
Synthesis and Evaluation of Fault-Tolerant

Quantum Computer Architectures

by

Andrew W. Cross

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

@ Massachusetts Institute of Technology 2005. All rights reserved.

Author ...
Department of Electrical Engineering and Computer Science

January 28th, 2005

Certified by.
Isaac L. Chuang

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by....................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

OF TECHNOLOGY

I BMAR 14 2005

LIBRARIE

BARKER

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://iibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

The Archives copy contains grayscale images only. This is
the best version available.

Synthesis and Evaluation of Fault-Tolerant Quantum

Computer Architectures

by

Andrew W. Cross

Submitted to the Department of Electrical Engineering and Computer Science
on January 28th, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed
into its prominent position with heroic theoretical efforts. The fault-tolerance thresh-
old, which is the component failure probability below which arbitrarily reliable quan-
tum computation becomes possible, is one standard quality measure of fault-tolerant
designs based on recursive simulation. However, there is a gulf between theoretical
achievements and the physical reality and complexity of envisioned quantum com-
puting systems. This thesis takes a step toward bridging that gap. We develop a new
experimental method for estimating fault-tolerance thresholds that applies to realistic
models of quantum computer architectures, and demonstrate this technique numer-
ically. We clarify a central problem for experimental approaches to fault-tolerance
evaluation - namely, distinguishing between potentially optimistic pseudo-thresholds
and actual thresholds that determine scalability. Next, we create a system archi-
tecture model for the trapped-ion quantum computer, discuss potential layouts, and
numerically estimate the fault-tolerance threshold for this system when it is con-
strained to a local layout. Finally, we place the problem of evaluation and synthesis
of fault-tolerant quantum computers into a broader framework by considering a soft-
ware architecture for quantum computer design.

Thesis Supervisor: Isaac L. Chuang
Title: Associate Professor of Electrical Engineering and Computer Science

3

A
s?!N

ililedelhiM
~idigeldfifdm

oim
ow

w

iom
m

-om
-uw

il*-,n-..
-.

Acknowledgments

I am ever grateful to Isaac Chuang for taking me as a student in his quantum comput-

ing group. His love of science and clarity of expression are always an encouragement.

He has taught me to question more deeply than I had before, and to think carefully

about the right questions, as they are at least half the problem. I am thankful for

the opportunities he has created for me.

Tzvetan Metodiev contributed many layout and circuit synthesis tools I have used

to construct recursively simulated circuits. He and Darshan Thaker also contributed

the Planar object of the quantum architecture simulator and related code. It has

been great fun traveling to see Setso and Darshan, and I have enjoyed weekly phone

conversations with Setso.

Krysta Svore read early drafts of my thesis and her comments improved its clarity.

Her prior work has also inspired the observations about pseudo-thresholds. I admire

and have learned a lot from her way of working.

Ken Brown has always graciously answered my questions, however off-topic, and

taught me to tell a story when I talk about my research (I am still learning).

I have had the wonderful opportunity to work with Al Aho, who tells it like it is.

He has been a great encouragement, and I can't thank him enough for setting aside

time to meet with me and read this thesis.

I am thankful to know Aram Harrow, Rob Clark, Jarek Labaziewicz, and Andrew

Houck. Conversations with them have made my stay with the group very enjoyable,

and I have appreciated their comments and advice.

Terri Yu helped me transition into the group. Thank you Terri.

My friends and family have always been very patient and supportive, even when

work might keep me from the phone or busy over holidays. Thank you for under-

standing.

Abby, thank you for your love and support. I'm sorry I couldn't take your sug-

gestion to title this "Faults I Have Tolerated."

This work was funded by an NDSEG graduate fellowship.

5

Contents

1 Introduction 25

1.1 Background . 25

1.2 Organization and Overview . 27

2 Efficient Simulation of Quantum Error Correction Circuits 31

2.1 Quantum Error Correction Circuits 32

2.2 Stabilizer Form alism . 36

2.2.1 The Pauli Group, Stabilizers, and Stabilizer States 36

2.2.2 The Clifford Group and Stabilizer Circuits 39

2.2.3 The Gottesman-Knill Theorem and the Ck Hierarchy 40

3 Fault-Tolerance Thresholds 43

3.1 Introduction . 43

3.2 Triple Modular Redundancy (TMR) 44

3.3 Quantum Fault-Tolerance . 49

3.3.1 Definitions for Quantum Fault-Tolerance 49

3.3.2 Quantum Triple Modular Redundancy 54

4 Fault-Tolerance Thresholds are Experimentally Observable 59

4.1 Introduction . 60

4.2 Criteria for Scalable Fault-Tolerance 61

4.2.1 DiVincenzo Criteria . 62

4.2.2 Fault-Tolerance Criteria . 63

7

4.3 Releasing Common Assumptions

4.3.1 Leakage and qubit loss

4.3.2 Ancilla Preparation

4.3.3 Locality and geometric constraints

4.4 Experimentally Estimating Thresholds

4.4.1 Experimental Method

4.4.2 Classical Example

4.4.3 Evaluating quantum fault-tolerance

4.4.4 Quantum Examples

4.5 The Pseudo-threshold problem

4.5.1 Classical Pseudo-thresholds

4.5.2 Quantum Pseudo-thresholds

4.6 Conclusion .

5 Threshold for Trapped-Ion Quantum Computers

5.1 Trapped-Ion Quantum Information Processing . .

5.1.1 Ion-qubits and RF Traps

5.1.2 Gates and Measurement

5.1.3 Moving Ions between Traps

5.1.4 Noise and other imperfections

5.1.5 Revisiting the DiVincenzo criteria.....

5.2 Ion-Trap System Architecture Model

5.2.1 Stabilizer Simulation Model

5.2.2 Model implementation summaries

5.3 Quantum Computer Layouts

5.3.1 Turing machine layouts

5.3.2 H-Tree layouts

5.3.3 Ancilla-supported layouts

5.4 Thresholds for Trapped-Ions

5.4.1 [[3,1, 1]] bit-flip code

8

65

. 65

. 66

. 66

. 67

. 68

. 69

. 71

. 72

. 77

. 77

. 85

. 89

91

. 92

. 92

. 94

. 98

. 100

. 100

. 101

. 101

. 105

. 107

. 108

. 109

. 113

. 120

. 121

5.4.2 [[7,1,3]] quantum code . 123

5.5 Conclusion . 126

6 A Software Architecture for Quantum Computer Design Tools 127

6.1 Quantum Computer Organization . 128

6.2 Design Flow . 130

6.2.1 Quantum assembly language 133

6.2.2 Quantum physical operations language 134

6.3 Simulation Software Implementations 137

6.3.1 Ion-trap Simulator (ITSIM) 137

6.3.2 Quantum Architecture Simulator (ARQ) 143

6.4 Conclusion . 147

7 Conclusion 149

A Notation 153

B Ion-Trap Simulator (ITSIM) Source Code 155

B.1 Module Dependencies . 155

B.2 Source Listing . 156

B.2.1 aqc.pt . 156

B.2.2 bundle.py . 157

B.2.3 cell.py . 159

B.2.4 chain.py . 160

B.2.5 chp.c . 162

B.2.6 chp.h . 171

B .2.7 chp .i . 172

B.2.8 control.py . 173

B.2.9 grid.py . 178

B.2.10 ion.py . 179

B.2.11 iontrap.py . 180

B.2.12 llparse.py . 181

9

B.2.14 parse.py . 183

B.2.15 physics.py . 184

B.2.16 polparse.py . 184

B.2.17 propagationM ethod.py . 187

B.2.18 pureM ethod.py . 187

B.2.19 stabilizerM ethod.py . 188

C Quantum Architecture (ARQ) Simulator Source Code 191

C.1 M odule Dependencies . 191

C.2 Source Listing . 192

C.2.1 CGM achine.cc . 192

C.2.2 CGM achine.He . 194

C.2.3 ITM achine.cc . 194

C.2.4 ITM achine.hh . 196

C.2.5 M achine.cc . 196

C.2.6 M achine.hh . 201

C.2.7 NoisyCGM achine.cc . 201

C.2.8 NoisyCGM achine.hh . 203

C.2.9 NoisyITM achine.cc . 203

C.2.10 NoisyITM achine.hh . 206

C.2.11 NoisyPCGM achine.cc . 206

C.2.12 NoisyPCGM achine.hh . 208

C.2.13 Op.cc . 208

C.2.14 Op.hh . 209

C.2.15 PCGM achine.cc . 209

C.2.16 PCGM achine.hh . 211

C.2.17 Planar.cc . 211

C.2.18 Planar.hh . 212

C.2.19 QState.cc . 212

10

B.2.13 logger.py . 183

C.2.20 QState.hh 220

C.2.21 arq.cc . 221

C.2.22 com m andLine.cc . 222

C.2.23 com m andLine.hh . 223

C.2.24 globals.hh . 223

C.2.25 htable.c . 223

C.2.26 htable.h . 225

C.2.27 interactive.cc . 225

C.2.28 interactivelh . 228

C.2.29 loglevels.hh . 228

C.2.30 lookupa.c . 228

C.2.31 lookupa.h . 230

C.2.32 noise.cc . 230

C.2.33 noise.hh . 232

C.2.34 phash.c . 232

C.2.35 phash.h . 232

C.2.36 planarops.h . 233

C.2.37 planarops.c . 233

C.2.38 standard.h . 236

C.2.39 utilities.cc . 236

C.2.40 utilities.hh . 237

11

12

List of Figures

2-1 The quantum circuit shown encodes a single qubit 10) in a subspace

of a 3-qubit Hilbert space. The resulting subspace is protected against

errors that X-rotate a single physical qubit (i.e., errors of the form

U = e-i"X for some 6). 33

2-2 This quantum circuit couples a 3-qubit quantum codeword to two

ancillary qubits. Upon measurement, these ancillary qubits reveal

the parity of adjacent bits and simultaneously project the quantum

codeword onto a state with that parity. The measurement results

locate bit-flip errors which can then be corrected by classically con-

trolled correction operations. For example, the 3-qubit input state

10) = V/i(aJ0i0) + 01101)) + V/1 - c(a000) + #111) leads to parity

measurement 11 with probability E and parity measurement 00 with

probability 1 - E. These measurements indicate no error with proba-

bility 1 - c and a bit-flip on the second qubit with probability C. . . . 33

2-3 This quantum network maps the all-zero state 10000000) to the logical

zero basis state of the Steane code (equation 2.6). The 3 Hadamard

gates split the state into a superposition of 23 codewords, while the

9 controlled-NOT gates create the appropriate codewords of the dual

code C'. The logical zero basis state is an essential reference state

in quantum error-correction circuits, often used to extract an error

syndrome from the data without collapsing the state of the data to a

state outside of the code subspace. 35

13

2-4 A recovery network for the 7-qubit Steane code. The input state Jqo)

is the encoded data to be corrected, and the input states |ao) and jai)

are encoded logical zero states. The first ancilla state lao) determines

the bit-flip error location, and the second ancilla state lai) determines

the phase-flip error location. Each gate and measurement is a block of

7 operations applied qubit-wise. The "Decode Syndrome" block is a

classical circuit that applies two parity check matrices to the 14 mea-

surement outcomes, outputting a pair of syndromes. The syndromes

classically control a recovery operation R that applies an appropriate

bit-flip and/or phase-flip to the data. 35

3-1 The fault-tolerant classical wire (or identity gate) expands the original

faulty wire in triplicate and inserts three fan-outs and three majority

voting gates "e" to amplify the correct signal. Failures can occur in

locations marked by "x ". Failures in the leftmost BSC are gate failures

and failures in the rightmost BSC are voter failures. Any single gate

or majority voter failure won't flip a majority of the output wires.

Assume that the final value is read by a very reliable process, so that

only a majority of the output wires need to carry the correct value. . 45

3-2 The fault-tolerant wire is even more reliable below threshold when

recursively simulated. Each wire and majority gate in Figure 3-1 is

expanded in triplicate and each failure location replaced by Figure 3-1

itself. The resulting fault-tolerant wire can tolerate 3 or fewer failures

distributed in any way. 47

14

3-3 Transversal quantum gates are gates that can be applied bit-wise to

transform the encoded input qubit(s) to the proper encoded output

state. This figure shows transversal CNOT and Hadamard gates.

Transversal gates are fundamental fault-tolerant gates because they

limit the spread of errors by restricting interaction in a very simple

way. All of the Clifford group gates (i.e. C2) are transversal for the

C SS codes. 51

4-1 This circuit detects if 1) has leaked from the computational Hilbert

space. If this is the case, then the CNOT gates will act like the identity

on qubit ao and the measurement outcome will be 0. Otherwise, the

measurement outcome will be 1. If leakage occurs, the damaged qubit

is reinitialized to 10). 65

4-2 The failure probability of a fault-tolerant classical wire computed using

Monte-Carlo simulation and evaluation of products of Markov chain

transition matrices. The gate locations and voter locations both fail

with probability po initially (i.e., 7g = 'Yin = Po. This plot shows the

reliability of a single fault-tolerant wire (T = 1) and gives crossing

points poi 0.226, P1,2 ~ 0.164, and P2,3 ~ 0.153. 70

4-3 The failure probability of a fault-tolerant classical wire computed using

Monte-Carlo simulation and evaluation of products of Markov chain

transition matrices, like Figure 4-2. This plot shows the reliability of a

single fault-tolerant wire computed by composing T = 2 fault-tolerant

wires, then dividing the resulting failure probability by T = 2 to give

an average failure probability. The crossing points P1,2 and P2,3 have

shifted down by about 0.02 due to propagating errors. 70

15

4-4 This figure shows the pi(P), P2(P), and p3(p) curves for the fault-

tolerant recovery network of the 3-qubit bit-flip code. The points are

numerically computed data, and the solid lines are polynomial fits to

that data. The solid black line is the line pf/T = po included for

reference. Independent bit-flip noise occurs prior to every gate in the

network with probability po. The vertical axis is the average failure

probability the L-simulated recoveries, computed by composing T = 32

recoveries and dividing the failure probability by T = 32. The numer-

ically estimated threshold is Pth ~~ 0.035. 74

4-5 The pi(p) and p2(p) curves for the [[7, 1, 3]] fault-tolerant recovery net-

work [Pre01]. Each point is numerically computed data, and the solid

lines are polynomial fits to that data. The solid black line pf/T = Po

is included for reference. The numerically estimated threshold is Pth ~

7.2 x 10-4. 76

4-6 The construction for a fault-tolerant majority voter is identical to a

fault-tolerant wire in Figure 3-1 except the first wire is replaced by a

voter. If input errors are ignored, the wire and voter have the same

failure probability. However, input errors cause the wire and voter to

behave differently in recursive simulations. 80

4-7 This sequence of graphs shows the image of the rectangle R = [0, }] x

[0, 1] under several iterations of the probability map given by equa-

tion 4.36. In particular, this rectangle is an invariant set, meaning

y(R) 9 R, and the origin and the upper right hand corner are attract-

ing fixed points. 82

4-8 This plot characterizes the fixed points of the probability map given

by equation 4.36. Green circles denote attractive fixed points, and

red circles denote saddle points. The white arrows are eigenvectors of

the linearized system at each fixed point. Ingoing arrows correspond to

associated eigenvalues with magnitude less than 1 and outgoing arrows

correspond to associated eigenvalues with magnitude greater than 1. 84

16

5-1 Schematic of the ion trap used in ion shuttling experiments at NIST

Boulder [RBKD+02], courtesy of David Wineland. Individual ions are

trapped near electrodes 2 and 4. Ions can be moved by adjusting the

static potentials on electrodes 1, 3, and 5. 93

5-2 Energy levels of the atom-oscillator system together with carrier-driven

transitions (WL = W0). Carrier-driven transitions rotate the qubit to

desired superposition states. 96

5-3 Energy levels of the atom-oscillator system together with red-driven

transitions. Red-driven transitions change the populations of the qubit

energy levels and the oscillator energy levels simultaneously. The os-

cillator loses one quanta of vibrational energy in a transition on the

red sideband. 97

5-4 Energy levels of the atom-oscillator system together with blue-driven

transitions. Blue-driven transitions change the populations of the qubit

energy levels and the oscillator energy levels simultaneously. The os-

cillator gains one quanta of vibrational energy in a transition on the

blue sideband. 97

5-5 A sample layout of a QCCD ion trap architecture is specified by a trap

matrix. Each non-empty location in the trap matrix can contain an

electrode or a single ion. 102

5-6 This is one possible layout for ion-trap quantum computing based on

a Turing machine with a finite circular tape. The blue squares rep-

resent non-conductive substrate that supports electrodes represented

by gray rectangles. Black squares are empty space in which ions can

be trapped. Each ion is drawn as a colored sphere. Green spheres are

ions that hold data while the blue sphere is an ion used for sympathetic

cooling. The green line represents a beam of laser light striking an ion

in the accumulation region, the region where quantum logic operations

take place. 109

17

5-7 This H-tree fractal is generated from the central "H" by scaling and

translation. As an ion-trap layout, the gray region should be inter-

preted as a large channel with many smaller rows and columns of traps.

The white region should be interpreted as substrate. A 6-simulated

quantum error-correction circuit on the H-tree looks like this figure. . 110

5-8 The basic unit of the H-tree layout for the 3-qubit bit-flip code is

constructed from a trap with 6 channels that branch from a central

channel. Three of these channels store data qubits, shown in green, and

three of these channels store ancillary qubits, shown in red. Ancilla and

data qubits each share their channels with a sympathetic cooling ion

shown in blue. The ancilla are prepared first using the central channel,

then move transversally to extract an error syndrome from the data.

The data is stationary for the entire error-correction process and only

moves to interact with other data qubits.111

5-9 An ion-trap layout for a 3-simulated 3-qubit quantum memory. The

solid circles represent ions and the cyan squares represent substrate.

Black regions of the layout represent free space in which ions can be

trapped and moved. Green circles are data ions, red circles are ancilla

ions, and blue circles are sympathetic cooling ions 112

5-10 An alternate view of Figure 5-9. 112

5-11 A single logical qubit and its ancilla support structure reside in a plane

for a quantum computer built from a 3-dimensional lattice of ions.

The left column of green circles represents the data qubits in an L-

codeblock. The remaining columns of red and blue circles represent

ancilla qubits. Each column of red ancilla qubits is a 1-superblock

and each column of blue ancilla qubits is a 2-superblock. The pattern

continues - for each q-superblock with q > r > 0 there are Mr r-

superblocks supporting that q-superblock. 115

18

5-12 This is the same structure shown in Figure 5-11 when Mk = 1 for all

k. The data codeblock is on the left. Each box of qubits to the right

of the data is called a q-chunk - one q-superblock to correct data and

the rest to correct ancilla in the box. There are L chunks to correct

data encoded at level-L. 116

5-13 This is a 1-supported L-block for which data and ancilla are interleaved.

M1 red level 1 ancilla follow each of the n green data qubits. These

nM1 level 1 ancilla are used in level 1 error-correction of the n data

qubits, though the data qubits are part of a larger L-codeblock. There

are nr (M 1 + 1) gray verification qubits used to prepare up to (M 1 + 1)

1-codeblocks, the total number contained in the 1-supported L-block

if the data qubits need to be prepared as well. 117

5-14 This is also a 1-supported L-block, as in Figure 5-13, except data is

placed adjacent to the ancilla and verifiers. Compared to the inter-

leaved block, this block has a lower ancilla preparation failure rate due

to movement but a higher data-ancilla interaction failure rates due to

m ovem ent. 118

5-15 This is an interleaved 2-supported L-block. Notice that Figure 5-13 is

contained within this figure n times for the green data qubits and n

times for the blue level 2 ancilla qubits. A total of n,(M2 + 1)n gray

verifiers V appear at the end of the block to verify the blue level 2

ancilla qubits. These V verifiers have their own verification qubits V

because the V verifiers themselves must be prepared into a logical zero

state and verified. 118

5-16 This is an adjacent 2-supported L-block. There are the same number

of qubits as in Figure 5-15. The qubits have different locations but the

same roles, and they are labeled as before. 119

19

5-17 This figure shows how the failure probability of an L-simulated fault-

tolerant recovery network for the [[3,1,1]] code depends on both gate

and movement failure probabilities under bit-flip noise. The blue sur-

face is the average failure probability of a recovery network for a 0-

concatenated code, and the red surface is the average failure probability

of a recovery network for a 1-concatenated code (i.e., a 1-simulated re-

covery network). The "gate" axis is the failure probability pg = pi = P2

and the "move" axis is the failure probability pt (see Table 5.2). There

is a region where recursive simulation improves reliability of the re-

covery network - the region where the red curve passes beneath the

blue curve. The neighborhood of the crossing manifold is colored gray;

these points can be identified with neither the red nor the blue surface

within the standard error. 122

5-18 This is Figure 5-17 viewed from above. This plot emphasizes the set

of reliable parameters in the lower left. These parameters lie approx-

imately within the triangle given by (0.005,0.0005), (0.005,0.0027),

(0.03, 0.0005). The neighborhood of the crossing manifold is colored

gray; these points can be identified with neither the red nor the blue

surface within the standard error. 123

20

5-19 This figure shows how the failure probability of an L-simulated fault-

tolerant recovery network for the [[7,1, 3]] quantum code depends on

both gate and movement failure probabilities under depolarizing noise.

The blue surface is the average failure probability of a recovery network

for a 0-concatenated code, and the red surface is the average failure

probability of a recovery network for a 1-concatenated code (i.e., a 1-

simulated recovery network). The "gate" axis is the failure probability

Pg = P1 = P2 and the "move" axis is the failure probability pt (see

Table 5.2). There is a region where the red surface passes beneath the

blue surface. Recursive simulation improves reliability of the recovery

network in this region. Grey portions of both surfaces represent inter-

polated data that could be attributed to neither the blue nor the red

surface within the standard error. 124

5-20 This is Figure 5-19 viewed from above. This plot emphasizes the region

of reliable parameters which are shown in blue. 125

6-1 The four-phase design flow accommodates most approaches to quan-

tum computer system design. Each phase maps between languages

representing quantum circuits with varying degrees of technology de-

pendence. 132

6-2 The ITSIM module dependence diagram (MDD) includes 10 different

components. Lines connecting the modules signify inclusion, instanti-

ation, or some other dependence. See appendix B for a more detailed

M D D . 139

21

6-3 Snapshot of the ITSIM graphical display showing an H-tree layout.

Qubits are ions represented by spheres, and gates are applied using

laser pulses, represented by lines. The qubits can move within the

black regions of the figure and are prohibited from moving into the

substrate which is drawn using light squares. In the right window

the simulator displays feedback regarding the current operations, noise

induced failures, and estimated execution time. 143

6-4 The ARQ virtual quantum machine hierarchy contains 7 machines.

The classical control (cc) machine lies at the bottom of the hierarchy

and implements conditions and branching. The Clifford group (cg)

machine includes the classical control machine and adds measurement,

CX, CZ, H, S, X, Y, and Z gates. The planar Clifford group (pcg)

machine adds a layout and the accompanying movement and placement

instructions. Finally, the Clifford ion trap (cit) machine adds ion-

trap specific instructions such as cooling. Each machine has a noisy

equivalent (ncg, npcg, ncit). 145

B-1 The full ITSIM module dependence diagram. Arrows represent Python

import dependence. The module at the arrow tail imports the module

at the arrow head. 155

C-1 This diagram shows ARQ source dependencies. Each source file at an

arrow tail includes the source file at the arrow head. 191

22

List of Tables

4.1 This table lists sources of error in the quantum TMR circuit. The

first column is the error source which is a subset of locations in the

circuit. The second column is the failure probability J associated with

an individual error event. The third column is the number of locations

N in the error source . 87

4.2 This table lists the location thresholds and pseudothresholds for the

quantum TMR circuit. Wait errors have the lowest location threshold,

and CNOT gates have the largest difference between thresholds and

pseudothresholds. 89

5.1 Summary of the trapped-ion system model as implemented in the IT-

SIM simulation tool. The upper half of the table lists important points

regarding the trap layout, ion chaining, heating, and memory error

model. The lower half of the table lists the available operations and

their adjustable parameters. 106

5.2 Summary of the trapped-ion system model as implemented in the ARQ

simulation tool. The ARQ tool does not model the ion-trap in as much

detail as the ITSIM tool, but the simplified model allows us to explore

larger systems at higher levels of recursive simulation. 107

23

5.3 Summary of physical parameters for ion trap system models. The

current experimental values of movement and splitting parameters are

taken from [RBKD+02, CSB+04]. The current experimental values of

gate parameters are taken from [DMW+98] and [DDV+03]. Sympa-

thetic cooling times can be found in [BDS+03]. Projected parameter

values are motivated by [WHOO]. 108

24

Chapter 1

Introduction

1.1 Background

There appears to be mounting evidence that quantum computers are more power-

ful than their classical counterparts. Shor's historic factoring algorithm can factor

composite integers in polynomial time, meaning that quantum computers have the

potential to break public-key cryptosystems [Sho94]. While Shor's result provides

the most significant algorithmic motivation for studying quantum computation at

present, quantum search algorithms also offer modest improvements over their classi-

cal counterparts [Gro97]. Quantum simulation algorithms may also offer advantages

over classical simulation techniques. Finally, significant algorithmic speedups have

been found for other problems ([HRTS03, Hal02] and references therein).

Of course, the path to realizing a quantum computer is not without obstacles.

One of the major obstacles to realizing a working, large-scale quantum computing

system is noise. Noise results from uncontrolled interactions with spurious fields,

material defects, and even fluctuations in the vacuum itself. These uncontrolled

interactions cause the sensitive quantum state of the computer to become correlated

with the environment in a way that typically destroys the desired unitary evolution

of a quantum computation. As information about the quantum state is lost to the

environment, the state loses quantum coherence and begins to behave like a classical

random variable. After a short amount of time, the quantum state is no longer useful

25

for quantum computation, and the computer gives the wrong answer.

Theoretical results by Calderbank, Shor, and Steane show that quantum states

can be encoded using quantum error-correcting codes [Sho95, CS96, Ste96]. The

encoded quantum state is more robust than the unencoded state in the presence

of some kinds of noise. In fact, quantum computation can take place entirely with

encoded quantum states, and quantum gates can be organized such that failures do

not cause errors to spread to too many qubits [Sho96, Pre0l, Got98b, AB099]. This

discovery makes the concept of a large-scale quantum computing system possible,

for without fault-tolerance, practical large-scale quantum computing appears to be

doomed.

One method of constructing fault-tolerant quantum circuits recursively replaces

components with new components that are increasingly more reliable. The recursive

construction applies stronger encoding while reducing the probability of a fatal failure.

If the basic components are more reliable than some threshold reliability, this recursive

construction produces an exponentially more reliable circuit for only a polynomial

gate overhead. The threshold reliability, called the fault-tolerance threshold, is a

crucial figure of merit for fault-tolerant circuit designs, because quantum gates that

physicists construct in the laboratory must be at least this reliable to enable large-

scale quantum computation.

The theoretical groundwork for fault-tolerant quantum computation has been put

in place by a series of heroic theoretical discoveries. However, there is a gulf between

these theoretical achievements and the physical reality and complexity of envisioned

quantum computing systems. For example, locality constraints are among the most

important constraints influencing the fault-tolerance threshold. Introducing locality

constraints creates the potential for additional trade-offs between space, time, and

reliability. Furthermore, locality constraints must be realistic in view of current trends

in quantum information processing experiments.

This thesis takes a step toward bridging the gap between theory and practice. We

develop new experimental techniques for evaluating quantum fault-tolerant designs,

and demonstrate these techniques numerically by estimating fault-tolerance thresh-

26

olds for the [[3, 1, 1]] and [[7,1, 3]] quantum codes. We identify a central problem

for experimental evaluation of fault-tolerance, namely how to distinguish between

thresholds and so-called pseudo-thresholds, and suggest directions for future research

to solve this problem. The new experimental techniques apply to realistic models of

quantum computer architectures, with multiple failure probability parameters and lo-

cal gates. We create a system architecture model for trapped-ion quantum computers,

the most promising candidate for future large-scale quantum information processing

experiments. Using this system architecture model, we construct several potential lay-

outs for the trapped-ion quantum computer, and estimate a fault-tolerance threshold

for trapped-ion computing with the [[3, 1, 1]] and [[7,1, 3]] codes. Finally, we place

the problem of evaluation and synthesis of fault-tolerant quantum computers into

a broader framework by considering a software architecture for quantum computer

design. We create a design flow and implement the lowest levels of this design flow

as concrete software tools, including the complete source code in the appendices of

this thesis.

1.2 Organization and Overview

This section describes the thesis structure and briefly reviews the contents of each

chapter. The thesis is organized into seven chapters: three introductory chapters,

three chapters containing new results, and one concluding chapter. This chapter

provides introduction and thesis organization. Chapter 2 contains examples of how

quantum error-correction circuits can be efficiently simulated. Chapter 3 introduces

fault-tolerance thresholds by example. Chapter 4 motivates the need for experi-

mental methods to evaluate fault-tolerant designs and describes a new technique,

demonstrated numerically, for estimating quantum fault-tolerance thresholds. This

chapter gives examples of how pseudo-threshold behavior arises in even the simplest

fault-tolerant systems, and identifies pseudo-threshold behavior as a central prob-

lem for experimental evaluation of quantum fault-tolerance. Chapter 5 creates a

system model for the trapped-ion quantum computer within the framework of Chap-

27

ter 4, investigates several layouts for such a computer, and estimates fault-tolerance

thresholds for computing on a local layout. Finally, Chapter 6 motivates the need

for software tools for evaluation and synthesis of quantum computer architectures,

such as the architecture studied in Chapter 5. Chapter 6 presents a design flow real-

ized as a concrete set of software tools and describes simulation tools this author has

developed within the design flow.

In more detail, these are the contents of each chapter:

* Chapter 2 reviews quantum error-correction circuits and a technique for ef-

ficiently simulating them. The first half of the chapter discusses circuits for

3-qubit and 7-qubit quantum error-correcting codes. These codes are canonical

examples in the field and we use them in Chapters 3, 4, and 5. The second

half of the chapter describes the stabilizer formalism as a means to simulate

quantum error-correction circuits.

" Chapter 3 reviews fault-tolerance and the fault-tolerance threshold by means of

classical and quantum fault-tolerant design examples.

* Chapter 4 reviews the typical assumptions behind threshold estimates and how

some of these assumptions can be lifted in detailed system designs. The chap-

ter describes an experimental approach to evaluating quantum fault-tolerant

designs. It presents a new numerical technique that gives experimental esti-

mates of the fault-tolerance threshold for a certain family of quantum com-

puter system models. Finally, the chapter identifies the problem of distin-

guishing pseudo-thresholds from thresholds as central to future experimental

fault-tolerance studies.

* Chapter 5 begins by reviewing the trapped-ion quantum information processor.

The chapter begins with high-level concepts and experimental progress realizing

building blocks for trapped-ion quantum computing. We distill these concepts

into a concrete architectural model within the framework of Chapter 4. Finally,

we estimate a fault-tolerance threshold for a particular trapped-ion quantum

computer system model.

28

* Chapter 6 discusses a software architecture for quantum computing design tools

and emphasizes the role of quantum computer architecture simulation tools in

this framework. The chapter describes two concrete implementations of quan-

tum computer architecture simulators and suggests future work that could im-

prove these tools.

* Chapter 7 concludes the thesis by reviewing the main results, establishing rela-

tionships between the ideas in this thesis, and suggesting future research direc-

tions.

29

30

Chapter 2

Efficient Simulation of Quantum

Error Correction Circuits

Quantum mechanics applies to both few-body and many-body systems. As long as

the quantum system remains isolated, a wave function describes its state at all times.

However, if the system cannot be perfectly isolated, interaction between the system

and the surrounding environment induces a preferred basis to which all or part of

the system irreversibly damps [Zur8l, Zur82]. In practice, very good isolation may

be possible, but perfect isolation is not because we must ultimately interact to learn

something about the system. Hence, the state of a quantum computer always suffers

from this fundamental source of noise, which is called decoherence.

Section 2.1 uses examples to introduce quantum error-correction circuits. These

circuits can counter the effect of decoherence on a specific subspace of the quantum

computer's state space, so they are of great practical importance [Sho95, CS96, Ste96].

Quantum error-correction is quite general because the fine details of the underlying

noise process are less important than the overall strength and space-time correlation

length. Quantum error-correction is also an engineered solution to the decoherence

problem, in that codes can be designed for specific system-environment interactions.

Section 2.2 introduces a mathematical framework for efficient quantum simulation

on a digital computer based on the Gottesman-Knill theorem [Got98a]. The stabi-

lizer formalism describes how a particular subset of quantum states evolves under a

31

restricted set of quantum gates. This collection of states and gates is precisely the

collection used in quantum error-correction circuits based on stabilizer codes [Got97].

2.1 Quantum Error Correction Circuits

This section reviews specific examples of quantum circuits for encoding quantum

information and recovering that information after correctable errors occur. Further

details can be found in primary sources [Sho95, CS96, Ste96] and textbooks [NCOO].

Classical repetition codes provide a very simple set of quantum error-correction

circuits that can either correct bit-flip errors in the computational basis {10), 11)}, or

phase-flip errors in the conjugate basis

10) -(10) + 11))/N ,_ (2.1)

11) - (10) - 11))/V2. (2.2)

The encoding circuit shown in Figure 2-1 maps a single qubit state

1b) = alo) + /11) (2.3)

to a three qubit codeword

1') = J|000) + 01111). (2.4)

During quantum computation, encoders are rarely needed to encode unknown

quantum states. Specific preparation circuits typically prepare well-defined reference

states, such as basis states of a quantum code. For the repetition code, the logical

zero basis state is IOL) = 1000). The preparation circuit for this state is simply

measurement followed by conditioned bit-flips.

The original state 4') can be recovered if any one qubit is flipped. A network that

measures the parity of adjacent qubits in the codeword, and nothing more, reveals

what qubit has been flipped without determining anything about the coefficients

a and /. The circuit in Figure 2-2 measures the parity of adjacent qubits, called

32

Iqo)= lb)

Iqi)= 10)

I q = 0)

Figure 2-1: The quantum circuit shown encodes a single qubit I$) in a subspace
of a 3-qubit Hilbert space. The resulting subspace is protected against errors that
X-rotate a single physical qubit (i.e., errors of the form U = e-i"X for some 6).

I qo) = VN) X

Jqi) = IV)1) X

|q2) = |b2) -X

lao) =10) 4X X

ai) =1|0) : X

Figure 2-2: This quantum circuit couples a 3-qubit quantum codeword to two ancil-
lary qubits. Upon measurement, these ancillary qubits reveal the parity of adjacent
bits and simultaneously project the quantum codeword onto a state with that par-
ity. The measurement results locate bit-flip errors which can then be corrected by
classically controlled correction operations. For example, the 3-qubit input state

10) = v/e(a1010) + 031101)) + V/T -c (a1000) + #3111) leads to parity measurement 11
with probability E and parity measurement 00 with probability 1 - e. These measure-
ments indicate no error with probability 1 - e and a bit-flip on the second qubit with
probability e.

the error syndrome, and applies a classically controlled correction operation. This

network is an example of a recovery network. The recovery network in Figure 2-2

behaves correctly even if the gates in the network are unreliable (in a very particular

way, see Chapter 4), but the correction operation must be postponed until several

syndromes have been collected.

The 3-qubit quantum error-correction network may be useful in early experiments

to verify quantum error-correction and is a conceptually simple example. However,

the 3-qubit redundancy code is unsatisfying because it only protects against failures

33

that are linear combinations of bit-flips and non-errors.

The 7-qubit Steane code (i.e., the [[7,1,3]] quantum code) is the canonical example

of a quantum code that can correct an arbitrary quantum error on a single qubit

[Ste96]. The Steane code, based on a classical Hamming code C, distributes the

quantum information of 1 qubit in non-local correlations of 7 qubits. Each codeword

in the Hamming code C is annihilated by the parity check matrix

1 0 1 0 1 0 1

H= 0 1 1 0 0 1 1. (2.5)

0 0 0 1 1 1 1

Figure 2-3 shows a circuit that prepares the logical zero state of the Steane code,

IOL) = 1 E 1w) -L(10000000) + 1010101) + 10110011) + 0001111) (2.6)

+10111100) + 1011010) + 1100110) + 1101001)). (2.7)

This state is an equally weighted superposition of codewords in the dual code C'

[CS96], which contains all of the even codewords of C.

The recovery network for the Steane code is based on the same general concept

as the 3-qubit recovery network [Ste96, Ste97]. Several ancillary qubits are coupled

to the 7-qubit quantum codeword and measured. The measurement results relate

to the parity checks in H that reveal an error syndrome. Figure 2-4 shows the

explicit recovery network. The inputs at the left are 7-qubit codewords encoded

using the Steane code. Each gate or measurement in this figure is a block of 7

gates or measurements acting qubit-wise. The classical "Decode Syndrome" circuit

applies the parity check matrix to the measurement outcomes to determine the error

syndrome. Classically controlled gates conditioned on the syndrome apply a recovery

operation R consisting of no more than one bit and one phase flip.

The Steane code is an example of a general class of quantum codes called the

Calderbank-Shor-Steane (CSS) codes [Sho95, CS96, Ste96]. These codes have desir-

able properties both as error-correcting codes and as codes for fault-tolerant quantum

34

qo) = 0) H

qi) = 0) H

q2) = |0) E

q3)= 10) H

jq4) = /U)

|q5) = |0)

q6) = 0)

Figure 2-3: This quantum network maps the all-zero state 10000000) to the logical
zero basis state of the Steane code (equation 2.6). The 3 Hadamard gates split the
state into a superposition of 23 codewords, while the 9 controlled-NOT gates create
the appropriate codewords of the dual code C'. The logical zero basis state is an
essential reference state in quantum error-correction circuits, often used to extract
an error syndrome from the data without collapsing the state of the data to a state
outside of the code subspace.

Iqo) =R) /1 ft7

Iao) =0L) H Decode

lai) = 0L) H Syndrome

Figure 2-4: A recovery network for the 7-qubit Steane code. The input state jqo)
is the encoded data to be corrected, and the input states |ao) and |ai) are encoded
logical zero states. The first ancilla state lao) determines the bit-flip error location,
and the second ancilla state lai) determines the phase-flip error location. Each gate
and measurement is a block of 7 operations applied qubit-wise. The "Decode Syn-
drome" block is a classical circuit that applies two parity check matrices to the 14
measurement outcomes, outputting a pair of syndromes. The syndromes classically
control a recovery operation R that applies an appropriate bit-flip and/or phase-flip
to the data.

35

circuit construction, as will be discussed later in Chapter 4.

2.2 Stabilizer Formalism

It is well known that no algorithm has been found to simulate general quantum

systems in polynomial time on a classical computer. However, efficient simulation

algorithms exist when the set of quantum states or gates is restricted [AB096, Got98a,

Vid03, VHPO4]. Section 2.1 reviewed quantum error-correction circuits based on two

CSS codes to illustrate that these circuits involve a very particular set of quantum

gates and quantum states, specifically the Clifford group gates and stabilizer states.

Quantum error-correction circuits can be efficiently simulated by using the stabilizer

formalism [Got98a, AGO4], which we will now review. The section assumes some

basic familiarity with the theory of finite groups [Art91].

Subsection 2.2.1 reviews the n-qubit Pauli group and states stabilized by the

commutative subgroups of the Pauli group. This set of states is the set involved in

quantum error-correction (with stabilizer codes). Subsection 2.2.2 reviews the Clifford

group of quantum gates and how these gates transform stabilizer states. We review

the concept of a stabilizer circuit. Finally, subsection 2.2.3 states the well known

Gottesman-Knill theorem and reviews the Ck hierarchy of groups.

2.2.1 The Pauli Group, Stabilizers, and Stabilizer States

The Pauli group is the group of tensor products of bit, phase, and bit-phase flips of

n-qubits. More carefully, the single qubit Pauli group g is the group generated by

the Pauli operators X and Z, as well as iI. Formally,

9 (X, Z, ii) = {1, i, -1, -i} ® {I, X, Y, Z}. (2.8)

Notice that 9 contains proper subgroups isomorphic to the quaternions, but is not

itself the quaternion group. The n-qubit Pauli group g 0 consists of all 4"±1 elements

that are tensor products of n Pauli operators and four possible phases, written in

36

shorthand,

g@n = {1, i, -1, -i} 0 {I, X,Y, Z} 0 ... 0 {I, X, Y, Z}. (2.9)

Because individual Pauli operators are composed according to XY = iZ, it is easy to

see that g9" is a group. Typically elements of these groups are written in a shorthand

that omits the tensor product symbol, so that X 0 X and XX represent the same

element. The intended operation, group multiplication or tensor product, will be

clear from context.

The stabilizer formalism uses a particular set of quantum states called stabilizer

states. Before these can be defined, let us review the concept of a stabilizer S. A

stabilizer S is an abelian subgroup of the Pauli group g" that does not contain -I.

Because the Pauli group and its subgroups are finite, S is usually expressed by a

list of its generators {gi} for i E Nm. The generators of S must commute, and m

commuting elements generate a group of size 2m. Because elements of g@" either

commute or anticommute, and -I S, a stabilizer S C g@0 cannot be generated by

more than n elements. Let S denote a minimal generating set of S.

Suppose you are given a stabilizer S C gon on n-qubits generated by m elements,

i.e., S = (gi, i E Nm). Take the first of these generators, gi, and consider the subspace

of all +1 eigenvectors of gi within the n-qubit Hilbert space,

Rigo = {1p) E 2j® I g1|) = 10)1. (2.10)

R-g)} is the 2n- 1 -dimensional subspace stabilized by gi. Continuing in this way, define

the subspace Rs stabilized by S,

Rs = {1) E Hn I gilo) =1) Vi E Nm}. (2.11)

Note that Hs is a 2 n-m dimensional subspace.

The n-qubit stabilizer state Jos) is the two-dimensional subspace of the n-qubit

Hilbert space stabilized by S. There is a one-to-one correspondence between stabi-

37

lizer states and stabilizer subgroups; hence, there are 2 0(,
2) n-qubit stabilizer states

[AG04]. Such an S must have n generators. Though the generators are not unique,

the fact that each state can be represented by n elements of the Pauli group is the

first hint that these states may be easy to manipulate with a digital computer.

Just to make the discussion concrete, consider the two-qubit "cat" state

1
1(00) + 11)). (2.12)

To express this state using a stabilizer, we need to find two elements of !* 2 that

commute and are independent. Because XXOO) = 111), this is a good first choice.

Note also that ZZ|11) = (-1)2I11), so choose S = (XX, ZZ). The complete stabilizer

is the group of products of these generators,

S = {I, XX, ZZ, -YY}. (2.13)

Finally, there is a useful group homomorphism that makes stabilizer states easy

to manipulate on a digital computer. Consider

On: " Z0, (2.14)

defined by

q(g) = bx(g) 0 b2(g), (2.15)

where bx(g) (resp. bz(g)) maps an n-qubit Pauli operator to an n-bit string with ones

wherever the ith term of g is X (resp. Z) or Y. This is a homomorphism because g is

isomorphic to 20Z2 modulo phase, due to the multiplication rule XY = iZ (i.e., you

can apply one of the standard homomorphism theorems). Hence, elements of the Pauli

group can be represented as length 2n binary strings under binary addition, provided

phase can be ignored. Under the homomorphism, a stabilizer state is represented

by a table of n binary strings, each of length 2n, rather than n Pauli operators.

This polynomial storage requirement is substantially better than storing 2" complex

38

numbers to describe a general quantum state. In practical implementations, the phase

is kept and a more complicated composition rule is used, rather than direct binary

addition [DM03].

2.2.2 The Clifford Group and Stabilizer Circuits

This section reviews the Clifford group, a subgroup of quantum gates that have a high

degree of symmetry in their action on stabilizer states. The Clifford group, written

C2 , is a subgroup of special unitary matrices

C2 = V(g**) = {U E SU(2") I UgUt E g@" Vg E g n} (2.16)

that permute the elements of the Pauli group under conjugation. All Clifford groups

will be labeled C2 , leaving the number of qubits n to be determined from context.

Note that g n is properly contained in the Clifford group. The Clifford group is

the normalizer of the Pauli group, so it is sometimes referred to as the Normalizer

group. The key fact to observe is that Clifford group gates will transform stabilizer

generators into stabilizer generators, hence stabilizer states evolve naturally under

Clifford group gates.

For example, consider a single qubit stabilizer state Jos). We may choose any

Pauli group element g # -I to generate S. For concreteness, choose S = (Z), which

corresponds to Jos) = 10). Suppose we apply the Hadamard gate H to this state. The

new state HI4s) will be stabilized by S' = HSH because Hlos) = HgHtHlos).

Note that HZH = X and HXH = Z, so H E 02. Hence, S' will also be an

abelian subgroup of the Pauli group, and Jos,) = Hlos) will also be a stabilizer state.

Specifically, S' = (X) which has +1 eigenvalue (10) +11))/V/2.

Several gates can be shown to be Clifford group gates. The controlled-NOT gate

acts on a control and a target qubit, from left to right, and has the following action

39

by conjugation:

XI +-+ XX, (2.17)

IZ <-+ ZZ. (2.18)

One interpretation of these equations is that "bit-flips" propagate from control to

target and "phase-flips" propagate from target to control. The unlisted transforma-

tions act like the identity. Note that equations 2.17 and 2.18 imply that XZ maps to

-YY, so some transformations require a phase change. The Hadamard gate has al-

ready been discussed, and we know it is a Clifford group gate. Finally, the ir/2-phase

gate S satisfies SXSt = Y, SYSt = -X, and SZSt = Z. These three gates, H,

CNOT, and S, can generate any automorphism of the n-qubit Pauli group, meaning

that any Clifford group gate can be expressed as a stabilizer circuit constructed from

only these three gates.

2.2.3 The Gottesman-Knill Theorem and the Ck Hierarchy

Measurement of a Pauli operator M also transforms a stabilizer to stabilizer. Define

the projectors Pk = I(I + (-1)kM). The post-measurement state is one of PFkIs),

depending on the measurement outcome k. The probabilities of each outcome are

p(k) = Tr(Pk Is)(0s1), (2.19)

where the n-qubit stabilizer state can be written as a product of projectors,

Ps = I|@s) (0s| (2.20)

= f.(I+g) (2.21)

= rf(I + g). (2.22)

gES

There are two cases to consider because Pauli operators either commute or an-

40

ticommute with each other: either {M, g} = 0 for one or more generators g, or

[M, g] = 0 for all generators g. For the first case, notice that p(k) = j because

elements of the Pauli group are traceless, and M S, so products Mg are not pro-

portional to the identity. The post-measurement state JPs,) is stabilized by (-1)kM

as well as any g E S such that [M, g] = 0. Any g E S such that {M, g} = 0 can be

replaced by gg', where g' E S also satisfies {M, g'} = 0, g' -4 g for all g.

In the second case, (-1)kM E S, so the measurement outcome is deterministic and

the post-measurement state is stabilized by Sk = S. In this case, the generators of S

must be put into a standard form using Gauss-Jordan elimination to algorithmically

determine the measurement outcome k.

Single qubit projective measurements in the computational basis are a special case

of Pauli operator measurements, because a projective measurement corresponds to a

measurement of Z on a particular qubit. Therefore, projective measurements can be

resolved by updating the generators and computing the outcome using M = Zi for

the ith qubit. The Gaussian elimination step may take O(n 3) time when the outcome

is deterministic. However, by storing slightly more information about the stabilizer,

measurement outcomes can be resolved in 0(n2) time for this special case [AG04].

By using an ancilla qubit, measurement circuits for general Pauli operators can be

constructed and simulated in O(n2) time.

The Gottesman-Knill Theorem [Got98a] states that stabilizer circuits can be effi-

ciently simulated on a digital computer:

Any quantum computer initially in a stabilizer state and performing only,

a) Clifford group gates, b) Measurements of Pauli group operators, and

c) Clifford group gates conditioned on classical bits which may be the re-

sults of earlier measurements, can be simulated in polynomial time on a

probabilistic classical computer.

The essential idea behind this theorem is to represent states by their stabilizer gen-

erators and update these stabilizer generators during the course of the simulation.

Using equation 2.14, stabilizer generators are stored in a binary table. Clifford group

41

gates, particularly H, CNOT, and S, and projective measurements update this table

in a straightforward manner [AG04].

Groups used in the stabilizer formalism fit within a general hierarchy of groups

that reoccurs in the study of fault-tolerant quantum computation. The Ck hierarchy

of groups [Got97] is a useful framework in which to view the Pauli and Clifford groups.

