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Abstract

The Areal Reduction Factor (ARF) ?7 is a key parameter in the design for hydrologic extremes.
For a basin of area A, r(A, D, ) is the ratio between the area-average rainfall intensity over a
duration D with return period T and the point rainfall intensity for the same D and T. Besides
depending on A, D and possibly T, the ARF is affected by the shape of the basin and by a
number of seasonal, climatic and topographic characteristics. Another factor on which ARF
depends is the advection velocity, vad, of the rainfall features. Commonly used formulas and
charts for the ARF have been derived by smoothing or curve-fitting empirical ARFs extracted
from raingauge network records.

Here we derive some properties of the ARF under the assumption that space-time rainfall is
exactly or approximately multifractal. We do so for various shapes of the rainfall collecting
region and for vad = 0 and vadA 0.

When vad = 0, a key parameter in the analysis is the ratio ures = vres/Ve between the "response
velocity" vres = LID, where L is the maximum linear dimension of the region, and the "evolution
velocity" ve = Le/De, where Le and De are the characteristic linear dimension and characteristic
duration of organized rainfall features.

The effect of vad # 0 depends on the shape of the region. For highly elongated basins, both the
direction and magnitude of advection are influential, whereas for regular shaped regions only
the magnitude vad matters.

We review ways in which rainfall has been observed to deviate from exact multifractality and
models that capture such deviations. We show how the ARF behaves when rainfall is a bounded
cascade in space and time. We also investigate the effect of estimating areal rainfall from
raingauge network measurements. We find that bounded-cascade deviations from multifractality
and sparse spatial sampling distort in similar ways the scaling properties of the ARF.

Finally we show how one can reproduce various features of empirical ARF charts by using
multifractal and bounded cascade models and considering the effects of sparse spatial sampling.
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Introduction

In hydrological risk analysis and design, knowledge of the probability of rainfall extremes is

essential. For example, in reservoir design and flood estimation one is interested in rainfall

intensities averaged over an area A and a duration D, with a given return period T. These

intensities are provided by the so-called Intensity Duration Area Frequency (IDAF) curves.

Direct estimation of the IDAF curves from rainfall records is a difficult task, because it is

rare to have extensive records from spatially dense pluviometric networks or radar. For A = 0

(precipitation at a point), the IDAF curves reduce to the familiar Intensity Duration Frequency

(IDF) curves.

Since it is relatively easy to estimate the IDF curves using long rainfall records from single

pluviometric stations, a convenient and commonly used way of estimating the IDAF curves is to

multiply the IDF values by an Areal Reduction Factor (ARF). This factor is defined as the ratio

of the rainfall intensity averaged over area A and duration D with return period T, and the

rainfall intensity at a point for the same D and T.

The ARF increases with decreasing area A, approaching unity as A tends to zero. Also, the

ARF increases as duration D increases. The effect of the return period T on the ARF is not clear.

N.E.R.C. (1975) finds a weak dependence of the ARF on T (ARF slightly increases as T

decreases), whereas other researchers (Bell, 1976; Asquith et al., 2000; De Michele et aL., 2001)

find that the ARF is largely influenced by T. Specifically, they find that the ARF decreases with

increasing T, and that its dependence (see above) on A and D becomes more pronounced for

larger values of T.

A number of empirical formulas have been proposed for the estimation of the ARF from

rainfall records. Most of them consider the ARF to be independent of the return period T. ARF

curves for general use have also been proposed. These curves give the ARF as a function of only

A and D, and therefore assume negligible dependence on the return period T, geometry of the

basin, and climatic conditions.

Several studies have tried to derive the ARF, IDF or IDAF curves using semi-theoretical

probabilistic models of rainfall (Roche, 1966; Rodriguez-Iturbe and Mejia, 1974; Bacchi and

Ranzi, 1996; Sivapalan and B16schl, 1998; Asquith and Famiglietti, 2000). Most of them

incorporate the spatial correlation structure of rainfall, as well as semi-theoretical functions and

6



constants that have to be inferred from data. In practice, estimation of those quantities is often

inaccurate.

Since rainfall data rarely allow direct estimation of rainfall intensities over the range of

areas, durations and return periods of practical interest, one way to make the inference of

rainfall extremes more robust is to use theoretical model-based results. Multifractal models

provide a good representation of space-time rainfall fields (Lovejoy and Schertzer, 1995; Gupta

and Waymire, 1993; Deidda, 2000) and possess scale-invariance properties that may be at the

root of certain power-law behaviors observed in empirical ARF curves. Therefore, it is attractive

to use the theory of multifractality to explain the behaviour of rainfall extremes and extend the

empirical ARFs beyond the range of A, D and T covered by the data. For example, Bendjoudi et

al. (1999) and Veneziano and Furcolo (2002a) used multifractal rainfall models to determine the

scaling properties of the IDF curves.

In the simple case of perfect isotropic multifractality, rainfall intensity is the product of

independent and identically distributed (id) random fluctuations. For rainfall, a multiplicative

scheme is generally supported by data (Veneziano et al., 1996; Carsteanu and Foufoula-

Georgiou, 1996; Menabde et al., 1997), whereas deviations from the id property have been

found, typically in the form of dependences of the amplitude of the multiplicative fluctuations

on scale (Perica and Foufoula-Georgiou, 1996b; Veneziano et al., 1996; Menabde et al., 1997;

Menabde and Sivapalan, 2000; Veneziano et al., 2003).

This thesis studies the behavior of Areal Reduction Factors (ARFs) under multifractality, the

effects of deviations from exact multifractality, and the bias from the estimation of ARF from

sparse spatial data. The latter is an important problem because ARF estimation is typically based

on rainfall records from raingauge networks with finite density.

The thesis is organized as follows. Chapter 1 reviews the bibliography on IDF and IDAF

curves, and on ARFs. Specifically, the definition of the ARF is given, and its relationship with

the IDF and IDAF curves is discussed. Empirical and semi-theoretical methodologies for ARF

estimation are analyzed, and empirical ARF curves proposed for general use are presented.

Chapter 2 reviews properties of multifractal processes and their implications on the IDF

curves. We start by reviewing a result in large deviation theory known as Cramer's Theorem.

Next we consider properties of extremes of multifractal cascades through linkage to Cramer's

Theorem, and show how these properties are linked to the scaling of the IDF curves. In doing
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so, we review and compare the approaches to IDF scaling of Bendjoudi et al. (1999) and

Veneziano and Furcolo (2002a).

Chapter 3 extends the analysis from rainfall at a point to average rainfall intensity inside

regions of various shapes. Specifically, we consider regular (square or circular) regions and

highly elongated regions. The rainfall field is assumed to be multifractal and to advect with

constant velocity Vad = [vad,, vady]. First we study the case when Vad = 0. A key parameter in this

case is the ratio ures = vreslve between the "response velocity" vres = LID, where L is the maximum

linear dimension of the region, and the "evolution velocity" ve = Le/De, where Le and De are the

characteristic linear dimension and characteristic duration of organized rainfall features. Then

we examine the case when Vad # 0. An important parameter for advection is the ratio uad= vadve

between the magnitudes of the advection velocity and the evolution velocity. For each case we

study the scaling properties of the Intensity Duration Area Frequency (IDAF) curves and the

Areal Reduction Factor (ARF). The results obtained are validated through simulation using

multifractal cascade models. Finally we discuss the range of velocities vres, ve and vad in typical

hydrologic applications.

In Chapter 4 we review observed deviations of rainfall from multifractality, in the form of

dependences of the amplitude of the multiplicative fluctuations on scale. Proposed models that

capture such deviations are discussed and the effects on the ARFs are studied through numerical

simulation. We also study the effect of sparse spatial sampling on the estimated ARFs for

different densities of the raingauge network.

Chapter 5 discusses features of the empirical Areal Reduction Factors (ARFs) proposed by

the Natural Environmental Research Council (N.E.R.C.) (1975) and shows how these features

can be matched by considering bounded cascade models of rainfall and sparse spatial sampling.

Conclusions and possible future research directions are given in Chapter 6.
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1 Literature review

1.1 The Areal Reduction Factor (ARF)

The Intensity Duration Frequency (IDF) curves are a commonly used tool in hydrological

estimation and design. These curves give the point rainfall intensity iD,T as a function of the

averaging duration D and return period T.

At a pluviometric station, iD,T is typically estimated from rainfall data by: (1) sub-dividing

the historical rainfall records into intervals of duration D, (2) finding the maximum rainfall

intensity averaged over D for each year in the record, and (3) ranking the yearly maxima and

finding D, T such that,

1
P[I> ID,TI = (1.1)

The empirical results may be smoothed by fitting a parametric distribution to the annual

maximum values or by fitting a smooth function f(D, ) to the empirical values of iD,T. For

example, a commonly used formula is (e.g. Stedinger et al., 1993),

iD,T =f(D, T) = (D+ ) (1.2)

where k, a, b and m are fitting parameters.

In most hydrological applications (e.g. reservoir design, flood estimation), knowledge of the

point rainfall intensity iD,T is not sufficient. Rather, one must estimate the intensity iAD,T

averaged over area A and duration D with return period T. Clearly,

lim (iA,D,T) = D, T (1.3)
A-+O

Plots of iA,D,T produce so-called Intensity Duration Area Frequency (IDAF) curves. The

IDAF curves can be estimated using an approach similar to that used for the IDF curves, with

the added complication of estimating areal average intensities from point rainfall data.

In practice, it is rare to have dense networks of pluviometric stations and a more convenient

way to estimate the IDAF curves is to multiply the IDF values at a point by an Areal Reduction

Factor (ARF). The ARF is defined as,

ARF(A,D,7)= IDT (1.4)
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Although not explicitly indicated in equation (1.4), the ARF depends also on climatic

conditions, as well as the size and shape of the basin (Omolayo, 1993; Asquith and Famiglietti,

2000).

The ARF increases with decreasing area A, approaching 1 as A tends to zero. Also, the ARF

increases with increasing duration D, approaching 1 as D tends to infinity. In Section 3.1, these

empirical observations will be proved theoretically for a multifractal rainfall field in two spatial

dimensions plus time.

Many studies have considered the effect of the return period T on the ARF with somewhat

different conclusions. According to N.E.R.C. (1975), the ARF increases slightly as T decreases.

Other studies (e.g. Bell, 1976; Asquith et al., 2000; De Michele et al., 2001) have found that the

ARF is significantly influenced by the return period. Specifically, the latter studies find that the

ARF decreases with increasing T and that dependence on A and D becomes more pronounced as

T increases.

Next we review empirical and semi-theoretical methods to estimate ARFs.

1.2 Empirical methodologies for estimating ARFs
Let iD ( = 1, ... , v) denote concurrent average rainfall intensities over D at v stations inside the

region of interest. The mean area rainfall in D, iAD, is typically estimated as a weighted average

of these average point intensities,

V

A,D Iw ij& (1.5)
j=1

Frequently used weighting schemes are:

1
WI= - (i.e. equal weighting) (1.6)

V

and

A-
Wi =, (1.7)

j=1

where the Aj are the Thiessen polygon areas associated with the raingauge stations inside A

(Thiessen, 1911). In both schemes, the weights wj add to unity.
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A number of empirical methodologies have been proposed to estimate the ARFs from

rainfall records. Most of them assume that the ARF is independent of the return period (except

for Bell's method, which is described later). Next we review these methodologies, as well as

empirically derived ARF formulas.

1.2.1 US Weather Bureau method

After estimating the Thiessen weighting factor wi for each pluviometric station i in the basin of

interest, each year j of the rainfall record is divided into intervals of a given duration D. The

areal rainfall for each interval of each yearj is calculated and the interval when the areal rainfall

is maximum is found. Finally, the ARF (assumed independent of the return period ) for

duration D is estimated as

n V f V

ARFus = vj I wi AP,1 ZPi,Q (1.8)
j=l i=1 j=

where Pi, is the annual maximum point rainfall in D at station i in yearj, P',1 is the point rainfall

in D at station i on the day when the annual maximum areal rainfall occurs in year j, v is the

number of stations in the basin and n is the length of the data record in years.

The method uses different weighting schemes: Thiessen weighting for P,1 in the numerator

and equal weighting for P, in the denominator.

Based on the assumptions that the ARFs are independent of the return period T, and on the

geometry of the basin, Leclerc and Schaake (1972) used equation (1.8) to derive the following

empirical relation for ARF(A, D):

ARF(A, D)= I- exp(-1.1 D~0.2 )+ exp(-1.1 D - - 2.59x10' A) (1.9)

where A is in [KM2 ] and D is in [hours]. Weather Bureau (TP-29) specifies ARF for areas up to

1 100 km2 and storm durations of 1, 3, 6 and 24 hours; see also Figure 1.1.
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Figure 1.1: Leclerc and Schaake ARF curves for durations of 1, 3, 6, and 24 hours and areas up to 1 100 Km2.

One can observe In Figure 1.1 that for A small (say A < 5 KM2) ARF is nearly constant and

equal to 1. This behavior of the ARF is in agreement with the fact that for A = 0 the IDAF

curves reduce to the IDF curves and thus ARF = 1. For intermediate values of A (say

10 Km 2 <A < 100 KM2) the ARF is approximately a power function of AID, whereas for A large

(say A > 100 Km2) the ARF depends only on D. This behavior of the ARF for large A is not

supported by other studies (see for example N.E.R.C.'s diagram, Section 1.2.2), and it is

probably associated with data limitations for large areas.

1.2.2 N.E.R.C. method

Assuming independence of T and using equal weighting, N.E.R.C. (1975) calculates the ARF as

I nv
ARFNERC -- ,E Z' (1.10)nvj= i=

N.E.R.C. (1975) used equation (1.10) to estimate the ARFs for thirteen basins in the United
2Kingdom with areas ranging from 10 to 18 000 Km . Averaging durations ranged from 2

minutes to 25 days. N.E.R.C. then smoothed and interpolated the empirical results to obtain the

diagram in Figure 1.2 (for a more detailed review of the data and the fitting procedure see

Section 5.1).
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Figure 1.2: ARFs for durations D from 15 minutes to 8 days and areas A from 10 to 10 000 Km2 . Reproduced from
N.E.R.C. (1975) Flood Studies Report, Vol. II, p. 40.

According to N.E.R.C. (1975), these ARFs correspond to rainfall events with return period

T= 2-3 years.

A general fit to the UK N.E.R.C. (1975) data shows that the ARF is approximately constant

for D oc A0'7. However, the N.E.R.C. iso-ARF curves indicate a variable slope, with D oc A0 .5 for

large A and small D, and larger A exponents for lower areas or larger D (for a more detailed

analysis see Section 5.2).

Based on these N.E.R.C. curves, Koutsoyiannis (1997) derived an analytical expression for

the ARF,

0.048 A 0.36 - 0.01 ln(A)
ARF= I - o.35 > 0.25 (1.11)

where A is in Km2 and D is in hours. This expression is shown graphically in Figure 1.3.
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Figure 1.3: Koutsoyiannis ARF curves for durations of 1, 3, 6, and 24 hours and areas up to 30 000 Km 2.

1.2.3 Bell's method

This method takes into account the variation of the ARF with return period T. Suppose that the

rainfall records cover a period of a year. The annual maximum areal and point rainfall series are

both ranked in descending order. The ARF with given rank r and thus return period T (e.g.

n-i
T_= ) is estimated as the ratio of the areal rainfall of rank r to the sum of the weighted (e.g.r

Thiessen weights wi, i =1, 2, .. .,v) point rainfalls of the same rank,

ARFT)Bell= w ,r WiPi,r (1.12)
1~ Ii=1

If the ARF is independent of the return period, then

ARFBell = X- ARFT(r)Bell (1.13)
r=1

If moreover one uses equal weighting (i.e. wi = 1/v), then equation (1.13) reduces to the

N.E.R.C. method (equation (1.10)).

1.3 Semi-theoretical methodologies for estimating ARFs

Several studies have tried to derive the ARF (or IDF or IDAF) curves using probabilistic models

of space-time rainfall. An early attempt in this direction was made by Roche (1966) who
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developed a theoretical approach to point and areal rainfall based on the correlation structure of

intense storms.

Rodriguez-Iturbe and Mejia (1974) extended Roche's (1966) approach by assuming that the

rainfall field is a zero mean stationary Gaussian process. Averaging over the catchment area A

results in a variance reduction factor i2 given by

K2=Elp(||x2- xli)] (1.14)

where E[p] is the expected spatial correlation coefficient between two points xi and x2

independently and uniformly distributed inside the catchment area, and || x || denotes the length

of vector x. Equation (1.14) can be simplified to,

K2= f p(r) gR(r) dr (1.15)
0

where R is the random distance between x, and x2, and gR(r) is the Probability Density Function

(PDF) of R. Notice that K2 is a function of the spatial correlation structure of rainfall and the size

and shape of the catchment. Rodriguez-Iturbe and Mejia (1974) argued that K, the square root of

these variance reduction factor, could be interpreted as the ARF (i.e. ARF= K).

In the method of Rodriguez-Iturbe and Mejia (1974), the mean of the averaged rainfall

intensity does not change with the catchment area. However, this is a property of the stationary

parent process not the extreme value process that is of interest for ARF determination.

Therefore, the theoretical validity of the ARFs calculated by this method is limited.

Another important limitation is that, the method does not account for the effect of duration D

on the ARFs. It is assumed that this information is included in the spatial autocorrelation

function p(r). Thus, the effect of the duration D on the ARF is not clear.

A different approach, based on crossing properties of random fields, was proposed by

Bacchi and Ranzi (1996). This approach assumes stationarity of the rainfall field and

homogeneity of the crossings in space and derives a complicated expression for the ARF that

incorporates a large number of fitting parameters that have to be inferred from data.

Bacchi and Ranzi (1996) argue that the ARF increases with decreasing A and increasing D.

Furthermore, they find a small decrease of the ARF with increasing T.

Properties of extremes of random functions were used also by Sivapalan and B16schl (1998).

The starting point of their approach is to derive the parent distribution of the catchment average
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rainfall intensity from that of point rainfall intensity assuming stationarity of the rainfall field in

space and time. Sivapalan and B16schl (1998) start from the assumption that the parent

distribution of the point rainfall intensity ip is of the Exponential type,

A ip) exp (1.16)

with mean = , and variance (oP)2  2. They further assume that the spatial autocorrelation

function of the rainfall field is isotropic exponential,

pp(r)= exp (1.17)

where r is separating distance and A is the spatial correlation length, defined as

=f pp(r) dr (1.18)
0

The areal rainfall parent process iA is assumed in approximation to have a Gamma distribution,

kAexpC-
fAiA)= PA -(kA) (1.19)

with mean pA = kA PA and variance (UA) 2 = kA (PA)2. The parameters of the distributions in

equations (1.16) and (1.18) are related as

kA PA = 3pk (1.20)

kA (A) 2  )2  (1.21)

where K2 is a variance reduction factor defined in the same way as in Rodriguez-Iturbe and

Mejia (1974); see equation (1.14). The parameters p,, and 2 are inferred from data. The areal

rainfall extreme value process, which is of the Gumbel type, is then semi-analytically derived

using two empirical functionsfi andf2. The ARF, which is defined as the ratio between the areal

and point rainfall intensities with the same duration and return period, is given by

K2 b(D) c(D)f 2 (K-2 )- - ln lnI

ARF(2 , D, T)=( T (1.22)
b(D) c(D) - i nln(T-)

where b(D) and c(D) are semi-analytical functions. For T --+ oc equation (1.22) reduces to
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A __2

ARF(K 7)= 72) (1.23)

which indicates that the ARF depends solely on the catchment area A and the spatial correlation

structure of the rainfall field, which is expressed through K2. The method does not directly

account for the duration D of the rainfall event, and it is argued that this piece of information is

included in the spatial correlation structure of the field. The calculated ARFs, increase with

decreasing A and increasing D, and are highly dependent on both the return period T and the

spatial correlation function pp(r) of the point rainfall process.

Also the work of Asquith and Famiglietti (2000) can be considered to belong to this class of

stochastic methods. Their methodology is based on two assumptions: (1) the largest potential

volume of a storm occurs when the storm is centered over the centroid of the basin, and (2) the

cross-correlation of concurrent precipitation at two non-centroid locations is insignificant.

Although the former assumption seems plausible, the latter is not. This is so because the spatial

correlation structure of rainfall is an important parameter that affects the ARF; see above.

The derivation of the ARF is performed through a function ST(r) defined as the expected

value of the ratio between the rainfall depth at some location a distance r from the centroid of

the design storm and the depth of the annual maximum with return period T at the same

location. Si(r) depends on return period T and describes the spatial structure of a storm radiating

away from the centroid of the basin.

Asquith and Famiglietti (2000) estimate the ARF as the ratio between the T year rainfall

depth over a catchment area A and the point rainfall depth ZT with return period T at the centroid

of the storm, i.e.

ZT f Sr) dx dy f S(r) dx dy

ARF(A, ) = - (1.24)

The method does not directly account for the duration D of the rainfall event, and thus the

influence of D on the estimated ARFs is not clear. The approach produces ARFs that are

significantly influenced by the return period T. Specifically, for longer return periods T the

estimated ARFs decay faster with increasing A.

