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ABSTRACT

This thesis describes the development and application of a novel method for analyzing

the filtration of particles transported through a granular porous medium. The proposed

analysis considers the deposition of particles through discrete simulations of particle-laden

flow in a cylindrical model pore. The pore model assumes that particles collect, mound up and

ultimately clog the pore under the action of hydrodynamic and gravitational forces. By
simulating particle deposition processes at the pore scale, the current analyses provide a more

realistic physical framework for interpreting filtration experiments than conventional

continuum models that implicitly assume length scales much larger than the pores.

A detailed parametric study has established relationships between the collection

efficiency, mound height and deposit depth as functions of the model pore dimensions,
orientation (relative to the gravitational field) and particle settling velocity for injection at

constant flow rate. The results showed that the maximum mound height and deposit depth

can be correlated with the pressure difference necessary to maintain flow through the model

pore.
A quasi one-dimensional network 'bubble' model (Datta and Redner, 1998) was

developed to simulate 1-D suspension transport problems. The bubble model comprises a

serial linkage of bundles of cylindrical bonds with shared nodes at each end. Bubble model

simulations include distribution functions for the pore dimensions. Filtration in an individual

bond is characterized by correlations from the model pore simulations.

The bubble model has been applied to interpret filtration data from two sets of column

experiments: acrylic particle transport through glass beads by Yoon et al. (2004), and

microfme cement suspension through a sand bed by Bouchelaghem and Vulliet (2001). It

was found that the collection efficiency obtained from model pore simulations overestimates

the measured filtration rates due to detachment process that are not considered in the

parametric study. Two empirical parameters, attachment probability and detachment rate

were employed to partition the deposited particles between those firmly attached and those

detachable, and its rate of re-entrainment. With these parameters, the bubble model

produced successful predictions of measured temporal and spatial filtration extent in column

tests that have proved difficult to simulate with continuum models.

Thesis Supervisor: Andrew J. Whittle

Title: Professor of Civil and Environmental Engineering
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CHAPTER 1. INTRODUCTION

1.0 FILTRATION

Filtration is a term used to describe the deposition and attachment of solid

particles from the transport of a fluid suspension through a porous medium. Filtration is

encountered widely in natural and industrial systems. Examples of natural system include

subsurface transport of colloidal pollutant (see review by Ryan and Elimelech, 1996), and

migration of fines (see review by Sahimi et al., 1990). In the chemical and biological

engineering fields, deep-beds of granular material are designed as filters (see review by

Tien, 1989). Filtration can also occur as an undesirable characteristic of ground

improvement processes such as permeation grouting. In this technique, low viscosity

fluid grout in injected to water filled voids with minimal displacement of the soil skeleton

(Landry et al., 2000; Arenzana et al., 1989; Schwarz and Krizek, 1994; Santagata and

Collepardi, 1998; De Paoli et al., 1992; Perret et al., 2000). Filtration can cause blockage

of the pores and inhibit or constrict effective permeation of the soil mass.

The dynamics of filtration are determined by the structure of the filters, the

particle size distribution, hydrodynamic conditions, and surface forces of both the

transported particles and host medium. When a porous medium works as a filter, the

suspended particles become trapped when they are either larger than the pores or pore

throats (straining) or when they separate from the transporting fluid and adhere to the

grain surface (infiltration) (Hwang and Redner, 2001). Filtered particles by either of these

mechanisms will affect the subsequent flow and filtration process. Therefore, the

prediction of particle collection rate and assessment of the effect of filtered particles on

subsequent flow are essential components in the study of particle transport through

porous media.
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1.1 EXAMPLES OF FILTRATION IN GRANULAR POROUS

MEDIUM

Filtration observed in 1-D laboratory column injection tests, where measurements

of effluent concentration (referred to as 'breakthrough curves'), provide indirect evidence

of filtration. For example, Figure 1.1a shows the effluent concentration, C, normalized by

the input concentration, Co, from injection tests with a colloidal protozoan parasite (C.

parvum) through a 10cm long sand column (Harter et al., 2000). The parasite oocysts

have a diameter of 4.5-5.5um, while the coarse sand particles range in diameter from 1.4

to 2.4mm. The tests were performed at a constant seepage velocity (1.94 m/day) for a

time period corresponding to 2.5 pore volumes (pV), the column was then flushed with 5

pV of de-aired water. The same sequence was repeated using a reference chloride solution.

The breakthrough curves for both oocysts and chloride clearly show an increase in the

effluent concentration as the injection progresses. It is interesting to notice that initial

arrival of oocysts occurs earlier than lpV, showing the effects of hydrodynamic

dispersion, while that of chloride solution happens after almost exactly lpV of injection.

The breakthrough concentration of oocysts reaches a maximum value corresponding to

10% of the initial concentration, soon after initial breakthrough and remains within the

range 8-13% during the solution injection phase. This result shows that approximately

90% of the injected oocysts were filtered by the sand grains. This behavior can be

contrasted with the breakthrough curve of the chloride solution which reaches almost

100% of the injected concentration at lpV and remains constant during injection. The

concentration of the filtered oocysts was measured by sampling the sand column after

completion of the test as shown in Figure 1.1b. It is noticeable from this figure that the

concentration decreases with distance from input. This can be explained by a decrease in

oocyst concentration due to filtration, and suggests that filtration occurs at a rate

proportional to the concentration. The fact that the breakthrough concentration of the

oocysts stays almost consistently at 10% implies that filtration occurs at a constant rate.

Figure 1.2 shows breakthrough curves obtained from another experimental study

by Liu (1994) using colloidal aluminum oxide (A12 0 3) particles of diameter 0.12um,

injected through a packed column of quartz sand (average diameter, 0.21mm). The
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column height was 14.2cm, and the pore velocity was 0.1cm/sec. In this case, the

breakthrough concentration ultimately reaches the initial concentration after more than

20pV-8OpV (depending on the input concentration). This fact is indicative of a decreasing

filtration rate. This can occur when deposited alumina particles repel other positively

charged particles in solution inhibiting further filtration.

When there is sufficient accumulation of filtered material, the pressure required

for injection at a constant flow rate must increase. For example, Reddi et al. (2000)

performed long duration (up to 1,100pV) injection tests of a kaolinite suspension (particle

size, 1.9-12 um) into a sand column (64mm long, and 76mm diameter) at a constant flow

rate. The sand particle diameter is distributed from 0.1mm to 7mm (with D50 = 1mm). As

a result, a significant increase in the pressure change was measured across the sand

column. The measured pressures were then interpreted as measures of the permeability

assuming Darcy's law. Figure 1.3 shows the corresponding decreases in apparent

permeability in the sand column for two different tests with input concentration of

kaolinite Co = 0.5g/L and 1.0g/L. Permeability initially decreases at rapid rates in both

cases as the injection progresses. They slow down and stabilize at around 400 pV's. The

extent of decrease is higher for the high initial concentration case (Co = 1.0g/L), again

suggesting the dependency of filtration rate on the suspension concentration. The fact that

the stabilized permeability values are above zero implies complete clogging was not

reached. This must be due to increased flow velocity (the tests were done in constant flow

rate and hence, seepage velocity must increase in order to compensate for the reduction in

permeability) that worked to reduce filtration by shortening the duration of residency of

particles in the sample. Another possible effect of increase in flow velocity, increased

rate of re-entrainment process will be discussed in Chapter 6 in detail.

1.2 ANALYSIS OF SUSPENSION TRANSPORT THROUGH

POROUS MEDIA

Continuum models, which are based on the solutions of mass/momentum

conservation equations, are often used in analyses of suspension transport. These have the
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advantage of simplicity and can easily be adapted (as shown in Chapter 2). Continuum

mechanics is based on the assumption that the scale of the problem is much larger than

the pore scale, such that pore-level phenomena need not be considered. However, the

transport, of suspended particles is strongly affected by the structural features of pores

and characteristics of their connections. For example, the shape and orientation of a pore

are significant factors which can determine whether a particle will settle under the effect

of gravity. Once the particle settles on the pore wall, the particle may be attached if the

attraction force is larger than repelling force. These forces are also dependent on local

characteristics in pores. More specifically, they depend on the conditions such as surface

roughness, balance of electrical forces, and flow velocity (Tien, 1989). These conditions,

in turn, will be affected by the pre-existence of other collected particles and the changed

conditions will determine the fate of particles later moving into the pore.

An alternative to the continuum approach is to use network models. A network

model is a regular or a random lattice of pores and pore throats with simplified geometry

and topology. The simplified model pores and pore throats are statistically connected to

have similar characteristics with the medium of interest (Sahimi, 1998). Therefore, a

network model can deal with pore-scale behavior by providing a pore representation into

which the microscopic modeling results can be incorporated. Network models are often

used in filtration problems as well as two-phase transport problems such as oil extraction,

wetting/drying of soil etc. (see review by Berkowitz, 1998).

Microscopic modeling of suspension particle flow problems is extensively done in

chemical engineering and physics fields (H6fler and Schwarzer, 2000). To the author's

knowledge, there have been no previous applications of particle flow simulation to

characterize the filtration rate, which is to be used in network model simulation of

suspension transport. Instead, semi-empirical analytical solutions are often used in

network models for filtration problems (Bai and Tien, 2000). They assume that the pore

walls are clean and hence, obtain the initial deposition rate of particles and use empirical

approaches to account for the effect of collected particles on subsequent flow (i.e. the

collected particles complicate the boundaries of the flow filed making the pore-scale

simulation difficult).
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This thesis introduces a multiple-particle flow simulator to provide correlations of

the deposition rate and its effects on the flow field due to particle accumulation network

model representations of porous granular media.

1.3 ORGANIZATION OF CHAPTERS

Chapter 2 summarizes the use of continuum models for filtration of particle laden

flows in porous media. The chapter gives an overview on a number of rate laws for

filtration and various empirical and theoretical approaches using these rate laws. Among

these approaches, a method using trajectory analysis with a simplified model of filter (a

Unit Bed Element, UBE) is reviewed in detail.

Chapter 3 reviews the concept of network models for porous media. A one-

dimensional network model referred to as a "bubble model", is described in detail

including the principles and assumptions of the model, and an algorithm for its

implementation.

Chapter 4 presents a new method of simulating particle flow through a cylindrical

model pore. Principles of the developed simulator that utilized a fine grid to detect

complex geometry of particles collected inside a cylindrical pore as well as to discretize

the governing flow equations are explained. The key features of the simulator are

explained including the evaluation of hydrodynamic drag (exchanged between particles

and fluid) and the search algorithm for particle contacts.

Chapter 5 presents results from a parametric study using the particle simulator

from Chapter 4. Changes in collection efficiency and pressure drop are studied with

varying particle radius, settling velocity, attachment probability of deposited particles and

pore length/orientation. The results are summarized using a series of correlation

equations that can be used in network model simulations.

Chapter 6 presents the first application case using a bubble model mounted with

correlations obtained through the parametric study. A series of experiments of acrylic

particles passing through glass bead column by Yoon et al. (2004) is simulated and the

results are compared with measurements.
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Chapter 7 describes a second application introducing filtration of a microfine

cement particles in a sand column. The simulation results are compared with the results

with a continuum model, as well as measured values by Bouchelaghem and Vulliet

(2001).

Finally, Chapter 8 presents a summary, conclusions of the thesis, and

recommendations for further research.
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CHAPTER 2. CONTINUUM MODELS

FOR PARTICLE TRANSPORT AND

FILTRATION

2.0 INTRODUCTION

This chapter reviews continuum models commonly used to describe filtration

processes in porous media. The main focus is on transport of suspension in porous

granular media where seepage velocities are sufficiently slow that the flow can be

modeled without considering the inertia of the fluid, as is the case for most natural and

industrial filtration processes through granular filters.

The analysis of suspended particle transport through a porous medium can be

represented macroscopically as a problem of solute transport through a homogeneous

medium. The governing equation of this classic problem is given by the convection-

diffusion equation:

(nC)+ v . V(nC)-V . (nDVC)= 0 (2.1)
at

where n is the porosity (n = V,/V, when V, is the void volume, and V that of the porous

medium), C the concentration of the solute (mass per unit volume), v the fluid velocity

and D the hydrodynamic dispersion tensor of dimension [D] = L2/T. This continuum

approximation is often used to solve transport of miscible solutes in soils (see for

example, Bear and Bachmat 1991). When mass transfer occurs between the medium and

the solute, a rate term can be added to equation 2.1:
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a(nC) aa 22+ v -V(nC) - V -(nDVC) - (2.2)at at

where cis the specific deposit, which is defined as the mass of filtered particles per unit

porous medium volume (i.e. u = MD IV when MD is the mass of deposit, and V the

volume of the medium).

In order to implement this governing equation, a kinetics equation of mass

transfer is required. Most continuum models of this type can be found in studies on 'deep-

bed-filtration' (see for example, Tien, 1989 for review), which is a term used to describe

filtration process through deep filters made of granular material. This chapter summarizes the

range of rate laws that have been developed and reviews key results from these analyses.

2.1 FILTRATION RATE KINETICS

2.1.1 First-order law

The most commonly applied kinetics for filtration rate is the first-order law

(Iwasaki, 1937):

A C (2.3)
at

where A is a coefficient often referred to as the filtration rate that has the dimension of

reciprocal time, [1/T].

There exist many variations of equation 2.3 depending on the variable used to

measure the amount of filtered material. A common choice other than the specific deposit,

a, is the concentration of the deposit, S, defined as the mass of filtered material divided

by the pore volume (for example, see Reddi and Bonala, 1997; Gruesbeck and Collins,

1982; Saltelli et al., 1984). The concentration and specific deposits are related as follows:
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S-MD _MD O (2.4)
V, nV n

Many references in the colloid literature (for example, Harvey and Garabedian, 1991;

Corapcioglu and Choi, 1996; Bolster et al. 1999; Schijven and Hassanizadeh, 2000)

prefer to use the dimensionless solid phase concentration, s, which is the mass of the

matter collected per unit mass of the medium (including pore liquid):

s = - (2.5)
Pb

where pb 'is the bulk density of the porous medium.

Frequently, the first-order law is written as a function of the fluid velocity, v, as

below:

-VA *C (2.6)
at

In this case, the filtration rate, A* has the dimension of reciprocal length, [1/L]. Therefore,

this rate constant represents the filtration per unit length since the dependence on

injection rate is isolated by the pore velocity, v.

2.1.2 Second-order laws and effect of deposits

A first-order law that uses a constant filtration rate throughout the process

implicitly assumes a clean filter. However, it is clear that the attachment rate should

change when deposits cover an extensive area of the porous medium in the advanced

stages of filtration. A second-order kinetics law limits the attachment ratio by the solid-

phase concentration (Tien, 1989). Second-order laws can be generally expressed as:

1 P b/P = G,(1-n) + n when p, is the density of water and G, is the specific gravity of the soil
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= Ao F(a-)C (2.7)at

where / 0 denotes the clean-filter filtration rate, and F(U-) is the deposition rate function.

There are many phenomenological models for the deposition rate function, F(-)

containing empirical parameters as illustrated in Table 2.1. For example, Soo and Radke

(1986) suggested a three-parameter equation for the deposition rate function for modeling

oil-in-water emulsions transporting through quartz sand packs:

F(-) =1-a - (2.8)
no

where a is an average flow redistribution parameter, a constant ranges from zero to one,

which parameterizes the effects of deposits on flow.

Bai and Tien (2000) suggested an optimization algorithm to find a polynomial

function for F(o-) with objective values of experimentally measured effluent

concentrations.

F(c-)=1+ko +k 2 c.2 +k 3 3+... (2.9)

Johnson and Elimelech (1995) present a second order model where deposited

particles inhibit further deposition. They particularly consider charged particles having

high repulsive electrostatic forces between each other while being attracted to oppositely

charged filter grains. In this case, particle deposition is restricted to monolayer coverage.

This type of deposition can be described by a Random Sequential Adsorption (RSA)

mechanism (Widom, 1966). The RSA mechanism assumes particles are randomly

deposited irreversibly onto stationary surfaces. According to the constraints of the RSA

theory, (i.e. no particle contacts, surface diffusion or detachment), the only mechanism

that interferes in this random process is the blocking by deposited particles. A function

referred to as 'dynamic blocking function' was proposed to incorporate blocking in RSA

mechanism. The rate equation for surface coverage in the RSA mechanism is then:
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:-U 7 rp NB(p) (2.10a)
at 4

qp denotes fractional surface coverage (i.e. relative amount of collector surface area where

covered by deposited particles); Np is the particle concentration given as number of

particles per unit pore volume; rp the particle radius; U the pore fluid velocity; and 17 the

unit collector efficiency, which is the filtration rate for an elementary model filter whose

detailed explanation will be followed in next section.

Surface coverage can be converted to specific deposit, , if the values of specific

surface (i.e. surface per volume of granular material) for the pore medium, Spm and that

of deposits, SD:

(F = P SPM(21 b
SD

Then, equation 2.10a can be directly applied to equation 2.2 as a rate law. The

function, B(qp) in equation 2.10a describes the dynamic blocking that characterizes the

transient nature of the filtration rate. Therefore the value of B(qP) is initially unity when

the collector is clean. It then decreases as the blocked area increases with filtration until

the maximum coverage, i.e. p = 06ax is reached at B(qp) = 0.

Theoretically, the maximum coverage that can be attained for monolayer of close-

packed hard spheres is 90.7% (Graton and Fraser, 1935). In the RSA mechanism, because

deposition restricts surface coverage, the theoretical maximum reduces to 54.6% (Feder

and Giaever, 1980). Actual values of (1max can differ from this theoretical maximum,

(p.= 54.6% depending on given particle geometry and physicochemical conditions

(Johnson and Elimelech, 1995).

Two different mathematical expressions have been suggested for B(QP) depending

on the extent of coverage. For moderate coverage, the one by Schaaf and Talbot (1989)

was used as given:
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6 -v3- + 40 176)(B(6p) =1-(4+ 2 4 2 0 , (p 0.8(. (2.11a)

while an equation by Pomeau (1980) for severe coverage:

B((p) = "qmx - )3  (2.11b)
22

where j is the 'jamming limit slope', which is determined in plots of surface coverage, (P,
-1/2versus square root of a dimensionless time variable time, td- . The parameter td is

referred to as the porous medium deposition time and defined as the total area of collected

particles divided by maximum coverage, (max:

t = rp N, dt (2.1lc)
4max

These functions were applied with the kinetics in equation 2.10a to simulate

experimental breakthrough curves of column tests with positively charged latex colloids

(diameter 0.48um) through negatively charged glass beads (diameter 0.46mm). Figure

2.la shows the resulting breakthrough curves for the suspension concentration number,

Np, normalized by its initial value, No. Breakthrough curves show reduction with

increasing ionic strength, which is resulted from reduction in - potential 2 that

consequently lowers repulsive force between particles. The fractional surface coverage, (P,

can be calculated from the measured effluent concentrations:

Z r rva, ( No - N, )dt
P J 0  (2.12)

3H(1- no)

2 The electrical potential that exists across the interface of all solids and liquids. Also known as
electrokinetic potential.
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where H is the length of the column, ag the representative radius of the filter grain. Then

related parameters, q'max and j were obtained from these curves, which, in turn, were used

in continuum model simulations for determining the fractional surface area. The

simulated breakthrough curves showed good match with the experimental values. Results

with two different ionic strengths values, 10 5 M and 10 1M are given in Figure 2.1b. The

relative poor fit with 10 M of ionic strength, the largest value among used values, was

suspected to be related to multi-layering in the deposit structure that violates the basic

assumption of RSA mechanics. The simulated curves were compared with results when

the Langmuirian blocking functions were used replacing RSA functions in equation 2.1 la

and 2.11b. Langmuirian blocking function is the linear blocking function that was

introduced in Langmuir's molecular adsorption model (Langmuir, 1918):

B(p) = (O m )3 (2.13)
21

Since Langmuirian function was addressed to model surface exclusion of point-size

molecules, it naturally underestimates blocking effect of larger colloidal particles (Schaaf

and Talbot, 1989) is illustrated in Figure 2.lb.

Ko and Elimelech (2000) investigated the dependence of hydrodynamic forces

and particle size on the maximum surface coverage, Vmax using latex particles of three

different sizes (0133, 288 and 899 nm) and quartz sand (mean diameter 0.32mm), as

illustrated in Figure 2.2. This figure shows that the maximum surface coverage decreases

with increasing flow velocity and is higher with smaller particle radius at the same flow

velocity.

The second order model based on the RSA mechanics seem to effectively identify

the role of deposited particles on filtration mechanism but depends on empirical

expressions for the dynamic blocking function, B(qp). However, the model is intrinsically

limited in use because of the assumption of monolayer coverage, and only applicable

when repulsive force between particles prevails. In addition, maximum surface coverage

qmax, the key parameter that determines the limit of monolayer coverage must be

35



carefully obtained for given conditions of particle radius, flow velocity and ionic strength

for successful use of the model.

2.1.3 Modeling of re-entrainment

Some deposited particles can detach and become re-transported (equivalent to re-

entrainment in the fluid). This reversible process is commonly modeled by introducing a

new term in the kinetics equation, equation 2.3 (e.g. Saiers et al., 1994):

Filtration & re-entrainment: = AC - kra (2.14)
at

where kr is the detachment rate that models the rate of re-entrainment from the deposit.

More details of detachment process and its implication on overall filtration will be

discussed in Chapter 6.

Most studies on the theoretical prediction of filtration processes focus on finding

expressions for the filtration rate, A, and comparatively little research have been done to

study the re-entrainment. As a result, the value of detachment rate is usually empirically

determined without any theoretical considerations. Meinders and Busscher (1995)

measured the influence of flow on the detachment ratio using a parallel plate flow

chamber of glass beads as a filter for polystyrene particles. They concluded that the

detachment rate increased linearly with the concentration of suspension particles due to

higher numbers of collisions per unit time, and also that the higher pore flow velocity

resulted in higher rate of detachment. Bai and Tien (1997) also investigated the particle

detachment mechanism experimentally. Polydispersed suspensions of PVC powders (0.5-

14 pm in diameter) were injected into a column filled with glass ballotini of two different

sizes (0.6-0.71 mm, and 0.42-0.5 mm diameter). The results show that larger particles

were more likely to become detached and detachment rates were more significant at

higher pressure gradients.
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2.2 THEORIES FOR PREDICTING FILTRATION RATE

PARAMETERS

The fundamental goal of filtration theories is to develop models that can predict

realistically the performance of filters. In order to achieve this goal, it is imperative that

the filtration rate, A, for a given suspension under known physical and chemical

conditions, is defined in terms of input parameters that can be obtained from well-defined

tests. The following paragraphs describe existing methods for estimating filtration rate

parameters.

2.2.1 Phenomenological methods

Most early studies (using continuum models) evaluate the initial filtration rate by

matching the experimentally measured effluent concentration, C,, (for example, see

Iwasaki, 1937, Ives, 1960, and Herzig et al., 1970). For example, Mackie and Zhao

(1998) have used a second-order kinetics model calibrated with one set of lab-scale

filtration tests and then propose a method of adjusting the parameters to enable

predictions for other filtration tests. Their proposed kinetics law models include filtration

rates (ripening) that increase up to a maximum value, and subsequently, decrease to zero

at the final deposit condition. The calculations show good predictions using the

methodology for tests by Mackie and Bai (1992) with the PVC microspheres (diameter,

2r, = 0.63um to 10.08pm) filtering through ballotini glass beads (2rp = 420-710um).

However, the microscopic mechanism of filtration that determined such characteristics of

filtration rate was not discussed in detail in conjunction with hydrodynamic and

physicochemical forces.

Saiers et al. (1994) used curve fitting to duplicate column tests in their study of

migration of colloidal particles of silica and boehmite [AlO(OH)] through sand in order

to compare the first- and a second-order kinetics approaches. Sorensen et al. (1999a and

b) have applied a continuum filtration model to simulate platelet deposition onto

biomaterials such as prosthetic heart valves, synthetic vascular grafts and ventricular-

assist devices during blood flow. They have used separate rate parameters for each of five

37



different species of platelets and thrombin in blood subjected to deposition, which were

empirically obtained. The model was applied to simulate lab tests of platelet deposition

onto collagen plates separated at 200 um. Although this configuration is different from

granular filters that are the main focus of this thesis, the study presents an example of

applying a phenomenological approach. Their simulations include tests of three different

constant injection rates (with shear rates of 100 sec-, 500 sec-1 and 1500 sec- 1) and their

average flow velocities (Ufla = 0.67cm/sec, 3.33cm/sec and 10cm/sec). In addition, a

benchmark case was tested and used for calibration of filtration rates. Predicted results

showed good agreement except for cases at the highest flow rate (Uflav = 10cm/sec). This

was attributed to reduced adhesion due to a change in the hydrodynamics (not considered

in the model).

Although phenomenological models of filtration rate do have some apparent

predictive power (as demonstrated in these studies) they are intrinsically limited because

they do not consider mechanisms affecting filtration due to interactions between the

suspended particles and the porous medium and other filtered particles. It is often

impossible to amend a phenomenological model to reflect the influence of changes in the

filtration state. Therefore, advanced models that consider microscopic filtration

mechanisms is required for fundamental studies of filtration process.

2.2.2 Single collector efficiency, 17

In order to study microscopic filtration mechanisms, individual filters need to be

modeled. The simplest way of modeling is to have one filter to represent the complete

filtering medium. This is clearly a gross approximation as most filters are heterogeneous

in their structure. The efficiency of the model filter can be scaled up to give filtration rate

of the whole filter bed, A. The idea of representing elemental filtering medium with a

model filter of well-defined geometry referred to as a "Unit Collector" or "Unit Bed

Element" (UBE), was first proposed by Payatakes et al. (1973a,b). The filter bed is

assumed to comprise a number of UBE's connected in series. The thickness of each UBE,

L, can be calculated from the known porosity, no:
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-r1/3

L =L ; ag (2.15)
13(l - no )_

where ag is the average filter-grain radius.

Figure 2.3 shows a schematic representation of granular filter bed with UBE's

quoted by Tien (1989). It shows the three most popular types of unit collectors: capillary

tubes, spheres and constricted tubes. The single collector efficiency, 17 can be defined as

difference between the influent and effluent concentration of the ith UBE:

, = in eff (2.16)
Ci

Yao et al. (1971) proposed a very simple UBE assuming an isolated sphere could

represent an elementary volume space of the filter grains and the surrounding pore space.

In this case, the single collector efficiency can be defined as the rate at which particles

strike a single grain of the porous media divided by the rate at which particles move

toward the grain. Assuming Stokes flow (i.e. ignoring inertial in the fluid) and well-

defined boundary conditions, this type of UBE can be solved analytically. For example,

the stream function for flow around an isolated sphere, VIs is given as below by Lamb

(1895):

VIs = va sin 20 - - -+ r'2 (2.17)
2 g 2r" 2

where r'= , (r,6) is the spherical coordinate system used, and v is the far-field flow
ag

velocity.

The trajectory of a particle (i.e. the path a particle follows in the flow field) can be

calculated if the forces acting on the particle are known. Yao et al. (1971) considered two

sets of forces: Brownian diffusion and gravity. Figure 2.4 shows the conceptual sketch of

an isolated sphere with three particle trajectories that will generate particle deposition: A)
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interception B) sedimentation and C) diffusion (Brownian motion). The Brownian

diffusion force, because of its stochastic nature, was not included in the particle trajectory

calculation. Instead, the efficiency of particle collection via Brownian diffusion, 1D, was

independently evaluated from mass transfer theory (Smoluchowski-Levich

approximation, Levich, 1962):

- -2/3

17 = 4 DBM (2.18)
a9v

where DBM is the particle diffusion coefficient, ag is the grain radius. The current study is

focused on filtration where Brownian diffusion is not significant. Effects of gravitation,

on the other hand, can be directly added to the fluid stream function, g VIs:

I=l Is (r,6)+ va 2 NGr / 2 sin 20 (2.19a)

22

NG -2(p -p)gr2 (2.19b)
9/&

where NG is a non-dimensional factor for the gravitational force; ps and p are the mass

densities of the mass particles and fluid, respectively; u the fluid viscosity; and rp the

particle radius.

Collection by interception is defined by the trajectory that grazes the boundary of

the grain, which is often referred to as the limit trajectory. The limit trajectory partitions

the suspension into two parts: those whose trajectories will come within one particle

radius of the collector surface (and are therefore collectable), and those particles that flow

past the collector (with no possibility of collection). Particles inside the limit trajectory

will end up settling out on the grain. The collector efficiency can then be determined

from the limiting trajectory, VfL:
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= 21W (2.20)
7tva,

The limiting trajectory can be obtained from equation 2.19, as the particle trajectory

passing through the point (r = ag + rp, 6 = 7d2). Then the final version of the single

collector efficiency, 77, is given by adding that by diffusion, qD, given in equation 2.18:

1 =7D +1.5N2 + NG (2.21)

where NR is a dimensionless particle radius ratio to the grain radius, i.e. NR = rp/ag.

Tufenkji and Elimelech (2004) have developed a more complete version of this model by

including effects of van der Waals attraction forces.

The single collector efficiency can be easily scaled up to give the filtration rate, A

based on the UBE representation concept. The mass flux of suspension particles of

concentration, C that pass through a spherical collector of radius ag per unit time can be

written:

A = niva vC (2.22)

where v is the velocity of the suspension approaching the collector.

Hence qAM describes the mass flux flowing out of the collector, and the rate of

specific deposit is then found from equation 2.22:

- = AC = =- n [n/7a v] C7 (2.23)
at V, 3r/4 a

where Vs denotes the volume of collector. The filtration rate, A (equation 2.3) can then be

related directly to the collector efficiency for the UBE model.
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3(1- n) n qv (2.24)
4ag

2.2.3 Other methods based on trajectory analysis

More recent models of granular filters represent the pore space as well as the

grain geometry and can be categorized into: internal flow and external flow models.

External flow models focus on the filter grain geometry while internal models deal with

pore geometry. Rajagopalan and Tien (1976) propose a model that consists of a solid

sphere of radius, ag, surrounded by a fluid envelope of radius, b, for which the stream

functions are given by Happel (1958), and is accordingly referred to as Happel's model.

Through trajectory analysis considering diffusion, gravitational, and van der Waals forces,

they provide a correlation for the single collector efficiency:

A1 /3 + AN1 N'5 /8 + 3.38 x10-3 AN1 N- 4  (2.25)

where As is a dimensionless parameter depending on porosity:

As = 2(1- d 5) (2.26a)

d = (1-no)1/ 3  (2.26b)

w = 2-3d+3d 5-2d 6  (2.26c)

Nydw is a parameter related to van der Waals force and the related Hamaker constant, AH 3:

4 A
NvdW - H2 (2.27)

97rrp v

3 Hamaker 'constant' is a physical property that defines the van der Waals interaction energy between two
bodies.
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Further details of trajectory analysis in Happel's model and one kind of internal model

(constricted tube model) are given in Chapter 4. A review of the trajectory analysis and

its application on deep bed filtration process can be found in Tien (1989).

Trajectory analysis does not consider subsequent changes in geometry of the

collector, i.e. the radius of the grain in a unit collector, ag is kept constant. Therefore,

these models only provide measures of efficiency for clean filter beds or situations where

there is limited deposition of particles. There are some studies that amend the single

collector efficiency equations (such equations 2.21 and 2.25) to account for previously

deposited particles. For example, Choo and Tien (1995) suggested a relationship between

the current efficiency and the clean bed efficiency, irIi/o by solving flow through a

cylinder with a deposited layer of porosity nd and permeability kd:

77 = Y 1 1+ 9.61(l1- n 0)2/3 1 -

+ ( - ) + 0 .6 7 9 4 1 - . 2 1 ( a )+ (1-- Y){1+ 0 A~.924 d1i 22a
1-no NR d-n (2.28a)

0.1731 r1 3l l 2~~
+ 0. 7 1 1 + - --_1.171x 102 )

(1 - no )2 N 2 NR 1  d

In this equation, Y is a weighting function for the deposit permeability, kd:

Y f k (2.28b)
1 -f km'

m is a constant; f is a function of initial filter porosity, no, specific deposit, or, deposit

porosity, nd, and the ratio of particle radius to the grain radius, NR:

f = 0.578(1 -n)-2 1 + 0.0 t a (2.28c)
NR 5(1 - nd)
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Ryan and Elimelech (1996) presented a thorough review on theoretical and

experimental studies of colloid transport in groundwater, including applications of

continuum filtration models. There also exist many studies using phenomenological

approaches applied in organic colloidal transport such as bacteria, whose review can be

found in Lawrence and Hendry (1996) and also Schijven and Hassanizadeh (2000).

2.3 ADHESION (ATTACHMENT) MODELS

2.3.1 Collision coefficient, a

It is generally agreed that theoretically evaluated collection efficiencies

overestimate the experimental measurements of filtration when repulsive double layer

interactions predominate (Ryan and Elimelech, 1996). As a result, the initial collection

efficiency is often modified to include an empirical factor, ar

r/= ar/i (2.29)

where 7full is the calculated single collector efficiency and a, defined as the empirical

collision efficiency that describes the fraction of collisions with filter grains that actually

result in attachment.

Collision efficiency can be thought as a parameter quantifying the surface

interactions between particles, and between particle and the collector wall. These effects

are very difficult to model analytically. Elimelech and O'Melia (1990) carried out an

experimental investigation on the effect of ionic strength on the values of a. Experiments

were done with polystyrene latex particles of three different sizes (0.046,0.0378, and

0.753 um in diameter) transported through a 20cm-deep spherical glass beads (0.2 to 0.4

mm in diameter) column, where KCl and CaCl2 solutions were used as destabilizing

electrolytes. The experiments clearly showed increase in attachment efficiency as the

electrolytes concentration increases (i.e. there is a reduction in the energy barrier between

glass beads and the particles), as illustrated in Figure 2.5 where breakthrough

concentrations decrease with increasing KCl concentration.
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There are many applications using equation 2.29. For example, Harvey and

Garabedian (1991) applied the expression by Yao et al. (1971) given in equation 2.21 in

their study of bacteria transport to evaluate ilfull, and then found the collision efficiency

empirically through separate injection tests. The resulting single collector efficiency, 7

was converted to the filtration rate, A using equation 2.24 derived from the UBE

representation concept, and applied to simulate bacterial transport in ground water, with

the first order attachment-detachment kinetics (equation 2.14).

Harter et al. (2000) used a similar approach to model column tests of bacterial

transport through sandy soil. They used equation 2.25 (Rajagopalan and Tien, 1976) to

evaluate i7fi, while the collision efficiency and the detachment coefficient (a, k,

respectively) were obtained by calibrating the breakthrough curve for each test. Bradford

et al. (2002) also used equation 2.25 to model experiments on latex colloid transport

through a sand column. The values of the detachment coefficient and the collision

efficiency were obtained by calibrating the breakthrough curves. Calibrated collision

efficiency values were two orders of magnitude higher than the theoretical maximum

value (i.e. unity). The data were also highly scattered for tests done with soil of similar

characteristics, implying inadequacy of the analytical single collector efficiency equation.

