of the circular arc traveled by the speed. The time spent on arc one

and arc two respectively are given in Equation 3-31, with the vectors dl, d2, d3, and d4

defined in Figure 3-15 for SCM, or Figure 3-16 for CCM. Since there are two arc

segments to traverse there will be a minimum of two genes required for the chromosome

joining, one with instruction AT, = +,t, and the other with AT2 = t)21 .
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tj =

(Eqn 3-31)

_,s- dT d4 R,
Vd d Vd d4,

t') = ~=
- V

For this thesis, however, the chromosome patching is not necessarily performed

with two genes. For the purposes of fitness evaluation, we wish to use a fixed At for each

gene in each chromosome. Because of this, the number of genes required for traveling arc

segment i is ti/At, which typically is not an integer value. The process developed to

determine the number of genes and the AT instruction for each gene to most closely

approximate the SCM or CCM join solution is the second step in the joining operation,

and proceeds as follows:

1. Find the number of genes to use for the first arc segment, n = ti/At. If
n < I use one gene. If n > 1 find the number of genes, n', by rounding
n to the closest integer.

2. Use the instruction AT = VAt for the first n'-1 genes. The last gene
n'- I

uses instruction AT =Ve - T/ ,where Tc is the heading angle at

the transition from the first to second arc segment, and Pf n - is the
heading angle at the end of the n'-l gene.

3. Find two instruction lists for arc segment two with number of genes
m', found by rounding up m = t2/At, and m", found by rounding down
m. The AT instructions for each of these lists are found as in Step 2.

4. Decode the two instruction lists and select the set of instructions that
minimizes the distance between the final (x, y) location using each list
and the initial (x, y) location of S2.

The process outlined above is illustrated in Figure 3-17 for the case of joining the

two trajectory segments in Figure 3-14. This particular instance uses the SCM method,

however the process is identical when using the CCM. The joining circles found by SCM

are shown, along with the trajectories that result. Note that the two trajectories very

nearly coincide, however the trajectory denoted by the diamonds has one less segment

than the other. The longer chromosome ends up closer to the goal, and therefore is

selected.
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Figure 3-17 Gene creation in crossover

This example illustrates that the genes found approximate the SCM solution,

however the final location of the patching trajectory is shifted from the desired final

location. Because of this the segment S2 must be shifted to align with the joining

trajectory. This is shown in Figure 3-18 which presents the final crossover trajectory for

the problem depicted in Figure 3-13. While the crossover patch does not perfectly join

SI and S2, the shift required is relatively small on the scale of the trajectory and still

retains the nature of each segment.

The example presented in Figure 3-18 is only a 2D problem, and we still require

3D functionality. The process followed for determining the Ay instructions is nearly

identical to that used to find the A'T instructions. The SCM or CCM is called a second

time to create a solution joining the altitude and flight path angles of the end of the

appended SI (z1, y) and the beginning of S2 (z2 , 72). To create the point joining solution,

the values P1 = (0, zi) with angle y, and P2 = (a*At, z2) with angle 72 are used, where a is

the total number of genes required for the instruction list generated in the x-y plane

solution. An example 3D crossover patching is shown in Figure 3-19, with the transition
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Figure 3-18 Final solution for crossover patching example
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Figure 3-19 Three dimensional crossover example
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trajectory segment denoted with diamonds. In this example the horizontal plane shift due

to the patching is 37 m, while the altitude shift is 2.6 m.

The final step is to check for the dynamic feasibility of the crossover solution.

Each gene in the joining segment of the chromosome is simply checked for feasibility

against the dynamic limits as discussed in Section 3.2.1.1. If any AT or Ay command is

beyond the vehicle limits, the solution is deemed infeasible (dynamically) and the

crossover patching operation returns failure. Crossovers that intersect the terrain are

allowed to occur; however, these trajectories are penalized in the fitness evaluation (see

Section 3.3).

3.2.4 Mutation

Each time a gene is selected for mutation (using the chosen probability of

mutation) a random integer consisting of either 1, 2, or 3 is drawn, corresponding to the

mutation of V, ', or y, respectively. A new value of the specific command to mutate is

randomly selected from the feasible range of values based on the vehicle state at the

beginning of the instruction and the values of the other two commands that are not being

mutated. Figure 3-20 shows the results of two different chromosome mutations. The

upper subplot shows the result of a mutation in T on a constant altitude trajectory, while

the lower subplot shows a mutation in y on a constant heading trajectory (T = 0). Note

the two mutations shown are separate instances; the upper and lower trajectories are

unrelated.

We would like the mutation operation to have the potential to dislodge a

trajectory from a local minimum when any of the three commands in a given gene are

selected for mutation. However, notice the resultant trajectory caused by the y mutation

in Figure 3-20. The mutation serves to shift the flight path angle at all downstream

locations, which in this case makes the trajectory infeasible (assuming 0 meters altitude is

the ground). Since the desired trajectory output from TERA should follow the terrain

contour to take full advantage of terrain masking, it is highly unlikely that the dramatic

shifts in altitude produced by the basic y mutation would significantly reduce the cost of

the original trajectory. Because of this the y mutation is altered in an attempt to make it

more productive.
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Instead of mutating a given y command and allowing it to propagate for the

remainder of the trajectory, the Ay applied at a gene is subtracted from a subsequent gene.

The number of genes the y mutation is allowed to propagate is itself a random variable

n e {l,2,...,q}, where q is set by the user. If n=1 the Ay is subtracted out of the gene

following the mutated gene. The effect of this mutation is a shift in altitude along the

remaining trajectory, which is illustrated in Figure 3-21. Note that it may not be

dynamically feasible to subtract out the required Ay in one gene. In this case the

maximum Ay available for each gene is subtracted until the total Ay added in the

mutation is removed.

3.2.4.1 Mutation repair

While the mutation operation will not pick an infeasible command to mutate a

given gene, it does create the possibility of causing a gene "downstream" in the

chromosome to become infeasible. For example, Table 3-2 contains a list of feasible

commands for a given vehicle, as well as the same list with a mutation performed on the

first instruction. The 4 th column depicts the progression of speed along the trajectory, and

the 8 th column shows the same after the mutation. If the vehicle's max speed is 70 m/s,

then the mutation, while in and of itself is feasible, has effectively made other genes

infeasible within the same trajectory.