An altogether different approach was followed by Coles and Tawn (1996). These authors

observe that stochastic approaches to the ARF are of basically two types: those that emphasize
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the spatial dependence of point rainfall without special focus on extremes (the above mentioned

approaches are of this type) and those that focus on extremes and pay less attention to spatial

dependence. Coles and Tawn (1996) propose a method of the latter type.

A third class of methods exploits the scaling properties of space-time rainfall. Scaling ideas

for temporal rainfall have been used by Hubert et al. (1993), Benjoudi et al. (1999) and

Veneziano and Furcolo (2002a) to derive scaling properties of the IDF curves. The latter two

approaches will be reviewed in detail in Section 2.3.

Also De Michele et al. (2001) pursued a scaling approach to explain the ARF and the IDAF

curves. Defining I(D, A) as the maximum annual value of the mean rainfall intensity for

duration D and area A, De Michele et al. (2001) argue that I(D, A) could have either self similar

or multifractal scaling properties with D and A. Then they focus exclusively on the self similar

property stating that I(D, A) must have the form,

I(D, A-ao) = Da g(A ao) (1.25)

where ao is the collection area of a raingauge, g is some random function and a, b and c are

scaling exponents. By reasoning on the limiting behavior of I(D, A) as A -+ 0 and A or D -> 00,

De Michele et al. (200 1) conclude that g must have the form,

J(A-ao) = (A - ao) -f(
D1 = ai 1 +> DC (1.26)

where ai is the random intensity in ao for T = 1, and co and 8 are constants. The argument by

which equation (1.26) is derived is not clear. The constants a, b, c, co and / are determined from

data (relations among these constants allow one to reduce them to 4 independent parameters).

The approach of De Michele et al. (2001) makes direct assumptions on the scaling of annual

maximum rainfall, without deriving such properties from the scaling of the rainfall field itself.

This "shortcut" makes it difficult to choose on conceptual grounds between self similarity and

multifractality of the annual extremes and also makes it impossible to link the scaling exponents

of the ARF and IDAF curves to properties of the rainfall field (e.g. stratiform vs. convective,

summer vs. winter precipitation), determine the effect of return period T on the ARF, and

characterize the distribution of the random variable ai in equation (1.26). All these properties
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and parameters have to be inferred from data. Moreover, the way in which the area of the

raingauge collector is treated in equations (1.25) and (1.26) destroys scaling.

From application to a region near Milan (8 years of data, 16 stations covering an area of

about 300 kM2), De Michele et al. find dynamic scaling with D proportional to A, whereas a

general fit to the N.E.R.C. (1975) data gives D oc 0-7; see Section 1.2.2.

In a recent study, Castro et al. (2004) developed a multiftractal approach to explain how the

IDAF curves scale with A, D and T. Castro et al. (2004) assumed anisotropy of rainfall in space

and time with D proportional to AZ/ 2 , where z is a scaling coefficient estimated from data. Using

a large-deviations property of multifractal fields, Castro et al. (2004) find that

iAD,To D -'A-z/2 T 6 (1.27)

where 3 is a positive constant independent of T, which is estimated from data. Castro et al.

(2004) do not discuss the exact derivation of equation (1.27). They also argue that 3 is given by

= I-c(y) (1.28)

where c(y) is the co-dimension function of rainfall when approached as a ID multifractal

process in time. Although not explicitly stated, the analysis of Castro et al. (2004) is valid only

for large values of T. This is so because the ratio 1-c(y) becomes a constant independent of y,

and thus T, only for y y*, i.e.

-Y , y > Y (1.29)1-c(y) q*

where y* is the highest singularity order for which the moment scaling function of the temporal

rainfall process is finite, and q* is the associated moment order greater than 1; see Section 2.2.2.

From an application to a rainfall event in Mexico, Castro et al. (2004) find 3 = 1.227 and

z = 1.161. Since z ~ 1 one can conclude that rainfall is in approximation isotropically

multifractal in space and time. However, one should be cautioned that 3 = 1.227 corresponds to

f-y 1
I-c(y) ~ 0.82. Thus y < y and hence 3 is not a constant independent of T as argued by Castro et

al. (2004).
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In this thesis, we study the behavior of Areal Reduction Factors (ARFs) under

multifractality, determine the effects of deviations from exact multifractality, and quantify the

bias from the estimation of ARF from sparse spatial data. We also study the effect of rainfall

advection on the ARF. The effect of advection depends on the shape, size and response time of

the basin. Finally we discuss observed features of empirical Areal Reduction Factors (ARFs)

and show how these features can be explained using scaling properties of rainfall, deviations

from perfect scaling, and biases from sparse spatial sampling.
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2 Extremes of multifractal rainfall in time

In hydrological risk analysis and design, knowledge of the probability of rainfall extremes is

essential. However, available data rarely allow one to directly estimate rainfall intensities over

the range of areas, durations and return periods of practical interest. One way to make the

inference of rainfall extremes more robust is to use model predictions. Multifractal models

provide a good representation of space-time rainfall fields (Lovejoy and Schertzer, 1995; Gupta

and Waymire, 1993; Deidda, 2000). Therefore, one can use the theory of multifractality as a

framework to elucidate the behaviour of empirical rainfall extremes and extend the results

beyond the empirical range of A, D and T. For example, Bendjoudi et al. (1999) and Veneziano

and Furcolo (2002a) used multifractal rainfall models to determine certain scaling properties of

the Intensity Duration Frequency (IDF) curves.

We start in Section 2.1 by reviewing a result in large deviation theory known as Cramer's

Theorem. This theorem forms the basis of the analysis that follows.

In Section 2.2, we review certain extreme properties of discrete multifractal cascades, which

are the simplest models displaying multifractal behaviour (Gupta and Waymire, 1993). First we

describe how a multiplicative cascade is generated and define the concepts of bare and dressed

measure densities. Then we derive properties of extremes of bare and dressed densities through

linkage to and an extension of Cramer's Theorem.

Section 2.3 uses the previous results on cascades to derive properties of the IDF curves. In

particular, we review the approaches by Bendjoudi et al. (1999) and Veneziano and Furcolo

(2002a). Benjoudi et al. (1999) focus on the limiting case when D is finite and T-+oc, while

Veneziano and Furcolo (2002a) derive the scaling properties of the IDF curves for: (1) D-+0

and T finite and (2) D finite and T-+oc. For the second case with D finite and T-+oc the results of

Veneziano and Furcolo (2002a) are the same as those of Bendjoudi et al. (1999).

Conclusions and comments on the foresaid approaches are summarized in Section 2.4.

2.1 Cramer's Theorem for sums of independent random variables
Cramer's Theorem is a fundamental result in large deviation theory. The theorem deals with a

property of extremes of sums or averages of independent and identically distributed variables.

The reason why normal theory does not apply is that the extremes of interest move farther and
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farther into the tail of the distribution as the number of added or averaged variables increases.

These extremes are in a region of the distribution that has not yet converged to a normal shape.

We review in detail the derivation of the theorem, because this result is essential to all the

developments that follow in this chapter. For additional information on Cramer's Theorem and

related results the reader is referred to Den Hollander (2000), Dembo and Zeitouni (1993) and

Stroock (1994).

Let Sn = 1(X 1 + .. +. Xn) be the average of n independent copies of a random variable X with

Cumulative Distribution Function (CDF) F. Assume that X is unbounded and that the moment

generating function,

M(q) = E[e] f eq' dF(x) (2.1)
-OC

is finite for all q ? 0. Using the fact that the X are independent and identically distributed, one

obtains

n
E[ensn]= H E[eX'] = M(q)" (2.2)

1= 1

Next we use a result in probability theory called Markov's inequality (Papoulis, 1990, p. 131).

This inequality states that, for any non negative random variable U and any positive constant 6,

1
P[U> 6E[U]] 3 (2.3)

Application to U= eqsn and use of equation (2.2) gives

1
P[enqs" > 5 M(q)"] 6 ,>0 and q ? 0 (2.4)

or, solving for Sn

1
Sn qln(6)+ 3n>M(q) 1 :, 6>0 and q :0 (2.5)

1 1
If we define y =- ln(3) + - In{M(q)}, then 3 = M(q)-" e"'q and equation (2.5) becomesnq q

P[Sn > y] 5 M(q)' el = e nq-~) for any real y and q ?: 0 (2.6)

22



where K(q) = ln(M(q)). By minimizing the right hand side of equation (2.6) with respect to q we

obtain

P[S, > y] exp(-n max{qy - K(q)}) (2.7)
q O

We now introduce the Legendre transform of K(q) as the function c(t) given by

c(t) = maxlqt - K(q)} , -OC < t < Oc (2.8)
q

Using c(t) and taking logs, equation (2.7) becomes,

ln(P[Sn y] )
n -c(y) (2.9)

For y > E[X] one can show (for details, see Stroock 1994, p. 30) that, in the limit as n -+ oc, the

inequality in equation (2.9) becomes an equality, giving

lim = -c(y) (2.10)

This result is known as Cramer's Theorem (Cramer, 1938).

The condition M(q) < oc for all q > 0 is not necessary for equation (2.10) to hold. For

example, equation (2.10) is known to hold also for M(q) finite in an infinitesimal right and left

neighborhood of zero (Dembo and Zeitouni, 1993, section 2.2.1). Under the latter condition and

for X continuous, equations (2.9) and (2.10) can be refined (Cramer, 1938, p. 5-23) as

P[Sn > y] = g(y, n) enc(Y)

g(y, n) = (27n C "(Y)) (1+0(1)) (2.11)

where the ' and ' signs denote the first and second derivative respectively, and o(1) is a term

that vanishes as n goes to infinity. Similar asymptotic results have been derived by Bahadur and

Ranga Rao (1960) for X not continuous. Equation (2.11) is used next to derive properties of

multifractal extremes.

2.2 Extremes of bare and dressed multifractal cascades
There is a direct analogy between certain multifractal extremes and the large deviation behavior

of sums of independent identically distributed random variables.
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Consider an isotropic multiplicative cascade. The cascade construction starts at level 0 as a

uniform unit measure in the d-dimensional cube Sd. The multiplicity of the cascade is m, where

m is an integer larger than one. This means that, after n cascade levels, Sd is divided into m nd

cubic tiles Tj1 (i = 1, ... , m"d) with linear size m-. The measure density inside T., is obtained by

multiplying the measure density of the parent tile at level n-I by a random variable Y,i with unit

mean value. Although in general the random variables Y; may be dependent both within and

among cascade levels, here we consider only the case when the Y,,, are independent copies of a

random variable Y, called the generator of the cascade.

Let cmn be the average measure density of the cascade inside a cube of linear size m-, or at

resolution m". One may distinguish between two types of such average densities: the bare

measure density Emw,b and the dressed measure density cm,,d. The difference between bare and

dressed densities is that the former does not include fluctuations at scales smaller than m-". Thus,

Emfl,b is the measure density within a tile T.1 when the multiplicative cascade construction is

terminated at level n. By contrast, the dressed measure density is the average density in T., for

the completely developed cascade. The two measure densities are given by

n

Em-,b i: I= (2.12)

=m~ Cmn,b Z

where Yi, Y2, ... , Y,, are n independent copies of Y and Z is the so-called dressingfactor, which

is independent Of Emn,b and has the same distribution as cl,d, the dressed measure in Sd.

Next we derive extreme value properties of the bare and dressed measure densities from

Cramer's Theorem.

2.2.1 Extremes of bare densities

Let X = logm(Y), so that

n n

logm(em,b)= $ logm(If)= (Y X= nl Sn (2.13)
i=1 i=1

where Sn = (X1 + .. n.+ X). In multifractal analysis one often characterizes the distribution of Y

through the function Kb(q) defined as,
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Kb(q)= logm E[] ln(m) (2.14)

and its associated Legendre transform

cb(y)=max{qx - K(q)} = ,-oc< x < C (2.15)
q>O ln(m) '

The function Kb(q) is the bare moments scalingfunction of the cascade. In fact, for any q for

which E[Y] exists, equations (2.12) and (2.14) give

E[(Em-,b)q]= E[n]= InK(q) (2.16)

Using equation (2.13) and the results on Sn, in equations (2.10) and (2.11) one obtains the

following extreme properties of bare multifractal measures:

1
lim I log(P[mn,b > M"9) = -Cb(y) , y > E[log(Y)] (2.17)

and

P[Em,b mn = g(y, n) m-"ncb()

g(y, n)= (2nn ln(m) Cb(y) (2.18)

Since n ln(m) = ln(mn), the function g(y, n) varies slowly with the resolution of the cascade m".

One often states equation (2.18) as

P[Emn,b M"'] ~ M -"cbO) (2.19)

where ~ denotes equality up to a factor that varies slowly with the resolution m".

2.2.2 Extremes of dressed densities

The main novelty when dealing with dressed densities Emn,d is that the moments Of Cmwd above

some finite order q* may diverge. This critical order q* is given by the conditions q* >1 and

Kb(q*) = d (q* - 1) (Kahane and Peyriere, 1976; Schertzer and Lovejoy , 1987), where d is the

Euclidean space dimension. Therefore, q* is a function of d. When needed for clarity we shall

indicate this dependence by using the notation q* = q*(d). Similarly to bare densities, the

moments of the dressed densities have a power law dependence on the resolution m". In fact,

E[(.m.'d)q])= E[Z"] E[(Cn,b)y] = E[Z'] mnK(q) 0 InK(q) (2.20)
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where the dressed moment scaling function Ka(q) is given by

{K(q) , q < q'
Kd(q) = { q>q (2.21)

Veneziano (2002) showed that the dressed densities Em,,d satisfy a large-deviation relationship

similar to equation (2.18),

P[Cmn ,d> m"1 = h(y, n) m ncly) (2.22)

where cd(y) is the Legendre transform of Kd(q),

ca(y)= max{qy - K(q)} = {. . (2.23)
q q y + d(q*- 1), y > y

d is the Euclidean space dimension, y* = Kb'(q*) and h(y, n) is a function that varies slowly with

the resolution m"; see Veneziano (2002) for details on the form of the function h. In analogy

with equation (2.19), one can write

P[Cmn,d Mi ] m-ncjy) (2.24)

For q* finite, the moments of 6 mn,d above order q* diverge and the distribution of Emn,d must have

an algebraic upper tail of the type

lim P[Cmn,d s] ~ s~q* (2.25)
S--Jc2

This tail behavior of the dressed densities is due to the algebraic tail of the dressing factor Z.

2.3 Scaling properties of the intensity duration frequency curves
This section reviews past work on the scaling properties of the IDF curves under the assumption

that rainfall is a stationary multifractal process. Two approaches are presented, one by

Bendjoudi et al. (1999) and the other by Veneziano and Furcolo (2002a), which in different

ways utilize the extremal properties of multifractal cascades given in Section 2.2.

First, we introduce some notation. Let ID be the average rainfall intensity in a time period of

duration D. We assume that ID is stationary multifractal with random generator A,. This means

that

ID d Ar IrD (2.26)

This scaling property is hypothesized to hold below some maximum temporal aggregation D,,x.

26



Also define T(D, i) to be the return period of the event ID> L- The return period T(D, i) can

be expressed in different ways. A standard definition is

Ti(D, i)= 1 (2.27)P[Ima,D > i

where Imax,D is the maximum of ID over a unit time period (e.g. one year). Equation (2.27), with

a unit time period of one year, is appropriate when, as in rainfall, the phenomenon of interest has

seasonal variations. In the context of a stationary model an often more convenient definition is,

T2(D, i) P D (2.28)

which is the reciprocal of the expected number of D intervals in a uniform partition of the unit

time interval when ID> L. This second definition of return period is the one used by Bendjoudi et

al. (1999) and Veneziano and Furcolo (2002a) and is the one used in the rest of this chapter.

2.3.1 Bendjoudi et al. approach

Although not explicitly stated, the analysis of Bendjoudi et al. (1999) aims at deriving the

scaling properties of the IDF curves for large T and small D.

Since rainfall at a point is a multifractal process in time, the Euclidean dimension of the

observation space is d = 1. Bendjoudi et al. (1999) do not use this condition and rather consider

d as a parameter to be determined. As in equation (2.23), they write the co-dimension function

of the rainfall process for y > y* as

cd(y)= q* y - d(q*- 1) (2.29)

where q* depends on d. Then, using equation (2.22) with em.,d = ID and m" =Dax/D, Bendjoudi et

al. (1999) write

C~waxDmax-q* 
y + d(q* - 1)

ID .D -1 (y, Dax/D) D , y > y (2.30)

where 7(y, Dmax/D) = h(y, logm(Dmx/D)). Introducing the condition I{ID> (D ] which

comes from the definition of the return period in equation (2.28), and replacing (Dax/D)y with

i(D, ),
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D= h(y, Dma/D) i(D, T)-q* (Dmjd(q* - 1) (2.31)

Next, Bendjoudi et al. (1999) argue that the function 1 (y, D,,a/D) may be considered constant.

Thus,

i(D, T) cc D -(d(q* - 1) + I)/q* T l/q* (.2

If one now sets d = 1 (the physical dimension of the observation space for point rainfall) one

obtains

i(D, T) oc D~1 T lq*() (2.33)

where q*(1) is q* for d = 1. This implies that the yearly maxima Imax,D scale with D in the self

similar way

Imax,D d r Imax,rD (2.34)

2.3.2 Veneziano and Furcolo approach

First, Veneziano and Furcolo (2002a) extend equation (2.22) to obtain an expression for

P[Cmn,d > a m"], where a is a given positive constant.

Writing a rJ= r + IOgra, one may use equation (2.22) to obtain

P[Er,d > a r] = P[Er,d r Y' +Iogra] = (y + logr a, r) r-cy + Iogra) (2.35)

where /i(y, r) = h(y, log,, r). Using Taylor series expansion, one can approximate the function

Cd(y + logr a) for large r as

Cd(y + logr a),& cd(y) + cd'(y) logr a (2.36)

Then equation (2.35) becomes

P[Er,d > a r] ~ /(y + log, a, r) a-c'() r-cy) (2.37)

Using equation (2.23) one can prove that cd'(y) in equation (2.37) is given by

{q(y) , y -- y*
Cd'(Y) = > * (2.38)

Veneziano and Furcolo (2002a) use equations (2.35) and (2.37) to derive results on the IDF

curves, as summarized below.
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If rainfall intensity has mean value p = E[ID], then ID has the unit-mean cascade

representation,

ID I CDma/D,d (2.39)

where D is the resolution. Thus, using equation (2.35),

P [ID pa1 D1  
= y+ logDwa/D (a), D 7 (D) d( a) (2.40)

D
Recalling from equation (2.28) that i(T, D) satisfies P[ID > i] , one wants to find a and y such

DT
as the right hand side of equation (2.40) equals D, i.e.

( D (D,,j-cy + logD-/D (a)) D (2.41)hyY~o~mtDia) D 7 )D) T (.1

Veneziano and Furcolo (2002a) examine two limiting cases of equation (2.41). The first case is

Dwhen log~a/D (a) is infinitesimal. This condition attains for any finite T and D -~ oc. This

means that logDm,/D (a) -- 0. Hence using equation (2.36), equation (2.41) becomes,

hy, 2"a-( D -cfy) = (2.42)

The property that h(y, r) is slow varying in r implies that, for any given D1 and D2 ,

. h(y, Dma /Di)
D -- oc h(y, Dmax/D 2) (2.43)

i.e. for large Dmax/D the function h y' D ,) may be considered independent of D. Then equation

(2.42) is satisfied by taking,

y = yi and a oc ( (2.44)

where yi is such that cd(y1) = 1 and q, = q(yi) is the associated moment order. Since yj < y*, for

the derivation of equation (2.44) we have used cAdO1) = q(yi) in equation (2.38). Also, it is a

direct consequence of equations (2.21) and (2.23), that the quantities yj and qi do not depend on
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the dimension of the observation space d. Equations (2.42) and (2.44) imply the following

scaling relationship of i(D, T) with D and T.

i(D, T-) oc D-" T /N, (2.45)

Equation (2.45) gives the scaling properties of the IDF values for T finite and D-+O. An

interpretation of equation (2.45) is that for D small the annual maxima Iax,D satisfy the self

similarity condition,

Imax,D d r" Imax,rD (2.46)

However, notice that equation (2.45) was derived using the definition of return period in

equation (2.28) not (2.27) and hence without reference to the definition of the annual maxima.

Therefore the interpretation in equation (2.46) is not strictly correct.

The second case considered by Veneziano and Furcolo (2002a) is when y + logD/D (a) > y*,

which occurs for large T and relatively small Dmax/D ratios. Given that y + logD.a/D (a) > y* and

using equation (2.29) for d= 1 (Euclidean dimension of the observation space), the co-

dimension function has the form

cd(y + logD/D a) = (y + logD/D a) q*(l) -(q*(l) - 1) (2.47)

and equation (2.41) becomes,

y + logDw.a/D (a), a*()*() y +q*()- = (2.48)

if /(y + logD/D (a), does not vary much with either D,Ix/D or a, then equation (2.48) is

satisfied for

y = 1 and a oc - (2.49)

Therefore, for very large T the IDF values scale as

i(D, ) oc D71 T1/q*(') (2.50)

This is the same as the relation derived by Bendjoudi et al. (1999); see equation (2.33). From

equation (2.50) one concludes that, in the extreme upper tail, the annual maxima Imax,D satisfy

the self-similarity condition
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Imax,D d r Imax,rD

The scaling properties of the IDF curves for the above limiting cases have been validated

numerically by Veneziano and Furcolo (2002a).