The group C1 is the n-qubit Pauli group go'. The remaining groups in the hierarchy

are defined recursively,

C = {U E SU(2n) I UVUt E Ck_1 VV E Ck-1}. (2.23)

Notice that C2 is the Clifford group. The Clifford group gates are not universal

for quantum computation, and may not even be universal for classical computation

[AG04], but become a discrete universal set of quantum gates with the addition of a

single gate from C3 - C2 . Both the Toffoli and 7r/8-gate are in C3, for example.

42

Chapter 3

Fault-Tolerance Thresholds

This chapter reviews classical and quantum fault-tolerance through concrete exam-

ples. Section 3.1 introduces fault-tolerance in broad terms. Section 3.2 considers

a canonical classical approach to fault-tolerance. We specifically review the fault-

tolerant classical wire and set out to bound its fault-tolerance threshold. Section 3.3

reviews quantum fault-tolerance, then presents a quantum fault-tolerant wire and

discusses its threshold. The quantum fault-tolerant wire, which has a rather high

threshold, is useful for applications as a quantum memory.

3.1 Introduction

Von Neumann introduced the first fault-tolerant construction in 1956 [von56] in the

context of neural networks. The concepts he introduced were thought to be necessary

for early computer systems, whose vacuum tubes and switches frequently failed, and

for proper human brain function, where individual neurons misfire. Subsequently,

Winograd and Cohen [WC63] placed fault-tolerant computation in the context of

information theory and reliable communication. Recent work on fault-tolerance treats

reliability as a fungible physical resource that can be exchanged for space, time, or

power [ImpO3].

The transistors within modern computer systems are exceedingly reliable, so fault-

tolerant design is unnecessary for most computing applications. However, as men-

43

tioned in Chapter 2, quantum systems of any scale suffer from fundamental noise,

called decoherence, that damps their state to an element of a preferred basis, mak-

ing the state useless for quantum computation [Zur8l, Zur82]. Nevertheless, fault-

tolerant constructions akin to Von Neumann's can make quantum computing systems

exponentially more reliable with only polynomial gate overhead, provided that basic

gates are more reliable than some threshold [Sho96, Pre0l, KLZ98, Got98b, AB099].

All of the examples of fault-tolerant quantum error-correction in Chapter 2 require

ancillary reference states for reliably extracting error syndromes, and such ancilla

states are often highly entangled. Hence, in addition to being of practical interest

for quantum computation, fault-tolerant quantum gates are of fundamental physical

interest as well. This is because they require preparation and transformation of highly

nontrivial entangled quantum states, which are another state of matter that has only

recently been appreciated.

3.2 Triple Modular Redundancy (TMR)

Consider a wire that carries a signal representing a bit of information (i.e. a 0 or a 1)

to another location in space. Similarly, we could consider a memory that carries a bit

value forward in time. The wire is simply an identity map on a single bit that takes

that bit to a new location, and it is an example of a component that maps binary

strings to binary strings. Because the wire is not a composite object in our view, we

say that the wire is a basic component.

Wires may not always be reliable. Model a p-faulty identity gate as a binary

symmetric channel (BSC) with parameter p, meaning that the output value of the

wire differs from the input value with probability p and is unchanged with probability

1 - p. We use the BSC acronym to refer to a single BSC or to tensor products of

BSCs, and use "wire" and "identity gate" interchangeably.

A faulty component is a probabilistic map on binary strings whose input/output

map is modeled by a transition matrix. If the faulty component's input and output

differ, the component has failed. The probability p is the failure probability. If the

44

component fails, it introduces an error, which in this (classical) case is a bit-flip i.e.

equivalent to a NOT gate.

X X

Figure 3-1: The fault-tolerant classical wire (or identity gate) expands the original

faulty wire in triplicate and inserts three fan-outs and three majority voting gates
"e" to amplify the correct signal. Failures can occur in locations marked by "x".
Failures in the leftmost BSC are gate failures and failures in the rightmost BSC are
voter failures. Any single gate or majority voter failure won't flip a majority of the
output wires. Assume that the final value is read by a very reliable process, so that
only a majority of the output wires need to carry the correct value.

The fan-out gate is a component that maps one binary input to three binary

outputs that are copies of the input. The fan-out gate amplifies the input signal

whether or not it is correct. For simplicity, assume that the fan-outs do not fail.

The majority voting gate is a component that maps three binary inputs a, b, c to

one binary output ab + bc + ca, where addition is modulo 2. This gate outputs the

dominant signal and decodes the 3-bit repetition code, i.e. the code that takes 0

to 000 and 1 to 111. A p-faulty majority gate is modeled as a majority voting gate

followed by a binary symmetric channel with parameter p.

The circuit in Figure 3-1 is an example of a fault-tolerant wire. The input and

output value is encoded using the simplest repetition code, which takes 0 to 000

and 1 to 111. The triplicated p-faulty wires are followed by triplicated fan-outs

and triplicated p-faulty majority voting gates. The "x" symbols indicate binary

symmetric channels that model wire or majority voter failure locations. Majority

voting can correct errors introduced by a small number of failed components. This

circuit is an example of triple modular redundancy (TMR).

The fault-tolerant wire is an example of a composite component because it is con-

structed from basic components. The fault-tolerant wire fails if the ideally decoded

output differs from the input. To distinguish between composite component failure

45

and basic component failure, we call the former a total failure when looking at the

composite component in isolation, as opposed to a basic failure. When basic com-

ponents fail, they introduce errors. These errors propagate through the composite

component in the form of bit-flips, specifically through fan-outs and incorrect major-

ity voter outputs.

A basic component failure may not lead to a failure in the composite component.

In fact, the essence of fault-tolerant design is the notion that a small number of basic

component failures should not cause the composite component to fail. The fault-

tolerant wire has the property that any isolated basic failure cannot cause a total

failure.

Let p1(p) be the failure probability of a circuit acting on bits encoded once using

TMR. By counting the number of ways the fault-tolerant wire can succeed, one can

compute the exact probability of a total failure p1(p). Obviously, if 0 locations fail,

that is a success. A single failure in any one of the 6 locations is also a success, since

the majority gates restore the correct value. If two locations fail, the fault-tolerant

wire can still succeed if those failures are distributed between the first and second

binary symmetric channel, which can happen 9 different ways. Three errors will

always lead to failure. Four, five, and six errors lead to success only if errors cancel.

By symmetry, these situations occur in 9, 6, and 1 way(s), respectively. Summing

terms of the form apk(1 - P)6-k for integers a and k,

P1(P) = 6p2 _ 4p3 - 18p4 + 24p5 - 8p 6 (3.1)

< 6p 2. (3.2)

Notice that p,(p) p if p < 1/6. Hence, for this analysis the fault-tolerant wire is

more reliable than the basic wire when p < 1/6.

To make the fault-tolerant wire even more reliable, a different construction is

required. Following Von Neumann [von56], replace each failure location in Figure 3-1

with Figure 3-1 itself and expand the majority gates to act on bundles of 3 wires at

a time. This approach is called recursive simulation since the original wire has been

46

simulated by a fault-tolerant wire which itself can be simulated by replacing its wires

with fault-tolerant wires.

Figure 3-2: The fault-tolerant wire is even more reliable below threshold when recur-
sively simulated. Each wire and majority gate in Figure 3-1 is expanded in triplicate
and each failure location replaced by Figure 3-1 itself. The resulting fault-tolerant
wire can tolerate 3 or fewer failures distributed in any way.

For example, Figure 3-2 shows the circuit resulting from recursive simulation of

the original fault-tolerant wire in Figure 3-1. This circuit is 2-simulated because

failure locations have been replaced twice by Figure 3-1, once for the original faulty

wire, then again for the 6 locations in the composite wire. Similarly, Figure 3-1 is

1-simulated, and the original p-faulty wire is 0-simulated. The 2-simulated circuit

is called a 2-block. The 2-block contains 6 1-blocks and 36 0-blocks. A 0-block is

simply a failure location. Blocks are related to rectangles, another term used in the

literature.

The 2-block can tolerate a total failure of any of its 6 1-blocks. These 1-blocks

fail with probability less than or equal to 6p2 , so the 2-block fails with approximate

probability 6(6p 2)2. This observation leads us to approximate the failure probability

47

I (X X

\All-

X A X W . X_ A X

X X, X
XXX /IK

X X X

X A X X 'A) (

X)(X - X

IK
V

X X X /\/\. X\A/-

PL(p) of an L-simulated fault-tolerant wire as

PL (p) PL(P) = (P1 0 .. ' ' P1)(P) -(3.3)

L times

This one-parameter map p1(p) has a fixed point Pth that solves pf(pth) = Pth for all L.

For p < Pth, limL-+o pf(p) = 0. As long as p(p) ; PL(P) for all p, PL(p) approaches

0 as well.

Recursive simulation produces a composite component that is increasingly reliable

under some conditions, namely that all of the p-faulty basic components satisfy 0 <

p < Pth for some nonzero threshold failure probability Pth. The threshold cannot

depend on the number of gates in the composite component nor on the number of

input and output bits of the component. If it did depend on these quantities in

the limit of large L, there would be no way to guarantee the benefits of recursive

simulation. In practice, all basic components must not behave much worse than

independently failing p-faulty components.

The most basic theory that captures the threshold concept sets pi (p) Cpt+l for

some nonzero real C and integer t. The parameter C bounds the number of ways

that t + 1 failures cause a total failure of a 1-block. Assume that the underlying

error-correcting code can correct t errors, so only t + 1 or more errors causes a total

failure. Furthermore, C must include errors that can occur due to propagation into

the 1-block, otherwise the recursive replacement step will be invalid. If one chooses

p such that p1(p) Cp'+1 < p, then by self-similarity P2(P) 5 C [p,(p)]t+l. By

induction,

PL(P) (Cp)(t+1) (34)
C

Defining Pth 1/C,
PL (P) <(P) (t+1)L (3.5)

Pth Pth

Hence the failure probability of the L-simulated composite component approaches

zero in the limit of large L as a double exponential. The threshold failure probability

given by this construction is a combinatorial object; namely, the reciprocal of the

48

number of fault paths leading to total failure of a 1-block, counting input errors.

Let us review how many gates are required to construct an e-faulty fault-tolerant

wire when p < pth using recursive simulation. We want PL(P) < c, which holds when
Pth l

(p/pth)(t+1)L < E. This implies that (t + 1)L < ln(l/e)/ln(pth/p). Now suppose that

no more than N = aL gates are needed for an L-simulated wire, for some positive

real number a. Then

N < exp (ln(t + 1) ln(1/) (3.6)
In(a))ln(Pth/P)'

so N = O(log(1/e)). Fortunately, one needs relatively few gates to achieve excellent

reliability.

3.3 Quantum Fault-Tolerance

As we saw in Chapter 2, there are quantum error-correcting codes that can correct

arbitrary errors on a fixed number of qubits. Fault-tolerant quantum circuits based

on quantum error-correcting codes limit the spread of errors and periodically correct

those errors. The basic concept behind quantum fault-tolerance and classical fault-

tolerance is the same: a composite component that suffers t or fewer errors should

not totally fail.

This section serves as a review of quantum fault-tolerance. Subsection 3.3.1 re-

views important definitions for quantum fault-tolerance. Subsection 3.3.2 reviews

the quantum equivalent of TMR as a preliminary to fault-tolerance using a general

quantum error-correcting code.

3.3.1 Definitions for Quantum Fault-Tolerance

This section reviews the elements of quantum fault-tolerant circuits. The review in-

cludes quantum computation codes, L-simulations, fault-tolerant gates, noise, failure

probabilities, and fault-tolerance thresholds.

49

Quantum computation codes

Like fault-tolerant classical circuits, scalably fault-tolerant quantum circuits are con-

structed using recursive simulation as well. However, there are several key differ-

ences. Quantum information involved in a fault-tolerant gate must be encoded using

an [[n, k, d]] quantum computation code [AB099]. A quantum computation code is

a quantum error-correcting code C accompanied by a discrete universal set of fault-

tolerant gates B and by fault-tolerant encoding E, decoding D, and correction pro-

cedures R. Let C,, denote the entire construction (C, B, E, D, R). An [[n, k, d]] quan-

tum code encodes k qubits in n qubits with distance d, where d is the minimum

weight Pauli element in N(S) - S for a stabilizer code with stabilizer S. All fault-

tolerant procedures must only use basic gates from B, and the correction procedure

must project any input onto a codeword. The quantum fault-tolerant gates G E B

limit the spread of single errors to s < t qubits by design, where t = L is

the number of errors the quantum code corrects. Recursive simulation using quan-

tum computation codes yields a threshold result as well, although the proof requires

more care because quantum computers are neither entirely digital nor entirely analog

[Sho96, Pre0l, KLZ98, Got98b, AB099].

Let an L -simulation for L > 1 be a recursive simulation using the L- 1-concatenated

code, where the 0-concatenated code is C. Let EL, DL, and RL be the L-simulations

of the fault-tolerant procedures associated with C.

The Calderbank-Shor-Steane (CSS) codes [Sho95, CS96, Ste96] are the family

of quantum computation codes for which logical (i.e. composite) CNOT gates can

legitimately act by transversally applying basic CNOT gates [Got97]. Figure 3-3

illustrates a transversal single qubit and two qubit gate. Transversal gates are fault-

tolerant because they are implemented in a bitwise fashion, which automatically limits

the spread of errors by restricting interaction. The CSS codes have other convenient

properties due to their manner of construction that we will not review.

At least one nontrivial gate is necessary to construct a discrete universal set of

fault-tolerant quantum gates. Nontrivial fault-tolerant gates such as the Toffoli gate

50

ql) HZ_4

2) H

jq3) H

1q4) H

q5)

1q6)H

jq7) H

rl) - - -- -

Ir2)

1r3)- -

Ir4)

jr6) --

Ir6)

Ir7) 1

Figure 3-3: Transversal quantum gates are gates that can be applied bit-wise to

transform the encoded input qubit(s) to the proper encoded output state. This figure

shows transversal CNOT and Hadamard gates. Transversal gates are fundamental

fault-tolerant gates because they limit the spread of errors by restricting interaction

in a very simple way. All of the Clifford group gates (i.e. C2) are transversal for the

CSS codes.

51

can be constructed using a general method based on quantum teleportation [ZLCOO].

Fault-tolerant gates constructed in this manner consist entirely of C2 gates and pro-

jective measurements, both of which can be applied transversally. These gates accept

a tensor product of input qubit states and a specially prepared ancilla state that is

not a stabilizer state. See [Got97, Pre0l] for a complete example of a Toffoli gate

with ancilla state preparation.

Noise

We use a relatively simple model of noise in a quantum computer. An ideal quantum

circuit G is a sequence of unitary gates and measurements, Gt, indexed by the integer

time-step t in which each is applied. A noise model K is a sequence of quantum

operations Et(p) on the Hilbert space of the quantum computer. These maps are also

indexed by the time-step at which each is applied. A noisy quantum computation Gg

applies corresponding gates, measurements, and quantum operations at each time-

step. If an ideal gate or measurement Gt and a quantum operation Et(p) occur in the

same time-step, Et(p) happens first and is called a gate failure. Otherwise, Et(p) is

called a memory failure.

Fault-tolerant constructions are known to be effective for some types of correlated

noise [TB04, AB099]. However, for this thesis we restrict the noise models to the

family of independent, m-local noise models. Independent m-local noise involves only

those quantum operations that act on blocks of m or fewer contiguous qubits at the

time the noise is applied. Each of these quantum operations Et(p) E K has the form

C = 'V ---) E(M), (3.7)

for M blocks of m or fewer qubits. Each noise operator E8i) has the form

t (p) = (1 - p)p + pS(p), (3.8)

where E(p) is any quantum operation on p and p is a probability. For a particular K,

52

let p be drawn from a set of operation failure probabilities P.

A quantum computer has a time dependent state that includes all of its quantum

and classical degrees of freedom. An operation is a state changing action that can be

assigned a well defined operation failure probability pop and operation duration toP. For

example, quantum gates, projective measurements, and qubit movements by distance

d are all operations.

Failure probability

Consider an [[n, 1, 3] quantum computation code C, and an ideal quantum circuit

G using only gates drawn from B. Let GL denote the ideal fault-tolerant quantum

circuit obtained from G by L-simulation of each gate. For a noise model M, GLV

fails for an input density matrix po if the ideal output density matrix G(po) differs

from DL o GLAC o EL(po). Formally, define the failure probability PL of GLA to be

PL =1 _ 72 < D(G(po), DL o GLKo EL(po)) (3.9)

where D(p, o-) is the trace distance between density matrices p and a,

D(p, o-) = TrIp - al, (3.10)

and F(p, -) is the fidelity,

F(p, o-) = Tr V o- V. (3.11)

This definition isn't completely satisfying because it depends on the input state. The

best measure of failure probability uses the gate fidelity

F(U, E) = min F(I b)((0I, S()(4)), (3.12)

instead of the standard fidelity in equation (3.9).

Consider the following simple example to clarify the definition of failure proba-

bility. Let G consist of a single Hadamard gate applied to an unencoded qubit in

53

the state po = (|0)(01 + 0)(11 + 11)(01 + |1)(11)/2. Select a noise model that simply

depolarizes the input qubit of each single qubit gate, E(p) = (1 - p)p + p1/2. The

probability of failure pf is

pf = 1 - (OIHS(po)Ht 10) = p/2. (3.13)

This is reasonable since with probability p the depolarizing channel replaces the input

qubit by a fair coin that will fail half of the time for the given input.

Fault-tolerance threshold

A fault-tolerance threshold for C, under an independent m-local noise model .N is

a constant failure probability pth(C,) such that when p < Pth(C,) for all operation

failure probabilities p E P,

lim PL = 0 (3-14)
L-+oo

In fact, equation 3.5 also describes the functional behavior of PL with L for quantum

circuits when PL is small. Typically, pth(C,) depends on the most complicated fault-

tolerant gate in B, i.e. simpler gate sets B lead to higher thresholds. The maximum

fault-tolerance threshold Pth,

Pth = sup Pth(C*), (3.15)
C.

is the highest achievable threshold over all fault-tolerant constructions. This thresh-

old is difficult to calculate and is possibly higher than stated thresholds, which lie

between 10-6 [AB099] and 10-2 [Kni04, Rei04]. General constructions that increase

the maximum fault-tolerance threshold and numerical models that probe new regions

of the fault-tolerance parameter space are important because they reduce the exper-

imental effort required to achieve quantum fault-tolerance. For the remainder of this

thesis, we explicitly choose C, so the extra notation to designate C, will be dropped.

54

3.3.2 Quantum Tiple Modular Redundancy

This section reviews one of the simplest codes to protect quantum information, the

3-qubit bit-flip code (or [[3, 1, 1]] quantum code). Though qubits cannot be copied

with unit fidelity, this code is a kind of repetition code analogous to TMR. There is

no quantum code using fewer than 5 qubits that corrects an arbitrary quantum error

[Got97]. Accordingly, the quantum TMR code can only correct arbitrary X rotations

of a single qubit (i.e. bit-flips). In the conjugate basis (i.e. after applying Hadamard

rotations to each qubit), quantum TMR can correct arbitrary Z rotations of a single

qubit, but the code cannot correct both types of errors simultaneously as is required

to correct an arbitrary quantum error. For this reason, we assume that only a single

type of error can occur when discussing this code.

The quantum TMR encoder is given in Figure 2-1. If the state of the input qubit

is one of the computational basis states, then the encoder simply copies that bit.

Otherwise, the encoder creates an entangled quantum codeword al 000) + 0|111) that

represents the input state.

The recovery network for a quantum TMR encoded qubit is given in Figure 2-2.

In order to ensure fault-tolerance, the first 4 CNOT gates and 2 measurements must

be repeated at least three times before correcting the data. To see why this is the

case, consider a single X error that occurs between the 2nd and 3rd CNOT gate on

the control qubit. The resulting syndrome indicates that an error has occurred on the

3rd data qubit rather than the 2nd. If the recovery network acts on this syndrome

alone, two errors can occur with probability p.

Several methods can estimate the fault-tolerance threshold of quantum TMR. We

use two of them in this section: combinatoric analysis and positive operator analysis.

A combinatoric analysis counts the number of ways failures within the circuit lead to

total failure of the circuit. Combinatoric analysis leads to reasonable lower bounds on

the fault-tolerance threshold, but can be used to give ball-park estimates as well. A

positive operator analysis constructs the positive operator A(p) for the entire quantum

circuit and directly computes the failure probability of that circuit. The positive

55

operator analysis gives exact results but requires an unreasonable amount of space

for circuits much larger than the quantum TMR circuit.

The quantum TMR recovery network can be implemented at least two different

ways. Let R1 be the network implemented by collecting three syndromes and selecting

the appropriate syndrome based on all three. The syndrome selection procedure is a

majority vote except for a special case mentioned earlier that occurs on the second

qubit between syndrome measurements. Let R 2 be the network implemented by

collecting s syndromes expecting s' < s to agree and aborting recovery if the first

syndrome is zero or if there is no agreement.

By counting the number of places where two or more errors lead to total failure

of R 1 , we determine that the number of failure locations C should about 59 without

considering errors that could have propagated from prior recovery operations, errors

from failed initialization, and errors from waiting. This means C ~ 59 for R 1 , so

Pth d 0.017.

A positive operator analysis gives the exact failure probability of R 1 . We do not

include errors from waiting. Let po(p) be the failure probability of a quantum circuit

acting on physical qubits. The failure probability po(p) of R 1 as a function of the

single qubit and two qubit gate failure probability p is

PO(p) = 59p 2 - 531p3 + 1852p4 + 3260p5 + o(p 6) (3.16)

and has nonzero coefficients for terms up to and including p5 9 . This equation confirms

the combinatoric analysis, which was much easier to do in this case. For p < - 1 , the

second order term dominates and C ~ 59, like we found before.

The combinatoric analysis for R 2 assumes that a fixed number of syndromes s were

gathered. Extracting s = 3 or more syndromes gives po(p) = 31p 2 . The corresponding

threshold estimate is Pth _ 0.032. Again, this estimate does not include errors that

could have propagated from prior recovery operations nor errors from waiting.

So we see that the recovery network for the three qubit code indeed has a threshold

under bit-flip noise (or phase-flip noise). The threshold varies between 1.7% and

56

3.2% depending on the circuit implementation details. The latter threshold exceeds

some experimentally realized quantum gates, so it may be possible to experimentally

observe the improved reliability. Ultimately, the 3-qubit code may be a reasonable

code for an active quantum memory in systems where either bit-flips or phase-flips

dominate.

00L
O

Chapter 4

Fault-Tolerance Thresholds are

Experimentally Observable

The threshold for fault-tolerance is the maximum possible component failure proba-

bility at which a reliable circuit can be constructed despite errors, using systematic

application of error-correction. The value of this threshold, Pth, is crucial to the de-

sign and realization of a quantum computer, because it dictates not just feasibility of

an implementation proposal, but also how space, time, and energy resources must be

marshaled to build a fault-tolerant system. Typically, Pth has been estimated using

general theoretical techniques, but here, we present a method by which Pth could be

determined using a careful set of laboratory experiments. We illustrate this method in

detail using a set of numerical experiments, and identify the crucial problem - distin-

guishing between unrealistically optimistic pseudo-thresholds and the real thresholds

which determine scalability.

Section 4.1 motivates our experimental study of fault-tolerance. Section 4.2 enu-

merates the criteria that quantum systems must satisfy in order to be scalably fault-

tolerant. Some of these are strict criteria while others are assumptions that sim-

plify threshold analysis. Section 4.3 reviews how to lift some of the simplifying as-

sumptions, leading to an additional set of design considerations for engineering fault-

tolerant quantum systems. These considerations highlight the complexity of estimat-

ing fault-tolerance thresholds for experimental systems. Section 4.4 presents numeri-

59

cal methods for evaluating fault-tolerance thresholds and verifies them against theo-

retical analysis. The numerical analysis suggests the existence of pseudo-thresholds,

which we investigate in section 4.5. Section 4.6 concludes the chapter.

4.1 Introduction

Reliability will likely be a scarce resource for quantum computers, so experimen-

tal methods and engineering approaches are ultimately necessary to maximize the

reliability of fault-tolerant quantum computers. Furthermore, as discussed in Chap-

ter 3, the quantum computer is a practical concept only if some kind of quantum

fault-tolerant gate can be realized experimentally. An experiment that determines

parameters for which a fault-tolerant gate or set of gates is more reliable than a basic

gate or corresponding set of basic gates is one meaningful prerequisite for realizing

fault-tolerant quantum gates. Such an experiment also furnishes us with an estimate

for the fault-tolerance threshold.

Analytical methods lead to definitive bounds on the threshold and offer exis-

tence proofs guaranteeing that fault-tolerant methods efficiently improve reliability.

However, how can the threshold be experimentally estimated, bounded, or precisely

determined? Of especial experimental interest are two sets of parameters: reliable

parameters, which are the set of parameter values where an additional level of recur-

sive simulation improves reliability of a gate, and subthreshold parameters, which are

the set of parameter values below threshold. Reliable parameters might estimate the

actual threshold, whereas subthreshold parameters are strictly below threshold.

In practice, the behavior of reliable parameters may be more important than

subthreshold parameters because engineered systems may only use a few levels of

recursive simulation. Asymptotic analysis ignore the regime of low concatenation.

From an engineering perspective, experimentally determined reliable parameters are

also useful because experiments let us release assumptions in analytical methods, such

as exact self-similar replacement and simplified error propagation.

However, for many levels of recursive simulation, reliable parameters and sub-

60

threshold parameters are expected to correspond closely. In this regime beyond the

reach of current simulation methods, where large-scale quantum computation is en-

visioned for quantum factorization, it is important to know subthreshold parameters.

This chapter shows how reliable parameters can be determined experimentally

for a few levels of recursive simulation. Reliable parameters are believed to be es-

timates for subthreshold parameters. In the concluding sections of this chapter, we

discuss the problem of pseudo-thresholds in greater detail and suggest how one might

experimentally bound the set of subthreshold parameters.

4.2 Criteria for Scalable Fault-Tolerance

A scalable quantum computer is a physical system that can support coherent ma-

nipulation of an arbitrarily large number of qubits. However, a scalable quantum

computer is not necessarily a useful quantum computer because noise may ruin the

computation. The solution to this problem is to design a fault-tolerant quantum

computer.

A fault-tolerant quantum computer is a computer designed in such a way that fail-

ures do not spread and can be periodically corrected. A scalably fault-tolerant quan-

tum computer is a scalable, fault-tolerant quantum computer with a fault-tolerance

threshold greater than experimental gate and operation fidelities. A scalably fault-

tolerant quantum computer is necessary for applications such as factoring or large-

scale quantum simulation, where the desired gate reliability may change for different

inputs to the algorithm.

This section reviews two sets of criteria for scalably fault-tolerant quantum com-

puting. The first set of criteria that must be met are scalability criteria, known as

the DiVincenzo criteria. The second set of criteria are fault-tolerance criteria. The

existence of a threshold implies a subset of the criteria in this second set.

61

4.2.1 DiVincenzo Criteria

The DiVincenzo criteria [DivOO] state requirements for scalable quantum computing.

These high-level criteria indicate when an experimental apparatus may be considered

a quantum computer.

The DiVincenzo criteria state that a quantum computer must ...

1. ... be physically scalable to an arbitrary number of well defined qubits. A quan-

tum computer must be scalable to a regime with interesting computational con-

sequences, in a way that is only limited by engineering or economic constraints.

Furthermore, the qubits in the quantum computer need to be addressable and

coherently manipulable.

2. ... be initializable to a well defined starting quantum state. Without a high

quality, standard initial state, input quantum states cannot be constructed.

3. ... have long coherence times relative to gate times of a universal set of gates.

Very long relative coherence times allow an arbitrary, known, initial quantum

state to be coherently transformed to an arbitrary final state using a universal

set of gates.

4. ... permit high quantum efficiency measurements on arbitrary single qubits.

High quality projective measurements of any qubit in the system are necessary

to readout the outcome of a quantum computation.

Two additional DiVincenzo criteria define a quantum communication interface

for a quantum computer. The DiVincenzo criteria for quantum communication state

that a quantum computer with a quantum communications interface must ...

1. ... interconvert stationary computing qubits and flying communication qubits.

2. ... faithfully transmit flying communication qubits.

Quantum computers that satisfy these criteria can externally exchange quantum

information with one another using "flying" qubits such as photons. Furthermore,

62

these criteria may allow fault-tolerant quantum computing with higher thresholds be-

cause quantum communication can independently distribute entanglement through-

out a quantum computer. Distributed entanglement can facilitate gates between

distant qubits.

4.2.2 Fault-Tolerance Criteria

The DiVincenzo criteria are necessary for a system to be a scalable quantum com-

puter. However, a scalable quantum computer may be restricted to very brief or

highly unreliable computations. Yet, quantum factoring of a significantly large input

must run for days or months, so a system that is only scalable is inadequate. The

system must also be fault-tolerant.

Fault-tolerance imposes several additional criteria on a scalable quantum computer

[KL96, GotOO, AB099, Got02]. This subsection consolidates strict requirements for

fault-tolerance and common assumptions that increase the fault-tolerance threshold.

Strict requirements are necessary for a threshold to exist. Common assumptions,

on the other hand, simplify analysis and lead to a higher fault-tolerance threshold,

though the assumptions may be challenging or unphysical to meet.

A scalable fault-tolerant quantum computer does not have a threshold or does not

compute reliably unless ...

1. ... error rates are below threshold. High error rates cause frequent gate and

memory errors. If the rates are too high, even a fault-tolerant quantum com-

puter cannot compute for very long before its quantum state is too corrupt to

continue.

2. ... long-range correlations are extremely weak in space and time. The stan-

dard proofs assert that correlations must decay exponentially in space and

time [AB099]. Under some conditions, stronger correlations may be accept-

able [TB04]. Of course, the fault-tolerant quantum computer should not be

expected to cope with rare but inevitable failures affecting every qubit in the

computer, i.e., failures caused by our sun engulfing the planet, for example.

63

3. ... error rates per qubit remain constant as a function of the number of qubits.

If this is not the case, then p depends on the number of qubits N oc nL and the

threshold may not exist.

4. . . . control is massively parallel. Serial recovery procedures RL introduce a delay

proportional to the total number of qubits N. Because N scales exponentially

with L, the number of potentially memory failure locations scales this way as

well, eliminating the threshold. However, parallel recovery procedures restore

the threshold.

5. ... qubit erasure and reinitialization are almost in place. If qubits must be

initialized a distance d from their point of use, then they travel a distance

d without the protection of quantum error-correction. If d is too great, high

quality ancilla states cannot be prepared effectively for the recovery procedures

RL-

Assumptions simplify calculations of threshold estimates. Some of these assump-

tions are physical and others are not. In cases where several similar assumptions are

possible, the assumptions stated here are the extreme forms of typical assumptions.

A scalable fault-tolerant quantum computer will have an increased threshold if

1. ... qubits only become correlated when they directly interact.

2. ... qubits are never lost.

3. ... qubits never "leak" from the computational Hilbert space.

4. ... measurement occurs rapidly and in place.

5. ... classical information processing is fast and reliable.

6. ... reliable ancilla are available in arbitrarily large numbers.

7. ... nonlocal gates between distant qubits are as reliable as local gates.

64

jqo)=|) - X X-- X

|ao) = 0L)

Figure 4-1: This circuit detects if b) has leaked from the computational Hilbert
space. If this is the case, then the CNOT gates will act like the identity on qubit ao
and the measurement outcome will be 0. Otherwise, the measurement outcome will
be 1. If leakage occurs, the damaged qubit is reinitialized to 10).

4.3 Releasing Common Assumptions

Locality constraints and ancilla preparation constraints are among the most impor-

tant, though until recently they have been neglected in fault-tolerance threshold esti-

mates. Trade-offs between the two can dramatically influence the threshold and the

reliability of fault-tolerant gates, as suggested in recent work [STD04, Kni04]. Hence,

releasing these assumptions is critically important. This section reviews methods to

release some common assumptions, including locality and ancilla preparation assump-

tions, to design realistically constrained fault-tolerant quantum computers.

First, we review the problems of leakage and qubit loss in subsection 4.3.1. Subsec-

tion 4.3.2 reviews ancilla preparation. Locality is reviewed briefly in subsection 4.3.3

but is largely postponed to Chapter 5, where a concrete local layout for the trapped-

ion quantum computer is presented based on Gottesman's observations [GotOO] and

Steane's ancilla factory [Ste98].

4.3.1 Leakage and qubit loss

The Hilbert space of a qubit H may be smaller than the Hilbert space of the physical

system Hphy, representing the qubit. In this case, uncontrolled interactions may

rotate the qubit into phy, - N. This situation is called leakage.

The network shown in Figure 4-1 can detect leakage errors [Pre01]. Qubits that

leak from the computational Hilbert space must be reinitialized to a state within that

space, such as 10). Leakage may also be the result of qubit loss, which can be detected

by this circuit as well. In these cases, error detection codes can be more efficient than

65

general codes [GBP97].

4.3.2 Ancilla Preparation

Fault-tolerant recovery operations, which occur very frequently in fault-tolerant cir-

cuits, essentially amount to preparation of highly entangled ancillary quantum states

[Ste97]. Faulty preparation circuitry leads to damaged ancilla that are not useful for

recovery operations. Hence, prepared states must be filtered by verification circuits,

and those states that fail verification must be re-prepared. Preparing and verifying

these states carefully can improve the fault-tolerant threshold by an order of magni-

tude or more [Rei04, Kni04].

The ancilla factory concept, introduced by Steane [Ste99, Ste98, Ste02], allows

many such ancilla to be reliably prepared, verified, and maintained for recovery op-

erations and for more complicated fault-tolerant gates. The ancilla factory pushes

most of the complexity of fault-tolerant recovery into ancilla preparation in order to

increase the fault-tolerance threshold and simplify the recovery operation itself.

The details of an ancilla factory can be complicated in practice because of the

high degree of asynchronous parallelism required to prepare ancilla at a maximum

rate while other parts of the quantum computer are executing an algorithm. The

nondeterministic verification process further complicates detailed implementations of

the ancilla factory because qubit movement patterns must change to accommodate

failed verifications at all levels of the concatenated code hierarchy.

4.3.3 Locality and geometric constraints

Locality is one of the most important constraints imposed on realistic systems. Dis-

tant qubits involved in the same quantum gate must be moved near one another,

and the distance between qubits depends on geometric constraints. Like quantum

gates, movement processes are also expected to be error prone. Hence, the geometric

arrangement of qubits in space, called the layout, must be taken into account when

designing and evaluating fault-tolerant procedures.

66

A fault-tolerance threshold exists even with geometric constraints [ABO99]. Extra

qubits prevent errors from spreading during swap operations, and a hierarchy of

supporting ancilla allow intermediate error-correction steps during movement [GotOO].

Careful threshold estimates place the local threshold an order of magnitude lower than

the nonlocal threshold [STD04j.

Chapter 5 considers layouts for trapped-ion quantum computers, so we defer fur-

ther discussion to that chapter.

4.4 Experimentally Estimating Thresholds

We describe an experiment, demonstrated through numerical simulation, that esti-

mates the fault-tolerance threshold. The experiment framed here gives a set of reliable

parameters for which the component reliability improves with an additional level of

recursive simulation. Reliable parameters estimated from experimentally accessible

quantities lead to estimates of the fault-tolerance threshold.

One advantage of experiments is that they account for sources of error that are not

typically counted in analytical threshold estimates, such as propagation, cancellation,

and some asymmetry. One can gather detailed information about system reliability

for complicated multidimensional system models as well, such as those that result

from lifting common assumptions, like making gates local, or those that result from

non-recursively constructed systems.

The numerical component of this method amounts to computing failure proba-

bilities of fault-tolerant networks constructed from Clifford group gates and classical

combinational logic gates. In particular, we study on the L-simulated fault-tolerant

recovery operation RL, though L-simulated Clifford group gates can also be numeri-

cally simulated using the methods from Chapter 2.

Subsection 4.4.1 broadly describes the threshold estimation method. Subsec-

tion 4.4.2 demonstrates the method for classical fault-tolerant circuits, where efficient

simulation of the circuit itself is not an issue. Subsection 4.4.3 then describes how

to apply the estimation method to quantum fault-tolerant circuits. Finally, subsec-

67

tion 4.4.4 demonstrates the method for the [[3, 1, 1]] and [[7,1, 3]] quantum codes.

4.4.1 Experimental Method

Fault-tolerant classical and quantum circuits behave qualitatively like equation 3.5

when all of their components fail with some small probability p;

Pth Pth)

We would like to observe this behavior experimentally and estimate the fault-tolerance

threshold Pth = 1/C from the coefficient of the leading order term of the failure

probability.

Consider an experiment in which a quantum or classical circuit G is constructed

from r different types of faulty basic components. Label each type of basic compo-

nent with an integer i and write -yi for the failure probability of that component. In

the L-simulated circuit GL, assume that each of the r types of L-simulated compo-

nents is built up from basic components with controllable failure probabilities. The

failure probability PL of the L-simulated circuit GL is a function of all r of the ba-

sic component failure probabilities ' = (E,.. . , Y,) E [0, 1]r. By establishing a map

[0, 1] --+ [0, 1]r from a single parameter p to ', the circuit failure probability

PL(P) PL o P(p) for each L traces out a curve with a form qualitatively similar

to equation 3.5. For pairs of values 1 and ', pj(p) and ppr(p) may intersect at a

value p,(l). This is the {, (1, l')} crossing point. Crossing points indicate regions of

[0, 1]r, given by P(p), where recursion improves reliability - in other words, reliable

parameters.

It is also possible to let j3: [0, 1]'' -+ [0, I]' be a function of 0 < r' < r parameters

and consider surfaces with crossing manifolds. The choice of P must be made carefully.

Typically P is simply an identity map onto a subset of coordinates 'yi. Whenever P is

understood, we omit it from the subscripts of crossing points.

For a fixed P with r' = 1, circuits have a family of crossing points {, (1, l')} =

{, (1", l"')} for all pairs (1, 1'), (i", 1'). From the basic theory that culminated in

68

equation 3.5, we expect these crossing points to all correspond closely to one another

and to the fault-tolerance threshold.

How do we find PL(p)? Suppose each noise operation in the circuit GL is deter-

mined by the outcome of a random variable. Sampling each random variable selects

a particular set of fault-paths within the circuit that may or may not be ultimately

corrected. The circuit GL fails or passes as a result of a particular set of fault-paths,

so we model the circuit's behavior as a Bernoulli random variable with parameter PL.

As is well-known, a maximum likelihood estimate of the value of the parameter PL

can be constructed from a large number of samples of the corresponding Bernoulli

random variable. The standard error a, of the estimate P^L = Np/N, is

o-1
U- = < N1 (4.2)

where Np is the number of times the circuit passes, N, is the number of sampled

events and a.2 = PL(1 - PL) 1/4 is the standard deviation of a Bernoulli random

variable.

4.4.2 Classical Example

Figures 4-2 and 4-3 show results of a Monte-Carlo simulation of the TMR circuit in

Figure 3-1 for a single wire (T = 1) and two composed wires (T = 2). Let -y9 be the

identity gate failure probability, and let 7m be the majority voter failure probability.

For the numerical simulation, P was chosen to map po - (7 = po, ym = po). The

number of samples N, = 10000 corresponds to a-, < 0.005. The level of recursive

simulation varies from L = 0 to L = 3 in each plot. For each consecutive pair of

values for L, we find a single crossing point. For T = 1, these are po,I ~ 0.226,

P1,2 ~ 0.164, and P2,3 0.153. For T = 2 the P1,2 and p2,3 crossings decrease by

approximately 0.02 due to propagating errors. The combinatoric threshold estimate

for no input errors is 1/6 ~ 0.167, which corresponds approximately with the crossing

points observed for T = 1.

Numerical evidence suggests that P1,2 ~ 0.065 when T = 1000, which is even

69

1

0.8

0.6

0.4

0.2

T=1

- LO markov chain
o LO monte carlo

- LI markov chain
o LI monte carlo

- L2 markov chain
o L2 monte carlo
o L3 monte carlo

o 0.2 0.4 0.6 0.8 1
PO

Figure 4-2: The failure probability of a fault-tolerant classical wire computed using
Monte-Carlo simulation and evaluation of products of Markov chain transition matri-
ces. The gate locations and voter locations both fail with probability po initially (i.e.,
7g = -. = Po. This plot shows the reliability of a single fault-tolerant wire (T = 1)
and gives crossing points po,1 ~ 0.226, P1,2 r 0.164, and P2,3 ~ 0.153.

T=2

0.3[

0.25F

0.2[

0.15-

0.1-

0.05-

r~i
0.2 0.4 0.6 0.8

P0

Figure 4-3: The failure probability of a fault-tolerant classical wire computed using
Monte-Carlo simulation and evaluation of products of Markov chain transition ma-
trices, like Figure 4-2. This plot shows the reliability of a single fault-tolerant wire
computed by composing T = 2 fault-tolerant wires, then dividing the resulting failure
probability by T = 2 to give an average failure probability. The crossing points P1,2

and P2,3 have shifted down by about 0.02 due to propagating errors.

70

o LO monte carlo
- LI markov chain
o Li monte carlo

- L2 markov chain
o L2 monte carlo
o L3 monte carlo

- 0

FT 771117.

I I
-a- 1

less that 1/12 0.083 expected from the combinatoric estimate (see equation 4.28).

One explanation may be that some nondecodable outputs get corrected by the next

fault-tolerant wire to result in a decodable but deviated output.

4.4.3 Evaluating quantum fault-tolerance

Fault-tolerant quantum computers spend a majority of time performing recovery op-

erations and the background ancilla preparation for those recoveries. Recovery oper-

ations and ancilla preparation are two of the most complicated fault-tolerant proce-

dures, only superseded in complexity by fault-tolerant gates in C3 -C 2 and their corre-

sponding ancilla preparation steps. However, recovery operations and corresponding

ancilla preparation can be simulated efficiently within the stabilizer formalism (see

Chapter 2). Hence, a majority of the basic computational steps in a fault-tolerant

quantum computer can be simulated efficiently.

For this section, we compute crossing points for recursively simulated fault-tolerant

recovery networks RL. Steane has also numerically studied recovery networks using a

stateless simulation method [Ste03b]. Storing a representation of the quantum state,

as we do, carries advantages and disadvantages. On one hand, we can simulate ar-

bitrary stabilizer circuits together with classical control and observe the state at any

point, much like if we were using a digital computer design tool (see Chapter 6).

Evolving a quantum state also lends confidence to our numerical results. On the

other hand, measurement is a costly operation for stabilizer simulation algorithms

and increases the simulation time significantly over stateless methods, even though

stabilizer simulation algorithms run in polynomial time (when they give probabilistic

measurement outcomes).

The noise model must also be efficiently simulated for selected operation elements

of superoperators. Define a noise model A/CC based on probabilistic Clifford group

gates and measurement of Pauli operators. The error operators E(p) have the form

S(p) = AkpA , Ak = VPgk, gk E C2, (4.3)
k

71

where the values pk are understood to be probabilities. If measurement of Pauli

elements M is allowed, forms such as

1
E(p) = - [(I + M)p(I + M) + (I - M)p(I - M)], (4.4)

4

or
1

S(p) = (I+ M)p(I + M), (4.5)
4

are possible, depending on if the measurement result is discarded or used to make

a classically controlled correction, respectively. Typical error operators are tensor

products of single qubit bit-flips, phase-flips, or depolarizing operators,

Ex(p) = (1 - p)p + pXpX, (4.6)

Sz(P)= (1 - p)p + pZpZ, (4.7)

SxYZ(p) = (1 - p)p + (XpX + YpY + ZpZ). (4.8)

From this point forward, assume E = Exz for an m-qubit operation unless otherwise

stated.

The /VCG noise model does not include systematic overrotation, for example, but

is sufficient to verify quantum error-correcting properties and propagation of faults

within a fault-tolerant stabilizer circuit. With current digital computer systems,

stabilizer circuits of more than 1000 qubits, such as the [[7, 1, 3]] quantum code at

L = 3 (1331 qubits) and the [[3, 1, 1]] code at L = 4 (625 qubits), can potentially be

simulated under the ACG noise model using a type of Monte-Carlo method in several

months. The Monte-Carlo method samples a random variable, as in subsection 4.4.1,

to select a particular operation element of each error operator.

4.4.4 Quantum Examples

This subsection applies the experimental method described in the previous subsection

to the [[3, 1, 1]] recovery network with bit-flip gate noise and the [[7,1, 3]] recovery

72

network with depolarizing gate noise. Both of these networks have a single parameter

po representing both single qubit and two qubit gate failure probabilities. This means

that P has been chosen to map po to single qubit gate failure probability 71 and two

qubit gate failure probability 72 while setting all other component failure probabilities

7i to zero. We compare the numerical results to combinatoric threshold estimates.

3-qubit bit-flip code

The 3-qubit bit-flip code and its corresponding recovery network R 2 are described in

Chapter 2 and Chapter 3. This subsection composes T = 32 L-simulated recovery

networks and computes the failure probability pf of the resulting circuit. We estimate

the failure probability using about 4000 samples per data point to reduce the standard

error to about 10- for the given range of probabilities po. Finally, for each L the

failure probability pf is divided by T = 32 to estimate the average failure probability

of a single recovery operation.

Figure 4-4 shows numerical data for the 3-qubit bit-flip recovery network R 2.

The data for three levels of recursion indicates crossing points P1,2 ~ 0.035 and

P2,3 ~ 0.037. With coefficients rounded to three places, the least-squares polynomial

fits shown in the figure are

Pi (PO) 2.00p2 + 0. 18 1po - 0.001 (4.9)
T

T~~ 104(-1.61p0 + 0.149p0 - 0.00343p! + (4.10)
T

(3.15 x 10- 5)po - 9.41 x 10-8) (4.11)

P3(PO) 10(4.05p8 - 0.784p7 + (6.22 x 10- 2)p6 (4.12)
T

-(2.64 x 10- 3)pl + (6.54 x 10-5)p4 - (9.63 x 10- 7)p3 (4.13)

+(8.20 x 10- 9)p2 - (3.66 x 10-11)po + 7 x 10-14). (4.14)

These equations make clear that the basic theory described in Chapter 3 does

not completely describe our data, for if it did, then C ~ 2 implies Pth 0.5. The

leading coefficient of P2 gives a more reasonable result; C 3 ~ 1.61 x 104 implies Pth ~

73

[[3,1,1]], T=32

0.04-

0.03-

' 0.02
CL

0.01F

0.01 0.02 0.03 0.04 0.05
P0

Figure 4-4: This figure shows the p1(p), P2(P), and p3(p) curves for the fault-tolerant
recovery network of the 3-qubit bit-flip code. The points are numerically computed
data, and the solid lines are polynomial fits to that data. The solid black line is
the line p1/T = Po included for reference. Independent bit-flip noise occurs prior to
every gate in the network with probability po. The vertical axis is the average failure
probability the L-simulated recoveries, computed by composing T = 32 recoveries
and dividing the failure probability by T = 32. The numerically estimated threshold
is Pth ~ 0.035.

0.0396. Finally, the leading coefficient of p3 suggests a lower threshold of Pth ~ 0.022.

Compare these results to the combinatoric threshold estimate Pth ~ 0.032, derived by

counting failure locations for R 2 in Chapter 3.

7-qubit code

The [[7,1, 3]] recovery network we simulate is based closely on Preskill's network

[Pre01]. Refer back to Figure 2-4 for an example of this kind of recovery network.

Specifically, the network uses three cat state ancilla, collectively called the Shor an-

cilla,

(4.15)Ashor) = 1 v).
" even v

to extract a syndrome bit for each of the 6 stabilizer generators. The ancilla are

encoded into logical zero states using a noiseless network, then encoded into a logical

74

-- p/T = P0
- L = 1
- L=2
- L=3

0-

-0.01 0

cat state using a noisy network with parity verification. If the first syndrome is trivial,

then no recovery occurs. Otherwise, syndromes are extracted until two adjacent

syndromes agree. The agreeing syndrome is used for error-correction. We assume

that the probability for a memory error is negligible and that errors only occur during

quantum gates.

To model the effects of error propagation into and out of the recovery network,

we simulate the composition of T recovery networks. In this case, we choose T = 32.

At the end of T recoveries, we check to see if the state can be perfectly decoded to a

valid quantum codeword. If not, then that is counted as a failure of the T recoveries.

The choice of T increases the failure probability to a numerically observable value

and allows the input error distribution to converge to a typical distribution for this

network.

Errors occur prior to single qubit and two qubit gates, both with probability po,

in other words P = (po, po). By randomly choosing operation elements from each

error operator with the appropriate probabilities, we sample a random variable pf

representing the failure or success of the recovery network. For L = 1 (i.e., the

bare recovery network on the 1-concatenated codewords), we collect roughly 120, 000

samples for each po to estimate pf = pi. For L = 2 (i.e., the 1-simulated recovery

network), we collect roughly 40, 000 samples for each Po. Both keep the standard

error on the order of 10'.

