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Abstract

I present the design and analysis of a two-dimensional camera array for virtual studio
applications. It is possible to substitute conventional cameras and motion control
devices with a real-time, light field camera array. I discuss a variety of camera archi-
tectures and describe a prototype system based on the "finite-viewpoints" design that
allows multiple viewers to navigate virtual cameras in a dynamically changing light
field captured in real time. The light field camera consists of 64 commodity video
cameras connected to off-the-shelf computers. I employ a distributed rendering algo-
rithm that overcomes the data bandwidth problems inherent in capturing light fields
by selectively transmitting only those portions of the video streams that contribute
to the desired virtual view.

I also quantify the capabilities of a virtual camera rendered from a camera array
in terms of the range of motion, range of rotation, and effective resolution. I compare
these results to other configurations. From this analysis I provide a method for camera
array designers to select and configure cameras to meet desired specifications. I
demonstrate the system and the conclusions of the analysis with a number of examples
that exploit dynamic light fields.

Thesis Supervisor: Leonard McMillan
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

Recent advances in computer generated imagery (CGI) have enabled an unprece-

dented level of realism in the virtual environments created for various visual mediums

(e.g., motion picture, television, advertisements, etc.). Alongside imagined worlds and

objects, artists have also created synthetic versions of real scenes. One advantage in

modeling rather than filming, a building or a city for example, is the ease in ma-

nipulation, such as adding special effects in post-production. Another advantage is

the flexibility in generating virtual camera models and camera movements versus the

limited capabilities of conventional cameras.

The traditional method of generating images at virtual viewpoints is through

the computation of the light interaction between geometric models and other scene

elements. To render real-world scenes, a geometric model must be constructed. The

most straightforward approach is to create models by hand. Another method is to

employ computer vision algorithms to automatically generate geometry from images.

However, these algorithms are often difficult to use and prone to errors.

Recently, an alternative approach has been introduced where scenes are rendered

directly from acquired images with little or no geometry information. Multiple images

of an environment or subject are captured, encapsulating all scene elements and

features from geometry to light interaction. These images are treated as sampled

rays rather than pixels, and virtual views are rendered by querying and interpolating

the sampled data.

17



Image-based rendering has found widespread use because of the ease with which

it produces photorealistic imagery. Commercial examples of image-based rendering

systems can be found in movies and television with the most popular being the "time-

freezing" effects of the motion picture The Matrix. Subjects are captured using a

multi-camera configuration usually along a line or a curve. The primary application

is to take a snap shot of a dynamic scene and move a synthetic camera along a

pre-determined path.

Light field[17] and lumigraph[10] techniques are limited to static scenes, in large

part because a single camera is often used to capture the images. However, unlike

the previous methods, the cameras are not restricted to a linear path, but lie on a 2D

plane. This allows for the free movement of the virtual camera beyond the sampling

plane.

A logical extension to a static light field or lumigraph is to construct an image-

based rendering system with multiple video cameras, thus allowing rendering in an

evolving, photorealistic environment. The challenge of such a system, as well as the

main disadvantage of light fields and lumigraphs in general, is managing the large

volume of data.

This thesis will be about the development and analysis of dynamic, camera array

systems with the introduction of a prototype system that interactively renders images

from a light field captured in real time.

1.1 Motivation

The development of a real-time, light field camera is motivated by the virtual studio

application. The goal of a virtual studio is to replace conventional, physical cameras

with virtual cameras that can be rendered anywhere in space using a light field cap-

tured by an array of cameras. Video streams can be rendered and recorded in real

time as the action is happening, or the light field can be stored for off-line processing.

Virtual cameras can do everything normal cameras can do such as zoom, pan, and

tilt. For live events, the director or camera operator can position virtual cameras in

18



space just like normal cameras. Cameras can also be generated and destroyed at will.

Nowhere is the virtual studio more relevant than in an actual studio environment,

especially for filming special effects. As an example, the movie Sky Captain and the

World of Tomorrow is the first time where everything is digitally created except for

the principle actors who are captured on film in front of a blue screen. In order to

precisely merge the actors into the synthetic world the camera positions and motions

during rendering and filming must match. This requires time and coordination. "The

six week shooting schedule required a new camera setup every twelve and a half

minutes." [9] In a virtual studio, the work of positioning cameras would not be needed.

The entire light field video could be saved, and later any camera motion could be

recreated. Ideally, the actors are positioned in a known coordinate system relative to

the camera array. Then the mapping from the actor's space to the light field space is

simply determined.

Sometimes storing the entire light field is not possible or needed, such as filming a

television broadcast (e.g., a TV sitcom or drama). In this case the virtual camera can

be previewed and the camera's motions programmed interactively. The video stream

can then be directly recorded.

Beyond the virtual studio, a camera array can also be used in remote viewing

applications such as teleconferencing or virtual tours.

1.2 Contribution

This thesis is about the development and analysis of camera array systems. Part

of this includes the construction of a prototype camera array to interactively render

images in real time. Several similar systems have been demonstrated before, but

due to the large volume of data, relatively small numbers of widely spaced cameras

are used. Light field techniques are not directly applicable in these configurations,

so these systems generally use computer vision methods to reconstruct a geometric

model of the scene to use for virtual view rendering. This reconstruction process is

difficult and computationally expensive.

19



I propose a scalable architecture for a distributed image-based rendering system

based on a large number of densely spaced video cameras. By using such a configu-

ration of cameras, one can avoid the task of dynamic geometry creation and instead

directly apply high-performance light field rendering techniques. A novel distributed

light field rendering algorithm is used to reduce bandwidth issues and to provide a

scalable system.

I will also analyze the capabilities of camera arrays. The analysis of light fields

and their reconstruction has largely been limited to sampling of the camera plane.

Instead, I analyze the sampling of the focal plane and how it relates to the resolution

of the virtual cameras. In addition I will quantify the capabilities of the virtual

camera in terms of movement and resolution. A related topic is the construction of a

camera array given a desired specification.

To conclude, I will present examples of using a dynamic light field in a virtual

studio setting. This will include traditional, image-based special effect applications.

I will also demonstrate the simulation of motion controlled cameras. Finally, I will

introduce other examples of using light fields such as mixing light fields, immersive

environments, and as a replacement to environment mapping.

To summarize, the central thesis to my dissertation is that:

An interactive, real-time light field video camera array can substitute conventional

cameras and motion control devices.

The following are my main contributions:

* I introduce a system architecture that allows multiple viewers to independently

navigate a dynamic light field.

* I describe the implementation of a real-time, distributed light field camera con-

sisting of 64 commodity video cameras arranged in a dense grid array.

* I introduce a distributed light field rendering algorithm with the potential of

using bandwidth proportional to the number of viewers.

* I quantify the capabilities of a virtual camera in the environment of a light field

20



in terms of the possible camera positions and orientations and also the effective

resolution.

" I describe how to design a camera array to match desired specifications.

" I demonstrate several sample applications.

1.3 Thesis Overview

Chapter 2 will cover the background materials related to image-based rendering,

specifically to light fields and lumigraphs, image reconstruction, and light field sam-

pling. I will also cover existing camera systems from static to dynamic systems and

linear to higher-dimensional camera configurations. Chapter 3 will begin by looking

at design goals for camera arrays and then discuss different architectures that meet

those goals. I will also discuss a possible ideal system that encompasses many desired

features. Chapter 4 introduces the prototype system. I will cover the construction

and the rendering process, and I will also analyze the performance. Chapter 5 dis-

cusses virtual camera capabilities first by looking at the possible range of motions,

then by the possible range of rotations, and finally the effective resolution. Chapter

6 makes use of the conclusions of Chapter 5 by describing the process of designing

a camera array to meet certain specifications. I will also discuss how to capture an

immersive environment and the applications for them. Chapter 7 covers the rendering

results and potential uses of dynamic light fields. Finally, Chapter 8 summarizes my

results and discusses future work.
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Chapter 2

Previous Work

In the area of light fields and image based rendering there has been a great deal of

research since the original Light Field Rendering [17] and The Lumigraph [10] papers.

However, with regards to real-time camera array systems there is little prior work. In

this chapter I will first discuss light field rendering in relation to camera systems, and

in the process, I will define standard terminology and practices. Next, I introduce the

analysis of light fields important in the construction of capture systems and rendering

of images. Finally, I describe the progression of camera array systems for image based

rendering from linear to planar arrays and static to video cameras.

2.1 Light Fields

A light field is an image-based scene representation that uses rays instead of geome-

tries. It was first described by Levoy and Hanrahan [17] and Gortler et al. [10]. In a

light field, rays are captured from a sequence of images taken on a regularly sampled

2D grid. This ray database, or "light field slab" [17], consists of all rays that intersect

two parallel planes, a front and back plane.

Rays are indexed using a 4D or two plane parameterization (s, t, u, v). (Figure

2-1) I will consider the ST plane as the camera plane, where the real or sampling

cameras are positioned to capture the scene. The UV plane can be thought of as the

image or focal plane. For the rest of this thesis I will use this two plane formulation.

23



V

T (U)

Figure 2-1: Two Plane Paramaterization. A ray from the virtual camera intersects
the light field at (s, t, u, v) which are the points of intersection with the front plane
(ST) and back plane (UV). Front plane can be referred to as the camera plane because
cameras are positioned there to capture the scene.

Cameras on the ST plane will sometimes be referred to as the real cameras whether

they are actual physical cameras or camera eye positions when rendering synthetic

scenes. I will refer to eye positions and orientations used to render new images as

virtual cameras.

Since the collection of rays in a space is formulated as essentially a ray database,

rendering a novel view is as simple as querying for a desired ray. (Figure 2-1) To

render an image using the light field parameterization, a ray is projected from the

virtual camera to the parallel ST and UV planes. The point of intersection with the

ST plane indicates the camera that sampled the ray, and the intersection with the UV

plane determines the pixel sample. The (s, t, u, v) coordinates are the 4D parameters

used to index the database where the ray's color is returned. Of course, the light field

is only a sampled representation of a continuous space, therefore rendered rays must

be interpolated from existing rays.
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2.2 Sampling

As shown in 2.1, discrete sampling on the ST plane will lead to aliasing or ghosting

of the rendered image. Levoy and Hanrahan [17] solved this by prefiltering the orig-

inal images. I will discuss reconstruction more in Section 2.3. Another method of

improving image quality is by increasing the sampling density of the ST plane. For

light field rendering with no pre-determined geometry, Choi et al. [5] gives the mini-

mum sampling required such that there is no aliasing or when the disparity, defined

as the projection error using the optimal reconstruction filter, is less than one pixel.

Ignoring scene features, [5] gives the minimum ST sampling or the maximum spacing

between cameras as

2Av
ASTmax = (2.1)

f ( - Zh) (2.1

where Av is the resolution of the camera in terms of the pixel spacing, f is the

focal length, and Zmin and Zma, are the minimum and maximum acceptable rendering

distances. Also, if using a single focal plane the optimal position of this plane is

1 1 1 i(
= - * + +I(2.2)

Zopt 2 Zmin Zmax

2.3 Reconstruction Algorithms

Without a densely sampled ST plane, rendering images with no ghosting artifacts

requires knowledge of the scene geometry. Choi et al. [5] demonstrated that with more

depth information the less densely sampled the ST plane needs to be. However, with

a physical camera array capturing real world scenes, depth is often difficult to acquire

especially in real time. In this section, I discuss methods for improving reconstruction

in the absence of depth information. There have been significant research in this area

[6, 32], but I will be discussing work most related to this thesis.
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Figure 2-2: Reconstruction of the desired ray r. F is a variable focal plane. (so, to)
and (f, g) are the points of intersection with the camera plane and the focal plane
respectively. For each sampling camera D, the (u, v) coordinate representing (f, g)
in the local image plane to that camera is solved. This represents the sampled con-
tribution to the desired ray. [13]

2.3.1 Dynamically Reparamaterized Light Fields

Levoy and Hanrahan [17] used two fixed ST and UV planes in their parameterization.

This leads to aliasing if the UV plane does not lie on the surface of the object. Isaksen

et al. [13] introduced a variable focal plane for reconstruction through dynamic

reparamaterization. From Figure 2-2, a desired ray intersects with the camera plane

and a focal plane that can vary in position. Intersections with the camera plane (s, t),

and the focal plane (f, g) are calculated. Since the cameras are fixed, a mapping

is known that gives the corresponding (U, v) coordinate on the image plane of the

sampling cameras for a (f, g) coordinate on the variable focal plane. These samples

will contribute to the reconstruction of the desired ray. The conceptof using a variable

focal plane for reconstruction will appear often in the following chapters.

2.3.2 Unstructured Lumigraph Rendering

Another limitation of light field rendering is that there is an implicit assumption that

the light field was captured with cameras positioned on a strict plane. Otherwise,
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Figure 2-3: Unstructured lumigraph rendering uses an image plane (blending field)
triangulated from the projections of the geometry proxy, the camera centers, and a
regular grid. [4]

as is done by [17], the images must be rectified into the two plane arrangement.

However, as I will later demonstrate, a physical camera system cannot guarantee such

an arrangement. "Unstructured lumigraph rendering" [4] (Figure 2-3) is a generalized

image based rendering algorithm that allows for cameras to be in general position.

For each pixel to be rendered, the contribution from every camera is weighted by

the angular deviation to the desired ray intersecting the geometry proxy, resolution

mismatch, and field of view.

penaltycomb (i) = apenaltyang (i) + /penaltyres (i) + '-penaltyf0 , (i (2.3)

This process is optimized by using a camera blending field formed by projecting

camera positions, the geometry proxy, and a regular sampling grid onto the image

plane. The contribution weights are then calculated at these locations and finally

rendered by using projective texture mapping.

Unstructured lumigraph rendering will be the basis for the rendering algorithm

used in the prototype camera system I introduce in Chapter 4.

27



2.4 Camera Arrays

There are many examples of multi-camera systems for image-based rendering beyond

light fields. In this section I will discuss a range of acquisition systems from static to

dynamic cameras and also camera systems for light field rendering.

2.4.1 Static Camera Systems

Static camera systems capture light fields of static scenes (non-moving, not in real

time, constant lighting conditions). With static scenes, the complexity of the camera

system can be reduced to a single camera on a robotic platform. This configuration

simplifies the costs of construction and the photometric and geometric calibration

necessary for rendering.

Levoy and Hanrahan [17] (Figure 2-4) used a single camera, on a robotic arm,

positioned at specific locations in space. The primarily application of their system is

to capture light fields of objects. To adequately sample the object, six surrounding

light field slabs are captured. During capture, the cameras are translated on a 2D

plane, but in addition, the cameras are also rotated so as to fill the field of view with

the object. Because of the rotation, since the focal plane is no longer parallel to the

camera plane, which leads to non-uniform sampling in UV space, images are warped

into the two plane parameterization.

The goal of the Lumigraph system [10] is to construct a light field, but instead of

positioning the cameras strictly on a 2D grid, a hand-held camera is used (Figure 2-4).

Multiple views of the scene and calibration objects are acquired by hand, enough to

cover the object. Extrinsic calibration is performed as a post-process. Finally, where

there are inadequate samples in the light field, a rebinning method called pull-push

is used to fill in missing data.

Pull-push reconstructs a continuous light field equation by using lower resolutions

of the sampled light field to fill in gaps. Pull-push has three phases - splatting, pull,

and push. Splatting uses the captured data to initially reconstruct the continuous

light field. The hand held camera cannot adequately sample the scene, therefore there
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Figure 2-4: Camera systems used in [17] and [10]. [17] uses a robotic gantry whereas
the Lumigraph uses a handheld camera to sample the target object.

are gaps in the reconstruction. The pull phase creates successive lower resolution

approximations of the light field using the higher resolution. In the final push phase,

areas in the higher resolution with missing or inadequate samples are blended with

the lower resolution approximations.

Like [17], Isaksen et al. [13] used a robotic platform to capture the scene (Figure

2-5), but does not rotate the cameras.

The disadvantages of these systems are clear. By using a single camera, it takes

some time to acquire a single light field (e.g., 30 minutes for [13]). Therefore, such

systems can only capture static scenes.

2.4.2 Dynamic Camera Systems

Unlike static camera systems, dynamic systems capture scenes in real time using

multiple cameras. The first such systems are linear arrays which can be interpreted

as a three dimensional light field. I will also discuss both non-light field camera

systems that use multiple cameras and finish with two-dimensional camera arrays.
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Figure 2-5: Camera gantry used by [13]. The camera is translated on a strict plane.

Linear Arrays

A linear camera array is a 3D light field system where the cameras are arranged on

a curve. The parameterization is 3D because the ST plane has been reduced to a ID

line of cameras. Linear arrays have been used extensively in commercial applications,

the most famous being the bullet time effect from the movie as popularized in the

motion picture The Matrix using technologies pioneered by Dayton Taylor [34]. In

this system (Figure 2-6) , cameras are positioned densely along a pre-determined

camera path. Images are synchronously captured onto a single film strip for off-line

processing.

Another commercial system called Eye Vision, developed by Takeo Kanade [15],

has been used during sports broadcasts, most notably the Super Bowl. In this system,

a small number of cameras are used to capture a single instance in time.

Yang et al. [42] used a linear video camera array (Figure 2-7) for real time video

teleconferencing. Their system uses multiple CCD cameras arranged in a line with

each camera capturing a video stream to its own dedicated computer. All the video

streams are then transmitted to the final destination where virtual views are recon-

structed.