2.4 Conclusions and comments

The analysis of Bendjoudi et al. (1999) aims at deriving the parameters q* and d from IDF

curves estimated empirically from rainfall records. Although not explicitly stated, their analysis

is valid for large T and small D. If the empirical IDF curves have the form,

i(D, T) oc D'Y# (2.52)

then Bendjoudi et al. (1999) find q* and d by equating the scaling exponents in equations (2.32)

and (2.52). For example, using an empirical formula of the type in equation (2.52) obtained by

Farthouat (1962) for the Bordeaux area, Bendjoudi et al. (1999) find q* = 2.78 and d= 0.64.

However one should be cautioned that q* is a function of d, and independent estimation of these

two quantities from rainfall data is not mathematically correct. Moreover, values of d

(dimension of the observation space) other than 1 seems to make little physical sense. The likely

reason why values of d smaller than 1 are obtained, is that the empirical IDF curves where

derived for return periods T 20 years and in this range the theoretical analysis of Bendjoudi et

al. (1999) does not apply.

The analysis of Veneziano and Furcolo (2002a) is more complete. It derives the scaling

properties of the IDF curves for two liming cases: (1) D-+0 and T finite and (2) D finite and

T-+oc. For D-+0 and T finite, the theoretical dependence of i(D, ) on D is of the type D-' with

0 < yj < 1. This corresponds better to the empirical results of Farthouat (1962) and indeed to the

value of the exponent of the empirical IDF functions, which is typically in the range [-0.7, -

0.6]. For the second case with D finite and T-+oc, the results of Veneziano and Furcolo (2002a)

are the same as those of Bendjoudi et al. (1999) for Euclidean dimension of the observation

space d= 1.
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3 Extremes of multifractal rainfall in time and space

In Chapter 2 we analyzed the behavior of rainfall extremes when rainfall is observed at a point

on the geographical plane. Here we extend the analysis to the average rainfall intensity inside

regions of various shapes with maximum linear size L. Specifically, we consider regular (square

or circular) regions and highly elongated regions in which the narrowest dimension is much

smaller than L. On the geographical plane (x, y) the maximum elongation is assumed to be in the

y direction; see Figure 3.1.

L

Regular Highly
shape elongated

shape

x

Figure 3.1: Schematic representation of regular and highly elongated regions.

In a Lagrangian reference the rainfall field in (x, y, t) space is assumed multifractal. The

field advects with constant velocity Vad = [Vad,x, Vady] ', where the superscript T denotes the

transpose of a vector. We consider first the case when Vad = 0 and then examine the effect of Vad

# 0. For each case we study the scaling properties of the Intensity Duration Area Frequency

(IDAF) curves and the Areal Reduction Factor (ARF). These properties further depend on the

shape of the region.

The chapter is organized as follows. Section 3.1 derives properties of the IDAF curves for

the case Vad = 0. This is mainly an extension of the work of Veneziano and Furcolo (2002a) on

the Intensity Duration Frequency (IDF) curves for the case of point rainfall. Using these results,

we obtain the scaling properties of the IDAF curves and the ARFs with the size of the region L,

the period of aggregation D and the return period T. We do so for three limiting geometries of

the rainfall collecting region: a regular 2D region (a square or a disc), a line segment and a

point. A key parameter in this analysis is the ratio ures = vreslve between the "response velocity"

vres = LID and the "evolution velocity" ve = Le/De, where Le and De are the characteristic linear
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dimension and duration of rainfall generating features. Finally, we study how the IDAF curves

and the ARFs behave for rectangular rainfall collecting regions (for regions with intermediate

geometry between a line segment and a square).

In Section 3.2, we study the effect of advection (Vad : 0) on the IDF, IDAF curves and

ARFs. In particular, we analyze the effect of advection for three spatial sampling cases:

sampling at a geographical point (which might idealize the small collection area of a rain

gauge), sampling along a line segment (which idealizes a highly elongated rainfall collection

region), and sampling over a disc (which idealizes collection over a regular shaped region). We

find that the scaling properties of the IDF and IDAF curves and the ARFs are affected by

advection. For highly elongated basins, both the direction and magnitude of advection are

influential, whereas for rainfall collection at a point or over a regular shaped region only the

magnitude of advection, vad, matters. An important parameter for advection is the ratio

Uad = vd/e between the magnitudes of the advection velocity and the evolution velocity.

Section 3.3 validates numerically the theoretical results previously obtained. This is done for

two separate cases: (1) no advection of the rainfall field (Section 3.3.1) and (2) constant

advection velocity (Section 3.3.2).

In Section 3.4 we discuss the range of velocities vres, ve and vad that are encountered in

typical hydrologic applications. Focusing on problems of flood estimation, vres is estimated by

setting D equal to the concentration time of the basin, t. In this case, vres ranges from about 3 to

7.5 Km/h. vres depends mostly on the average slope of the basin and much less on its size. The

rainfall evolution velocity, ve, ranges from about 5 to 20 Km/h and vad usually takes values

between 30 and 50 Km/h at small scales (a few kilometers) and from 20 to 40 Km/h at large

scales (say 100 or more kilometers). However, local conditions have important effect on vad.

Comments are presented in Section 3.5.

3.1 Extremes of Multifractal Space-Time Rainfall for Vad = 0
In this section we extend the analysis of Veneziano and Furcolo (2002a) from point to spatially

averaged rainfall, for the case without advection. We assume that space-time rainfall intensity is

an infinitely dressed multifractal measure and derive the scaling properties of the Intensity

Duration Area Frequency (IDAF) curves for different dimensions of the observation space, d.

We do so for three limiting geometries of rainfall collecting regions: a square (d = 3), a line
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segment (d = 2) and a point (d = 1). We then use these results to obtain properties of the Areal

Reduction Factor (ARF).

When d =1 (sampling at a point) only the temporal dimension of rainfall is considered and

the IDAF curves reduce to the familiar Intensity Duration Frequency (IDF) curves. For d = 2

rainfall is observed along a line segment, which is the limiting case for rainfall collection over a

very elongated region, whereas for d = 3 rainfall is observed inside a square region in space.

Finally we discuss the case of rectangular rainfall collecting regions.

3.1.1 Infinite dressing and limiting geometries of the observation region

In the analysis that follows, we make use of two quantities with the physical dimension of

velocity [Length/Time]: The "evolution velocity" ve = Le/De, where Le and De are the

characteristic linear size and lifetime of rainfall structures, and the "response velocity" vres = LID

, where L and D are the maximum linear size of the rainfall collecting region (for example a

basin) and the duration of rainfall averaging (e.g. the response time of the basin). One may

relate these two velocities using the dimensionless parameter ures = vres/Ve, which we call the

"response velocity parameter". Hence ures indicates whether the response is faster (ures > 1) or

slower (ures < 1) than the evolution of rainfall features such as convective cells, cell clusters and

mesoscale precipitation regions. For example, in hydrologic application, ures might be larger or

smaller than 1 depending on whether the hydrologic response of the basin is dominated by fast

runoff (as for example in highly saturated basins, flash-floods, and urban watersheds) or by slow

infiltration, subsurface flow and exfiltration processes. For a more detailed analysis of ve and

vres, see Section 3.4.

Suppose space-time rainfall is stationary and isotropically multifractal. Then I(tL,D), the

average rainfall intensity in the time period [t, t + D] inside a region of linear size L, satisfies

I(t L, D)= dBr I(rt rL, rD) , r > 1 (3.1)

where Br is an appropriate random variable. This scaling relation holds below some duration De

for temporal aggregation and below some length Le for spatial aggregation. If we assume that

the evolution velocity ve does not depend on the size of the rainfall generating features then

ve = Le/De. For simplicity and without loss of generality, we set De = 1 and Le = 1. Therefore, the

region of multifractal behaviour is the unit square 0 = {O < L < 1, 0 < D < 1} and ve = 1.
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Equation (3.1) can be represented graphically by noting that, on the (ln(L), ln(D)) plane, I

has "B,. multifractal scaling" along 450 lines; see Figure 3.2 for a schematic representation and

Section 3.3.1 for numerical validation. Each 450 line in Figure 3.2 is characterized by one value

of the response velocity parameter ures = LID. The 45' line with D = L and ures = 1, denoted by

LI, passes through the origin and has special importance for the analysis that follows. Notice

that points on Ll correspond to cubic "cascade tiles" of different size in space-time and square

regions on the (L, D) plane. Below Ll, the (L, D) rectangles are elongated in the spatial direction

and ures > 1, whereas above Li the rectangles are elongated in the temporal direction and ures <

1. We shall refer to these regions as the high- and low-velocity regions, respectively. The

regions with ures > 1 (e.g. ures > 5) and ures << 1 (e.g. ures < 1/5) are called the very high and

very low velocity regions.

)log L <log r (0,0)

D

L :B,. scf~ii

Low velocity log r
region

450 lines

High velocity
region

LI lin DIL _1 0log D

Figure 3.2: 45* scaling in (ln(L), ln(D)) plane.

Strictly speaking, equation (3.1) is the only scaling relation for I inside Q. However, in good

approximation, scaling relations of different types hold in the very high and very low velocity

regions. For ures 1 (in practise, for ures larger than about 5), the region (L, D) is highly

elongated in the spatial direction. Therefore the process I(t L, D) is nearly identical to the

process IQI L, rD) (for a justification of this, see Veneziano and Furcolo (2002b)). Also, the
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processes I(t L, D) and I(rt rL, rD) are related through Br - multifractal scaling according to

equation (3.1). Therefore, for ures >> 1,

I(t L, D) ad BrL I(rtIL LL, rDD) , rL 1 (3.2)

The scaling factor r in equation (3.2) is arbitrary, provided that rLD >> 1. For ures << 1 (in

practise, for ures smaller than about 1/5), the region (L, D) is highly elongated in the temporal

direction. Therefore,

I(t L, D) md BrD I(rDtI rLL, rDD) , rD > 1 (3.3)

rLL
In this case rL is arbitrary, provided that r« << 1.

The scaling relations in equations (3.2) and (3.3) are presented symbolically in Figure 3.3.

What is shown along each arrow is the scaling factor in the associated transformation ("1"

means that the distribution is unchanged). For example, raingauge records have minimal area

coverage, and thus scaling in time is essentially of the Br multifractal type, as given by equation

(3.3) and shown at the top left of Figure 3.3.

(-) log L 0,0)

U D

BrD

BrD

Br,-'
TDr

Raingauge TL,r L
records 

D|

BrL

LI line log D
rL ,(

Figure 3.3: Approximate scaling relations.
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In the region around the L1 line (for velocities ures in the approximate range [1/5, 5]),

equations (3.2) and (3.3) do not apply (Veneziano and Furcolo, 2002b). Rather, there are

complicated transformations, say TD,r and TL,, in the directions of the log(D) and log(L) axes,

which in combination produce Br multifractal scaling; see dashed triangle in Figure 3.3.

Next, we consider how the T-year value i(L, D, T) of the process I(t L, D) scales with L and

D in the very high and very low velocity regions, where equations (3.2) and (3.3) hold. In the

very high velocity region equation (3.2) holds, and recalling equations (2.45) and (2.50) from

the Veneziano and Furcolo analysis, we obtain

-LY1T 1/qi , for T finite and L-+0
i(L, D, T) oc L-'T l'el* , for L finite and T--oc (3.4)

Notice that the analysis of Veneziano and Furcolo (2002a) is for temporal rainfall (i.e. d = 1 and

thus q* = q*(l)), whereas in equation (3.4) q* = q*(d) with d that depends on the Euclidean

dimension of the rainfall observing region (d = 2 for rainfall observed along a line segment, d=

3 for rainfall observed in a square region).

In the very low velocity region equation (3.3) holds, and recalling again equations (2.45) and

(2.50), we obtain

FDT , for T finite and D-+0
i(L, D, 7) oc D1T11q*(a, for D finite and T-+oc (3.5)

Similarly to equation (3.4), when L is finite q* = q*(3) for rainfall observed in a square region,

and q* = q*(2) for observation along a line segment. When L -+ 0 (i.e. rainfall at a point),

rainfall is a ID process in time and q* = q*(l).

Next we use equations (3.4), and (3.5) to derive expressions for the ARF. We denote by

i(D, T) the T-year rainfall intensity at a point for averaging duration D and write,

i(L, D, T) = q(L, D, ) i(D, T) (3.6)

where q(L, D, 7) is the ARF we want to obtain.

In the very low velocity region, equation (3.5) gives,
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{ , for T finite and D -> 0
rq(L, D, T) oc Tlllq*(a)- )1/q()] , for D finite and T-*oc (3.7)

whereas in the very high velocity region equations (3.4) and (3.5) give,

-- , for T finite and L-+O

ri(L, D, 1) oc (3.8)

TBL /q()- 1/q)1,)] for L finite and T-oc

where d = 3 for rainfall observed inside a square region, and d = 2 for rainfall observed along a

line segment. The relations in equations (3.7) and (3.8) are illustrated schematically in Figure

3.4.

(0, 0) log(ures)= log (LID) (+)

moderate T
small L

log 11

moderate L
large T

Figure 3.4: Behavior of the areal reduction factor r.

It is interesting that the ARF depends in an important way on the response velocity

parameter ures and on the return period T. Through q*(d), the geometry of the observation region

affects the properties of the IDAF curves and the ARFs for large values of the return period T.

Equations (3.7), (3.8) and Figure 3.4 indicate that when the response velocity vres is low relative

to the evolution velocity ve the ARF is nearly constant with LID and close to 1, whereas for

relative fast response the ARF becomes a power function of LID.

These theoretical results, which are validated numerically in Section 3.3.1, correspond to

empirical observations. For example Figure 3.5 shows the ARF derived empirically by

Koutsoyiannis (1997) for D = 1 hour (see also Section 1.2).
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Figure 3.5: Koutsoyiannis ARF curves for duration of 1 hour, return period T= 2-3 years and areas up to
30 000 KM2.

Evidently, the ARF increases as the ratio LID decreases, and for values of L / Le less than

about 1/5 the ARF is approximately 1.

Table 3.1 summarizes the previous results on the IDAF curves and the ARF for the case

Vad =0.
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Table 3.1: Scaling of IDAF curves and ARF with ures (vad= 0). The Euclidean dimension of the observation region,
d, is included.

Very low velocity region Very high velocity region

Ures << Ures >> 1

I(t L, D) md Br, IrtI rjL, rDD), r, r > 1 I(t L, D) :d Br, I(rtI rLL, rDD), rL, r. > I

(no dependence on L) (no dependence on D)

D-1 T 1q for LI T q for
' T finite DT finite

E i(L, D, T) cc D finite i(L, D, T) oc L finite
D1-T1q*(d) for LDT fq*in for

(no dependence on L) (no dependence on D)

f D-+O 
L-+0

for T finite , forTfinite
q r(L, D, 7) oc qt(L, D, 7) oc

.1qO 1/q , for D finite . f L finite
XT Iq*a- l*() frT ->oo DI ' q() q() T--oc

3.1.2 Finite dressing and intermediate geometries of the observation region

In Section 3.1.1 we studied the properties of the IDAF curves and the ARF assuming that space-

time rainfall intensity is an infinitely dressed multifractal process. We found that for T finite the

shape of the rainfall collecting region does not affect the scaling properties of the IDAF curves

and the ARF; see Table 3.1. Also, for T -+ oo and rectangular geometry of the rainfall collecting

region, the IDAF curves and ARFs have scaling properties that do not depend on the shape of

the region; see Table 3.1. However, natural processes are not infinitely dressed, and therefore

one should rather approximate space-time rainfall intensity as a partially dressed quantity than

an infinitely dressed one.

In contrast to the behaviour of the marginal distribution of an infinitely dressed measure,

which depends only on the dimension of the observation space d, the marginal distribution of a

partially dressed measure depends also on the shape of the observation region, and the

elongation of the region; see below. The latter is an important parameter for the tail properties of

partial dressing factors, and thus for the same properties of partially dressed densities. For

simplicity, we study those properties outside the context of rainfall, using a 2D cascade process

of multiplicity m. Then, we discuss the implications for space-time rainfall, treated as a 3D
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multiplicative cascade. We obtain properties of the IDAF curves and ARFs for rectangular

rainfall collecting regions and finite values of the return period T.

Define L1,L2 to be the average measure density inside a L, x L2 rectangular observation

region with L1 I L2; see Figure 3.6.

2D observation region

Magnification of a bare
cascade tile at the highest
resolution of the cascade

L1

mn

Figure 3.6: 2D observation region with linear dimensions L, and L2, included in a square region of size L 1. ,m, is the
linear dimension of the bare tiles at the highest resolution of the cascade.

Denote by Imin the linear size of a bare cascade tile at the highest resolution of the cascade;

see Figure 3.6. The ratios L 1/L2 and L2lmin give the amount of spatial aggregation along each

side of the observation region, and the parameters nd, = logm(L1/L2) and nn = logm(L2/lmin) give

the associated numbers of dressing levels. One can express CL1,L2 by,

EL1,L2 d 8Lbare Zndi,nd2 (3.9)

where CLbare is the bare measure density inside the square region of side L1 (see Figure 3.6), and

Zndnd2 is the partial dressing factor inside the rectangular region with side lengths Li and L2.

Next we study the tail behaviour of the partially dressed density ELIL2 for different values of the

parameters ndl and nd2.

First we examine cases with limiting values of nd, and nd2. For ndi = 0 and nd2 = 0 the

observation region is a square, and the measure cL,,L1 is bare. Thus the tail behaviour of the

distribution of CLIL, is not algebraic; case (c) in Figure 3.7. For ndl = 0 and nd2 -+ oo, the

observation region is again a square, but the measure EL,,L, is infinitely dressed in both

dimensions. In this case the tail behaviour of cLi,'L is identical to that of the two-dimensional

dressing factor Z(d=2) and q* = q*(2); case (b) in Figure 3.7. For ndl -+ oo and nd2 = 0, the
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observation region is a line segment of length L, and the measure eLi,lmin is infinitely dressed in

one spatial dimension. Therefore, the tail behaviour of 6 Li,*min is the same as that of the one

dimensional dressing factor, Z(d=1); case (a) in Figure 3.7.

ndi =0 0,0) log(8) (+)
nd2 = 0

nd2 0lo [>

ndl 0 
q*(I)

nd2 -+ 0

(a)

(-) +%( 
b(b)

~(c)

Figure 3.7: Complementary Cumulative Distribution Function (CCDF) of the measure ELIL2 for limiting values of
the parameters ndI and nd. (a) q*(l) tail behaviour, (b) q*(2) tail behaviour, (c) no algebraic tail behaviour (bare

measure).

Next we consider intermediate (rectangular) geometries and cases with finite dressing. When

ndl = 0 and nd2 is finite, the observation region is a square and the spatial dressing is finite. The

distribution of EL1,L1 is intermediate between curves (b) and (c) in Figure 3.7. The distribution

further depends on the value of n,2. Figure 3.8 shows qualitatively the behaviour of cLi,LI for

different nd2.

ndl = 0 (0,)0) log(E) (+)
nd2 =0

ndl=0

nd2 -0 oolog P[8 > e]

nd1= 0
nd finite 1

q*(2)

(c) (b). .
bincreasing nd

Figure 3.8: Complementary Cumulative Distribution Function (CCDF) of the measure EL1L2 for nd, = 0 and nd
finite.
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When nd = 0 and nd is finite, the observation region is a line segment and dressing is one-

dimensional and finite. The measure cL1,lin has a slope intermediate between curves (a) and (c) in

Figure 3.7. Figure 3.9 shows qualitatively the behaviour of ELInin for different values of ndl.

ndl (00)og() (+)
nd2 - 0

na 0log P[8 > e .
nd finite
nd2 0*-

-q*(I)

(a)

(-) (c)

increasing nd,

Figure 3.9: Complementary Cumulative Distribution Function (CCDF) of the measure EL1,L2 for nd2 = 0 and nd
finite.

When both ndl and na are finite, the observation region is elongated. In this case spatial

dressing is finite and partly one-dimensional, partly two-dimensional. The distribution of EL1,L2

has properties from all curves in Figure 3.7. These properties depend on ndi and nd. Figure 3.10

shows qualitatively how the behaviour of ELL2 depends on nd and nda. Notice that Regions 1

and 2, where ELIL2 has different algebraic behaviours, have sizes that are increasing functions of

ndl and nda, respectively. For nd large (say larger than 5) and ndl small (say less than 5) Region

1 tends to disappear and Region 2 dominates, whereas for nd small (say < 5) and ndl large (say

> 5) Region 1 dominates and Region 2 tends to disappear.
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Figure 3.10: Schematic behaviour of the complementary cumulative distribution function of the measure E1,L2 for
given values of ndl and nd.

We now return to space-time rainfall, which we view as a 3D multiplicative cascade process

(two spatial dimensions plus time) of multiplicity m. In this case, the observation space is a

parallelepiped with spatial dimensions L I and L2, and temporal dimension D; see Figure 3.11.

gion

Magnification
-bare cubic cas
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-- ---- resolution of
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of a
cade
hest
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Figure 3.11: 3D observation region with linear dimensions L, and L 2 and temporal dimension D. ',mm and d,.in are
respectively the spatial and temporal dimension of the bare cubic tiles at the highest resolution of the cascade.