In addition, the simulated profile of accumulated colloid mass did not match very closely

the measured spatial distribution, which showed a concentrated accumulation near the

injection point.

2.3.2 Effect of surface roughness

Apart from surface chemistry, the surface roughness must also be an important

parameter affecting the attachment process. Varidyanathan and Tien (1988) proposed a

theory that considers surface roughness as the main source of adhesion. The basic

principle is that a particle in contact with a plane boundary will stay in place if there is

sufficient frictional resistance between the two bodies. In order to model the surface

roughness, grain surfaces are assumed to have protrusions of known dimensions. The

degree of roughness can be represented by the density of protrusions and their height. If a

particle settles on to a smooth pore surface, it will roll along until it encounters a
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protrusion. The adhesion model determines whether a particle remains attached or not

from calculations of angular momentum conservation. If the moment exerted by the

attractive force is greater than that exerted by the fluid, the particle will become attached

to the grain surface. The configuration of a particle encountering a protrusion is shown in

Figure 2.6. The drag force, FD , and moment, MD , acting on a spherical particle of

radius, r, , due to a Newtonian fluid flow under no-slip condition on the grain surface

were calculated by Goldman et al. (1967):

FD =10.2057r rpr, (2.30a)

MD= 3.7767fr r - (2.30b)

where -r, is the shear stress on the wall by the fluid.

The adhesion condition when the attractive moment is larger than the drag

moment in this configuration is:

FA(2rPh-h 2 ) 2 FD (rP -h)+MD (2.31)

where FA is the net attractive force to the grain surface. Goldman's solution is strictly

applicable for infinite space bounded only by the wall, and is not appropriate to represent

pore space. It is also very difficult to select the wall shear stress, zw, parameter for a pore

wall.

Varidyanathan and Tien (1988) completed calculations for situations where van

der Waals force is the dominant adhesive force:

Frdw = AH 2 (2.32)
6(5

where AH = 10-13 erg (1020 J) is the Hamaker constant, and S is the separation distance

between the surface and the particle.
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Imdakm and Sahimi (1991) used the formula given by Herzig et al. (1970) to

estimate the minimum separation distance 8:

g2 = 2AH (2.33)
27r g(p, _ p)

where ps, p are the density of the particle and water, and g is the acceleration of gravity.

If equation 2.33 is substituted in equation 2.32, the resulting van der Waals force is

=FG 4 3
F'dW __ , where FG = -s7rrpg(P, - p) is the gravitational force.

8 3

Although the theory appropriately recognizes the crucial role of surface roughness

in filtration process and distinguishes related forces, it has limited applicability for porous

filters because it does not account for the effects of the pore walls. It also does not

account for effects of previously collected particles on hydrodynamic forces. The

influence of pore wall on flow and its effect on filtration process are discussed in Chapter

4.

2.4 METHOD BASED ON CAPILLARY MODEL OF POROUS

MEDIA

Reddi and Bonala (1997) developed a method for evaluating the filtration rate, A

using a capillary tube model for porous media, as shown in Figure 2.7. The porous

medium is represented as a bundle of capillary tubes of various radii sharing a common

length. This model can be thought as a primitive network model, i.e. a lattice

representation of pores and pore throats. (Network models are discussed in detail in

Chapter 3). If the initial pore space is modeled by a bundle of circular tubes (capillary

model) with known probability density function, f(R), and the probability of capture for a

particle inside a circular tube of radius R, p(R), is also known, the deposition rate can be

expressed as
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aS(z, t) = C(z,t)NN fp(R)q(R)f(R)dR (2.34)
at

where S is the deposit concentration, N, the total number of pore tubes in unit pore

volume and q(R) is the flow rate, which is given according to the Poiseuille equation:

q(R) = 7pg iR 4  (2.35)
8,u

when i is the hydraulic gradient, i.e. i = Vp/pg.

A correlation originally suggested by Stein (1941) was used for the probability of

capture for a spherical particle of radius, rp, inside a circular tube of radius, R:

p(R) = 4[(# r, / R) 2 - (#r, I R) 3 ]+ (# r, IR)4  (2.36a)

where # is a parameter that takes into account the effect on deposition of several inter-

particle forces such as gravitational, inertial, hydrodynamic, electric double layer, and

van der Waals forces.

The deposition coefficient can be found by selecting the pore size distribution, the

representative number of pores, N, the parameter, 0, and the representative particle size,

a. The principle uncertainty lies in the selection of the pore size distribution and the

parameter, 0. Rege and Fogler (1988) suggested an exponential function of flow velocity

for 0:

# = 3exp[-v /vcr] (2.36b)

where v is the pore fluid velocity and Vr a critical pore velocity beyond which no particle

capture is allowed (i.e. # = 0).
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This equation is based on the experimental observations of Gruesbeck and Collins

(1982) of decreasing filtration rate with increasing pore velocity, which ultimately was

reduced to zero when a critical velocity was reached.

Reddi et al. (2000) applied this method to simulate the filtration of kaolinite in a

sand column, whose experimental measurements were already presented in Figure 1.3.

Figure 2.8 compares the simulated values and measured values of apparent permeability.

For the simulations, the probability density function f(R) of the sand as well as the

corresponding number of pores, Nt, were evaluated from the measured soil-water

characteristic curve with critical velocity of v, =0.1cm/sec 4. The figure clearly shows the

simulation results with lower input concentration, C = 0.5g/L, underestimating the

measured permeability values. This indicates that the model overestimates the extent of

filtration. Although the reason for this overestimation was not well discussed in Reddi et

al. (2000), it should be noted that it implies filtration rate increasing as deposit volume

increases, which is not included in the presented model.

2.5 PRESSURE GRADIENT-FLOW RATE RELATIONSHIP

Darcy's equation is generally used as a constitutive equation in continuum models

of flow in porous media:

i - V (2.37)
kpg

where k is the permeability [L 2], and V is the superficial flow velocity.

There are not many studies that exist on the effects of deposition/filtration on

pressure changes occurring within the porous medium (at constant flow rate). In

continuum transport models, the effect is most often measured by changes in

permeability of the filter bed utilizing the Kozeny-Carman equation. The Kozeny-

4 Not explicitly stated by the Authors, but necessary to match the permeability evolution for input
concentration, C = 1.0g/L
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Carman equation gives the hydraulic gradient, i, when an incompressible fluid flows

through a granular medium of spheres of uniform size (ag, the radius).

i= V (1-n)2  (2.38)c 4 a2 n3

where Kc is an parameter depending on the porous media structure. Using this equation,

the ratio between the hydraulic gradient, i, to the initial gradient, io, can be computed if

the filter grain radius ag reduces from its initial value, ago, due to an accumulation of

filtered material:

i ago 2n 3 (1 -n)2
G j 1 (2.39)

io a n3(1-n )2

This equation works under the assumption that the filtered material forms a smooth

surface on the collector such that its effect can be represented by change in filter radius

and does not affect the interstitial velocity, v or viscosity, P. Then, the filter grain radius

can be expressed with porosity:

1/3
ag 1-n

g - 1(2.40)
ago (I-no)

Porosity has the following relationship with the specific deposit, o-

n = no - (2.41)
1-nd

where nd is the deposit porosity that depends on the morphology of the deposit formed.

Substituting the above two equations to equation 2.39:
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G= 1-n23 )3( 1- )2

1-n n 1-no

-F-3_-_-__4/3
_ no(1-nd)L (I -no)(1-nd)]

Table 2.2 summarizes other the existing phenomenological models for the flow

gradient enhancement function, G.

Hunt et al. (1993) suggested a new function based on the finding made during a

series of experiments of kaolin powder transport through a sand column that the

normalized increase in hydraulic gradient, (i-io)/io can be directly linked to the specific
2/3

deposit through a power law function, i -a

Boller and Kavanaugh (1995) used the relationship by Ives (1969) in Table 2.2 to

study the influence of particle size on the change increase with related parameters (d = 35,

m, = 1.5 and m2 = -1). Constant flow rate injection test results with suspensions of

spherical latex particles with diameter 6.5um, 2.1pm and 0.63pm through 9cm column

with glass bead of 0.55mm diameter were used for the study. Using Ives's equation to

calibrate the experimental measurements of pressure changes, the deposit density was

back calculated. The calculation showed that deposit density decreases with increasing

radius, indicating that smaller particles make looser deposits, and, consequently explain

the observed results showing faster headloss using smaller particles. No measurement,

however, was made to validate the calibrated density values.

Choo and Tien (1995) have proposed equations to explain the change in pressure

gradient for a cylindrical tube collector due to deposition of mono-sized particles, which

later can be incorporated in the UBE filter model. They have defined three stages of

particle deposition depending on the number of particles (Figure 2.9):

Stage 1: Monolayer deposition,

Stage 2: Moderate deposition,

Stage 3: Severe accumulation of deposits to cause the deposited particles on top

and bottom meet to make a bridge at a point across the tube.

From the first stage, the pressure drop is based on the analytic solution by Happel

and Brenner (1973) (single particle collection) scaled by the number of deposited
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particles (i.e. assuming no change in flow field due to previously deposited particles).

However, the assumption is flawed as explained in Chapter 4 when a full particle flow

simulation method developed. For stage 2 and 3, a smooth layer of deposited matter of

porosity nd was assumed to solve the flow.

Stephan and Chase (2000) suggested a novel method to find a correlation for

permeability loss within a deep-bed filter. Their research models the changes in effective

surface area due to filtered particles with a constitutive equation in terms of porosity,

particle diameter, and sphericity (Bird et al. 1960). This equation was then incorporated

in continuum model equations through volume averaging. They also suggested an

optimization scheme to find associated parameters with experimental results and applied

it for the flooding test results As noted by the authors, the size distribution of particles is

an important factor omitted in the research that can have an important influence on the

change in surface area.

2.6 CONCLUSIONS

Continuum models that use simple continuity equations as governing equations

are easy to implement and hence, have been used in many studies of transport of fine

particles through porous media. Filtration processes are incorporated in these models

through kinetics equations that require a number of material parameters. It is often a

challenge to select these parameters in practical applications. Various methods have been

proposed for predicting filtration based on theoretical and empirical methods. Theoretical

calculations of filtration rate are possible, through trajectory analyses, but are confined to

initial conditions (clean bed conditions). Phenomenological and empirical models are

generally needed to handle effects of prior particle deposition. Hence, continuum models

are inevitably based on empirical parameters back-calculated or calibrating to measured

breakthrough curves. As a result, the continuum models of filtration are generally not

very robust. In addition, an up-scaling process is required to retrieve the rate parameters

in kinetics equations from the single collector efficiency values (i.e. trajectory analysis).

Unit bed element representation method, in which a serial connection of collectors of

simple geometry (unit bed elements) models entire filter bed, is often adopted in
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continuum approach as a simple up-scaling technique. The UBE representation, however,

is often found inadequate to model the complicated topology of pore spaces for real

granular filtering media.

Theoretical studies on the pressure drop change due to deposition are rare despite

their importance in advanced stages of filtration where there is a significant build-up of

deposits.

These limitations of continuum models generate a need for new comprehensive

methods that address local scale deposition phenomena. These are described in

subsequent chapters.
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Table 2.1 List of expressions proposed for the deposition rate function, F(-) = A/AO

Expression Adjusta e Reference

F(o-) =1+ bcT b Iwasaki (1937)

F(a-) = 1- ba- b Stein (1940),
Ornatski et al. (1955)

1
F(a) = a, m Mehter et al. (1970)

(1+ b-)'m

F(a) = 1+ b- b, M 1, M2  Mackrle et al. (1965)
no ) no)

F(o-) =1+ b- - au.2 a, b Ives (1960)
no--

F(-) = 1+ b- J - b, m 1 , m 2 , m 3  Ives (1969)

Table 2.2 List of expressions for flow gradient enhancement function, G(O-) = i/io

Expression PArametes Reference

G(a) = I+ do d Mehter et al.
G~o)=+do d(1970)

G(-) =1+ d- d Mints (1966)
no

G(a) = 1 d, m Mehter et al.
(1-do) m  (1970)

G(o-)= 1+ -- I I d, mi, M2 Ives (1969)
no ) no

G(a-)=I+ f (Ao + dnoe )o+ e +d 2+ dn 2 In( n0 -o-) f, d, e Ives (1961)
( 2 no
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CHAPTER 3. NETWORK MODELS

3.0 INTRODUCTION

Most problems regarding transport of fine particle-laden fluid through porous

media involve multiple length scales. For example, at the largest scale, fines migration

related to oil extraction can easily reach the scale of kilometers while construction

problems of grouting can range up to tens of meters. In contrast, soil pores have a length

scales in the range of microns to millimeters. This is the scale where fundamental

interactions occur between particles and soil grains. Major practical issues of filtration

involve predicting the macroscopic changes in porous media due to deposition of

particles within the pores, (e.g. extent of transport or decrease in permeability due to

filtration). Nevertheless, these macroscopic phenomena are ultimately dependent on pore-

level processes. The previous chapter has shown that particle filtration depends on pore-

level phenomena, and that continuum models focusing on macroscopic scales are often

not appropriate. This is ultimately because heterogeneity in the pore structure plays an

important role in the process. Modeling the pore scale process is an essential step to

transfer microscopic filter efficiency to macroscopic filtration rate. The unit bed

representation method with various forms of unit collectors presented in Chapter 2 are

examples of basic pore space modeling. This chapter reviews more advanced network

models for porous media, and describes in detail the implementation of a simple network

model, referred to as the bubble model, that is later used in the Chapters 6 and 7.
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3.1 BRIEF HISTORY OF DEVELOPMENT OF NETWORK

MODELS

Network models represent the pore space in a medium as a network of pore

bodies (referred to as 'sites') connected by pore throats ('bonds'). Network modeling

aims to find a mathematical framework for constructing configurations that can represent

statistically the heterogeneous medium. The first development of a network model is

credited to Fatt (1956) who proposed a regular two-dimensional lattice of tubes of

randomly assigned radii to be applied to wetting/imbibition problems (e.g. flow of

wetting fluid into a dry medium). Prior to this work, porous media were generally

modeled as bundles of parallel tubes, (i.e. capillary model Section 2.4). Although these

capillary models have been used in many studies (e.g. interpretation of soil-moisture

characteristic curves; Arya et al., 1999) owing mainly to their simplicity, they have also

been widely criticized for not representing the connectivity of the pore space within the

medium. Fatt's two-dimensional lattice model soon brought about development of three-

dimensional lattices. Chatzis and Dullien (1977) pointed out that bicontinua (two

continuous phases) could not exist in two dimensions and hence, three-dimensional

analyses were necessary for two-phase flow problems. Furthermore, they proposed a

modified lattice network in which intersections of pore throats (tubes in lattice) were

independently assigned finite volumes. These 'ball-and-stick' type network models are

still widely used, having been justified by many researchers who observed that most of

the void space is contained in the pore bodies rather than the pore throats (Chatzis and

Dullien, 1977; Koplik, 1982).

A popular application of network models is for oil extraction through fractured

rock reservoirs. They are also extensively used in chemical and environmental

engineering fields when analyzing problems such as centrifuging, drying and multiphase

flow in packed columns as well as deep-bed filtration. There are also abundant studies

using network models in soil, mostly for wetting/imbibition and other porosimetric

problems (e.g., Yanuka, 1989; Zhou & Stenby, 1993). Other important applications,

including pore-scale events (such as entrapment of non-wetting phase liquids during
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wetting) and dispersion of contaminants, are thoroughly reviewed by Berkowitz and

Ewing (1998).

Recently, network models have been successfully applied for simulation of

fracture processes in heterogeneous materials (summarized in, for example, Sahimi,

1998). Many heterogeneous materials, such as soils, rocks, fibrous composites, ceramics

and concrete, have complex fracture mechanisms strongly related to their microstructures

that classical fracture mechanics based on continuum mechanics have limited power to

explain. Since network models enable selection of the length scale in which the

heterogeneity of the interested material is represented (i.e. for properties such as strength

or elastic modulus) by assigning using suitable statistical processes, they work as

alternative to the continuum models. Examples of these can be found in Sahimi and

Goddard (1986), Duxbury and Leath (1994), and Wu and Leath, (1999).

3.2 TYPES OF NETWORK MODELS

The primary classification of network models depends on the lattice

arrangements. Different arrangements generate different coordination numbers (i.e. the

number of bonds connected to each site). Although the prevalent network models are

two- and three- dimensional square and cubic lattices, there are variations using other

regular geometries (such as hexagonal or triangular grids) and random grids based on

Voronoi and Delaunay tessellations. Bryant and Blunt (1992) first started to use random-

close-packing of mono-dispersed spheres as a network for representing the physical

properties of granular soil. This 'physically representative' network model is superior to

conventional lattice networks in the sense that it includes the spatial correlations of pore

sizes naturally (Thompson and Fogler, 1998). In order to apply such a physically

representative network model, however, detailed statistics are needed to characterize the

packing of the porous medium and to formulate corresponding network model simulation

of the topology. The model of Bryant and Blunt (1992) is based on the 'Finney pack', a

set of measurement of 8,000 random closed-packed ball bearings (Finney, 1968).

Random packings of regular-shaped particles other than spheres, (i.e. spheroids,

ellipsoids, cylinders, and parallelepipeds) have also been studied in physics and soil
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science (e.g. see Coelho et al., 1997 and Pilotti, 1998) although it is hard to find

equivalent studies on natural porous media. There are more published studies that applied

physically representative network models for soil: Stepanek et al. (1999) studied liquid-

vapor interface moving; Thompson and Fogler (1997) dispersion; Thompson and Fogler

(1998) in situ gelation of an immiscible invading fluid. Figure 3.1 shows some examples

of two dimensional lattice and random-packed particle models.

3.3 APPLICATION OF NETWORK MODELS TO FILTRATION

PROBLEMS

Continuum models presented in Chapter 2 focus on averaging all microscopic

phenomena in pores at the macroscopic scale. For example, the approach of Reddi and

Bonala (1997) presented (Section 2.4) takes into account the structure of the pores using

a capillary model. These details at the pore level are eventually condensed into a few

empirical parameters (such as the deposition coefficient, A ) by averaging, in order to

describe the evolution of the host medium and/or filtering material. These empirical

parameters represent averaged characteristics of a process which is intrinsically transient

and are bound to change as the process advances. Thus, it is often impossible to find a set

of parameters that can represent the whole process. Consequently, continuum models

have limited predictive power. In order to overcome this limitation, a pore-level scale

modeling of the filtering process is required. Discrete network models describe porous

media as networks of pore bodies connected by pore throats so that the scale of analysis

reduces to the level of pore bodies. As each link in the network represents a pore space, it

is possible to model directly the microscopic mechanisms with a network model. Many

investigators (Rege and Fogler, 1988, Imdakm and Sahimi, 1991, Datta and Redner,

1998a,b, and Lee and Koplik, 2001) have agreed that network models are more suitable

for modeling filtration problems. In their studies, regular lattices of straight tubes were

used. While random networks such as the Voronoi network appear to be closer to real

porous media, Imdakm and Sahimi (1991) commented that: 'Previous studies (e.g.

Jerauld et al., 1984) have shown that, as long as the average coordination number of a
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disordered network...is the same as that of a regular network (e.g. a cubic network used

in this paper), transport processes in the two networks and their effective properties are,

for all practical purposes, identical.'

Two- and three- dimensional lattices of constricted tubes (i.e. tubes with varying

radius, maximum at the inlet and outlet and minimum at the middle) are used by

Burganos et al. (1991) and Burganos et al. (2001), using the trajectory analysis results of

Payatakes (1973) and Tien and Payatakes (1979). The constricted tube shape, provides a

better description of the pore space geometry than the straight capillaries.

Burganos et al. (2001) also modeled detachment of large flocs of particles due to

hydrodynamic forces and their re-deposition. This has been reported as an important

process to cause clogging in filters (Payatakes et al., 1981). In both studies, the deposit

layer was assumed to form another constricted tube inside the pore so that the geometry

(of the tube with deposit) is also defined analytically (saving computational time).

3.4 BUBBLE MODEL

3.4.1 Principles of bubble model

The bubble model, Figure 3.2, is a quasi-one-dimensional network model first

used for filtration problems by Datta and Redner (1998). Each bubble is a bundle of

straight circular tubes (bonds) whose radii are described by a probability density function

representing the distribution of the pore-radii. The bubble model can be viewed as a two-

dimensional square lattice in which all perpendicular bonds are connect to a single site,

which corresponds to a homogeneous state at a given time (i.e. has a single pressure and

density). The lengths of all bonds in a bubble are identical and they can be thought as

representing the length scale between two pressure points.

If a bubble model comprising B- bubbles, each with W- bonds is to be constructed,

the length of all B- bubbles and the radii of BxW bonds should be assigned by a random

process equivalent to the pore radius distribution in a grain filter. For example, if a

cumulative distribution function for the pore radii distribution is given as a function F(R),
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a random generator for bond radii can easily be found by using a random variable, Z, that

is uniformly distributed between zero and one.

Z = F(R) (3.1)

which, in turn, will give the corresponding pore radius:

R = F 1 (R) (3.2)

where F1 is the inverse function of F(R).

Therefore, it is desirable to have an analytical function that is invertible as the

distribution function of the pore radius.

It is reasonable to assume that particles are distributed among the bonds with a

probability proportional to the flow rate in each bond. If Poiseuille flow is assumed in a

bond of radius R , the flow rate is proportional to R 4, and the gradient of the pressure is

then:

8Vp

where u is the absolute viscosity of the Newtonian fluid.

For particle collection, there are two different mechanisms considered, straining

and infiltration. If a particle is larger than the bond, it will be considered collected by the

site. This process is often referred to as sieving or straining. A particle smaller than the

bond, on the other hand, can become collected inside the pore through deposition and

subsequent adhesion (i.e. infiltration). Particles that are not collected are assumed to flow

with the fluid. Therefore, the fluid velocity in the bonds is the same as that of the

particles. For a time-dependant process such as filtration, the time step small compared to

the rate of evolution of the process. The time step in a filtration problem, therefore, needs

to be less than the time increment required for a particle to move from one site to the next

site, which is referred to as the 'travel time'. The seepage velocity of the fluid in a bond

of radius R is:
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V - -R 2vP (3.4)
;rR2

The current bubble model assumes a single bond length, Lb, with a constant pressure

gradient hence, the time step is defined as the smallest travel time. This time step is

inversely proportional to the square of the maximum bond radius, i.e.:

At = -1- (3.5)
v R2

Some of the suspended particles (i.e. those not collected) in the smaller tubes move more

slowly than those in larger tubes and do not reach the next site while all of those in the

largest tubes move into the next bubble. It becomes complex to evaluate the positions of

particles in all bonds with varying radii. A simplified approach is taken by forcing

particles to always be at a site for each time step (Hwang and Redner, 2001). Under this

assumption, the ratio of the travel distance in a bond, vAt, to the total bond length, L,

(vAt/L) can be considered as the probability for a particle to advance to the next site while

the rest remains at the entrance. This concept of particle partitioning to sites is shown

schematically in Figure 3.3.

3.4.2 Algorithm for particle transport through bubble model

Once the bond radii are specified, particles are injected into the model. The

distribution of particles can be modeled by introducing a probability density function

(PDF) for the volume fraction corresponding to the size of the influx particles. The

algorithm presented here is similar to that of Hwang and Redner (2001), but also includes

the straining mechanism.

For numerical implementation, the PDF should be a discrete, stepwise function.

For example, if the particle size distribution is represented by M size fractions, the

corresponding PDF is then defined:

67



P[r ]= fin x (r7 - r'"), m=1-M (3.

where f,, is the value of the probability density assigned for radius in the range of

rn-i < rp r7 whose average radius is given as r2' = (rpm + rp-')/2.

For a specified volumetric flow rate, Q, the number of particles in given time, At,

that belong to each particle size group can then be determined as:

AN'" =N(r )At, m = 1- M (3.7a)

where the particle number injection rate, N(r2,,) is given by:

N(r ma )=Q P [r,'a ]/(4yr(r, )3/3) (3.7b)

Then the total number of particles input for time-step At will be the summation of AN',

for all particle size groups in the filtering medium:

M

AN, = AN,
in = i

(3.8)

The fraction of AN" to this total number of particles, defines the probability density

function for the number of particles that belong to the size group (i.e. "the number PDF",

AN'm
Ar. (r m )= in

in pa AA"

P Irpa ]/(rpa

in in

The number of particles injected from the source, ANin, defines the number of

input particles to the first site, N,". Particles at each site are subdivided among the bonds
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exiting. If we assume that the particle density is homogeneous within a site, the number

of particles in each bond is only dependent on the flow rate through each bond (i.e. is

proportional to R 4, equation 3.3). The number of particles is assumed proportional to the

flow rate in each bond and hence, the number of particles advanced to each bond from

the input site is controlled by the proportion of the flow carried in each bond. Thus, if the

number of particles in jth bond in the first bubble is characterized as N'" :

R4
N"= N I , j= 1-W (3.10)

where R1,j is the bond radius, and W are the total number of bonds.

The particles in each bond are divided into three groups as follows:

(1) The fraction of remaining particles at the input site

N reman = Nn " - (3.11a)

where L1 is the length of the bonds in the first bubble. The total sum of the remaining

particles from every bond gives the number of particles remaining at the first site,

W
Ne'an (t)= IN"'""" . The remainder of injected particles will leave the site to the

j=1

bonds:

N!7"(r2,ti)= N (r2, t1 ) ' ,m = 1-M (3.11b)

where M is the number of particle size fractions considered (equation 3.5), and the

number of injected particles per particle size group can be given as:

N"(r, t,)= NI" gin (r), m = 1- M (3.11c)

69



(2) The fraction of particles collected by straining

NI'ja I)strain = (r,'leave rm t)P[r, a >1 , m = i-M (3.12)

where P [r'" > R ] is the probability of a particle to be larger than the concerned pore.

(3) The fraction of particles collected by infiltration

m t leave' (m I m(r'ati) ij ra, t1 )(1- P [r'a > Rlj ])P[infiltration], m = 1-M (3.13)

where P[infiltration] denotes the probability of a particle to be collected thorough

infiltration.

In order to assure mass continuity, the number of particles advancing to the

second bubble is

Na (ra ,tI) = Nn (r') - N ''na(r') - N ' "m"(r') - Nf(r') (3.14a)

Then the total number of particles that will be advanced to the next site can be

determined as the total sum:

M

N'J (t1)= I (r,'a, t1 ) (3.14b)
M='1

The radii of bonds from the first bubble should be updated to account for the number of

collected particles. The procedure will be further explained in the next section. As a result,

the time increment, At, which is a function of the maximum tube radius as shown in

equation 3.5, is also updated such that At = At 2.

At the second time step, at t = t2= t1+At 2, equations 3.8 and 3.9 will be used to

update the number of injected particles, ANin(t 2) that corresponds to the new time step,

At 2. Added to the particles remained at the first site from the previous time
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step, N r'"" (tI), the number of particles injected to the first bubble at the second time step

will be:

NI (t2 ) = N' (t2 )+ N e'nan (t ) (3.15)

For the second bubble, particles passed through the first bubble from the first bubble, i.e.,

w
N (t2 ) = N" j is injected, with corresponding number PDF function,

j=1

W
N" a(. 't,)

g 2(rp , t2 = n"(2 (3.16)

This way, the last site will be reached after B time steps, the same as the number of

bubbles. Eventually, after time t = T, for the ith bubble, Ni(T), with corresponding

g, (r ,, T) will be known. In addition, the total number of particles collected on the bubble

either by straining or infiltration will be given:

N stran (T) =
it j=1

(3.17a)

(3.17b)N' (T) = N" (rm ,t,,)
it j=1

which will add up to give the total number of collected particles:

N7 (T) = Nin (T)+ N" (T)

Figure 3.4 presents this bubble model algorithm as a flow chart.

(3.18)
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3.5 COLLECTION MECHANISM IN A BOND AND CHANGES

IN BOND RADIUS

In network simulations, the probability of infiltration, P[infiltration], as defined in

equation 3.13, is the key parameter that determines the quantity of particles that will be

collected in the bonds and affect the subsequent flow (by changing the bond radii). In

previous network model simulations, the values of the probability were usually obtained

by applying the trajectory analysis results (e.g. Burganos et al., 2001), or empirical

relations (e.g. Rege and Fogler, 1988). Again, the influence of the straining process is

rather straightforward, because any particle larger than the bond will clog it, and remain

trapped at the preceding site. In a probabilistic sense, this means that the probability of

flow is the same as that of straining, i.e.:

If N ,'",(r , t)>1, then Ri =0 (3.19)

Particles collected by infiltration are smaller than the bond radius, and remain in

the bond causing a change in the flow field whose effects can be coupled through

separate calculations. For example, Suchomel et al. (1998a and b) used a cubic network

of straight pipes to simulate transport of bacteria in porous media. It was assumed that the

filtered bacteria would be distributed uniformly around the wall in a given bond. Then,

the radius R(t) of the bond corresponding to the specific deposit, o-(t) can be obtained by

a simple volume-mass balance:

R(t) = R(0) 1- U(t)I p (3.20)

where R(0) is the initial bond radius, and Pb the bulk density of deposit. The specific

deposit accumulation in the bond was calculated with the attachment-detachment kinetics

as given in equation 2.14.

Imdakm and Sahimi (1990) used an analytical approximation to estimate the

pressure change by single particle deposition. They used the concept of the effective
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radius, by introducing a fictitious radius of the cylindrical pore that gives the same

hydraulic resistance as the pore and deposited particles. Therefore, the effective radius of

the pore with flow rate, Q, and length, L, should satisfy the following relation for

Poiseuille flow in equation 3.3.

Using this concept, they treated the pores with deposited particles as an equivalent

cylindrical pore with reduced radius. In a clean cylindrical pore, when one particle is

attached and exerts a drag force FD, the new pressure drop, Apa, has the following

relation with the current pressure drop, Apb:

71R APa = 7R|Apb + FD = X21)

where Rb is the radius of the clean cylindrical pore before the particle attachment and Ra

is the equivalent pore radius after the attachment. When equation 3.21 is substituted into

equation 3.3,

8pLQ = x (3.22)
R2

Imdakm and Sahimi (1991) used the expression by Goldman et al. (1967a,b) in

equation 2.30a to compute the drag force, FD, and updated the pressure drop as particles

attach to the pore wall, although the solution is strictly only applicable for infinite space

bounded by the wall as explained in Section 2.3.2. In order to use Goldman's solution,

the wall shear force at the plane, r, should be known a priori. However, this is not

detailed by Imdakm and Sahimi (1990). Therefore, a further assumption is made on the

wall shear force, that r can be obtained from another Poiseuille flow relationship:

=-RVP (3.23)
2
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Therefore, if the length of bond is L and the pressure gradient is assumed constant over

the entire bond, equation 3.22 and Goldman's solution in equation 2.30a can be combined

to give an expression for the radius after one particle of radius, r, attached.

aR> 2 (3.24)
" 10.205rp Rb

2Lpb

As explained earlier, this method is based on the assumption that the bond with deposited

particle can be approximated as a tube with reduced radius, keeping the same geometry

as a straight tube, as Suchomel et al. (1998a and b) did. However, assumption is not

generally valid, especially when there is substantial deposition. Rigorous solutions of the

flow equations with modified boundaries due to deposition should provide a better

correlation for the changes in bond radii.

Chapter 4 presents a simulation method for computing particle flow and

deposition in model pore tube. Results of this pore model are described in Chapter 5

(including comparisons with equation 3.22). The pore tube model enables a detailed

parametric study on effects of inflow velocity, particle density, size and orientation of the

pore in order to improve the prediction of deposition probability.

3.6 CONCLUSIONS

Discrete network models provide a framework for analyzing the mechanics of

filtration at microscopic scales. A brief history of development of network model as a

discrete model of porous media has been presented as an alternative to continuum models

reviewed in Chapter 2. A detailed explanation of the quasi-one-dimensional bubble

model has illustrated the construction of the particle transport algorithm. This model will

be used in later chapters in junction with real-scale parametric study results on particle

deposition in cylindrical tubes (model pore), which directly represents the microscopic

mechanisms in each bond as will be explained in the next chapter.
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CHAPTER 4. PORE-SCALE

SIMULATION OF PARTICLE-LADEN

FLOW

4.0 INTRODUCTION

A network model of a porous medium enables the pore-scale characteristics to be

incorporated in the simulation of particle transport problems. Hydrodynamics of particle

transport at the pore scale are fundamental when investigating the filtration process of

suspensions in porous media. This chapter presents a simulation method that identifies

particles that settle out inside a model pore (i.e. become separated from the fluid

suspension) and quantifies the effects of these particles on subsequent flow. Simulation

of particle motions suspended in a fluid has been known to be a challenging problem due

to the technical difficulties of handling complex boundaries and the long-range character

of hydrodynamic forces. These long range force interactions make the problem non-

convergent especially as the number of injected particles increase and hence, prevents

approximation based on simpler systems. Therefore, most existing models of pore-scale

filtration mechanism are severely limited when representing the collection of large

numbers of particles (i.e. advanced stages of filtration). Despite this complexity, particle-

laden flows have been intensively studied since problems involving many particles

immersed in fluid are found widely in many engineering and scientific fields. The current

study uses a method of solving the flow equations based on a fixed grid, finite difference

approximation adapted from Hbfler and Schwarzer (2000).
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4.1 EXISTING MODELS

The deposition mechanism of particles on the surfaces of grains of the filtering

media is impossible to observe directly in most cases5 . Instead, the process has been

indirectly quantified by measuring the effluent concentration or pumping pressure at the

injection point, using filtration laws as summarized in Chapter 2. Although this approach

is well suited for continuum models that are based on the mass conservation equation of

the suspension, a microscopic approach based on network model requires modeling the

physical process of particle deposition. There exist a number of theories on the dynamics

of deposition for particle suspensions. They can be categorized into two kinds: internal

flow and external flow models. External flow models describe a spherical grain within a

shell that represent the porosity of the medium, and models flow around the grain. These

models are also known as the sphere-in-cell models. On the other hand, internal flow

models represent the pore flow as flow through a model tube. Two of the existing models,

one from the external flow model and the other from the internal flow model, are

discussed in more detail here.

4.1.1 Happel's model

Happel's model, was briefly explained in Chapter 2, and is the most frequently

applied external flow model. The Happel's model comprises a solid sphere of radius, ag,

surrounded by a fluid envelope of radius, b, which represents a porous medium with

initial porosity, no:

ag1
-- = d = (1-n 0 )1 3  (4.1)
b

The stream function, VWH, of Newtonian viscous flow around a sphere of radius ag was

calculated by Happel and Brenner (1965) using a spherical coordinate system, (r, 6):

5 An exception can be found in Yoon et al. (2004), which is introduced in more detail in Chapter 6.
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yfI(r,O)= A +K 2r'+ K r' 2 + K4r' sin2 

v1 3+2d5  2+3d5  d5
A=-a , K1 =-, K 2  - , K3 = and K4 =-- (4.2)

2 g w w w w

where r'= , W = 2 - 3d + 3d 5 - 2d 6 and v is the far field velocity.
ag

Particles can be separated from the streaming fluid and deposited on the surface

of a grain due to attractive forces. Mackie et al. (1987) determined the trajectory of

particles under the action of gravitational and hydraulic drag forces, which are known to

be the most important for larger (i.e. non-colloidal) particles. A particle of radius, rp, has

the following set of stream functions, or trajectories, V:

Y = YH (r,0) + ANGr sin 2 0 (4.3a)

2(p~ -p)gr 2

NG = p(4.3b)
9pv

where NG is a non-dimensional factor for the gravitational force, ps and p are the density

of particles and fluid respectively, and p is the fluid viscosity.