To render a virtual a frame, [42, 43] uses a plane sweep algorithm by dynamically

reparamaterizing the light field to generate views at multiple focal planes, in essence
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Figure 2-6: Linear camera system used for motion picture special effects. [21]

Figure 2-7: Linear camera array used in [42].

at multiple depths. The final image is assembled by deciding, on a per pixel basis,

which focal plane best represents the correct scene depth based on a scoring function.

Their scoring function is the smallest sum-of-squared difference between the input

images and a base image (the input image closest in position to the desired view).

The rendered color is the RGB mean of the input images.

Linear camera arrays are limited in their capabilities. These systems generate

virtual views with a restricted range of motion and accurate parallax. Virtual camera

motion is constrained to the line that the real cameras lie on. As a virtual camera

leaves the camera line it requires rays that do not exist in the light field. A geometry

proxy is needed even in the limit (infinite camera sampling) to move off the line.

Motion parallax can still be viewed in this case, but view dependent features may be
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lost.

A further drawback to both [34] and [15] is that they do not take advantage of

the light field parameterization when rendering new views. Kanade does not render

virtual views, but rather uses transitions to adjacent camera positions without inter-

polation. The primary goal of [34] is to generate a specific sequence along a specific

path. They interpolate views between cameras by using both manual and computer

input.

Non-Planer Systems

Separate from light field research, there has also been much interest in building multi-

video camera dynamic image-based rendering systems. The Virtualized Reality sys-

tem of Kanade et al. [16] has over 50 video cameras arranged in a dome shape.

However, even with 50 cameras, the dome arrangement is too widely-spaced for pure

light field rendering. Instead, a variety of techniques are used to construct dynamic

scene geometry [29] for off-line rendering.

At the other end of the spectrum, the image-based visual hull system [19] uses

only four cameras to construct an approximate geometric scene representation in real

time. However, this system uses shape-from-silhouette techniques, and, thus, can

only represent the foreground objects of a scene.

Two Dimensional Arrays

In recent years, researchers have begun investigating dense camera arrays for image-

based rendering. The Lumi-Shelf [30] system uses six cameras in a two by three

array. Cameras are oriented such that they see the complete object silhouette. During

rendering, a mesh from the camera positions is projected into the image plane. From

there, region-of interests (ROIs) are determined so that only a subset from each sensor

is transmitted. These subsets are then projected into a final image. Most importantly,

they use a stereo matching process for geometry correction, which limits the system's

performance to one to two frames per second.
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Figure 2-8: CMOS cameras developed by [251.

Oi et al. [25] designed a camera array (Figure 2-8) based on a random access cam-

era. Their camera allows pixel addressing, but does not incorporate image warping

and resampling. They demonstrate a prototype of the camera device in surveillance

applications to simulate high resolution, variable field of view cameras.

Naemura et al. [22, 23] present a 16-camera array intended for interactive ap-

plications. They compensate for the small number of cameras by using real-time

depth estimation hardware. They also employ a simple downsampling scheme (i.e.,

images are downsampled by 4 in both dimensions for a 4x4 array) to reduce the video

bandwidth in the system, which keeps bandwidth low but does not scale well.

Wilburn et al. [40, 39] have developed a dense, multi-camera array using custom

CMOS cameras (Figure 2-9). Each camera is designed to capture video at 30 fps and

compressed to MPEG. Multiple MPEG streams are recorded to RAID hard drive

arrays. The main distinction of this system is that their target application is the

compression and storage of light fields, and not real-time interactivity.

Most recently, Zhang and Chen [45] introduced a sparse, multi-camera array using

off-the-shelf cameras (Figure 2-10). Their system is set up with 48 cameras connected

to one computer using region-of-interests, similar to [30], to reduce the transfer band-

width. To render an image they use a plane sweep algorithm similar to [43] to evaluate

pixel color and depth and a weighting similar to [4] to determine camera contribution.
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Figure 2-9: Wilburn et al. only records light field videos and processes them off-line.
[40]

Figure 2-10: Zhang and Chen compensates for their sparse camera sampling through

their reconstruction algorithm.[45]
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System Arrangement Real-time

Dayton[34] Linear/General N
Eye Vision[15] Linear/General N
Yang[42] Linear Y
Light Field[17] Rotated N
Lumigraph[5] General N
DRLF[13] Wall-Eyed N
Kanade[16] General Y
Visual Hull[19] General Y
Lumi-Shelf [30] Rotated Y* (low fps)
Naemura[22, 23] Wall-Eyed Y* (low fps)
Oi[25] Wall-Eyed Y
Wilburn[40, 39] Wall-Eyed N* (capture)
Chang[45] Wall-Eyed Y

Table 2.1: The camera arrangement of each system and its rendering capability. A

"general" arrangement is where there is no strict structure to the positioning. "Wall-
eyed" means that the optical axis of all the cameras are parallel (generally orthogonal
to the plane they lie on). A "rotated" configuration is where the camera positions
may have structure, but that the optical axes are not parallel.

2.5 Summary

In this chapter I have outlined the areas of previous work. In the first half of the

chapter, I covered light field rendering and aspects related to rendering images. In the

second half of the chapter I discussed various camera systems. Table 2.1 summarizes

the camera system in terms of camera configuration and type of rendering. In the

next chapter I will discuss camera system architectures for capturing and rendering

light fields for various applications.
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Chapter 3

System Architectures

One of the goals of this thesis is to describe light field camera array design and

construction specifically for studio applications. In this chapter, I will discuss design

goals necessary for various video rate applications. Then I will describe the range

of system architectures that meet the application's requirements and also how they

relate to the previous work.

3.1 Design Considerations and Goals

A number of considerations affect the design of any light field camera array, including

data bandwidth, processing, scalability, and desired uses for the system. Also consid-

ered are the overall system cost and camera timings when constructing a system.

3.1.1 Data Bandwidth

Light fields have notorious memory and bandwidth requirements. For example, the

smallest light field example in [17] consisting of 16x16 images at 256x256 resolution

had a raw size of 50 MB. This would correspond to a single frame in a light field

video. In moving to a dynamic, video-based system, the data management problems

are multiplied because each frame is a different light field. For every frame the system

could be handling data from the cameras, hard drives, memory, etc. Thus, one of
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the critical design criteria is to keep total data bandwidth (i.e., the amount of data

transferred through the system at any given time) to a minimum.

3.1.2 Processing

One of the advantages of light field rendering is the fact that rendering complexity

is independent of scene complexity and usually relative to the rendering resolution

(a light field database lookup per pixel). However, like with data bandwidth, it is

important to minimize processing time when dealing with a video or a real time

system. For a given target framerate, the entire system has only so much time to

process a single frame. In addition to rendering and handling the data, the system

could be compressing or decompressing video streams, handling inputs, etc. There-

fore, processing is not just limited to the rendering. Any improvement facilitates the

inclusion of more features or increases the framerate.

3.1.3 Scalability

As shown by [5] in Chapter 2, the image quality of light field rendering improves

with increasing number of images in the light field. Thus, the system should be able

to accommodate a large number of video cameras for acceptable quality. Ideally, in-

creasing the number of video cameras should not greatly increase the data bandwidth

or the processing of the system.

3.1.4 Cost

One of the appeals in the static camera system is that they require only a single

camera. However, a camera array multiples the cost in constructing a system by

the number of cameras and therefore probably limits the number or the quality of

sensor used in the system. A light field camera designer must factor in the cost of

the system in deciding features and components. For example, lower quality cameras

may be cheap, but they may also necessitate the need for increased computation

to correct for image defects. More expensive cameras would improve image quality,
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but the extra cost would reduce the total affordable number, which decreases final

rendering quality.

3.1.5 Synchronous vs. Asynchronous

Ideally when recording video, all the cameras would be synchronized with each other

or at least can be triggered externally. This means that all the sensors capture an

image at the same instant, or can be controlled to capture at a specific time.

However, most off-the-shelf cameras, especially inexpensive ones, lack synchro-

nization capability. Either that or the cost of a triggering feature makes the system

too expensive. Therefore, the tradeoff in not having an asynchronous system is using

software to correct for the difference in sensor timings which will potentially lead to

errors, but hopefully small enough not to be noticed by the user.

3.1.6 Desired Uses

A dynamic light field system has many potential uses, some of which may be better

suited to one design than another. The following is a range of possible uses for a

multi-camera system. The distinguishing feature among the many applications is the

bandwidth and storage requirements.

A. Snapshot In the last chapter I discussed single camera systems for static scenes.

A snapshot is different in that although it generates a single light field (or one light

field frame) it is an instance in time, therefore it can be used for both static and

dynamic scenes. One application is for capturing light fields of humans or animals as

in [7]. In their research they must acquire light fields of multiple human heads. A

multi-camera system does not necessitate the target model to remain motionless for

a prolonged period of time as in a single camera system, thus reducing errors in the

light field.

B. Live Rendering in Real Time A live rendering is when novel views are gen-

erated for the user as the scene is in motion. An example of this application would be
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a live television broadcast where a camera operator is controlling the motion of the

virtual camera broadcasting a video stream. In this scenario, there is no recording of

the entire light field, only the processing of those video fragments that contribute to

the final image. Live rendering is also the primary application for the camera array

prototype I describe in the next chapter.

C. Recording the Entire Light Field Video In this application, video streams

from the entire camera array (the entire light field) is captured and stored for post-

processing. The processing requirements in this scenario are minimal, but the trans-

mission and storage bandwidths are high.

D. Real Time Playback of Finite Views Generally, only a single or a few video

streams, such as stereo pairs for a head-mount display, are rendered from a captured

light field. Processing and transfer loads would be dependent on the number of

streams being rendered.

E. Real Time Playback of All Views Sometimes playback is not of a virtual

view, but of the entire light field (transferring all the video files simultaneously).

Having the entire light field is advantageous when information regarding the virtual

views is not known. For example, a light field camera array may be used to drive

a autostereoscopic viewing device (e.g., a true 3D television). An autostereoscopic

display allows viewers to see 3D images without the need for special aids (ie glasses).

Static versions of such devices have been demonstrated [13]. In this application, the

camera must have the bandwidth to deliver the full light field to the display, whether

from the cameras directly or from a storage device. An autostereoscopic device should

be able to accommodate any number of users at any viewpoints, thus the need for

the entire light field.

F. Post-production Processing Finally, light fields can be processed off-line in

applications where real-time rendering is not required, such as in film post-production

and animation.
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System Bandwidth Processing Scalable Cost Uses Design

Dayton[34] Low Off-line Y Low A,C,F All

Eye Vision[15] Low Low Y Low A All

Yang[42] Med to High Medium N Med B All
Kanade[16] High Off-line Y High B All
Visual Hull[19] Med Med Y Med B All
Lumi-Shelf [30] High High N Med B Finite
Naemura[22, 23] High High N High B All

Oi[25] Low to Med Med Y High B Finite
Wilburn[40, 39] High High Y High A,C,F All

Chang[45] Med to High High Y High B Finite

Table 3.1: How camera systems from Chapter 2 meet design goals.

3.1.7 Comparing the Prior Work

Table 3.1 categorizes some of the relevant camera-array systems discussed in Chapter

2 with the design goals that must be met for a light field camera array.

3.2 General Camera System

Any camera array system can generally be broken down into the following components

and interfaces in Figure 3-1.

1. Transfer between cameras and controller.

2. Transfer between controller and storage.

3. Transfer between controller and display.

4. Controller processing

The controller is the representation of one or many processing units that direct

data traffic, control devices, compress video streams, render viewpoints, send video

to the display, etc. It can perform all of these duties or only a few of them (i.e., pass

data directly to an auto-stereoscopic display without processing).

In Table 3.2, I characterize the range of applications in Section 3.1.6 by the degree

in which they exploit the above areas. The scoring will be a relative scaling from
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Figure 3-1: Transfer and processing points that can generally be found in any camera
design.

low, medium, to high. For example, a live rendering application would have a low

utilization of the link between the controller and the display whereas the bandwidth

needed to transfer the entire light field to an auto-stereoscopic display would be high.

3.3 Range of Architectures

In designing the prototype system that will be presented in the next chapter, I eval-

uated two possible system configurations. The fundamental difference between these

two designs is in the number of output views they can deliver to an end user. The

first system is a straightforward design that essentially delivers all possible output

views (i.e., the whole light field) to the end user at every time instant. I call this type

of system an all-viewpoints system. The second system type is constrained to deliver

only a small set of requested virtual views to the end user at any time instant. I

call this system the finite-viewpoints system. The all-viewpoints system predictably

has high bandwidth requirements and poor scalability. However, it offers the most

flexibility in potential uses. The finite-viewpoints system is designed to be scalable
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Co.....nts and Connections
1. Transfer 2. Transfer 3. Transfer 4. Controller

between between between processing
cameras and controller and controller and
controller storage display

Low to
Snapshot Low Low Low Medium

Real time live . Low to
Medium -- Lo oMedium

rendering Medium Medium
Medium to

Recording High High -- Hg
____ ____ ____High,

Real time
Low to

playback - Medium Medium High
Finite Views).

Real time Medium to
playback - High High High

(All Views)
Off-line

-- - Low Low
Processing

Table 3.2: Relative bandwidth loads at various points in Figure 3-1.

and utilize low data bandwidth. On the other hand, it limits the potential uses of

the system.

3.3.1 All-Viewpoints Design

The all-viewpoints design (Figure 3-2) is the simpler of the two architectures. In this

design the camera array delivers all of the video streams to a display device. I call

this the "all-viewpoints" design because any number of distinct virtual viewpoints be

synthesized at the display device.

The advantage of this approach is that all of the light field data is available at

the display device. This feature allows, for example, the light field to be recorded

for later viewing and replay. In addition, this design could permit the light field

to generate any number of virtual views simultaneously, given a suitable multi-user

autostereoscopic display device. Also, by sending all the video streams, the overall

processing in the system is reduced to transferring of data between components.

The primary disadvantage is that the data bandwidth required to transmit large
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Figure 3-2: All-viewpoints design. High bandwidth requirements because the display
requires the entire light field.

numbers of video streams is large. In addition, the bandwidth increases with the

number of cameras, making the design difficult to scale.

Considering that a single uncompressed CCIR-601 NTSC video stream is -165

Mbpsi, a system with multiple cameras would require aggressive compression capabil-

ities. An optimal compression device would encode all video streams simultaneously,

which could potentially lead to an asymptotic bound on the total output bandwidth

as the number of cameras is increased. However, the input bandwidth to any such

compression device would increase unbounded. The most practical solution is to

place compression capabilities on the cameras themselves, which would reduce the

bandwidth by a constant factor but not bound it, such as the design by [40].

3.3.2 Finite-Viewpoints Design

The finite viewpoint design (Figure 3-3) trades off viewing flexibility for a great

reduction in bandwidth by treating cameras as "random access" video buffers whose

contents are always changing. The cameras are individually addressable (such as in

1720x480 Luminance, 360x480 Chrominance, 4:2:2 sub-sampling, 60 fields/sec (interlaced) [38]

44



Image Fragments

View Requests

Cameras

Video Stream

View Requests
Local Viewer

Head Mounted
Display

Internet

Web Viewers

Figure 3-3: Finite-viewpoints design. Bandwidth needs are proportional to the num-
ber of distinct viewpoints requested.

[25]), and subsets of pixels can be copied from their video buffers. The key idea is

that the individual contributions from each camera to the final output image can be

determined independently. These "image fragments" can then be combined together

later (e.g., at a compositing device or display) to arrive at the final image.

The system shown in Figure 3-3 operates as follows. An end user at a display

manipulates a virtual view of the light field. This action sends a virtual view request to

a central compositing engine. The compositor then sends the virtual view information

to each of the cameras in the array, which reply with image fragments representing

parts of the output image. The compositor combines the image fragments and sends

the final image back to the user's display.

The system transfers only the data that is necessary to render a particular virtual

view. In this way, the total bandwidth of the system is bounded to within a constant

factor of the size of the output image, because only those pixels that contribute to

the output image are transferred from the cameras. Ideally, cameras would either be
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pixel-addressable in that a single pixel can be return on request or have intelligence

to determine the exact contribution to a viewpoint. This is different from [30] and

[45] where only a rectangular subset of the sensor's image can be returned and thus

transferring extraneous data.

In general, the system may be designed to accommodate more than one virtual

viewpoint, as long as the number of viewpoints is reasonably small. Note that there

is some bandwidth associated with sending messages to the cameras. However, with

the appropriate camera design, these messages can in fact be broadcast as a single

message to all the cameras simultaneously.

Along with a reduction in bandwidth, this system design has other advantages.

First, it more readily scales with additional cameras, as the total bandwidth is re-

lated to the number and size of the output streams instead of the number of input

streams. However, scalability is also dependent on the rendering algorithm. This

will be explained in more detail in the next section. Second, the display devices can

be extremely lightweight, since only a single video stream is received. A light field

camera employing this design could conceivably be manipulated over the internet in

a web browser.

The main disadvantage of the finite viewpoint system is that the entire light field

(all the camera images or video) is never completely transferred from the cameras.

Thus, it is impossible to display all of the data at once (e.g., on a stereoscopic display).