The average rainfall intensity inside this parallelepiped, denoted by iL,,L2,D, is a partially dressed

measure with tail properties that depend on the parameters nd, and nd2, defined earlier, and on
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nd3 = logm(D/dmin),, where dmin is the temporal size of a tile at the highest resolution of the

cascade; see Figure 3.11. These three parameters define the shape of the rainfall collecting

region, as well as the number of ID, 2D and 3D dressing levels. Typical values of dmin for

rainfall range from 1-5 min (Olson et al. 1993, 1995), whereas a similar range for .in does not

exist in the literature. However, for typical hydrologic applications one can accept ,i, to be of

about 1 Km.

Figure 3.12 shows qualitatively the dependence of the marginal distribution of iL,,L2,D on nd,

nd2 and nd3. Notice that Regions 1, 2 and 3, where iL1,L2,D has different algebraic behaviours, have

sizes that depend on nd, nd2 and nd3.

bare in all 3 (0,0) log(i) (
- .. - dimensions (no - .

algebraic tail) Region I Region 2 Region 3
q*(1) tail q*(2) tail q*(3) tail

infinitely
-. - - dressed in all

3 dimensions

infinitely
- - - - dressed in 2 -

dimensions

infinitely log P[i > i] q*(
dressed in 1 tail
dimension \

finite dressing in \
."'"" all dimensions bare

(-) (no algebraic: q*(3). algebraic q*(2)
tail) tail tail tail

Figure 3.12: Schematic behaviour of the complementary cumulative distribution function of the average rainfall
intensity LI,L2,D for given values of ndl, nd2 and nd3.

One can use the above results to qualitatively assess the effect of the shape of the rainfall

collecting region on IDAF and ARF scaling.

Denote by i(Li,L2 ,D,T) the average rainfall intensity inside the space time region (L1,L2,D)

with return period T. Also define tj(L,L 2,D,T) to be the associated ARF. In general, i(L1,L 2,DT)

and q(L,L 2,D,T) scale with T as i(Li,L2,D,) oo T a and q(L1,L2,D,7) oo T -b; see Section 3.1.1.

For T -+ 0, a and b equal zero, whereas for T -+ oo, a = 1/q*(d) and b = 1/q*(1) - 1/q*(d), where d

is the Euclidean dimension of the observation space (d= 2 for rainfall observed along a line

segment, d = 3 for rainfall observed over a square or a disc); see Section 3.1.1. This means that

for T -+ oo and rectangular rainfall collecting regions, d = 3 and the shape of the region does not
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affect the asymptotic properties of the IDAF curves and the ARFs. However, for intermediate

values of T there is a significant dependence of the parameters a and b on the shape of the

observation region. Specifically, a is larger for elongated basins relative to regular ones and

decreases as T increases; see Figure 3.13. This decrease is faster for smaller and more

symmetric basins.

(0, 0)

- - - - square region

rectangular region

log(T)

(+)

log(i)

Figure 3.13: Schematic behaviour of the average rainfall intensity iLL2,D as a function of the return period T, for
two different geometries of the observation region: (1) a square region (L1=L2), and (2) a rectangular region
(L1>L2 ). The averaging area and duration are kept constant.

On the other hand, b is larger for regular basins relative to elongated ones and

increases; see Figure 3.14. This increase is faster for smaller and more symmetric

(0, 0) log(T) (+)

- - - - square region

rectangular region

log()

increases as T

basins.

(-) I

Figure 3.14: Schematic behaviour of the Areal Reduction Factor *7L,2,D as a function of the return period T, for two
different geometries of the observation region: (1) a square region (L1=L2), and (2) a rectangular region (L1>L2).
The averaging area and duration are kept constant.

Notice that the tail of curves (1) and (2) in Figures 3.13 and 3.14 may or may not be of the

power law type depending on the number of ID, 2D and 3D dressing levels.
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One concludes that, for intermediate values of T the shape of the rainfall collecting region

becomes influential. The ARF decreases faster for regularly shaped basins relative to elongated

ones. The rate of this decrease further depends on T with higher rates for larger values of T.

3.2 The Effect of Advection

In the previous section, we studied the scaling properties of the IDAF curves and the ARF with

L, D and T for uad = 0 (or when collecting rainfall in a Lagrangian reference system). We found

that a key parameter describing the behaviour of the IDAF curves and the ARFs is the ratio ures

vres/Ve between the response velocity vres = LID and the evolution velocity of the rainfall field.

Next we study the effect of advection. We define the "advection velocity parameter" as the

dimensionless ratio uad = vad/ve. Rainfall is considered to be isotropically multifractal, as before.

Again we set Le = 1 and De = 1. Thus ve = 1 and ures = vres. Notice that in an Eulerian reference

the rainfall distribution remains multifractal with scaling properties identical to those in a

Lagrangian reference. This is so because isotropically scaled (homothetical) space-time regions

remain homothetical under constant advection velocity. For example, Figure 3.15 shows the

effect of advection on a cylindrical rainfall averaging region in space-time. The cylinder

becomes slanted in the direction of uad.

y y

space space

Sampling
area A

Sampling D ad D
area A

t t

x Duration x Duration

(a) uad =0 (b) Uad# 0

Figure 3.15: The effect of advection. Regions where rainfall intensity is averaged for (a) uad 0 and (b) uad 10; (x,
y, t) are Lagrangian coordinates.

In what follows we analyze how advection affects the sampling region in space-time and the

return period T when changing from an Eulerian to a Lagrangian coordinate system. We do so

separately for three spatial sampling cases: sampling at a geographical point, a line segment or

over a disc. This transformation allows us to then use the results of Section 3.1 (for Vad = 0),

which apply in a Lagrangian framework for any Vad.
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3.2.1 Sampling at a point

Suppose that the sampling area is small enough that it may be approximated as a point. As

shown in Figure 3.16, when sampling an advected field over a duration D, the sampling segment

in a Lagrangian framework has length D' given by

D= (uad)2 = D NF+ ua (3.10)

where Ji/+ua7 can be seen as a correction factor for D when passing from an Eulerian to a

Lagrangian coordinate system.

space
y +

Sampling
point

Uad

x Duratj

D

t

Figure 3.16: Sampling at a point in a time interval of duration D.

In analogy to

corresponds to T in

equation (3.10), the return period T' in a Lagrangian framework that

an Eulerian framework is

T'= T/FI+ua7 (3.11)

Equations (3.10) and (3.11) indicate that the effect of advection on the IDF curves is to

increase both the effective averaging time and the return period by a factor 4/1+ Ua-. Therefore,

if the IDF values for uad = 0 vary with D and T as D' 7b where a and b are constants such that a

> b, then the IDF curves for uad # 0 are displaced downward by a factor (1 ±Uaj)(a-b)/2 . The latter

is shown schematically in Figure 3.17.

48



ln(i)t

(a)ud=0
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Figure 3.17: Expected displacement of the IDF curves due to advection.

In Section 2.3 we showed that a varies between yi and 1. Also, for a = yj then b = 1/qi and for a

= 1 then b = 1/q *(1). Thus the inequality a > b is always maintained and the IDF curves for uad /

0 are displaced downwards as shown schematically in Figure 3.17.

3.2.2 Sampling on a segment line

Suppose that rainfall is observed on a straight line segment of length L. In this case, the

averaging region in space and time is a parallelogram whose shape and size depends on L, D and

the amplitude and direction of the advection velocity vector; see Figure 3.18.

space

Sampling
line 

L U d.

L

XDuration

D

t

Sampling
line

uL
UOud

UadO

A- Uady

Uad

Figure 3.18: Sampling along a line in an Eulerian reference system.

If 0 (p 7 r/2 is the angle between the advection velocity vector uad and the sampling line L, then

one can decompose the advection velocity vector into a component normal to L,

uao = uad sin( (3.12)

and a component parallel to L,

Uady =uad cOSP (3.13)
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The normal component uad,x affects the size of the sampling region in space and time but not its

shape which remains rectangular; see Figure 3.19. Under only uad,x, the sides of this rectangular

observation region have lengths,

SL'= L

{D~DiB~2(3.14)
D'=Dq1+uad,

<_ D

L=L'

D'=D 41+Uad,,2

Figure 3.19: Effect of uad,x on the size of the sampling region in space-time.

By contrast, the parallel component uady affects the shape but not the size of the sampling

region. The region is now a parallelogram with side lengths L and D' = D 41+ uad and the

value of the "height" L' in Figure 3.20 is L'= L/ 1+ Uady

D D

L

L'= L/4 1+ uas2\

D'= D 41+ us,

Figure 3.20: Effect of uady on the shape of the sampling region.

The Lagrangian observation region under the combined effect of uadx and uady is a

parallelogram with side lengths L and D'= D 11+ ua and the value of the height L' in Figure

3.21 is L '=L/11+ Uady.
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D

- L

L'=L/-1+u --------------

D D 1fu,2

Figure 3.21: Effect of uadon the shape and size of the sampling region.

The Lagrangian return period is given by

T'= TVI+ ud7 (3.15)

To understand the implications of advection on the IDAF curves and the ARF we consider

two limiting cases. One is ures >>1 (very high response velocity) and the other is uresl<< (very

low response velocity).

For ures >>1 the parallelogram is highly elongated in the spatial direction and one can

approximate it with a rectangle as shown in Figure 3.22. Thus L, D and T are translated to L',

D', and T' given by

L' = L

D' D -V + uad,x7 (3.16)

T'= T V1+ Uadx

D'=D + Uadx 2

L L

Figure 3.22: Approximation of the observation region with a rectangle when u,, >> 1.

In the other limiting case, ures <<1, the parallelogram is highly elongated in the temporal

direction and can be approximated by a rectangle as shown in Figure 3.23. Thus,
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L = L/JI+ ua,

D D 1\fl+ua7

T'= T\ JI+ua7Z

D'=D -l+ud

LfZ

D'=D V+7,2

L'= WI)+Lu,,2

Figure 3.23: Approximation of the observation region with a rectangle when u, <<1.

Hence in the case of sampling along a line, the effective values L', D' and T' depend not

only on the magnitude of the advection velocity, but also on the direction of advection relative

to the sampling line.

3.2.3 Sampling over a disc

Contrary to the case of observation on a line, when sampling over a disc of diameter L the

direction of the advection velocity vector has no effects. This is so because the observation

region has radial symmetry; see Figure 3.24.

Yt

space

Diameter L

Uad

x Duration

D

D

t

Figure 3.24: Sampling over a disc of diameter L in an Lagrangian reference system.

Equation (3.18) gives the effects of the advection velocity on L, D and T for the limiting

cases when ures >>1 and ures << 1.
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Ures >> 1

L' = L

D'= D

T'= T

(L )2 s2 « 
(3.18)

Ures << D'= DN 1+ Uad

.... T' T 41

3.2.4 Effect of Advection on the IDAF curves and the ARFs

One can use the results in equations (3.16), (3.17) and (3.18) to modify Table 3.1 and include

the effects of advection on the IDAF curves and the ARFs for two limiting geometries of

drainage basins: Very elongated basins (i.e. Length Width-l' >> 1), and relatively symmetric

basins (i.e. Length Width ~t 1). Very elongated basins can be approximated as segment lines

along which rainfall is observed; see Section 3.2.2. On the other hand, relatively symmetric

basins can be approximated as observation discs; see Section 3.2.3. The resulting expressions

are listed in Table 3.2 for very elongated basins, and in Table 3.3 for relatively symmetric

basins.

Table 3.2: Scaling of the IDAF curves and ARFs with ures for very elongated basins; the effect of advection is
included (uad t 0). d= 2 for ndi > 5 and n2 < 5, and d= 3 for nd, < 5 and nd2> 5; see Section 3.1.2.

Very low velocity region

U. <<1 

I(t L, D) ;d Br. I(rDtj rLL, rDD), rL, D ; 1>
(no dependence on L)

Very high velocity region

Ur >>1

I(t L, D) ;d Br. I(LtI rL L, rDD), rL, rD

(no dependence on D)

i(L, D, T, uad) oc (+uadx) L' T 1
q
1' , for L-0

) (I+ u ad ) i- " D D71 T ] q1 for te i(L , D , T , u aTd) oc . _ fin ite

(T+a' ,forT ',fo 2 D finite0,5/q*(d) L finite

2) JIq() PD finite
Lf T--*cj

(no dependence on L) (no dependence on D)

?I(L, D, T, uad) oc 77(L, D, T, uad ) c

frD-0O I fUii L-0O
, finite I(.u , for T finite

( finite + U{Idd)- U/q(I)] , for L finite
4+ D).7[~*()Iq(~ f initeL/qI- 7) ll*d- l*'] frT-oad (15, { +o+a
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Table 3.3: Scaling of the IDAF curves and ARFs with ures for relatively symmetric basins; the effect of advection is
included (uad 0).

Very low velocity region Very high velocity region

u<< u>> I

I(t L, D) &d Br. (rDt rLL, rDD), rL, rD > 1 I(t L, D) ad Br, I(r tI rLL, rDD), r, rD 1

(no dependence on L) (no dependence on D)

i(L, D, T, uad) ocL0
r D->0 L-' T II ,for

(+ ) I-AD T11e for T finite
I T finite i(L, D, T, uad) oc

L' 3 ~ Lfinite

( +u () - .TP/l*(3) D finite L-' T1/ *), for

12T-T+c

(no dependence on D)
(no dependence on L)

q(L, D, T, uad) oc q(L, D, T, uad) oc

D-+0 L1 L->0
for T finite ( 1+u 7 )(,f)r T finite

((1+u 2) 057T)[I1 -qIfq(1)] or D finite ( +u 2) (I ) T [Iq-(3) , for L f ite

Notice that the expressions in Table 3.2 include the parameter q*(d) instead of q*(2), which

is the theoretically correct value since rainfall collection is along a line segment. Use of the

general space-time dimension d indicates that one should consider independently the shape of an

elongated region for defining the dimension of the observation space (i.e. d = 2 or d = 3), and

for selecting the right prefactor to account for advection effects. For example an elongated

rainfall collecting region may be approximated as a segment line to account for advection

effects, however the dimension of the observation space, which characterizes the IDAF and

ARF scaling under no advection conditions (i.e. Vad = 0), may still be with high accuracy d = 3,

as shown in Section 3.1.2.

For moderate values of the return period T, one should substitute l/q*(d) in the expressions

of Table 3.2 and l/q*(3) in the expressions of Table 3.3 with the parameter a, discussed in

Section 3.1.2. This parameter accounts for the shape of the rainfall collecting region, which

becomes influential for moderate T.

Figure 3.25 shows qualitatively the effect of advection on the ARF curves. For ures << 1 and

T large, the ARF depends on the magnitude of the advection velocity, whereas for T moderate

the ARF is not affected by uad and remains constant with L/D and close to 1. For ures >> and T
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either small or large, the ARF remains a power function of LID but the prefactor depends on the

magnitude of uad; for a numerical validation see Section 3.3.2.

(0, 0) log(ures)= log (L/D) (+)

J

moderate T

log q Uad= 0 small L

moderate L
large T

Figure 3.25: Behavior of the areal reduction factor q for uad = 0 and uad # 0.

3.3 Numerical validation

In the previous sections we derived scaling properties of the IDAF curves and the ARFs with the

size of the region L, the period of aggregation D and the return period T. This was done for two

separate cases: (1) no advection of the rainfall field (Section 3.1), and (2) constant advection

velocity (Section 3.2).

Here we validate numerically the theoretical results obtained in the previous sections, first

for the case with Vad = 0 and then for the case with Vad 0.

3.3.1 Numerical validation for the case without advection

To validate the theoretical results in Section 3.1 we use two types of multifractal cascade models

in two spatial dimensions plus time. The first cascade model has lognormal generator, whereas

the second modle has beta-lognormal generator (for more information on beta-lognormal

cascades see Section 4.1.3). Both cascades have multiplicity 2 in all dimensions.

3.3.1.1 Lognormal cascade

The generator of the cascade, B, has a lognormal distribution,

ln(B) ~ N(-C 1 ln(2), 2C1 ln(2)) (3.19)

where N(p, a2) is the normal distribution with mean value p and variance 02 and C, is the so-

called co-dimension coefficient.
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To reduce the computational time needed, only the relevant part of the 3D cascade was

generated; see Figure 3.26. The parallelepiped that is embedded in the 3D cascade has spatial

dimensions 26 x 26 tiles and temporal dimension 29 tiles. This parallelepiped represents in an

idealized way a rainy period (season) of the year. The size of 29 cascade tiles is assumed to

represent the outer limit of multifractal rainfall behavior in both space and time.

3D cascade

Observation region

'79

Simulated parallelepiped
t

Lm, 21

26
7

7ma

29

Figure 3.26: Schematic representation of the simulated region of the 3D cascade.

Numerical estimation of the ARF requires knowledge of area-averaged rainfall intensities at

catchment scales, as well as at the raingauge scale. The latter may be assimilated to a point.

The cascade is generated down to the scale of unit space-time tiles and then "dressed" as

described below.

Denote by Ib(x, y, t) the bare rainfall intensity at the highest bare resolution, i.e. in the unit

3D tile centered at (x, y, t). The dressed rainfall intensity at that same unit scale is obtained as,

Id,3(X,y, t) d Z3D Ib(X,y, t) (3.20)

where Z3D is the dressing factor of a 3D binary cascade with generator given by equation (3.19).

Consider now a raingauge at a point inside this tile, for example at location (x, y). During the

unit time interval centered at t, the dressed rainfall intensity measured by the raingauge, Id,i(x,y,

t), is given by,
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Id,1(X,Y, t) =d ZID Ib(X, y, t) (3.21)

where ZiD is the dressing factor of a ID binary cascade with generator identical to that of Z3D-

For each simulated season one can estimate numerically the ARFs for different values of L

and D. These ARFs have return period T = 1 season or 1 year. Estimation is through,

E max f f f Id,3(x, Y, O)dt dx dy

ARF(L, D) = IDAF(LD) 1' K , for L < L,,, Di < D,.(3.22)

E max f Id,1(X, y, t) dt

where E[.] denotes averaging over different seasons and spatial locations of the catchment or

raingauge, and i is the index of cascade tile of duration D inside each season; see Figure 3.27.

To reduce variability among different realizations, we have averaged over 10 simulated seasons.

Averaging in space and time

Averaging
D = * Dduration

X D= D=2,k 9

Averiiging -'---- -- -L=2 region

L =2 non-overlapping intervals
corresponding to cascade tiles

Figure 3.27: Simulation procedure using a binary 3D cascade.

Figure 3.28 shows the iso-ARF lines from a simulation with C1 = 0.1. The theoretical log-log

slope for large LID (y, = 0.532), is very closely matched by the simulation results; see Figure

3.29.
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Figure 3.28: ARF scaling behaviour with L and D for the exact multifractal case. The model used is a 3D
binary LN discrete cascade with co-dimension coefficient Ci = 0.1.
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5I

Ln(LID)

Figure 3.29: ARF scaling behavior with the ratio LID for the exact multifractal case. The model used is a 3D binary
LN discrete cascade with co-dimension coefficient C1 = 0.1 and associated y' = 0.532.

3.3.1.2 Beta-lognormal cascade

The generator of the cascade, B, has a non zero probability mass at B = 0 and [BIB > 0] has

lognormal distribution,

ln(B) ~ N(-Cj ln(2), 2C, ln(2)) (3.23)
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where N(u, 02) is the normal distribution with mean value p and variance o2 and Ci is the co-

dimension coefficient. The relationship between Co and the probability Po = P[B= 0] is,

Co = -log2 (1-Po) (3.24)

The procedure followed for the numerical simulations is identical to the one described in

Section 3.3.1.1. The simulation region has spatial dimension 26 x 26 tiles and temporal

dimension 29 tiles, and the results were averaged over 10 independent simulations. Figure 3.30

shows the ARF for C1=0.1 and Po = 0.25.

Comparing Figure 3.30 with Figure 3.28 for a LN cascade with Ci=0.1, one observes that in

both cases the contour lines have unit slope. However, the ARF values in Figure 3.28 are

smaller and this difference becomes pronounced for both high and low LID ratios. This can be

explained as follows.

First, the overall co-dimension coefficient of the beta cascade model, C, = CO + C1 = 0.52, is

much higher than that of the LN cascade with Ct = C, = 0.1. Thus, for the beta-LN cascade in

Figure 3.28 yi is much higher than for the LN cascade. This increase of yi corresponds to smaller

ARFs for high LID ratios.

Second, averaged values in either space or time appear to be smaller for a beta-LN cascade

than for a LN cascade with the same C,. This is so because averaging in a beta-LN cascade

accounts also for zero valued tiles. At the same time, the maximum value of an averaged

quantity in a beta-LN cascade decreases as the averaging region increases, but this decrease

becomes slower for larger regions. This is so because when averaging is small, the averaged

field remains heterogeneous (i.e. zero valued tiles separately exist) and close to the non-

averaged one. Thus, maximizing over this field is equivalent to maximizing over an equivalent

LN field with co-dimension coefficient Ci approximately equal to the one of the beta-LN field.