Finally, we plot pf/T versus po for L = 1 and L = 2 to show the mean recovery

network failure probability. The value of po where these curves cross is a type of

pseudothreshold. We call this the memory pseudothreshold and claim that it approx-

imates the fault-tolerance threshold. Intuitively, the fault-tolerance threshold ought

to be lower than the memory pseudothreshold because there are additional failure

locations in a fault-tolerant C3 gate.

This embarrassingly parallel numerical experiment took slightly less than one

month of real time on a cluster computer with 32 computing nodes. For L = 3, the

time may be several months due to the exponential scaling of the quantum circuit

with L.

75

X 10-' [[7,1,3]], T=32
12

10.- L=2
-L=0-

8

6

4

2

0

0 0.2 0.4 0.6 0.8 1 1.2
P0 x10'

Figure 4-5: The pi (p) and P2(P) curves for the [[7, 1, 3]] fault-tolerant recovery network
[Pre01]. Each point is numerically computed data, and the solid lines are polynomial
fits to that data. The solid black line pf/T = po is included for reference. The
numerically estimated threshold is Pth ~ 7.2 x 10-4.

Figure 4-5 shows the numerical results. The pi(p) and P2(P) curves cross in the

neighborhood of Pth ~ 7.2 x 10-4. A least-squares polynomial fit to the L = 1 data

with coefficients rounded to three places is

Pi(Po) ~552p - O.1 8Po + 2.96 x 10-5. (4.16)
T

Similarly, the fit to the L = 2 data is

P2(PO) (3.09 x 109)p4 - (0.00364 x 10 9)po + 2000p2 - 0. 407po + 0.00002. (4.17)
T

On the other hand, counting arguments place the threshold without memory errors

near Pth~ 6 x 10-4 for a similar recovery network [Pre01].

Note that if the basic theory from Chapter 3 accurately describes this numerical

experiment, then we observe that C = 552 based on the L = 1 polynomial fit. This

implies a threshold Pth ~ 1.8 x 10-3. However, we find C 3 = 1.68 x 10', but this is

an order of magnitude lower than 3.09 x 10' observed from the L = 2 polynomial fit.

76

This latter value implies C ~ 1457 and Pth ~ 6.9 x 10-4

4.5 The Pseudo-threshold problem

Numerical experiments can indeed give us approximations to the fault-tolerance

threshold. However, the accuracy of these estimates is influenced by effects that

the simple one-parameter model in section 3.2 does not capture. These effects cause

the crossing points and adjusted coefficients (i.e., the (2 L - 1)-th roots) of leading or-

der terms to differ for all pairs of values of L, making it difficult to absolutely identify

or bound a threshold.

Two such effects can be observed in both classical and quantum circuits. First, the

recursive simulation of many different types of basic components leads to a model with

multiple parameters. Second, differing input error distributions across recursively

simulated components perturbs the failure probabilities of those components.

This section presents a different model for fault-tolerance thresholds, again by

example, that elaborates on results in [STD04]. We calculate how differing input error

distributions and multiple component types influence our experiments, causing us to

potentially identify pseudo-thresholds rather than true thresholds. Subsection 4.5.1

presents a new model for the fault-tolerant classical wire that clearly shows how

pseudothresholds arise, and reveals a rich behavior that was not visible in the original

model of fault-tolerance thresholds. Subsection 4.5.2 analyzes the 3-qubit bit-flip code

using the tools developed in [STD04] to gauge how such effects influence our quantum

threshold estimates.

4.5.1 Classical Pseudo-thresholds

The simple counting we have been doing in section 3.2 neglects input and output

errors. How can a single error exiting the wire still be counted as a success, and

how can we be sure the wire works correctly with a single input error? The counting

analysis is not difficult to continue for these deviated inputs, but instead let us compute

the product of transition matrices. The transition matrix method, which is analogous

77

to a positive operator analysis of quantum circuits, also allows us to quickly compute

failure probabilities without counting and easily allows us to assign wires and voters

different failure probabilities, a step that is absolutely necessary to arrive at the

correct conclusion.

First, we need to describe a single noisy wire. The Markov chain transition matrix

B (P) (4.18)
P 1 -P)

describes a single binary symmetric channel with parameter p. This matrix left

multiplies a column vector j = (po, pi)t representing a discrete probability distribution

over the possible input bit values 0 and 1, which maps it to a distribution of possible

output bit values.

Next, we need transition matrices for decoders and majority voters. The transition

matrix for a perfect TMR decoder has a single 1 in each column. Starting from column

0 at the left, if the binary representation of the column number decodes to 0 (resp.

1), a 1 is placed in the top (resp. bottom) row, like

1 1 0 1 0 0 0
D = (4.19)

(0 0 0 1 0 1 1 1

Similarly, we can write down a matrix M for the fan-out and majority gates together

in Figure 3-1. The matrix M is a zero matrix except for the first and last rows which

equal the first and last rows of D.

These three transition matrices allow us to compute the failure probability 7yg(Yg, 7Ym)

of the fault-tolerant classical identity gate, where -yg is the basic identity gate failure

probability and -ym is the basic majority voter failure probability. Given an arbitrary

input error distribution

j.= (pooo, pooi, . . ,pii)t, Epi = 1, (4.20)

we compute the probability of success or failure of the wire by composing transition

78

matrices,

(popi)t = DB 3 MB 3 J-. (4.21)

The probability of failure of a fault-tolerant identity gate given no input error is

7g,yg ym|10) = 3N - 2g + 34m - 184 M + 12747y - 24% + 124'y% - 844 7, (4.22)

which checks against the counting analysis when yg = 7m. For a uniformly distributed

single bit input error, the probability of a fault-tolerant identity gate failure given a

single input error is

7g(yg, 7m11) = 27g- 3 + 2 -12y8--2 --12 +8- 73.

(4.23)

To compute the probability of failure when this wire is contained in a larger fault-

tolerant computation, assume that all input errors are due to failing majority voters

in a previous fault-tolerant wire,

-yg(7yg, ym 10) (1 - 7M) 3 + -yg(-yg, ym 11) (37m (1 - _ym)2) (.4
(1 - 7ym) 3 + 37m(i - ym)2

= (34 - 24 + 6 7g-ym - 127y m + 87y7m + 3-y - 184 4y (4.25)

+ 1274'y + 4y% - 36yg4 + 844 g - 56N7 y - 47M (4.26)

+ 24-yg-ym - 484 N + 32-y7 7)/(1 + 2 ym) (4.27)

* 12 max(yg, ym) 2 . (4.28)

This equation gives the failure probability of a fault-tolerant gate assuming that the

input is correctable. Let -ygo and 7ymo be the basic component failure probabilities of

the identity gate and majority voter, respectively. Then the final inequality tells us

that yg(,ygo) < ygo if ygo < 1/12 and ygo ;> ymo, meaning that recursive simulation

strictly improves the reliability of the fault-tolerant gate.

In order to complete the analysis, we must find a similar map ym(7m) for the

majority voter. At first glance, this map appears to equal 7yg (7ym, ym), but this is not

79

Figure 4-6: The construction for a fault-tolerant majority voter is identical to a fault-
tolerant wire in Figure 3-1 except the first wire is replaced by a voter. If input errors
are ignored, the wire and voter have the same failure probability. However, input
errors cause the wire and voter to behave differently in recursive simulations.

true. Figure 4-6 shows a fault-tolerant majority voter. Let Mg denote the 23 x 29

transition matrix for the first triplicated majority voting gate. The transition matrix

of the entire circuit is

DB03 MB 0 3M .'Yin Yin
(4.29)

As expected from the counting analysis, the failure probability of the voter without

input errors 7m(7ym10) does equal y,(7m, ym 0),

7ym(ym10) = 6-y - 4-ym - 18-y4, + 247m - 8'ym. (4.30)

However, the maps differ when input errors are modeled. There are 27 ways to

distribute one input error uniformly on each of the three input blocks of the first

triplicated majority voting gate, giving

14 42 923 146 4
m (7m|)= -Ym + -Ym 7 9 Y+ 719 3 9 9

40 5

3 7
40 6

+ -/J. (4.31)

80

\X
VV,

X

All together,

7m(7m10, 1) = 7.m(y.I1)(1 -)9 +ym 11)(27' . (1 -7m)') (4.32)
(1 - 7ym) 9 + 2 7-y(l - 726

= (6-ym - 227m3 + 547y4, + 967m5 - 406-ym + 552-y7 (4.33)

- 408'ym + 1287ym)/(1 - 3 7m + 37 m + 26-ym) (4.34)

;6rn (4.35)

Compare this result with equation 4.28. The majority gate is somewhat less sensitive

to input errors because the errors are quickly corrected unless they conspire in some

sense.

Because the fault-tolerant gate failure probability yg(7g, -7m) depends on the ma-

jority voter failure probability, the error rejecting property of the recursively sim-

ulated voter influences the recursively simulated identity gate as well. Specifically,

the two maps -yg(-yg, -m) and 7ym(ym) are the coordinate functions of a two-parameter

probability map

7(= (Ygo, 'ymO, 1) (4.36)
7Tm(7YmO 1, 1)

that completely describes how recursive simulation changes the reliability of the TMR

fault-tolerant wire, assuming that input errors are correctable. The initial probability

vector -o = (ygo, ym) gives the failure probability of the basic identity gate Ygo and

the basic majority voter ymo.

The iterated probability map gives a flow in the space of identity gate and majority

voter failure probabilities. Figure 4-7 shows the action of the probability map on the

rectangle [0, 1] x [0, 1] for the first few iterations. This rectangle is mapped into itself

by the probability map, and points in the rectangle appear to flow vertically away

from the center of the rectangle.

Suppose that one of the two basic components is flawless. What are the fault-

tolerance thresholds in this case, and how much do they differ? Choose an initial

81

0.

0.3 73
0. 1 0. .

0.1 0.2 0.3 0.4 0..

Figure 4-7: This sequence of graphs shows the image of the rectangle R = [0, i] x [0, i]
under several iterations of the probability map given by equation 4.36. In particular,
this rectangle is an invariant set, meaning -(R) 9 R, and the origin and the upper
right hand corner are attracting fixed points.

probability vector a' = (-yg, 0) or / m = (0, Yi), then the gate threshold is

7g,th = sup f 7g I") = , (4.37)

and the voter threshold is

(4.38)7m,th = sup {OM 1TO (70,M) = 0}.

The gate threshold, Yg,th = 0.5, is the threshold of Figure 3-1 when the majority voters

do not fail. The value of the gate threshold is obvious because the circuit reliability

improves only if 3 2(1 - 'y9) + (1 -yg)3 < -y in this case. The voter threshold,

7m,th ~ 0.175, is the threshold of Figure 3-1 when the gates (wires) do not fail. This

makes clear that noisy voters have the greatest influence on the threshold.

Now suppose that we were aware of the fact that voters and gates behave dif-

ferently under recursive simulation, but the voters and gates failed with the same

probability p = 7y9 = 7m. Let us call the threshold we find by setting all parameters

82

0.4

0.3

0.2

0.1

0.

0.

equal, the diagonal threshold. In this case, we find a diagonal threshold

Pth = sup {p I (p) = 0} ~ 0.175 (4.39)

equal to the voter threshold. Again, this emphasizes the importance of the voters,

which are analogous to quantum recovery networks.

A common way to calculate thresholds is to consider the first iterate alone and find

its fixed point [Ste03b]. Using the probability map, however, the image is actually a

two-dimensional vector. We need to define the pseudo-threshold Ppt,

ppt = sup {p | 11 7(P, ... ,p) |oo< p} (4.40)

in order to make comparisons between the first iterate of a multiparameter map and

the first iterate of a single parameter map. In this definition, 1 - 100 is the largest

element of a finite dimensional vector.

There are many different ways to define a pseudo-threshold, depending on the

chosen path through parameter space (i.e., P, see section 4.4.1) and the metric used

to evaluate the first iterate (11 - 11c, in this case). Unlike one-dimensional maps where

the first iterate determines the fixed point, which is the threshold as well, the first

iterate can give considerably less information for maps with multiple parameters. For

TMR, this pseudo-threshold ppt ~ 0.12 differs from the actual threshold by about

0.055. As a fraction of the actual threshold, the difference is about 31%.

To conclude this section, we apply the basic theory of discrete dynamical systems

to characterize all of the fixed points of equation 4.36 and numerically determine

all points attracted to the origin (i.e., the basin of attraction of the origin) [Wig03].

Figure 4-8 summarizes these results. At each fixed point (-yf, ,mf), the eigenvalues

and eigenvectors of the differential

Dl(_yf, mf) = I 'O ,YmO (4.41)
2ym '

9 Ym

83

determine the stability of the map at that point. Specifically, let {Agi} be the set of

eigenvalues of the differential evaluated at the fixed point . If A = max A#,i < 1 then

jis an attracting fixed point. If A# > 1 then 'is a repelling fixed point (along some

eigenvector). The TMR circuit has fixed 5 points (0, 0), 0), (0.17594 ...

and (1,0). Three of these points, (0,0), (), j), and (1,0), are attracting fixed points.

71m

0A

01

0.4

02

0 02 04 06 08

Figure 4-8: This plot characterizes the fixed points of the probability map given by
equation 4.36. Green circles denote attractive fixed points, and red circles denote

saddle points. The white arrows are eigenvectors of the linearized system at each

fixed point. Ingoing arrows correspond to associated eigenvalues with magnitude less

than 1 and outgoing arrows correspond to associated eigenvalues with magnitude

greater than 1.

The interior of the basin of attraction of the origin So is the interior of the rectangle

[0, 1] x [0,0.17594...], as shown in Figure 4-8. Any point in this rectangle will

converge to the origin. The interior of the plane [0, 1] x [0, 1] minus the rectangle

[0,] x [0.17594..., j] is the interior of the pseudo-threshold set

Spt = {f' '(pl) < pi for some i}. (4.42)

The pseudo-threshold set contains those points that might appear to be below thresh-

old based on projections of the first iterate onto the coordinate axes. This simple

example suggests that St can contain points outside of So, though common sense

excludes those points in this example.

84

4.5.2 Quantum Pseudo-thresholds

An experiment that determines parameters for which a fault-tolerant gate is more re-

liable than a basic gate is one prerequisite for realizing fault-tolerant quantum gates.

Yet is such an experiment sufficient to identify parameters that guarantee scalable

fault-tolerance? The example in subsection 4.5.1 confirmed a negative answer to this

question for classical circuits and clarified the concept of a pseudo-threshold [STD04],

the component failure probability at which recursive simulation could improve relia-

bility of one or more components but does not do so asymptotically.

This subsection follows [STD04] to estimate the probability map for quantum

TMR. The goal is to give a simple example of pseudothreshold behavior in quantum

circuits, provide a threshold estimate for error-correction using the TMR recovery

network R 2 , and quantify the gap between possible pseudo-thresholds and the actual

threshold.

The probability map analysis requires some assumptions. There are five types

of locations that fail with probability 'ye: single-qubit gates (1 = 1), controlled-NOT

gates (1 = 2), controlled-NOT gates followed by measurement of the target qubit

(1 = 2m), preparation of a 10) state (1 = p), and a waiting qubit (1 = w). Measure-

ments, CNOT's, and single qubit gates take the same amount of time, and classical

computing takes negligible time. Error-correction is parallelized as much as possible

to reduce the number of times qubits must wait. Ancilla qubits are prepared just in

time during the previous syndrome extraction. Finally, we assume a very low error

rate, so faults do not cancel and error-correction using the wrong syndrome does not

occur. CNOT gate errors correspond to the operator

(p) = (1 - p)p + [IXpIX + XIpXI + XXpXX], (4.43)
3

so there is an error on a given output qubit with probability 2p/ 3 .

Let # be the probability that the first syndrome is zero. The first syndrome is

zero if no errors occur during ancilla preparation, no controlled-NOT gates fail in a

way that introduces errors on the ancilla, no memory failures occur on the data that

85

can propagate to the ancilla, and there are no preexisting errors on the data. This

statement gives a lower bound,

3 (1 - -y)2(1 - 2-2/3)(1 - 72)(1 - 22m/3)2(1 - -y,)P(no incoming errors). (4.44)

Incoming errors can be due to the prior transversal gate or the last error-correction.

Consider the last error-correction alone to estimate the probability that there are no

incoming errors, P(no incoming errors). Suppose that the first syndrome is zero, then

there are no incoming errors if there are no errors from the first syndrome extraction

and if there are no errors while waiting for other parallel syndrome extractions to

finish. On the other hand, if the first syndrome is nonzero, then there are no incoming

errors if none of the syndrome extractions leave an error and if recovery leaves no error

given s' < s syndromes agree. These probabilities are

P(no Si errors) (1 - 272/3)2(1 - 2y2m/3) 2 (1 _ _y)I, (4.45)

P(no waiting errors) (1 - 7,)9(s-1) (4.46)

P(no Si errors for all i) P(no Si errors)s, (4.47)

P(no recovery error) = (1 - 7Y")2(1 - '71). (4.48)

The probability that the prior transversal gate does not fail is (1 - max({Y7})) 3.

Finally, take all of the expressions to be valid approximations and solve the linear

equation

#3= AB [3C + (1 - 3)D] (4.49)

for /, where

A = (1 - _7,) 2 (1 - 2 / 3 -y2)(1 - -72)(1 - 2/372m)2(1 - _Y) (4.50)

B = 1 - max({7;})) 3 (4.51)

C = P(no S1 errors)P(no waiting errors) (4.52)

D = P(no Si errors for all i)P(no recovery error Is' agree). (4.53)

86

The vector = (y1, 72,'72m,7p,"Yw) characterizes the reliability of the quantum

TMR circuit. We would now like to see how this vector changes when each location

is recursively simulated. Let '(') denote the map that gives the component failure

probabilities after recursive simulation, and let the set of functions {-Y(')} be its

coordinate functions, one for each type of location.

Before continuing, we need to define some expressions for estimating the failure

probability of a set of locations. Let

p(1+ E I, s) = 1 - (1 - 6(I))N(I) (4.54)

be the probability of one or more errors originating from error source I when s, syn-

dromes are collected during error-correction. Table 4.1 lists error sources I together

with their location failure probability J(I) and location count N(I). Similarly, let

P(2+ E I, sx) = 1 - (1 - 6(j))N(I) - N(I)6(I)(1 - 6(j))N(I)-1 (4.55)

be the probability of two or more errors originating from

syndromes are collected during error-correction.

error source I when sx

SOURCE J 6] N

Fault in CNOT in S 2-y2 /3 2s,
Fault in CNOT or measurement in S 2-2m/3 2s,

Memory faults in S 7W 4s_
Memory faults in R 7W 26 ,s
Fault in gate or R 71 16S .,

Memory fault when s = 1 7T 9(s - 1)JS,,
Encoded gate error in rect. type 1 71 3

Table 4.1: This table lists sources of error in the quantum TMR circuit. The first
column is the error source which is a subset of locations in the circuit. The second
column is the failure probability 6 associated with an individual error event. The
third column is the number of locations N in the error source.

The probability of failure of a location 1 = 1, w, or p is

y () = 3F1[1] + (1 - 3)Fi[s] (4.56)

87

where

F1[s.] ~ P(1+ G 1, s, 1 P(E J, s.) + > P(2+ E I, s,) (4.57)
I>J

is the probability of two or more errors in a recursively simulated location of type 1

given that s. syndromes were extracted.

Similarly, the probability of failure of a location 1 = 2 or 2m is

= 32F[1, 1] + 20(1 - 3)F[1, s] + (1 - 3)2F[s, s] (4.58)

assuming that F[1, s] = F[s, 1]. In this expression,

F[a, b] ~ P(2+ E G) + 3 rn(1 - 71) 2 1: P (1+ E I, a, b) + (1 - 72)3 (F[a] + F[b]) (4.59)
J#G

is the probability of two or more errors in a recursively simulated location I = 2 or

1 = 2m given that a syndromes were extracted for error-correction of the control

qubit and b syndromes were extracted for error-correction of the target qubit. G is

the transversal CNOT gate as an error source.

The coordinate maps -y(-) completely determine an approximation to the prob-

ability map '(') for quantum TMR. This 5-dimensional probability map is more

difficult to visualize than the 2-dimensional map for classical TMR. Instead, we nu-

merically compute threshold results using definitions analogous to the classical prob-

ability map definitions.

One measure of the threshold for quantum TMR is the diagonal threshold

'Yth = supIp I 1 0(P) ... 7p) = 0}, (4.60)

which is defined like the classical case. The diagonal threshold considers starting

probability vectors along the ray leaving the origin equidistant to all of the coordinate

axes. For quantum TMR, the diagonal threshold is Yth ~ 0.0022 including wait errors,

and Yth ~ 0.009 without wait failures but including error-correction at wait locations.

Table 4.2 lists all of the location thresholds and pseudothresholds for the quantum

88

TMR circuit. A location threshold for location type 1 is the failure probability

^/I,th = sup{71 II 0 (0, , 1 -* , 'Y, 0,.. , 0) = 01 (4.61)

that corresponds to choosing an initial point 'yj and setting -yeIS = 0. A location

threshold is the threshold when only a particular type of location is faulty. A location

pseudothreshold for location type 1 is the failure probability

'Y,pt = sup{yl I Y(0, 0, . . . 7, 0, ... ,l < 7}. (4.62)

A location threshold estimate is based only on the l-th coordinate function of the first

iterate. One might mistake a location pseudothreshold for a location threshold if the

threshold estimate is based solely on a 1-simulated component.

71 i I l,th 'YI,pt

71 0.26 0.26
-y2 0.0159 0.026

72m 0.032 0.059
-yw 0.0028 0.0036
yp 0.5 0.5

Table 4.2: This table lists the location thresholds and pseudothresholds for the quan-
tum TMR circuit. Wait errors have the lowest location threshold, and CNOT gates
have the largest difference between thresholds and pseudothresholds.

4.6 Conclusion

We have developed a new experimental method to estimate fault-tolerance thresh-

olds for quantum fault-tolerant circuits based on stabilizer simulation. This method

allows us to compute reliable parameters that estimate the threshold for potentially

complicated system models within the stabilizer formalism. This new method for

evaluating fault-tolerant systems opens up the possibility for a type of quantum com-

puter architecture design tool, which we revisit in Chapter 6.

89

These experiments identify several problems for future study. How can we dis-

tinguish thresholds from pseudothresholds? What is the largest difference between

a pseudothreshold and a threshold? Is there an experimental method by which ac-

tual fault-tolerance thresholds can be exactly determined or tightly bounded? While

we cannot answer these questions completely, we outline in conclusion a possible

approach to the question of experimentally bounding the threshold.

We have already shown that stabilizer circuit reliability can be evaluated numer-

ically. This means that we can compute the actual probability map i, as defined

in Chapter 3, provided that each coordinate map 7i is associated with a stabilizer

quantum circuit C.

For each Ci, the input error distribution and the input quantum state is unknown

when Ci is taken out of its context within a larger quantum algorithm. Suppose

we assume that these inputs must be valid in the sense that they ought to decode

correctly. For a given i, there must be a set of decodable inputs that minimize -Y and

a set of decodable inputs that maximize 7j, so each 7i can be bounded numerically

given these inputs. This is the case for all 73, so we can bound all of the coordinates

of '(').

To compute the threshold, we must determine the boundary of the set of points

attracted to the origin by successive iterations of '('). Naively, simply iterate ' Q)

numerically for the "best" and "worst" decodable inputs. Take Pth to be the maximum

coordinate of all points within the basin of attraction. If the input errors and input

states were chosen correctly for each location and for each replacement, then the

resulting experimentally determined threshold would be exact. However, perhaps the

"best" and "worst" maps yield a numerical bound on Pth, or at least a good estimate.

90

Chapter 5

Threshold for Trapped-Ion

Quantum Computers

Trapped-ion quantum information processing experiments are the most capable can-

didates for quantum computing at present. In fact, recent experimental efforts suggest

that this system may also be the most scalable [CSB+04, RHR+04]. However, the

precise fault-tolerance threshold for computing with trapped-ions is unknown because

the threshold depends on many system level assumptions and on the choice of fault-

tolerance construction. Many architectural trade-offs can increase or decrease the

threshold. Furthermore, the threshold can be interpreted as a fidelity goal for exper-

imental quantum gates and other operations, so knowledge of the threshold under

more realistic models can guide experimental efforts. In this chapter, we develop

a system model of the trapped-ion quantum computer, suggest several layouts for

large-scale ion traps, and predict a fault-tolerance threshold for trapped-ion quantum

computing with the [[7,1, 3]] code under particular models and assumptions. The in-

sights gained in Chapters 3 and 4 give us a natural platform from which to build the

ion-trap system model and estimate the fault-tolerance threshold based on reliable

parameters.

Section 5.1 begins by reviewing trapped-ion quantum computing at a high level

and surveying experiments that demonstrate elements of a trapped-ion quantum com-

puter. Section 5.2 defines a stabilizer simulation model of large-scale trapped-ion

91

quantum computers. Within this section, we give two concrete layouts with desir-

able fault-tolerance properties. Section 5.4 presents simulation results estimating

the threshold for fault-tolerant trapped-ion quantum computing within our model.

Finally, section 5.5 suggests directions in which this work can be extended.

5.1 Trapped-Ion Quantum Information Processing

Trapped atomic ions behave like elementary quantum systems that are well isolated

from their environment, yet they can be precisely controlled. Controlled state transi-

tions in trapped ions have been used in precision timekeeping applications for decades.

Laser cooling techniques can bring trapped atoms nearly to rest, creating some of the

coldest matter known to humankind. More recently, experiments have demonstrated

fundamental quantum logic gates and the essential elements of scalable quantum

information processing.

We begin by reviewing the current state of trapped-ion quantum information

processing, focusing on experimental work carried out by NIST (Boulder) and the

University of Innsbruck. Without going into great physical detail, the brief review

describes quantum gates, measurements, and techniques for moving ion-qubits.

5.1.1 Ion-qubits and RF Traps

Trapped-ion quantum computation, as initially proposed by Cirac and Zoller [CZ95],

uses a number of atomic ions trapped in a linear RF trap that can interact with laser

beams to quantum compute. Each qubit is identified with two internal electronic or

nuclear states of an ion. For example, the 4OCa+ ions used in experiments at Innsbruck

identify 10) with the 42S1 /2 ground state 1g) and 1) with the 32D5/ 2 metastable excited

state le). Two or more ions can be contained in a single trap, where they couple to

each other through Coulomb repulsion, forming a linear chain of ions called a Coulomb

crystal. The vibrational modes of this chain provide a qubit-qubit interaction. Single

qubit rotations and the qubit-qubit interaction yield a universal set of quantum gates

for quantum computation, as will be discussed in subsection 5.1.2.

92

The Cirac-Zoller proposal does not scale to large numbers of qubits. As the

length of the ion chain increases, the vibrational modes become progressively harder

to identify [RBKD+02], decreasing the gate fidelities. These modes also couple more

strongly to ambient fields, increasing the heating rate and, hence, the dephasing rate.

Kielpinski, Wineland, and Monroe propose a scalable extension of the Cirac-Zoller

proposal, using a network of interconnected ion traps [KMW02]. This approach to

scaling the ion-trap was originally proposed by NIST [DMW+98]. Multiple traps

allow for smaller linear ion chains, and thus greater control over logic operations.

Furthermore, externally adjusted static electrode voltages move ions between traps

within the network, potentially allowing coherent manipulation of a large number of

ions. This kind of trap network is called a quantum charge-coupled device (QCCD).

54

K 45

Figure 5-1: Schematic of the ion trap used in ion shuttling experiments at NIST
Boulder [RBKD+02], courtesy of David Wineland. Individual ions are trapped near
electrodes 2 and 4. Ions can be moved by adjusting the static potentials on electrodes
1, 3, and 5.

Current alumina micro-machining techniques have realized QCCD traps. Figure 5-

1 is a schematic of a dual trap at NIST [RBKD+02]. Individual ions are trapped in

regions near electrodes 2 and 4. Slowly varying DC potentials on the other elec-

trodes move ions between the two trapping regions. Subsection 5.1.3 discusses this

experiment in more detail.

Madsen et al have proposed ion-trap arrays that are constructed using semiconduc-

tor materials [MWD+04]. Quantum information processing with semiconductor traps

93

may be more experimentally challenging but has the benefit of combining the scal-

ability of semiconductor fabrication processes with the quantum control techniques

of atomic physics. More recently, Hensinger et al propose three-layer T-junctions to

allow trapped ions to turn corners within a large network of traps [WDM+04].

5.1.2 Gates and Measurement

This brief discussion of gates and measurements in trapped-ion quantum computers

is based on recent reviews [SB02, DMW+98].

A potential established by the trapping electrodes confines the ions. The trap

potential is typically tight in the radial direction, so the N ions are trapped in a

linear configuration, and can indexed from left to right by integers. This is referred

to as a linear ion chain, so if N ions couple to one another vibrationally, we say they

are chained. The amplitude of each ion's motion is also sufficiently small, because

we assume the ions are cold, so the trapping potential is approximately harmonic.

The quantized vibrational motion of the ions in the trap is modeled by 3N uncoupled

harmonic oscillators, one for each Cartesian direction of each ion,

3N

Hbus Zhva (&,a + , (5.1)
a=1

where h is Planck's constant, vc, is the normal frequency of the mode labeled ce, and

&a, et are the annihilation and creation operators, respectively. The {In), In + 1)}

manifold of one of the low-order longitudinal modes is selected as a "bus" qubit to

mediate interactions between ions, where n = 0 in the Cirac-Zoller scheme.

Each ion's internal qubit {e), Ig)} is represented by the Hamiltonian

__o Ee + E
Hint = J+ 2 I, (5.2)

2 z+ 2

where o- is the Pauli z-operator, II is the identity operator, and wo = E9-E9 is the

angular frequency of the qubit transition, given by the difference in energy between

the ground and excited state. Shifting the energy origin, the total Hamiltonian for

94

an ion qubit (indexed by integer j) and a single motional "bus" mode with frequency

V is
hwo

Ho = -2- -r0j + hvat&. (5.3)

Laser beams of specific duration, power, and phase are single qubit quantum

gates when applied on resonance to a particular ion. Assume beams can be steered to

individually address ions at any location in the trap [NDR+99]. The laser's electric

field is a plane wave,

E(t, q) = Eor cos(wLt - n - q + q), (5.4)

that interacts with the ion through dipolar coupling, in the simplest case. In this

expression, EO is the amplitude of wave, E is the polarization vector of the electric

field, WL is the angular frequency of wave, t is time, . is the wave vector which has

magnitude InJ = 2, AL is the free-space wavelength, q is the position vector, and #
is a phase shift. The interaction Hamiltonian for dipolar coupling is

V = -qrj -E(t, gj) (5.5)

where q, is the magnitude of an elementary charge, rj is the (internal) position oper-

ator of the valence electron of the jth ion, and aj is the (external) position operator

of the jth ion.

The ion vibrational motion is typically cooled to the Lamb-Dicke regime as a

prerequisite for applying quantum gates. The Lamb-Dicke regime corresponds to the

physical situation where the spatial extent of the ion motion is much smaller than the

laser wavelength. The ion spontaneously emits mostly on carrier because the recoil

energy is much smaller than the energy of a vibrational quanta. Sideband cooling

techniques applied in the Lamb-Dicke regime can cool the ion motion to the ground

95

state. The formal conditions, collectively called the Lamb-Dicke limit, are

r/((r) + 1)1/2 < 1, (5.6)

,2/2 < 1, (5.7)

where r = kzo is the Lamb-Dicke parameter, (n) is the average number of phonons

in the selected bus mode, n is a parameter that depends the selected bus mode, and k

is the magnitude of the laser wave vector. The distance zo = is the extent(2rnwz) /

of the ion's ground state wave function found from the expectation of the position

operator, where m is the ion mass and w2 is the longitudinal trap frequency (which

corresponds to v in equation 5.3). One calculation for 4oCa+ ions gives 77 ~ 0.06

[SB02], for which the Lamb-Dicke limit implies that (n) < 200. For (n) > 200, the

ion is too warm for quantum computation.

The ion-laser interaction Hamiltonian V is not obviously useful for implementing

quantum gates until it is written in a different form. This well-known formal manipu-

lation involves a sequence of approximations such as the rotating wave approximation,

the weak-coupling approximation, and application of the Lamb-Dicke limit [SB02].

When the laser is on-resonance, i.e. WL = wo, the final interaction Hamiltonian is

A = Ecos(AnIt)(1e)(ej 0 In)(rn1 + Ig)(gI 0 In)(n|) (5.8)

2
n=O

- i Esin(|A~ _ (e(g(I)(4 + |g)(el @|n)(nle'1). (5.9)
n=O

The laser intensity and dipole matrix elements in equation 5.5 determine the Rabi

frequencies An, and # is the phase of the laser. The effect of carrier excitation on the

level populations is illustrated in Figure 5-2.

Similarly, when the laser is tuned to WL = WO - v, the interaction Hamiltonian

96

le)In-i)

Ig)In-1)

Figure 5-2:
transitions

Energy levels of the atom-oscillator

(WL = wo). Carrier-driven transitions

system together with carrier-driven
rotate the qubit to desired superpo-

sition states.

becomes

B E cos(B2)(e)(el 0In)(nI+ jg)(gI (3
n=o

In+ 1)(n + 11) (5.10)

(5.11)

This causes transitions on the first red sideband, as illustrated in Figure 5-4. Finally,

tuning to WL = wo + v causes transitions on the first blue sideband, shown in Figure 5-

3. Again, B, is determined by laser intensity, the dipole matrix elements, and the

Lamb-Dicke parameter.

Ie)In-1) Ie)In) e)In+1)

Ig)In-l) g)fn) n

Figure 5-3: Energy levels of the atom-oscillator system together with red-driven tran-
sitions. Red-driven transitions change the populations of the qubit energy levels and
the oscillator energy levels simultaneously. The oscillator loses one quanta of vibra-
tional energy in a transition on the red sideband.

Single qubit rotations of the ion's internal state in the {g), e)} basis are repre-

97

- i sin(2It)(le)(gI 0 In)(n + lle--i' + Ig)(el 0 In + 1)(nle").
n=O

Ie)In)le)ln+1)

Ig)In) I)n l

le)ln+l)

le)In-1) e)n))n+1)

|g)|n)l
Ig)n-1) . g)In)

Figure 5-4: Energy levels of the atom-oscillator system together with blue-driven
transitions. Blue-driven transitions change the populations of the qubit energy levels
and the oscillator energy levels simultaneously. The oscillator gains one quanta of
vibrational energy in a transition on the blue sideband.

sented by operators

cos()) e) sin((.)R(O, 2) = , (5.12)
--4sin(2) cos()

where 0 is the angle of rotation and # is the relative phase shift of the ground and ex-

cited states. Equation 5.8 directly implements a single qubit rotation. Laser intensity,

phase, and duration determine the angles 0 and #.

Given that we know how to perform arbitrary single qubit rotations, univer-

sal quantum computation only requires a two qubit entangling gate, such as the

controlled-NOT (CNOT). There are many ways to perform CNOT gates with trapped-

ions [CZ95, SM99, SMOO, Ste03a], but all of them can be implemented using carrier,

red, and blue sideband pulses of varying intensity, duration, and relative phase. The

Cirac-Zoller and Molmer-Sorensen gates have been implemented successfully in lab-

oratories [CDB+95, DDV+03, SKHR+03, SKHG+03].

The electron shelving method accomplishes reliable single qubit projective mea-

surement in the computational basis {Ig), e)}. An intense laser excites a transition

that transfers population between 1g) and a fast-decaying auxiliary level laux). If

the qubit collapses to the ground state, that population is transferred to the laux)

level. The auxiliary level spontaneously emits a photon, decaying back to 1g). As

long as the cycling transition is driven, the presence or absence of fluorescence at

WC = (Eaux - Eg)/h determines if the post-measurement state is 1g) or |e), respec-

98

tively. However, if the qubit collapses to le), the qubit remains in that state during

the readout process and no photons are emitted.

5.1.3 Moving Ions between Traps

Quantum information needs to be communicated across a quantum computer, either

directly or indirectly, because quantum algorithms interact and entangle a majority of

the qubits involved in the algorithm. Ion-trap quantum computing differs from other

physical systems because qubit swapping can be implemented using either laser pulses

(swap gates) or ballistic transport. The latter method modulates static electrode

voltages to push mobile ions from trap to trap. This method is a critical feature

of the QCCD proposal because ions no longer have to be in the same trap for the

duration of the computation.

Ballistic transport is not only advantageous for scaling, but also for designing

quantum fault-tolerant experiments. Ballistic transport may be more reliable than

swap gates. Ions can be separated from one another during measurement to reduce

scattering errors induced by the fluorescing ion [LMBK+04]. Extra swapping qubits

will not be needed in the design of a fault-tolerant system with full ancilla support

structures, reducing the number of qubits by more than a factor of two (see sec-

tion 5.3).

Ballistic ion transport experiments at NIST have used the trap illustrated in

Figure 5-1 [RBKD+02]. Modulated static voltages on trapping electrodes 1, 3, and 5

shuttled a single 9Be+ ion back and forth between traps 2 and 4. The data corresponds

to 106 transfers over the 1.2mm distance. Each transfer took about 50pLs and, in

one particular experiment, occurred between each pulse of a spin-echo experiment.

The resulting interference fringe contrast for two transfers, 96.8 t 0.5%, was due to

imperfections in state preparation, detection, and the spin-echo pulses, rather than

from environmental influences. No ion loss was ever observed as a result of the

transfer.

Ions shuttled by ballistic transport in the NIST experiment with average velocity

0.024mm/[ts heated at a rate of about 8 x 10-6quanta/m. This heating presents a

99

challenge because qubit-qubit gates such as the controlled-NOT degrade when acting

on hot ions. Hence, ions must be recooled periodically by a sequence of recooling

laser pulses on blue sideband transitions.

The cooling laser can change the state of the qubit, so ions must be cooled

sympathetically instead. Sympathetic cooling couples an extra ion of a different

species to the target ion. Cooling pulses applied to the extra ion no longer badly

decohere the target ion because the optical transitions are at different frequencies

[BDS+03, KKM+00].

The NIST experiment also studied separating and joining linear chains of ions be-

tween two traps, A and B, 1.2mm apart. Two ions confined in trap A were separated

into traps A and B, then brought back together into trap A. This required several

steps: laser cooling in trap A, trap parameter adjustment, and static voltage ramping.

The entire process required 10ms. Discrete voltage steps during the ramping process,

as well as other imprecisions in control, caused motional mode heating. The splitting

process left an ion in each trap 95% of the time, and a mean on-axis motional mode

population of 140 ± 70 quanta assuming a thermal distribution. More recent exper-

iments have a success rate greater than 99% and heating of about 1 quanta in the

center of mass mode and 0 in the stretch mode. The separation time is also reduced

to around Ims [CSB+04].

5.1.4 Noise and other imperfections

Noise limits the fidelity of operations within an ion trap quantum computer, and can

do so by influencing the ion motion, influencing the ion qubit, or by systematically

altering the parameters of quantum gates. The experimental issues surrounding noise

in ion traps are discussed in [DMW+98] and the references therein, to which we refer

the reader.

100

5.1.5 Revisiting the DiVincenzo criteria

Does the trapped-ion quantum computer realize the five DiVincenzo criteria enumer-

ated in Chapter 4? While a definitive answer must come from further experiments,

there is some cause for optimism.

Again, a quantum computer must ...

1. ... be physically scalable to an arbitrary number of well defined qubits. In prin-

ciple, arrays of segmented ion traps allow scaling to an arbitrary number of

qubits. Experiments have realized traps with several segments and manipu-

lated ions in these traps. However, further experiments must investigate scaling

to large numbers of ions to determine if scaling is strictly a matter of economics

and engineering.

2. ... be initializable to a well defined starting quantum state. Optical pumping

and laser cooling techniques initialize ion-qubits into a known pure quantum

state, particularly the ground state of the atom-oscillator system. Experiments

have achieved ground state cooling for a small number of ions.

3. ... have long coherence times relative to gate times of a universal set of gates.

The lifetime of entanglement used in quantum information processing exper-

iments can be longer than 1 second in practice [RLR+04]. More recent un-

published results use first order field independent transitions to protect states

from fluctuating potentials on the trapping electrodes, leading to even longer

coherence times [Bla04]. Gate times are on the order of tens of microseconds.

4. ... permit high quantum efficiency measurements on arbitrary single qubits.

Electron shelving techniques allow measurement in the computational basis with

efficiency approaching 100%.

101

5.2 Ion-Trap System Architecture Model

This section defines a high-level stabilizer model of the QCCD ion trap quantum

computer that can be efficiently simulated to determine fault-tolerance threshold es-

timates using the technique described in Chapter 4. The section abstracts physics

reviewed in section 5.1 to give a simplified stabilizer simulation model. When appro-

priate, we take parameters for this model from experimental data, so these experi-

mental values are listed in this section as well.

Subsection 5.2.1 describes the stabilizer model in detail, then subsection 5.2.2

summarizes the model as implemented in software.

5.2.1 Stabilizer Simulation Model

This subsection describes a system architecture model for stabilizer simulation. An

appropriate model captures relevant operation times and failure probabilities so we

can study system-level trade-offs, like those studied in modern computer architecture.

Even without detailed simulations of ion trap physics, the model captures aspects of

ion trap quantum computing that most greatly influence the fault-tolerance threshold.

Ion-qubits and RF Traps

This subsection describes the system architecture model for ion-qubits and RF traps.

The QCCD described in subsection 5.1.1 contains trap features such as movement

channels, trapping regions, and T, X, or L junctions. A simple trap matrix of tri-

state trap elements describes the layout of a QCCD. A trap element is either an

electrode on substrate, an empty space, or an ion. The ions also have an associated

function such as data storage, ancillary use, or sympathetic cooling. We neglect ion

species in this model. The trap matrix is an arbitrary matrix over trap elements,

though practical constraints may dictate the placement of these elements. Several

electrodes may constitute a single trap, containing at most a few ions. Figure 5-5

shows a sample trap matrix with electrodes inserted along the boundaries of empty

trap elements.

102

V V V I
substrate electrodes ions channel

Figure 5-5: A sample layout of a QCCD ion trap architecture is specified by a trap
matrix. Each non-empty location in the trap matrix can contain an electrode or a
single ion.

Gates and Measurement

Each ion in the trap matrix is identified by a unique label that associates that ion

with a qubit in a stabilizer circuit (see Chapter 2 for a discussion of stabilizer circuits).

Any ion in the trap matrix may be the object of a single qubit gate at any location

in the trap matrix. Ions adjacent to one another in the trap matrix may participate

in two qubit gates regardless of their position in the trap matrix. Depending on the

specifics of the model's implementation in our simulation tools, ions may need to be

explicitly placed into chains. We model chains as disjoint sets of ions and assume

that ions may participate in two qubit gates if and only if they belong to the same

chain.

The ion trap system permits all single qubit rotations, so the stabilizer model

admits all of the single qubit stabilizer gates X, Y, Z, H, and S. These gates take

time ti on the order of 1 ps. Two qubit gates in trapped-ion systems are typically

controlled-Z gates implemented using blue sideband pulses. The controlled-Z gate is

composed with Hadamard gates to implement controlled-NOT. All two qubit gates

take time t2 on the order of 10 ps. Trapped-ion systems also allow controlled-Z

gates controlled by several qubits in the same ion chain. Because these gates are not

stabilizer gates though, they are excluded from the model.

Electron shelving implements a highly reliable projective measurement. The sta-

bilizer model simply makes this a single qubit projective measurement taking time

103

il I

tm on the order of 100 [is. Ions can be measured anywhere in the trap matrix.

Moving Ions between Traps

Individual ions can be moved from their current position in the trap matrix to any

adjacent, unoccupied position. Moving to an adjacent position takes time tt, and

moving d steps takes time dtt. Assuming that each cell of the trap matrix is 10 Pm

square and that the average ion velocity during ballistic transport is about 10 ns/im,

tt is on the order of 0.1 Ms.

Depending on the implementation in software, the system model may include

operations to split ion chains or join two ion chains into a single chain. Each of these

operations takes a fixed amount of time tjPit and tion. Published results place these

times on the order of 10ms [RBKD+02].

Moving, splitting, and joining are expected to cause a small amount of heating. We

do not model heating, but suggest a very simple system model. A single parameter

h represents the mean population of the bus qubit. Each operation, particularly

movement, increments h. The computation fails if the ions leave the Lamb-Dicke

regime, or if h > 100. Cooling pulses of duration t, on the order of 10 ps can

reduce this heating [KWM+98]. Longer pulses may be required to cool other motional

modes, and the parameters may be different for sympathetic cooling rather than direct

sideband cooling.

Noise

The stabilizer system model uses the depolarizing noise model for errors in ion trap

systems. The model depolarizes qubits individually with a given probability (after or)

prior to each gate or operation (see Chapter 4). Noise may be biased toward phase

flips in trapped-ion systems, but we model uniform depolarization. This conservative

assumption overestimates noise contributions due to operation failures.

Single qubit gates fail with probability pl. In current practice, pi is approximately

10- [DMW+98]. Two qubit gate fidelity is realistically a function of the motional

mode population. However, we neglect this dependence in our model and choose

104

instead a fixed probability of failure P2 for a two qubit gate. Published results have

demonstrated two qubit gate failure probabilities of about 3 x 10-2 [DDV+03].

Projective measurements may fail with probability pm. In practice, pm is approx-

imately 10-2 in the worst case. Scattering from projective measurements can also

decohere adjacent qubits. This might be modeled using a depolarizing error with

probability proportional to the inverse square separation between the measured ion

and the adjacent ion, p = p8 /d 2 [LMBK+04]. We do not include such effects in the

model for this thesis, but leave this to future work.

We neglect heating caused by movement and assume frequent cooling pulses.

However, movement leads to dephasing because the ion will sample ambient elec-

tromagnetic fields and the movement process may introduce some systematic error.

Movement operations fail with probability p = 1- exp(-dpt), where pt is a parameter

of the model and d is the number of rows or columns traversed in the trap matrix.

Perhaps the strongest assumption is the neglect of memory errors. We assume that

memory errors can be incorporated into gate failure probabilities. This assumption

is based partly on the fact that dephasing times nearly correspond to spontaneous

emission times [RLR+04].

5.2.2 Model implementation summaries

This section serves as a reference to the system architecture model as implemented

in two software simulators. The ion-trap simulator (ITSIM) has a detailed ion-trap

system architecture model that counts heat, time, and automatically parallelizes op-

erations. The quantum architecture simulator (ARQ) is a faster but less detailed

variant of the ion-trap simulator that includes several different "machine" models.

Because section 6.3 describes both simulator implementations in detail, this section

avoids software details to give the reader a clear view of the models themselves and

clarify how these models differ between the two software implementations.

Table 5.1 summarizes the system architecture model implemented in the ITSIM

simulation tool. The ITSIM model uses a rectangular trap matrix to describe trap

layouts. Each ion in the layout has a position in the trap matrix, a label associating

105

it with a qubit, and a type. The ion type describes its function in the simulated

computer, such as "data", "ancilla", or "sympathetic". The collection of ions is

partitioned into disjoint sets of chains that update during split or join operations. Ion

heat is recorded and changes during movement and cooling operations. All operations

have an associated time and failure probability. When operations fail, their qubit

arguments are depolarized with the appropriate probability. Memory errors on resting

qubits are not modeled.

Table 5.2 summarizes the ARQ model. The significant difference from the ITSIM

model is that the mean cost of splitting and joining ion chains is absorbed into the

two qubit gates. This simplicity allows the ARQ implementation to simulate larger

circuits and more general architectures. Other minor differences are that ions are no

longer typed and heat is not recorded. However, future work can easily extend the

ARQ implementation. See Chapter 6 for details about implementing new models and

for a discussion of simulation time.

Finally, Table 5.3 is a guide to the parameters of the system architecture model

as determined by present and anticipated experimental results. Each operation fails

with a fixed probability that is related to the experimentally determined fidelity and

takes some fixed, average amount of time (see Chapter 4). Two qubit gates introduce

the most error in current experiments, and splitting and cooling take the greatest

amount of time.

5.3 Quantum Computer Layouts

As mentioned in Chapter 4, geometric constraints influence the reliability of fault-

tolerant quantum computers. A layout is an important practical constraint because it

specifies the arrangement of qubits in space. The trap matrix of the ion trap system

model described in subsection 5.2.1 permits many different layout choices for the ion

trap quantum computer. However, not all layout choices lead to a reliable quantum

computer. What traits are desired in an ion-trap layout? How can we ensure that a

fault-tolerance threshold exists?