3.4 An Ideal System

The all-viewpoints and finite-viewpoints systems are two opposite ends of a spectrum

of possible designs, each with a specific application. Ideally, a complete camera array

would be capable of all the desired uses outlined in Section 3.1.6. The major hurdle

is overcoming physical limitations of current technologies.

o Network bandwidth is limited to 1 Gbs

o Peripheral connections, Firewire and USB, have a maximum data rates of 400
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and 480 Mbs respectively

" Peripheral buses (PCI) have a maximum throughput of 133 MBs

" Today's fastest hard drive can read at a maximum sustained rate of 65 MBs

These transfer rates are also based on ideal, burst transfer situations where data

is read or written sequentially. Random access transfers dramatically decreases per-

formance (33 to 44 MBs).

The best system would incorporate the best features of the all- and finite-viewpoints

designs - capable of storing all camera data, but also limit network bandwidth rela-

tive to the number of virtual views. (Figure 3-4) This system would have processing

units close to the cameras (ideally with each sensor attached to its own CPU) to

handle rendering and compression. These cameras would also have dedicated storage

to store individual video streams and consequently overcoming physical hard drive

limitations. I call a collective sensor, CPU, and storage configuration a smart camera.

A smart camera would reduce the bandwidth requirements between the camera and

the controller. The controller is the front end of the entire system which relays view

requests between the viewing device and the smart cameras. However, the transfer

of an entire light field is not possible by conventional means as outlined above due

to network limitations. Therefore, a system requiring this ability such as an auto-

stereoscopic display (such as in [20]) would need to be attached directly to the smart

cameras.

Essentially, I contend that an ideal camera array distributes the rendering and

storage functions and moves them closer to the cameras. In the following chapter I

present a prototype system that tries to meet this description.

Scalability of this system and the finite-viewpoints design depends highly on the

reconstruction algorithm. To render an image, each ray can be interpolated from

a fixed number of cameras. In this case, the overall system bandwidth scales by

resolution of the image and the number of virtual cameras. Another rendering method

is to calculate all camera contributions to the desired view. In this case, overall system

bandwidth will scale to the number of cameras. In the worst case all cameras will
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Figure 3-4: An ideal system that can render and record in real time of live scenes and
also play back stored light fields in real time.

contribute to the final image. I will further discuss the issue of scalability in Chapter

4 and 5.

3.5 Summary

In this chapter I described various application types for light field cameras, the design

goals needed to meet those specifications, and various architectures and how they

satisfy those design goals. In the next chapter I will describe my prototype system

based on the finite-viewpoints design.
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Chapter 4

Prototype Camera Array

At the end of Chapter 3, I outlined the properties of an ideal camera array. In

this chapter, I describe a prototype light field camera array [41] based on the finite-

viewpoints design. The initial goal of this system was for live renderings in real time

(rendering a limited number of virtual views in real time while the scene is in motion).

While most of the discussion will revolve around this application, I will also discuss

recording capabilities that were incorporated as an extension to the initial design.

First, I describe the basic light field rendering algorithm that the system implements.

Then I describe the two key system components, the random access cameras and

the compositing engine, and how they interact. I will also discuss other details that

are necessary for a complete system. Finally, I will analyze the results of the overall

system.

4.1 Architecture

4.1.1 Overview

The prototype device I have developed is a real-time, distributed light field camera

array. The system allows multiple viewers to independently navigate virtual cameras

in a dynamically changing light field that is captured in real time. It consists of 64

commodity video cameras connected to off-the-shelf computers, which perform the
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Figure 4-1: Overall System Architecture.

rendering. These computers are in turn connected to a single compositing computer

that assembles final images for output to a display device. A distributed rendering

algorithm overcomes the data bandwidth problems inherent to dynamic light fields.

This algorithm selectively transmits only those portions of the camera videos that

contribute to the desired view.

4.1.2 Rendering Algorithm

The actual implementation of my system is intimately tied to the choice of light field

rendering algorithm. The algorithm that I use is related to the hardware-assisted

algorithms described in [4, 31]. These algorithms are well-suited to my design since

they construct the output image on a camera-by-camera basis.

First, the positions and orientations of all of the cameras are assumed to be

known. While the camera positions are not required to strictly conform to a regular

grid, I do assume that the cameras have a fixed regular topology. For example, in

the prototype system, I have configured 64 video cameras in an eight by eight square

grid. A fixed topology is used for rendering by creating a Delaunay triangulation on

the grid (Figure 4-2).
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Figure 4-2: A diagram of the rendering algorithm. Cameras positions, in a regular
topography, are first triangulated. All triangles associated with a camera are then
projected onto the focal plane with projective texture mapping. The result is an
image fragment that is transmitted for later compositing.

As in [4], the light field is rendered with respect to a user-specified focal plane.

Conceptually, the rendering proceeds as follows. For each real camera (i.e., vertex)

in the grid, the triangles that are connected to the camera are projected through

the desired view onto the focal plane. These fixed triangles are rendered from the

desired point of view using projective texture mapping of the camera's current image.

The alpha values of the triangles are set such that the camera's vertex has an alpha

value of one and all other vertices have alpha values of zero. These rendered triangles

constitute the image fragment that this particular camera contributes to the final

image. All image fragments from the contributing cameras are accumulated to arrive

at the final image.

The alpha values of the rendered fragments are derived from the interpolation

weights from the camera triangulation, used to combine the contributing rays from

neighboring cameras. Projective texture mapping camera images to the focal plane

is analogous to using the "dynamically reparameterized light field" algorithm where

different rays from neighboring cameras intersect a variable focal plane.

The above rendering algorithm is based on the "unstructured lumigraph render-

ing" (ULR) [4] algorithm with the advantage that it does not require cameras to lie
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strictly on a plane. To review, ULR weights the contribution of each camera to each

desired ray based on a weighting of angular penalty, resolution mismatch, and field

of view. Angular penalty is the angular difference between a contributing ray and

the desired ray, resolution mismatch refers to the resolution difference between the

source camera and the virtual camera, and field of view makes sure that the desired

ray is within the field of view of the source cameras.

I can take advantage of the fact the there is a known, regular topology with the

cameras loosely facing in the same direction. Due to the relative uniformity of the

camera array, only angular penalty will affect the weighting of each ray. Angular

penalty is determined based on the k-closest cameras in order to control weighting

falloff from one to zero. I can optimize the rendering by using the three closest

cameras and setting the weights of all other cameras to zero. This falls naturally

from the triangulation and projective texture mapping. By setting the weight of the

contributing camera node on the triangulation to one and zero everywhere else for

each projective texture mapping pass of a camera, only three cameras will contribute

to the rendering of a triangle or ray.

4.1.3 Random Access Cameras

A random access camera returns a portion of its current image in response to a request

for data. The amount of "intelligence" required on the camera determines how the

light field algorithm is distributed.

A simple random access camera knows nothing about itself or its neighbors and

looks like a frame buffer to the compositor. In this case, the compositor knows

all information about the system, including camera positions, focal plane position,

etc. During rendering, the compositor determines which pixels are needed from each

camera and directly reads them out of the cameras' frame buffers and performs all

texture filtering, alpha blending, and compositing. This is the type of camera module

described in [25].

However, a random access camera for light field applications can benefit greatly by

applying image processing directly at each camera node. For example, as discussed
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previously, rendering the light field involves projective texture mapping, which is a

simple perspective transformation applied to a spatially coherent part of the camera's

image buffer. Thus, a more intelligent random access camera would be able to warp

its image fragment given a desired triangular output region and a 2D perspective

transformation matrix. The compositor could then generate requests for triangular

patches instead of individual pixels and perform only alpha compositing.

A random access camera could be further improved to have knowledge of its

position in the world. In this case, the compositor could send just a desired 3D

triangle along with the virtual view information and focal plane information. The

required perspective image warp can then be derived from that information.

In my system, I assume that the camera has knowledge of its own position and

the positions of its neighboring cameras. Given this information, the camera itself

can determine its contribution to the final output image with just the virtual view

information and the focal plane. All cameras require the same information, so it can

simply be broadcasted to all the cameras at one time.

This simplified communication protocol has significant advantages. It reduces the

bandwidth load between the cameras and the compositor. However, it is not clear

that this choice is always best. For example, cameras that have no knowledge of their

neighbors might be useful for a fault tolerant system. A sophisticated compositor

could reconfigure the camera topology on-the-fly in the case of camera failures.

4.1.4 Simulating Random Access Cameras

Unfortunately, the type of random access camera that I envision is not yet com-

mercially available. With the advent of inexpensive CMOS imagers, however, these

cameras could certainly be built on a single chip.

In the meantime, I chose to simulate such cameras using a regular video camera

connected to a computer equipped with commodity graphics hardware. Video frames

are downloaded into the computer's memory. As view requests are received over

the network, the computer warps a small part of the video frame according to the

rendering algorithm outlined above and sends the resulting image fragment back to
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the compositor.

The image fragment is a small rectangular patch with associated 2D coordinates

(Figure 4-2). These coordinates tell the compositor where to position the image

fragment in the final image. The fragments are also tagged, so when there are multiple

users, the compositor can determine to which virtual view and focal plane they belong.

Fragments can also be compressed, resulting in even further bandwidth reduction. My

system uses simple JPEG compression for this purpose.

I have found that standard PCs are sufficient for simulating a random access

camera. In fact, a single computer can easily simulate more than one camera. In my

system, a single computer processes up to 16 simulated random access cameras. The

computer stores the position and neighbor information and performs image processing

and compression for each camera

4.1.5 Image Compositor

The image compositor is the central communication point in my system. End users

connect to the compositor when they want to view novel images rendered from the

light field data.

The user's display program sends a view request to the compositor whenever the

virtual camera parameters require an update. The view request consists of a virtual

view and focal plane. The virtual view is specified by position, orientation, and

field-of-view, and the focal plane is specified by a plane equation.

The compositor broadcasts the view request information to the random access

cameras. It then clears a new frame buffer and waits for the appropriate image

fragments to return from the cameras. When a fragment arrives, the compositor

aligns the upper-left corner of the fragment with the proper 2D coordinates returned

by the camera. It then adds the fragment into the frame buffer.

When all fragments have been received, the completed output image is returned to

the user's display. Because of the small amount of data involved, the entire process

happens very quickly and there is very little latency. Also, the system maintains

nearly constant overall throughput because light field rendering is insensitive to the
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Figure 4-3: The 64-camera light field camera array. The cameras are grouped in rows
of eight. One or two groups are connected to different computers.

virtual view selection or scene complexity with approximately a 3x overdraw of each

pixel.

4.2 Construction

Cost was a significant consideration in choosing the hardware for the system. The

camera array itself consists of 64 OrangeMicro iBot firewire video cameras (Figure

4-3) based on the Texas Instrument reference design [36, 27, 35, 26] with the following

physical characteristics:

9 1/4" color CCD image sensor

9 620 field of view

* Video at rates of up to 30 frames per second (fps)
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o Frame size up to 640x480 pixels

" Focusable lens from 1 cm to infinity

" Diameter of 60 mm

These cameras, while inexpensive, have a few disadvantages. First, they do not

have external triggering capabilities and cannot be genlocked. This means that the

images that contribute to the video light field are not synchronized exactly in time.

Second, the software color controls on the cameras do not behave in a consistent

or known manner. This makes color calibration across multiple cameras difficult.

Third, the cameras lenses have significant radial distortion, which complicates camera

calibration and introduces geometric distortions in renderings. I address each of these

deficiencies in subsequent sections.

To build the array, I stripped the cameras of their casings and rigidly mounted

them to a Plexiglas board. The cameras are organized into groups of eight, which are

connected to two firewire hubs. Rows of eight cameras are then connected to PCs,

which act as the random access camera simulators for those cameras. Currently, the

cameras are arranged in an eight by eight grid; however, the intention is to be able

to reconfigure the array by rearranging the eight-camera modules.

Currently, I use six differently configured computers to act as random access

camera simulators. They range from 1.5 GHz to dual 1.7 GHz Pentium 4 PCs. Each

computer has two firewire channels for grabbing video from the cameras. Each camera

is identified by a unique firewire device tag. The two fastest computers each simulate

16 random access cameras, while the other four computers each simulate 8 cameras.

The computers are equipped with Nvidia Quadro2 Pro graphics cards, and they are

all connected to the compositing machine via a dedicated gigabit ethernet network.

The compositor computer is a slower 1.5 GHz Pentium 4 computer, and it does

not require an advanced graphics card. The compositor drives a display that users

can use to view the light field. This system is also allows users to connect remotely

(e.g., over the web) to the compositor machine.
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4.3 Calibration

In order to render images, the cameras must undergo both geometric and photometric

calibration. Geometric calibration involves determining intrinsic and extrinsic para-

meters of each camera. The intrinsic camera properties include focal length, aspect

ratios, image plane skew, optical center, and radial distortion. Extrinsic calibration

refers to determining each camera's position and orientation relative to each other.

Geometric calibration is required to render or select rays correctly. Photometric cal-

ibration on the other hand is required to normalize the response and color space of

each camera. Since multiple cameras contribute to the final rendering, corresponding

colors for each color must be reproduced equally.

4.3.1 Geometric

For quality light field rendering, it is important to know accurately the positions,

the orientations, and the internal parameters of the cameras. Calibrating a single

camera is a tedious process; individually calibrating 64 (or more) cameras is even

more difficult. To make the process easier, I have developed a largely automatic

process.

First, I manually calibrate the intrinsics of one of the cameras using Zhang's cal-

ibration software [46], which solves for focal length, aspect ratios, optical center, and

radial distortion. Initially, I assume that all of the cameras have the same intrinsics

as this first camera. This assumption is relaxed in a later stage of the calibration

process.

Next, to determine extrinsic parameters I need to find corresponding points that

are visible to all the cameras. I darken the room and move a point light source in

front of the camera array. Each camera tracks the position of this light source, which

is easy to see in the dark environment. I acquire about 100 points of data.

I then run standard structure-from-motion computer vision algorithms [33, 37]

on this point dataset to compute an initial estimate of the cameras' positions and

orientations as well as the 3D positions of the point light sources. In this step, I have
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assumed identical intrinsics, which causes the structure-from-motion process to yield

noisy results.

Finally, I relax the identical intrinsics assumption and refine the initial estimate

using a large nonlinear optimization. This optimization improves the position, ori-

entation, and intrinsics of each camera. (The 3D point light source positions are

improved as well, but I do not use this data.) Using this process, I generally achieve

a calibration with reprojection errors of less than 1 pixel, which is suitable for image-

based rendering applications.

4.3.2 Photometric

When combining images from many different cameras, it is important to match the

response and colors between cameras. There are many controls available in adjusting

the images captured by a digital camera. I focus primarily on contrast, brightness,

and white balance. Since, the sensor response of each camera is unique, independently

adjusting the controls for 64 cameras is a tedious process. To assist in this task, I

have implemented the simple automatic process described in [24].

The relationship between observed and displayed intensity is governed by the

following equation.

intensity (x, y) = brightness + contrast * i (x, y) (4.1)

Brightness is an offset added to each pixel, and contrast is the scale. A color value is

composed of three channels: red, green, and blue. Brightness and contrast is applied

to each channel equally. White balance is the process of adjusting the individual color

channel's responses such that, simply put, "white looks white".

The color matching process begins by selecting a reference camera where the soft-

ware controls have been manually adjusted so that the output image has a reasonable

appearance. For simplicity, the cameras are all looking at a white background. Then,

for each camera, the color parameters are adjusted in software until the total amount

of red, green, and blue is close to matching the reference camera.
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Unfortunately, some low-cost cameras have defective color controls (similar to

the problem reported in [24]), so the automatic process does not always succeed on

all cameras. First, there is only one white balance parameter to control for three

parameters. Second, the brightness parameter does not equally apply an offset to

each channel. Instead there is a color shift in the output images. For some cases, I

must adjust some color controls manually.

Although I do not implement them, I will describe two more calibration steps that

can be implemented. Adjusting the camera controls is one method of color matching.

Another method is to use a color pattern and apply a per-pixel mask to the images

such that the response to different colors are the same versus just white. Also, each

camera sensor has inherent fixed-position noise called dark current. Again another

mask is used to subtract out the noise by capturing images with the lens cap on

(no light response). Since the goal of the camera array was real-time capture and

rendering, I did not implement these two methods.

4.4 Synchronization

Synchronization usually refers to running the system on a single global clock such that

the sequence of operations are known - capture, rendering, transmission, etc. How-

ever, the cameras cannot be genlocked. This means that images are not captured at

the same instance. Furthermore, rendering is distributed and occurs asynchronously

from capture. Even if the cameras of one computer are in synch, the rendering on

each computer must be performed on data that was capture at the same time. There-

fore in this case, synchronization refers to both the capture of the images and the

rendering across the computers.

The only way to synchronize cameras is to provide an external clock. This is not

possible with the cameras that I use. Firewire does not provide a mechanism either

to do this. In effect each camera is running asynchronously with the firewire channel,

capturing images and blindly sending them through the firewire bus. Fortunately, the

cameras can be started simultaneously and through experimentation, frames arrive
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at the rendering computers within a frame of each other.