Equations 4.3a, b are obtained by balancing the gravitational force with the Stokes

drag force, i.e. FD = 61;u (v-u) rp, applied to a spherical particle of radius, rp, moving with

a constant velocity, u. The velocity of the particle has the following relationship with that

of the fluid, v:

u = (1+ NG)V (4.4)

Once the particle trajectory equation is determined, the limiting trajectory of the

particle that passes tangent to the grain can be specified. This forms a boundary of flow

within which the particles will be deposited on the grain surface. Figure 4.1 shows that

for a particle of radius, rp, the limiting trajectory of the streamlines given by equation 4.3

81



corresponds to the one passing the location, (ag + rp, 7r12), i.e. v (ag + rp, z/2). This

trajectory, due to the nature as a stream function, gives the volume rate of flows within its

boundary as 2uzy (ag + rp, ,/2).

The efficiency of a unit collector or the rate of particle collection is the fraction of

volume flow rate passing inside the limiting trajectory compared to the overall particle

influx rate (7rub 2).

Thus, the collection efficiency, q7, for mono-dispersed particles of radius, rp, is

given as:

r1rL = 2 = (4.5)

where V1L is the limiting trajectory, VL = lg(ag + rp, i/2).

4.1.2 Constricted tube model

A constricted tube has a curved wall in order to model more realistically the

converging-diverging character of pore space within granular material. Different

geometries can be considered to describe the wall geometry (parabolic, sinusoidal and

hyperbolic). Creeping flow in these types of constricted tubes were evaluated either

numerically or analytically by various researchers including Payatakes et al. (1973b),

Neira and Payatakes (1978), Fedkiw and Newman (1979) and Venkatesan and

Rajagopalan (1980).

Once the flow field is given, the trajectory equation of a particle can be calculated

with known forces describing the particle movement. The most general particle trajectory

analysis for a particle under the effect of gravitational, double-layer and van der Waals

forces including the effect of change in the tube orientation has been presented by

Paraskeva et al. (1991) for a sinusoidal tube. Figure 4.2 illustrates a constricted tube with

the limiting trajectory of a particle. With known trajectory equation, Vf, the collection

efficiency of the tube can be given as a function of stream function, since the difference

between stream functions gives the flow rate.
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= y(RL, 0.5L)- y(R, 0.5L) (4.6)
yf (0, 0.5L) - V(R 1 , 0.5L)

where Ri is maximum radius at the inlet (Figure 4.2) and RL the inlet radius of the limiting

trajectory.

4.1.3 Discussion

All existing theories, including the two kinds presented here, are based on the

assumption of a well-defined model pore geometry, (either a sphere or a tube). In other

words, the presence of previously deposited particles is not taken into account.

Consequently, they can be used only for clean filters before the structure of the filter is

severely changed by the deposition process. As mentioned in Chapter 2, there are some

studies on methods of amending the models to include the effect of these deposits.

Mackie et al. (1987) developed a mathematical model to describe deposits shaped as a

thin cap in Happel's model (representing an average effect of deposited particles on the

collection efficiency) and reported good qualitative agreement with experimental data.

Later, Choo and Tien (1995) have developed a similar but more advanced mathematical

model that allows flow through the deposit layer. However, representation of the deposits

as a thin layer limits the use of these models to relatively small amounts of deposits.

Putnam and Bums (1997) modeled individual deposited particles and their hindering

effect on the further depositions using a sphere-in-cell model. However, only monolayer

deposition was allowed in the analysis assuming particles have double-layer thick enough

to prohibit other particles from collecting. Burganos et al. (2001) used a method of

continually updating the collection efficiency of the sinusoidal constricted tube models as

deposits accumulate, using trajectory equations presented by Paraskeva et al. (1991).

They assumed that the deposit should be curved as the sinusoidal tubes, which enabled

modeling the tube with deposit with a new sinusoidal surface. They also assigned a

specific porosity to the deposit, as Choo and Tien (1995) did, to allow flow through the

deposited material.
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4.1.4 Explicit numerical model of particle deposition mechanism

Biggs et al. (2003) realistically modeled particles flowing through a) a pore throat

composed of two circular half grains, and b) a model two-dimensional porous medium

composed of randomly located rectangular grains. They used a lattice-gas automata

(LGA) method, which approximates fluid behavior as the product of many fictitious

microscopic 'particles' in a lattice and hence, the fluid has only finite number of possible

velocity vectors. A fluid particle can move with any of these vectors, but must choose its

direction following certain rules when it collides with another particle. These collision

rules, is selected such that the average motion of fluid particles approximates that

governed by Navier-Stokes equation. The power of LGA methods arises from simple

basic equations that allow fine discretization and hence, better mapping of boundaries.

Biggs et al. (2003) applied an LGA method to simulate flow of circular particles

through model pore space, composed of randomly placed rectangles. The particles were

uniform-sized and neutrally buoyant. They were assumed to be collected upon contact

with the pore walls. They discussed the importance of effect of deposition on the flow,

which had been neglected in most traditional trajectory studies.

4.3 PARTICLE DEPOSITION IN A CYLINDRICAL PORE

In order to study changes in the deposition rate and flow field due to particle

collection, direct modeling of the flow field is needed. However, this approach introduces

complex boundaries of the deposited particles and can only be solved through extensive

numerical simulations. Particle motions through a finely meshed cylindrical model pore

are then formulated and solved simultaneously with the fluid flow.

4.3.1 Fluid

The suspension fluid is formulated with the Stokes equation (i.e. an

approximation of Navier-Stokes, for flows where inertial forces are negligible; typically

Re < 1) described by:
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V2v= (Vp -f) (4.7)

where v is the fluid velocity vector, p is the pressure, f is the force density vector. In

addition, the continuity equation for incompressible fluids applies such that:

V -v = 0 (4.8)

Due to the incompressibility condition, the divergence of the equation 4.7 becomes a

Poisson's equation for the pressure:

v 2 p=V.f (4.9)

Therefore, the three-dimensional Stokes equation is equivalent to a set of four Poisson's

equations (three for components of the fluid velocity and one for pressure), equations 4.7,

4.9.

4.3.2 Particles

The suspension is considered stable except for a portion that will be separated

within given time duration. A sedimentation test can provide the information needed to

predict this fraction. The separated particles move under the influence of hydrodynamic

forces and gravity. The hydrodynamic forces on the suspended particles are not explicitly

calculated but are indirectly invoked by assuming the particles move at the same velocity

as the suspension fluid. No rotation is considered. The gravitational force, on the other

hand, is introduced by specifying a constant settling velocity, vs, according to Stokes

Law6.

2 (p, -p) 2 (4.10)
S9 p r

6 This is strictly limited to spherical particles.
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A separated particle will settle at this velocity until it contacts either the pore wall or

other previously deposited particles.

When a particle comes in contact with the pore wall, a binary (on, off) random

process is used to decide whether the particle becomes attached (on) or not (off)

according to a predefined probability of attachment. The probability imitates the

condition where only certain fraction of the pore wall surface is considered 'rough'

enough to hold the deposited particles (i.e. a probability of 0.5 corresponds to a pore wall

half of whose surface is rough). Particles that are deposited but not attached will be

moving solely by gravity as the no slip boundary condition is applied to the fluid. On the

other hand, a particle deposited on top of other particles will continue to move under the

action of gravity until it achieves a stable position with at least three contact points.

4.3.3 Fluid-particle coupling

Fluid particle coupling is an essential part of modeling particle-laden flow. The

hydrodynamic drag force exerted on a particle of radius, rp, stems from the no-slip

boundary condition of the viscous fluid surrounding the particle:

v = u(x,), when 1x - x, j: r (4.11)

where u is the particle velocity, x is the coordinate system and x, is the coordinates of the

center of the particle.

Finding a solution that satisfies this boundary condition when multiple particles

exist is a classic problem of particle-laden flow. A variety of different solution methods

have been proposed, see for example Ladd and Verberg (2001) and Brady and Bossis

(1988). Among these, Hofler and Schwarzer (2000) developed a method based on a fixed

grid system. In this approach, the particle is represented by grid points located inside the

particle volume. These nodes, named 'embedded nodes', can be thought of as

combination of solid and fluid in which the fluid moves with the solid part. Figure 4.3

shows a sketch of particle located in a cubical grid system with nodes embedded in the

particle. Thus, the solid has a submerged particle density (i.e. particle density reduced as
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much as the fluid density so that the density of the whole volume is that of the particle).

This idea was first introduced by Fogelson and Peskin (1988) and later adopted in H6fler

and Schwarzer (2000). Numerically, the no-slip condition of the fluid on the particle can

be approximately achieved by making the embedded nodes have the same velocity as the

particle. To do this, the velocities of the particle and each of the corresponding

embedded nodes are compared and the difference between them is used to generate a

force density vector for the node.

If { i} refers to the set including indices of the embedded nodes in a particle

denoted as i, the flow field values for the nodes should trace the velocity of the particle,

namely, ui. If the current fluid velocity at a node j, v is different from the target value ui,

a coupling force density should be applied to the node in the opposite direction, i.e.:

fo = -K(v, --u) j e {i, } (4.12)

where K is a constant stiffness parameter (corresponding to the stiffness of the embedded

fluid), which will be selected for numerical efficiency. The sum of the coupling force

vectors of all embedded nodes belonging to N, collected particles forms the total force

density vector of the problem:

N,

f = f (4.13)
i=1 je{i, }

This force vector is then fed to the Stokes equation in equation 4.9:

V2 p =V-f (4.14)

and to the Poisson's equation in equation 4.7:

V 2 v =I (Vp -f) (4.15)
It'
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The solution of these new equations will generate a new velocity vector for the embedded

nodes. In order to ensure that the embedded nodes match the target velocity of the

particle, ui, iterations are performed. The updated force density vector f can be

obtained after the (k+ 1)th iteration step with the velocity field vector v from the

previous iteration step:

f k+ = -K(v -ui)+f (4.16)

With an appropriate value of the stiffness, K, and sufficient iterations, the relative

velocities between solid and fluid part in embedded nodes will become negligible

compared to the average flow velocity. The flow field is kept unchanged until the next

particle collection occurs. The final coupling force density vector obtained after I

iterations can be written:

N,

f = Zf (4.17)
1=1 JE{L,}

The total drag force, XFD exchanged between collected particles and the fluid can be

approximated if the volume represented by each embedded node, vpj is known.

N,

I2FD = I 1f vg (4.18)
i=1 je{lie

where vp, can be obtained by dividing particle volume by the number of embedded nodes

(as the particle volume is considered uniformly distributed to the embedded nodes).

4.3.4 Simulation of constant-flow-rate in pore tube

Constant-flow-rate is the boundary condition generally applied in experimental

studies of filtration processes. In the context of the current formulation, the constant-

flow-rate condition should be invoked by adjusting pressure conditions at the ends of the
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model pore. Whenever the new collection of particle occurs, the force density is updated,

producing a change in the velocity field, which, in turn, will require updating of the

pressure conditions.

Let's consider the case when a Newtonian fluid with a viscosity P is flowing

through a tube of radius, R, and length, L, with a constant flow rate of Qo:

QO = Ulv ( 7rR2 ) (4.19)

where U fla is the average flow velocity.

If there are no collected particles, the force density vector is zero and the solution

of the Poisson's equation in 4.9 will be the constant pressure gradient, i.e., Vp = C

(where C is an integration constant).

Substituting this to the Stokes equation in 4.7 generates:

C
V2 v =- (4.20)

P

Equation 4.20 with the constant flow rate condition (4.19) has an analytical solution:

v = Uflaj j (4.21a)

C = -p = - (4.21b)
dz R 2

where i. is the unit vector parallel to the axis. Therefore, if the pressure at the exit is set

to be zero, the pressure field will be given by:

8U R(L -L
p '( L -z),O0 5z &L (4.22)
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The Poiseuille flow stays unchanged until particle collection begins. Once a particle is

collected, the embedded fluid nodes can be distinguished and the iteration scheme

invoked to find the force density vector presented in the previous section.

Let's assume the first collection happens at the n-th time-step, and refer to the set

including indices of the embedded nodes as {i, } as before. From the previous time-step,

the velocity vector at an embedded node j, v _ , is known, and the velocity of the

collected particle should be zero. Therefore, the force density vector in equation 4.13

becomes:

f0 = -K I v1  _ (4.23)
'E= (ie I

To solve Stokes' equation in equation 4.15 with the coupling force, boundary conditions

are needed for the pressure. However, the conditions to ensure the specified flow rate are

not known a priori. Therefore, the pressure boundary condition has to be included in an

iterative scheme. The pressure at the entrance and exit corresponding to Poiseuille flow

(in equation 4.22) is used as an initial approximation:

p = 0, at z = L (4.24a)

= 8 Uflav L, at z = 0 (4.24b)

which gives the initial pressure drop across the model pore, Ap = po.

Then, from equation 4.15, the new velocity field v1, can be calculated. However,

this velocity field is not consistent with the assumed, considering as the pressure

boundary condition (in equation 4.24b) is incorrect. The pressure boundary condition is

then updated to match the required flow rate. For this purpose, flow rate at the middle of

the tube, i.e., at z = L/2 is evaluated from the updated flow field.

= I =RQi= v1 (r, z = L /2)(2;r r dr) (4.25)
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The difference between Q0 and Q' can then be compensated by a differential pressure

correction, pI, applied at the tube entrance:

8pL
PC = 4 (Q0 - Q1) (4.26)

,zR

Adding this to the initial pressure boundary condition in equation 4.24b, the new pressure

boundary condition for the next iteration step will be given

p=Ap = p 0 + p at z=O (4.27)

which will be used for the next step of iteration, to keep the prescribed constant-flow-rate

condition.

4.4 NUMERICAL IMPLEMENTATION

4.4.1 Multigrid solver

The three-dimensional Stokes equation is solved as a set of four Poisson equations

(equation 4.7 and 4.9). For an equilateral lattice with spacing, h, the finite difference

discretized Stokes equation for the velocity components are given by:

Vi+ljk -2vijk + ljk + Vij+lk -2vijk +v V -2 vijk + Vijk 1

h 2 h 2 h 2

SjPi+,j,i-Pi-,j,k fij k (4.28)

p 2h ''

where i, j and k are indices of the nodes that are increasing in x, y and z directions

respectively. A similar discretization for the pressure is given by:

91



pi+i,j,k -2 P + P-,,k Pi,j+1,k - 2 Pijk + P,,--i + P1 ,jk+1 -2 Pi,j,k + Pijk-1

h 2 h 2 h 2

fxi+1,j,k -fxi-1,j,k + fyi,j+1,k - fyi,j-,k + fzi,j,k+ zi,j,k- (4.29)
2h 2h 2h

There are many solvers available for these discretized three-dimensional Poisson

equations. For the current simulator, a solver named 'MUDPACK' is used. MUDPACK

is a collection of Fortran 77/90 subprograms of a solver for linear elliptic partial

differential equation utilizing finite-difference approximation and multigrid iterations

(Adams, 1989 and 1990).

A multigrid method is a relaxation scheme that combines classical iterative

techniques, such as Gauss-Seidel relaxation and sub-grid refinement procedures. The

term multigrid came from the characteristic of the method that uses a coarser grid to get

the initial approximation of the finer grid system. For example, for a two-dimensional

discretization using an n by n grid, equations for an n/2 by n/2 grid is solved prior to

provide the approximate solution. This idea can be applied recursively (i.e. the n/2 by n/2

system can be approximated using an n/4 by n/4 system). This procedure is called a

restriction scheme (Briggs et al., 2000). Multiple correction schemes can be used for an

analysis, in which case the solution at the finer grid will be used back for the coarser grid

to improve the solution, and this process is called a correction scheme. The numerical

relaxations transferring procedure in the multiple grid system reduces storage

requirements and improves computational efficiency compared to direct solution methods.

There are different algorithms of combining the correction and restriction

schemes, which differ in the effectiveness and the precision. MUDPACK solver uses a

full multigrid W-cycle. A full multigrid, namely, FMG-W cycle is a nested iteration

algorithm that uses coarse grids to obtain improved initial guess for fine-grid problems.

Therefore, the solution at the coarsest level with initial guess will be restricted to an

upper lever to provide the initial guess of relaxation at the level. Correction scheme will

be followed back to the coarsest level. Relaxation will be done at the coarsest level with

this corrected initial guess, and the solution will be restricted until two levels up this time

for relaxation. This process will be applied until the finest grid is reached for the
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relaxation. Figure 4.4 shows a schedule for the FMG-W scheme is drawn. In the figure, h

denotes the size of the grid. More details on the full multigrid cycle and multigrid

methods can be found in Briggs et al. (2000).

4.4.2 Adaptation for circular pore boundary

As explained in the previous section, a cubic grid is chosen for the finite-

difference approximation. However, the cubic grid must be adapted to represent the

circular cross-section boundary of the pore tube. Figure 4.5 shows the approximation of

the pore boundary by nodes that lie right inside the cross-sectional circle, which comprise

a jagged boundary enclosing the actual boundary when connected. For the boundary

nodes, the grid spacing, h, should be adjusted so that the known values of the fluid

velocity, which are zero with no-slip condition, can be incorporated into the finite-

difference equation. For example, for the boundary node A in Figure 4.5c:

0-2vilk + Vljk 0 - 2v + i_1 ,+ vi,,k+1 -2vijk +

h 2 h Y2 h2 (.0+ (4.30)

= 0-fUjk

where hx and hy are the length in x and y-directions to the real boundary from the

boundary nodes, as illustrated in Figure 4.5c. The boundary condition of the pressure

equation on the circular boundary is that its gradient is zero, for the boundary node A,

- i,j,k + P-1,J,k Pi,j,k + Pi,j-,k Pi,j,k+1 - 2 Pi,j,k + i,j,k-

h 2 h Y2 h2 (.1(4.31)
0 -fxi1jk 0-f ij-,kf -f

2hx 2h, 2h,
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4.4.3 Particle motion

(1) Suspended particles

As explained in the previous section, suspended particles are assumed to settle at

velocities according to Stoke law. Therefore, only a fraction of the complete particle

velocity vector7, vy, is deduced from the flow field. For a particle whose center is located

at x = x, = (xp, yp, zp), the fluid part of the velocity, vf (xp) can be approximated from

velocities of 8 neighboring points of the center:

Vf = Zwivi (4.32)
i=1-8

where wi is a weight given as a descending function of the distance between the center of

the particle and the node of index i at (xi, yi, zi):

W. 1- X P1 - l -Y 1- I -Z (4.33)
'x d dy dz

so that the sum of weights for all 8 nodes becomes 1. Finally, the total particle velocity is

given as:

u(x,) = vf + V, (4.34)

The coordinate of the particle center, in turn, should be updated after a given time step, At,

at time t + At:

x, (t + At) = X, (t) + V(xk,)At (4.35)

(2) Collected particle

When a particle is collected either by the pore wall or by other collected particles,

it becomes a collected particle, and no longer moves with the suspension. However, the

7 The total particle velocity vector is v=v+v,
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collected particle is assumed to keep moving under the influence of gravity until it finds a

stable position resting on least three points of contact. Due to limitations in the time-

steps, particle contacts can only be detected after partial overlap occurs between particles.

At each time step, the positions of suspended particles are scanned to see if they have any

overlap with deposited particles. Each particle is then characterized by the number of

contact points.

The position of one-contact particles must be corrected to eliminate overlaps. This

is done by moving the particle backward in the direction of its current velocity until it

finds the point of apparent first contact. In mathematical form, when the current position

of the particle is x,, and its velocity during the time step At, is up, the corrected position

of particle x corrected, will be found by computing the value a,

X corrected =X, + au dt (4.36)

that makes contact with a deposited particle located at xd:

X corrected - Xd I= rp + (4.37)

where r, is the particle radius, and rd is that of the deposited particle. One-contact

particles can move in gravity direction as long as do not penetrate the contacting particle.

Once they move far enough from the contact, however, they can become suspended again

until it finds more contacts.

A particle is considered as a two-contact particle either when it is found with two

other overlapping particles, or there is a single overlap for a particle already in contact

with one other particle. The position of a two-contact particle can be determined by

putting all three particles in a plane (i.e. the corrected position x corrected should be in the

same plane with both contact particles, xa and xb):

X corrected - Xa = fl(Xb - Xa) + y (4.38)
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while it makes contacts with these particles with radii ra and rb, respectively:

Xcorrected - Xa r, + r. (4.39a)

X corrected - Xb = r, + rb (4.39b)

When a particle is to have three contacting particles whose coordinates are Xa, Xb and, xc

its position can be decided by making it satisfy three contact conditions:

Xcorrected - X |= r, + r (4.40a)

X corrected Xb r,+rb (4.40b)

Xcorrected X r c (4.40c)

The simulator comprises three parts: 1) fluid motion, for which the MUDPACK (Adams,

1989) solver used adapted for circular pore boundary, 2) particle-fluid coupling and 3)
8particle motion .

4.5 VALIDATION OF PARTICLE-FLOW SIMULATOR

Validation of the particle-flow simulator can be achieved by considering the

transport of a single spherical particle in a viscous fluid flow through an infinitely long

circular tube. The geometry and coordinate system for this problem are defined in Figure

4.6. A spherical particle of radius, rp, is located within the cylindrical pore of radius, R

and positioned at an offset distance, b, from the axis of the pore. The governing equation

of the fluid is the Stokes equation and the boundary conditions are no slip conditions on

the wall of the tube and on the particle:

v =0 on r = R (4.41a)

8 The Fortran source code for the particle simulator can be obtained by request to Professor Andrew J.
Whittle at Massachusetts Institute of Technology (ajwhittl@mit.edu) or from the author
(geoysk@alum.mit.edu).
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v=u on x-x, = r, (4.41b)

where x, is the coordinates of the center of the particle and u the particle velocity. As

indicated in the figure, the flow is Poiseuille flow in the far-field when undisturbed by the

particle:

V=Uflav 1-r2- ) i as z = oo (4.42)

where i, is the unit direction vector for the z-axis that also makes up the centerline of the

tube.

There is an approximate analytical solution for this boundary value problem by

Haberman and Sayre (1958), whose procedures and results have been summarized in

Happel and Brenner (1965). There are also numerical computations reported by Higdon

and Muldowney (1995), and Wang and Parker (1998). The solutions are usually

presented as the ratio of the magnitude of the drag force exerted by the particle, FD, to the

Stokes drag force (i.e. the solution of the Stokes equation for a particle in an unlimited

flow field), which is referred to as the wall correction factor and denoted as Kp:

K = FD (4.43)
S67tpr, |u,|I

where u, is relative velocity between the fluid and the particle.

A model tube size R = 0.5 mm and L = 1 mm has been chosen for the validation

exercise. A particle of specific density, G, = 1.1 is considered suspended in water of

viscosity p = 1 centi poise. The far-field condition in equation 4.42 cannot be directly

applied for this finite model tube. Instead, constant-pressure boundary conditions are

applied to the ends of the numerical model with a finite length, L:

p = Ap = po at z = 0 (4.44a)
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p =0 at z = L (4.44b)

where the value of the pressure po should be decided during iterations to a value that

gives an approximately constant volume flow rate result. A similar method was used for

Higdon and Muldowney (1995).

4.5.1 Stationary particle on the axis of the cylindrical pore

The first validation example is the case of a stationary particle (i.e. u = 0) located

on the centerline of the cylindrical tube. The tube is discretized to 64x64x64 cubes,

which results in mesh size h = 0.015625 = 1/27 mm. Then, for a particle size rp= 0.25, the

number of embedded nodes becomes 17,365. The iterative procedure in 4.3.3 is applied

to obtain the fluid-particle coupling force, i.e., the drag force FD. For 300 iterations (with

stiffness constant, K = 1), the resulting wall correction factors for five different ratios of

particle radius to the tube radius, rIR ranging 0.1 to 0.5 are plotted in Figure 4.7. The

numerical solutions are in excellent agreement with analytical solutions of Haberman and

Sayre (1958). However, the accuracy does reduce for large ratios, rp IR -> 0.5 where there

is a 9% difference between numerical and analytical solutions.

4.5.2 A stationary particle contacting the wall

Next, the particle is moved off-axis and placed on the tube wall, (similar to initial

collection conditions). The mesh size, stiffness and the number of iterations are the same

as in the first case. For this asymmetric case, there are no analytical solutions. Figure 4.8

compares the current analyses with numerical simulations with reported Higdon and

Muldowney (1995) using a boundary element method. The comparison shows a close

match between two results with less the maximum error of less than 5.8 %.
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4.6 MULTIPLE PARTICLE FLOW SIMULAITONS

For modeling filtration processes, multiple particles in suspension must be

modeled. The simulation of particle-laden flows introduces a specific number of particles

at the entrance at the beginning of given time-step.

Figures 4.9a, b and c present a sequence of 3-D snapshots of a model pore of the

same size used in the previous validation problems. The particles injected have a uniform

radius, rp= 0.05mm. In the simulation, a random number generator produced a uniform

distribution of input particles at the inlet at a rate of 10 particles per second. Other input

parameters used are the same as those used in single particle simulations. Given grid size

(h = 1/2 7mm) resulted in 147 nodes embedded in each particles. The motion of particles

and fluid were updated at every time step, At = 0.01 seconds. The particles were tracked

until they either passed through the tube or were collected. Whenever a new particle was

collected, the iteration scheme presented in 4.3.3 was applied for all collected particles

(including the newly collected particle) for 50 iteration steps to achieve a convergent

fluid field.

The streamlines in Figure 4.9 clearly show that how the flow is subdued along the

boundaries of the deposited particles and the fluid field becomes distorted from the initial

Poiseuille flow.

Figure 4.10a and b show a second example using smaller particles with radius,

rp = 0.025mm, each approximated by 19 embedded nodes. The figures show snapshots at

an earlier stage of the filtration (a) and at a more advanced stage (b), where most of the

fluid finds its way out at the top part of the pore tube where it is not covered by the

particles. Figures 4.9 and 4.10 show that the mound of collected particles is highest at the

inlet of the pore, which was expected from the fact the driving force of the filtration is

gravity. When the opening at the entrance is effectively covered by particles (Figure 4.9c),

the pressure difference between the ends of the model pore starts to increase very rapidly,

eventually reaching a point where the calculation has to be stopped (corresponding to full

clogging of the pore).

Figure 4.11 shows the total drag force by collected particles obtained by equation

4.18 during these two simulations. The values of total drag force are given normalized by
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that of single particle on the wall, FDs, that can be obtained through the same procedure

given in Section 4.5.2. It is noticeable that the larger particles (rp = 0.05mm) produce

higher total drag force than smaller particles (rp = 0.025mm). Drag force increases

unconditionally after the number of deposited particles becomes more than 154, at which

point the tube inlet is almost completely blocked as shown in Figure 4.9c. It is also

interesting to see that drag force initially increases with a smaller increment than the

single drag force (slope of the curves are less than 1). For the small particles, the slope of

the curve keeps decreasing until around 194 particles are collected, (i.e. case shown in

Figure 4.10b). This trend must be due to reduction in local fluid velocity around the

deposited particles at the initial stage of particle collection. As collected particles

accumulate, however, the average fluid velocity keeps increasing and the increased

average fluid velocity will eventually negate these local reductions. This explains the

reason for the total drag force rapidly increasing after 194 particles are collected. The two

phases of decreasing and increasing slope are shown with the larger particles although the

deflection point is not as clear as with the small particles.

The effect of increasing drag forces results in an increase in the pressure drop

across the pore tube, Ap, as the deposits accumulate under the current constant-flow rate

condition as explained in Section 4.3.4. Figure 4.12 shows the pressure drop, Ap,

normalized by the initial value, Apo, plotted against the number of deposited particles. As

the drag force initially increases at a slow rate and then later accelerates, the pressure

drop also increases non-linearly. The rate of pressure change is much higher for the larger

particles, as they are more effective in blocking the flow.

During multiple-particle simulations, the collected particles were found to foster

the filtration process and result in higher collection efficiency. This observation is

presented in Figure 4.13 which shows the number of collected particles as a function of

the number of injected particles obtained in simulations with and without particle-fluid

coupling. Without particle-fluid coupling, flow remains Poiseuille regardless of the

deposited particles. In this figure, it is clear that the simulation results with coupling

forces produce more collected particles for the same number of injected particles than for

Poiseuille flow (i.e. without coupling forces), for both small and large particles. This

must be caused by the reduced fluid velocities above the filtered deposit layer of particles,

100



effectively increasing the duration of the particle retained in the pore tube. Detailed

discussion on conditions affecting the deposition process inside pore is given in Chapter

5.

The reason that larger particles collected faster than smaller particles is due to

higher settling velocity (v, IUfla = 0.54, 0.14 for rp/R = 0.05 and 0.025 respectively).

Extended study on the rate of particle collection (collection efficiency) as well as

pressure drop change due to collected particles is presented in Chapter 5.

4.7 CONCLUSIONS

This chapter has presented a new numerical simulator for modeling particle-laden

flow in a cylindrical model pore. Using a fine cubical mesh, the simulator can track

multiple particles separated from the suspension and settling out due to gravity, while it

solves the discretized Stokes equation with a multi-grid solver, MUDPACK. The drag

forces exchanged between collected particles and the suspension are evaluated through an

iterative scheme that uses relative velocity between nodes encompassed by the particle

(embedded nodes) and the fluid as residual. The simulator was validated with a problem

with known analytical solution. Then it was applied for multiple-particle case, whose

results have showed the effect of deposited particles on fluid. The simulator provides a

tool to study the filtration process, which can incorporate effects of previously collected

particles (particle modeling), a key part of the physics that has not previously been

studied in detail.
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Figure 4.2 A schematic representation of a constricted tube and limiting trajectory
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Figure 4.5 Approximated circular boundary in rectangular grid system
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Figure 4.6 Validation problem configuration
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Figure 4.7 Wall correction factors for a stationary particle at the center of the tube
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Figure 4.8 Wall correction factors for a stationary particle contacting the tube wall
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Figure 4.9 Snapshot of pore tube during multiple particle simulation, rp= 0.05 mm
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CHAPTER 5. PARAMETRIC STUDY

5.0 INTRODUCTION AND KEY PARAMETERS

The previous chapters have proposed the use of network models to provide a

method of scaling pore scale filtration processes to the macroscopic behavior. A key

component of network models, such as the bubble model (Section 3.4), is the

development of a particle flow simulator for the deposition of particles within a pore

throat in the granular medium. Chapter 4 has presented details of the formulation for a

particle flow simulator in a cylindrical model pore. This chapter describes results of

parametric analyses that have been performed using this simulator. The particle flow

simulator represents the deposition of particles on the wall of a model pore under the

action of hydrodynamic and gravitational forces.

The calculations consider suspensions with mono-dispersed particles that are

injected at constant flow rate. The model pore comprises a cylinder of diameter D, and

length, L, and assumes a constant ratio, LID = 1. A fixed number of particles of a chosen

radius, rp, are generated at the inlet of the pore tube at a random position9 . Fluid motion is

modeled by the Stokes equation so that the undisturbed flow (i.e. no deposit present)

corresponds to Poiseuille conditions. Initially, the pore tube is considered oriented

perpendicular to the gravitational field (i.e. maximizing effects of gravity on particle

depositions). Subsequent calculations consider filtration for the tube inclined at a dip

angle, 0, to the horizontal, as defined in Figure 5.1.

The settling velocity of the particles is determined by Stokes' law (equation 4.9).

When a particle settles, it either becomes attached or can slide along the pore wall (i.e.

with zero velocity normal to the pore wall), depen-4ing on a pre-defined attachment

probability, Ap. The attachment probability, Ap = 1, corresponds to the case of full

attachment where all particles that contact the pore wall become attached (i.e. are

9 i.e. sequence of random numbers used changes at every realization
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deposited or collected). The notion of attachment probability and its effect on the

filtration process will be later explained in detail in Section 5.5. The ratio of attached to

injected particles defines the efficiency of the pore for collecting suspended particles, q/

(same notations as in deep bed filtration theories presented in Chapter 3). As the deposit

accumulates, some of the incoming particles will be blocked by previously deposited

particles. The ratio of these 'rejected particles' divided to the total number of injected

particles is defined as the rejection efficiency, h7reject.

The extent of the deposit accumulation can be characterized by the volumetric

ratio of the deposited particles to the pore volume, Vd. Alternatively, the maximum depth

of the deposit, dmax, can be used to characterize the effect of the deposited particles on the

remaining flow in the pore.

Table 5.1 summarizes the parameters selected for the base case calculations. The

pore tube has diameter D = 1mm (= L). The pore walls are considered to have full

attachment condition, (Ap = 1). The suspension has a viscosity 3 times higher than that of

water and a density, p/p, = 1.2. These values represent the typical conditions for

permeation grouting, using microfine cements (with water-cement ratio, W/C = 3). For a

suspension of this density, containing 25pum spherical particles of density p/p, = 3

(typical cementitious grout), the number of particles in one pore volume (0.785mm3),

N ~ 1000.

Particle injection rate was fixed at 10 particles per pore volume for all simulations.

This is equivalent to only 1% of the total number of particles from the suspension. The

injection rate does not affect the result unless particles are very concentrated and interfere

with each other while suspended. The effect of this interference will be discussed in

Chapter 7.

The flow rate introduced to pore tube volume is set to 0.785 mm3/sec (equivalent

to 1 pore volume/sec) such that the average flow velocity, Uflav = 1.0mm/sec. For a

characteristic length, 1mm, this velocity gives a Reynolds number, Re = 0.5, which is

within the range of creeping flow for which Stokes equation is applicable. Numerical

simulations are done with a time step, At= 0.01 sec. Whenever a particle is collected on

the pore wall, the iteration scheme explained in Section 4.3.3, is applied to update the

coupling forces between collected particles and the suspension. The number of iterations
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is set at 50, which is found to be sufficient to achieve numerical accuracy in the

validation trials of the simulator. The simulation with total of 1000 particles injected is

equivalent to 100,000 time steps.

5.1 COLLECTION EFFICIENCY, )1

5.1.1 Effect of settling velocity, v,

For the full attachment condition (Ap = 1), the collection efficiency can be

estimated from simple considerations of the particle trajectory. If the settling velocity of a

particle is vs, the maximum gravitational fall during its transit through the pore is:

Azmax Vs t travel (5.1)

where t travel is the time needed for the particle to travel through the pore tube (unless it is

deposited on the pore wall). If Az max is smaller than the distance between the initial

position of the particle and the bottom of the deposit, d , the particle will be deposited and

collected. Therefore, the collection efficiency can be defined as

q = P [d: Az .X] (5.2)

where P [d Az .] denotes the probability injected particle at an initial position at

which d is smaller than AZmax.