106

MODEL FEATURE DESCRIPTION

Trap layout rectangular trap matrix
ions have types based on their function

Ion chains ions are grouped into sets of chains
Ion heat modeled by an integer h

incremented by movement, decremented by cooling
Memory errors Not modeled
Single qubit gates H, S, X, Y, Z

probability pi, time t,
Two qubit gates CX, CZ on ions in the same chain

probability P2, time t 2

Measurement projective measurement of single qubits
probability pmn, time t,

Movement linear vertical and horizontal movement in integer increments
ions in the same chain participate in the same movement operation
probability p(d) = 1 - e-Pt*d, time t = d * tt

Split separates a chain into two chains
probability pspit, time toplit

Join joins two chains into a single chain
probability pjoir, time tjoi,

Cool probability pcoo, time tcoo,

Table 5.1: Summary of the trapped-ion system model as implemented in the ITSIM
simulation tool. The upper half of the table lists important points regarding the trap
layout, ion chaining, heating, and memory error model. The lower half of the table
lists the available operations and their adjustable parameters.

107

MODEL FEATURE DESCRIPTION

Trap layout rectangular trap matrix
Ion chains Not modeled
Ion heat Not modeled
Memory errors Not modeled
Single qubit gates H, S, X, Y, Z

probability pi, time ti
Two qubit gates CX, CZ on nearest-neighbor ions

probability P2, time t 2
Measurement projective measurement of single qubits

probability pm, time tm
Movement linear vertical and horizontal movement in integer increments

probability p(d) = 1 - ept*d, time t = d * tt

Table 5.2: Summary of the trapped-ion system model as implemented in the ARQ
simulation tool. The ARQ tool does not model the ion-trap in as much detail as the
ITSIM tool, but the simplified model allows us to explore larger systems at higher
levels of recursive simulation.

Operation Time Error Probability Time Error Probability
Single Gate lys 0.0001 10-8

Double Gate 10Ips 0.03 10-7
Measure 100jLs 0.01 10-8

Movement 10ns/pm 0.005/pLm 10- 6 /cell
Split 1000[ps 0.001

Cooling 300ts

Table 5.3: Summary of physical parameters for ion trap system models. The
current experimental values of movement and splitting parameters are taken from
[RBKD+02, CSB+04]. The current experimental values of gate parameters are
taken from [DMW+98] and [DDV+03]. Sympathetic cooling times can be found in
[BDS+03]. Projected parameter values are motivated by [WHOO].

108

This section presents three different ion-trap layouts, two of which have desirable

fault-tolerance properties. The first layout in subsection 5.3.1 permits universal com-

putation in the local setting. The second layout in subsection 5.3.2 uses a tree to

keep qubits that frequently interact close to one another. This reduces failures due

to movement errors. The final layout in subsection 5.3.3 also uses a tree, but incor-

porates the concept of supporting ancilla to make the layout very reliable at high

levels of recursive simulation. This layout is less efficient at low levels of recursive

simulation, but exhibits a fault-tolerance threshold.

5.3.1 Turing machine layouts

What is the simplest possible way to organize an ion-trap quantum computer to per-

mit universal quantum computation? Suppose we give an ion-trap quantum computer

a circular "tape" of ions and a single trapping region for quantum logic operations,

as shown in Figure 5-6. Any ion or pair of ions can be loaded into the logic region,

participate in a quantum gate or measurement, and be unloaded back onto the tape

simply by rotating the tape to the appropriate address.

Figure 5-6: This is one possible layout for ion-trap quantum computing based on a
Turing machine with a finite circular tape. The blue squares represent non-conductive
substrate that supports electrodes represented by gray rectangles. Black squares
are empty space in which ions can be trapped. Each ion is drawn as a colored
sphere. Green spheres are ions that hold data while the blue sphere is an ion used for
sympathetic cooling. The green line represents a beam of laser light striking an ion
in the accumulation region, the region where quantum logic operations take place.

The control for the Turing machine layout is exceedingly simple from a computer

109

architect's perspective, since each qubit can be given a specific linear address on the

tape and operations are essentially serial. The radius of the circular tape can be as

large as necessary to accommodate the application. The farthest movement distance

is no worse than linear in the number of qubits, so the time overhead is not excessive.

However, each movement operation is unreliable, so qubits load from the tape

with a failure probability that grows linearly in the number of qubits. Therefore,

even if we execute a fault-tolerant quantum circuit, the layout does not scale reliably

to a large number of qubits. To compound the problem, this simple layout does not

permit parallel quantum gates, as fault-tolerant quantum computation requires.

5.3.2 H-Tree layouts

The H-tree layout solves some of the problems identified though the Turing machine

layout. An H-tree is a type of balanced tree [Hua85] that we apply in this section

to create layouts for fault-tolerant trapped-ion quantum computing. For layouts, the

details of the tree as a data structure are less important since the layout is static,

i.e. the positions that qubits can occupy are static, though the positions that qubits

occupy at any give time are dynamic.

The H-tree can be viewed instead as an L-system fractal in the plane [Lin68].

There are several ways to think about an L-system fractal, which arises from a lan-

guage described by an L-system grammar. Rules of the grammar are iteratively

applied to generate the fractal. Our H-tree is generated from an initial region of

the plane and a sequence of transformations. We select a very specific H-tree gen-

erated from an H-shaped region of the plane and a set of four transformations that

translate and scale the H. More specifically, let {A, B, C} be the alphabet of our

language, where A means "move forward 1 unit", B means "rotate counter-clockwise

90 degrees", and C means "rotate counter-clockwise 180 degrees". The initial string

constant,

SO = ABACAACABAABACAACABA, (5.13)

110

draws the first H. The rules of the grammar,

p, : A -- AA (5.14)

p2 : C - BSOB (5.15)

correspond to recursive simulation. The pi rule doubles the length of each segment in

the first H, and the P2 rule inserts four smaller H's at the tips of each arm. Figure 5-7

shows the H-tree fractal generated by a similar grammar. This figure corresponds to

6 levels of recursive simulation.

Figure 5-7: This H-tree fractal is generated from the central "H" by scaling and
translation. As an ion-trap layout, the gray region should be interpreted as a large
channel with many smaller rows and columns of traps. The white region should
be interpreted as substrate. A 6-simulated quantum error-correction circuit on the
H-tree looks like this figure.

For our purposes, a logical qubit is a single qubit encoded using an [[n, 1, d]]

quantum computation code. Each physical qubit is assigned a home position at a leaf

of the H-tree. Each parent node of the tree is a single logical qubit at the next level of

recursive simulation, i.e., an (L + 1)-block. Figure 5-8 shows a 1-block, the simplest

node of the H-tree. Each logical qubit is localized to a single node, and all logical

qubits at level L reside at the same scale of the fractal. This localization makes

111

movement distances within a logical qubit relatively small compared to movement

distances between logical qubits. Because the H-tree is space filling, we also expect

the layout to be space efficient in some sense.

Figure 5-8: The basic unit of the H-tree layout for the 3-qubit bit-flip code is con-

structed from a trap with 6 channels that branch from a central channel. Three of

these channels store data qubits, shown in green, and three of these channels store

ancillary qubits, shown in red. Ancilla and data qubits each share their channels

with a sympathetic cooling ion shown in blue. The ancilla are prepared first using

the central channel, then move transversally to extract an error syndrome from the

data. The data is stationary for the entire error-correction process and only moves

to interact with other data qubits.

Figures 5-9 and 5-10 show the H-tree layout populated with qubits in their home

location. This layout corresponds to a 3-simulated 3-qubit quantum memory. Each

parent has 6 leaves. Three of these leaves store the 3 qubits that encode data, and

three of these leaves store ancilla qubits for syndrome extraction (see the circuit

in Figure 2-2). Notice that the width of the channel increases exponentially, as in

Figure 5-7.

Ancilla preparation occurs in the leaves of the H-tree. At each node of the tree, a

single logical ancilla qubit is paired with each logical data qubit. There is obviously

enough space for local interactions that prepare this qubit. Many more ancilla can

be prepared and verified by adding leaves to the tree.

112

Figure 5-9: An ion-trap layout for a 3-simulated 3-qubit quantum memory. The solid

circles represent ions and the cyan squares represent substrate. Black regions of the

layout represent free space in which ions can be trapped and moved. Green circles are

data ions, red circles are ancilla ions, and blue circles are sympathetic cooling ions.

Figure 5-10: An alternate view of Figure 5-9.

113

5.3.3 Ancilla-supported layouts

The H-tree layout has two desirable properties: logical qubit localization and space

efficiency. However, movement distances grow exponentially with the level of recursive

simulation, so the probability of an uncorrectable error will quickly approach unity.

This is not a great problem for a few levels of recursion, and perhaps for practical

purposes. Nevertheless, we would like to have a concrete ion-trap layout with a

fault-tolerance threshold.

As mentioned in Chapter 4, the interplay of layout and ancilla preparation could

have significant impact on current threshold estimates. In fact, ancilla preparation

and layout are interdependent because movement operations must consume ancilla to

ensure that errors do not accumulate during movement and that a threshold continues

to exist.

This subsection is divided into several parts. The first part describes an argument

that a threshold exists with local gates [GotOO, STD04]. The second part describes

a potential path to realizing a concrete ancilla factory in systems that allow dense

arrays of movable qubits, such as ion-trap arrays. The third part explicitly constructs

a layout for an ion-trap quantum computer that exhibits a fault-tolerance threshold.

Local fault-tolerant quantum computation

Moving or swapping qubits within a quantum computer causes errors. Some move-

ment distances within a recursively simulated quantum circuit grow exponentially

with the level of recursive simulation. This growth causes errors to accumulate such

that naive fault-tolerant computation eventually becomes impossible.

Intuitively, error accumulation can be halted and reversed through very frequent

intermediate error-correction (IEC). This idea is made precise in [AB099, GotOO,

STD04]. Intermediate error-correction must be performed exponentially often, so a

local quantum computer suffers an exponential slowdown in the number of levels of

recursive simulation. Nevertheless, scalable fault-tolerant local quantum computation

is possible, so IEC-capable layouts are in some sense canonical layouts for scalable,

114

fault-tolerant quantum computers.

Following [GotOO], suppose that the failure probability of a fault-tolerant quantum

gate satisfies

Pk+1 = Crk+1p , (5.16)

where k is the level of recursive simulation, C is a positive real constant bounding the

number of fault-paths that lead to failure, r is a scale factor determined by layout,

and the quantum computation code corrects t = 1 errors. The probability of failure

for an L-simulated gate is

PL 1 L. (5.17)

Hence, the threshold for local quantum computation follows a rule like

Pth,ocal = 1 Pth1 (5.18)Cr2 Pt2'

This suggests that the threshold is scaled down by some power of the layout scale

factor r. The latter equality is true if C does not change between nonlocal and

local error models. More recent work suggests that the local threshold scales by 1/r

[STD04].

Ancilla support structure

To achieve a local threshold, logical qubits and their ancilla must be near one another,

as in the H-tree layout. Furthermore, the ancilla must move with their associated

logical qubits, and a large number of ancilla must be prepared so that fresh ancilla are

always available for error-correction during movement. The ancilla support structure

of a logical qubit is the collection of ancilla necessary to refresh the logical qubit as

the logical qubit moves. Some ancilla within the support structure must be used

to correct the support structure itself because the support structure moves with the

logical qubit.

Following [GotOO], we design an ancilla support structure for a fault-tolerant

trapped-ion quantum computer. The construction starts in three dimensions and

115

later reduces to two. Begin with a 3-dimensional lattice of physical ion qubits, or-

ganized into a stack of planes. Each ion qubit in the lattice belongs to a particular

quantum codeword encoded by a q-concatenated [[n, 1, d]] code for some q. Each plane

is a single logical data qubit encoded at level L and many ancilla qubits encoded at

levels varying from 1 to L.

One such plane is shown in Figure 5-11. A q-codeblock in this figure is a collection

of physical qubits belonging to the same quantum codeword encoded at level q. A

collection of nL physical qubits that all belong to q-codeblocks for a fixed q are called

a q-superblock. There are nL-q q-codeblocks in a q-superblock. Each number q across

the top of the figure labels a vertical q-superblock of ancilla qubits. The letter "d"

labels the data L-superblock. Adjustable nonzero integer parameters Mk determine

the total number of supporting ancilla of each type.

d1 21 21 21

L 000 0000 908 0 000 0

M, M, M, M,

M2

Figure 5-11: A single logical qubit and its ancilla support structure reside in a plane
for a quantum computer built from a 3-dimensional lattice of ions. The left column
of green circles represents the data qubits in an L-codeblock. The remaining columns
of red and blue circles represent ancilla qubits. Each column of red ancilla qubits
is a 1-superblock and each column of blue ancilla qubits is a 2-superblock. The
pattern continues - for each q-superblock with q > r > 0 there are M, r-superblocks
supporting that q-superblock.

When Mk = 1 for all k, the logical qubit plane looks like Figure 5-12. Except for

the data superblock, the solid boxes in this figure are called q-chunks. Each contains

2 q superblocks: a leading (leftmost) q-superblock to correct the data and 2 q - 1 r-

superblocks, r < q, to correct the leading q-superblock. This shows that the ancilla

support for Mk = 1 is a binary tree, and suggests that the data and each q-codeblock

can be error-corrected using nearby ancilla. When Mk :# 1 for some k, a q-chunk

116

contains Nq Mq(l + Nq_1) qubits and N1 = M1 .

@00 060060000.0
L 00 0O000000000011ff! 00 -*0

d 12131214121312

Figure 5-12: This is the same structure shown in Figure 5-11 when Mk = 1 for all
k. The data codeblock is on the left. Each box of qubits to the right of the data is
called a q-chunk - one q-superblock to correct data and the rest to correct ancilla in
the box. There are L chunks to correct data encoded at level-L.

There are good reasons for choosing the arrangement in Figure 5-11 and Fig-

ure 5-12. Assume that there is space between qubits in these figures so that a given

superblock can complete operations local to itself and can move through other su-

perblocks if necessary. Notice that the relative distance between a q-chunk and the

data "d" grows exponentially in q, hence equation 5.16 expresses how the failure

probability (of a transversal single qubit gate at least) changes from level to level.

In addition, syndrome extractions can proceed in parallel and each q-superblock for

q > 1 has associated ancilla available for error-correction that can move with that

q-superblock.

So far we have not mentioned the details of ancilla preparation. However, ancilla

preparation is crucial for fault-tolerant quantum computing. How does this layout

account for ancilla preparation? The layout can include enough ancilla by adjusting

the Mk. However, the layout must include a sufficient number of verification qubits as

well. If Mk > 1 for all k then we can simply recruit verifiers. Yet, the classical control

may become very complicated. We may be able to simplify this control, perhaps, by

designating verifiers in the layout.

The optimal ancilla preparation scheme is both massively parallel and highly data-

dependent, in the sense that recovery operations must block until enough ancilla are

available. All Mk ancilla must be encoded in parallel for a threshold to exist. After

encoding, or generation, the ancilla must be verified [Ste03b]. Some ancilla will not

pass the verification and will be left behind while the successfully prepared ancilla

117

participate in recovery operations. During recovery, ancilla that failed verification

are re-encoded until they pass verification, then continuously error-corrected until

a sufficient number have passed verification. A single "thread" might prepare and

monitor each ancilla in the support structure. When the ancilla is ready, the thread

may send a signal to waiting error-correction operations.

Planar ion-trap layout for the [[7,1,3]] code

A two dimensional layout may be more practical than a three dimensional layout, so

we now describe a concrete planar ion-trap layout and include designated verification

qubits. First, stretch out the supported logical qubit in Figure 5-11 so that it becomes

a single line of qubits. Next, stack many of these lines, each of which is a logical qubit,

to form a plane.

There are at least two highly symmetric ways to stretch out planes to lines such

that a threshold exists; we can interleave data and ancilla qubits, or we can place

data adjacent to ancilla. Both ways lead to a linear grouping of qubits called the

a-supported i-block for integers a < 1.

Figure 5-13 shows a 1-supported L-block with data and ancilla interleaved. This

block contains data encoded at level-L interleaved with M, ancilla encoded at level 1

to error correct the data. In addition, the block has n,(M1+1) verification qubits. For

the [[7, 1, 3]] code, for example, n, = 4 to measure half of the 6 stabilizer generators

and the logical Z operator.

M1 nv (M + 1)

...e6 ...9 AM FO ...
L 1 L 1 L 1 VO

n

Figure 5-13: This is a 1-supported L-block for which data and ancilla are interleaved.

M, red level 1 ancilla follow each of the n green data qubits. These nM1 level 1 ancilla

are used in level 1 error-correction of the n data qubits, though the data qubits are

part of a larger L-codeblock. There are n,(M1 + 1) gray verification qubits used to

prepare up to (M + 1) 1-codeblocks, the total number contained in the 1-supported

L-block if the data qubits need to be prepared as well.

118

Figure 5-14 also shows a 1-supported L-block, except the data is placed adjacent

to the ancilla and verifiers. There are the same number of qubits in this block, and

they have the same roles as those in Figure 5-13.

n nM1 nv(M + 1)

L 1 V0

Figure 5-14: This is also a 1-supported L-block, as in Figure 5-13, except data is
placed adjacent to the ancilla and verifiers. Compared to the interleaved block, this
block has a lower ancilla preparation failure rate due to movement but a higher data-
ancilla interaction failure rates due to movement.

Continuing the recursive construction, an interleaved 2-supported L-block is shown

in Figure 5-15, and an adjacent 2-supported L-block is shown in Figure 5-16. These

figures clarify the construction process, which continues in an obvious way to an

a-supported L-block, and ultimately to an L-supported L-block. An L-supported L-

block is a logical data qubit encoded at level L together with enough ancilla to carry

out fault-tolerant error-correction of the data with intermediate error-correction.

nn

n~(f 1 + 1 A 1 v(M +1)n,.(f 2 + 1)n ".(A2 + 1)

Li1 L1 110 2 1 2 1 V0 V1 V0

M2

n

Figure 5-15: This is an interleaved 2-supported L-block. Notice that Figure 5-13 is
contained within this figure n times for the green data qubits and n times for the
blue level 2 ancilla qubits. A total of n,(M2 + 1)n gray verifiers V appear at the
end of the block to verify the blue level 2 ancilla qubits. These V verifiers have their
own verification qubits V because the V verifiers themselves must be prepared into
a logical zero state and verified.

The specific recursion rules (A) and (B) for constructing an a-supported i-block

are

119

L 1 VO 2 1 VO V VO

n nM2

Figure 5-16: This is an adjacent 2-supported L-block. There are the same number of
qubits as in Figure 5-15. The qubits have different locations but the same roles, and
they are labeled as before.

(A) A 1-supported a-block terminates the recursion.

(B) An a-supported i-block consists of n (a - 1)-supported i-blocks (housing sup-

ported data) that are either

(i) interleaved with nMa (a - 1)-supported a-blocks (housing supported an-

cilla) in an alternating pattern, or

(ii) adjacent to nMa (a - 1)-supported a-blocks (housing supported ancilla),

and followed by

N, = nv(Ma + 1)(na + -+ n2 + n + 1) = nv(Ma + 1) (5.19)
n-i

verification qubits.

There may be reason to prefer either the interleaved or adjacent layout. The in-

terleaved layout has a higher preparation failure rate but suffers fewer errors during

interaction. The adjacent layout has the opposite property, namely fewer prepara-

tion failures but more interaction errors. Hence, the adjacent layout requires fewer

ancilla than the interleaved layout because more will pass verification. However, the

interleaved layout may have a modestly higher threshold because the error-correction

circuits will be more reliable, at the cost of an increased number of ancilla. Post-

selection may remove many of the errors in interleaved ancilla preparation.

Using the recursion rule, the number of physical qubits for an [[n, 1, d]] code in an

L-supported L-block can be written down. The first part of the rule gives

Na,i = nNa_1,i + nMaNai,a + nv(Ma + 1) . (5.20)
n-i

120

M

The second part of the rule terminates the recursion, telling us that a 1-supported

a-block contains Ni,a = (n + n,)(Mi + 1) physical qubits. Note that if Mk = 1 for

all k and n, = 0 then NL,L = (2n)L. Placing these physical qubits on the layout

from left to right is equivalent to a depth-first traversal of the tree generated by the

recursion rule, and recovering the logical qubits is equivalent to postfix traversal of

the same tree.

Each line of qubits can undergo simultaneous ancilla preparations and recovery

operations at all levels of encoding if the lines of qubits are parallel to one another

and spaced apart by no less than (2n)L. The exponential separation is sufficient

to prevent collisions, but may not be strictly necessary. In addition, the parallel

orientation permits direct movement between logical qubits for transversal swaps and

gates.

5.4 Thresholds for Trapped-Ions

Trapped-ion experiments show great promise as building blocks for progressively

larger quantum computing experiments. Experiments with tens of ions now seem

imminently possible, and these may lead to the first experimentally demonstrated

fault-tolerant quantum gate [Ste04]. What gate and movement failure probabilities

are needed to realize a reliable local fault-tolerant gate? More simply, for what pa-

rameters does a recursively simulated local fault-tolerant recovery network become

more reliable? Using the techniques, models, and layouts developed in this chapter

and previous chapters, we can decisively answer this question for specific recovery

networks, ion-trap models, and layouts.

The answer is a precise set of reliable parameters - parameters for which the local

fault-tolerant recovery network becomes more reliable. Reliable parameters are useful

in their own right, but they also give us an estimate of the fault-tolerance threshold, as

discussed in Chapter 4. In this case, we expect that the fault-tolerance threshold will

be no greater than the greatest reliable parameters we can observe for a fault-tolerant

recovery network, though this is not strictly true.

121

This section experimentally estimates the threshold for localized fault-tolerant ion-

trap quantum computing for the [[3, 1, 1]] bit-flip code and the [[7,1, 3]] quantum code.

We use the ARQ system model from this chapter and recovery networks described

in Chapter 4. Subsection 5.4.1 computes reliable parameters for the 3-qubit bit-flip

code, and subsection 5.4.2 does the same for the 7-qubit quantum code.

In both cases, the recovery networks are localized to the H-tree layout described in

subsection 5.3.2. The H-tree layout is a practical layout for a few levels of recursion,

because the overhead of intermediate error-correction is undesirable. This means

that our reliable parameters are realistic for ion-trap quantum computers with tens

or hundreds of ions, but the threshold estimates are potentially optimistic.

5.4.1 [[3, 1, 1]] bit-flip code

The [[3,1,11]] bit-flip code is analyzed in the nonlocalized setting in subsection 4.4.4.

There we found an estimate of the fault-tolerance threshold, Pth - 0.035 for a quantum

memory based on this code. In this subsection, we determine how this estimate

changes when the network is localized to the H-tree layout.

As in subsection 4.4.4, we compose T = 32 recovery networks, compute the failure

probability pf under bit-flip noise, then divide that probability by T to find an aver-

age recovery failure probability pj/T. The average recovery failure probability now

depends on both the gate failure probability p. = 71 = 72 and the movement failure

probability pm = -7m. Varying p. and pm produces a surface for each L-simulated

recovery network, as shown in Figure 5-17. The surfaces in Figure 5-17 interpo-

late between 400 uniformly spaced data points. Each data point is taken to smaller

standard error than Figure 4-4.

The simulation reveals a region in which recursive simulation improves the relia-

bility of the fault-tolerant recovery network. The boundary of this region, shown in

gray, fluctuates slightly due to statistical noise in the data, but Figure 5-18 suggests

that these fluctuations are negligible. Both surfaces appear to vary almost monotoni-

cally, crossing along what is approximately a line when projected onto the horizontal

plane. The intersection manifold of Figure 5-18 extends from (p., pt) = (0.005, 0.0027)

122

[[3,1,1]], T = 32

0. 02

0. 015,

O 0.01

0.005

0
4

- 0.04

x 10 0.02

move gate

Figure 5-17: This figure shows how the failure probability of an L-simulated fault-
tolerant recovery network for the [[3, 1, 1]] code depends on both gate and movement
failure probabilities under bit-flip noise. The blue surface is the average failure prob-
ability of a recovery network for a 0-concatenated code, and the red surface is the
average failure probability of a recovery network for a 1-concatenated code (i.e., a 1-
simulated recovery network). The "gate" axis is the failure probability pg = pi = P2

and the "move" axis is the failure probability pt (see Table 5.2). There is a region
where recursive simulation improves reliability of the recovery network - the region
where the red curve passes beneath the blue curve. The neighborhood of the crossing
manifold is colored gray; these points can be identified with neither the red nor the
blue surface within the standard error.

123

[[3,1,1]], T = 32

3.5

3

a) 2.5
0

E 2

1.5

1

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
gate

Figure 5-18: This is Figure 5-17 viewed from above. This plot emphasizes the set of
reliable parameters in the lower left. These parameters lie approximately within the
triangle given by (0.005, 0.0005), (0.005, 0.0027), (0.03, 0.0005). The neighborhood of
the crossing manifold is colored gray; these points can be identified with neither the
red nor the blue surface within the standard error.

to (pg,pt) ~ (0.03,0.0005) based on the interpolated data. The maximum distance

across a single node of the H-tree is 9 cells, which explains the order of magnitude

difference between movement and gate failure probabilities.

The numerical results suggest that a reasonable estimate of the fault-tolerance

threshold for the [[3, 1, 1]] quantum code is Pth ~ 3 x 10-3. More specifically, recursive

simulation improves the reliability of the recovery network for this code under bit-flip

errors, even when localized to an H-tree layout, provided that gate and movement

failure probabilities are below 0.3%.

5.4.2 [[7,1, 3]] quantum code

This subsection calculates the reliable parameters for the [[7,1, 3]] fault-tolerant re-

covery network, localized to the H-tree layout, under depolarizing noise. This network

is experimentally analyzed in the nonlocalized setting in Chapter 4. There we find a

threshold estimate of approximately 7.2 x 10-4.

Our method for calculating reliable parameters is the same as the method used

124

anw-va

V1-3

[[7,1,3]], T = 32

x10 3

CN

V3

2

1

0
6

4
x 10 2

move
2

4
x 10

gate

Figure 5-19: This figure shows how the failure probability of an L-simulated fault-
tolerant recovery network for the [[7,1,3]] quantum code depends on both gate and
movement failure probabilities under depolarizing noise. The blue surface is the
average failure probability of a recovery network for a 0-concatenated code, and the
red surface is the average failure probability of a recovery network for a 1-concatenated
code (i.e., a 1-simulated recovery network). The "gate" axis is the failure probability

Pg = Pi = P2 and the "move" axis is the failure probability pt (see Table 5.2). There is
a region where the red surface passes beneath the blue surface. Recursive simulation
improves reliability of the recovery network in this region. Grey portions of both
surfaces represent interpolated data that could be attributed to neither the blue nor
the red surface within the standard error.

125

x 10 -5 [[7,1,3]], T = 32

5.5

4.5

4

o3. 5
E

3

1 2 3 4 5 6 7
gate x 10 4

Figure 5-20: This is Figure 5-19 viewed from above. This plot emphasizes the region
of reliable parameters which are shown in blue.

in subsection 5.4.1. The interpolated failure probability surfaces are generated from

100 data points, which took 1 month of time to collect on a 32 node cluster com-

puter. Figure 5-19 shows the resulting failure probability surfaces. The blue surface

is the failure probability surface of the recovery network acting on 0-concatenated

codewords, and the red surface is the failure probability surface of the recovery net-

work acting on 1-concatenated codewords (i.e., the 1-simulated network). There is

region of gate and movement failure probabilities for which recursion improves relia-

bility. This region gives us a set of reliable parameters from which we can estimate a

fault-tolerance threshold.

Figure 5-20 shows the failure probability surfaces from above. This figure empha-

sizes the region where recursion improves reliability, and clarifies the uncertainty in

the crossing manifold by coloring the manifold gray within the standard error. On

this manifold, we find movement failure probabilities an order of magnitude lower

than gate failure probabilities because typical movement distances are on the order

of 10 cells for the H-tree.

These results suggest a threshold estimate for the [[7,1, 3]] quantum code localized

to the H-tree. The parameters (pg, pt) ~ (3 x 10', 1 x 10-5) are numerically computed

126

F4

reliable parameters for this code that lie near the crossing manifold, suggesting a

fault-tolerance threshold of Pth 1 x 10-.

5.5 Conclusion

This chapter has reviewed the state of experimental trapped-ion quantum computing

and developed an architectural model of the trapped-ion quantum computer. Within

this model, we explored two layouts with desirable fault-tolerance properties: the H-

tree at error probabilities far below threshold and the ancilla-supported IEC layout at

error probabilities near threshold. This exploration highlights the role and complexity

of realistic layout in fault-tolerant design.

The methods of Chapter 4 allows us to give one of the first threshold estimates for

trapped-ion quantum computing constrained to a realistic layout. We have observed

a threshold reduction for the [[7,1, 3]] code from 7 x 10- without layout to I x 10-5 on

an H-tree. This reduction is due to movement on the layout, and can be understood

based on the mean movement distance per gate. However, the latter result is likely a

pseudothreshold which suggests that the threshold reduction may be even greater.

This program of research can continue along several directions. First, the ion-trap

architectural model can be improved along lines already discussed in subsection 5.2.1.

Specifically, we need to account for memory errors and decoherence due to heating and

laser scattering. Second, many possible layouts remain to be explored and critical

trade-offs identified. For example, the trade-offs associated with ancilla-supported

layouts have not been studied. Such trade-offs can be explored for the 3-qubit code

as a modest extension of the work presented in this chapter. Finally, there remains

the overarching question - rather than estimate thresholds, how can fault-tolerance

thresholds be experimentally bounded or exactly determined for system architectures

with realistic layouts?

127

00(31

Chapter 6

A Software Architecture for

Quantum Computer Design Tools

Much like modern digital computers, future quantum computing systems, from exper-

imental demonstrations of quantum fault-tolerance, to complete, large-scale quantum

factoring machines, will require complex sequences of control instructions and, ul-

timately, a system architecture. Though the proper architectural components of a

quantum computer are not completely known, fault-tolerant design is almost cer-

tainly necessary across all potential technologies. The overhead introduced by fault-

tolerant design adds a new element of complexity to quantum computer design that

is not present in modern digital computer design.

However, overhead and complexity is not the only problem. In Chapter 5, for

example, we not only witnessed the enormous number of ion-qubits and quantum

gates in an ion-trap quantum computer acting as a quantum memory, but also the

need for layouts with certain properties to maintain fault-tolerance. How does one

algorithmically translate from a quantum circuit to a fault-tolerant quantum circuit

constrained to a layout? In doing so, is it possible to assert with some confidence

that the final design is reliable enough?

To deal with these questions, this chapter applies the divide-and-conquer strat-

egy seen in modern computer design. Software tools for quantum computer design,

such as compilers, CAD tools, and simulators, will be indispensable for identifying

129

and ultimately engineering the architectural components of even modestly compli-

cated quantum computing systems. This chapter proposes a design flow for high-level

quantum computer architecture design that is implemented as a chain of interoperable

software tools. Along the way, the chapter presents one view of the hardware-software

interface based on the observations in Chapter 4; specifically, knowledge of physical

resources and mechanisms appears to be necessary to guarantee fault-tolerance. Fi-

nally, the chapter describes the interface and organization of two different but related

stochastic quantum error-correction simulation tools that implement the final phase

of the tool-chain. These tools are used implicitly in the previous chapters to estimate

fault-tolerance thresholds.

The first section of the chapter, section 6.1, introduces some results about quantum

computer organization that have shaped the view of quantum computing presented

here. Section 6.2 offers a concrete design flow consisting of phases of language trans-

lation. Each phase corresponds to a collection of language translators, schedulers,

CAD tools, and/or simulators. The idea is to provide a scaffolding on which to erect

interoperable quantum computer design software. Section 6.3 describes implementa-

tions of the simulation stage of the design flow. Finally, section 6.4 concludes the

chapter.

6.1 Quantum Computer Organization

This section outlines the high-level organization of the quantum computer viewed

as a complex engineered system. This means that we might imagine quantum com-

puters constructed hierarchically from high-level components, which are themselves

constructed from architectural components, which are constructed from elementary

devices. This approach has been applied to the modern digital computer with great

success, so it is reasonable to begin to think about engineering quantum computers

in the same way.

The appropriate paradigm for quantum computer system architecture is not yet

known, but one can envision a quantum analog of many digital computing concepts.

130

Of course, the digital computer did not evolve directly into its modern form. It

continues to evolve, and some abandoned paths of development still have special

application or renewed relevance. Modern digital computers are general-purpose ma-

chines computing any classical computable function within the limits of their fixed

hardware resources. Contrast this with the field-programmable gate array (FPGA) or

the application-specific integrated circuit (ASIC). FPGA hardware can be configured

to support arbitrary architectures within speed and area limits, effectively allowing

software to be mapped directly to representation in hardware. ASIC hardware, on the

other hand, is optimized to compute a specific function very quickly or with minimal

resources.

General-purpose digital computers greatly benefit from the stored-program con-

cept originated by Von Neumann. Programs are stored in memory just like their

respective input and output. Programs that are read from memory control architec-

tural components, such as the arithmetic logic unit (ALU), and invoke state changes

within a set of registers. It is natural to ask if a quantum stored program carries any

advantage over a classical stored program. The answer appears to be negative. A de-

terministic quantum gate array must have orthogonal programs to implement distinct

unitary gates [NC97]. Hence, to know with certainty what program has executed, the

program register of a quantum gate array must be effectively classical. This implies

that the machine language expressing a quantum program for a general-purpose quan-

tum computing system will look like a machine language for a general-purpose digital

computer and can be stored in a classical memory.

Registers store bit vectors within digital processors for direct input to architectural

components. Load-store operations transfer register contents to and from memory.

The quantum analog of these operations is called the QRAM model [BCSO3]. Essen-

tially, qubits in an arbitrary unknown state cannot be copied because this violates

unitarity. We assume that individual qubits are accessible, so a classical pointer refers

to each qubit. Vectors of pointers constitute a quantum register. Hence, the quan-

tum register is an abstract classical interface to a collection of quantum subsystems.

These subsystems may be individual physical qubits or large collections of qubits in

131

an encoded state that represents a single qubit, depending on the organization of the

quantum computer.

Computer architecture explores trade-offs related to locality and parallelism within

computation [PH98]. A significant fraction of a modern computer's architecture is

devoted to extracting performance gains by predicting and exploiting parallelism.

Practically speaking though, this process actually starts before the particular machine

instructions exist. Multi-stage compilers perform many algorithmic optimizations to

select appropriate space-time trade-offs and prepare an instruction sequence tailored

to a particular hardware architecture.

However, quantum computer architecture is fundamentally different from modern

computer architecture because quantum computers must be fault-tolerant. As dis-

cussed in Chapter 4, fault-tolerant design places stringent demands on a quantum

computer architecture. Parallelism and locality are the most significant constraints,

and these constraints are physical - they cannot be met by a software solution alone.

Hence the problem of inserting fault-tolerance into a quantum algorithm requires an

approach that crosses the hardware-software interface.

Furthermore, fault-tolerance requires gate overhead that is large from a practical

point of view and classical control that is relatively complicated compared to an ideal

quantum computer. This overhead and complexity is introduced via algorithmic

replacement rules best handled by automated software tools.

6.2 Design Flow

A quantum computer design flow determines the order of phases of language transla-

tion that transform a general unitary operator into a sequence of physical operations

to control a quantum computer. A design flow may also include phases for verifying

the output of other phases of the flow or optimizing output of earlier phases. Each

phase can potentially provide feedback for subsequent passes through the flow.

Figure 6-1 labels each phase of our proposed design flow. The flow behaves much

like a modern compiler such as gcc [gcc04]. The upper stage of the design flow con-

132

sists of two phases that are described briefly here. The front end maps a quantum

program, perhaps given by but not limited to a unitary matrix, into an intermedi-

ate quantum circuit over some universal basis of gates. The technology independent

optimizer applies transformation rules to optimize the quantum circuit according to

some metric. For example, some applications may demand a minimum number of

qubits while others may require minimum circuit depth. The technology independent

optimizer passes the optimized quantum circuit to the technology dependent opti-

mizer in a quantum assembly language (QASM) that represents the quantum circuit

exactly over some universal basis and includes classical control instructions. We will

not consider the upper stage in greater detail here, but instead refer the reader to

[SCA+04].

The lower stage of the design flow also consists of two phases. The technol-

ogy dependent optimizer applies methods such as the Solovay-Kitaev approximation

[HRC02] to decompose the input circuit into a circuit over a discrete universal set of

gates that is appropriate for the target technology. Furthermore, swap gates or move-

ment instructions need to be inserted at this stage because the quantum computation

takes place in a geometrically constrained system. The output of the technology de-

pendent optimizer is a quantum circuit expressed in a quantum physical operations

language (QPOL) for execution on a particular system. The final phase of the design

flow simulates all or part of the quantum circuit to provide feedback such as execution

time and reliability.

One strength of the design flow is that the hardware-software coupling need not

be specified. The target quantum computing system might be a general-purpose

quantum computer or an application-specific factoring engine. Either way, the design

flow accommodates each system's design.

The technology-dependent optimization phase of the design flow produces instruc-

tions that contain a great amount of detail about how to physically execute the

quantum algorithm. In other words, given the output of the technology-dependent

phase of the design flow, a complete description of the quantum computing system

only requires a description of the physical system in terms of its Hamiltonian(s), its

133

geometry, and the details of its supporting digital systems.

Section 6.1 argued that the requirements for fault-tolerance are physical require-

ments, so they must be supported by hardware. This means that the design flow

crosses the hardware-software interface, hence a design flow implementation solves a

hardware-software co-design problem. The location of the hardware-software interface

determines the complexity of the underlying quantum computer architecture.

The hardware-software interface lies somewhere within the technology-dependent

optimization phase. The placement of the interface determines how the design flow

treats fault-tolerance, and appears to be related to the conceptual separation of logical

and physical qubits. For example, if the interface is at the top of the phase, the lower

stage is architecture-driven, whereas if the interface is at the bottom of the phase, the

lower stage is compiler-driven.

Design Flow:

Quantum ~Technology Technology Tcnlg
antum + Front End Independent Dependent

QIR Optimizer QASM Optimizer QCPOL

Abstraction:

Figure 6-1: The four-phase design flow accommodates most approaches to quantum
computer system design. Each phase maps between languages representing quantum
circuits with varying degrees of technology dependence.

An architecture-driven design process inserts fault-tolerant gates from a pre-designed

library during technology-dependent code generation. A design team creates the li-

brary of universal, fault-tolerant, technology-specific components using a combination

of replacement rules, heuristic methods, and device models, and publishes the library

together with design rules for connecting the composite components.

A compiler-driven design process inserts fault-tolerant gates during the technology-

independent code generation using replacement rules based on quantum circuits. Dur-

ing technology-dependent code generation, sophisticated schedulers and layout tools

insert QPOL instructions to preserve fault-tolerance. Algorithmic optimizations make

fine-grained replacements, and feed-back from simulators may be used to focus the

134

optimizers on critical regions of the circuit.

6.2.1 Quantum assembly language

A quantum assembly language (QASM) expresses quantum circuits input to the tech-

nology dependent optimization phase of the design flow. A quantum assembly lan-

guage is a language that can unambiguously represent quantum circuits intermixed

with classical computing and control.

The term "quantum assembly language" is chosen to draw an analogy with mod-

ern digital assembly languages. This suggests that quantum assembly languages are

not high level languages. Also, quantum assembly languages might formally resemble

digital assembly languages. The analogy should not be taken too far though, be-

cause unlike their digital counterparts, quantum assembly languages are technology

independent.

Quantum bits are static resources in a quantum assembly language. A given

program declares a fixed number of named initial qubits. We assume these resources

are initialized to the zero state on declaration. In contrast, classical resources can be

dynamic in a QASM.

The quantum assembly language should subsume the descriptive power of a clas-

sical assembly language. One alternative is to build the QASM around the MIPS

assembly language. This RISC assembly language controls a virtual processor that

has load-store operations, arithmetic operations, and branching operations.

A quantum assembly language must exactly express ideal quantum circuits. Ideal

quantum circuits consist only of unitary gates on one or more qubits and generalized

measurements. Rather than choose a discrete basis for the unitary gates, we allow

a QASM to declare arbitrary unitary gates on one, two, or three qubits, provided

that the matrix elements of these gates have concise mathematical descriptions. A

set of symbols must be included in the language to allow families of irrational matrix

elements.

Finally, quantum measurements modify the classical virtual machine state. Each

measurement operation must specify a classical register in which to store the result.

135

The result overwrites all of the bits in the register, even if only a few measurement

outcomes are possible. The result now becomes part of the classical computation. As

such, it can be used to conditionally execute future quantum gates and measurements.

6.2.2 Quantum physical operations language

A quantum physical operations language (QPOL) describes precisely how a given

quantum circuit should be executed on a particular physical system. Each physical

system has a potentially distinct physical operations language, so we first describe the

general properties of a physical operations language, then move to a more detailed

example for an ion-trap quantum computer.

General properties

A quantum physical operations language specifies what physical operations a quantum

system should execute to realize quantum algorithms. Physical operations are classi-

fied into five categories based on the DiVincenzo criteria: initialization, computation,

communication, classical control, and system-specific operations. This classification

admits devices that have realized quantum information processing to date, and may

admit future systems describable within the quantum circuit model.

Initialization operations specify how to prepare the initial state of the system.

These include operations to load qubits into the system and deterministically put

those qubits into a known starting state. In practice this requires moving or creating

the physical qubit carriers, which could be ions, photons, nuclear spins, etc. Each

carrier's additional physical degrees of freedom must be controlled as well, perhaps

by lowering the temperature through cooling.

Computation operations include both gates and measurements. For most physical

systems, gates correspond to controlled electromagnetic pulses. Gate types and speeds

depend strongly on the interaction that couples qubits, so typical systems permit

only a limited set of gates. Measurement methods rely on coupling to a measurement

apparatus and will be limited to particular observables in practice.

136

Movement operations control the relative distance between qubits, bringing groups

of qubits together to participate in local gates. Some systems have stationary qubit

carriers and will spend a majority of their time performing swap gates. Other systems

have mobile qubit carriers, or perhaps a mixture of mobile and immobile carriers.

These systems will have machine-specific movement instructions.

Quantum information processors will contain at least a subset of classical logic

operations. In the simplest case, quantum processors will be controlled by external

computers and have access to a complete classical instruction set. Future quantum

processors, however, may have integrated classical logic with specific low-level func-

tions and interfaces.

Finally, a physical operations language includes system-specific operations that

may not fall into general categories. These instructions are likely to control other

degrees of freedom of the qubit carriers or nondestructively detect the presence or

absence of carriers.

A complete program, expressed using a QPOL, is a sequence of instructions to-

gether with appropriate synchronization primitives. Each instruction is tagged for

distribution to one of the (many) available instruction processing units in a quantum

computer.

A QPOL for ion-trap quantum computers

Trapped-ion devices use charged, electromagnetically trapped atoms as qubit carri-

ers. Each qubit is represented by internal electronic and/or nuclear states of a single

ion. Laser pulses of specific frequencies addressing one or more ions apply single and

multi-qubit quantum gates. Laser pulses, appropriately tuned, can also perform mea-

surement, by causing ions to fluoresce when they are in the 10) state. Two or more ions

can be contained in a single trap, where they couple to each other through Coulomb

repulsion, thus providing a qubit-qubit interaction through their collective vibrational

modes. These modes can serve as a "bus" qubit, as long as ion temperatures are kept

low, and vibrational states are controlled. We call ion-qubits chained if they are close

enough to interact using the bus qubit. This bus qubit is also manipulated optically

137

using sideband laser pulses.

Trapped-ion systems have shown considerable potential as a future technology for

quantum information processing. Several groups have demonstrated a universal set

of gates and highly efficient measurement [DDV+03, CDB+95, SKHR+03, SKHG+03,

DAKJ+01, DMW+98]. Further, experiments have demonstrated that static voltages

can move ion-qubits between traps [RBKD+02], and that sympathetic cooling can

be used to reduce heat after movement [BDS+03, KKM+00]. These primitives have

been joined to accomplish deterministic quantum teleportation [RHR+04, CSB+04].

Together, all of these experiments offer a route toward a scalable system, possibly

configured in a large micro-array akin to charge-coupled-devices [KMW02].

We suggest this instance of a QPOL targeted to ion traps, consisting of initializa-

tion, computation, movement, classical control, and system-specific instructions:

Initialization of an ion trap processor has two stages: loading of multiple ions into

a special loading region, and laser cooling to reduce ion temperatures. Measurement

followed by conditional rotations puts all qubits into the 10) state.

Computation with quantum gates is naturally described in terms of single-qubit

rotations in the 1 - plane, achieved using pulsed laser excitation, and a controlled-

phase gate between ions in the same trap, implemented using three sideband pulses.

Chained ions may also participate in a multiply controlled phase gate, useful for

creating large entangled states [SB02, SM99, SMOO]. Qubit readout with a laser

pulse is described by a projective measurement.

Movement of ions is accomplished into and out of traps (and chains) using elec-

trostatic fields. We assume a set of movement instructions sufficient for a planar

rectangular trap configuration with "T" and "X" junctions. Additional splitting and

joining instructions separate and rejoin chains.

Classical control of ions is assumed to be universal, and implemented by a fast,

reliable, external classical processor. In practice, this can either be a remote control

PC, or a local microprocessor chip integrated nearby the trap.

System-specific instructions for trapped ions are necessary to deal with the heating

and decoherence of ion-qubits and bus qubits caused throughout a computation, in

138

the movement, splitting, and joining operations. In the worst case, high temperatures

may eject ions from the trap. Thus, the instruction set includes a system-specific

method to reinitialize the bus qubit, using recooling pulses. These are also sideband

pulses like those used in multi-qubit gates, but they are applied differently and must

be treated specially by the design tools.

6.3 Simulation Software Implementations

The design flow's practical embodiment is as a set of interoperable software tools.

Some of these tools are compiler phases, and some are architecture design tools, such

as CAD tools, schedulers, and simulators. In this thesis, we are primarily concerned

with how the system design of a quantum computer is influenced by the need for fault-

tolerance. For this reason, we focus on the lower stage of the design flow, particularly

on simulation tools and some aspects of the technology dependent optimizer.

We have based all of the simulation tools presented in this section on Aaronson's

implementation of CHP [AG04]. The general concepts of this simulation method are

described in Chapter 2. The first subsection describes a graphical ion trap simulator,

and the second subsection describes a more general quantum computer architecture

simulator. Both simulation tools provide results like those in Chapter 5.

6.3.1 Ion-trap Simulator (ITSIM)

The ion-trap simulator, or ITSIM, uses the efficient simulation method reviewed in

Chapter 2 and the ion-trap model described in Section 5.2 to determine threshold

estimates for fault-tolerant quantum error-correction with trapped-ions. We give an

overview of this simulator and describe its design and interfaces. Appendix B lists all

of the source code for ITSIM.

ITSIM simulates arbitrary quantum error-correction circuits and fault-tolerant

C2 gates with locality and ion movement constraints imposed by the trapped-ion

quantum charge-coupled device architecture [KMW02]. The specific model ITSIM

implements is summarized in Table 5.1. ITSIM computes the discrete time evolution

139

of a quantum stabilizer state. A pseudorandom number generator applies the prob-

abilistic noise model discussed in Chapter 4. Comparing the final quantum state to

the expected quantum state yields a pass or failure outcome, and these outcomes are

used to compute the failure probability of the quantum circuit. Each virtual classical

control processor is attached to its own software thread. Each thread sums operation

times to give a total time for the fault-tolerant computation.

ITSIM is written almost entirely in an interpreted object-oriented language called

Python [pyt04]. Python has many standard and contributed high-level modules that

hasten development and testing of large projects. For example, ITSIM makes use of

preexisting modules for threading, three-dimensional graphics, and compiler building.

When existing modules are too slow, Python allows users to develop their own mod-

ules in a compiled language such as C. We used this feature of Python to incorporate

parts of CHP [AG04].

One way to verify that a technology-dependent optimizer has produced correct

code is simply to look at the sequence of operations. ITSIM graphically displays

each QPOL instruction in three dimensions. Laser pulses and ion movements are

all represented within the animation. The combined use of a visual extension called

VPython and Python's built-in threading allow these operations to occur and be

visualized in parallel as specified by the ITSIM user.

In addition to the ITSIM core, supporting Python scripts emulate parts of the

technology-dependent optimizer. These scripts construct layouts and recursively sim-

ulate stabilizer circuits. Additional supporting scripts help collection, process, and

plot simulation results for various types of numerical experiments. A final set of

scripts creates standalone animations from ITSIM graphics.