As cameras are capturing images, the camera computers render the light field on

a loose global clock. When the system first starts up, all the computers synchronize

their internal clocks. Once they finish this step, their clocks differ by no more than 5

to 10 ms. Then, the camera computers agree on a schedule for when they will render

images from the cameras. Since their clocks are aligned, they will all render an image

from their respective cameras within 5-10ms of each other. Because the cameras run

at only 15 fps, this scheme is sufficient to keep the light field images to within a frame

of one another. See Figures 4-12 and 4-13 in Section 4.5.6 for more details.

4.5 Analysis

So far I have presented the architecture and construction of a prototype camera array

system based on the finite-viewpoints design. Now I will present and analyze the

results.

4.5.1 Performance

The system renders images at an average of 18 fps at 320x240 resolution while cap-

turing video from the cameras at 15 fps. I can achieve this rendering rate because

rendering and capture happen asynchronously. Unfortunately, the frame rate of the

system is limited by the slowest camera computer due to the synchronization of the

camera computers. For each frame, the computers agree on a schedule to render

frames. Since the rendering must be performed on images that were captured at the

same time, the entire process is limited to the computer with the slowest rendering

speed. The fastest computer can easily run at 30 fps, so the system can attain faster

speeds with minor computer upgrades.

Latency is only 80 milliseconds, which makes the system extremely responsive,

but it is probably still inadequate for head-tracked display [28]. Figure 4-5 breaks

down the latency of the system into its various components. The most time is spent

copying video data to (Texture Update) and rendered images from (Pixel Readback)
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the graphics cards over the AGP bus. This is an unfortunate artifact of simulating

random access cameras; on-chip readout and rendering of the CMOS sensor would not

suffer this penalty. For every frame to be rendered, all image data must be downloaded

to the local memory of the graphics card. This can be improved since it is simple

to conservatively determine which cameras directly contribute to the final image.

However, in the worst case, all images could be used. Furthermore, pixel readback

is a non-optimzed path of the graphics card because the primarily application is to

render images to a display. Next generation graphics hardware should not have this

problem.

The synchronization delay represents the method to synchronize ungenlocked cam-

eras. Much time is spent compositing and displaying the final images. However, this

time is essentially free with pipelining as shown by the second row of the graph. The

rendering and image compression tasks take the least amount of time, with network

communication not too far behind. The "setup" category covers timings that did not

belong in other categories.

4.5.2 Data Bandwidth

It is instructive to briefly look at the bandwidth requirements within the system.

Multiple cameras transmit their video streams to their rendering computers over a

Firewire bus. Each sensor continuously captures 320x240 resolution video with 24

bits of color per pixel at 15 fps.' Each camera puts about 3.3 MBps of data onto the

Firewire bus. So with eight cameras connected to a single channel, there is a total of

26.4 MBps of video on the shared firewire bus at all times.

Each rendering computer handles at most 16 cameras at a time through 2 firewire

cards (up to 8 cameras per card2 ). Each card is an independent bus, therefore the

64 cameras are not all sharing the same firewire channel. Firewire has a maximum

'For the remainder of the chapter, all references to camera video unless otherwise noted will be
at 320x240 pixels, 24 bit color, and 15 fps.

2 To those interested in firewire cards, only those cards with Lucent/Agere chipset can run with
8 DMA channels meaning it can handle 8 cameras at a time. The TI chipset only has 4 DMA
channels. I used the Maxtor brand Firewire Card.
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Figure 4-5: The round trip latency of the system broken down into its components.

Grabbing images from the cameras happens asynchronously and occurs in the back-

ground. Therefore, the time involved in this operation does not appear in the latency

graph.

63



transfer rate of 50 MBps. Even though this is at peak (burst) transfer speeds, since

video data is only flowing in one direction, from camera to computer, my eight cameras

would run in this mode and fall well under the limit.

The firewire cards, along with the graphics card, are connected to the PCI local

bus of the rendering computer. PCI has a maximum transfer rate of 132 MBps.

Again, the majority of the data traffic will be of the burst transfer nature, therefore

moving 16 video streams to the graphics card (52.8 MBps) is acceptable.

Figure 4-5, however shows a bottleneck in the data path into and out of the

graphics card. This is due to the non-optimized read out design of current graphics

architectures and drivers. I found maximum read back speeds3 between 8 to 50 fps.

Each rendering computer only generates a fragment of the final image. The idea is

to limit the total data bandwidth on the network between the camera computers and

the compositor to a constant multiple of a single video stream. This is because three

cameras contribute to a pixel and I also transfer square blocks so there will sometimes

be non contributing pixels. Figure 4-6 illustrates the accumulation of fragments from

the different rendering computers. The next section will analyze the data performance

further.

Finally, the resulting image generated by the compositor will always be a constant

video stream. Since the final rendered video can have a higher resolution and framer-

ate than the camera streams, the resulting bandwidth is based on the user's request.

The example images were rendered at 512x512 resolution. With JPEG compression

the network bandwidth has been on average less than 1 MBs.

4.5.3 Scalability

I conducted experiments to verify the scalability of the system so that as more cam-

eras are added the overall bandwidth should stay constant. I ran the system with

varying numbers of cameras and measured the data bandwidth of the image frag-

ments entering the compositor. I took care to always use cameras spread over the

whole array so that I could render the same size output image. For example, when

3Nvidia Geforce2 series graphics cards.
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Figure 4-6: Rendering fragments and their accumulation as contributed by each ren-

dering computer. Overlaid is the triangulation of the cameras. Notice that the

cameras are not on in a strict regular grid.
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Figure 4-7: The average data per frame that is transmitted from the camera com-

puters to the compositor. Bandwidth stays roughly constant for different numbers of

cameras. These values reflect uncompressed data.

testing four cameras, I used the cameras at the corners of the array.

Using a pre-programmed camera path, results were averaged over 20 seconds of

run time. Ideally, this measure should show that the bandwidth of the system does

not increase as more cameras are added (Figure 4-7). Note that the bandwidth is

not identical in all cases because rectangular image fragments are always transferred,

which might contain extraneous pixels that are known to be zero. There is actually

a reduction in the bandwidth as the number of cameras is increased. This may be

caused by fewer extraneous pixel transfers at finer camera granularities.

In Chapter 3, I highlighted how scalability is dependent on the reconstruction

method. In this system, rendered images are based on the contribution of each camera

projected onto the focal plane. In the worst case, all the cameras could contribute to

the final image. The rendering algorithm therefore scales with the number cameras

so that if there were billions of cameras, then there would possibly be billions of

contributions. For a rendered resolution of 640x480, each pixel would have sub-pixel
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contributions from thousands of cameras.

One solution would be to use a different rendering algorithm that scales indepen-

dent of the number of cameras. An example of this would be the synthetic renderer

used in Chapter 7 and explained in Appendix A.

An alternative solution would be to chain multiple rendering computers and com-

positors. The prototype system departs from the finite-viewpoints design by adding

rendering computers. Therefore, scaling is actually dependent on the number of

rendering computers. A tree of rendering computers and compositors could be con-

structed so that performance and bandwidth utilization is then based on the number

of virtual cameras.

The issue of scalability and rendering will be further discussed in Chapter 5.

4.5.4 Cost

Since I discussed Data Bandwidth and Scalability, two of the design goals for a camera

array, I will also briefly mention cost. To keep the cost low I used internet cameras

with limited capabilities and slower than top-of-the-line computers at the time of

construction. However, the key point to note in this design is that the components are

heterogeneous. By using off-the-shelf components, my system can be easily upgraded

to better cameras and faster computers without any need to change software. In my

experiments, I was able to only use the four 1.5 GHz machines (16 cameras each)

and add in the additional 1.7 GHz machines to improve performance. Therefore, no

design or software changes are needed as new technologies are introduced.

4.5.5 Rendering Quality

The following are sample renderings from the system. More examples can be found

in Chapter 7. Figure 4-8 is a sample rendering taken at four different virtual camera

positions. There is clear parallax between the balls, the juggler and the background.

Figure 4-9 demonstrates the variable focus capability of the system. These figures

also reveal one of the system's rendering artifacts: double images are due to alias-
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Figure 4-8: Final renderings from the compositor at four different virtual camera

positions. Parallax between the balls, juggler, and background should be clear.
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Figure 4-9: Final renderings at different focal planes. Artifacts are due to an under-
sampled light field. Image quality can be improved with more densely packed cameras
or by better reconstruction algorithms.
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ing. These types of artifacts are inherent to light field rendering due to inadequate

sampling of the scene. From Chapter 2,

ASTax = 2Av (4.2)

f ( Zmi Z nax)

By assuming the maximum depth plane to be infinite, this simplifies to

Zmin = ASTrnax f (4.3)
2Av

The physical characteristics of the cameras and the camera array are 620 field of view,

320 horizontal pixel resolution, and 6 cm spacing between sensors. With f = 1,

2f tan )
AV = (1)-(4.4)

resolution

solves to Av = .037554 mm. Then using Equation 4.3, the array can only generate

non-aliased images with a minimum object depth of almost 800 cm (26 feet) away

from the camera array.

The image quality can be improved by increasing the number of cameras and

redesigning the spacing between them. For example, by using Point Grey's Firefly

cameras in the extended CCD form factor, the cameras could be packed much more

tightly than the current design. Additionally, the double images could be replaced

with perhaps less objectionable blurring artifacts by using a larger aperture and

blending together more than three images per pixel [13]. Changing the aperture size

and filter changes the depth of field, thereby filtering out the aliasing artifacts not on

the focal plane. This type of blending could be implemented by using a finer triangle

grid with multiple blending weights at each vertex, as is done in [4]. Or, improved

reconstruction algorithms could be used, such as those mentioned in Chapter 2 and

others.

Figure 4-10 shows the 64 raw images taken in an instant in time. The person in

these images is jumping in mid-air while the camera records him. Note that these

images are unrectified, so the variations in the cameras' viewing directions are readily
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Figure 4-10: Raw data from the 64 cameras. It is clear from the images along the

rows and columns that camera positions and orientations are not aligned.

apparent. Because of this there exists camera positions where some rays cannot be

properly rendered form the light field such as in Figure 4-11.

Also evident from the images in Figure 4-10, is the radial distortion (most clear

in the pole) inherent to the cameras. During the calibration process, radial distortion

parameters are calculated, therefore it is possible to undistort the images. However,

this would involve simultaneously processing multiple dynamic images (16*30 fps for

each camera computer) and decrease the overall frame rate of the system.

4.5.6 Deviation from Ideal

At the end of Chapter 3, I described a potential ideal architecture that allows for

both real-time viewing, but also recording and playback capabilities. My design
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Figure 4-11: Rendering errors due to the alignment of the physical cameras.

comes close to that ideal by moving the "rendering intelligence" closer to the cameras

thereby reducing the network bandwidth. In this section I will discuss my experiments

with recording and playback.

The biggest hurdle to overcome in recording and playback is hard drive read and

write throughput. In experiments on my hard drives , the average read rates is

20 MBps and the average write rate is 15 MBps. Therefore, for my current design

the average commodity hard drive cannot even sustain the 55 MBps and 28 MBps

required to save the raw data of 16 or 8 cameras respectively.

Wilburn et al. [40] solves this problem by externally compressing the video using

special hardware into MPEG (8:1) streams and by employing a striped disk array

(32 cameras per array). Without dedicated hardware, my solution is to use JPEG

compression, performed by the CPU, as the frames arrive at the computer and store

them into memory. Then as a post process these frames are written to disk. JPEG

compresses each 230.4 KB frame to 10 KB for a ratio of 22:1. With 16 video streams,

a system with 1 GB of ram can hold 6 minutes of video. However, the problem now

becomes one of CPU speed vs. hard drive speed.

Figures 4-12 and 4-13 are charts that show when frames arrive at the CPU and the

difference in the times. The time stamp indicates when a frame arrives in relation to

the start of the cameras. In this example I capture 15 seconds of video into memory.

72



Frame Arrival Times for Each Camera
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Figure 4-12: Arrival times of video frames from the cameras to the CPU measured in
nanoseconds.

For the first three second (45 frames), all of the cameras drop some frames due to

application and camera startup. Then the system reaches a steady state where it

continuously captures and compresses frames into memory.

Except for one outlier, the cameras are generally in sync with each other. Overall,

frames arrive within 18.7 ms of each other which is well within one frame time (66.6

ins).

Finally, it is obvious that the prototype system cannot render images directly

from the hard drive without more hardware investment. The current simulated setup

requires data for 16 cameras to be read off disk into local memory, decompressed,

moved into video card memory, read back out of video memory, and transferred onto

the network. For an ideal camera, which is essentially one computer per camera, this is

not unreasonable since a single video stream using native video hardware compression

(DXT1 6:1) is 0.576 MBps (4.6 MBps at NTSC).
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Maximum Difference in Frame Time between Cameras
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Figure 4-13: Maximum difference in arrival time for each frame number. Maximum
difference is 18.7 ms which is within one frame time (66.6 ins).

4.6 Summary

Because it is simply a query into a ray database, light field rendering is essentially a

large data management problem. The main conclusion to draw from this chapter is

that the best way to render light fields in real time whether it is from live or stored

data is to use a distributed algorithm. As technology advances a distributed system,

such as the prototype described here, can easily handle and take advantage of device

changes to improve performance and rendering quality. For example, the video cards

I used are not pixel programmable (shaders). A programmable GPU could be used

to perform improved reconstruction algorithms or correct for radial distortion and

color irregularities at little performance cost. The next couple of chapters will look

into light field characteristics and capabilities, some of which my aid in taming the

enormity of light fields.
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Chapter 5

Virtual Camera Capabilities

In this chapter I will cover two topics that have not been extensively discussed in

the existing light field literature: range of motion and effective rendering resolution.

Range of motion refers to the range of possible virtual camera positions and orienta-

tions. Camera plane sampling in order to build an adequate light field is discussed in

[5]. Effective resolution refers to the sampling of existing light fields in terms of the

resolution of the image plane.

I begin the analysis by introducing epipolar-plane images as a dual space for

analyzing rays. Then I will describe the range of possible motions and orientations

for 2D cameras (i.e. a "Flatland"[1] world) and later extend that into 3D. Finally,

using the same 2D camera configuration I will analyze the sampling of light fields as

it relates to the effective resolution of rendered images.

5.1 Introducing a Dual Space

The use of dual spaces for analyzing light fields and lumigraphs was introduced in

[17, 10] and they have been to analyze light fields [11]. However, it is instructive to

give an overview as I will often refer to a dual space in the later discussion. Levoy

and Hanrahan [17] use Line Space (Hough transform) to analyze their light fields. I

will be using epipolar plane images (EPI). Before discussing EPIs, I will first describe

the parameterization I use in my analysis.
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Figure 5-1: The relationship between fixed and relative parameterization. A ray R
will intersect the two fixed planes S and F at (R,, RF). The ray will also intersect
the image plane at R, relative to the camera at Rs. ffixed is the distance between
the two planes and freal is the focal length of the camera.

5.1.1 Parameterization

As discussed in Chapter 2, light field coordinates are based on a two plane parameter-

ization, which I will call the fixed parameterization because the two planes are fixed

in space. The 4D coordinates are (s,t,u,v) where (s,t) is on the camera plane and

(u,v) is on the image plane.

Another parameterization method is what I will call the relative parameterization

where there is no common image plane. Instead, (u,v) image-plane coordinates are

relative to the camera at (s,t). See Figure 5-1.

The mapping between the fixed and relative parameterization is governed by the

following relationship:

RF = R, + Ru * ffixed (5.1)
freai

For example, if the plane F is placed at the same distance as the focal length of the

cameras, then the ray would intersect the image plane of camera R, at a relative

coordinate of R&. The same ray would also intersect the F plane at R. + Ru.
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Figure 5-2: Constructing an Epipolar Plane Image (EPI) from a series of photographs
from a line of cameras. A line of pixels from each photograph is stacked on top of
each other. Pixels representing objects further away from the camera have a steeper
slope than those closer to the camera. EPIs can also be constructed directly from the
depth of the objects if known.

5.1.2 Epipolar Plane Images

Epipolar plane images (EPIs) are slices of a 3D ray space comprised of images taken

from a line of cameras [3]. EPIs capture a particular 2D slice of an observed 3D

scene and are equivalent to particular 2D slices through a 4D light field. EPIs can be

constructed directly from the scene geometry or from images, such as from a camera

array or from ray tracing. In my analysis, I will be using EPIs from images. An

additional feature of using images is that they also characterize the sampling of the

scene as it relates to a discreetly sampled light field.

Figure 5-2 gives an example of an EPI by taking corresponding horizontal lines

from a row of images of a ray traced light field (varying s and u while keeping t and v

constant). The S-axis is the camera plane and the U-axis is the focal or image plane.

To illustrate the relationships between "real" and EPI space, I will use the 2D case

of a light field where the cameras are modeled as 2D pinhole cameras and arranged

uniformly on a line. Real space is the coordinate system relative to the physical

camera array. All rays from the cameras lie on a common plane. (Figure 5-3)
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Figure 5-3: Cameras are arranged such that they lie on a strict plane or line and
are oriented in the same direction - perpendicular to the camera plane. This is often
referred to as wall-eyed.

5.1.3 Points Map to Lines

Given a point (P , P,) in the 2D space (Figure 5-4), then by similar triangles that

point is projected onto the image plane of camera n at

freat * (Px - Cx (n)) + freal
U(n)= PZ *tan -

21
(5.2)

where Cx(n) is the x-coordinate of the camera n (Cz is always zero). This projected

image plane position corresponds to the U parameter of the 2D, relative parameteri-

zation.