Table 3-2 Example of infeasibility caused by mutation

Original List Mutated List

0 0 0 55 6.2 0 0 61.2

5 0 0 60 5 0 0 66.2

5 0 0 65 5 0 0 71.2

5 0 0 70 5 0 0 76.2

0 0 0 70 1 0 0 0 76.2

In order to preserve feasibility in a mutated chromosome a repair operation must

be implemented. Each time a gene in a chromosome is mutated, the remaining genes in

the chromosome are checked for infeasibility. If a command is outside the available

maneuvering limits given the vehicle speed and flight path angle at the beginning of the
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gene, then the command is reduced to the closest limit to the original command. This

ensures that every gene in the mutated chromosome remains feasible.

3.3 Fitness evaluation

Now that the methods for creating and operating on candidate trajectories while

maintaining dynamic feasibility have been established, it is important to discuss how the

chromosomes created will be evaluated for performance. The fitness function defines the

behavior of the genetic algorithm. The mechanics discussed in Sections 3.2.2, 3.2.3, and

3.2.4, while essential to the GA operation, make no use of any cost information.

Therefore, the ability of the GA to solve a given problem depends in no small part on its

ability to select good chromosomes for reproduction, which is entirely predicated by the

fitness function.

Since the main goal of TERA is risk minimization, the different contributors to

vehicle survivability must be modeled in the fitness function. A significant risk to low

flying helicopters are MANPADs, which were introduced in Section 2.1.1. MANPAD

risk is characterized by the ability of the human operator to visually detect the vehicle

and then aim the rocket and fire. Assuming LOS is unobstructed, the largest factor which

influences the risk is the ability of the human to pinpoint the vehicle. Anyone who has

looked for a helicopter in the sky after hearing it can verify that it is not always obvious

where the sound is coming from when the vehicle is a long way off, however if the

source of the sound is very close it is much easier to identify it. For example, while the

range of a MANPAD rocket may exceed 5000m, at less than half that range the Northrop

Grumman Fire Scout autonomous rotorcraft is difficult to see and hear even when an

observer knows where to look for the vehicle [36]. This argument leads to the definition

of MANPAD risk at a given point in time tj as a function of range, specifically:

Pm Cm -WR j j (Eqn 3-32)

where Cm is a risk weighting with value 0 5 Cm : 1, WR gives the dependence of

detectability on range, and L indicates whether clear LOS exists to the threat. In this

thesis WR is assumed to reduce linearly from a value Of WR = I at a range of 0 meters, to

WR = 0 at the maximum range of the MANPAD. If LOS is unobstructed to the threat, the
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value of L is set to 1, otherwise the value L = 0.1 is used due to the fact detection is

impossible when LOS is broken. By setting a low, but non-zero, value for L when LOS is

obstructed, the GA will be rewarded for continuing to move away from the threat while

out of sight. If L was set to 0 the algorithm could potentially minimize the cost by

loitering out of LOS, however the threat footprint would never be escaped. In addition,

threats can move, which can cause large shifts the LOS envelope of the threat, however

the range envelope of the threat is only shifted equal to the distance the threat has moved.

Therefore, moving the vehicle out of the threat's range before reverting to the original

plan reduces the likelihood of being visually identified again due to movement of the

threat.

The value of CM in Equation 3-32 can be interpreted in different ways. One way

would be to use it as a tunable weighting knob when PM is combined with other risk

measures in the fitness evaluation. Another way would be to view PM as the probability

of attrition due to the MANPAD, in which case Cm could be the probability of kill (PA)

given detection, and WR the probability of detection given exposure to the threat during

the time the vehicle has spent within the threat's LOS. While this method of attrition

probability calculation simplifies the dynamics of the threat (for example, when the threat

identifies the vehicle the probability of detection becomes one), a more detailed threat

calculation can always be introduced by simply altering the form of Equation 3-32, due to

the fact that the GA operation is irrespective of the form of the cost function.

As in many optimization problems, a conflicting interest exists which complicates

the solution of the problem. It has already been established that by breaking LOS to a

threat the risk to the vehicle is greatly reduced. Terrain masking can often be maximized

by flying as close to the ground as possible (LOS as a function of altitude will be

discussed more in Chapter 4), as even small undulations in the terrain can break LOS if

both the threat and vehicle are close to the ground. The problem with this is that flying at

high speeds in close proximity to the ground increases the risk to the vehicle of ground or

obstacle collision. Therefore, a collision risk parameter can be introduced as the

following:

PC = CC WCA -W (Eqn 3-33)
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where Cc is the collision risk weight, and WCA and Wv are risk scale factors. The

variable WCA provides the dependence of risk on altitude above the terrain, however to

say that the risk of flying at 3 meters altitude is the same at 3 knots as at 100 knots is

inaccurate. Indeed, we would like to give the GA the ability to fly at extremely low

altitude if it's in the best interest of minimizing risk. The variable Wv provides the

dependence on speed necessary to reduce risk at low speeds. The value of Wv is assumed

to increase linearly to a value of I at 30 knots, and remain constant thereafter.

Figure 3-22 illustrates the behavior of the combination of the two scaling factors on

collision risk. Here max altitude refers to the altitude at which collision risk is deemed

negligible at all speeds. For example, the max altitude would be much higher for a

vehicle flying over a redwood forest as opposed to a desert. It would also be higher when

flying over mountainous terrain as opposed to flatlands.
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Figure 3-22 Collision risk as a function of altitude and velocity

Notice that Figure 3-22 describes the penalty induced flying above 0 meters AGL

altitude. However, the potential exist for trajectories to pass through the terrain. Ground

collision infeasibility is treated as a soft constraint in the fitness evaluation in order to
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reduce complexity in population initialization, crossover, and mutation. Thus, the

calculation of the collision cost Pc is updated in the following manner:

Pc = Cc -W, -W -(I -b)+b -Wr (- T) (Eqn 3-34)

The variable b is a logical operator that takes on value b = I if the point in the trajectory

being evaluated is below the terrain, or b = 0 otherwise. The value ZT is the altitude of the

point with respect to the terrain (ZT is negative when the point is below the terrain), and

WT is a weighting factor for varying the degree to which collision infeasibility is

tolerated in the fitness. Typically the value of WT need only be quite small (-1/10) in

order to prevent trajectories that pass through the terrain from being propagated through

the generations.

The goal of the TERA is solely to generate a trajectory which minimizes the risk

due a pop-up threat that is within range of the vehicle. When the TERA planner is called

the decision is made to forgo the current mission plan in order to increase survivability,

and hence the TERA has no goal waypoint to navigate to. Instead, the vehicle is free to

travel in the best direction possible in reaction to the impending threat. This means the

fitness function for TERA only need take into account the risk factors discussed in the

previous section.