ITSIM's entirely modular design mirrors the elements of the trapped-ion quantum

computer described in Chapter 5. In addition, the software can interpret a QPOL

program, provided as a Python binary object, and simulate the implied noisy dynam-

ics while providing graphical feedback. The software allows graphical output to be

toggled so that strictly quantitative simulations are possible.

A modular design decouples elements of the application, as shown in Figure 6.3.1.

140

This module dependency diagram shows precisely how the software design mirrors the

envisioned trapped-ion quantum computer. The iontrap module is the focal point

of the diagram. This module constructs ion-trap objects given a trap geometry (a

matrix) and a set of physical parameters such as gate failure probabilities and times

provided by the physics module. The iontrap object constructs a grid of cells

to graphically represent the ion-trap. Simultaneously, the iontrap object constructs

ion objects that can be joined into chains. Finally, the user attaches a bundle of

physical operations to be executed. The bundle executes methods in the control

object contained within the iontrap. These direct ion movements, execute gates

through aqc, and update the graphical representation on the grid.

geomtr

physics iontrap- grid- cl

chain|

bundle control ------------ aqc

Figure 6-2: The ITSIM module dependence diagram (MDD) includes 10 different
components. Lines connecting the modules signify inclusion, instantiation, or some
other dependence. See appendix B for a more detailed MDD.

Users interact with ITSIM like it is a virtual quantum computer. This means

that users provide a QPOL program and a layout describing the quantum computer

to ITSIM. ITSIM's parser processes the QPOL program and the layout and writes a

bundle object and a layout matrix to files. Think of the bundle object as machine code

for the simulator. The user then sets the ion trap parameters through the physics

object and passes the bundle to ITSIM. During the simulation, ITSIM shows an

animation of the QPOL program running on the layout. Finally, the simulator prints

a line to the screen and to a file that reports success or failure each time the QPOL

program runs. This file is later processed to give the failure probability of the QPOL

program running on the layout with the given physics parameters.

141

The QPOL input file has a layout section and a code section. The layout section

begins with a sequence of commands specifying free and occupied regions of the

layout. The end of the layout section has collection of statements giving each ion's

name, location, type, and initial chain configuration. The code section begins by

defining named subroutines and later organizes these subroutines into a program.

The code has instructions for measurements, gates, movements, and limited classical

control. These instructions are grouped into blocks using different kinds of braces.

The braces distinguish between serial and parallel executing blocks of code and can

be nested arbitrarily. Ions names must correspond to those declared in the layout

section, whereas classical bits are created as they are used.

Consider the following example of a QPOL program for ITSIM:

File : teleport. qcpol

Author: Andrew Cross <awcross@mit. edu>

Last Modified: 4 April 2004

Teleport a single ion state

<layout>

I-AI- I
| A| |

| I

|DA| I

grid (7,7)

fill (1,1) - (7,7)

empty (2 ,2) - (2 ,6)

empty (4 ,2) - (4 ,6)

empty (6 ,2) - (6 ,6)

142

empty (3 ,4) ,(5 ,4)

braces indicate groups of ions that initially share an

oscillator mode (they can all be involved in multi-qubit

gates)

< ion dl, "data" , (2,2) >

< ion al , " ancilla" , (4 ,2) >

< ion d2, "data" , (4 ,6) >

</layout>

<qcpol>

Subroutines to correct target qubit

def xd2 { message "x correct" gate "x" (d2) }

def zd2 { message "z correct" gate "z" , (d2) }

Create epr pair

write a message to the simulator log

message "create epr pair"

move data qubit d2 to position (4,3)

move d2, (4,3)

gate "h" , (al) # apply a hadamard gate to al

join al 's linear chain with d2 's chain

join al, d2

apply a controlled not gate ; al is control

gate "cnot" , (al ,d2)

Distribute it

message "distribute pair"

move d2, (4 ,4)

split al , d2 # separate the linear chain at al-d2

143

< move d2, (6 ,4)

move d2, (6 ,6)

< move al , (4 ,4)

move al , (2 ,4)

move al , (2 ,3)

execute these

> # sequentially ,

these three n

two move instructions

but in parallel with

ovement instructions

Teleport

message "teleport"

join dl, al

gate "cnot" , (dl,al)

gate "h" , (dl)

split dl, al

measure qubit dl, store the result in cz

readout dl, cz

readout al , cx

condition (cx) , (1) , xd2 # if cx == 1 call xd2

condition (cz) , (1) , zd2

</qcpol>

This example demonstrates quantum teleportation within a planar ion-trap. First,

the example creates a planar layout with three ions. Gates place the first two ions

into an entangled state. The second ion is moved to meet the third ion. A sequence

of gates and measurements teleports the third ion's state to the first ion.

During the simulation, users may choose to see an animation like that shown

in Figure 6-3. The animation shows each instruction in the QPOL input file as it

executes. The instruction is printed on the display as well. Ions are represented

by spheres and gates by lines representing laser pulses. Ions move within the black

regions of the figure. The lighter regions depict electrodes.

After the simulation, ITSIM writes a file to disk with a list of outcomes. Each

144

Figure 6-3: Snapshot of the ITSIM graphical display showing an H-tree layout. Qubits
are ions represented by spheres, and gates are applied using laser pulses, represented
by lines. The qubits can move within the black regions of the figure and are pro-
hibited from moving into the substrate which is drawn using light squares. In the
right window the simulator displays feedback regarding the current operations, noise
induced failures, and estimated execution time.

outcome is either a pass or a failure depending on the faults that occurred during a

particular simulation. A large number of outcomes can be used to estimate the failure

probability of the QPOL program for the given set of physical parameters.

6.3.2 Quantum Architecture Simulator (ARQ)

ITSIM helps system architects visualize the operations that take place in a fault-

tolerant trapped-ion quantum computer, and gives reliability results within hours or

days for quantum codes that are not concatenated. However, even after optimiza-

tions, ITSIM cannot gather data quickly enough to study the [[7,1, 3]] quantum code,

for example. Threading, ion grouping in the chain module, and Python's overhead

contribute the most to the performance problem.

The quantum architecture simulator (ARQ) is a rewrite of ITSIM that addresses

the performance problem. ARQ is more than a rewrite, however, because it generalizes

the quantum computer architecture model to encompass most if not all of the physical

systems under consideration for large-scale quantum computation. This subsection

gives an overview of ARQ together with its design and interfaces. Appendix C lists

the complete source.

145

The quantum architecture simulator (ARQ) is a general tool for studying local

fault-tolerant quantum computation within the stabilizer formalism. Like ITSIM,

ARQ simulates a QPOL quantum program that runs on a quantum computer with

a particular layout. ARQ can also compute the circuit reliability and the quantum

state evolution. Supporting scripts produce circuit diagrams and animations from

the detailed logs that ARQ outputs.

Unlike ITSIM, ARQ implements several virtual quantum machines rather than a

single ion-trap quantum computer. Each machine interprets a different, but related,

QPOL input language. Because of the hierarchical design, new machines are relatively

straightforward to add.

The core ARQ simulator is written entirely in C++. Separate scripts written in

Python process ARQ's output log to report the quantum state, animate the quantum

processor behavior, create postscript circuit diagrams, and construct QPOL source

files. A separate C++ program executes ARQ to run numerical experiments and

process the resulting data.

To be a useful engineering tool, ARQ must simulate noisy fault-tolerant circuits

based on small doubly concatenated quantum codes in under a month. Simply rewrit-

ing ITSIM in C++ without using threads and qubit groups (i.e., chains, see Chap-

ter 5) meets this goal. In fact, it seems that substantial future improvements over

ARQ must come from algorithmic improvements in the stabilizer simulation method.

To be a useful quantum computer architecture simulator, ARQ must simulate

many different system models. The solution we have chosen for this problem is a hier-

archy of virtual quantum machines. This hierarchy provides classical control, Clifford

group quantum operations, and planar movement as building blocks for more de-

tailed system models. Such a design permits study of fault-tolerant quantum circuits

in local or nonlocal settings using generic or system specific models.

Each machine in the virtual machine hierarchy, shown in Figure 6.3.2, builds on

the machines that lie beneath it in the hierarchy. A classical control machine (cc)

sits at the base of the hierarchy. This machine implements classical bits, boolean

gates, and branching. Although tedious, any classical program can be written in the

146

cit = ncit
A

pcg npcg
A

cg : ncg
A

cc

Figure 6-4: The ARQ virtual quantum machine hierarchy contains 7 machines. The

classical control (cc) machine lies at the bottom of the hierarchy and implements

conditions and branching. The Clifford group (cg) machine includes the classical

control machine and adds measurement, CX, CZ, H, S, X, Y, and Z gates. The

planar Clifford group (pcg) machine adds a layout and the accompanying movement

and placement instructions. Finally, the Clifford ion trap (cit) machine adds ion-

trap specific instructions such as cooling. Each machine has a noisy equivalent (ncg,
npcg, ncit).

language of the cc machine. For example, a simple counter written in the cc language

looks like:

halfadder.arq - example of classical control

with subroutines

Andrew Cross <awcross~mit. edi>

calls a two-bit half-adder subroutine to

"register" until the register

bit highO , lowO,

set lowi ,1

label top

if highO , lowO

jump end

call halfadder

jump top

adder subroutine

equals 3

highi , lowl

expects: highO, lowO,

147

add 1 to a two-bit

half

highi , lowi

Adds (highO, lowO) and (high1 , lowi)

putting the result in (highO,lowO).

label halfadder

xor highO , highO ,high 1

if lowO , lowl

xor highO , highO , 1

xor lowO , lowO , lowl

return

label end

If the reader is familiar with assembly language then this example is self-explanatory.

The first line declares classical bits, not registers. Bits can be toggled with the set

instruction. Labels, jumps, calls, and if statements allow branching. Finally, boolean

operations such as xor, and, and or are implemented by cc.

The cg machine includes the cc machine and adds quantum gates and measure-

ments within the stabilizer formalism. Again, we will give an example of the cg

machine's QPOL language. This example creates one of the ancilla states used in a

fault-tolerant recovery operation for the [[7,1, 3]] code (see Figure 2-3):

7encode.arq

qubit qO,ql,q2,q3,q4,q5,q6

h qO; h q1; h q3

cnot ql,q2 ; cnot q3,q4

cnot qO,q2; cnot q4,q5

cnot qO,q4; cnot q5,q6

cnot ql,q5

cnot ql,q6

cnot qO,q6

logket

The example declares seven qubits on the first line, then a sequence of quantum

148

gates create the logical zero state of the [[7, 1,3]] quantum code. Semicolons separate

operations that can occur in parallel, such as the group of Hadamard gates on the

first three qubits. The logket command writes the quantum state in ket notation to

ARQ's output log.

Finally, the pcg machine adds a layout and a movement operation move qubit,

direction, steps. The layout is simply a list of integers that represent occupiable

locations on the plane. The additional QPOL instructions are shown in the following

example, which moves a qubit on a layout:

movement example

qubit dl

init d1,2002

move d2,W,3

This example places a named qubit onto a layout at position (2, 2). The sub-

sequent movement command moves this qubit left three units. Movement actions

become part of models higher in the virtual machine hierarchy, where they are as-

signed times, failure probabilities, and perhaps some restrictions.

6.4 Conclusion

This chapter proposes an approach to quantum computer design based on an abstract

design flow. We have started to implement that design flow from the bottom up by

completing and demonstrating a new kind of quantum computer simulator. However,

there are many directions for future work.

One direction relates to the speed of simulation tools. The speed of simulation

tools like ARQ depend strongly on the algorithmic details of the quantum simulation.

Finding improved algorithms would improve these tools greatly, perhaps making the

difference between days and months.

Other phases of the design flow suggest future work. For example, general circuit

rewriting tools to incorporate stabilizer-based fault-tolerance in an arbitrary quantum

149

circuit might be possible. These phases could be implemented in software as well so

as to interoperate with tools like ARQ. In the process, the precise placement of fault-

tolerance within the design flow may become more clear.

ARQ and ITSIM implement several system architecture models. Other models

could be developed for physical systems not discussed in this thesis. In addition to

creating new models, the existing models can be improved.

150

Chapter 7

Conclusion

This thesis can be viewed as an introduction to quantum fault-tolerance in the

trenches. It has highlighted and taken steps toward solution of the complex prob-

lems that must be overcome for quantum fault-tolerant design to make the transition

from theory to practice. To say there are directions for future research is a vast

understatement, as each contribution reveals new challenges.

For quantum fault-tolerance to make the transition from a theoretical gem to an

experimental reality, we need to create experimental techniques for designing and

characterizing fault-tolerant quantum circuits. Because it is possible to experimen-

tally observe the fidelity of quantum circuits while controlling, to some extent, the

fidelity of basic components, we can conceivably witness fault-tolerant design im-

proving the reliability of quantum circuits in the laboratory. In Chapter 4, we have

developed a new numerical simulation method paralleling this idea. The method

computes reliable parameters of a recursively simulated stabilizer circuit acting on

fewer than 1000 qubits. Reliable parameters are basic component failure probabili-

ties for which recursive simulation improves reliability of a fault-tolerant circuit. We

have verified though numerical simulation that classical and quantum fault-tolerant

circuits qualitatively obey equation 3.5,

PL(P) _P_

151

Moreover, the numerical method extends easily to complicated models of proposed

physical quantum computing systems with many failure probability parameters. The

boundary between reliable and unreliable parameters for these systems and circuits

estimates their fault-tolerance threshold, particularly at high levels of recursive sim-

ulation. Based on this concept that reliable parameters can estimate sub-threshold

parameters, we computed threshold estimates for the [[3, 1, 1]] bit-flip code, Pth

3.5 x 10-2, and the [[7, 1, 3]] code, Pth e 7.2 x 10-4 .

However, the numerical results we observed differed quantitatively from equa-

tion 3.5. In particular, multiple crossing points are possible, and none of these cor-

respond to the intersection of the 1-simulated circuit failure probability and the 0-

simulated circuit failure probability. This led us to clarify how pseudo-thresholds, first

identified in [STD04], arise in both classical and quantum fault-tolerant circuits. We

computed pseudothresholds and thresholds for the classical TMR recovery network

and the 3-qubit bit-flip recovery network. We applied basic dynamical systems the-

ory to thoroughly characterize the classical TMR recovery network. For the 3-qubit

network, we found that the threshold and pseudo-threshold could differ by as much

as 84% of the actual threshold (see Table 4.2). Hence, Chapter 4 identified a core

problem to experimental threshold studies. How do we verify that we have experi-

mentally observed a threshold and not just a pseudo-threshold? Moreover, what is

the largest difference between thresholds and pseudothresholds? These questions are

a potentially interesting result in and of themselves, as current threshold estimates

in the literature may differ significantly from the actual threshold.

Having built a conceptual and numerical framework in Chapter 4 for experimen-

tal evaluation of realistic models of fault-tolerant quantum computing systems, we

observe that there are no realistic fault-tolerance threshold estimates for particular

quantum computing systems. Specifically, there are no threshold estimates for sys-

tems realistically constrained to planar layouts except those estimates given by count-

ing arguments. Trapped ion quantum computers are the most capable candidates for

experimental quantum computing, so in Chapter 5 we create a system model for the

trapped-ion quantum computer based on current experimental progress. Within this

152

system model, we investigate three potential layouts for ion-trap quantum comput-

ers, two of which have desirable fault-tolerance properties. Using concrete examples,

we expose some of the complexities of the layout problem, and clarify how the de-

mand for fault-tolerance influences layout. Finally, we compute reliable parameters

for the [[3, 1, 1]] and [[7,1, 3]] recovery networks when those networks are constrained

to operate on a local layout [MCT+041. The reliable parameters provide us with es-

timates of the corresponding fault-tolerance thresholds, in this case, Pth ~ 3 x 10-3

and Pth ~~ 1 x 10--5, respectively.

Chapter 5 begins a particular program of research into quantum computer archi-

tecture. By constructing progressively more detailed and realistic system models of

quantum computers, we can make predictions about the reliability of those systems

under particular types of noise. Perhaps most importantly, we can begin to study

system levels trade-offs associated with different layouts and communication methods

[COI+03, MTC+05b, MTC+05a]. Such trade-offs can be explored through simulation

for small codes as an extension of the existing body of work.

In order to study modestly complicated quantum computer systems, we need to en-

list the aid of software design tools. Fault-tolerant quantum error-correction requires

complicated quantum circuits and classical control, and the need for fault-tolerance

introduces new problems when compared to classical computer architecture and cir-

cuit synthesis. How can we realize and evaluate a large-scale quantum computer,

such as an ion-trap quantum computer described in Chapter 5, given the complexity

of fault-tolerant design? Chapter 6 proposed a four phase design flow [SCA+04] that

transforms a quantum algorithm written in a high level language into a sequence of

physical operations. We have implemented the lowest phase of this design flow -

software simulators for evaluating quantum fault-tolerance. The preceding chapters

demonstrated these simulators, and we have provided the complete source code in the

appendices of this thesis. The design flow gives a greater context to the simulators,

placing them in a complete software architecture for quantum computer design tools,

and gives insight into the synthesis problem looming just above them by exposing the

physical operations interface.

153

The design flow is a scaffolding in which to organize future quantum architecture

research. There is much work to do to realize the design flow as a set of inter-

operable software tools. There are still questions regarding the ideal placement of

fault-tolerance within the flow, and precisely where the quantum computer software

should end and the computer architecture begin. Indeed, there is a vast realm to ex-

plore between a concise description of Shor's algorithm and the pulse that implements

the final measurement on a large-scale fault-tolerant quantum computer.

154

Appendix A

Notation

[[n, k, d]] quantum code encoding k qubits in n that corrects t = [d J errors

H single qubit Hilbert space

Z2 integers modulo 2

SU(n) special unitary group of dimension n

[X, Y] commutator bracket XY - YX

{X, Y} anti-commutator bracket XY + YX

|0),|1) computational basis of 7H

H Hadamard gate 1 , or parity check matrix

1 0
S r/2-phase gate

(0 i

X, Y, Z single qubit Pauli operators

IOL) basis vector of a logical Hilbert space

C classical error correcting code

C' dual space of a classical code

C quantum error correcting code

C, quantum computation code with gates (C, B, E, D, R)

E encoding operation for a quantum computation code

D decoding operation for a quantum computation code

B discrete universal set of fault-tolerant gates for a quantum computation code

155

R fault-tolerant recovery operation for a quantum computation code

9 = C, single qubit Pauli group (X, Z, ii)

G noiseless quantum circuit

X 0 Y tensor product of Pauli operators

S stabilizer subgroup of the n-qubit Pauli group gon

Ks) vector subspace stabilized by S

O(x) big-oh notation, f(x) = O(x) #=> f(x) < Cx Vx > xo, some C > 0

Ck recursive hierarchy of sets {U C SU(2") I UgUt E Ck_1 Vg C Ck_1

L level of recursive simulation

p, Po failure probability of a basic component

PL failure probability of an L-simulated circuit

Pth threshold failure probability

E(p) quantum operation

K noise model (sequence of quantum operations)

Gg noisy quantum circuit

P set of failure probabilities

GL noiseless fault-tolerant quantum circuit obtained from G by L-simulation

E(p, o-) fidelity between density matrices, F(p, a) = tr / a

D(p, a) trace distance between density matrices, D(p, a) = tr(Ip - a-)

F(U, 8) gate fidelity

P(E) probability of event E

156

Appendix B

Ion-Trap Simulator (ITSIM)
Source Code

B.1 Module Dependencies

parse| chain

polpa se- --bundle con ;roll aqc

llparse llogger |stabili erMethodj pureetd

ch propagationMethod

Figure B-1: The full ITSIM module dependence diagram. Arrows represent Python

import dependence. The module at the arrow tail imports the module at the arrow

head.

Figure B.1 shows how the modules of ITSIM depend on one another. The iontrap

coordinates ITSIM by creating a graphical display (grid), ions (ion, chain), qubits

(aqc), and a controller (control). Programs enter ITSIM through parse, which

converts them to an intermediate representation called a bundle.

157

B.2 Source Listing

B.2.1 aqc.pt

Name: aqc.py
Authors: Andrew Cross <awcrosscmit. edu>
Last Modified: 26 March 2004

Abstract quantum computer with
interface

a standard

import string
import random
from Numeric import s

Import logger
from stabilizerMethod import *
from propagationMethod import s

from pureMethod Import *

class aqc:

"""Abstract quantum computer"""
def ... init--(self ,namessmode=' stabilizer',

log=None):

if not type(names) is list : raise
qcInitFailed" , names

for q in names:
If not type(q) is str : raise

qcInitFailed" , q

see noise () for noise types
self.noisy = False
self.noiseType = "depolarize"
self.method = None
self.mode = smode

If log == None:
self.log = logger.logger('qc.

default . log ' 0)
else: self.log = log

If smode == 'stabilizer
self.method = stabilizerMethod(

names)
self. method. reseed ()

elif smode == 'propagation':
self.method = propagationMethod(

names)
ellf smode == 'pure':

self.method = pureMethod(names)
else: raise "qcInitFailed" , smode

Added By Setso

def displayket(self):
displays the ket of the system's
state

(NOTE: can be enourmous)

self. method. displayket ()

def message(self ,msg):

self . log. put ("aqc. message" ,"%s"%7msg)

def fidelity(self other):

If self.mode 1= other.mode: raise
incompatible"

f = self.method. fidelity (other .method)
self . log. put (" aqc . fidelity " "%f"%f)
return f

def same(self ,names, initstring):

c = self.method.same(names, initstring)
self.log.put("aqc.same" ["different","

same"][c])
return c

def reset(self names):
""" Noiseless reset"""
self. log.put("aqc. reset"," ".join(names)

self .method. reset (names)

def noise(self namep):
"""Applies noise with probability p to

the given qubit"""
if random.random() < p:

if self. noiseType == " depolarize":
r = random.random()
If r < 1.0 / 3.0:

self. log. put("aqc. noise" ,"x
%s"%name)

self method. gates ([x"]
name])

elif r < 2.0 / 3.0:
se l f . log. put (" aqc . noise" "y

%s"%name)
self .method. gates (["y ,[

name])
else:

self .log . put(" aqc. noise" ,"z
%s"%oname)

self . method . gates ([" z " ,
name])

elIf self.noiseType =="bitflip":
self . method. gates (["x"] , [name])
self . log . put ("aqc . noise" ,"x %s"%

name)
elIf self. noiseType =="phaseflip":

self . method. gates (["z"] , [name])
self log . put (" aqc . noise" ,"z %s"%

name)

else: raise "badNoise" , self.
noiseType

def gates (self ,ops, qubits , pfails=None)
Applies a sequence of gates to a set

of qubits

For example, ops=['h ','cnot '] qubits=['
q1 ' , ['q2 ' , 'q3 ']] ,

pfails =[0.1 ,0.1]. The optional parameter
pfails assigns

failure probabilities to the list of
gates . In the case of

a two qubit gate , pfail gives the
probability of a failure

on each of the qubits involved
if pfails None: pfails=len(ops)*[0]
If self .noisy:

for g in range(len(ops)):
if type(qubits [g]) Is list:

for q in qubits[g]:
self. noise(q, pfails [g])

else: self . noise (qubits [g]
pfails [g])

for g In range(len(ops)):
If type(qubits[g]) Is list:

self.log.put('aqc. gates', '%s

%s'%
(ops[g],"".

join(
qubits[g])

else
self . log . put ('aqc . gates '%s

%s'%
(ops [g] , qubits

gD)
self .method. gates (ops qubits)

def measure(self , qubits , pfail=None):
Projectively measure a set of qubits

Measurement failure is equivalent to
an error occurring just before the
measurement itself.

Returns a list of measurement results.""

if pfail == None: pfail = [0]*len(qubits

if self.noisy:
for i in range(len(qubits)):

self .noise (qubits [i], pfail [i])
outcomes = self.method.measure(qubits)
self . log . put ('aqc. measure' '%s %s '%(

qubits ,outcomes))
return outcomes

def add(self names):
"""Adds qubits to the machine

Takes a list of qubit objects

158

se lf log .put ('aqc .add' ,names)
se l f method. add (names)

def remove(self names):
self log put ('aqc remove ' names)
self method. remove (names)

def statestr (self) :
return(str (self method)

def ..str--(self):
si = []
sl. append ("mode = %s\n"%self .mode)

sl .append ("noisy = %s\n"%self . noisy)
sl append(" noiseType = %s \n"%s e l f.

noiseType)
sl append(str (self. method))

. join segfaults sometimes ...
return "". join (sl)

Test method : Fault-tolerant /7,1,3] quantum
code without

ancilla verification
if -- name-- == "--main__"

import time

Encode the logical 10>
def encode7(myqc):

dO is the qubit to be encoded
here, dO is IC>
for i in [4 ,5 ,6]:

myqc. gates (["h"] ,["d%d"%i])
for p in [(0 ,1) (0 2) '(6 3) (61) ,(6 0)

(5,3) (5 2) (5 0) (4 3) (4 2)

(4,1)]:
myqc. gates (["cnot"} ,[["dd"%p[0] ,"d

%.d"%p [1]I]])

for i in range(3*7):

simmode " stabilizer"
q aqc (["d0" dl" ,"d2" ,"d3" ,"d4"

d5" ," d6"
"1 a0"7 ,"7al" ,"1a2"1 ,a3" ,vO" ,

simmode)
qO = aqc ("dO" "dl" ,"d2" ,"d3" ,"d4",

"d5" "d6" ,
"a0", "al" " a2" ," a3" "I

vO" [simmode)
q. noisy = False
S = ['IIIZZZZ' , 'IZZIIZZ' , 'ZIZIZIZ',

'IIIXXXX' ,'IXXIIXX' ,'XIXIXIX']
sX, sZ =[] ,[]
nd,na = 7,4

encode7(q)

encode7(qU)

apply an error to the data
if i < 7:

print "x on qubit dd"%i
q.gates (["x"] ,["d%d"%(i)])

elif i < 14:
print "z on qubit dd"%(i -7)
q. gates (["z"], ["d%d"%(i -7)])

else:
print "y on qubit dd"%(i -14)
q.gates(["y"] ,["dd"%(i-14)])

detect and locate the error

for s in S:
s = string.upper(s)
initialize ancilla
for a in ["a" ,"al" ,"a2" ,"a3"

if q.measure([a]) [0]: q.
gates(["x"] ,[a])

prepare shor state for "Z"
generators

q.gates (['h'],['aO'])
q. gates (['cnot'] ,[['aO','al']])
q. gates (['cnot'] ,[['al','a2']])
q. gates (['cnot'],[['a2' ,'a3']])
if 'Z' in s:

for a in ["aO" ," al" ," a2"
a3"]:
q. gates (['h'] ,[a])

Data Interaction
anc = 0
for i in range(nd):

If s[i] == "Z":
q. gates(['cnot'],[{"d"+

str (i) ,"a"+str (anc

) ,])
anc += 1

eli f s [i I == "X"
q. gates (['cnot '],[["a"+

str(anc) ,"d"+str(i
) I]I)

anc += 1
Change measurement basis for

"X" generators
if 'X' in s:

for a in ["a0" ," al" ," a2" ,"

a3") :
q. gates (['h'] ,[a])

Measure parity of the four
ancilla qubits

count , paritylist = 0, q.
measure (["aO" al" ," a2"
a3"I)

print "%s -> %s"%(s , paritylist
for i in paritylist count =

count + i
if "Z" in s:

if (count % 2)==1: sX.
append (1)

else : sX.append(0)
if "X" in s:

if (count % 2)==1: sZ.
append(1)

else: sZ.append(O)

print "syndrome [X,Z]: %s"%(sX+sZ)
if 1:

error correct
xloc = sX[2} + 2*sX[1] + 4*sX

[0]
zloc = sZ[2] + 2*sZ[1] + 4*sZ

[0]
if xloc > 0: q. gates (['x '],['d%

d '%(xloc -1)])
if zloc > 0: q.gates(['z'],['d%

d'%(zloc -1)])
reset an cilla
for a in [" aO"," al" ," a2"," a3"]: q.

reset ([a])
print "machine fidelity:" , q.

fidelity (qO)
print "machine compare:" q. same (qO

print q.method.generators0
print q0.method.generators()

B.2.2 bundle.py

File : bundle. py
Author: Andrew Cross <awcrossmit.edu>
Last Modified: 27 March 2004

import thread
import threading
import copy

USE TYPECHECKING to simplify the interface !

There are special cases here
that depend on action implementation in
control.py:

"halt" raises the HaltAction exception
And that depend on how we display data:
message updates

/ The base class cannot be created , but it
implements functions common to all bundles.
Each derived bundle must implement __init._
and start().
class bundle:

def __init. .(self):
bundle 's self.time

time elapsed.
self .time = 0
self.halted = False
self.sys = None

should be *totals

def collapse(self):

159

easy version , replace single -edged
vertices with their child

If self.type == 's' or self.type == 'p:
for b in self .bundles: b. collapse ()
for j in range(len(self.bundles)):

b = self.bundles[j]
if b.type == 's' or b.type == 'p

If len (b. bundles) == 1:
self.bundles[j] = b.

bundles [0]

def .. str--(self):
sl = []
if self.type == 's' or self.type == 'p':

if self.type == 's': sl.append('\n<')
else: sl.append('\n[')
for b in self.bundles:

if b.type == 's' or b.type ==p':
sl .append (str (b))

elif b.type == 'a':
if b.bundles[0][0]

condition ':
sl . append(b. bundles [0] [0])
sl.append(' ')
for t in b. bundles [0][1]:

if type(t) is list
si . append ('(')
for x in t:

sl . append(str(

x))
sl . append(',')

sl.pop()
sl .append(')')

else: sl.append(str(t)

sl.append(',')
sI.pop()
sl.append('\n')

else:
sl.append("condition (")
for x In b. bundles

[0][1] [0]:
sl.append(str (x))
sl.append(',')

sl.pop()
sl . append (') (')
for x in b. bundles

[0][1] [1]:
sl.append(str (x))
sl.append(',')

sl.pop()
sl.append(') , jump-bundle\

n') # b.bundles
[0][1][2] is jump
target bundle

else: raise 'InvalidType' self.
type

if self . type == s ': sl.append('>')
else : sl.append(']')

elif self .type == 'a
If self. bundles 10) [0 1 'condition

sl . append(self .bundles [0] [0]
sl.append(' ')
for t In self .bundles [0][1]:

if type(t) is list:
sl.append('(')
for x in t:

sl.append(str(x))
sl.append(' ,')

sl.pop(
sl.append(')')

elIf type(t) is str:
sl.append('"')
sl.append(str(t))
sl.append('"')

else : sI .append(str (t))
sl.append(',')

sl.pop()
else:

sl .append("condition (")
for x In self.bundles [0][1][0]:

sl.append(str(x))
sl.append(',')

sl.pop()
sl .append('),(')
for x in self.bundles [0][1][1]:

sl.append(str(x))
sl.append(',)

sl.pop()
s I .append(') jump-bundle') # b.

bundles [0][1][2] is jump

target bundle
sl.append('\n')

else: raise 'InvalidType' self .type
return "" . join(sl)

def setActionMap(self):
"""Set the action map of all sub-bundles

This is slow - call it once to
initialize

if self .type == 's ' or self .type = 'p':
for b in self.bundles:

If b.type == 's' or b.type == 'p
':

b. actionmap = self . actionmap
b. setActionMap ()

elif b.type == 'a':
b. actionmap = self . actionmap
if b. bundles [0][0] ==

condition ':
subBundle = b. bundles

[0][1][2]
this test should

prevent needless
recursion and loops
if subBundle. actionmap

== []:
subBundle . actionmap

= self.
actionmap

subBundle.
setActionMap()

else: raise "InvalidBundleType"
b.type

def setSys(self ,sys):
Set the ion trap reference of all sub

-bundles"""
This is slow - call it one to

initialize
if self .type 's': self.sys = sys
granlist max = [] 0
if self.type == 'p':

for i in range(len(self bundles))
t = self.bundles[i].gran()
granlist .append(t)
if t > max: max = t

for i in range(len(self.bundles)):
if granlist [i] == max:

self .bundles[i. setSys (sys
break

elif self type == 's
for b in self.bundles: b.setSys(sys)

elif self.type == 'a':
need to set the system of

condition bundles
if self. bundles [0][0] == 'condition

subBundle = self. bundles
[0][1][2]

this test should prevent
needless

recursion and loops
if subBundle.sys == None:

subBundle.sys = sys

subBundle. setSys (sys)
else : raise "InvalidBundleType" ,self.

type

def start (self , debuglog ,tO):
raise "BaseStartUnimplemented"

def gran(self):
Return the 'granularity ' of this

object"""
"""Used to assign messaging priority to

a thread"""

If self.type == 'a': return 1
elif self.type == 's':

tot = 0
for b in self.bundles: tot += b.gran

()
return tot

elif self.type == 'p':
tot = 0
for b in self.bundles:

t = b.gran()
if t > tot: tot = t

return tot
else : raise "InvalidBundleType" , self.

type

160

def attach(self bundle):
"""Attach a bundle to all of the

condition actions
in this bundle"""
if self.type == 'a':

The indices depend on the
arguments of

the 'condition ' action
action = bundles[0]
actiontype = action[C]
actionargs = action[/]
TheBundle = actionargs[2]
if self. bundles[0][0) == 'condition'

if self.bundles[011][2] is None

self. bundles [0][1][2] =
bundle

elif self.type == 's':
for b In self bundles: b.attach(

bundle)
elif self .type == 'p':

for b In self bundles : b.attach(
bundle)

else:
raise " InvalidBundleType" , self . type

Implements a bundle that is a single action.
Single actions are the recursion endpoints
* when start () is called on a bundle.

a = ["action ",params]
class action (bundle):

def ..- init-__(self ,a, actionmap=[]):
bundle. -- init- (self
self.type = 'a'
s el f . actionmap = actionmap
self.bundles = [a]

communicate the new total time to our
caller via

the variable self.time
def start(self ,debuglog,tO):

self time = tO
a = self.bundles [0]

* debuglog . put ('abundle ','->%s t=%f '%(a
[0], tO) ,6)

try:
actiontime = self.actionmap[a[0]](a

[1], tO)
actiontime is total elapsed time (

to + action 's time)
* debuglog .put('abundle ','<-%s t=%f

'%(a [0] , actiontime) 6)
self time = actiontime

except " HaltAction" , actiontime
debuglog. put ('abundle' 'HALT t=%f'%

actiontime 6)
self . halted = True
self time = actiontime

Implements a serial bundle . Each bundle in
a serial bundle is executed after the prior

bundle in the list finishes.
class sbundle(bundle) :

def __init__(self ,bundles asList=True,
actionmap=[])

The asList flag is unnecessary - use
isinstance ()

bundle . __init__ (self
self.type = 's'
s e lf . actionmap = actionmap
if asList:

alist =
for a In bundles:

alist .append(action (a, self.
actionmap))

self . bundles = alist
else : self .bundles = bundles

def start (self debuglog, tO):
self time = to

* debuglog. put("sbundle","-> t=%f"%tO,6)
for b in self.bundles:

b. st art (debuglog , sel f .time)
self time = copy.copy(b.time)
b.time = 0 # reset the sub-bundle

time
if b. halted:

debuglog . put(" sbundle" "HALT" 6)

b.halted = False # reset the
sub-bundle flag

self.halted = True
break

if self.sys != None:
if self.sys.grid 1= None:

self .sys. grid. addstatus(self
.time, self .sys
lastFidelity)

self.sys.grid.addstate(
self.sys.qc.statestr()

debuglog.put("sbundle","<- t=%f"%self.
time ,6)

#
#

#
#
el

Implements a parallel bundle. Each bundle in
a parallel bundle executes in a separate

thread.
The start() function returns when all of the
threads finish.
ass pbundle(bundle):

def -...init... (self ,bundles, asList=False
actionmap={]):

The asList flag is unnecessary - use
isinstance ()

bundle . -in it-....(self)
self.type = 'p'
self .actionmap = actionmap
if asList:

alist =
for a in bundles:

alist .append(action ([a], self.
actionmap))

self.bundles = alist
else:

self .bundles = bundles

def start(self ,debuglog,tO):
thdlist = [I
self time = to

debuglog . put("pbundle","-> t=%f"%tO ,6)
for b in self.bundles:

thd = threading.Thread(target=b.
start , args=(debuglog ,self time

t hdlist .append (thd)
for thd In thdlist

thd. start ()
for thd in thdlist

thd.join ()
for b in self.bundles:

If b.halted:
debuglog.put("pbundle","HALT t=%

f"%b . time ,6)
self. halted = True
b. halted = False # reset the

sub-bundle halt flag
if self.time < b.time:

self.time = copy. copy (b.time

if self .time < b.time and not self.
halted :

self.time = copy.copy(b.time)
b.time = 0 # reset the sub-bundle

time
debuglog.put(" pbundle","<- t=%f"%self.

time , 6)

if -- name-- == "--main-":

print "bundle.py is not directly
executable"

B.2.3 cell.py

cell.py
Isaac Chuang <ichuangOmit. edu>
Andrew Cross <awcross@mit.edu>

from visual Import +

from Numeric Import *

class cell:

def --init .._(self ,xloc ,yloc):

self .type = 'empty'
self.x = xloc

161

self .y = yloc
self .frame = frame()
self .frame. pos = (xloc , yloc ,0)

frame position in grid
self eflags = array([0,0,0,0])

electrode flags SENW
self .color = color.blue
self. laserflag = False

True if visible , False o.w.
self.detectflag = False
self.lasercolor = color.green
self. detectcolor = color .yellow

references for the laser and detector
objects

self.detector = None
self. laserl = None
self.laser2 = None

frame for ions , so we can move them
around

self .ionframe = frame()
self ionframe. pos = (xloc , yloc ,0)

frame position in grid
self . iondisplacement = vector ([0,0 ,0])
self. origpos = vector ([xloc , yloc ,0]
self .ionobj = None

def draw(self):

if self. type==' plaquette ': self.

draw.plaquette ()

If self.type- ' ion':
self. ionobj = sphere(pos=vector

([0.5 0.5 ,0]) + self.
iondisplacement , radius=0.25,
frame=self . ionframe , color=self.
color)

We say now that every cell has a laser
and detector

if 0:
If self .type='empty': return

self.laseri = cylinder (frame=self .frame,
pos=(0.5,0.5,1),radius=0.05,length=8,
axis =(1,0,0) , color=self . lasercolor)

if not self.laserflag: self. laser .visible
= False

self.laser2 = cylinder(frame=self.frame,
pos=(0.5,0.5,1),radius=0.05,length
=-8,axis =(1 0,0), color=self
lasercolor)

if not self.laserflag : self. laser2. visible
= False

self. detector = cone (frame=self .frame, pos
=(0.5,0.5 ,-0.5) ,radius =0.4, axis
=(00,-1) ,color=self. detectcolor)

If not self. detectflag : self. detector.
visible = False

def redraw(self):
if self. laserflag

self. laser .visible = True
self.laser2.visible = True

else :
self. laseri . visible = False
self. laser2 .visible = False

If self.detectflag:
self. detector visible = True

else:
self. detector .visible = False

plaquette drawing function

All plaquettes are 1xi and have (0,0)
being their lower left corner

def draw.plaquette(self):

fp = self.frame
mygold = (0.6 0.6 0.6)
mygrey = (0,0.5 ,0.5)

def mybox(pos,dx,dy,dz,col,f):
mb = box(pos=pos+vector (dx/2.0 , dy

/2.0 0) , length=dx, height=dy,
width=dz , color=col , frame=f)

return (mb)

edx = 0.5
edy = 0.2

if self. eflags [0]==1: # south
ebox = mybox(vector((1-edx) /2,0,0.1)

,edx,edy ,0.1 ,mygold, fp)
if self. eflags [1]==1: # east

ebox = mybox(vector(1-edy,(1-edx)
/2,0.1),edy,edx,0.1,mygold,fp)

if self . eflags [2]==1: # north
ebox = mybox(vector((1-edx)/2,1-edy

,0.1) ,edx,edy 0.1, mygold ,fp)
if self. eflags [3]==1: / west

ebox = mybox(vector(0,(1-edx)/2,0.1)
,edy,edx,0.1 ,mygold, fp)

pbox = mybox(vector(0,0,0) ,,1,0.1,
mygrey, fp) # plaquette body

B.2.4 chain.py

chain.py
Andrew Cross <awcross@mit.edu>
6 Oct 2003

import thread
import ion
Import copy
import math
from Numeric import *

class chain:
"""Ion chain

Input is a dictionary of ion objects.

e -init--(self, ,ions):

self.heat = 0 # <N> of
oscillator mode

self .ions = ions
self.lock = thread. allocatelock ()
self. orientation = 'unoriented'
if not self. linear () : raise "

NotLinearChain", str(self)

def move(self ,dx):

dx is an ordered pair displacement
vector

for keyval In self. ions.items(:
val .displacement = val. displacement

+ array(dx)

def lockIons(self):
for key , val In self, ions . items () : val

lock . acquire ()

def unlockIons(self):
for key , val in self .ions .items() : val.

lock . release ()

def isValidMove(self ,dx):
"""Determines if move direction ordered

pair dx is
valid given orientation

if self. orientation == 'unoriented':
if dx[0] != 0 and dx[1] 0: return

True
If dx[0] == 0 and dx[1] != 0: return

True
return False # not vertical or

horizontal
elif self. orientation == 'horizontal':

if dx[0] != 0 and dx[1] == 0: return
True

return False
elif self. orientation == 'vertical':

If dx[0] == 0 and dx[1] != 0: return
True

return False
else: raise 'InternalError ',self.

orientation

def _.str--(self):
s = "'C"

if self. lock. locked(): s = "(L)
I # else: s = "(U)

162

as

s += "Chain:\n"
for keyval in self.ions.items(:

s += val. __str__() + "\n"
s += " Orientation: " + str(self,

orientation)
s += " Heating: " + str(self.heat)

s += ">\n"
return s

def __getitem_.(self ,ionname):
return self.ions[ionname]

def .iter _(self):
return self. ions. itervalues ()

def ... len__ (self):
return len(self.ions)

def -- contains -(self , ionorobject
for key , val in self . ions . items :

if ionorobject == val or ionorobject
== key: return True

return False

def ._add__(selfother):
"" Concatenate two ion chains"""

ignore the possibility that two ions
have the same name

or that an ion may be inserted into
the chain under two

different names
if self . orientation == "horizontal" and

other. orientation == "vertical":
raise "ChainTypeMismatch" , [self
orientation , other. orientation]

if self . orientation == "vertical" and
other. orientation == "horizontal"
raise "ChainTypeMismatch" , (self.
orientation , other. orientation]

create a new dictionary so we are
only holding a reference to the ions
newdict = {}
for key ,val in self. ions. items ()

newdict[key] = val
nc = chain(newdict)
for key ,val in other . ions . items ()

nc.ions{key] = val
average the heat
nc.heat = (other.heat + self.heat)/2
if not nc. linear () : raise "

NotLinearChain" ,str (nc)
return nc

def split (self ,i i2 ,heating):
"" Splits a chain , returning the split

off-chain

ii , i2 ion name strings
Exceptions : NotAdjacent InternalError

if not self . adjacent (il ,i2): raise"
NotAdjacent"

if self . orientation == 'horizontal ': I
= 0

elif self. orientation == 'vertical I
= 1

else : raise " InternalError"
splitions = {}
if self.ions[il]. location ()[i]<self.ions

[i2]. location () [I]:
cutpoint = self. ions i2].location 0

i] -0.5
else:

cutpoint = self ions [ii].location()
i] -0.5

for key , val in self .ions items :
if val .location () [i] < cutpoint:

splitions [key] = val
del self.ions[key]

result = chain(splitions)
if len (self . ions)==1:

self . orientation = 'unoriented
self.heat += heating
result heat += heating
return result

def linear (self):
"""Test if the chain is a linear chain

Set the chain -type to horizontal
vertical ,or unoriented

if the chain is linear . Return bool test
result

keys = self.ions.keys()
if len(keys) <= 1:

self. orientation = "unoriented"
return True

if self .sameRow(keys [0] ,keys[1]) : self.
orientation = "horizontal"

else: self . orientation = " vertical"
for i in range(1,len(keys)):

if self . orientation == " horizontal"
if not self.sameRow(keys[0],keys

i]) : return False
else:

if not self.sameCol(keys[0],keys
[ii]): return False

Test that each ion is adjacent to some
other ion

for i in keys :
found = False
for j in keys:

if i != j:
if self.adjacent(i j): found

= True
if not found : return False

return True

def validPair(self il i2):
if i1-i2: raise "SameName" ,i
if not ii in self: raise "NotInChain"

i ,i2]
if not i2 in self: raise "NotInChain"

i ,2]

def sameRow(self , 1 , i2):
self . validPair(il , i2)
if self . ions [i]. loc [1]+ self .ions [il].

displacement[1] == \
self . ions] i2) . loc [1+ self . ions] i2 1.

displacement [1]: return True
return False

def sameCol(self ,i ,i2):
self. validPair(il i2)
if self . ions[il]. loc []+ self ions] [i].

displacement [0] == \
self . ions [i2]. loc [0]+ self . ions [i2

displacement [0]: return True
return False

def adjacent(self ,ii2):
self. validPair (il ,i2)
x = self . ions [i2]. loc [0]+ self .ions [i2].

displacement [0]
y = self . ions fi2]. loc [1+ self. ions [i2l.

displacement [1]
if self . ions [i I . loc+self . ions [i .

displacement in \
{ array ([x-1,y]) , array ([x+l,y]),

array ([xy-1]) , array ((x, y
+1])]:

return True
return False

if -- name-- == "--main..":

run some consistency checks

fail = False

n = 5
print "CHAIN TEST (" n, "ions)"
iondicth = {}
iondictv = {}
for I In range (n) : iondictv I" i" + str (i+1)

I = \
ion.ion("q" + str(i+1),"data",array([0, i

]))
for i in range (n) : iondicth [" i" + str (i+1)

I = \
ion.ion("q" + str (i+1) "data" ,array (i

,0]))
print "creating horizontal and vertical

chains (ions 1 to" n "
c = chain(iondicth)
c2 = chain(iondictv)
print "adjacent tests - "
for I in range(n):

for j in range(n):
if math.fabs(i-j)==1 and not c.

adjacent(" i"+str(i+1),"i"+str(j

163

+1)):
fail = True

if math. fabs(i-j)==i and not c2.
adjacent(" i"+str (i+1) ,"i"+str(j
+1)):
fail = True

if fail:
print "FAILED"
fail = False

else: print "passed"
print "split and merge tests -
for i in range(n-1): # this gives the left

ion of the split pair
print 'presplit c=',c

cp = c. split ("i"+str(i+i) " i"+str(i+2)
,100)

cp2 = c2. split (" i"+str (i+i) " i"+str (i+2)
,100)

if len(cp) != i+1 or len(c) = n-i -1:
fa i l=True

If len(cp2) != i+1 or len(c2) n-i-1:
fa i l=True

print 'postsplit c=',c, 'Cp=',cp
t = C + Cp
t2 = c2 + cp2
print 'postadd c=',c, 'cp=',cp, 't-',t
If len(t)!=n or len(cp)!=i+i or len(c)!=

n-i -1: fail = True
If len(t2)!=n or len(cp2)!=i+1 or len(c2

)!=n-i -1: fail = True
c = t
c2 = t2
print 'postassign c=',c, 't=',t

if fail:
print "FAILED"
fail = False

else : print "passed"

print "movement tests
htest = [[False ,(0,1),[True,(-1,0)],[False

,(O,-)] ,[True,(1 0)] [False (1 ,1)]]
vtest = [[True,(0,i)],[False,(-1,0)],[True

,(0,-1)] [False (1 0)] [False (1,1)]]
utest = [[True,(0,1)],[True,(-1,0)] [True

,(0,--1)] ,[True,(i 0)] [False (1,1)1]
cu = chain({" i" : ion. ion(" i" "data" (0,0)) })
for x in utest:

if cu.isValidMove(x[1]) 1= x[0]: fail =
True

elif cu.isValidMove(x[1]): cu.move(x[i])
for x in htest :

if c.isValidMove(x[1]) != x[0]: fail =
True

ellf c.isValidMove(x[1]): c.move(x[1])
for x in vtest :

if c2.isValidMove(x[1]) 1= x[0]: fail =
True

elif c.isValidMove(x[i]): c2.move(x[i])

for key , val in cu. ions . items () :
If val. displacement != array ([0]) :

fail = True
for key , val In c.ions. items():

If val.displacement != array([0 0]):
fail = True

for key , val In c2. ions .items()
If val. displacement != array([0 0])

fail = True

if fail:
print "FAILED"
fail = False

else: print "passed"