As the averaging region increases the co-dimension coefficient of the equivalent LN field

decreases and tends to a constant value, which is smaller than the one of the co-dimension

coefficient of the beta-LN field. Since the ARF is the ratio of the maximum spatially averaged

rainfall intensity for a certain time period D to the maximum point rainfall intensity for the same

period D, one can conclude that the ARF values of a beta-LN cascade are smaller than these of a

LN cascade with the same C,, and that the spacing of the contour lines of a beta-LN cascade is

larger than that of a LN cascade. These two statements hold for both high and low LID ratios.
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Third, the ARF contour lines for a beta-lognormal cascade should have unit slope as

happens in the log-normal case. This is so because the generator of the cascade is scale and

"state" invariant, and thus the cascade model remains multifractal.

5

I

0 1 2 3 4 5

Loa,(LI

Figure 3.30: ARF scaling behaviour with L and D for a beta LN cascade with CI=O. 1 and PO = 0.25.

A.3.2 Validation of advection effects

Next we investigate numerically the effects of advection on the ARF.

For efficiency of the calculations this is done for the case of spatial averaging on a segment

of length L (see Section 3.2.2) and advection velocity vector Vad parallel to the segment (i.e. p =

0 and Vad= [0, Vad]). The numerical model used is a 2D binary LN cascade in a 210 x 210

Lagrangian space-time region; see Figure 3.31.
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Simulated 2D cascade

y
(space) final

t position
(time)

2'0(1+ 2)

ad
2

Initial
position Dnm= 210

Averaging in space and time

eDmme= 210
Averaging

segment
l 10

L=2'

Lmx=2 10

\/

. sampling
space-time

I
Averaging

duration
k< 10

Ir i= 2 i ... i= 2

D2

rainy period (season)

Figure 3.31: Simulation procedure of an advective field using a binary 2D cascade.

The size of the needed simulation region in a Lagrangian frame depends on both the

maximum linear dimension L,,,, of the sampling segment and the advection velocity vad.

In analogy with the 3D cascade in Section 3.3.1, the dressed measures Id,2(y, t) and Id,(y, t)

can be obtained using,

Id,2(Y, 0 d Z2D Ib(y, (
1 (3.25)

Id,1(Y, ) =d ZlD Ib(y, )

where Z2D and ZD are the dressing factors of a 2D and ID binary cascade, respectively, having

identical generators.

Similar to the 3D case without advection (Section 3.3.1), for each simulated 2D cascade (see

Figure 3.31) and for a given advection velocity vad one can estimate the ARFs for different

values of L and D using,

ARF(L, D) - IDAF(L,D)
IDF(D)

E max f f Id,2 (x, Y, 0 dt dx d

Lma i K( ,for L < Lmax , Di : Dmax (3.26)

E max f Ad, I(X, Y, t) dtD.
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Equation (3.26) is a simplified version of equation (3.22) for a 2D cascade. The ARFs estimated

have return period T = 1 season or 1 year.

To reduce variability among different realizations we averaged the ARF results over 20

independent simulations. The final estimates are shown in Figure 3.32 for no advection (vad = 0),

vad = 4 space units per time unit, and vad= 8 space units per time unit.

LE

-3 -5 -4 -3 -2 -1 -n 2 (12 3 4 5

y 1 = 0.53

-- No advection (v=O)
+- v=41.

-- v=8
1.6

1.8 0.30 0.45
-24'

2.0
In(LD)

Figure 3.32: ARF scaling behavior with the ratio L/D for different values of Vad. The model used is a 2D binary LN
discrete cascade with co-dimension coefficient C = 0.1 and Y1 = 0.532.

One can use the numerical results in Figure 3.32 to validate the theoretical prefactor changes

shown in Table 3.2 (i.e. very elongated basins). In our simulations C1 = 0.1 with associated

y1 = 0.532 and q, = 3.162. Also, udo = 0. Using the relationship of Table 3.2 for ures >> 1, T

finite and L -+ 0, one obtains

ARF(L, D, T, uad) oc (+uad ) 0 10 8  (3.27)

Thus, the uad = 4 and the uad = 8 curves in Figure 3.32 should be shifted by 0.30 and 0.45,

respectively, relative to the uad = 0 curve. These theoretical results are in agreement with those

obtained numerically.

3.4 Velocity parameters
Here we discuss the range of velocities vres, ve and Vad and related velocity parameters ures =

vres/Ve and uad = valve. For the vres and ures, we focus on problems of flood estimation; hence L is

the linear size of a basin and D its characteristic response time.
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3.4.1 Response velocity v,,

Estimation of the "response velocity" of a drainage basin requires the estimation of both the

linear dimension L and the response time D. While L may be approximated as the square root of

the drainage area, the estimation of D is not a trivial issue. Many studies have focused on the

definition and estimation of a characteristic time scale for the hydrologic response of a basin.

There are many definitions of response time for a basin and different methods of estimation.

For example, Tessier et al. (1996) suggest a characteristic response time estimated through the

spectral analysis of runoff hydrographs, while Morin et al. (2001) estimate the characteristic

time through cross-analysis of rainfall radar and flood runoff data.

Here we focus on one of the most commonly used definitions in theoretical and practical

hydrology, the concentration time te, which is defined as the time needed for a water particle

falling on the most remote part of the basin to reach the basin outlet (Singh, 1992). t, cannot be

easily measured and in practice is approximated using empirical formulas that include the length

of the main stream Ls, the average slope of the basin S or maximum relief H, and possibly other

parameters. Table 3.4 summarizes a number of such empirical formulas.

Thus, one can approximate D as the characteristic time scale expressed by t, and then

estimate the response velocity vres = LID of the basin. Next we obtain some rough limits of vres.

First we find a relation between the average slope S and linear size L of a basin. According

to Veneziano and Niemann (2000) the slope s of a basin scales proportionally to A 0 4, where A is

the area of the basin. Approximating L as the square root of A we write

s(L) = c L~4- (3.28)

where c is a constant. Using equation (3.28) and Figure 11 (moment plots of the slope-area

relation for Buck and Racoon Creeks) of Veneziano and Niemann (2000), one can estimate

c 0.17 , for highly sloped basins

c 0.026, for low sloped basins (3.29)

The average slope S of the basin can be approximated as,

L L 02 _ L02

S =f s(x) dxf(L - Lo)= 5c L - Lo , for L > Lo (3.30)
Lo

where LO is a linear size of reference. For the rest of the analysis we set LO = 0.25Km.
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Table 3.4: Summary of concentration time empirical formulas.

Method and date Formula for t, (min) Remarks

c = 3.98 LS
77 

S0385 Developed from SCS data for seven rural basins in Tennessee

. = length of the main channel [Km]. with well defined channel and steep slopes (3% to 10%); for
Kirpich (1940) S = the average slope of the main channel overland flow on concrete or asphalt multiply t, by 0.4; for

concrete channels multiply by 0.2; no adjustments for overland
flow on bare soil or flow in roadside ditches.

e =60(0.871 L, 3 if') 3 5

USBR Design of L6.= length of the longest water-course [Km] Essentially the Kirpich formula; developed from small
Sal Demsig ( o9 ) L= legtof thereonet betee-dove [Km]. mountainous basins in California (U.S. Bureau of Reclamation,Small Dams (1973) H= elevation difference between divide and 1973, p. 67-71).

outlet [m].

te = 5.4 L,*O
7 S-

375

Garti et al. (1948) Ls= length of the main channel [Km]. Used by the Soil Conservation Division in Israeli Ministry of
S= the average slope of the main channel Agriculture and Rural Development.

[im/m].

t= 133(2.76 10' i + c) L 033  Developed in laboratory experiments by Bureau of Public roads
sO.33 lnhffwahfor overland flow on roadway and turf surfaces; values of the

Izzard (1946) L" ran fll ie t [mo retardance coefficient range from 0.007 for very smooth

c = retardance coefficient. ' pavement to 0.012 for concrete pavement to 0.06 for dense turf;

S = the slope of flow path [m/m]. product i times L, should be 4; method requires iterations.

te= 103.1(1.1 - C) LS05S-"' Developed from airfield drainage data assembled by the Corps of

Federal Aviation C = rational method runoff coefficient. engineers; method is intended for use on airfield drainage
L, = length of overland flow [Km]. problems, but has been used frequently for overland flow in

Administration (1970) S = the average slope of the main channel urban basins; C ranges from 0.4 for natural low slope areas to 0.8
[%]. for urban highly developed areas.

Kinematic Wave L a 3= ngth of ove land flow [. Overland flow equation developed from kinematic wave analysis
Formulas Morgah and L= rainfall intensity [mm/hour]. of surface runoff from developed surfaces; n of Manning ranges
Linsley (1965) Aron n = Maing g coefficient. from 0.012 to 0.15 (for a photographic method for estimating n
and Erborge (1973) S= average overland slope [mimi. see Chow (1959) pp. 115-123); method requires iterations.

Equation developed by SCS from agricultural watershed data; it
tc= 0.571[(1000/CN) - 9]07 L,2' S-0

5  has been adapted to small urban basins under 2000 acres; found
SCS Lag Equation 4= longest flow path [Km]. generally good where area is completely paved; for mixed areas

(1972) CN= SCS runoff curve number. it tends to overestimate; adjustment factors are applied to correct
S = average overland slope [%. for channel improvement and impervious area; the estimation of

CN is done from curves provided by SCS (1972).

Letting Ls = 1.3L and combining equations (3.29) and (3.30) with the empirical formulas

presented in Table 3.4, we find that for typical values of the parameters C, CN, c and n the

response velocity vres ranges from 3Km/hour to 7.5 Km/hour. The values of vres depend on the

method used for the estimation of te. Moreover, vres does not vary much with L and depends

mostly on the average slope S. High values of v,,, correspond to developed basins and high

slopes. Table 3.5 summarizes some results from the analysis performed on the estimation of vres.
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Table 3.5: Estimation of the vres.

High slopes
Basin Area L (Km) Ls (Km) S AH (m) D [hours] D (hours] D [hours] Response velocity [Km/h]

(KmA2) Kirpich USBR Garti eta!. Kirpich USBR Garti et aL.
1 1.00 1.30 0.2744 356.76 0.13 0.13 0.18 7.5 7.5 5.62

10 3.16 4.11 0.1462 601.21 0.41 0.41 0.53 7.7 7.7 5.92
50 7.07 9.19 0.0898 825.79 0.93 0.93 1.17 7.6 7.6 6.03
100 10.00 13.00 0.0721 937.31 1.32 1.32 1.65 7.6 7.6 6.05
500 22.36 29.07 0.0424 1233.48 3.00 3.00 3.68 7.5 7.5 6.07
1000 31.62 41.11 0.0335 1378.23 4.29 4.29 5.22 7.4 7.4 6.06
5000 70.71 91.92 0.0191 1758.54 9.89 9.89 11.78 7.2 7.1 6.00
10000 100.00 130.00 0.0149 1943.06 14.20 14.21 16.76 7.0 7.0 5.97

Low slop es
Basin Area Km) Ls (Km) S AH (m) D [hours) D [hours] D [hours] Response veloc t [Km/h]

(KmA2) Kirpich USBR Garti et a!. KI ich USBR Garti et aL.
1 1.00 1.30 0.0420 54.56 0.28 0.28 0.36 3.6 3.6 2.78

10 3.16 4.11 0.0224 91.95 0.85 0.85 1.08 3.7 3.7 2.93
50 7.07 9.19 0.0137 126.30 1.91 1.91 2.37 3.7 3.7 2.98
100 10.00 13.00 0.0110 143.35 2.71 2.71 3.34 3.7 3.7 2.99
500 22.36 29.07 0.0065 188.65 6.18 6.18 7.45 3.6 3.6 3.00
1000 31.62 41.11 0.0051 210.79 8.83 8.84 10.56 3.6 3.6 3.00
5000 70.71 91.92 0.0029 268.95 20.37 20.38 23.82 3.5 3.5 2.97
10000 100.00 130.00 0.0023 297.17 29.26 29.27 33.89 3.4 3.4 2.95

3.4.2 Evolution velocity ve and advection velocity Vad

The advection velocity vad is a physical quantity directly estimated from data. In particular,

estimation of va1 requires a procedure known as "rainstorm tracking". This procedure aims at

deriving the advection velocity vector of a rainstorm using rain-gauge, radar or satellite data

(Zawadzki, 1973; Takeuchi, 1985; Takeuchi and Guardado, 1990; Upton, 2002). For example,

Deidda (2000) suggests a technique for rainstorm tracking using the spatial and temporal

autocorrelation functions of a rainfall field. Assuming stationarity of the rainfall process in

space and time, Deidda estimates the spatial p,(Idxl), py(Idy) and temporal p,(dtl) autocorrelation

functions of the storm. Then the values of three arbitrary constants dxo, dyo and dto are selected

in order for px(lfr/dxo/) and py(jdy/dyoj) to match p,(Id/dtol). Provided that the advection velocity

of the rainfall field is constant for all scales, one can estimate the advection velocity vector as,

vad =Vad4x, Vady]T = [dxo/dto, dyo/dto]T (3.31)

Estimation of the evolution velocity ve requires the estimation of the characteristic linear size

Le and lifetime De of rainfall generating structures. Many studies have focused on the estimation

of Le and De. For example, Merzin et al. (2003) distinguish moisture transport contributing

features with respect to their linear size: Atmospheric turbulence when Le < 1 Km, convective

cells when 1 Km L <L 3 Km, mesoscale formations (convective bodies) when 3 Km Le < 10

Km and large scale formations when Le > 10 Km. Also, Mecklenburg et al. (2000) find that
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single hail cells have mean linear size Le ~ 7 Km and lifetime De ~ 85 min, which correspond to

ve a 5 Km/hour.

A categorization of precipitation areas is given by Austin and Houze (1972), who studied the

precipitation patterns of nine storms in New England covering a wide range of seasonal and

synoptic conditions. All patterns were found to be composed by sub-synoptic scale precipitation

areas with clearly definable characteristics. These areas can be grouped into 4 categories

presented in Table 3.6.

Table 3.6: Categories of precipitation areas and their characteristics.

Type Area covered Linear size Le Lifetime D, Evolution velocity v,

Small areas 10 Km2  3 Km < 30 min - 10 Km h'
Small mesoscale 100 Km2+ 400 Km 2  10 Km+ 20 Km I hour 10 Km h- 20 Km h'areas
Large mesoscale 1000 Km2 + 10 000 Km2  30 Km+ 100 Km Several hours 10 Km h+ 20 Km h-1areas

Synoptic scale areas > 10 000 Km 2  > 100 Km ;> 1 day - 5 Km h-' 10 Km h'

The results of Austin and Houze (1972) are nearly identical with the spatial and temporal

scale subdivision of atmospheric features proposed by Orlanski (1975).

Chaudhry et al. (1996) obtained statistics on tropical convective storms. Multiple convective

cell events have mean linear size Le ~ 16 Km and lifetime De ~ 50 min, which correspond to

ve ~ 19 Km/hour. The latter value is included in the range given by Austin and Houze (1972).

Moreover, the advection velocity of the cells was found to lie mostly in the range between 20 -

50 Km/hour.

Based on analyses of the GATE data set (Tropical North Atlantic Global Atmospheric

Research Program (GARP) Atlantic Tropical Experiment (GATE)), Martin and Schreiner

(1981) present the Probability Density Functions (PDFs) of the lifetime of cloud clusters with

linear dimension ranging between 100 and 1000 Km. One can estimate that the corresponding

evolution velocity takes values in the range between 6 to 12 Km/h. The latter is in agreement

with the results of Austin and Houze (1972), and Orlanski (1975). Martin and Schreiner (1981)

find the advection velocity of the cloud clusters to be almost 30 Km/h. They argue that this

value of vad is almost 10 km/h higher than the one expected, and this magnification can be

ascribed to local conditions.

Based on correlation analysis results, Kawamura et al. (1996) argue that the speed at which

a rainfall cell is advected is not dependent on the cell development stage. Thus, one can manage
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advection and evolution of the features independently. Also, Kawamura et al. (1996) find that

the advection velocity of rainfall cells ranges from zero to 38.5 Km/hour with mean value

20.5 Km/hour. Same range of vad values has been obtained by Upton (2002).

Generally, the evolution velocity ve ranges from 5 to 20 Km/hour as presented in Table 3.6.

The advection velocity vad, ranges from zero to 50 Km/hour with commonly met values of 35 -

50 Km/hour for small features and 20 - 40 Km/hour for large features. However, these values

can only be considered as rough approximations and might be largely altered by local conditions

(for an example see: Martin and Schreiner, 1981).

3.5 Comments
In the previous sections we analyzed the behavior of rainfall extremes when space-time

multifractal rainfall is observed over an area.

First we considered the case of zero advection velocity (i.e. vad = 0) and we obtained the

scaling properties of the IDAF curves and ARFs with L, D and T.

Next we examined the effects of vad # 0 on the IDF, IDAF curves and ARFs and we found

that their scaling properties are affected by advection. For highly elongated basins both the

direction and magnitude of advection affect the results, while for relatively symmetric basins

only the magnitude of advection is important.

However when over land flow is studied, the storm direction and pattern become, also,

important factors determining the shape of the runoff hydrograph. Lima and Singh (2002) find

that the peak discharges and hydrograph shapes depend strongly on the storm pattern, the

characteristics of the catchment area and the direction and speed of storms. Storms moving

upstream (i.e. opposite to the flow direction) are normally characterized by hydrographs with

early rise, low peak discharge, not steep rising limb and long base time. Also, the sensitivity of

the hydrographs to rainfall patterns decreases as the advection velocity of the storm increases. In

particular, rainfall intensity patterns become an important parameter when advection velocity is

low and less than about 10 Km/hour.
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4. Imperfect scaling of rainfall, sparse sampling and their effects on
the ARF

Although rainfall is thought to inherit its scaling properties from atmospheric turbulence (see for

example Frish, 1985; Frish and Parisi, 1985; Meneveau and Sreenevasan, 1987), the exact

transfer mechanisms of multifractality from turbulence to rainfall are not known. Complications

arise when one considers the atmospheric mechanisms associated with water vapor transfer and

rainfall generation. For example, unconditional stability of the prestorm environment results to

thermal stratification of the atmosphere with layers that have different temperature and moisture

content. In those layers the generated eddies remain isolated, with scaling properties that depend

on the thermal characteristics of the layer, and maximum linear size that does not exceed the

height of the layer. Therefore, even if perfect multifractality of turbulence holds in any of those

layers, their integrated result, observed as ground-level rainfall, may violate perfect scale

invariance.

Many studies (e.g. Fraedrich and Larnder, 1993; Olsson et al., 1993; Olsson, 1995) show

violations of scaling in temporal rainfall records for aggregation periods larger than about 2

weeks or smaller than a few minutes. A possible break of scaling for aggregation periods 2-3

hours has also been detected. However, these observations are associated with some

uncertainties (Olsson, 1995).

In the case of perfect isotropic multifractality, rainfall intensity I(x, y, t) is the product of

independent and identically distributed (id) fluctuations W(x, y, t) at different log resolutions j=

1, 2, ... The fluctuations satisfy the scaling relation,

W, x, y, t) =d W roj x, roi y, roi t) (4.1)

where ro > 1 is a contraction factor, W(x, y, t) is a non-negative random field with unit mean

value, and =d denotes equality in distribution. The main features of this construction is that the

fluctuations at different log-scales combine in a multiplicative way (multiplicative property) and

are statistically identical after scaling of the support (id property).

Although the multiplicative property is generally supported by data (Veneziano et al., 1996;

Carsteanu and Foufoula-Georgiou, 1996; Menabde et al., 1997), deviations from the id property

have been found in the form of dependences of W on the scalej (Perica and Foufoula-Georgiou,
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1996b; Veneziano et al., 1996; Menabde et al., 1997; Menabde and Sivapalan, 2000) and on

covariates such as large-scale rainfall intensity (Over and Gupta, 1996; Veneziano et al., 2003).

Section 4.1 reviews observed deviations from equation (4.1) and models that have been

proposed to capture such deviations. The models reviewed include:

(1) The bounded cascade model proposed by Menabde and Sivapalan (2000) for temporal

rainfall downscaling. This model is based on the technique of Breakdown Coefficients

(BDC) and accounts for changes with scalej of the marginal distribution of W.

(2) A model developed by Perica and Foufoula-Georgiou (1996b) for spatial rainfall

downscaling using wavelet decomposition. This model was initially developed for

simulating rainfall variability at scales unresolved by numerical mesoscale atmospheric

models. The model assumes that the standardized rainfall fluctuations have normal

distribution and simple scaling in space. The scaling parameters of the standardized rainfall

fluctuations depend on the spatial scale, and are related to the Convective Available

Potential Energy (CAPE) of the prestorm environment.

(3) Two multiplicative cascade models by Over and Gupta (1996) and Veneziano et al. (2003)

for rainfall generation with beta-lognormal and beta-logstable generators. The model of

Over and Gupta (1996) is for spatial rainfall. It considers the beta-lognormal generators W

to be independent and identically distributed, but allows the distribution to depend on the

average rainfall intensity over the radar frame. The model of Veneziano et al. (2003)

assumes that W has beta-logstable distribution with parameters that depend on the scale j

and the bare rainfall intensity bj-1 =d Io H Wk in the parent cascade tile j-1.
k <j

(4) The 3-parameter universal multifractal model of Lovejoy and Schertzer (1995). This model

is based on properties of turbulence and uses three parameters: the co-dimension coefficient

C1, the Levy index of the generator a, and the order H of fractional integration.