As particles are distributed uniformly distributed at the inlet, this probability is

just the area where d Az. x, divided by the total entry area, At, for the suspended

particles:

A(d 5 Azx,)
At=(5.3)
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For a clean pore, A, = Ao, where AO is given by:

Ato =)T( R - rp )2 (5.4)

However, once deposits begin to form part of the cross-section becomes blocked such

that:

A, = Ato - Adeposit (5.5)

The blocked cross sectional area at the inlet by the deposit, Adepsit, is likely to be a

function of the maximum depth of the deposit, dmax.

In conclusion, the collection efficiency of the pore tube can then be written in the

following functional form:

7 = 7 (vs, ttravel R, r,, dm) (5.6)

Among these parameters, the travel time, ttravel is the hardest to predict because it

varies depending on the trajectories of the particles, and is strongly affected by the local

fluid field around the deposits. Therefore, it is highly unlikely that an analytical

expression can be found for the collection efficiency.

A series of simulations were carried out in order to establish principal factors

affecting the collection efficiency. A series of 16 simulations were performed using

particles of radius rp IR = 0.04, with random uniformly distributed locations of injected

particles at the pore inlet. The results of the simulations are summarized in Figure 5.2a.

This figure shows that the deposited particle volume is proportional to the number of

particles injected, Vd /Vi = 0.58 with regression coefficient R2 = 0.9951. This result

implies that the collection efficiency of the pore remains constant throughout the

simulation. Among the parameters listed in equation 5.6 (i.e. Vs, ttravel, R, rp, dmax), R and

rp were fixed in these simulations. The travel time, ttravel and dmax change according to

changes in the flow field, due to particle deposition (although change in ttravel must be
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much smaller than those for dmax). Therefore, it is most likely that the settling velocity, vs

is the principal factor controlling the collection efficiency at a given radius ratio, rp /R.

Figure 5.2b shows similar sets of (sixteen) simulations for the different specified values

of vs IUfla = 0.60, 0.12 and 0.03. All three cases show higher rates of particle

accumulations. As anticipated, the higher settling velocity causes more deposition of

particles in a given timeframe.

When the settling velocity is increased further to v, IUflav = 1.21, 3.02, there is a

marked retardation in the deposition rate with time as shown in Figure 5.3a. It is clear

from this figure that the collection efficiency of the pore decreases as the deposit builds

up at higher settling velocity. This effect can be explained by a corresponding increase in

the rejection efficiency, rreject, as vs IUflav increases. Therefore, the reduced rate of deposit

observed in Figure 5.3a may be caused by the reduced number of particles that actually

pass into the pore. This effect can be isolated by modeling a constant number of particles

passing into the pore volume (i.e. by constraining the input positions to prevent particle

rejection at the inlet). Figure 5.3b compares this 'no-rejection' injection method for

VS IUflav = 3.02, with the unconstrained injection results (from Figure 5.3a). This figure

confirms proportionality between injected and collected particles. This refined injection

method defines the collection efficiency, q/, at higher settling velocities, (vs /Uflav = 1.21

and 3.02).

At slow settling velocities, the rate of particle accumulation increase as the

process advances. This phenomenon of improvement in filtrate quality and decreasing

effluent concentration is often referred as 'ripening' in DBF theories. Figure 5.4 shows

two of these cases, when vs Uflav = 0.01 and 0.005. Ripening seems to occur as the slower

settling particles require a longer time to reach the pore wall. As they are retained inside

the pore longer, the population of suspended particles increases with time and hence, the

increase in the accumulation rate. Among the ten different values of settling velocities

used in the simulations (see Table 5.2), ripening was noticed prominently in the case with

the five lowest settling velocities (vs /Uflav < 0.12). However, all the results can be

approximated by linear regression curves (i.e. constant q/) with good correlation (the

worst case with v /Uflav = 0.005 produces R2 = 0.6855). Thus, the linear regression curves
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were used to define collection efficiencies for the full range of settling velocities used in

the simulations.

Figure 5.5 summarizes the collection efficiency, as a function of the settling

velocity for the simulations with rp IR = 0.04 (note that the horizontal axis is in

logarithmic scale). In this figure, values represented by circles are obtained by

regressions of the entire data of all 16 simulations. The minimum and maximum of these

values are obtained through separate regressions on each of the simulations and drawn in

the same figure to show the ranges of simulated collection efficiencies.

5.1.2 Effect of particle size

Figure 5.6 presents results~of deposit/collection rates for larger injected particles

with, rp IR = 0.1(all other parameters are held constant, Table 5.1). There is a larger

rejection rate in these simulations (i.e. larger blockage effects at the inlet) and hence, the

constrained rejection is used throughout (i.e. to avoid spurious results due to particle

rejection) for all settling velocities reported in the figure for each settling velocity,

Vs /Uflav . Figure 5.6 shows a well-defined time limit before the pore inlet becomes

clogged. The results show that the final clogging time increases with the settling velocity.

Prior to clogging, there is almost a linear rate of particle deposition, confirming previous

results showing constant collection efficiency, q; for a given settling velocity.

Comparison of simulation results obtained with various particle sizes show that

the collection efficiency at a given settling velocity, v5, is largely independent of the

particle size (see values of 17 in Table 5.2). This is highlighted in Figure 5.7, where results

of three sets of sixteen simulations, each with three different particle sizes rp IR = 0.04,

0.06 and 0.1 are overlaid for the same settling velocity, v, IUfla = 0.60. Values of

collection efficiencies from linear regression for simulations with six different size

groups are plotted against the settling velocities in a log-log scale as in Figure 5.8. This

figure includes results from 56 combinations of rp IR and vs /Uflav, producing 896

simulations (sixteen simulations per case). The values of 17 and the corresponding R2

values are shown in the Table 5.2. The results from different sized particles overlap
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almost completely in this figure, suggesting that the particle size, rp, only affects

collection efficiency indirectly through the settling velocity.

5.1.3 Effect of travel time, travel

Travel time (travei) is certainly a factor that should affect collection efficiency. In

order to quantify this effect, simulations have been performed with different lengths of

pores. Figure 5.9 shows the accumulation of deposits for model pores length-diameter

aspect ratios, LID = 0.5, 2.0, and 4.0. The particle size used in these analyses, rp IR = 0.06,

and the settling velocity, vs I Uflav= 0.06. It is clear that the collection efficiency increases

with increase in the aspect ratios of the pores.

Figure 5. 1Oa summarizes collection efficiencies from these simulations at settling

velocities ranging fromV, I Uflav= 0.06 to 0.60. (each data point in this plot represents the

average from a set of sixteen simulations). Figure 5.10b normalizes the collection

efficiency relative to the reference collection efficiency 71, obtained at LID = 1 shown in

Figure 5.8. These normalized efficiencies q /r71 form a unique correlation with LID

independent of settling velocity vs /Uflav, except at the highest settling velocity,

Vs / Uflav = 0.60. The latter reach full efficiency 17 = 1 at LID >2 (Figure 5. 10b) and hence,

reach a maximum ratio q7/r7, = 1.4 at LID = 2. Figure 5.11 compiles the normalized

collection efficiency values from simulations with various particle sizes, r, IR = 0.05,

0.06, and 0.12 at constant settling velocity, vs /Uflav = 0.06 and pore lengths, LID = 0.5,

0.8, 1.0, 1.5, 2.0, 3.0 and 4.0. These results confirm a direct correlation of efficiency with

travel time.

5.1.4 Correlation for collection efficiency

The complied simulation data in Figure 5.8 can be characterized by the following

correlation equation for the collection efficiency at LID = 1:

0.49

1 = min 0.75 , 0.9 (5.7)
Ufla
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where the settling velocity is a function of the particle size, vs(r,), according to equation

4.10.

The data shown in Figures 5.10 and 5.11 can be fitted by a power law function of

the pore aspect ratio, LID:

77 = m7, (LID)0 5 7  (5.8a)

with regression coefficient R2 = 0.9509. Hence, overall we find:

( 0.49 (\0.57

= .75 J (- for 0< q7<0.9 (5.8b)

5.1.5 Effect of gravitational field

In the preceding sections, the model pore had its axis perpendicular to the gravity.

Since the driving force for particles to separate from the suspension is gravity, the pore

orientation must also influence the filtration efficiency. Three sets of simulations have

been performed to evaluate particle collection at 6 = 0' (horizontal), 400 and 80', using a

reference particle size, rp IR = 0.06, and settling velocity, Vs Uflav = 1.21. Figure 5.12

shows the volume of accumulated deposits against the input particle volume, (both

volumes being normalized by the pore volumes as in previous figures). The results show

that the collection efficiency decreases with increasing dip angle as the pore becomes

more aligned the gravitational field. At a given dip angle, one component of the

gravitational force with (g cos6) acts to cause particle deposition while the other (g sin6)

reduces the travel time.

Figure 5.13 shows simulated trends in collection efficiency, r7 as a function of dip

angle, 0 for rp IR = 0.06 and rp IR = 0.1 (each of these data points was obtained as the

average of 16 simulations at v, /Uflav = 1.21). Figure 5.14 shows a plot of collection

efficiency normalized to the horizontal reference case, 17o, at (0 = 00) for the cases

presented in Figure 5.13. These data support a single correlation for the normalized
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collection efficiency values with the dip angle 0, which can be well represented by a

quadratic equation shown in the Figure 5.14:

F(O)= Mo -M 1 6 -M 2 (5.9)

where Mo= 1.0, M1 = 2.8x10- 3 , M 2 = 9.2x10 5 when 0 is given in degrees.

Using this equation, the average value of the normalized efficiency is evaluated:

J F(Q)dO

r1H = 900 10 (5.10)

which gives the resulting average value of efficiency,

r1H = =0.6257(0o.) (5.11)
1.6

This average value, 77H, can be used as a representative value of collector efficiency for

porous media with homogeneous pore orientation, replacing q; in equation 5.8.

5.2 PRESSURE CHANGE ACROSS MODEL PORE

5.2.1 Significance of the pressure change

The consequence of particle deposition in the pore is a change in the flow field

(i.e. the newly imposed stationary boundary conditions on the deposited particles will

result in overall changes in the suspension flow). Changes in the flow field generate an

increase in the pressure difference between the ends of the model pore to achieve the

condition of constant flow rate. The pressure boundary condition is updated for each

particle deposited (to compensate for the corresponding reduction in flow). Full details of

10 It was found that the sign of the dip angle had minimal effect and hence, the range was limited to

0 0 6 90 '. More details are given in Section 5.3.5.
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solution procedure including the iteration scheme to evaluate pressure changes were

given in Chapter 4.

In Section 3.5, Imdakm and Sahimi (1990)'s method of estimating the pressure

change by collected particles, through reduction in pore radius, R, was explained. As

noted there, the key assumptions of the method are a) flow remains Poiseuille and b) drag

force exerted by a collected particle can be estimated by Goldman et al. (1967)'s solution

(equation 2.30a) with approximated wall shear stress, z,.

In contrast to this approximate procedure, the current particle simulator computes

pressure changes and drag forces directly from numerical simulations enabling the

relationships to be found through numerical calculations. Figure 5.15a shows the pressure

development across the pore tube as a function of the total drag force exerted by the

deposited particles. The results corresponded to a set of sixteen simulations with particle

size (rp IR = 0.06 and 0.10) and settling velocity vs IUfl = 0.60. The relationship between

the total drag force XFD and the normalized pressure drop Ap/Apo, appears to be unique,

and independent of the particle size. Therefore, the pressure drop is most appropriately

characterized using the computed drag forces directly.

Equation 3.22 has been used to generate an artificial set of pressures based on the

computed drag forces from the numerical simulations shown in this figure so as to

compare the numerical simulations with approach used by Imdakm and Sahimi (1990).

The values of flow rate, Q, and fluid viscosity, pi were the same as used in numerical

simulations. The results presented in Figure 5.15b show that equation 3.22 generates

much higher values of pressure at a given drag force then use computed from the

numerical analyses. Therefore, employing equations 3.21 and 3.22 will result in

significant overestimation of the pressure drop caused by deposition.

5.2.2 The maximum mound height, hmax and deposit depth, dmax

Figure 5.16 shows numerical simulations of the pressure drop across the model

pore as functions of the normalized deposit volume, Vd for three different particle sizes,

rp IR = 0.05, 0.09 and 0.12. It is apparent that the deposit volume is not the only

parameter controlling pressure changes. This dependency on particle size indicates
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structural difference of deposits formed with different sized particles. Small particles

form a deposit, which is more effective in blocking the pore than the same volume of

deposits with larger particles, and also induce higher pore pressure change across the

model pore tube.

Therefore, the deposit volume does not provide an adequate representation of the

sum of the forces. The force acting on a suspended particle (if all other fluid

characteristics are unchanged) depends only on the fluid velocity surrounding the particle.

In the pore model simulations, changes in the fluid velocities are best represented by the

cross-sectional area covered by the deposit. Following this reasoning, a new parameter

the maximum deposit depth, dmax, has been selected. The deposit depth is measured as the

distance between the tops of a deposited mound of particles to the pore wall directly

beneath it, Figure 5.17, (i.e. in the same cross-section). The pressure drop data from the

Figure 5.16 have been plotted against the maximum deposit depth, dmax in Figure 5.18.

These results show improved correlations effectively reducing the dependence of the

pressure drop on particle size. However, it is still apparent that deposits with specified

dmax generate higher pressure drop for smaller size particles. This trend is particularly

noticeable at later stages of filtration (i.e. high values of dmax/D). A second parameter,

referred to as the maximum mound height, hmax, was also been considered. Mound height,

h, relative to the central base axis is defined as the vertical coordinate of the top of a

particle mound of the tube in Figure 5.17. Due to the difference in the reference datum,

the maximum height of the deposit will be the height of a particle located at the highest

point in the tube whereas the maximum depth of the deposit will be the depth of a particle

that is farthest from the bottom pore wall. To illustrate the difference between hmax and

dmax, a typical pore tube with deposited particles are shown in Figure 5.19, (this shows an

axial view of 155 deposited particles). The particle marked as pi in this figure, is

characterized by hmax ID = 0.84, while particle P2 controls the depth, dmax ID = 0.8.

Comparing these two particles, p1 is in a position to induce more drag force (i.e. larger

impact on pressure change), than p2. This is because the fluid that will be replaced by pi

has higher velocity. For this reason, hmax is expected to work better as a variable to

parameterize the pressure drop when the mound covers more than half the depth of the

pore tube.

119



This expectation is proven when the same pressure drop data (from Figure 5.16)

are re-plotted against their corresponding hmax values in Figure 5.20, showing improved

correlation for all particle sizes compared to dmax in Figure 5.18.

Finally, two different correlation equations are proposed to characterize the

pressure drop, one as a function of the deposit depth dmax, and the other for maximum

mound height, hmax as shown in Figures 5.21 a, b

Ap (dma_ di 2

Ap- 7.0 +1.5 ") + ford ax D < 0.5 (5.12a)
Apo D D "

Ap h ___x

p =15k -6.0max) +1 for d, / D > 0.5 (5.12b)
Apo (D D *

In order to get this correlation, sixteen different particle sizes ranging from r IR = 0.04 to

0.12 was used. Twenty base case simulations were done per each size with corresponding

Stokes velocity (v, /Ufla = 0.005-3.02).

5.3 MOUND HEIGHT, hmax AND MAXIMUM DEPOSIT DEPTH,

dmax

5.3.1 Correlation for , the increase rate

Figures 5.22a, b show the maximum mound height as a function of normalized

deposit volume, Vd, for cases with a) rp IR = 0.05 and v, /flav = 0.03; and b) rp IR = 0.11

and vs /Ufla = 1.00. The data were obtained from sixteen base-case simulations. These

figures show that there are two distinct regions of behavior: The initial phase involves a

rapid mounding of particles in a relatively loose structure, while at later stages there is

greater coordination number (contact point per particle). The results have been fitted

using a bi-linear function between hmax /D and Vd.

hm /ID< 0.45: hm /ID=2r, /D +aVd (5.13a)
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hT / D > 0.45: h. / D = ho / D + #Vd

where a, 6 are defined in Figure 5.22a. The constants a, P are equal at hmax ID = 0.45:

(0.45 -2r, / D) (5.14)
(0.45 - ho / D)

Figure 5.23 shows similar results for the maximum deposit depth, dmax, from

simulations with two particle sizes (rpIR = 0.05, 0.11) and vs /Uflav= 3.02. In this case, it

is more difficult to identify the initial phase of deposition, while the later phase can be

described by the new relation:

dM I D = do / D + /Vd (5.15)

The parameter 8 is practically identical using either the mound height, hmax, or deposit

depth, dmax.

A series of simulations have been performed at different settling velocities and

particle sizes to characterize the parameter, #. Table 5.3 summarizes the linear

regressions from sets of 16 simulations for each combination of rp IR and vs IUflav (This

corresponds to 108 separate cases and a total of 1728 simulations). The correlation

coefficients range from R2 = 0.6-0.9.

Figure 5.24a summarizes 8 values for smaller particle sizes, rp IR = 0.04, 0.05,

0.06, and 0.07 as function of the specified settling velocity. The figure also shows the

settling velocity expected for each particle size according to Stokes equation. The results

show 8 increasing with settling velocity in the range v, /flav = 1.00-3.02. At small settling

velocities vs /Uflav<l, 8 is either constant or exhibits a small increase as vs /Ufla

approaches 0 (depositions purely dependent on hydrodynamic forces). As a result, #8
parameter is at a maximum when the settling velocity is approximately equal to the

average flow velocity. The slow increase in depth of the deposit implies low deposit

porosity or a densely structured deposit. Thus, the occurrence of a minimum 6 value (at a
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certain settling velocity) implies that the velocity is at an optimum condition for forming

a dense deposit. For larger particles (rp IR = 0.08-0.12) optimal density is achieved for

Vs /Uav 1.0. This result is also physically reasonable as there is limit on the density of

packing for larger particles. For this reason, two different bi-linear correlation equations

are used for 8 depending on the particle size:

rpIR <0.08

-1.16 s -1 + 3.90 for VS< (5.16a)
U Uflav

P= 1. 7 0 V;-11 + 3.90 for fa >1 (5.16b)
U UV

rp I R 0.08

/=3.60 for V <1 (5.17a)
Uflav

# = 1.70js - 1 + 3.60 for VS >1 (5.17b)
U Ufla

5.3.2 Correlation for ho and do

The parameter, ho, introduced in the regression equation 5.13b, is the intercept at

zero deposit volume for estimating the mound height, hmax. Naturally, its value should be

affected by the size of particles. Values of ho are summarized in Table 5.3 are plotted in

Figure 5.25a and b as functions of the settling velocity and particle size. It can be seen

that ho is approximately constant for the range of settling velocities, vs /Uflav = 0.03 -3.02

used in simulations. However, there is a clear dependency on the particle size, as

presented in Figure 5.25b, which shows a well defined linear correlation based on

average values of holD :

ho / D = max{0.45 -0.59 rp / R, 2r, / D} (5.18)
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with R2 = 0.9189. Substituting this result into equation 5.14,

a = 8 max 0.76 1.7, 2r, / D (5.19)
r,

The intercept, do, for the maximum depth does not vary as much as ho. An average

value, do ID = 0.15, is suitable for the range of particle radii considered in the simulations.

Substituting equation 5.18 to equation 5.13b, the difference between hmax and dmax

can be analytically given:

hmx rfx = max 0.3 -0.59 " , -p - 0.15 (5.20)
D R R

According to this equation, difference between hmax and dmax is larger for a smaller size of

particle group than for a larger size group as expected, proving that the larger particles

tend to form loose structures that result in higher mounds than for the same volume of

small particles.

5.3.3 Effect of pore tube length

Pore length has previously been shown to affect collection efficiency, it should

also influence the deposit depth. Figure 5.26 shows values of dmax /D plotted against the

normalized volume of deposit Vd, for rp IR = 0.1 and vs lUfla = 0.06 for three different

pore aspect ratios, LID = 1.0, 2.0 and 4.0. The results show that the rate of formation of

deposit depth increases with pore aspect ratio. This means that the deposits in shorter

pores tend to be spread more evenly than those in longer tubes, which is logical

considering that the particles settle mainly in the vicinity of the inlet. The correlation

between rate of deposit depth, , and the pore aspect ratio is presented in Figure 5.27

based on the 68 simulation cases previously shown in Figure 5.11. It seems the

relationship between # and LID is very similar to that between the collection efficiency q/
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and LID and has been fitted by similar power law functions with exponent 0.57 with

R2 = 0.8977:

#P= #A (LID)0 57  (5.21a)

a = a, (LID)0 57  (5.21b)

where at and /A are reference values of a and 8 value for LID = 1.

5.3.4 Effect of pore dip angle

Figure 5.28 compares the volume of collected particles with dip angles: 9 = 200

and -20'. The collection efficiency values for both cases are almost identical until later

stages of filtration where the case with 9 = -20' shows a reduced collection rate (17

remains almost constant for 9 = 20'). Figure 5.29, shows the deposit depths for the two

sets of simulations. In both simulations, the same component of gravitational (g cos9)

force promotes settling. However, the other component (g sin9) acts in the direction of

flow at 0 = 20' tube and opposes the flow for 0 = -20'. The forces opposing the flow

direction (0 = -20') cause the particles to mound near the inlet, which result in faster

increases in dmax. As expected, the fl parameter is higher for dip angle 9 = -20' than with

9 = 20'. This result confirms that the sign of 9 has little influence on the collection

efficiency, but is an important factor affecting the deposit depth (and hence the pressure

change).

Figure 5.30 summarizes computed values of the rate of deposit depth, , from

linear regressions of simulations with dip angles -60'< 0 < 80' and various particle sizes

(rp IR = 0.06, 0.08, and 0.1) and settling velocities (vs /Ufla = 0.06, 0.60 and 1.21). The

total number of cases is 44. The resulting 8 values can be characterized by a quadratic

function of the dip angle:

-1.5 x 0 2 20.019 + 1 (5.22)
#0
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The average of this correlation over the range of 0 = -90 to 900 gives the equivalent P

value when the pore orientation is uniformly distributed denoted with subscription H,

PH:

PH =1.4f8 (5.23)

5.4 THE REJECTION EFFICIENCY, l7reject

5.4.1 Linear function of deposit volume

The preceding sections are all based on a constant rate of particle injection (as

explained in Section 5.2). This approach ignores the particles that are rejected due to the

deposit growing at the pore inlet. These 'rejected particles' are filtered through a different

mechanism, and must be accounted for in the simulation for injection. The rate of

rejection is characterized by the rejection efficiency, lreject. Figure 5.31a shows the

normalized volume of rejected particles, Vreject as a function of the normalized total

volume of injected particles, Vi. The reference particle size in the case is rp IR = 0.07

with a settling velocity, vs /Uflav = 1.65, (and a total of 17 simulations). In contrast to the

particles collected in the pore (c.f. Figure 5.2), the rejected particle volume increases non-

linearly with the total volume of input particles. This occurs because the volume of

rejected particles is controlled by the deposit volume. In other words, as the filtration

advances, the accumulated deposit volume increases and particle rejection occurs more

frequently at the inlet. Therefore, the rejection efficiency, ireject is hypothesized to be a

linearly increasing function of the normalized deposit volume, Vd:

qreject = r Vd (5.24)

where y is a constant.

The value of y should be determined by fitting the simulation results. The number

of particles input per given time step, ANi, is known. The rejection probability, 77reject, can
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then be evaluated from the known value of collected particles, Vd. Then the fraction of

input particles that will be rejected during the time step, ANreject can be evaluated as:

ANreject = ?lreject(Vd) ANin (5.25)

Adding ANreject values, the total number of rejected particles can be predicted

Nreject = ZANreject (5.26)

By comparing the simulated values of Nreject with this predicted value of Nreje, , the value

of y can be estimated.

Figure 5.31b superimposes values of Vreject I which can be calculated from N reject

on top of the computed volume of rejected particles (Figure 5.34a). There is an excellent

match between the computed results, confirming that the hypothesis for equation 5.24 is

satisfactory.

Further comparisons have been made for all 123 cases, with r, IR ranging from 0.04 to

0.12 and vsIUflav ranging from 0.006 to 3.02. The resulting y values are plotted in Figure

5.32. Each point in the plot represents the result of regressions for sixteen different

simulations. The solid black line in the same figure shows the selected correlation

equation of y to the settling velocity, vs /Uflav:

r= -1.3 Vj -1.0 +6.7, U <1.0 (5.27a)

Y= I v Uflav
r 2.7 V -1.0 +6.7, vs > 1.0 (5.27b)

Ufla, Uflav
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5.4.2 Correlations between rejection efficiency and deposit depth pore

dip angle and aspect ratio

Both ?lreject and dmax are correlated with the deposit volume Vd in equations 5.24

and 5.15 respectively. Therefore, it should be possible to set an equivalent direct

correlation between 17reject and dmax (i.e., by substituting equation 5.15 into equation 5.24),

Fd - 2r1
'1rejct = y [" Pj (5.28)

D,8

By similar reasoning, the effects of gravitational orientation (dip angle) and pore length

on dmax should also affect the rejection efficiency:

7lreject = '17eject (LI D)05  (5.29)

where n' denotes the 7reject value when LID = 1.

H7Zjec, =1.4 17rejt (5.30)

where 7r denotes the average lireject value for homogeneously oriented pore system.

5.4.3 Effect of rejected particles on flow

Rejected particles are considered part of the filtered mass along with particles

collected inside the pore tube. Therefore, the effect of the rejected particles on the flow

should be considered. It is not possible to determine the drag force numerically for

rejected particles that are outside the boundary of the flow calculations. Instead, the flow

rate is increased to compensate for the volume of rejected particles in a given time step:
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AN (4 / 3r r'
AQ,,ee, - AN A(t'P' ) (5.31)

At

The rationale for this equation is that the rejected particles should force the

replaced fluid volume into the pore tube. This increment can be added to the total flow

rate so that the next step can be computed with (slightly) increased flow rate. The

increase in flow rate will then also influence the pressure drop. The Poiseuille flow

equation 5.12 can be used to decide the corresponding increase in pressure drop. This is

because the linearity of the implemented Stokes equation allows superposition of the

solutions, and the solution of Stokes equation without force vector is the Poiseuille flow.

Therefore, the equivalent pressure change due to rejected particles is:

APreject = AQ,reject 8 (5.32)
TR 4

5.5 EFFECT OF ATTACHMENT PROBABILITY OF THE PORE

WALL, Ap

The preceding simulations have all been conducted under the assumption of

perfect attachment (Ap = 1 in equation 5.4) in which all particles contacting the pore wall

are collected. However, in reality many researchers have reported that only a fraction of

these particles are captured by the grains of a pore system. Inefficient attachment reflects

the limited capacity of the grains and related roughness of the material. The adhesion

model first introduced by Varidyanathan and Tien (1988) and later used by Imdakm and

Sahimi (1991) was summarized in Section 2.3 (filter coefficient models). According to

this model, the density and the height of protrusions are assumed to represent the degree

of the roughness of the surface. If a particle settles onto a smooth pore surface, it will roll

along until it encounters a protrusion. In order to observe the effect of reduced particle

capture probability by the pore wall, the attachment probability, Ap is introduced. The

parameter Ap defines the fraction of particles that will be attached to the pore wall among
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all particles deposited. In other words, if the total number of particles that are settled on

the pore wall during a given time step At was ANsettie, only a fraction, ANatach, of it will

become attached by the wall:

ANattach - ApANsettie (5.33)

The remainder, (1-Ap)ANsette will be considered the same as the suspended

particles that are transported with the fluid. The limiting cases, Ap = 1 and Ap = 0

represent perfect attachment and zero attachment conditions, respectively. It should be

noted that the attachment probability is only applied to particles directly contacting the

wall. Particles in contact with previously collected particles (i.e. mounded particles) are

considered unconditionally collected as before. A series of simulations have been carried

out with varying Ap values. Figure 5.33a compares the results of two sets of simulations

(each with sixteen simulations) with rp IR = 0.04 and vs /Uflav = 0.03 for Ap = 0.1 and 1.0.

The particle collection rate is much lower for Ap = 0.1 than Ap = 1.0. However, the

collection efficiency is constant for both cases (at the selected settling velocity).

Collection efficiency becomes non-linear only at higher settling velocity, vs IUflav = 0.30

as shown in Figure 5.33b. In this case, the collection efficiency increases as the process

advances, reaching a constant value only after enough particles become attached to the

wall. A comparison with simulations for A, = 1.0 (full collection condition) shows that

the long-term collection efficiency is independent of Ap. Indeed, reduced collection

efficiency is proportional to the attachment probability, Ap:

77 =- 17fu AP (5.34)

As the deposit volume increases, the settled particles become increasingly likely to

mound on top of previously collected particles and hence, the behavior reverts back to the

case with Ap = 1. The probability of a particle mounding on previously deposited particles

depends on the surface area of the pore tube covered by particles. Accordingly, it can be

hypothesized that the collection efficiency, 7 is a power-law function of deposit volume

until reaching the collection efficiency, ufull:
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7 ='7fulS(Vd) (5.35a)

where the function S(Vd) is defined as

S(Vd) = jV1iJ - A)+ A for V< (5.35b)

V
S(Vd)=l for d >1 (5.35c)

VdL

In this equation Vd is the 'surface saturation' at which value the collection efficiency

reaches the full value, inji.

Exponent value of 2/3 in equation 5.35b is the dimensional ratio of surface area to

volume for the cylindrical pore. In Figure 5.34a, the data in the previous figure are

compared with the regressed value using equation 5.35, with a limit deposit volume,

Vd = 0.0043 and full efficiency, rJM' = 0.43. In this case, the equation provides a good

first approximation to widely scattered simulation data. Figures 5.34b and c show

simulations with the same particle size and settling velocity and Ap = 0.2, 0.5 respectively.

The same function (equation 5.35) is used with the same limit deposit volume value and

previously computed r7ffui values. In Figure 5.34c, the effect of Ap becomes minimal and

the deposit volume increases linearly. The good agreement between simulated and

analytically computed values in these figures confirms the basic hypothesis for effects of

Ap.

Given that the same limit value Vd applies for all Ap values, it can also be

summarized that once a certain amount of deposit is accumulated the attachment

probability has no further effect on filtration rate. The value Vid = 0.0043 is rather small

(implying only 0.43% of the pore tube volume). A possible explanation for this is that the

settling of the particle occurs mainly in a confined region of the tube for particle

trajectories sharing the same settling velocity, although released at different initial
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elevations (with respect to the base of the tube) do not differ much. Thus, the value is not

affected by the settling velocity.

When the settling velocity is increased to v, /Ufla = 3.02 with ilfuil = 0.89,

analytical calculations with Vd = 0.0043 also give the same good agreement as shown in

Figure 5.35a. However, the particle size does have an effect on the surface saturation

value. In Figures 5.35b, and 5.35c the values Vd simulated and analytically obtained are

plotted together for rp IR = 0.06 and 0.1 cases, with settling velocities vs /Ufav = 0.24, 0.30,

and attachment probability, Ap = 0.1. The resulting surface saturation values are found to

be Vdf= 0.0144 and 0.0667, respectively. In each case, these values of Vf correspond to

100 collected particles (for r, IR = 0.04, 0.06 and 0.1). This means that the number of

particles, rather than their volume, determines the surface saturation value. This result is

reasonable considering the fact that the probability a particle will meet previously

deposited particles must depend on the surface area covered by them. Although equation

5.35 is reasonably successful, further simulations are needed to investigate conditions

where there is minimal wall attachment. This becomes especially important for

polydispersed particles, where the surface area covered by deposited particles is much

harder to define.

5.6 IMPLEMENTING OF SIMULATION RESULTS INTO

NETWORK MODEL

Chapter 3 has provided the background theories of network models and the

procedure for performing network simulations. It was assumed that microscopic

modeling of particle laden flow through a model pore could provide the correlations for

the key parameters required in the model (i.e. the probability of particle capture and the

capacity of each individual link in a network). The probability of particle capture in a

pore is equivalent to its collection efficiency. As discussed in detail in previous sections,

a particle can be collected by a pore in two ways, either by rejection at the inlet (i.e.

blockage by pre-existing deposits), or by accumulation inside the pore. While interpreting

the simulation results, the particles collected by the former mechanism were counted
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separately from those of the latter, and each was accounted for by efficiencies: )7reject and

q, respectively. The efficiency q, was best parameterized with the settling velocities of

the particles, v, that has presented in Section 5.1. As the settling velocity of a particle can

be estimated by Stokes equation, which is solely a function of the particle size, rp. Hence,

the efficiency, q is a function of r,. On the other hand, the rejection efficiency, 1lreject was

found to be a function of both the deposit volume and the settling velocity, vs, as

explained in Section 5.4.

For each network node, calculations from the previous time step (Figure 3.4 flow

chart) generates the number of particles per each size group left and ready to be fed to the

next set of bonds (i.e. model pores). Given a network bond with radius, R, the number of

input particles is defined by AN, (r ), i = 1 -Nr particles fed into the link for a given time

step, At, where k is the time-step index, N is the number of particle size groups and rpi

denotes the radius of each size group. The link has a deposit layer of normalized volume

V", from previous filtration (particle collection). Then the collection efficiency for each

size group of particles can be determined using equations 5.7, 5.8, and 5.11. The input

parameters required are, the pore length, L, diameter, D, dip angle, 0, the attachment

probability Ap, the surface saturation, Vf , and the average flow velocity, Uflav. The

rejection efficiency, lreject, can be decided using equation 5.24, and equations 5.27 to 5.30.

Then the particles that will end up in one of the following three categories can be

determined.

1. Particles that are size excluded by the pores (i.e. bonds): ANin (r1 )P 1rp1 > R]

2. Particles that will be collected by the pores:

(1) Rejected at the inlet: ANreject AN(r )P ri R ,R],7,ejec (r1 )

(2) Collected inside the pores: ANAcoect (rpi ) = ANJn (ri )P [rpi < R] (1 - 7,reject))(r

3. The remainder of particles will break through (transported without filtration)

In addition, the deposit volume after the current time step k, Vd' can be

determined:
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4N,

Vdk = Vk- + 3R 2 r AN 1 1 e (r) (5.36)

Once the current deposit volume is known, the reduced capacity of the pore (due to

filtration) can be evaluated. First, the maximum deposit depth, dmax and height hmax are

evaluated using equations (5.13), (5.15) to (5.18), and (5.21). Collected particles affect

the fluid body by exerting drag forces on it. The drag forces slow down the flow rate if

the pressure difference stays constant or raise the pressure difference for the same flow

rate.

