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Abstract
In this thesis, theoretical models and computer simulations are employed to study
several problems of single-molecule spectroscopy and vibrational spectroscopy in con-
densed phases. The first part of the thesis concentrates on studying dynamic disorders
probed by single molecule fluorescence spectroscopy. Event statistics and correlations
of single-molecule fluorescence sequences of modulated reactions are evaluated for
multi-channel model, diffusion-controlled reaction model, and stochastic rate model.
Several event-related measurements, such as the on-time correlation and the two-event
number density, are proposed to map out the memory function, which characterizes
the correlation in the conformational fluctuations. A semiflexible Gaussian chain
model is used to determine the statistics and correlations of single-molecule fluo-
rescence resonant energy transfer (FRET) experiments on biological polymers. The
distribution functions of the fluorescence lifetime and the FRET efficiency provide
direct measures of the chain stiffness and their correlation functions probe the intra-
chain dynamics at the single-molecule level. The fluorescence lifetime distribution
is decomposed into high order memory functions that can be measured in single-
molecule experiments. The scaling of the average fluorescence lifetime on the contour
length is predicted with the semi-flexible Gaussian chain model and agrees favorably
with recent experiments and computer simulations. To interpret the fluorescence
measurements of the mechanical properties of double-stranded DNA, a worm-like
chain model is used as a first-principle model to study double-stranded DNA under
hydrodynamic flows. The second part of the thesis concentrates on nonperturbative
vibrational energy relaxation (VER) effects of vibrational line shapes. In general,
nonperturbative and non-Markovian VER effects are demonstrated more strongly on
nonlinear vibrational line shapes than on linear absorption.

Thesis Supervisor: Jianshu Cao
Title: Associate Professor of Chemistry
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Chapter 1

Introduction

1.1 Motivation

The issue of multiple time-scales is a recurring theme in physical chemistry and has

been explored from various perspectives.[ll Traditional chemical kinetics assumes a

clear separation of time-scales; that is, the rate process in a reactive system occurs on

the slowest time-scale so that all other motions can be averaged on the reaction time-

scale to yield dissipation and random noise. Under these assumptions, the depletion

from the reactant to the product is a Poisson process and the average population

disturbance decays exponentially. However, in proteins and glassy systems chemical

reactions are usually modulated by geometric constraints, slow structural relaxation,

and hydrogen bonding network in aqueous systems. In the presence of such slow

environmental fluctuations the competition between the reaction process and the

conformational dynamics leads to non-exponential kinetics and memory effects.[2, 3,

4, 5, 6, 7, 8] Yet, such conformational modulation can not be completely described

by phenomenological kinetics and is often not resolved in bulk measurements. In

comparison, single molecule trajectories consist of a chain of correlated reaction events

of various durations and thus provide a unique probe to conformational fluctuations.

Advances in optical spectroscopy and microscopy have made it possible to di-

rectly measure the optical spectrum along single molecular trajectories and monitor

the molecular dynamics and chemical kinetics of individual reactive systems. [9, 10, 11,
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12, 13, 14, 15, 16, 17] Early experiments pioneered by Moerner and co-workers have

investigated the single molecule emission process in low temperature glasses, which

has since been analyzed by Skinner, Silbey, and other groups within the framework

of the standard two-level model.[18, 19, 20, 21, 22] Recent progress has expanded

the regime of single molecule spectroscopy from low temperatures to room temper-

atures, and from glassy systems to reactive chemical systems and biomolecules. As

reviewed by Xie and Trautman,[23] new developments in room temperature single

molecule experiments include observations of spectral fluctuations, translational and

rotational diffusion motions, conformational dynamics, fluorescence resonant energy

transfer, exciton dynamics, and enzyme reactivity. These new experiments contain

rich information that needs theoretical interpretations and models. Of particular

relevance are recent studies of non-exponential reaction dynamics in single molecule

kinetics. For example, Hochstrasser and Rigler measured the fluorescence decay as-

sociated with single DNA and tRNA.[13, 14] Geva and Skinner applied a stochastic

two-state model to interpret bi-exponential relaxation in these experiments.[24, 25]

Xie and coworkers demonstrated slow fluctuations in the turn-over rate of choles-

terol oxidation and the dependence of enzymatic turnovers on previous history.[15]

This experiment has inspired several theoretical studies of memory effects in single

molecule kinetics.[26, 27, 28] Weiss and coworkers developed fluorescence resonance

energy transfer as a means to explore conformational dynamics.[16] Theoretically, a

well-studied reactive system is ligand-binding proteins, which exemplify the concept of

potential landscapes in protein environments.[3, 29, 30] Wang and Wolynes explored

single molecule reaction dynamics in fluctuating environments and showed theoret-

ically that the statistics of single reaction events exhibits intermittency and does

not follow the Poisson law.[31] Onuchic, Wang, and Wolynes explored the possibil-

ity of using replica correlation functions along single molecule trajectories to analyze

complex energy landscapes.[32] Mukamel and coworkers calculated stochastic trajec-

tories of solvent-controlled electron transfer and demonstrated non-Poisson kinetics

in the waiting time distribution function. [33] Metiu and his coworkers devised a four-

state kinetic scheme to model room-temperature fluorescence of single dye molecules
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adsorbed on a glass surface. [34] Agmon introduced a diffusion model for the confor-

mational cycle of a single working enzyme. [28] Though much progress has been made,

it remains a challenge to quantify dynamic disorder in single molecule kinetics.

It is well appreciated that single molecule spectroscopy detects spatial disorder

without the usual ensemble averaging in conventional spectroscopy. An equally im-

portant advantage of single molecule techniques is the direct observation of slow vari-

ations in reaction kinetics, which are often limited by spectral resolution in conven-

tional bulk experiments. In single molecule experiments, the traced molecular system

inter-converts between the dark and bright states so that the observed fluorescence

turns on and off intermittently. Such blinking phenomena have been observed in a

variety of systems, including low-temperature glasses, quantum dots, molecular ag-

gregates, and biological molecules. The waiting time of each on-off event corresponds

to the duration of a single molecule reaction event, and the statistics of on-off events

of various durations records the real-time trajectory of the single reactive system. In a

sense, the on-off sequence can be viewed as a binary code, which contains the essential

information about reaction mechanisms. The key to decipher this code is the statis-

tical analysis of on-off blinking trajectories. The use of single molecule spectroscopy

for detecting dynamic disorder has been demonstrated through the measurements of

the fluorescence correlation function, the waiting time distribution function, and the

two-event joint distribution function. Though a clear evidence of non-Markovian and

non-Poisson kinetics, these single molecule measurements and related analyses are

qualitative and descriptive.

Various types of single fluorescence probes have been developed, among which

fluorescence resonant energy transfer is a widely used technique with high accuracy.

In these experiments, donor and acceptor dye molecules are attached to polymers

at different points. Upon excitation, the donor molecule is pumped to its excited

state and a nonradiative energy transfer from the donor to the acceptor may occur.

This probe replies on the distance-dependent energy transfer between a donor fluo-

rophore and acceptor fluorophore and is capable of measuring distances on the 2 to

8 nm scale.[35] More importantly, this technique can report on dynamical changes
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in the distance or orientation between the two fluorophores for both intramolecular

and intermolecular FRET. Another important probe is intramolecular fluorescence

quenching. The strong dependence of quenching rate on the fluorophore-quencher

distance makes the fluorescence quenching a sensitive probe of loop formation dy-

namics in polypeptides and proteins, which is a fundamental step in protein folding.

Both techniques have been used widely to study ligand binding reactions, to probe

equilibrium protein structure fluctuations, and enzyme-substrate interactions during

catalysis.[14, 16, 36] Biopolymers are normally stiff on a wide range of length scales

from 5nm to 50 nm.[37, 38] To interpret single-molecule FRET measurements on a

biopolymers, we need to study the dynamics of a semi-flexible polymer chain. This

semi-flexible chain model needs to capture the stiffness of a biopolymer and provide

a straightforward way to explore the dynamics of semi-flexible chains. Furthermore,

hydrodynamic interactions between different polymer segments can be incorporated.

In light of these considerations, we propose a semi-flexible chain model which includes

the persistence length into the Rouse model in analogous to the Ornstein-Uhlenbeck

process.

With the techniques of fluorescence resonant energy transfer and intramolecular

fluorescence quenching, the reaction dynamics in solution can be probed directly by

fluorescence spectroscopy. Biopolymer reactions are often coupled to the internal re-

laxation processes. The experimentally observed fluorescence lifetime is a result of

the convolution of the reaction time scale and the conformation relaxation time scale.

Due to the competition between reaction process and internal relaxation process,

different kinetic regimes can be observed. In the homogeneous limit where internal

relaxation is extremely fast, the system remains at equilibrium configuration, the re-

action process is a homogeneous average over the equilibrium configuration. In the

inhomogeneous limit where the internal relaxation is extremely slow, the system re-

mains at its initial configuration, hence the reaction process is a static average over the

initial configuration. Hence, it is of great importance to understand different kinetic

regimes of the fluorescence lifetime distribution function. Normally the fluorescence

in experiments is monitored over a finite time window. This experimental time scale
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provides another dimension to the reaction kinetics. For a short experimental time

scale, transient configurations are probed close to their initial configurations; While

for a long experimental scale, the system is dominated by the relaxation process.

Therefore, we can explore different kinetics regimes by varying the length of the time

window.

When the fluorophore-quencher pair are attached to both ends of polypeptides

chain, a fluorescence quenching event indicate the formation of a loop.[39, 40, 41, 42]

The relaxation of the end-to-end distance is generally non-Markovian. The theory by

Szabo, Schulten and Schulten[43] only considers the effective diffusion of the end-to-

end distance and completely neglected the non-Markovian nature of the end-to-end

motion. Hence it does not correctly describe the contour length dependence of the

fluorescence lifetime over the full kinetic range. On the other hand, the Wilemski-

Fixman approximation,[44, 45, 46] which is derived for diffusion-controlled reactions,

can be readily generalized for non-Markovian relaxation processes. This theory has

been validated recently by experiments and simulations. [42, 47] However, the criterion

to apply the Wilemski-Fixman approximation is still not yet available. The dependen-

cies of this criterion on the contour length, the solvent viscosity, and characteristics

of fluorophore-quencher pair are to be explored.

Another important application of fluorescence-labeled molecules is to study the

mechanical properties of biopolymers with fluorescence video spectroscopy. It is a

unique technique to visualize the stretching of single DNA molecules in real time, of-

fering a lot of freedom to probe previously inaccessible regime of polymer dynamics.

The accuracy of these methods has been sufficiently improved so that quantitative

studies can be explored extensively on mechanical properties of DNAs, proteins and

other biopolymers. Macroscopic properties of polymer solutions result from the de-

formation of polymers when they are stretched by hydrodynamic or external forces.

The fluorescence video spectroscopy offers a novel way to understand the microscopic

origin of the macroscopic properties at the single molecule level. In a series of ex-

periments, Chu and his co-workers[48, 49, 50, 51, 52, 53, 54] observe the steady

state extension of DNA molecules subject to constant plug, elongational, and shear
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flows. Although many Brownian dynamics simulations are used to model these ex-

periments and predict the mechanical properties of polymers, yet these calculations

are phenomenological and computationally intensive. We employ the path integral

formulation of equilibrium statistical mechanics to formulate hydrodynamic flows as

an effective potential. With this first-principle model, we propose a less intensive

Monte Carlo algorithm to evaluate the time averaged ensemble properties.

Vibrational energy relaxation (VER) in liquids is a central component of chemical

and biological processes. The ability of molecules to redistribute energy into other

degrees of freedom is the key in product stabilization. Modern femtosecond laser

techniques can probe the intermolecular and intramolecular vibrations directly. Vi-

brational line shapes from nonlinear optical spectroscopy such as pump-probe, photon

echo, and Fourier transformed infrared spectroscopy provides rich information about

the dynamics in condensed phases. Previous theoretical treatments of the vibrational

energy relaxation effects were based on a perturbative approach, which is limited

to weak couplings between vibrational degree of freedom and the bath fluctuations.

Furthermore, most optical line shape theories consider pure dephasing only or ap-

proximate VER as a simple relaxation rate. These approximations break down at

large anharmonicities or slow bath relaxation. In general, the non-perturbative con-

tributions have strong effects on nonlinear spectroscopy. Therefore, it is crucial to

establish a reliable method that can incorporate the non-perturbative VER effects,

which becomes the main focus of the second part of this thesis.

1.2 Overview

This thesis consists of two parts. The first part uses statistical models and computer

simulations to study the single molecule spectroscopy. The second part concentrates

on a path integral approach of the non-perturbative vibrational energy relaxation

effects on vibrational line shapes.

In Chapter 2, the existence of fluctuations in the rate of activation step in enzy-

matic dynamics is observed in recent single-molecule measurements. The recurrence
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behavior in the same-time difference function of two events is found for both discrete

multi-channel model and continuous diffusive reaction model. Further calculations

clearly demonstrate the conformational dynamics dependence of the recurrence be-

havior, which is believed as a means to quantify the conformational fluctuations. A

generic model, the stochastic rate model is proposed to explain the on-off sequences

of single molecule measurements induced by fluctuations on rate process. Based on

cumulant expansion of the rate constant, the stochastic rate model is shown to be

able to approximately incorporate other models on conformational dynamics.

In Chapter 3, statistics and correlations of single molecule reaction events are for-

mulated with the modulated reaction model and explicitly evaluated via the stochastic

rate representation. The memory function, introduced through the second order cu-

mulant truncation of the stochastic rate expression, characterizes the correlation in

single molecule measurements, reveals the long-time behavior of conformational fluc-

tuations, and interprets the experimental observation of stretched exponential and

power-law decay. Within this formalism, the on-time correlation function and the

sequence density are shown to be equivalent to the memory function of the fluctuat-

ing rate. Though both are obtained under the small variance condition, the on-time

correlation function, measured at the discretized number of events, maps out the

memory function at discretized effective time separations, whereas the sequence den-

sity maps out the memory function over the continuous time. Confirmed by numerical

calculations of the three-conformational-channel model, these relations quantify con-

formational dynamics and hence are useful for analyzing single molecule kinetics.

In Chapter 4, a semi-flexible Gaussian chain model is used to determine the statis-

tics and correlations of single-molecule fluorescence resonant energy transfer (FRET)

experiments on biological polymers. The model incorporates a persistence length in a

Rouse chain and describes single-chain dynamics with normal modes. The hydrody-

namic interaction is included in the dynamics of the semi-flexible Gaussian chain on

the pre-averaging level. The distribution functions of the fluorescence lifetime and the

FRET efficiency provide direct measures of the chain stiffness, and their correlation

functions probe the intra-chain dynamics at the single-molecule level. When mea-
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sured with finite time resolution, the instantaneous diffusion coefficient for FRET is

much smaller in the collapsed structure than in the coiled structure, and the variation

has a quadratic dependence on the donor-acceptor distance. In the fast reaction limit,

single-molecule FRET lifetime measurements can be used to map out the equilibrium

distribution function of inter-fluorophore distance. As an example of microrheol-

ogy, the intrinsic viscoelasticity can be extracted from single-molecule tracking of the

Brownian dynamics of polymers in solution.

In Chapter 5, the configuration-controlled regime and the diffusion-controlled

regime of conformation-modulated fluorescence emission are systematically studied

for Markovian and non-Markovian dynamics of the reaction coordinate. A path inte-

gral simulation is used to model fluorescence quenching processes on a semi-flexible

chain. First order inhomogeneous cumulant expansion in the configuration-controlled

regime defines a lower bound for the survival probability, while the Wilemski-Fixman

approximation in the diffusion-controlled regime defines an upper bound. Inclusion

of the experimental time window of the fluorescence measurement adds another di-

mension to the two kinetic regimes and provides a unified perspective for theoretical

analysis and experimental investigation. We derive a rigorous generalization of the

Wilemski-Fixman approximation [44] and recover the l/D expansion of the average

lifetime derived by Weiss.[46]

In Chapter 6, fluorescence lifetime measurements in a polymer chain are mod-

eled using a memory function expansion, computer simulations, and simple scaling

arguments. Unless the quenching rate is localized and infinitely fast, the fluores-

cence lifetime is generally not equivalent to the first passage time. The fluorescence

lifetime distribution is decomposed into memory functions that can be measured sep-

arately in single-molecule experiments. The leading order of the expansion gives

the Wilemski-Fixman approximation, and the convergence of higher order terms de-

termines its validity. Simulations of the fluorescence quenching on a Rouse chain

verify the accuracy of the WF approximation at small contact radii, short contour

lengths and small quenching rates. Detailed investigation of the average fluorescence

lifetime reveals two competing mechanisms: the independent motion of end-to-end
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vector, which dominates at small contact radius, and the slowest relaxation of poly-

mer, which dominates at large contact radius. The Wilemski-Fixman rate is used in

combination with scaling arguments to predict the dependence of fluorescence lifetime

on the contour length. Our predictions for the scaling of the average lifetime with the

contour length are in good agreement with both simulations and recent experiments

by Eaton and his group.[40]

In Chapter 7, we use the worm-like chain as a first-principles model to study

single molecule experiments of double stranded DNA subject to constant plug, elon-

gational, and shear flows. The steady state configurations of the polymer correspond

to a locally defined potential and result in a path integral description of the canonical

partition function. The parameters of this model are consistent with previous theory

and experimental measurements. The time averaged mean extension reproduces ex-

perimental results and compares well with computationally more expensive Brownian

dynamics simulations of reduced models.

In the second part of the thesis, we discuss non-perturbative vibrational energy re-

laxation (VER) effects on vibrational line shapes. In Chapter 8, a general formulation

of non-perturbative quantum dynamics of solutes in a condensed phase is proposed to

calculate linear and nonlinear vibrational line shapes. In the weak solute-solvent inter-

action limit, the temporal absorption profile can be approximately factorized into the

population relaxation profile from the off-diagonal coupling and the pure dephasing

profile from the diagonal coupling. The strength of dissipation and the anharmonicity

induced dephasing rate are derived. The vibrational energy relaxation (VER) rate is

negligible for slow solvent fluctuations, yet it does not justify the Markovian treat-

ment of off-diagonal contributions to vibrational line shapes. Non-Markovian VER

effects are manifested as asymmetric envelops in the temporal absorption profile, or

equivalently as side bands in the frequency domain absorption spectrum. The side

bands are solvent-induced multiple-photon effects which are absent in the Markovian

VER treatment. Exact path integral calculations yield non-Lorentzian central peaks

in absorption spectrum resulting from couplings between population relaxations of

different vibrational states. These predictions cannot be reproduced by the pertur-

35



bative or the Markovian approximations. For anharmonic potentials, the absorption

spectrum shows asymmetric central peaks and the asymmetry increases with anhar-

monicity. At large anharmonicities, all the approximation schemes break down and a

full non-perturbative path integral calculation that explicitly accounts for the exact

VER effects is needed. A numerical analysis of the O-H stretch of HOD in D20 sol-

vent reveals that the non-Markovian VER effects generate a small recurrence of the

echo peak shift around 200 fs, which can not be reproduced with a Markovian VER

rate. In general, the non-perturbative and non-Markovian VER contributions have a

stronger effect on nonlinear vibrational line shapes than on linear absorption.
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Chapter 2

Two-event Echo in Single-Molecule

Kinetics

2.1 Introduction

Recently, theoretical tools have been developed to calculate measured single molecule

statistics. [27] That paper clearly demonstrated the essential difference between ensemble-

averaged bulk measurements associated with the population dynamics of full-reactions

and event-averaged single molecule measurements associated with a sequence of half-

reactions. In particular, the prediction of the focal time in the single-event distri-

bution function and of the recurrent behavior in the two-event distribution function

reveals the nature of conformational landscapes. Similar to the photon echo phe-

nomenon, the recurrence can be understood as the echo signal due to the inhomo-

geneous distribution of environments. Analogous to motion narrowing, in the fast

modulation limit, the echo signal vanishes, and the single exponential law is recov-

ered. The height of the echo signal and its position vary with the modulation rate and

hence can be a sensitive probe of the dynamics disorder resulting from conformational

fluctuations.

Since conformational fluctuations are not directly accessible experimentally, dy-

namic disorder is a hidden mechanism that requires quantitative analysis of single

molecule measurements. The prediction of the two-event echo signal in Ref. [27] holds
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the promise of characterizing dynamic disorder in single molecule kinetics. However,

questions remain with regards to the generality of the recurrence and the quantitative

relationship between the echo and conformational dynamics. This chapter presents

quantitative analysis of conformational dynamics as revealed by the two-event echo

in single molecule kinetics. The following issues will be addressed in this chapter:

General features of modulated reactions are reviewed and examined in Sec. 2.2. Phe-

nomenological kinetics, the fluctuation-dissipation relation, and the detailed balance

conditions are formulated and clarified on the basis of event-averaged single molecule

quantities. Then, the two-event echo signal is calculated in Sec. 2.3 to Sec. 2.6, respec-

tively, for the two-channel model, for the three-channel model, for the diffusion model,

and for the Gaussian stochastic model. These calculations show that the distribution

and the relaxation rate of conformational fluctuations can be estimated from the echo

time and the echo amplitude. Of the four models calculated, the stochastic Gaussian

model in Sec. 2.6 provides a general description of rate fluctuations in a similar way

as Kubo's stochastic line-shape theory and allows other models to be compared and

calibrated.[55, 56] We conclude with a summary in Sec. 2.7.

2.2 General considerations of modulated reactions

Modulated reaction models have been used for analyzing the fluctuating environment

and its effects on chemical kinetics. Early examples include a series of papers by

Hynes[57, 58] on the influence of solvent relaxation on the reaction rate constant and

the Agmon-Hopfield model for ligand binding to myoglobin.[3] A recent application

is the analysis of Xie's single enzyme turnover experiment.[15, 27, 28]

A generic modulated reaction model is the N-conformational-channel reactive sys-

tem, illustrated in Fig. 2-la. A special case of the generic model is the two-channel

model system illustrated in Fig. 2-lb. To be specific, the conformational distribution

of the reaction is represented by N discretized conformational channels, each asso-

ciated with a reversible reaction between the dark and bright states, with forward

rate k,i and backward rate kb,i. The conformational dynamics is represented by the

38



+
Ai -

= Ya, ji 'Ya,ij

A.-

Full-reaction Forward Half-reaction Backward Half-reaction

Channel 1
rn-
1

¥'I 7

Channel 2

Figure 2-1: (a) The decomposition of the N conformational-channel reaction model
into forward and backward half-reactions. (b) The reaction diagram of the discrete
two-channel model. The forward rates are kai and ka2, the backward rates are kbl and
kb2, -y is the conversion rate from channel 1 to channel 2, and y' is the inter-conversion
rate from channel 2 to channel 1.

39

Al

'Ya,ji a, ij

Aj

ka, i

kb, i

ka, j
kb, j

ka, i
I Be

Yb,ji tbj

- Bj

+

ka,i

kb'i B

bj Y bjiI7b' U

kB~j
.0 .~ B

ka, 1

kb, l

ka, 2

+ Boff
1

7' Y

,Doff

kb, 2

R- 2



inter-conversion rate ya,ij from the j-th state to the i-th state when the system is in

the bright state A (i.e., the on-state), and the inter-conversion rate yb,ij from the j-th

state to the i-th state when the system is in the dark state B (i.e., the off-state). The

different conformational sub-states are not directly detectable since only the bright

state is monitored by fluorescence emission. In single molecule experiments, the on/off

time measures the duration that a single molecule spends in the bright/dark state,

and a trajectory of on-off events records the dynamics of the single reactive system.

The two-channel model in Sec. 2.3 and the three-channel model in Sec. 2.4 are

examples of the N-channel model, the diffusion-modulated reaction in Sec. 2.5 is

a continuous version of the N-channel model, and the stochastic Gaussian model

in Sec. 2.6 can be understood as the small variance approximation of the N-channel

model. In the fast modulation limit, the N-channel reaction model reduces to a single-

channel reaction with an effective rate constant, whereas, in the slow modulation limit,

it reduces to an inhomogeneous average of the N channels. In the latter limit, the

single molecule system remains ergodic, but the rate variation within a single reaction

event can be ignored. We briefly review the N-channel reaction model as formulated

in Sec.II of Ref. [27] and then examine general features of the model within the context

of single molecule measurements.

2.2.1 Event-averaged measurements in single molecule kinet-

ics

As formulated in Ref. [27], a reaction process can be decomposed into a forward half-

reaction, which turns the bright state to the dark state, and a backward half-reaction,

which turns the dark state to the bright state. The master equation for the forward

half-reaction of the N-conformational sub-states is written as

Pa(t) = (ra + Ka)Pa(t), (2.1)

where the vector Pa,i is the survival probability of being in the i-th conformational

sub-state, the matrix Fa,ij = ija,ii - a,ij, with ya,ii = Zj ya,ji, describes the con-
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formational kinetics in the bright state, and the matrix Ka,ij = ijka,i describes the

reaction process from the dark state to the bright state. Eq. (2.1) can be formally

solved by the Green's function,

Ga(t) = exp[-t(a + Ka)] (2.2)

which is a N-dimensional matrix. The Green's function for the backward half-reaction,

Gb(t), is defined in a similar fashion. The two half-reactions are related through the

forward rate constant matrix Ka and the backward rate constant matrix Kb, yielding

the master equation for the full reaction,

b(t) K-ra - Ka K b pb(t)\ 
Ka .Pb -Kb) Pb~t (23

where [pa(t), Pb(t)] ae the population distribution in the dark and bright states,

respectively. The time-independent solution to Eq. (2.3) defines the equilibrium dis-

tribution,

(F + K)p = Kbpb, (2.4)

(Fb + Kb)pb = Kapa, (2.5)

which relate Pa to Pb and vice versa. It is shown in Ref. [27] that population evolution

measured in bulk experiments is equivalent to the summation of all the possible reac-

tion events along single molecule trajectories, and the equilibrium ensemble-averaged

quantities in the bulk state can be realized by time-averaging single molecule tra-

jectories over long durations. To explicitly evaluate single molecule quantities, we

introduce the probability density

K )p )(2.6)
Fb Kapa
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where Fa is the normalized stationary flux from the bright state to the dark state, and

Fb is the normalized stationary flux from the dark state to the bright state. It follows

from Eqs. (2.4) and (2.5) that E Kapa = E Kbpb = A,-1, implying that the total flux

is a conserved quantity. Given the stationary fluxes, we can define the distribution

function of single on-time events

fa(t) = KaGa(t)Fa = , ka,iGa,ij(t)Fa,j (2.7)
i,j

and the joint distribution function of on-off events

fab(t2, tl) = E KbGb(t2 )KaGa(tl)Fa, (2.8)

which will be evaluated explicitly for several different models in the following sections.

These event-averaged quantities can not be obtained directly in bulk experiments and

must be collected along a sequence of reaction events of single reactive systems.

2.2.2 Phenomenological chemical kinetics

The rate constant used in the phenomenological kinetic description can be interpreted

as the average time that the single molecular system spends in a macroscopic state.

To be specific, the average on-time is evaluated from the single event distribution

function as (ta) = f tfa(t)dt = Ka(Ka + Fa)-2 Fa, where Fa is the flux from the

bright state to the dark state. Using the properties of the equilibrium distribution,

KbPb = (Ka + Fra)pa and E ra = 0, we have

t 1~~~___ )2( EZPa
(ta) tfa(t)dt= E(Ka + Fa)( K + ]P a + ra)PaJ\A =Z KaPa (2.9)

The same result can be easily obtained from the average survival time in the bright

state, i.e., (ta) = f Ga(t)Fadt. The average forward rate constant follows as

(ka) -EKaPa (2.10)
2Pa
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which is an inhomogeneous average of forward rate constants and is independent

of conformational dynamics. A similar definition can be derived for the backward

reaction, (kb) = E Kbpb/ Pb. The ratio of the average forward and backward

reaction rate constants satisfies the phenomenological detailed balance relation

(ka)na = (kb)nb, (2.11)

where na = Z pa and nb = Pb are, respectively, the equilibrium populations of the

bright state and of the dark state. Consequently, phenomenological chemical kinetics

is simply an inhomogeneous average of the microscopic reaction rate constants and

therefore does not contain any information about dynamic disorder.

It should be pointed out that relaxation experiments in the bulk state measure the

total rate constant (k) = (ka) + (kb), and the forward and backward rate constants

are obtained through the detailed balance condition in Eq. (2.11). In contrast, single

molecule experiments separate the forward and backward half-reactions, and uniquely

determine the two rate constants. Furthermore, in the context of single molecules,

the detailed balance relation in Eq (2.11) is self-evident as long-time averaging along

single molecule trajectories leads to the equilibrium population, which according to

Eq. (2.9) defines the average rate constant.

High order moments of the on-time distribution function can also be calculated

from (tn) = f (t)tndt. Generally, higher order moments do not satisfy (ta) (t)"

and the decay process is not a Poisson process. Though ensemble-averaged experi-

ments can also measure the waiting-time distribution and high-order moments, such

measurements may suffer from spatial disorder and require special initial preparation

in order to apply the fluctuation-dissipation theorem (see the next subsection). Even

if the waiting-time distribution can be obtained, interpreting memory effects and ex-

tracting the modulation rate constant can be difficult. Therefore, single molecule

measurements are more reliable and robust, and the information about dynamic dis-

order can be inferred from the statistics and correlation of half-reaction events.
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2.2.3 Fluctuation-dissipation relation

A central result of the fluctuation-dissipation theorem is Onsager's regression hy-

pothesis, which relates the relaxation of macroscopic non-equilibrium disturbances to

the correlation of spontaneous microscopic fluctuations in an equilibrium system. [59]

Application of this theorem to chemical kinetics leads to

Aqc(t) C(t) _Gaa(t) -n (2.12)
ACa() C(O) 1 -naL

where Ace(t) = c,(t)- a(oo) describes the concentration relaxation after a distur-

bance, measured in ensemble-averaged experiments, and C(t) = (na(t)na(O))- n2

describes the occupation correlation function of the equilibrated reaction system,

measured in single molecule experiments.

We now generalize Eq. (2.12) to multi-channel reactions. Consider the fluorescent

correlation function measured along a single molecule trajectory, starting from an

arbitrary initial time on the trajectory. The probability of starting from a bright

state is n, and the initial on-time is then averaged over the on-time distribution

function, giving

(na(t)fna(O)) = fGaa () GF)d a n= Gaa(t)pa, (2.13)
fo G(to)Fadton =y G,(p,

where the propagation matrix Gaa (t) is the diagonal component of the Green's func-

tion solution for the master equation in Eq. (2.3). It is shown in Ref. [27] that Gaa(t)

can be expanded in an infinite series of terms in the sequence of single molecule events

rt {tl
Gaa(t) = Ga(t) + Ga(t- tl)KbGb(tl - t2)KbGa(t2)dtldt2 + ., (2.14)

where the first term represents staying in the bright state without reaction, the second

term represents one sojourn to the dark state, and so on. To measure the macroscopic

relaxation, the concentration disturbance ca(0) in the bright state is introduced ac-
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cording to the equilibrium conformational distribution, i.e.,

Pa,i(O) = Pai Ca(O)- (2.15)E p,,

Then, the concentration relaxation follows

ACa(t) EGaa (t)Patc(O) - naca(O), (2.16)
nla

where ca(oo) = nac(O) is the equilibrium concentration of the bright state. Comparing

Eq. (2.13) and Eq. (2.16), we have

2ACa(t) = C(t) _ E Gaa(t)pa - n1
ACa(0) C(0) na- (2.17)n

which is the multi-channel version of Eq. (2.12). Therefore, the fluctuation-dissipation

relation is obeyed under the condition that the initial population disturbance is dis-

tributed according to the equilibrium ratio of conformational channels. However,

in the relevant scenario discussed in Sec. 2.1, the conformational modulation rate

is slower than or comparable to the reaction rate. Then, the initially prepared dis-

turbance will not have enough time to relax in the conformational sub-states before

the concentration starts to decay, thus violating the initial condition in Eq. (2.15)

necessary for the fluctuation-dissipation relation in Eq. (2.17). Consequently, the

initial preparation of relaxation experiments in the bulk state must be taken into

consideration in interpreting conformational distribution and dynamics.

Finally, we simplify Eq. (2.17) be noting that the asymptotic limit of Gaa(t) is

the equilibrium distribution Pa. Thus, the propagator Gaa(t) can be decomposed as

Gaa(t) = Pa + G'a (t), which allows us to rewrite the fluorescence correlation function

as

C(t) Y~G' (t)paC-t) E Gaa (2.18)
C(O) nanb

where Gaa(t) is the time-dependent part of the Green's function.
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2.2.4 Detailed balance conditions

The conservation of the population flux requires an overall balance relation between

the bright state and the dark state, as explicitly given in Eq. (2.11). While this

condition conserves the total flux, it does not exclude the possibility of a net current

between different conformational channels. To exclude this possibility, the forward

flux and backward flux must be equal,

KaPa = KbPb, (2.19)

which is a more stringent balance relation than Eq. (2.11). It follows from Eqs. (2.4)

and (2.5) that

raPa = rbPb = 0, (2.20)

which are the detailed balance conditions for the equilibrium conformational distribu-

tions in the dark state and the bright state, respectively. Furthermore, it is reasonable

to assume that the conformational dynamics are the same for the bright state and for

the dark state, i.e., Pa = rb. Then, we have Pa C Pb and

Kb oc Ka, (2.21)

which means that the ratio between the forward reaction rate constant and backward

rate constant is the same for all the conformational channels. Without loss of gener-

ality, this chapter analyzes on-off events based on symmetric reactions with Ka = Kb.

As shown in Fig. 3 of Ref. [27], the nature of the two-event distribution function

does not change with the backward reaction; therefore, the echo from the on-off cor-

relation for symmetric reactions is similar to the echo from the on-on correlation for

asymmetric reactions.
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2.3 Two-channel model

The two channel model, the simplest scheme of multi-channel reactions, has been

used to analyze event-averaged quantities and to show that the two-event echo has

a strong dependence on the conformational distribution and dynamics.[27] The fol-

lowing derivation generalizes the results in Sec. 3 of Ref. [27] in that the downward

rate 7y and the upward rate y' are different. The master equation for the forward

half-reaction is given in Eq. (2.1) with Pa, Ka and F defined as

Pa(t) = K kal 7 = a= rb =
Pa2(t) / 0 ka2 -7Y

) . (2.22)

¥J

The Green's function is given by

Ga(t) = e- (Ka+r)t

1 (aFa(t) + (kad + Yd)Ea(t)
Aa Vy 7 Ea(t)

Y'Ea (t) (2.23)

/\aFa(t) - (kad + Yd)Ea(t) 

where Aa = \/y2 + kad + 2 kadYd, kad = (ka2 - kal)/2, ka. = (ka2 + kal)/2, Ys =

(-y + y')/2, -yd = (y' -y 7)/2, ZaI+ = ka + Y ± Aa, F(t) = (e - Za - t + e-Za+t)/2, and

Ea(t) = (e- za -t - e-za+t)/2. These expressions reduce to Eq. (14) in Ref. [27] when

-y = y'. The backward Green's function can be obtained in the same fashion. The

master equation of the full reaction, given in Eq. (2.3), has a stationary solution

Pal

Pa2

Pbl

Pb2

t'[ykb2 + -Y'kbl + kbl(ka 2 + kb2)]

7y[7kb2 + Y'kbl + kb2 (kal + kbl)]

y'[-yka2 + Y'kal + kal(ka2 + kb2)]

7Y['yka2 + y'kal + ka2 (kal + kbl)]

(2.24)

where C- 1 = (y + y')[7y(ka2 + kb2) + 7'(kal + kbl) + (kal + kbl)(ka 2 + kb2)]. The

equilibrium flux from the bright state to the dark state is Fb = A/Kapa, and that

from the dark state to the bright state is Fa = AJVKbpb. The normalization factor is
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Af -1 = E KbPb = E Kapa = y2ka2kb2 + 7y2 kalkbl + 'Y/'(ka2kbl + kalkb2) + (kal +

kbl)ka2kb 2 + 'Y'(ka 2 + kb2 )kalkbl. Thus, the distribution function of on-time events is

fa(t) = EKaGa(t)Fa =
(Kae-(Ka+r)tKb)

(Kb)

where ( --...) denotes an average over the equilibrium population distribution in the

dark state. The distribution function of off-time events is defined in the same fashion.

The joint distribution function of on-off events is defined as

fab(tl, t2) = E KbGb(t2)KaGa(tl)Fa =
(Kbe-(Kb+r)t2Kae-(Ka+r)t Kb) (226)

(Kb) (2.26)

which can be used to analyze memory effects. In particular, the difference function

5(tl,t 2 ) = fab(tl,t2)- fa(tl)fb(t 2 ) is given explicitly as,

(t1 , t2) = 6(0) [AaFa(tl)- (ka,s + 'Ys)Ea(tl)][AbFb(t 2 )- (kb,, + %Y)Eb(t2)] (2.27
AaAb , (2.27)

where the initial value 6(0) is a complicated function of the reaction rate constants

and the inter-conversion rates.

For simplicity, we consider symmetric reactions

the forward and backward propagators become the

G(t) = - (K+r)t 1 (AF(t) + (kd + d)E(t)
A -yE~,(t)

with Ka = Kb = K. In this case,

same,

y'E(t) (2.28)

AF(t) - (kd + yd)E(t) ,

where Aa = b = A, Ea(t) = Eb(t) = E(t) and Fa(t) = Fb(t) = F(t). The

equilibrium populations are Pal = Pbl = 7'Y/[2 (-Y + 7y')] and Pa2 = Pb2 = y/[2(,y + y')],

which depend only on the inter-conversion rates. The difference function 6(t1 , t2) is

simplified to

(tl t2) = 6(0) [AF(t) - (k8 + %s)E(tl)][AF(t2) - (k. + %y)E(t2)]
A2 '

(2.29)
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where the initial value is

k2 (2- k2)7, _7)
6(o) d - -y) (2.30)

(kdYd - k8 y8)2

with kd = (k2 - kl)/2 and k8 = (k2 + kl)/2. The same-time difference function follows

Eq. (2.29) as (t) = (t,t). Fom d(t)/dt = 0, the focal time of the same-time

difference function is found as

1 z+ 1 k8+ y + A
tf= - ln -= -in (2.31)z_ 2A k,+y-A'

where the difference function is zero, 6 (tf) = 0, and the echo time is found to be

related to the focal time via

t = 2tf, (2.32)

where the amplitude of the echo is

j(t.) = (0)(1 )2rq (2.33)

with 7 = (ks + -)/A. From Eq. (2.29), we find a minimum along the t axis or the

t2 axis at the echo time, respectively.

The same-time difference function (t) is a complicated function of reaction rate

constants and conformational inter-conversion rates. To facilitate our analysis, we

consider several special cases.

1. Fig. 2-2 is a two dimensional contour plot of the difference distribution function,

6(t1 , t2 ), for k = 2, k2 = 4 and 7 = ' = 0.5. As predicted by Eq. (2.29), the

contour clearly shows a minimum at tf = 0.287 and a maximum at te = 0.575

along the diagonal axis, as well as a minimum at the focal time te along the tl

and t2 axis.

49



2

1.5

1

0.5

0o
0 0.5 1 1.5 2

Figure 2-2: A two-dimensional contour plot of the difference function of two events
6(t 1 ,t2 ) f(tl,t 2 )- f(t)f(t 2 ) for the two-channel model with k = 2, k2 = 4, and
~y - / -0.5. At t = e, (tl, t2) reaches its maximum along the diagonal and its
minimum along each time axis.

2. When the reactive time-scale is relatively fast, i.e., kd, a << k, we have

te = A ln[ k +-y, + A] mZs 2, (2.34)
A ,+ % - A k + 

where the approximate relation directly measures the average modulation rate

for a given rate constant. In Table 2.1, for k = 3.0 and kd = 0.5, the echo time

predicted from Eq. (2.34), te,pred, is compared with the echo time measured from

the same-time distribution function, te,meas. For a wide range of modulation

rates, these two sets of echo times agree within an error less than 10%.

3. Eq. (2.33) gives the amplitude of the echo, which, under the condition of kd <

a < k, can be shown to be proportional to the variance k, i.e.,

3(te) oc k. (2.35)
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Table 2.1: The echo time in two-channel model.

7 0 0.5 1.0 1.5 2.0 2.5
te,pred 0.667 0.571 0.500 0.444 0.400 0.364
te,mea 0.645 0.555 0.485 0.440 0.390 0.375
Error 3.4% 2.9% 3.1% 0.9% 2.6% 3.7%

kl = 2.5 and k2 = 3.5. te,pred is evaluated from te,pred = 2/((k) + ty) and te,meas is
obtained from the numerical calculation of d(t). -y = y' is the inter-conversion rate.
The error is defined as Ite,pred- te,meoI/te,meaS X 100%.

0.060

0.040

0.020

n An
0.0 0.5 1.0 1.5 2.0

t

Figure 2-3: The same-time difference function in the two-channel model where y =
A' = 2.0 and k = 2.5. The echo time predicted by t = 2 tf 2/((k) +-y) is confirmed
with small error at large kd where kd < k is not strictly followed. The amplitude of
the echo approximately proportional to the variance in the rate constant.
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Figure 2-4: The same-time difference function in the two-channel model when y = ',
kx = 1, and k2 = 4. The maximal echo is reached when y = k2/ks. As predicted by
te = 2 tf 2/((k) + y), the echo time decreases as the modulation rate -y increases.

In Fig. 2-3, the same-time difference distribution function 6(t) is plotted for

ks = 2.5 and y = -y' = 2.0. As seen from the plot, the echo amplitude increases

proportionally with k2, even for relatively large k2. The plot also confirms that

the focal time is half the echo time and both times are invariant to kd.

4. In the case of equal inter-conversion rates, y' = -y, Eq. (2.33) still applies with

5(0) = k2(ka2- k)/k s and 7 = (ks + -y)/ /k + y2. It can be shown that the

amplitude of the echo 6(te) reaches its maximum at 7?max /k + kJ/kd when

k2 _ ((6k) 2)
(d (k) (2.36)

which is the critical conformational inter-conversion rate for the maximal echo.

Fig. 2-4 is a plot of the same-time difference distribution function for k1 = 1,

k2 = 4, and several values of -y. The maximal echo occurs at y = 0.9, which
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Figure 2-5: The conformational conversion rate dependence of the two-event echo in
the two-channel model with kl = 1 and k2 = 4. In this slow modulation limit, y and

are the downward and upward inter-conversion rates, respectively, and "y, y' << kl,2.
RP, is the ratio of the two inter-conversion rates, R- =7 .

follows the critical condition in Eq. (2.36). It can also be noticed in Fig. 2-4

that the focal time and the echo time decrease as "y increases, as predicted by

Eq. (2.34).