B.2.5 chp.c

// CHP: Stabilizer Quantum
without scoreboarding)

// by Scott Aaronson
7/,
/7
/7

Computer Simulator (

Last modified April 13, 2004

// First modified by Andrew Cross and Tzvetan
Metodiev March 24, 2004

// Pauli gates added March 24, 2004
(tsmetodiev@ucdavis . edu)

// Controlled-Not corrected March 25, 2004
(awcrossOmit. edu)

// Fidelity function added March 26, 2004
(awcross@mit. edu)

// Free function added March 31, 2004
(awcross@mit. edu)

// String output added April 5, 2004
(awcross@mit. edu)

// Reseed function added April 12, 2004
// Gauss-Jordan elimination added April 13, 2004

(awcrossOmit. edu)
// Comparison added April 13, 2004

(awcross@mit.edu)
// Copy added April 13, 2004

(awcross@mit.edu)

#Include
#Include
#include
#Include
#1nclude

<stdio .h>
<st dlib .h>
<string .h>
<time.h>
<math.h>

/7 include time.h for reseeding
number generator

#include <sys/time.h>

#include

#define
#define
#define
#define
#define
#define
#define

"chp. h"

CNOT
HADAMARSD
PHASE
XGATE
ZGATE
YGATE
MEASURE

void reseed(void)

7/ seed rand () using gettimeofday

{

struct timeval tv;
gettimeofday(&tv NULL)
srand((unsigned int)tv.tv-sec);

}

void coot (struet QState * q, long b,

//7

{

Apply a CNOT gate with control b

the random

0
1
2
3
4
5
6

long c)

and target c

long i;
long b5;
long c5;
unsigned long pwb;
unsigned long pwc;

b5 = b>>5;
c5 = c>>5;
pwb = q->pw[b&3];
pwc = q->pw[c&3];
for (i = 0; i < 2*q->k; i±+)

if (q->x[i][b5]&pwb) q->x[i][c5] =pwc;
If (q->z[i][c5]&pwc) q->z{i]b5] ^=pwb;

// This next line corrects the phase for
two cases:

// YY <-> -XZ and XZ <-> -YY
// (the left-most qubit is the control).
// Writing + for xor , the update rule

for the phase is
// r-i := r.i + ("YY" or "XZ")
if ((q->x[i][b5]&pwb) && (q->z[i][c5]&

pwc) &&
(q->x [i] [c5]&pwc) && (q->z [i[b5]&

pwb))
q->r[i] = (q->r[i]+2)%4;

if ((q->x[i][b5]&pwb) && (q->z[i][c5]&
pwc) &&
(q->x[i][c5]&pwc) && !(q->z(i][b5]&

pwb))
q->r[i] = (q->r[i]+2)%4;

return;

void hadamard(struct QState *q, long b)

164

// Apply a Hadamard gate to quabit b

long i;
unsigned long tmp;
long b5;
unsigned long pw;

b5 = b>>5;
pw = q->pw[b&31];
for (i = 0; i < 2*q->k; i++)

tmp = q->x [i] [b5];
q->x[i][b5] ^= (q->x[i][b5] ^ q->z[i][b5

]) & pw;
q->z [i][b5] ^= (q->z [i][b5] ^ tmp) & pw;
if ((q->x[i][b5]&pw) && (q->z[i][b5]&pw)

q->r[i] = (q->r[i]+2)%4;

return;

void phase(struct QState *q, long b)

/7 Apply a phase gate (10>->10>, j1>->il1>) to
qubit b

{

long i;

long b5;
unsigned long pw;

b5 = b>>5;
pw = q->pw[b&31];
for (i = 0; i < 2*q->k; i++)

{
if ((q->x[i][b5]&pw) && (q->z[i I[b5]&pw)

) q->r[i] = (q->r[i]+2)%4;
q->z[i][b5] ^= q->x[i [b5]&pw;

return;

void xgate(struct QState *q, long b)

/7 Apply an X gate to qubit b

{
hadamard (q, b);
phase(q,b);
phase(q,b);
hadamard (q, b);

void zgate(struct QState *q, long b)

7/ Apply a Z gate to qubit b

{
phase(q,b);
phase (q, b) ;

}

void ygate(struct QState *q, long b)

/7 Apply a Y gate to qubit b

{
zgate(q,b);
xgate (q,b);

void rowcopy(struct QState *q, long i , long k)

// Sets row i equal to row k

long j;

for (j = 0; j < q->over32; j++)

q->x[i][j] = q->x[k][j];
q->z[i][j] = q->z[k}{j];

q->r(i] = q->r[k];

return;

}

void rowswap(struct QState *q, long i long k)

// Swaps row i and row k

{

rowcopy(q, 2*q->n, k);
rowcopy(q, k, i) ;
rowcopy(q, I, 2*q->n);

return;

}

void rowset(struct QState *q, long i , long b)

// Sets row i equal to the bth observable (X-1
,... X.n,Z-1 ,Z-n)

{

long j;
long b5;
unsigned long b3;

for (j = 0; j < q->over32; j++)
{

q->x[i][j] = 0;
q-->z [i][j] - 0;

q->r[i] = 0;
if (b < q->n)
{

b5 =b>>5;
b31 = b&31;
q->x[i][b5] = q->pw[b31];

}
else
{

b5 = (b - q->n)>>5;
b31 = (b - q->n)&31;
q->z[i][b5] = q->pw[b31];

return;

}

Int

//7

{

clifford (struct QState *q, long i , long k)

Return the phase (0,1,2,3) when row i is LEFT
-multiplied by row k

long j;
long 1;
unsigned long pw;
long e=0; // Power to which i is raised

for (j = 0; j < q->over32; j++)
for (1 = 0; 1 < 32; 1++)
{

pw = q->pw[i];
if ((q->x[k][j]&pw) && (!(q->z[k][j

]&pw))) // X
{

if ((q->x[i] [j]&pw) && (q->z[ij[
j]&pw)) e++;
XY=iZ

if ((!(q->x[i][j)&pw)) &&(q->z[
i][j]&pw)) e--; /
xz=-i Y

}
if ((q->x[k][j]&pw) &&(q->z[k][j]&

pw))

165

// Y
{

if ((!(q->x[i][j]&pw)) && (q->z[
i] [j]&pw)) e++; //
YZ=iX

if ((q->x[i][j}&pw) && (!(q->z[i
][j]&pw))) e--; //
yx=- i Z

if ((!(q->x[k][j]&pw)) && (q->z[k][j
]&pw))

// Z

if ((q->x[i][j]&pw) && (!(q->z[i
][j]&pw))) e++; //

ZX=i Y
if ((q->x[i][j]&pw) && (q->z[i][

j]&pw)) e--; //
ZY=-iX

e = (e+q->r[i]+q->r[k])%4;
if (e>=O) return e;
else return e+4;

}

void rowmult(struct QState *q, long i, long k)

// Left-multiply row i by row k

long j;

q->r[i] = clifford(q,ik);
for (j = 0; j < q->over32; j++)

q->x[i][j] =q->x[k][j];

return;

void removerowpair(struct QState *q, unsigned
long i)

// remove the ith generator and its
corresponding

// destabilizer , note that i is >= 0 and < q->k

{
unsigned long j

if(q->k == 1

freestate (q)
return;

// shift the ith destabilizer through all
the

// destabilizers and stabilizers , into the 2
k - 1 position

for(j=i+1; j<2*q->k; j++) rowswap(q,j-1,j)

// shift the k+i-1 generator (the ith
generator, now shifted

// from the prior rowswaps) through all the
elements and into

// the 2*k - 1 position.
for(j=q->k+i; j<2*q->k; j++) rowswap(q,j

-1,j);

// free the scratch space at 2*k and the
last

// destabilizer space at 2+k-1. 2*(k-1) is
the new scratch space

free(q->x[2+q->k]);
free (q->x[2*q->k-1]);

// adjust the pointer arrays , etc , to two
fewer locations

// by setting q->k to q->k - 1 and
reallocating

q->k = q->k - 1;

q->x = realloc (q->x, (2*q->k+1)*sizeof(
unsigned long *)) ;

q->z = realloc (q->z, (2+q->k+1)*sizeof(
unsigned long *)) ;

q->r = realloc (q->r, (2*q->k+1)*sizeof(int))

}

void addrowpair(struct QState *q)

/7 put new identity generators on the end of
stabilizer

// and destabilizer list

{

the

unsigned long j;

// grow the tableau by two rows
q->k = q->k + 1;
q->x = realloc(q->x, (2*q->k+1)*sizeof(

unsigned long *));
q->z = reailoc(q->z, (2*q->k+1)*sizeof(

unsigned long *));
q->r = realloc(q->r, (2*q->k+1)*sizeof(lnt))

q->x[2*q->k-1] = malloc(q->over32 * sizeof(
unsigned long)) ;

q->x[2*q->k] = maIloc(q->over32 * sizeof(
unsigned long));

q->z[2*q->k-1] = malloc (q->over32 * sizeof(
unsigned long));

q->z[2*q->k] = malloc (q->over32 * sizeof(
unsigned long));

// swap the new 2* k - 1 generator (last,
before scratch) up

// to the q->k-1 position , shifting all the
stabilizer

/7 generators down one row.
for(j = 2*q->k - 1; j >= q->k; j--)

rowswap (q, j -j) ;

7/ initialize the new destabilizer generator
in position q->k-1 and

// the new generator in position 2*q->k-1
for(j = 0; j < q->over32; j++)
{

q->x[q->k-1][j] = 0;
q->x[2*q->k -1][j] = 0;
q->z[q->k-l1[j] = 0;
q->z[2*q->k-1][j] = 0;

}
q->r[q->k-1] = 0;
q->r[2*q->k--1] = 0;

}

void removecol (struct QState *q, unsigned longj

//7

//7
//7

{

remove the jth column from every generator in
q

does not modify the phase
j >= 0 and j <= q->n

unsigned long FFFF = OxFFFFFFFF; /7
2^32 - 1 = 4294967295

unsigned long jword = j>>5; /7 the word
containing the jth bit

unsigned long leftj = FFFF << ((j &31) + 1);
// left mask

unsigned long rightj = (FFFF ^ leftj) q->
pw[j&31]; // right mask

unsigned long i , k;

/7 a generator with enumerated terms
1 2 3 ... n

/7 is organized in memory like this
/7 32 31 ... 1 | 64 63 ... 33 | .
/where the vertical bars separate words.

/7 FFFF << 32 == FFFF, so we have to correct
that here

if((j&31) == 31)

leftj = 0;
rightj = (FFFF ^ leftj) ^ q->pw[j&31J;

/7 iterate over all generators
for(k = 0; k < 2*q->k +1; k++)

{

166

// start at the word containing the jth
bit

for(i jword ; i < q->over32 ; i ++
{

If(i == jword)
{

// if this is the word
containing the jth bit

// right shift the part to the
left of the jth bit

q->x[k][i] = ((q->x[k][i} &
leftj)>>1) I

(q->x[k] [i] & rightj)
q->z[k][i] = ((q->z[k][i] &

leftj)>>1) I
(q->z[k][i] & righti);

} else {
// otherwise just shift the

word right one
/7 to make up for the missing

bit
q->x[k][i] = q->x[k][i] >> 1;
q->z[k][i] = q->z[k][i] >> 1;

// if there are still more words to
the right

// take the right-most bit of the
next word

/7 and place it at the left-most bit
of this word

if(i < q->over32 - 1

q->x[k][i] J= ((q->x[k][i
+1] & 1) << 31);

q->z[k][i] J= ((q->ztk][i
+1] & 1) << 31);

7/ release some memory?
q->n = q->n - 1;

if(((q->n>>5) + 1) < q->over32)

// we need fewer words to represent each

q->over32 = (q->n>>5) + 1;
for(i=0; i< 2*q->k + 1; i++)
{

q->x[i] = realloc(q->x[i] , q->over32
* sizeof(unsigned long));

q->z[i] = realloc(q->z[i] , q->over32
* sizeof(unsigned long));

}

void addcol(struct QState *q)

// add a column to the end of every generator in
q.

/7 does not modify the phase.

{

unsigned long i;

q->n = q->n + 1;

// should another word be allocated?
If((q->n>>5) + 1 > q->over32)

q->over32++;
for(i=0; i < 2*q->k + 1; i++

q->x[i] = realloc (q->x[i] , q->over32
* sizeof(unsigned long));

q->z[i] = realloc (q->z[i] , q->over32
* sizeof(unsigned long));

q->x[i] [q->over32 -1] = 0;
q->z[i] [q->over32 -1] = 0;

}}

void swapcol(struct QState *q, long i , long j)

/7 swap columns i and j (qubit relabel)

long k;
long 15 = i >> 5;

long j5 = j >> 5;
unsigned long pwi = q->pw[i&31];
unsigned long pwj = q->pw[j&31];
unsigned long xi, zi;

for(k = 0; k < 2*q->k; k++
{

xi = q->x[k][i5]&pwi; /7 copy
column i

zi = q->z[k][i5]&pwi;
q->x[k][i5] J= pwi; // set

column i
q->z[k][i5] J= pwi;
/7 flip column i if column j not

set
if(!(q->x[k][j5]&pwj)) q->x[k

][i5] ^= pwi;
if(!(q->z[k][j5]&pwj)) q->z[k

][l5] ^= pwi;
q->x[k][j5] = pwj; / set

column j
q->z[k][j5] J= pwj;
/7 flip column j if column i not

se t
if(lxi) q->x[k][j5] pwj;
If(!zi) q->z[k][j5] pwj;

}

I

char *statestring(struct QState *q)

/Return a string containing the stabilizer
destabilizer

/7 for state q

{
long i;

long j;
long j5;
unsigned long pw;

char * result;
int size;

size = (q->n+2) * (2*q->k + 1) + 3; // 2
extra bytes i think

result = malloc(size * sizeof(char));
strcpy(result "");

for (i = 0; i < 2*q->k; i++)
{

if (i == q->k)
{

strcat(result , "\n");
for (j = 0; j < q->n+1; j++)

strcat (result

}
if (i > 0)
{

If (q->r[i]==2) strcat (result ,"\n-")

else strcat(result ,"\n+");

}
else
{

}
for
{

}

return

and

If (q->r [i]==2) strcat (result , -)
else strcat (result ,"+" ;

(j = 0; j < q->n; j++)

j5 = j>>5;
pw = q->pw[j&31];
if ((!(q->x[i][j5]&pw)) && (!(q->z[i

][j5]&pw))) strcat(
result , "I");

If ((q->x[i][j5]&pw) && (!(q->z[i][
j5]&pw))) strcat
(result , "X") ;

if ((q->x[i][j5]&pw) && (q->z[i][j5

I&pw)) strcat
(result ,"Y");

If ((1(q->x[i][j5]&pw)) && (q->z[i][
j5]&pw)) strcat(
result ,"Z");

result ;
i

void printstate(struct QState *q)

167

/Print the destabilizer and stabilizer for
state q

{

long i ;
long j;
long j5;
unsigned long pw;

for (i = 0; i < 2*q->k; i++)

if (i == q->k)

{
prIntf("\n");
for (j = 0; j < q->n+1; j++)

printf("-");
}
i f (q->r [i ==2) p r Int f(" \n-"
else printf(" \n±");
for (j = 0; j < q->n ; j++)

j5 = j>>5;
pw = q->pw[j &31];
if ((!(q->x[i][j5]&pw)) &&(!(q->z[i

][j5]&pw))) printf(
"I");

if ((q->x[i][j5]&pw) && (!(q->z[i][
j5]&pw))) printf

if ((q->x [i] [j5]&pw) && (q->z [i]j5

]&pw)) printf
("Y") ;

if ((!(q->x[i][j5]&pw)) &&(q->z[i][
j5]&pw)) printf(

Z");

}}
printf(" \n"

return;

}

int measure(struct QState *q, long b, Int sup)

// Measure qubit b
7/ Return 0 if outcome would always be 0
// 1 if outcome would always be 1
7/ 2 if outcome was random and 0

was chosen
7/ 3 if outcome was random and 1

was chosen
7/ sup: 1 if determinate measurement results

should be
// suppressed , 0 otherwise

Int ran = 0;
long i;
long p; 7/ pivot row in stabilizer
long m; 7/ pivot row in destabilizer
long b5;
unsigned long pw;

b5 = b>>5;
pw = q->pw[b&31];
for (p = 0; p < q->k; p++)

over stabilizer generators

{

I/
if
{

if (q->x[p+q->k][b5]&pw) ran = 1;
// if a Zbar does NOT

commute with Z-b (the
if (ran) break;

being measured) , then
random

// loop

// operator
outcome is

If outcome is indeterminate
(ran)

rowcopy(q, p, p + q->k);
// Set Xbar-p

Zbar-p
rowset(q, p + q->k, b + q->k);

// Set Zbar-p := Z-b

}

//7
If
{

}

q->r[p + q->k] = 2*(rand()%2);
// moment of quantum

randomness
for (i =0; i < 2*q->k; i++)

// Now update the Xbar 's
and Zbar 's that don 't commute with
if ((i !=p) && (q->x[i] [b5]&pw))

// Z-b
rowmult (q, i , p)

If (q->r[p + q->k]) return 3;
else return 2;

If outcome is determinate
((!ran) && (!sup))

for (m = 0; m < q->k; mr+)
// Before we were

checking if stabilizer generators
commute
If (q->x[m][b5]&pw) break;

// with Z-b ; now we 're
checking destabilizer
generators

rowcopy(q, 2*q->k, m + q->k);
for (i = m+1; i < q->k; i++)

if (q->x[i][b5]&pw)
rowmult(q, 2*q->k, i + q->k);

if (q->r[2*q->k]) return 1;
else return 0;
/*for (i = m+1; i < q->n; i++)

if (q->xzi]/b5&pw)

{
rowmult (q , m + q->n, i + q->n);
rowmult(q, i , m)

}
return (int)q->r/m + q->n];*/

return 0;

}

long gaussjordan(struct QState *q)

/

/
/

{

Gauss-Jordan elimination to put the
stabilizer generators into

a unique form.
(Return value = number of such generators =

log-2 of number of nonzero basis states)

long j, k;
long 1, 15;
unsigned long pw;
long row, g;

g = gaussian(q);

// jordan reduction

// find the first row from the bottom with
an X

7/ (if it doesn 't exist then row = q->n - 1)
for(k 2*q->k - 1; k > q->k - 1; k---
{

for(1 = 0; 1 < q->n; I++
{

15 = 1 >> 5;
pw = q->pw[l&31];
1f (q->x k) [15]&pw) break;

}
if(1 < q->n) break;

}

// printf ("first search for X: row =%ld
col = %ld\n",k, 1);

row = k;

// for all of the Z rows
for(k = 2*q->k-1; k > row; k--
{

// find the first Z from the left
// (one should always exist)
for(I = 0; 1 < q->n; 1++)
{

15 = 1 >> 5;
pw = q->pw[1&31];
if(q->z[k][15]&pw) break;

}

168

// printf("found z at row = %ld col =
ld\n",k, l);

// for all generators above with a Z
// in the I position , reduce
for(j =k - 1; j > q->k -1; j--)

{I

{
q->z [j] [15]&pw)

// printf("z reducing row
n",j);

rowmult (q, j , k);
rowmult (q , j -q->n,k-q->n)

%ld\

// for all of the X rows
for(k = row; k > q->k - 1; k--)

// find the first X from the left
// (one should always exist)
for(1 = 0; 1 < q->n; 1++)

15 = 1 >> 5;
pw = q->pw[I &31];
if(q->x[k][15]&pw) break;

// printf("found x at row = %ld col
ld\n",k, l);

/7 for all generators above with an X
// in the I position , reduce

ffor(j = k - 1; j > q->k - 1; j--)

}

if(
{

}

q->x[j][15]&pw)

7/ printf("z reducing row = %ld\
n",j);

rowmult (q, j , k)
rowmult (q ,j -q->n,k-q->n)

return g;

}

long gaussian (struct QState *q)

// Do Gaussian elimination to put the stabilizer
generators in the following form:

// At the top , a minimal set of generators
containing X's and Y's, in "quasi-upper-
triangular" form.

7/ (Return value = number of such generators =
log-2 of number of nonzero basis states)

// At the bottom, generators containing Z's only
in quasi-upper-triangular form.

{

long i
long k;
long k2;
long j;
long j5;

long g; /7 Return value
unsigned long pw;

for (j = 0; j < q->n; j++)

j5 = j>>5;
pw = q->pw[j&31];
for (k = i; k < 2*q->k; k++)

a generator containing X
column
if (q->x[k][j5]&pw) break;

if (k < 2*q->k)

rowswap(q, i, k);
rowswap(q, i-q->k, k-q->k);
for (k2 = i+1; k2 < 2*q->k;

if (q->x[k2][j5]&pw)

{I

// Find
jth

k2++)

rowmult(q, k2, i);
// Gaussian elimination

step
rowmult(q, i-q->k, k2-q->k);

g = i - q->k;

for (j = 0; j < q->n; j++)

j5 = >>5;
pw = q->pw[j &31];
for (k = i; k < 2*q->k; k++) 7/ Find

a generator containing Z in jth
column
if (q->z[k][j5]&pw) break;

if (k < 2*q->k)

{
rowswap(q, i , k);
rowswap(q, i-q->k, k-q->k);
for (k2 = i+1; k2 < 2*q->k; k2++)

if (q->z[k2][j5]&pw)

rowmult(q, k2, I);
rowmult(q, i-q->k, k2-q->k);

}

}

return g;

}

void freest ate(struct QState *q)

// free the memory associated with q

{

long i;

for(i = 0; i < 2*q->k + 1; i++)

free(q->x[i])
free (q->z[i]

}
free (q->r)
free (q->z)
free (q->x);
free (q)

}

void addqubit(struct QState *q)

/7 append a new qubit to q in state z+

{
addcol(q);
addrowpair(q)
// initialize the new generators
q->x[q->k-1][(q->n-1)>>5] = q->pw[(q->n--1)

&31];
q->z[2*q->k-1] [(q->n-1)>>5] = q->pw[(q->n-1)

&31];
q->r[q->k-1] = 0;
q->r[2*q->k-1] = 0;

}

void removequbit(struct QState *q, unsigned long
b)

/7 remove the bth qubit of q

{

long j, k;
long b5 = b>>5;
unsigned long pw = q->pw[b&31];

measure(q,b,1) ; 7/ measure the bth qubit
neglecting outcome

/find the first stabilizer generator with
a Z in the bth term.

7/ guaranteed to find one, because we
measured Z-b.

for(j = q->k; j < 2*q->k; j++
if(q->z[j][b5]&pw) break;

// multiply all generators with weight in
the bth term

// by the generator we just found.

169

i -

{f

}

for(k = q->k ; k< 2*q->k; k++)
if(q->z [k] [b5]&pw && k != j

rowmult (q, k,j);

removerowpair(q,j-q->k);
removecol(q,b);

// rebuild the destabilizer generators
// mkdestabilizers (q);

}

long invalid (struct QState *q)
// check the consistency of q
// returns 0 if good , otherwise
{

long j ,k, 1;

// no identity elements
for(j = 0; j < 2*q->k; j++)

I

calls exit ()

for(1 = 0; 1 < q->over32; I++)
If(q->x[j][l] != 0 11

q->z[j][l] != 0) break;
i f(== q->over32)

printf("ASSERT: invalid QState -
identity generator at row %ld\n"

exit (1);

// no duplicate rows
for(j =0; j < 2*q->k; j++)

{
for(k = 0; k < 2*q->k; k++)

{
lf(k != j)

for(1 = 0; 1 < q->over32; l++)
If (q->x{ j } Il != q->x [k][1 { 11II

q->z [j] [1] 1= q->z [k] [1]
break;

if(1 == q->over32)
{

printf("ASSERT: invalid QState
- duplicate generators

at rows %ld, %ld\n" , j, k

exit (1)

}

long commutes(struct QState *q, long i , long j)
// test if row i and row j commute
/7 return 1 if yes , 0 if no
// UNTESTED

long 1;
unsigned long tip=OL;
// commutes if "twisted" inner product

is zero
for(I = 0; 1 < q->over32 ; I++

tip += weight(q->x[i][1] & q->z[
j][1])
+ weight(q->z[i][1] & q->x[

j][1]);
return ((tip%2)^1);

}

void mkdestabilizers(struct QState *q)
7/ create appropriate destabilizer generators

for the
/stabilizer generators in q

7/ There is the possibility that this algorithm
doesn 't

// account for a situation like
77 XX
// ZZ
// I think this algorithm will choose XI, ZI,

but these don 't commute.
// The correction choice is XI,IZ. Check this

later.
{

long j, k;
long 1, 15;
unsigned long pw;
long row;

gaussjordan (q) ;

// reinitialize the destabilizers to
identity

for(k =0; k < q->k; k++)
{

for (1 =0; 1 < q->over32; I++

I

{
q->x[k}(l] = 0;
q->z[k][1] = 0;

q->r{k] = 0;

7/ find the first row from the bottom with
an X

7/ (if it doesn 't exist then row = q->n - 1)
for(k 2*q->k - 1; k > q->k - 1; k--)

{
for(1 = 0; 1 < q->n; I++

{
15 = 1 >> 5;
pw = q->pw[l &31];
If(q->x[k][15]&pw) break;

}
if(1 < q->n) break;

}

7/ printf ("first search for X: row = %ld
col = %ld\n",k, 1);

row = k;

// for all of the Z rows
for(k = 2*q->k-1; k > row; k--)

{
// find the first Z from the left
7/ (one should always exist)
for(1 = 0; 1 < q->n; I++)

{
15 = 1 >> 5;
pw = q->pw[I&31];
if(q->z[k][15]&pw) break;

I

7/ printf ("found z at row = %ld col
ld\n",k, l);

// set a destabilizer generator
appropriately

q->x[k-q->k] [l>>5] 1= q->pw[1&31];

// for all of the X rows
for(k = row; k > q->k - 1; k--)

{

}

I

char

// find the first X from the left
// (one should always exist)
for(I = 0; 1 < q->n; I++)

15 1 >> 5;
pw = q->pw[1&31];
if(q->x[k][15]&pw) break;

77 printf("found x at row = %ld col =%
ld\n",k, l);

// set a destabilizer generator
appropriately

q->z [k-q->k] [1 >>5] 1= q->pw[1 &31];

* basisstatestring(struct QState *q)

the basis state

generator to the

7/ return a string containing
corresponding to

/7 applying the scratch space
zero ket.

long j;
long j5;
unsigned long pw;
int e = q->r[2*q->k];

char * result;
Int size;

size = 8 + q->n; // 2 extra bytes i think
result = malloc (size * sizeof(char))
strcpy (result , "");

170

}I

}I
}

}I
}I

for (j = 0; j < q->n; j++)

j5 = j>>5;
pw = q->pw[j&31];
if ((q->x[2*q->k] [j5]&pw) && (q->z [2*q->

k][j5]&pw)) // Pauli
operator is "Y"

e = (e+l)%4;
}
if (e==O) strcat (result ,+");
if (e==1) strcat (result ,"+i ");

if (e==2) strcat (result " -j"
if (e==3) strcat (result "-ij");

for (j = 0; j < q->n; i++)
{

j5 = >>5;
pw = q->pw[j&31];
if (q->x[2*q->k][j5]&pw) strcat(result

1");
else strcat (result "0");

}
streat (result ,">");

return result

}
void printbasisstate(struct QState *q)

// Prints the result of applying the Pauli
operator in the "scratch space" of q to
I0...0 >

{

long j;
long j5;
unsigned long pw;
Int e = q->r[2*q->k];

for (j = 0; j < q->n; j++)
{I

j5 = j>>5;
pw = q->pw[j&31];
if ((q->x[2*q->k][j5]&pw)

k] [j5]&pw))
operator is "Y"

e = (e+l)%4;

(e==0) printf("\n +");
(e==l) printf(" \n+i\")
(e==2) printf("\n -j");
(e==3) printf("\n-i I");

for (j = 0; j < q->n; j++)
{

j5 = j>>5;
pw = q->pw[j&31];
If (q->x[2*q->k] [j5]&pw)
else printf("O");

}
prlntf(">") ;

&& (q->z [2*q->
// Pauli

printf(" 1") ;

return;

I

void seed(struct QState *q, long g)

// Finds a Pauli operator P such that the basis
state P10...0> occurs with nonzero
amplitude in q, and

77 writes P to the scratch space of q. For this
to work, Gaussian elimination must already
have been

// performed on q. g is the return value from
gaussian (q)

{

long i;
long j;
long j5;
unsigned long pw;
Int f;
long min;

// the last row of q is scratch space
q->r[2*q->k] = 0;
for (j = 0; j < q->over32; j++)

{

}
for

{

q->x[2*q->k][j] = 0;
the scratch space clean

q->z[2*q->k][j] = 0;

// Wipe

(i = 2*q->k - 1; i >= q->k + g; i--)

f = q->r I] ;
for (j = q->n - 1; j >= 0; j--)
{

j5 = j>>5;

pw = q->pw[j &31];
If (q->z[i][j5]&pw)
{

min = j;
if (q->x[2*q->k]

+2)%4;

}

if (f==2)
f

[j5]&pw) f = (f

j5 = min>>5;
pw = q->pw[min&3 1];
q->x[2*q->k][j5] ^= pw;

// Make the seed consistent
with the ith equation

}

return;

I

Int weight(unsigned long w)

77 calculate the hamming weight of w

{
int i=0;
unsigned long j=1;
do

If(w & j) i++;
j *= 2;

} while(j 0x80000000
if(w & j) i++;
return I;

}

mnt same(struct QState *ql ,struct QState *q2)

/7 Compare the reduced
// return 1 if same, 0
7/ O(n^9)

{

generators of q1 and q2,
if different

long j, k;

if(ql->n != q2->n 11 ql->k != q2->k)
return 0;

gaussjordan (ql);
gaussjordan (q2);

// only compare the stabilizer generators
for(j = ql->k; j < 2*ql->k; j±+)
{

7/ compare each word , assuming the words
7/ are zero padded
for (k = 0; k < ql->over32 ; k++)
{

if(ql->x[j)[k] 1= q2->x[j][k])
return 0;

If(q1->z [jj][k] != q2-->z (j] [k])
return 0;

if(ql->r[j] 1= q2->r[j]) return 0;
}

return 1;

}

long scratchprod (struct QState *ql, struct
QState *q2)

7/ calculates the inner product <OIHGIO> where C
is the

77 scratch space of q1 and H is the scratch
space

171

}
if
if
if
if

}

//

//
//7

of q2. This is either 0, 1, i, -1, or-i, so

will return -1, 0, 1, 2, 3, respectively.
Please make sure ql->n== q2->n.

long j, j5 ;
unsigned long pwl, pw2;
Int el = ql->r[2*ql->k];
int e2 = q2->r[2*q2->k];

for (j = 0; j < ql->n; j++)
{

/ see printbasisstate
j5 =j >>5;
pwl q1->pw[j&31];
pw2 q2->pw[j&31];
if ((ql->x[2*ql->k][j5]&pwl) && (ql->z

[2*q1->k] [j5]&pwl))
el = (el+1)%4;

if ((q2->x[2*q2->k][j5]&pw2) && (q2->z
[2*q2->k}[j5]&pw2))
e2 = (e2+1)%4;

}
// e2 is conjugated
if(e2 == 1 11 e2 == 3) e2
// are the kets equal?
for (j = 0; j < ql->n; j++)
{

= (e2 + 2)%4;

j5 =j>>5;
pwl ql->pw[j&31];
pw2 q2->pw[j&31];
// see printbasisstate
if ((q1->x[2*ql->k][j5]&pwl)

(q2->x[2*q2->k] [j5]&pw2))
{

return -1;

}
// yes , so return the product of the phases
return (el+e2);

}

long overlap (struct QState * q1 , struct QState *
q2)

// Returns -1 if <q2|GJ0> == 0 for C in the
scratch space

/7 of q1. Returns 0 if <q2|G|O> == lsqrt(gl*g2)

/7 1 if <q2jG|0> == i/sqrt(gl*g2) , 2 if <q2|G

10> == -1/sqrt(gl+g2),
7/ and 3 if <q2JGJO> == -i/sqrt(gl*g2).
77 Please make sure ql->n == q2->n.

{
long g, i, j, p;
unsigned long t , t2;

// see printket
g = gaussian(q2);
seed(q2, g);
p = scratchprod(ql,q2);
if(p > -1) return p;
for (t = 0; t < q2->pw[g]-1; t±++)

t2 = t (t+1);
for (1 = 0; i < g; i++)

if (t2 & q2->pw[i])
rowmult(q2, 2*q2->k, q2->k + i);

p = scratchprod(ql,q2);
if(p > -1) return p;

return -1;

double fidelity(struct QState *ql, struct QState
*q2)

// Returns a double that equals sqrt(|<ql|q2
>1^2).

77 Please make sure ql->n == q2->n.
77 O(a^n) at worst , YUCK

{
7/ Loop over 2 ^(g1+g2) states; g,

the
/7 ranks of q1 and q2.
long g, g2, i;
unsigned long t , t2;
long p=0;
long real = 0;

_2 are

long imag = 0;

// see printket
g = gaussian(ql);
g2 = gaussian(q2);
g2 += g; 7/ gi + g2 gives
seed(ql, g);
p = overlap(ql,q2);
// calculate the sum
if(p == 0) real += 1;
if(p == 1) imag += 1;
If(p == 2) real -= 1;
if(p == 3) imag -= 1;
for (t 0; t < ql->pw[g]-1;
{

t2 = t (t+1);
for (i = 0; i < g ; i ±+)

if (t2 & ql->pw[i])
rowmult (ql , 2* q1-

p = overlap(ql,q2);
// calculate the sum
if(p == 0) real += 1;
if(p 1) imag += 1;
if(p == 2) real -= 1;
if(p == 3) imag -= 1;

the denominator

t++)

->k, ql->k + i);

return sqrt(((double)(real*real+imag*imag))/
pow(2 ,g2));

}

char *ketstring(struct QState *q)

7/ returns a string containing the ket
representation of q

{
long g;

nonzero basis
unsigned long t;
unsigned long t2;
long i;

char *result;

int size;

char *temp;

g = gaussian(q);
// printf("\n2^%ld

if (g > 31)

{

// log_2 of number of
states

nonzero basis states", g)

result = malloc (100* sizeof(char));
strcpy(result ,"State is WAY too big to

print");
return result

}
size = pow(2,g) * (8 + q->n) + 4; // 2 extra

bytes i think
result = malloc(size * sizeof(char));
seed(q, g);
temp = basisstatestring (q)
strcpy (result temp)
free (temp);
for (t = 0; t < q->pw[g] -1; t++)
{

t2 = t (t+1);
for (i = 0; i < g; i++)

if (t2 & q->pw~i])
rowmult (q, 2*q->k, q->k + i);

temp = basisstatestring (q)
strcat (result ,temp);
free (temp)

}

return result

void printket (struct QState *q)

// Print the state in ket notation (warning:
could be huge!)

long g; // log_2 of number of
nonzero basis states

unsigned long t;
unsigned long t2;

172

}

long i ;

g = gaussian (q);
printf("\n2^%ld nonzero basis states" , g)
if (g > 31)
{

printf(" \nState is WAY too big to print"

return;

seed(q, g);
printbasisstate (q)
for (t = 0; t < q->pw[g]-1; t++)
{

t2 = t (t+1);
for (i = 0; i < g; i++)

if (t2 & q->pw[i])
rowmult (q, 2*q->k , q->k + i);

printbasisstate (q)

printf("\n");

return;

void preparestate(struct QState *q, char *s)

// Prepare the initial state 's "input"

{

long 1;

long b;

1 = strlen(s);
for (b = 0; b < 1; b++)

if (s[b]=='Z')
{

// flip this bit
hadamard(q,b);
phase(q,b);
phase(qb);
hadamard (q, b);

7/ rotate this bit to 0+1
if (s[b]=='x') hadamard(qb);
if (s[b]=='X')
{

// rotate this bit to 0-1
hadamard (q, b);
phase(q,b);
phase(q,b);

if (s[b]=='y')
{

// rotate this bit to 0+il
hadamard(qb);
phase(q,b);

if (s[b]=='Y')

7/ rotate this bit to 0-il
hadamard (q, b);
phase(qb);
phase(q,b);
phase(qb);

return;

}

struct QState *copy(struct QState *q

// Copy the quantum state q

{
struct QState *p;
long i,j;

p = malloc(sizeof(struct QState));

p->n = q->n;
p->k = q->k;

p->x = malloc((2*p->k + 1) * sizeof(
unsigned long *));

p->z = malloc((2*p->k + 1) * sizeof(
unsigned long *));

p->r = malloc((2*p->k + 1) * sizeof(int)

p->over32 = (p->n>>5) + 1;
p->pw[0] = 1;
for(i = 1; i < 32; i++)

p->pw[i] = 2*p->pw[i-1];
for(i = 0; i < 2ap->n + 1; i ++
{

p->x[i] = malloc (p->over32 *
sizeof(unsigned long));

p->z[i] = malloc(p->over32 *
sizeof(unsigned long));

for (j = 0; j < p->over32 ; j++
{

p->x[i]j] = q->x[i [j;
p->z[i][j] = q->z[i] [j];

p->r[i] = q->r[i);
}

return p;
}

struct QState *initialize(long n, char *s)

// Initialize state q to have n qubits , and
input specified by s

{

long i;

long j;

struct QState *q;

q = malloc (sizeof(struct QState)

q->n = n;
q->k = n;
q->x = malloc((2*q->k + 1) * sizeof(unsigned

long*));
q->z = malloc((2+q->k + 1) * sizeof(unsigned

long*)) ;
q->r = malloc((2*q->k + 1) * sizeof(int));
q->over32 (q->n>>5) + 1;
q->pw[O] = 1;
for (i = 1; i < 32; i++)

q->pw[i] = 2*q->pw[i-1];
for (i = 0; 1 < 2*q->n + 1; i++)
{

q->x[i] = malloc(q->over32 * sizeof(
unsigned long));

q->z i] = malloc(q->over32 * sizeof(
unsigned long));

for (j = 0; j < q->over32; j++)
{

q->x[i][j] = 0;
q->z[i}{j] = 0;

}
if (i < q->n)

q->x[i][i>>5]= q->pw[i&31];
else if (i < 2+q->n)
{

j = i-q->n;
q->z [i I j >>5] =q->pw[j &31];

}
q->r[i] = 0;

}
if (s) preparestate(q, s)

return q;

}

B.2.6 chp.h

/* File : chp.i */
#ifndef -- CHP-
#define -- CHP_-

struct QState

// Quantum state

173

/7 To save memory and increase speed,
the bits are packed 32 to an
unsigned long

long n; /7 # of qubits
long k; /7 # of generators
unsigned long **x; // (2k+1)*n

matrix for stabilizer/destabilizer
x bits

/7 plus one
scratch row
" at the
bottom

unsigned long **z /7 (2k+1)*n
matrix for z bits

int *r; /7 Phase bits
: 0 for +1, 1 for i, 2 for -1, 3
for -i.

unsigned long pw(32]; /7 pw[i] = 2^i
long over32; /7 floor(n/8)

+1

/7 Reseed the random number generator using the

system clock
void reseed (void);

// Apply a CNOT gate with control b and target c
void cnot(struct QState *q, long b, long c);

// Apply a Hadamard gate to qubit b
void hadamard(struct QState *q, long b);

// Apply a phase gate to qubit b
void phase(struct QState *q, long b);

// Apply an X gate to qubit b
void xgate(struct QState *q, long b);

// Apply a Z gate to qubit b
void zgate(struct QState *q, long b);

// Apply a Y gate to qubit b
void ygate(struct QState *q, long b);

// Set row i equal to row k
void rowcopy(struct QState *q, long i , long k)

// Swap row i and row k
void rowswap(struct QState *q, long i, long k);

/7 Set row i equal to the bth observable (X.1
.. , Xn, Z.1 ,... , Zn)

void rowset (struct QState *q, long i , long b)

/7 Return the phase (0,1,2,3) when row i is LEFT
-multiplied by row k

int clifford (struct QState *q, long i , long k);

// Left-multiply row i by row k
void rowmult(struct QState *q, long i , long k)

/7 Remove the ith generator and its
corresponding destabilizer

/7 (i.e. remove rows i and i + q->k)
void removerowpair(struct QState *q, unsigned

long i);

/7 Add identity rows to the end of the
stabilizer and destabilizer

void addrowpair(struct QState *q);

/7 Remove column j from every generator without
modifying phase

void removecol(struct QState *q, unsigned long j

/7 Add a column to the end of every generator
without modifying phase

void addcol(struct QState *q);

// Swap columns i and j
void swapcol(struct QState *q, long i , long j);

// Create appropriate destabilizer generators
void mkdestabilizers(struct QState *q);

/7 Return the string containing the stabilizer
and destabilizer

char *statestring(struct QState *q);

// Print the stabilizer and destabilizer
void printstate(struct QState *q);

// Measure qubit b
Int measure(struct QState *q, long b, int sup);

// Gauss-Jordan elimination
long gaussjordan(struct QState *q);

// Gaussian elimination
long gaussian(struct QState *q);

// Free the memory associated with q
void freestate(struct QState *q);

// Append a new qubit in state 10>
void addqubit(struct QState *q);

// Remove the bth qubit of q
void removequbit(struct QState *q, unsigned long

b) ;

// Test if q is valid
long invalid (struct QState *q

// Commutes?
long commutes(struct QState *q, long i , long j

/7 Return a string containing the basis state
corresponding to

// applying the scratch space generator to the
zero ket.

char *basisstatestring(struct QState *q);

/7 Print the result of applying the scratch
space generator

// to the zero ket .
void printbasisstate(struct QState *q);

/7 Find a pauli operator p such that pjO> occurs
with nonzero

/7 amplitude in q and writes p to the scratch
space of q.

void seed(struct QState *q, long g);

// Hamming weight of w
Int weight (unsigned long w);

/7 Compare two stabilizers , returning 1 if same
, 0 otherwise

Int same(struct QState *ql, struct QState *q2)

/7 Calculate inner product <OIHGIO> where G is
the scratch space

/7 of q1 and H is the scratch space of q2.
long scratchprod(struct QState *ql, struct

QState *q2) ;

/7 Calculate the partial overlap of qi and q2
long overlap(struct QState *ql, struct QState

q
2

);

/7 Calculates the fidelity
double fidelity (struct QState *ql, struct QState

*q2);

/7 Returns the ket representation
char *ketstring(struct QState *q);

// Prints the ket representation
void printket(struct QState *q);

// Prepare an initial state
void preparestate(struct QState *q, char *s);

// Copy a state
struct QState *copy(struct QState *q);

// Create an initial state
struct QState *initialize (long n, char *s);

#endif // _CHP__

B.2.7 chp.i

174

/* File : chp.i */
%module chp
%include typemaps. i
%{I
struct QState
{

long n;
long k;
unsigned long **x;
unsigned long **z;
int *r;
unsigned long pw [321;
long over32;

};
%}I

extern void reseed(void);

extern struct QState sinitialize(long n, char *s

extern struct QState *copy(struct QState *q);
extern void freestate(struct QState *q);
extern void removequbit(struct QState *q,

unsigned long b);
extern void addqubit(struct QState *q);
extern void swapcol(struct QState *q, long i

long j);
extern void printket (struct QState *q)
extern void printstate(struct QState *q);
extern void cnot(struct QState *q, long b, long

c);
extern void hadamard(struct QState *q, long b);
extern void phase(struct QState *q, long b);
extern void xgate(struct QState *q, long b);
extern void zgate(struct QState *q, long b);
extern void ygate(struct QState *q, long b);
extern Int measure(struct QState *q, long b, int

sup);
extern void reseed(void);
extern double fidelity (struct QState sql , struct

QState *q2);
extern Int same(struct QState *ql, struct QState

*q2);

extern long gaussian (struct QState *q)
extern long gaussjordan (struct QState *q);

%typemap(python,ret) char s {
free ($source)

}

char * statestring(struct QState *q);
char * ketstring (struct QState *q)

B.2.8 control.py
File : control.py
4 Author: Andrew Cross <awcrossOmit. edu>
4 Last Modified: 27 March 2004

import time
import copy
import thread
Import threading
from math import *

from Numeric import s
import logger

This module uses visual python when the
iontrap object's

visual flag is set to True. The visual module
is imported

4 in the block of code where it is needed,
rather than the

beginning , so that the simulation can be run
without

visualization without loading visual.

class control:

def .- init__(self ,iontrap):

4 all actions return elapsed time , not
duration

self . actionmap = {"move" : self .move,\
split": self . split ,\

"cool": self . cool ,\
"readout" : self . readout

gate" :self .gate
"join": self.join ,\
"condition": self.

condition ,\
"halt" : self. halt ,\

fidelity": self.
fidelity \

"test": self.test ,\
" testequals" : self.

testequals ,\
"majority": self.

majority ,\
"comparebits" : self.

comparebits \
"copybits" : self.

copybits ,\
"addbits" : self. addbits

"setbitlist" : self.
setbitlist ,\

"displaybits" : self.
displaybits \

"message" : self.message
,\

noise" : self . noise ,\
"same": self .same}

Control keeps a reference to its
iontrap

self.sys = iontrap
Times for visual display
self .laserOnTime = 0.5 # in seconds
self cellMoveTime = 0.05 4 in seconds
self.sleepTime = 0.001 # in seconds

self. laserOnTime = 2 # in seconds
self. cellMoveTime = I # in seconds
4 self.sleepTime = 0.01 4 in seconds

self.date = None
self.bits = {}
self. bitlock = thread . allocate-lock ()

def reset (self):
"""reset the control object state"""
self . date = None
self.bits = {}
self . bitlock = thread . allocate-lock (

def execute(self ,bundle):
self.date = time. strftime ('%d%b%IJVVoS%Y'

self . sys. log. put (" execute" ,"START %s"%
self.date ,6)

self sys . log . put ("execute" ,"QC INITIAL\n
%s"%str(self.sys.qc) 6)

bundle. start (self. sys. log 0)
self . sys. log. put (" execute" ,\

"END bundle. haltedd "%
hundle . halted 6)

self , sys. log. put (" execute" \
"END bundle. time=%f"%

bundle .time, 6)
S self. sys. log. put(" execute ","QC FINAL\n%

s"%str(self.sys.qc) ,6)
returnTime = copy. copy (bundle. time)
returnHalt = copy. copy(bundle. halted)
bundle.time = 0
bundle.halted = False
return [returnTime , returnHalt

def setup(self bundle):
Set a bundle 's actionmap and system

to this control"""
call once , this is slow

bundle . reset ()
bundle. actionmap = self.actionmap
bundle. setActionMap ()
bundle. setSys (self. sys)

def setBit (self ,cbit ,val
self. bitlock . acquire ()
self.bits [cbit] = val
self. bitlock . release ()

def getBit (self ,cbit):
self . bitlock . acquire ()
try:

self. bits [cbit]
except KeyError:

self. bits [cbit] = 0
c = copy. copy(self, bits [cbit])
self . bitlock . release (
return c

175

def reportAction(self msgstring)
If self.sys.grid != None:

self . sys . grid . addactionmessage(
msgstring)

def acquireChainLock(self ,ion):
"""Acquire lock on the chain con
this ion object . This guards aga

deadlock"""
notAcquired = True
i = self .sys.nameTolon(ion)
self. sys. log.put(" control.

acquireChainLock", \
"getting %s 's

taining
inst

chain"%

ion , 6)
while notAcquired:

notAcquired = False
i.lock. acquire ()
c = self.sys.nameToChain(ion)
If not c. lock. acquire(False):

die and restart
self.sys. log.put("control.

acquireChainLock ", \
"retrying %s

s chain"%ion,6)
i.lock. release ()
notAcquired = True

i lock, release ()
c . locklons ()

self. sys. log .put("control.
acquireChainLock ",\

"acquired %s 's chain
"ition , 6)

def message(self ,params,tO):
/ params = [messageString]
messageString = params [0]
self . sys. log. put (" message" messageString

,6)
If self.sys.grid != None:

self .sys. grid. addcmdmessage(
messageString)

return to

def halt(self paramstO):
params = 1]
the argument to HaltAction is the

action time
DON'T CALL DIRECTLY IN A PBUNDLE
self .sys . log. put(" halt" ," raising

HaltAction exception" ,6)
self reportAction ("halt")
raise 'HaltAction' ,to

def testequals (self ,params,tO):