The fitness of a given chromosome is evaluated at the end of each gene using the

decoded trajectory (output space). The fitness at a specific point along a trajectory, fi, is

given by:

f, = PM, + Pc, (Eqn 3-35)

The total fitness of a given chromosome is found by summing the fitness values of each

gene contained within the solution in order to generate a measure of the total threat

exposure:

t /At

F= f, (Eqn 3-36)

Here the value f is the time length of the chromosome, and hence t/At determines the

number of genes therein.

The value fi is a measure of risk over the period of the preceding gene. As

discussed in the previous section, the values Pm and Pc could be considered as
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approximations to probability of attrition over the trajectory segment. In this case the

value fi could be expressed alternatively as a cumulative probability, i.e.:

f, = P, + Pc, - PsM -Pc, (Eqn 3-37)

With fi now representing a probability, the total probability of attrition over the trajectory

can be calculated by:

I(/At

F = - 1(l -f,) (Eqn 3-38)

While knowing the actual Pk of a solution trajectory may be of interest, Equations

3-35 and 3-36 are used for the results in this thesis for the actual fitness scoring within

the GA. Although this does not provide an actual probability of attrition for a trajectory,

it does provide a consistent risk metric that can allow greater variability in total fitness

values between population members. Recall that the GA uses only the fitness magnitude,

and no other information about the nature of the cost space. Therefore, whether the

fitness is a probability or not is of no consequence. The real gain from using Equations

3-35 and 3-36 is in the wider range of total fitness possible. For example, a vehicle that

encounters a pop-up threat at zero range may find that all possible trajectories have a very

low probability of survival. This will result in a population all with fitness close to one,

causing the GA to have poor convergence since no solutions stand out. While

probabilistically speaking all solutions are in fact poor, we still require the GA to return

an intuitively good solution (such as flying straight away from the threat as opposed to

wandering aimlessly overhead). By summing fitness values the GA has the potential for

better convergence on a purposeful solution, thus providing the required behavior from

the algorithm.

3.4 Final algorithm

At this point all of the mechanisms needed for the GA have been discussed,

namely the crossover and mutation operations and the fitness evaluation. The final step is

to put all the elements together into the specific GA implementation for TERA response.

77



The operation of the GA for TERA follows very closely to the simple GA

presented in Section 3.1.5. Given an initial state xo = [x y z V T y], the GA population is

initialized to thrice the required population size (denoted by p), and each chromosome is

evaluated for fitness. The initial population is then downselected to p members via a

selection process called competition selection. In competition selection population

members are chosen one at a time and compared to k other population members drawn at

random. For each of the k members that have a higher fitness value (remember we are

minimizing fitness as opposed to the typical GA maximization) the competing

chromosome receives a score of +1. Once each chromosome has competed the top

scoring p chromosomes are selected as the initial population for the GA.

The reason for generating surplus initial population members is to literally

improve the quality of the initial "gene pool". Generating a large initial population and

downselecting increases the number of good initial chromosomes in the GA. For this

thesis a population size of p = 30 is used, and k = 20 is used for competition. The

population size was chosen to balance run-time and convergence, and is typical of the

population sizes seen in GA path planning [30, 35]. Higher population sizes will typically

increase convergence due to the increase in genetic material, however increasing

generation size directly increases computational effort per generation.

Once the initial population is found, the GA begins the generational iterations

which proceed as follows: The fitness is evaluated for each chromosome in the

population, and the scaled fitness values are found. Two chromosomes are then selected

from the population using roulette wheel selection on the reciprocal of the scaled fitness

(because of the minimization). A random number between 0 and I is drawn and

compared to the crossover probability (pcross) to determine whether crossover is

performed. If crossover is selected an attempt to perform a feasible, random single-point

crossover is made. Although two offspring can be produced from the crossover operation,

only one offspring is required by the GA per function call, therefore each attempt actually

has two chances to produce a feasible offspring. The crossover is attempted up to three

times, at which point either; (1) a feasible offspring has been produced and is copied into

the new population, or (2) no feasible offspring has been produced in which case the first

parent chromosome is simply copied into the new population. The intent of this is to
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prevent the GA from becoming stuck if no feasible crossover is possible between two

chromosomes. This process is repeated until the new population has p chromosomes. In

addition, the process is elitist, meaning the chromosome from the previous population

with the lowest fitness is the first chromosome copied into the new generation (without

crossover).

During the mutation phase each chromosome in the new population, save the first

chromosome which was carried over from the previous generation, is considered for

mutation. For each gene in each chromosome considered a random number is drawn from

the range [0, 1] and compared to the probability of mutation value (pmiut). If the random

number is less than pmut then the gene is mutated, otherwise it is not.

Once the new population of size p has been created, the fitness of each new

population member is evaluated. The iterative process of reproduction and mutation

repeats until either the maximum number of generations or the allowable run time has

been reached.

The question now arises as to how many genes to include in each chromosome

and what time duration At should be associated with the genes. TERA is required to

provide a trajectory that takes the vehicle out of range of the pop-up threat. This distance

can vary tremendously depending on when the threat is detected, the range of the threat,

the path followed out of the footprint, and the speed the path is executed. For example,

evasion of a pop-up MANPAD threat with 5000 meter range could take as little as a few

seconds to as much as two minutes or more depending on the circumstances of the

encounter.

In response to this uncertainty, TERA implements the GA as a receding horizon

controller, allowing the incremental generation of any length of trajectory with one GA

formulation. In RHC a fixed time horizon (TH) is set over which the problem at hand is

solved. Only the first TR 5 TH seconds of the solution is actually executed, however.

While a given solution trajectory is being followed, the algorithm re-solves using the

same horizon length with the initial condition being at time TR along the previous

horizon's solution. The previous solution from time TR to TH is then discarded, and the

new solution beginning at TR is executed. Figure 3-23 illustrates this concept for a
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Figure 3-23 Receding horizon control example for trajectory generation

trajectory planning problem in which TH = 30 seconds and TR = 10 seconds. In general,

increasing the solution overlap increases the algorithm's ability to react to unforeseen

events; however, the value of TR is bounded from below by the computational time

required for one horizon length. Increasing TH reduces the chance of falling into a local

minimum, however it also increases the computation time, and thus TR. Therefore, TR

and TH allow the balancing of local minima avoidance and reaction capability with the

computation time of the algorithm.

In addition to making the TERA planner adaptive to many different pop-up threat

scenarios, implementing the GA in a RHC fashion is convenient for chromosome

representation, wherein each chromosome is simply defined as having time length t = TH.

It was alluded to in Section 3.2.1 that the At for each gene would be fixed for all genes.