Section 4.2 discusses how estimates of spatially averaged rainfall from raingauge networks

are affected by the network density. This is an important problem because the ARF estimation is

typically based on raingauge records.

Section 4.3 investigates numerically the effects that deviations from multifractality and

sparse spatial sampling have on the estimated ARFs. First we investigate how the ARF behaves

for a bounded cascade representation of rainfall in space and time. Then we present the effects
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of sparse spatial sampling on the estimated ARFs for different densities of the raingauge

network.

4.1 Observed deviations of rainfall from multifractality

4.1.1 Bounded cascade models for temporal rainfall

First we review the definition of the Breakdown Coefficients (BDC), which form the basis of

the bounded cascade model of temporal rainfall proposed by Menabde et al. (1997b), Harris et

al. (1998) and Menabde and Sivapalan (2000).

Let ID(t) be the total accumulated rainfall in the time interval [t, t + D]. The BDC is defined

as the ratio of the total accumulated rainfall in a time period D to the total accumulated rainfall

in a longer time period rD, i.e.

R(t, D, r)=- IrD(rt) r> 1 (4.2)

Generally, the BDC is a random variable that depends on t, D and r. If the process ID(t) is

stationary multifractal then the statistical properties of BDC depend only on r, i.e.

R(t, D, r)=dR(r), r > 1 (4.3)

However, analyses of many rainfall time series (Menabde et al., 1997b; Harris et al., 1998)

suggest that R depends also on the scale of aggregation D. Dependence on D is an indication of

deviation from multifractality.

The bounded cascade model of Menabde and Sivapalan (2000) includes dependence of the

BDC on r and D.

Using a dyadic cascade representation, one can directly estimate the empirical Probability

Density Functions (PDFs) of the BDCs of a rainfall time series for different standardized

accumulation periods,

D,,= 2'" (Do/d) , n = 0, 1, .. (4.4)

where Do is the outer limit of the cascade (i.e. maximum scale of aggregation), d is the

minimum accumulation period (i.e. scale of maximum resolution), and n is the cascade level.

The empirically derived PDFs can then be smoothed by fitting an analytic PDF with parameters

that depend on Dn.
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For example, Menabde and Sivapalan (2000) analyzed a continuous rainfall record from

Melbourne (Menabde et al., 1999) with d = 6 min The value of Do, was set to 192 min (i.e.

max(n) = 5). They found that the empirical PDFs of the BDCs are well approximated by the beta

density,

pxx~Ba,-1 ( I _ )a-1 (4.5)

where B(a) is the beta function and the parameter a scales with D, as,

a(D,)= ao D.- (4.6)

where ao = 12.27 and b = 0.47. This corresponds to a bounded cascade representation of

temporal rainfall. This is so because the standard deviation of the BDCs decreases as the

temporal resolution or equivalently the level n increases.

Thus, a micro-canonical multiplicative cascade (discussed next) with random generator W,,

described by equations (4.4)-(4.6) preserves the dependence of the BDCs on D observed in the

data.

In a micro-canonical cascade for rainfall totals, the multiplicative factors wn,o(j) and wn,1(j) in

Figure 4.1 satisfy,

wn,o(j)+ wn,1(j) 1 , n = 0, 1,...; j= 1, ... ,2" (4.7)

and no dressing is required.

One can use equations (4.5) and (4.6) to obtain the standard deviation aw(n) of the generator

wn at level n. Then one can estimate the standard deviation Gq(n) of the generator qn of a micro-

canonical cascade model for rainfall intensities by using the relationship,

aq(n) 2 oa(n) (4.8)

This is a direct consequence of the fact that qn 2 wn.
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Figure 4.1: Generation of a micro-canonical cascade for rainfall totals.

For the data set from Melbourne (Menabde et al., 1999) one obtains the values in Table 4.1.

These values are shown graphically in Figure 4.2.

Table 4.1: Standard deviation aq(n) of the generator q,, of an equivalent micro-canonical cascade for rainfall
intensities. ao = 12.27, b 0.47, d= 6 min, and Do 192 min.

Duration
Level (n) Dn a(Dn) oq(n)

0 192 32 2.407 0.415
1 96 16 3.334 0.361
2 48 8 4.617 0.313
3 24 4 6.396 0.269
4 12 2 8.859 0.231
5 6 1 -

The above bounded-cascade model was used by Menabde and Sivapalan (2000) to simulate

rainfall time series with 6 min resolution. The statistics of the synthetic time series were

compared to those of the data set from Melbourne. The model showed good behaviour and

reproduced well the observed extremes.
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Figure 4.2: Standard deviation aq(n) of the generator q, of an equivalent micro-canonical cascade for rainfall
intensities. ao = 12.27, b = 0.47, d = 6 min, and Do = 192 min.

4.1.2 Spatial rainfall model of Perica and Foufoula-Georgiou (1996b)

Perica and Foufoula-Georgiou (1996b) proposed a model for spatial down scaling of rainfall

based on wavelets.

The model aims at simulating rainfall variability at scales unresolved by numerical

mesoscale atmospheric models. The precipitation output of these models is the average rainfall

intensity over a grid with typical cell dimensions 30x30 Km to 60x60 Km. Thus, spatial rainfall

downscaling is essential if rainfall intensity is needed at sub-grid scales (i.e. scales smaller than

a grid cell).

Let Im(i, j) be the average rainfall intensity at relative scale 2' (m = 0, 1, 2, 3) around

location (i,j). Perica and Foufoula-Georgiou (1996b) take m = 0 to correspond to the smallest

scale of interest (4x4 Km) and m = 3 to the largest scale (64x64 Km).

For the discrete field I.(i, j), Perica and Foufoula-Georgiou (1996b) use a 2D Haar wavelet

representation. Specifically, Im(i, j) can be expressed as the sum of the average I.,4(n, k) at the

next higher scale and three fluctuation fields I'+ij(n, k) (I= 1, 2, 3),

Im+(n, k)= 1 [Im(ij) + Im(ij+l) + Im(i+1,j) + Im(i+1,j+l)] (4.9)

I {IIm(,j) + Im(Ij+l)] - [Im(+lj) + Im(+lj+l)I} (4.10)
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Im+1,2(n, k) =4 {[Im(i,j)+ I(i+1,j)] - [Im(i,j+1)+ I(i+1,j+1)]} (4.11)

1
I'm+1,3(n, k) =I {[Im(ij) - Im(i+l,j)] - [Im(i,j+l) - Im(i+1,j+1)]} (4.12)

The indices (ij) denote the spatial position at scale m, while the indices (n, k) denote the spatial

position at scale m+1; see Figure 4.3.

t2
grid cell at

scale m

(,k) -grid cell at
scale m+ I

(i~A (A+1 J)

tj

Figure 4.3: Discretization on a two dimensional grid at relative scales m (dashed lines) and m+1 (solid lines).

The fluctuation components on the left hand side of equations (4.10), (4.11) and (4.12) may

aIm 0 m
be viewed as discrete representations of the spatial derivatives , and - respectively.

Based on the analysis of several storms from the PRE-STORM data set, Perica and

Foufoula-Georgiou (1996a) suggest that the rainfall fluctuations standardized by the

corresponding scale averages,

,a if IM', > 0
m,i = { "' i , i=1,2,3 (4.13)

0 ,if I.,l= 0

have normal distribution and simple scaling behavior. This behavior is described by the

equation,

inj,= 2(m-1)H'ai. i=,2,3;m>1 (4.14)

where q,, is the standard deviation of 4,,, and H and aij are dimensionless constants.

Perica and Foufoula-Georgiou (1996b) found that directional differences among the

parameters H and ai, were insignificant, and thus only two parameters H and a1 were required
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for all directions i. These parameters are given by empirical formulas that include the

Convective Available Potential Energy (CAPE) of the prestorm environment:

H =0.0516 + 0.9646 (CAPEx10 4 )

a,= 0.539 - 0.8526 (CAPEx 104) (4.15)

where CAPE is in [m2/sec2]. The formulas in equation (4.15) have a regression R value of 0.82

and -0.73 respectively.

Starting from a given spatially averaged rainfall intensity and following the inverse

procedure (i.e. from higher to lower m), one can perform spatial rainfall disaggregation.

One can directly relate m to the generator q, of a micro-canonical cascade for rainfall

intensity (see Appendix A). Therefore, dependence of & on the spatial scale m indicates

deviation from multifractality similar to a bounded cascade model.

Specifically, the standard deviation vlq(m) of the generator qm of a ID micro-canonical

cascade is given by (for a detailed analysis see Appendix A),

eq(m) 2 (m-1)H+0.5 or,, m > 1 (4.16)

Table 4.2 and Figure 4.4 show the values of oq(m) for two values of CAPE: (1) CAPE =

2500 m2/sec2, and (2) CAPE = 2880 m2/sec 2.

Table 4.2: Standard deviation qq(m) of the generator q, of a ID micro-canonical cascade for two values of CAPE:
(1) CAPE = 2500 m2/sec , and (2) CAPE = 2880 m2/sec2.

Linear oq(m) aq(m)
Level m scale (CAPE=2500) (CAPE=2880)

(Km)
0 4 64 0.847 0.823
1 3 32 0.691 0.655
2 2 16 0.564 0.521
3 1 8 0.461 0.415
4 0 4 - _ - I

Given the uncertainty under which CAPE is estimated and the limited accuracy of equations

(4.15), one can conclude that for a value of CAPE % 2500 m2/sec2 the last value of uq(m) in

Table 4.2 is in good agreement with the first value of Table 4.1. If this is so, then the "evolution

velocity" (see Section 3.4) v, of the organized rainfall features would be constant and

8 Km
approximately equal to 2.5 Km/h (i.e. ve ; 192 min = 2.5 Km/h). This value of ve is small

compared to the value 10-20 Km/h shown in Table 3.6. This is due at least in part to the
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different scaling behaviour of the data sets used in the two studies. Specifically, Menabde and

Sivapalan (2000) use continuous rainfall records and thus include the effects of dry periods and

different precipitation patterns (e.g. convective cells, cloud clusters, stratiform patterns etc.),

whereas Perica and Foufoula-Georgiou (1996b) use data from specific storm types with CAPE

in the range from 1000 to 2800 m2/sec 2 .

0.800 -CAPE=2500 mA2/secA2]
-0- CAPE=2880 mA2/secA2

0.600

A 500-

0.400

0.300

0.200

0.100

0.000
0 1 level 2 3

Figure 4.4: Standard deviation or(m) of the generator qm of a ID micro-canonical cascade for two values of CAPE:
(1) CAPE = 2500 m2/sec 2, and (2) CAPE = 2880 m2/sec2.

The ability of the model to reproduce the variability of rainfall at small spatial scales was

validated by Perica and Foufoula-Georgiou (1996b).

4.1.3 Cascade models with dependence on large scale rainfall intensity

Several studies (Over and Gupta 1994, 1996; Veneziano et al., 1996; Menabde et al., 1997a;

Veneziano et al., 2003) have found that the fractal dimension of rain and the amplitude of the

multifractal fluctuations depend on the large-scale rain rate, and possibly on scale itself.

In particular, Over and Gupta (1994, 1996) and Veneziano et al. (2003) concluded that the

fractal dimension of the rain support increases with increasing rain rate. The latter study further

observed that the amplitude of the multiplicative fluctuations depends on the observation scale.

This is an indication that rainfall fields deviate from an exact multifractal behavior, which

requires the generator to be scale and "state" invariant. Notice that dependencies of the

generator on scale have also been observed by Menabde and Sivapalan (2000) and Perica and

Foufoula-Georgiou (1 996b); see Sections 4.1.1 and 4.1.2.
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Next we describe in greater detail two specific rainfall models that incorporate dependencies

of this type. One is a beta-lognormal model of Over and Gupta (1996) and the other is a beta-

logstable model of Veneziano et al. (2003). The former accounts only for dependencies of the

generator on the average rainfall intensity over the radar frame, and thus it does not deviate from

exact multifractality, whereas the latter accounts also for dependencies of the generator on the

scale in the form of a bounded cascade model.

Beta-lognormal cascade model of Over and Gupta

Over and Gupta (1996) fitted a spatial beta-lognormal cascade to each frame of the GATE-I and

GATE-2 (GARP Atlantic Tropical Experiment, phases 1 and 2) radar sequences. They then

examined how the multifractal parameters depend on the mean rainfall intensity I over the

frame.

The generator W of the cascade is assumed to have a non zero probability mass at W = 0,

while [WW> 01 is assumed to have lognormal distribution such that E[W]= 1.

The bare moment scaling function K,(q) of this beta-lognormal model is,

Kw(q)= Co (q - 1)+ C1 (q2 -q) (4.17)

where Co and C1 are parameters. The relationships among Co, the probability Po = P[W= 0] and

the fractal dimension of the rainfall support d are,

Co = -log(l-Po) = d - d (4.18)

where d is the Euclidean dimension of the observation space (e.g. d= 1 for temporal rainfall, d=

3 for space-time rainfall) and m is the multiplicity of the cascade. The co-dimension coefficient

C
C1 is related to the variance o2 of [log, IW > 0] as C1 = 2n(m). The parameters Co and C,

control the lacunarity of rainfall (alterations of wet/dry periods) and the intensity of the

multiplicative fluctuations, respectively, and can be inferred from data in various ways (e.g. best

fitting of the empirical K,(q) function).

Over and Gupta (1996) find that Co increases strongly for decreasing large-scale average

rainfall intensity I. By comparison, the dependence of C on I was found to be modest with a

maximum of C at intermediate values of I. Similar results have been obtained by Deidda (2000)

and Ferraris et al. (2003). However, one should be aware that conditioning on I introduces

biases. In particular, when I is low, precipitation tends to be sparse with low d and high Co.
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Another source of bias is the sensitivity threshold of the radar. Below this threshold rainfall

intensity is reported as zero and the artificial zeros increase the sparseness of reported rainfall

and hence increase the estimates of Co for low L

Beta-logstable cascade model of Veneziano et at.

The rainfall model of Veneziano et al. (2003) differs from the one by Over and Gupta (1996) in

three respects:

First, Over and Gupta (1996) consider the random generators W at all levels j to be

independent and identically distributed with distribution that depends on the average rainfall

intensity over the radar frame. By contrast, Veneziano et al. (2003) assume that the generator

from level j-1 to j depends on the bare rainfall intensity bj1. =d Io Hl Wk in the parent cascade
k <j

tile j-1. Notice that Ibj.I is the intensity when the cascade construction is terminated at level j-1,

while I is a dressed intensity. Second, Veneziano et al. (2003) assume that rainfall is

approximately multifractal in space and time not just in space. Thus, the cascade tiles are

"cubes" in space-time with size depending on the level J. Third, Veneziano et al. (2003) allow

W to depend not only on Ib.1 but also on the levelj.

The generator W has probability mass Po at W = 0, which depends on the level j of the

cascade and the bare measure Ibj.1. Also, [W;1 W > 0] is considered to have Levy stable

distribution with skewness coefficient 8 = -1 and stability index 0 < a S 2 (on Levy stable

distributions see for example Samorodnitsky and Taqqu, 1994) that depends on bothj and bj.1.

In the beta-logstable case, the bare moment scaling function is (Schertzer and Lovejoy, 1987),

Kw(q) = Co (q -1) + , (q- q) (4.19)

Given that the distribution of W varies with j and Ibj-I, the parameters Co, C1 and a vary also

withj and Ib1,.. One can group the parameters Co, Ci and a into a vector 0.(i, 1b-1) = [Co, C1, a].

Strictly speaking,

=-d Ibj (4.20)
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However, the bare densities Ib cannot be observed and one must infer the distribution of W

using observable dressed quantities. Veneziano et al. (2003) adjust the parameters 0,({, Ibj-1) to

match statistics of the partition coefficients,

Qi =dAd1 (4.21)

which are similar ratios involving dressed quantities.

Veneziano et al. (2003) estimated Ow(j, Ibj-1) for three data sets: (1) The rain gauge record

from the Osservatorio Ximeniano in Florence, Italy, (2) the radar sequences GATE-1 and

GATE-2 from the tropical North Atlantic Global Atmosphere Research Program (GARP)

Atlantic Tropical Experiment (GATE), and (3) a sequence of measurements from the doppler

radar at S. Pietro Capofiume near Bologna, Italy.

Veneziano et al. (2003) find that Co decreases with increasing Idj.1. This is so because: (1)

more intense precipitation is generally associated with more compact rainfall support, and (2)

the limited sensitivity of radars artificially increases the number of zeros in the sample and

hence the sparseness of the rainfall support. They also find that Co increases with decreasing

region size. This decrease is due at least in part to the radar sensitivity threshold.

The index of stability a ranges from 1 to 1.8, with higher values for smaller averaging

volumes and higher Idj.1. Also the parameter C1 is found to depend on both Idj.1 and the size of

the averaging volume.

4.1.4 Universal multifractal model

Based on properties of hydrodynamic turbulence, Lovejoy and Schertzer (1995) developed a

multifractal model for rainfall. The model uses three parameters: C1, a, and H, to describe the

scaling properties of rainfall and is obtained as follows.

In turbulent fields the velocity shear u* between two points at distance I scales with I as,

u* -(e)" 3 111 (4.22)

where el is the kinetic energy flux per unit mass at scale 1. This energy transfer takes place from

larger to smaller scales and follows the conservation property E[e1J = constant (independent of

scale).
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In analogy with turbulence, Lovejoy and Schertzer (1995) hypothesize the existence for

rainfall of a fundamental field qP with the same conservation property as el. Then they argue that

the rainfall fluctuations ARI at scale I are given by:

AR,-~(p,)a IH (.3

where a and H are constants independent of scale 1. Notice that the model is in terms of

fluctuations of the rainfall intensity field and contrasts with stationary multifractal cascade

models. Also, the amplitude of the rainfall fluctuations is scale dependent and decreases as the

observation scale I decreases. This is in agreement with the findings of Menabde and Sivapalan

(2000) for temporal rainfall scaling, and Perica and Foufoula-Georgiou (1996b) for spatial

rainfall scaling.

Lovejoy and Schertzer (1995) do not specify the physical meaning of (, and a. In fact, they

state that a physical meaning cannot be given, since no proper dynamical theory for rain exists.

However, H has a straight forward interpretation: it specifies the extent to which the

measured field R differs from the conserved field p. In fact, H is the order of fractional

integration required to obtain R from p. This concept can be related to energy dissipation

mechanisms existing in the atmosphere.

The conserved field ( is modeled by Lovejoy and Schertzer (1995) as a multiplicative

cascade with log-Levy generator with index a and maximum negative skewness , = -1 (on Levy

stable distributions see for example Samorodnitsky and Taqqu, 1994). The bare moment scaling

function is,

ClCa (q - q) ,a #1
K {,,(q)= (qa , for0<a<52andq>0 (4.24)

C1 qln(q) ,a=1

with associated Legendre transform (see Section 2.2),

Ci - + ,a # I

Cb,(Y - ,=,for 0 < a:5 2 (4.25)

1 1
where -+ 1= 1.a a
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One can prove that the bare moment scaling function of the fractionally integrated R field,

Kb,(q) is

(Cl
i(q- q) + qH, a # 1

KhR(q) (a1) , for0<a 52andq>0 (4.26)

Ciqln(q)+qH ,a=1

with Legendre transform,

C, + ,a wI

Cb,R( - Ha=1 for 0 < aS 2 (4.27)

The critical order of dressed moment divergence, q*, is the same for p and R and satisfies:

Kb,,(q*) = KbR(q*) - (q*)H = (q* - 1) d (4.28)

where d is the Euclidean dimension of the observation space.

Applications of this model to various gauge and radar rainfall records (Seed, 1989; Tessier

et al., 1993; Hubert et al., 1993; Ladoy et al., 1993) give a ,1.35 ± 0.1 and C1 ~0.16 0.05. The

value of His poorly conditioned and ranges from 0 to 0.75.

4.1.5 Discussion and review

Several studies find that rainfall fields deviate from an exact multifractal behavior, which

requires the cascade generator to be scale and "state" invariant. Specifically, these studies find

dependence of the generator (i.e. fractal dimension and amplitude of multiplicative fluctuations)

on the scale (Perica and Foufoula-Georgiou, 1996b; Veneziano et al., 1996; Menabde et al.,

1997; Menabde and Sivapalan, 2000) and on the rain rate of the immediately higher scale

(Veneziano et al., 2003). In the previous sections we reviewed rainfall models proposed to

capture such deviations.

The bounded cascade model of Menabde and Sivapalan (2000) is for temporal rainfall, and

uses the technique of Breakdown Coefficients (BDCs) to account for changes with scalej of the

marginal distribution of the generator W. The PDFs of the BDCs are empirically derived and

then smoothed by fitting an analytic PDF with parameters that depend on j. This dependence

accounts for almost linear decrease of the standard deviation of the BDCs with increasing scale

j; see Table 4.1 and Figure 4.2.
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The model of Perica and Foufoula-Georgiou (1996b) is for spatial rainfall downscaling, and

it is based on wavelet decomposition. The model assumes that the standardized rainfall

fluctuations have normal distribution and simple scaling behavior. The scaling parameters of the

model are the same for all spatial directions and they are linearly related to the Convective

Available Potential Energy (CAPE) of the prestorm environment. This is equivalent to

accounting for dependencies of the generator on the spatial scale in the form of a bounded

cascade model similar to the one of Menabde and Sivapalan (2000); see Table 4.2 and Figure

4.4.