5. In the slow modulation limit, y, y' < kl,2, which is a possible scenario for

sluggish environments, Eq. (2.29) is simplified to

J(te) - (k2 - kl)2 RkR~
4 (Rk + R )2

Rk -
1 )2Rk

Rk + 1
(2.37)

where Rk = k2 /kl and R = Y/'. With k and k2 fixed, the maximal echo

occurs at

R' = Rk or k2 1" Plk2_ _ Pi
k a'Y P2

(2.38)
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Figure 2-6: A two-dimensional contour plot of (t1 , t2) for the three-channel model
with k = 2.5, k2 = 3, k3 = 3.5, =7' = 0.5. It is clearly shown that te = 2 tf 
2/((k) + ) and that both (0, t) and (t, 0) reach their minima at t= te.

which implies a detailed balance relationship between the two channels, k 1p1 =

k2p2. As shown in Fig. 2-5, in the slow modulation limit, t and te are fixed

at ln[k2 /kl]/(k 2 - kl) and 2 ln[k2 /kl]/(k 2 - k1), respectively. The maximal echo

is achieved when the ratio in Eq. (2.38) is satisfied at R = 4. It can be

argued from this example that memory effects of conformational modulation

can be measured by the variation of the reaction rate constants ((6k)2) and

the variance of the flux ((6kp)2). To have the maximal echo, ((6k)2) should be

maximized while ((Jkp) 2 ) should be minimized.
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Table 2.2: The echo time in three-channel model.

3'_ 0 0.5 1.0 1.5 2.0 2.5

tepred 0.667 0.571 0.500 0.444 0.400 0.364

te ,meas 0.665 0.550 0.465 0.410 0.370 0.335
Error 0.3% 3.8% 7.5% 8.3% 8.1% 8.7%

kl, k2 and k3 are 2.5, 3.0 and 3.5, respectively. te,pred is evaluated from te,pred =

2/((k) + y) and temeas is obtained from the numerical calculation of (t). The error
is defined as te,pred- te,measi/te,meas X 100%.
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Figure 2-7: The same-time difference function (t) in the three-channel model with
(k) = 3.0 and '-y = 0.5. It is clearly shown that the two-event echo increases as k2
increases.
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Figure 2-8: The same-time difference function d(t) in the three-channel model with
(k) = 3.0 and k' = 1.0. It is clearly shown that the echo time decreases as y increases.
The maximum echo occurs at y - k/(k) 0.3, as predicted in Eq. (2.36).

2.4 Three-Channel Model

To explore the generality of the recurrent behavior

tion, we study a cyclic three-channel model with

2-y

-q,

-y

2y
)

K = Kb=

of the two-event distribution func-

C

(2.39)

k

0

0

Numerical calculations clearly demonstrate the basic features consistent with our

observations in the two-channel model:

1. Fig. 2-6 is a contour of the difference function (tl, t2) calculated for the three-

channel model with the modulation rate y = 0.5, and the three reaction rates

k = 2.5, k2 = 3.0 and k3 = 3.5, respectively. As seen from the two dimensional
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contour, the diagonal distribution has a minimum at the focal time t and a

maximum at the echo time te = 2tf, whereas both (t, 0) and (0, t) have a

minimum at the echo time te.

2. In Table 2.2, te,ped calculated from te _ 2/((k) + -y) agrees well with te,meas

measured by numerical calculations, for the three-channel model with kl = 2.5,

k2= 3.0 and k3 = 3.5. The error is within 10% over a range of -y.

3. Fig. 2-7 shows the linear dependence of the amplitude of the two-event echo on

((6k)2) for the three-channel model described earlier. Again, the echo time and

the focal time are invariant to ((6k)2) and follows the estimation te= 2/((k)+).

4. Fig. 2-8 shows the same-time difference function for several values of -Y. As

predicted, the maximal echo occurs at y k/(k), and the focal time is half

the echo time and decreases as y increases.

We also calculated other three-channel and four-channel models with various pa-

rameters and geometries and found essentially the same behavior. Thus, we believe

that these features are universal for discretized multiple channel models. In the next

section, we will investigate the diffusion reaction model.

2.5 Diffusion model

The diffusion-modulated reaction was first introduced by Agmon and Hopfield to

describe the ligand binding in myoglobin, and was analyzed by Zwanzig and elab-

orated by Wang and Wolynes[3, 29, 31, 60] Similar models have been applied for

studying solvent-controlled electron transfer. [61, 62, 63, 64, 65] The diffusion reaction

model describes a reactive system modulated by a diffusive coordinate, which repre-

sents collective environmental motions. The diffusion coordinate is described by the

Smoluchowski operator

ALD = A (- + (2.40)

x 57x
57



where A characterizes the relaxation time scale of the diffusive solvent, 0 is the variance

of the equilibrium distribution of the diffusion coordinate, and AO = D is the diffusion

constant. The relaxation rate A in the diffusion model is equivalent to the inter-

conversion rate -y in the two-channel model. The reaction rate k(x) is related to the

diffusion coordinate x by k(x) = nx2 , with n, the proportionality coefficient, so that

the survival probability satisfies

a P(x, t) = -k(x)P(x, t) + LDP(X, t). (2.41)

The corresponding Green's function is derived in Appendix 2-A, giving

2 s-1)x s i (x - ye-________- _____ __
G(x,y,t)=e 2 2e-2Aat) 12242)[2r(1 _ e2Xt) ] exp[_S(e-) 2 )+ (s 1)(x y2) 2.42)dun roe - 2(1 - e-2At) + 4

where s = \/1 + 49O/A represents the coupling of the two time scales associated with

diffusion and rate processes. The equilibrium population obtained from LDpeq(x) =

0 is a Gaussian function, peq(X) = e 2/(20)/2; hence, we have (k) = nO and

((6k) 2 ) = 2 202.

To study the master equation for the full reaction, we consider the symmetric

case, where the bright and dark states, labeled as a and b, respectively, have the same

relative rate,

Pa(Xt) -k(x)-LD k(x) A ( P(xt) (2.43)

Xb(X, t) k(x) -k(x) - LD J pb(X,t)

With the Green's function in Eq. (2.42), we obtain the distribution function of on-time

events

)(f:a fc dxdyk(x)G(x, y, t)k(y)) \ /vs0[2s 2 + ~(t)2 ] At
( )= - [f(t/2) (t/2)]5/2 exp[-], (2.44)(k(y)) [pt20t22
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and the joint distribution function of on-off events

(fo f- f- dxdydzk(x)G(x, y, t)k(y)G(y, z, t)k(z))f (t, t) =f 

K202[(p(2t) + 2s) 2 + 6s2] exp[At], (2.45)
V/Sqo(t)3/2Vp(t)7/2

where o(t) = [(s + 1)eAst + (s - 1)e-ASt]/2 and +(t) = [(s + 1)et- (s- 1)e-Ast]/2.

The same-time difference function 6(t) = f(t, t) - f(t) 2 is given by

(t) = 202[(f(2t) + 2s)2 + 6S2() (t)3/2(t)7/2
_s(M(Ot22) 2 + I 2 expAt],

- o(t/2)50p(t/2)5] x[k] (2.46)

with the initial value 6(0) = 6n,292.

These single molecule quantities are complicated functions of rn0/A. We examine

their behavior in several limiting cases.

1. In the fast modulation limit, A -+ oo, the distribution functions become

f(t)

f(t,t)
6(t) ; 0,

O Wexp[-KOt], (2.47)

(2.48)

(2.49)

thus resulting in single exponential kinetics with an effective rate constant

keff = O.

2. In the slow modulation limit, A -- 0, the Green's function simplifies to

G(x, y, t) = 6(x - y) exp[- x 2t]. (2.50)
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Then, the event averaged distribution functions decay by power law,

f(t) 3( (2.51)
(1 + 2n.t)5/ 2 '

15n~292
f(t, t) (1 + 4 t)7 2 ' (2.52)

(1 q 4n~Ot)7/2'

6(t) 15+292/(1 + 4n0t) 7/ 2 - 9n292/(1 + 2nOt)5, (2.53)

which are a result of inhomogeneous averaging of the rate distribution. Because

the flux k(x)peq(x) is distributed around x = 0, the diffusion model in the slow

modulation limit effectively reduces to a single channel, and therefore no echo

is observed in this limit. However, if a sufficiently large bias is introduced into

the rate constant, k(x) = r(x- xb) 2, the diffusion model maps to a two-channel

model and the echo can be observed in the inhomogeneous limit.

3. In the long time regime, f(t) and f(t,t), both decay exponentially as

f(t) 8 exp[-(s - 1)t] (2.54)
(s ± 1)3 2

f(t, t) , ( + 1)_ exp[-A(s- 1)t], (2.55)

6(t) c exp[-A(s - 1)t], (2.56)

with the effective rate constant keff = A(s- 1)/2.

4. In the short time regime, we expand the distribution functions to first order in

t,

f(t) , 3r0(1 - 4 At - 5Ot + O[t2]), (2.57)

f(t,t) 15,202(1 - At - 14KOt + O[t2]), (2.58)
5

6(t) 6,202(1- 2 At - 30rOt + O[t2]), (2.59)

which predict the initial decay due to the reaction and diffusion processes.

To facilitate calculations, we use 1/nO as the unit time and normalize function
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Table 2.3: The echo time in the diffusion model.

A 2.0 2.5 3.0 3.5 4.0
te,pred 0.667 0.571 0.500 0.444 0.400
te,meas 0.615 0.560 0.520 0.485 0.455
Error 8.5% 2.0% 3.8% 8.5% 12%

n = 1.0. te,pred is calculated by te,pred = 2/
from numerical calculation of d(t) in Eq. (2.60).
te,meas/te,meas x 100%.

U.UUbU

0.0040

co

0.0020

n nnnn

((k) + A) and te,meas is obtained
The error is defined as te,pred -

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

Figure 2-9: The s dependence of the same-time difference function 5(t) in the con-
tinuous diffusion model. s = V/1 + 4KO0/A, reflects the competition between the time
scales of the diffusion and the rate process. (t) is normalized by b(0) and the time
variable is scaled by 1/(c).
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6(t) by 6(0). Thus, the reduced same-time difference function reads

(t) _ 6(t) _ e- [((2t) + 2s)2 + 6s2 s((i) 2 + 2s2)2 (2.60)
d(0) 6 A/ s(i) 3 /2,(t)7/2 - i2),5'(i/2)5

where = tO, 5(t) = [(s + )e4st/ (s2-1) + (s- 1)e-48t/(s2-1)]/2 and ({) = [(s +

1)e4st/(s2 -1) - (s- 1)e-4St/(s2-1)]/2. As shown in Fig. 2-9, the same-time distribution

function 6(t) has an echo in the region 1 < s < 2.81 and reaches its maximum

amplitude at s = 1.92. In the slow modulation limit, where s is large, (t) reduces

to power law decay and no recurrence is found. In the fast modulation limit, where

s approaches 1, reaction kinetic becomes single exponential and 6(t) vanishes. It can

also be observed in Fig. 2-9 that the relation between the focal time and the echo

time, te = 2tf, remains valid, and that the maximal echo occurs at A - ((6k)2)/(k) as

predicted by Eq. (2.36). The echo time, listed in Table 2.3, confirms the prediction of

te = 2/((k) +y). The two-dimensional contour 6(tl, t2) (not included here) shows the

same features as for the multiple channel model. Thus, the conformational fluctuation

rate in the diffusion model has a strong influence on the two-event echo signal in

the same-time difference function. However, because of its single channel nature in

the inhomogeneous limit, the diffusion model predicts weaker echo signals than the

multiple channel model.

2.6 Stochastic Rate Model

The analysis of on-off sequences is usually based on specific kinetic schemes and as-

sumed functional forms. Different versions of the discretized multiple channel model

include the two-channel two-state scheme, two-channel three-state scheme, and three-

channel two-state scheme. In the continuous limit, a diffusion coordinate is intro-

duced to modulate the rate constant: the exponential dependence was used to de-

scribe diffusion-controlled ligand-binding and more recently enzymatic reactions,[28]

the localized population sink was used for solvent-controlled electron transfer, the

quadratic dependence was used to describe stochastic gating.[31] To analyze and
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compare single molecule quantities predicted by various reaction schemes in a uni-

fied framework, we adopt a general approach based on the stochastic rate model and

the cumulant expansion.[66, 67] In this model, environmental fluctuations introduce

time-dependence in the rate constant, which is treated as a stochastic variable. Each

realization of the time-dependent rate constant defines a rate process, and single

molecular measurements can be obtained after taking the stochastic average of rate

fluctuations. This approach is inspired by Kubo's stochastic line-shape theory as the

rate constant in the rate model and the frequency in the Kubo's model are both

treated as stochastic variable.[55] In principle, the stochastic properties of the rate

are completely described by all the multiple time cumulants. In practice, we truncate

the cumulant expansion to second order in time variables, thus yielding a Gaussian

stochastic rate model. The analysis of single molecule quantities in the Gaussian ap-

proximation is similar to the study of spectral diffusion at cryogenic temperatures

by Silbey and Skinner.[68, 69] Then, various reaction schemes can be mapped to

the Gaussian stochastic rate model characterized by average rate constants and rate

correlation functions, and all single molecule quantities can be evaluated accordingly.

2.6.1 Cumulant expansion of the stochastic rate model

The rate constant, modulated by slow environmental fluctuations, can be treated as

a stochastic variable. For the forward half-reaction,

on ( ) off, (2.61)

the survival probability distribution function is given by

P(t) = (e- f k()dT), (2.62)

where k(r) is the stochastic rate variable. Cumulant expansion of Eq. (2.62) leads to

~~o
n0 t t

P(t) = exp[ n! drL... d T Xn(-rl ..... )], (2.63)
n--1
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where Xn(Ti,... , Tn) is the n-th order correlation function defined as

X1(t) = k(t)),

X2(tl, t2) = (k(tl)k(t2))-(k(t)) (k(t2)),

X3(tl,t2,t3) = (k(tj)k(t 2)k(t3)) - (k(tl))(k(t 2)k(t3)) - (k(t2))(k(t)k(t 3 ))

-(k(t 3 )) (k(tl)k(t 2 )) + 2(k(ti)) (k(t2 )) (k(t3)),

*.- (2.64)

These cumulant functions contain all the information necessary to describe the dy-

namics of modulated rate processes; thus, all the single molecule quantities can be

expressed in cumulants with different weights. Some examples are given in Appen-

dices 2-B and 2-C.

For a stationary Gaussian process, Xk(t1,.. , tk) - 0 and X2(tl, t 2 ) = X(tl -t2),

the survival probability is simplified to

P(t) = exp[-(k)t + M(t)], (2.65)

where M(t) = fo(t-T)x(T)dr is the second order cumulant. The distribution function

of single on-time events is related to the survival probability by

dP(t)
F -(t) - d() (2.66)

dt'

which, for the stationary Gaussian case, becomes

.F(t) = ((k) - X()dr)exp-(k)t + M(t)]. (2.67)

Since the single-event distribution function is always finite, (k) > ft(1 - r/t)X(r)dr

has to be satisfied at any time t. Especially, when t approaches infinity, (k) >

fo X(-r)dT, i.e., there exists a finite time scale for conformational fluctuations. Given

the finite time scale for conformational fluctuations, Tr, the condition for the sec-

ond order cumulant expansion can be established as (k) > x(O)rc, implying a small
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variance of reaction rates and a short correlation time for conformational fluctuations.

The stochastic rate model is flexible in describing single molecule measurements.

With a proper choice of X(t), the model can reproduce power-law and other non-

exponential time-dependence. The second cumulant expansion of the model, how-

ever, is only accurate for describing Gaussian processes. The deviation of real mea-

surements from the second cumulant expansion is an indication of the non-Gaussian

behavior.

2.6.2 Two-event echos in the Gaussian approximation

To simplify our calculations, we consider symmetric reactions with kf(t) = kb(t) =

k(t). In this case, the single-event and two-event distribution functions can be ex-

pressed as,

f(t) = (k(t)e- f k(r)drk(O)) (2.68)
(k) (2.68)

f(tl 2) (k(tl + t2)e- ftl t2k(')d'k(t)e l k(T)dk(0)) (2.69)
(k)

For further simplification, we truncate the cumulant expansion to second order, giving

f(t) [(k) - L(t) 2 + X(t) exp[-(k)t + M(t)], (2.70)
(k)

f(t, t2) = {(k)2 - (k)[2L(t, + t2) + L(ti) + L(t2)]

+ X(t1) + X(t2) + X(tl + t2) + 2L(tl + t2)[L(tl) + I(t2)] + L(tl + L2)2

- k [(ti)L(t, + t2) + X(t2)L(t, + t2) + X(ti + t2)L(t)

+ X(tl + t2)L(t2) + L(tj + t2)L(tl) + L(tj + t 2)L(t2)]}

exp[-(k)(tl + t2) + M(tl + t2)], (2.71)

where L(t) = M(t) = f X(r)dT. The detailed derivation of Eqs. (2.70) and (2.71)

can be found in Appendix 2-B. Other related single molecule quantities are defined

in Appendix 2-C.
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Figure 2-10: The two-event echo in the stochastic rate model with (k) = 3.0, y = 0.5,
and x(t) = X(O)e- 2 yt. The echo time te 2/((k) + y) is approximately fixed when
varying X(0), and the echo increases with X(0).

In the short time limit, when L(t) << X(t)/(k), we have

f~~t 1 )f~~~t2 ) ~X(tl)X(t2)

f(tl, t 2 ) f(tl)f(t2) X(t1 + t2 ) x(k) t- X(t + t2)72)

f(tl)f(t 2 ) ((k) + x()((k) + X(t2) (k)2
(k) ((k) + (k)

which indicates that X(t) is a direct measure of memory effects in the initial decay

regime.

The focal time and the echo time in the same-time difference function can be

derived from the Taylor expansion of Eqs. (2.70) and (2.71). We assume the expo-

nential decay form of x(t) = X(O)e- 2'yt for simplicity, and the small variance con-

dition of X(0) << (k)2 i.e., kd << k, so that L(t) = X(O)(l- e-2Yt)/(27), M(t) =

X(O)(e-2 t- 1 + 2yt)/(4y 2). Then, to first order in the small parameter X(0)/(k) 2,
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Figure 2-11: The two-event echo in the stochastic rate model with (k) = 3.0, X(0) =
1.0, and X(t) = X(O)e- 2yt. The echo time te ;- 2/((k) + y) decrease as y increases.
The maximum amplitude of the echo is flat within an interval of Y. The position of
the maximal echo is approximately the medium of this interval, -y ;- 0.4.

we have

f(t) (k)e-(k)t 1 + X(O) [e 2 t _ k) (1- e-a2 t) + (k)2 (e-2yt + 2yt- 1)]} , (2.73)

f(t, t) (k) 2 {1-X(O) [e-4 -t + 2 e-'t-4t+ e 2-t - 2)
(k) 2 -Y(~~~~~~~~k)2

+ (k )2(e-47t + 4-yt - 1)]} exp(-2(k)t), (2.74)472

and the same-time difference function

(t) X(O)( (k 2-y - (k)e2 t )2 exp(-2(k)t). (2.75)

The minimum of 2(t) can be found at
The minimum of 3(t) can be found at
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Table 2.4: The echo time in the stochastic rate model.

7 0 0.5 1.0 1.5 2.0 2.5

te,pred 0.667 0.571 0.500 0.444 0.400 0.364
te,meas 0.665 0.575 0.515 0.465 0.425 0.395
Error 0.3% 0.7% 2.9% 4.5% 5.9% 7.8% 

(k) = 3.0 and X(O) = 0.25. te,pred is calculated with te,pred = 2/((k) + y) and
te,meas is obtained from numerical calculation of the stochastic rate model with
X(t) = X(O)e- 2 yt . The error is defined as te,pred - te,measl/te,meas X 100%

1 In[ 1~~~~tf=~ -1 n[( I) ~ -~ ) ,(2.76)

and the maximum at

te 1 In[ (k) + 2 2 (2.77)(2.77)

The amplitude of the echo proportional to the variance of the rate constant, 6(te) C(

X(0). Thus, we obtain the same expressions for te and tf as derived for the two-

channel model in Sec. 2.3. In Table 2.4, the echo time predicted from Eq. (2.71),

te,pred, is compared with the echo time calculated from the same-time distribution

function, te,meas. Good agreement is found over a wide range of modulation rates y

between these two sets of echo times.

In Fig. 2-10, the same-time difference function 6(t) calculated from Eqs. (2.70) and

(2.71) is plotted for k, = (k) = 3.0 and -y = 0.5. For several values of X(0) = kd =

(6k2 ), the focal time and the echo time remain constant, but the amplitude of the echo

increases proportionally with X(0). In Fig. 2-11, the echo time is shown to be twice the

focal time and decreases with the modulation rate y according te = 2tf = 2/((k) +-y).

The maximal echo is found around -y = X(0)/(k). These features are consistent with

our observations in the multiple channel kinetic model.
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Figure 2-12: A two-dimensional contour plot of the difference function of two events
(tl, t2) = f(tl,t 2 )- f(t)f(t 2 ) in the stochastic rate model with k = 2, k2 = 4

and y = 7 = 72 = 0.5. f(t) and f(tl,t 2) are calculated by Eq. (2.70) and (2.71),
respectively, with x(t) in Eq. (2.78) obtained from matching the survival probability.

2.6.3 Mapping to the Gaussian stochastic rate model

We now map the discrete two-channel model to the Gaussian stochastic rate model.

For simplicity, we consider a two-channel model with symmetric half-reactions, Ka =

Kb, and with equal conformational states, ' = '. In this model, the survival proba-

bility function is P(t) = [(A+y)e-Z- t +(A-7y)e-+t]/(2A).[27] Matching the survival

probability function with Eq. (2.65), we have, in the second cumulant approximation

scheme, (k) = k and

A2k 2X(t) -d ( t]1(.8[-(t) y sinh(At) + A cosh(At)]2 ' (2.78)

which gives the variance X(0) = k and the long-time correlation Fig. 2-12 is a two-

dimensional plot of 3(tl, t2) for the stochastic Gaussian model corresponding to a two

channel model with k = 2, k2 = 4, and = 0.5. In comparison with Fig. 2-13,
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Figure 2-13: Comparison of the single-event distribution functions in the two-channel
model and in the corresponding stochastic rate model with k1 = 2, k2 = 4 and -y = 0.5.
The single-event distribution function f(t) in stochastic rate model is calculated by
Eq. (2.70) with x(t) given in Eq. (2.78).

the stochastic Gaussian model reproduces all the essential features of the difference

function for the corresponding two channel model. x(t) oc exp(-2At). To be quan-

titative, the distribution functions of single events in Fig. 2-13 agree very well by

matching the survival probability. The same-time distribution functions calculated

from the two models are compared in Fig. 2-14, where the stochastic rate model is

shown to give reasonable approximations to the position of the echo, the amplitude

of the echo, and the shape of the same time difference function. The slight deviations

are believed to be the approximate nature of the second order cumulant expansion,

i.e., non-Gaussian effects.
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Figure 2-14: Comparison of the same-time difference function 6(t) in the two-channel
model and in the corresponding stochastic rate model with k = 2, k2 = 4 and
-y = 0.5. The stochastic rate model gives good approximations to the echo time, the
echo height, and the shape of d(t).

2.7 summary

The aim of this chapter is to establish quantitative relation between the two-event

echo and conformational fluctuations. The primary findings of our analysis can be

summarized as follows:

1. The N-channel kinetic scheme provides a generic model for understanding the

influence of conformational fluctuations on reaction dynamics. Based on this

model, ensemble-averaged measurements can be formulated as a long-time aver-

age along single molecule trajectories. As a result, phenomenological chemical

kinetics is shown to be an inhomogeneous average of reaction rate constants

and thus does not contain any information about dynamic disorder. It is also
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shown that the fluctuation-dissipation relation is obeyed on the single molecule

level only if the initial non-equilibrium disturbance is prepared according to

conformational equilibrium. This condition imposes a difficult condition on the

use of ensemble-averaged measurements to probe conformational fluctuations.

In addition, a more stringent detailed balance condition can be established to

exclude the possibility of microscopic current between different conformational

channels.

2. Calculations of four different models (the two-channel kinetic model, the three-

channel kinetic model, the diffusion reaction model, and the stochastic rate

model) confirm the universal features of the two-event joint distribution func-

tion and its quantitative relationship to conformational dynamics. In the two-

dimensional plane of 6(tl,t 2), there is a local minimum at the focal time, tf,

and a local maximum at the echo time, te, along the diagonal cross-section

6(t, t), and there is a minimum at the echo time along both the t1 axis and the

t2 axis. The echo time is twice the focal time, te = 2tf, and can be approxi-

mated, within 10% error, by te = 2/((k) + (y)). This approximate relation is

independent of the backward reaction, the distribution of the reaction rate con-

stant, and other variables, thus resulting in a direct estimation of the average

relaxation rate of conformational fluctuations, for a given ensemble-averaged

reaction rate constant.

3. The correlation between the amplitude of the echo and the distribution of re-

action rate constants provides useful information about conformational land-

scapes. The amplitude of the echo is shown to be proportional to the variance

of the reaction rate constant, 6(te) cc (6k2). For a given set of reaction rate con-

stants, the maximum echo occurs at approximately y ((6k) 2)/(k), which is

proportional to the variance of the reaction rate constant. In the slow modula-

tion limit, the existence of the two-event echo can be related to the individuality

and distinctiveness of conformational landscapes. The maximum echo occurs

when the difference between rate constants associated with different conforma-
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tional channels is maximized whereas the difference between reactive fluxes is

minimized.

4. The stochastic rate model provides a complete and unified description of the

stochastic nature of the fluctuating rate constant. Its second order cumulant ex-

pansion, based on the small variance assumption, leads to the Gaussian stochas-

tic rate model that serves as a first-order model for analyzing single molecule

trajectories. Similar to Kubo's stochastic line-shape theory, the stochastic Gaus-

sian model describes the fluctuating rate process with an average rate constant

k = (k) and a rate correlation function x(t) = ([k(t) - k][k() - k]). The

resulting formalism reproduces the recurrent behavior in the two-event joint

distribution function. Through the mapping to the Gaussian stochastic rate

model, various modulated reaction schemes can be compared and characterized

in a unified framework.

These results provide a quantitative tool to interpret and analyze event-averaged

single molecule quantities. Though a single time-scale for conformational fluctuations

is assumed for the simplicity of calculations, applications of current analysis to power-

law decay and other non-exponential relaxation processes can also be formulated.

Furthermore, conformational relaxation is reflected not only in modulated reactions

but also in other dynamic processes, including diffusion and quantum dissipation.

Theoretical analysis of possible single molecule measurements of these processes is an

interesting topic for future studies.[70, 71, 72, 73]

2.8 Appendix 2-A: The Green's Function in the

diffusion model

Eq. (2.42) satisfies the Smoluchowski equation with a quadratic sink,

aGx t)- Gxy, t), (2.79)Gxy, t) = -rx 2 G(x, y, t) + AO + - x ,t,.9at 9 9 
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with the initial condition

G(x, y, 0) = 6(x- y). (2.80)

Applying the transformation

G(x, y, t) = g(x, y, t)ea(x2 y2) (2.81)

where a = (s- 1)/(40), s = v/1 + 4incO/A, we find that g(x, y, t) satisfies the Fokker-

Planck equation for the Ornstein-Uhlenbeck process with a constant potential sink,

g(xy, t) = [As O (x a )
+2

+ AO92g(x, y, t) - A(S - 1)g(x,y,t),

with the initial condition

g(x, y, t) = 6(x - y). (2.83)

Further, we rewrite g(x, y, t) as

g(x, y, t) = gi(x, y, t)e( 2 ()t (2.84)

where gl(x, y, t) is the Green's function for the standard Ornstein-Uhlenbeck process.

aP y (xP) + D 2p (2.85)
Ot = Ox

with y = As and D = A0. The standard solution to Eq. (2.85) is given in Ref. [74] as

gi(x, y, t) = 22exp-y(X ye-'Yt)2] (2.86)
2,rD(l1 - e2 t) 2D(l - e2 t)
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Therefore, the Green's function for the Ornstein-Uhlenbeck process in a constant

potential sink is

g (x, y ~,t) =Ss))t g(x, y, t)=e 2 12t l- e-2Ast) ]2
s(x ye-t) 2]exp[- 2(1 - e2 AST
20( - e- 2Aqt ) ] '

which, after the transformation in Eq. (2.81), leads to G(x, y, t) in Eq. (2.42). The

same result was obtained by G. H. Weiss.[46] The equivalence can be confirmed by

replacing D, ,3, and a in his derivation with AO, 1/0, and n in our notation.

2.9 Appendix 2-B: Single-event and two-event dis-

tribution functions in the Gaussian stochastic

rate model

We first define a two-time survival probability function as

P(t, t) = (exp[- k(-)d]),tP(to, t) = (exp[-y k(-r)d-rj)., (2.88)

where the (-- ) represents a stochastic average. Then, the single-event distribution

function f(t) defined in Eq. (2.69) can be related to P(to, t) by

1 02 P(to, tl)It=0 tlt -
f(t) -(k) ato t

(k(t)e f k()dk(O)
(k)

The second cumulant expansion truncated at second order gives P(to, t) explicitly

as

P(to, t) = exp[-(k)(tl - to) + M(tl -to)] (2.90)
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where M(t) = f(t- )X(T)dr. Substitution of Eq. (2.90) into Eq. (2.89) leads to

f(t) in Eq. (2.70). Similarly, a four-time survival probability function is defined as

Ps~ = ex[ rJ J~(~t I
P(t0 tl, t, t') = (exp[-( + )k(r)d]),.

/j, 2t~
(2.91)

The two-event distribution function f(t 1 , t2) defined in Eq. (2.69) is related to P(to, t1, t', t')

by

I o3P(to, tlx t2)f (tk), t2) = otot 1t'2 Ito=O, t=tl, t=tl+t2

_ (k(t, + t2)e ft±2 k(T)drk(t )e- ft k(T)drk(O))

(k)
(2.92)

The four-time survival probability function P(to, t1 , t', t') is obtained in the second

cumulant approximation as

P(to, tl, t, t') = exp[ -(k)(tl + t' - t - to) + M(t1 - to) + M(t' - t ) + M(t' - to)

-M(t, - to) - M(t, - tl) + M(t, - tl)], (2.93)

which in combination with Eq. (2.92) leads to Eq. (2.71).

2.10 Appendix 2-C: Other single molecule quanti-

ties in the Gaussian stochastic model

In the forward half-reaction of the stochastic rate model, the normalized correlation

function of two on-time events of durations t1 and t2 separated by time r is expressed

as

Co(tl, , t2) =
(e- fotl k (tkf(t')d)t'e-tl+ k

(e- So' kf (t)dt') (e- st/+ + kf (t')dt' )
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The second order truncation of Eq. (2.94) leads to

Con(tl, r, t2) = exp {M(t1 + t2 + T) + M(T) - M(tl + ) - M(t2 + 7)}, (2.95)

where M(t) = f(t-r)xo (r)dr. In the small time limit, the above expression reduces

lim
tl ,t2 --+O

Con(ti, Tr, t 2 ) - 1

tlt2
(2.96)= Xo(T),

which provides a direct measure of the rate correlation function Xo(t).

Another function to illustrate memory effects is the on-off population correlation

function

C(t) (pff (t)jp(O)) (2.97)
(6poff (O)6po(O)) 

where p(t) and polff(t) satisfy the master equation for the full reaction

Pof (t) ) (&ff~t W 

-kf (t)

k f (t)

kb(t)

-kb(t),J\V

Using the second cumulant expansion, the on-off population correlation function can

be derived as

C(t) = exp[-2(k)t + 4M(t)], (2.99)

where the forward and the backward reactions are assumed to be equivalent.
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Chapter 3

Direct measurements of memory

effects

3.1 Introduction

Advances in single molecule spectroscopy allow us to observe real-time single molecule

trajectories, which consist of a chain of correlated reaction events of various lifetimes

and contain rich information about microscopic mechanisms.[9, 10, 13, 14, 16, 17, 23]

An advantage of single molecule techniques is the direct observation of slow variations

in reaction kinetics, which are often limited by the spectral resolution in conventional

bulk experiments. 20, 21, 24, 32, 33, 34, 75, 76] In single molecule experiments, the

traced molecular system inter-converts between the dark and bright states so that

the observed fluorescence turns on and off intermittently. The on/off waiting time

corresponds to the duration that a single molecule spends in the bright/dark state,

and a trajectory of on-off events records the history of the single reactive system. For

example, the single molecule enzymatic turnover experiment by Xie and coworkers

clearly demonstrates slow fluctuations in the turn-over rate of cholesterol oxidation

and the dependence of the enzymatic turnovers on previous history.[15] Since only

the bright state is monitored by fluorescence emission, conformational dynamics is

not directly accessible, and the dynamic disorder is a hidden mechanism that requires

statistical analysis of single molecule reaction events. [26, 27, 28, 77]
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B (dark state) A (bright state)

ka(t)

k. (t)

(a) modulated reaction scheme (b) stochastic rate model

Figure 3-1: An illustration of (a) the modulated reaction scheme and (b) the stochastic
rate model.

In a recent calculation of the two-conformational-channel model, we observed the

focal time in the single-event distribution function and the recurrent behavior (i.e.,

the echo) in the two-event distribution function.[27] Questions remain regarding to

the generality of the two-event echo, the quantitative description of conformational

fluctuations in single molecule kinetics, and the plausibility of direct measurements

of memory effects from on-off sequences. In this chapter, we use the stochastic rate

model to derive explicit expressions for the reported event-averaged quantities and

introduce two quantitative measurements of the memory effects due to conformational

fluctuations.

3.2 Stochastic rate model

As demonstrated in Ref. [78], given a specific model, the single molecule quantities

can be computed and the features such as the focal time and the echo time can be

identified. In this chapter, we will show the generality of these features by virtue of the

stochastic rate model. The environmental fluctuations introduces a time-dependence

on the rate constant, which can now be treated as a stochastic variable. Similar to

Kubo's stochastic line-shape theory,[55, 56] each realization of the stochastic rate de-

fines a rate process, and single molecular measurements can be obtained by taking a

stochastic average of rate fluctuations. The modulated reaction model is analogous

to the Schr6dinger picture in quantum mechanics, as the occupancy in each confor-
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mational channel changes with time but the rate constant for each channel remains

constant. The stochastic reaction rate model is analogous to the Heisenberg picture in

quantum mechanics, as the rate evolves with time. As illustrated in Fig. 3-1, though

in different pictures, these two models are equivalent.

To begin, we write the kinetics of the generic modulated reaction model in a

compact form

(t) -(r + K)p(t) (3.1)

where F characterizes the conformational dynamics and K characterizes the reaction

kinetics. In general, F can be any dynamic operator (e.g., F = -A9.,(O, +x/O) is the

Fokker-Planck operator for normal diffusion in a harmonic potential), and K can be

any form of kinetic processes, including discretized multi-channel rate and coordinate-

dependent rate. We introduce the stochastic representation for modulated reactions

by rewriting the Green's function solution to Eq. (3.1) in the interaction picture as

G(t) = e- (r +K )t = e-rte- f K()dT (3.2)

The time-dependent rate is defined through a unitary transformation

eratK e-rat -eratKberbt (
K(t) = ertKe-rt = (er3tKe-3)(V re'bt rlt rbt kberbt 

so that conformational modulation is incorporated into the time-dependence of the

rate.

With the time-dependence rate, all single molecule quantities can be evaluated

explicitly in the stochastic rate model. For example, using the identity Fa = 0, the

average survival probability in the bright state can be written as

S(t) = (Ga(t)) = (e- fJ K()dT), (3.4)

where the average is taken with respect to the equilibrium conformational distribution
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(A) = E Apa/ E Pa. Cumulant expansion of S(t) leads to

00 h1~n It t
S(t) = exp[Z ) 1 dTl . dnXn(l7,..., Tn)], (3.5)

n=1 JO

where Xn(rl, ... n) is the n-th order cumulant function. As a result of the detailed

balance condition, Fapa = 0, the average rate and correlation functions are stationary.

Thus, we have

Xl(t) = (Ka(t)) = (Ka) = ka, (3.6)

which is the phenomenological rate constant, and

X2(tl, t2) = (Ka(tl)JKa(t 2)) = (Kae-ra(t,-t2)6Ka) = Xaa(tl - t2), (3.7)

which rigorously defines the memory function for the stochastic rate. The initial value

of the memory function gives the variance of the reactive rate X(O) = (k 2) = k.

By truncating the expansion in Eq. (3.5) to second order, we obtain the Gaussian

stochastic rate model

S(t) = exp[-kat + Maa(t)] (3.8)

with Maa(t) = fo(t- )Xaa(T)dr. Similar expressions can be obtained for the back-

ward half-reaction as well as for the reversible full-reaction. Since the survival prob-

ability decreases with time, ka > fo(1- /t)Xaa(r)dr has to be satisfied, which

implies a small variance of reaction rates and a finite correlation time for conforma-

tional fluctuations. We emphasize that the stochastic model and the memory function

are completely general whereas the Gaussian stochastic rate model is approximate.

The introduction of the memory function allows us to quantify memory effects

in single molecule kinetics and to evaluate single molecule measurements in explicit

and general forms. In other words, the memory kernel is the key quantity we extract

from single molecule sequences and use to characterize modulated reactions. As an
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example, in Appendix 3-A, we derive the expression for the two-event distribution

function within the framework of the Gaussian stochastic rate approximation.

Our definition of the memory function provide a possible interpretation of the

recent finding of stretched exponential relaxation in single molecule experiments.[79]

In a general situation where the rate constant is coupled to a set of conformational

degrees of freedom with the coordinate-dependence k(x), the memory function be-

comes

X(t) = (27)2 dJ ld2: 2k(r1l)k(r 2 ) [(ei (° )+ i±x(t)) (eim1(°))(ei 2(O))] (3.9)

where k(r) = f k(y) exp(iy7)dy is the Fourier transform of the rate function k(x) and

the stochastic average is carried out with respect to the conformational dynamics

of y(t). Assuming a Gaussian stochastic process for the conformational coordinate

Eq. (3.9) can be evaluated with the second order cumulant expansion. This expres-

sion incorporates a large class of modulated rate processes and leads to a stretched

exponential with a proper choice of the coordinate-dependence in the rate function.

We note that the memory function measures modulating effects of environments

on two-state kinetics, but does not directly probe environmental fluctuations. Nev-

ertheless, the asymptotic behavior of the memory function reveals the nature of the

long-time relaxation of environmental fluctuations. To demonstrate this, we expand

conformational fluctuations as G(t) = jto)E(t)(pj where the eigenstates satisfy

(qpnlPm) = nm, and En(t) is the characteristic function for the n-th eigenstate. In

order words, Wo(x) are the normal modes of conformational fluctuations. In this basis

set, we expand the rate constant as k(x)- = c= q~(x) so that

(k(x)) =co

X(t) = Z° CcE.(t) (3.10)

The smallest non-zero eigenvalue has the slowest decay and thus dominates the asymp-
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totic behavior, i.e.,

lim X(t) oc El(t) (3.11)
t--+oo

which directly probes the fundamental mode of conformational fluctuations. As an

important example, we demonstrate this aspect of the memory kernel using the ex-

ample of sub-diffusive environments.

Memory function for sub-diffusive environments

To illustrate the generality of memory effects, we hereby consider a single-molecule

experiment in a disordered medium where the conformational dynamics is modeled

by sub-diffusive motion in a harmonic potential. Sub-diffusive transport is widely

observed in diverse fields, including charge transport in amorphous semiconductors,

NMR diffusometry in disordered materials, and bead dynamics in polymer networks.

Metzler, Barkai and Klafter proposed a generalized fractional Fokker-Planck equation

for anomalous diffusion, and later justified the approach from a continuous time

random walk model.[80] Unlike linear Brownian motion in the diffusive regime, the

mean square displacement in the free sub-diffusive space follows

((AX)2 ) = r( 2K t with O < < 1, (3.12)
= 2K.), ~~~~~~~~~(3.12)((=2 r7(1 + -y)

where Ki is the generalized diffusion coefficient, and the Stokes-Einstein relation is

generalized as

Ky- kBT, (3.13)
m17

where fly is the generalized friction coefficient. The sub-diffusive motion in a potential

is described by the corresponding Fokker-Planck operator -CFP = e9[V'(x)/mq] +

Kg02. In a harmonic potential, V(x) = ma2x2/2, the Green's function for the sub-
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diffusive motion is

G(x, x', t) = mw2 E E(-nt)Hn( )Hn( )exp-] (3.14)

where the characteristic time unit is defined by - = w2 /rv, = t/r and x =

xV/mw 2 /kBT are temporal and spatial coordinates in reduced units,

Hn(x) = (-1) nexp[x 2],gnexp[-x 2] (3.15)

is the Hermite polynomial, and

oo zm
zm

EB, (z) = (1 + (3.16)

is the Mittag-Leffler function. For 7y = 1, the Mittag-Leffler function becomes the

exponential function, El(z) = exp(z). The equilibrium distribution is deduced from

the long time limit of the Green's function, p(x) = V/mw2 /27rkBTexp[- 2 /2].

In general, a coordinate-dependent rate function can be expanded as

00

k(x) = E cnHn(/x/) (3.17)
n=O

so that the average stochastic rate and the correlation function of the stochastic rate

become

(k(x)) = co, (3.18)
00

X(t) = (6k(x)G(x, x', t)6k(x')) = E c2nn!E(-nd7). (3.19)
n=1

In the long time limit, the memory function of the fluctuating rate x(t) follows a

power law decay according to the properties of the Mittag-Leffler function.

As a special case, we assume a quadratic form of the coordinate-dependence, i.e.,
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k(x) = xx 2, so that the correlation function of the stochastic rate is given by

X(t) = x(0)E~(-2t). (3.20)

In the short time regime, when t < r,

Ey(-2t 7 ) 1 - 2t/r(1 + -y) exp[-2tF/r(1 + -y)] (3.21)

is a stretched exponential; while in the long time regime, t --,

t'-, ~-2~
~E(-) 217(1 - y) r4(1 - 2) (3.22)

is a power law decay. Numerical calculations of E(-2t v) are shown in Fig. 3-2 for

different values of y. As 7y approaches 1, the Mittag-Leffler function becomes close to

a single exponential function; while for small y, it clearly deviates from exponential

decay and shows the power-law behavior in the long time regime.

3.3 On-time correlation function

One direct measure of the memory function is the on-time correlation function, which

was first used in Xie's experiment and was believed to be a measure of memory effects.

With the introduction of the stochastic rate model and memory function, we are now

able to explicitly show the relation between memory and the on-time correlation

function. Here, this relationship is proved within the slow modulation limit and

the small variance limit. Though both are derived for the small variance limit, the

first proof invokes the second cumulant approximation but does not require the slow

modulation assumption; and the second proof does not involve any assumptions about

the convergence of the memory function but requires the slow modulation assumption.
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Figure 3-2: Numerical calculation of E,(-2t7). For close to 1, E(-2ty) is similar
to exponential decay; while for small -y, it clearly deviates from exponential decay
and exhibits stretched exponential in the short time regime and power-law behavior
in the long time regime.

Cor(n)

Figure 3-3: Two on-time events separated by n off-events along a typical single
molecule trajectory
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3.3.1 Second cumulant expansion

The on-time correlation function is defined as

o tltn+ -C~~n) = go-to ' ~~~~(3.23)
which is the cross-correlation function of two on-time events separated by n off-events.