The line formed on the EPI representing the point is

xl

z

U (n)

Cx (n)I+a* 
AU = - AC*fea

PZ

AC

The slope is

Pz

freal

(5.3)

(5.4)

and is just -Pz if freai = 1. This means that a point in front of the camera plane is

a line on the EPI with a negative slope, and a point in behind of the camera plane is

a line with a positive slope.
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Figure 5-4: Points in real space map to lines in EPI space. The slope of the line is
determined by the depth of the point from the camera plane. Points further away
have a steeper slope than points closer to the camera plane.

5.1.4 Lines Map to Points

Now given a line in real space

[1

z
+0 I (5.5)

This line maps to a point (u, s) in the EPI where s is the intersection with the camera

line z = 0 and u is the intersection with the image plane of the camera at s. From

(5.5) and setting z = 0

S=xd*S -> X = PX - Pz * -

From Equation (5.2) and substituting s for Cx(n) using (5.6)

U = freai * dx + freal
dz

*tan (
\2()

In summary, a line (5.1.5) maps to a point on the EPI at

(freal
* + freal * tan ( , P - Pz *
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Figure 5-5: The image of a point in real space maps to a point in the EPI. EPI
coordinates are the intersections with the camera line S and the image plane U of
the camera at s.

5.1.5 Mapping Segments

When a line segment is parallel to the camera plane (Figure 5-6) then the EPI rep-

resentation is a region bounded by two parallel lines representing the endpoints of

the segment. All other types of segments map to two wedges formed by the two lines

in the EPI representing the endpoints of that segment (Figure 5-7). The point of

intersection in EPI space represents the line of sight from which the segment would

project as a point. The lines in EPI space that pass through the intersection point

between the "endpoint lines" represent all the points on the segment.

5.1.6 Relating Virtual Cameras to EPIs

A virtual camera is defined by a position (P,, P2) in space, a field of view (<5), and

an image plane. Equivalently, the virtual camera position is a point, the image plane

is a segment, and the field of view is defined by two lines that intersect the position

and the endpoints of the segment. Therefore, the light field or EPI samples needed

to render a virtual camera lie on the intersection of the line in the EPI representing

the camera position and the space representing the image plane (Figure 5-8).

Since the slopes of the lines in the EPI are independent of P2, then any movement

80



z

0

Pi P2

x U

Figure 5-6: The image of a line segment parallel to the camera plane. The EPI
representation is a space bounded by two parallel lines representing the endpoints.
Points on the segment are lines in the EPI parallel and lying in between the endpoint
liens.
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Figure 5-7: Any segment not parallel to the camera plane will map to two wedges.

The line on which the segment lies will be the coincident point 1. Lines representing

the endpoints bound the wedges. Points on the segement map to lines that intersect

1.
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Figure 5-8: Virtual camera representation in the EPI Space. The camera position is

a line in EPI space. Rays that sample the camera plane are represented by points on

the camera line in the EPI bounded by lines representing the endpoints of the image

plane.

of the virtual camera parallel to the camera plane maintains the structure of the EPI.

The only difference is a shift parallel to the S-axis. For example, if the virtual camera

moves left, then the EPI structures move down because the samples will sample the

same U coordinates, just at different cameras (Figure 5-9.

If the virtual camera's position changes in depth, then the slopes of the lines in

the EPI change. Equation 5.4 is the relationship between slope and depth. The effect

is a rotation of the EPI structures. Another characteristic of translations in general

is that the u-axis (horizontal) distance between the first and last samples in the EPI

remains the same.

Finally, during a rotation of the virtual camera, the camera position is fixed, so

the sampling line on the EPI stays the same. In the example figures, the image

plane begins parallel to the camera plane, so during a rotation the corresponding EPI

structure changes from a space bounded by parallel lines to two wedges. In the case

of Figure 5-10, because the image plane is no longer parallel to the camera plane,

there will also be non-uniform sampling of the light field as shown in the EPI.
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Figure 5-9:
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Continuing from Figure 5-8, changing
corresponding lines in the EPI.

X

the depth of the virtual camera

U

Figure 5-10: Rotation of the virtual camera. Notice that uniform sampling of the

image plane will result in non-uniform sampling of the EPI.
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5.1.7 Relating 3D Cameras to EPIs

The relationships outlined above easily extends to higher dimensions. Deriving the

relationships is beyond the scope of this introduction (and can be found in [11])

except to note that sampling depends on the characteristics of the virtual camera. A

3D camera can be thought of as multiple 2D cameras sampling different EPIs.

5.2 Range of Motion

Range of motion refers to the possible positions and orientations of virtual cameras

in real space. Given an array of real cameras, the virtual camera is restricted in

movement to a region in space such that that the rays required to render that view

can be found in the light field. The virtual camera is further restricted in the range

of rotations that it can perform. In this analysis, I will start with positioning of

the virtual camera in the 2D case from Figure 5-3 where the real cameras are two-

dimensional and are positioned in a linear fashion on a plane. The results can easily

be extended to a 4D light field configurations. Afterwards I will discuss the ability to

rotate the virtual camera.

5.2.1 Position

2D Cameras

It is relatively straightforward to determine the range of possible positions for a virtual

camera. In this analysis I start with the same configuration as in Section 5.1 (Figure

5-3) such that all the camera characteristics are the same, they lie strictly in a line,

and they are facing the same direction (orthogonal to the line they are positioned on).

This configuration can also be thought of as a 2D light field where one scanline is

used from a row of cameras thus sampling S and U. The EPI for this scene naturally

follows as each horizontal line of samples represents a separate real camera. For this

analysis I also restrict the virtual camera so that its orientation is the same as the

real cameras and cannot rotate. Although this simplified setup is never fully realized
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Figure 5-11: (above) Maximum field of view of the virtual camera is restricted to be
that of the real cameras. It should be clear that all the rays in purple are at angles
outside of the light field. (below) Using the example from Figure 5-9, as the field of
view increases, the virtual camera will sample outside of the existing camera samples
represented by the yellow box (this is the stacked camera images).

in reality, it gives a clear picture of the relationship among the various light field

parameters and can be easily extended into higher dimensional light fields.

First, I will show that the field of view of the virtual camera cannot be greater

than that of the real or sampling cameras. This conclusion is clear from Figure 5-11.

If the virtual camera is placed at the same position as a real camera, then ray angles

greater than those found in the light field do not exist. Again, I assume that a valid

rendering or virtual view is where every desired ray can be found in the light field.

Therefore the virtual camera in Figure 5-11 would not be a valid rendering by the

above definition. The field of view restriction also holds as the virtual camera moves

on or off the camera line. This is because all rays oriented at an angle larger than

the real cameras do not exist in the light field.
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For now, I assume that the field of view of the virtual camera is the same as the

real camera. I will relax this assumption later in this section and demonstrate the

effect to the range of motion. I also make no assumptions regarding the sampling

of the camera line. The relationship between sampling and valid views depends on

the reconstruction method. For now I can assume camera or S-line sampling to be

infinite or at least satisfies plenoptic sampling. Summarizing: I solve for the range of

possible camera positions for a virtual camera that has the same field of view as the

real cameras configured as wall-eyed along a line in 2D space.

The range of motion refers to the positions in space where valid virtual cameras

can be rendered. A necessary and sufficient condition is for the first and last rays (or

what I also call the extreme rays) to exist in the light field. If the first and last rays

exist, then a valid interpolant for all of the rays will exist. This is should be clear

from Figure 5-12. If the extreme rays, represented by the first and last samples on

the line in the EPI, fall in the region of existing samples, then all other rays of the

virtual camera must also lie in the same region.

The space can be divided into three regions: on the camera line, in front of the

camera line, and behind the camera line. When the virtual camera is on the camera

line then the range of motion is clearly bounded by the first and last real cameras.

The virtual camera can be positioned anywhere between those two points with images

rendered by interpolating the rays between real cameras.

As I move the virtual camera off the camera line, images are rendered by inter-

polating rays among more cameras (Figure 5-12c). Then, by using the rule that a

valid image is one where all rays are found in the light field, the range of motion of

a virtual camera is bounded by the limits of where the extreme rays of the virtual

camera exist in the light field. This space is simply the intersection of the spaces of

where the extreme rays can be rendered. Figure 5-13a shows the valid position where

the first ray can be rendered, and Figure 5-13b shows the valid positions for the last

ray. Figure 5-13c is the intersection of the two spaces and represents the complete

range of motion.

Up till now, I have assumed that the field of view of the virtual camera is the
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Figure 5-12: Camera motion is restricted to where the first and last rays of the virtual

camera exist in the light field. (a) Moving behind the camera plane. (b) Moving in

front of the camera plane. (c) On the EPI the effect is to sample outside of the

existing camera samples in yellow.
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Figure 5-13: (a) In this space all rays corresponding to the first ray angle in the

virtual camera can be rendered. (b) This space represents the valid positions for the

last ray angle. (c) Intersection of the spaces forms the complete range of motion for

a translating, non-rotating virtual camera with a field of view that is the same as the

real cameras.
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Figure 5-14: This plot shows the possible camera positions relative to the camera

array (field of view 90') of length d for a range of field of views.

same as the real cameras. Now I relax this assumption by allowing the field of view

to be any value less than that of the real cameras. The range of motion for the virtual

camera is still bounded by the extreme ray angles of the virtual camera that exist

in the first and last cameras. However, by decreasing the field of view, the depth at

which I can position the virtual camera increases, thus increasing the range of motion.

Figure 5-14 shows how range of motion changes as the field of view changes.

In summary:

With a field of view less than that of the real cameras, the range of motion (no

rotations) for a virtual camera is the region formed by the intersection of the spaces
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Figure 5-15: (In this example the field of view is 900.) (a) Constructing the range of

motion. Since one dimension is longer than another, extreme rays do not meet at a

point. (b) Range of motion in 3D space is a volume symmetrical about the camera

plane.

where the extreme ray angles of the virtual camera can be rendered. This space is

bounded by the lines representing the extreme ray angles found in the first and last

cameras of the camera array.

3D Cameras

A 4D light field can be analyzed as an extended case of the 2D version. The virtual

camera is actually multiple 2D cameras sampling different EPI slices of the 4D light

field. If thought of this way the range of motion rules derived in the 2D case holds,

but in both directions (horizontal and vertical).

As in the 2D case the limits of the range of motion are determined by the extreme

rays of the cameras in the array. In the 3D case they are the corner rays. Each

corner ray is an edge of a triangle formed by two neighboring corner rays and the

line between corner cameras. The range of motion bounds is a convex polyhedron

enclosed by these triangles.

Figure 5-15 is an example of the range of motion for a regularly sampled 2D camera

array where the number of cameras in each dimension is not equal. The bounds are

formed by the corner rays. Notice that with the added dimension the rays do not

all meet at a single point. This is because the sampling distance along the x-axis is

greater than that of the y-axis. Thinking back to the 2D case, with more cameras,

the range of motion is larger, so triangles will intersect at a segment as shown.
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Figure 5-16: The ability to rotate the camera and still render a valid image is restricted
by the field of view of the real cameras. (a) Rays in red do not exist in the light field.
(b) The yellow box represents the EPI. The horizontal line represents the camera
position. The dotted lines bound the field of view on the line. The red segment
represents the missing rays outside of the sampled region.

5.2.2 Rotations

2D Cameras

When the virtual camera rotates about its center of projection, it captures the same

set of rays, but sampling on the image plane varies. Previously I showed that the

field of view of the virtual camera cannot be greater than that of the real cameras

because the extreme ray angles are not found in the light field. Therefore, in order

for the virtual camera to rotate, the field of view of the virtual camera must be less

than the real cameras. Also, the range of rotation is bounded by the field of view

of the real cameras. This is illustrated in Figure 5-16. Samples that are beyond the

field of view of the real cameras are outside of the EPI.

Just as the range of motion changes as the field of view decreases, the range of

motion changes as the virtual camera rotates. Determining the bounds is similar to

before. When the virtual camera is on the camera plane the motion is bounded by

the position of the first and last real camera. When the virtual camera is in front
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Figure 5-17: Range of motion construction with a rotated camera. The area in blue

represent where the first ray of the now rotated virtual camera can be rendered. The

area in red represent the last ray of the virtual camera. The intersection of the two

spaces form the range of motion for a virtual camera rotated at a certain angle. (Note

that he overhead view is different from before and is rotated.)

of the camera plane the boundaries are the ray of the first camera with the same

orientation as the first sampled ray in the virtual camera and conversely with the last

sampled ray orientation and the last real camera. The opposite occurs for positions

behind the camera, therefore the rule from Section 5.2.1 still holds as long as the

camera does not rotate past the field of view of the real cameras. Figure 5-17 shows

an example of how the range of motion is bounded as the virtual camera rotates.

3D Cameras

After discussing the various virtual camera scenarios, the range of rotation for a

virtual camera sampling a 4D light field becomes evident. First, the virtual camera

cannot rotate beyond the field of view of the real cameras in the camera array. Second,

the range of motion is again bounded by the extreme rays of the camera array.
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Figure 5-18: The hypervolume cell is the grouping of real samples that contribute to
the desired ray. In the figure, four samples (two from neighboring cameras) contribute
to a ray.

5.3 Resolution

Plenoptic Sampling [5] determined the minimum sampling on the ST (camera) plane

such that the projection error on the image plane is less than one pixel. However,

there was no analysis of the UV sampling (resolution) only that the virtual camera

resolution was set to the same resolution as the real cameras.

The goal of the following analysis is to determine the sampling rate (or maximum

rendering resolution) such that the there is no oversampling or undersampling of the

light field. Like the range of motion analysis, I will primarily discuss the 2D case.

5.3.1 Effective Resolution

Virtual views can be rendered at any resolution. When the resolution is greater than

that of the real cameras then adjacent rays in the rendered image are possibly be-

ing interpolated from the same set of rays in the light field. In other words, adjacent

pixels in the rendered image are constructed from the same light field samples. There-

fore, I define the effective resolution of an image to be the number of rays that are

interpolated from distinct samples in the light field.

Figure 5-18 further demonstrates the relationship between the virtual camera and
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Figure 5-19: Enlarging an exactly sampled image (left) vs. rendering at a high

resolution (right). Although the images are not exact, the effect is still a blurry

image.

EPI sampling. A hypervolume cell is the interpolation kernel that contributes to a

particular ray. This figure uses bilnear interpolation of the closest two pixels from

the closest two cameras. If this was a 3D camera then the interpolation would be

quadralinear (closest four pixels from the closest four cameras).

It should be clear how the effective resolution is defined. As the resolution of the

virtual camera increases, the number of samples in the EPI increases. Even if the

camera line in the EPI is densely sampled, only a finite number of hypervolume cells

contribute to the rendered image. This is the effective resolution.

When a high resolution image is rendered from a low resolution light field the

result is a blurred image. The same effect could have been achieved by rendering at

the effective resolution and enlarging the image. The same set of light field samples

are used in both images. Figure 5-19 is an example of this effect. Although the

weighting of the light field samples are different between the two images, the result

is still two blurry images. The benefit is eliminating multiple, expensive fetches for

the same light field samples.

To achieve optimal sampling, each sample should fall in a separate cell. Distance

between each sample must be at least AU in the U direction (physical resolution) or

AC in the S direction (camera spacing). This corresponds to the Nyquist limit of
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Figure 5-20: Sampling at the Nyquist limit. The red boxes show where the lines clip
a cell that is not sampled. The issue here is the reconstruction filter. The filter could
have been enlarged to encompass those small areas, but would result in aliasing of
the filter.

the EPI. The maximum frequency would be every other box (a high and a low for

each two box block) or 2A. Two times the maximum frequency is 1 which is one

sample per adjacent hypervolume cells. (Analysis is the same for the S-axis.)

There are situations where the sampling line intersects cells that do not contribute

to the rendered image (Figure 5-20). This is still within the Nyquist limit. As the

slope changes, there is a corresponding change in the distance between samples. In

order to account for those samples the reconstruction filter could have been increased,

which would result in aliasing due to the reconstruction filter.

5.3.2 General Sampling of the Light Field

I will derive a general sampling equation relating virtual camera sampling to UV

sampling (or in the 2D case U sampling). I begin with the camera model from [14]

(Figure 5-21).
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Figure 5-21: (a) Camera model. P is the camera position.
pixel. d is the sampling direction and size. (b) Projection
position on the image plane onto a line in space.

X Px COS (0) - sin (0) dx

z PZ Sin(0) cos(0) [d,

X PX Dx V n

Z PZ Dz Vz 1

Dx V cos(0) -sin(0)

Dz Vz sin(0) cos(0)

V is the vector to the first
of two adjacent sampling

vx

vz

n
0
J L1

(5.8)

vx

vz I
P and 0 is the camera position and orientation respectively. V is the vector to the

first pixel sample and D is the sampling vector. (X, y) is the sample position in space

of the nth pixel.