Test if the sum of the bits
bitlist equals any of

the numbers in "nset"

in a

params = [cbitlist ,nset , cbit]
cbitlist = params[O]
nset = params]1]
cbit = params [2]
self .sys. log. put (" testequals" ,\

c bit list=%s"%c bitlist

,6)
setcount = 0
for c In cbitlist

If self. getBit(c)==1: setcount += 1
self . sys. log. put (" testequals" ,\

setcount-%id"%setcount
,6)

for i in nset
If setcount ==

self .sys. log . put("
testequals" , "%s->1
"%cbit 6)

self. reportAction("
testequals")

self .setBit (cbit ,1)
break

else:
self .sys. log. put("

testequals" , "%s->0
"%cbit 6)

self. reportAction("
testequals")

self. setBit (cbit 0)
return to

def majority(self , params, tO):
Performs majority voting between two

lists"""
params = [cbitlistl , cbitlist2 , cbiti

, cbit2J
params = [cbitlist , cbit]
If len(params) == 2:

we just want the majority of
cbitlist

cbitlist = params [0]
cbit = params[1]
self. reportAction ("majority")
self . sys . log . put (" majority" "

cb itlist=%s"%cbit list 6)
count1 ,count.O = 0,0
if len(cbitlist)%2 == 0: raise

Majority : evenCbitList"
for c in cbitlist:

If self . getBit (c)==1: count1
+= 1

if self . getBit (c)==O: countO
+= 1

self . sys . log . put (" majority"
counti1=%d"%countl 6)

self . sys . log. put (" majority"
count0=/cd"%countO0 6)

If count-1 > count-0:
self . setBit (cbit ,1)
self . sys . log .put(" majority", "%s

->1"%cbit 6)
ellf countj1 < count-0:

self . setBit (cbit 0)
self. sys .log. put(" majority", "%s

->O"%cbit 6)
return tO

elif len(params) == 4:
Take majority of two
cbitlisti = params[0]
cbitlist2 = params[l]
ci = params [2]
c2 = params[3]

lists

self. reportAction ("majority")
self . sys. log. put (" majority" ,"

cbitlist1=%ts"%cbitlist1 6)
self . sys. log . put (" majority" ,"

cbitlist2=%s"%cbitlist2 6)

if len(cbitlisti) > 1:
If self. getBit (cbitlisti [0])

==0 and self.getBit(
cbitlist2 (0]) == 0:
If self. getBit (cbitlist1 [1])

== 0 and self.getBit(
cbitlist2 [1]) == 1:
If self. getBit(cbitlistl

[2]) == 1 and self.
getBit(cbitlist2
[2]) == 1:

self . setBit(ci,1)
self. setBit(c2,1)
self .sys. log, put ("

majority" "
Special Case: %
s->1 and %s->1"
%(cl ,c2) 6)

return to
count ,countO 0 ,0
for c in cbitlistl:

If self. getBit(c)==1: counti
+= 1

If self.getBit(c)==O: countO
+= 1

self .sys. log. put (" majority" , "counti
=od"%countl ,6)

self . sys. log, put (" majority" "countO
=%d"%counto ,6)

If counti > countO:
self . setBit (c , 1)
self .sys . log . put(" majority", "%s

->l"%cl 6)
elif counti < countO:

self . setBit (c ,0)

self .sys . log. put(" majority" ,"%s

->0"%cl 6)
else:

176

se I f . sys . log . put (" majority",
unevenListI!" 6)

raise " unevenList 1"

count ,countO = 0,0
for c in cbitlist2:

If self.getBit(c)==1: count1

+= 1
if self.getBit(c)==0: count0

+= 1
self . sys . log .put(" majority", "counti

=%d"%counti,6)
self . sys. log put (" majority" , "countO

=%'d"%count0 6)
if counti > countO:

self.setBit(c2,1)
self .sys.log.put("majority", "%s

->1"%c2,6)
elif counti < countO:

self. setBit (c2 0)
self .sys . log . put (" majority" ,"%s

->O"%c2,6)
else

self . sys . log . put (" majority"
unevenList2 !" 6)

raise "unevenList2"
return tO

def comparebits (self params , to):
"""Compares two cbitlists and sets cbit

to one if different"""

params = [[lists to compare], cbit]
Lists = params [0]
cbit = params[1]

It would be nice to display the three
lists ;

for i in range (len (Lists)):
tmpList = []
for j in range(len(Lists [i])):

tmpList . append(self. getBit (Lists

[i][j]))
self . sys . log . put(" comparebits"

List %d = %s"%(i+1,tmpList))

for i in range (len (Lists [0])):
for j in range (len (Lists)-1):

if self.getBit(Lists[j][i])
self. getBit(Lists [j +1][i]):
self . setBit (cbit 1)
self .sys. log. put ("

comparebits" ,"%s->i"%
cbit 6)

return tO
self . setBit (cbit 0)
self .sys . log . put (" comparebits" ,"%s->0C%

cbit 6)
return tO

def copybits(self , params,tO):

"""Copy cbitlisti to cbitlist2"""
params [cbitlistl , cbitlist2]
cbitlisti = params[O]
cbitlist2 = params[l]

self.sys. log.put("copybits"
"cbitlist1=%s"%

cbitlist1 6)
self . sys. log. put("copybits",\

cb itlist2=%sC"%
cbitlist2 6)

if len(cbitlistl) 1= len(cbitlist2):
raise "copybits:

UnequalLengthofLists"

for i in range(len(cbitlistl)):
value = self.getBit(cbitlistl [i])
self. setBit(cbitlist2 [i , value)

return tO

def addbits(self, params,tO):
"""Adds Two binary lists"""
list1 is apparently cbit variables
list2 is c bit constants
params = fIsiti , list2 , Sum(listl

list2)]

list 1 = params [0]
list2 = params[1]

Sum = params [2]

L1,L2 = [] []
for i In range(len(listl)):

Li.append(self. getBit(list1 [i]))
L2 = list2

Add LI and L2 into S
diff = len(L1)-len(L2)
if diff < 0: # append zeros to LI

zeros = []
for i In range(abs(diff)):zeros.

append(0)
Li = zeros + Li

elif diff > 0: # append zeros to L2
zeros = []
for i In range(diff):zeros.

append(0)
L2 = zeros + L2

if len (L2) != len (Li): raise
Unequal-Lengths'

S,C = [] ,0
for i in range(len(L1)): S.append(O)
for i in range(len(Li)-1, -1, -1):

S[i] = (Li[i] ^ L2[i]) ^ C
C = (C and (L1[iJ ^ L2[iJ))or(Li

[i] and L2[i])
Store the sum into Sum
If len(Sum) != len(S) : raise

BAD$UM.LENGTH"

for i In range(len(Sum)):
value = S[i]
self . setBit (Sum[i] value)

self . sys . log . put (" addbits" ,\
"Li=%s , L2-%s , S=%s"%(L1, L2, S)

,6)
print Sum, '--->', S
return tO

def setbitlist (self ,params,tO):
"""sets the bits in bitlist to the

values

given in the second input

params = [cbitlist , bits]
cbitlist = params[O]
bits = params[i]
self.sys. log. put(" setbitlist" "cbitlist

=%s"%cbitlist 6)
for i in range(len(cbitlist)):

value = bits [i]
self. setBit (cbitlist [i] value)

return tO

def displaybits (self params, tO):
"""display a list of bits"""
cbitlist = params[O]
self .sys. log. put(" displaybits" C cbitlist

=%s"%cbitlist 6)
hello = []
for i in range (len (cbitlist

value = self.getBit(cbitlist [i])
self . sys . log . put (" displaybits" "

cbitlist.%d=%d"%(i, value) 6)
hello.append(value)

print hello
return tO

def test(self params,tO):
params = [cbitlist nset, cbit]
cbitlist = params[O]
nset = params[i]
cbit = params[2]
self .sys . log . put(" test"

" cbit list=%s"%cbitlist
,6)

setcount = 0
for c In chitlist

if self.getBit(c)==: setcount += 1
self . sys. log . put (" test " \

177

setcount=7d"%osetcount
,6)

If setcount > nset:
self . sys . log . put (" test " ,%s

cbit 6)
self. reportAction (" test")
self . setBit (cbit 1)

else:

->1%

self .sys . log . put (" test " , "%s->0"%
cbit 6)

self. reportAction (" test")
self. setBit (cbit 0)

return tO

def condition (self ,params tO):

params = (cbitlist , vallist , bundle]
cbitlist = params[O]
vallist = params[1]
bundle = params [2]
self . sys. log. put (" condition"

"%s ?= %s"%(cbitlist
vallist) 6)

matched = True

for i in range(len (cbitlist)):
if self. getBit(cbitlist [i]) !=

vallist [i[: matched = False
if matched:

self. reportAction(" condition")
self . sys .log. put(" condition","

running" 6)
bundle .reset ()
bundle . actionmap = s e lf. actionmap
bundle . setActionMap ()
bundle.setSys(self.sys)

bundle. start (self. sys . log tO)
returnTime = copy. copy (bundle . time)
bundle.time = 0 # reset sub-bundle

time
If bundle. halted:

se lf . sys . log. put (" condition",\
"HALTED t=%f"%

bundle .
time,6)

bundle. halted = False # reset
sub-bundle halt flag

raise 'HaltAction ' returnTime
self .sys . log . put (" control . condition

,6)
" t=%f"%bundle . time

return returnTime
else:

self. reportAction (" condition")
self . sys . log . put (" condition" "nop"

,6)
return tO

def fidelity (self , params , tO)
"""Calculate the fidelity between the

current machine
state and the state of qcO. Change the

fidelity
on the visual display and set a cbit if

the fidelity
is not equal to 1"""

params = [cbit]
cbit = params [0]
f = self. sys.qc. fidelity (self. sys.qcO)
if f != 1.0: self setBit(cbit ,1)
else: self. setBit (cbit 0)
self .sys. lastFidelity = f
return to;

def same(self ,params,tO):

Test if some set of qubits has a
state described by

the given string list . Just like
the strcmp() in C/C-+

same sets the cbit to 0 if the
states match and 1
otherwise

params = [ionlist , stringlist , cbit]

ionlist = params[0[
stringlist = params[1]
cbit = params]2[
f = self .sys.qc.same(ionlist , stringlist)

#if True f = 1
If f : self . setBit (cbit 0)

else: self. setBit (cbit 1)
return to;

def noise (self ,params, tO):

Set ALL the System Noise ON or
OFF

switch = params [0]
tmp-f = copy. deepcopy(self. sys .physics.

tmpFailures)
tmp-h = copy. deepcopy(self. sys . physics.

tmpHeating)

if switch == "OFF":

self.sys .qc. noisy = False
for key , val in self . sys . physics.

failures . items ():
self . sys . physics

failures [key] = 0
for key , val in self .sys . physics.

heating. items () :
self . sys. physics. heating

[key] = 0

elif switch == "ON":

self .sys .qc . noisy = True
self .sys. physics. failures

deepcopy (tmp-f)
self .sys . physics . heating

deepcopy (tmp.h)

copy

copy

else :
raise "ON-or.OFFRPLEASE"

return to

def readout (self , params , to):
"""Measure an ion"""
params = [ion, cbit]

self.sys.log.put("control.readout
","-> %s"%params,6)

ion = params[O]
cbit = params[1]
i = self. sys . nameToIon(ion)
i.lock . acquire ()
meas = self .sys .qc.measure ([ion],\

[self. sys.
physics
failures
['in']])

self. sys . log . put (" readout ", "meas=%s"%
meas ,6)

self . setBit (cbit , meas [0])
self. reportAction ("readout")

s elf . sys . log . put (" readout" \
"%s->%d"%(cbit , self.

getBit (cbit)) 6)
if self.sys.grid != None:

Import visual
loc = i . location (

sel f . sys. colorlonByState (i
s e l f .sys. grid. moveion (i . loc [0] -1 , i.

loc [1] -1 visual . vector (loc [0]- i
. loc [0] , loc [11 -- i .loc [1 ,1))

self . sys . grid . laseron (Int (loc [0]) -1,
int(loc [1]) -1)

time. sleep (sel f . laserOnTime)
self .sys. grid. laseroff (int (loc[0]

-1, int (loc [1])-1)
self . sys . grid .moveion (i . loc [0] -1, i

loc [1] -1 visual . vector (loc [0- i
. loc [0] , loc [1] - i.loc [1] ,0.5))

i lock . release ()
s e lf . sys . log . put (" control. re adout

""<- %s"%params,6)
return to+sel f . sys . physics. timescales ["im

"]

def gate(self params,tO):
"""Perform a logic gate
gate should be a single string
ionlist should be a list of strings

THIS SHOULD EVENTUALLY CALL FUNCTIONS
LIKE MS,GPHASE,CZ ...

params = [gate ,[ion , ion,...]]

178

gate = params [0]
ionlist = params[1]
for ion in ionlist :

i = self.sys.nameToIon(ion)
self .sys. log, put (" control. gate","-> %s

"%params ,6)
If len (ionlist) <2:

4 gate involves a single qubit
i = self.sys.nameToIon(ionlist [0])
i . lock . acquire ()
self. reportAction ("%s gate"%gate)
self .sys. qc . gates ([gate], ionlist ,\

[self. sys . physics.
failures] 'iq'

if self.sys.grid 1= None:
import visual
loc = i.location()
self.sys. colorlonByState(i

move the ion up
self.sys. grid.moveion(i . loc

[0] -1, i. c [1]-1,visual.
vector (loc [0] - i . loc [0] , loc
[1 - I. loc [1] , 1))

self .sys. grid. laseron (Int(loc
[0]) -- 1,int (loc [1]) -1)

time. sleep (self. laserOnTime)
self . sys. grid . laseroff (Int (loc

[0]) -1,int (loc (1]) -1)
4 move the ion down
self.sys. grid. moveion(i . loc

[0] -1 i . loc [1]-1,visual.
vector (loc [0] - i . loc [0] , loc
[1} - i . loc [1] 0.5))

i lock .release ()
Sse If . sys . log , put ("control. gate

","<- %s"%params ,6)
return tO+self . sys . physics.

timescales ["iq"]

else :
gate involves several qubits
4 we need to lock the chain
self. acquireChainLock(ionlist [0])
c = self. sys .nameToChain(ionlist [0])
4 check that the ionlist is in the

chain
for i in ionlist

if c != self.sys.nameToChain(i):
c . unbockIons ()
c . lock . release ()
raise " Unchainedlons"

ionlist
i = c [ionlist [0]]
self. reportAction ("%s gate"%gate)
self .sys. qc . gates ([gate] ,[ionlist

len (ionlist) *[self . sys . physics.
failures ['2q'])

if self . sys . grid != None:
Import visual
for i in ionlist

lo c= c i]. location()
self .sys. colorlonByState(c

[)
self .sys. grid . moveion(c [i

loc [0] -1 c [i] . loc [1] -1
visual. vector (loc [0] -c

i]. lc [0] loc]1] -c .i
loc [1] ,1))

self .sys . grid . laseron (int
loc [0]) -1,Int (loc [1])
-1)

time. sleep (self. laserOnTime)
for i in ionlist :

loc = c[i]. location()
self.sys.grid.laseroff(Int(

loc [0[)-1,int(loc [1)
-1)

self .sys. grid. moveion(c [i
loc [0] -1 c [i] . loc [1] -1
visual. vector (loc [0] -c
i] . loc [0] ,loc [1] -c [i
loc [1] 0.5))

c . unlockbons ()
c. lock. release ()

Sself . sys . log . put (" control .gate
","<- %s"%params ,6)

return tO+self .sys. physics.
timescales ["2q"

def cool(self ,params,to):
"""Cool an ion chain"""
params = [ion]

self. reportAction ("cool")
self. sys. log. put(" control. cool

","-> %s"%params,9)
ion = params[0]
self. acquireChainLock(ion)
c = self.sys.nameToChain(ion)
If not self.sys.onlyGates: c.heat = 0
If self.sys.grid != None:

import visual
loc = c[ion]. location()
self .sys . colorIonByState (c [ion])
self . sys. grid .moveion(c]ion]. loc

[0] -1,c [ion]. loc [1] -1, visual
vector (loc [0-c [ion]. loc [0] , loc
[i]-c [ion]. loc [1] 1))

self .sys. grid. laseron(int(loc [0]) -1,
Int(loc[1])-1)

time. sleep (self. laserOnTime)
self .sys. grid. laseroff (int (loc [0]

-1,Int (loc [1])-1)
self .sys . grid . moveion(c [ion]. loc

[0] -1 ,c [ion]. loc [1] -1 ,visual
vector (loc [0] -c [ion]. loc [0] , loc
[1]-c[ion].loc[1] 0.5))

c . unlockIons ()
c . lock . release ()

self. sys. log . put("control. cool","<- %s
"%params ,9)

return tO+se l f . sys physics. timescales]" c

def join (self , params , tO):
"""Join two ion chains"""
params = fioni ,ion2]

self .sys. log. put(" control. join","-> %s
"%params,9)

self. reportAction ("join")
ion = params [0]
ion2 = params[i]
self. acquireChainLock (ioni)
cl = self.sys.nameToChain(ionl)
if ion2 in ci:

raise " InvalidJoin" , ion , ion2
self . acquireChainLock (ion2)
c2 = self.sys.nameToChain(ion2)
d = cl + c2
d. lock. acquire()
4 self. sys. chains access is serialized

self . sys .chainslock.acquire ()
for i In d: self . sys . chains t i .name] = d
self. sys .chainslock . release ()

d. unlockIons ()
d. lock. release ()

4 self. sys. log .put("control.join","<- %s
"%params , 9)

return tO+sel f . sys . physics . timescales [" j
"I

def split (self , params, tO):
"""Split ion chain into two chains"""

params = [ion , ion2]
ioni = params [0]
ion2 = params [1]
self . reportAction ("split")
self.sys.log.put("control.split

","-> %s"%params,9)
self. acquireChainLock (ion1)
c = self .sys.nameToChain(ionl)
split () removes ions from one of
4 the chains in sys . chains without

immediately
updating sys. chains , so we need to

serialize
the access to sys. chains prior to the

split

self . sys . chainslock . acquire ()
if not self.sys.onlyGates:

d = c.split (ionion2 , self.sys.
physics. heating] 's '])

else:
d = c. split (ioni ,ion2,0)

for i in d: self . sys . chains [i .name] = d
self . sys . chainslock . release ()

d.unlockIons() # locked by our last call
to acquireChainLock

c.unlockIons() # same
c . lock . release ()

179

self. sys. log . put(" control. split","<- %s
"%p arams , 9)

return tO+sel f . sys . physics. timescales ["s

def move(self ,params , tO):
"""Move ion in a straight line to

destination

params = [ion ,dest]
ion is string , dest is an integer 2-

tuple ,speed is
in cells/simtime.

WARNING: Does not do collision detection
right now!

ion = params[0]
dest = params[1]
self .reportAct ion(" move")

self. sys. log.put("control.move
","-> %s"%params,9)

self. acquireChainLock (ion)
c = self. sys .nameToChain(ion)
i = c[ion]

The original locations are needed
below

origlocs = {}
for key , val In c . ions . items :

origlocs [key] = val. location()

Prepare to move
dVec = array(dest) - i.location()
mdVec = sqrt(innerproduct(dVec,dVec))
if not c.isValidMove((dVec0],dVec[1])):

c . unlocklons ()
c. lock. release ()
raise "InvalidChainMove" , params

Apply state changes
c. move((dVec [0] dVec [1])

If not self.sys.onlyGates:
This is approximate ---
pfail = self.sys.physics.

failures ["b"]*mdVec
This is exact

pfail = 1 - exp(-self.sys.
physics. failures ["b" *mdVec

for key , val in c. ions .items ()
self . sys . qc. noise (val. name,

pfail)
c.heat += self.sys.physics-

he at ing ["m"]* mdVec

Display the ion motion
if self .sys.grid != None:

import visual
tz = time.time()
for keyval in c. ions .items (: self.

sys. colorIonByState (val)
while (time.time()-tz) < mdVec*self.

cellMoveTime:
time. sleep(self. sleepTime)
for key , val in c. ions . items :

dVec = array(dest) -
origlocs [key]

delta = (time.time()-tz)*
dVec/(mdVec* self
cellMoveTime)

delta = origlocs [key] - val.
loc + delta

s e lf . sys . grid . moveion(val
loc[0]-1,val.loc[1]-1,
visual. vector(delta [0]
delta[1] 0.5))

for key, val in c . ions . items)
self . sys . grid . moveion(val . loc

(0] -1 val . loc [1] -1, visual
vector (val . displacement
[0] , val. displacement
[1] ,0.5))

c . unlocklons ()
c . lock . release ()

self . sys . log . put(" control move","<- %s
"%params ,9)

return tO+s elf . sys . physics . timescales ["b
"]*mdVec

B.2.9 grid.py

grid.py
Isaac Chuang <ichuangtmit. edu>
Andrew Cross < awcross~mit. edu>

from visual Import *
from visual.text import *
import cell
import random

class grid :

def seifnit--(self ,gxgy)

self .NgridX = gx
self .NgridY = gy
self . drawemptygrid ()
self.time = []
self .errors = []
self.listofions = []
self. statuslabel = None
self.statelabel = None
self . statusString = "Time- %f s\

nFidelity - "%0.0
self . messageString = "Message:\n"
self. actionString = "Action:\n"
self . stateString =

self. celltab = []
celltab[x]/y] = cell for x,y

for kx In range(gx):
ytab = []
for ky in range(gy):

cell for each xy grid
location

ytab. append(cell. cell(kxky))
self. celltab.append(ytab)

def draw(self):
for ytab in self. celltab:

for acell in ytab:
acell .draw()

def colorion(self ,gxgy, color)
self.celltab [gx][gy].ionobj.color

color

def randomionmotion (self)
for ions in self. listofions

self . moveion(ions [0] , ions [1]
0.1 * vector ([random.

random () ,random.
random() 0]))

def drawemptygrid (self):
the grid - empty rectangles

draw

fgrid = frame() # local
frame for the grid rectangles

gcolor = (0.1,0.1,0.1) # dim
grey color for the lines

for k in range(0,self.NgridX+1):
curve (frame=fgrid ,pos=[(k,0,0) ,(k,

self.NgridY,0)], color=gcolor)
for k In range (0, self. NgridY+1):

curve(frame=fgrid , pos=[(0,k,0) ,(self
.NgridX,k,0)],color=gcolor)

scene.center = vector(self.NgridX/2.0,
self. NgridY/2.0,0) # center

fgrid.pos = (0,0,0.1)
self.fgrid = fgrid;

def drawLegend(self ,ioncolors):
ioncolors = [datacolor , ancillacolor

sympatheticcolor , errorcolor]
Draw the legend and initial status

labels
ionlabelnames = ["Data "," A ncilla

Sympathetic ","Damaged"]
ionlabelnames = ["Data" " Ancilla"

Sympathetic"]
legloc = (self. NgridX+1,self . NgridY-1,0)
msgloc = (self .NgridX+1 0.5 0)
stateloc = (0, self. NgridY ,0)
for i in range(len (ionlabelnames))

180

thision = sphere(pos=vector (legloc)-
vector ([0, i 0]) ,\

radius =0.25 color=
ioncolors [i])

label(pos=thision.postext=
ionlabelnames [i],\

xo ffset =10, yoffset =0, space
=0.3 ,height =10,\

box=0, line =1,opacity=0.33)
self. legendlabel = label (pos=legloc ,\

text="Legend",
zoffs e t =30, yoffs et =20, space =0,\

height =10, box
=0, line =0, opacity =0.33)

self .statuslabel = label (pos=msgloc,\
xoffset =10,

yoffset =5,
space=0,
height
=10,\

box=1, line=0,\
text="" opacity

=0.33)
self. statelabel = label (pos=stateloc ,\

xoffset =10,
yoffset =5,
space=0,
height =10,\

box=1, line =0,\
text="" ,opacity

=0.33)

def addcmdmessage(self , msgstring):
self . messageString = "Message:\n%s"%

msgstring
if self . statuslabel != None:

self. statuslabel .text = self.
statusString + "\n" + self.
messageString + "\n" + self.
actionString

def addactionmessage (self , msgstring):

sel f . actionString = "Action:\n%s"%
msgstring

if self.statuslabel != None:
self . statuslabel . text = self.

statusString + "\n" + self.
messageString + "\n" + self.
actionString

def moveion(self ,gxgy,dr):
displace ion

self. celltab [gx][gy]. iondisplacement
= dr

self.celltab[gx][gy].ionframe.pos = self
.celltab[gx][gy]. origpos + dr

def addplaq(self ,gx,gy):
add plaquette to

grid
self. celltab[gx][gy].type = 'plaquette'

def electrode-s(self ,gx,gy):

south electrode
self.celltab[gx][gy]. eflags[0] = 1

def electrode-e (self ,gx,gy):

east electrode
self. celltab [gx][gy]. eflags [1] = 1

def electrode-n(self ,gx,gy):

north electrode
self. celltab[gx][gy]. eflags[2] = 1

def electrode-w(self ,gx,gy):
west electrode
self. celltab[gx][gy]. eflags[3] = 1

def addion(self ,gx,gy,mycolor=color .red):
ion

self. celltab[gx][gy].type = 'ion
self.celltab [gx][gy].color = mycolor
self. listofions .append([gx,gy])

def laseron(self ,gxgy, color=color .green)
laser

self. celltab[gx][gy]. laserflag = True
self. celltab[gx][gy]. lasercolor = color
self. celltab [gx] [gy]. redraw()

def laseroff(self ,gx,gy):
self. celltab [gx][gy]. laserflag = False

self.celltab [gx] [gy]. redraw()

def detectoron(self ,gxgy, color=color . yellow
detector

self.celltab[gx][gy]. detectflag = True
self.celltab[gx]{gy]. detectcolor = color
self. celltab [gx][gy] . redraw(

def detectoroff(self ,gx,gy):
self. celltab [gx] [gy]. detectflag = False
self.celltab [gx][gy]. redraw ()

def addstatus(self ,thetime , thefidelity):
thetime should be a float
thefidelity is also a float
self. statusString = "Time- %f s\

nFidelity - "%thetime
if self.statuslabel != None:

self.statuslabel.text = self.
statusString + "\n" + self.
messageString + "\n" + self.
actionString

def addstate(self , thestate):
self. statestring = thestate
if self . statelabel != None:

self.statelabel.text
statestring

def empty(self ,gx, gy):

= self.

empty
self. celltab [gx][gy]. type = 'empty'

B.2.10 ion.py
File: ion.py
Author: Andrew Cross <aweross Omit. edu>
Last Modified: 27 March 2004

Ion data structure

import thread
Import copy
from Numeric import *

class ion:
def ..init--(self ,name,type,loc):

loc is input as an ordered pair
name is string
type is string
self.name = name
self.type = type
self Ioc = array(loc) #2-array

home location
self .displacement = array([0 0]) #2-

array displacement from home
self.lock = thread. allocate-lock ()

def .- str._(self):
s = "1 1

if self. lock. locked() : s = "(L) C

else: s "(U) "
s += "ion + self.name + "," + '"' +

self. type + '", ' \
+ "(%d,%d)"%(self . location () [0] self

.location () [1])
return s

def location (self):
"""Returns the current location of the

ion"""1
return self.loc + self.displacement

def displacement(self):
"""Returns a copy of the current

displacement"""
return copy. copy(self. displacement)

def nearby(self , location):
"""Returns true if ion is nearby

location

location is an ordered pair

ballRadius = le-6
delta = self.location () - array(location

If innerproduct (delta, delta) <
ballRadius **2: return True

181

return False

def passedThrough(self ,location ,direction):
Returns true if we're on the other

side of
a ball around location coming via

direction
both args are ordered pairs
q = innerproduct(array(direction)

location-self . location ())
If q<O and not self.nearby (location):

return True
return False

if -- name-. =="--main--":

print "ION TEST"
print "creating and printing ion:"
i = ion("i" "data" (0,0))
print i
print "nearby test:",
If not i .nearby((-le-8,1e-8)): print "FAILED

else: print "passed"

B.2.11 iontrap.py

File: iontrap . py
Author: Andrew Cross <awcross Omit. edu>
Last Modified: 3 April 2004

Object to coordinate a simulation

from Numeric Import *
import cPickle , anydbm
Import thread
import threading
Import copy
from math import *
import random
import time
from string import *

This module uses the visual and grid modules
when

the iontrap visual flag is True. These modules
are

imported just before they are needed so that
when

visual is False the code can run without
loading

visual.

from aqc Import
import ion
from chain Import *
from logger Import *
from bundle import *
from control import *
from physics Import *

class iontrap:
def .. i nit .- (self , trapfile , physics=physics (

, log=None):

if log == None: self.log = logger('
iontrap . default . log ' 0)

else: self. log = log # log for
debug information

self. rawchains = []
self. chains = {} # dictionary of

chain objects
lock to serialize chains access
self. chainslock = thread. allocate-lock ()
self .color = {} # place holder - defined

in draw()
self .dataqubitnames = []

self .trap = []
string lis ts

self .size = ()
self.grid = None

visualization
self.visual = False

display (vpython)
self. cellsize = 10

(micrometers)
self.qc = None

in buildChains

2d list of

2- tuple
Grid object for

toggle visual

cell size in um

initialize this

self.qco = None # undamaged qc,
also in buildChains

self method = " stabilizer"
self. onlyGates = False # turn off all

error sources except gates
self .physics = physics
self.control = control(self)
self. lastFidelity = 1.0
self readTrap(trapfile)
for c in self. chains. itervalues ()

for i in c:
If i.type == 'data':

self. dataqubitnames .append(i
name)

def reset(self):
"""Reset parts of the iontrap state"""

4 too bad, some of this is slow (qc
buildChains)

self .grid = None # allows it. draw() to
rebuild grid

self.qc = None # initialize this in
buildChains

self. buildChains() # reinitializes qc,
chains

self. control.reset ()

lef -- str--(self):
sl []
for c in self .chains. itervalues()

for i in c:
sl.append(str(i))

sl .append(str (self .qc)
return "" .join(sl)

def colorIonByState (self , iobj
change this function to introduce

state-dependent
4 display changes
loc = iobj.loc
type = iobj .type
self .grid . colorion (Int (loc [0]) -1,int (loc

[1]) -1, self . colors [type])

def draw(self):
if self.visual and self.grid == None:

Import visual
import grid
self.colors = {"data":visual color.

green ," ancilla" : visual .color .red,
"sympathetic": visual. color. blue,"
error" : visual . color . yellow}

visual .scene. autoscale = 1
self .grid = grid .grid (self. size [0]

self. size [1])
for y in range(self .size [1]):

for x in range(self. size [0]):
If 'plaquette ' in self.trap [x

] [y] : self . grid. addplaq(x
,y)

if 'enorth' in self .trap[x][y
]: self grid .electrode.n
x,y)

if 'esouth' in self.trap[x][y
]: self. grid. electrode-s(

xy)
if 'ewest' in self.trap[x][y

]: self . grid . electrode..w

x,y)
if 'eeast ' in self . trap [x][y

]: self grid . electrode.e(
x,y)

for c in self .chains. itervalues ()
for ion in c:

x = ion.loc[0] - 1
y = ion.loc[1] - 1
iontype = ion . type
self . grid . addion (x,y, self.

colors [iontype])
self .grid .draw()
self grid. drawLegend ([self . colors

data"] , self . colors [" ancilla"]
self . colors [" sympathetic"] self.
colors [" error"]])

visual .scene. autoscale = 0 # so
lasers don 't make the frame
jitter

def settitle (self , titlestring
If self . visual:

import visual
visual .scene. title = titlestring

182

def setsize (self ,width , height)
if self. visual:

import visual
visual.scene. width width
visual .scene. height = height

def readTrap(self, trapfile):
"""Reads trap structures from a file"""
dbmIn = anydbm.open(trapfile)
if not dbmIn. has-key("trap") or

not dbmIn.has-key("chains") or
not dbmIn.has-key("size"):

raise "BadFormat"
self.size = cPickle loads (dbmln["size"])
self.trap = cPickle .loads (dbmln ["trap"])
self.rawchains = cPickle.loads(dbmIn["

chains"])
s elf .buildChains (
dbmIn. close ()

def buildChains(self):
Builds self . chains using self . qc and

self. rawchains"""
allions = [}
for c in self.rawchains:

ions = {}
for i In c:

ions [i ["name"]] = ion ion (i"
name" } , i ["type"] i [" loc"

tempchain = chain (ions)
for i in c:

self.chains[i["name"]] =

tempchain
allions.extend(ions.keys()

self .qc = aqc(allions ,self .method,self.
log)

self.qcO = aqc(allions ,self.method)

def heat(self):
s = ""ll
tot = 0.0
for t in self.chains:

for key , val In t . ions . items ()
S+= " " +key

s += "\t" + str(t.heat) + "\n"
tot += t.heat

s += "total heat = " + str(tot)
return s

def nameToIon(self , ion):
""" Takes ion name and returns assoc

object'"""
c = self .nameToChain(ion)
c . lock . acquire ()
iono = c[ion]
c. lock. release ()
return iono

def nameToChain(self , ion):
"""Returns chain that ion name
self . chainslock . acquire ()
c = self . chains ion]
self . chainslock . release ()
return c
instead , a KeyError will result
raise 'NoChain ',ion

if --name.. == "--main..":

import sys
import os

if len(sys.argv) < 3:
print "usage: iontrap bundle.bin

bin [visual? y/n]"
sys .exit ()

ion

layout .

bbinname = sys.argv{1]
lbinname = sys .argv [2]
If len(sys.argv) > 3:

visualflag = lower(sys.argv[3])
else:

visualflag ="n"
print "creating iontrap
myphys = physics()
it = iontrap (Ibinname , myphys, log=logger

logger (" iontrap . log" 9)
it .qc . noiseType = " bitflip "
it.qc.noisy = True
it .onlygates = False
if visualflag == 'y' : it .visual = True

else: it .visual = False
it. setsize (800,600)
print "drawing
it draw ()
print "reading in bundle
dbmln = anydbm. open (bbinname)
if not dbmIn. has-key ("main"): raise

BadFormat"
mainprog = cPickle loads (dbmln ["main"])
dbmln. close ()
print "simulating ...
it .control. setup (mainprog)
print it . control.execute (mainprog)
it .log. stop ()

B.2.12 llparse.py

File: lparse.py
Author: Andrew Cross <awcross@mit. edu>
Last Modified: 3 April 2004

Layout Language lexer and parser

from string Import
Import sys

import lex
import yacc

Clobals are not great , but they are ok
because this module has

its own namespace.

my globals (not for ply lex/yacc)

lineoffset = 0 # make this nonzero
parsing starts mid-file

size = (0,0) # trap size
trap = [] # trap contents
chains = [[# linear ion chains
namelist = [] # ion names

/# Illexer

tokens = (
'GRID' 'ION' , 'EMPTY' , 'FILL',

'INTEGER' ,'STRING' , 'HYPHEN',
''ID', 'COMMENT'

if

'LPAREN' , 'RPAREN

'LANGLE', 'RANGLE

tGRID = r 'grid
tION = r 'ion '
t.EMPTY r 'empty'
t-FILL = r' fill
tCOMMA r ' , '
tLPAREN = r
tRPAREN = r
tLANGLE r
tRANGLE = r
t-HYPHEN = r
t-ignore = \t"

ll.reserved = {
'grid' : 'GRID',
'ion' : 'ION',
'empty' : 'EMPTY',
'fill' : 'FILL'

def tAINTEGER(t):
r '\d+'
t.value = Int(t.value)
return t

def t.ID (t) :
r' [a-zA-Z][a-zA-Z0-9.j
t .type = lL-reserved . get (t .value ,'ID')
return t

def t..STRING(t):
r '\"{a-zA-ZO-9]*\"
t. value = strip (t. value,'"')
t. value = rstrip (t. value,'"')
return t

def tCOMMENT(t):
r '\#.*'I

183

pass

def t-newline (t)

r'\n+'
t. lineno += t . value . count (" \n")

def t.error(t):

global lineoffset
print " Illegal character '%s ' at %d"%(t.

value [0} , t . lineno+lineoffset)
t.skip (1)

Illexer = lex . lex()

l1parser

def error(sd):
global lineoffset
print "ERROR line %d: %s"%(d+lineoffset

S)
sys .exit()

def p-lprog(t):
'llprog : l1prog statement

def p-Ilprog-term (t):
'llprog : statement

def p-commentline (t) :
'statement : COMVIENT'
pass

def p.newgrid (t):
'statement : GRID pair'
global size trap
if not size == (0,0): error(" grid

redefinition" , t lineno)
size = t [2]
if size [0] < 1 or size [1] < 1: error("

invalid grid size" ,t . lineno)
print "create grid ", size
for y In range(size [0[)

trap append ([])
for x in range(size [1]): trap[y].append

([" empty"])

def p-fill (t):
''statement : FILL pairlist

global size , trap
If size == (0,0): error("grid undefined" ,t

lineno)
for p In t [2]:

if p[O] < 1 or p[] > size [0] or
p[l] < 1 or p[l] > size [1]: error("

out of bounds",t .lineno)
print 'fill ',p
If "ion" in trap]p[0] -1][p[1] -1]:

trap [p[0] -1][p[1] -1] = [" plaquette"
" ion"]

else: trap [p [0] -1] [p [1] -1] = ["plaquette

def p-fill-region (t)
''statement : FILL pair HYPHEN pair'

global size , trap
if size == (0,0) : error("grid undefined" ,t

lineno)
pl = t [2]
p2 = t[4]

if pl[0] < 1 or pl[0] > size [0] or
pi{i] < 1 or p1(1] > size [1]: error("out

of bounds" ,t.lineno)
If p2[0[< 1 or p2[0] > size [0] or

p
2
[11 < 1 or p2[l] > size [1]: error("out

of bounds" ,t. lineno)
If p2[0] < p1 [0] or p2[1] < pl[l]:

error ("second pair must be > first" , t.
lineno)

for x in range(pl[0],p2[0[+1):
for y In range (pl [1] , p2[1]+1):

print 'fill ', (x,y)
if "ion" in trap[x-1][y-1]:

trap [x-1][y -1] = [" plaquette","
ion"]

else: trap [x -1][y -1] = [" plaquette"]

def p-empty (t) :
''statement : EV1PTY pairlist '''

global size , trap
if size == (0,0) : error("grid undefined",t.

lineno)
for p in t[2]:

If p[0] < 1 or p[] > size [0] or \
p[1[< 1 or p[1] > size [1]: error("

out of bounds" ,t.lineno)
print 'empty ',p
if "ion" In trap [p[0[-1][p[1] -1]:

trap [p[0] -1[[p[l] -1] = ["empty" " ion
"]

else : trap [p[0 -1][p[1] -1] = ["empty"]

def p.empty.region (t) :
'.'.statement : EMPTY pair HYPHEN pair '..

global size , trap
if size == (0,0): error (" grid undefined" t.

lineno)
pl = t[2]

p2 = t [4]
If pl[O] < 1 or p1[0] > size [0] or

pl[1] < 1 or p1[1] > size [1]: error("out
of bounds" ,t. lineno)

if p2[0] < 1 or p2[0] > size [0] or
p2[1] < 1 or p2[1] > size [1]: error("out

of bounds", t. lineno)
If p2[0] < pl[0] or p2[1] < p[1[]:

error ("second pair must be > first" t.
lineno)

for x in range(p1[0] ,p2[0[+1):
for y in range(pl[1] ,p2[1]+1):

print 'empty ', (x,y)
if " ion" In trap [x -1[y-1]:

trap [x-1][y-1] = ["empty" " ion"]
else: trap [x-1][y-1] = ["empty"]

def p.chain (t) :
'''statement : LANGLE ionlist RANGLE'
global chains

we are guaranteed no duplicates and no
overlaps by p-ion

only horizontal or vertical or vertical
lines

If len(t [2]) > 1:
1 = t[2]
x1 = 1 [0] [loc"] [0]; yl = 1 [0] [loc"

][I]
x2 = 1[1][loc"] [0]; y2 = 1 [1][loc"

[1]
for i in range(len(l)-2):

xp = I[i+2]["locC][O; yp = [i
+2] [" loc"[1]

if y1 == y2:
If not yp == y2: error("

chain not linear" ,t
.lineno

else:

chains .append (t [2])

if not xp == x2: error(C

chain not linear" t
.lineno)

def p.ionlist (t):
'''ionlist : ionlist ionstatement '''
t [0] = t [1]
t [0]. append(t [2])

def p-ionlist-term(t):
'''ionlist : ionstatement '''

t[10] = I t [11]]

def p-ion(t):
'.'.ionstatement : ION ID COMMA STRING t MA

pair '''
global namelist , size , trap
must guarantee no overlaps and no

duplicates
if size == (0,0) : error (" grid undefined" t

lineno)
if t [6][0] < 1 or t [6][0] > size [0] or

t[6][1] < 1 or t [6][1] > size [1]: error("
out of bounds" ,t.lineno)

If " ion" in trap [t [6] [0] -1] [t [6] [1] -1]:
error (" ion overlaps another ion" , t
lineno (1))

trap [t [6] [0] -1] [t [6] [1] -1]. append("ion")
if not t [2[in namelist

namelist . append(t [2])
t [0] = {" loc" :t [6] , "name" : t [2] , "type"

t [4]}
print 'ion ' t [2], t [4], t [6]

else: error (" ion redeclared" ,t .lineno)

def p.pairlist..multi (t):
' pairlist : pairlist CtVMA pair '''
t[0] = t [1]

184

t[0].append(t [3])

def p-pairlist single (t)

' pairlist : pair '''

t [0] = [t[l1]]

def p-pair (t) :
'p a i r : LPAREN INTEGER CONMMA INTEGER

RPAREN'''
t[0] = (t [2] , t [4])

def p.error(t):
global lineoffset
print "Syntax error '%s ' at %d"%(t.value

,t.lineno+lineoffset)
sys . exit ()

liparser = yacc . yacc ()

B.2.13 logger.py

logger.py
Andrew Cross <awcross@mit. edu>
27 Oct 2003

import Queue
import thread
import threading

At level = 0 the logger is completely disabled
class logger:

def -- i nit-_ (self , filename level=10):
self. level = level
self ._alive = True
if self. level > 0:

self. -file = file (filename , 'w')
self.-queue = Queue.Queue()
thd = threading. Thread(target=

self . logThread , args=())
thd. start ()

def stop(self):
self. alive = False

def logThread(self):
while self . -alive

msg = self._queue.get()
self .-. file . write (msg)
self .- file .flush ()

while se If. -queue. empty() == 0:
self. -file .write(self.-queue.get

())
self. .. fi le . close ()

def put(self function ,message, level=5):
if self. -level > level and self. level

!= 0:
if function!=""

msg = function+" : "+message+"\n"
else:

msg = message + "\n"
self..queue .put(msg)

B.2.14 parse.py

File : parse. py
Author: Andrew Cross <awcross@mit. edu>
Last Modified: 11 May 2004

QCPOL parser

from bundle Import *
from string Import *
Import cPickle , anydbm
Import sys

Import lex
import yace
import polparse
Import liparse

automatically
layout

insert electrodes into the

def autoelectrodes (size ,dat):
x, y = size
for j In range(y):

for i in range (x):
If dat[i][j][0] == "plaquette"

N, S, W, E
= 0, 0, 0, 0

if i > 0 and (dat[i
-11[j][0] == "
empty") : dat[i[[j
]. append(" ewest")

if i < x-1 and (dat[i
+1][j][0] == "
empty"): dat[i][j
] . append (" eeast ")

If j > 0 and (dat[i][j
-1][0] == "empty"
): dat[i][i].
append(" esouth")

If j < y-1 and (dat[i
I[i +11[0] =1
empty") : dat[i][j

append (" enorth"

return dat

parse a qcpol file and write binary layout
lItarg

and binary program btarg
the parser will cause the program to exit if

the
file cannot be parsed
def qcpolparse (fname , ltarg , btarg):

We have to reload the modules if this
is the first

time the parse table was built
reload(lex)
reload (yacc)
reload (Ilparse
reload (polparse)

layouttag = "layout"
qpoltag = "qcpol"

Read in the qcpol file hope it 's
small

f = file (fname,"r")
s = f.read()
f.close()

Get layout and pol code
try:

Istart = index(s,"<"+layouttag+"

lend = rindex (s ,"</"+layouttag+"

pstart = index (s ,"<"±qpoltag+">"

pend rindex (s ,"</"+qpoltag+">"

except ValueError:
print "error: start/end tags

incorrect"
Sys . exit (1)

Set offsets into the file
I = s [lstart+len ("<"+layouttag+">"): lend

]
Ilparse.lineoffset = count (s [0: lstart+

len("<"+layouttag+">")] "\n")
p = s[pstart+len("<"+qpoltag+">"):pend]
polparse.lineoffset = count (s [0: pstart+

len ("<"+qpoltag+">")] "\n")

Parse
liparse . Ilparser .parse(1, lexer=llparse.

lIlexer)
Ilparse .trap = autoelectrodes (Ilparse

size , Ilparse . trap)
lout = anydbm. open(Itarg , 'n')
lout 'size '] = cPickle .dumps(liparse

size)
lout ['trap'] = cPickle .dumps(llparse

trap)
lout ['chains'] = ePickle .dumps(Ilparse

chains)
lout .close ()

set the valid ion names to those seen
in the layout

185

polparse . validionnames = llparse
namelist

polparse . polparser . parse (p, lexer=
polparse . pollexer)

bout = anydbm. open (btarg , 'n')
bout 'main'] = cPickle.dumps(polparse.

terminalbundle)
bout. close ()

if -- name-- == "--main-":

if len(sys.argv) < 4:
print "usage: parse source.pol

bundle . bin layout . bin"
sys . exit ()

srcname = sys.argv[1]
bbinname = sys.argv[2]
lbinname = sys.argv[3}

qcpolparse (srcname , lbinname ,bbinname)

B.2.15 physics.py

physics . py
Andrew Cross

29 Oct 2003

import copy

class physics

def __init...(self ,timescales=[], failures
heating=[]):

dictionary of times ('b ', 's ' units of
ms/um)

self . cTimescales = {" lq" :1 e-6," 2q" :10e
-6,"m" :100e-6,"c" :10e-3,\

"b" :1e -8," s": e -3,"
mem" :100, "j" :0}

dictionary of failure probabilities
b ' units of 1/um)

self. cFailures = {"lq" :1e-4,"2q":0.03 "m
":0.01 ,"b" :0.005}

dictionary of heating amounts ('m' in
units of <n>/um)

self . cHeating = {"m" :.01 ,"s" :1}

If timescales == [];
self. timescales = self . cTimescales

else :
self .timescales = timescales

if failures ==[]:
self.failures = self.cFailures

else:
self . failures = failures

if heating == [:
self .heating = self .cHeating

else :
self . heating = heating

self .tmpFailures = copy. deepcopy(self.
failures)

selff tmpHeating = copy. deepcopy(self.
heating)

B.2.16 polparse.py

File: polparse.py
Author: Andrew Cross <awcross@mit.edu>
Last Modified: 5 April 2004

Physical Operations Language lexer and parser

from string import *
Import sys

import lex
import yacc

from bundle Import *

This file has its own namespace , so these
globals are somewhat

protected.

my glob als (not for ply , lex/yacc

lineoffset = 0 # make nonzero
if we start parsing mid-file

validionnames = {} # valid ion
names, passed in from elsewhere

terminalbundle = None # the bundle we
will output

pollexer

tokens = (
'MOVE' , 'SPLIT', 'COOL', 'READOUT', 'GATE',

JOIN' , 'CONDITION',
'HALT ' , 'SAME' , 'TEST' , 'TESTEQUALS','

MAJORITY', 'COMPAREBITS',
'COPYBITS', 'ADDBITS ' , 'SETBITLIST','

DISPLAYBITS' 'MESSAGE', 'NOISE',
'OMMA' , 'INTEGER' ,'ID' , 'STRING' , 'LPAREN'

, 'RPAREN' ,
'LANGLE' , 'RANGLE' ,'LBRACE' 'RBRACE' , 'DEF

' , 'LCURL' , 'RCURL',
'SELF' , 'CODMMEN',

t-MOVE = r 'move'
t-SPLIT = r'split
t.COOL = r 'cool'
t-READOUT = r 'readout'
t.GATE = r 'gate'
t-JOIN = r 'join '
t-CONDITION = r 'condition'
tNOISE = r'noise
tHALT = r 'halt '
t.SAME = r 'same'
t-TEST = r 'test '
tTESTEQUALS = r 'testequals'
tMAJORITY = r 'majority '
t-COMPAREBITS = r 'comparebits'
t-COPYBITS = r 'copybits'
t-ADDBITS = r 'addbits '
t-SETBITLIST= r 'setbitlist'
t-DISPLAYBITS = r'displaybits'
t-MESSAGE = r 'message
tDEF r 'def '
t-SELF = r 'self'
t-LANGLE = r
t-RANGLE = r'\>'
t-LBRACE = r'\['
tRBRACE = r'\]'
t-LCURL = r'\{ '
tRCURL = r
t-COMMA = r
t-LPAREN = r'\('
tRPAREN = r'\)'
tjignore = " \t"

poL-reserved = {
'move' 'MOVE'
'split' 'SPLIT',
'cool' 'COOL' ,
'readout ': 'READOUT'
'gate' 'GATE',
'join ' 'JOIN',
'condition' : 'CONDITION',
'halt ' : 'HALT',
,same' 'SAME'
'test' 'TEST',
'noise 'NOISE'
'testequals' : 'TESTEQUALS',
'majority' 'MAJORITY',
'comparebits' : 'COMPAREBITS',
'copybits' 'COPYBITS',
'addbits' 'ADDBITS',
'setbitlist ' 'SETBITLIST',
'displaybits' 'DISPLAYBITS',
'message' : 'MESSAGE',
'def' : 'DEF',
'self' 'SELF'}

def tINTEGER(t):
r '\d+'
t.value = int(t.value)
return t

def t-ID(t):
r' [a-zA-Z.] [a-zA-Z0-9]*'
t . type = pol.reserved .get (t . value , 'ID')