The reason is partially due to convenience and partially due to consistency in measuring

chromosome performance. The convenience aspect springs from the fact that it is most
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computationally efficient to map a chromosome to the output space at the end of each

gene using Equations 3-10, 3-11, and 3-12. Additionally, using fixed gene lengths

ensures the fitness measure remains consistent between chromosomes in the population

by summing an equal number of fitness values at equal spacing across each chromosome.

Hence, using a fixed gene At in combination with RHC results in a GA with fixed

chromosome string length equal to UAt.

With the GA operation now fully defined for TERA, the implementation of

TERA proceeds in the following fashion. When a pop-up threat is encountered, TERA

repeatedly applies the GA in a RHC fashion until the endpoint of a trajectory solution is

beyond the range of the threat. At this point TERA turns over the command of the vehicle

to the route planner that was operating at the time of the threat encounter, which must

re-plan the path to avoid the new threat discovered.
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Chapter 4

Threat Evasive Response Algorithm Results

In order to evaluate the effectiveness of the TERA as described in Chapter 3,

several different threat encounter scenarios have been simulated. The scenarios are

intended to provide realistic pop-up threat encounters representative of low altitude

operation in a hostile environment, providing means to evaluate the ability of the

algorithm to generate four dimensional trajectories which reduce the risk to the vehicle.

This chapter presents the results of those simulations after first describing each of the

threat scenarios evaluated.

4.1 Test scenarios

In the first scenario the vehicle is traveling along a predetermined trajectory

through a valley formed by two surrounding hills. The vehicle is traveling at 30 m/s

(-58kts) at an altitude of 30 m when a previously unknown MANPAD threat is detected

after passing the side of the hill on which the threat is located. This scenario is depicted in

Figure 4-1. Concentrating on the 2D figure for the time being, the original trajectory of

the vehicle is shown by the solid line passing between the hills, with the direction of

travel being right to left. The point at which the vehicle detects the new threat is denoted

by the circle on the original trajectory, and the dotted line following shows the path the

vehicle was intending to follow had the new threat not been present.
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Figure 4-1 First pop-up threat scenario for TERA evaluation
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The range of the threat in this case is set to 3500m (shown by circle), however

due to the surrounding hills the threat is not able to see all of the terrain within the

3500 m radius. The opaque terrain region in Figure 4-1 shows the area which is visible to

the threat, while the translucent terrain is out of LOS. Since the terrain being considered

is three dimensional, it follows that the LOS region will be three dimensional as well.

Consider the point (xi, yi, zi), where z, is the terrain altitude at (xi, y'). While the point

(xi, yl, zi) may not be visible from a given threat location, the point (x1 , yl, z1+A), A > 0,

will always be visible for a large enough A. The opaque region shown thus demonstrates

the region which can be seen by the threat at or above an AGL altitude of 30m (in this

case A = 30m). Figure 4-2 shows how visibility to the threat changes with altitude, and

demonstrates why flying low can have such a dramatic effect on detectability.

Figure 4-2 Visibility footprint of threat in Scenario #1 for a vehicle at different altitudes

The second scenario was selected due to the pronounced effect in the area

observable by the threat depending on what altitude the vehicle is flying at. The vehicle is
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initially flying right to left in the 2D plot of Figure 4-3 when a new threat at the location

denoted by the "X" is detected. The detection occurs when the vehicle is at the point

shown by the circle, while traveling at 30 m/s and 30m AGL altitude. The threat's

engagement radius is shown by the black circle. The opaque region within the circle

represents the area in which a vehicle flying at 20m AGL can be seen, while the darker

translucent area shows the area seen at 60m AGL. In this case the vehicle could

potentially exit the threat radius completely out of LOS by making intelligent altitude

corrections.

The third threat scenario evaluated is depicted in Figure 4-4. The vehicle is

initially traveling at 30 m/s and 30m altitude along the nominal threat free trajectory

depicted as the straight black line, with the direction of travel being right to left. At the

point denoted by the circle on the nominal trajectory a new threat located at the 'X' is

detected requiring an evasive trajectory re-plan. As before, the continuing dashed line

shows the path that would be continued upon if the vehicle were incapable of re-planning

to avoid the threat. In this example the MANPAD threat is assigned a range of 5000m,

giving the threat a commanding view of the expansive valley below it. In this case the

vehicle would be in complete view of the threat for 5000m if it were to follow the

original trajectory. The area in which a vehicle at 30m altitude could be seen by the threat

is denoted by the opaque terrain area in the figure.

The fourth and final scenario used for TERA evaluation is shown in Figure 4-5. In

this case the vehicle is flying from the bottom to the top of the upper figure along the

initial trajectory (30m/s, 30m AGL) shown by the solid line when a MANPAD threat is

detected at the location denoted by the black 'X'. Due to the relatively flat terrain in the

vicinity, the threat is able to see the majority of the area within the 4500m range shown

by the circle centered on the black 'X'. This scenario is complicated when a second

pop-up MANPAD with range 5000m is detected 40 seconds after the first threat

detection, requiring the TERA to avoid both threats. The second threat is located at the

white 'X', and the range is depicted by the circle centered on the threat. As in the

previous figures, the area in which the combined threats can see a vehicle at 30m AGL is

represented by the opaque terrain region.
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Figure 4-3 Scenario #2 for TERA evaluation
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Figure 4-5 Scenario #4 for TERA evaluation
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4.2 Simulation results

For each of the scenarios discussed in the previous section the TERA was

simulated in order to evaluate its effectiveness. In each circumstance a solution horizon

of TH = 40 seconds was used, with a re-plan horizon of TR = 20 seconds. The GA was

executed in a receding horizon fashion until the end point of a returned solution was

outside of the radius of the threat to be avoided (or both threats in the case of scenario

#4). The GA iterated for 600 generations for each solution, used a probability of

crossover of 0.5, a probability of mutation of 0.1, and a gene duration of 2 seconds.

The first scenario was meant to evaluate the ability of the TERA at seeking out

globally "good" areas to fly in a setting where the generally correct solution is intuitive to

the human observer. The overhead view in Figure 4-1 shows that LOS to the threat can

be quickly broken if the vehicle were to double back into the valley from which it came,

significantly reducing exposure over continuing on its original path. Once LOS is broken,

according to the cost function the best course of action is to fly radially from the threat

until out of range.

Figure 4-6 shows the result of 15 independent TERA evaluations in response to

the first scenario. Indeed, the (x, y) path behavior in this scenario is intuitive, as the

vehicle immediately performs a 180* turn and backtracks until out of LOS. Once LOS

break has been achieved all 15 trajectories turn and radially exit the range of the threat.