Cameras at zero degrees of rotation are oriented in the same direction as the

z-axis. The vector to the first sample before rotation is then

VX = fvr * tan

VZ = fvirt
(5.9)

where <5 is the field of view. In the case where the image plane is parallel to the

x-axis, the sampling vector of the camera will be at zero degrees of rotation and I
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d 2*tan ( 2
X re) (5.10)

dz = 0

A 2D camera samples along an image line in space (or projects camera rays onto

a line in space). For simplicity this line will be parallel to the camera (S) line. For a

sample (n) projected onto the line z = Z, the x coordinate is, from (5.8), then

x [n] = Px + (Z P)(.+n D)(5.11)
V_ +n* Dz

After substitution and expansion, the sampling rate on this line (distance between

samples) is then

Ax [n] =x [n + 1] - x [n]

= (Z - P)*
-f virt tan(±) cos()-firt sin(O)+(n+1)-dx cos(O) (5.12)
-fvirt tan(±) sin()+fvirt cos()+(n+1)-d. sin(O)

-fvirt tan () cos()-fvirt sin()+n.dx cos(O)

-firt tan () sin(O)+fvirt cos(9)+n.dx sin(O)

This equation gives the sampling rate on a line in space parallel to the line of real

cameras using a virtual camera with position (Px, Pz), rotation of 9 degrees, field of

view of 4 degrees, and a sampling rate of dx.

From the analysis in Section 5.1.3, the slope of the sampling line in the EPI

gives the relationship between the sampling of the S and U-lines. Therefore, camera

samples are projected onto the S-line z = 0. Sampling rate of the S-line is then (from

Equation (5.12))

AS[n] = -Pz*
-f (5.13)

-firt tan (1) sin()+fvirt cos(O)+(n+1)dz sin(O)

i rt tan ± 2OS(O)f 
jrt sin(O)+(n+ 

1)dx cos(O) /( . 3

-firt tan(±) cos(O)-firt sin(O)+ndx cos(O)

-fvirt tan () sin()+fvirt cos(O)+ndx sin(O)

Using the slope of the sampling line in the EPI and (5.4), the relationship between

sampling on the U-line and sampling on the S-line is
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Au = As * - a (5.14)

Combining (5.13) and (5.14) gives the relationship between sampling in the virtual

camera and sampling in the EPI.

Au [n] = freal *

2-fvtr tan ( .) cos()fvr5 sin(O)+(n+1)d cos(15)
-fvirt tan ±2) sin(O)+fvirt cos()+(n+1)d. sin(O)

-fvirt tan (±) cos()-fvirt sin(0)+nd, cos(O)

-firt tan (2) sin()+fvirt cos(O)+nd, sin(O)

In Equation 5.15, P, has dropped out. The significance of this result is that

sampling of the UV plane is independent of the position of the virtual camera. This

can be explained intuitively through the EPI. As the virtual camera moves away from

the camera array, the sampling interval on the camera line (S-axis) increases, but at

the same time the slope of the sampling line changes at the same rate. (Figure 5-22)

5.3.3 Camera Plane vs. Focal Plane Resolution

Sampling of the light field is also dependent on the camera plane and the focal plane

resolutions. Looking at the EPI, changing either resolution changes the sampling rate

along each axis. This in turn alters the hypervolume cells the camera line crosses.

For example, when the virtual camera lies on the camera plane, the image plane

(UV) sampling "dominates" so that the effective resolution of the virtual camera is

the same as the physical cameras. Whereas when the virtual camera is at infinity,

meaning the corresponding line in the EPI is vertical, then the effective resolution

would be the sampling rate of the camera plane.

Therefore, from Figure 5-23, when analyzing light field sampling there are two

cases to consider. One is when the absolute value of the slope of the sampling line

is less than A where AC is the distance between cameras and AU is the sampling

rate of the camera. This is when image plane sampling dominates. The other case is

when the absolute value of the slope is greater than - which corresponds to camera

plane sampling importance.
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Figure 5-22: Sampling rate of the light field is independent of the position of the

camera. As the virtual camera moves away from the camera plane (above), the S

sampling interval increases. However, since the slope of the sampling line changes at

the same rate as the camera movement, U sampling stays the same.
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Figure 5-23: Determining the minimum sampling rate is based on whether the slope

is greater or less than A. When the slope is greater (green) then each sample must

sample a different camera. Whereas when the slope is less (red) distance between

samples along the U-axis must be at least AU.

In the prototype system, AC = 5.08 cm and AU = 0.001804 cm. The virtual

camera distance at which the slope transitions between the two cases is 28.16 m.

For the rest of the chapter I will deal only with areas where image plane sampling

dominates.

5.3.4 Sampling without Rotations

I define oversampling of the light field to be when the virtual camera samples the

same hypervolume cell for consecutive pixels of the rendered image. Undersampling

on the other hand occurs when consecutive pixels of the virtual camera do not sample

adjacent hypervolume cells. (Figure 5-24)

The question to answer is: What is the minimum sampling rate (or maximum

resolution) such that there is no oversampling of the light field, and the opposite for

undersampling. Before adding rotations, I start with the simple and common case

where the virtual camera orientation is 0 = 0. By setting Au = AU, Equation (5.15)

reduces to
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Figure 5-24: Oversampling (in green) is when adjacent samples fall in the same cell.

Undersampling (in red) is when adjacent samples do not fall in adjacent cells.
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d2 = AU * fvirt (5.16)
freal

Under the condition that there is no rotation in the virtual camera, sampling is

proportional by a scale factor based only on the ratio between the focal lengths of

the virtual and real cameras. When the focal lengths are the same the sampling rate

of the virtual camera should be the same as the real cameras.

5.3.5 Sampling with Rotations

Oversampling Rotation of the camera results in non-uniform sampling of the cam-

era line and the light field (Figure 5-25). Depending on the rotation and position of

the virtual camera, the smallest or largest sampling interval corresponds to the first

or last two samples. With a positive rotation, the smallest interval corresponds to

the first two samples and conversely with a negative rotation the last two samples.

However, sampling is mirrored when rotating either positively or negatively by

the same angle. Therefore, the smallest sampling interval corresponds to the first two

samples using a rotation of the negative absolute value of the given rotation.

Solving for d. from (5.14) and setting n = 0 (sampling rate between the first two

pixels) gives

fvirt * Au * tan (±)2 sin (0)2 - 2 tan (2) sin (9) cos (9) + cos (9)2

dX = (02 (.0(5.17)
freal + Au * (sin (9)2 tan (2) - sin (9) cos (9))

Setting Au equal to the U-axis sampling of the light field gives the minimum sampling

rate of the virtual camera such that the light field is never oversampled.

As an example, here is a reasonable camera array and rendering scenario. The

field of view of the virtual camera is # = 450 with possible rotations of 9 = 00 -+ 15*

degrees (which implies that the real cameras have at least a 600 field of view). I set

the focal lengths to be the same and set the resolution of the real cameras to be 640

pixels with a field of view of 600 (AU = 0.0018).
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Figure 5-25: Rotating the virtual camera will result in nonuniform sampling of the light field. The first camera-EPI pair is of
a positive rotation. The last pair is of a negative rotation. Notice that in a negative rotation the first two samples have the
smallest interval and the last two have the largest interval. The reverse occurs during a positive rotation.
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Figure 5-26: Sampling rate (d.) of the virtual camera based on the degrees of rotation

such that there is no oversampling of the light field.

Figure 5-26 gives the minimum sampling rate of the virtual camera such that it

does not oversample the light field for rotations from 0' to 15*. (I must actually

solve Equation 5.17 for 0 = -10*I -- -115'1 to find the smallest interval.) At 0* the

sampling rate is the same as the real cameras and at 150 of rotation the sampling

rate is d. ~ 0.0021 - greater than before the rotation. Looking at it another way,

to prevent oversampling as the virtual camera rotates from 00 to 15*, the rendering

resolution changes from 459 to 400 pixels respectively. This result is obvious - to

prevent oversampling, decrease the resolution.

Undersampling The derivation is the same for determining the sampling rate of

the virtual camera such that the light field is never undersampled. I define undersam-

pling to be when consecutive pixels in the rendered image do not sample consecutive

hyper-volume cells in the light field. Instead of using the smallest interval I use the

largest interval, which corresponds to the first two samples using a rotation of the

absolute value of the given rotation.

I use the same example as above, except this time I solve Equation 5.17 for

0 = 1001 -- 11501. Figures 5-27 demonstrate that as the virtual camera rotates, the

sampling rate must increase in order to prevent undersampling of the light field.
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Figure 5-27: Sampling rate (d.) of the virtual camera such that there is no under-
sampling of the light field when rotated.

Again this should be obvious - to prevent undersampling, increase the resolution.

5.3.6 Sampling, Scalability, and the Prototype System

In Chapter 4, I explained that due to the rendering algorithm, there is a limit to

the scalability because if the number of cameras exceed the desired resolution it is

possible that there would be sub-pixel contributions to the rendered image. In the

worst case all cameras would contribute to the final image. The EPI explanation is

presented in Figure 5-28. This is the case of rendering at a lower resolution than the

light field.

Figure 5-29 is an example of rendering a low resolution image using the recon-

struction filter of this chapter. A pixel is the integral of all rays that intersect the

pixel from the center of projection. To render at a lower resolution, neighboring

samples must be interpolated. The effect is to render at the highest resolution and

downsample to a lower resolution.

On the other hand, I have previously been treating pixels and rays as the same,

which is possible because the light fields were of low resolution. This is equivalent to

a low-pass pre-filter vs. a post-filter in the above case.

105



+ ~

4 4 4. ~

Figure 5-28: In this figure, the vertical lines are not image samples. They represent

the intersection between the sampling line and the real camera lines (horizontal).

When the light field is at a higher resolution (either on the camera or image plane)

than the desired image, then the rendering algorithm in Chapter 4 will have sub-

pixel contributions. Assuming infinite image plane resolution, the ovals represent the

contribution of each camera to the final image. The center of the oval has a weighting

of one (at the intersection) and falls off to zero (neighbor intersections). The green

dots represent actual pixel centers. With a low resolution rendering, multiple ovals

(which represents multiple pixels) contribute to each pixel.

__I I I I I I
Figure 5-29: The green dots represent the pixel centers of the final low resolution

image. A pixel is a contribution of multiple rays falling within the green box. The

red and blue boxes surround the samples of the light field that are used to compute

those rays and the final pixel.
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Essentially, there are tradeoffs in terms of the light field sampling methodology.

The finite-viewpoint architecture can still scale to the number of virtual cameras

depending on the rendering algorithm and capture settings. For low resolution images,

the system could capture at a lower resolution and with a fewer number of cameras

or sample at exact ray intersections of the EPI and filter out aliasing artifacts.

It is possible to alter the prototype system presented in Chapter 4 to sample at

different rates (both on the ST and UV planes). The simplest solution would be to

render at the proper resolution and use the graphics hardware to map the rendered

frames into higher or lower resolutions. The number of cameras used to render can

also be controlled in software. Another solution is to replace the graphics hardware

with ones that support programmable shaders. Then rendering can be performed as

a per pixel computation, such as using the renderer in Appendix A.

5.3.7 3D Cameras

As stated before, 3D cameras are closely related to 2D cameras. Therefore the pre-

vious analysis easily extends to the 3D case. Each 2D slice of the 3D camera use a

different EPI, but the sampling rate is the same so the equations still hold. The most

important result to take away is that the rendering resolution or the sampling of the

light field is independent of the depth of the virtual camera from the camera array

up until the point where camera plane resolution is more important than image plane

resolution.

5.4 General Position

Up till now I have been analyzing the case of the wall-eyed configuration. This not

the only possible camera setup. Levoy and Hanrahan [17] rotate the cameras such

that the entire target object stays within the field of view of the cameras. These

images are then rectified into the fixed, two plane parameterization. This section will

discuss how changing the camera orientation affects range of motion and resolution.
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Figure 5-30: A camera array with skewed perspective cameras with a fixed focal plane

a finite distance away. The green is the valid positions for virtual cameras with the

same field of view as camera s.

Range of Motion The first question to ask is "How does this change the range of

motion?" If the goal is still to restrict valid images to be those where the rays can

be found in the LF, then the construction is still the same. For example, looking at

Figure 5-30, if I wanted to determine the valid positions for a virtual camera with the

same field of view as camera s, I would previously find where the first and last rays

intersect the last and first camera. However, the area of valid cameras for specific

ray angles is now smaller due to the rotation of the cameras. The first ray angle of

camera s does not exist in cameras to the left of it, but only exist in the blue region.

The converse occurs for the last ray angle in camera s. In fact, it should be clear

from Figure 5-30, that the only valid area of movement is in front of the camera plane

with the same maximum depth equal to the maximum depth from before. Therefore,

in terms of range of motion, if the valid camera assumption is the same, then the

wall-eyed configuration has a greater area of movement.

However, since the goal of this camera configuration is usually to capture an object

and not a scene, it would be reasonable to relax the valid image definition. Basically

as I translate a virtual camera, I will begin to have invalid (not found in the light

field) rays, but those rays would not have seen the object anyways.
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Resolution: Skewed Perspective Cameras Now looking at the sampling, in-

stead of using rotated cameras, I will substitute with cameras that have a skewed

perspective projection (the physical embodiment is a camera with a bellows). (Fig-

ure 5-30) Earlier in this chapter I made a distinction between a fixed vs. a relative

parameterization. However, relative coordinates is actually a special case of the fixed

parameterization when the image plane is at infinity. Adding a skew factor, Equation

5.2 becomes

u' (n) = u (n) + C (n) * freai (5.18)
ffixed

where ffixed is the distance of the fixed focal plane. As ffixed -> oc, u' (n) = u (n).

Construction of the EPI remains the same, except now a vertical line (infinite

slope) represents the depth of the fixed focal plane, whereas before, it represented a

focal plane at infinity. The slope equation becomes

1
* (1 ) (5.19)

fe *( Tz - iyxe

As ffixed - 00 , m = Pz/freal, which is the same as (5.4).

Rearranging (5.19),

AU = -AS *feai* (1 1(5.20)
Pz ffixed

Substituting (5.20) into (5.13)

Au[n] = freal * ( - )*('vrt tan((.) cos(1)fvr sin(O)+(n+1)d. cos())
-frt tan() sin()+firt cos(O)+(n+1)dx sin(O) (

-firt tan(±) cos()-firt sin(O)+ndx cos(O)

-fvirt tan () sin()+firt cos(O)+ndx sin(O)

Setting 9 = 0 (image plane is parallel to the camera plane) and assuming the focal

length of the virtual camera (fvirt) is the same as the real cameras (freal)
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d AU (5.22)
=(1~ - ed

This means that the sampling rate of the virtual camera changes as it moves away

from the camera plane, which is different from the results based on a wall-eyed array.

The effective resolution is only the same as the real cameras when it is on the camera

plane or if the focal plane is at infinity.

From the last section, sampling changes as the slope of the sampling line increases

past A. In this case, this occurs when ml = A. Substituting with (5.19)

1 _ AU 1- = U + 1(5.23)
Pz freat * AC f 5.e

This result and (5.19) show that the slope changes faster than the earlier case since

infinite slope occurs at a finite distance. Assuming 0 = 0 and frirt = freal

AC * fvirt
Pz

Which is the same result as substituting 0 = 0 and AC for AS into Equation 5.13.

Resolution: Rotated Cameras Replacing the skewed cameras, with rotated cam-

eras has two effects. First, it should be clear from the analysis of Section 5.3.5 how

sampling the fixed focal plane is non-uniform due to the camera rotations. Second,

as the camera rotates and translates away from the center, the distance to the object

inevitably increases. If the camera model is the same at every position in the array,

then the sampling density on the focal plane is different for each camera. See Figure

5-31. This is unlike the previous camera configurations where the image plane is

parallel to the camera plane.

The EPI can be constructed by projecting samples, but the EPI will be non-

uniform. Levoy and Hanrahan [17] instead warps each image into the two plane

parameterization. Each sample in the new EPI is an interpolated value.

Analyzing resolution is difficult when the EPI is non-uniform. Figure 5-32 is the
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Focal Plane

Camera Plane

Figure 5-31: As cameras are rotated and translated away from the center, the fixed
focal plane will be non-uniformly sampled. For the same area on the focal plane (i.e.,
the blue oval) each camera will have a different sampling density.

EPI using the projected samples of the rotated cameras onto a common plane.

The main conclusions to draw regarding resolution and rotated or skewed cam-

eras are that as the virtual camera moves away from the camera plane, the effective

resolution decreases and also the sampling of the scene rays is non-uniform.

5.5 Summary

In this chapter, I have used EPIs to analyze the virtual camera capabilities of a light

field. Under the wall-eyed configuration, I showed how to derive the range of motion

and described the effective resolution of the camera in terms of oversampling and

undersampling. I then performed a similar analysis regarding the rotated camera

configuration. One difference between the two setups is that the range of motion is

reduced when the cameras are rotated, but the advantage or disadvantage is unclear

because of targeted applications. The other difference is that with the fixed focal

plane, the effective resolution decreases as the camera moves away from the focal

plane, whereas it is constant when using a wall-eyed array.

In Chapter 6, will be about designing a camera array give a set of specifications.

I will also further discuss these advantages or disadvantages between the rotated and

wall-eyed configurations.
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Figure 5-32: What the EPI would look like using rotated cameras constructed by

projected samples from each camera onto a common plane. The blue dots are the

actual rays sampled. Each camera line is non-uniform.
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Chapter 6

Camera Array Configurations

One driving application for a real-time camera system is a virtual studio. In a virtual

studio application, virtual cameras rendered from a light field captured by wall of

cameras would replace conventional video cameras. The entire light field could be

recorded for off-line processing, such as capturing a movie scene or a subject in front

of a blue screen, or any number of virtual cameras could be rendered "live" in real

time. The engineering problem that camera array builders need to solve is positioning

and selecting the type of cameras such that they meet the desired specifications.