In the parametric study described in this chapter, the flow rates are kept constant

and the effect of drag forces by deposited particles were observed indirectly by an

increase in the pressure difference across the ends of the model pore. The pressure drop

in the current time step Atk, Apk can be obtained from equation 5.124. There is a further

increment in pressure change drop increase due to the rejected particles, which can be

estimated from equation 5.32. In order to be used in network model simulations, the

change in pressure drop increase has to be linked to the flow capacity of the link (i.e., the

flow rate a link can produce with given pressure drop). This can easily be computed as

the capacity of a given link is computed from the Poiseuille flow equation given in

equation 3.3 whereas the flow rate, Q, is given as a function of tube size, (R and L),

transporting fluid viscosity, q, and pressure difference, Ap. Therefore, the capacity of the

bond, Kk can be updated from the previous value, Ko:

Kk = Ap eject Ko (5.37)
APO

where the capacity K is proportional to the fourth power of the radius, i.e. K oc R

Therefore, the current bond radius, R k will have the following relationship with the initial

radius, R o:

Rk = Ap ejecRo (5.38)
Ap0
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5.7 CONCLUSIONS AND LIMITATIONS

An intensive parametric study has been performed using the particle flow

simulator described in Chapter 4. The correlations developed from the numerical

simulations provide a quantitative framework for simulations in model pore tubes. The

current study has been restricted to uniform (mono-disperse) particle populations.

However, there are no conceptual barriers to further explorations with polydispersed

systems. The other key assumption is that only gravity forces are considered to act on the

particles. Finally, it should be noted, that some parameters, such as the viscosity, average

fluid velocity and the density of the fluid were included in the study but found to have

trivial effect on the simulation results and accordingly, they are omitted from discussed in

this chapter.
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Table 5.1 Parameters for base-case simulations

Pore diameter, D [mm] 1.0

Pore tube aspect ratio, LID [-] 1

Dip angle, 0 [ ] 00

Attachment probability, A [-] 1

Viscosity of suspension, ,u/pu [ -] 3

Density of the suspension, p /p, [-] 1.2

Particle concentration 10 particles/pore volume

Flow rate, Q [mm3/sec] 0.785
[pore volume/sec] 1

Average flow velocity, Unav = QIA [mm/sec] 1.0

Time step, At [sec] 0.01

Number of iterations 50

Total particles injected 1000
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Table 5.2 r7 values from linear regression and R 2 values

rpIR Vs /Uflav 17 R 2

0.00 0.047 0.6855

0.01 0.083 0.8841
0.03 0.136 0.9458
0.05 0.172 0.9476

0.04 0.12 0.267 0.9806

0.18 0.327 0.9909
0.30 0.429 0.9885
0.54 0.576 0.9951

0.60 0.611 0.9934

1.21 0.842 0.9961
3.02 0.897 0.998

0.06 0.206 0.9465

0.12 0.275 0.9659
0.24 0.389 0.9877

0.06 0.48 0.542 0.9869
0.60 0.605 0.9944

1.21 0.853 0.9974
3.02 0.899 0.9974

0.01 0.083 0.6749
0.03 0.122 0.8212
0.05 0.147 0.7946
0.06 0.145 0.8941

0.24 0.271 0.9184

0.48 0.425 0.9613
0.08 0.60 0.546 0.9794

0.97 0.722 0.9742

1.21 0.765 0.9792

1.81 0.839 0.9843

2.42 0.872 0.9863

2.72 0.852 0.9846

3.02 0.848 0.9859

rp IR Vs /Uflav 77 R 2

0.03 0.201 0.8372

0.05 0.225 0.9414

0.06 0.240 0.9196
0.24 0.361 0.9805

0.09 0.48 0.470 0.9575
0.60 0.519 0.9628
1.21 0.721 0.978
2.42 0.868 0.9919
3.02 0.925 0.9968

0.06 0.208 0.8989
0.24 0.354 0.9593

0.48 0.463 0.9632
0.1 0.60 0.524 0.9773

1.21 0.730 0.9781
2.42 0.860 0.9879
3.02 0.922 0.9905

0.03 0.166 0.8385
0.05 0.168 0.8151

0.06 0.224 0.8909
0.24 0.325 0.8963

0.12 0.48 0.442 0.9348

0.60 0.509 0.944

1.21 0.700 0.9593

2.42 0.876 0.9804

_ --------- 3.02 0.924 0.9865
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Table 5.3 Values of # and ho from regression with corresponding R2 values

rp IR Vs/Uflav ho R2

0.01 4.27 0.444 0.7131

0.03 5.75 0.440 0.8080

0.05 5.52 0.439 0.7013

0.06 6.07 0.438 0.7675
0.18 4.67 0.435 0.7762

0.24 4.36 0.436 0.5533
0.48 4.73 0.428 0.8461

0.04 0.60 4.31 0.433 0.7133

1.00 4.23 0.436 0.7146

1.21 4.34 0.431 0.7485

1.51 4.62 0.433 0.8308

1.81 5.71 0.427 0.8934

2.12 6.04 0.429 0.7374

2.42 6.25 0.429 0.8896

2.72 6.80 0.430 0.8751

3.02 8.06 0.425 0.7599

0.01 5.05 0.439 0.6955

0.03 4.41 0.440 0.6655
0.05 4.76 0.438 0.7602

0.06 5.63 0.434 0.6209

0.12 4.76 0.433 0.7245

0.24 4.31 0.431 0.6755
0.48 4.46 0.426 0.7206

0.60 4.20 0.433 0.7545
0.05 0.84 3.87 0.425 0.6455

1.00 4.09 0.429 0.6946

1.21 4.45 0.418 0.7815

1.51 4.76 0.428 0.7206

1.81 5.09 0.421 0.7920

2.12 5.87 0.420 0.8066

2.42 6.39 0.416 0.9105

2.72 7.14 0.406 0.8936

3.02 7.60 0.417 0.8845
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Table 5.3 continued

rp IR vs /Uflav _8 ho R 2

0.01 4.62 0.434 0.5666

0.03 4.67 0.434 0.6188

0.05 4.86 0.434 0.8347
0.06 3.99 0.437 0.7344

0.12 3.88 0.432 0.8066

0.24 4.15 0.425 0.7786
0.48 3.79 0.421 0.7759

0.06 0.60 3.68 0.426 0.8771

0.91 3.61 0.420 0.7186

1.21 3.92 0.412 0.7309

1.81 4.84 0.414 0.8190

2.12 5.42 0.412 0.8940

2.42 6.11 0.414 0.8606

2.72 7.02 0.408 0.8631

3.02 7.15 0.397 0.9030

0.01 3.92 0.436 0.6052

0.03 3.76 0.435 0.7514

0.05 4.40 0.431 0.6069

0.06 4.32 0.430 0.6597
0.24 4.01 0.422 0.6724

0.07 0.48 3.93 0.417 0.6956

0.60 3.32 0.418 0.7386

1.00 4.40 0.419 0.8024

1.65 4.65 0.399 0.8458

2.42 5.78 0.397 0.8529

2.72 6.48 0.381 0.8528

1_____ _ 1 3.02 6.99 0.388 0.8480
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Table 5.3 continued

rp IR Vs/Ufl0a ho R2

0.01 4.01 0.428 0.6308

0.03 3.63 0.432 0.6761

0.05 4.20 0.428 0.6859

0.06 3.59 0.429 0.8266

0.24 3.77 0.418 0.6857
0.48 3.47 0.418 0.7311

0.08 0.60 3.63 0.401 0.8640

1.00 3.43 0.403 0.6960

1.21 3.93 0.388 0.7845

1.81 5.09 0.383 0.8339

2.15 5.33 0.385 0.8397

2.42 5.68 0.381 0.8359

2.72 6.52 0.366 0.8505

3.02 6.93 0.369 0.8546

0.03 3.28 0.414 0.6687
0.05 3.38 0.405 0.5476

0.06 3.29 0.409 0.5083

0.24 3.51 0.397 0.7459

0.09 0.48 3.19 0.415 0.7976

0.60 3.29 0.397 0.7081

1.21 3.62 0.394 0.8016

2.72 6.32 0.359 0.8591

3.02 7.22 0.370 0.8647
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Table 5.3 continued

rpIR vs /Uflav 6 ho2

0.03 3.60 0.410 0.5563
0.06 3.19 0.402 0.6100
0.30 3.27 0.384 0.7394
0.60 3.58 0.377 0.6870

0.1 1.00 3.74 0.390 0.7139
1.21 4.05 0.365 0.7541

2.42 6.90 0.322 0.8376

3.02 6.90 0.337 0.8222

3.36 6.83 0.356 0.8445

0.24 3.48 0.387 0.6331
0.48 3.23 0.401 0.5858

0.11 1.00 3.79 0.379 0.6681
1.21 3.65 0.381 0.6497

2.42 5.92 0.344 0.8074

3.02 6.35 0.361 0.8162

0.03 4.00 0.397 0.1838
0.05 3.54 0.395 0.5289

0.06 4.29 0.368 0.6288

0.24 4.09 0.372 0.6757
0.12 0.48 3.28 0.393 0.6041

0.60 3.23 0.390 0.6497
1.00 3.86 0.371 0.6415

1.21 3.38 0.381 0.6278

3.02 6.89 0.341 0.8189

1 _ _ 1 4.83 8.17 0.336 0.8746
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CHAPTER 6. SIMULATION OF

DISCRETE PARTICLE TRANSPORT

EXPERIMENTS

6.0 INTRODUCTION

This chapter describes the application of the pore filtration simulations (Chapter

5) and bubble model (Chapter 4) to interpret high quality experimental measurements of

particle transport reported by Yoon et al. (2004). The laboratory-scale experiments were

performed in a 16.5cm long water saturated granular filter bed comprised of spherical

glass beads (4mm diameter). Dilute suspensions of acrylic particles (diameter ranges 1-

25pm) were transported through the filter at a range of flow velocities. An ionic

surfactant (Alconox@) was added at a concentration of 0.05% of weight of acrylic

particles to prevent aggregation between particles. Figure 6.1 shows a schematic of the

experimental set-up with dimensions of the filter bed. The key feature of this

experimental study was the development of a high resolution visualization technique that

enables direct observation of particles within the filters. The visualization technique uses

a laser source, which excites the particles and causes them to fluoresce under blue-green

light. During the experiments, images of the filter bed are obtained by a digital camera

and later analyzed by an image processor. The resulting light intensity data (emitted by

the particles) are converted to an equivalent concentration of particles by calibrating for a

system of saturated particles suspended in the water.

Yoon et al. (2004) report measurements of filtration in experiments performed at

three different flow rates. Each test comprised two stages: 1) injection of suspension and
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2) flushing with clean water. Table 6.1 summarizes the seepage velocities and other

material parameters related to the experiments. The seepage velocity is defined as:

V= - (6.1)
Ano

where A is the cross sectional area of the glass bead bed, and no its initial porosity.

Table 1 distinguishes between tests using "rough" and "smooth" beads. The beads

supplied by the manufacturer are considered to have a "rough" surface based on SEM

images reported by Yoon et al. (2004), with surface roughness of the order of 2Um. After

repeated cleaning by ultrasonification, the glass beads have abnormally smooth surfaces

in SEM pictures, and they are referred as "smooth" beads.

The effluent concentrations were recorded continuously during each experiment.

The results are conveniently reported as functions of the fluid volume injected in units of

pore volumes, pV, where the initial volume of the sample is:

pV = AHnO (6.2)

If the porosity does not change significantly during the time frame of the injection,

the initial pore volume will also remain constant. Thus, the breakthrough time required

for one pore volume to pass through the sample can be calculated as:

AHn0  H (6.3)
tbr- =-(.

Q V

Figure 6.2 shows the breakthrough (i.e. effluent) concentration, Cour, normalized

by the initial concentration, Co, as a function of the pore volume for the one of the three

tests with 'slow' seepage velocity, v = 1.24x10-2 cm/sec on rough beads, referred to as

'RS2' in Table 6.1. The effluent concentration starts to increase after the initial

breakthrough at 1 pV and increases rapidly until about 2pV and then more slowly until it

reaches a stabilized at C0,,/Co = 0.75-0.80 at 5pV - 8pV. If no filtration had occurred, the
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stabilized effluent concentration should reach, Co, ICo = 1.0. Therefore, it is clear that

filtration does occur during transport of the acrylic particles. After 10 pV, the injection

was flushed through at the same flow rate, causing a gradual decrease in effluent

concentration. The washing was added to the experiments in order to study the effects of

the particle detachment process on the collected particles.

The population of acrylic particles can be retrieved by analyzing the photographic

records of laser intensity. As the camera detects fluorescence from both mobile particles

in the suspension and immobile ones collected by the beads, the relative concentration

corresponds to the sum of the suspension concentration, C, and deposit concentration, S.

Figure 6.3 shows the evolution of the relative concentration, (C+S) at one point within

the sample, at z = 1.8 cm, for the 'RS2' test. This particular observation elevation is near

the top of the sample and hence, the relative concentration rises almost immediately after

the start of injection. The relative concentration increases at a decreasing rate with pore

volume injection and with constant rate for injections beyond 5 pV (until the end of the

injection stage at pore volume of 10 pV). The decrease in concentration due to subsequent

water flushing reduces the relative concentration to a residual value of filtered material

(i.e. C+S/Co =3.4 at 15pV). Figure 6.4 shows the profile of relative concentration based

on measurements at 7 elevations at 10pV (equivalent to t = 10tbr = 1371 secs).

6.1 EXPERIMENTAL OBSERVATION AND CONTINUUM

MODEL

During the experiments, Yoon et al (2004) observed that particles that had been

deposited at certain locations were released after a while, during both injection and

flushing stages. They refer to this type of filtration process followed by detachment as

hindrance. The remaining fraction of filtered material is referred to as entrapped particles.

By including the detachment process, the continuous increase in breakthrough

concentration observed in output concentration measurement in Figure 6.2 can be

explained since the process will effectively decrease filtration rate until a stabilized value

is reached. The increase in effluent concentration between lpV and 8pV in Figure 6.2 was
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attributed to hindrance because it temporarily delays the breakthrough of particles (due to

the time required for the hindrance -detachment process).

In magnified snapshots of grains taken during experiments, collections occur both

on the surface of the beads and close to parts of contact between beads (solid-solid

contact points). Yoon et al. (2004) refer to these collections on the surface or near contact

points as surface entrapment/hindrance or contact entrapment/hindrance respectively.

They hypothesized that the surface entrapment occurs mainly due to roughness on surface.

The role of surface roughness was investigated by Yoon et al. (2004) through evaluation

of the experimental results with smooth and rough beads. Figure 6.5a compares the

relative concentration profiles at 10pV (after injection stage is finished), average values

from all slow tests with rough (RS1-3) and those from smooth glass beads (SS1-3) with

error bar indicating their standard deviations. Except for minor changes in porosity (from

0.367 to 0.374 in average) and seepage velocity (from 1.36x10 2 cm/sec to 1.38x10

cm/sec in average), all experimental conditions were identical.

The large difference in concentration profile clearly shows the important role of

the surface roughness on particle collection. Figure 6.5b compares the deposit

concentration profiles (SICo) after the wash stage is completed (note suspension

concentration C = 0 in wash stage). These profiles indicate the amount of collected

particles that survived the flushing stage, and therefore, are most firmly attached to the

grains. Microscopic images during the 'Smooth Slow' tests clearly showed the particle

collections on bead surfaces during the injection stage are almost completely lifted away

at the end of the washing stage, leaving only particles deposited near solid-solid contact

points. This suggests that the particles positioned on relatively smooth surface are only

temporarily attached (i.e. by surface hindrance) and all firm collections are purely by

contact entrapment. Therefore, the difference between rough bead and smooth bead

results should specify the amount of particles firmly collected due to surface roughness

(i.e. surface entrapment). This observation on the role of surface roughness in the

attachment process agrees well with the adhesion model presented in Chapter 2, where

the fate of a particle impinging on a protrusion is obtained through analytical calculations

of driving and resisting moment. However, it is unclear what fraction of the particles
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collected near contact points were detached. In short, it is difficult to distinguish contact

hindrance from contact entrapment.

Yoon (2004) applied a continuum model to simulate the tests. The one-

dimensional mass conservation equation applies:

a(nC) aC 3 C anS
+n-v--anD- =- (6.4)

at az az az at

where z is the coordinate measured from the top of the column (Figure 6.1), C is the

concentration of particles, and S, the concentration of the filtered material (defined as the

mass of filtrates per unit pore volume). Equation 6.4 can be compared directly with

equation 2.4 where the specific deposit a and the deposit concentration S are related as

follows:

S = n- (6.5)

where a is the specific deposit (i.e. the mass of filtered particles per unit medium

volume).

The detachment of deposited particles has been observed in the colloid transport

literature (e.g. see Harvey and Garabedian, 1991) and is commonly modeled as a two-site

adsorption/desorption process as explained in Section 2.4. A first order adsorption-

desorption law in equation (2.14) can be re-written for the deposit concentration S:

aS(z, t)kCa Z )= kf C - k, S (6.8 )
at

where kf and kr are the forward and reverse adsorption rate constants, respectively.

Hendry et al. (1997) propose a slightly different model in which desorption occurs

only with the reversible deposit of concentration Sr (as distinct from the irreversible

deposit, Sirr).
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as(Z't) - aSirr + ' (6.9)at at at
aS(z,t)kat =kirrC+kdC-krSr (6.10)at

In this model, kd denotes the filtration rate for reversible (i.e., detachable) deposit and kirr

for irreversible deposit, kr is referred to as detachment rate, rather than the reverse

adsorption rate.

This 'two-site' model has been used for latex spheres (Yan, 1996), bacteria

(Hendry et al. 1997) and clay particles (Compere, 2001). Yoon (2004) has applied

equations 6.9 and 6.10 to interpret the breakthrough curve and the normalized relative

concentration profile in Figures 6.6a and b.

The rate of entrapment seems to remain constant and control the stabilized

filtration rate. Contact entrapment process that happens at contact points between grains

should intrinsically be a process that is limited by the number of contacts (coordination

number). Both contact and surface entrapment can be limited by the number of

protrusions/capacity of contact points in nature and leads to decreasing filtration rate

unless the previously collected particles replace protrusions. Therefore, it seems that the

extent of filtration during the tests were well within the capacity of the filter and no

significant change in filtration process had occurred.

The rate parameters (kirr, kd, kr) appearing in equation 6.10 were obtained by

fitting the breakthrough curve (Figure 6.6a) during the injection stage. Thus, the

analytical solution matches the measured values very well up to lOpV, but is less accurate

in predicting the subsequent flushing stage. However, the relative concentration profile is

not matched as well by the two-site model. Specifically, the analytical solution fails to

predict the nonlinear spatial distribution of relative concentration values with depth. The

two-site model predicts smaller changes in relative concentration through the filter bed

than are measured, but does achieve better agreement closer to the source. Although the

combined concentration of deposit and suspension, (C+S) is shown, the nonlinear profile

in Figure 6.6b is controlled by the deposit concentration, S, since the suspension

concentration does not differ much (i.e. the output concentration is 0.8 of the initial
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concentration CO). Therefore, it can be deduced that the attachment rate is higher near

injection point and decreases with depth in the filter bed. This feature can apparently not

be described by even quite sophisticated continuum models.

6.2 SELECTION OF PARAMETERS FOR NETWORK MODEL

SIMULATIONS

This section describes the application of the network model presented in Chapter

3 to model the filtration process of the particles. Individual links in the network model are

based on results of simulations of particle collection for the model pore presented in

Chapter 5. It has also been assumed that the orientation of pores is uniformly distributed

and the average value of collection efficiency (i.e. r7H in equation 5.11) is used

throughout.

6.2.1 Pore size distribution

The granular bed used in the experimental study by Yoon et al. (2004) was made

with uniform glass beads. The size distribution of pores and pore throats of the granular

system with uniform spheres has been evaluated inspected by several studies. Yanuka et

al. (1986) studied a reconstructed porous medium using randomly packed ellipsoids. The

pore space was described by an orthogonal three-dimensional system as shown in Figure

6.7. They described the pore space for three different kinds of regular packings: uniform

spheres (with diameter, Dg) the simple cubic, orthorhombic and rhombohedral. The unit

cells of these three packings are sketched in Figure 6.8. Table 6.2 shows the porosity and

the average pore sizes (calculated analytically by Kruyer, 1958) of all three packs quoted

from Yanuka et al. (1986).

The throat radius, R throat (referred to as 'neck' radius by Yanuka et al., 1986)

indicates the radius of the largest circle that can be inscribed in the narrow passage of the

sphere packing. The porosity of the glass bead bed, n = 0.38, is close to the value for the

simple orthorhombic packing. With given grain diameter, Dg = 4mm, this gives the
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average pore body size, 2a = 2b = 2c = 2.11 mm, and the throat radius, R throat = 0.57 mm.

Based on this information, the mean pore and pore throat radii were chosen R mean = 1 mm

and (R throat)mean = 0.57mm.

The ratio between mean pore size and mean pore throat size is known as the

aspect ratio of the pore space and quoted to be 2 for unconsolidated porous media by both

Payatakes et al. (1980) and Jerauld and Salter (1990). Hilpert et al. (2003) also performed

a study on the calibration of a pore network using a pore-morphological analysis for a

random spherical packing with the same grain-size statistics and porosity as the current

material of interest. One of the materials was relatively uniform glass bead. They

reported an average pore body radius of 0.03 mm for a system made of 0.1156 mm

diameter beads with a porosity n= 0.372. The ratio between pore radius to the glass bead

radius (0.51) is similar to the value (0.5275) by Yanuka et al. (1986) shown in Table 6.3.

The distribution of pores and pore throat size are approximated with a Hertzian

distribution with following probability density function:

F(R) =1-exp(-aR2 ) (6.11)

where a = R2 This distribution has been reported to fit other geological filter
mean

materials (Hwang and Redner, 2001) and is also analytically convenient. Figure 6.9

shows the pore and pore throat (number) distributions obtained based on equation (6.11),

which clearly shows two distinctive distributions for throats and pores.

6.2.2 Filter coefficient

The parametric study in Chapter 5 has provided relationships for the collection

efficiency of particles with radius, rp in a pore tube of known diameter, D (= 2R), and

length, L, in equations 5.7, 5.8 and 5.11:

ri7 = min 0.75 () 0.4 9 (5.7bis)
(U fa
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7 = 17, (L/ D) 57

17H =- -7 (5.11Ibis)
1.6

Yoon et al. (2004) measured the velocities of free falling latex particles immersed

in a column filled with still water by comparing the fluorescence from bursts of laser

energy. By analyzing the intensity profile of the column, Yoon et al (2004) are able to

define the fraction of particles with settling velocities in a certain range. The measured

settling velocity ranges from v, = 1.26x10-4 cm/sec to 2.01x10-3 cm/sec, which correspond

to 1/6 to 1/100 of the seepage velocity of the 'slow' test, v = 1.36x10-2 cm/sec. The

particle sizes, however, cannot be back-calculated from Stokes law in (equation 4.10)

because of uncertainties related to the density of the particles and their non-spherical

shapes. Instead, particle size distribution and particle population numbers were measured

using a commercial electric particle size analyzer (Multisizer 3 Coulter Counter by

Beckman Coulter, Inc.). The measurements produced 256 ranges of particle sizes (each

represented by a single average value) and number of particles in each range. Assuming

that the particles are spherical, this measurement can be interpreted as a volumetric

distribution of the particle size, as shown in Figure 6.10a, with d50 = 7um (rp5o = 3.5um).

Figure 6.10b shows the results of the sedimentation tests as a plot of cumulative volume

versus settling velocity, v. By comparing directly the measured particle sizes in Figure

6. 1Oa with those back-calculated from measured velocities using Stokes law, it was found

that the particle density from ps =1.07g/cm 3 to 1.18 g/cm 3 , (increasing with particle

radius).

Figure 6.11 presents the collection efficiency as a function of particle diameter

based on equations 5.7, 5.8 and 5.11. With r,5o =3.5um and mean pore throat radius,

R mean = 1 mm (i.e. D = 2mm) and pore length L = 2mm, the collection efficiency is found

to be, 7= 0.066 for the 'slow' injection test seepage velocity of v = 1.36x10-2 cm/sec.

The same graph also shows values of collector efficiency using trajectory analysis

in Happel's unit collector model (equation 4.2) and limit analysis only considering

gravitational force, (after Mackie et al., 1987) using the same parameters rp = 3.5 pim, ag

(grain radius) = 2mm, n = 0.367, and v = 1.36x10-2cm /sec.
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77(r, /a) = 0.014

The unit collector model predicts a much smaller collection efficiency due, in

larger part, to the different geometries used in the two models (cylindrical for the model

pore simulator versus flow around a sphere in Happel's model). However, it is worth

mentioning that the model pore simulator predicts that the collection efficiency increases

much faster with particle size than Happel's model. This trend is later borne out by the

experimental results with simulations in Section 6.3.

6.2.3 Attachment probability

As previously explained in Chapter 2, it has been noticed that the unit collector

theory often fails to predict the collection efficiency, ql, especially when repulsive double

layer interactions predominate (see, for example, Elimelech and O'Melia, 1990). The

easiest and hence, most widely used method to deal with this problem is to introduce an

empirical collision (attachment) efficiency to describe the fraction of collisions with filter

grains that result in attachment.

7= ar/, (6.13)

where 7 is the current efficiency, a the collision efficiency, and 7full the 'full' efficiency

when all the collisions result in particle collection.

The collision efficiency is comparable to the attachment probability, Ap

introduced in Chapter 5, which defines the fraction of particles that will be attached to the

pore wall among all particles deposited. However, the attachment probability is limited to

particle collection on the pore wall (perfect attachment with Ap = 1 is assumed for

mounding particles). Accordingly, the collection rate in the parametric study was found

to increase as the deposits accumulates (cf. Figure 5.34). The related correlation, equation

5.35, defines 17 to increase with the deposit volume, Vd until it reaches a limit value, Vj ,

the surface saturation. However, the assumption of perfect attachment between particles
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is too simplistic, not accounting for surface forces acting on particles and the resulting

repulsive and attractive interactions between them (which control the particle collections

by deposit layer). Surface forces are known to become significant relative to

hydrodynamic forces for colloidal sized particles (less than hundred microns) (Russell et

al., 1989). Considering that the maximum diameter of acrylic particles used in the tests is

27 pm, and surfactant was used, which further increases repulsive forces between

particles, full attachment between particles is unlikely. Accordingly, particle collection

for the bubble model is assumed to occur with attachment probability Ap < 1, assuming

the same empirical format proposed in equation 6.13:

17 =7.tifi A, (6.14)

6.3 UNIT BED ELEMENT (UBE) SIMULAITON ON

'SMOOTH SLOW' TESTS

The simplest network model represents the glass bead filter by a single model

pore tube. This is identical to the UBE method proposed by Payatakes et al. (1973),

Section 2.2.2. The results from this UBE model provide a reference for subsequent

bubble model simulations and by comparing UBE and bubble models, it is then possible

to appraise the effects of the pore size distribution. For the UBE model, the pore is

assumed to have a radius equal to the mean pore throat radius selected in Section 6.2.1

(i.e. R = Rmean = 1mm) while the length of the pore, L = 4mm, is assumed equal to the

grain diameter, such that the pore tube aspect ratio, LID = 2. For this model, a total of 43

model tubes are needed to represent the full height of the glass bead filter bed, (i.e. ~17

cm, Table 6.1).

(1) Procedure

The particles follow the propagation rules of a network model presented in

Chapter 3 (Figure 3.4). The measured particle size distribution in Figure 6. 10a is used, as

a form of stepwise function comprising 256 particle size bands. For each size band, the
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particle settling velocity, vs, corresponds to the volume fraction found from the measured

settling velocities shown in Figure 6.10b. The time step in the network model is selected

to be the travel time of the link of the maximum radius and hence, is equal to the

maximum flow velocity. As all model pores are identical in the UBE simulation, the time

step is defined by:

At = L/v (6.15)

where v is the pore velocity, whose initial value is set as the seepage velocity.

The number of input particles (for the first tube) can be calculated from the

known concentration and the assumed particle radii distribution shown in Figure 6.10a

using a simple mass balance. For the mth particle size, rp,m, the fraction of the particles

corresponding to this size is, F(m+1)-F(m). Thus the number of particles belonging to the

size group per given time step At, AN' can be given as:

AN M = CIfR2 (F (m+1) F For, m = 1,...,256 (6.16)
in - 4

3

For each size band, the collection efficiency is given so that the number of particles that

will be collected by the current link can be calculated:

AN"' = (rp,,,, R, L)AN" (6.17)

T
The volume of the filtered deposits at time step T, Vc ,can be obtained from the known

number of accumulated particles,

T T

N" = AiN"' (6.18)
it=1
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256
T, = 4 / 11 ,3N " ,,IT (6.19)

M=1

Dividing the collected volume with the total volume of particles injected per given time-

step, V, the concentration of the filtered particles for the ith element is given as:

V|T
Ve|I

Si(TAt)= i (6.20)
Vi

The parameters used for the simulation of the 'Smooth Slow' tests (SS1,2,3) are

summarized in Table 6.3.

(2) Detachment rate, kr

The particles deposited but not yet not attached are considered as hindered

particles that can be recaptured by the flow. This detachment ratio, kr is assumed in the

two-site continuum model (equation 6.10). If the number of passing particles in a certain

link at a given time step is denoted as ANi, the number of entrapped particles, ANirr is

expressed by:

ANirr = ANi, 7 Ap (6.21)

The remainder of the deposited particles will be considered 'hindered particles', whose

number is denoted by AN, i.e.;

ANr = ANin 77 (1-Ap) (6.22)

The total number of hindered particles will be stored in memory at every element as Nr,

and the number detached during a given time step can be given:

ANd = AtN kr (6.23)
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Consequently, the total number of hindered particles should be updated to Nr,new:

Nr,new = Nr+ANr-ANd (6.24)

If kr = 1, all hindered particles will be instantly detached, as if there are no reversible

collections. This condition will be referred to as 'full detachment' condition. Accordingly,

smaller kr values cause more hindrance and hence, increase the total deposition of

particles. This will, in turn, reduce the concentration of the suspended particles, resulting

in a lower breakthrough concentration. However, the breakthrough concentration will

increase continuously due to detachment, until a balance between hindered particles and

detachment is achieved.

Figure 6.12a shows the breakthrough curves computed by the UBE model with

various kr values for slow tests done with smooth beads (SS1,2,3). The same attachment

probability, Ap = 0.02 was applied for all simulations. The effect of detachment is clearly

manifested by a delayed breakthrough due to prolonged retention of suspended particles.

The value of kr = 0.0045sec-' gives the best-fit curve although it slightly underestimates

breakthrough concentrations during wash stage. Actually, both continuum and discrete

model simulations consistently underestimate the breakthrough concentrations during

wash stage even when matching closely the injection stage. Yoon (2004) discussed this is

due to the reversibility of the entrapped particles: although entrapped particles more

firmly attached to the filter grains, they are not irreversibly attached and hence, can be

detached and penetrate through the filter bed. It seems the effect of detachment of

entrapped particles is particularly obvious during wash stage because of the low

concentration of particles.

Figure 6.12b shows the corresponding relative concentration that increases with

decreasing detachment rate, kr as expected and greatly improves the matching with

measured data from the full detachment condition simulation. Figure 6.13b shows the

simulated deposit concentration profile after wash stage is completed, consistently

overestimating the measured values. It is interesting to note that change in kr values have

minimal effect on the final deposit concentration (except for with kr = 0.0022sec- 1, which

gives a slightly higher downstream concentration, z > 14cm). This is because all hindered
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particles will be eventually detach no matter what detachment rate is assigned, in long

term flushing tests. Therefore, the amount of simulated final deposit concentration is

determined only by attachment probability that determines the portion of entrapment

from deposited amount of particles. The fact that simulated values are overestimated may

indicate that some of the entrapped particles were released back to the flow, supporting

the hypothesis by Yoon (2004).

Another possible explanation for the overestimation of relative concentration after

the injection stage and deposit concentration after wash stage is the pore size distribution.

Larger pores have greater capacity for carrying the pore fluid and have smaller collection

efficiency for a given size of transported particle. Therefore, a dispersed pore system will

bring out a higher initial breakthrough concentration compared to the UBE model. The

following sections present the results of simulations with a bubble model, which

simulates this dispersed pore system.

As expected from the very dilute concentration of the suspension as well as the

large difference between the pore size and those of particles (R/rp50 = 200), hardly any

change in pore pressure was produced during the simulations (cf. Chapter 7). In addition,

the depth of collected deposit was found minimal so that almost no collections in model

tube inlet by blocking the particles introduced i.e., the 'rejected' particles defined in

Chapter 5 were found.

6.4 NETWORK MODEL SIMULATION

6.4.1 Construction of a bubble model

A bubble model, as explained previously in Section 3.4, comprises a serial

linkage of parallel cylindrical tubes of constant length. In order to represent the pore

throats and pores in the granular filter beds, the current analyses introduce two distinctive

Hertz distributions, one with mean radius, R mean = 1 mm, to represent the pores and the

second with (R throat) mean= 0.57 mm for the pore throats. Half of the bonds are assumed to

represent pore throats while the other half are the pore bodies. All model pores have the

same length, L = 4mm (as in the previous UBE simulation).
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The flow rate to the model, Q, should be determined for the breakthrough time, tbr

of the model to correspond that of the experiment. In other words, average velocity of the

model should match the real value. With the UBE model, it was a straightforward

operation as the same pore fluid velocity occurred in each bond. For the bubble model,

the pore fluid velocity varies through each bond, detailed calculations are needed. Flow

distributes to each bond in bubble, i, in proportion to R4, i.e. for bond, k, with radius Rk:

qk = Q N k for k = 1, 2, 3,...W (6.25)

Y R4
k=1

where W is the total number of bonds belongs to each bubble.

The subscript indicating the bubble, i, is omitted for simplicity in equation (6.25).

The velocity of the bond, Vk is defined as

v - _- QRk (6.26)
kR E( Rk

The time step in the network simulation is picked as the shortest travel time for all bonds

in the model:

At = Lm (6.27)

where Lm and Vmax denote the length and the maximum velocity of the mth bubble where

the bond belongs.

At each link, the total volume flow rate given to the link is partitioned between

fraction that passes through, q P and the remainder that will stay at the entrance, (1- q ).

The ratio between q P and (1- q ) should be proportional to that of the travel time of the

given link to the given time step, as explained in Chapter 3.
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qP =q: q At (6.28)

where L denotes the length of the current bubble. Substituting equations (6.27),

qP =qk V k Lm (6.29)
v. L

Then the total flow rate passing through the bubble during the given time At can

be determined as:

w
Qk =qpAt (6.30)

k=1

This flow rate, QP denotes the effective flow rate of the model and its ratio to the

total flow rate injected to the model, Q, corresponds to the ratio of the average seepage

velocity of the bubble, vavg, to the maximum pore velocity, vmax:

vg QP
-n"g Q= -- (6.31)
v. Q

If there are sufficient bonds at each bubble, the seepage velocity will not deviate

significantly. The velocity is matched with the known seepage velocity and as a result,

the flow rate can be determined.

t H = (6.32)
i=1 Vavg, i
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6.4.2 Effect of pore velocity on attachment probability and detachment

rate

In contrast to the UBE model, the bubble model has a distribution of pore size and

corresponding pore fluid velocity. Therefore, it is important to decide how the empirical

parameters (i.e. Ap and k,) might be affected by the pore fluid velocity. The effect of

injection velocity on filtration is clearly illustrated in Figure 6.13, which compares the

measured breakthrough curves during the injection period (upto 10 pV) for three tests

with different injection velocities ('slow', 'medium' and 'fast'). The effluent

concentration builds up more rapidly and reaches a high plateau in the fast tests.