From Eq (5) of Ref. [27], the joint probability distribution is given as

f(ti, tn+1 ) = KaG(tn+l)KbG(b[KaGaKbGb]n-'KaGa(tl)Fa, (3.24)

so that

tltn+l = dt dtn+l f(t, tn+l)tltn+l = ([GaKaGbKa]nGa)/ka (3.25)

with = fOO° G(t)dt. Here, the stochastic average is defined as (A) = E Apa/ E Pa

To evaluate the on-time correlation function, we introduce a generating function

H(x) = 7=0 tltn+lxn, where the n = 0 term is included for convenience and x < 1

is assumed for convergence. Thus, we have

kaH(x) = Xn([GaKbGbKa]nGa) = (Gaa(X)) = (Gaa(t, x))dt. (3.26)
n=O

As illustrated in Fig. 3-4, the Green's function Gaa(t, x) corresponds to the following

kinetics

a(t) ra + Ka -Kb Pa(t) ) (327)

pb(t) -XKa rb + Kb Pb(t)

which describes the forward reaction with rate xKa, the backward reaction with rate

Kb, the population depletion at the bright state with rate (1 - x)Ka. For symmetric

reactions with Ka = Kb = K, Eq. (3.27) is solved explicitly for a stochastic rate
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process K(t), giving

fi
kH(x) = + e

j dt{exp-(1 - )kt + (1 -)2M(t)]

+ exp[-(1 + V/x)kt + (1 + Vx)2M(t)]} (3.28)

where the second cumulant truncation is applied. Under the small variance condition,

Eq. (3.28) is expanded to the leading order of M(t), giving

/okH(x) = j {[1 + M(t) + xM(t)] cosh(kt~x) - 2vfM(t)sinh(ktVx)} e-ktdt. (3.29)

This closed-form expression is then used to generate the moment in order of xn,

leading to

k2H(x) = xn[1 + I2n + I2n-2 -2I2n-1] (3.30)

where Im = fo drM(r)(kT)me-kt/m!. Assuming that the memory function of the

rate varies much slower than the rate process, the integral of M(r) can be approxi-

mated by the value of the first moment tm = (m + 1)/k, that is Im m M(tm). Then,

the difference function in Eq (3.30) becomes

I2n + I2n-2 - 2I2nl M( k 1) + M(2n 1) -2M(+ 2) 2X(+ ), (3.31)

where the continuous limit is taken under the slow relaxation assumption. Combining

Eqs. (3.23)-(3.31), we finally arrive at an approximate expression

Car(n)= X(2n/k) _ X((eff) (3.32)
x(O) x(o)

indicating that the on-time correlation function is proportional to the memory func-

tion of the rate at the discrete time separation. The number of off-events in Cor(n)

is translated into the average time separation between the two events in x(t). For
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(1-x)Ka,

¶

Figure 3-4: An illustration of the reaction scheme for the evaluation of the generating
function H(x).

asymmetric reactions, Eq. (3.32) can be generalized to Cor(n) = x(n/kf+n/kb)/X(O),

with the effective time separation teff = n/kf + n/kb. Although the final result in

Eq. (3.32) is obtained approximately under the slow modulation limit, Eq. (3.31) is

derived without this approximation and is therefore more general.

The generating function in Eq. (3.26) can be evaluated explicitly for the symmetric

two-channel model illustrated in Fig. 2-lb, giving

8y(k)2 + (1 - x)((k)2 - k)(k) - 2yk2(1 + x)
H(x) - (1 - x)(k)[(27y(k) + (k)2 - k2)2 - x((k) 2 - k2)2] (3.33)

where (k) = (kl + k2)/2 and kd = (kl - k2)/2. Expansion of the above expression in

terms of x results in

Cor~n) = ( (k)2 - k \2n ( (k) 2n
Cop(n) k2 _k k+2ky (k) + 2) (3.34)

where the approximation is introduced for kd < (k). In the slow relaxation limit,

Eq. (3.34) reduces to Cor(n) exp(-4-y/(k)) = exp(-2yteff), which agrees with the

memory function for the two-channel model x(t) = X(O) exp(-27yt).
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Figure 3-5: A comparison of the on-time correlation function Cor(n) with the normal-
ized memory function for the linear three-channel model, exp(-27yn/k), for several
values of rate variance X(O) = k. The three-channel model is defined in Eq. (3.41)
with k = 3.0 and a = 1.0, and y = 1.0.

3.3.2 Slow modulation limit

When conformational kinetics is much slower than reaction kinetics, each event can

be approximated by a Poisson process with a probability to jump from one channel to

another. Since the on-time duration measures the rate constant for one event within

this approximation, the on-time correlation function directly measures the correlation

of the reaction rate. This simple reasoning leads to the following derivation.

For Eq. (7) in Ref. [78], the on-time correlation function ttn+l is given by

1 1 1 K.n 1

t k.tl l K,,. + Pa Kb K+ rb KaK. + a35)

where t and tn+1 are the time durations for the two on-time events separated by n
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off-time events. For simplicity, we consider the case when Fa = Fb = r such that

the equilibrium distribution satisfies Fpa = FPb = 0. Under this condition, two rate

matrices Ka and Kb are proportional to each other [78] and we have

1 Pa 1kPa (3.36)ka +FP= r Pa

Second-order expansion in terms of SKa = Ka - ka leads to

1 1

Ka+r ka+r+6Ka
1 1 1 1- ( ak + a 6K ) (3.37)

a +IF K`ka + r a+ r ka + F

Ka 1 =1-r
aK+F Ka+F

1 1 1 1Ka + r 1 Ka + r
ka r (- ka + + aa ka + r ka + rl~Fk+F~l6Kak+F+6 aka FKakaF) (3.38)

In the slow modulation limit, when the eigenvalues of F are much smaller than ka,

Eq. (3.35) can be evaluated approximately to give

_____ 1 6K ka Ka)
5Ka ka 5K

a a a+ "a

6Ka k n+ kb k kb ka Ka

ka ka + FM=0 kb+r ka + Fr kb+ F ka+rF ka

1 1 6Ka n n K a)ka exp[r(K + K

1 K n n) K`a.
k2 + j a G( +) (3.39)

a a a a b a

where x(t) = (6KaG(t)6Ka) is the memory function for rate fluctuations, and only the

leading order correlation of 6K is retained approximately. Thus, the cross-correlation

function of two on-time events separated by n off-time events is related to X(t) as

Cor(n) = ltn+l t __ X(teff )with~ =e -x(+o-- (3.40)
with tff = n/ka + n/kb. In conclusion, in the slow modulation limit, the on-time
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Figure 3-6: A plot of the on-time correlation function Cor(n) for the same model
as in Fig. 3-5 for several values of -y, along with the normalized memory function
exp(-2-yn/k).

correlation function is proportional to the memory function of rate fluctuations due

to conformational dynamics.

3.3.3 Examples

As a numerical example, we study the linear three-channel model illustrated in Fig. 3-

la with

- 0 k + 3/2kd

-y 2 - , Ka = Kb = 0

0 - 7 0

0 0

k 0 , (3.41)

0 k- 3/7 kd
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Figure 3-7: A comparison of the on-time correlation function Cor(n) with the effective
memory function for an asymmetric reaction. The three-channel model is defined in
Eq. (3.41) with the forward rates k = 3.0, the variance kd = 1/v/6-i, and the
equilibrium ratio 71 = 2.0. The modulation kinetics is the same for both the bright
and dark states.

which has a memory function X(t) = kd exp(-'yt). The conformational dynamics are

the same for the two states, and the equilibrium coefficient 77 is the ratio between the

backward and forward rate constants. We first consider a symmetric reaction with

= 1.0. In Fig. 3-5, Cor(n) is plotted for the three-conformational-channel model

defined in Eq. (3.5) with several values of kd but with fixed k and y. Evidently, the

equivalence relation is approximately obeyed and the deviation from the theoretical

prediction increases with the variance. In Fig. 3-6, the on-time correlation function

is plotted for the same values of k and kd but for three different values of Y. The

agreement between the discrete Cor(n) and the memory function exp(-2'yn/k) is
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Figure 3-8: A sequence of bright events interrupted by instantaneous dark events for
the case where the system is constantly pumped back to the bright state.

reasonably accurate and improves as y decreases. As an example of the asymmetric

reaction, we take the ratio between the forward and backward rate constants as

= 2.0. The on-time correlation function of the asymmetric linear three-channel

model is plotted in Fig. 3-7 and is compared favorably with the memory function.

3.4 Sequence counting in Single Molecule Spec-

troscopy

Time trajectories in single molecule experiments provide detailed records of single-

molecule events; therefore, statistical analysis of single molecule trajectories can pro-

vide rich information of conformational dynamics. In addition to the on-time corre-

lation function, we introduce here a new single molecule measurement: the number

density of single molecule sequences. In a special experimental setup,[79] short laser

pulses are constantly shined on the enzyme at a very high frequency so that the single

enzyme is quickly pumped back to the bright state once oxidized to the dark state.

As a result, a trajectory of on events are collected with instantaneous interruptions

of dark events. Fig. 3-8 illustrates a typical trajectory with a sequence of length t.

Here, a sequence begins from a on-time event and ends with the same or another

on-time event. The sequence density of on-time events is the probability distribution

function of sequences as a function of the sequence time duration t regardless of the

number of events included. The sequence density thus defined will be shown to be

proportional to the memory function of the stochastic rate.

The reaction from the bright state to the dark state is denoted by the rate operator
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Figure 3-9: A sequence of on-off events with length t that starts and ends with on-time
events along a typical single molecule trajectory.

K, the conformational dynamics is governed by the operator F, and the stationary

population distribution satisfies Pp = 0. The number density N(t) with the time

duration t is formulated in Laplace space as

N(u) = (K [1-K ]- K)ku+K+ u+K+F
1(K K)/k

=[ 1 SuS)]
_ k[l + (6K +1 6 K)], (3.42)

where k = (K) is the average rate and AK = K- k gives the fluctuation of the rate.

Thus, in the time domain, we have

N(t) = k[1 + 2X(t)], (3.43)

where x(t) = (6K exp[-rt]6K) is the memory function of the stochastic rate. It is

important to note that the above relation is obtained without any approximation and

thus provides an exact relation between the sequence density N(t) and the memory

function x(t) under this experimental setup.

Similar quantities are defined in single molecule experiments with both on and off

times, as illustrated in Fig. 3-9. For simplicity, we consider the case with the same

conformational dynamics for both bright and dark states, and assume detailed balance

condition rpa = FPb = 0. Under this condition, Ka and Kb must be proportional to

each other in order to exclude non-stationary effects or net current among different
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conformational channels. Then, Naa(t) in Laplace space is

N.. (u) = (K. i [1 - Kb -K INa()(K 1 1 Kb 1 K 1 ]-K )/k (3.44)u + Ka,+ u + Kb + K u + Ka+

where k = (Ka) and kb = (Kb) are the average forward and backward rates. In the

slow modulation limit, when the characteristic time in F is much greater than 1/ka

and 1/kb, we have

Fu+Ka+Kb+]'-{(u+Kb+ r) { kb/(ka + kb),
(u + l+Ka+Kb)-l(u+Kb),

u <( ka, kb(3.45)

u > ka, kb,

where Ka oc Kb is applied and r is ignored due to the separation of conformational

and reaction time scales. Combining the above two equations, we have

Naa(U) = (Ka(u+ Ka + Kb+ F)-l(u+ Kb + F)(u + )-Ka)/ka,,

kb(Ka(u + r)-Ka)/[ka(ka + kb)],

(Ka[kbU-l + ka(u + Ka + Kb)-l]Ka)/[ka(ka + kb)],

u < ka, kb3.46)

u > ka, kb;

or, in the time domain,

~~Naa(t) I~k+kb [1 + Xaa(t)], kat, kbt > 1 (3.47)
k{ (KaKa) (Ka exp[-(Ka + Kb)t]Ka), kat, kbt < 1.

k a( k + k b) k-4-b '- 

where Xaa (t) = (Ka exp[-rt]i6Ka) is the correlation function of the stochastic rate.

The central result of this section, Eq. (3.44) and Eq. (3.47), leads to several

observations:

1. In Poisson processes, there is no memory, i. e., x(t) = 0 and Ka = Kb = 0,

the sequence density Naa(t) is given by the Eq. (3.47) as,

kakb + +__+_Naa (t) = - + a exp[-(ka + kb)t,
ka + kb

(3.48)

which decays to the constant sequence density kakb/(ka + kb) in the long time
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limit.

2. With a separation of time-scales implied by the slow modulation condition, the

initial fast decay of the sequence density is followed by the slow decay. The

plateau value of the slow-decay in the sequence density is the constant for the

Poisson process: limt, 0 Naa(t) = kakb/(ka + kb). Hence, the slow decay to this

constant allows us to map out the memory function

Naa (t) -Naa(oo) Xaa(t)
Naa(°°) k2 I

(3.49)

which is more accurate than the on-time correlation function.

3. In the short time limit, the rate fluctuates on a time scale much greater than the

measurement time t under the slow modulation condition so that each reaction

channel evolves independently. As a result, the short-time limit in Eq. (3.47)

is equivalent to the inhomogeneous average of the sequence density associated

with each reaction channel.

4. In the limit of kb -- oo, Naa(t) --* ka[1 + Xaa(t)/ka] recovers exactly the previous

result in Eq. (3.43) when laser pulses constantly pump the single molecule from

the dark state back to the bright state.

Following the same derivation, Nbb(t), Nba(t), and Nab(t) can be obtained as

f| k+kb I + Xbb(t)],ka+kb T

kk+k) ((KbKb) + (Kb exp[-(Ka + Kb)t]Kb)),kb (ka "~kb){ |____ ka+k [1 + kOkbXab(t)],

kG+kb((KaKb)- (Kaexp[-(Ka + Kb)t]Kb)),ka~~k+kb

~ {|__ ka+kbl + kbkaXba(t)]',

kalkb((KbKa) - (Kbexp[-(Ka + Kb)t]Ka)),Ta~~k+kb

kat, kbt > 1(3.50)

kat, kbt <_ 1;

cat, kbt 1,

kat, kbt _< 1;

Cat, kbt 1,

kat, kbt < 1.

(3.51)

(3.52)

Nab(t) = Nba(t) reflects the time reversal symmetry in sequences counting.

(3.52), the short time limit of Nab(t) equals zero, which is due to the zero
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Figure 3-10: Comparison between Naa(t) from Eqs. (3.44) and (3.47) for a linear three-

channel reaction with k = 3.0, kd = 1/v6, y = 0.1 and 717 = 0.5. (a) The short-time
approximation Naa(t) given in Eq. (3.47) agrees well with the result calculated from
Eq. (3.44) in the short time regime. (b) The long-time approximation Naa(t) given
in Eq. (3.47) agrees with the result from Eq. (3.44) over a wide range of time-scales
except for the short time period.
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probability for finding a zero length sequence starting with an on-time event and

ending with an off-time event.

As a numerical example, we calculate the quantities Naa (t) and Xaa(t) for the linear

three-channel model as we used for Cor(n) with Kb = 7lKa. Under these parameters,

the memory function Xbb(t)/k2 = k exp(--yt)/k 2, and kakb/(ka + kb) = ?7k/(7? + 1).

The approximate expression in Eq. (3.47) and the exact expression in Eq. (3.44) are

calculated and compared in Fig. 3-10a for the short time regime and in Fig. 3-lOb for

the long time regime, respectively. As shown in the figures, Naa(t) calculated with

Eq. (3.44) decays sharply with a short time scale. The initial value of Naa(t) can

be deduced from Eq. (3.47) in the limit t - 0, giving Naa(t 0) = (KbKb)/kb =

qk(l + k2/k2), which agrees well with the calculated value. The predictions from

Eq. (3.47) fit the curve of the Naa(t) from Eq. (3.44) over a wide range of timescales.

Similar observation can be made for Nab(t) in Fig. 3-11, which has a zero initial value.

The only difference is that the initial value of Nab is zero, because the on-off sequence

involves at least one on event and one off event.

3.5 Concluding remarks

In summary, the stochastic rate approach is rigorously established in the interac-

tion representation of the modulated reaction model. To second-order, the cross-

correlation of the stochastic rate, i.e., the memory function, completely characterizes

the rate process. The memory function can be decomposed into the normal modes

of conformational fluctuations and directly probes the fundamental mode of environ-

ments in the long time limit.

Within this formalism, we propose two direct single molecule measurements of

the memory function of the fluctuating rate. The correlation of two on-time events

separated by a given number of off-events is shown to be proportional to the memory

function evaluated at the discretized average time separation between the two on-time

events. The approach to the asymptotic value of the sequence density is shown to be

proportional to the memory function, thus allowing us to obtain the memory function
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Figure 3-11: Density probability distribution function of on-off sequence Nab(t) for
the same model used in Fig. 3-10. (a) The short-time approximation Nab(t) given in
Eq. (3.52) agrees well with the result in the short time regime. (b) The long-time
approximation Nab(t) given in Eq. (3.52) agrees with the exact result over a wide
range of time-scales except for the short time period.
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over the whole time domain except for the initial time. The same formalism also leads

to the explicit derivation of the echo in the two-event joint probability distribution

function (see Appendix 3-B). The three complementary measurements (two-event

echo, on-time correlation, and the sequence density) are experimentally feasible and

will help to quantify conformational dynamics in single molecule experiments.

3.6 Appendix 3-A: Two-event joint probability dis-

tribution function

Two event echo was explored extensively in a recent publication, where an expression

for the echo is obtained through the Gaussian approximation. [78] However, the Gaus-

sian rate model is determined by mapping the survival probability computed from the

modulated reaction model. The rigorous definition of the stochastic rate in Sec. 3.2

quantifies the mapping and allows us to establish the two-event echo phenomena in

a broad context.

Without loss of generality, our analysis is carried out for symmetric reactions

with Fa = b = and Ka = Kb = K. Numerical calculations of the asymmetric

reaction in Sec. 3.3 suggest that the conclusions drawn for symmetric reactions hold

for asymmetric reactions. The symmetric reaction can be understood as the limiting

case of fast backward rate processes. Applying the Gaussian stochastic approximation

to symmetric reactions, we obtain the single-event distribution function

(k) f (t) = (Kexp(-Kt- rt)K) : {[(k) - L(t)]2 + x(t)} exp[-(k)t + M(t)] (3.53)

and the joint distribution function for adjacent on-off events

(k)f(t, t2) = (Kexp[-(K + r)t 1 ]Kexp[-(K + r)t2]K)

exp[-(k)(t1 + t2) + M(t1 + t2)]{[X(t1) + X(t2)][(k) - L(t1 + t2)]

+ [(k) - L(t1 ) - L(t2)]X(tl + t2)

+ [(k) - L(tl + t2)]2[(k) - L(tl)- L(t2)]} (3.54)
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where L(t) = fo X(T)dr. Under the small variance condition, the difference function

6(t1 , t2) = f(t 1 , t2) - f(t)f(t 2) is approximated by

6(t1, t2) (O)exp[-(k)(t 1 + t2)]{X(tl + t2) + (k)[L(t1 ) + L(t 2) - 2L(t1 + t2)]

-(k) 2[M(tl) + M(t2)- M(tl + t2)]}, (3.55)

which is in the linear order of X(0). For further analysis, we assume a single expo-

nential decay form, x(t) = X(0) exp(-At), so that

6(tl t 2) - x(O) exp[-((k) + A)(tl + t2)] ((k) + A - (k)e2 tl)((k) + A - (k)e2At2)(3.56)
A2

Then, the difference function has a maximum at the echo time

2 <k) + A_
te = 2ln (k) ' (3.57)

A (k)

and a minimum at the focal time, which is half the echo time, 2tf = te. The differ-

ence function also has a minimum along the t axis and the t2 axis at the focal time

te. The small variance expansion implies that the echo amplitude is proportional to

the variance of the reaction rate. These features have been confirmed in Ref. [78]

with an extensive calculation of multiple channel models and the continuous diffusion

controlled reaction model. The prediction of the focal time in the single-event distri-

bution function and of the recurrent behavior in the two-event distribution function

helps reveal the nature of conformational landscapes. Similar to the photon echo

phenomenon, the recurrence can be understood as the echo signal due to the inho-

mogeneous distribution of environments, and the conformational modulation can be

understood as dephasing.[78] Analogous to motional narrowing, in the fast modula-

tion limit, the echo signal vanishes, and the single exponential law is recovered. The

height of the echo signal and its position vary with the modulation rate and can be a

sensitive probe of the dynamics disorder resulting from conformational fluctuations.
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3.7 Appendix 3-B: On-time correlation function

related to sequence counting

The moments of on-time events associated with sequence counting also provide a

direct measure of the correlation function of the stochastic rate. As an example, we

consider the experimental setup where laser pumping from dark states is constantly

applied. In the ensemble of sequences with length t, as shown in Fig. 3-8, the joint

distribution function of the first and last on-time events can be expressed as

f(t1, t, t2) = [ksN(t)]-1 (En=o KG(t2) f dt1 ... f dtnKG(t - t- ...- tn)

KG(t1 ) ... KG(tn)KG(t1)K), (3.58)

where G(t) = exp[-(K + r)t denotes the evolution of a single on-time event and

N(t) is the number density of such sequences. In this ensemble of these sequences,

the average on-time of the first event is given as

2(t)= dt t2dt2f(tl, t, t2)

1 +o r FK (t)
t rN(t) k0 81)() (3.59)V(t-- +0(k) 2 

where 1/F1r is defined as the slowest time scale of the conformation dynamics and

the small variance of rate fluctuations is assumed in the calculation. So T2(t) is

approximately 1N(t) to the zeroth order of the slow modulation limit when Irl < k,

and Tj(t) can be shown as the same. The cross moment of these two on-time events

is

tlt2(t) = tldtl t2dt2f(tl,t,t 2)

1 0 Irl 2 X(t)
k8 t+ 0Qlj) 2 (t) (3.60)

so that t1t2(t) - 1/keN(t) to the zeroth order of ll/k,. Applying the expression

of the number density of such sequences N(t) in Eq. (3.43), the correlation between
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these two on-time events Cor(t) is

Cor(t) = tlt2(t)- (t)2(t)
-tj(O)T-(O)

1/[k8,N(t)] - [1/N(t)]2

1/[ksN(O)]- [1/N(0)] 2

X(t)/k 4 (3.61)
, °

which provides another way to measure the memory function of the stochastic rate.

The correlation function Cor(t) defined here is different from the Cor(n) discussed in

Sec. 3.3. First, Cor(n) is a disrectized function of the number of events while Cor(t) is

a continuous function of time. Second, Cor(n) is an event-averaged quantity, which

is averaged over all time separations with a given number of intermediate events.

Evidently, Cor(t) and N(t) are mixed average of events and time, whereas the average

of Cor(t) is performed over all the sequences with length t.
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Chapter 4

Single molecule dynamics of

semi-flexible Gaussian chains

4.1 Introduction

Single molecule techniques provide a powerful method to measure the conformational

structure and dynamics of synthetic and biological polymers. Examples include re-

cent progress in studying the response of single DNA molecules under twisting and

stretching and probing the relaxation dynamics of polymers on short time and length

scales. One promising candidate for studying these time and length scales in poly-

mers is fluorescence resonant energy transfer spectroscopy (FRET). In these experi-

ments donor and acceptor dye molecules are attached to the polymer at two different

points. A laser is used to pump the donor dye to an excited state. Depending on

the distance between the donor and acceptor molecule, non-radiative energy trans-

fer from the excited donor dye to the acceptor dye may occur, which results in the

fluorescence of the acceptor dye molecule. The light intensity at the fluorescence

frequency of the acceptor molecule is strongly dependent on the distance between

the two molecules and can be used as a measurement of this distance. With current

synthetic techniques, the position of the donor and acceptor dyes on a polymer like

DNA can be controlled, which allows us to explore the polymer dynamics on any

length scale.[9, 13, 14, 16, 23, 24, 25, 31, 35, 37, 38, 81, 82, 83] This technique has
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been used to investigate the denaturation of chymotrypsin inhibitor, the dynamics

and folding of single peptides, the fluorescence lifetime distribution of single TMR

molecules, etc. [83, 84] A similar technique based on the distance dependence of the

electron transfer rate has recently been developed by the Xie group. [23] Using a

different set of single molecule techniques, Chu and his coworkers observed the single

polymer dynamics in steady shear flow, the relaxation of a single DNA molecule,

the response of a flexible polymer to a sudden elongation flow, etc. [52, 53, 54] In

comparison with bulk experiments, these single molecule experiments have several

advantages, such as the removal of inhomogeneous averaging, the direct observation

of intra-molecular dynamics without the subtraction of the solvent background as is

done in bulk measurements, and site-specific measurement of a polymer chain. [35]

Motivated by the experimental progress, we analyze the information revealed by sin-

gle molecule measurements and calculate their single molecule quantities based on

the Brownian dynamics of semi-flexible ideal Gaussian chains.

An ideal polymer assumes random coil configurations and follows Gaussian chain

statistics. Without the explicit consideration of the excluded volume effect and the

geometrical constraints, the simple Rouse model treats the connectivity between next

neighbor pairs by harmonic bonds. But biological polymers are stiff on the length

scale ranging from 5nm for microtubes, 17nm for actin, and up to 50nm for DNA.

[37, 38] Most single molecule experiments are performed on length scales where the

polymer exhibits some rigidity so that the Rouse Gaussian chain model will have

to be extended. In Sec. 4.2, we modify the Gaussian chain model by introducing

the persistence length that prevents the polymer from being flexible on all length

scales. Similar models for semi-flexible chain have been studied by Kratky and Porod,

Harris and Hearse, Freed, Fixman and Kovac, Ha and Thirumalai, and others. [85,

86, 87, 88, 89, 90, 91, 92, 93] Interest in these semi-flexible chain models is revived

by the effort to model single molecule force measurements of proteins and DNAs.

Our emphasis here is to formulate the semi-flexible model using the analogue to the

Ornstein-Uhlenbeck random walk process and thus incorporate the persistence length

into the Rouse model in a natural and rigorous way.
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In order to interpret single molecule experiments and extract the desired infor-

mation on polymers, we need to calculate the dynamics of semi-flexible chains. In

Sec. 4.3, we solve the Brownian dynamics by performing a normal mode decomposi-

tion of the Langevin equation of a polymer chain. This normal mode decomposition

is similar to the standard decomposition performed in the Rouse and Zimm models,

with a modification to account for the short length scales that this chapter considers.

The model calculation can be elaborated by including excluded volume and hydrody-

namic effects under a similar approximation made in the Zimm model. [94, 95] Using

the normal mode approach, we calculate distance-distance correlation functions that

are relevant for single molecule measurements.

In FRET experiments, people can measure the separation of two dye molecules

attached to the polymer chain. The fluorescence energy transfer reaction usually oc-

curs on a nano-second time scale while the intra-chain relaxation takes milli-second

or even longer. [16, 82, 83] Hence the FRET lifetime as well as the FRET efficiency is

a "snap-shot" of the transient configuration. The correlations of the FRET lifetime

and the FRET efficiency reveal the slow intra-chain relaxation process that modifies

the donor-acceptor distance. In Sec. 4.4.1, the distribution of E is derived to show

different features to distinguish collapsed and coiled conformations. In Sec. 4.4.1

and Sec. 4.4.2, the FRET efficiency and the lifetime correlation functions are formu-

lated for the semi-flexible chain model introduced in Sec. 4.2. These two correlation

functions are directly related to the distance correlation function characterizing the

intra-chain motion, and thus provide experimentally reliable measures to probe the

conformational dynamics. Furthermore, each measurement of the donor-acceptor dis-

tance in real experiments corresponds to a large number of polymer configurations.

To differentiate them, the instantaneous diffusion coefficient is calculated in Sec. 4.4.3

to probe the variation of the donor-acceptor distance with time, and yielding infor-

mation about the mean square distance as well as instantaneous distance between the

dye molecules.

To model FRET experiments, we treat the reaction dynamics as a convolution

of the polymer motions and the actual energy transfer event which depends on the
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separation between probes. Without the intra-chain motion, each fluorescence lifetime

r corresponds to a specific donor-acceptor distance Rnm. And the fluorescence lifetime

distribution function directly reflects the equilibrium distribution of intra-fluorophore

distance. [83] However, the slow intra-chain slightly modifies this correspondence

and brings another configuration-dependent weighting factor. In Sec. 4.5, the FRET

lifetime in the fast reaction limit is discussed to incorporate the intra-chain motion

during the energy transfer reaction. Inhomogeneous cumulant expansion of r leads

to a weighted inhomogeneous reaction time, which serves as a perturbative correction

to the static lifetime T = K - 1. Thus through single-molecule lifetime measurements

one can map out the distance distribution function even with intra-chain relaxation.

The single molecule spectroscopy and imaging directly track the Brownian dy-

namics of polymers in solution, which determines the viscoelasticity property from

the correlation function of single molecules. The single molecule approach has be-

come known as microrheology in analogy to rheology which studies the viscoelasticity

behavior through the response of the bulk material to applied mechanical perturba-

tion. [96, 97] Evidently, rheology and microrheology measurements are related to each

other, and this relationship will be explained in Sec. 4.6 through the example of the

intrinsic viscosity. The theoretical calculation of polymer viscosity has a long history,

ranging from Kirkwood's classical treatment, to the formulation by Fixman, Bixon

and Zwanzig, etc. [98, 99, 100, 101] In Sec. 4.6, we relate the correlation function

of intra-chain dynamics on the single polymer to intrinsic viscosity and evaluate the

viscosity explicitly with the consideration of the persistence length. Our expression

for the intrinsic viscosity is related to the correlation function formula discussed by

Felderhof, Deutch, and Titulaer, [102] but is further simplified for the application to

single molecule measurements of Gaussian chain dynamics.

4.2 Semi-flexible Gaussian chains

Before calculating the dynamics, we first develop the Gaussian model with a persis-

tence length. Consider a discretized version of a continuous polymer chain without
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explicit account of the excluded volume effects. The nth unit of the polymer is at a

position denoted rn. The bond vector un rn - rn_1 separates two neighboring units

of the polymer chain. It should be noted that the bond vector does not correspond

to an actual chemical bond nor do the sub-units correspond to a single monomer.

Although the focus of this chapter will be on single polymer dynamics, we start

by examining the equilibrium distribution of the polymer chain. Averaging u and u2

over all possible orientations gives (un) = 0 and (u2) = a with a the bond length.

To describe the rigidity of the polymer chain, we define the correlation between two

bonds as (unum) = abIn-ml with 0 < b < 1. If b = 1, every un must point in the

same direction resulting in a rigid rod. If b = 0, there is no correlation between two

bond vectors and the chain is an ideal Gaussian chain on all length-scales. The total
N-1length of the polymer is the sum of all the individual bond vectors, R = E=l u,

where N -1 is the number of bond vectors. Using the relations between bond vectors

we have (R) = 0 and

[(~~ ~~~1 +bN(R2) = (U",m) =U, (1 _ ) (N - 1) - 2bt (l adz )] (4.1)(1 - b) ( - - 2b (1 
nm

In most applications to polymers the second term would be neglected because of

the large N limit, which gives us the expected result (R2 ) = Lk(N- 1)a2 where

Lk = (1 + b)/(1l- b) is the Kuhn length. The persistence length is related to the

Kuhn length by Lp = Lk/2. Taking the continuous limit of the discretized model we

have b = exp(-1/Lp) and (u(s)u(s')) = a exp(-s - s'I/Lp). where the variables s

and s' are the continuous analogue of the index for the sub-units and allow us to trace

the positions of the sub-units on the polymer. In the continuous limit, the expression

for (R 2) becomes

rN-i N-i
(R2) = dsds'exp(-Is - s'I/Lp)

= 2a2Lp(N - 1) - 2aLp2[1 - e- (N- 1 )/ Lp] (4.2)

For the long chain length limit we get the expected scaling relation for a random
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Gaussian chain (R2 ) = 2(N- 1)Lpal. In the short chain length limit, we also have

the expected relationship for a rigid rod (R2 ) = (N - 1) 2a0.

It is known that the Gaussian process with exponential-decay correlation de-

fines the Ornstein-Uhlenbeck process. The three-dimensional equilibrium distribution

function is denoted as Peq(u) oc exp[-3U] with the exponential functional given by

N-2 3U2

,3U(u) = (u2a2( _ b2) bu)2 + (4.3)2a2(l -
2) 2a 

where U is understood as the potential energy of the Gaussian chain. For the purpose

of further calculations, the potential function can be cast into

3 N- lb U1+ .f3U = 2a(1 - b2) [( 2) (Un+l - un) + (1- b) 2 un)2]

2aN-b n= 2 1 1 +�2 3 2 2

32 [Lp(un+ U) + ( 2 n)2] + 3(uN + u) (4.4)l~+u) + 2 u2)(4)=4ag [Lnu+-=1) Lp 2 4-a ( u -

where Lp is the persistence length defined earlier. Note the extra terms for the initial

and final vectors ul and uN-1 in Eq. (4.4) are necessary for satisfying the chain

homogeneity, i.e., the length of each bond is constant on average. The Boltzmann

distribution generated from this potential function rigorously reproduces the Gaussian

statistics as introduced in Eq. (4.1). For a long Gaussian chain, we take the continuous

limit as

3 fN-1 On 2 3
/U[u(s)] = 4--a[Io dsLp( )2+ u2 + (uaNl + u2), (4.5)

0 LP~~~~~~~~~~

where the bond index is treated as a continuous variable. Clearly, from Eq. (4.5), the

semi-flexible model exhibits the same long chain asymptotic behavior as the original

Rouse modes as well as the proper behavior for a stiff rod on shorter length scales.

Similar results have also been obtained by Winkler, Reineker, and Harnau [103]

using the maximum entropy method and by Ha and Thirumalai [93] using a mean-field
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approach. As noted by Lagowski, Noolandi, and Nickel, [104] the Gaussian chain thus

generated is homogeneous and has an exponential decay correlation, which are the

properties of the Ornstein-Uhlenbeck process. Earlier adaptations of the process to

stiff chains treat the boundaries differently and do not lead to the chain homogeneity

implied in the Gaussian statistics.

4.3 Brownian dynamics of semi-flexible chains

Single molecule experiments measure trajectories of intra-chain motions of polymers,

and the interpretation of such measurements is helped by model calculations of poly-

mer dynamics. The Brownian motion of a polymer chain is governed by the Langevin

equation for each bead,

(i% = -VnU + f (4.6)

where f is the random force with local Gaussian distribution, (f~(t)) = 0, and

(fna(t)fm/p(t')) = 2(kBTdmn6i363(t-t'). Although the equations of motion are straight-

forward, the solutions to these equations are not trivial. To make the problem more

tractable, we define normal modes so that the dynamics of each mode are independent

and the equations of motion for these modes are simplified. For the flexible Gaussian

polymer chain, one usually defines the Rouse normal modes, which have a Fourier

decomposition into functions of the form cos(7rpn/N), where n is the bead index, N

is the total number of beads, and p is an integer denoting the normal modes. The

sin(7rpn/N) components are zero by the requirement that the derivative be zero at

the end points of the polymer chain. Because the applications that we are examining

are for semi-flexible chains, it is advantageous to modify the Rouse mode to treat the

end units more rigorously. The normal modes are defined as

N- 1
rn = xo + 2 E x, cos[(n- -)-] (4.7)

p=l2p=1
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where p is an integer denoting the modes. This definition removes the artificial

constraint on the end point derivatives previously imposed in the Rouse normal mode

decomposition. For the semi-flexible Gaussian chain, the normal modes defined in

Eq. (4.7) approximately diagonalize the potential and simplify the dynamics of the

polymer chain (see Appendix 4-A). The equation of motion for the pth mode becomes

(P &XP = -pXp + fp (4.8)
19t

where

A, 24NBT sin2 (2Lp sin2 2 + 2L cos2 N), (4.9)

(p = 2N( - Jo,pN(, (4.10)

(fpa(t)fq6(t')) = 2pqS MpkBT(t - t'). (4.11)

Evidently, the random force acts on each mode independently and satisfies the fluctuation-

dissipation relation.

The concept of normal modes in polymer dynamics has been directly applied to the

interpretation of single molecule experiments. For example, Winkler has calculated

the normal mode relaxation dynamics of stretched flexible chain molecules, [105] which

agrees with Chu's experimental data. [52] In the limit Lp - 1/2, the normal modes

given above recover the Rouse model discussed in standard textbooks. [95] For a rigid-

rod like polymer, Lp - oo, all the normal modes will be suppressed, keeping only the

center of mass motion. Exact numerical solution of the original equation of motion

in Eq. (4.6) will keep both the translational and rotational motion of the rigid rod.

Through the Brownian dynamics of the semi-flexible chain, one can relate single

molecule FRET measurements to the correlations between the sites on the polymer

chain where two dye molecules are attached. We define the distance between the two

beads on the polymer chain Rnm = r - rm, where m and n correspond to the index

of the two points on the polymer chain. In terms of normal modes we can express
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Figure 4-1: The mean square distance between the nth and the mth beads given in
Eq. (4.61) for a polymer chain with 5000 beads. Here a is taken as the unit length
and the persistence length Lp is taken as 500. As shown in Eq. (4.71), R2m has aP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~nmha

quadratic dependence on In-ml for In- ml < Lp, and is proportional to in- ml
for In- ml > Lp.

this quantity as

N-1
RnmZ=A cpmXp with Cm-4sin r (n-m)sin (n + m - 1). (4.12)R ~mxp with -n (n 2N

p= 1

The propagation of the normal modes follows the Smoluchowski equation in a quadratic

potential (see Appendix 4-A). The correlation between Rnm(0) and Rnm(t) is

N-1 2 3kBT [

(Rnm(t) Rnm(O)) = (pnm)2 3kTexp[- Pt](4.13)
p= 1 (p

At t = 0, the above expression gives the mean square distance between the nth and

the mth beads along the chain, Rnm, as is given in Eq. (4.61). Direct evaluation of the

sum in the equation is plotted in Fig. 4-1, where R2 shows a quadratic dependence

on In- ml for small In - ml and a linear dependence on In - ml for large n - ml.
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1. In the short time region, summation over the first-order Taylor expansion of

each exponential function leads to

(Rnm(t) Rnm(O)) = Rnm) - 6Dt, with D = kBT (4.14)

so each bead undergoes instantaneous diffusive motion in three-dimensional

space without feeling the interaction of the polymer chain. This short time

behavior does not depend on the persistence length and exists in the ideal

Rouse chain as well.

2. In the intermediate time region, each normal mode decays with various rates,

and contributes jointly to the correlation function (Rnm(t) Rnm(O)). For dif-

ferent degrees of stiffness, the correlation function has different time scales. In

the large N limit, the summation over p can be approximated by an integral

from 1 to infinity, resulting in

2_~L 3/2 (n -M2t.-1/2ap(1, 7rt* Lp<NIFP 24N L, .5
(R-nm (t)~ = aRln-4a --- '9 1I4-3/4 1 r4Lpt* '(4.15)__ LP nm)2t 1/4( t , 4N4 ), Lp > N,

2vr2i 4PNN_

where t* = 6Dt/(a2) is the reduced time, and r(a, z) = fz°°' x` -1 exp(-x)dx is

the incomplete Gamma function. As shown in Fig. 4-2, the normalized distance

correlation function +(t) = (Rnm(t) Rnm(O))/(R2m) decays non-exponentially

for both flexible and stiff chains. The decay time increases with the persistence

length.

3. In the long time region, only the slowest mode survives, and the correlation

function becomes

2 3kBT (
(Rnm(t) Rnm(o)) = ()23kB T exp[--t], (4.16)

A1 A 1

which represents the fundamental relaxation mode of the polymer chain.

At this point, the model that we have constructed is similar to the Rouse model,
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Figure 4-2: Log-plot of the normalized distance correlation function 0(t) for a polymer
chain with 5000 beads. L = 5 for the flexible chain and L = 500 for the stiff
chain. (ag/6kBT is taken as the time unit. (t) decays non-exponentially with time.
Obviously +(t) decays on a much longer time scale for the stiff chain than for the
flexible chain.
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where the only interactions are those dictated by the connectivity of the polymer.

It is known that the Rouse model does not reproduce experimental results because

spatial interactions between two monomers separated by large distances along the

polymer backbone are important. To develop a more realistic polymer model, we

should include real polymer interactions like hydrodynamic and excluded volume

effects. These effects can be included by similar approximations introduced in the

Zimm model. We discuss hydrodynamic interactions briefly in Appendix 4-D.

From the analysis above, it is apparent to note that the inter-fluorophore distance

Rnm follows an effective diffusion process, with the Green's function in Eq. (4.65)

characterizing a Gaussian process with non-exponential correlation. fO O(t)dt pro-

vides a time scale for the effective diffusion, the effective diffusion coefficient in the

potential of mean force can be formulated as 6Deff fo0° O(t)dt = (R'm), which is gen-

erally different from the diffusion coefficient 2D used in Pastor, Zwanzig and Szabo's

work, [47] where D = kBT/( is the diffusion coefficient for each polymer bead. As

discussed later in Sec. 4.4.3, the diffusion coefficient 2D only reflects the diffusive

motion of each polymer bead independently and contains no information about the

collective motion of the polymer chain.

4.4 Single Molecule FRET of semi-flexible chains

Single molecule fluorescence resonant energy transfer (FRET) allows us to measure

the separation of donor and acceptor dye pairs on a single polymer chain. In a

simple experimental set-up, the donor and acceptor are located on specific sites on

the polymer chain. According to F6rster theory, resonant energy transfer is mediated

by the dipole-dipole interaction, and the transfer rate depends on the donor-acceptor

separation as K(R) c 1/R6 . The inverse sixth-power law leads to a sensitive probe of

intra-chain dynamics, which has been exploited extensively in recent single molecule

experiments. To interpret the FRET experiments and extract the desired information,

we calculate single molecule quantities for the intra-polymer energy transfer process,

which is controlled by the polymer conformations.
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4.4.1 Distribution and correlation function of FRET efficiency

With the help of two photon-counting detection channels, one can track the real-

time evolution of intra-molecular and inter-molecular distances of a freely diffusing

individual macromolecule.[35] The instantaneous FRET efficiency E(t) is calculated

from the donor and acceptor emission intensities Id and Ia, using the formula E =

[1 + 7Id/Ia] - ', where Py is a correction factor. According to the F6rster theory, the

efficiency E has a strong dependence on the inter-fluorophore distance, E = [1 +

(R/RF) 6 1, where RE is the Fbrster radius. The Fdrster energy transfer occurs on

nano-second scale, whereas conformational changes of polymers usually occur on milli-

second scale or even longer. Therefore the donor and acceptor fluorophores quickly

reach kinetic equilibrium under a laser pump, and hence the efficiency E provides

"snap-shots" of the polymer configurations over time. The correlation of the FRET

efficiency, defined as,

CM(t) = (E(t)E(O)) - (E) 2 (4.17)
(E 2) - (E) 2 (

provides additional information on conformational dynamics on a large time scale

that is difficult, and sometimes impossible, to obtain by conventional techniques.[16]

For the semi-flexible Gaussian chain introduced in Sec. 4.2, we evaluate the cor-

relation function explicitly. Assuming that the donor and acceptor dye molecules are

attached to the nth and the mt h beads of a single semi-flexible polymer chain, the

FRET efficiency E is related to the inter-fluorophore distance Rnm by

1
E(Rnm) = 1 + (Rnm/RF) 6 (4.18)

The inter-fluorophore distance Rnm is governed by the Brownian motion of the poly-
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mer chain. The equilibrium distribution and evolution derived in Appendix 4-B are

27r ~3R2m
Peq(Rnm) = [(Rm)] -3/2 exp 2<3R ' nm

G(Rnm(t), tlRnm(0)) = [ (R2m)(1- 3(t)2)]-/2

_ 3(Rnm(t)- _(t)Rnm(0)) 2
exp 2(R2)(1 -0(t)2) I

(4.19)

(4.20)

where 0(t) is the normalized correlation function of the inter-fluorophore distance

given in Eq. (4.62) of Appendix 4-B. Thus the average efficiency and the correlation

function can be explicitly evaluated as

(E) = d3 RnmE(Rnm)Peq(Rnm)

Cnm(t) = J d3 Rnm(t)d3Rnm(0)E(Rnm(t))E(Rnm())

G(Rnm(t), tlRnm(0))Peq(Rnm) (4.21)

For small RF, we can approximate the expression Eq. (4.18) as a delta-function

and show that

[(Rm)] 3/2

(E) oC [ R ]

Cnm(t) ,0 [1 - 02 (t)] - /2 - 1.