Although both previous studies found an almost linear decay of the standard deviation of the

generator with increasing log-resolution, reconciliation of the obtained results assuming isotropy

of rainfall in space and time is not feasible; see Section 4.1.2. However, one should be cautioned

that this is not an indication of anisotropy of rainfall in space and time, since the data sets used

by the two studies have different scaling behavior. Specifically, Menabde and Sivapalan (2000)

use continuous rainfall records, whereas Perica and Foufoula-Georgiou (1996b) use data from

storms; see Section 4.1.2.

Next, we reviewed two multiplicative cascade models with dependence on the large scale

rainfall intensity. The model of Over and Gupta (1996) is for spatial rainfall with beta-

lognormal generators that depend on the average rainfall intensity over the radar frame but are

independent of scale. Thus the model of Over and Gupta (1996) is multifractal in space. The

model of Veneziano et al. (2003) is similar to the one of Over and Gupta (1996) but assumes

that the generator has beta-logstable distribution with parameters that depend on the scale and

the bare rainfall intensity in the parent cascade tile.

Finally, we discussed the universal multifractal model of Lovejoy and Schertzer (1995). This

model is based on properties of turbulence and uses three parameters: the co-dimension

coefficient C1, the Levy index of the generator a, and the order H of fractional integration. The

model is in terms of fluctuations of the rainfall intensity field and contrasts with stationary

multifractal cascade models. Also the model accounts for decrease of the amplitude of the

multiplicative fluctuations with increasing resolution. Such a scaling behavior is in agreement

with the findings of Menabde and Sivapalan (2000) for temporal rainfall scaling, and Perica and

Foufoula-Georgiou (I 996b) for spatial rainfall scaling.
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Concluding, one can say that space-time rainfall violates perfect scale invariance, since the

amplitude of the multiplicative fluctuations decreases with increasing space-time resolution.

Therefore, one can describe the effect of scale on rainfall using a bounded cascade model in two

spatial dimensions plus time, where the standard deviation of the generator decreases with

increasing resolution. A model of this type is used in Section 4.3.1 to simulate ARFs for a

bounded space-time representation of rainfall.

4.2 Raingauge network density and deviations from multifractality

Areal reduction factors are typically estimated from raingauge network records, which have

time intervals much larger than radar measurements. A problem with raingauge networks is that

they have a finite density p. For example the network used in the N.E.R.C. (1975) study is

shown in Figure 4.5.

KEY

I4- , 11 - '

Figure 4.5: Locations of autographic raingauges in Great Britain. Reproduced from N.E.R.C.
Report, Vol. IV, p. 24. Grid dimension 100 x 100 Km.

(1975) Flood Studies
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The average rain-rate in a basin of area A is estimated as the average rain-rate measured by

the raingauges inside A. If the raingauge network is fixed, the average number of raingauges in

A, R(A) is proportional to A. However, not to disturb rainfall scaling relations including the

ARF, N should not depend on A.

The bias is larger as A decreases and is maximum when A includes just one raingauge; see

Section 4.3.2 for numerical examples.

4.3 Effect of bounded cascade modeling and sparse sampling on the ARF

In Chapter 3 we investigated the scaling properties of the ARF with the maximum linear size of

the region L and the averaging duration D, under the assumption of exact multifractal behavior

of the rainfall field and perfect observations. Here we illustrate numerically the effects that

deviations from multifractality and sparse spatial sampling have on the estimated ARFs.

First we investigate how the ARF behaves under a bounded cascade representation of the

rainfall field in space and time (Section 4.3.1). We do so because many studies (e.g. Perica and

Foufoula-Georgiou, 1996b; Veneziano et al., 1996; Menabde et al., 1997; Menabde and

Sivapalan, 2000; Veneziano et al., 2003) have found that space-time rainfall violates perfect

scale invariance with the amplitude of the multiplicative fluctuations to decrease as the space-

time resolution increases; see Section 4.1.

Finally, we show the effects that the sparsity of point observations has on the estimated

ARFs (Section 4.3.2).

4.3.1 Bounded lognormal cascade

Here we investigate the properties of the ARF for a bounded lognormal cascade representation

of rainfall in two spatial dimensions plus time. The model used is a 3D bounded lognormal (LN)

cascade.

The cascade has multiplicity 2 in all dimensions. The generator of the cascade, B,, has unit

mean and LN distribution that varies with level n as

ln(B,)~ - _~ ,o;(n)) (4.29)

where N(p, & ) is the normal distribution with mean value p and variance 0&, and & (n) is given

below.
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The numerical simulation procedure is identical to the one described in Section 3.3.1. The

3D cascade was generated in a region with spatial dimension 26 x 26 tiles and temporal

dimension 29 tiles, embedded in a 3D cascade cube with edge dimension 29 tiles; see Figure

3.26.

To reduce statistical variability and focus on the mean effect of using a bounded cascade

model, the results were averaged over 10 simulations.

The standard deviation o(n) of the generator B, is assumed to decay linearly with the cascade

level n as shown in Figure 4.6. This type of decay is similar to the one found by Menabde and

Sivapalan (2000) and Perica and Foufoula-Georgiou (1996b); see Figures 4.2 and 4.4.

Figure 4.7 shows how the ARF varies with L and D, and should be compared with Figure

3.28, which shows similar results under exact multifractality. These two figures can be

compared since qB0) 0.385 corresponds to C = 0.1.

-- Exact multifractal (CI =0.1)

Associated C, =0.1 -- Bounded Cascade

0.385Cascade

constructIn
Standard

deviation of the
generator B,

Associated C1 = 0.002 Dressing

0.05.........-.-. ---................................ .

0 9
Cascade Level n

Figure 4.6: Standard deviation of the generator B, of the bounded cascade with the scale n.

One can observe that the contour lines in Figure 4.7 are displaced upwards relatively to the

multifractal case in Figure 3.28. The reason is that the bounded-cascade process is smoother

than the multifractal process.

Also, the contour lines in Figure 4.7 are not straight. For small D and large L, the slope of

the contour line is less than 1 and increases as L decreases or D increases. For a given L, the

slope of the contour lines increases as D increases approaching 1, which is the slope for the

multifractal case (see Figure 3.28), for large values of D.

85



4-

3-

2-

11

Z/

0
0 1 2 3 4 5

Loa,(Q

Figure 4.7: ARF scaling behaviour with L and D for a bounded cascade. The standard deviation of the generator of
the cascade scales according to Figure 4.6.

4.3.2 Sparse sampling

When the ARF is estimated from raingauge measurements, the areal average rainfall is

obtained as the average (or a weighted average; e.g. with Thiessen weights) of the raingauge

measurements inside the region.

Unless the observation network scales itself with L, this operation destroys the scaling

properties of the ARF. Scaling of the observation network with L can be obtained by the

dressing procedure followed in Section 3.3.1, which we call "continuous" sampling. Of course,

such kind of scaling does not exist in real raingauge networks, which have a finite density.

Discrete sampling can be simulated by substituting IdA(x, y, t) with Id,(x, y, t) in equation

(3.22), and keeping the rest of the procedure in Section 3.3.1 unchanged. In this case, the area

tiles at the highest resolution of the cascade can be viewed as observation points (i.e.

raingauges).

One can also study the effects of the observation network density by symmetrically reducing

the number of observation points (raingauges) in the simulated space region.
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As in Section 3.3.1, the model used is a lognormal multifractal cascade with two spatial

dimensions plus time and co-dimension coefficient C1 = 0.1. The simulation region has spatial

dimension 26 x 26 tiles and temporal dimension 29 tiles. Thus, the maximum possible number of

observation points (raingauges) in the simulated region is 26 x 26. To reduce statistical

variability, the results were averaged over 10 independent simulations.

Figures 4.8, 4.9 and 4.10 show how the ARF varies with L and D for the case of sparse

sampling and different numbers, k, of observations points (i.e. k= 2,12 210, 28).

By comparing Figures 4.8, 4.9 and 4.10 with Figure 3.28 (i.e. continuous sampling), one

concludes that for large L the ARF values are not influenced by the type of sampling (i.e.

continuous or sparse). This means that the effect of sparse sampling becomes less significant as

L increases.

5-

4 6
Qr

QV

-j

0 1 2 3 4 5

Figure 4.8: ARF scaling behaviour with L and D for sparse sampling (k = 212). The model used is a 3D binary
LN discrete cascade with co-dimension coefficient C1 = 0.1.

For the limiting case of regions that include only one observation point the calculated ARF

is approximately 1. For intermediate areas, the contour lines are curved indicating no scaling of
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the ARF. Quantitatively, this behaviour is similar to that under continuous sampling for a

bounded cascade representation of rainfall.

The curvature of the iso-ARF lines becomes larger as the observation network density

decreases. Also, the effect of sparse sampling becomes less significant as L increases. This is so

because, when the averaging area A increases, the characteristic length of the fluctuation that

contributes most to the spatial average increases with A05 . On the other hand, the distance

between the equally spaced observation points remains constant. Thus, according to Nyquist

theorem when the length of the characteristic fluctuation becomes larger than twice the distance

between two observation points at the highest resolution of the grid, the characteristic

fluctuation is accurately described and the ARF values obtained are close to those for

continuous sampling.

OfI
V
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Figure 4.9: ARF scaling behaviour with L and D for sparse sampling (k = 210). The model used is a 3D binary
LN discrete cascade with co-dimension coefficient C1 = 0.1.
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Figure 4.10: ARF scaling behaviour with L and D for sparse sampling (k = 23). The model used is a 3D binary
LN discrete cascade with co-dimension coefficient C1 = 0.1.

For equally spaced raingauges the latter condition is maintained for A05 larger than about

four times the distance between the observation points; see Figures 4.8, 4.9 and 4.10.

4.3.3 Conclusions

We have investigated numerically the effects that deviations of rainfall from multifractality

in the form of bounded cascades have on the ARFs. We have also studied the effects of sparse

spatial sampling on the estimated ARFs for different densities of the raingauge network. We

have found that the ARF values as well as the slope of the iso-ARF curves are affected by both

deviations from multifractality and sparse spatial sampling.

In bounded cascades the iso-ARF curves are displaced upwards relatively to the exact

multifractal case. Also, the iso-ARF curves in a (log D, log L) plane have slopes that vary with L

and D. For small D and large L, the slope of the contour lines is less than 1 and increases as L

decreases or D increases. For a given L, the slope of the contour lines increases as D increases

approaching I for large values of D.

In the case of sparse spatial sampling, results for large L are close to those under continuous

sampling. This means that the effect of sampling becomes less significant as L increases. For

low values of L, the slope of the iso-ARF lines is less than 1 and increases fast as L increases
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approaching 1 for high values of L where the effect of sparse sampling is negligible. The value

of L over which the effect of the sparse sampling can be neglected increases as the network

density decreases.
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5. Application to the N.E.R.C. curves

In this chapter we show how various features of empirical Areal Reduction Factors (ARFs) are

related to the multifractal character of rainfall, deviations from multifractality in the form of

bounded cascades, and sparse spatial sampling. For this purpose we use the ARFs of N.E.R.C.

(1975) for area A ranging from 10 to 18 000 Km 2 and duration D between 2 minutes and 25

days.

The chapter is organized a follows. Section 5.1 discusses N.E.R.C.'s original data and final

ARF results. We also re-fit the original data using minimum smoothing. The resulting ARF

diagram is used for the rest of the analysis.

In Section 5.2, features of the N.E.R.C. iso-ARF lines are discussed and linked to results

under the assumption that space-time rainfall is multifractal (Chapter 3) or deviates from

multifractality in certain ways (Chapter 4).

Section 5.3 focuses on reproducing the N.E.R.C. iso-ARF curves using multifractal and

bounded cascade models, as well as sparse sampling.

Conclusions and comments are presented in Section 5.4.

5.1 N.E.R.C.'s ARF curves
In 1975, the Natural Environmental Research Council (N.E.R.C.) published results on the

dependence of the ARF on catchment area A and averaging duration D. The analysis was based

on the estimated ARFs from thirteen basins in the United Kingdom with areas ranging from 10

to 18 000 Km 2. Averaging durations ranged from 2 minutes to 25 days; see Table 5.1.

According to N.E.R.C. (1975), these ARFs correspond to rainfall events with return period T =

2-3 years.

The ARF values in Table 5.1 were first interpolated and then extrapolated by N.E.R.C. to

cover a wider range of catchment areas (from 1 to 30 000 Km2) and averaging durations (from 1

minute to 25 days); see Table 5.2. A Contour plot of the ARF for a sub-region of Table 5.2 was

also produced by N.E.R.C.; see Figure 5.1. The red dots indicate area-duration combinations in

the original data.
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Table 5.1: ARFs estimated by N.E.R.C. for widely different region sizes and averaging durations. The values
corresponding to the red dots given in Figure 5.1 are denoted on red. Reproduced from N.E.R.C. (1975) Flood

Studies Report, Vol. II, p. 38-39.

Area (sq. km)
Duration 10 100 1000 1500 5000 8000 10000 18000

2min 0.67 - - - - - - -

4min 0.74 - - - - - - -

10min 0.85 - - - - - - -

15 min - 0.62 0.39 - - - - -

30 min 0.88 0.73 0.51 - - - - -

60 min 0.9 0.77 0.62 - - 0.47 - 0.4
2 hours - 0.84 0.75 - - 0.57 - 0.51
3 hours - - - - - 0.64 - 0.57
6 hours - - - - - 0.74 - 0.67

1 day - 0.94 - 0.89 0.84 0.83 0.82 0.81
2 days - 0.97 - 0.91 0.85 0.85 0.83 0.83
4 days - 0.97 - 0.92 0.88 0.87 0.87 0.84
8 days - 0.97 - 0.93 0.89 0.91 0.89 0.87

25 days - 0.99 - 0.97 0.94 0.95 0.94 0.93

Table 5.2: ARFs after interpolation and extrapolation of the original
N.E.R.C. (1975) Flood Studies Report,

ARF results (Table 5.1). Reproduced from
Vol. II, p. 41.

Area (sq. km)
Duration 1 5 10 30 100 300 1000 3000 10000 30000

I min 0.76 0.61 0.52 0.40 0.27 - - - - -
2 min 0.84 0.72 0.65 0.53 0.39 - - - - -

5 min 0.90 0.82 0.76 0.65 0.51 0.38 - - - -

10 min 0.93 0.87 0.83 0.73 0.59 0.47 0.32 - - -

15 min 0.94 0.89 0.85 0.77 0.64 0.53 0.39 0.29 - -

30 min 0.95 0.91 0.89 0.82 0.72 0.62 0.51 0.41 0.31 -

1 hour 0.96 0.93 0.91 0.86 0.79 0.71 0.62 0.53 0.44 0.35
2 hours 0.97 0.95 0.93 0.90 0.84 0.79 0.73 0.65 0.55 0.47
3 hours 0.97 0.96 0.94 0.91 0.87 0.83 0.78 0.71 0.62 0.54
6 hours 0.98 0.97 0.96 0.93 0.90 0.87 0.83 0.79 0.73 0.67

1 day 0.99 0.98 0.97 0.96 0.94 0.92 0.89 0.86 0.83 0.80
2 days - 0.99 0.98 0.97 0.96 0.94 0.91 0.88 0.86 0.82
4 days - - 0.99 0.98 0.97 0.96 0.93 0.91 0.88 0.85
8 days - - - 0.99 0.98 0.97 0.95 0.92 0.90 0.87
25 days - - - - 0.99 0.98 0.97 0.95 0.93 0.91
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Figure 5.1: ARFs for durations D from 15 minutes to 8 days and areas A from 10 to 10 000 Km2 . Reproduced from
N.E.R.C. (1975) Flood Studies Report, Vol. II, p. 40. Red dots correspond to areas and durations from the original

results (Table 5.1).

The interpolated results fit well the original data only for certain combinations of A and D.

Thus, judgment must have been used in producing the smooth iso-lines in Figure 5.1.

To more faithfully reflect the original data, we have re-interpolated the empirical ARF

values in Table 5.1 using simple 1st order triangulation. The results are shown in Figure 5.2.

In this interpolation method a triangular grid is constructed with nodes at the points where

the original ARF values are given. Each triplet of points at the highest resolution of the grid

defines a plane. This plane is used as a linear approximation of the ARF function inside the

associated triangle.
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Figure 5.2: Interpolation of the ARF results in Table 5.1 using the method of 10 order triangulation.

Notice that the iso-lines in Figure 5.2 have different shape and overall slope than those in

Figure 5.1. This is due to differences in the interpolation method. For the rest of our analysis we

use the interpolated ARF results in Figure 5.2. We do so because the interpolation method used

is known and the observed values are preserved.

Next we discuss the shape, slope and curvature of the iso-ARF curves in Figure 5.2, and

how these features relate to those for exact multifractal rainfall or rainfall that deviates from

multifractality.
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5.2 Behavior of the ARF in Figure 5.2

In Figure 5.2, one may distinguish four regions where the iso-ARF curves have different

behavior. These regions are shown in Figure 5.3.
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Region 1 displays scaling of the ARF. Specifically, the ARF is constant for D proportional

to the square root of the area A (i.e. D oc L). This is in agreement with results in Chapter 3 under

the assumption that rainfall is isotropically multifractal in space and time.

In Region 2, one observes that, as the area A or duration D decreases, the slope of the iso-

ARF curves decreases. This effect is gradual and the slope changes are small. This behavior can

be explained assuming that rainfall is well represented by a bounded cascade in space and time,

where the amplitude of the multiplicative fluctuations decreases at smaller scales; see Section

4.3.1.
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Region 3 shows a much more pronounced variation of the iso-ARF slope with A and D. The

slope becomes quite small for small areas and durations. This behavior is similar to the one

produced by sparse spatial sampling; see Section 4.3.2.

In Region 4, where A and D are relatively large, one observes that the spacing of the iso-

ARF curves is larger relative to the other three regions and increases as the duration D increases.

This effect has been observed in beta log-normal cascades for both small and large values of the

ratio LID; see Section 3.3.1.2. However, in Figure 5.3 this is observed only for small LID ratios

(say LID < 10 Km/h). This feature of the observed ARFs may be related to the characteristic

linear sizes and lifetimes of precipitation areas.

Specifically, in Table 3.6 one can observe that large mesoscale precipitation areas (say

10 000 Kin2) have relatively small lifetimes (say several hours). This means that for D less than

several hours, the non rainy space-time regions are associated with a beta component that

characterizes the precipitation event itself, whereas for D larger than several hours non rainy

space-time regions are associated with large-scale atmospheric transfer mechanisms (i.e. dry

periods between precipitation events). Therefore, one can accept a discontinuity of the beta

component in space and time. For D small the effect of a beta component is not significant and

can be accurately substituted by increasing the amplitude of the multiplicative fluctuations,

whereas for D large the beta component becomes significant in space or time and cannot be

neglected.

One can also obtain an estimation of the value of LID over which the beta component

becomes significant. Suppose that mesoscale precipitation areas have a characteristic linear size

of about 100 Km and lifetime of about 10 hours. In this case, the singularity of the rainfall field

will start to significantly affect the observed ARFs for LID ratios smaller than 10 Km/h. This

result is in correspondence with what one observes in Figure 5.3.

Although the increased spacing of the iso-lines in Figure 5.3 extends to durations smaller

than several hours, one should be cautioned that in this region only a few empirical ARF values

are available (see Figure 5.1), and thus the accuracy of the interpolation is limited. Furthermore,

the ARF values in that region are close to 1, and thus even small distortions of the estimated

ARFs caused by inaccuracies and statistical fluctuations highly affect the shape, slope and

curvature of the empirical iso-ARF curves.
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5.3 Numerical reproduction of the N.E.R.C. ARF results

Here we show how the N.E.R.C. ARF results in Figure 5.3 can be reproduced. For efficiency of

the calculations', we focus on the sub-region with A in the range 30-1000 Km 2, and D in the

range 15 min-6 hours. A magnification of this region is presented in Figure 5.4.

The region was selected because itincludes all different observed ARF behaviors, except for

Region 1. However, in Region 1 the ARF behaves in a way similar to exact multifractal

cascades. Hence, one can obtain the ARF values for this region by extrapolating the iso-ARF

curves of Region 2 using D oc A0.

Next we describe the models used to reproduce the empirical ARFs in Regions 2, 3 and 4.

1000 --

300

Region 2

Region 4
100

~ Rego i 3

15 30 1 2 4 6,

Duration: min hours

Figure 5.4: Magnification of the numerically reproduced region. Reproduced from Figure 5.3.

5.3.1 Numerical reproduction of Regions 2 and 3

The model used is a bounded Log-Normal (LN) cascade in two spatial dimensions plus time.

The cascade has multiplicity 2 in all dimensions. The generator of the cascade, B., has a LN

' In general 3D cascade simulations require large computational times. Therefore, a 3D cascade that covers the
whole range of areas and durations shown in Figure 5.3 cannot be generated and manipulated.
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distribution with mean value 1 and variance that varies with the level n. Hence ln(Bn) has

normal distribution,

ln(B,) - nL ,an) (5.1)

where a(n)2 is a function described below.