The previous section has shown (from UBE model simulations in Figure 6.12b)

that the rate of initial effluent concentration build-up is controlled by the detachment rate,

kr. Therefore, it is likely that detachment rate increases with the pore velocity:

kr = kv (6.33)

where ko [1/L] is a constant that will be determined at the reference value of

vo = 1.38x0 cm/sec, used in the 'Smooth Slow' tests, and will be referred to as the

'reference detachment rate'. Therefore, a value of k0 = kr Ivo = 0.33 cm-' as used in the

best-fit UBE simulation given in Figures 6.12.

Figure 6.14a,b present the breakthrough curve and the concentration profiles (at

the end of injection period and the wash period) for the 'Smooth Slow' tests. The

attachment probability, by definition, partitions the deposited particles into entrapped

(either on the surface or at a solid-solid contact point) and hindered fractions. Therefore,

it seems reasonable to assume it is less sensitive to seepage velocity. Following this

rationale, a constant value of Ap = 0.02 was used for the bubble model simulation to

match the breakthrough curve, with k0 = 0.28 cm-1 (vs. k = 0.33 cm-1 for UBE) with

these parameters, the bubble model show slightly higher initial rates of concentration

build-up despite the decrease in assumed detachment rate.
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In the bubble model, hydrodynamic dispersion is intrinsically modeled through

distributed bond sizes where flow velocities differ according to equation 6.26. As a result,

the average flow velocity in the bubble, vavg, is different from the maximum flow velocity,

Vmax, in an individual bond (equation 6.31). Then, the particles flowing through larger

bonds will arrive faster than those in smaller bonds, simulating the real porous media

behavior. Therefore, the ratio between Vavg and vmx is the controlling factor for the first

arrival of particles, which is determined solely by the distribution function of the bonds.

The first arrival occurs at 0.9pV in the current bubble simulation, which is slower than the

measured first arrival at 0.6pV.

The effluent concentration build-up rate progressively slows down in the bubble

model, reflecting the effect of decreased overall detachment rate, and producing better

agreement with the measured curve during the wash stage was found for the UBE model.

The bubble model simulation also matches the trend of measured relative concentration

profile both at the end of injection stage and at the end wash stage as clearly shown in

Figure 6.14b". This reflects the role of bond size distribution on collection rate for

different sized particles.

When the same values of Ap and k0 are used to simulate the 'Smooth Medium

(SM1,2,3,4,5)' and 'Smooth Fast (SF 1,2,3)' Figure 6.15 and Figure 6.16 were obtained.

In both cases, bubble model underestimates the stabilized breakthrough concentration

between 6pV and lOpV very slightly, and those during the wash stage. As a result,

simulated concentration profiles (both after injection and wash stages) slightly

overestimate the measured data both cases. As noted earlier in Section 6.3, the reason that

the simulated breakthrough concentrations are lower than measured values during the

wash stage seems to be related to the detachment of some entrapped particles during the

wash stage.

In all three cases, when the concentration profiles are compared in Figures 6.14b,

6.15b and 6.16b, it is noticeable that the concentrations near the injection point were

consistently overestimated by the simulation, particularly after the wash stage.

Considering that larger particles have higher deposition rate (Figure 6.11), deposit

" Large scatter in the results of bubble model is due to the changes in total volume of bubble, in which the
bond sizes are randomly assigned. The total volume of maximum sized bubble is about 8% larger than that
of the smallest.
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concentration near injection point should be controlled by that of the larger particles.

Therefore, the characteristically low deposit concentration near the injection point (z =

1.2cm) should indicate a lower attachment probability of larger particles than expected,

or the ease of reversing larger particles entrapped in contact points. Further observational

study, especially the particle size distribution after injection/wash stages to compare the

simulated results will be needed to make any assumption on the dependence of

reversibility of contact entrapment on the particle size. It was concluded that at this point

with given information, the assumption of detachment rate increasing with the pore

velocity should be chosen to explain the dependence of measured results on injection

velocity.

6.4.3 Effect of surface roughness

The parameter Ap describes the probability that a deposited particle (due to

gravity) will remain attached either by the surface roughness or at a solid-solid contact

point. Therefore, the correlation between the attachment probability and the pore velocity

is more difficult to define than the detachment rate (equation 6.35). In the previous

section, it was concluded that the attachment probability related to solid-solid contact

points (i.e. contact entrapment) is largely unaffected by the pore velocity. Surface

entrapment, on the other hand, must be strongly influenced by hydrodynamic forces and

pore fluid velocity.

For one of the 'Rough Slow' test (RS3), Yoon et al. (2004) measured the effluent

particle size distribution with a Coulter Counter. Figure 6.17a compares the measured

effluent particle volume distribution at lOpV with that of inflow shown in Figure 6. 10a. It

is clear that the population of smaller particles in the effluent is underestimated by the

bubble model. In Figure 6.17b, the measured input and output particle volume

distribution are compared by plotting discrete (not cumulative) particle volume against

size. It is noticeable that the effluent volume of particles that are smaller than

approximately 5um diameter is not changed from injected volume, while that of larger

particles is grossly decreased. This observation suggests that particles smaller than a limit

size are not collected at all.

186



The adhesion theory by Varidyanathan and Tien (1988) presented in Chapter 2

describes an adhesion mechanism similar to surface entrapment proposed by Yoon et al.

(2004), considering that a particle in contact with a plane boundary will stay in place

when it acquires sufficient resisting moment against the moment rolling it over a surface

protrusion. The adhesion theory also specifies that the resisting moment mainly comes

from van der Waals force, while hydrodynamic drag works as driving force. According to

this theory, a particle cannot be collected if the drag force, or equivalently, the flow

velocity is high enough to lift it back to flow. Therefore, when the critical velocity is

higher for a given particle, the particle should be considered "temporarily collected", or

hindered (rather than entrapped) even though it has met a protrusion.

The minimum flow velocity that enables particle to be lifted is termed the 'critical

velocity'. Mathematically, the critical velocity should be derived from moment

equilibrium in equation 2.30:

FA(2rPh -h 2 ) 12  FD (rP -h)+ M, (2.30bis)

The adhesive force, FA that appears on the left hand side can be determined from

the known equation for van der Waals force given in equation 2.31. However, the drag

force FD and moment MD were evaluated from analytical solutions that are only

applicable for infinite half space in the original theory. This is unrealistic for application

to interstitial pore flow as noted in Chapter 2. An alternative approach uses the results of

particle flow simulation for one particle placed on the wall of a cylinder presented in

Figure 4.8 to develop a 'wall correction factor', Kp. The wall correction factor gives the

drag force acting on the particle when multiplied by the Stokes force (equation 4.43).

Figure 6.18a summarizes values of critical velocity obtained from equation 2.30

with van der Waals force in equation 2.31 and the Stokes force corrected by the wall

correction factor when the cylinder radius, R = 1mm. The Hamaker constant, AH was

assumed 3x 10-13 erg, and the assumed height of the protrusion, h = 2um according to the

visual observation made in the experimental study as mentioned in Section 6.0. The

figure shows that values of the critical velocity increase nonlinearly with the particle size

(i.e. it is more difficult to lift larger particles from the wall). The same figure shows the
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seepage velocity for the slow test, v = 1.36x10 2 cm/sec which can be interpreted, as the

particles are larger, it becomes harder to lift them up from the wall. In the same figure, a

line designating the seepage velocity, v = 1.36x10 2 cm/sec is drawn over the entire size

range. For a given seepage velocity, this defines a minimum particle size which can be

collected in the model pore. According to the criterion, for v = 1.36x10 2 cm/sec (the

slow test) 'limit particle radius', rimit = 3.2pm, slightly larger than the measured

rimit = 2.5/um.

The critical velocity values are affected by many factors. For example, Figure

6.18b shows the curves of critical velocities for different pore tube radii. As pore size

increases, the critical velocity also increases because it reduces drag force. The critical

velocity will also increase as the height of protrusion increases. Since the size of

protrusion must also be distributed, so should the critical velocity. In addition, collected

particles can also serve as a protrusion and hence the values of critical velocity will

change with time. On the other hand, pore velocity also changes with the pore size (in

both the physical experiments and the bubble model) and will affect the limiting

collectible particle size. Finally the drag force acting on a particle, as well as pore fluid

velocity should be affected by the neighboring collected particles as explained in Chapter

4 and hence, the critical velocity will be dynamic.

It should be noted that the limit particle size is only applicable to collections on

the surface (i.e. surface entrapment and hindrance), not to collections at contact points. It

was hypothesized, accordingly:

1. No surface entrapment is allowed for particles rp < rzimii and hence, a reduced

attachment probability, A, =Ape is applied. Ape will be referred to as 'contact'

attachment probability while Ap will represent a 'total' attachment probability

including the surface attachment probability.

2. The rest of particles, with the fraction (1-Ap,), are considered as hindered

particles.

Unfortunately, there are too many uncertainties involved in the prediction of limit

size, rlimit, and therefore, the value was included as a calibration parameter similar to the

total attachment probability, A, and the reference detachment rate, k0 in numerical

simulations. Contact attachment probability, Apc should be equivalent with the attachment
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probability for smooth beads since smooth beads do not have any surface roughness.

Therefore, A, = 0.02, which was obtained during simulations of smooth tests can be used

for rough test simulations.

6.4.4 Bubble model simulation results of 'Rough Slow' test

Figure 6.19 shows three breakthrough curves and corresponding concentration

profiles using the proposed bubble model with the total attachment probability, Ap = 0.09,

contact attachment probability, Ap, = 0.02, detachment rate, ko = 28.2cm-1, and varying

limit particle size, riimit = 2.5, 5, 9pum for slow, medium and fast tests, respectively. Figure

6.19a shows that the increasing rlimi, mainly affects the stabilized breakthrough

concentration value. With the measured rlimit = 2.5um, the best-fit curve and

corresponding relative concentration profile was obtained. The characteristic

underestimation during the wash stage (observed during simulations of 'smooth' tests)

persists, possibly due to the lift-off of less firmly entrapped particles coming out as

discussed earlier. However, it seems this underestimation did not affect the concentration

at the end of wash stage, as shown in Figure 6.19c.

Figure 6.20 compares the bubble model simulation results with rimi = 2.5pim with

the continuum model results, previously shown in Figure 6.6. Continuum model matches

the breakthrough concentration. However, bubble model simulation greatly improved the

prediction of (C+S)/Co, profile at lOpV of higher concentration close to the injection

point than that can be projected linearly from downstream in the filter bed. This can be

explained by the collection efficiency when is an increasing function of the particle

settling velocity relative to the pore fluid velocity, vs IUfla,, (equation 5.7). According to

this equation, collection efficiency becomes higher when the particles have a higher

settling velocity, (i.e. larger particles flowing pores with smaller pore fluid velocity).

Therefore, by including particle and pore size distributions, the bubble model disperses

the collection efficiency, produces a nonlinear spatial distribution in the deposit

concentration profile. Therefore, it can be concluded that particle and pore size

distributions, help to explain the measured concentration profile.
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Figure 6.20c compares relative concentration (C+S ) values at an observation

point near the injection point (at 1.8 cm) from one of the 'Rough Slow' test, RS2. This

result also shows greatly improved matching with the measured values compared with the

continuum model result.

6.4.5 Bubble model simulations for 'Rough Medium' and 'Rough Fast'

For bubble model simulations of 'medium' and 'fast' tests with rough beads, the

empirical parameters, i.e., A,, A,,, To and riimit are needed. Through experience of

simulating the tests with smooth beads in Section 6.4.2, the same values of Ap, and ko

can be used to simulate the results with varying seepage velocities, and with the same

logic, the Ap =0.09, ko =0.28cm-1, and A, = 0.02 can be used for simulation of 'Rough

Medium' and 'Rough Fast'. As shown in Figure 6.19, limit radius, rlimi, controls the

stabilized effluent concentration, and it is a function of seepage velocity. Therefore, rlimi,

is calibrated with the average stabilized effluent concentration, C,1 , ICo = 0.85 for the

medium test and C,,, ICo = 0.95 for the fast test. Table 6.4 summarizes the empirical

parameters used in the bubble model simulations.

Figure 6.21a and b present the simulation results for 'Rough Medium' tests

(RM1,2,3,4). The calibrated rliit value corresponding to final C0,,,/Co was 5pum. Although

the simulated values reasonably match the measured values during injection period, the

underestimation of wash stage concentration is more pronounced than in 'Rough Slow'

simulations. Again, this does not affect the prediction of concentration profile and the

simulated and measured concentration profiles match very well as shown in Figure 6.21b.

The same trend is observed in the simulations of 'rough fast' tests (RF1,2) shown in

Figures 6.22a,b. The rlimit value used is 9um.

6.5 CONCLUSIONS

This chapter has provided a detailed account of the simulations of 1-D particle

injection tests performed by Yoon et al. (2004) using analytical and numerical network
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simulations, with UBE and bubble model assumptions. The bubble model simulates the

particle collection process with three parameters, 1) collection efficiency, 17, 2) the

normalized detachment ratio, kr, 3) total attachment probability, Ap, 4) contact entrapment

probability, APC, and 5) the limit particle size, ritit. Among these, the collection efficiency

is evaluated using the parametric study result with measured settling velocities of used

suspension particles. Based on the comparison of breakthrough concentrations of tests

with three different seepage velocities, 'slow', 'medium' and 'fast', it was first

hypothesized that the detachment probability kr is linearly proportional to the pore fluid

velocity (kr = ko v). With this hypothesis, the measured breakthrough curves of 'slow'

injection tests with smooth beads were calibrated to find the values of Apc and k0 . When

the obtained parameters were applied to tests with different injection velocities, 'Smooth

Medium' and 'Smooth Fast', the results showed reasonable agreements with measured

values.

Surface roughness was considered to cause surface entrapment and effectively

increasing the overall attachment probability from Ap, with smooth beads to Ap with

rough beads. The dependence of particle size on the surface entrapment mechanism was

discussed and the limit particle size, rlimit was defined as the criterion below which only

contact entrapment is allowed. Total attachment probability value, Ap was obtained by

calibrating the 'Rough Slow' tests results. When the Ap value, together with Ape and k0

found from 'Smooth Slow' tests to simulate 'Rough Medium' and 'Rough Fast' tests,

good predictions of breakthrough and concentration profiles were obtained.

The simulation results characteristically underestimated breakthrough

concentration during the wash stage. This is probably due to release of some entrapped

particles, which were assumed firmly collected. However, more detailed experimental

study is required to understand the reversibility of the entrapment process.

The collection efficiency, )7H, proposed in Chapter 5 applied in the bubble model

was found not predicting the measured filtration rates without help of the empirical

parameters. However, it should be noted that the predicted relationship between 7H with

particle radius (Figure 6.11) has resulted in capturing the characteristic nonlinear spatial

distribution of deposit volume in the bubble model simulations. This suggests that
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filtration rates of the tests were directly related to deposition rates of particles, which was

successfully predicted by the particle flow simulator presented in Chapter 4.
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Table 6.1 Material parameters of experiments by Yoon et al. (2004)

Test Label* Beads Seepage velocity, Initial porosity, Filter depth,
v ** [cm/sec] no L [cm]

RS2 Slow 0.367 16.60

RS3 1.36(±0.13) x10-2 (±0.007) (±0.20)

RM1
RM2 Rough Medium 0.376 16.87
RM3 2.73(±0.24) x10-2  (±0.004) (±0.18)
RM4
RF1 Fast 0.378 16.60
RF2 5.31(±0.14) x10- (±0.002) (±0.08)
SS1 Slow 0.374 17.04
SS2 1.38(±0.15) X102 (±0.002) (±0.09)
SS3
SMi

SM2 Medium 0.373 17.04
M3 Smooth 2.76(±0.08) x10- (±0.002) (±0.06)

SM5

SF1 Fast 0.379 17.06
SF3 5.49(±0.16) x10-2 (±0.003) (±0.08)

Average suspension particle density, ps [g/cm 3

Suspension initial density (mass), Co [g/cm 3] 50 x10-6

R and S represent rough and smooth beads, respectively. F, M, and S represent fast,
medium, and slow seepage velocities, respectively.
** The numbers in the parentheses are the standard deviations.

Table 6.2 Average Pore body and throat radii of three types of regular sphere packing

Type of regular packing

Simple cubic Simple Simple
Orthorhombic Rhombohedral

Porosity 0.4767 0.3954 0.2595

2a 0.7 3 2 0 D9 0.5 2 7 5 Dg 0.4 14 2 D9
Pore Dimensions 2b 0.7320 D9 0.5275 Dg 0.4142 D9(see Figure 6.7)

2c 0.7 3 2 0 D9 0.5 2 7 5 Dg 0.2247 D9
Rthroat 0.207 Dg 0. 142** D9 0.077 Dg

*D = grain diameter

** Averaged: (0.207+0.077)/2
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Table 6.3 Parameters used for UBE simulations

Seepage velocity, v 1.38x10-4 m/sec

Model pore radius, R 1 mm

Model pore length, L 4 mm

Total number of elements 42

Table 6.4 Parameters used for bubble model simulations

Total Contact Reference

Test Label attachment entrapment detachment Limit size,
probability, probability rate, k [cm 1] rimit [pm]

ApApe ae o[m

RS1
Rough Slow RS2 2.5

RS3
RM1

Rough Medium RM2 0.09 0.02 5.0
RM3

__________RM4

Rough Fast RF2 9.0
RF2 28.2

SS1
Smooth Slow SS2

SS3
SMi
SM2

Smooth Medium 5M3 0.02 0
SM4

___ ___ __ ___ _ M5

SF1
Smooth Fast SF2

SF3
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CHAPTER 7. SIMULATIONS OF

MICROFINE CEMENTITIOUS

GROUT INJECTION

7.0 INTRODUCTION

As a ground improvement technique first developed 200 years ago (Landry et al.,

2000), grouting has proven its effectiveness in modem geotechnical engineering for

various purposes ranging from filling natural or artificially created voids in ground;

densification, stabilization and strengthening; controlling tunneling or excavation induced

settlement; reducing permeability to prevent seepage around tunnels or dam foundations

(Nonveiller, 1989, Kutzrer, 1996, Welsh, 1998, and Gouvenot,1998). Grouting has been

carried out by various techniques (Henn, 1996). Permeation grouting is primarily used to

replace water and/or air voids in the soil mass by injecting a fluid grout at low pressures

(in order to prevent fracturing of the soil mass). Permeation grouts include cementitious

suspensions and chemical solutions. Cement-based suspensions (cement grouts) are the

most commonly applied material in grouting. Although chemical grouts such as sodium

silicate have been used successfully for fine-grained substrata in which cement grouts are

not penetrable, cement grouts dominate being superior on cost factors, durability and

environmental safety (Gause and Bruce, 1997). In addition, the development of microfine

cement has allowed application of cement grouts for fine-grained sandy soils with

hydraulic conductivity as low as 10-~10-4 cm/sec (Zebovitz et al., 1989). This chapter

compares experimental results from a series of microfine cement grout injection tests in

fine sand reported by Bouchelaghem and Vulliet (2001) with numerical simulation using

a bubble network model using the parametric study from the model pore particle flow

simulator in Chapter 5.
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7.1 FACTORS AFFECTING PERMEABILITY OF

CEMENTITIOUS GROUTS

Cement based suspension grouts, although superior in material properties to

chemical solution grouts, have intrinsic characteristics that deteriorate their injectibility.

They are 1) hydration and 2) filtration. Hydration refers to a process of solidification that

can cause cement grout to accumulate inside pores and inhibit further injection. The main

hydration usually begins after an initial induction period (Taylor, 1997) of at least a few

hours and can be extended (up to a few days) by the use of retarding agents after mixing.

The partial hydration occurring during the induction period can affect the flow by

changing the rheological properties of the grout even if it does not produce significant

solidification. The effects of hydration on rheological properties of cementitious grout

and grout penetration are explained in detail in Appendix A. The other factor adversely

affecting the injectibility of cement grout is filtration. Filtration occurs when either the

water 'bleeds' out of the grout or solid cement particles are separated from the fluid

grout. The former, often referred to as pressure filtration because it particularly occurs

during pressure grouting process, is more common when the water-to-cement ratio (W/C)

in grout is relatively low, such that the fluid behaves as thick slurry rather than a

suspension. Pressure filtration causes a rapid increase in viscosity and reduces

penetrability of grout into small pores (Landry et al., 2000). On the other hand, soil grains

act to filter cement particles from dilute suspensions at high water-to-cement ratios,

decreasing the size of pores and hence, increasing hydrodynamic resistance and

ultimately causing clogging. Arenzana et al. (1989) first suggested that this phenomenon

is essentially a deep bed filtration process.

Deep bed filtration is often encountered when the water content in the grout mix

is increased in order to improve rheological properties of it and acts to negate any real

advantage during injection (Bruce et al. 1997). While pressure filtration is relatively easy

to prevent by the use of additives. Problems caused by deep bed filtration are pervasive

and have not been studied in detail.
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7.2 LAB-SCALE INJECTION TESTS OF MICROFINE CEMENT

GROUT

Bouchelaghem (2002), Bouchelaghem & Vulliet (2001), and Bouchelaghem et al.

(2001) have presented a series of studies on flow and transport of microfine cement grout

in soil, using 1-D and 3-D lab-scale tests as well as a continuum model simulations.

Figure 7.1 shows the size distributions of the sand the cement particles used in the

experiments. As shown in the figure, the diameter of the soil grain (D15 = 0.17mm) is

much larger than that of the cement particle (d85 = 0.008mm), D15 /d 85 = 21.3 satisfying

the lenient 'groutability ratio' criterion (Mitchell, 1981): D 15 Id 85 >11 although slightly

less than the strict criterion of ratio D 15 Id85 >24.

Nevertheless, filtration was observed both in one- and three-dimensional injection

tests, manifested by increases in headloss. Figure 7.2 shows a diagram of the

experimental apparatus for one-dimensional injection test represented by Bouchelaghem

and Vulliet (2001), comprising an 82cm high sand column with a series of four pore

pressure tapping points. Table 7.1 lists the material parameters and flow conditions used

in the experiments.

7.2.1 Continuum model

The 1-D injection of a cementitious grout within a saturated porous soil and be

described by the convection-diffusion governing equation of mass balance for the 1-D

transport process can be written as follows:

a(nC) ac a C ca -
+ nv ---- nD - =- (7.1)

at az az az at

where C is the concentration of particles in the suspension, n is the porosity, v the pore

fluid velocity, D the hydrodynamic dispersion coefficient, and a is the specific deposit,

which is defined as the mass of filtered solid per unit porous medium. The main source of

difference amongst continuum models lies in the representation of law defining the
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filtration process (as described in Section 2.1). The most commonly used expression is

the first-order rate law:

AC (2.3bis)
at

where A is the filtration rate. Bouchelaghem and Vulliet (2001) have used density of

suspension p, instead of concentration, C in their formulation:

(7.2)at= p
at

The suspension density, p, measures the total mass of suspension per unit volume while

concentration, C only measures the mass of solid volume per unit volume of suspension.

Therefore, density and concentration has the following relationship:

(7.3)

where p, and ps are the densities of water and solid particles respectively.

As filtered material accumulates, the porosity reduces and this will, in turn, affect

the permeability of the host medium. The Kozeny-Carman equation is then used to relate

changes in porosity to the permeability:

k (n) 3 (-no 4/3

ko no 1-n
(7.4)

where k and ko are the current and initial values of the permeability.

A phase change rule can then link the change in porosity to the specific deposit:
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n =no - - (7.5)

where ps is the solid density of particle for which (p, = 3.0 g/cm 3 is used for cement

grout).

Darcy's law is assumed to apply in both the grouted and ungrouted (saturated)

zones of the soil:

Grouted zone: k(n)dp V (7.6a)
p dz

Ungrouted zone: k = dp = Va (7.6b)
pw dz

where Va is the apparent velocity, r the pore fluid pressure, u and P, are viscosities for

the cement grout suspension and water, respectively.

The filtration rate, A in equation 7.3 was assumed constant in the study by
12Bouchelaghem and Vulliet (2001) . It is well known that the filtration rate is very

difficult to predict, especially for random porous media such as soil because of the

dynamic nature of the filtration process at the pore scale. For this reason, the values of

filtration rate are usually obtained through back analysis of experimental results, such as

effluent concentration and pore pressure measurements.

Bouchelaghem and Vulliet (2001) have calibrated A from separate small-scale

injection tests in an 8-cm column (instead of the 82 cm column used for the main test).

The effluent concentration and pressure gradient data were fitted to results from a

continuum analysis. The resulting A values ranged over more than one order of

magnitude during injection. Eventually, through a detailed statistical study, the Authors

selected a constant value, A = 1.5xlO-4/sec for further numerical simulations.

Figure 7.3a shows an independent analysis of these data using the same material

properties and assumed filtration rate. These calculations assume that dispersion is

12 The Authors admit this is an oversimplification due to lack of information.
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negligible (i.e., D = 0; equation 7.1) and ignore changes in the viscosity of the suspension

as filtration occurs.

The initial pore pressures at each of the four tapping points reflect the injection

pressure. The pore pressures then increase as the suspension grout front rises to the

elevation of the tapping point. There is a clear change in the rate of pore pressure

evolution after the grout front breaks through to the top of the column at time, tbr = 250

seconds. Although the pressures curves simulated by the continuum model generally

match the experimental results well for the two positions closer to the injection point (z =

5 and 15 cm), the model characteristically overestimates the post-breakthrough (t > tbr)

measured pressures further up the column (z = 45 and 65 cm).

Bouchelaghem and Vulliet (2001) also noted the discrepancy between measured

data and their simulation result, (which are very similar to values in Figure 7.3). They

suggested that this could stem from the fact that 2 is not constant (as assumed in the

continuum model). However, they did not offer an explanation for A changes as grout

penetrates.

This result is actually due in larger part, to the overestimation of the pressure

build up from the time when the grout first reaches the observation point, ti, until tbr. As a

consequence, the pressure at breakthrough, Pbr, is higher than the measured value. For

example, at z = 65cm, Pbr = 30kPa compared to observed 17kPa. Changes in pressure for

tl < t < tbr are mostly due to the increased viscosity of the pore fluid (i.e. for cement grout,

p = 3cp, while water has p, = lcp). Therefore, overestimated pressures for t < tbr must be

mostly caused by overestimated viscosity. Figure 7.3b shows simulated breakthrough

curve (no measured values were available in the publications). Looking closely, it shows

that effluent concentration reaches 0.52 of the initial concentration (Cut ICo = 0.52)

almost instantly at t = tbr = 250secs and continues to decrease at a very slow rate to

Cou ICo = 0.5 at t = 600sec. This must be due to decrease in pore volume and resulting

increase in pore fluid velocity, which work to reduce filtration by shortening the travel

time of suspension in unit pore volume. This seems a substantial change in concentration

enough to induce change in viscosity, and accordingly, a new continuum model including

viscosity change due to filtration has to be considered.
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7.2.2 Updated continuum model with viscosity change

(1) Viscosity changes with volumetric fraction of solid particles

The microfine cement suspension used in Bouchelaghem and Vulliet (2001) is

much more concentrated than the acrylic particle suspension used in Yoon et al. (2004)

simulated in Chapter 6. The suspension density, p, having the relationship with

concentration, C as given in equation 7.3, can be converted to the volumetric fraction of

solid particles, #,, as follows:

P PPW (7.7)

According to this, the microfine cement suspension has volumetric fraction, p = 0.075

while the acrylic suspension of concentration C = 50 x10-6/cm 3 has volume fraction of

p = 4.545 x10-5.

As a suspension becomes more concentrated, interactions between particles

become significant and they change the rheological properties of the suspension.

Substantial research has been carried out on the rheology of concentrated suspensions

(see Probstein, 1994 or Tsai et al., 1992 for review) because it is fundamental knowledge

of widespread interest in many industrial applications. Rheological properties of

suspensions may depend on many properties of solid particles including particle size

distribution, geometry, ionization and volumetric fraction of particles (Raiskinmaki et al.,

2000). However, it is well agreed that volumetric fraction of particles is the most

important factor controlling the viscosity, since Einstein (1956) derived a formula for

viscosity at zero Reynolds number:

p = pf(I - 2.5#p) (7.8)

where p is the viscosity of the fluid phase. Einstein's formula is derived assuming no

hydrodynamic and physicochemical interactions between particles, it is only valid for

very dilute (p < 5%) suspensions (Raiskinmki et al., 2000).
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As the solid volume fraction increases and the interactions between the suspended

particles become significant, a nonlinear dependence of shear stress, r on strain rate, j

may appear (i.e. non-Newtonian fluid behavior). Especially, it is known that this non-

Newtonian behavior is mostly due to small-sized (less than 100 micron) particles (Russell

et al., 1989).

In the cement literature, it is widely accepted that fresh mixed cement suspension

shows non-Newtonian behavior unless the cement content is very small. Often, especially

for extremely dense cement pastes used for structural purposes (water-cement ratio,

W/C~0.3), a Bingham model, with a fixed yield stress, r, at zero shear rate is used

(Tattersall and Banfill, 1983):

T='U +Trf for r ;>_rf (7.9a)

0=k for r<rf (7.9b)

Alternatively, power-law relationships have also been proposed to model the non-

Newtonian behavior of cement suspensions (Struble and Sun, 1995).

T = af k (7.10)

Mittag (2000) carried out a detailed experimental study on the rheology of microfine

cement suspensions. The cement particles used in the study have very similar particle size

distribution with the one used in Bouchelaghem and Vulliet (2001). Through

measurements with microfine cement suspensions at various concentrations (W/C = 3-10),

Mittag suggests an empirical relationship for the power-law parameters a and b in

equation 7.10:

a = 0.001+10.0 W/C-27 5  (7.11a)

b = 1.0- 1. 13 W/C -0.53 (7.11lb)
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The measured values of shear stress are shown in Figure 7.4a with the power-law

equation 7.10 with these parameters. The water-cement (weight) ratio, W/C has the

following relationship with the particle volume fraction, #p:

# = 1 (7.12)
1+ P W/C

p,

The microfine cement grout in Bouchelaghem and Vulliet (2001), according to this

relation, has W/C = 4.1.

Figure 7.4b shows shear stress-strain rate relations based on Mittag's correlations

for three different W/C values 4.1, 6, and 8 (corresponding to OP = 0.075, 0.053 and

0.032). The curves clearly show decreasing stress at the same value of strain rate with

increasing W/C (i.e. decreasing particle concentration). The measured value of

suspension viscosity reported in Bouchelaghem and Vulliet (2001) was P = 3cp, and the

suspension was modeled as a Newtonian fluid. A slope of p = 3cp can be obtained from

the stress curve for W/C = 4.1 if a straight line is drawn from zero to (i.e. k = 2750sec-1,

r = 8.24Pa). This is equivalent to approximating the power-law fluid as a Newtonian

fluid with an effective viscosity, pNewton - When straight lines are drawn through the

origin at the same shear rate, k = 2750sec-1 for curves W/C = 6.0 and 8.0, as shown in

Figure 7.4, UNewton = 2.3cp and 1.7cp are obtained respectively.

As shown in Figure 7.3b, the concentration decreases to C0"/Co = 0.515 by

filtration is obtained from continuum model. This is equivalent to the same value of

normalized volumetric concentration y /Ioo and to W/C = 8.3, according to equation 7.12.

The power-law fluid with parameters given by Mittag's expression in equation 7.11

predicts substantial changes in viscosity as shown in Figure 7.4.

Although change in viscosity with particle concentration is not modeled by

Bouchelaghem and Vulliet (2001), an empirical model of viscosity has been suggested in

a more recent publication, Bouchelaghem (2002):
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P = P. I+ I P (7.13)

where p = 3cp, the initial viscosity at ,o = 0.075.

Figure 7.5 shows the effective Newtonian viscosities obtained based on Mittag's

power law stress-strain relation (equation 7.10, 7.11) and viscosity from equation 7.13 are

plotted against the volumetric fraction, O,. The two expressions show reasonable

agreement even though they are based on two different flow models (Newtonian vs.

Power-law).

(2) Updated continuum model with viscosity change

Unfortunately, the current continuum model does not have an ability to deal with

non-Newtonian behavior that is predicted for the microfine cement suspension. Therefore,

a Newtonian fluid approximation is used (similar to Bouchelaghem and Vulliet, 2001).

The linear expression in equation 7.13 is applied, replacing p in equation 7.6a, previously

considered a constant, 3cp. Figure 7.6a presents a revised calculation of the pressure

evolution. It shows an overall decrease in pressure, especially at two downstream

measuring points (z = 45cm and 65cm). This is because the suspension concentration

decreases with filter bed elevation due to successive filtration. As a result, the post-

breakthrough pressures for the downstream points match much better the experimental

values than for the original condition (Figure 7.3a). However, now the pressures for two

upstream points are grossly underestimated.

Filtration is solely responsible for the pressure development after breakthrough,

and it is clearly underestimated at points simulation near to the injection point, (i.e. at z =

5cm, 15cm). Thus, it seems clear that the continuum model underestimates upstream

filtration. This trend is concurrent to what is observed in continuum approach in Chapter

6. Figures 7.6b, c show the continuum model results for larger trial values of the

A = 3.0x10-4 sec~1 and 4.5x10-4 sec-1. Although higher values of A increase in final

pressure at the top elevation (z = 5cm), it seems clear that no improvement can be

expected by simply increasing the constant value of filtration rate. Thus, improvement

will be pursued through bubble model simulations in subsequent sections.
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7.3 PORE SIZE DISTRIBUTION CALCULATION

In order to construct a network model, geometric features of the Leman sand bed

(i.e. pore size distribution, location, orientation and connectivity) should be known.

In principle, a three-dimensional representation is possible through reconstruction

of pore space using stochastic simulation techniques from experimental data. This can be

done by serial sectioning of a sample with pore casting (e.g., Lymberopoulos and

Payatakes, 1992, and Tsakiroglou and Payatakes, 2000) or with nondestructive

techniques such as X-ray or magnetic resonance microtomography (e.g. Spanne et

al.,1994, Baldwin et al., 1996, and Vogel and Roth, 2001). However, the majority of the

existing work for deriving geometric parameters corresponding to construct the pore

network are based on fitting the experimentally measured pressure-saturation relations

using either mercury intrusion porosimetry (e.g. Tsakiroglou and Payatakes, 1990,1991)

or soil water characteristic retention curves (e.g. Chandler et al., 1982, Wilkinson and

Willemsen, 1983, Koplik et al., 1988, Le Bray and Prat, 1999, and Carmeliet et al.,

1999). When a network model is calibrated with the experimental results, some

postulations on the shape and connections of pores and pore throats are inevitably made.

In contrast to the glass-bead filter column used in the colloid transport

experiments described in Chapter 6, little is known about the pore structure of the Leman

sand column in the tests by Bouchelaghem and Vulliet (2001). Instead, pore sizes must be

estimated from the particle size distribution shown in Figure 7.1.