Figure 4-7 shows a single trajectory out of the group of TERA solutions plotted in

Figure 4-6, with each marker representing a At = 2 seconds. The endpoint of each gene is

marked with either an '*' or an 'o', depending on whether the point on the trajectory is

within LOS or without, respectively. This particular trajectory is able to reduce the time

of threat exposure after the initial detection to 14 seconds, which is well below the reload

and fire rate of a MANPAD device. Figure 4-7 also shows a white line emanating from

the MANPAD location which illustrates the behavior of the trajectory after LOS has been

broken.
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Figure 4-6 Results of multiple TERA evaluations of Scenario #1

While Figure 4-6 appeases the intuition of what the general path behavior should

look like, the question remains as to whether TERA is making good use of altitude and

velocity for risk reduction. Indeed, it is the addition of altitude and velocity which makes

the TERA problem far more difficult than 2D path planning, and which in part motivates

the use of a GA in the first place. Figure 4-8 begins to answer this question by showing

the AGL altitude behavior (right column) of five of the fifteen trajectories from

Figure 4-6. For these results an altitude of 40m was set as the maximum obstacle risk

altitude referred to in Figure 3-22, and denoted in Figure 4-8 by the "min obstacle free"

line. The "min LOS" line shows the AGL altitude above which LOS is clear at a given

(x, y) location along the trajectory. The typical behavior of TERA is to fly above the 40m

line so as to impose no obstacle risk on the vehicle, which is evident in the initial increase

in AGL altitude in several of the trajectories, and also in the increase in AGL in the latter

half of each trajectory after LOS is broken. However, the TERA appears to be diving the

trajectories below 40m in order to get under the minimum LOS altitude, sacrificing
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obstacle risk to reduce LOS exposure. In fact, in three of the five cases the trajectory

nearly perfectly tracks the LOS line for a short duration.

Figure 4-8 also shows the velocity behavior of the same five trajectories in the left

column. In each case the vehicle accelerates to and tracks (for the most part) the

maximum velocity for the duration of the trajectory, allowing the vehicle to minimize the

time required to follow the path out of threat range. Note that each trajectory has a slight

dip in velocity around the 15 second mark. This is because the vehicle begins to climb

once under the LOS break, however at maximum velocity the ROC limit is zero (see

Figure 3-9). The vehicle must decelerate slightly to increase the ROC limit in order to

allow the climb to take place.

The TERA response to the first scenario suggests the algorithm is indeed using all

4 dimensions of the trajectory space for risk reduction; however, the reduction of time in

LOS shown in Figure 4-8 over flight at the 40m obstacle safe altitude is rather small. This

raises the question of whether the algorithm would truly be able to take advantage of

altitude in a setting where reducing altitude would have a more profound effect of risk.

To analyze this question, the GA that is the core of TERA was used to generate multiple

solutions for the first 40 second time horizon following threat detection in Scenario #2.

The analysis of the altitude behavior of several of the resulting trajectories is shown in

Figure 4-9, and in fact, the altitude behavior is similar to that seen in the first scenario.

The TERA proves to be quite capable of altering altitude in order to reduce threat risk by

breaking LOS. While this does not prove that including altitude in the trajectory search

space will always be fruitful (if the terrain was completely flat altitude would have

negligible effect), it does show that the GA implementation is capable of significantly

reducing threat risk via altitude given the proper threat encounter scenario.

The third scenario is similar to the first in that it is intuitive that the correct TERA

result will double back on the initial trajectory in order to fly into the LOS shadow behind

the hill on which the threat is perched (Figure 4-4). Indeed, the results of 15 independent

TERA evaluations, shown in Figure 4-10, demonstrate the algorithm reaches the same

conclusion as all solutions quickly turn and head for the shadow region. Had the vehicle

followed the original trajectory it would have been exposed to the threat for over 160 sec,
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however, the average time exposure after detection of the threat for the 15 cases shown

was reduced to only 14 seconds.

Taking a closer look, the trajectories shown in Figure 4-10 appear to be kinkier

than those in Figure 4-6. It is also curious that 3 of the trajectories split off from the other

12 which follow a more radial pattern once LOS has been broken. Both of these

anomalies turn out to be caused by the dynamic constraints on the vehicle. Figure 4-11

shows the flight path angle and velocity histories of four of these trajectories. During the

first 20 seconds y tends to spike as the trajectory attempts to fly down into and then out of

a bowl shaped feature in the terrain. After this the vehicle must fly uphill out of threat

range (Figure 4-10). The climb effectively limits the velocity such that the required y can

be achieved, a result of the fact that at maximum velocity the ROC limit is zero. This also

appears to explain the wandering in the trajectories, which is the greatest in the 3 outlying

trajectories. By splitting to the right the trajectories are able to reduce the gradient of the

terrain they are attempting to track, hence increasing the allowable velocity and escaping

the threat faster. Likewise, the kinky behavior is likely caused by the need to reduce the

slope of the climb due to the rate of climb limit on the vehicle. The kinks in the

trajectories are similar in nature to switchbacks in a road or trail which, while increasing

distance, serve to reduce the gradient of the path.

In order to assess the ability of TERA to maximally exploit the vehicle capability

while still honoring the dynamic constraints, the same scenario was evaluated after

increasing the ROC limit as shown in Figure 4-12. The 15 resulting trajectories are

shown in Figure 4-13. While increase in ROC occurred at all velocities, the most

significant change is the allowance of non-zero ROC at the maximum velocity. The flight

path and velocity profiles of 4 of the resulting trajectories are shown in Figure 4-14. The

new y limit at maximum velocity turns out to be enough for the vehicle to climb out of

the valley, resulting in trajectories that are much closer to the velocity limit and slightly

smoother in appearance. Note that none of the trajectories in this case split to the right of

the hill on the edge of the threat range since contour following is not required with the

increase in the ROC limit. This example demonstrates that TERA is in fact taking

advantage of the maneuvering capability of the vehicle for risk reduction while operating

with in the dynamic constraints imposed.
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The fourth scenario differs from the previous three in that no major LOS shadow

area exists for the TERA to use for reduction of exposure, however, it does serve to show
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the ease of which multiple threats can be dealt with by TERA. Figure 4-15 shows 15

resulting trajectories from TERA for this scenario. The white line emanating from the

first threat (black 'X') shows that the initial response to the threat is to flee the scene in

the most direct sense possible, due to the total LOS coverage of the threat. The second

threat (white 'X') is detected 40 seconds after the first threat detection, upon which the

trajectories perform a left turn to avoid the new threat as well. While the trajectories

continue to move away from each threat after the second detection, the path behavior is

dominated by the influence of the newer threat due to the closer proximity. Once the

range of the first threat has been exceeded the trajectories turn to exit the second threat's

range radially (as indicated by the two dashed lines coming from the second threat).