The goal of this chapter will be to answer the question of "Given a set of specifi-

cations, what cameras are needed and how to arrange them?" and will draw on the

conclusions reached in Chapter 5. In that chapter, I answered the converse question

by analyzing capabilities of a given light field in terms of virtual camera movement

and resolution. The first part of this chapter will outline the steps required in design-

ing the camera array. Then I will extend the discussion beyond a plane of cameras

by capturing rays for immersive applications.

6.1 Camera Array Design

In this section, I will pull together the results from Chapter 5 by discussing the design

of a camera array in a wall-eyed arrangement. This is the same type of arrangement

used in Chapters 4 and 5. The section begins by describing how a camera array
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should be specified for applications. Next I will describe how to build the array to

meet the desired goals. Finally, I will briefly discuss non-walleyed camera arrays.

6.1.1 Application Parameters

To construct the camera array, a designer requires the desired virtual camera char-

acteristics and the desired movement volume. Virtual camera characteristics (the

type of camera to be rendered) can be defined in terms of the desired minimum and

maximum field of views and the maximum image resolution.

The movement volume (where the camera will be positioned) can be defined in

terms of the desired range of motion of the virtual camera along with the maximum

rotation. Range of motion refers to the space where the virtual camera will be po-

sitioned. Since I am limiting the camera array to be wall-eyed and targeting mainly

for the virtual studio application, the range of motion will be given relative to the

camera plane (e.g., a wall).

6.1.2 Designing to Specifications

To meet the above goals, the designer needs to select the type of physical camera and

to arrange them on the camera plane. There are many variables to consider. These

include

" Camera Characteristics - resolution, field of view, etc.

" Camera Positions - dimensions and placement of the camera array

" Camera Orientation - how the cameras are oriented

* Cost

The application parameters affect the selection of cameras and the size of the

camera array. Table 6.1 illustrates the relationship between application requirements

from above and the array construction parameters.
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Table 6.1: This table illustrates the dependencies between selecting and building the
camera array and the application conditions.

' -

*44

4%

4%

tz

IX

Figure 6-1: The field of view is the sum of the desired field of view (green) of the
virtual camera and the maximum rotation (blue).

Field of View Section 5.2.1 illustrates that without rotation, the field of view of

the virtual camera can be at most that of the virtual camera. Section 5.2.2 further

demonstrates that the range of possible virtual camera rotations is limited by the field

of view of the camera array. Therefore, the field of view required is the sum of the

desired maximum rendering field of view and the desired maximum rotation. (Figure

6-1)

f OVreal = f OVdesired + 2 * max(I rotationdesired |)
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Array Parameters Dependencies

Physical Camera Field of View Virtual Camera Field of View

Range of Rotation

Physical Camera Resolution Mi Virtual Camera Field of View

Max Virtual Camera Resolution

Physical Camera Field of View

Array Dimension Range of Motion

Range of Rotation or

Physical Camera Field of View

Number of Cameras Scene Distance

Resolution

Range of Motion

Limited by Cost

(6.1)



Resolution From Chapter 5, the relationship between physical camera sampling or

resolution (Au) and virtual camera sampling (d,) is the following

AU = freai*
-f i-t tan(.) Co()-fvirt sin(O)+d. cos(O) (6.2)

fvit tan(2) sin(0)+f,, it cos(G)+d, sin(0)

-f,,irt tan(±) cos(O)-firct sin(O)
-firt tan(±) sin()+fvirt cos(O)

where d. is determined from the minimum desired virtual field of view and the max-

imum desired virtual resolution:

2 * fvir * tan min (<p))
max (res)

If the virtual camera never rotates, to exactly sample the light field the physical

cameras should have the same sampling rate as the virtual cameras. This occurs

when 0 = 0 and

Au = dx * frea (6.4)
fvirt

Otherwise to prevent oversampling, solve Equation 6.2 for -|max(de,ired) , and

to prevent undersampling solve for Imax(Odesired) I.

Array Dimensions The dimensions of the camera array refer to the distance be-

tween the first and last cameras in the horizontal and vertical directions. Of course

the camera array could be built to cover an entire wall, but there are other reasons

for knowing the required dimensions, such as only recording a part of the scene if the

rest of the cameras only view the blue screen.

For example, Figure 6-2 is a 2D overhead view of a potential virtual studio. In the

back of the studio there is background scenery or simply a blue screen. In the middle

there are set pieces where the action takes place. The director could have fixed virtual

cameras such as for interviews or monologues where the people are stationary. Or

there could be live action segments with larger camera movements. Sometimes, such

as for a weekly sitcom, the camera motion is unknown, but is limited to a certain
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Figure 6-2: An overhead view of a sample virtual studio. In the background are sets

or a blue screen. The action occurs in the foreground. There are desired camera

movements or possibly a range of camera positions (green square). The unknown is

the camera array dimensions.
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Figure 6-3: Array dimensions can be determined by projecting cameras onto the

camera plane. For a camera path, the end cameras and any changes in orientation

are projected.

area, such as the area in green in Figure 6-2.

If the desired camera movements are known, then the array dimensions can be

determined from the projection of the desired cameras onto the camera plane. Figure

6-3 illustrates projecting the example cameras from Figure 6-2 onto the wall of the

studio.

Section 5.2 illustrates the possible range of motion for a virtual camera rendered

from a camera array. The range of motion is bounded by the rays of the first and last

camera in the array. Therefore, alternatively, the dimensions of the camera array can

be determined by bounding the desired camera movements, such as those in Figure

6-2, with the complete range of motion for a certain camera array.

For example, Figure 6-4 is a desired space of virtual camera positions. This space

could also have been formed from the known camera positions (e.g., by building

a convex hull). Now, given either a particular physical camera or calculating the

proper field of view from earlier, the first camera position on the camera plane is

where the extreme (first and last) camera rays enclose the desired space of virtual

camera positions. The last camera position is determined in the same fashion.

Camera Density The number of cameras or the camera density is determined by

the plenoptic sampling equations [5], effective resolution and virtual camera depth,

and limited by the overall cost or budget.
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Figure 6-4: If the exact camera positions are unknown, but instead a range of motion

is given, the analysis from Chapter 5 can be used to bound the area in green.

Plenoptic sampling [5], as discussed in Chapter 2, shows that the maximum camera

spacing (Equation 6.5) and optical focal depth (Equation 6.6) is determined by the

minimum and maximum scene depths.

ASTmax = 2Av (6.5)
f ( Zmin Zmax

1 _1/'1 i
= - * - + (6.6)

Z0pt 2 \Zmin ZmaI

There is an additional factor to consider, which is the desired effective resolution.

At some distance, the virtual camera resolution is dependent on the sampling of

the camera plane. This occurs when the absolute value of the slope representing

the virtual camera in the EPI is greater than ' (from Section 5.3.3). Assuming

zma = oo and f = 1 then Equation 6.5 becomes

L\C ASTmaxu> =2*Zmin (6.7)

This means that by following plenoptic sampling, effective resolution due to camera

plane sampling becomes a concern at two times the minimum scene depth (slope is a

function of the virtual camera's depth from Section 5.1.3).

Since the dimensions of the camera array are independent of the number or density
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of cameras, it is up to the designer to determine the proper camera sampling. The

straightforward approach is to determine camera spacing from plenoptic sampling

and then adjust according to effective resolution and maximum camera depth.

There is of course a tradeoff with budget constraints. Cost was a primary moti-

vator for the prototype system in Chapter 4. Not only will it dictate the number of

cameras, but also the quality of cameras. As demonstrated in previous chapters, the

calculated camera spacing is generally not physically realizable. Therefore, to achieve

the best reconstruction, the environment should be sampled as densely as possible.

6.1.3 Wall-Eyed vs. Rotated Camera Arrangements

Cameras can be oriented either in the wall-eyed (infinite focal plane) or the rotated

configuration [17] (fixed focal plane). In Chapter 5, I demonstrated that wall-eyed

arrays allow virtual cameras to have a uniform effective resolution equal to the real

cameras, whereas in the rotated case, the effective resolution of the virtual camera

decreases away from the camera plane. I also showed the differences in the range of

motion, with the rotated configuration having a smaller range. Therefore, in terms of

virtual camera movement and virtual camera resolution the wall-eyed configuration

is optimal.

The above conclusions, however, do not take into account target applications or

intended acquisition subjects. For example, if the capture subject is an object (i.e.,

outside looking in light field), then in a wall-eyed setup, many rays will not even

sample the object. Therefore, the "valid" camera definition from previous chapters

does not apply.

Levoy and Hanrahan [17] analyzed the differences by transforming rays into line

space. Line space illustrates the sampling range and density of the real cameras.

Figure 6-5 shows that the wall-eyed configuration has a larger sampling area than the

rotated case (with the same array dimensions and cameras). However, with a fixed

focal plane placed at the depth of an object, the rotated cameras will sample more

ray angles.

The conclusion is that in general, the wall-eyed configuration is optimal. Rotated
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Figure 6-5: Rays are transformed into line space. In the rotated case (above), more

ray angles are sampled, but they sample a smaller area. However, since some rays falls

outside the fixed 2PP volume, the actual sampling density is reduced (middle).Using

the same array dimension and cameras, the wall-eyed cameras (bottom) uniformly

sample a larger area, but fewer ray angles.
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cameras has a more scene specific application and is advantageous only when captur-

ing an object at which the fixed focal plane can be placed, but only in the sense that

there are fewer "wasted" rays.

6.1.4 A Virtual Studio Example

Figure 6-6 is a simulated demonstration of a virtual studio. The virtual camera is

rendered at different points inside and outside the range of motion of a camera array.

I also render images at different resolutions to demonstrate sampling of the light field.

In my analysis, I make no claims regarding the quality of the renderings or more

accurately the sampling of the scene frequencies. For example, in Figure 6-6 the

images are "blurrier" as the virtual camera moves toward the subject. This is due to

the sampling of the scene (resolution) by the physical cameras. Choi et al. [5] also

discusses the tradeoffs between resolution of the cameras and the scene frequencies.

In all cases, the primary goal is the prevention of aliasing artifacts.

6.2 Immersive Environments

The 2PP is limited in that a light field slab encodes only a subset of all the rays in

a volume (i.e., only rays entering and leaving the ST and UV planes) thus limiting

virtual camera movement. Additional rays can be sampled by extending the ST and

UV planes and changing the field of view of the cameras. However, the sampling

gains are still limited; therefore, multiple light field slabs are required to completely

capture an object or environment. Levoy and Hanrahan [17] primarily focused on

using multiple slabs for capturing an object (inward looking light field). I will discuss

outward looking light fields to capture an entire immersive environment.

With an inward looking light field, in order to completely capture an object, a

ray leaving the object must intersect at least one slab. Six adjacent slabs (cube) are

enough to completely capture an object as long as the distance from the slab to the

object is such that the maximum angle of any ray to the slab is within the bounds of

the field of view of the cameras. This guarantees that any virtual view of the object
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Undersampled Exactly Oversampled
Sampled

Figure 6-6: This is a simulated demonstration of a virtual studio. The rendered

images are color coded to match the virtual cameras in the top image of the studio.

The bottom images are renderings of the same virtual camera at different resolutions.

This is to illustrate the sampling of the light field. The images have also been enlarged

to match the highest resolution image.
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tan0:

(a) (b)

Figure 6-7: (a) If the light field slabs are arranged as a cube, some rays cannot be

queried from the light field. (b) Slabs must be extended in order to cover all rays in

the volume.

will produce the correct rays.

Capturing an entire environment (outward looking) using a single light field can

rarely be achieved. However, multiple light fields can be used such that within some

volume a virtual camera will render any view of the environment. Levoy and Han-

rahan [17] uses a cross arrangement, whereas I arrange the light fields as six faces

of a cube. The advantage of the cube arrangement is that the light field slabs can

surround an object and be queried for accurate reflectance information (similar to

using an environment map).

Figure 6-7a shows that a pure cube arrangement, however, does not guarantee that

all rays passing through the box will be captured (unless of course the cameras have

very wide field of views. One way to solve this problem is to extend the dimension of

the light fields on each face.

For simplicity, I assume all the cameras are of the same field-of-view 29. If I want

to move a virtual camera freely in a volume of Pa, I first create a bounding box with

length 1. To guarantee no ray passing through the bounding box is missing, I extend

the slabs by length lextend = tan(). if > , then the lengthened light field slabs can

capture all rays passing through the bounding box. In practice, cameras with smaller
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Figure 6-8: Knowing the range of motion for the slabs, the overlaps determine where

all views exist. This area (brown) is actually greater than the desired area (blue).

field of views are preferred because it increases the UV resolution. Therefore, the

minimum setup to allow free movement within the volume is 9 = 2 with orthogonal

slabs of length 31. (Figure 6-7b)

As Figure 6-8 shows, virtual cameras can actually be rendered beyond the desired

volume. In fact, the cross arrangement is the optimal configuration. While valid

virtual cameras can be rendered in these extra regions, the goal is to be able to

render valid views of the environment (inside looking out). Figure 6-9 shows how

objects outside of the defined space can pose problems during rendering.

In the discussion so far I have assumed synthetic light fields. Unfortunately,

neither the cross nor the extended cube is physically realizable due to the camera

planes obstructing the views of other planes. Using solely a simple cube with cameras

of 2 field of view, the only possible position where all rays can be rendered is at the

exact center of the volume. In order to increase the range of motion, the field of view

of the cameras must increase. However, physical cameras with a field of view greater

than E are generally not practical.

Other than increasing the field of view, the only possible solution is to rotate the

camera planes, creating a convex polyhedron. However, as Figure 6-10 demonstrates,

all rays can never captured under this arrangement either. Therefore, capturing
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Figure 6-9: A cross-section of the above arrangement. Although all rays can be

queried in this region, the object (blue circle) is only capture by two slabs. A virtual

camera can only render half of this object. This also poses a problem for reflectance

since only half of the object can be rendered.

synthetic environments can only be realized in a synthetic or static environment so

that the array can be repositioned to capture multiple slabs.

6.3 Summary

This chapter focused on designing the arrangement of the cameras in the array. The

first half demonstrated the steps needed to select the physical cameras, determine

the dimensions of the array, and decide between the wall-eyed and rotated camera

configuration. The second half of the chapter discussed using multiple arrays to

capture an immersive environment using synthetic light fields. The next chapter will

give additional application examples of a virtual studio.
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Figure 6-10: The result of rotating the camera planes to try to capture all rays. For

the given position in the volume, the rays in red are not captured.
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Chapter 7

Exploiting Dynamic Light Fields

for Virtual Studio Effects

In Chapter 6, I described the process of building a camera array for a virtual studio. In

this chapter I will describe various example applications using dynamic light fields cap-

tured by a real-time camera array. Some of the examples are rendered from data cap-

tured by the prototype system in Chapter 4 and others will be rendered using synthetic

data.

[Note: Renderings will appear at the end of the chapter.]

7.1 Freeze Motion

Figure 7-3 is an example of the time-stopping effect introduced by Dayton Taylor and

popularized in the movie The Matrix. This effect is only possible with multiple cam-

eras. Images are rendered at different viewpoints from the same light field captured

at a moment in time.
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Figure 7-1: The area in green is the range of motion for a single camera. The area

in blue is the range of motion for the stereo pair. The shapes are the same, but

the smaller area takes into account the "true" position, which is in between the two

cameras.

7.2 Stereo Images

Depending on the system design and hardware limitations, multiple virtual cameras

can be rendered simultaneously. Therefore, stereo pairs can be generated for 3D

viewing suitable for use on a head-mounted display. Figure 7-5 shows image pairs

from a video sequence.

Determining the range of motion for a stereo pair is similar to that of a single

virtual camera, except there are two centers of projection and parallel optical axes.

I consider the position of the stereo pair as the midpoint between the two "eyes".

Extreme rays can still be used to construct the range of motion, taking care to bound

the motion to the true position. Figure 7-1 shows the difference between the range

of motion for a single virtual camera and a stereo pair with the same fields of view.
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7.3 Defined Camera Paths

7.3.1 Tracked Camera Motion

Figure 7-4 demonstrates that the light field can render video where virtual camera

simulates a tracked camera. Tracked camera are camera motions where the camera

moves along a rail or "track" on the ground. This effect is frequently used in motion

picture productions. The disadvantage of using a tracked camera is the inflexibility of

the camera path whereas the virtual camera can have any motion. Tracked cameras

can also affect the lighting of the scene.

7.3.2 Robotic Platform

A superset of tracked cameras are motion controlled cameras on a robotic arm. The

robotic arm can be pre-programmed to move on a defined path or controlled by an

operator. The limitation of using the robotic arm is that the mechanics restrict the

motion to a certain movement and a certain speed. For example, the Milo Motion

Control System [8] has a maximum arm extension of 1 m, extension speed of 38

cm per second, track speed of 2 m per second, and camera rotation speed 1200 per

second. These limitations do not exist for a virtual camera in the virtual studio.

Camera movement is confined only to the capabilities of the light field (Chapter 5).