(4.22)

(4.23)

In real experiments, the FRET efficiency measurement is mainly performed in the

regime where Rnm < RF and the efficiency is sensitive to the inter-fluorophore dis-

tance only in the close vicinity of RF. Although it is difficult to obtain the analytical

expression of the FRET efficiency correlation function under such condition, a nu-

merical example plotted in Fig. 4-3 still shows the close relation between Cnm(t) and

0b(t). We have plotted three different cases in Fig. 4-3, (R2m) << RF for a flexible

chain, (Rnm) RF for a short stiff chain, and (R m) > RF for a long stiff chain.

In the short time limit, Cnm(t) is a combination of all the relaxation modes, while in

the long time limit, only the fundamental mode exists. As shown in Fig. 4-3, Cnm(t)
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Figure 4-3: Comparison of the FRET efficiency correlation function Cnm(t) for various
(R.m) a and (ag/6kBT are taken as the length unit and the time unit, respectively.
The F6rster radius RF is taken to be 5. The solid lines are the efficiency correlation
functions, and the dot-dashed lines are the corresponding distance-distance correla-
tion function 0(t). (a) Flexible chains with N = 10, Lp = 0.5. (b) Stiff chains with
N = 10, L = 2.0. (c) Long stiff chains with N = 20, Lp = 2.0.
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Figure 4-4: The distribution of the FRET efficiency with the F6rster radius RF as
the length unit. RPm = IRnml is the mean square root of the donor-acceptor distance.
As Rnm increases from 0.5RF to 2.0RF, the distribution shifts from the uni-modal
distribution around E = 1, to the bi-modal distribution, and then to the uni-modal
distribution around E = 0.

always decays on the same time scale as that of 0(t) for various stiffness and chain

lengths, thus providing a good probe of the intra-chain dynamics.

Besides the FRET efficiency correlation function, the distribution function of the

efficiency is also a good measure of the chain stiffness. In general, the efficiency

distribution is obtained by transforming the equilibrium distribution of Rnm into the

efficiency E of Eq. (4.18) as

P(E) = 43 (1- E) 1/2E- 3/ 2 exp[ 2RF )1/3]. (424)P(, 27r (R.2m)3/2(1 E 1 2 3 exP[ .2.R ) E )

As shown in Fig. 4-4, plots of the efficiency distribution with different mean square

inter-fluorophore distance display different features. As the mean square inter-fluorophore

distance increases, the FRET efficiency sharply shifts from the uni-modal peak at

E = 1, to the bi-modal distribution, and then to the uni-modal peak at E = 0. These
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features are explored numerically by Srinivas and Bagchi to distinguish the disordered

and ordered conformations.[106] The complicate feature of the efficiency distribution

implies that the average efficiency (E) does not provide enough information of the

distribution.

In a recent experiment, Weiss and his coworkers investigated the single enzyme

Staphylococcal nuclease with FRET. The instantaneous FRET efficiencies E(t) and

the correlation functions Cnm(t) were evaluated for 100 labeled Staphylococcal nu-

clease molecules.[16] It was observed that the correlation functions had a wide dis-

tribution of time constants, which demonstrates the complexity of the intra-chain

motion.

4.4.2 Correlation of FRET lifetime

Optical methods developed recently are capable of tracking single molecules un-

der physiological conditions in real time. The environmental changes of individual

molecules induce the conformational changes of molecular configurations on a much

longer time scale than energy transfer. As a result, the dynamical tracking of lifetime

information provides a measure of individual molecules in non-equilibrated and het-

erogeneous systems, and offers details of single molecule dynamics that are usually

hidden in conventional ensemble measurements.

The decay of the fluorescence on the donor includes radiative decay and non-

radiative energy transfer,

K =-[1 + (R.)-6], (4.25)
TD R

where RF is the Fdrster radius and rD is the fluorescence lifetime without acceptor.

Since the intra-chain dynamics occurs on a much longer time scale than the FRET

process, the polymer configuration remains the same when the FRET occurs, hence

the lifetime is a "snap-shot" at the transient conformation,

1 TDTD= - (4.26)K 1 + (Rnm/RF)-6
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Continuous "snap-shots" of transient configurations reveals the correlation between

two configuration-controlled lifetimes, which reflects the slow intra-chain motion that

modifies the donor-acceptor distance Rnm. The lifetime correlation function is defined

as

Cn.O(t) ((t)(O)) - (r)27 (4.27)
(r2) - (r) 2

where (...) is the average over various initial configurations of a given pair, and

the configuration-controlled lifetime r is related to the energy transfer efficiency E

discussed in the previous section as r = rD(1 - E). Therefore, the lifetime correlation

function is exactly the same as the efficiency correlation function in Eq. (4.17), which

can be used to monitor the intra-chain dynamics at the single-molecule level.

The efficiency measurement discussed in the previous section and the lifetime mea-

surement determine the similar quantities. Both measurements utilize the separation

of the time scales for the reaction and the diffusion processes to detect the dynamical

evolution of micro-environments at the single-molecule level. The lifetime method

requires only one detection channel but with high time resolution usually in nano-

second scale, while the efficiency measurement requires simultaneously tracking donor

and acceptor emissions but with relatively lower time resolution. Both methods are

experimentally reliable for monitoring the intra-chain motion in real time.

4.4.3 Instantaneous diffusion coefficient

In FRET measurements, the experimental sample with the attached donor and ac-

ceptor dyes is either adsorbed to the glass surface or prepared in solution. Fluo-

rescence images of the sample are detected by scanning the confocal volume, and

photo-bleaching curves of donor and acceptor are simultaneously recorded with an

integration time tbi,. As a result, the trajectories of the distance between two dyes are

obtained. Each measurement of the inter-fluorophore distance Rnm can correspond

to a large number of polymer configurations. To differentiate them, the variation of

the distance with respect to time is examined in order to understand the dynamic
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heterogeneity of structure. [82] The instantaneous diffusion coefficient measured in

these experiments is defined as

1
D(Rnm(O)) = ((Rnm(tbjn) -Rm(0)) 2 )G, (4.28)

6tbi

where t is the experimental bin time due to the finite time resolution and (.-)G

stands for the integration over the Green's function for a fixed initial separation

Rnm(O). For the semi-flexible polymer chain, we are able to evaluate instantaneous

diffusion coefficient directly with the Green's function in Appendix 4-B, giving

D(Rnm(O)) = (R2 m) 1 - 2 (tbin) + Rm(0) [1 - (tbjn)]2 (4.29)
6tbin 6tin

This expression of D(Rnm(O)) is a general result for any Gaussian process and implies:

1. As tbin approaches 0, only the first term survives and the instantaneous diffusion

coefficient reduces to 2D = 2kBT/(, which describes the independent diffusive

motions of the donor and acceptor sites and does not provide any information

of the chain-configurations or the interactions.

2. As tbin approaches oo, averaging Eq. 4.29 over the initial position Rnm(O) yields

the relation in the long time limit, 6Dtbin = 2(R2m) = ((Rnm(tin)-Rnm(0)) 2),

where D is the diffusion coefficient of polymer beads.

3. The mean square distance in equilibrium (R2m) ,which is determined by the

morphological structures of the polymer, relies on the condition of the solution.

(R2m) in the collapsed state is smaller than that in the coiled state, and (R}m)

in the coiled state is much smaller than that in the ordered state (rod, toroidal,

etc.). As a result, D(Rnm(0)) in collapsed structures is much smaller than that

in coiled structures.

4. For a specific condition of solution when the mean square distance in equilibrium

(Rnm) is fixed, the variation of D(Rnm(0)) has a quadratic dependence on the

initial distance Rnm(0) = IRnm(0)1.
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These conclusions are in qualitative agreement with recent experiments on PCN-

4.[821 Instead of two fluorophores attached to the same chain, the donor and acceptor

dye molecules in the reported experiment are attached to each end of a double helix

DNA molecule, respectively. Therefore the quadratic dependence on Rnm(O) is not

exactly observed. It was observed that the instantaneous diffusion coefficient in the

unfolded state is one order of magnitude greater than that in the folded condition,

which means (R2m) in the folded state is much smaller than that in the unfolded

state.

4.5 The FRET lifetime distribution

In order to calculate the lifetime distribution, we consider a general scenario where

the kinetics of the system described by

P(t) = £P(t)- KP(t), (4.30)

where P([r], t) is the probability distribution function of the polymer chain and £

is the propagation operator of the chain. As illustrated in Fig. 4-5, the depletion of

the population is denoted by K and the intra-chain motion is governed by £. At

zero time, we pump the donor dye to an excited state, and then monitor the lifetime

distribution. The Laplace transform of Eq. (4.30) yields

P(z) = - P + (4.31)
z -,C+K~o

where P(z) is the Laplace transform of P(t) and P is the initial population. To

calculate the lifetime distribution function, we take the average of Eq. (4.31) over

the equilibrium distribution Peq and obtain the equation for the survival probability

N(z) = ((z- , + K)-'), where the bracket (-.-) refers to the configurational average

over the equilibrium distribution function Pq, i.e., (A) = f APeqdNr. From N(z) we
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Figure 4-5: A sketch of intra-chain fluorescence resonant energy transfer process, with
double arrow denoting the intra-chain dynamics £, and with thick arrow denoting the
population depletion from the donor.

calculate the Laplace transform of the ensemble lifetime distribution as

f (z) = 1 - zN(z) = ((K- £)(z - £ + K)-). (4.32)

In the sluggish environment, £ << K, the relaxation of the reactive system is

extremely slow so that the reaction rate depends only on the transient configuration,

therefore, the lifetime is r = P(O) - K - 1. The survival probability in Laplace space

becomes N(z) ((z + K)-'), and the lifetime distribution function is the static

average over the equilibrium configuration, i.e.,

f(t) = KeKtPeqdNr. (4.33)

Under such conditions, the inter-fluorophore distance distribution as well as the

transfer rate distribution can be obtained from single-molecule fluorescence lifetime

measurements.[83] The ensemble averaged lifetime becomes the static average of the

inhomogeneous lifetime r-, (t) - (K-').[107]

However, natural functions of biological polymers are usually studied in solutions,

where the static limit in Eq. (4.33) does not apply. Although the energy transfer

reaction occurs on a faster time scale than the intra-chain relaxation, it is important to

include the relaxation effects in the lifetime distribution function. To take into account

of the polymer motion during the reaction, P(z) can be evaluated with inhomogeneous
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cumulant expansion for a fixed initial configuration which has been used in studying

spectral diffusion,[108] giving

P(Ro, t) = (e- fo K()dT)R (4.34)

Here (.. )Ro stands for the homogeneous average for a fixed initial configuration and

can be calculated with cumulant expansion, for example, to first order, as

t
P(Ro, t) exp[- (K(r))Rodr] (4.35)

For the semi-flexible chain model introduced in Section 4.2, the inhomogeneous

average is performed over the Green's function in Eq. (4.64), giving

(K (-r)) R = K(R + Roq(t)) exp[
[2r(R)(1 - (t)2 )/3]3 /2 exp

K(Ro) + 2Dt E aK(Ro),
A

3R 2 ]d3
2(R2m)(1 - (t)2)]d

(4.36)

where we have applied the short time expansion of K(R + Roq(t)) K(Ro) +

yEm,O, &DLK(Ro)RRv/2 with ,u, v standing for x, y, z, (R2m)(1 - 0(t) 2) m 12Dt, and

D = kBT/(. Therefore Eq. (4.35) can be approximated as

P(Ro, t) exp[-K(Ro)t- D E O9K(Ro)t2l

R exp[-K(Ro)t - D E a0K(Ro) (47)
K(Ro ]' 1(

where in the second approximation t is replaced by the reaction time 1/K(R 0 ) for a

specific configuration in the fast reaction limit. Thus the lifetime

1r , K(Ro) exp-
D E,,,,,K(Ro)I

K(Ro)2
(4.38)

becomes a weighted inhomogeneous reaction time. And the lifetime distribution be-

128



comes a weighted average over inhomogeneous configurations,

f(t) = K(Ro) exp[ K(Ro) IP(Ro)d3R (4.39)
K(R0)2 PqRlao

For the FRET rate described in Eq. (4.25), the weighting factor can be evaluated

explicitly as

D , ,OK(Ro) f 6DrD 5(Ro/RF)- 6
exp[- ] exp (4.40)exp - K(Ro)2 ] = exp - R2 [1 + (Ro/RF) 6 ] J(

where rD is the fluorescence lifetime of the donor dye without acceptor. When the

diffusion coefficient increases, small Ro or large FRET rate will be favored, thus the

lifetime distribution will be shifted toward small T, hence the ensemble averaged life-

time decreases. Variational treatment by Portman and Wolynes has rigorously proved

that the static and the dynamic averages are the upper and the lower bounds on the

ensemble averaged survival probability for general diffusion-controlled reactions. [107

In the limit when D -+ 0, the small FRET rate contribution will be maximized

and the lifetime reduces to the reaction time for a static configuration, r = K - 1.

Given the functional form of the energy transfer rate, each measurement of lifetime

corresponds to a fixed donor-acceptor distance. Therefore, by measuring the FRET

lifetime distribution, one can map out the distribution function of inter-fluorophore

distance. This mapping however is modified according to Eq. (4.40) by taking into

account the diffusion effect.

4.6 Intrinsic Viscosity

From standard viscoelasticity theory, the stress tensor is measured under the external

shear flow v., = a(t)y and is related to the desired time-dependent viscoelasticity (t)

through ay(t) = ri9 + 7(t- t')a(t') where p(t) is the viscosity contribution from

polymers. Given /(t), the intrinsic viscosity is [] = fo r()d-r/(pr) where p is the

mass density of the polymer and r is the solvent viscosity. Similarly, we can determine

the storage modulus G'(w) and the loss modulus G"(w) from the viscoelastic response
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We derive the microscopic expression for the polymer viscosity rip(t). We begin

with the definition of the intrinsic stress tensor

(p,zy(t)) =-N E F FnrnyPd Nr (4.41)
n

where P is the distribution function of the Gaussian chain at time t and c is the

number concentration of the beads. In Eq. (4.41), the solvent contribution is not

included in the stress and ap,y(t) is the contribution from single polymers. Un-

der the shear flow, the distribution function of the polymer chain follows P(t) =

£P(t)- m 9m,[a(t)rmyP(t)] where the operator C dictates the free propagation

of the polymer and the second term is due to the external flow. To first order in

perturbation, we have

P(t) = Po - e -(t -) Po)rmyPo(r)dr (4.42)
m

where P0 = Peq is the equilibrium distribution. Substituting Eq. (4.42) into Eq. (4.41),

we find

ip(t) = c?(Z Fnz(t)rny(t) E rm(0)Fmy(0)) (4.43)
n n

which is the linear response expression found in literature.[100, 102, 109, 110] Apply-

ing the Gaussian factorization to the above expression leads to

77 (t) N (Fn.(t)rm.(O))(Fmy(O)rny(t))
nm-Z kT(orm(t))irnY(t))c k,,T( ~~~~~~~~(4.44)

E N m1Orn (0) army() (4.44)

where we assume the motions along different Cartesian coordinates are decoupled.

The Gaussian factorization and the decoupling assumption hold exactly for the Brow-

nian motion of Gaussian chains.
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The key result of this section is the last expression in Eq. (4.44), which relates

single chain measurements to macroscopic viscoelastic responses. Here, the stability

function armx/ornx measures the divergence of the trajectories with respect to initial

conditions and cannot be obtained directly from bulk measurements. By virtue of

this expression, we can evaluate the intrinsic viscoelasticity of a Gaussian chain by

tracking bead motions along a polymer chain.

Accurate evaluation of the exact expression in Eq. (4.43) has been carried out

by Pyun and Fixman, Bixon and Zwanzig, and etc. [99, 100, 101] We will calculate

the viscosity within the semi-flexible Gaussian model. The viscoelasticity function in

Eq. (4.44) can be transformed into normal modes as

Ormx(t) N- r,(t) exp- APt]P-= 1 exp t] (4.45)
4pp 6r~p

where armx/Oxpx is the unitary transform matrix element between the real coordi-

nates and normal modes. For the semi-flexible Gaussian chain, rp(t) can be written

as a sum over the exponentially decaying correlation functions of the normal modes

N-1
lp(t) = kBTN exp[--], (4.46)

p--1

where p = p/(2Ap) is the decay time for each normal mode. In general, ap-

plication of a shear flow does not invoke stretching modes, thus, only the bend-

ing motion of the polymer chain is considered in the expression for rip(t). There-

fore the intrinsic storage modulus and the intrinsic loss modulus are [G'(w)]p =

fo sin wt EpN1 exp[-t/rp]dt and [G"(w)]p = Wo cos wt E-pj-fl exp[-t/rp]. Given

the expression for Ap in Eq. (4.55) and (p = 2N(, we have

N 2a2(Lp - -2
p 3r2kbT P 2= p-2 L N (4.47)
wi = N4a w-4= 4 .47 N

37r4 kBTL~p Lp N,

which describes both the flexible chain when Lp < N and the stiff rod when Lp > N.
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In the limit Lp = 1/2, the above expression recovers the time constants for pth normal

mode of the Rouse chain.[95] The expressions for [G'(w)]p and [G"(w)]p simplify in

the following two cases.

1. In the low frequency limit, wr1 << 1 and wr < 1 [G'(w)]p

approximated as

[G ({p {

and [G"(w)]p are

(wTl)2 Ep=l p- 4 = 7r4(wTl)2/90

(wcr)2 El p-S = ir8(wr) 2/9450

W-ri El=, p- 2 = r2owrl/6
[G"(w)] I wr P= m= w/

cwtr Eplo- p-4 = r4W/90

L < N

Lp > N.

(4.48)

(4.49)

Therefore, [G'(w)]p and [G"(w)]p are proportional to

reduce to the stiff rod limit when Lp > N.

2. In the high frequency limit, wT1 >> 1 and wT > 1,

mated by an integral, so that

[G{(w)]p 

w2 and w, respectively, and

the sum over p is approxi-

(wri)1/ 2 r/[4 sin(7r/4)]

(w r)l/47r/[8 sin(7r/8)]
(4.50)

Lp < N

Lp > N

and

(wrl) 1/2 7r/[4 cos(I7r/4)]

(w74') '/4r/ [8 cos(7r/8))
(4.51)

Lp N

Lp > N

For the stiff chain, the bending motion has a wl/ 4 dependence at high frequency,

which implies rip(t) c t - 1/4 when t << w. This is consistent with the findings of

the polymer bending motion in Refs. [111] and [112].

As shown in Figs. 4-6 and 4-7, numerical calculations of the intrinsic storage G'(w)

and loss moduli G"(w) from the viscoelastic response function r7p(t) in Eq. (4.46)
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Figure 4-6: The intrinsic and loss storage modulus for a flexible chain with 5000
beads and the persistence length taken as 5. At low frequencies, G'(w) scales as w2

and G"(w) scales as w. At high frequencies, both G'(w) and G"(w) scale as w1/2 .
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Figure 4-7: The intrinsic and loss storage modulus for a semi-flexible chain with 5000
beads and the persistence length taken as 500. At low frequencies, G'(w) and G"(w)
scales as w2 and w, respectively. At high frequencies, both G'(w) and G"(w) scales as
w1 /4