The space-time region simulated is a parallelepiped with spatial dimensions 26 x 26 tiles and

temporal dimension 29 tiles, which is embedded in the 3D cascade; see Figure 3.26. This

parallelepiped is considered to represent a rainy season of the year and includes 8 independent

"storm" events in the form of isotropic multifractal cascades of size 26x2 6x2 6; see Figure 5.5.

Each cubic tile at the highest resolution of the cascade is assumed to represent a space region

with area 1Km2 and a time interval of hours.

(a) Real Storm eventsy t

64 Km -... o-

sto 2

64 Km storm 1
rainy period

(b) Cubic tile at the highest resolution

f Kms

'/ hours

no-rain period

Figure 5.5: Simulation region

To simplify matters, the no-rain periods between storms are omitted. This assumption does

not affect much the results for aggregation periods smaller than 26 cascade tiles (i.e. 16 hours).

This is so because the estimation of the ARF is done by using maximum values observed in a

given time period not average values.

The standard deviation o(n) of the generator is assumed to vary with the cascade level n

according to Figure 5.6.
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Figure 5.6: Standard deviation of the generator B, of the bounded cascade with the scale n.

This behaviour is an approximation of the empirical findings of Menabde and Sivapalan

(2000) for rainfall scaling in time; see Figure 5.7 and Section 4.1.1. For durations longer than

those studied by Menabde and Sivapalan (2000), we assumed that the standard deviation of the

generator remains constant and equal to that of the highest scale available. We follow those

empirical findings because they are based on continuous rainfall records and not on storm data

(e.g. Perica and Foufoula-Georgiou, 1996b; Section 4.1.2). Notice that the N.E.R.C. (1975)

ARF results have also been obtained from continuous rainfall records. The present

approximation assumes isotropy in all space and time directions.
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Figure 5.7: Comparison between the isotropic approximation used in the model, and empirical findings for rainfall.
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Finally we considered the effect of sparse spatial sampling as described in Section 4.3.2.

Specifically we assumed that area averaged rainfalls are obtained as averages over point

measurements. The measurement locations were assumed to be regularly spaced with a density

of 1 raingauge per 4 Km 2. This density seems comparable to the average raingauge density in

the more densely sampled regions in Figure 4.5.

To reduce variability, the empirical ARF values were averaged over 10 independently

simulated seasons.

Figure 5.8 shows the simulations results. The iso-lines in Regions 2 and 3 are in good

agreement with those of Figure 5.3. Notice in particular the curved shape of the iso-lines in

Region 3 caused by sparse sampling.

In Region 4 the agreement is less good. Next we will show that inclusion of a beta

component can make the results in this region closer to those in Figure 5.3.

1000

300

Wegin 2

& Regioan 4
100

S Region 3 1

30
15 30 1 2 4 6

Duration: min hours

Figure 5.8: Numerically generated ARFs using a bounded 3D log-normal cascade. The sampling is discrete with
density 1 raingauge per 4 Km2.
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5.3.2 Numerical reproduction of Region 4

For the purpose of reproducing the ARF values in Region 4, we use a 3D beta-LN cascade.

The generator B has a non zero probability mass at B = 0 and [BIB > 0] has log-normal

distribution,

ln(B) ~ N(-C1 ln(2), 2C, ln(2)) (5.2)

Notice that in this case the cascade is multifractal and not bounded. Also, in the simulations

we have set Po = P[B = 0] = 0.25 and C, = 0.1. These values have been set to fit the empirical

ARF curves in Region 4 and do not correspond to empirical observations.

The model is similar to that in Figure 5.5, but now a cubic tile at the highest resolution

represents a space region with area 30 Km 2 and duration 6 minutes.

Finally, observations are assumed to be continuous in space (no sparse sampling). We do so

because if one hypothesizes a density of 1 raingauge every 4 Km 2 (i.e same as the one

hypothesized for Regions 2 and 3) then one has 7.5 raingauges in an area of 30 Km2, and

therefore the effect of sparse sampling is small; see also Figure 5.8.

Figure 5.9 shows numerically generated ARFs (averages over 10 simulations). One

observes that in Region 4 results are in good agreement with the N.E.R.C. values in Figure 5.3.

Since a beta-lognormal cascade fits well the empirical ARFs in Region 4, one could try to

formulate a single model for all regions. However, the beta component seems to have

pronounced effects on the ARF only for low values of the ratio LID; see Section 5.2. Hence, the

beta component of the unified model should be effectively active only for Region 4 and not for

Regions 2 and 3.

This may be possible by including a bounded beta component in the bounded cascade model

of Section 5.3.1. In this case, the non zero probability mass Po should be almost constant for

temporal scales larger than several hours, and decrease fast with scale to become negligible for

temporal scales less than almost an hour.

Generating and analyzing such a 3D field is computationally not trivial, because the 3D field

would have large dimensions (e.g 26 x 26 x 212).
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Figure 5.9: Numerically generated ARFs using a 3D beta log-normal cascade and continuous sampling.

5.4 Conclusions and comments
In the previous sections we used various rainfall and sampling models to interpret the ARFs of

N.E.R.C. (1975).

For large areas and short durations, where the ARF attains the smallest values, the log-log

slope of the empirical iso-lines is 2. This is consistent with multifractal rainfall.

Slopes smaller than 2 are observed for smaller areas. Such smaller slopes are produced by

bounded cascades and by sparse spatial sampling. Sparseness of the raingauge network becomes

most important at the smallest spatial scales.

The increased spacing of the iso-ARF curves for large D (Region 4 in Figure 5.3) may be

related to a beta component associated with the characteristic linear sizes and lifetimes of

mesoscale precipitation areas. However, one cannot neglect empirical biases and statistical

errors in Region 4, for two reasons. First, only a few empirical ARF values are available in

Region 4 (see Figure 5.1), and thus the accuracy of the interpolation is limited. Second, the ARF
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values in that region are close to 1, and thus even small distortions of the estimated ARFs

caused by inaccuracies and statistical fluctuations highly affect the shape, slope and curvature of

the empirical iso-ARF curves.

A unified model for all regions may be possible. However, one should be aware that the beta

component seems to have pronounced effects on the ARF only for low values of the ratio LID.

Such a model would then have to include a beta bounded cascade component in two spatial

dimensions plus time, in which the non zero probability mass Po is almost constant for temporal

scales larger than several hours, and decreases fast to become negligible for temporal scales less

than almost an hour. However, this would require large cascade dimensions, which

would increase the computational effort.

For this reason the numerical analysis performed for Regions 2, 3 and 4 was limited to two

separate models; a bounded cascade model with sparse spatial sampling for Regions 2 and 3,

and a beta multifractal model with continuous sampling for Region 4.
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6. Conclusions

In this thesis we studied properties of the Areal Reduction Factor (ARF) for rainfall, with

special attention for scaling (or non-scaling) behavior. We also linked such behavior to the

scaling properties of rainfall itself. First, we reviewed existing theoretical results (i.e. Bendjoudi

et al. (1999) and Veneziano and Furcolo (2002a)) on the extremes of point rainfall, obtained

under the assumption that rainfall is multifractal in time. Then we extended the analysis to the

average rainfall intensity inside regions of various shapes, again under the condition of

multifractal rainfall in space and time. We considered regular (square or circular) regions and

highly elongated regions and allowed the rainfall field to advect with constant velocity

Vad = [vad,, vady]. We found that the ARF scales with A0-5 oo D, where A and D are the averaging

area and duration respectively.

Case without advection

For the case when Vad = 0, a key parameter in scaling analysis is the ratio utres = vres/ve between

the "response velocity" vres = LID and the "evolution velocity" ve = Le/De, where L is the

maximum linear dimension of the basin, and Le and De are characteristic linear dimensions and

durations of organized rainfall features. While ARF depends on L, D and the return period T in a

complicated way, some simple asymptotic results hold:

For ures small (say ures < 0.2), ARF is close to 1. For example, raingauge records have

minimal area coverage (i.e. L-* 0), and hence ures << 1 and ARF -+ 1. This is in agreement with

the fact that when the averaging area is zero (i.e. L = 0) the Intensity Duration Area Frequency

(IDAF) curves reduce to the familiar Intensity Duration Frequency (IDF) curves, and thus

IDAF
ARF= IDF = 1.

For ures large (say ures > 5) ARF becomes a power function of LID and T with exponents that

depend on L, D and T; see Table 3.1 and Figure 3.4. For moderate T and small L, ARF oo (L/D)~
Y, and thus the return period as well as the shape of the rainfall collecting region are not

influential. The constant y1 is the value of y for which the co-dimension function c(y) of the

multifractal rainfall process equals 1; hence yi < 1. For moderate L and large T, ARF oo (LID)-1 T
-b. These theoretical findings are similar to those of Veneziano and Furcolo (2002a) for the IDF
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scaling. Specifically, Veneziano and Furcolo (2002a) found that for moderate T and small D, the

IDF value scales like D-' , whereas for moderate D and very large T, IDF oo D'.

For T -> oo, b is a positive constant that depends on the Euclidean dimension of the

observation space d (d = 2 for rainfall observed along a line segment, d = 3 for rainfall observed

over a square or disc); see Section 3.1.1. For T -+ cc and rectangular regions, d = 3 and the

elongation of the region does not affect the properties of the IDAF curves and the ARFs. By

contrast, for intermediate T, b depends significantly on T and on the shape and size of the

observation region; see Section 3.1.2. Specifically, b is larger for regularly shaped basins and for

larger T. The increase further depends on the shape and size of the region, with faster increase

for smaller and regularly shaped basins. This seems to be the first time that the effect of the

shape of the rainfall collecting region on the ARF has been studied.

One concludes that, under the assumption of isotropic multifractality of the rainfall field in

space and time, the ARF values are influenced significantly by T and by the shape of the rainfall

collecting region. Specifically, the ARF scales as ARF oo (LID)~', where c increases with T and

takes values in the range [yi, 1]; see Table 3.1. This means that the ARF changes faster with L or

D for larger values of T. For T either very small or very large, the shape of the region is not

influential. For T very small the ARF does not depend on T, whereas for T very large, the ARF

decreases as a power function of T with exponent in the range (-1, 0); see Table 3.1. For

intermediate values of T the shape of the rainfall collecting region becomes influential.

Specifically the ARF decreases faster for regularly shaped basins relative to elongated ones; see

Figure 3.14.

These findings may appear contradictory to the ones of N.E.R.C. (1975) that the ARF has a

weak dependence on T, but they are in good agreement with what other researchers have found

using semi-theoretical rainfall models (Bell, 1976; Asquith et al., 2000; De Michele et al.,

2001). However, one should be cautioned that the N.E.R.C.'s empirical findings apply for small

return periods (say 1-10 years) where, according to our analysis, the effect of T is negligible.

The effect of advection

For the case when Vad 0, we studied the effects of advection on the IDF and IDAF curves and

the ARFs. For highly elongated basins, both the direction and magnitude of advection are

influential, whereas for rainfall over a regularly shaped region only the magnitude of advection,

vad, matters. An important parameter for advection is the ratio uad = vad/ve between the
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magnitudes of the advection velocity and the evolution velocity. We find that for ures << 1 and T

small the ARF is not affected by the magnitude of the advection velocity and it remains constant

with L/D and close to 1, whereas for T large the ARF is a power function of T but the prefactor

is a decreasing function of uad. For ures > 1 the ARF scales as ARF oo (L/D)-' T -b, as happens

for the case when uad = 0, but the prefactor depends on the magnitude of uad and increases as the

magnitude of uad increases; see Figure 3.25 and Tables 3.2 and 3.3.

The theoretical results of both cases (i.e. Vad = 0 and Vad # 0) where validated numerically

using simple multifractal models; see Figures 3.29 and 3.32. This seems to be the first time that

dependence of the ARF on rainfall advection has been studied.

Response velocity and evolution velocity

We also examined the range of velocities vres, ve and vad that are encountered in typical

hydrologic applications. In problems of flood estimation, vres may be obtained by setting D

equal to the concentration time of the basin, t. In this case, vres ranges from about 3 to 7.5 Km/h,

and depends mostly on the average slope of the basin and much less on its size. High values of

vres correspond to developed basins and high slopes. The rainfall evolution velocity, ve, ranges

from about 5 to 20 Km/h and depends on the type of the precipitation area (e.g. mesoscale vs

synoptic scale areas); see Table 3.6.

ARF behavior in typical hydrologic applications

Thus, in typical hydrologic applications, values of ures are in the range from 0.15 to 1.5.

Therefore, the dependence of the ARF on T is moderate especially for small values of T (say 1-

20 years). We conclude that in most cases the ARF is larger than 0.4 and scales as ARF oo (L/D)-
C, where the exponent c is smaller than yl; see Figure 3.4. The former is in agreement with the

empirical findings of Koutsoyiannis (1997), and it is valid even for rainfall fields that vary much

in both space and time. For example, Figure 3.30 shows the ARFs obtained using a beta-

lognormal cascade in two spatial dimensions plus time with high overall co-dimension

coefficient C, = 0.52. For ures = 1.5 the ARF is near 0.5.

Advection velocity and readjustment of empirical ARFs

The advection velocity vad usually takes values between 30 and 50 Km/h at small scales (a few

kilometers) and from 20 to 40 Km/h at large scales (say 100 or more kilometers). Thus

commonly met values of uas vary in the range from 1 to almost 10, depending on the type of the

organized rainfall structures (e.g. convective cells, cloud clusters, stratiform patterns etc.), and
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on local conditions (e.g. pressure oscillations caused by cold and warm fronts). Therefore, in

flood estimation and design one should readjust the ARFs obtained from empirical diagrams

according to local conditions and the type of the precipitation pattern which is assumed to cause

the design flood. This can be done for both elongated and regular shaped basins using the

expressions in Tables 3.2 and 3.3 respectively.

Storm direction and pattern and their effects on runoff

When overland flow is studied, also the storm direction and pattern are important factors

determining the shape of the runoff hydrograph (Lima and Singh, 2002). Specifically, the peak

discharges and hydrograph shapes depend strongly on the storm pattern, the characteristics of

the catchment area and the direction and speed of storms. Storms moving upstream are normally

characterized by hydrographs with early rise, low peak discharge, not steep rising limb and long

base time. Also, the sensitivity of the hydrographs to rainfall patterns decreases as the advection

velocity of the storm increases. In particular, rainfall intensity patterns become an important

parameter when advection velocity is low and less than about 10 Km/hour.

Advection and observed scaling of rainfall

Advection affects the observed spatial and temporal correlation structure of rainfall (Deidda,

2000). This might explain significant differences between the scaling behaviors observed in

storm data and continuous rainfall records: storm data are obtained under almost constant

advective conditions, whereas continuous rainfall records include the combined effect of

different storms. For example, the inconsistence of scaling found between the empirical

observations of Menabde and Sivapalan (2000) for scaling of temporal rainfall, and Perica and

Foufoula-Georgiou (1996b) for scaling of spatial rainfall (see Section 4.1.2) is due at least in

part to the fact that Menabde and Sivapalan (2000) use continuous rainfall records, whereas

Perica and Foufoula-Georgiou (1996b) use data from storms.

Deviations from multifractality- bounded cascades

We discussed observed deviations of rainfall from multifractality in the form of dependence of

the multiplicative fluctuations on scale. We also reviewed proposed models that capture such

deviations, and investigated numerically how the ARF behaves for a bounded cascade

representation of rainfall in space and time. We found that when deviations from multifractality

exist the ARF scaling is significantly altered. Specifically, for a bounded cascade model in two

spatial dimensions plus time, when D is small and L large, the slope of the iso-ARF lines is less

107



than 1 and increases as L decreases or D increases. For a given L, the slope of the iso-ARF lines

increases as D increases approaching 1 for large values of D; see Figure 4.7. We also found that

the ARF values for a bounded cascade are larger than in the multifractal case; see Figure 3.28

and 4.7. The reason is that in a bounded cascade representation of rainfall the amplitude of the

multiplicative fluctuations decreases as the observation scale in space or time decreases, and

hence the bounded process is smoother than the multifractal process.

Biases from sparse spatial sampling

Since areal averaged rainfall is usually estimated from raingauge records, the density of the

observation network has an important effect on the estimated ARFs. Specifically, the average

rain-rate in a basin of area A is estimated as the average rain-rate measured by the raingauges

inside A. If the raingauge network is fixed, the average number of raingauges in A, R(A), is

proportional to A. However, not to disturb rainfall scaling relations including the ARF, N should

not depend on A. Evidently, the bias is larger as A decreases and is maximum when A includes

just one raingauge. We investigated numerically the effect of the observation network density on

the ARFs. We found that for the limit case of areas that include only one raingauge the

estimated ARF is approximately 1. For intermediate areas, the iso-ARF lines are curved

indicating no scaling of the ARF; see Figures 4.8, 4.9 and 4.10. The curvature increases as the

observation network density decreases. Also, the effect of sparse sampling becomes less

significant as L increases; see Figures 4.8, 4.9 and 4.10.

We conclude that empirical ARFs based on raingauge measurements, such as those of

N.E.R.C. (1975), include biases from the finite raingauge density. These biases become more

pronounced as the network density or the observation area decreases. The bias is in the

conservative direction of increasing the ARF values; see Figures 4.8, 4.9 and 4.10.

Reproduction of empirical ARF results

Finally we related various features of empirical Areal Reduction Factors (ARFs) to the

multifractal character of rainfall, deviations from multifractality in the form of bounded

cascades, and sparse spatial sampling. For this purpose we used the original ARF data of

N.E.R.C. (1975) re-fitted with minimum smoothing; see Figure 5.3. Finally, we reproduced the

N.E.R.C. (1975) iso-ARF curves using multifractal and bounded cascade models, as well as

sparse sampling; see Figures 5.8 and 5.9. We found that for large areas and short durations,

where the ARF attains the smallest values (Region 1 in Figure 5.3), the log-log slope of the
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empirical iso-lines is 2. This is consistent with multifractal rainfall. Slopes smaller than 2 are

observed for smaller areas (Regions 2 and 3 in Figure 5.3). Such smaller slopes are produced by

bounded cascades and by sparse spatial sampling. Sparseness of the raingauge network becomes

most important at the smallest spatial scales. The increased spacing of the iso-ARF curves for

large D (Region 4 in Figure 5.3) may be related to a beta component associated with the

characteristic linear sizes and lifetimes of mesoscale precipitation areas. However, limitations of

the data in this particular region (see above) do not allow confident interpretations.

Research directions

Although this thesis covered a wide range of queries on rainfall scaling (or non-scaling) in space

and time several issues still remain open.

One is the existence and effect of anisotropic scaling of rainfall in space and time.

Qualitatively, anisotropic scaling would change the slope of the iso-ARF lines for large L and D.

Such a scaling behavior was not observed in N.E.R.C.'s (1975) ARF results. However this

absence of anisotropy should be confirmed using ARFs from other areas and rainfall data sets.

Finally, the limited accuracy of the N.E.R.C.'s (1975) ARF results in Region 4, where the

ARF attains the largest values, did not allow extensive investigation of rainfall scaling in space

and time for large values of D (say D larger than several hours). Such an investigation requires

accurate empirical ARF results in this region. Although this might be possible, the fact that the

ARF in this region is close to 1 makes its accurate determination less critical for practical

applications.
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Appendix A

Linkage between Haar wavelets and micro-canonical cascades

Here we show how the standardized fluctuations of Haar wavelets are related to the generator of

a ID micro-canonical cascade for rainfall intensities; see also Section 4.1.2.

Specifically, we obtain the standard deviation 6q(m), with the scale m, of the generator qm of

a 1D micro-canonical cascade, as a function of the standard deviation am of the standardized

fluctuations m of Haar wavelets; for more details see Section 4.1.2.

For the rest of the analysis we focus on direction i = 1; see Figure A. 1. However, when

directional differences are insignificant, as in our case (see Section 4.1.2), the analysis is valid

for any direction i.

t2

/eDirection t2
_______________________ Direction t3

(0, j+) (i+ 1, j+1)

Tile at spatial scale
-- - - - - - - - - - m with coordinates

, : (n, k)

- --- (i j - - - - -i+ 1, A)---
Direction t

Tile at spatial scale m-1 J/
with coordinates (ij) ti

Figure A. 1: Cascade tiles at relative spatial scales m-I and m. The coordinates (i, j), (n, k) and the spatial scales m-I
and m are the same as in Section 4.1.2.

Denote by Im..(i,j) the rainfall intensity inside a cascade tile at scale m-1 centered at point

(i,j); see Figure A. 1. q,, is the partition coefficient at scale m in direction i = 1 given by,

qm d I-(,f IM-1'j , f (A. 1)

2

Using equations (4.9)-(4.13) equation (A. 1) becomes,
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m2+ 4dm,
q= d 1+ 1 + m,2 (A.2)

One can use Taylor series expansion around zero and write:

qm =d 1+ 4,2+ 4m,3 + 0(2) (A.3)

where 0(2) denotes terms with order larger than 1.

Neglecting non linear terms and assuming that directional differences in the distribution of (

are insignificant, one has:

aq(m)= F a,,, m > l (A.4)

If a,, is given by equation (4.14), then the standard deviation of the generator qm is

Uq(m)= 2(m-'W" 0.5 a1,, m> 1 (A.5)
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