Since the vehicle remains in LOS for the duration of the trajectory it behooves the

vehicle to fly at the maximum velocity in order to evacuate the area as quickly as

possible. The TERA does an excellent job of this, which is evident from the velocity

profiles shown in Figure 4-16. Following the initial acceleration (the first 8 seconds), the

average velocity over all 15 trajectories is 69.83 m/s (the max velocity limit is 70 m/s)

with a standard deviation of 0.40 m/s.

Figure 4-16 likewise shows that the altitude behavior is intuitive based upon the

particular fitness function used. Recall that the obstacle/terrain risk metric in the fitness

evaluation penalizes flight under a minimum safe AGL altitude (40m in this case). In

addition, a small linearly increasing cost was included to penalize flight above 80m,

which was included to motivate terrain tracking (otherwise there would be no cost

associated with flying at any altitude over 40m). The second window in Figure 4-16

shows that all trajectories are in fact limited between 40-80m following the climb from

the initial AGL altitude of 30m. The correlation in AGL altitude is explained by the third

window of the figure, which shows the absolute altitude behavior of all 15 trajectories

along with the terrain elevations encountered along each trajectory. The trajectories

effectively smooth the terrain due to the fact that the algorithm has no reason to track

each contour in the terrain as long as the AGL stays within the 40-80m cost free zone,

leading the wavy behavior in the AGL. For example, the dip in AGL seen at -43 seconds

corresponds to a rise in the terrain which TERA chooses not to track because it has no ill

effect on the fitness.
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Figure 4-16 Velocity and altitude behavior of Scenario #4 TERA results

Thus far it is clear that TERA is capable of taking full advantage of all four

dimensions in the trajectory space in a way befitting of cost reduction. While the altitude

behavior shown in Figure 4-16 is indeed intuitive, it is not clear whether the algorithm

would perform as well if the range of risk free altitudes were to be restricted in order to

impose a lower operational ceiling. In order to further assess the ability of TERA to

control altitude the fourth scenario was reevaluated after updating the obstacle risk cost

as shown in Figure 4-17. The linear cost increase at higher altitudes represents the

artificial penalty imposed in order to reduce the likelihood of the vehicle flying at

arbitrarily large altitudes. By altering the slope of the linear segment the "hardness" of

the operational ceiling is defined. The resulting 15 trajectories from the TERA evaluation

using the updated obstacle risk cost are shown in Figure 4-18.
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Figure 4-17 Updated obstacle risk function for improved terrain following

Figure 4-18 Scenario #4 TERA results with updated obstacle risk
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Figure 4-19 Velocity and altitude profiles for Scenario #4 results with updated obstacle
risk

Likewise, the velocity and altitude profiles of the TERA results are shown in

Figure 4-19. The trajectories do a quite reasonable job of remaining within the 40-55m

obstacle risk free zone, with the upper bound broken only a few times over all the

trajectories. The larger deviation below the lower bound at -48 seconds is due the rise in

terrain, which the algorithm ignores while the AGL remains over 40m. The algorithm

then pulls up once the trajectory starts to impose obstacle risk, however the small ROC

limit available due to the high velocity reduces the ability to recover altitude quickly. The

increase in cost due to this deviation was low enough as to not warrant velocity reduction
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in order to achieve the higher climb rates required to reduce the undershoot in AGL.

More velocity fluctuation was present over that seen in Figure 4-16, however, showing

that the more stringent altitude window required more positive flight path angle

commands, leading to the need for reduction in velocity.

Since GAs (and hence TERA) are not deterministic, the issue of repeatability of

results must be addressed. Repeatability can be of interest for several reasons, among

them being validation of flight software. The simulation results presented so far suggest a

high degree of repeatability in the results, as opposed to widely varying solutions.

Figure 4-6, Figure 4-10, and Figure 4-15 clearly show clustering in the results, with the

Scenario #3 results experiencing the greatest variation. In order to further assess the

behavior of TERA, Scenario #3 was re-evaluated 150 times independently, with the

results shown in Figure 4-20. In this case 12 of the 150 resulting solutions split from the

rest in order to follow the terrain contours to the right of the hill on the edge of the

threat's range. However these 12 trajectories are not a set of spurious and inferior results;

rather, with the mean fitness of the 12 outlying trajectories being 10.00, compared to the

mean fitness of 10.35 of the entire group, these outliers prove to be competitive

alternatives to the other trajectories. It is the clear ability of the solutions in Figure 4-20

to seek out the area of reduced LOS which is of importance in evaluating the TERA, and

in this respect the algorithm shows a high degree of repeatability.

4.2.1 Run-time considerations

Inherent in the role of the threat evasive response algorithm is the need for

real-time operability. The genetic algorithm discussed in Chapter 3 was implemented in

Matlab Release 13, and used to generate all results contained within this thesis. Because

Matlab functions are interpreted as opposed to compiled, the resulting run-times of the

algorithm are not representative of what would be expected from a complied language

such as C or Fortran. Although any statements about the real-time capability of the

current TERA are speculative, there exist several pieces of evidence which build a strong

argument that the GA based TERA presented in this thesis is fully capable of real-time

operation.
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Figure 4-20 Results of 150 TERA evaluations for Scenario #2

First of all, the average run-time per generation for the Matlab implementation of

TERA for the results presented in this chapter was 0.238 seconds/generation operating in

Windows XP on a 3.19 GHz Pentium 4 processor. Each time the GA within TERA was

called it was allowed to run for exactly 600 generations, yielding an average GA run-time

of 143 seconds for generating a 40 second trajectory with 2 second instruction lengths.

While the current Matlab implementation is obviously not capable of real-time

operation, there exist two major areas in which the run-time of the TERA could be

substantially reduced. The first area has to do with the actual coding of the algorithm.

Empirical evidence suggests that an increase of at least one order of magnitude can be

expected when a given Matlab function is coded in a compiled language such as C or

Fortran. This estimate agrees with run-time experiments using portions of the TERA code

in C++ which suggest at increase in speed of 30-600 times, depending on the amount of

looping in the code (Matlab is notoriously slow at for/while loops). This assertion is
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further supported in [37], in which a program for auto coding Matlab files into Fortran 90

is presented. Through a series of algorithm comparisons, the authors of [37] demonstrate

an increase in speed of 7-1100 times in the automatically generated Fortran code over the

original Matlab code, with an average increase of over 330 times. The same algorithms

were also hand-coded in Fortran for comparison and resulted in speed increases of

10-1100 times the originals, with an average speed up of 450 times.