The current interpretation uses a method proposed by Arya and Paris (1981). This

method uses a capillary tube model in order to predict moisture characteristic curves for

unsaturated soils. Arya and Paris (1981) assume all soil grains are spherical. They first

select a number of grain radii, agi, and corresponding weight fractions, wi, from the

particle size distribution curve. The pore volume formed by the assemblage of spherical

grains of radius agi, is simplified as a single cylinder of radius Ri, and length, hi. The

volume balance between pores and grains gives the following equation:

e(4ag'N 1 /3) = RiSdhi

-R = [4a'iNie/3h11/2 (7.14)
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where Ni is the equivalent number of spherical particles of radius, agi, per unit weight and

e denotes the macroscopic void ratio.

The length of the pore, hi, can be simply assumed equivalent to total pore length

when grains are aligned, i.e., hi = Ni (2 agi).

However, Arya and Paris (1981) argued that because particles are not perfectly

spherical, the contribution from each particle to the pore length is greater than 2 agi, and

proposed to increase the number of spherical particles in estimating the pore length:

hi = Nj 2ag, (7.15a)

8= log N / N (7.15b)

where, Ni , is the number of real, non-spherical particles considered to have a dimension

equivalent to agi per unit weight of solid, which must be greater than Ni. By substituting

equation 7.15 to equation 7.14, the equivalent radius of the pore becomes:

Ri = agj[O.66eN 1 -] 1 2  (7.16)

In Arya et al. (1999a), several values of Sof various types of soils were obtained

empirically by comparing soil moisture characteristic curves.

They also suggested an empirical relationship between Ni and the fraction of

weight of the ith size range, wi, from the particle size distribution curve:

log N a + blog(w /a 3) (7.17)

The two empirical constants a and b were reported for various soils in the same

publication (see Table 7.2). For example, they proposed values of a = -2.478 and

b = 1.490 for typical sands.

Arya et al. (1999b) successfully applied equation 7.8 and 7.9 to predict the

hydraulic conductivity of unsaturated soil as a function of the moisture content.
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Equations 7.16 and 7.17 have been applied to the grain size distribution of the

Leman sand shown in Figure 7.1. Using the same coefficient values (a = -2.478 and b =

1.490) proposed by Arya and Paris (1981), the resulting pore diameter distribution is

plotted in Figure 7.7. Unlike grain sizes, the calculated pore size overlaps with the

cement particle sizes. This means that filtration by sieving should occur, although not to

significant extent (less than 5% of pores overlap with the cement particles), as will be

explained later when bubble model simulation results are presented.

It is noticeable that there is a wider spread in pore diameter than grain particle

size. The 50% passing diameter for the pores, Dp5o = 0.025mm is smaller than

D50= 0.05mm for the sand grains.

7.4 MODEL PORE PARTICLE FLOW SIMULATION RESULTS

Although Chapter 5 has presented data from simulations of collection in model

pores, an independent series of flow simulations have been done for the current case,

using material parameters from Bouchelaghem and Vulliet (2001).

Three different types of model tubes were used in these for simulations: 1) small

horizontal tube with radius, R = 0.125mm, and length, L = 0.25mm; 2) small inclined

tube with same radius and length, but with dip angle, 0 = 450 (cf. Figure 5.1); and 3) a

larger horizontal tube with radius, R = 0.25mm, and length, L = 0.5mm. All tubes

maintain the pore aspect ratio, LIR = 2. It is assumed that the cement particles are

uniformly distributed. Considering that the cement particles used in the experiments

range in size from 0.00 1 to 0.012mm in diameter as shown in Figure 7.1, a representative

radius, rp= 0.005mm, is selected for the small pore. A radius of 0.01mm is used for larger

particles, scaled with the tube radius. Table 7.3 summarizes the parameters used in the

model pore simulations. For each case, a series of random particle injections are

performed and the results are presented collectively.

Particles are injected at a rate of 10 particles per second at randomly selected

positions (and uniform distribution) over the entrance of the tube (this assumption does

not affect the subsequent collection efficiency). The particles move under the influence of

hydrodynamic forces and gravity. The hydrodynamic forces on the suspended particles
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are not explicitly calculated but are indirectly invoked by assuming the particles move at

the same velocity as the suspension fluid. The gravitational force, on the other hand, is

introduced by specifying a constant settling velocity, vs, according to Stokes Law:

v ( = gr2 (4.10bis)

i.e. for the small tube simulations (Cases 1, 2), vs = 0.034mm/sec and the average flow

velocity is set to be same as the seepage velocity (v = Va/no).

When a particle either encounters the pore wall or makes contacts with previously

deposited particles, it is considered 'collected'. Whenever a new collection occurs, the

particle-fluid coupling force density is updated by the iteration scheme explained in

Section 4.4.3. Collected particles remain under the influence of gravity until they make at

least 3 contacts with other collected particles and form stable deposits.

Figure 7.8 shows a snapshot of a simulation for the large pore tube (Case 3) after

an injection time of 934 seconds, when the number of collected particles, N, = 705. The

streamline pattern shows clearly the interference effects caused by the collected particles

on the flow field.

7.4.1 Collection efficiency

Figure 7.9 summarizes the cumulative number of collected particles, N, as a

function of the total number of injected particles, Nin for small tube simulations. The

results in Figure 7.9a correspond to 14 simulations for flow in a horizontal pore tube (i.e.

gravity affects only the settling velocity), while Figure 7.9b corresponds to 30

simulations (of shorter duration) for upward flow through a tube oriented at 0 = 450 to

the horizontal (Case 2).

In both cases, the data can be well described by a linear relation, whose slope 17 is

the efficiency of collection for the pore tube.

226



_N

-N1 0  (7.18)
Nin

According to the correlation gained through parametric study presented in Chapter 5

(equation 5.7), the collection efficiency of a pore of aspect ratio, LID = 1 and 6 = 0, and

Vs /Uflav = 0.01m/sec is 171 = 0.078. Similarly, prior results in Chapter 5 show that the

orientation angle of the pore tube, 0, described by equation 5.9. According to this

equation with 0 = 45', F(O ) = 0.069, and hence, ;j1(450) = 0.054. In comparison the

current simulations generate r7 = 0.088 and 0.058 for Cases 1 and 2 as shown in Figure

7.7. These results are therefore in reasonable agreement with prior calculations presented

in Chapter 5.

7.4.2 Maximum deposit depth, dmax and mound height, hmax

Figure 7.10 shows the maximum deposit depth, dmax and mound height, hmax (cf.

Figure 5.4) increase with the normalized deposit volume, Vd, for the horizontal pore case.

These parameters show the same characteristic pattern of monotonic increase at a

decreasing rate as was found in previous simulations in Section 5.3 using the specified

settling velocity, vs /Uflav = 0.01, the correlation for mound height hmax can be described

by a bilinear function using equations 5.13a, 5.16a, and 5.18 as follows for Case 1:

h., / D = 0.04+87.5 V for hnx / D < 0.45 (7.19a)

hn, / D = 0.4 2 6 +5.0 6 V for h.x / D > 0.45 (7.19b)

where D = 2R. Figures 7.11a shows good matching between these correlations, and the

simulations.

For the inclined pore, Case 2, the correlation for 8 (i.e. slope of the maximum

deposit depth/mound height increase) as a function the dip angle 0 in equation 5.22 can

be applied, which, gives /1fo = 0.854 for 0= 45 (/3o corresponds to horizontal pore

tube). The corresponding # = 4.32 and a= 74.7. Figure 7.1 lb shows the comparison of

227



simulation data and the values obtained with these a and 8 values and again shows good

agreement with the simulation results.

7.4.3 Rejection efficiency

In Chapter 3, it was explained that the rejected particles (i.e. the particles blocked

at the entrance due to deposits in the pore) accumulate linearly with the deposit volume.

Accordingly, the rejection efficiency, 1lreject was defined as a linear increasing function of

normalized deposit volume, Vd with slope y in equation 5.24.

According to the equation 5.27a, the value of ycorresponding to the given settling

velocity for the small tube case, v, IUflav = 0.01, is y = 8.52. This value is directly

applicable to the horizontal small tube case. For inclined tube, equation 5.27a used to get

,8 value can be used, resulting in y = 8.0. The actual y values deduced from the current

simulations using the method presented in Section 5.4.1 are y= 9.0 and 8.2 for Cases 1

and 2, respectively. These are slightly higher than the correlation proposed in Chapter 5.

7.4.4 Pressure build-up

Figure 7.12a compares the normalized pressure difference across the model pore

tube, Ap/Apo, where Apo corresponds to the reference Poiseuille flow condition for results

of simulations with the small horizontal pore, Case 1 with the small inclined pore, Case 2.

When plotted against the normalized volume of deposit of collected particles, Vd, these

results are conveniently modeled by a quadratic function (cf. Equation 5.12):

Ap =1+aVd+a 2V 2 (7.20)

Case
1
2

Ap 0  -

6 a, a2

0 227 449
450 220 1.25

R 2

0.972
0.9332
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The correlation line for the horizontal tube (Case 1) is plotted in the same figure. The

plots as well as the correlation parameters indicate that pressure build-up is slower in

inclined pore compared to the horizontal Case 1.

Figure 7.12b compares pressure results of Case 1 (R = 0.125mm and

rp= 0.005mm) with those of Case 2 (R = 0.25mm, L = 0.5mm and rp = 0.01mm). The

pressure drops from two different tube sizes matches well, proving there is no scale effect

on the resulting pressure change.

Figure 7.13a shows pressure change data shown in Figure 7.12a re-plotted against

the maximum deposit depth. Now the two data sets show better accordance, supporting

the idea of using the deposit depth to parameterize pressure change as in Chapter 5 with

equation 5.12, rather than using deposit volume as in equation 7.20. The correlation

equation 5.12 is applied to the maximum deposit depth dma/D and the resulting pressure

drop values are plotted in Figure 7.13b with those from Case 3 simulation. This figure

proves that the correlation can work best for all three cases (Case 3 results match Case 1

results well, as shown in Figure 7.12a, which in turn, match Case 2 well as shown in

Figure 7.13a). Thus, correlation equation 5.12 is used in bubble model simulations.

7.5 BUBBLE MODEL SIMULATIONS

The bubble model simulation is based on the pore size distribution shown in

Figure 7.4. However, the number distribution of pores must first be extracted from the

volume distribution. The numbers of pore tubes are dependent on the square of radius if

their lengths are assumed constant. Thus, a large number of pore tubes of the smallest

radius are needed to fit the assumed volume distribution. For example, 3 million tubes of

0.01mm radius will be required when one 20mm pore tube is to be used. Due to

limitations on available computational power, the pores are divided into 33 size ranges

with a single pore tube used to represent each group. In order to satisfy this assumption,

the number of particles collected by the pore is multiplied by the actual number of pore

tubes, which can be determined using the volume relation:
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VporeF(Ri)
pr = i 2 & =1-33 (7.21)

where Vpore is the total pore volume, F(Ri) is the volume fraction corresponding to the

pore size Ri.

Two different lengths of pores are evaluated, L = 0.25mm (short-bond model),

and, L = 0.5mm (long-bond model corresponding to D5 0 ), which is chosen the same as

the particle diameter of 50% passing. Accordingly, the number of bubbles for short and

long bonds becomes B = 1640 and 3280, respectively.

7.5.1 Pressure build-up evaluation procedure

For the bubble model simulation, the current particle size distribution in Figure

7.1 is discretized into 24 size ranges. Then the particle injection rate of particles with

radius, rpm, Nm , can be estimated from volume balance and given particle size

distribution. This, in turn, gives the input particle number during the time step, At, ANi,,n

= Nm At, with time step At = Llv. The number of particles collected in the first bubble

after the first time step, tI, will be controlled by the corresponding collection efficiency,

1 (rp,m):

24

ANc (t) = L77(rm)ANin,m (7.22)

The grout front at the kth time step, t = tk, will be located at z = Vtk , at the end of

the kth element, while the total number of collected particles at the ith element from the

injection point can then be written:

k

N'(tk)= AN) (7.23)
q=i
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Ahead of the grout front, the pore water pressure is controlled by Darcy's law.

The pressure at the grout front is then given by:

flwVa(H-Vt )
Pk (tk ) (7.24)

ko

Note that the pore pressure is zero at the top of the sand column, (z = 82cm).

Pore pressures inside the grouted zone are determined from the pressure

development equation (Ap/Apo). At the end of the ith bubble at t = tk is given by:

W j = _____ (nv(t)p, for i =1,...,k-1 (7.25)Pi (tk)=APO LNore Q~ Ap ~ fo += k-i
j=1 Ap

where W is the number of bonds in each bubble, 33, nVdj is the normalized deposit

volume in the jth bond of ith bubble, qij the flow rate thorough the bond while Q is the

total flow rate.

The bond radius is updated using as explained in Section 5.3 in equation 5.38 as

collected and rejected particles accumulate. The reference pressure drop, Apo, can be

specified by Darcy's law:

Apo = pVL (7.26)
k

with parameters listed in Table 7.1.

7.5.2 Related parameters

It is well known that the settlement is hindered by other suspended particles

(hindered settling, Probstein, 1994). Consequently, the settling velocity decreases with

increasing volumetric fraction of particles. The current particle flow simulator, which

was employed to provide key correlations for the bubble model, does not explicitly model

interactions between particles. Therefore, an empirical model for settling velocity is
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required to simulate the deposition process for a concentrated suspensions. A simple and

often applied empirical relationship is given by Richardson and Zaki (1954):

vs = VS 1-0.5 p (7.27)

where vso is the single particle settling velocity (i.e. Stokes velocity in equation ), #pm the

maximum possible volumetric fraction (65% for randomly close-packed uniform spheres),

n an empirical constant typically between 5.1-5.5.

Struble and Sun (1995) reported values of #pn = 0.64 through experiment with

Type I Portland cement. This value was used in the current bubble model simulation with

n = 5.3. With the initial volume fraction, #, = 0.075, equation 7.27 gives 0.73 vsO. Using

this settling velocity as an input, the rejection and collection efficiencies and pressure

drop correlations presented in Chapter 5 can be evaluated. Uniform distribution of

orientation is assumed and the homogeneous values, J1H and 77rejet (equation 5.11, 5.30)

are used.

The attachment probability, Ap, used in Chapter 6 is again applied. Unlike in

Chapter 6, it is calibrated by matching the pressure evolution curve for the observation

point at z = 5cm, because no breakthrough concentration information was published for

these experiments.

7.5.3 Simulation results

When constant viscosity is assumed, Ap = 0.0016 gives the best-fit pressure

evolution curves with the long-bond model and the short-bond model respectively, as

shown in Figures 7.14a and b, respectively, together with measured values.

The first observation is that bond length has minimal effect on the simulation

results. This confirms prior expectations that pore length is addressed in the proposed

correlations for collection efficiency and pressure build-up (Sections 5.1 and 5.2). These

bubble model results are almost identical with the continuum results, as compared in
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Figure 7.15. Thus, the same trend in overestimation of the two far observation points (z =

45cm and 65cm) is also applicable to the bubble model simulations. Therefore, the linear

decreasing function of viscosity with volume fraction of solid particles in equation 7.13 is

employed as was done previously to update the continuum approach.

At the same time, the detachment process that was modeled in Chapter 6 is added

in the model because detachment process amplifies nonlinearity in spatial deposit

distribution (i.e. more filtration near injection point and less downstream filtration) as

illustrated in Figure 6.12a. The same trend is observed in the current simulation. It is

clearly noticeable from the normalized deposit concentration (S/Co) profiles with varying

ko values (a constant at reference pore velocity, vo = 1.38x10-2 cm/sec in equation 6.33)

presented in Figure 7.16. The profile obtained with the updated continuum model (Figure

7.6) is plotted together. Interestingly, the continuum model simulation result is slightly

different from the bubble model result with full detachment condition although the two

models give almost identical pressure evolution curves. This is because filtration rate

increases as deposits accumulates in the bubble model simulation due to particle rejection,

which increases with volume of deposits (see Section 5.4).

Figure 7.17a illustrates the contributions of the deposit concentration for

= 2.1cm-1 from the different collection mechanisms: sieving, entrapment, hindrance,

and rejection. It shows that the most of the deposit are derived by rejection. More

specifically, 74% to 42% of total deposit volume, decreasing with elevation, is collected

by rejection as illustrated in Figure 7.17b. This occurs because hindered particles

(although temporarily collected) induce rejections as well as entrapment. As expected

from the pore and particle size distribution comparison shown in Figure 7.7, there are

some sieved particles, but these correspond to less than 0.5% of the total deposit volume

throughout the sand column.

The effect of rejection increasing overall filtration (i.e. ripening) is also well

presented by the effluent concentration decreasing with time as shown in Figure 7.18,

which was not observed in simulations in Chapter 6. That was because the deposit

volume was not substantial enough to cause significant amount of rejected particles in the

acrylic particle suspension filtration. The same effect of the detachment process in

slowing down the initial effluent concentration increase rate can be observed in
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breakthrough curves as in Chapter 6. However, the effluent concentration in later stages

is also affected and decreasing with the value of k0 . This is also due to ripening.

Figures 7.18a, b show the pressure evolution curves for ko = 7.7 and 2.1cm-1. As

expected from the comparison of deposit concentration profiles in Figure 7.16,

decreasing the detachment rate (i.e. longer retention of particles) induces higher pressure

build-up. Especially, with k0 = 7.7cm-1, there is almost no post breakthrough (t >tbr)

pressure build-up. This is a result of tradeoff between viscosity decrease and deposit

volume increase, which are both outcomes of filtration. Pressure evolution curves with

ko = 2.1cm-1 matches the measured values much better than the continuum model at the

two tapping points near the injection point (z = 5cm and 15cm), as compared in Figure

7.19.

The bubble model underestimates the pre-breakthrough pressure values at z =

45cm while overestimating pressures after breakthrough. In addition, post-breakthrough

pressures at z = 65cm are also slightly overestimated. Compared to the continuum model

results, the initial development of pressure at z = 45cm is much slower. The decrease in

detachment rate works to increase the amount of hindered particles near injection point,

which are later re-suspended and effectively increase downstream suspension

concentrations. Therefore, if the detachment rate is too small, the parameter k0 will be

responsible for the initial underestimation and subsequent overestimation of pressure

build-up at z = 45cm. It is not clear what caused this change in detachment rate for

downstream. Physicochemical changes related to hydration and resulting changes in

rheological properties, as earlier noted in Section 7.1, may be responsible (although the

experiment was completed within the expected induction period). However, further study

(both experimental and theoretical) study on suspension behavior seems imperative to

elucidate this matter.

It should be noted that ko = 2.1cm~1 resulted in best matching with the

measurements of Bouchelaghem and Vulliet (2001) values was much higher than

ko= 0.28 cm-1 used to match tests by Yoon et al. (2004) (Chapter 6). This fact may

suggest more unfavorable conditions for particle-particle or particle-grain attachment
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with the cement suspension than with the acrylic particle suspension, which is consistent

with the decreased attachment probability, from Ap = 0.09 (for rough beads) in Chapter 6

to A= 0.0016 for the current application.

Another difference found comparing the case in Chapter 6 is that limit particle

size by introducing rli, had minimal effect on simulation results for the cement injection.

It must be due to the fact that the cement particles are less distributed (diameter 1pm-

13pm) than the acrylic particle suspension used in Chapter 6 (diameter 1ym-25um).

7.6 CONCLUSIONS

This chapter describes the interpretation of one-dimensional injection tests

published in the literature using a dense suspension of microfine cementitious grout in

sand using continuum models and the proposed bubble model. For the continuum models,

the filtration rate, A is an essential parameter that should be known a priori for prediction

with the model. It is not easy to evaluate the filtration rate, and a separate experimental

and statistical study was used to predict its initial value. It is even harder, however, to

make prediction on evolution of spatial and temporal change in filtration rate during

injection, and an assumption of constant filtration rate was assumed. The simulations

results applying the constant filtration rate had some success on predicating the measured

values, but found characteristically overestimating the post-breakthrough measured

pressures further up the column (z = 45, 65cm). This overestimation was found partially

due to overestimated extent of filtration, but mainly due to decrease in suspension

concentration (at least to 50% of initial value) and a related decrease in viscosity. When

the continuum model was updated to include the decrease in viscosity due to filtration,

most of the overestimation of the measured pressure build-up was addressed. However, it

also produced much less filtration near the injection source. This trend was consistent

with observations of continuum models in Chapter 6.

A bubble model was constructed, with representative pore radii of the medium

calculated using a semi-empirical method proposed by Arya and Paris (1981) based on

the given sand particle size distribution. The empirical parameters, attachment probability
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Ap and detachment rate, kr = ke v were used. As a result, it was learned that the

detachment rate does play a crucial role in producing a non-linear trend in the deposit

profile. Thus, the pressure evolution curves showed much improved by including particle

detachment.

In order to further improve model simulations, more research is needed on

suspension behavior. It was noted by other studies (e.g. Mittag, 2000) that microfine

cement suspensions exhibit non-Newtonian flow behavior. The chemistry of cement

particles and its effect on flow and microscopic collection mechanism are also needed to

be studied for more complete analysis of the filtration of the microfine cement suspension.
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Table 7.1 Material parameters (Bouchelaghem and Vulliet, 2001)

Mean particle diameter

Sand grain D50

Initial porosity, no

Initial permeability, ko

Grout viscosity, u

Grout density, p

Grout solid density, ps

Sand column height, H

Apparent flow velocity, Va

0.005 mm

0.5 mm

0.34

2x10-11 m2

0.003 Pa sec (3 centi Poise)

1.15 g/m3

3.0 g/m 3

82 cm

0.117 cm/sec

Table 7.2 Parameters of equation 7.17 for four soil classes by Arya et al. (1999)

Soil class No. of soils Data pairs a b R2

Sand 6 62 -2.478 1.490 0.882
Sandy loam 6 75 -3.398 1.773 0.952

Loam 4 50 -1.681 1.395 0.936
Clay 5 88 -2.600 1.305 0.954

Table 7.3 Parameters used in particle flow simulations

Case
Parameters

1 2 3

Particle radius, r, [mm] 0.005 0.005 0.01

Model pore radius, R [mm] 0.125 0.125 0.25

Model pore length, L[mm] 0.25 0.25 0.5

Model pore dip angle, q [0] 0 45 0

Total particles injected 12,000 5,000 10,000

Particle injection rate [particles/sec] 10

Average flow velocity, v [mm/sec] 3.4

Time step [sec] 1 x10-4

Stiffness, K 1

Number of iterations 50
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CHAPTER 8. SUMMARY,

CONCLUSIONS AND

RECOMMENDATIONS

8.1 SUMMARY

This thesis has presented a novel method of analyzing the filtration of suspension

particles transported through a granular porous medium, and its application in

interpreting two sets of 1-D column injection experiments. The contents of the thesis can

be summarized as follows:

(1) Chapters 1, 2 describe phenomenological aspects of filtration process commonly

observed during suspension transport through a granular filter bed. The chapter

reviews continuum models for filtration rate kinetics and the concept of trajectory

analysis as an analytical method for predicting filtration rate.

(2) Chapter 3 presents a review of network models as an alternative discrete approach

for modeling porous media. A quasi one-dimensional "bubble model" (Datta and

Redner, 1998) is discussed in detail and the algorithm of particle transport is

presented for the model.

(3) Chapter 4 describes the particle-laden flow simulator. The simulator is designed

to realize particle depositions inside a cylindrical model pore. Particles are

deposited under the action of hydrodynamic and gravitational forces. They can

mound up and ultimately clog the pore. This analysis uses Stokes equations for

the flow and tracks particle movements under influence of gravity for constant

flow rate boundary condition. The key feature of the simulator is that it considers
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coupling forces between deposited particles and the fluid, which are responsible

for changing the flow field and hence, the deposition mechanism of suspended

particles. After validation for flow around single stationary particles, multiple

injections of mono-disperse particles were simulated. The results show that

deposited particles increase the pressure difference across pore tube and enhance

particle deposition rate.

(4) Chapter 5 presents a parametric study results done by using the particle simulator.

The effects of particle size, pore radius, aspect ratio (length to diameter ratio) and

orientation, particle settling velocity and attachment probability were studied. The

following trends in collection efficiency and pressure change were found:

* Collection efficiency is well represented by a power law function of the

particle settling velocity (equation 5.7). It also increases as a power law of

pore aspect ratio, and decreases quadratically with the pore dip angle of the

pore (equation 5.8, 5.9 respectively).

* Pressure changes across the model pore are larger for filtration of smaller

particles than for larger particles with the same volume of deposits (i.e.

smaller particles form deposits that mounds higher and block more cross-

sectional area).

* The maximum mound height, hmax and maximum deposit depth, dmax are

selected as the parameters that measure both the amount and density of the

deposit layer. Two separate third-order polynomial equations have been

proposed to correlate dmax and hmax with the pressure change at initial and

advanced stages of filtration, respectively (equation 5.12).

* hmax and dmax are found to increase linearly with volume of deposits. A

bilinear equation for hmax, and a linear one for dmax are suggested. The

parameters are given as linear functions of settling velocity. Both increase as

functions of the pore aspect ratio (power-law), and pore dip angle (quadratic).

* The number of particles blocked at the inlet (i.e. "rejected particles"), is found

to increase linearly with the deposit volume. The rejection efficiency is

parameterized as bilinear function of the settling velocity. The increase in rate

of particle rejection is closely related to the deposit depth and mound height.
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* The initial collection rate reduces with the attachment probability, Ap

(0 Ap: 1). As particles mound inside the pore, the collection rate increases as

a power law function of the surface saturation (equation 5.35) and eventually

reaches full efficiency (i.e. effect of Ap < 1 is progressively removed during

the mounding process).

(5) Chapter 6 presents the first application of the proposed method for 1-D column

injection tests, performed by Yoon et al. (2004) at three different injection

velocities with a dilute acrylic particle (size ranging 1-25um) into a glass bead

(4mm diameter) bed. In order to do this, the bubble model presented in Chapter 3

was used. An analytical solution for regular packed spheres was used to define the

size distribution of the pores. For individual bonds in the model, the particle

collection efficiency was based on correlations from the particle flow simulator

(Chapter 5). In addition, the capacity change of the bond is directly calculated

from the pressure change across the model pore (also given in Chapter 5). It was

found that two empirical parameters: i) the attachment probability, Ap and ii) the

detachment rate, kr, were critical in explaining the microscopic observations by

Yoon et al. (2004) on two different collection mechanisms: entrapment and

hindrance. Through simulations with different injection rates ('slow', 'medium',

'fast') on beads with smooth surface, it was found that kr was linearly

proportional to pore fluid velocity, while Ap remained constant. Since most

entrapment on smooth beads were observed having occurred at solid-solid contact

points of beads (contact entrapment) by Yoon et al. (2004), a higher Ap value was

needed to match measurements for tests on rough beads was attributed to

entrapment by surface roughness (surface entrapment).

(6) Through comparisons between the measured inflow and effluent particle

distributions, it was found that almost none of particles smaller than 5Im had

been collected in a test with 'slow' injection rate on rough beads. It was

hypothesized that smaller particles than this limit size, rimit were only subjected to

contact entrapment, and accordingly, the attachment probability found in smooth

bead cases (Ap = Ap,) was applied for r < rlimit. By increasing rimit while keeping

Ap and kr the same with the slow injection rate case for medium and fast injection
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rate tests, the simulated results showed reasonable agreement with the measured

values.

(7) Chapter 7 considers simulation of 1-D injection test of microfine cement

suspensions (size ranges 1-13um) through a sand column (Leman sand, grain size

ranging 0.01-6mm). An empirical relationship by Arya and Paris (1981) was used

to obtain the input pore size distribution of the bubble model. Due to the relatively

high concentration of this suspension (0.075 volume solid fraction, OP), extensive

filtration was observed and consequently, the evolution in pressures was observed

(in contrast to experiments in Chapter 6). The measured pressure data were

compared with continuum model results and it was concluded that viscosity of the

suspension was decreasing due to filtration. An empirical model was introduced

to characterize decrease in viscosity with solid fraction. The updated pressure

evolution results generally underestimated filtration near the injection point

(consistent with results in Chapter 6).

(8) Particle flow simulations have been done with model pore tubes and particles of

sizes more comparable to the current case. The results showed a good agreement

with the correlation equations for collection efficiency and pressure changes from

the parametric study in Chapter 5.

(9) With these correlations, bubble model simulations were carried out. When

viscosity model was not included, the pressure curves obtained were almost

identical to the continuum model solutions with assuming an attachment

probability value, Ap= 0.0016. By including the viscosity model and detachment

rate, significant improvements were observed in matching the simulated and

measured pressure curves.

8.2 CONCLUSIONS

8.2.1 Microscopic modeling of filtration

Phenomenological filtration laws introduced in Chapter 2 are intrinsically limited

in dealing with microscopic features of the filtration process. Trajectory analysis based
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on the assumption of an unit filter bed (Unit Bed Element) of a simplified geometry

(explained in Chapters 2, 4) are also limited to clean bed conditions and eventually

involve empirical relations to account for effects of deposits on subsequent filtration (i.e.

in advanced stages of injection tests).

The current particle-laden flow simulator enables full modeling of hydrodynamic

interactions between the particles and fluid and hence, provides a basis for rigorous

studies of the microscopic filtration process. The parametric study results identify

features of the deposition mechanisms and particles accumulation that are not represented

by empirical rate laws or trajectory analyses (with UBE):

" Collection efficiency is higher when hydrodynamic coupling between

particles and fluid are considered because the flow velocity near the deposit

layer decreases.

" Collection efficiency increases as filtration progresses because of blocking by

deposits. This was parameterized as 'rejection efficiency'.

" Decrease in hydraulic capacity of a pore, which is represented by the pressure

difference increase at a constant flow rate condition, is closely linked to the

extent of filtration. More specifically, it was found that at a given volume, a

deposit layer comprised of smaller particles tend to cause higher pressure drop

across a pore than those with larger particles, because the density of deposit

layer increases as the particle size decreases. Therefore, deposit depth or

mound height (as opposed to deposit volume) should be used as a measure of

clogging on pressure changes.

* Effects of the pore aspect ratio and orientation strongly affect the filtration

process. It was found that the collection efficiency and pressure drop generally

increase as the pore aspect ratio increases at a given relative volume

(normalized by the pore volume) of deposit because the particles usually form

higher mounds near the inlet. The collection efficiency decreases as the dip

angle increases (i.e. as the pore becomes aligned with the gravitational

direction). On the other hand, the pressure drop was found to increases as the

tube becomes more aligned with the gravity. This is because the blocking of
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inlet is more effective for an inclined model pore compared to a horizontal

one.

* The rejection efficiency, which is closely linked to deposit depth, shows the

same trend with the aspect ratio and the dip angle.

8.2.2 Bubble model and its application on column tests

Bubble models were found to be effective in scaling up the microscopic filtration

mechanisms from the particle-flow simulator to predict macroscopic changes in porous

media. The bubble model is able to track movements of particles of different sizes base

on correlations found using the particle flow simulator (which are in turn, given as

functions of the settling velocities of individual particles). In addition, bubble models

incorporate the distribution of pore size and orientation, the two variables that principally

affect the deposition mechanism. With size distribution, bubble models also intrinsically

replicate the hydrodynamic dispersion in random porous media, enabling more particles

to flow through larger bonds (pores). As shown in Chapter 7, pore size distribution is

imperative in modeling filtration due to sieving.

For the two applications of the bubble model presented in Chapters 6 and 7, the

collection efficiency correlations were obtained from Chapter 5 simulations assuming full

attachment of all deposited particles. This resulted in an overestimation of the measured

filtration rates suggesting the importance of detachment of deposited particles. This result

was supported by microscopic observations made by Yoon et al. (2004). Lack of

quantified information on the microscopic attachment and detachment processes has

forced the use of empirical parameters within the bubble model simulations. The

attachment probability, Ap, partitions the collected particles between those that are fully

entrapped and those that are only hindered (i.e. released back into flow at a given

detachment rate). Although these parameters are analogous to the filtration and

detachment rates used in macroscopic filtration laws of the two-site continuum model,

the bubble model produced predictions that are far more successful in Chapter 6. Both the

prediction of total depositions by the suggested correlation equation and scaling-up with

bubble model must have contributed on the successful prediction.
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Filtration of the microfine cement suspension in Chapter 7, compared to that of

acrylic particle suspension in Chapter 6, showed different macroscopic characteristics

because it involved far significant changes in pore pressure, decrease in viscosity of the

suspension, and changes in filtration rate. Among these, the pore-pressure increase was

effectively modeled by decreasing the capacities of individual bonds with the bubble

model. Considering that there exist few analytical models directly relating changes in

flow and filtration, it seems that the current method will provide a valid option. Changes

in filtration rate due to deposited particles were also successfully modeled through the

concept of 'rejected' particles.

8.3 RECOMMENDATIONS

Future work should include the unresolved issues of detachment and attachment

probability in microscopic process and also consider expanding the application to

filtration problems.

1. All particle flow simulations done in the current study use uniformly sized

particles. Since most suspensions in practical applications have a distribution of

particle sizes, these need to be considered in the simulations.

2. Only constant flow rate conditions have been implemented. For comparison,

particle flow simulations need to be done at constant pressure conditions and

further employed for simulations of tests done at constant pressure condition.

3. The effect of attachment probability on collection efficiency is studied in Chapter

5, but with the limited assumption of it only affecting attachment between particle

and the pore wall. More detailed analyses including the effects of particle-particle

attachment probability will be useful in applications where partial attachment

occurs between particles, as well as particles and surface of the porous filtering

medium.

4. It was concluded in simulations presented in Chapters 6, 7, that the detachment

mechanism has an important influence on deposit concentration distribution,

inducing a nonlinear spatial distribution of filtration deposit accumulation.

Currently, an empirical parameter, kr, is used to represent the detachment process.
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More studies (both experimental and theoretical) are needed to understand the

mechanisms of detachment (between particles, and between particles and

surfaces) in order to assess critical drag forces that can induce detachment. This

data can then be applied directly in the particle flow simulator to enable more

rigorous modeling of the detachment process.

5. This thesis has not investigated the effects of flow direction on macroscopic

filtration although its microscopic effect is well explained by dip angle of model

pore. The link between microscopic and macroscopic effects of flow direction

with respect to the gravitational field should be examined in more detail.

6. Both application cases presented have minimal straining effects. It will be

interesting to see the effect of straining and related changes in pore size

distribution in macroscopic filtration.

An optimization study of 1-D filtration where pore size distribution,

injection rate, direction of flow are selected to be controlled to maximize (or

minimize) filtration, would excellent tests of the predictive capabilities of the

proposed bubble model.