133

01

.l //
_ a/ /
/ ~/

/
/

_ / -- Storage modulus G'(eO)
- Loss modulus G(o)

~~~~I I
4



confirm the two different scaling regions for both flexible and semi-flexible chains. In

the numerical calculation, the number of beads on the polymer chain is taken as 5000,

the persistence length Lp is 5 for the flexible chain and 500 for a semi-flexible chain.

In 0 solvent, the intrinsic moduli for the semi-flexible chain can be calculated

with Tp obtained by the pre-averaging method in standard textbook,[95] as shown in

Appendix 4-D.

1. In the low frequency limit, similar to the derivation above, [G'(w)]p and [G"(w)]p

are still proportional to w2 and w, respectively.

2. In the high frequency limit,

[G()] | (w-ril) 2
/

3 1r/[3 sin(Tr/3)] Lp << N (4.52)
[( (wr )2/7 r/[7sin(r/7)] L > N

and

[G"(w)] { (WTi)2/3
r/[3 cos(7r/3)] Lp < N

(wT)2/ 7 7r/[7 cos(r/7)] Lp > N

which are proportional to w2/3 and w2/17 , respectively.

4.7 Concluding remarks

In Sec. 4.2 and 4.3, we have formulated the semi-flexible Gaussian chain with ana-

logue to the Ornstein-Uhlenbeck random walk process and incorporated the persistent

length into the Rouse model. The mean square bead-bead distance (R2m) is studied

for different degrees of stiffness. For a flexible chain, the mean square distance ex-

hibits the scaling relation for a random Gaussian coil (Rm) = 2LpIn - mla2; while

for large persistence length, it scales as a rigid rod, (Rm) = In- m 2ag. To study the

intra-chain motion of semi-flexible chains, the evolution of Rnm is calculated based on

the normal mode decomposition of the Langevin equation of a semi-flexible polymer

chain. The resulting Green's function resembles a Gaussian process within a poten-
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tial of mean force. The Brownian dynamics of the semi-flexible chain shows that the

correlation function (Rnm(t) Rnm(O)) has a much longer time scale for a stiff chain

than for a flexible polymer.

In Sec. 4.4, we have considered the fluorescence resonant energy transfer (FRET)

process on a semi-flexible chain, where a donor-acceptor pair attached to the nth

and the m th polymer beads are used to probe the conformational dynamics. The

fluorescence lifetime correlation function and the FRET efficiency correlation func-

tion are closely related to the normalized distance correlation function (t). Thus

both the lifetime correlation and the FRET efficiency correlation can be employed

as possible measures of the intra-chain dynamics. Furthermore, the instantaneous

diffusion coefficient due to finite time resolution tbi/ has been calculated within the

theoretical model. As t - 0, The instantaneous diffusion coefficient is obtained

from the independent diffusive motion of the donor and acceptor sites. When mea-

sured with finite time resolution, the instantaneous diffusion coefficient D(R"m) =

(R2m) [1- 02(tbin)]/tbjn + R2m[1l- 0(tn)]2/tbn is much smaller in the collapsed struc-

ture than in the ordered structure, and the variation has a quadratic dependence

on the donor-acceptor distance Rnm. Some of these predictions are in qualitative

agreement with reported experiments. [82].

In FRET experiments, the intra-chain dynamics usually occurs on a much longer

time scale than the energy transfer reaction. In Sec. 4.5, the FRET lifetime is dis-

cussed in the fast reaction limit. With inhomogeneous cumulant expansion, we have

shown that the lifetime is a weighted reaction time for a given initial configuration,

T- = K(R 0)- ' exp[-D t9,,O,9K(Ro)/K(Ro)2]. When the intra-chain relaxation pro-

cess is extremely slow, D - 0, this expression recovers the static limit, i.e., r = K- 1,

and thus, the distribution function of the donor-acceptor distance can be mapped out

from the single-molecule lifetime measurements. Furthermore, recent measurements

of the viscosity-dependent intra-molecular quenching rate provide detailed informa-

tion from the reaction-controlled limit to the diffusion-controlled limit.[42] Thus sys-

tematic studies and detailed analysis of the ensemble averaged lifetime is necessary

to better understand the polymer dynamics.[78]
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The macroscopic viscoelastic response of a polymer chain is related to the bead

dynamics on a single polymer by Eq. (4.44), from which the intrinsic elastic moduli

are derived. Explicit evaluations of the elastic storage modulus and the elastic loss

modulus are performed with the consideration of the persistence length L. Our

expressions exactly recover the results for the Rouse chain in the limit Lp - 1/2, and

predict the correct scaling over frequency for the bending motion of a stiff polymer

in the stiff rod limit Lp N.

Single-molecule FRET measurements of the semi-flexible chain yield rich infor-

mation about intra-chain motion, for example, mean square distance, distance cor-

relation function, instantaneous diffusion coefficient, and intrinsic viscosity. Further

refinements of single-molecule spectroscopy will provide more accurate methods to ex-

amine the details of the intra-polymer interactions and lead to better understanding of

the related issues such as protein folding and self-assembly of biological systems. Fur-

ther consideration of hydrodynamic and excluded volume effects can be implemented

in the theoretical model for a semi-flexible chain.

4.8 Appendix 4-A: approximate normal modes of

semi-flexible chains

In a semi-flexible chain, the potential energy is

3kBT N 2 + b 1-b 3kBT 2 2
U = 8a l[ (un+ -Un) 2 + b(un+l + n)2]+ 2 a1 (u + 421uNl),(4.54)

where u = Rn+1 - R, is the bond between the n t h and the n + 1th beads. In the

continuous limit, the potential energy reduces to Eq. (4.5) in section 4.2. Applying

the transform of Eq. (4.7), we can decompose the potential energy into three parts
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U = T + T2 + T3, where

N-2
3kBT 1 + b -(u+l-u) 2

2 8a2 E - b = in1 +*

N-112NkBT 21 + b .p 1 + b
2 x; XP sin 4 -Pr . T3,

a20 E 1 b 2N 1 - b

3kBT 1 - bN-2
a2 2 1 b (un+ + Un ) 2T2~ ~~ n= S~l 1

p=l3kBT2= 4ao (u + u Nl)a0 pqi 2N 22 2N

Therefore, in the large N limit, the off diagonal terms are N times smaller than the

diagonal terms, and we approximately diagonalize the potential energy in normal

modes, U ~ Ep- x Apxp/2 with2~~ ~ 1 p_ 1
24NkB T sin2 i(2Lp sin2 + cos ) (455)ao pq~l2N 2N 2L 22N

where 2Lp = (1 + b)/(1 -b) is the persistent length. In the limit of the fllexible chain,

the persistent length is relatively small compared to the contour length of the ontchain,

the second term dominates and yields,

24NkBT 2p 1 2 P 3r 2 kBT 2 (
AP . 2 sin 1 cos 2 NaL (4.56)a2 2N 2N p

In the limit of Lp -+ 1/2 or b -O 0, Ap given in Eq. (4.55) is exactly the same as

the result for Rouse chain. [95] In the strong persistence limit, the first term also

contributes and may even dominates for large p, yielding the worm-like chain normal
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modes,

37r2kBTp 2 7r2Lp2) 3kBT7r4Lp 4 (457)AP ;~ (1 ± _ 2z~ _(457)Ap~Na2Lp (1+W--2 N 3a2-~ 

In this expression, all the normal modes will be suppressed for a rigid-rod like chain

for Lp -+ co while keeping only the center of mass motion, which is a deficit of the

approximate normal modes we obtained in this section. Full motion of the chain can

be observed from numerical solutions of the original equation of motion in Eq. (4.6).

4.9 Appendix 4-B: Green's function for the semi-

flexible Gaussian chain

As demonstrated in Appendix 4-A, the potential energy of a semi-flexible Gaussian

chain is approximately diagonal and quadratic in normal coordinates xp,, as shown in

Appendix 4-A. The evolution of the normal modes follows the Smoluchowski equation,

ap ~~N-11 a q
OP= £P(t), with C= ax (kBT + Apxp) (4.58)
at P= 1 (P O-Xp=l P

Solution of the above Fokker-Planck equation gives the Green's function

N-1 27rkBT -2~t]32
G(xp, tlxp(O)) = j [ A (1 - 3p

p=l

exp {Ep Ap[xp- xp(O)et ( , (4.59)

2kBT(1 - ) J
and the equilibrium distribution of normal modes

Peq(xp) = ( 2rkBT)-3/2 exp_ Ep (4.60)
p-----1 2kBT }

The correlation function of the pth normal mode is calculated directly from above as

(xp(t) xp(O)) = 3kBT/Ap exp[-Apt/(p], and the equilibrium average of R,,nm and the
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correlation between Rnm(O) and Rnm(t) can be evaluated according to the decompo-

sition in Eq. (4.12),

(Rnm)

(Rnm(t) Rnm(0))0(t) = (P-")

N-1

- Z: (Cm).) I
p=l ,-p

N- 2 3kBT
- [(R2)]-'Z"(c") -- exp[-

p= A

Rnm is a Gaussian variable because it is a linear combination of Gaussian normal

mode The equilibrium distribution of Rnm is

J dxp(Rnm

N-1

-E en.mX)Peq (xp)
p=l

= [3 (Rm) I3/2 exp
3Rn m

2(R2m) ' (4.63)

where cumulant expansion over the Gaussian normal modes and Eq. (4.61) are ap-

plied. In a similar fashion it can be shown that the joint distribution for Rnm(t) and

Rnm(O) is

P(Rnm(t),t,Rnm(O)) = [4 (Rn2.)2(1l- (t)2)]-3/2

exp { 3[Rm(t)-2O(t)Rnm(t) Rnm (O)+Rim(0)]-- ~2<R2M>(l_.O(t)2)n I I~~~~~~~~~~(4.64)

and the evolution of Rnm is described by the corresponding Green's function,

G(Rnm(t), tIRnm(0))
P(Rnm(t), t, Rnm(O))

Peq(Rnm(O))

27r ~~~~~-3/2
[- [-R(R~2)(1- q0(t)2)]

exp 3(Rnm(t) - (t)Rnm(0)) 2 l
P| 2(Rm). (1 - q(t)2) 2(Rn~~~~~~~~~~~~~~~~~
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p
-, t].
(P

(4.62)

Peq(Rnm)

(4.65)



4.10 Appendix 4-C: FRET rate distribution and

correlation of semi-flexible Gaussian chain

The FRET rate depends on the distance R between the donor and the acceptor as,

K(R) = kF(RF/R) 6 , where RF is the F6rster radius at which the transfer efficiency

is 50%, and kF is the energy transfer rate at R = RF. However, this rate expression

diverges at R - 0 where the transition dipole-dipole interaction no longer holds. To

facilitate the calculation, we choose a slightly modified expression of K(R) as

K(R) = (4.66)
e + (R/RF)6 (4.66)

where is a small quantity that denotes the break down of the weak dipole-dipole

interaction when R is extremely small. It is shown later in this section that the

average transfer rate (K(R)) is a large quantity because is usually small. The

overall decay rate of the fluorescence on the donor molecule can be approximated by

neglecting the radiative decay. The three-dimensional Fourier transform of the rate

function K(R) is

2,2 kF~~ ~ Rel/6
K(q) 3= 2 2kFR {exp[-qRFe6]+ exp[-RF 2 ]-

[-cos( -qRFe 16 ) + v3 sin( - qRFe 16)]} (4.67)
2 2

Considering e is a small number and qRFe1/6 < 1, the leading order of K(q) is

- K(q) 3/ 2r 2Rk (4.68)

which approximates energy transfer by a delta-function sink. Because Rnm is a Gaus-

sian variable with distribution Eq. (4.63), the cumulant expansion yields (exp[iq 

Rnm]) = exp[-q 2(R2m)/6], and the average over K(Rnm) and the correlation of
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K(Rnm) are evaluated as

(K(Rnm))

(KG(t)K)

= j K(q) exp[-q2 (R m)/6] = kF (r -3/2R

- jj K(q)K(q')exp{ (Rm) [q2 + q 2+2q .qt)]}

6[1
- k 37r (R.2 ) -3[1 _ ¢2(t)1-3/2,

(4.69)

(4.70)

where fq stands for f d3q/(27r)3 and q$(t) = (Rnm(t) R())/(R2m). Therefore the

memory function X(t) is directly related to the distance correlation function 0(t) as

X(t) = (K(Rnm(t))G(t)K(Rnm(O))) _ 1
(K(R.Im)) 2

oo

= [1 _ 02 (t)]-3/2 _ 1 = E(21 + 1)!!/(21 j!)0 21(t)
1=1

where (21 + 1)!! = (21 + 1) (21 - 1) ... 3 1. If we are able to calculate the correlation

function 0(t), the corresponding correlation function for FRET rates is determined

accordingly.

4.11 Appendix 4-D: Hydrodynamic interactions in

semi-flexible Gaussian chains

In solvent, the hydrodynamic interactions among polymer beads must be consid-

ered. With the pre-averaging technique introduced in Zimm model,[95] we are able

to evaluate the normal modes of semi-flexible chain approximately.

In the long chain limit when Lp < N, the persistent length introduces slight
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deviations from the Zimm model in 0 solvent, and we have

( = (2Lp)1/24 M, (4.72)

A = 1 AZM (4.73)
2Lp P

P = (2L )3/ 2 z M, (4.74)

where the superscript "ZM" means the corresponding quantities in Zimm model,

zM = r 8(127r3 Nao2p)/2, (4.75)

AZM = 67r2 kBT 2
(4.76)

rz M = TZMp - 3/2 (4.77)

It is obvious that all the above relations reduce to the Rouse model when Lp = 1/2.

In the short chain limit when Lp > N, the corresponding quantities are

(p n (12r 3)1/2?saopl/2 N 1/ 2, (4.78)
37r 4 kBTLp 4

AP N 3a2 p (4.79)

T= p-7 /2 (4.80)
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Chapter 5

Fluorescence lifetime

measurement: Kinetic regimes and

experimental time scales

5.1 Introduction

Reaction kinetics modulated by fluctuating environments has long been a theoretical

and experimental interest.[9, 13, 23, 35, 36, 43, 44, 45, 46, 60, 81, 82, 107, 113, 114, 115]

Examples of such processes include ligand binding in proteins, slow reactions in

glasses, fluorescence resonance energy transfer (FRET), and intra-molecular fluo-

rescence quenching on polymers. Recent advances in single-molecule techniques

based on fluorescence spectroscopy provide powerful tools to measure the confor-

mational structures and dynamics of synthetic and biological polymers. The FRET

and intra-molecular fluorescence quenching rates depend strongly on donor-acceptor

or fluorophore-quencher distance, and on conformational fluctuations of polymers or

biomolecules. Hence it is of great importance to study the conformation-modulated

reactions, yet a unified perspective of reaction kinetics modulated by fluctuating en-

vironments have not been fully investigated. A widely used approximation scheme to

calculate intrachain reactions of polymers in dilute solutions was first presented by
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Wilemski and Fixman,[44, 45] referred here as WF approximation. Szabo, Schulten

and Schulten provided a first passage time approach to the diffusion equation with

Smoluchowski boundary conditions, referred here as the SSS theory. [43] Weiss devel-

oped a systematic perturbation analysis for diffusion-controlled reactions, which re-

covers the WF approximation in the lowest order. [46] Recently, Portman and Wolynes

applied a variational method and proved that the WF approximation is an upper

bound for the survival probability.[107]

The experimentally observed fluorescence lifetime distribution is the result of the

competition between the reaction from a distribution of conformations and the dif-

fusion between different conformational states. In the homogeneous limit, reaction

is extremely slow compared to relaxation, and the system can be well-approximated

by equilibrium, yielding a homogeneous single-exponential decay. In the inhomoge-

neous limit, the survival probability is a static average over the initial configurations

and has a highly non-exponential decay. Between the two limits, the relaxation pro-

cess and the reaction kinetics are convoluted. The configuration-controlled regime is

dominated by the reaction kinetics, and the diffusion-controlled regime is determined

by the conformational relaxation process. Although complete analytic solutions are

difficult, the first-order inhomogeneous cumulant expansion and the WF approxima-

tion provide exact lower and upper bounds to the real survival probability function,

respectively. In the present work, we investigate these regimes for Markovian and non-

Markovian fluctuations of reaction coordinates modulated by conformational fluctua-

tions and account for the experimental time window used to monitor fluorescence. To

address these two regimes and their asymptotic limits, we study a Markovian process

in Sec. 5.2 and a semi-flexible chain as an example of non-Markovian processes in

Sec. 5.3.

Reactions in biopolymers are often strongly coupled to internal relaxation pro-

cesses, and the fluctuations of the reaction coordinate are generally non-Markovian.

Reaction dynamics of biopolymers in solution can be directly probed in real time by

fluorescence spectroscopy. [9, 13, 16, 23, 35, 81, 82, 83] One important technique is

intra-molecular fluorescence quenching, which has been employed to measure contact
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formation between two residues on an unfolded polypeptide chain by Eaton's group

and other groups. [39, 40, 42] By varying solvent viscosity, Eaton and his group mea-

sure the full kinetics from the inhomogeneous limit to the homogeneous limit. In

Sec. 5.3, we calculate the full kinetics of the fluorescence quenching in a semi-flexible

Gaussian chain with a normal mode decomposition scheme.[116] Our calculations

demonstrate that the first-order inhomogeneous cumulant expansion and the WF

approximation provide lower and upper bounds for the real survival probability, re-

spectively.

In Sec. 5.4, we discuss the effects of the experimental time scale on fluorescence

lifetime measurements and the unified perspective it provides. The experimental

time scale here refers to the time window to monitor fluorescence. Within a very

short time window, transient configurations stay close to the static configurations,

independent of the relaxation rate. Such experiments can be well described within

the configuration-controlled regime. For long experimental time, the configuration-

controlled picture breaks down even for the slow relaxing regions. The long time

kinetics is dominated by the relaxation process and is described by the diffusion-

controlled regime. By varying the length of the observation time, we can observe

both kinetic regimes.

In Appendix 5-A, we generalize the WF approximation and show that the WF

approximation is exact to the first order of 1/D. In addition, we obtain the 1/D

expansion of the average lifetime and recover the perturbation result by Weiss. [43, 46]

A more detailed discussion of the generalized WF approximation and its applicability

criteria are addressed in paper II of this series.[117] In Appendix 5-B, we discuss the

relation between the experimental time scale and the apparent distribution of the

measured quantity obtained by single-molecule experiments.
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5.2 Markovian processes: Two regimes of lifetime

distribution

Chemical reactions influenced by fluctuating environments can be described by the

Smoluchowski equation coupled to a reactive sink,

P(t) = LP(t)- KP(t). (5.1)

L characterizes the relaxation of the fluctuating environment, and K is the first-order

reaction rate coefficient. Initially, the system is prepared in thermal equilibrium, i.e.,

P(O) = P0 = Peq. The overall population depletion is monitored over time. Exact

solutions to this equation can be obtained for only a few specific forms of the reaction

rate.[43, 46, 60, 113, 114, 115] Let us now discuss the calculation of the lifetime

distribution function. we take the trace of the Laplace transform P(w) and write the

survival probability as

1
S(W) = ( LC + K ) ' (5.2)

The brackets (--) represent a spatial average over the equilibrium distribution. From

S(w) the Laplace transform of the lifetime distribution is obtained f(w) = 1 -

wS(w) = ((K - )(w - L + K)-l). The average lifetime, expressed as the first

moment of the lifetime distribution function, is (t) = fO tf(t)dt = S(O).

Fig. 5-1 illustrates the configuration-controlled regime, the diffusion-controlled

regime, and their corresponding limits. In the static limit, the population is depleted

independently at every configuration without relaxation. In the dynamic limit, the

population is depleted with a homogeneous rate while the fast relaxation maintains

the population shape. Between the two limits, the kinetics can be described by

the reaction dominated configuration-controlled regime and the relaxation dominated

diffusion-controlled regime. Increasing the diffusion coefficient, the overall kinetics

traverses from the configuration-controlled regime to the diffusion-controlled regime.
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Figure 5-1: An illustration of the two kinetic regimes, the configuration-controlled
regime and diffusion-controlled regime, and their corresponding limits.

Although these two regimes are not clearly separated, the boundary falls roughly into

the region where the reaction and relaxation time scales become comparable.

Let us now study the Markovian fluctuations of the reaction coordinate. The reac-

tion rate is given in quadratic form, K(x) = rx 2 + ko with x the reaction coordinate.

ko, the nonzero decay rate at x = 0, is necessary to remove the divergence of the

static average lifetime. The fluctuation of the reaction coordinate is controlled by a

one-dimensional diffusive environment, £ = DOX[OX + ,9(3U)]. D = AO is the diffu-

sion coefficient, /3U = x2/(20) is the potential of mean force, and 0 is the variance of

the fluctuations. The relaxation is an Ornstein-Uhlenbeck process with the survival

probability given by[46, 60, 115, 118]

S(t) = (s + 1)2 - ( s-1)2 exp {-2(s-1) + ko]t}. (5.3)

s = /1 + 4,7O/A represents the coupling of the time scales associated with environ-

mental relaxation and reaction kinetics. Next we expand the square root in Eq. (5.3)

and express the survival probability as a combination of eigen modes. The average
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lifetime, i. e. , the averaged sum of the eigen mode lifetimes, is

n~-0~~~~~2-t ) X S(t)dt = 4(2s n-1)!! (s _ 2n )(t) ]~~~k~ (s+l)n=O 2n! kS +iJ A(s - 1)/2 + ko + 2nAs54

The lowest eigen value n = 0 yields the long-time exponent. We discuss now the

different dynamic scenarios:

5.2.1 Static limit: inhomogeneous average

The static limit case is displayed in Fig. 5-1. Sluggish environments such as glasses,

£ < K, have slow relaxation rates that depend only on the initial configuration. The

survival probability is the inhomogeneous average of the survival probabilities associ-

ated with each transient configuration, S(t) = (exp[-Kt]). In this limit, the lifetime

distribution function is f(t) = (Ke-Kt), and the calculation of the average lifetime

requires the inhomogeneous average of the time scale for each initial configuration,

(t) = (K-l). Larger experimental time windows probe the configurations that relax

gradually and essentially sample the configuration-controlled regime. The effects of

the experimental time window in the dynamically regimes experienced by the chain

conformation are elaborated in Sec. 5.4.

The static limit of the survival probability with a quadratic rate is obtained in

the limit of A - 0 in Eqs. (5.3):

1
S(t) + exp[-kot]. (5.5)

N/1 + 2,O t

The averaged lifetime is:

(t) = 2k--9[1 - Erf( 0)] exp[ 2 0]. (5.6)

For ko -* 0, the survival probability has a power-law decay S(t) = 1//1 + 2nOt and

a divergent average lifetime.
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5.2.2 Configuration-controlled regime: inhomogeneous cu-

mulant expansion

The configuration-controlled regime displayed in Fig. 5-1 is now addressed. Environ-

mental fluctuations in viscous solvents are greatly reduced, but not negligible. The

effects of the survival probability are evaluated with an inhomogeneous first-order

cumulant expansion:[108]

S(t) = (( fK(r)dr) inhom) (exp-- (K(T))inhomdT]). (5.7)

('' )inhom stands for the inhomogeneous average over trajectories at a given initial

configuration.

In the short time limit, expansion of the configuration-controlled rate (K(r))inhom

yields S(t) (exp[-K(xo)t- DOxK(xo)t2]) and corresponds to a summation over

the inhomogeneous Gaussian line shapes in spectroscopy. [56] The average lifetime, a

weighted average over the inhomogeneous reaction times, is t) m

([K(xo)]-l exp[-D&2K(xo)/K(xo) 2]) .[116]

The survival probability with a quadratic reaction rate is evaluated by a first-order

cumulant expansion:

1
S(t) = /1 + 2nSte -2 t exp {-[ko + nO(1 - e-2At)]t}. (5.8)

The average lifetime (t) = S(0), is displayed in Fig. 5-2. The plot shows that the first-

order inhomogeneous cumulant expansion is the lower bound for the exact calculation

and reduces to the static limit in the limit of D = AO - 0.

5.2.3 Diffusion-controlled reaction regime: the Wilemski-Fixman

approximation

Let us now discuss the diffusion-controlled regime. Here, the relaxation time is shorter

than the typical the reaction time. Expansion of (w - £ + K) -1 followed by the
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Figure 5-2: The average lifetime for the Markovian fluctuations of reaction coordinate
studied in Sec. 5.2, where = 1, ko = 0.1 and = 1. The diffusion coefficient D
is equal to A. The inhomogeneous cumulant expansion in configuration-controlled
regime defines a lower bound for the survival probability and agrees well with the
exact calculation as the reaction approaches the static limit. The WF approximation
in the diffusion-controlled regime defines an upper bound and agrees with the exact
calculation and the reaction approaches the dynamic limit.

ensemble average renders the survival probability:

S(W) -K(K) + 2KG(w)K)- -(KG(w)KG(w)K) +.... (5.9)

(--) represents the ensemble average and G(w) = 1/(w -£) is the Laplace transform

of the Green's function G(t) for the environmental relaxation. We now derive a

closure for S(w). First let us separate out the asymptotic limit of G(w) as G(w) =

G'(w) + Peq/w with Peq/W = lim,_~o G(w). The survival probability is approximated
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as

S(W) =- 2 (K) + ! 2 + (KG'K))

1 ((K) +2(K6'K) ) + (KG'K6'K)) + 
2 + k (k+ k)- k (-kX + * -2w 2 w W2W1 ~k kk k k

1 + k(w) (5.10)
(5.10)

w[1 + kk(w)] + k

k = (K) is the homogeneous average of the reaction rate and x(t) = (KG'(t)K)/k 2 =

(KG(t)K)/k 2 - 1. x(t), the memory function measures the relaxational effect of

the reactive system. The Laplace transform of the lifetime distribution function is

obtained from Eq. (5.10):

k
f (W) = W(1 + k(w)k) + k (5.11)

with the average lifetime

(t) = 1(1 = = (0)k (5.12)

These results have been derived by Wilemski and Fixman using a different approach. [44,

45] Let us now make several observations:

1. (KG'KG'K) k3 2(w) applies at small reaction rates and fast relaxation

times, i. e. , (0)k << 1. This is consistent with the stochastic rate model

discussed in Ref. [118]. The survival probability was derived there from a second

cumulant expansion of the stochastic rate,

S(t) = (e-fK(t)dt) -= exp[-(K)t + (6K(tl)6K(t2))dtidt2 +...]

exp[-kt + k2~(0)t]. (5.13)

The average lifetime, (t) ~ k[1 - kk(0)] - 1/k + X(0), recovers Eq. (5.12).

2. In the homogeneous limit, X(Z) -- 0, S(w) from the WF theory is S(z) =
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1/(z + k). Hence the survival probability decays exponentially and corresponds

to a homogeneous Lorentzian line shape observed in optical spectroscopy. In

the inhomogeneous limit, we have shown earlier in Sec. 5.2.2 that the survival

probability is given by S(t) = exp[-K(xo)t- Dd2K(xo)t 2]). This dependence

corresponds to an inhomogeneous Gaussian line shapes.[56]

3. Evident from Eq. (5.10), the key approximation to the WF expression is

(KG'KG'K) .: k3: 2(w).[44, 45] For localized reactions, K = k(ro)6(r-ro), the

WF approximation and Eq. (5.10) are exact. This situation has been studied

in the context of solvent-controlled electron transfer, where the non-adiabatic

electron transfer occurs at the transition state. The diffusion-controlled electron

transfer rate was first studied by Zusman and recently re-examined by Cao and

Jung.[61, 65, 119, 120]

4. For moderate values of the diffusion coefficient, the long-time decay is still

dominated by the fundamental relaxation mode and has a single-exponential

decay. For finite D, the depletion rate at long time is generally different from

the homogeneous average rate k, and is different from the WF approximation.

A detailed discussion of the long time decay rate is given in Sec. 5.4.

5. The WF approximation in the diffusion-controlled regime provides an upper

bound for the survival probability(see Ref. [107] by Portman and Wolynes).

Quantitatively, the WF approximation is exact to the first order in 1/D for

both Markovian and non-Markovian processes. A mathematical proof is given

in Appendix 5-A for an arbitrary reaction rate using the generalized WF approx-

imation. The 1/D expansion of the average lifetime obtained is in agreement

with Weiss's work. [43, 461 A more detailed discussion of the WF approximation

and its validity regime are presented in paper II of this series. [117]

The WF approximation for the quadratic reaction-rate process considered in

Eq. (5.3) yields:

1 1 1 n1 2/)
2

(t) = 2 +X(0) k + A k- -- (5.14)
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The homogeneous average rate is k = inO + ko. As shown in Fig. 5-2, the WF

approximation approaches the exact average lifetime for large A. Direct expansion of

the exact average lifetime in Eq. (5.4) for large A yields:

1 1 ,.202 1 n292 22
1 + 2 _ 2 k ° (3 n 202 +6rk+ko)+O(-). (5.15)
k A k1 2 3 A 

Eq. (14) reduces to the WF approximation of the average lifetime up to the first

order in 1/A. The negative sign in front of the 1/A2 term supports the fact that the

WF approximation always gives the upper bound to the survival probability. This is

confirmed for a non-Markovian fluctuations of the reaction coordinate by a numerical

calculation in Sec. 5.3.

5.2.4 Dynamical limit: homogeneous average

Let us now discuss the case where the relaxation time is much shorter than the reaction

time. This kinetic scenario corresponds to a phenomenological Poisson process with

a homogeneous reaction rate k = (K). In this limit, the average lifetime is l/k, and

the survival probability reduces to exp(-kt). The average lifetime approaches the

dynamic limit from above as D increases, and the homogeneous average is a lower

bound for the system. This limit illustrated in Fig. 5-2 is obtained naturally from the

diffusion-controlled reaction regime discussed in the previous sub-section. In the limit

A - coo for the Markovian process considered in Eq. (5.3), the survival probability

reduces to S(t) = exp(-kt), yielding the homogeneous decay.

5.3 Non-Markovian processes: Intra-molecular flu-

orescence quenching on a semi-flexible Gaus-

sian chain

Formation of a specific contact between two residues on a polypeptide chain is a

fundamental process in protein folding. Fluorescence quenching has recently been
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employed to study the intra-molecular contact in polymer chains by measuring the

average lifetime of fluorescence.[39, 40, 42] In the diffusion-controlled regime, the in-

ternal relaxation of the polymer chain is controlled by solvent viscosity, and it provides

an effective way to decouple the relaxation process from the quenching process.

Without explicit considerations of the excluded volume effect and geometrical con-

straints, ideal polymers are flexible at all length scales and are described by Gaussian

statistics. However, most single molecule experiments on bio-molecules are performed

at length scales where the polymer exhibits some rigidity, and semi-flexibility is key

to understand the measurements of single polymer dynamics. In Ref. [116], we ex-

tended the Gaussian chain model to include the chain stiffness and studied the Brow-

nian dynamics of the semi-flexible chain with a normal mode decomposition of the

Langevin equation. The equilibrium properties of semi-flexible chains were studied

by Kratky and Porod, Harris and Hearst, Freed, Fixman and Kovac, Ha and Thiru-

malai, and many others. [85, 86, 87, 90, 92, 93] The non-Markovian features of the

internal relaxation make it hard to solve the full kinetic equation analytically. Here

we decompose non-Markovian fluctuations of the reaction coordinate into a sum of

Markovian processes and investigate the coupled reaction and relaxation using path

integral methods.

Eaton and coworkers measured the quenching rate for tryptophan-cysteine pairs

using K(R) = qexp[--y(R- ao)] with = a 1. a is the contact radius, qo

is the quenching rate at contact, and R is the reaction coordinate described by

the fluorophore-quencher distance. K(R) falls off exponentially as a function of

the reaction coordinate. For a tryptophan-cysteine pair, q = 4.2 ns -1 and ao =

0.4 nm.[42, 41] For a Gaussian chain, with two amino acids, tryptophan and cysteine

attached at the end points, the equilibrium distribution of the end-to-end distance is

Peq(R) = )]- 3/ 24 7r R 2 exp 2(R 2) (5.16)

with (R2) the mean square fluorophore-quencher distance. The normal mode repre-
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sentation of the end-to-end distance vector is

N-1
R = cpxp (5.17)

p=l

with cp - [(1)P-1]/2 cos(pr/2N). The normal mode representation of the internal

relaxation Smoluchowski operator £ is:

£=ZE Ox (kBTT + pxp). (5.18)

£ determines the Green's function and equilibrium distribution of each normal coor-

dinate. A detailed derivation is given in Ref. [116]. The equilibrium distribution and

the Green's function of the normal coordinates are

N-i 2kT/ exp l A x2

Peq(xp) - J7( { P }, (5.19)
p=1 2kBT

and

G(xptlxpt) = 1 [27rkBT( e-2(t-t))]-3/2G (xp, t xp, t') II (1-e cp
p=l

exp P=l Ap [xp - xp (0)e -(t t)] 2 } (5.20)

2kBT[1 - e-2(tt)]

respectively. So all the normal coordinates are Markovian with different relaxation

times. On the other hand, the reaction coordinate is a combination of these normal

coordinates is generally non-Markovian. In this work, we carry out path integral

simulations of the fluorescence quenching process on a semi-flexible chain.[74, 119,

121] The total time is discretized into slices MA = t. In our simulation, initial

configurations of the normal coordinates are generated according to the equilibrium

distribution in Eq. (5.19) and propagated within each time slice according to the

Green's function in Eq. (5.20). For each time step, we determine the end-to-end

distance vector with Eq. (5.17) and the quenching rate accordingly. Formally, the
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Figure 5-3: Path integral simulations of the survival probability S(t) for the intra-
molecular fluorescence quenching experiments. a/6Do is the time unit. The per-
sistence length Lp = 2, chain length N = 10 and the quenching rate at contact is
estimated from Eaton et al's experiments to be qo = 5.6. All the survival probabil-
ity functions for various solvent viscosities reduce to homogeneous single-exponential
decay for large observation time.

survival probability is:

S(t) = lim dXM1 ... dXoeK(XM1)AG(XM-, (M - 1)A; XM-2, (M - 2)A)
M---}oo

... e-K(X1)"G(Xi, A; X0 , 0)Peq(XO) (5.21)

with X a short notation of the normal coordinates {xp}.

In experiments, the survival probability S(t) or quantum yield is monitored over

a wide range of experimental time scales, and the average lifetime is obtained by

integration of S(t) up to the experimental time,

te (p

(t) = j S(t)dt. (5.22)
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Figure 5-4: The average lifetime (t) calculated by path integral simulations for a fixed
experimental time texp = 40 in the reduced time unit. Other parameters are the same
as in Fig. 5-3. The WF approximation holds for fast intra-chain relaxation while the
inhomogeneous cumulant expansion holds for slow intra-chain relaxation. The long
time kinetics is always described by the WF approximation for the diffusion-controlled
regime.

Eq. (5.22) reduces to S(w = 0) as texp approaches infinity. The configuration-

controlled regime and the diffusion-controlled regime are explained in detail. We

calculate survival probabilities and their corresponding average lifetimes for various

solvent viscosities. The survival probability functions are shown in the master plot

of Fig. 5-3, and the average lifetime for the full range from the static limit to the

dynamic limit are plotted in Fig. 5-4. In both plots, a specific solvent at a viscosity

of 10 cp and 293 K is taken as a reference state, a = 0.4nm is the natural length

unit, and a2/6Do ~ 25 nanosecond is the corresponding time unit. In the reference

state, the quenching rate at the contact is q0 = 5.6. These numbers are used to match

experimental values from Eaton's studies.[42]

The average lifetime from Eq. (5.22) is evaluated in a time window of texp = 40 and
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plotted in Fig. 5-4. The average lifetime falls below the static limit is a clear indication

of the reaction slow-down in absence of sufficient relaxation. This feature is more

evident in Fig. 5-3: The survival probability in the static limit is the upper bound

for the survival probability with nonzero diffusion coefficients, and inhomogeneous

effects are significant for short observation times. In the long time limit, the kinetics

is dominated by homogeneous decay.

In the configuration-controlled regime, an inhomogeneous cumulant expansion of

Eq. (5.7) yields:

(K(T))inhom = qo exp[(2- 1)-yRoo(t)+ yao] . {1 + e27R °+(t) + a(e 27(t) - 1)
2 2

+ 1 - al Erf( (1- a) Ro!(t)

_e2yRo (t) I1 + ail Erf( (1 + a) Vy Ro )

with a = y(R2)(1 - 2 (t)) (5.23)
3Ro0(t)

0(t) = (R(t)R(O))/(R 2 ) is the distance-distance correlation function given in Ref. [116].

Fig. 5-5 compares inhomogeneous cumulant expansion of the survival probability and

the path integral calculation. The configuration-controlled reaction provides a better

approximation as lower solvent diffusion coefficients. The exact survival probability

is bounded from below by inhomogeneous averaging. At larger observation time, the

exact survival probability yields a homogeneous decay, consistent with our observa-

tions in Fig. 5-3. A more detailed discussion of the experimental time scale will be

addressed in Sec. 5.4.

In the diffusion-controlled regime, the memory function X(t) is obtained directly

from path integral simulations and the average lifetime is evaluated with Eq. (5.12).

Fig. 5-4 shows that the WF approximation, (t) = 1/k + X(O), is an upper bound for

the average lifetime. The exact result is approached from above as the relaxation rate

increases. For fast diffusion, (t) = 1/k + X(O) converges to the dynamic limit with

the order of 1/D. The scaling of the average lifetime is demonstrated in the inset of
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Figure 5-5: Comparison of the survival probability functions calculated by path inte-
gral simulation and first-order inhomogeneous cumulant expansion. As the intra-chain
relaxation becomes slow, and t --+ 0, the inhomogeneous cumulant expansion better
approximates the real survival probability. As the observation time increases, the
overall kinetics is dominated by the homogeneous decay.
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Figure 5-6: (a) The survival probability functions calculated and compared for path
integral simulation and WF expansion. In the long time, the WF approximation
always predicts a single-exponential decay, yet with a smaller decay rate than the
actual survival probability obtained from the path integral simulation. The difference
in rate decreases with the diffusion coefficient. (b) A log-log plot of the contact
formation time (0) = fo' X(t)dt versus the diffusion coefficient. (0) scales as 1/D
in the diffusion-controlled regime.

Fig. 5-6. The log-log plot of X(0) precisely follows the 1/D scaling. In Fig. 5-6, we use

the memory function x(t) from the simulation to calculate the survival probability

with the WF approximation. The numerical implementation is as follows. First, we

rewrite Eq. (5.10) as

S(w) = +k + k[ + (z) - (z)(z)] + k2 i(z)S(z) (5.24)

Then, we invoke the inverse Laplace transform and obtain the iteration scheme,

t tj

S(t) e- kt + k dt dt2 [e-k(tj-t2)(t 2) - S(tl -t2)X(t2)]

t dtl d t2 [ek(tt)X(t 2 - t3)S(t3 )].+k 2 dt, dt2 dt3[e-k(t-t2) X(t2 -t3)S(t3)]. (5.25)
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Figure 5-7: An illustrative sketch of the experimental time scale effects. The bound-
aries drawn in the plot are only for the purpose of explanation.

Fig. 5-6 shows that the survival probability calculated using the WF approximation

approaches the exact results at larger diffusion coefficients.

5.4 Experimental time scale: a unified perspective

In the previous two sections, we explored the relation between the relaxation and the

reaction time scales. In reality, finite experimental time windows play an important

role in the kinetic interpretations. For example, in fluorescence quenching experi-

ments we monitor the time range of population decay to obtain the average lifetime.

In FRET experiments, an appropriate observation window is used to monitor the

quantum yield and determine the donor-acceptor distance.[16, 35]

The mechanism of population depletion from its dependence on D and texp is

illustrated in Fig. 5-7. At small time windows, only transient configurations can

be probed no matter how fast the relaxation is and the static limit is retrieved.

At larger experimental times, transient configurations are no longer frozen, yet the
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relaxation perturbs slightly the transient configuration and the kinetics is typically in

the configuration-controlled regime. The inhomogeneous cumulant expansion gives

here the correction to the inhomogeneous limit. As illustrated in Fig. 5-7, the effective

range of the configuration-controlled regime depends inversely on the relaxation rate.

In the slow relaxation region, static configurations dominate the kinetics for a wide

range of time. In the fast relaxation region, the static configurations relax quickly

into other configurations. This behavior is clearly demonstrated in our numerical

calculation for fluorescence quenching processes. The survival probabilities from the

inhomogeneous cumulant expansion agree well with the exact results for small D and

at short times, but the expansion fails to describe the long-time decay. That is seen

clearly in Fig. 5-5.

Now we expand Eq. (5.7) to the second inhomogeneous cumulant:

S(t) (exp [- t(K(-))inhomdT + (t -- )(6K(T)6K(O))inhomdT]). (5.26)

For the expansion to be valid, the second cumulant has to be smaller than the first

cumulant for every initial position. Such criteria can not be satisfied in the long time

limit. Generally speaking, in the K - 0 limit, the slow-reacting population is first

diffused to the fast-reacting region and then depleted at longer times. Hence the long

time decay is always dominated by the diffusion process. At small fluctuations, we

evaluate the survival probability using a full cumulant expansion instead of the inho-

mogeneous cumulant expansion. This scenario is similar to the Gaussian stochastic

rate model discussed in Ref. 118]. The average lifetime is obtained from the second

cumulant expansion, (t) = k[1 - k~(0)]- - 1/k + X(0), which reduces to the WF

results for diffusion-controlled reactions. The second cumulant expansion over the

equilibrium distribution in Eq. (5.26) generates the same result. The transition from

the short-time to the long-time behavior was discussed by Pechukas and Ankerhold in

the context of Agmon-Hopfield kinetics.[8] For an ergodic system, the average of life-

time over an extreme large experimental time generates the homogeneous limit. This

has been demonstrated in the numerical calculation of fluorescence quenching pro-
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Figure 5-8: (a) The asymptotic decay rate for long experimental time. The exact
lowest eigenvalue and the WF approximation are calculated for the Markovian fluc-
tuations of the reaction coordinate defined in Sec. 5.2 with parameters same as those
in Fig. 5-2. (b) The lowest two eigenvalues. The gap of them increases almost linearly
with D for large diffusion coefficients.

cesses. Figs. 5-3, 5-5, and 5-6 show that the long time kinetics is always homogeneous

regardless of the magnitude of the diffusion coefficient, yielding a single-exponential

decay.

In that case, the long time decay of the population is determined by the lowest

eigenvalue of the full kinetic equation in Eq. (5.1). [119] Let us now define £ =

DOx[O9 + D(,3U)J and a corresponding Hermitian operator = eU/ 2 Le- U/2. 7

transforms the original kinetic equation into a Schr6dinger-like equation,

,)(eU(x)/2p) = -K(eU(x)/2P) + 7(efU(x)/2P). (5.27)

The lowest eigenvalue of K - R is kf and the lowest eigenstate is of (x). The long
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time decay of the population is given by

lim P(x, t) oc exp[-kft]e- U(z)/ 2 f (x). (5.28)
t--+o

The overall population is proportional to e-fU(x)/ 21f (x) and decays in the long time

limit with a homogeneous rate. The dominance of the lowest eigenvalue requires a

large gap between the lowest two eigenvalues tAk > 1. This indicates a lower bound

on the experimental time. For the Markovian case of the reaction coordinate defined

in Sec. 5.2, the eigenvalues are determined exactly as k = A(s-1)/2+ko+2nAs. The

gap between the lowest two eigenvalues is 2As and is a convolution of the reaction time

scale and the diffusion time scale. In the long time when 2Ast > 1, the population

depletion is dominated by the lowest eigenvalue kf = A(s - 1)/2 + k0. As shown in

Fig. 5-8, the dominant eigenvalue from the WF approximation approaches kf from

below as D increases. Both decay rates converge to k = (K) in the fast diffusion

limit. The lowest two eigenvalues are plotted in the inset of Fig. 5-8, where the gap

k - ko = 2As grows almost linearly with the diffusion coefficient at large D's.

5.5 Concluding remarks

Reaction kinetics modulated by environmental fluctuations are bounded by two differ-

ent regimes. In the configuration-controlled regime, the reaction process dominates,

and the average lifetime becomes a weighted average over the inhomogeneous reac-

tion time. The asymptotic limit of this regime is the static limit where the average

lifetime (t) = (K-') is an inhomogeneous average over the equilibrium distribution.

In the diffusion-controlled regime, the diffusion process dominates, and in the WF

approximation, (t) = 1/k + X(O), is the sum of the reaction time and the diffusion

time. In the dynamic limit for fast diffusion, (t) = 1(K) becomes the reciprocal

of the homogeneous rate. The exact survival probability is bounded from below by

the first-order inhomogeneous cumulant expansion and from above by the WF ap-

proximation. For comparable reaction and relaxation times, in the long time limit
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the convolution of reaction kinetics and the internal relaxation process eventually

reaches a fixed distribution shape and the overall reaction is characterized by a single

exponential.

Variation of the experimental time of the fluorescence measurements allows peo-

ple to explore various kinetic regimes from the inhomogeneous limit across the ho-

mogeneous limit. At small time windows, only static configurations are probed. At

larger time windows, the relaxation process modifies the transient configurations to

a configuration-controlled regime. Further increase in the measurement time probes

the diffusion-controlled regime where long time kinetics is dominated by relaxation.

For ergodic systems, the long time average yields the homogeneous limit.

In Appendix 5-A, we generalize the WF approach to address the average lifetime.

A perturbation expansion over 1/D of our equations reduces to the WF approximation

to the first order of 1/D. In addition, we recover the 1/D expansion of the average

lifetime derived by Weiss.[46] In Appendix 5-B, we discuss the relation between the

experimental time scale and the apparent distribution of the measured quantities such

as lifetime distribution obtained in single molecule experiments.

Fluorescence quenching and fluorescence resonance energy transfer (FRET), can

probe the details of the motions of synthetic and biological polymers. Semi-flexibility,

hydrodynamic interactions, excluded volume effects, and experimental time scales

greatly affect their equilibrium and non-equilibrium properties. In paper II of this

series,[117] we address the contour-length dependence of the average lifetime due to

semi-flexibility. Theoretical studies of these effects improve our understanding of the

important issues related to biological functions of DNA and proteins.

5.6 Appendix 5-A: Generalized WF approxima-

tion and the Weiss expansion

A widely used approximation to calculate the average lifetime in the diffusion-controlled

limit was first presented by Wilemski and Fixman.[44, 45] As demonstrated in Secs. 5.2
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and 5.3, the WF approximation is only accurate to the first order in 1/D, hence is use-

ful for large diffusion coefficients. In 1980, Szabo, Schulten and Schulten presented an

integral expression for the first passage time. [431 Later, Weiss obtained a l/D expan-

sion of the average lifetime based on a systematic perturbation analysis.J46] Here we

generalize the WF approximation based on a perturbative expansion scheme. In pa-

per II of this series, we discuss the relation of this generalization with single-molecule

measurements and the validity region of the WF approximation.[ll7]

To proceed, we consider a generic scenario described by the diffusion equation,

tP = CP - KP, where K is the reaction rate and £ is the relaxation operator

proportional to the diffusion coefficient D. We write the operator £ as DC 0 , where

£ = 0~[0x + ((3U)] is the relaxation operator for unit diffusion coefficient. For

simplicity, we only consider the one dimensional case; the formalism is fully applicable

to higher dimensions.

Next we employ the adjoint operator £+ definition which was used by Szabo,

Schulten and Schulten in their solution to diffusion with Smoluchowski boundary

conditions.[43] And we obtain the passage time for any given initial position xo0:

C+r(xo)- K(xo)r(xo) = -1. (5.29)

The average lifetime is the spatial average of r(xo) over the equilibrium distribution,

(t) = JdoPeq(xo)T(xo). (5.30)

Peq = V exp[-3U] and f is the normalization constant. £0 is not a Hermitian opera-

tor. We define a corresponding Hermitian operator: H = exp[O3U/2]0Co exp[-,3U/2].[119]

The adjoint operator is £+ = exp[/3U/2]DHexp[-,3U/2]. We define a functional

space: X = {q(x)I f •02(x)dx = 1} with inner product (f,g) = f f(x)g(x)dx. Ap-

parently ob0(x) = vFWexp[-13U/2] X, and Ho = 0. The average lifetime defined

in Eq. (5.30) is equivalent to (t) = (00, (K- DH)-lqo) and the homogeneous aver-

age rate is k = (00, K0o). The survival probability in Laplace space is obtained as

S(z) = (o, (z + K - DH)-1qo) in the same fashion.
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We now derive the generalized WF approximation. Assuming {o, ql, 02, ....... }

is an orthogonal basis of X, we can express the operators K and H as block matrices,

K 0 Ko1 H F (5.31)
K1 o K 1 0 H

Koo is the homogeneous average rate k. The survival probability is:

S(z) = [z + k - Kol(z + K1l - DH1 )-lKlo - l = 1 + ^(z) (5.32)
k + z[1 + Ci(z)]'

where Q(z) = k-1 Eo(-1)nD-(n+l)kn(z/D) with

Yn(z) = Ko1[(z - H1 )-(Kll - Kok-lKo)]n(z - Hl)-'Klo. (5.33)

The average lifetime is

1 1 -0 (0).(t) = (O) = k-1 + k-1(0) = + ) (5.34)
n=O

The first moment Yo(O) is identical to k2 k(0) in the WF approximation. To show this,

we write the Green's function in the Laplace domain as (w-o) - 1 = exp[-,3U/2](w-

H)-1 exp[OU/2]. Using the block matrix representation in Eq. (5.31), we evaluate

X(w) as

j(w) = 2(K K)-- ___2(oK KK0) --W--Z Wk 2 w -DH W
1 1
Dk= KFW/ - Kjo (5.35)Dko2 w/D - H11 K.

k(z) = (Dk2)-lyo(w/D) reduces to Y(O)/Dk 2 in the limit of w - 0. It is ready to

show that

(D2k 3 )-ll(w/D) = k-3 (K[(w _ L,)-1 _ z-1Peq]K[(w -C)- z- Zpeq]K)

-_2(w) (5.36)
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A similar expansion was obtained by Weiss using a perturbative correction to the WF

approximation. [46]

5.7 Appendix 5-B: experimental time scale and

single-molecule measurements

In this appendix we discuss the effects of experimental time window on fluorescence