This means that it is possible to place the virtual camera in positions that are not

natural for the robotic arm, and the virtual camera can move at any speed. There are

also no safety concerns when using a camera array versus the robotic camera. Figure

7-6 demonstrates rendering a virtual camera on a pre-programmed camera path.

7.3.3 Vertigo Effect

The vertigo effect is a special effect where the field of view changes as the camera

moves toward or away from an object. (Figure 7-7) The effect is to keep the object the

same size in the frame while the background changes in size relative to the object. By

knowing the capabilities of the light field, this effect can be planned and implemented
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Figure 7-2: For the vertigo effect, the image plane (derived from a single camera) will

determine the field of view for all camera positions.

with a virtual camera.

To plan the correct camera motion, first, the location of the target is required in

order to fix the target size in the image. Then the field of view of a camera on a linear

camera path will determine the field of view for every position on the same path by

fixing an image plane at the depth of the object.

#=2 * tan-'( Pz tan -(7.1)
(d - Pz) 2

Equation 7.1 gives the field of view for a camera at Pz given the depth of the target

relative to the camera array and the field of view of camera at pre-determined position

P'. Figure 7-2 demonstrates how the the field of view of all the camera in the vertigo

effect are related to each other.

7.4 Mixing Light Fields

Film production frequently uses compositing where different elements (e.g., matte

paintings, rendered images, blue screened subjects) are combined into a single frame.

Figure 7-8 is a simple example where different light fields are rendered together. The

first row shows different camera positions of a live light field. In the second row, the

left half is a single stored light field and the right half is a different live light field.

Since the camera array is fixed, the background rendering will be seamless.
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Since environment size and position relative to the camera array can be deter-

mined, it is also possible to composite real world with synthetic light fields.

7.5 Real-Time Rendering

This section will utilize multiple light fields discussed in Chapter 6 for real-time

rendering effects.

7.5.1 Immersive Environment

This example illustrates the use of multiple light fields to capture immersive envi-

ronments. With six overlapping light field slabs surrounding a cube any view can be

generated within a certain volume. Figure 7-9 demonstrates a virtual camera travers-

ing a light field volume. With multiple light field volumes, virtual camera movement

can be expanded.

7.5.2 Light Fields for Reflectance

Environment mapping is the most commonly used method for rendering approximate

reflections interactively [2]. An implicit assumption in environment mapping is that

all scene elements are located infinitely far away from the reflecting surface (equiva-

lently, the reflector is modeled as a single point). When scene elements are relatively

close to the reflectors, the results of environment mapping are inaccurate.

Up till now, I have been using light fields to render objects or scenes through a

virtual camera. However, light fields can be used wherever light rays are needed, such

as in reflectance [44]. To render accurate reflections, reflectors are placed within the

volume surrounded by the multiple light field slabs. Each reflected ray is rendered by

indexing into the correct light field. The gain in using light fields versus environment

maps is the motion parallax observed in the reflections which is lacking when using

only the environment map. Correct reflections are observed at any viewpoint in

space, whereas reflector movement is constrained within the volume. This technique
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is similar to the one proposed by [12]. (Figure 7-10) are some rendered examples.

7.5.3 Mixing Light Fields and Geometry

An extension to mixing light fields is mixing light fields with geometry. In the intro-

duction, I mention that cameras that capture real scenes must be precisely aligned

in order to composite with rendered effects. This is simplified with a camera array

because novel camera paths can be rendered. Figures 7-11 and 7-12 are examples of

combining light fields and geometry.

Figure 7-11 combines the immersive light field environment from above and geo-

metric models. Reflections are rendered using the same light fields.

Figure 7-12 combines a video light field of a walking person and a geometric

environment. The light field is a simulation of a real person captured in a virtual

studio in front of a blue screen. The geometry and the light field are composited

using alpha blending.

7.6 Summary

In this chapter, I have discussed and presented applications of the virtual studio

and real-time light fields. The complete range of applications is not limited to those

covered in this chapter. Most importantly, I describe possible uses of the virtual

camera beyond the capabilities of conventional cameras.
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Figure 7-3: Freeze Motion. Different camera viewpoints of the light field.
virtual camera is moving in a circular motion.

Figure 7-4: Tracked Camera Motion. Tracked camera from
ated light field video sequence.

a synthetically gener-
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Figure 7-5: Stereo Images. Sequence of stereo pairs from a video capture from the

prototype camera array. 3D viewing is possible by cross-eyed fusing each image pair.
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Figure 7-6: Robotic Platform. A sequence of images representing 3.5 seconds of video from a virtual camera. The virtual
camera is on a pre-programmed path (the camera moves in and out of the scene). The intent is to emulate a motion controlled
camera.



Figure 7-7: Vertigo Effect. As the camera translates forward, the field of view of

the virtual camera widens. This sequence is also composed of two light fields. The

foreground is the character and the background is the environment. Each light field

is rendered at a different focal plane.
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Figure 7-8: Mixing Light Fields. The top row are frames from a light field captured live. Cameras are at different viewpoints.
The second row mixes a single stored light field (left half of image) with another live light field (right half). Notice that the
background rendering, although rendered at different points in time, is continuous.



Figure 7-9: Immersive Environment. An immersive environment can be rendered

using multiple light fields. These images are of virtual cameras at different positions

and orientations. (Images are rendered using programmable graphics hardware. See

Appendix A.)
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(a)

(b)

Figure 7-10: Light Fields for Reflectance. Comparison between rendering re-

flectance using an environment map (a) or multiple light fields (b).
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Figure 7-11: Mixing Light Fields and Geometry. A mix of geometry for the

foreground model and light fields to render the background and the reflections.

Figure 7-12: Mixing Light Fields and Geometry. Different views of a scene

where the background is geometry and the person is a light fields.
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Chapter 8

Conclusions and Future Work

In this chapter, I summarize the contributions presented in this dissertation from the

prototype system to the analysis of the virtual camera capabilities within a light field

camera array environment. I will also discuss areas of future work.

8.1 Conclusions

This dissertation describes the virtual studio application which replaces conventional

cameras with synthetic cameras rendered from data collected by an array of cameras.

The virtual studio has a variety of applications, each with specific design goals.

The primary applications include rendering live virtual cameras, recording light fields,

and driving an autostereoscopic display. The two types of camera system designs

that supports these applications are the "all-viewpoints" and the "finite-viewpoints"

designs.

The all-viewpoints design transmits all video streams to the display device (e.g.,

an autostereoscopic display) in order to support all possible viewpoints. On the other

hand, the finite-viewpoints design only transmits the fragments required to render

requested views (i.e., live virtual cameras). However, due to the large bandwidth

requirements, recording and playing back an entire light field is difficult. An "in-

telligent" camera proposed in Chapter 3 and 4 would partly solve the bandwidth

problem by coupling rendering and storage to the physical cameras while reducing
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overall rendering bandwidth.

Based on the finite-viewpoints design, I introduce a prototype system that ren-

ders live virtual cameras, meaning views are rendered from a dynamic light field.

The prototype system consists of 64, densely spaced, firewire cameras in a wall-eyed

arrangement. The cameras are attached to 4 rendering computers (16 cameras each).

The rendering computers are connected to a single compositing computer over gigabit

ethernet. The compositing computer can drive a display or further transmit rendered

images (e.g., over the internet).

The prototype system uses a distributed rendering algorithm. The rendering

computers asynchronously capture video streams from the cameras and render con-

tributing image fragments to the final image. These fragments are transmitted to

the compositing computer to be assembled and displayed. The system must also be

photometrically, geometrically, and temporally calibrated.

Previously, the analysis of the light field has been limited to the sampling of

the camera plane in the two plane parameterization [5]. I analyze the capabilities

of virtual cameras in terms of the range of motion (position and orientation) and

rendering resolution. Range of motion is defined by the dimensions of the camera

array and the field of view of the cameras. Resolution refers to the effective resolution

such that the light field is sampled so that no two rays sample the same hypervolume

cell in the light field. When the image plane of the virtual camera is parallel to

the camera plane, then the sampling is uniform, and the sampling rate of virtual

camera should be the same as the real cameras in order to exactly sample the light

field. Otherwise, under rotation the light field is non-uniformly sampled and the

sampling rate must be determined such that the light field is either not oversampled

or undersampled.

Using these results, I outline the steps required in order for a camera array designer

to arrange the cameras to meet desired specifications. In doing so, I compared the

wall-eyed (infinite focal plane) with the rotated (fixed focal plane) configuration. The

only advantage of using the rotated configuration is that more angles are sampled

(using the same array dimensions). In addition to a single plane, multiple camera
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planes can be used to build immersive environments.

Finally, I present examples that take advantage of a dynamic light field. I demon-

strate how the virtual camera can be used to simulate tracked or motion controlled

cameras knowing the virtual camera capabilities. I also show examples of using dy-

namic light fields for special effects such as mixing light fields with other light fields

or rendering light fields with geometry.

8.2 Future Work

The main challenge of light fields is handling the large bandwidth requirements. Fewer

cameras, mean less data, but require geometry or improved reconstruction. The

immediate area of further research would be the implementation of the "intelligent"

camera and the ideal system that I propose in Section 3.4. This would address the

problem of recording and playing back the light field by efficiently processing the

data.

On the other hand, compression is still needed to reduce the size of the data.

Levoy and Hanrahan [17] used vector quantization and LZW to achieve up to 118:11

compression. Magnor and Girod [18] achieve up to 2000:1 compression, but with

loss of quality. In order to support rendering in graphics hardware, a few of the

examples in Chapter 7 are compressed with DXT1 (6:1) compression although vector

quantization could also be used.

However, current light field compression methods only compress a single light field.

Ideally, dynamic light fields would include temporal compression. This is important

because a single light field can be stored in memory, but the difficulty in handling

light field videos is streaming the data out of storage at an interactive rate and

keeping multiple light fields in memory. Standard video compression techniques such

as motion flow and segmentation could be exploited, but there has been little research

in this area.

Another further area of research is real-time rendering using light fields and pro-

14 slabs at 32x16x256x256 using 4D VQ (23:1) and LZW (5:1) to go from 402.7 MB to 3.4 MB
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grammable graphics hardware. I have some examples of this in Chapter 7 with a

complete description in Appendix A. However, I will highlight considerations relevant

to rendering on current and future generations of programmable graphics hardware.

In Chapter 4, the prototype camera system used the texture mapping ability of

commodity graphics hardware to accelerate rendering. For reflectance rendering, I

used the programmable GPU of the current generation of graphics hardware to render

rays on a per pixel basis. The advantages of using graphics hardware are that multiple

computations (including filtering) and fetches are performed in parallel and that light

fields can be used with traditional geometry rendering. The disadvantages are that

the GPU is limited in programmability, has constraints on texture dimensions, and

has limited addressable RAM.

An open area of research would therefore be developing a memory management

strategy for light fields to control data flow between hard drive, CPU memory, and

GPU memory. One method would be to use the rendering technique in Chapter 4

of only transferring the fragments that contribute to the final image. For example,

knowing the camera parameters, a conservative estimate of the continuous slices of

the light field required to render an image can easily be determined. Furthermore, in

a multiple light field arrangement, it is known which light fields are required at any

time. There is also a high degree of spatial coherency during rendering which can be

exploited, meaning light fields can be used optimally in GPU caches.

In Chapter 6, I discussed camera arrangements to build immersive environments.

I simulated this using a synthetic light fields. A simple extension would be to capture

real world scenes. This would possibly require calibration across multiple camera

arrays or across different light fields (one camera array successively repositioned).

Finally, another direction in the analysis of light fields and camera arrays is study-

ing the tradeoffs between spatial camera resolution (ST sampling) to reduce aliasing

vs. imager resolution to improve the visual fidelity. The approach would be to fix the

total video bandwidth and determine the appropriate number of cameras and their

resolution.
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Appendix A

DirectX Shaders for Light Field

Rendering

In the synthetic examples in Chapter 7, I used the programmable GPU to render

the light fields and the reflections. The environment is rendered using six light fields

(32x32x128x128). For efficiency I store multiple light fields in a single texture volume.

Due to the limitations of the hardware I must render the image using two shader

passes. I present the code here as an example of rendering light fields using graphics

hardware.

First Pixel Shader Pass A quad representing the image plane is passed to the

shader and rasterized. A ray from the eye to each pixel position is calculated. STUV

coordinates are determined from this ray and reordered depending on which light field

slab contributes to the pixel. The correct slab is determined by the same method

as cube maps (largest coordinate value of the normalized ray determines the slab).

STUV coordinates are written to a off screen render target along including a flag

whether the ray is outside of all the slabs. The following is the shader for the first

pass.

float disparity : register (cO )

float4 offset : register (c2 );
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float4

float

float3

UVscale

SToffset

eyepos

register (c3 );

register (c4);

register (c5 );

static const float4 UVcenter = float4 (0.5, 0.5, 0.5, 0.5);

struct OutStruct {
float4 STUV: COLORO;

float4 Level: COLOR1;

} ;

OutStruct main( float4 Vert : TEXCOORDO )

{
OutStruct output ;

float2 axisadj =

float Lnum = 1;

//----Calculate

float3 Reflect =

flo at2 (1.0 , 1.0);

Reflected Ray

Vert.xyz - eyepos;

//-----Reorder ----- //

float3 newReflect Reflect;

float3 newEyepos eyepos;

float3 aReflect = abs (Reflect );

if ( aReflect .x >= aReflect .y && aReflect .x >= aReflect . z)

{

//x axis

newReflect Reflect . zyx;

newEyepos eyepos.zyx;

Lnum = 3;

if (newReflect . z > 0)

axisadj .x = -1;

}
else i f ( aReflect . y > aReflect . x && aReflect . y >= aReflect . z)
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I
//y axis

newReflect = Reflect .xzy;

newEyepos eyepos.xzy;

Lnum = 5;

if (newReflect . z > 0)

axisadj .y = -1;

}
else

if (newReflect . z < 0)

axisadj .x = -1;

}

Reflect = newReflect

eyepos = newEyepos;

if(Reflect.z > 0)

{
eyepos.z = -eyepos.z;

LFnum -= 1;

I

//-----Calculate STUV

Reflect = Reflect/abs(Reflect. z);

float4 STUV;

STUV.xy = ((eyepos.xy + ( SToffset + eyepos.z) * Reflect.xy)

* axisadj) + offset;

STUV.zw = Reflect .xy * UVscale * axisadj + UVcenter;

output .STUV = STUV;

float4 Level = float4 (0 ,0, disparity ,0);

Level.x = Lnum;

if ( STUV. x >= 0 && STUV. y >= 0 && STUV. x <= 15 && STUV. y <= 15)
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Level.y = 1;

else

Level.y = 0;

output.Level Level;

return output;

}

Second Pixel Shader Pass In the second pass, a quad filling the viewport is

passed to the shader. Pixels will correspond to STUV coordinates determined earlier.

In this pass I calculate the correct texture coordinate and the correct volume slab.

This is how I avoid conditional branches, where all branches are executed by the

hardware. The texture fetch return a color and an alpha. Therefore, I can perform

alpha blending with the framebuffer. To mix light fields I simply render multiple

times. The following is the code for the second pass.

sampler3D LightField register (so);

sampler2D STUVTable register (s6);

sampler2D LFTable : register (s7);

static const float s = 128.0 f / 1024.0 f;

static const int dimface 8;

static const int numgroup 4;

float4 LFFetch( float4 ST, float4 UV, float LFnum, float disparity )

{
/ ---- Calculate closest integer ST coords

int4 vST = floor(ST)+int4(0,0,1,1);

// ---- Find interpolaion coeff

float4 delta = frac (ST)-float4 (0 ,0 ,1 ,1);

//------Claculate UV with disparity offset
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float4 UVD = UV - disparity * delta;

UVD = clamp(UVD, 1.0/256.0, 255.0/256.0);

//-----Index Light Field

float4 fcoordl = vS'/odimface + UVD;

fcoordl *= s;

int4 a = vST/dimface;

float4 fdepth = 1/128.Of * (a.yyww * numgroup + a.xzxz)

+ 1/256.0f + LFnum * 32.0f/256.0f;

float4 colorn = tex3D(

float4 color2 = tex3D(

float4 color3 = tex3D(

float4 color4 = tex3D(

LightField ,

float3( fcoordl x,

LightField ,

float3( fcoordl.z,

LightField ,

float3( fcoordl.x,

LightField ,

float3( fcoordl.z,

fcoordl .y,

fcoordl .y,

fcoordl .w,

fcoordl .w,

fdepth.x ));

fdepth.y ));

fdepth.z ));

fdepth.w ));

//Interpolate

float4 tempi = lerp(colorl

float4 temp2 = lerp(color3

color2

color4

d e lt a .x);

delta .x);

return lerp (tempi , temp2, delta .y);

}

float4 main( float2 Tex : TEXCOORD) : COLOR {

float4 STUV = tex2D(STUVTable, Tex);

float4 LFindex = tex2D(LFTable, Tex);

float4 ST = float4(2,2,2,2)*STUV.xyxy;

float4 UV = STUV. zwzw;

float4 outcolor = LFFetch( ST, UV, LFindex.x, LFindex.z );
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if ( LFindex.x > 0.5 11 LFindex.y < 0.5)

outcolor .w 0.0 f;

return outcolor;

}
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