If TERA were to experience an order of magnitude decrease in run-time, the

current TERA implementation would require only 14.3 seconds to generate a 40 second

trajectory using 600 generations. The re-plan horizon of TR= 2 0 seconds used for the

generation of the Chapter 4 results would therefore result in steady-state real-time

operability. However, the first time TERA is called after a pop-up threat encounter, the

14.3 second run time would be too excessive for a truly reactive algorithm. If the

compiled code were to experience anything over two orders of magnitude reduction in

run time (which is entirely possible), the algorithm would be completely real-time. See

Section 5.2 for a discussion on possible avenues for reducing initial response time in the

case that the compiled code is not sufficiently fast for the first horizon solution. In

addition to coding language, optimizing code for run-time can often have substantial

effect on run-time, however the current TERA code has not been optimized for speed in

any respect.

Furthermore, GAs are inherently highly parallelizable [38, 34]. The production of

the new population in each generation and the fitness evaluation can easily be run in

parallel, and applications of parallel implementations of genetic algorithms abound in the

literature. The current TERA implementation, however, is simply coded in series, leaving

yet another potential area for further decrease in computational time in order to support

real-time operations.

The second major area for reduction in TERA run-time comes from the algorithm

itself. As discussed in Chapter 3, GAs are any-time algorithms; that is, the GA can be

stopped at any time during operation and still return a potential solution. This ability to

trade off cost for run-time is one of the characteristic of GAs that make them appealing

for threat response. Figure 4-21 shows the cost behavior for the first horizon length
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Figure 4-21 Example of cost convergence during Scenario #1

solution for Scenario #1. The data plotted is the average of the minimum cost

chromosome from each of the 15 independent TERA evaluations at each generation. The

exponential cost behavior is typical of GAs, and demonstrates the kind of trade-off

available in terms of penalty incurred for reducing the number of generation available for

the solution. For example, a 33 percent reduction in run-time could be achieved if the

user were willing to accept an average increase in cost of 4.1 percent in the case shown in

Figure 4-21.

Furthermore, the algorithm discussed in Section 3.4 is only a simple GA

implementation in terms of the wealth of possible methods for selection mechanisms,

mutation operators, and population generation, all of which affect the rate of convergence

of the algorithm. By fine-tuning the algorithm structure and parameters, the potential

exists for increasing the rate of fitness convergence within the GA. This would result in a

direct reduction in the number of generations (and thus run-time) required to achieve a

given decrease in cost.
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4.2.2 Discussion of results

The simulation results presented have shown that the TERA developed in

Chapter 3 is in fact capable of generating intelligent, four dimensional trajectories for

threat response. Furthermore, the results, while not deterministic, are clearly repeatable

and accurate, which is very important for any potential vehicle guidance algorithm. The

response characteristics shown, particularly those in scenarios one and three makes the

utility of dynamic trajectory re-planning in response to new threat information

abundantly clear. In both cases the trajectories determined by the TERA dramatically

decreased the threat exposure time over the predetermined trajectory. In particular these

reductions in threat exposure were enabled by the introduction of LOS into the threat cost

calculation. While the non-linearity caused by LOS precludes the use of many

conventional optimization techniques, the GA easily adapts to the complexity of the ever

evolving cost functional, resulting in significant risk reduction through direct LOS

manipulation. The ability to explicitly account for LOS to multiple, previously unknown

threat location to dynamically re-plan trajectories in low altitude flight makes TERA

unique among threat avoidance algorithms in the literature.

Additionally, the results have shown that TERA takes full advantage of the

maneuvering capability of the vehicle while exploring the four-dimensional trajectory

space in generating evasive trajectories. Even in the fourth scenario, where areas of

outstanding reduced risk did not exist, TERA was able to autonomously return intuitive

trajectories that evaded the threats limited only by the dynamics of the vehicle.
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Chapter 5

Conclusions

This thesis has presented an algorithm for generating four-dimensional aerial

vehicle trajectories for the evasion of threats in a military mission environment. The

algorithm presented is easily adaptable to new threat situations due to the need for very

little a priori information about the threat environment. Furthermore, the resultant

trajectories are guaranteed to be dynamically feasible through imposing vehicle

maneuvering limits during the trajectory generation process.

In this chapter a summary of the work provided in this thesis is provided,

followed by a discussion of ideas for future work.

5.1 Summary

In Chapter 2, an overview of a typical low altitude autonomous aerial vehicle

mission was presented. In particular, the mission consists of a set of activity points to be

visited, which are either reconnaissance or weapons strike points. Some information

about threat locations is assumed known in advance of the mission which would be used

to route the vehicles around the threats' lethality footprints in order to increase vehicle

survivability. While this planning methodology is adequate if the threat knowledge of the

environment is perfect, in most operations within enemy lines it is impossible to know
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the location of every threat. Because of this, a threat evasive response algorithm is

desired in order to re-plan vehicles trajectories in order to increase survivability in the

event of pop-up threat encounters. In addition, due to the overwhelming complexity of

enumeration of any possible threat encounter for the purpose of contingency planning, it

is required that the evasive response algorithm be capable of dynamically re-planning for

the vehicle while in flight. It was determined that the evasive response algorithm must be

able to generate trajectories that minimize threat exposure risk while taking the vehicle

completely out of range of a given pop-up threat. An overview of possible search

algorithms from the literature was presented in order to identify the best algorithm to

generate the required results, and the class of genetic algorithms was selected for the

creation of the threat evasive response algorithm.

In Chapter 3 a background on the operation of genetic algorithms was presented,

followed by a detailed description of the development of a genetic algorithm for the

purpose of threat evasive trajectory generation. The chromosome representation was

established as a set of commanded changes in velocity, heading angle, and flight path

angle for the vehicle. The trajectories generated were required to limit commands to the

feasible range based on the dynamic capability of the vehicle, resulting in feasible

trajectory solutions. A highly customized crossover mechanism was presented that

retained the inertial qualities of the trajectories within the candidate population, and

furthermore ensured that the joining of trajectories was dynamically feasible. The method

of determining the exposure cost of a given trajectory was then discussed, with proper

emphasis placed on the whether line-of-sight to each threat exists or not. Line-of-sight

was determined to be of significant importance in the minimization of risk from infantry

based threats such as shoulder fired anti-aircraft missiles due to the need for visual

tracking for the use of these weapons. Finally, the threat evasive response algorithm was

defined which makes use of the genetic algorithm developed in a receding horizon

fashion in order to take the vehicle completely out of a given threat footprint of arbitrary

size.