lifetime measurements. we consider single-molecule quantities monitored over a fixed

time window texp. A general definition of the average value within this time window

is given by Gopich and Szabo as,[122]

1 /texp

a= J a[x(t)]lzodt, (5.37)
texp 

where x(O) = x0 is the initial condition. In principle, a[x(t)] can be any experimen-

tally measured quantity, for example, the FRET rate[83] or the quantum yield in

FRET experiments.[16] A similar scenario is discussed for two-state dynamics of sin-

gle biomolecules by Geva and Skinner. [24] Based on Hochstrasser's experiments. [83]

the distribution of the measured quantity a is related to the underlying equilibrium

distribution Peq(xo) as

P(altexp) = JPeq(xo)dxo( (a- L fPa[x(t)]lodt )inhom

_/dw i e
= I 2e ((exp[-- txp a[x(t) xodt]) inhom), (5.38)

2-r tezp 

where the inner brackets ( .)inbom stand for the inhomogeneous average over trajec-

tories with fixed initial configuration and the outer brackets (.) denote the average

over Peq(Xo).

In the static limit, texp . 0, P(al0) = [Peq(xo)lOxoa(xo)l-1]Jox=- with a(x*) = a.
For small texp) the relaxation perturbs slightly the transient configuration, giving

the configuration-controlled regime. As shown in Sec. 5.2, we perform a first-order
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cumulant expansion over a[x(t)]xo, yielding

P(aItexp) (6 ( a te te(a[x(t)] x ) inh m)) (539)

For large texp, the inhomogeneous cumulant expansion breaks down. We invoke the

full cumulant expansion over a[x(t)]Ixo in Eq. (5.38):

lim P(atep) = [2wo 2 (te7p)]- /exp[- ((5))40)
texp_00 ~~~~~2, (ep) ]

(a) and oa2(texp) = 2/te2pteP(texp - t)(6a[x(t)]6a[x(O)])dt ae the mean and the

variance of the distribution, respectively. The same expression was obtained by

Gopich and Szabo from the central limit theorem.[122] For large t exp, the integral

in 2 (tep) reduces to 2 fo(Ja[x(t)]Ja[x(O)])dt/texp, which is proportional to the ra-

tio of the relaxational time scale and the experimental time scale. If a = K(x)

and a2 (texp) - 2(K) 2X(0)/texp, the homogeneous decay rate (K) is observed in the

dynamic limit, tp > X(0).

The above discussion agrees well with our picture illustrated in Fig. 5-7, where the

overall kinetics is described by the diffusion-controlled regime for large experimental

time window. Furthermore, the intermediate region between the static limit and the

diffusion-controlled regime is described well by the configuration-controlled regime.

Thus the inhomogeneous cumulant expansion is a natural bridge to link static limit

and the dynamic limit.

The FRET rate and the quantum yield depend on the donor-acceptor distance

and are affected by internal relaxation dynamics. The quantum yield can be directly

measured, yet the FRET rate has to be determined indirectly from lifetime measure-

ments. The lifetime distribution is related to the FRET rate:

f(t) J | P(ktxp)ke-kt. (5.41)

f(t) in Eq. (5.41) is an approximation valid for small experimental observation times.

This condition limits the use of FRET rate as a measure of lifetime distribution.
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Chapter 6

Fluorescence lifetime

measurement: Contour length

dependence of single polymers

6.1 Introduction

Fluorescence quenching on a polymer chain has been of theoretical and experimen-

tal interest for a long time.[39, 40, 41, 42] The strong dependence of quenching rate

on the fluorophore-quencher distance makes fluorescence quenching a sensitive probe

of the loop formation dynamics in polypeptides and DNAs. Recent developments

in time-resolved single-molecule fluorescence spectroscopy provide new tools to un-

derstand conformational dynamics on the molecular level.[9, 23, 81, 82, 123] The

internal relaxation of the polymer makes the quenching reaction a complicated exam-

ple of diffusion-controlled reactions. Over several decades, there have been extensive

discussions of diffusion-controlled reactions.[43, 44, 45, 46, 47, 60, 113, 114, 115] A

widely used approximation scheme to calculate intrachain reactions in dilute solutions

was first presented by Wilemski and Fixman, [44, 45] which is referred here as the WF

approximation. The main focus of this chapter is to quantify the reliability of the WF

approximation for a Gaussian chain, validate the criteria with computer simulations,

171



and predict the contour length dependence of the average fluorescence lifetime.

In previous chapter, we studied two different regimes of the reaction kinetics mod-

ulated by conformational fluctuations and accounted for the effects of the experimen-

tal observation window in fluorescence measurements.[124] The stationary reaction

process dominates in the configuration-controlled regime while the diffusion process

dominates in the diffusion-controlled regime. A path integral simulation was used to

model fluorescence quenching processes on a semi-flexible chain. We demonstrated

that the first order inhomogeneous cumulant expansion in the configuration-controlled

regime defines a lower bound for the survival probability, while the WF approxima-

tion in the diffusion-controlled regime defines an upper bound and approaches the

exact result at large diffusion coefficients. In the present chapter, we derive the appli-

cability criteria of the WF approximation by a memory function expansion combined

with scaling arguments, and establish its relation to chain length, contact radius and

quenching rate. Within the region of validity for the WF approximation, we investi-

gate the chain length dependence of the fluorescence lifetime measurement of a single

Gaussian chain.

Although the relaxation of each normal mode of a polymer chain is Gaussian

and Markovian, the end-to-end distance motion is generally non-Markovian. The

quenching rate probed by fluorescence experiments is a function of the end-to-end

distance and is in general not localized. If the quenching rate is infinitely fast and

localized at the contact radius, the fluorescence is quenched upon first contact and

the fluorescence lifetime becomes the first contact time or the first passage time.

Yet this equivalence does not hold for a general quenching rate. Several simplified

approaches have been proposed to address the fluorescence quenching problem in a

polymer chain. The Szabo-Schulten-Schulten theory in Ref. [43] considers the ef-

fective diffusion of the end-to-end distance. A similar approach has been adopted

to study the semiflexible polymers where a potential of mean force is mapped out

from the equilibrium distribution of the end-to-end distance.[125] These reduced ap-

proaches neglect the non-Markovian nature of the end-to-end distance motion and

do not necessarily describe the complete range of scaling relations between the first
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passage time and the contour length even for a simple Rouse chain. The WF approx-

imation, although derived from a Markovian approximation for the quenching rate,

works surprisingly well for a Gaussian chain and has been validated in a set of ex-

periments and simulations.[40] For a diffusion process with a delta-function reaction

rate, the quenching rate degree of freedom is Markovian and the WF approximation

becomes exact. In Appendix 6-A, we demonstrate this special case and the equiv-

alence of the delta-function sink and the radiative boundary condition. In general,

the applicability of WF approximation to a polymer system depends strongly on the

contour length, the experimental quenching rate, the contact radius, the solvent vis-

cosity, etc. In Sec. 6.2, we discuss a generalized expansion of the WF approximation

and a quantitative criteria for its reliability for a Gaussian chain.

For real polymers such as polypeptide chains, fluorescence lifetime measurements

provide a quantitative tool to investigate the effects of chain contour length and

stiffness. In a series of fluorescence quenching experiments, Eaton et al studied these

effects in the diffusion-controlled regime by varying intervening residues on a polypep-

tide chain. In their experiments, a fluorophore-quencher pair, for example, tryptophan

and cysteine, are attached to the ends of a polypeptide chain. On optical excitation,

the fluorophore is excited to a state with long lifetime, and is quenched efficiently upon

contact with the quencher. The average quenching lifetime (t) clearly indicates the

loop formation. Their experiments show that the effective quenching rate keff = 1/(t)

exhibits an N -3 /2 dependence for long chains and has a non-monotonic N dependence

for short chains due to chain stiffness. In Sec. 6.3.3, a theoretical calculation is carried

out to investigate this observation. Fluorescence resonance energy transfer (FRET)

is another promising tool to probe polymer dynamics on short time and length scales.

In FRET experiments donor and acceptor dye molecules are attached at two differ-

ent points of one polymer or two different polymers. Upon excitation, non-radiative

energy transfer from donor to acceptor may occur. The energy transfer rate has an

inverse power-law dependence on the donor-acceptor distance. According to Fdrster

theory, K(R) = kF(R/RF) - 6 , with RF the Frrster radius at 50% transfer efficiency.

A recent Brownian dynamics simulation by Srinivas and Bagchi showed a power-law
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dependence of the average lifetime on the chain length with an exponent of 2.6.[126]

A power-law dependence with a smaller exponent was observed earlier by Pastor,

Zwanzig, and Szabo in a simulation of the first passage time in a Rouse chain.[47]

The larger exponent observed in the FRET simulation may arise from the 1/R 6 de-

pendence, or an enhancement of the effective persistence length from the excluded

volume effects. In Sec. 6.3 we analyze the contour length dependence based on the

semi-flexible Gaussian chain model for polymers.[116]

6.2 Measurements and calculations of average flu-

orescence lifetime

Let us consider a general scenario where a fluorophore is attached to one end of a chain

polymer and a quencher is attached to the other end. The fluorescence quenching

process determined by the rate K is coupled to the internal relaxation of the polymer

described by the relaxation operation £. The survival probability of the fluorescence

evolves as

P(t) = £P(t)- KP(t), (6.1)

where the operator £ represents the internal relaxation of the polymer and reduces

to the Smoluchowski operator for simple diffusion, and K = K(R) is the first or-

der reaction rate coefficient which depends on the fluorophore-quencher distance R.

In bulk measurements, we optically excite the fluorophores attached to polymers in

solution to their excited states at zero time and then monitor the total fluorescence

intensity. The average fluorescence lifetime is obtained by integrating the decay pro-

file of fluorescence intensity. In single-molecule experiments, short laser pulses are

constantly applied to the single polymer at high frequency so that the fluorophore

is quickly pumped back to its excited state once the fluorescence is quenched by the

quencher. As a result, fluorescence trajectories are registered with instantaneous in-

terruptions of quenching events. With these sequences of events, we can determine
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Figure 6-1: The difference between the mean first passage time and the average
fluorescence lifetime. The delta-function quenching rate K(R) = q(R- a) is ap-
proximated by a narrow Gaussian in the simulation. The mean first passage time is
obtained by assuming a Smoluchowski boundary condition.

the fluorescence lifetime distribution function and other single-molecule quantities,

such as the multiple-event density and high order memory functions discussed later

in this section. In comparison to bulk measurements, these single-molecule trajec-

tories provide detailed information of the polymer dynamics without inhomogeneous

averages, which is a powerful tool to probe conformational dynamics on the molecular

level.

6.2.1 First Passage time and fluorescence lifetime

When the quenching process is localized, e. g., K(R) = q6(R- a), the fluorescence

quenching event is a clear indication of the formation of a physical contact. For
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qO -- , the fluorescence is quenched upon first contact and the quenching reaction

reduces to the Smoluchowski boundary condition. In this limit the quenching time

or the fluorescence lifetime becomes the first passage time or the first contact time.

In reality, the fluorescence is not quenched completely upon contact. As a result,

the fluorescence lifetime includes contributions from the second contact, the third

contact, and so forth. These additional contributions distinguish the fluorescence

lifetime from the first passage time.

In Fig. 6-1, we plot the simulation results of a Rouse chain. The simulation details

are elaborated in Sec. 6.2.4. The delta-function quenching rate K(R) = qo(R- a)

is approximated by a narrow Gaussian and the contact radius is identical to the

bond length. The mean first passage time is obtained from simulation assuming the

same Smoluchowski boundary condition as in Ref. [47]. At large q's , the average

fluorescence lifetime approaches the mean first passage time. This result demonstrates

the difference between the fluorescence lifetime and the first passage time, and this

difference approaches zero in the limit q - co.

In Appendix 6-A, we discuss the equivalence of radiative boundary condition and

delta-function sink. For the reaction rate given by K(r) = koj(r- a) and r governed

by the diffusion operator £, the WF approximation becomes exact and X1(0) is the

first contact time. In the limit k - o, the average fluorescence lifetime is equivalent

to the first passage time. In general, this equivalence does not hold when K is not

infinitely fast and localized, or when £ is not a diffusion operator.

6.2.2 Generalized Wilemski-Fixman expansion and single-

molecule measurements

In the time domain, the quenching time distribution is the time derivative of the

survival probability F(t) = -dS(t)/dt, which in Laplace space is

F(z) = 1 - zS(z). (6.2)
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For the diffusion-controlled reaction, the survival probability is S(z) = ((z+K-L)-1),

where (...) represents the ensemble average over the initial equilibrium configuration.

As such, the mean quenching time (t) = -P'(z = 0) is equivalent to the average

lifetime S(0). We can also demonstrate this relation within the modulated reaction

model discussed in literature.[27, 78, 118] The probability density for a quenching

event at time t is the cumulative probability to have the previous quenching event

occurring at least t time before, giving

F(t) = (j Ke-(K-)rKdr). (6.3)

The Laplace transform of the quenching time distribution is F(z) = z-'(K[(K-

£)- - (z + K- C)-1]K), which is equivalent to Eq. (6.2). This interpretation relates

the quenching time distribution function to the single event distribution function,

(Ke-(K-L)rK), discussed in Ref. [27] and [118], which provides a unique way to

determine the lifetime distribution function in single-molecule measurements.

To calculate the average fluorescence lifetime, we derive a rigorous expression of

S(0). First we expand the survival probability as

~~(z) = 1 1 1 1 ~ 1 
(z) ~ 9= ( + K =- 2 (K) + 2(KG(z)K)- -(KG(z)KG(z)K) +

1 -1 1 ()+ (KG'K))
z z2 (K) + ( +

-1 ( 2+ 2(K'K) (K) + (K6'KG'K)) + (6.4)
Z 2 Z 2 Z

where G(z) = 1/(z- £) is the Laplace transform of the Green's function G(t) for

internal relaxation, and G'(z) = (z) - Peq/z is obtained by subtracting the asymp-

totic limit Peq/z from G(z). This expansion is identical to Eq. (10) in paper I of this

series,[124] and is cited here for completeness. Then we re-sum the expansion, leading

to

1 +Q(z)
S(z) = [+ Q(z) (6.5)

k + 177 + 
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k = (K) is the homogeneous average of the reaction rate and Q(z) = k- ' o -lnY(z).

Given the definition of the n-th order memory function n(z) = k- (n + ) (KG'K ... 'K),

we obtain the relation between fn(z) and the memory functions:

k-2Yo(z) = i(z)

k 13Y (z) = X2(Z)X 1(Z)

k-4Y2(z) = X3(Z) - 2i1(z)k2(z) + X3(z)
n-1

k- (n+l)n-l(Z) = n()- ij(z)k-(n-+l)njl(z). (6.6)
j=l

The re-summation result for the special case with £ being the diffusion operator

is derived in Ref. [124]. Under the Markovian assumption of the quenching rate,

in(z) = n:(z), we have Yn>l = 0, and the expansion in Eq. (6.5) reduces to the

well-known WF approximation,

1 + k;1 (z)
S(z) = k + z[1 + kl(z) (6.7)

In fact, the n-th order memory function can be measured directly from single-

molecule experiments. In these experiments, a high frequency laser source is con-

stantly applied so that the fluorophore is re-excited once the fluorescence is quenched.

Consequently, temporal trajectories of quenching events in a single polymer are

recorded. The n + 1-event density Nn+l = k- (KG(z)K ... KG(z)K) can be col-

lected from these single-molecule trajectories and provides a comprehensive probe of

the n-th order memory function.[27, 118]

n-1
Xn(Z) = k-n[Nn+l(z) - z - 1 Ek + (z)n(z)] (6.8)

j=O

with N1 = 1 and ;o(z) = 1. Eq. (6.5) and Eq. (6.8) provide a link between the

ensemble-averaged fluorescence intensity measurements and the single-molecule multi-

event measurements.
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6.2.3 Criteria for applying WF approximation

The average fluorescence lifetime is obtained easily from the expansion

00

(t) = S(O) = k -1 + k 2 (-1)n(0), (6.9)
n=O

which reduces to the WF approximation (t) = 1/(K) + X(0) if truncated at the first

order. The accuracy of the WF approximation is determined by the contribution from

higher order terms in the expansion. Although a rigorous proof of the convergence

criteria for the alternating series expansion is not available, we can estimate the higher

order contributions for a Gaussian chain. From previous discussion, we know that

all the nonzero contributions of the higher order terms arise from the non-Markovian

nature of the quenching rate. Rescaling the time by the slowest relaxation time TR, we

estimate Yn(0) oc kn+2Tr+l, which leads to the sufficient criteria for the applicability

of the WF expression

k-rR < 1. (6.10)

This criteria involves two time scales of the reaction dynamics: the homogeneous

average reaction time 1/k and the slowest relaxation time TR. Eq. (6.10) requires the

relaxation time scale to be smaller than the reaction time scale, which is consistent

with the local equilibrium approximation. [47, 127]

For a quenching reaction with a delta-function sink K(R) = qo0 (R-a) on a Rouse

chain, the homogeneous average rate is k qa 2/N3/ 2 b3 , given that the contact radius

a is normally much smaller than the equilibrium end-to-end distance. The slowest

relaxation time is rR - N 2b2 /Do where b is the equilibrium bond length. Combination

of k and TR yields an explicit expression of the criteria in Eq. (6.10)

N1/2b2a2
kr qob D ( )2 (6.11)

Therefore, for a Gaussian chain of fixed bond length the WF approximation is accurate
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for short contour length N, small contact radius a, small quenching rate qo, or large

diffusion coefficient Do.

6.2.4 Simulation of a Rouse chain

To examine the accuracy of the criteria in Sec. 6.2.3, we perform computer simulations

to compute the average fluorescence lifetime in a Rouse chain. In our simulation,

we consider a Rouse chain with a fluorophore attached to one end and a quencher

attached to the other end. The potential energy of the chain is

N-1

fU = 2b2 E (rn-rn+) 2 (6.12)
n=1

where b is the equilibrium bond length and rn is the position of the n-th bead. The

quenching time is averaged over many trajectories. For each trajectory, the initial

configuration is generated from the equilibrium distribution Peq = exp[-U], and

X is the normalization factor. Here we adopt the Ermak-McCammon algorithm

to generate dynamic trajectories of Rouse chain.[47, 128] The evolution of the n-th

bead's position is

rn(t + A) = rn(t) - Do Vni3UA + xn, (6.13)

where A is the time step and xn is a random displacement from a normal distribution

with zero mean and variance 2DoA. The quenching probability for each time step

is 1 -exp[-K(R)A] and R is the end-to-end distance at time t. Upon detection of

a quenching event in our simulation, we record the quenching time and restart the

simulation with a new initial configuration. In our simulation we take b = 1, Do = 1

and use a specific functional form of quenching rate. [41, 42] K(R) = q exp[-"y(R-a)]

with Y = a-'.

The results for the average fluorescence lifetime are displayed in Fig. 6-2. The

criteria in Eq. (6.11), although obtained from simple scaling arguments, is surprisingly

reliable. At a = 0.1, qo = 5.6, the WF expression reproduces all the simulation results
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Figure 6-2: The average fluorescence lifetime from the WF approximation compared
to the simulation: (a) a = 0.1, q = 5.6; (b) a = 1.0, q = 5.6; (a) a = 1.0, qo =
0.56. The simulation results are shown as plus symbols and the WF approximation
(t) = 1/(K) + X1(0) is shown as dot-dashed lines. As a, q or N decreases, the WF
approximation approaches the simulation results.
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for the contour lengths up to N = 100. At a larger contact radius a = 1 with q0

fixed, the WF approximation deviates from the simulation result, and the deviation

becomes more prominent at larger contour lengths. At lower quenching rates q0 ,

the WF approximation shows excellent agreement with simulation. In all three sub-

plots, the agreements are generally better for shorter Rouse chains. As predicted by

Eq. (6.11), for short contour lengths, small contact radii or small qo, the relaxation

time scale is much smaller than the reaction time scale. In this limit, the Markovian

assumption of the quenching rate or the local equilibrium approximation becomes

valid, so the WF approximation is accurate.

It can be seen from Fig. 6-2 that the WF results have different slopes in the log-log

plot at different contact radii. As demonstrated in Sec. 6.2.3, the WF approximation

includes two contributions, the homogeneous average rate 1/(K) and the average

relaxation time X1(0). To examine the details of the length dependences, we plot

these two contributions separately in Fig. 6-3. The scalings of both quantities with

contour length show strong dependencies on the contact radius. 1/(K) scales as N31/ 2

at a = 0.1 and has a smaller scaling exponent at a larger contact radius a = 1.

The scaling exponent of i(0) decreases with the contact radius. Different contour

length dependences are also observed for different contact radii with Smoluchowski

boundary conditions, as shown by Pastor and Szabo's simulations, which corresponds

to a delta-function sink in the limit q0 - oo (see Sec. II). Based on our calculation

and their simulation, different scaling relations for different radii arise naturally from

i (0). We investigate the contour length dependence in the following section and

discuss Fig. 6-3 further.

6.3 Contour length dependence and semi-flexibility

For synthetic and biological polymers, fluorescence lifetime measurements provide a

quantitative tool to investigate the dependence of fluorescence lifetime on contour

length. Real polymers have excluded volume, hydrodynamic, and monomer-specific

interactions, resulting in variations in chain stiffness over a wide range of length scales.
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In this section we study the effects of semi-flexibility and contour length dependence

on conformational dynamics of single macromolecules. We limit our discussion to

fluorescence quenching and fluorescence resonance energy transfer(FRET). The ma-

jor difference between them is the distance dependence of K(R): the fluorescence

quenching rate falls off exponentially, K(R) = qO exp[--y(R - a)], and the FRET rate

has an inverse power-law dependence, K(R) = kF(R/RF) - 6 .

For a Gaussian chain, the equilibrium distribution of the end-to-end distance is

Peq(R) = 47rR2 [27r(R2) /3] - 3/2 exp[-3R 2/2(R 2 )], (6.14)

where (R2) is the mean square end-to-end distance. The Green's function of the

end-to-end distance is:

G(R, tIRo) 2 vr3-R2 V~~~~~~~2Rt( r (R2)Roq$(t)/1 - ~2(t)
3(R2 + 4b2(t)R~) 1 i n _F 3(R2 ( -

2 (t)) sinh 3RRo(t) (6.15)
exp 2((R 2 )(1 - 02(t)) (2) (6.15)

where 0(t) is the normalized distance correlation function defined in the literature. [78]

For a Rouse chain, the explicit form of 0(t) is given by Szabo and others.[47, 127]

In paper I,[124] we demonstrate that either the reaction or the relaxation time scale

can dominate chain conformational kinetics depending on the experimental scenarios.

The present discussion centers on the diffusion-controlled regime, which has been

measured experimentally and studied numerically. [40, 42, 47] The WF theory defines

two fundamental quantities, the homogeneous average rate k = (K) and the memory

function X (t). Both are sensitive to the functional form of the reaction rate. In

Secs. 6.3.1 and 6.3.2, we assume a delta-function reaction sink K(R) = qod(R-a) and

analyze the dependence of k and X (0) on the persistence length and chain length.

Here, a is the contact radius for fluorescence quenching processes and the Fdrster

radius RF for FRET processes. In Sec. 6.3.3, we use an exponential quenching rate

and compare our predictions with the fluorescence quenching experiment by Eaton

and his co-workers. In Sec. 6.3.4, we discuss the lifetime and yield measurements in
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Figure 6-4: Equilibrium distribution of the end-to-end distance for the semi-flexible
Gaussian chain with the persistence length Lp = 2. The length unit is the equilibrium
bond length b. The delta-function sink is represented as a solid bar at R = a. The
N dependence of the homogeneous average rate k is illustrated by the crossing points
of the delta-function sink and the equilibrium distributions.

FRET experiments.

6.3.1 The homogeneous average rate k

Given the equilibrium distribution in Eq. (6.14) and the delta-function sink, we have

a2 3a2

k oc (R)3/ exp -2(R2) (6.16)

where the mean square end-to-end distance (R2) is a function of N. As illustrated

in Fig. 6-4, at extremely small N, a2 > (R2), the homogeneous average rate k is

a probe of the right edge of the distribution and is dominated by the exponential

factor exp[-3a2 /2(R 2 )]. For a2 smaller than (R2), the probe falls on the left edge

of the distribution and k has a complicated dependence on N for small N. In the
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Table 6.1: Summary of the scaling exponents of 1/k and X1 (O) with the contour length
in the large N limit where a2 << (R 2).

1/k %1(0) without HI X1(0) with HI
small a large a small a large a

flexible chain Lp < N 3/2 3/2 2 3/2 3/2
stiff chain Lp N 3 3 4 3 1 7/2

Depending on the persistence length Lp, this regime is separated into two regions
corresponding to Lp < N and Lp > N, respectively. Small a represents the limit
b/a > " while large a represents the opposite limit. HI refers to hydrodynamic
interactions incorporated in the Zimm model.

limit of large N, and the homogeneous average rate k is dominated by the prefactor

a2/(R 2)3/2. The scaling exponents of k with contour length in this regime, a2 < (R2),

is summarized in Table 6.1: For a flexible chain with persistence length Lp < N, the

mean square end-to-end distance is (R2) - 2Nb2 Lp and k scales as N-3/ 2; while for

a stiff chain with persistence length Lp > N, (R2 ) - N2b2 and k scales as N - 3.

6.3.2 The memory function X1(0)

The memory function X1(t) for a delta-function sink is rigorously obtained as

Xi(t) = (KG(t)K) 1
xl~t) - k2-1

1 (sinh 2xo0(t) ) exp [ 2xO 2 (t) 1, (617)
2x 0(t) l - b2(t) 1 - 2(t) ) e Lt- (6.17)

where x0 = 3a2 /2(R 2) and 0(t) is the normalized distance correlation function. To

estimate the contour length dependence, we expand Xi (t) at small 2xo(t)/[1- q02(t)],

giving

Xi(t) [1 - 2(t)]-3 / 2 - 1 - 2x0Oq2(t)[1- +02(t)]- 5/ + (6.18)
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At short times, both ends move independently, giving 0(t) 1 - 6Do/(R2)t.[116]

In this time region, 0(t) is close to 1 and the expansion is no longer valid. We can

estimate the invalid region of the expansion as 2xo0(t)/[1-0 2 ] > 1, giving 0(t) > 1-x0

or equivalently t < (R 2)xo/6Do = a2/4D0 . Accordingly, we break the full integration

into two parts X1(0) = I + I2 with

rT ro0

I= xl(t)dt, and 2 = Xl (t)dt, (6.19)

where T = a2 /4Do. Within [0, T], Xi(t) 1/4vx/ 2, yielding an estimation of the

first term

I, A T/4x/2x' 2 = (R2)3 /2/24x/-Doa. (6.20)

Compared to the first passage time VxN 3 /2 b3 /12x/Doa in the SSS theory where

only the diffusion of the end-to-end distance is considered,[47] 1 is off by a factor of

2V'. The second term I2 is essentially dominated by the slowest relaxation time

TR, yielding a different scaling

I2 TR (6.21)

It is clear that two competing processes contribute differently to i1(0). The

diffusive motion of end-to-end vector dominates at short time, while the collective

relaxation of the polymer dominates at long time. The relative weights of these two

contributions are determined by the contact radius a. X1(0) is dominated by I1 at

small a and by 2 at large a, and the crossover falls roughly into the region where

these two integrals are comparable. The length dependence of j(0) is determined by

both I1 and 2. For the dependence on semi-flexibility and contact radius, we make

several observations:

1. For a flexible chain when L << N, the mean square end-to-end distance is

(R 2) = 2Nb2Lp and the slowest relaxation time is TR - N 2Lpb2/Do. Hence,

I1 N 2 dominates at small a while 2 - N 2 dominates at large a, and the
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Figure 6-5: The contour length dependence of X1 (0) = fo X (t)dt for a delta-function
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calculations are plotted with symbols and the scaling relations are shown in dashed
lines.

crossover occurs around b/a /. Our numerical calculation of 1(0) for a

Rouse chain (Lp = 1/2) with a delta-function sink corroborates this result. As

shown in Fig. 6-5, i (0) scales as N 208 for a = 1, N1 68 for a = 0.1, and N 1' 53

for a = 0.01, respectively. The calculation strongly confirms the two competing

contributions and that I1 - N3/2 dominates over 12 - N2 as the contact radius

decreases. The decreasing scaling exponents with the contact radii are also

observed for an exponential quenching rate in Fig. 6-3, where X1(0) scales as

N2 44 at a = 1.0 and N1 88 at a = 0.1. Although the contour lengths are not

large enough to show the asymptotic scalings, we are still able to distinguish

the leading contributions at different radii, which is a generic effect of the two

competing processes.
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2. For a stiff chain when Lp N, the mean square end-to-end distance is (R 2) =

N2b2 and the slowest relaxation time is TR N 4b2 /LpDo. Consequently, I1

scales with the contour length as N3 and I2 scales as N 4. Srinivas and Bagchi's

simulations[126] for a semi-flexible chain with Lp comparable to the contour

length and excluded volume effects reported an exponent of 2.6. This result lies

between the flexible chain limit and the stiff chain limit.

3. In the presence of hydrodynamic interactions, the normal modes of a semi-

flexible chain are approximated using the pre-averaged approximation for the

hydrodynamics tensors introduced by Zimm.[94, 95] Details can be found in our

previous work.[116] The scaling relations are summarized as:

When Lp < N, 1 - N3/ 2, I2 N 3/2; (6.22)

When Lp > N, I1 - N3, I2 N7/ 2.

Consequently, X1(0) scale with N and has a smaller exponent in presence of

hydrodynamic effects.

In short summary, both 1/k and X1(0) scale with the contour length for long

polymer chains. The scaling exponents are listed in Table. 6.1. At small contact

radius, l1(0) is dominated by the integral I1, which depends only on the equilibrium

end-to-end distance. I1 has the same scaling exponents with and without hydrody-

namic interactions. While at large contact radius, X1 (0) is dominated by the integral

I2, which depends on the slowest relaxation time and has different scaling exponents

with and without hydrodynamic interactions.

6.3.3 Intra-molecular fluorescence quenching: Comparison

with Eaton's experiments

Quenching of the long-lived triplet state of tryptophan by cysteine provides an accu-

rate way to measure the rate of loop formation in polymer chains. With tryptophan

at one end of a semi-flexible peptide and cysteine at the other, Eaton et al were able
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to obtain the diffusion-limited rate of contact formation. They measured the length

dependence and the viscosity dependence of the effective quenching rate by varying

the number of intervening Ala-Gly-Gln sequences. The effective quenching rate is

defined as the inverse of average lifetime, keff = 1/(t) - k/[1 + k(0)]. In this

section, we mainly address two important experimental findings by the Eaton group:

1. The scaling of the effective quenching rate approaches N -3/2 for chain length

N - 15 but depends less on N for shorter peptides. [40]

2. The diffusion coefficient required to fit the diffusion-influenced rate is about

10 times smaller than the value expected for free diffusion of the contacting

residues. [42]

From the Gaussian distribution in Eq. (6.14) and the exponential quenching rate

K(R) = qo exp[-y(R - a)], the homogeneous average quenching rate is obtained as

k = (K)= qoey(R-a) eq(R)dR= exp -

(2-2 + V2r(l + C)exp[ 2( erfc ]) (6.23)

with y = 72 (R 2)/3. Given that (R2) = 2NLpb 2 for a flexible chain and ny = a - ',

( is a large number for small a and large N. In the asymptotic limit -- oo, (K)

reduces to q 0ov/8/r( - 3/ 2 and scales as N - 3/2. For the case where the contact radius is

about the bond length, the asymptotic scaling is approached for large contour lengths.

Furthermore, 1/(K) does not exhibit a monotonic dependence on the contour length

for short polypeptide chains due to the chain stiffness.

In Fig. 6-6, the effective quenching rate is calculated numerically with and without

hydrodynamic interactions. The contour length dependence of the effective quenching

rate is close to the experimental observation. [401 For short peptide chains, k~1 (0) < 1,

the overall quenching rate is dominated by the k given in Eq. (6.23). At large N, the

probe radius a falls on the left edge of the equilibrium distribution and k decreases

with increasing N, which agrees favorably with Eaton et al's calculation.[42] Our

calculations predict a weaker dependence on N around N = 3 due to the chain
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spectively. The N -3/ 2 scaling was observed by Eaton et al for N - 15.
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stiffness. The probe position a for a short peptide chain with N = 3 occurs at the

right edge of the distribution, as illustrated in Fig. 6-4, and produces the small decline

of the curve. In our simulation, the effective quenching rate for long peptide chains is

dominated by 1/X1(0). In the absence of hydrodynamic interactions, 1/X1(O) scales

with the contour length as N -2 where the contact radius is comparable to the bond

length. While in the presence of hydrodynamic interactions, 1/X1(0) scales with the

contour length as N -3/2 , which was also observed by Eaton et al for N - 15.

To better approximate the exponential quenching rate with the delta-function

sink, the effective probe radius should be greater than the contact radius a. Real

polymers are closer to the worm-like chain model than the semi-flexible Gaussian

chain model. The semi-flexible Gaussian chain model normally gives smooth equi-

librium distribution Peq(R), as shown in Fig. 6-4, while the worm-like chain model

predicts much sharper decay at right edges of the distribution.[42, 129] Therefore, the

worm-like chain model predicts sharper decay of k as a falls at the right edge of the

distribution. As a combination of these two effects, the homogeneous average quench-

ing rate k = (K(R)) should decline faster at small contour lengths, as demonstrated

in Eaton's experiments. [42]

In general, the effective diffusion process of the end-to-end distance R is non-

Markovian. A natural way to introduce an effective diffusion coefficient is

(R 2 )Deff = 6 f (,(t)dt (6.24)

This definition differs from Do = 2kBT/( used in Pastor, Zwanzig and Szabo's work

[47] and reflects the independent motion of the polymer beads at both ends while

containing no information on the collective motion of the whole polymer chain. A

simple calculation shows that Deff given by Eq. (6.24) is about 7 times smaller than

2kBT/( for chains of length N = 10 at 1 cp and 293 K, in agreement with the

experimental findings of Eaton et al.[40, 42]

192



6.3.4 Fluorescence resonance energy transfer: Lifetime and

quantum yield

Another laser-induced fluorescence spectroscopy technique that provides complemen-

tary information on the internal relaxation of biopolymers is fluorescence resonance

energy transfer (FRET). This technique has been extensively used in single-molecule

studies of conformational dynamics of proteins, DNAs, RNAs and other biomolecules.[81,

82, 123] The inverse power-law transfer rate diverges at R - 0 where the transition

dipole-dipole interaction no longer holds. To facilitate the calculation, we use a mod-

ified expression for K(R)

K(R) = + (R/RF)6 (6.25)+ (R/RF)6'

where e is a small quantity that represents the breakdown of the weak dipole-dipole

interaction for small R. This expression reduces to the quantum yield for FRET

processes when = 1. Thus the discussion applies to quantum yield measurements

as well. The Fourier transform of the FRET rate is

K(q) = 2 '2kFR {exp[-qRFe1/6] +

exp[qRFe1/ 6 6

exp- 2 ] [-cos( 2 qRFeI 6 ) + sin( 2 qRFe)], (626)

which reduces to 27r2 RFkF/3Vc when qRFe 1/6 < 1. Considering that e is a small num-

ber, the FRET rate is well-approximated by a delta-function sink K(R) = ko(R-RF)

with k0 = 7rRFkF/(6V~).[116] The contour length dependence roughly follows Table

6.1.

6.4 Conclusion and discussions

Here we summarize our findings. For the fluorescence quenching process in a polymer

chain, the fluorescence lifetime is not equivalent to the first passage time unless the

quenching rate is infinitely fast and localized at the contact radius. Based on a gen-
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eralized Wilemski-Fixman formalism, the fluorescence lifetime distribution function

can be decomposed into memory functions that are measurable in single-molecule

experiments. A sufficient criteria, krR < 1, for the validity of the WF approximation

is obtained from the expansion for a Gaussian process. This criteria for a Gaussian

chain predicts that (t) = 1/k + j(0) is a reliable approximation for small contact

radii, slow quenching rates or short contour lengths. The theoretical prediction is

corroborated by computer simulations of quenching processes in a Rouse chain.

The dependence of physical properties, such as average fluorescence lifetime, on

the chain length is crucial for characterizing polymers and can be used to quantita-

tively determine the chain stiffness. For reaction kinetics in the diffusion-controlled

regime, the average fluorescence lifetime is well approximated by (t) = 1/k + X1(0).

For localized reaction rate K(R) = qo(R- a), where a is the contact radius for

fluorescence quenching or the Fbrster radius for FRET, 1/k scales as N3 1/2 for flexible

chains and N3 for stiff chains. The scaling of the X1 (0) with the contour length N is

characterized by two competing processes, the independent motion of the end-to-end

vector and the slowest relaxation of polymer. The former dominates at a small contact

radius and the latter dominates at a large contact radius. For flexible chains, k1(O)

scales as N2 at a large contact radius and N3 /2 at a small contact radius, while for stiff

chains, Xj (0) scales as N3 at a large contact radius and N4 at a small contact radius.

The scaling relation for a flexible chain agrees well with Szabo's simulation.[47] Srini-

vas and Bagchi's simulations of a semi-flexible chain with Lp comparable to contour

length gives an exponent of 2.6 for (t), which lies between the flexible and the stiff

limits. [126] In the presence of hydrodynamic interactions, X (0) has a smaller scaling

exponent, which scales as N 3/ 2 for a flexible chain, and as N 3 at a small contact

radius and N 7/2 at a large contact radius for a stiff chain.

An application of the scaling relations to the fluorescence quenching experiments

by Eaton and his group clarifies two findings:

1. For intra-molecular fluorescence quenching processes, the effective quenching

rate is given by keff = 1/(t). For long polymer chains, the effective quenching

rate is dominated by i(O) and exhibits N - 3/2 scaling. For short polymer chains,
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the effective quenching rate is determined by k, the homogeneous average rate.

k decreases as N increases when the contact radius falls on the left edge of

the equilibrium distribution Peq(R), and increases with N when the contact

radius falls on the right edge of the equilibrium distribution. Our calculations

agree quantitatively with Eaton et al's experimental data, [42] where the effective

quenching rate keff approaches the N -3/ 2 scaling for long polymer chains and

depends less on N for short chains.

2. Through normal mode decomposition, non-Markovian relaxation of the end-to-

end distance for a semi-flexible chain is composed of a number of Markovian

processes. The end-to-end distance undergoes an effective diffusion on the po-

tential of mean force. Phenomenologically, the effective diffusion coefficient is

related to the distance correlation function by 6Deff fjo0 q0(t)dt = (R2). Numeri-

cal calculations demonstrate that Deff for N = 10 is about 7 times smaller than

the bead diffusion coefficient Do = 2kBT/( at 1 cp and 293 K. This theoretical

prediction agrees with recent experimental findings by Eaton and his coworkers.

The effective diffusion constant required to fit the diffusion-influenced rates in

their experiments is about ten times smaller compared to the free diffusion of

the residues.[40, 42]

6.5 Appendix 6-A: Equivalence of boundary con-

dition and delta-function sink

For a one-dimensional delta-function sink, K(x) = ko5(x- a), The homogeneous

average rate is k = koPeq(a). Let us now obtain k(0) from the rate-rate correlation

function

k2 i (0) = 77 ()Peq(x)(K(x) - k)dx. (6.27)
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With the adjoint operator L+ definition which was used by Szabo-Schulten-Schulten

in their solution to diffusion with an absorbing boundary, r7(x) satisfies

L+7(x) = -(K(x) - k). (6.28)

The adjoint operator L+ = eOUx(D(x)e-Ux) depends on the general position de-

pendent diffusion coefficient D(x). Consider now the boundary conditions 7(x

+oo) = 0, we have

,7(X) e(y) dy (K() - k)e-U()d. (6.29)Jf D~() fy°°

Substituting this equation into Eq. (6.27) and averaging over the equilibrium distri-

bution Peq(x) = (fOO e-U(Y)dy) - le - (x), we obtain,

roo co eBU(x) - ro 2k2 l(O) = (j e_u()dy)_l I_ d y U( j U()(K(y) - k)dy (6.30)

Therefore, X(0) is given by

o _ a e 3U(x) x 2

X(]) = ( e-U(Y)dyl] | D(x) dx e-,U(YdY)
roo ro eU(z) - ro 2

+(~ e-_U()dy)l dO e -U(Y)dy. (6.31)

And the average lifetime is

(t) = -+ ( e-U(Y)dy)-l eu(x) d[L eU dY
e-o dx eBU~ e- V(Y) Y

+( 0_ e-U(Y)dy)_l j eDu( dx U(Y)dy. (6.32)

Eq. (6.32) is exactly a sum of contributions from the left and the right regions of the

boundary with proper weight. It is the same result as the SSS theory with radiation

boundary conditions. It proves the equivalence of delta-function sink and radiation

boundary conditions. In the limit k0 -- co, the radiative boundary becomes the
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absorbing or Smoluchowski boundary and the fluorescence lifetime becomes X1 (0) in

Eq. (6.31). This is the same as the first passage time given by the Szabo-Schulten-

Schulten theory. [43]

In higher dimensions, the real reactive sink is defined as a hyper-plane in a multi-

dimensional space. For example, K(r) = ko5(r- a) is actually a reactive spherical

surface in a 3-D space. Under such conditions, the whole space can be separated into

two regions, inside and outside the reactive surface. This separation scheme given in

Eq. (6.32) still holds for such cases. With a reactive surface, the Wilemski-Fixman

approximation is only exact when the reaction coordinate r is Markovian, for example,

£ = DV [V + V3U(r)]. For this special case, we can prove that the reaction rate

degree of freedom k(r) is precisely Markovian. Hence the average lifetime is

(t) = k+ [ r2e#U(r)dr-l {L eU(r)r-2dr[ e-U(P)p2dp]2+

e3U(r)r-2dr[ e-U()p2dp]2}. (6.33)
a ~~r

For non-Markovian reaction coordinate, the reaction rate degree of freedom is not

Markovian even when the reaction rate is localized. Therefore the Wilemski-Fixman

approximation is no longer exact.
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Chapter 7

DNA stretching under

hydrodynamic flows

7.1 Introduction

The mechanical properties of polymer systems are important in many applications,

including lubricants and plastics. The bulk visco-elastic properties of these systems

result from the microscopic deformation of the polymer chains when they are subject

to external forces. This microscopic-macroscopic correspondence has generated inter-

est in studying polymeric solutions at the microscopic level, including experiments at

the single molecule level. Many single molecule experiments examine the behavior of

single polymers, like DNA, subject to various stresses, including tensile stress and hy-

drodynamic flow [48, 49, 50, 51, 52, 53, 54, 130, 131, 132, 133]. One set of experiments

by Chu's group monitor fluorescence labeled DNA subject to the stresses discussed

above. The experiment monitors the entire contour in real time and gives a complete

picture of the polymer dynamics [49, 50, 51, 52, 53, 54, 133, 134, 135, 136, 1371. In

this chapter, we model DNA as a worm-like chain (WLC) with parameters previously

determined in force-extension experiments and then use this model to examine the

experimental results of Chu for the steady state configurations of DNA subject to

constant plug, elongational, and shear flows [48, 49, 50, 51, 52, 53, 54, 133]. The abil-

ity to use parameters from one experiment to model different experiments confirms
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the validity of the WLC model for DNA.

This DNA system has also been the subject of many Brownian dynamics simu-

lations [138, 139, 140, 141, 142, 143]. Predicting the properties of a complete con-

tour, requires a large number of long simulations performed on a large number of

beads. With carefully chosen parameters, reasonable agreement between the experi-

ments and these simulations exists, but these calculations are phenomenological and

computationally intensive [139]. We propose a less computationally intensive first-

principles path integral Monte Carlo algorithm based on equilibrium theory to study

DNA subject to various hydrodynamic flows. If the relaxation of the polymer is

fast, the experimentally observed configurations correspond to a generalized equilib-

rium distribution, which has an associated potential. With a reasonable formulation

of the potential, we evaluate time averaged ensemble quantities with Monte Carlo

techniques. Although this approach will not describe dynamics, it is computation-

ally more efficient than Brownian dynamics and allows the prediction of important

time averaged quantities, like the mean extension of the polymer that we examine in

this letter. Previously, Larson and Chu, as well as others, used similar Monte Carlo

techniques on bead and spring models to describe time averaged properties of DNA

polymers subject to constant plug flow [144].

DNA is a difficult polymer to model because it is semi-flexible with a large persis-

tence length of 53 nm, compared to a typical length studied in experiments of 50 im,

and its contour length only extends under strong forces [139, 144]. Bead and spring

simulations require a large number of beads to account for bending energy and con-

strained dynamics to maintain the contour length. We adopt a more natural model

for DNA, the WLC model of Kratky and Porod [95]. The WLC replaces the Rouse-

like bead and spring model with a continuous contour of fixed length and includes

an energy associated with bending the polymer. The bending energy is experimen-

tally measurable, which removes a fitting parameter. The first analytic treatment of

the WLC model appear in a 1973 paper by Fixman and Kovac [92]. Later work by

Marko and Siggia with improvements by Bouchiat demonstrate that the WLC model

predictions agree extremely well with the force extension experiments on DNA by
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Bustamante's group [145]. The agreement suggests that the WLC captures the fun-

damental thermodynamics of DNA [130, 133, 146]. The WLC is also the basis for the

force extension relations used in simulations by Doyle and in the analytic theory by

Zimm [139, 147]. Doyle neglects hydrodynamic interactions while Zimm incorporates

the interactions with a length dependent rescaling of the flow field determined by the

Kirkwood approximation.

In the absence of an external field, the energy of the WLC is a simple contour

integral, 3E = f0L AlItI 2ds, where L is the polymer's length [92]. The inverse

temperature, /3 makes all quantities unitless and the tangent vector t of the contour

R(s) is normalized to fix the contour length, RIl = 1. An external potential, ,3U(R(s))

modifies the energy resulting in a path integral partition function,

Z =JDR(s)exp (-j. {_ n2+ U(R(s))}ds) (7.1)

We can derive the form of /3U(R(s)) for many experiments. For example, in the

experiments of Smith, Finzi and Bustamante, one end of the DNA strand is attached

to a glass surface and magnetic tweezers stretch the other end of the DNA [133].

The external potential is U(R(s)) =-fIRz(0)- R(L)l = -fIo Ltzdsl, where f is

the force applied to the two ends and t4 is the component of the tangent vector in

the direction of the force. The solution maps into the trajectory of a quantum rigid-

rotor and has good agreement with experiment [92, 130, 146]. We parameterize the

bending energy of the WLC model with the persistence length determined by these

references, A = 53nm, to remove fitting parameters and validate the consistency

of the WLC description of DNA in various experiments. We neglect the persistence

length's dependence on various experimental conditions, such as buffer concentrations

and the dye used in imaging.

The potential is not easily defined for hydrodynamic flows because hydrodynamic

flows are dynamic phenomenon, but the flow still performs work on each monomer. If

we ignore the intrachain hydrodynamic interactions of a polymer in a potential flow,

like constant plug flow or elongational flow, the work is proportional to differences in
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the potential. For a free-draining polymer, we add the potential of all of the monomer

units, which becomes an integral over the contour. A simple double integral over the

contour can incorporate the two body potential, but this is not done here. Removal

of the free draining approximation is more difficult, but previous studies show that

hydrodynamic interactions lead to only modest corrections to many time averaged