7. Finally, the current bubble model can be expanded to 2-D and 3-D problems with

appropriate network models. 3-D injection tests such as Bouchelaghem (2002)

can be used to test the feasibility of particle-flow simulator.
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APPENDIX A: EFFECT OF

HYDRATION ON PENETRATION OF

CEMENTITIOUS GROUT

SUSPENSION

A.0 INTRODUCTION

Hydration, the solidification process of a cementitious material is usually

considered to start at least a few hours after mixing when the cement starts to 'set'. The

ACI (American Concrete Institute) definition of set is the condition reached by a cement

paste, mortar or concrete when it has lost plasticity to a reference amount, usually

measured in terms of resistance to penetration or deformation. The initial set refers to the

first stiffening and the final set refers to attainment of significant rigidity. The duration

before initial set after mixing is finished is called the induction period (e.g. McKinley and

Bolton, 1999). Retarders and accelerators are commonly used to advance or delay the

induction period, and can be designed to match the time required for mixing and injection

of grout. Retarders can extend induction period up to 30 hours (Gause and Bruce, 1997),

which is generally sufficiently longer than time needed for injecting a grout. Thus,

hydration has been typically assumed to have no effect on its penetrability. However, if

the injection process continues over the induction period, flow of grout suspension can be

seriously inferred by cement hydrates that remain inside pores and hence, limit space

available for flow. In this case, hydration kinetics have to be incorporated into analysis of

grout penetration into soil as they determine the rate of pore volume change.
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Although little hydration is expected to occur during the induction period (less

than 5%), it has been well reported that rheological properties of cementitious material

evolve even with this small amount of hydrates. This provides another reason for

hydration kinetics to be considered in modeling permeation grouting.

This Appendix first presents an analytical solution for spherically radial

permeation grouting with constant injection pressure. Then two aspects of hydration on

penetration of grout, by filling pore space with solidified grout and by change of

rheological properties during induction period, are studied.

A.1 EFFECT OF SOLIDIFIED GROUT ON PERMEATION

GROUTING

A.1.1 Degree of hydration

Cement hydrates (solid grout) can seriously affect penetrability of a grout by

inhibiting flow of grout remained at liquid state (liquid grout) by reducing pore space.

This might not happen frequently in practice because hydration is generally suppressed

by additives to assure grouting to be carried out within induction period, in which no

significant amount of solid grout is produced. Nevertheless, it can be worthwhile

incorporating effect of long-term hydration in modeling of permeation grouting as a limit

case.

Hydration is a complex set of sequential and simultaneous chemical reactions at

microscopic levels (Ulm and Coussy, 1996). More details of these reactions will be

discussed later. Kinetics of hydration depends on many physicochemical parameters such

as degree of hydration, water-to-cement ratio, curing conditions (Nonat et al., 1997). The

degree of hydration, , can be calculated from the evolution of either mechanical

properties or physical properties such as strength, heat or concentration:

JW(=) X (t) (Al)
X ((A)
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where X(t) and X(oo), respectively, represent the value of the physical or mechanical

property at the moment and at an infinite time(Kada-Benameur et al., 2000). For present

problem, the mass of solid grout, ms01id, is used to define the degree of hydration, as the

property that determines change in pore volume. Then, equation Al can be re-written:

s(t) = m,,lld (A2)

Since hydration kinetics is determined by sequential processes that have different rates of

reactions, it must depend on the age of a cementitious grout (relative to the time of

mixing). The age of the material can differ from the time of injection, t, in case freshly

mixed grout is continuously added and a separate time variable, s, is necessary to

describe the age of the grout. Thus, the age, s, is separately defined and accordingly, the

degree of hydration becomes a function of s, 4s).

A.1.2 Modeling of permeation grouting

If the homogeneity of liquid grout is kept during grouting process, the permeation

grouting can be modeled as a well defined problem of pumping a liquid into the ground

and replacing pore water, while hydration can be incorporated as a phase change process

(based on the kinetics of hydration). Figure A.1 shows the Representative Elementary

Volume (REV) for the three-phase system considered. The analysis assumes:

1. There is no displacement in the skeleton (i.e. #s remains constant).

2. Densities of liquid grout, pgl and solid grout, pgs remain constant.

3. The whole pore space is occupied either by the water or by liquid grout (i.e.

saturation degree of liquid is always 100%).

As the total volume of the REV is conserved according to assumption 1, and is

fully saturated, the initial porosity no is the same as the total volume fraction of grout.

Ogl +#Og, = no (A3)
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The mass balance equation of the liquid grout phase is as follows.

a(Pggi + -(vgpg)+R=0
at (g~ig)R

(A4)

In this equation, R is the ratio of the liquid grout mass changes to the solid grout mass by

the hydration. Therefore, this rate is same as the creation rate of the solid grout mass:

R = a(PgS gs) (A5)at

Darcy's law can be used for the liquid grout velocity, vgi gl . This law defines the

apparent velocity of the pore fluid as a function of pressure gradient, Vp:

(A6a)V k (Ox )
v g =v= -- V p

where u is the dynamic viscosity and k[L]2 is the permeability tensor of the media

depending on the porosity, k = k(/gj). By defining a new parameter,

k(Ogj) = C(gi), Darcy's law can be rewritten:
dugi

gg = V = -C(#g)Vp (A6b)

By substituting equation A3, A5 and A6b to equation A4 and applying assumption 2 of

constant densities, the conservation equation is obtained as follows:

{ p 1- )Vp) = 0
jat
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The age of the grout depends on the time of mixing. If new material is mixed

continuously, a 'perfect mix' is obtained as shown in Figure A.2a. In this case, the solid

grout phase in the REV comprises layers of material of different age. The age of liquid

grout, s, also varies as a function of time and location. On the other hand, if the material

is mixed in one batch, the material at all locations will have a same age, s = t as shown in

Figure A.2b. This case is referred to as the 'single batch' case.

The mass of solid grout at a specific time, msolid(t) in equations A2 is pgsegs(t),

while the total mass of material that will be completely solidified an infinite time,

msolid(oo) is the mass of liquid grout in place, pglbgi(t). Therefore, the rate of solid grout

increase can be directly related to hydration rate:

d a(Pgsgs (t))/at (A8)
dt pj g, Wt

Substituting this into equation A7 for perfect mix case:

(Pg --Pgi ) dg(s)(Aa
V -(C(#gi)Vp) = Pg (A9a)

pgs dt

while for the single batch case:

V -(C(g )Vp) = (Pgs - Pg) dg, (A9b)
Pgs dt

By defining a dimensionless coefficient, b = , equation A9b can be
Pgs

rewritten in a general form,

V - (C(0g )Vp) = b (A10)
dt
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The simplest relevant model of permeation grouting involves injection from a single

point source in an infinite medium, a process that assumes radial flow with a spherical

geometry. In this case, the radial velocity of the fluid, vr, is driven by the radial gradient

of pressure, ap/ar. Equation A10 becomes

1 a ap d
(r2-C(n) )= b (Al1)

r 2 ar ar dt

where, the symbol n is used to represent the porosity (i.e. n = gi).

Figure A.3 illustrates the spherical permeation model assuming no diffusion at the

interface (r = r,) between the penetrating grout and in-situ pore water (liquids 1 and 2 in

the figure). The pressure boundary conditions when a well pressure p, is applied to inject

grout into the ground where the initial pore pressure is pe are:

p, = p, at r = r, (A12)

P 2 = pe at r = re (A13)

where p, and P2, respectively, indicate the pressure inside fluid 1 (liquid grout) and fluid 2

(pore water). At the interface of these two fluid, at r = ro, pressures and radial velocities

(Vr,i, Vr,2) have to be identical:

AI r=ro Ir=ro (A14)

Vri = Vr, 2  >C1 -i C2 ap 2  (A 15)
r=r0  r=r 1 ar ar

ro ro

where C1 and C2 represent fluidity of fluid 1 and 2, respectively.

The rate of advance of this interface coincides with the velocity of the liquid

grout:

264



n(r) 4+
at

CD -0
ar )

(A16)

where n (ro) is the porosity at the interface and multiplied to the rate of advance, ar/at,

because the velocity of the liquid grout, C, 1(1 rO
, is an apparent velocity, not an

absolute velocity (true fluid velocity).

Inside the region occupied by pore water (r >ro), there is no phase change and

flow can be described by the Laplace equation ( 2 r
r2 ar (

2 ) = 0), having a general

A
solution of P 2 = -- + B. By applying the boundary condition equation A13 and assuming

r

no change in water pressure in the far field (re -> oo), the pressure in the pore water is

given by:

A
P2 =-+P,

r
(A17)

The boundary conditions at the interface, equations A14, A15, and A16 can be

applied to give the following relation.

_ C 2  Pi(r)-pe

C1(n)| r
(A18)

Assuming that there is no change in the porosity at the grout front, i.e., C (n)| = C (no),

a viscosity ratio, a = = P , can be introduced in equation A18. Now the pressure
C1(no) JU2

of the pore water, p2 can be eliminated from the governing equation system and the

following equations summarize the remaining

boundary conditions for the grout phase only.

governing differential equation and
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2 ap
2 (r 2C(n)-) = b for r, <r < r: (Al9a)

r ar r

p=p, at r=r, (Al9b)

= -aP e at r=ro (Al9c)
ar r

_(r ) r P(ro) - P- o" (A19d)
at r

where the subscript 2 indicating pore water was replaced with w indicating water and

subscript 1 dropped.

Without hydration, the time-dependent term in equation A19a is zero and this

differential equation reduces to the Laplace equation. The pressure distribution and grout

front progress are found analytically and identical with solutions reported by Raffel and

Greenwood, (1961):

Sa(pe - P 1 A20)
(a -1) -a r r,

ro rw

n. r2 a r3 (a -1) r2t =- * - _ -1I (A2 1)
Cw( p. - p, ) 3 r,, 2 r,

A.1.3 Dimensional analysis

For a problem involving many physical quantities dimensional analysis can

provide a simplification. This section presents a dimensional analysis of the governing

equation system composed of equations A19a-Al9d.

The rate of hydration, d /dt, can be defined to be a constant for the dimensional

analysis:

d- 1 (A22)
dt rH
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where rH is the characteristic time of hydration and considered intrinsic to the

cementitious material. The kinetics of hydration are characterized by sequential stages

that are distinguished by different major reactions and kinetics laws (refer to Section 3.2).

However, in order to identify the effect of hydration, the hydration process can be

represented by characteristic time. All variables used in the governing equations,

including hydration rate, , are considered linearly transformed from dimensionless

counterparts by corresponding dimensions:

r = Rr'

rw = Rr'

t = Tt'

p = Pp'

= Pp' (A23)

Pe = Ppe
C = EC'

CW = aC(no) = aZC'(no)

TH TH

i.e. r',', t', p', p', p', C', C'(no ),,r' are dimensionless variables corresponding to

r,rw, t, P-, Pi,, Pe , C, C(no ), rH of dimensions R, R, T, P, P, P, E, E, TH (same letters indicate

the same dimensions).

Equations A19a-Al9d can be re-written with dimensionless variables in equations

in A23:

STH xP la, 2 , P' bi! <r'
(r =2C(n) ,)=b for < r'o (A24a)

R 2 r ar T

P P' at r'= r' (A24b)

= -a Pe at r'= (A24c)

/ r 2 
r

R__ _r' , p'(r0 ) - I'(2d
2 no I- C 1 / = 0 (A 24 d )

XTP at' r'
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This system of equations is identical with that of equation A19, except for terms

comprised of dimensions shown inside parentheses, (R 2 ) and Since a

physical equation is dimensionally homogeneous (dimensions on either side of the equal

sign are identical), these two terms must be unities.

TH

R2

R2

ITP
(A25a)= 1

Equation A25a can be rearranged:

THR
EP

(A25b)

where TH has dimensions of time. Therefore, a new time variable can be defined:

br2
1 rr = b r0 e

C(n(re ))(p(r,) - p,)

where b = (Pgs - Pgi) n(t) as defined before. This new variable, r,
Pgs

, is related to the

progress of grout front, as it is comprised of values at the grout front, radius, ro , fluidity,

C(n(ro)), and pressure, p(ro).

Variables used in the conservation equation for grout, equation A19a, radius, r,

pressure, p, and fluidity, C, can be re-scaled by any characteristic values of the problem:

r = Rr, p = PT, C = C C (A27)
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where 7, p and C are, respectively, re-scaled radius, pressure and fluidity through linear

transformations by characteristic values of radius,R, pressure,P, and fluidity,C. Equation

Al9a can be rewritten with new variables:

I a 2-pa bR2/PC
_ (,72PaRPC _ TH for r, ! r ! TO (A28)

where r, = R- , and ro = RI . It can be noticed that the numerator in the right hand side,

bR 2/PC, has the same structure with r in equation A26. Actually, if the characteristic

radius, pressure, and fluidity are chosen to be the values at grout front, ro, this value

coincides with r,. In this case, a non-dimensional number, T, can be defined as a ratio

between the time scale of penetration, zr, and that of hydration rH in order to evaluate the

effect of hydration on the penetration of the grout:

T ='-L (A29)
TH

A.1.4 Example application

The governing equation system in equation A19 can be solved numerically (using

a forward time integration scheme) for cases involving hydration. This section considers

one simple example application of permeation grouting in a medium-grained sand, using

a water-to-cement ratio, W/C = 3. Table A.1 summarizes the input parameters for this

case. The calculations assume that hydration starts 10 hours after mixing, after which

time there is a constant rate of hydration, df/dt = l/rH as shown in Figure A.4.

Figure A.5a shows the radial variations in relative porosity, n/no at selected

injection times for the case where there is perfect mixing of the grout. As fresh grout is

continuously pumped, there is no change in porosity at the injection point. The results

show that the minimum porosity (i.e. maximum formation of solid grout) occurs at a

radius, r ~ 0.5ro. Figure A.5b shows the location of the grout front versus time and

compares the results for cases with and without hydration. The results show that
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hydration retards the movement of the grout front. The non-dimensional number, T,

defined in equation A29 are plotted in this figure together. In this problem, T number

only depends on the time scale of grout front progress, r, because that of hydration, rH, is

fixed. As the grout front advances, the pressure at the front decreases and the time scale

r increases to reaches the value of time scale of hydration. At this point (18hrs),

the T number becomes 1. This defines approximately the time when the hydration starts

affecting grout progress noticeably. After this time, the time scale or grout front progress,

,r, is always larger than that of hydration, TH. The T number reaches 150 when time

reaches 260 hrs and hydration prevents further movement of the front almost completely.

The solutions for the case where there is single-batch mixing of the grout are

shown in Figures A.6a and A.6b. In this case, the largest decreases in porosity occur

close to the injection point (Figure A.6a). The effects of hydration become noticeable

after 20hours due to the rapid draw-down of the pressure at the front caused by clogging

at the well. The trend of the T number change shown in Figure A.6b is similar to the

perfect mixing case in Figure A.5b.

A.2 EFFECT OF HYDRATION DURING INDUCTION PERIOD

ON GROUT PENETRATION

A.2.1 Cement hydration and increase in yield stress

Although advanced stage hydration can seriously affect the permeation of cement

suspension as discussed in the previous section, it is unlikely that extensive amounts of

solid grout will form during the injection period, especially as the induction period is

often extended in practice using retarders. However, it is well known that rheological

properties of cement suspensions change during the induction period. Even if the cement

used in permeation grout is designed to maintain enough fluidity, some chemical and

physical changes during the period required for preparation and injection of the grout

seem unavoidable. As discussed in Chapter 7, the Bingham model is often applied to

represent non-linear shear stress behavior of fresh mixed cement suspension (equation

7.9), characterized by two rheological properties, the yield stress, r , and viscosity, p.
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This section discusses a Bingham model for cement grout behavior in order to describe

the evolution of rheological properties during the induction period.

The chemical processes occurring during the induction period are usually

considered associated with the autocatalytic nucleation-growth of hydrates (Taylor 1997,

Gartner 1997). Hydrates of cement have various chemical compositions because cement

itself is a mixture of many kinds of cementitious material. Most hydrates, especially early

products are amorphous compounds of calcium and silicate hydrates, often referred to as

calcium silicate hydrates (C-S-H) because of their undefined stoichiometry. The most

abundant cementitious material in commercial cement is tri-calcium silicate, or alite

(C3A). Alite provides most of the C-S-H in the early stage of hydration. Therefore, much

of the research on cement chemistry, especially on the early hydration process, has been

actually carried out with pure alite. In fact, there exists a faster reacting compound in

most cement products: calcium aluminate (C3A) hydrates almost instantaneously

producing a set that is undesirable for most situations in practice. In order to prevent

hydration of C3A, gypsum is added producing ettringite (Aft) as the first reactant

(replacing C-S-H). The amount of hydrates generated during the induction period is

known to be very small, less than 5% (Berliner et al. 1998). Hence, the degree of

hydration during the induction period is almost undetectable. Several authors have

questioned that hydration is responsible for changes in rheological properties, (i.e. yield

stress and viscosity). Many researchers have reported the evolution of rheological

properties with time during the induction period (Toumbakari et al. ,1999; Shroff et

al.,1996; Perret et al., 2000; Zebovitz et al., 1989; Schwarz and Krizek, 1994; De Paoli et

al., 1992). Figures A.7 and A.8 show the values of viscosity and yield stress reported

during the induction time of typical cementitious grouts. As each study applied a different

test method and a different grout, the values vary with a wide range. It is generally agreed

that C-S-H gel coats the cement particles and increases viscosity. Ettringite is also known

to coat the cement particles to prevent further hydration of them. Therefore, either

ettringite gel or C-S-H gel increases viscosity of the suspension by coating the cement

particles almost instantaneously. Besides hydration, mechanical agglomeration of cement

particles is often considered as a cause of rheological changes. Viscosity is well known to

increase by agglomeration (Struble and Sun, 1995), while the effects on yield stress are
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less well defined. However, agglomeration occurs within a certain range of calcium

concentration, (i.e. when there are sufficient ions to increase attraction between particles

but less than the amount necessary to start nucleation of hydrates; Nonat et al., 1997). For

the practical range of water-to-cement ratio of grouts (W/C 5), this level of

concentration is rapidly gained after mixing. Therefore, agglomeration would not be able

to explain evolution of rheological properties occurring throughout the induction period.

Superplasticizers (sometimes referred dispersant) are used to enhance the fluidity of the

suspension as commonly as retarders and accelerators. Although superplasticizers reduce

the viscosity of the suspension as low as water (a~1) without losing stability and

durability, they do not prevent the yield stress build up.

Lei and Struble (1997) supported the idea that a small amount of hydration during

the induction period increases yield stress by connecting cement particles, based on

creep-recovery tests measuring yield stresses of cement suspensions. These results have

been re-plotted in Figure A.9. It should be noted that the water-to-cement ratio used for

these tests were much lower (W/C = 0.45) than for those in Figures A.8 and values of

yield stress are much higher. The data can be divided into two phases: the first

corresponding to the induction period, and the second (for t >100 mins) corresponding to

a much more rapid strength gain in the post induction phases. The earlier values

increasing linearly indicate existence of induction period. An Arrhenius-type relation

was used as a kinetics law for induction period:

-c: exp(- a (A30)
dt RT

where Ea is the activation energy, R is the gas constant, and T is temperature in Kelvin.

Creep-recovery test results with different temperatures were calibrated with this equation

giving Ea = 22 kJ/mol as a result.

Barret and Bertrandie (1997) suggested a different kinetics equation while

providing the test results to determine the effect of the water-to-solid ratio of alite (C3S)

on hydration:
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= kr (A31)
dt

kT is the reaction kinetic depending on temperature. The degree of hydration and time

relation is plotted using this equation in Figure A. 10. The value of kT in this example is

chosen arbitrarily because the purpose of it is to examine only the trend of relation, not

exact values of the degree of hydration. In this figure, the degree of hydration increases

almost linearly with time similar to the yield stress reported in Figure A.9 during the

induction period. Therefore, Lei and Struble (1997)'s suggestion that yield stress

increases due to hydration during the induction period is supported by the kinetics

equation of Barret and Bertrandie (1997). Therefore, if the value of yield stress at initial

set is known, a linearly increasing function of time can be defined for yield stress during

induction period.

While the characteristics of 'very' early hydration during induction period

adversely affect the injectibility, the continuing hydration process determines the long-

term properties of the grouted soils (increased strength and decreased permeability) to

serve the objectives of the grouting operation. The 'accelerated' and 'diffusion-

controlled' stages of hydration follow the induction stage and represent the dominant

chemical processes. As mentioned earlier, autocatalytic growth of hydrates (the rate of

growth depends on the amount of hydrates) is the dominant process during accelerated

period hydration. The Avrami relation is commonly used to define the rate of the

hydration process during this period (Krstulovid and Dabi6, 2000):

[-ln(1- )]" = KNGt (A32)

where KNG is the parameter deciding the kinetics during the nucleation and growth (NG)

period. During the subsequent diffusion-controlled stage, hydration is slowed as the

movement of water is blocked by hydrate products. Therefore, this stage is controlled by

diffusion of water and affected largely by the water cement ratio (Berliner et al., 1998):

(1- )3 = -2(KD )1/2(t - to)1/2 / R + (1- O)113 (A33)

273



where KD [L 2/T is the diffusion coefficient, R is the original radius of the cement grain

and o is the degree of hydration at time to.

The rate of hydration, df/dt is summarized in Figure A. 11 is gained by applying

the different kinetics laws in equations A30, A32 and A33 for three different periods of

hydration. While the last two periods are clearly depicts the well-known trend of

hydration rate often observed by hydration heat evolution (for example, Ulm and Coussy,

1996), the first part of it during induction period is still not as clear as others.

A.2.2 Flow of Bingham fluid in porous media

An incompressible Bingham fluid flowing steadily in a circular pipe of radius, R,

with a rough (no-slip) boundary has a shear stress profile shown in Figure A. 12. Near the

center of the pipe, there is a region of plug where the shear stress is less than the yield

stress and there is no radial gradient in the axial fluid velocity. This central part of the

tube has a constant velocity forming a plug flow inside the pipe. In Figure A. 12, this plug

is characterized by a radius, rp. For a Bingham fluid the volumetric flow rate in the pipe

can be obtained from the Buckingham-Reiner equation:

irR ( p 4(rp )+ r,)

Q =,- 1- - - (A34a)
8/ p ax) 3 R 3 R

rp = - f(A34b)

The first term in equation A34a is identical to the Poiseuille equation for laminar flow of

an incompressible Newtonian fluid, while terms involving rp represents the effects of

13 The flow rate of a fully developed laminar flow of an incompressible Newtonian fluid in a pipe is

described by the Poiseuille equation:

8 R 4 (
8,u ax
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the yield stress. If the absolute value of the pressure gradient (-- I becomes too small and
yax)

the boundary of the plug flow region r, reaches the pipe radius R, the flow will stop. In

other words, a minimum absolute value has to be exceeded in order for the Bingham fluid

to flow in a pipe of radius, R . This minimum absolute value of pressure gradient is

defined as the critical pressure gradient (CP):

CP - 2-f (A35)
rp=R R

The similarity between the Buckingham-Reiner equation and the Poiseuille equation

suggests that a law defining the apparent flow velocity, v, for a Bingham fluid such as

Darcy's law for a Newtonian fluid can be established with a permeability, kBingham:,

k Bingham ap
V=_ C axJ
4( p + , x )

k Bingham=k - + (A36)
3 R 3 R

In comparison, Darcy's equation defines the apparent flow velocity, v, in a porous medium in terms of

pressure gradient.

k (ap)

where k[ L2] is the permeability intrinsic of the porous medium and u is the dynamic viscosity of the fluid.

Similarity between above two equations seems to be encouraging use of capillary model. In fact, Darcy's

equation, which was originally developed empirically, can be derived by applying homogenization

techniques to the Poiseuille equation applied for capillary tubes of different radii (for example, see

Sanchez-Palencid, 1980).
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where k is the permeability of the porous medium and u is the viscosity of the Bingham

fluid.

A.2.3 Permeation limit and critical pressure gradient, CP

Raffel and Greenwood (1961) were the first to point out that permeation of a

cementitious grout could be limited in progress when the pressure gradient was not

enough to overcome the yield stress. They used an equation for estimating the radius, R,

in calculations of CP, based on known values of the permeability, k, and porosity, n 0 , of

the porous medium:

R = (A37)
no

This equation can be derived by assuming all pores as circular tubes with radius R

in which flow is described by the Poiseuille equation. The flow velocity in a tube is then:

Q _R 2 (ap)V - R2 (Rp (A38)

The superficial velocity of this flow in a porous medium with porosity no is noV. Equation

A37 is directly obtained by equating this with the apparent flow velocity, v, by Darcy's

law. The fact that Raffel and Greenwood (1961) did not consider that a Bingham fluid is

not controlled by the Poiseuille equation and that they did not apply a homogenization

technique implies equation A37 cannot be reliable. In order to verify this, a case of

spherically radial permeation grouting without hydration effect was considered. The

complete analytic solution for this case of a grout with a viscosity of a times larger than

that of water injected into a soil with permeability k and porosity no can be obtained from

equations A20 and A2114.

The pressure gradient can be calculated by differentiating equation A20.

1 xo, x, replace ro, r, in the original equation.
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ap = a(p, - p") 2 (A39)
ax (a -1) a X)

x0 XW

The absolute value of gradient will be always the smallest at the boundary between pore

water and the grout, x = xo. By equating this smallest value, (- with CP in

equation A35 and assuming the environmental pressure pe is zero, the limit of grout front

can be found by identifying the value of xo where CP is reached:

x (a-1)+ J(a-1)2 +(2a 2 pfrf )(R/x) (A40)
x f2a

Figure A. 13 summarizes the limit of the grout front as a function of the pore

radius, R , for a given well radius, xw, calculated by applying equation A40. The

calculations assume a viscosity ratio, a = 10, and yield stress, zf =lPa permeating a

medium with porosity, no= 0.35 and permeability, k= 5 x 10-" m2 by the well pressure

Pw = 100kPa.

Equation A37 suggested by Raffel and Greenwood (1961) estimates that a pore

radius, R, of this porous medium will be 0.0034cm. The ratio of this pore radius to the

assumed well radius, x,, =10 cm is R/x, = 3.4 x 10-4. In this case, the permeation limit was

calculated as xo/x, = 4.6 implying that the grout extends to a radius of 0.46m in 2.6

minutes of pumping. This represents a very ineffective permeation especially considering

that the selected viscosity and yield stress values are relatively low. In fact, a single pore

radius estimate is not appropriate at all for a Bingham fluid, as the grout will continue to

flow through larger pores while the pressure gradient is too small initiate flow in smaller

pores. Therefore, the distribution of pore sizes, rather than a single characteristic

representative pore radius must be considered for permeation of a Bingham fluid.
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A.2.4 Partial hydraulic conductivity by Arya et al. (1999)

As presented in Section 7.3, Arya and Paris (1981) proposed an analytical method

to predict pore size distribution from known particle size distribution using moisture

characteristic curves for unsaturated soils. Arya et al. (1999) applied resulting equation

for pore radius (equations 7.16) to approximate the hydraulic conductivity corresponding

with water content 6; of a sample up to ith sized pores, saturated with water. They used an

empirical relationship for flow rate inside a pore cylinder of radius Ri:

qj = cR7 (A41)

where qj is the volumetric flow rate per unit hydraulic gradient , i.e., qj =

with the total flow rate, Q corresponding the pressure gradient, Vp and the unit weight of

water, y.. Parameters were log c = 2.570, x = 4.471 (with qj in cm 3/sec) (cf) for a medium-

grained sand in Arya et al. (1999). The partial hydraulic conductivity when the ih and

smaller pores were saturated was found as:

j=i

K(61 ) = no I (crj) w1 lzr ( A42)
j=1

while the value when all pores up to the largest size were saturated is the 'saturate'

hydraulic conductivity that is applied in Darcy's law:

j=n

Ksaturate = no r (cr .)w /7rj (A43)
j=1

when rn is the largest pore size. Equation A42 was originated in the purpose of estimating

unsaturated hydraulic conductivity increasing as water fills pores starting from smaller

(CO From Hagen-Poiseuille equation, q = LR 4 with log 8 = 4.5856
8/ w 8pI )
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ones moving to larger ones. Therefore, with the complete range of particle sizes, this

equation will give the saturated hydraulic conductivity.

A.2.5 Application of Arya et al. (1999)'s equations for a Bingham fluid

Since equation A42 is based on experiments with water (a Newtonian fluid), the

conductivity is Newtonian. As noted earlier, the yield stress in a Bingham fluid flowing

in a pipe induces a plug flow region developed when the shear stress does not exceed the

yield stress. Therefore, volumetric flow rate of a Bingham fluid is less than that of a

Newtonian fluid and this effect can be quantified by deducing an apparent permeability,

kBingha defined in equation A36. Equation A36 can be directly applied for conductivities

because hydraulic conductivity is proportional to permeability (i.e. K = ky /pu). This

equation is developed for flow through a single pipe with radius, R, while in present pore

model, there exist multiple capillary tubes of different radii. Therefore, the conversion

4(r )+ rp
term in equation A36,L1 {f +- -j j, should change for each capillary tube

3 R 3 R

radius. As for the plug flow radius, r,, it is equivalent to the largest pore radius the fluid

can penetrate, which is ri when i th and smaller pores were saturated resulting in the water

content of 6i. Therefore, equation A42 can be converted for a Bingham fluid:

K = ,/M2r 4 i (A44)
Bingham(i) no I (crx) wj i 3 r. 3+ \JX J

J=
1  

Ji J

However, equation A43 is not affected by yield stress in a Bingham fluid because all

pores are saturated and limit pore size for penetration, ri -> 0.

The critical pressure gradient of cement grout is inversely proportional to the

radius of the pore (equation A35). When a distribution of pore radii is considered, there

exist multiple values of the critical blocking pressure gradient (CP). The largest CP value

(corresponding to the smallest current pore radius) will be reached first as the pressure

gradient drops. This will decrease the hydraulic conductivity, the grout will continue to
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progress through larger pores. The new value of hydraulic conductivity can then be

obtained by eliminating contributions from the blocked pores. For example, if the largest

blocked pore radius is ri, the equivalent hydraulic conductivity of the porous medium

with pores only larger than ri is:

r4
Kfingham (re) = K saurt 11 2 13 (A45)

j=1 IIIr

with corresponding CP:

(A46)
r

Equation A45 is obtained by subtracting the partial conductivity for Bingham

fluid, KBingham( 0) when the ith and smaller pores were saturated in equation A44 from

saturated conductivity, Ksaturate in equation A43 in order to remove contributions by

blocked pores.

In order to estimate the effect of the conductivity change to injection of cement

grout, example calculations were carried out using the particle-size-distribution curve

shown in Figure A. 14, presenting a soil mainly comprised of medium-sized sand. Values

of pore radius calculated following Arya and Paris (1981)'s method were plotted next to

the PSD curve in Figure A.15. As shown in this figure, pore sizes are reduced to those of

fine sand and coarse silt, while two largest sizes of pores become bigger than those of soil

particles do. For each of these pore sizes, equation A44 gives an apparent hydraulic

conductivity for a Bingham fluid when it is the largest blocked radius. This hydraulic

conductivity was plotted in Figure A. 16. As shown in this figure, the saturated hydraulic

conductivity calculated when no pore was blocked is 0.04814 cm/sec, which is close to

that used in previous example in Section A. 1, K = 0.049 cm/sec (corresponding to

permeability k = 5 x 10-1 M2). The Bingham hydraulic conductivity values from Figure

A. 16 were plotted in Figure A. 17 with CP values by equation A46 with yield stress
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values of 1, 10, 30 Pa respectively. In this figure, it is noticeable that there exists a finite

value of CP for each yield stress below which the conductivity becomes zero. Therefore,

if this threshold CP= CP.in is reached at the grout front, there will be no further

permeation possible (i.e. the permeation limit was reached).

A.2.6 Effect of changes in yield stress change and permeation limit

As the pressure gradient decreases, pores that have corresponding CPs larger than

the absolute value of this gradient will be blocked and the (effective) conductivity of the

medium will decrease. Once the absolute value of pressure gradient becomes less than the

CPmi, permeation will stop. Therefore, hydraulic conductivity decrease with CP shown

in Figure A. 16 should act to shorten the limit of permeation. If the yield stress also

increases due to hydration, CPs for pores of various sizes will increase and conductivity

will drop more rapidly. Changes in the permeation limit when the conductivity decreases

and the yield stress increases with time were investigated with the conditions used for

constructing Figures A. 13. As the conductivity now depends on the pressure gradient, the

continuity equation is nonlinear. Figure A. 18 shows the movement of grout front with

time gained by numerical integration of this nonlinear equation. The case when

conductivity does not change until CPmin is leached is presented as the reference. Because

the governing equation for this case is linear, the analytical solution equation A20 was

directly applied. As shown in this figure, the time at the permeation limit is 15.7 hours.

This reduces to 12.5 hours when gradual decrease of conductivity is considered.

Furthermore, the effect of increasing yield stress was added in the analysis,

assuming that it increases linearly with time following Lei and Struble (1997)' s

suggestion explained in Section A.2.1. The permeation limit was reached at 2.2 hours

after injection started when a rate, lPa/hour was used as shown in Figure A.18. This

substantial change is remarkable considering that this rate is less than any reported yield

stress increase rate summarized in Figure A.7. Figure A.19 presents all the simulated

results for duration for permeation limit reached (limit duration), which was found

rapidly decreasing with the yield stress increase rate.
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A.3 CONCLUSIONS

A non-steady conservation equation of a permeated cementitious grout has been

established using the kinetics law of the hydration reaction for the spherically radial case.

Through the dimensional analysis on this equation and boundary conditions, a

dimensionless time, T number, the ratio of time scale of penetration to that of hydration,

was selected as the measure of the effect of hydration on permeation grouting. It was

found that the hydration reaction and resultant porosity change affects the grout progress

more as this number grows (i.e. the penetration time becomes comparable with the

hydration time). The spatial distribution and penetration extent of reduced porosity

depends on the age of grout mix pumped in at the source. Two limit cases: the perfect

mixing (grout freshly mixed right before injection) and the single batch mixing (all grout

from a single batch) were considered and the perfect mixing case showed much higher

penetration extent (T number 150 for perfect mixing vs. 84 for single batch mixing). In

addition, the perfect mixing batch showed minimum porosity in the middle of the grouted

area, while the single batch mixing case caused most changes in porosity next to the

injection point.

The effect of rheological properties during induction period is estimated by using

Bingham fluid model. Yield stress in a Bingham fluid and resulting critical pressure

gradient (CP) stops flow in small pores where pressure gradient is less than CP at a

constant-flow rate condition. This pore-scale effect of CP on total permeability of soil

was modeled by using a semi-empirical approach by Arya et al. (1999a). It was found

with this model that the yield stress increase could greatly affect the extent of permeation

grouting even at slow rates found typically during induction period.
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Table A. 1 Physical values used in the sample problem

0.1 m k 5x10~" m'

PW 100 kPa PI 1 cp

P, 0 kPa Ig 10 cp

no 0.35 Cw 0.18 m2/hr/kPa

Pgi 1200 kg/m 3  C(no) 0.018 m2/hr/kPa

Pg 2300 kg/m 3  C(n) = C(nO) n'(1 -n 0 ) 2 (Kozeny-Carman)
n (1m- n )h

Set time 10 hours a I1t
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