The threat encounter scenarios simulated were presented in Chapter 4, along with

the algorithm results to each threat encounter. Through four different scenarios it was

shown that the genetic algorithm based threat evasive response planner developed in this
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thesis is quite capable of generating four-dimensional trajectories which take full

advantage of the maneuverability of the vehicle in reducing exposure risk to the vehicle.

The simulation results demonstrated the algorithm's ability to seek out areas of reduced

line-of-sight to the threat, resulting in significant reductions in threat exposure to the

vehicle. In addition, evidence was presented suggesting the algorithm is capable of

real-time implementation, however no conclusive arguments could be made about

run-time due to the Matlab implementation used for the simulation results.

5.2 Future work

This section discusses recommendations for further research into threat evasive

trajectory generation.

Algorithm optimization

Unfortunately, genetic algorithms tend to get a bad reputation in terms of

run-time. Research proving the real-time feasibility of genetic algorithms for threat

evasive trajectory generation would not only benefit in terms of verifying a specific

algorithm, but also to increase the viability of genetic algorithms for vehicle path and

trajectory generation. This could be accomplished by creating a provably real-time

implementation of the algorithm presented in this thesis, which would involve refining

the population evolution process (which chromosomes for crossover, which for mutation,

whether population overlap should exist [34], etc), and creating a speed-optimized coding

in a compiled language. Additionally, speed-up could also be attained by a parallel

implementation, which to the author's knowledge would be the first in the literature for

genetic algorithm path or trajectory planning.

Reactive response

All of the simulation results presented in Chapter 4 were generated using a

horizon length of 40 seconds. Section 4.2.1 mentioned that the TERA implemented in

this fashion would be capable of real-time operation given a factor of ten speed-up in

solution time (a conservative estimate for a Matlab to compiled code transition). An order

of magnitude speed-up, however, may not provide the desired initial reaction time upon
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threat encounter. Fortunately, there are several avenues to pursue should a run-time

optimized version of TERA not meet the desired reaction time.

The simplest way to accelerate response would be to perform the initial GA

solution over a reduced horizon length and number of generations. For example, upon

threat encounter the GA could provide a 10 second trajectory using 300 generations in

order to provide a reactive response within 1-2 seconds. While this trajectory was being

executed a 20 second trajectory could be generated using as many generations as possible

within the 10 second window provided by the first trajectory. The TERA could then

begin performing in the receding horizon fashion used in Chapter 4. Alternately, a simple

reactive heuristic, such as a greedy search, could be employed to provide the initial

response spanning the time required to generate the first horizon solution within TERA.

A more involved method for reducing response time would be to employ a set of

heuristics to generate solutions to seed the initial GA population with in order to expedite

convergence. For example, the initial population could be partially seeded with a set of

trajectories that follow straight-line paths radially out from the vehicle position at

different heading angles. Some of these solutions would naturally fly away from the

threat, providing a reasonable escape route. The heuristic solutions could, however, lead

the GA to converge on a local optimum. An interesting research project could include

creating a run-time optimized version of TERA and investigating the methods for

speeding up the initial threat response in order to complete a real-time threat response

guidance package.

Risk modeling

It would be of interest to generate more realistic threat and obstacle risk functions,

not only for the algorithm presented in this thesis, but for the evaluation of any potential

threat responsive trajectory planning algorithm. For instance, the risk models presented in

Section 3.3 assume that MANPAD risk is a linear function of range. This linear drop-off

in risk encompasses the fact that as range increase it becomes more difficult for the

human operator to visually identify the vehicle. However, when the vehicle is identified it

may be correct to assume that the risk no longer is affected by range as long as the

vehicle maintains LOS to the threat. It would be of additional benefit to map the threat

exposure risk measure used for analyzing chromosome fitness to actual vehicle

114



survivability in order to compare and verify the effectiveness of differing exposure

metrics.

Representation

One of the major assumptions made in the development of the threat evasive

response algorithm was that of constant changes in velocity, heading angle, and flight

path angle (Section 3.2.1). One way to impose more accurate dynamics on the algorithm

could be to use a chromosome representation composed of the maneuvers and trim

conditions proposed in [26]. Because each possible trim and maneuver is determined in

such a fashion as to guarantee dynamic feasibility, there would be no need for additional

checks to maintain feasibility. Furthermore, the maneuver set could be selected to be

commensurate with the required resolution and horizon length of the resultant

trajectories. That is to say, a coarser subset of maneuvers than those used in the dynamic

programming application in [26] could be generated to reduce the computational

complexity of the genetic algorithm.

This maneuver based representation, however, would create the need for a new

crossover mechanism, due to the fact that the crossover presented in Section 3.2.3 is

based on the assumption of constant changes in the control states. If a crossover

mechanism that connects an initial position and velocity (six states) to a final position and

velocity using maneuvers and trims were created, the maneuver-based representation

would be relatively simple to implement.

Multi-objective

In addition to the possibility of generating more realistic threat models, extra

objectives could be added to the genetic algorithm for increasing survivability. For

example, MANPAD threats are most readily identified by the heat signature created

when the first rocket is launched at the vehicle. The algorithm in this thesis took the

knowledge of the new threat and generated a trajectory out of the threat's footprint which

attempted to reduce the future exposure to that threat, however no attempt was made to

try and minimize the risk due to the rocket whose initial launch prompted the detection.

While there are several ways the rocket evasion could be approached, one way would be

to estimate the time of flight of the missile, and use a fitness function during that time
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span that emphasized evading the missile, such as by minimizing altitude and re-orienting

the exhaust away from the direction of the missile. In addition, countermeasures such as

flares could be incorporated into the response. After the estimated flight time of the

rocket had been exceeded, the genetic algorithm fitness function would revert to the

original exposure reduction model. The flexibility of the genetic algorithms in cost

evaluation makes them particularly well suited for this type of mixed objective problem

solving.

Another objective that would be interesting to consider is the addition of weapon

firing capability. The fact that the vehicle will often have weapons on board makes it

possible that the risk due to a pop-up threat could be reduced by firing in an attempt to

destroy the threat. While it may not typically be possible to fire any weapons without

human intervention, if the vehicle were to operate in a mission environment where

autonomous weapons launch were permitted, the vehicle could potentially greatly reduce

risk to itself by using them. The genetic algorithm could be updated to include the

decision of whether weapons should be launched, and if so how many and at what times.

This would introduce further constraints in that firing weapons would restrict the

orientation of the vehicle during target acquisition and launch. Thus, the threat response

algorithm could choose between fleeing a specific threat, or turning to fire upon the threat

in an attempt to reduce future exposure to the same threat.
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