quantities [143, 144].

7.2 Constant Plug Flow

The constant plug flow potential is V = -F z, where F is the flow rate, and the

polymer's potential is -F4 foL z(s)ds, where is the friction per unit length. Based

on the findings of Larson et al., we assume the friction does not vary with the flow

rate or over the polymer, but we do not know the friction constant explicitly [144].

Most experiments report the viscosity of the polymer in the solution, whose relation

to friction has a non-trivial geometric dependence. The friction is the only fitting

parameter, but it is comparable in all simulations and simply scales the flow rates.

The Kirkwood approximation in Zimm's calculation for constant plug flow replaces

the bare uniform force on each segment from the flow field with a dressed force that

is also uniform and justifies a rescaled friction constant [147].

Perkins et al. performed the constant flow experiment with optical tweezers [51].

Fluid passes over the polymer creating a force along the entire polymer. Integration

by parts gives an insightful formula for the potential, -F . foL(L- s)tzds. The

energy of the potential comes from a tension that scales linearly along the chain. The

tension is the greatest at the end tethered to the bead because the whole chain pulls

on this end, and it lessens further down the chain until it becomes zero at the free

end. For a strong flow, the polymer is almost completely extended in the z-direction,

and the components in the x and y directions are small perturbations of the linear

configuration. The energy of the WLC is approximately

E ~ o [A/2 t.2 + -(L- s)t,2] FL 2,/3E j A/21,9.ij_12 + 2L- s ,1 21 _ -yL 2 (7.2)
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where t is the transverse components of the tangent vector, the x and y directions,

and the component in the z direction is approximately t = 1 - Ii 2 [146]. The

action corresponds to a quantum harmonic oscillator with a linearly ramped spring

constant. The x and y components act independently and the partition function for

each component is Gaussian,

I )(t('Y)(s)) exp - 2t (s) ds lo2 ~ds
0

LL r ~ 2t(x Y) ()_jxY+ i; dsds'J(s ) {t t (8) ±'S'2 )Jo - (s')2 J d2 2 Sy~ LSt )f

Since the operator in the exponential is Hermitian, the Green's function for the av-

erage square of the transverse component, u(s, s') = (~xY)(s) Y)(s')), is a weighted

sum of eigenfunctions, G(s, s') = En Iun(s))A1(un(s') I, that satisfy the differential

equation

-A dnS2) + F~(L- s)un(s) = Anun(s) (7.3)

with the boundary conditions u (0) = u (L) = 0. The analytic solutions to the

equation are sums of Bessel functions. The rms of the traverse displacement is

Z/En All foL u(s)dsl2, which is shown in Fig. 7-1. Since (tz) z 1 - (((t()(s))2) +

((t)(s))2)) = 1 - EA 1u2(s), the average extension in the z-direction is approxi-

mately L - E A` foL dsu (s) = L- E A'. Since the eigenvalues change slowly with

the flow rate in the high stretching regime, the width and extension also change slowly.

The rms displacement displays a trumpet shape that is qualitatively similar to the

shapes observed in experiments, simulations, and other theories [51, 144, 148, 149].

Without the the large flow rate approximation, the action of the tangent vector

corresponds to the imaginary time Schrodinger equation for a rigid-rotor in a time

dependent potential,

----s) =[2A -+ F (L- s)cos(0) T(s). (7.4)
c9s [2A
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Figure 7-1: The root mean square displacement of the traverse component of the
polymer in a strong constant plug flow. The displacement is plotted as a function of
distance along the flow field. Note the resemblance to the trumpet shape observed in
experiment and simulation.

In this equation, L is the angular momentum operator, and cos(O) is the projection

of the tangent vector onto the direction of the flow field. This equation resembles the

constant force calculations with a simple time dependence (L - s) [146]. This equation

can be solved by using a spherical harmonic basis set and numerically propagating

the resulting matrix [146, 130]. The only difficulty is the initial condition of the

wave-function, for which we use results that are consistent with the high stretching

calculation above, t(O) = 1 and t(O) = t(0) = 0.

Fig. 7-2 compares the predictions of mean fractional extension versus flow rate for

the rotor Hamiltonian, the Monte Carlo simulation discussed below, the experimental

results of Perkins et al., and the Brownian dynamic simulations of Doyle [51, 139].

Since the experiment cannot determine the end-to-end distance, the fractional exten-

sion is the maximum distance between any points on the polymer contour compared

against the contour length. The flow rate is in a dimensionless form, Wi = rF/rp,

where rF is the characteristic time of the flow and -rp is the longest relaxation rate of

the free polymer, which is determined by equations in the references [139, 140, 141].
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Figure 7-2: Comparison of the constant plug flow experiment in Ref. 51, the path-
integral Monte Carlo simulation, the path-integral matrix multiplication method, and
the Brownian dynamics simulation reported in Ref. 139. Inset compares asymptotic
behavior of the simulations for large flow rates.

For elongational and shear flows, the dimensionless form corresponds to Weissenberg

numbers. Both simulations compare well with experiment. The mean extension ini-

tially increases rapidly with the flow rate. At about 60% of full extension, the rate

of increase in the extension slows to an asymptotic approach to full extension in the

large flow rate limit.

A slight discrepancy for moderate flow rates results from the initial condition,

which is correct in the strong stretching limit and is not important for weak flows.

Monte Carlo techniques correct the discrepancy, as would different initial conditions,

which are not done here to avoid additional fitting parameters. Although we do not

present these results since they appear elsewhere, the matrix multiplication method

exactly reproduces the constant force results of Bouchiat, which agrees with the ex-

periments of Bustamante, since no ambiguity about the initial conditions exists, and

the rigid rotor equation is the same [130, 133, 145, 146].
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7.3 Elongational Flow

The quantum rigid-rotor analogy extends to the elongational flow by changing the

form of the external potential to -F foL ds(z 2(s)- 1/2(x 2(s) +y 2 (s))), where F is the

flow rate over length. The potential depends on the position instead of the tangent

vector. Unless we know the starting position, which depends on the steady-state

distribution, we do not know R(s) and cannot predict the s dependence of the field.

To overcome the difficulties presented by this potential, we evaluate the path integral

using Monte Carlo techniques.

As a calibration, we analyze the constant plug flow experiment with Monte Carlo

and compare these results with our previous results. We discretized the polymer

into 844 segments, two segments per persistence length for a DNA chain that is

22.4 pm in length. The discretization captures the rigidity of the polymer without

incorporating phenomenological bending springs. The segments are fixed in length

and only the angles are varied. We fix one end of the polymer at the origin and

perform 12- 106 Monte Carlo steps with the potential energy defined above. The

Monte Carlo algorithm fits the experiment and Brownian dynamic simulation results

better than the matrix multiplication method, as shown in Fig. 7-2. These results

give us confidence in using this algorithm to evaluate more complicated flows.

Elongational flow corresponds to the experiments of Smith and Chu and of Perkins,

Smith, and Chu [50, 53]. In these experiments, the DNA is freely flowing with the

fluid. Since the forces caused by this flow are linear, we decompose the motion of the

polymer into center of mass and relative motion of the polymer segments. The Monte

Carlo procedure is the same as for the constant plug flow, except that the energy is

determined in the relative coordinate frame. Fig. 7-3 shows the fractional extension

results compared against the experimental results of Chu and the Brownian dynamic

simulations of Doyle [139].

Even for this more complicated flow, the fractional extensions predicted by both

of the simulations agree extremely well with the experimental results. The fractional

extension as a function of flow rate rises quickly to about 80% before a slow asymp-
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Figure 7-3: Comparison of the elongational flow experiment in Ref. 53, the path-
integral Monte Carlo simulation, and the Brownian dynamics simulation reported in
Ref. 139.

totic approach to full extension. In the strong flow limit, the Monte Carlo simulation

slightly overestimates the extension, as compared to the experiment and Brownian

dynamics simulation, but all three results agree extremely well for weak and moderate

flows. The agreement between the simulations and experiments for the constant plug

and elongational flows demonstrates that the Monte Carlo technique successfully re-

produces the results for potential flows and that the WLC model is a good description

of DNA and possibly other semi-flexible biological polymers in potential flows.

7.4 Shear Flow

Encouraged by the success of the path integral Monte Carlo method on potential

flows, we investigate the application of these methods to non-conservative flow fields

like shear flow. The simple shear flow also has an analogous rigid-rotor Hamiltonian

with an electrostatic potential U c -x z and a non-conservative B-field, x Y, where
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i is the position vector and 3' is the unit vector in the y direction. Similar to the

elongational flow, we avoid the difficulty of the position dependence by evaluating the

action with Monte Carlo.

The shear flow experiment that we analyze is similar to the elongational flow

experiment [54, 139]. The DNA freely flows with the fluid, and we calculate the

forces in the center of mass frame using the simple shear relations, Fz = F~x and Fz =

Fy = 0, where F is flow rate over length. Although shear flow is not a potential flow,

the fluid still performs work on the system, which allows us to define a local energy

change by integrating the force along the linear path connecting two configurations.

The probability of a transition occurring is proportional to the energy difference

in the local frame. Several authors used this approach to describe other polymer

systems in shear flows [150, 151, 152, 153]. Since the potential changes as the polymer

moves, detailed balance does not hold and the polymer rotates through space, but this

simulation can be viewed as a Glauber dynamics [154]. The Monte Carlo algorithm

for the shear flow follows the same steps as the constant plug flow and elongational

flow with the potential defined locally. A trajectory dependence exists, which may

require a larger number of simulation steps than the potential flows, but we still only

use 12.-106 Monte Carlo steps.

The force extension relations for shear flow are plotted in Fig. 7-4. As with the

potential flows, the path integral Monte Carlo method agrees extremely well with both

experiment and the Brownian dynamics simulation. Because we only used 12 106

Monte Carlo steps, some scatter in the data exists. We added a trend line in Fig. 7-4 to

help the eye follow the data. For weak shear rates there is a fast initial rise in the mean

extension. After the initial rise, the data quickly asymptotes to about 40% extension.

The small asymptotic value can be understood by examining the decomposition of

the shear flow field into an elongational part and a rotational part. At an angle of

about 7r/4 in the xz plane, the polymer gets stretched, but at -r/4 the polymer

gets compressed [54, 139, 155]. The rotational part moves the polymer between these

angles resulting in an averaging over these angles and a decreased total extension.

This cycling from the extended to the compressed states has been observed in the
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Figure 7-4: Comparison of the shear flow experiment in Ref. 54, the path-integral
Monte Carlo simulation, and the Brownian dynamics simulation reported in Ref. 139.
To aid the eye, the solid curve follows the trend of the Monte Carlo data.

experiment, the Brownian dynamics simulations, and our Monte Carlo simulations.

The correspondence shows that the Glauber dynamics of a Monte Carlo simulation

does capture some of the real dynamics of the system.

7.5 Summary and Conclusion

As demonstrated in this chapter, the WLC is a good model for DNA and possibly

other semi-flexible biopolymers. With a single fitting parameter, the friction constant,

which linearly scales the flow rate, the solution to the path integral quantitatively

agrees with experimental results for DNA subject to constant plug, elongational, and

shear flows. The model is based on physical principles without phenomenological force

extension relations. Although hydrodynamics are strictly dynamic phenomenon, time

averaged quantities are quasi-equilibrium phenomenon in an effective potential. This

description is possible because relaxation to the steady state distribution is fast and
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contributions from intra-chain hydrodynamics can often be neglected. The equilib-

rium partition function corresponds to an ensemble average, which demonstrates the

correspondence between time-averages of single molecule trajectories and ensemble

averages for ergodic systems. These techniques are computationally inexpensive since

we do not have to run many trajectories to average over initial distributions. This

path integral approach is applicable to other semi-flexible biopolymer systems.

210



Chapter 8

Non-perturbative vibrational

energy relaxation effects on

vibrational line shapes

8.1 introduction

Vibrational phase and energy relaxation of molecules in solution plays an essential

role in chemical and biological processes. The energy transfer in and out of vibra-

tional modes is closely related to reaction dynamics in condensed phases. To probe

the solute-solvent interactions, extensive experimental studies have been carried out

using time resolved laser spectroscopy, in particular ultrafast laser spectroscopy.[156,

157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167] Here we consider a simple

model of vibrational relaxation of a dilute diatomic solute in a solvent. For this

system, the Hamiltonian can be separated into solute, solvent, and solute-solvent

interaction contributions. The standard approach to vibrational phase and energy

relaxation is based on perturbation theory and the Fermi's golden rule. [168] In this

approach, the vibrational energy relaxation (VER) rate constant between a pair of

system eigenstates is proportional to the Fourier transform of the quantum force-

force correlation function calculated at the corresponding energy gap. In reality,
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the classical force correlation function from conventional MD simulations is often

used.[169, 170, 171, 172, 173, 174, 175, 176, 177, 178] This approach does not yield

quantitative agreement with experimental results although semi-empirical quantum

correction factors can significantly improve the agreement.[171, 173, 179] Another

standard approach uses a classical description of the solute oscillator and a general-

ized Langevin equation to describe the coupling of the vibration to the bath.[180, 181]

This approach is valid at high temperatures or at low frequencies. In the limit of

strong solute-solvent interactions, the contribution of the higher order perturbations

is crucial and these approaches break down.

Optical line shapes in condensed phases have been the subject of extensive ex-

perimental and theoretical studies. Kubo, Anderson and many others introduced the

stochastic line shape theory to study two-level electronic transitions.[182, 183, 184]

Modern femtosecond laser techniques can probe the intermolecular and intramolec-

ular vibrations directly. Spectral line shapes from nonlinear spectroscopy, such as

hole burning, photon-echo, pump-probe, provide important information of dynamical

processes in condensed phases. Mukamel and his coworkers introduced the Brownian

oscillator model to describe the coupling between a two-level system and a stochastic

bath. The theoretical formulation they developed have been applied to interpret a

wide range of spectroscopic experiments.[159, 160, 185, 186, 187, 188, 189] Recently,

Cho, Sung and Silbey have extended the Brownian oscillator model to a multi-level

system coupled to a bath with arbitrary time scales.[190, 191] Continuous efforts by

Hynes, Skinner, Stratt, and many others have been devoted to calculate the line shape

function using liquid theory and simulations.[170, 171, 172, 173, 175, 176, 177, 178]

Yet, these theoretical models consider pure dephasing without a full account of VER

contributions. Some recent studies include VER effects in the Markovian limit.

It is crucial to establish a reliable method that can accurately calculate vibrational

line shapes, and precisely predict the VER effects without the Gaussian Markovian

assumptions underlying the master equation approach.[192, 193] To address solute-

solvent interactions and maintain a quantum description, the vibrational degree of

freedom has to be treated exactly. In this chapter, we propose a non-perturbative
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approach based on the Feynman's path integral,[121] and systematically investigate

the VER effects in vibrational line shapes. In the non-perturbative approach, the

wavefunctions are propagated through the solute eigen-state space under the influ-

ence of the solvent. The wavefunction is then projected to the specified state using

the dipole operator, and computed signals of spectroscopic measurements are aver-

aged over all possible trajectories of bath fluctuations. For the dissipative harmonic

oscillator, the non-perturbative approach gives analytical expressions and quantifies

the errors introduced by different approximation schemes of VER. For the dissipa-

tive Morse potential, the non-perturbative approach demonstrates the VER effects

as a function of anharmonicity. The strength of dissipation and the anharmonicity

induced dephasing rate are derived in Appendix 8-A. In the present analysis, we

only consider the fundamental transition between the ground and the first excited

states. A different paper will discuss spectra of overtones and combinations in ABA

molecules. [194]

The non-perturbative formulation of quantum dynamics we propose makes a few

predictions relevant to experiments: (1) The non-Markovian effects of VER generate

asymmetric envelops in the temporal absorption profile, which are also manifested

as side bands in the absorption spectrum. (2) Non-perturbative calculations yield

non-Lorentzian peaks in absorption spectrum. The peaks are rationalized in terms of

the couplings of population relaxations from different vibrational states and provide

an alternative explanation of non-Lorentzian line shapes.[195] (3) Non-perturbative

VER effects lead to non-Lorentzian broadening along the diagonal direction in the

frequency domain photon echo spectra. This phenomenon is different from the pure

dephasing induced line broadening discussed in the literature. (4) Quantum baths

generate more coherence in the long time profile but have less effects on the short-

time profile. (5) For anharmonic oscillators, the absorption spectrum has asymmetric

central peaks, and the asymmetry increases with anharmonicity. (6) For O-H stretch

in D2 0 environments, non-Markovian VER effects generate a small recurrence in the

three-pulse photon echo peak shift (3PEPS).

The rest of the chapter is organized as follows. In Sec. 8.2, we discuss the non-
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perturbative and perturbative calculations of vibrational line shapes, including vi-

brational absorption, population relaxation, and photon echo. Using a perturbative

expansion, the solute-solvent interaction is decomposed into the diagonal and off-

diagonal components in the solute eigen-state space, which are responsible for phase

relaxation and population relaxation, respectively. In the limit of weak solute-solvent

interaction, the temporal absorption profile can be approximately factorized into the

population relaxation profile in pump-probe experiments and the pure dephasing pro-

file. The well-known relation for the dephasing rate, the population relaxation rate

and the pure dephasing rate is recovered under the Markovian approximation. In

Sec. 8.3, we apply both the perturbative and non-perturbative methods to a harmonic

oscillator linearly coupled to a Gaussian bath in the absence of pure dephasing. The

errors introduced by different approximation schemes are examined both analytically

and numerically. Non-Markovian VER effects generate asymmetric envelops in the

time domain absorption signal which are manifested as side bands in the frequency

domain spectrum. These side bands are solvent-induced multiple-photon transitions

and only present in the non-Markovian treatment. The non-perturbative VER effects

result in non-Lorentzian central peaks. In Sec. 8.4, we numerically investigate the an-

harmonic effects in a dissipative Morse oscillator spectra, which display as asymmetric

line shapes. The perturbation schemes neglect the cross terms of population relax-

ation and pure dephasing, and therefore deviate significantly from the exact results at

large anharmonicities. In Sec. 8.5, we examine the VER effects on three-pulse photon

echo peak shift (3PEPS) experiments in a hydrogen-bonded system. The nonlinear

3PEPS measurement is a sensitive probe of the non-Markovian VER effects. Numer-

ical calculations reveal a small recurrence at 200 fs, which cannot be reproduced by

the Markovian VER rate. Section 8.6 concludes our analysis.

8.2 General formalism

For chemical reactions occurring in solutions, solvent molecules play an essential role

in the dynamics of the solute. In the present chapter, we consider a solute molecule
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with one vibrational degree of freedom embedded in an environment of solvent atoms

or molecules. The complete Hamiltonian is

H=H + Hb+Vsb, (8.1)

where the vibrational mode is referred to as the system Hs, all the remaining degrees

of freedom are considered as the bath Hb, and the coupling between them is the

solute-solvent interaction Vsb. The system Hamiltonian is diagonalized by a set of

eigenstates In) with eigen-energies En. In the interaction picture, the solute-solvent

interaction becomes a time-dependent operator V(t) = ei(HS+Hb)tVsbe-i(Hs+Hb)t. The

central quantity in calculating vibrational spectra is the propagator given in the

interaction picture

(n G(t)In) = (nIe-iHt In) = e-iEnte-iHbt (Te ft V(r)dr)n, (8.2)

where T is the chronological ordering operator, and ( ... ),n = (nI -. In) stands for the

expectation value of the nth vibrational state. Unless specified, h is unity implicitly.

In the non-perturbative approach, the time-dependent solute-solvent interaction V(r)

is evaluated explicitly at every time step during the course of wave function propa-

gation. Here In) stands for the unperturbed system basis set while in real systems

the basis set is mixed with system-bath couplings. This mixing of wavefunctions is

inconsequential for the standard VER rate treatment, but has substantial effects on

non-perturbative VER treatment. In gas phase, only Av = 1 transition is allowed

for linear dipole operator if the system is initially in ground state. However, the

system-bath coupling modifies the dipole interaction operator in the system basis set

and induces multiple-photon transitions. As a result, the central peak in the ab-

sorption line shape is non-Lorentzian, and there are also solvent-induced side bands

corresponding to Av = 0, 2,
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8.2.1 Formal definitions of vibrational line shapes

The propagator in Eq. (8.2) is used to derive expressions of vibrational spectroscopic

measurements, in particular, absorption spectrum, pump-probe signals, and photon

echo. These expressions not only are useful for present analysis, but also provide

the basis for more reliable numerical simulations. We will demonstrate the latter

aspect in future publications. Here we assume that each application of the laser field

results in one vibrational transition, so that the excitation pathway can be established

unambiguously.

Absorption spectrum

Among vibrational spectroscopic measurements, absorption is one of the most impor-

tant probes of relaxation. The time-domain absorption amplitude is defined as

Aab8(t) = E((n + 11G(t)n + l)pn(nlG(t)ln)t)b = PnAn,n+l,ab.(t), (8.3)
n n

where (--)b represents the thermal average over the bath degrees of freedom and

En is the sum over the solute vibrational degree of freedom. Initially the bath is

in thermal equilibrium. The real part of the absorption amplitude is related to the

free-induction decay (FID) signal, and the Fourier transform of absorption amplitude

yields the absorption spectrum,

Aabs(W) = Re Aabs(t)eiwtdt, (8.4)

which can be measured by the Fourier transformed IR spectroscopy (FT-IR).

Pump-probe signal

In a pump-probe experiment, one molecule is excited vibrationally and the subsequent

vibrational relaxation transfers vibrational energy to other degrees of freedom of the

original excited molecule and its neighboring molecules. Here we treat the population
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transfer from the nth to n+lth vibrational states. The pump-probe signal is given as

Ip = Zpn(l(n+ 11G(t)n + 1)12)b. (8.5)
n

For later applications, we also write the pump-probe signal as Ipp(t) = E>n pIn+l,pop(t)

with I.,pop the population relaxation profile defined as

In,pp(t) = ((nIG(t)ln)1 2)b (8.6)

The Infrared-Raman technique developed by Laubereau and Kaiser,[156] which uses

resonant vibrational pumping by a tunable mid-IR pulse and a subsequent probe by

an incoherent anti-Stokes Raman, provides a powerful tool to study VER. Recently

advances in ultrafast laser technology allows the IR technique to reach its full po-

tential. Yet, it is important to note that the anti-Stokes Raman spectra also include

other excitations generated by vibration-rotation couplings not included in our model.

Photon echo

The photon echo measurement is a sensitive probe of homogeneous dephasing and

an important example of nonlinear spectroscopy. In two-pulse photon echo (2PE)

experiments, two coherent laser pulses interact with a sample at a well-controlled

time separation. The first pulse creates a coherent ensemble of atomic or molecular

polarization, which dephases during the waiting time interval. The second pulse

partially rephases the lost coherence and creates an echo signal. The simple version

of a photon-echo experiment is a resonant third-order process with zero intermediate

waiting time. The three pulse photon echo (3PE) measurement with a finite waiting

time is discussed later in Sec. 8.5. Let us assume that the spectral resolution is

sufficiently high to resolve all the possible excitation pathways in a molecular system.

For the purpose of demonstration, we consider a simple excitation pathway, pn -
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Pn+l,n "+ Pn,n+1 - Pnn, which is described by

Aecho(tl t2) = ((nle-iHt2 In)(n + eHtl I + 1)(nIe-Htl n)t(n+ le-iHt2 Iln+ 1)t)b. (8.7)

By carrying out a series of detection experiments, one can obtain the real part, the

imaginary part, or the amplitude of Aecho(tl, t2) in Eq. (8.7), respectively.

Path integral evaluation

The expressions of the vibrational spectroscopic measurements provide the basis for

numerical evaluations. In these calculations, we generate time trajectories of system-

bath interaction V(t), and evaluate the propagator G(t) along each trajectory. Then,

we calculate the spectroscopic signals and average over all the trajectories. For a clas-

sical bath, one can exactly simulate the bath degree of freedom using conventional

molecule dynamics techniques, generate a time-dependent force through the system-

bath coupling, and propagate the quantum vibrational degree of freedom exactly. Due

to the intrinsic complexity of quantum baths, an exact simulation of the bath modes

is not yet available.[196] But for vibrational line shapes, as shown later, a quantum

representation of bath degrees of freedom is not necessary at room temperatures.

Hence, we can propagate quantum vibrational degree of freedom under classical force

of the bath. Another technique, the surface hopping method, is used widely to treat

a classical anharmonic bath coupled to a quantum system. [197, 198, 199, 200, 201] In

the present chapter we focus on a Gaussian bath linearly coupled to the system. Lin-

earized dissipative models have been applied extensively to study dynamic processes

in condensed phases, including activated dynamics, electron and proton transfer, dif-

fusion, and vibrational energy relaxation. For a Gaussian bath, several numerical

techniques can be applied:

1. For a Uhlenbeck process, the force-force correlation function is exponential,

i. e., C(t) = (6f 2 )be - 't. The propagation of random force is a Markovian

process satisfying Gf (f, t f', t') = f_°e Gf(f, tlf", t")Gf(f", t"lf', t')df", where
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the Green's function of random force is a Gaussian distribution,

Gf(f, tlf', t') = [2r(6f2)b(1- e27(t-t'))]-1/2exp (f - f e. )) (88)M1 ~~~2(6 f2)b(1 - 2ytt)

The equilibrium distribution of the random force is Peq(f) = [27r(6f2 )b]- 1/ 2 .

exp[-f 2 /2(6f 2)b], assuming that the random force has a zero mean. With the

Markovian property, one can generate a number of random force trajectories by

first generating f(to) from the equilibrium distribution and then using Eq. (8.8)

to generate the random forces at subsequent time steps. The quantum system

of vibrational degrees of freedom is propagated along each trajectory, and vibra-

tional line shapes are calculated exactly. The bath average is obtained through

an average over all the trajectories.

2. For a set of linearly coupled harmonic oscillators, one can always identify the

normal coordinates of the bath through an orthogonal transform, and each nor-

mal mode is a Uhlenbeck process. For example, we use bi-exponential friction

kernel in the O-H relaxation. Hence, one can first generate the normal coor-

dinates using the method in (1) and then generate the bath modes using the

orthogonal transform.

3. For a quantum Gaussian bath, integration of the bath modes leads to influence

functionals which couples the system variables at different times. As a numer-

ical technique, the influence functional formalism[202] becomes tedious when

multiple excitations are involved. As an alternative, the method proposed by

Cao, Ungar, and Voth[203] samples the Gaussian random force directly with-

out introducing the influence functional formalism, and propagates the system

under the influence of quantum forces. This method is particularly adequate

for complicated multiple-time propagation of a vibrational system.
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8.2.2 Perturbative expressions: Factorization and cumulant

expansion

Factorization

In the perturbative approach, we decompose the system-bath coupling V(t) into the

diagonal and the off-diagonal operators in the vibrational eigen space, giving

VD(t) = E(V(t))n n)(n and VoD(t) = V(t) - VD(t) (8.9)
n

The corresponding propagator can be written as

(nIG(t) In) e-iEnte-iHbt(nei'to VD(T)dT Te-if VoD(T)dTIrIn)

= e-iEnte-iHbt-Te-ift(VD(r))ndr (Te-iftVoD(r)dT)n. (8.10)

In Eq. (8.10), we decompose the exponential function of two time-dependent operators

into the product of the two corresponding exponentials, which is valid only if VD(t) and

VoD(t) commute. The approximation neglects the contribution from [VD(t), VoD(t)],

which is generally nonzero for anharmonic potentials. In Sec. 8.4 we demonstrate

quantitatively that [VD(t), VoD(t)] increases with anharmonicity and results in large

deviations between the perturbative and the exact results.

We now apply the decomposition in Eq. (8.10) to the vibrational line shapes in

Sec. 8.2.1 and derive the perturbative expressions for the temporal absorption profile,

population relaxation profile and photon echo. The absorption amplitude in Eq. (8.3)

can be rewritten as

Ann+1,abs (t) e-in,n+lt(e-i tWn,n+l (r)dT (Te-i ft VoD(r)dT)+ (Te-i f VOD()drT)f)b

_eiQnn+lt(Te-if Wnn+1(T)dT)b ( t(e- VOD(T)dT) n)b

((Te-if VO D(C)dT)n4b (8.11)

where nn En+-Eb is the frequency gap and (t) = VD(t)) -(VD(t))

where fn,n+~ = En+ 1- En is the frequency gap and Lwn,+ (t = (VD (t) n+ I- (VD t) *
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is the diagonal frequency difference induced by the solute-solvent interaction. In

Eq. (8.11), we first decouple the bath averages of the diagonal and the off-diagonal

parts, then perform the bath average on each propagator separately. As discussed

in Eq. (8.10), the first approximation neglects the commutator between VD(t) and

VoD(t'). The second approximation neglects the cross terms between the propagators,

and is correct only for weak solute-solvent interactions.

With the propagator in Eq. (8.10), the population relaxation profile in Eq. (8.6)

reduces to

I~~~~~~~~ () (|n| e- OVD (r) d-r In) 12 ) l n|e-i fO VOD ()d |In) ) b ((nl|e-if- rOVD (r)d-r |n)'t) b

= (nI(e ifoD()db)bIn) (8.12)

Comparing the above equation with Eq. (8.11), we realize that

An,n+1,ab, (t) eiQnn+1t I n po p( t ) n+, po p( t)A nn +l dep (t) (8.13)

where Ann+l,dep(t) = (exp[-i fo wn,n+l(T)dr])b is the contribution from pure dephas-

ing. Eq. (8.13) demonstrates that temporal absorption profile can be approximately

factorized into the population relaxation profile and the pure dephasing profile. As

a result, the off-diagonal part of the interaction, VOD(t), contributes to population

relaxation, and the diagonal part of the interaction, VD(t), contributes to pure de-

phasing.

Inserting Eq. (8.10) into the photon echo expression defined in Eq. (8.7) and

following the same factorization scheme as Eq. (8.11), we arrive at

(&ft VOD(t)dT) (f '-)d- VoD(T)dT w,)t (Tr)d -i2 VOD(t)dT o)t ] )Aecho(tl, t2) ~ eif~nn+((t2-t1)(([e Ten fd) (8.14)

£tl~~~~~~~~fl+t2t2-~
r:m eifn,n+l(t2-t1)(eifql +wnn+l(r)d--i folnn+l(r)dr)b

·(e i rt+t 2 . rd tl1

( {--i jh VoD()d)n} )( (e- iflft VOD(r)dr) ) '((e-'frO V0D(r)dT)n)t ((e-'ri 2 VD(T~T n+ (8.14)
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where the photon echo signal is also decomposed into the population relaxation con-

tribution from the off-diagonal interaction and the pure dephasing contribution from

the diagonal interaction.

second-order cumulant expansion

To further simplify the analysis, we truncate the solute-solvent interaction to second

order of bath fluctuation, which is valid for weak solute-solvent interactions or fast

bath relaxations. First, the temporal profile for population relaxation from the nth

vibrational state is approximated by taking the bath average (. ')b for each propagator

in Eq. (8.12) separately, giving

I~~~~~~~~In,pop(t) ~ <nl~e- iJ vD()d)bln )| | exp[-hn(t)][ 2 (8.15)

where h.(t) = f fo (n (VoD(tl)VoD(t2))blIn)dtldt2 characterizes the population relax-

ation from the nth vibrational state. The last approximation switches the exponential

function and quantum expectation value after invoking the cumulant expansion, and

assumes a diagonal form of (VoD(tl)VoD(t2))b while neglecting its off-diagonal ele-

ments.

Similarly, application of the second order cumulant expansion to the pure dephas-

ing profile leads to

t
An,n+l,dep(t) = (exp[-i Wn,n+l(r)d])b - exp[-i(wn,n+l)bt - g(t)] (8.16)

where g(t) = fo fo(6wn,n+l(tl)6wn,n+l(t 2))bdtldt 2 is the line shape function, and

(wn,n+l1)b is the Stokes shift. Combining the population relaxation profile and the

pure dephasing signal, the absorption amplitude in Eq. (8.11) reduces to

An,n+l,abs(t) - e-ifnn+lt exp[-i(W,+l)bt - g(t) - h*(t) - hn+l(t)]. (8.17)
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The 2PE signal in Eq. (8.14) after the second-order cumulant expansion becomes

Aecho(t1, t 2 ) - ei~n,n+l(t2-tl) expi(wn,n+l)b(t2 - 1)]

x exp[-2g*(tl) - g(t 2) - g*(t 2) + g*(t1 + t2)]

x exp[-hn+1(tl) - hn(t 2) - h*(t1) - h+1 (t2)]. (8.18)

In the limit h(t) - 0, equation (8.18) reduces to the well-known 2PE expression

for a two-level system.[159] A generalization of Eq. (8.18) to an arbitrary number

of vibrational states in the limit of hn(t) - 0 was recently proposed by Sung and

Silbey. [191] Their treatment includes diagonal matrix elements only while VER effects

are absent.

In many cases, composite approximation schemes are adopted to explain the vi-

brational measurements. The decomposition relation in Eq. (8.13) and the second

order cumulant expansion yield,

An,n+l,abs(t) (Inpop(t)In+lpop(t)) 1/ 2 exp[-ifn,n+lt - i(wn,n+l)bt- g(t)]. (8.19)

The advantage of this decomposition is that the population relaxation profile is mea-

sured from pump-probe experiments and contains non-perturbative information of

VER. As we will demonstrate later that the decomposition yields results close to non-

perturbative calculations, accurately reproducing the short time oscillations. But this

approximation neglects the cross terms between the population relaxations from the

nth and the n+lth states and the coupling between population relaxation and pure

dephasing, and does not contain any phase information of VER. Because of these

approximations, equation (8.19) cannot reproduce asymmetric absorption spectra for

anharmonic systems.

8.2.3 Markovian approximation

The essence of Markovian approximation is that the relaxation of the vibrational

degree of freedom is much slower than the relaxation of bath modes. Under the
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Markovian limit, the line shape function and the population relaxation exponent are

linearly increasing with time, i. e.,

g(t) r,+ 1 t, and h(t) F - t (8.20)
n ~~~~2

where r,+ = f1 (6wn,n+l(t)6wn,n+l())bdt and rF = 2 fo (nl(VoD(r)VOD(O))bIn)dr

are usually complex, with the real part being the population relaxation rate and the

imaginary part being the frequency shift. Consequently, the population relaxation

profile is approximated by an exponential function I,pop(t) exp[-R(rn)t], and

the pure dephasing profile becomes An,n+,dep(t) ~ exp[-rFnn+1 t- i(wn,n+l)bt] In

Eq. (8.17), the absorption profile is approximated by Ann+l,ab(t) exp[-in,n+l -

i(W.,n+l)bt-rn,n+1t] with rn,n+l = ( + rn+l)/2 + r,+ Thus, the time dependent

expression of Eq. (8.13) recovers the well-known relation,

k + kn+l
knn+l = 2 + k (8.21)

2 n~+ k 1,+l

kn = R(Fn) is the population relaxation rate, k'+l = R(P~,.+) is the pure de-

phasing rate, and k,n+l = R(Frn,n+l) is the dephasing rate. Under the Markovian

approximation, the photon echo signal is readily simplified as

Aeho(tl, t2) e fl n n + l(t2- t1) exp [-i(Uwn,n+l)b(t2- t) r,+2 n,n+ t]
rn+1~ ~ + r+l r ]x exp n±12+lti _ + n+ t - (8.22)

-2 2

Considering that pure dephasing in anharmonic potentials is much faster than pop-

ulation relaxation, we can approximate the population relaxation with the Markovian

rate and the pure dephasing signal with second-order cumulant expansion,

An,n+l,abs(t) - e- i f nn'+ l t exp[-i(w,n+l)bt - g(t) - t- 2
1t]. (8.23)

2 2

For the dissipative harmonic oscillator discussed later in Sec. 8.4, the diagonal cou-

plings are zero and An,n+l,dep(t) = 1, and equation (8.23) becomes identical to the
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Markovian approximation. For a dissipative Morse potential in Sec. 8.5, the de-

viations of Eqs. (8.19) and (8.23) from the non-perturbative results increase with

anharmonicity.

8.2.4 Inconsistency of the Markovian rate approximation of

VER

Let us now discuss the physical meaning of h~(t). Usually the solvent relaxation rate

y, the VER rate, pure dephasing rate, and the vibrational frequency satisfy >n,n+l>

knn+l > k > -y. The population relaxation process occurs through the resonance

between the vibrational frequency and the bath spectrum while the dephasing rate

corresponds to the bath spectrum at zero frequency. Given the fact that 7y < Qn,n+

vibrational relaxation is much slower than pure dephasing, hence kn n+1 kn and

the line shapes are usually dominated by pure dephasing. In this case, vibrational

relaxation is either ignored or approximated with a Markovian rate. However, this

argument is not self-consistent because the Markovian rate approximation is only

valid at sufficient long time while the vibrational line shape generally depends on the

full time history of the off-diagonal contribution.

To illustrate this point, we consider a linear system-bath coupling, f(t)q, which

will be further investigated in later sections. The second order cumulant expansion

gives

(S f2 bq;,, t
hn(t) = E 'm (t - r)e-t cos QmnTrdT (8.24)

h2 JmAn

In the limit of a fast bath, hn(t) - yt(mn(6 f
2 )bq2m/h 2qmn) and yields a Marko-

vian rate. In the limit of a frozen bath - 0, h(t) Emon(jf 2)bqnm(1-

cos mnt)/h 2Qn, which leads to side bands with Aw = fmn around the central

peak in the vibrational line shapes. As we mentioned in Sec. 8.2, the side bands are

induced by the system-bath coupling. Apparently hn(t) is intrinsically oscillatory over

the complete time domain while the Markovian approximation implies hn(t) -+ 0 and
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kn -+ 0, which is obviously inadequate to describe the VER contribution. The slow

bath assumption renders the Markovian description of the VER effects inadequate.

8.3 Analytical solutions of dissipative harmonic os-

cillator

For the purpose of illustration, we first model the vibrational degree of freedom as a

harmonic oscillator linearly coupled to a classical bath. The classical bath assumption

is often adopted because one can always separate the degrees of freedom into those

with low frequencies hw < kBT, which may be treated classically as the bath, and

those with high frequencies hw > kBT, which must be treated quantum mechanically

as the system. The Hamiltonian is thus given by

2 22
H = 2 + 2q + f(t)q, (8.25)

where f(t) is a Gaussian random force resulting from the bath degree of freedom. The

bath relaxation is described by the friction kernel Cd(t) = (f (t)Jf(O))b, where the

subscript represents a classical bath. Quantum effects of the Gaussian bath are dis-

cussed in Sec. 8.3.5. In numerical calculations, we assume an exponentially decaying

friction kernel, Cd1(t) = (f 2 )b exp[--yt]. (6f 2 )b is the mean square fluctuation of the

random force and is a probe of the average strength of the solute-solvent interaction.

The linear solute-solvent coupling here has no diagonal contribution; thus, there is

no pure dephasing contribution and all the vibrational line shapes are generated by

VER. The analytical solutions offer us a good benchmark of the accuracies of various

approximations.
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8.3.1 Exact path integral calculation

Now we discuss the exact calculations of the vibrational line shapes defined in Sec. 8.2.

The propagator of the forced harmonic oscillator is[121]

G(q2, t;q, 0) -= exp{ 2sinwot [(q2 + q) coswot-2qlq 21}~~~2ih sin w ot 2 si1o

exp {-2hsnwot [/ f f(-) sin wo(t- r)dT + to fo f (r) sin wordr] }
exp {-2hsinWo [ _ 2 fff ('r)f(r') sin wo(t- r) sin wor'd-dT'] }. (8.26)

~~2The transin ot y
The transition moments between a pair of vibrational eigenstates are given by

Gmn(t)

(t)

Ioo ro= ekEmt j m(q2)G(q2, t;ql,O)0n(ql)dqldq2
-00 -00

Goo(t) (-1)m+nm!n _

Go ( I (m - r!n)! (i)n-r(i<)m-r' with 1 max~m, n},

- 1/2A f(r) e xp[-iwor]dr-,
1 t

-- v/2/~oh. f(r) exp[iwor]dr. (8.27)

In Eq. (8.27), n(q) is the nth eigenfunction and , (' are incomplete Fourier trans-

forms of the random force at the fundamental frequency. The diagonal transition

moment Goo(t) for the ground state is given by Goo(t) = exp[-((t)('(t)]. For the rest

of this chapter, we only consider the fundamental transition between the ground state

Ig) = 10) and the first excited state e) = 1) unless specified otherwise. A different

paper will discuss spectra of overtones and combinations in ABA molecules. [194] The

absorption amplitude for g) -- le) is thus Age,abs(t) = ((ele-Htle)(gle-iHtg)t)b. We

apply Eq. (8.27) twice for m = n = 0 and m = n = 1, respectively, and obtain the ab-

sorption amplitude Age,abs(t) = e-iwot(1 + O)z=l1(exp[-Z((t)((t)])b. For a Gaussian

bath, the average can be directly calculated with the cumulant expansion, giving

Age,abs (t)

where aoij (t)

= e-iwot [1 + 2(.ll + a 22 ) + 4(a1 1a 22 - a122 )]-3/2 (1 + atll + -22)

I t r T
= oo (f(T)f(r'))bOi(T)¢j( r')d-d-', i, j E {1, 2}. (8.28)
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+1, (r) and '2(T) are short-hand notations for cos wor and sin wo0r, respectively. Given

the exponential friction kernel, aij(t) can be evaluated explicitly. We find that

the envelop of Age,abs(t) exhibits a power-law decay in the long time limit, i. e.

Age,abs(t) z e-i°t(1 + Fget/2)-2., with Fge equal to the dephasing rate defined later

in the Markovian limit (see Sec. 8.3.3).

We use the transition amplitudes in Eq. (8.27) to evaluate the population re-

laxation signal in pump-probe experiments I,po,(t) analytically. For instance, the

population relaxation profiles for the ground and the first excited states are:

Igpop(t) = [1 + 2(all + a 22) + 4(aiai22- a12)]- 1/ 2

and Ie,pop(t) = [1 + 2(all + a 2 2) + 4(t 1 1 a 22 - 2)] 5 /2

[1 + 2(c 11 + a 22) + 3(a11 + a 2 2 ) - 4(al1 1 a 22 - a12 )

+8(all + a 22)(a11a 22 - a 2 ) + 16(a11a22 - a 2)2]. (8.29)

In the long time limit, it is straightforward to show that both Ig,pop and I,pop decays

as t 1 .

In the absence of pure dephasing, the decomposition relation Eq. (8.13) becomes

fAn,n+,abs(t)12 ~ npop(t)rn+x,pp(t), which is obtained under the weak coupling as-

sumption. To explicitly check its validity, we compare the decomposition relation

with the exact results from the path integral calculations. To be specific, we expand

Eqs. (8.28) and (8.29) in orders of ( 6
f

2
)b,

IAge,abs(t)l2 1 - 4(au + a 22 ) + 13(all + a 22 )2

-12( 22 - a12) + O((6f1)b),

Ig,pop(t)Ie,pop(t) 1 - 4(all + a 22) + 15 (anl + a 22) 2

-16(ajla 22 - at2 ) + O((6f 6 )b). (8.30)

These two quantities are equal only up to first order in (
6

f
2

)b. For a harmonic oscil-

lator linearly coupled to a classical bath, the diagonal coupling VD(t) is zero; hence,

the only approximation introduced in Eq. (8.11) is the independent bath average for
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each propagator. The difference 2(a 1l + a2 + 2a22) between the two expressions in

Eq. (8.30) is a quantitative measure of this assumption. The positive definite differ-

ence indicates that the decomposition relation over-estimates the absorption profile

in the second order of ( 6 f 2 )b.

The transition moments in Eq. (8.27) allow us to calculate the exact two-pulse

photon echo (2PE) signal in Eq. (8.7) as

Aecho(tl,t 2 ) -= eiwo(t2-t1)(1 + azl)l 1=1(1 + Oz2)Iz2=l[detM(zi, Z2 )]-1 2 (8.31)

where the matrix M(zl, z 2) is

1 + 2ziall (tl, t) 2ZICa12(tl, tl) 2Vzz-cell(t1,t 2) 2za12(tl,t2)

2Zja 12 (t 1 , t1) 1 + 2Z1 C 22 (ti, t1 ) 2V/ZC 1 2 (t 2 , tl) 2V/ ca22(t1, t2)

28j/T11(t, t 2 ) 2 /- 12 (t 2 , tl) 1 + 2z 2a1 j(t 2, t 2 ) 2Z2 C12 (t 2, t 2 )

2 Vz a12 (tl, t 2 ) 2V/z ! 2 2 (t1 , t 2 ) 2z 2ae1 2 (t2 , t 2) 1 + 2Z2 a 22 (t 2 , t 2 )

, (8.32)

with !ij(tl, t2) = [2pwh] - 1 ftl fo2 ((T)f(T'))bf'i()j(r')dTdr' is defined similarly as

in Eq. (8.28).

8.3.2 Perturbation

We now investigate the perturbation method. The diagonal matrix element of the

propagator is given by

(ne-iHtIn) -= e-iwnt (nITexp[-i f(T)q(T)dr] In), (8.33)

where q(t) is the time-dependent position operator in the interaction picture. We

note that, because of VD(t) = 0, the factorization in Eq. (8.10) becomes exact. We

first neglect the cross terms between propagators and perform the bath average over

each propagator separately, giving

An,n+,abs (t) : e-i°t ((n + 1 ITe- o f ()q()dr In + 1))b((nlTe-' f f (r)q(r)dr [n))'. (8.34)
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Next, we exchange the order of the bath average and the expectation value over

vibrational states, and perform the second order cumulant expansion for the Gaussian

bath,

An,n+l,abs(t) e-"'°t(n+ llexp [-- j q()q(r')(f(r)f(T'))bdTdTr' In+ 1)

x(nj exp [- jfo q(T)q( T')(f(T)f ('))bdTdr'] In). (8.35)

Finally, we take the expectation value of the exponent, which is only accurate when

the exponent is diagonal, giving

An,n+l,abs(t) e-Wot exp[-hn+l(t)- h;(t)], (8.36)

where h.(t) = f fo(f(T)f('))b(nlq(T)q(T-')In) characterizes the population relax-

ation process from the nth vibrational state. For a harmonic oscillator, hn(t) can be

evaluated explicitly to be lhwoh.(t) = 2(n + 1/2) fo dT fo d'(f (T)f(r'))bcoswo(r -

T'). Particularly by setting n = 0 in this expression, we obtain the second order

cumulant expansion result for Age,abs(t)

Age,abs(t) e t exp[-2(a 1 (t) + 3 22 (t))], (8.37)

where all (t) and a 22 (t) are defined in Eq. (8.28).

Compared to the exact path integral expression, the second order cumulant ex-

pansion is accurate up to first order in the bath fluctuation ( 6 f 2 )b. The essential

difference is the absence of the cross term a 1 2 in the second order cumulant expres-

sion result. To facilitate the comparison with the exact expression, we expand the

square of Eq. (8.37) to second order, giving

[Age,absl2 = 1 - 4(a11 + ac2 2 ) + 8(cll + a2 2 )2 + O((6f 6)b). (8.38)

The overall deviation from the exact result is 5(a1 1 + a22)2 - 12(ana22- a22), which

is a combination of all the approximations in Eqs. (8.34-8.36). It is readily shown
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that this difference is positive definite, indicating that the second order cumulant

expansion always under-estimates the absorption profile.

Applying the approximations in Eqs. (8.34-8.36) to Eq. (8.6), the population

relaxation profile discussed in Sec. 8.2.1 is I,,pop(t) I exp[-h,(t)]l 2. Setting n =

0 and n = 1, we obtain the second order cumulant expansion of the population

relaxation at the ground and the first excited states, respectively,

Igpop(t) ~ exp[-(a 1 1 (t) + a 22(t))] and I,,,pop(t) ~ exp[-3(a 1 1 (t) + a22 (t))].(8.39)

Combination of these two expressions leads to Eq. (8.37). These perturbative ex-

pressions, which neglect the cross terms among propagators and invoke separate bath

averages of propagators, differ from the exact results in Eq. (8.29).

Similarly, the photon echo signal from the second order cumulant expansion can

be derived as

Aecho(tl, t2) eiwO(t2- t l) exp[-2(all(t 1 ) + a 22 (t1 ) + all(t2) + a 22(t 2))], (8.40)

where there is no contribution from pure dephasing. Again, this expression gives the

correct expansion up to first order in bath fluctuations, thus is only applicable to

weak solute-solvent interactions.

8.3.3 Markovian approximation

Under the Markovian approximation, the population relaxation profiles are given by

Inpop(t) exp[-R(Fr,)t]. For the dissipative harmonic oscillator, Fn is given as

rn = 2 (n(VOD(t)VoD(0))bln)dt

= 2 j (f(t)f(O))b(e-Wotq2n+ 1 + eiwotq2 )dt (8.41)

where qn,n+l = qn+l,n = (n + 1)h/2pwo is the off-diagonal element of the position

operator. In this limit, we readily work out the two population relaxation rates from
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the ground state and the first excited state, respectively, yielding

Fgk -~y (6 f 2)b Pek-y 3(6f 2)b 8.2
= 9 0 + 7y2 o X re = ke 3(5f)b (8.42)

gkgw 2+-y 2 /~0hw' w02+7 2 /uhw0

Then, the average population relaxation rate is kge = (kg+ke)/2. It is straightforward

to obtain the absorption profile and the echo signal at the Markovian limit

Age,abs(t) e-iw°texp[- rg + re t]
2

(t2 ~ F( 6 f 2 )b -y(tl + t2) 1
Aecho(tl,t 2) eiwo(t2-tl) exp [ f)b 7(tL + t2)] (8.43)

/phwo Wo+ 7

8.3.4 Numerical results and discussions

To demonstrate the differences between the non-perturbative and perturbative ap-

proaches, we calculate the vibrational line shapes for a dissipative harmonic oscillator

described by the Hamiltonian in Eq. (8.25). The results are plotted in Fig. 8-1, 8-2

and 8-3. To facilitate the comparison with the Morse potential discussed in Sec. 8.4,

we take the same frequency in reduced unit, wo = 120, and the same effective mass

in reduced unit, p = 0.5, which were used in simulations by Tuckerman, Bader and

Berne.[180, 181] The effective h is 0.029534. The friction kernel of the bath fluctua-

tion is assumed to be single exponential, i. e., (6f(t)3f(O)) = (6f 2)bexp[-yIt], which

is a simplified description of environmental fluctuations. The decay rate -y = 10 is

1/12 of the reduced frequency and the mean square fluctuation of the random force

is (6f 2) = 0.3phw3.

Non-Markovian effects of VER

In Fig. 8-1, we illustrate the absorption profile Age,abs(t) and its Fourier transforms

Age,abs(W) = Re fo eiwtAgebs(t)dt from the path integral method in Eq. (8.28), the

second order cumulant expansion in Eq. (8.37), and the Markovian approximation

in Eq. (8.43). As indicated in Sec. 8.3.2, the perturbative and the exact results are

identical up to first order in the bath fluctuation (6 f 2)b. The perturbative approach
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Figure 8-1: Comparison of the temporal absorption profile of the dissipative harmonic
oscillator calculated with the exact path integral expression in Eq. (8.28) (solid line),
the second order cumulant expansion in Eq. (8.37) (dashed line), and the Markovian
approximation in Eq. (8.43) (dotted line). The corresponding frequency domain line
shapes are given in the lower panel (b) with the details of the central peak in the
inset. The parameters are w0 = 120, 'y = 10, and (f 2)b = 0.3p1 hw.
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Figure 8-2: Examination of the decomposition relation given by Eq. (8.13) for the
dissipative harmonic oscillator. The exact results, the cumulant expansion, and the
Markovian approximation of the VER signal Igpopepop are shown in the inset. The
parameters are the same as in Fig. 8-1. For a linearly coupled harmonic oscillator,
there is no pure dephasing, Age,dep(t)12 = 1.

only provides qualitative agreements and does not reproduce the line shape quantita-

tively. The Markovian approximation only captures the overall decay of the absorp-

tion profile. In the long time limit, both perturbation and Markovian approximation

yield exponential decaying envelops for the absorption amplitude with the decay rate

kge = (kg + ke)/ 2 , whereas the exact result gives a power-law decaying envelop of t - 2

(see Sec. 8.3.1). Hence, the exact result is more coherent than the perturbative and

the Markovian approximations. This difference becomes more prominent for stronger

solute-solvent interactions.

As shown in Fig. 8-1, both the non-perturbative and the second order cumulant

expansion results have asymmetric envelops while the Markovian result is symmetric.

This non-Markovian effect is an important feature of VER effects. To illustrate

this point, we examine the seconder order cumulant expansion expression for the

population relaxation in Eq. (8.39). The exponent of the population relaxation profile
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is an incomplete Fourier transform of the friction kernel at the fundamental frequency,

giving 2(all(t) + Ce22(t)) -2/o ( a) +() 2- 72 _2ptwoh (W 2+ 2
)2 2 + .y 2

(Wo2 - 92) cos Wot - 2wo7 sin woteVt ] (8.44)

(W 2 + 72)2

Equation (8.44) is intrinsically oscillatory with the fundamental frequency w0. As a

result, the absorption amplitude is smaller on the negative side than on the positive

side, generating an asymmetric temporal profile. Under the Markovian approxima-

tion, the exponent is simplified to be linear in time. Then, the oscillatory feature is

completely removed, yielding a symmetric profile. Apparently the exponent is pro-

portional to the mean square fluctuation of the bath, ( 6 f 2 )b, and the asymmetry is

more prominent for stronger solute-solvent interactions.

The asymmetric feature is also demonstrated in the Fourier spectrum. The ex-

act and the second order cumulant expansion results show small side bands at zero

frequency and the second harmonic frequency while the Markovian approximation

is a perfect Lorentzian. These side bands are generated by the oscillations in the

exponent. To illustrate this point, we further expand the perturbative expression of

Eq. (8.37), yielding

Aa,,(t) e-iwo ex _2(6f 2)b(Wo2 - 72) r + et (l)n
ge,abst e ep -swoh(Wo

2 + 72)2 ] 2 ( n/.IWO 0 2 nn!

( (f2)b + 72) t 2t (
pWoh(w- +7 2 )2 e [(-wo2+ 2 ) cosw ot - 27wyo sinwot] (8.45)

After collecting the Fourier components at zero, the first and the second harmonic

frequencies, we identify several features in the absorption line shape:

1. The central peak at w0 is a Lorentzian with width equal to the dephasing rate

kge.

2. The peaks at w = 0 and 2o are slightly asymmetric with width kge + y.
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3. In the limit wo > -y, the ratio of the peak at 2wo (or zero frequency) to the major

peak at w0 is directly proportional to the dimensionless bath fluctuations,

A(2wo) A(O) (6f 2 )b kge (8.46)
- ~ = . ~~~~~~~~(8.46)

A(wo) A(wo) 1 hw kge + y

The Markovian approximation neglects the constant term -2(f 2)b(w -_y2 )/Pwoh(w2+

2 )2 in the exponent and generates a higher peak at w = wo than the second order

cumulant expansion. The quantitative relations in (1) and (2) provide a possible way

to measure the two parameters, (6f 2 ) and y, of the bath fluctuations.

Non-Lorentzian line shapes

Compared to the exact result of non-perturbative calculations, the absorption spec-

trum from the second order cumulant expansion reproduces the line shapes at w = 0,

wo and 2wo0. Yet, the central peak of the exact spectrum at w0 is substantially dif-

ferent from a Lorentzian. Given the long time power-law decay profile of the exact

absorption profile, Age,abs(t) e-iw°t(1 + rget/2) - 2 with Fge = kge, the central peak

is a Meijer G-function and has a height of 2/kge and a width of kge/2. The non-

Lorentzian absorption spectrum was also obtained by Kosloff and Rice from dynamical

semigroup techniques that go beyond the weak coupling limit.[195] In their analysis,

the non-Lorentzian peak is attributed to double quantum transition resulting from

the quadratic system-bath coupling where both population and pure dephasing are

present. Apparently, the dissipative harmonic oscillator discussed in the present chap-

ter is linearly coupled to the bath without pure dephasing contribution; hence, the

non-Lorentzian shape we obtained results from couplings of population relaxations.

This is a new interpretation of the absorption line shape.

The non-Lorentzian line shapes are also obtained in the photon echo profile. Fig. 8-

3 is a comparison of the time domain echo signals and their frequency domain line

shapes. The two time domain echo signals in the left column are obtained from the

non-perturbative path integral method and the second order cumulant expansion,

respectively. The line shapes in the right column are the corresponding absolute

236



0.3
O.'

0

0.'

0.1

0

O.c

0.35

0.3

0.25

,-.N 0.2
0.15

0.1

0.05

n

140

130

920

110

100

140

130

a 20

110

100

100 110 120 130 140
(01

0 0.1 0.2 0.3 100 110 120 130 140
t1 ( I

Figure 8-3: The time domain echo signals (in the left column) and their frequency
domain contours (in the right column) for the dissipative harmonic oscillator. From
top to bottom, the plots are the non-perturbative calculation and the second order
cumulant expansion, respectively. The parameters used in the calculations are the
same as in Fig. 8-1.

value spectra obtained from[189]

1Aecho(W1, W2) = eiwltl iw2t2Aecho(tl, t2)dtldt2 . (8.47)

The second cumulant expansion has a symmetric 2D Lorentzian line shape and is

almost identical to the Markovian line shape (not shown in Fig. 8-3). The close re-

semblance in the 2D Fourier spectra indicates the same long time behavior for both

approximations. The exact result, as shown in the absorption profile, decays in a

power-law form of t - 2 at long times. The Fourier spectrum shows a much wider

distribution along the diagonal direction than the anti-diagonal direction. In the dis-

sipative harmonic oscillator we discussed here, the pure dephasing rate is zero, hence

the elongated line shape along the diagonal direction can only result from population
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relaxation, which is different from the pure-dephasing induced broadening discussed

in the literature.[159] Compared to linear absorption spectrum, the nonlinear photon

echo is much more sensitive to the non-perturbative effects.

Decomposition relation: Comparison of different approximations for VER

In Fig. 8-2, the decomposition relation in Eq. (8.13) is examined for the same pa-

rameter as those in Fig. 8-1. As we discussed in Sec. 8.3.1, the decomposition ex-

pression, obtained with the factorization approximation, is only accurate up to first

order in (6f 2 )b and over-estimates the absorption intensity. This is clearly indi-

cated by the deviation of Ipop(t)I+lpop(t) from An,n+1,abs(t) 12. Compared to the

exact result, the factorization approximation reproduces the short-time oscillations

correctly and exhibits a slower decay profile in the long time. Hence, the composite

approximation scheme of Eq. (8.19) in Sec. 8.2.2 over-estimates the absorption profile.

The second-order cumulant expansion of the VER contribution derive in Eq. (8.39)

clearly under-estimates the absorption profile and decays faster than the exact result.

The Markovian approximation is appropriate only for an estimation of the decay

rate. Consequently, the composite approximation scheme of Eq. (8.23) reduces to the

Markovian approximation in the absence of pure dephasing, and fails to capture any

non-Markovian features of VER. For the case of anharmonic potentials investigated

later in Sec. 8.4, the pure dephasing profile imposes a monotonic decaying envelop,

where Eq. (8.19) agrees better with the exact result.

These calculations clearly demonstrate the limitations of the perturbative ap-

proach and the Markovian approximation. The perturbative expressions, which are

obtained under the assumption of weak solute-solvent interactions, can provide a

qualitative description of vibrational line shapes, but can not accurately reproduce

the details. The Markovian approximation over-simplifies the time-dependence with

simple relaxation rates, and fails to capture the VER effects. That is why a more rig-

orous non-perturbative approach is important and necessary for studying vibrational

line shapes in condensed phases.
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Figure 8-4: Comparison of ReAge,,abs(t) calculated with the exact path integral expres-
sion (solid line), the second order cumulant expansion (dashed line), and Markovian
approximation (dotted line) for the dissipative harmonic oscillator coupled to a quan-
tum Gaussian bath. b hw0 is the temperature parameter. The real part of the
quantum force-force correlation is the same as in Fig. 8-1, and the imaginary part is
given by -iC 2 (w) tanh(3hwo/2)Cl(W). 
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8.3.5 Quantum bath

To demonstrate the quantum effects, we plot several absorption profiles in Fig. 8-4

and compare with the classical results. The details of the derivation are elaborated

in Appendix 8-B. Here we set the real part of the quantum force-force correlation

equal to the classical force-force correlation function used in Fig. 8-1, i. e. , Cl(t) =

(6 f 2 )bexp[--y[t], and assume the same parameters therein. The Fourier transform

of C1(t) is Cl(w) = 2(6f 2 )b/(W 2 + 7y2), and the imaginary part of the quantum

force-force correlation function is determined from Eq. (8.69),

C() 1~o 00 fiW-
C2 (t) = - tanh C (w) sin wtdw. (8.48)

As shown in Fig. 8-4, the quantum absorption profiles are generally more coherent

than the classical ones in the long time limit and have weaker effects on the short

time profile. The perturbative approach yields closer resemblance to the exact result

at lower temperatures. The asymmetry in the absorption profile from the vibrational

energy relaxation remains prominent for quantum baths.

8.4 Dissipative Morse oscillator: a numerical ex-

ample

Let us now consider a numerical example of anharmonic potentials and investigate

the vibrational line shapes for a Morse oscillator linearly coupled to a Gaussian bath.

The full Hamiltonian is given by

p2
H 2 + De(1 - e-q)2 + f(t)q, (8.49)

where De is the dissociation energy. Again the classical bath is represented by a

Gaussian random force f(t) and the bath relaxation is characterized by the friction

kernel Ccl(t) = (f(t)f(O))b. For simplicity, we study the transition between the

ground and first excited states. To facilitate the comparison with early studies in
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literature,[181] the Lennard-Jones fluid of Argon are used as the reference units with

parameters /kB = 120K, m = 6.632 x 10-26Kg and a = 3.41A. In these units, the

dissociation energy is De = 2 07.36e = 2.15 eV. The diatomic molecule consists of

two atoms with the same mass as Argon coupled by a Morse potential, giving the

effective mass pu = 0.5m = 20.0 amu. = 4.167a-1 = 1.22 A-1 , and the fundamental

frequency w0 = /2De3 2 /p = 120VE/ma 2 = 296 cm - '. h in the reduced unit is

h* = h(ma 2e)-1/ 2 = 0.029534. To compare the non-perturbative and perturbative

approaches, we calculate the vibrational line shapes for a solute-solvent interaction

of (f 2 )b = 0.3phw. The bath relaxation is an exponential CI(t) = (cf 2 )be-Yt with

y = 10.

The perturbative absorption profile with second order cumulant expansion is given

in Eq. (8.17), and the pure dephasing and population relaxation cumulants are

1 tfg(t) = 1-, j ( j (f)f()Ib))((q)+l- (q))2ddr',

h,(t) = h fO fTo (f(T)6f('))b E q2me mn( ')dwdw', (8.50)

where qnm is the matrix element of q. In the Markovian limit, Eq. (8.17) reduces to

An,n+l,abs(t) e- ifnn+1t exp[ -rt -2 (. + F+l)t], where Fr ,+ and F are the

pure dephasing rate and the population relaxation rate given by

r' = ((q) (q)n)2 ( f( ')5f( ))bd

rn= 2qm (f (T)'f (O))bei'm dr. (8.51)
m~n

8.4.1 Asymmetric envelops in the temporal absorption pro-

file

As shown in Fig. 8-5a, the second order cumulant expansion illustrates the presence

of asymmetric signals at short times but fails to reproduce the long time decaying

envelop. Similar to the dissipative harmonic oscillator studied in Sec. 8.3, the ap-
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Figure 8-5: Absorption line shapes of the dissipative Morse oscillator calculated
with the non-perturbative method (solid line), the second order cumulant expansion
(dashed line), and the Markovian approximation (dotted line). The solvent relaxation
rate is assumed to be y = 10. The solute-solvent interaction is ( 6 f 2 )b = 0.3/phwa. At
anharmonicity Xe = 0.00427 in (a) and (b), the dissociation threshold is De = 58.5w0
and the fundamental frequency w0 = 120. At anharmonicity 3 Xe in (c) and (d), the
dissociation energy is De/ 3 but tt and w0 remain the same.

pearance of asymmetry in the absorption profile clearly demonstrates the VER effects

from the off-diagonal elements of the solute-solvent interaction. For the exponential

frictional kernel, g(t) and h~(t) are evaluated explicitly as

(t) (6f)b(qn+ln+l -q )Yt - 1 + e- t

hnh(t) ( Ef) q ( [(Q+;2 + (
m n n + mn

-m 2) cos Qmnt - 2 rmn-Y sin fmnte . (8.52)
(2 + - 2 )2 8
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According to Eq. (8.52), the pure dephasing profile decays monotonically while the

VER profile is an oscillatory function. The bath relaxation rate is significantly smaller

than the energy gap, i. e., -y < w0 , and the vibrational energy gap falls far into the

tail of the spectral density of bath relaxation. The pure dephasing rate is equivalent

to a Fourier transform with zero frequency, and is located at the center of the spectral

density of bath relaxation. Consequently, the pure dephasing rate is much larger than

the population relaxation rate in the long time limit. At short times, hn(t)+hn+ (t) >>

g(t); hence, the VER dominates at short times and the asymmetric envelop becomes

more prominent. The Markovian approximation employs simple rate approximation

and completely removes the oscillatory feature in population relaxation and produces

a symmetric profile over the complete time range.

The absorption spectrum of the Markovian approximation illustrated in Fig. 8-

5b, has a symmetric Lorentzian line shape from the simple rate approximation. The

perturbation renders side bands at zero and the second harmonic frequencies in ad-

dition to the central peak. This is a direct result of the asymmetric VER signal at

short times. The side bands are solvent-induced multiple-photon transitions which

are absent in the Markovian VER treatment. Apparently, the exact result has a

non-Lorentzian central peak, differing from the Markovian approximation. Yet, the

non-Lorentzian central peak is not as sharp as that of a dissipative harmonic oscillator

in Fig. 8-1. This difference results from the dominant contribution of pure dephasing,

which is absent in a harmonic oscillator. Pure dephasing profile, when superimposed

onto population relaxation profile, generates an exponentially decaying envelop in the

long time and results in a less sharp non-Lorentzian peak.

8.4.2 Asymmetric central peak in absorption spectrum

In addition to the non-Lorentzian peak and side bands, the non-perturbative calcula-

tion demonstrates an asymmetric central peak in frequency domain. Absence of these

features from the perturbative and Markovian approximations indicates that they

arise from neglected term in the factorization of perturbative approach. Careful inves-

tigation of the approximations in Sec. 8.2.2 reveals that the source of this asymmetry is
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Figure 8-6: The time domain echo signals (in the left column) and their frequency
domain contours (in the right column) for the dissipative Morse oscillator. From
top to bottom, the plots are the non-perturbative calculation and the second order
cumulant expansion, respectively. The parameters used in the calculations are the
same as in Fig. 8-5a and Fig. 8-5b.

the cross products of the off-diagonal coupling, ((VOD(tl)VOD(t 2))n,(VoD(tl)VoD(t 2 ))n+l)b.

For an anharmonic potential, the frequency gaps Qmn are not identical, the frequency

mismatch generates a complex envelop function, while the negligence of cross prod-

ucts in the perturbative and the Markovian approximations only yields a real envelop.

The presence of the imaginary part of the envelop function creates interferences of

difference frequency components, giving an asymmetric profile. As anharmonicity

increases, the frequency mismatch becomes larger and thus the interference becomes

stronger, yielding more asymmetric central peaks, as shown in Fig. 8-5d. Apparently,

the cross product of the off-diagonal coupling is proportional to (3f 2 )2 and depends

strongly on the strength of bath fluctuations. In Sec. 8.5, the O-H stretch has a much
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Figure 8-7: Examination of the decomposition relation in Eq. (8.13) for the dissipative
Morse potential. Inset: The decomposed signals Ig,pp(t) (dotted line) Ie,pop(t) (dashed
line) and Age,dp(t)l2 (solid line). Age,abs(t), Igop(t) and Ie,p.(t) are the exact results
calculated numerically with the same parameters as those in Fig. 8-5a and Fig. 8-5b.

weaker coupling to the bath than the Morse oscillator calculated in this section, and

demonstrates a less prominent asymmetric absorption spectrum.

The asymmetric and non-Lorentzian line shape is better manifested in the nonlin-

ear two-pulse photon echo (2PE) profile. As shown in Fig. 8-6, the exact result shows

a strong asymmetric elongation along the diagonal, and is significantly different from

the Lorentzian line shape predicted by the second order cumulant expansion and the

Markovian approximations. The Markovian approximation has identical line shapes

as the second order cumulant expansion and is not included here to avoid redundancy.

Small irregular structures in the exact line shape is due to insufficient averaging in

Monte Carlo simulation.
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8.4.3 Decomposition relation: Anharmonic effects

To check the decomposition relation, we calculate Ige,ab(t) = [Ag e,abs (t)l 2 and compare

it with the product of Ig,abs (t), e,abs(t) and Age,dep(t) 12. Due to the presence of

anharmonicity, the absorption profile is dominated by pure dephasing in the long time

limit, so that the factorization result yields close resemblance to the non-perturbative

absorption profile, displayed in Fig. 8-7. The initial decay, the major oscillation at

t 0.05, and the long time relaxation are closely predicted by the factorization

scheme. The similarity between the absorption intensity and the decomposed signal

indicates the applicability of the approximation scheme of Eq. (8.19) introduced in

Sec. 8.2.4, which directly superimposes the population relaxation profile measured

from pump-probe experiments onto the pure dephasing profile. This approach is

different from the cumulant approximation where both the population relaxation and

the pure dephasing are truncated at the second-order cumulant. Consequently, the

absorption spectrum is no longer a Lorentzian shape. As we discussed earlier in

Sec. 8.2.4, due to the omission of imaginary part of the population relaxation signal,

the composite approximation scheme can not reproduce the asymmetric central peak

of the absorption spectrum.

To investigate the anharmonic effects, we compare the absorption intensity and

the pure dephasing signal at Xe = hol4De, 2Xe and 3Xe in Fig. 8-8 with w0 and 

fixed. The position operator q of a Morse oscillator is[204, 205]

q -p ln[1 - x/](b + bt )] 2- [(b + bt) + v'-e(b + b)2] (8.53)

where b and bt are the creation and annihilation operators of the Morse oscillator,

respectively, and Xe = [8DeEi/(h2 2)] -1/2 is the anharmonicity parameter. The spec-

trum of the Morse oscillator is En = hwo[(n + 1/2) - Xe(n + 1/2)2], with 1/(2 Xe)

the number of bounded states in the potential well. For the Morse oscillator dis-

cussed here, Xe - 0.00427. The population relaxation rate is much smaller than the

pure dephasing rate due to the large difference between the frequency gap and the

bath relaxation rate. Furthermore, the ratio between VD and VOD is proportional to
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Figure 8-8: The non-perturbative absorption amplitude IAge,abs(t)[2 and the pure
dephasing profile Age,dep(t) for different anharmonicities of a dissipative Morse po-
tential. Other parameters such as w0, , 7y and (6 f 2 )b remain the same as previous
calculations.

V/. With increasing anharmonicity, the contribution from pure dephasing becomes

dominant; hence, the short time oscillatory feature from the population relaxation is

further suppressed and the absorption profile decays faster.

8.4.4 VER effects as a function of anharmonicity

We now examine the different perturbation schemes of VER and compare the ab-

sorption profiles at three different anharmonicities, Xe, 2Xe and 3 Xe in Fig. 8-9. The

approximations employed in the second order cumulant expansion include decoupling

of the diagonal VD and the off-diagonal VOD, independent bath averages of propaga-

tors, and cumulant expansion, which are discussed in detail in Sec. 8.2.2 and 8.3.2.

The factorization propagator in Eq. (8.10) neglects the commutator between VD(t)

and VoD(t). For the linear coupling, the commutator can be estimated explicitly as

[VD7(T), VoD(T')] o fT)f( h )2 C - (8.54)
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Figure 8-9: Comparison of the non-perturbative calculation in Eq. (8.3), the sec-
ond order cumulant expansion in Eq. (8.17), and the two composite approximation
schemes in Eq. (8.19) and Eq. (8.23) at different anharmonicities. Other parameters
such as w0 , , -y and (6f 2 )b remain the same as previous calculations. The exact
results of the non-perturbative calculation are plotted in solid lines, the second order
cumulant expansion in dashed lines, Eq. (8.19) in solid circles, and Eq. (8.23) in open
circles.
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and is proportional to the square root of the anharmonicity. The negligence of this

term significantly reduces the accuracy of the perturbative approximation at large an-

harmonicities. Furthermore, the commutator term includes the off-diagonal coupling,

and is oscillatory. Similar to the population relaxation term, the commutator term

contributes significantly at short times and the contribution increases with anhar-

monicity. The non-perturbative signal, which includes the commutator [VD(t), VoD(t)]

and cross terms between different propagators, is generally more coherent than the

perturbative approximations. The difference between the non-perturbative and the

perturbative results becomes more prominent at larger anharmonicities.

The composite approximation of Eq. (8.19) superimposes the population relax-

ation profile from pump-probe experiments onto the pure dephasing, and accurately

reproduces the asymmetric temporal profile at small anharmonicities. With increasing

anharmonicity, the cross products of the off-diagonal couplings and diagonal couplings

neglected from the decomposition in Eq. (8.19) contribute substantially to absorption

profile. Hence, the deviation from the exact result increases with anharmonicity. The

composite approximation of Eq. (8.23) assumes a Markovian rate for VER and yields

a symmetric absorption profile. For the anharmonicities we studied, Eq. (8.23) does

not work as well as Eq. (8.19). The strong deviations of the approximation schemes

from the exact result at large anharmonicities justify the need for the non-perturbative

treatment of vibrational line shapes.

8.5 O-H stretch in D20 environments

Now we demonstrate the importance of VER effects in a real system. The parameters

of several VER systems are estimated and listed in Table 8.1. The dimensionless bath

fluctuation is estimated from simulations and frequency gap fluctuations assuming a

Morse potential and a linear system-bath coupling. Although real systems include

vibration-rotation couplings, intermolecular couplings, and other effects, the linear

coupling assumed in our model still serves as a quantitative estimation of the VER

effects. To illustrate the detailed contributions from VER, we perform a series of
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Table 8.1: Relevant parameters of several VER systems.

-H a O -Db I2C C - 0 stretchd HbCOe HgIf
Q2Ol (cm- 1) 3400 2500 210.9 1714.4 1950 125
212 (cm- 1 ) 3150 2350 207.2 1706.3 1924 -

(6f 2 )bl(aLhw3) 0.0162 0.0148 0.0313 0.064 0.029 0.068

y11 (fs) - 60 - 30 - 2500 3.4 500 65
7-1 (fs) , 1200 , 500 - 100 1200 -

ao- H stretch in liquid D2 0 in Refs. [206] and [207]. (
6

f
2

)b is extracted from fre-
quency gap fluctuations.
bo- D stretch in liquid H2 0 in Ref. [208]. (Sf2)b is extracted from force-force corre-
lation function simulation.
CI2 in Xenon solvent at 313 K and 3.0 g/cm 3 in Ref. [171]. (6f2)b is from force-force
correlation function simulation.
dCH3CO2H cyclic dimer in CC14 solvent from Ref. [209]. (

5
f

2
)b is extracted from

frequency gap fluctuation measurements.
eCarbonmonoxide Hemoglobin in D20 solvent from Ref. [210]. (6sf2)b is extracted
from vibrational relaxation rate measurements.
fHgI in ethanol from Ref. [211]. (Sf 2

)b is extracted from force-force correlation func-
tion simulation.

calculations for the O-H stretch in D20 environment. The effective Hamiltonian is

assumed to be the same as Eq. (8.49) and includes a Morse oscillator linearly coupled

to a Gaussian classical bath. The electronic field experienced by the O-H stretch in

the hydrogen bond network is found to follow under-damped motion by computer

simulations,[175, 176, 177, 178] photon echo spectroscopy, [206] and other ultrafast

infrared (IR) measurements. [207, 212, 213] It is shown in the literature[175, 176,

177, 178, 206, 207, 208, 212, 213, 214] that the relaxation time is about 30r-,170

fs in the short time profile while the characteristic time of the long time decay is

roughly 0.5-2.0 ps. The two different time scales of the frictional kernel arise from

a hydrogen-bond stretching at short times and a collective relaxation at long times.

The ratio of the short-time relaxation rate to the O-H stretch frequency (- 3430cm- 1)

is roughly 0.01 - 0.05. The dimensionless bath fluctuation amplitude estimated from

simulations and experiments[175, 176, 177, 178, 207] is (Sf 2 )b/(tioh ) - 1.22 x 10-2.

For simplicity, we choose a bi-exponential friction kernel to reflect the two time scales,

i. e. , (f (r)Sf(O))b = (6f 2)b[pe-ylt + (1 - p)e-72t], where y1 = 40 fs and -y- = 600
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Table 8.2: Parameters of O-H stretch.

D 8.84 x 10 -1 2 erg
/B 2.175 x 108 cm -1

p 1.66-24 g
Wo 7.2916 x 1014 S -1

, -1 40 fs
f-1 600 fs
p 0.8

(6 f 2)b/lhWo 0.0122

The parameters of O-H stretch are taken from Ref. [215] and the D20 environmental
parameters y1, 72 and (6f 2 )b are estimated from literature.[175, 176, 177, 178, 207].

fs. The dissociation energy De and /3 are obtained from the literature[215] and the

parameter are summarized in Table 8.2. Given the Morse parameters, the number

of the bounded states in O-H bond is estimated to be 22, and the anharmonicity

parameter is Xe 0.0217.

8.5.1 Solute-solvent coupling

The second order cumulant expansion yields almost identical temporal absorption

profiles as the non-perturbative calculation due to the weak bath fluctuations and

the asymmetric envelop from non-Markovian VER effects is rather weak. On the

other hand, the Markovian approximation assumes fast relaxation of bath and is

only applicable to the long time limit when t > 7 1y, 72 . The presence of the slow

relaxation in the friction kernel violates this assumption; consequently, the Markovian

approximation over-estimates the decay rate substantially and deviates significantly

from both the non-perturbative and the perturbative calculations. These findings

are illustrated in Fig. 8-10a. In Fourier space, the weakly asymmetric envelop of

the absorption profile is reflected in the weak side bands of absorption spectrum.

The side bands are generated by the solvent-induced multiple-photon transitions and

non-Markovian VER treatment.

For the O-H bond, the anharmonicity parameter Xe is as large as 0.0217. This is

about 50 times larger than the Morse potential discussed in Sec. 8.4. The dimension-
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Figure 8-10: Comparison of the non-perturbative calculation, the second cumulant ex-
pansion, and the Markovian approximations for the O-H stretch in D2 0 network. The
parameters are summarized in Table 8.2. The exact results of the non-perturbative
calculation are plotted in solid lines, the second order cumulant expansion results in
dashed lines and the Markovian approximation in dotted lines.
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less bath fluctuation is about 25 times smaller than that in Sec. 8.4. Due to these two

effects, a weakly asymmetric central peak of the absorption spectrum compared to

Fig. 8-5 is observed and the perturbation result reproduces the absorption spectrum

quite accurately.

8.5.2 VER effects in 3PEPS measurements

In the three pulse photon echo peak shift (3PEPS) experiment, the integrated photon

echo signal is collected and the photon echo peak shift is determined as a function of

the intermediate waiting time t.[159, 162, 163, 207] For the purpose of illustration,

we consider the same excitation path way discussed in Sec. 8.2.1. Assuming delta-

function pulses, we derive the three pulse photon echo (3PE) amplitude as

Aecho(tl, t, t2) = ((e-iH(tw+t2))n+l (e-iHtl )n(e-iHt2 )t (e-iH(t +tw))t+l)b +

((e-it2 ) n+.(e-iH(t +t,))n(e -iH(t,+t2))t (e-intit )1 (8.55)

The integrated photon echo signal is Iecho(tX, tw) = fJ IAecho(tl, tw, t2)[2 dt2. t is the

dephasing time between the first pulse and the second pulse, t is the waiting time

between the second and the third pulses, and t2 is the rephasing time between the

third and the probe pulses. Following the same perturbation scheme discussed in

Sec. 8.3.2, we separate pure dephasing from the diagonal coupling and VER from the

off-diagonal coupling. The echo signal Aecho(tl, tw, t2) is given by

Aecho(tl, tw, t2) en,n+ l (t2- t1) exp[-g*(tl) + g(t.) - g*(t2)

-9*(tl + t) - g(tW + t2) + 9*(tl + tw + t2)]

(exp[-h*+l(t1 + t)- hn*(t2)- hn+1(t. + t2) -hn(tl)]+

exp[-h*+(ti) - h*(tw + t2)- hn+1 (t2 )- hn(t1 + t)]) (8.56)

where g(t) is the line shape function and hn(t) characterizes the population relaxation

contribution from the n-th vibrational state. In the limit t = 0, Eq. (8.56) reduces

to the 2PE expression in Eq. (8.18). If the off-diagonal solute-solvent interaction is
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negligible compared to the pure dephasing, i. e., h(t) 0, equation (8.56) reduces

to the well-know result of three-pulse photon echo response function for a two-level

system.[159, 162]

In Fig. 8-11, we plot the integrated photon echo signal

Iecho(tl, tw) = j Aecho(tl, tw, t2)12 dt 2 (8.57)

without VER, with the Markovian VER rate, and with the cumulant approximation

of VER, respectively. Perturbative calculations are sufficiently accurate here due to

weak bath fluctuations. In Eq. (8.56), the pure dephasing terms containing t cancel

out at large t and Iecho(tl, t.) reaches a stable nonzero function of tl without VER,

as shown in Fig. 8-11a. VER essentially decreases the signal amplitude during the

waiting time t,,. At short waiting times, the cumulant approximation of VER imposes

small oscillation onto the integrated echo intensity, yet does not affect the overall

shape of the integrated photon echo signal. The average population relaxation time

is estimated to be (kg + ke)- 1 , 850fs. At large t~, the echo intensity approaches zero

with population relaxation, as shown in Fig. 8-lb and Fig. 8-11c, which is completely

different from the case where VER is not accounted.

A nontrivial VER contribution is demonstrated in the peak shifts of integrated

echo signal. Considering the experimental resolutions, we compute the integrated

echo signal with a sliding window average of 10 fs and fit Iecho(tl, t~) with a Gaussian

function, as shown in Fig. 8-12b. It is clear in Fig. 8-12a that the peak shifts demon-

strate different time scales, and the peak-shift amplitude decreases due to the VER

effects. The perturbation calculation with second-order cumulant expansion yields

small recurrence around 200 fs, which corresponds to the frequency difference of the

fundamental and the overtone Q12 - 01 250 cm-1. The recurrence can not be re-

produced with VER rates and therefore is a clear indication of non-Markovian VER

effects. The experimentally observed recurrence at 150 - 170 fs includes additional

contributions from the the under-damped frictional kernel.[207] The small oscillation

around 40 fs is attributed to insufficient average from the narrow sliding window of
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10 fs and Gaussian fitting errors. Compared to the linear absorption spectrum, the

nonlinear 3PEPS is a more sensitive probe of the anharmonic effects.

8.6 Conclusions

Non-perturbative and perturbative approaches are applied to vibrational line shape

calculations. The non-perturbative approach based on Feynman's path integral for-

malism directly evaluates the quantum propagator in the interaction picture. In the

perturbative approach, the solute-solvent interaction is first decomposed into diago-

nal and off-diagonal elements and the absorption profile is factorized into two parts:

the population relaxation profile related to the off-diagonal coupling and the pure

dephasing profile related to the diagonal coupling. This factorization scheme neglects

the commutator between the diagonal and the off-diagonal coupling, an important

contribution which increases with anharmonicity. In the factorization scheme, we

evaluate the bath average for each propagator separately, and obtain the decompo-

sition relation, Aab8(t) ~ ei~'+~ty/In,pop(t)In+1,pop(t)An,n+l,dep(t). Next, we apply

the second-order cumulant expansion to the decomposition relation and derive the

line shape function g(t) and the population relaxation function hn(t). The approxi-

mation scheme of Eq. (8.19) directly superimposes the population relaxation profile

from pump-probe experiments onto the pure dephasing profile and can reproduce

the asymmetric absorption profile. The approximation scheme of Eq. (8.23) treats

population relaxation with the corresponding Markovian limit while evaluating the

pure dephasing at the second-order cumulant. Due to the Markovian approximation

to VER, Eq. (8.23) gives a symmetric absorption profile without side bands in the

absorption spectrum. In the VER rate description, the solvent relaxation is much

slower than the vibrational frequency gap and the line shapes are dominated by pure

dephasing. On the other hand, the Markovian treatment of the VER contribution to

line shapes requires a fast bath relaxation which results in the inconsistency of the

Markovian VER rate. Finally, in the Markovian limit, the decomposition relation re-

covers the well-known relation among the vibrational dephasing rate, the population
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relaxation rate, and the pure dephasing rate.

Analytical solutions for a dissipative harmonic oscillator yield quantitative es-

timation of the errors for different approximation schemes. Ig,pop(t)Ie,po(t) differs

from Age,abs(t)12 at second order of bath fluctuations (f 2)b/l(phw). Consequently,

the decomposition in Eq. (8.13) is valid for weak solute-solvent interactions, and

becomes less accurate for strong solute-solvent interactions or for vibrational relax-

ation systems with small frequency gaps. We also show that the approximation

scheme of Eq. (8.19) over-estimates while the second order cumulant expansion al-

ways under-estimates the effects of friction. For the dissipative harmonic potential,

non-Markovian VER effects generate asymmetric envelops in the time domain absorp-

tion profile, and side bands in the frequency domain absorption spectrum. The side

bands are solvent-induced multiple-photon transitions and are absent in the Marko-

vian VER treatment. The non-Lorentzian peak in non-perturbative treatments of

absorption spectrum arises from couplings of population relaxations from different

vibrational states. The non-perturbative VER effects manifest as a non-Lorentzian

broadening along the diagonal direction in the frequency domain photon echo spectra.

Quantum baths have more coherence in the long time profile but show less effects on

the short time profile and the coherence decreases with increasing temperature.

For the dissipative Morse potential, the interference of population relaxations from

different vibrational states leads to an asymmetric central peak in the absorption spec-

trum with the asymmetry increasing with anharmonicity. The second order cumulant

expansion and the Markovian approximation result in a symmetric Lorentzian spec-

trum but can not reproduce vibrational line shapes correctly. When the frequency

gap is much larger than the bath relaxation rate, pure dephasing dominates over

population relaxation. In addition, the ratio between the diagonal coupling and the

off-diagonal coupling is proportional to the square root of anharmonicity; therefore,

the contribution from pure dephasing becomes dominant at large anharmonicities.

All the three approximation schemes, the second order cumulant expansion, the com-

posite schemes of Eq. (8.19) and Eq. (8.23), neglect the cross terms of population

relaxations from different vibrational states and the cross terms between VD and
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VOD, and deviate significantly from exact results at large anharmonicities. Relatively

speaking, Eq. (8.19) is better than Eq. (8.23) for all the anharmonicities we study.

For an O-H stretch in hydrogen-bond environments, the Markovian approxima-

tion substantially over-estimates the decay rate from slow bath relaxation, and results

in significant deviation from both the non-perturbative and the perturbative calcu-

lations. Three pulse photon echo peak shift (3PEPS) measurement provides a more

sensitive nonlinear probe of the VER effects. In these experiments, both the inte-

grated 3PE signal amplitude and the echo peak shifts become smaller due to VER

effects. More importantly, the non-Markovian VER effects generate a small recur-

rence around 200 fs. This recurrence corresponds to the frequency difference of the

fundamental Qo1 and the overtone Q12, a result that can not be reproduced by the

Markovian VER rate. In general, nonlinear spectroscopic measurements such as two-

pulse and three-pulse IR photon echoes are more sensitive to the non-perturbative

and non-Markovian VER effects than linear absorption.

The non-perturbative approach proposed in this chapter treats the solute-solvent

interaction accurately. Combined with the explicit treatment of the solvent degree

of freedom, the non-perturbative propagation method provides a numerical tool to

calculate the vibrational spectrum in condensed phases. The various perturbation

schemes allow us to analyze contributions from different relaxation mechanisms and

compare information contents from different spectroscopic measurements. In particu-

lar, the second-order cumulant expressions with both the pure dephasing moment g(t)

and the VER moment h(t) capture the essential features of vibrational line shapes

for most realistic systems. The non-perturbative approach is essential for quantita-

tive comparison with experimental measurements in systems with strong dissipative

or non-Gaussian environments.
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8.7 Appendix 8-A: Anharmonicity induced dephas-

ing

We now explore the molecular origin of pure dephasing. Taylor expansion of the

solute-solvent interaction leads to

+~~~~V(q - x) = V(q) + (a + a+)f(x) + -(aa+ + a+a)e(x) +.... (8.58)
2

a and a+ are the annihilation and creation operators for the vibrational mode, f(x)

and e(x) are functions of solvent coordinates. In the above equation, the first term

is a constant, the second term is the off-diagonal linear coupling, and the third term

is the diagonal quadratic coupling.

Harmonic oscillator

For a harmonic oscillator with H, = wo(aa+ + a+a)/2, we explicitly evaluate the

temporal profile of vibrational relaxation and dephasing from second order cumulant

expansion of the solute-solvent interaction. The linear coupling to the solvent in

Eq. (8.58) yields the vibrational relaxation rate

k = k(n n+ 1)+k(n-- n-1)

- /~~~~~0®= I (nla+ n + 11) 122 eiWnn+l (f(t)f(O))bdt

o®

+ I (nla+ln- 1)22 e-inl,n (f(O)f(t))bdt, (8.59)

where wn+l, is the energy gap. The depletion rate out of the n-th vibrational state can

be separate into two parts: the rate for increasing one vibrational level k(n -+ n + 1)

and the rate for decreasing one vibrational level k(n -- n- 1). The two rate constants

between a pair of adjacent levels satisfy the detailed balance relation.

For a linear harmonic oscillator, the frequency w0 is a constant independent of the

quantum level, therefore Wnln = n,n+l Wo. We can write k(n -+ n+ 1) = (n+ 1)k+
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and k(n - n - 1) = nk. Hence, the master equation for population relaxation is

P/ = (n + 1)kPn+ + nk+Pn-1 - Pn[(n + 1)k+ + nk_] (8.60)

which gives atfi = -(k_ - k+)fi + k+ with i = E nPn the average excitation number.

Thus, we recover the equilibrium average nieq = k+/(k- k+) and the reactive rate

k = k_ -k+ = C(w0)/l, which is exactly the classical relaxation rate for the harmonic

oscillator.

From the quadratic coupling, we can calculate the dephasing rate

knn+l = +{(n+ 2a+ln+ 1)12 -- (na+n -1)12} (6e(t)6e(O))dt (8.61)

where 6e(t) = 0 2 V- (2V)b is the fluctuation in the curvature of the solute-solvent

interaction. For a harmonic oscillator, the prefactor is a constant and the dephasing

rate is constant.

Higher-order terms in the Taylor expansion of the solute-solvent interaction po-

tential yields off-diagonal terms such as aa, a+aa, etc., which are responsible for

multi-photon processes. They become less important as the resonant frequency is

multiples of the single photon frequency and gives much weak resonance with the low

frequency bath. The linear terms can be incorporated in the first order expression.

Anharmonic oscillator

For an harmonic oscillator, the energy gap decreases with the quantum number. The

low frequency solvent has a stronger response at low frequency and the population

relaxation rate increases with the quantum number. The dephasing rate is propor-

tional to the zero frequency of the solvent spectrum and thus is dominated by the

strength of the coupling matrix. At larger vibrational quantum numbers, the width of

vibrational wave function broadens due to a stronger solute-solvent coupling. Thus,

the pure dephasing rate increases at larger vibrational quantum numbers.

For a harmonic oscillator, the linear coupling to the solvent results in vibrational
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relaxation, whereas the quadratic solute-solvent coupling results in vibrational de-

phasing. The situation is different for an anharmonic potential, for which the vibra-

tional coordinate has both an off-diagonal part qoD, giving rise to dissipation, and

a diagonal part qD, giving rise to pure dephasing. Formally, the solute coordinate

operator can be expanded as

q = qo + q(a + a+) + q2(aa+ + a+a)/2 + q'(aa + a+a+)/2 +... (8.62)

where qO, q, q2, q2 are expansion coefficients. Combined with Eq. (8.58), the diagonal

part of the solute-solvent interaction becomes

VD = aa+ + a+aVD = a 2 (-q2l9V + ql 2V) + * **(8.63)

which defines the quadratic fluctuating force e = (-q 2OV + ql92V). It is well-known

that the pure dephasing has two mechanisms: the quadratic coupling to the solvent

and the anharmonicity in the solute vibrational mode. Below we demonstrate that

these two mechanisms are essentially equivalent.

We now derive the anharmonicity-induced dephasing rate for the Morse potential

V(q) = De(1 -e-,q) 2, where De the dissociation energy and 3 the inverse length-

scale. The fundamental frequency of the Morse oscillator is w0 = /2D 2/I and the

total number of the bound states is N/2 with N + 1 = V/8Dei/, 2 = X-' . We use

the following relation from Refs. 49 and 50,

N+ 111_ e- q _ _
~b~~~ / 2(N + 1)2 b+ p2+ e)]

~ -1/2 3q - 1/2 [ l2q 2 + l)-Xe '//3q X [2 q + t12 21
(8.64)

where N + 1 N for large N. The second order contribution expressed with the
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creation and annihilation operators yields

21b + b+ - ql(a + a+) + fq'[- (a + a+)2 - (a - a+)2 ], (8.65)
12

which has the diagonal components with q2 = 3ql 2. Based on the definition in

Eq. (8.61), the pure dephasing rate is

k' = q2 w(e(t)e(O))bdt o ( )2kBTg(0), (8.66)

where (0) = fo7 (t)dt is the integrated friction coefficient. The last expression

is the classical limit of the dephasing rate first obtained by Oxtoby and later by

many others. [216, 2171 To see this, we expand the Morse potential V(q) = Defl2q2
-

Def/3 q3 + -... and identify the cubic coefficient f = 6De,/3. Thus, the well-known

result of k' = f2kBT(O)/4p 4w6 is recovered.[217]

It should be noted that the dephasing rate differ by a factor of 9 if the momentum

term in Eq. (8.64) is neglected. Using the exact form for a + a+ as the coupling to the

solvent, it is possible to introduce linear dissipation without pure dephasing for an

anharmonic oscillator. Such a coupling is not only a non-linear function of coordinate

but also a function of momentum. We thus conclude that for realistic systems the

anharmonicity in vibrational modes contributes significantly to pure dephasing.

8.8 Appendix 8-B: Dissipative harmonic oscillator

coupled to a quantum bath

In this appendix, we extend the previous discussion in Sec. 8.3 to a quantum bath. For

simplicity, we assume the same dissipative harmonic oscillator as in Eq. (8.25). In this

case, the quantum force-force correlation function is a complex function, Cqm(t) =

(f(t)f()) = C(t)- iC2(t), where the real part Cl(t) is an even function and the

imaginary part C2(t) is an odd function. The Fourier transform of the force-force

correlation function is Cqm(W) = f O eitCqm(t)dt = C1 (w) -iC 2(w). The fluctuation-
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dissipation theorem requires

-iC 2 (w) = tanh 2 Ci(w), (8.67)

where C2(w) is purely imaginary since C2(t) is an odd function. In the high temper-

ature limit, C1(w) - Ccl(w) and C2 (w) - 0.

Let us consider a quantum bath consisting of a number of harmonic oscillators

Hb = j (p2/2mj +mjw2x2/2) and a bilinear system bath coupling Hsb = -q Ej gjxj.

For the harmonic bath, the quantum force-force correlation function is explicitly given

as

Cqm(t) = 2mjwc[coth 2 coswjt - isinwjt], (8.68)

which reduces to the classical force-force correlation function in the high temperature

limit. Completing the Fourier transforms, one can readily show that[181, 218]

C(w) = coth --w Ccl(w) and -iC 2 (w) = CCd(w) (8.69)
2 2 ~~~~~~~~2

It is straightforward to prove that the transition moments given in Eq. (8.27)

are still valid[121] given that f(-) is now a complex variable. Following the same

procedure as in Sec. 8.3.1, we derive the exact expression of the absorption profile as

Age,abs(t) = e-wot [1 + 2( 11 + ) + 4(- 22-)/ (8.70)
[1 2(ell+ Ca2 2 ) + 4(auli22 - i2a'12)]3/2 (.0

This expression is almost identical to Eq. (8.28) except that a1 2 is a complex function.

With the quantum force-force correlation function, we obtain the explicit expression

of a 12 as

a 12 = 2twojh d dr't [Cl (r - -Tr) sin wo0(r + ') + iC2 ( - T') sin wo( - -r')]. (8.71)

Equation (8.71) reduces to Ca1 2 in Eq. (8.28) in the classical limit when C2 = 0.
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In the perturbative approach, we follow the same procedure as in Sec. 8.3.2 and

obtain

Age,abs (t) e- i ° t exp {- j dr dr'[Cqm(r - r')q(r)q(T')),e

+Cm(r - r')(q(r)q(r'))] }
1 7 t

e- iw t exp - h dr dr'[2C (r - r') coswo0(r - r')

-C2(r - r') sin wo(r - r')]} (8.72)

The first term in the exponent equals 2(all(t) + a 22(t)) is the classical perturbation

result of Eq. (8.37) and the second term represents the quantum effects from the

imaginary part of the force-force correlation function.

In the long time limit, we invoke the Markovian approximation in the perturba-

tive expression of Eq. (8.72), and obtain An,n+l,abs(t) m e - i ot exp[-(rn+ 1 + rn)t/2],

where Frn = f[2(n + 1/2)C(r) coswor- C2 (r) sinwor]dr is the population relax-

ation rate from the vibrational state n. Hence, the presence of the imaginary part

of the quantum correlation function reduces the decay rate of the envelop, creating

more coherent oscillations in absorption profile.
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