186

return t

def t-STRING(t) :
r'\"[a-zA-ZO-9]s\"
t.value = lstrip(t.value'"')
t. value = rstrip (t.value,'"')

return t

def tCOMMENT(t):
r '\#.* '

def t-newline(t):
r'\n+'

t . lineno += t . value . count ("\n")

def t.-error(t):

global lineoffset
print " Illegal character '%s ' at %d"%(t

value [0] , t . lineno+lineoffset
t.skip(1)

pollexer = lex .lex ()

polparser

Global Variables to manage subroutines
subroutines = {}
selfreference = False

def error(s ,d):
global lineoffset
print "ERROR line %d:

s)
sys . exit()

def

%s"%(d+lineoffset ,

pterminus(t):
'terminus : program'
global selfreference
global terminalbundle
if t[1] == 'def':

print 'no code, only subroutines

t [0] = t [1]
elif type(t [1)) Is list:

t[O] = sbundle(t[1] ,False)
elif isinstance(t[1] bundle):

t[0] = t]]
else: error('bad type %s'%t[] ,t.lineno

(1))
if selfreference : error('meta self-

reference ' ,t . lineno (1))

if t[I] != 'def ': print 'final bundle
:',t[0]

if len (subroutines)>0:
print 'subroutines
print ---- '
for k,v in subroutines. items()

print "%s: %s"%(k,v)
terminalbundle = t [0]

def p-program(t):
'program : program define

program statement '''

if t[2] == 'def':
t [0] = t [1]

else
if isinstance(t[1] ,bundle) and

isinstance (t [2] ,bundle):

t [0] = {t [1] ,t [2]]
print ' prog bundle-

bundle implicit
serialization '

elif isinstance(t [1] bundle) and
type(t [2]) is list:

t [0] = [t [I'll
t [0].extend(t [2])
print ' prog bundle-

list implicit
serialization

elif type(t [1]) Is list and
isinstance(t [2] bundle):

t[0] = t[1].append(t[2])
print ' prog list -

bundle implicit
serialization '

elif type(t[1]) Is list and type
(t [2]) is list :

t [0] = t [1].extend(t [2])
print ' prog list-list

implicit
serialization

elif t[1] == 'def':
t [0] = t [2]

else : error ('bad type %s '%[t 1],

t [2]] , t .lineno (1))

def p-program-base(t) :
'program define

statement
statement COMMENT
define COMMENT'''

t[o] = t [1]

def p-def(t):
'define : DEF ID LCURL statement RCURL'
global selfreference
if subroutines.has-key(t [2]):

error('subroutine %s redefined '%
t[2], t.lineno(2))

if type(t [4]) is list:
subroutines [t [2]] = sbundle(t

[4] , False)
if selfreference

print ' attach self
reference in def'

subroutines [t [2]]. attach
(subroutines~t [2]])

selfreference = False
print ' sbundle built from

bundle list in def: ',t[21
elif isinstance(t[4] bundle):

subroutines [t [2]] = t[4]
print ' single bundle not

serialized in def: ',t[2]

If selfreference :
print ' attach self

reference in def'

subroutines[t [2]]. attach
(subroutines [t [2]})

selfreference = False
else : error ('bad type %s '%t [4] t . lineno

(4))
t[0] = 'def'

def p-parallel(t):
'statement : LBRACE statement RBRACE'
If type(t [2]) Is list :

t []0 = pbundle(t {2])

print ' pbundle built from
bundle list:',t[O]

ellf isinstance(t [2] bundle):
t[0] = t [2]
print ' single bundle not

parallelized: ', t[0]
else : error ('bad type %s '%t [2] , t . lineno

(2))

def p.serial(t):
'statement : LANGLE statement RANGLE'
If type(t [2]) is list:

t[0] = sbundle(t [2] False)
print ' sbundle built from

bundle list : ', t[0]
elif isinstance(t2] ,bundle):

t [0] = t [2]

print ' single bundle not
serialized: ', t[0]

else : error ('bad type %s '%t [2] , t .lineno)

def pstatement-list (t):
'statement : statement statement
If isinstance(t [1],bundle) and

isinstance (t [2] , bundle):
t [O] = [t[1] ,t [2]]
print ' bundle-bundle implicit

serialization '
elIf isinstance(t[1],bundle) and type(t

[2]) Is list:
t [0] = t [1]]
t [0]. extend(t [2])
print ' bundle-list implicit

serialization '
elIf type(t [1]) Is list and isinstance(t

[2] ,bundle):
t[Q] = t [1].append(t[2])
print ' list -bundle implicit

serialization '
elif type(t [1]) is list and type(t [2])

is list :
t [O) = t [1].extend(t [2])
print ' list-list implicit

serialization '

187

else: error('bad type %s'%[t[1] ,t[2]] t.
lineno)

def p-statement-expression (t)
'statement : expression
t [0] = t [1]
print ' terminating action: ', t/O1

def p-expression id (t):
'expression : ID'
If subroutines.has-key(t [1]):

defined subroutine
t[0] = subroutines [t [1]1

else:
error ('undefined subroutine %s'%

t [1] t . lineno (1))

def p-expression-halt (t)
'expression : HALT'
t [0] = action (["halt" [])

def p-expression-message (t):
'expression : MESSAGE STRING'
t [0] = action (["message" , t (2]]])

def p-expression-testequals(t):
'expression : TESTEQUALS idlist tOMMA

INTEGER COMMA ID'
t [0[= action (["testequals" [t [2] t [4] ,t

[6])])

def p-expression-majority(t):
'''expression : MAJORITY idlist COMMA

idlist COMMA ID COMMA ID
MAJORITY idlist COMMA ID'

if type(t [4]) Is list:
t [0) = action ([" majority" ,t [2]

t [4] ,t [6], t [8]])
else :

t [0] = action ([" majority" ,[t [2]
t [4]]])

def p-expression.comparebits (t)
'expression : COMPAREBITS idlist COMMA

idlist COMMA ID'
t[0] = action ([" comparebits" [[t [2] t

[4]], t [6]]])

def p-expression-copybits (t):
'expression : COPYBITS idlist COMMA

idlist
t [0] = action (["copybits" ,[t [2] ,t [4]]])

def p-expression-addbits (t):
'expression : ADDBITS idlist COMMA blist

COMMA idlist '
t [0 = action (["addbits" ,[t [2 , t[4] ,t

[6]]])

def p-expression-noise(t):
'expression : NOISE STRING'
t[O] = action (["noise" ,[t[2]]])

def p-expression-setbitlist (t):
'expression : SETBITLIST idlist COMMA

blist '
t [0] = action ([" setbitlist" ,[t [2] ,t

[4]]])

def p-expression displaybits(t):
'expression : DISPLAYBITS idlist'
t [0] = action ([" displaybits" [t [2]]])

def p-expression-test(t):
'expression : TEST idlist COMMA INTEGER

COMMA ID '
t [0] = action ([" test" ,[t [2] ,t [4] ,t [6]]])

def p-expression-same (t):
'expression : SAME idlist COMMA STRING

COMMA ID '
t[0[= action (["same" ,[t [2] ,t [4] ,t [61]])

def p-expression.condition (t):
'expression : CONDITION idlist COMMA

blist COMMA ID
CONDITION idlist COMMA

blist COMMA SELF'''
global selfreference
if t[61 == 'self':

self reference in def, or
error

selfreference = True
t [0] = action (["condition" ,{t

[2 ,t [4] None]])
elif subroutines.has-key(t [6]):

t [0] = action ([" condition" ,[t
[2) t [4], subroutines [t

else : error ('undefined subroutine %s '%t
[6], t .lineno (6))

def p.expression-readout (t):
'expression : READOUT ID COMMA ID'
global validionnames
if not t [2] in validionnames : error ("

invalid ion name" ,t .lineno(2))
t[0] = action (["readout" ,[t [2] ,t [4]]])

def p-expression-gate(t):
'expression : GATE STRING COMMA idlist
global validionnames
If len(t[4]) > 2:

error ('too many IDs %s '%t [4] , t.
lineno)

for n in t[4[:
If not n in validioneames : error

(" invalid ion name" ,t
lineno (4))

t [0] = action (["gate" ,[t [2) ,t [4]]])

def p -expression.cool (t):
'expression : COOL ID'
global validionnames
if not t [2] in validionnames: error ("

invalid ion name" ,t .lineno (2))
t[0] = action (["cool" ,[t [2]]])

def p-expression-join(t):
'expression : JOIN ID COMMA ID'
global validionnames
if not t [2] In validionnames : error ("

invalid ion name" ,t. lineno(2))
if not t [4] in validionnames: error("

invalid ion name" ,t.lineno(4))
t[O] = action (["join" ,[t[2] ,t [4]]])

def p-expression-split(t):
'expression : SPLIT ID COMMA ID'
global validionnames
if not t [2] in validionnames: error("

invalid ion name" ,t. lineno (2))
If not t [4] In validionnames: error ("

invalid ion name" ,t. lineno (4))
t[O] = action (["split" ,[t[2] ,t [4]])

def p-expression-move (t):
'expression : MOVE ID COMMA LPAREN

INTEGER COMMA INTEGER RPAREN'
global validionnames
if not t [2] In validionnames: error("

invalid ion name" ,t. lineno (2))
t [0] = action (["move" ,[t [2] ,(t [5] ,t [7)

[])

def p-idlist (t)
'idlist : LPAREN csepid RPAREN'
t[o] = t[2]

def p.csepid(t):
''csepid : csepid COMA ID

ID'''
If type(t [1]) is list:

t][] = t [1]
t [1].append(t [3])

else:

t [o] = [t [1]]

def p.blist (t):
'blist : LPAREN esepbl RPAREN'
t[] = t[2]

def p-csepbl(t):
''' csepbl : csepbl COMMA INTEGER

I INTEGER'''
If type(t [1]) is list:

t [0] = t [1]
t[0]. append(t [3])

else:
td[0e = rt[rt)

def p-error(t):

188

global lineoffset
try:

print "Syntax error '%s ' at %d"
%(t .value , t . lineno+
lineoffset)

except AttributeError:
print "Syntax error with

inaccessible token
information"

sys . exit ()

polparser yacc.yacc()

B.2.17 propagationMethod.py

File : propagationMethod. py
Author: Andrew Cross <awcrosscmit.edu>
Last Modified: 26 March 2004

Error propagation simulation method

Import copy

class propagationMethod:

"""Classical error propagation simulation
method" " "

def -- init--(self names):

self. cValidOps = ["h" "S" " cnot" ,"x" ," y"

self.qubits = [3
self, state = {}
if len(names)>O:

for n in names:
self.qubits = names
self.state [n] = [0,0] # [s,z]

else : raise ' badInit ' names

def fidelity(self method):

If self . qubits != method. qubits : raise
badState"

for n in self.qubits:
if self . state [n] 1= method. state [n

]: return 0
return 1

def same(self ,names , initstring):

raise "unimplemented"

def reset(self names):

for q in names:
self .state [q] = [0,0]

def gates (self ,ops ,qubits)

"""Example:

gates(['h' , 'cnot '] ['q ' ,['q2 ','q3 ']])""

for o in ops:
If not o In self.cValidOps: raise

badOp" , o

for g in range(len(ops)):
if ops[g] == "h":

t = copy.copy(self.state [qubits[

gf])
self. state [qubits [g]] = [t [1] ,t

[0]]
elif ops[g] == "s":

t = copy. copy(self. state [qubits[

g]])
If t == [1,1]: self. state [qubits

[g]] = [1,0]
if t == [1,0]: self. state [qubits

[g]] = [1 '1]
ellf ops[g] == "cnot":

If self .state [qubits[g

1[0]][0] == 1:
self. state [qubits [g

}[11][01 = (self.state[
qubits[g][1]][0] + 1)%2

if self. state [qubits[g
]111][1] == 1:

1r

self. state [qubits [g
][0]][1] = (self.state[
qubits[g][0]][1] + 1)%2

elif ops[g] == "x":
self. state [qubits [g]] [0] = (self

.state [qubits [g]][0] + 1)%2
elIf ops [g] == "y":

self. state [qubits [g]] [0] = (self
. state [qubits [g]] [0] + 1)%2

self. state [qubits [g]] [1] = (self
.state [qubits[g]][1] + 1)%2

elif ops[g] == "z":
self. state [qubits [g]] [1] = (self

.state [qubits [g]][1] + 1)%2
else: raise "badOp" , ops[g]

def measure(self qubits):

outcomes = []
for q In qubits:

if self.state[q][0] == 1: outcomes.
append (1)

else : outcomes. append (0)
if self. state [q][1] == 1: self. state

[q][1] = 0
return outcomes

def add(self names)

if len(self. qubits)==O:
self. -- init.. (names)

else
self . qubits . extend (names)
for q In names:

self. state [q] = [0 ,0]

def remove(self names):

for q in names:
self. qubits .remove (q)
del self.state [q]

def -- str-- (self)

sl = []
for q in self.qubits:

sl .append(q)
sl .append(":%s\n"%self .state [q]

return "" . join (sl)

B.2.18 pureMethod.py

File: pureMethod.py
* Author: Andrew Cross <awcross@mit. edu>
* Last Modified: 26 March 2004
#
Pure state simulation method

from math import *
from Numeric import *
import random
Import string

class pureMethod:

"""Pure state circuit simulation method"""
def -- init--(self names):

self.x = array([[0,1] ,[1 ,0]])
self.y = array([[0,-1j[,[ij ,0]])
self.z = array([[1 0] [0,-1]])
self.s = array([[1,0] ,[0 ,lj]])
self . cnot = array ([[1 ,0 ,0 ,0] [0 ,1,0 ,0] \

[0,0,0,1] [0,0,1 ,0]])
self.h = 1/sqrt (2)*array([[1 1] [1 , -1]])
self. cValidOps = ["h" "s" " cnot" ,"x" "y"

,"z"]

self.qubits = names
self.state = zeros(2+*len(names))
self . state [0] = 1

def fidelity (self ,method): raise
unimplemented"

def same(self ,names, initstring): raise"
unimplemented"

189

def reset(self ,names): raise "unimplemented"

def gates (self , ops , qubits) : raise
unimplemented"

def measure(self ,qubits):

epsilon = le-6
n = len(self.qubits)
outcomes = []
if innerproduct(self.state ,self.state)

-1 > epsilon : raise "badState"
for q in qubits:

1 = self .qubits.index(q)
P = self. kron(self. kron(ones(2**(n-I

array ([1 0])) ones (2**(1-1))

p0 = innerproduct (P*self .state P*
self .state)

r = random.random()
If r<pO:

outcomes . append (0)
self . state = P*self . state/sqrt(

PO)
else

outcomes . append (1)
P = self .kron(self .kron(\

ones (2** (n-I))array([0 1])

ones (2** (1-1)))
return outcomes

def add(self names):

if len(self. qubits) == 0:
self . -- init__ (names)

else
self . qubits . extend (names)
state = zeros(2**len(names))
state [0] = 1
self .state = self. kron(self. state

state)

def remove (self ,names) : raise "unimplemented

def _str_.(self):
return "unimplemented"

def tpmul(self ops):
"""Matrix-vector multiply for kronecker

products

Takes a list of arrays specifying the
individual

terms in the tensor product matrix.

k = len(ops)
n = len(self.state)
Compute the dimensions of the tensor

product
d = array([l 1])
for i in range(Ok): d *= array(ops[i].

shape)
If n%d[1]!=0 or d[l]>n: raise C

tpmulIncompatible"
If the tensor product is too small

assume the first
" term is the identity (really should

assume the last
" term is the identity though).
If d1)<n: self.state = transpose(

reshape(self .state (n/d[l] d[l])))
for i in range(k-1,-1,-1)

t = ops[i].shape[l]
self.state = reshape(self.state (tIn

/t))
self.state = transpose(

matrixmultiply(ops[i] self-
state))

self.state = reshape(self.state (n
,-1))

self.state = self.state. flat

def kron(self al,a2):
"""Kronecker product of two matrices or

two vectors
The try blocks and if statements
handle the case where the inputs are
vectors
nl = al.shape [0]
n2 = a2.shape [0]

try: ml = al.shape[1]
except IndexError: ml = 1
try: m2=a2.shape[l]
except IndexError: m2=1
if ml*m2 > 1:

result = zeros((nl*n2,ml*m2))
else :

result = zeros(nl*n2)
for i In range(0,n1):

for j In range (0 ml):
if ml==l: block = al[i]*a2
else: block = al[i ,j]*a2
if ml*m2==l: result [n2i:n2*(i

+1)] = block
else: result [n2*i:n2s(i+l),

m2*j :m2*(j+l)] =
block

return result

B.2.19 stabilizerMethod.py

Name: stabilizerMethod . py
Authors : Andrew Cross <awcross2mit. edu> (

Python wrapper)
Last Modified: 26 March 2004

Stabilizer method implementation.

import chp # Scott Aaronson 's CHP simulator
, modified heavily

Import copy

class stabilizerMethod

"""Stabilizer circuit simulation method"""
def __init.__(self names):

self . cValidOps = ["h" ," s" "cnot" ,"x" ,"y"
,"z"]

self. qubits = {}
if len(names)>O:

self.state = chp.initialize (len(
names) ,"".join (['z']*len(names)

else : raise 'badInit', names
for q In names: self.qubits[q) = names.

index(q)

def reseed(self):

chp.reseed ()

def same(self names, initstring):

Test for equality of the states of a
of qubits

against a perfect list of qubits.

list

1 -- same
0 -- different

if not type(initstring) Is str : raise
badInitString"

create QState structures
q = chp. initialize (len(initstring)

initst ring)
p = chp.copy(self.state)

create name dictionaries
pnames = copy.copy(self.qubits)
qnames = {}
for n In names: qnames[n] = names.index(n)
remove all the qubits from p not in

names
for n in self.qubits:

If not n in names:
chp. removequbit(ppnames[n])
rloc = pnames[n]
for k In pnames.keys(:

if pnames[k] > rloc:
pnames[k] = pnames[k] - 1

del pnames[n]
reorder all the qubits in p
for n In qnames.keys(:

if pnames[n] != qnames[n]:
print "swapping %d with %d"%(

pnames [n] , qnames [n])
chp. swapcol(ppnames[n] qnames[n])

190

temp = pnames[n]
for m in pnames. keys(:

if pnames[m] == qnames[n]:
pnames[m] = temp

pnames[n] = qnames[n]

test equality
sametest = chp.same(q,p)
chp.freestate (q)
chp.freestate (p)
return sametest

def displayket(self):
""" Displaying the Ket using CHP """

chp. printket(self. state)

def fidelity(self ,method):

if self.qubits != method.qubits: raise
badState"

return chp. fidelity (self. state ,method.

state)

def reset (self names):

for q in names:
rbit = chp.measure(self. state ,self.

qubits [q] 0)
if rbit in [1,3]: chp.xgate(self.

state , self . qubits [q]

def gates (self , ops , qubits)

" " " Example:

gates(['h ','cnot '} ['qi ' ,['q2' ,'q3 ']])""

for o in ops:
if not o in self.cValidOps: raise

badOp" , o
for g in range(len(ops)):

if ops [g] == "h" :
chp.hadamard(self . state , self.

qubits [qubits[g]])
elif ops[g] == "s":

chp. phase(self . state , self . qubits
[qubits [g]])

elif ops[g] == "cnot":
chp. cnot (self. state ,self. qubits

qubits [g] [0]] ,\
self. qubits [qubits [g

[[1]])
elif ops[g] == "x":

chp. xgate(self. state , self. qubits
[qubits [g]])

elif ops[g] == Cy":

chp. ygate(self. state , self. qubits
[qubits [g]])

elif ops[g] == "z":
chp. zgate(se lf . state , se lf . qubits

[qubits [g] I)
else : raise "badOp" , ops [g]

def measure(self , qubits):
""" Projectively measure a list of qubits

outcomes =

for q in qubits:
n = chp. measure (self . state , self.

qubits [q] 0)
If m < 2: outcomes. append (m)
else: outcomes. append(Int (m)-2)

return outcomes

def add(self ,names):

there will be no duplicate names,
because that is

enforced here and in .. init..
iloc = len(self.qubits)
for n in names:

if self.qubits.has-key(n): raise
'duplicateName ' , n

chp . addqubit (self . state)
self.qubits[n] = iloc
iloc = iloc + 1

def remove(self names):

if a name is invalid , a KeyError will
get raised

for n in names:
chp. removequbit(self .state , self

qubits[n])
rloc = self. qubits [n]
for k in self.qubits.keys(:

if self. qubits [k] > rloc

self . qubits [k
j = self.
qubits [k

del self. qubits [n]

def generators(self):
return chp.statestring(self.state)

def ket(self):
return chp. ketstring (self . state)

def -- str-- (self):
return self.generators()
return self. ket ()

191

Appendix C

Quantum Architecture (ARQ)
Simulator Source Code

C.1 Module Dependencies

interaLctive-<-------- arq

p -- '% -,- ---- nise
comadLi e| ach e|

QState - -- CGMac ine SyMain

jutilities \
P1 ar----------- PCGMa hine Noi P Machine

planarops ITMachine NoisyITMachine

htable phash lookupa

Figure C-1: This diagram shows ARQ source dependencies. Each source file at an

arrow tail includes the source file at the arrow head.

The quantum architecture simulator (ARQ) is a standalone program written in

C++ using the standard template library (STL). The main program, arq, creates

an appropriate Machine from the hierarchy: Machine, CGMachine, PCGMachine,
ITMachine, NoisyCGMachine, NoisyPCGMachine, and NoisyITMachine. Each ma-

chine may need a quantum state QState or a planar layout Planar. The user interface

modules are interactive, commandLine, and Op.

193

C.2 Source Listing

C.2.1 CGMachine.cc
/7 CGMachine.cxx
// Added new logging scheme 07/19/04 ddthaker
7/ $Id: CGMachine.cc 223 2004-12-08 00:52:51Z

awcross $
// Clifford group machine

#include "include/globals . hh"
#include "include/CGMachine.hh"
#include "include/loglevels . hh"

CGMachine: CGMachine ()
I

qubitCounter = 0;

}

void
{

void

{

}

CGMachine:: save (void)

// backup our state
qbak = qs;
Machine :: save ()

CGMachine :: restore (void)

// restore our state
qs = qbak;
// restore the machine
Machine:: restore ();

within

/7 Preprocess the instruction array . Do things
like initialize

// information and set instruction times.
/7 Only quit if you recognize a critical error

within your jurisdiction.
/7 Only warn of unknown operations in debug mode

bool CGMachine: : process (void)
{

long i;
vector<Op>::iterator j;
vector<string >::iterator s;

// First , process "seq using Machine
if (! Machine : : process ()) return false

// If that didn 't fail , go ahead and do our
work.

for(i = 0; i < seq.size(); i++)
{

for(j seq[i].begin(; j < seq[i].end
0; j++)

// QUBIT NAME, . NAME
if (j->opcode == "qubit")

if (log-level & DEBUG) cerr <<
DBG processing qubit " << i
<< endl;

for(s = j->args .begin(; s < j
->args.end(; s++)

{
if(hasqubit(*s))

cerr << "Warning: " <<
s << " redeclared
<< endl;

else
{

If (log.level & DEBUG)
cerr <<"DBG add
qubit "<< *s <<" "
<< i << endl;

if (log-level & INIT)
cout << "qubit
<< *s << endl;

setqubit (*s);
qs . add ();

}
}
j->opcode = "nop"

}
// MEASURE BIT, QUBIT
else if (j ->opcode == "measure"

I
if (log-level & DEBUG) cerr <<

DBG processing measure
<< " " << i << endl;

// FIX - check args . size()
first

if(hasbit (j->args [0])
I

}
if (

}
//7
els

f

2

if (log-level & INIT)
cout << "Adding bit

" << *s << endl;
setbit (*s ,0);

I hasbit (j->args [0]) |
hasqubit (j->args [1]))

cerr << "Error ! Incorrect
arguments for "
<< "\"measure bit , qubit

\" at instruction

<< i << endl;
return false ;

}

GATE QUBIT
e if (j->opcode =="x"

j->opcode =="y"
j->opcode =="z"
j->opcode == "s"
j->opcode =="h"

||
II
||
II

if (log-level & DEBUG) cerr <<
DBG processing "<< j->
opcode <<" " << i <<endl;

// FIX check args.size()
if(hasqubit (j->args [0])
{

cout << j->args[0] << endl;
cerr << "Error! Incorrect

arguments for "
<< "\"" << j->opcode

<< " qubit\" at
instruction

<< i << endl;
return false;

}
}
// CNOT QUBIT, QUBIT
else if(j->opcode == "cnot"

if (log-level & DEBUG) cerr
<< "DBG processing
cnot << " " << i <<
endl;

// FIX check args .size()
if (! hasqubit (j->args [0]) |

hasqubit(j->args [1])

cerr << "Error! Incorrect
arguments for "
<< "\" cnot qubit , qubit

\" at instruction

<< i << endl;
return false

}
}
/7 CZ QUBIT, QUBIT
else If(j->opcode == "cz")

{
if (log-level & DEBUG) cerr <<

DBG processing cz " <<
<< i << endl;

/7 FIX check args . size()
if(! hasqubit(j->args [0]) |1

hasqubit (j->args [1])

cerr << "Error! Incorrect
arguments for "
<< "\" cz qubit , qubit \"

at instruction
<< i << endl;

return false;
}

}
// SEED INTEGER

194

else if(j->opcode == "seed"
{

If (log-level & DEBUG) cerr <<
DBG processing seed "<<
" << i << endl;

// FIX check args . size ()
if (isInteger (j->args [0])

cerr << "Error! Incorrect
arguments for "
<<"\"seed integer\" at

instruction
<< i << endl;

return false
}

}
else if(j->opcode == "logtableau"

| j-->opcode == "logket"
|| j->opcode == "

logstate")

if (log.level & DEBUG) cerr <<
DBG processing logtableau
logket , or logstate" <<
<< i << endl;

/7 SUBSET CBIT, N, QUBIT1.
QUBITN, SGEN1, ... , SGENN

/7 We' lt check that CBITS and QUBITS
exist , are not

// written multiple times , and that
the generators

// have the correct number of
characters from the

// correct set of letters.
else if (j->opcode == "subset"

bool bail = false;
// FIX - check args. size
int n = str2int (j->args [1]) ; /

FIX
map<string bool> seen;
// check bit argument
If(hasbit (j->args [0])
{

if (log.level & INIT)
cout << "Adding bit

" << *s << endl;
setbit (*s 0)

If (hasbit (j->args (0])) bail
= true;

// check qubit arguments
for(int i=2; i < 2+n; i++)

{
if(! hasqubit (j->args {il

])) bail = true;
if(seen[j->args[i]])

bail = true;
seen [j->args[i]] = true;

}
7/ check number of arguments
If (j->args . size () 1= 2 + 2*n

bail = true;
// don 't bother with the rest of

now -
// QState will issue warnings.

FIX later.
if(bail) return false;

// SUBSETKET N, QUBIT1, ... ,.QUBITN
else If (j->opcode == "subsetket"

{
bool bail = false;
// FIX - check args. size
Int n = str2int(j->args [0]); //

FIX
map<string bool> seen;
// check qubit arguments
for(Int i=l; i <

1
+n; i++)

{
if (! hasqubit (j->args [i

])) bail = true;
if(seen [j->args[i]]

bail = true;
seen [j->args[i]] = true;

// check number of arguments
if (j->args . size() != 1 + n)

bail = true;

// don 't bother with the rest of
now -

7/ QState will issue warnings.
FIX later.

if(bail) return false;
}
7/ UNANOWN
else
{

If (log-level & DEBUG) cerr <<
DBG Warning! Opcode " << j
->opcode << " unknown to
CGMachine" << endl;

continue; // don 't set the
number of clock cycles

}

/7 Set the number of clock cycles
for the processed instruction

j->nticks = times [j->opcode];
}

}
return true;

bool CGMachine:: exec(Op& op, bool log)
{

if(op.opcode == "h")
{

if(log && log-level & GATES) cout << op
<< endl;

qs.h(getqubit(op.args[0]));
}
else If(op.opcode == "cnot"
{

if(log && log-level & GATES) cout << op
<< endl;

qs.cnot(getqubit(op.args [0]) ,getqubit(op
.args [1]));

}
else If (op. opcode ==cz"

{
if(log && log-level & GATES) cout << op

<< endl;

qs.h(getqubit(op.args[1]));
qs.cnot(getqubit(op.args [0]) ,getqubit(op

.args [1]));
qs.h(getqubit(op.args[1]));

}
else If(op.opcode == "s"
{

if(log && log-level & GATES) cout << op
<< endl;

qs.s(getqubit(op.args[0[));
}
else If(op.opcode == "x)

{
If(log && log-level & GATES) cout << op

<< endl;
qs.gx(getqubit(op.args [0])

}
else If(op.opcode == "

{
if(log && log-level & GATES) cout << op

<< endl;
qs .gy(getqubit (op. args [0))

}
else if(op.opcode == "z"
{

if (log && log-level & GATES) cout << op
<< endl;

qs.gz(getqubit(op.args [0]));
}
else if (op. opcode == "measure"
{

if (log && log-level & GATES) cout << op
<< endl;

setbit (op. args [0] , qs. measure(getqubit (op
args [1]) ,0)%2);

}
else If (op. opcode == "seed"
{

7/ important , log seed no matter what
if (log && log-level & (GATES+MOVE-

ERRORS)) cout << op << endl;
// FIX - (-1) should choose random seed
qs . reseed (str2int (op. args [0])

else if(op.opcode == "subset"
{

195

vector<string > cgens
vector<int> qlist ;
Int n = str2int (op.args [1]);
for(int i = 2; i < 2 + n; i++) qlist.

push-back (qubits [op. args [i]])
for(int i = 2+n; i < 2 + 2*n ; i++)

cgens.push-back(op.args[i]);
if(qs .subset(qlist cgens)) setbit(op.

args [0] ,1);
else setbit (op. args [0] 0)

}
else if(op .opcode == "subsetket"

int i ,j ,k;
if (1)

//if (log-level 8 GATES)
{

vector<string> cgens;
vector<int> qlist ;
Int n = str2int (op. args [0]);
for(i = 1; i < 1 + n; i++) qlist.

push-back(qubits[op.args[i]]) ;
cout << qs . subset-ket (qlist) << endl

}}
else if (op. opcode == " logtableau"
{

if (log && log-level & GATES) cout << qs
.raw() << endl;

}
else if(op.opcode == "logket"

if (log && log-level & GATES) cout << qs
.ket() << endl;

else if(op.opcode == "logstate"

if (log && log.level & GATES) cout << qs
.state() << endl;

else return Machine:: exec(op, log);

return true;

bool CGMachine: : hasqubit (string name)
{

map<string , int >:: iterator loc;
loc = qubits . find (name) ;
if(Ioc != qubits.end()) return true;
return false

void CGMachine: : setqubit (string name)

qubits [name] = qubitCounter;
qubitCounter++;

I

int CGMachine:: getqubit (string name)
I

return qubits[name];

I

CGMachine:: CGMachine (string fname) : Machine ()

qubitCounter = 0;

map<string ,double> params = readParamFile(
fname) ;

map<string double>:: iterator sdi;

for(sdi=params.begin() ; sdi != pararns.end()
sdi++)

string s = sdi->first
string t = Token(s);
if(t == "times"

times[s] (int)sdi->second;
cout << "param times." << s <<

" << (int)sdi->second <<
endl;

} else

cerr << "Warning! Cannot
understand parameter

cerr << t << " ." << s <<".
Ignoring." << endl;

I
}

I}

C.2.2 CGMachine.He
// CGMachine. hh
// Andrew Cross <awcrossmit .edu>
// $Id: CGMachine. hh 6 2004-07-16 03:48:34Z

awcross $
// Clifford group machine

#include <cstdlib>

#Include "Machine .hh"
#Include "QState.hh"

#ifndef CGMachine_.
#define __CGMachine__

class CGMachine : public Machine
{
protected;

// overridden functions
bool process (void) ;
bool exec(Op& op, bool log);
// functions
bool hasqubit(string name);
void setqubit (string name);
int getqubit (string name);
// data
map<string , int > qubits;
QState qs , qbak;
long qubitCounter;

public:
CGMachine (s t r i n g fname);
CGMachine ();
void save(void);
void restore(void);

};

#endif

C.2.3 ITMachine.cc

// ITMachine. cxx
// $Id: ITMachine.cc 149 2004-08-17 13:44:11Z

awcross $

#include "include/ITMachine.hh"
#include "include/globals .hh"
#include "include/ loglevels . hh"
using narnespace std;

ITMachine:: ITMachine()
{

// Don't really call this - you won't
have heating!

ITMachine:: ITMachine(string fname)

map<string ,double> params = readParamFile(
fname);

map<string , double >:: iterator sdi;

for(sdi=params.begin(; sdi != params.end()
sdi++

{
string s = sdi->first
string t = Token(s," .");
if (t == "times"

times[s] = (Int)sdi->second;
if (log-level & STARTUP)

cout << "param times."
<< 5 << « 1

<< (int)sdi->second
<< endl;

} else if(t == "heating"

heating-rates[s] = sdi->second;
if (log-level & STARTUP)

cout << "param
heating-rates ." <<

196

<< " << sdi->
second <<
endl;

cerr << "Warning! Cannot
understand parameter

cerr << t << " ." << s <<
Ignoring." << endl;

process(void)

long i ;
vector<Op>::iterator j;
vector<string >:: iterator s;

// First , process "seq " using PCGMachine
if (I PCGMachine:: process ()) return false;

// PCGMachine's language intersects our
language but

/7 is not a subset of our language. We will
have to

// block some instructions now and add the
new instructions

// If that didn 't fail , go ahead.

#ifdef TURBO
map<string , int >:: iterator msi;
for (msi=qubits . begin () ; msi != qubits .end()

msi++)
heat [msi->first] 0.0;

return true;
#else // not TURBO

for(i = 0; i < seq.size() ; i++)
{

for(j = seq[i].begin(; j < seq[i].end
0; j++)

{
/7 CNOT QUBIT, QUBIT - cnot is not

directly a valid operation
// with trapped ions . Block it for

now. In the future we could
// replace it with hadamards and

controlled-Z gates.
if(j->opcode == "cnot")
{

if (log-level & DEBUG) cerr <<
DBG processing cnot" <<
endl;

cerr << "Error! Please use h and

cz instead of cnot at

<< i << endl;
return false;

// COOL QUBIT, QUBIT, TICKS
// Verify the arguments
else if(j->opcode == "cool"
{

if (log..level & DEBUG) cerr <<
DBG processing cool " <<
" << i << endl;

7/ FIX check args . size ()
if (! hasqubit (j->args [0]) II

hasqubit(j->args [1])
[| ! islnteger(j

->args [2]))
{

cerr << "Error! Incorrect
arguments for "
<< " \"cool qubit qubit

ticks\" at
instruction

<< i << endl;
return false;

j->nticks = str2int(j->args[2]);
continue; // don't set the

number of ticks again

7/ UNKNOWN
else
{

If (log-level & DEBUG) cerr <<
DBG Warning! Opcode " << j
->opcode << " unknown to
ITMachine" << endl;

continue; // don 't set the
number of clock cycles

I

j->nticks = times [j->opcode]; //
unreachable for now

}

// Build the heat map using the qubit names
in CGMachine:: qubits

// If CGMachine:: qubits changes then this
code will break.

// Assume that each qubit has <n> \approx
0 for the center of mass mode.

map<string , int >:: iterator msi
for (msi=qubits . begin () ; msi != qubits .end()

; msi++)
heat [msi->first] = 0.0;

return true;

#endif // TURBO
I

bool ITMachine: :exec (Op& op, bool log)
{

if(
{

op.opcode == "cool")

// FIX - this is all messed up
//if(nnqubits(op.args[0],op.args[1]))

double oldheati ; double oldheat2

If (log-level & GATES) {
oldheatl = heat [op. args

[0]];
oldheat2 = heat[op.args

[1]];
}
// The qubits first have to be

joined to share
/7 their CM mode.
heat[op.args[0]] +=

heating-rates ["join"];

heat [op.args [1]] +=
heating-rates["join"];

7/ Cool both qubits using
heating-rates [" cool "]

7/ as the change in number of
quanta (of the center

/7 of mass mode) per clock cycle
. This should be

// < 0 if you want cooling.
op. nticks = str2int (op. args [2]);
double delta = heating-rates

cool"] * op. nticks;
heat [op. args [0]] += delta;
heat[op.args[1]] += delta;
if(heat [op. args [0]] < 0) heat[op

. args [0]] = 0;
if(heat [op. args [1]] < 0) heat[op

. args [1]] = 0;
/7 The qubits need to be

separated again.
heat [op. args [0]] +=

heating-rates ["split");
heat [op. args [1]] +=

heating.rates ["split"];
/7 Assume that the cooling laser

is applied to
7/ the first qubit and causes

that qubit 's state
7/ to be destroyed. Model this

as depolarization.
double p = ((double)rand()) /((

double)RAND.MAX);
Op 0;
If(p < 0.3333

o.opcode = "x";
else if(p < 0.6666)

o.opcode = "y";
else

o.opcode = "z";
o.args.push-back(op.args[0[);

7/ The log variable will be
ignored here

if (log-level & GATES) {
cout << "heat " << op.

args[0] << " " <<
oldheatl << " "

197

} else
{

bool ITMachine::
{I

}

}I
}I

<< heat [op. args
[0]] <<
endl;

cout << "heat " << op.
args[1] << " " <<
oldheat2 << " "

<< heat [op. args
[1]] < <
endl;

return CGMachine::exec(o,true);

// FIX - this is broken too
7* else

{
cerr << "Error! cooling applied

to distant qubits .";
cerr << "Surely you didn 't

intend this . Check your
code.";

cerr << endl;
return false

}
else if(op.opcode == "move"
{

double oldheat;
if (log-level & GATES) oldheat = heat [op

. args [0]] ;
7/ Heat up qubits as a result of the

move
heat [op. args [0]] += heating-rates ["move"

] * str2int(op.args [2]);
/7 The log variable will be ignored here
if (log-level & GATES)

cout << "heat " << op. args
[0] << " " << oldheat <<

<< heat[op. args [0]] < <
endl;

/7 Execute the move
return PCGMachine:: exec(op, log);

}
else If(op .opcode == "cz"

double oldheatl ; double oldheat2;
If (log-level & GATES) {

oldheatl = heat[op.args [0]];
oldheat2 = heat[op.args [1]];

7/ PCGMachine will check for locality
and apply the gate.

// We need to apply heat for the split
and join here.

heat [op. args[0]] += heating-rates ["split
"] + heating-rates ["join"];

heat [op. args [1]] += heating-rates ["split
"] + heating-rates ["join"];

// The log variable will be ignored here
If (log-level & GATES) {

cout << "heat " << op. args
[0] << " " << oldheatl <<

<< heat [op. args [0] <<
endl;

cout << "heat " << op. args
[1] << " " << oldheat2 <<

<< heat [op. args [1]] < <
endl;

return PCGMachine::exec(op, log);

Ise return PCGMachine: : exec (op, log);

return true;

C.2.4 ITMachine.hh
// ITMachine. hh
// Andrew Cross < awcross@mit. edu>
// $Id: ITMachine. hh 6 2004 -07-16 03:48:34Z

awcross $

#Ifndef __ITMachine.
#define __ITMachine-.

#Include <map>
#include <string>

#include " utilities .hh"
#include "PCGMachine. hh"

using namespace std;

class ITMachine : public PCGMachine
I

protected:

// <n> for the center of mass mode

// of each qubit
map<string , double> heat;

bool process(void);
bool exec(Op& op, bool log);

public:
map<string , double> heating-rates
ITMachine(string fname)
ITMachine()

#endif

C.2.5 Machine.cc
7/ Machine. cxx
7/ $Id : Machine. cc 158 2004 -08-26 22:29:24Z

setso $
7/ Computing machine

#include "include /Machine. hh"
#include "include/globals .hh"
#include "include/ loglevels .hh"

using namespace std;
Machine:: Machine ()

skip = false

void Machine:: save (void)

void Machine:: layout (string fname)

void Machine:: restore (void)

map<string , int >:: iterator i;
skip = false ;
// reinitialize bits
for (i=bits . begin () ; i != bits .end() ;i

++) i->second = 0;

ostream& operator << (ostream& os , Machine& m)

unsigned long iptr = 0;
os <<m.seq.size() << " instruction groups"

<< endl;
while(iptr < m.seq.size ()

vector<Op> tmp = m. seq [iptr ; //
parallel operations in this step

os << iptr << " : " << tmp. size () <<

for(int i = 0; i < tmp.size(; i++)

os << tmp [i . opcode <" (" << tmp[i
I. neicks << ") "

for(int j = 0; j < tmp[i .args. size
0 ; i++)
os << tmp [i].args [j]<<"

os << endl;
iptr++;

return os

198

// I won 't be careful here either , for now.
map<string ,double> Machine:: readParamFile (string

filename)
{

map<string ,double> result
string s;
char buffer [500];
ifstream fin (filename . c.str () ios :: in)

// FIX - what if file doesn't exist?

fin . getline(&buffer [0] ,499)
while(!fin . eof())
{

string s(&buffer [0])
string t = Token(s,"=");
Trim(s);
result [t] = atof(s . c.str ()
fin. getline(&buffer [0] 499);

}
fin . close()
return result

}

Machine:: Machine(string fname)
{

skip = false;

// Instruction times that are not explicitly
declared here

// will be created the first time they are
requested and

// will be set to zero.

map<string ,double> params = readParamFile(
fname) ;

map<string ,double>::iterator sdi;

for(sdi=params.begin(; sdi != params.end()
sdi++)

{
string s = sdi->first
string t = Token(s,".");
if (t == "times"

} else
{

times[s] = (int)sdi->second;
cout << "param times." << s <<

" << (nt)sdi->second <<
endl;

cerr << "Warning! Cannot
understand parameter

cerr << t << " ." << s <<
Ignoring." << endl;

// Preprocess the instruction array. Do things
like set labels ,

// initialize information , and set instruction
times .

// Only quit if you recognize a critical error
within your jurisdiction.

77 Only warn of unknown operations in debug mode

bool Machine:: process(void)

long i;
vector<Op>::iterator j;
vector<string >:: iterator s;

for (i = 0; i < seq . size(; i++)
{

// Count the number of jumps in this
block of parallel

// instructions . There cannot be more
than one jump .

// Calls count as jumps.
int njumps = 0;
// Count the number of labels in this

block of parallel
// instructions. There cannot be more

than one label.
int nlabels = 0;
for(j = seq[i].begin(); j < seq[i].end

0; j++)
{f

// NOP
If (j->opcode == "nop"

if (log-level & DEBUG) cerr <<
"DBG processing nop " << i
<< endl;

}
// BIT NAME, . NAME
// Initialize each bit to zero

ignoring duplicates (warn)
// and replace the instruction with

NOP
else if(j->opcode == "bit"
{

If (log-level & DEBUG) cerr <<
"DBG processing bit " << i
<< endl;

for (s = j->args . begin () ; s < j
->args .end() ; s++)

{
If(hasbit(*s))

cerr << "Warning: " << *
s << " redeclared
<< endl;

else
{

if (log-level & DEBUG
cerr<< "DBG add bit
" << *s << " " <<

i << endl;
If (log-level & INIT)

cout << "bit " <<*
s << endl;

setbit(*s,0);

}
}
j->opcode =nop"

// LABEL NAME
// Add the label and its target.

Abort if the label exists.
// Replace the instruction with NOP.
else if(j->opcode == "label"
{

if (log-level & DEBUG) cerr <<
DBG processing label " << i
<< endl;

If(haslabel(j->args [0]))
{

else

cerr << "Error ! Cannot
continue . Multiple
labels \""
<< j->args[0] << "\" at

instruction " <<
i << endl;

return false ;

{
If (log-level & DEBUG)

cerr << "DBG label
<< j->args
[0] << " refers
to "

<< i << endl;
setlabel (j->args [0], i);

j->opcode = "nop"; /
replace with NOP

nlabels++; //
increase label count

}
// JUMP NAME
7/ Do nothing. We cannot know if

jump target exists without
/7 doing another pass.
else If (j->opcode == "jump"
{

the

If (log-level & DEBUG)
cerr << "DBG processing

jump " << i << endl

njumps++; //
increase jump count

/7 AND C A B (c = a * b)
7/ Verify that the arguments are of

the form
/7 bit , bit |[01], bit [01].
else if(j->opcode == "and"
{

If (log-level & DEBUG)
cerr << "DBG processing

and " << i << endl;

199

}I
}I

}I

)

// FIX check args . size ()
for(s = j->args. begin(; s < j

->args.end() s+
{

I
if(

If(1hasbit(*s))
{

If (log-level & INIT)
cout << "Adding bit

" << *s << endl;
setbit (*s 0)

}

hasbit (j->args [0]) ||
(j->args [1 = "0" && j->

args[1] "1" &&
Ihasbit (j->args [1])) I

(j->args2] " " && j-->
args [2] != "1" &&

1 hasbit (j-->args [2])))

cerr << "Error ! Incorrect
arguments for "
<< " \"and bit , bit 1[01]

bit 1[01]\ " at
instruction

<< i << endl;
return false ;

}
}
/7 XOR C A B (c = a + b)
// Verify that the arguments are of

the form
// bit , bit [01], bit 1[01].
else if(j->opcode == "xor"
{

if (log-level & DEBUG)
cerr << "DBG processing

xor " << i << endl;
// FIX check args . size ()
for(s = j->args . begin(; s < j

->args .end() ; s++
{

if(hasbit(*s))

If (log-level & INIT)
cout << "Adding bit

" << *s << endl;
setbit (*s 0)

}
I
if 1 hasbit (j->args [0]) I I

(j->args[1] 1= "0" && j->
args [1] != "1" &&

1 hasbit (j->args [1])) ||
(j-->args [2] I= " 0" && j->

args [2] != "1" &&
hasbit (j->args [2])))

cerr << "Error 1 Incorrect
arguments for "
<< "\"xor bit bit 1[01]

bit 1[01]\" at
instruction

<< i << endl;
return false ;

/7 OR C A B (c = a I b)
/7 Verify that the arguments

the form
/7 bit , bit I[Oil, bit |[01].
else if (j->opcode == "or"

are of

If (log..level & DEBUG)
cerr << "DBG processing

or " << i << endl;
// FIX check args . size()
for (s = j->args .begin(; s < j

->args.end(); s++)
{

if (

If (hasbit(*s))

If (log-level & INIT)
cout << "Adding bit
" << *s << endl;

setbit (*s 0);

! hasbit (j->args [0]) I|
(j-->args[1] 0= "0" && j->

args]1] "1" &&
hasbit (j->args [1])) I I

}
//
//7

els

{

(j->args[2 = "0" &&j->
args [2] "1" &&

hasbit (j->args [21)

cerr << "Error Incorrect
arguments for "
<< "\" or bit , bit 1[01] ,

bit j [01]\" at
instruction

<< i << endl;
return false ;

}

IF NAME, . NAME
Abort if any of the bits do not

exist.
e If(j->opcode == "if"

If (log-level & DEBUG)
cerr << "DBG processing

if " << i << endl;

for(s = j->args. begin(); s < j
->args .end() ; s++)

{
If
{

(hasbit(*s))

setbit (*s 0);
//cerr << "Error!

" << *s <<
undeclared in

//cerr << "\"if\"
instruction
<< endl;

//return false

Bit

t;
at
<< i

}
/7 SET C A (c = a)
/7 Verify that the arguments are

the form
7/ bit , bit I[Oil
else if(j->opcode == "set"
{

of

If (log-level & DEBUG)
cerr << "DBG processing

set " << i << endl;
/7 FIX check args . size ()
for(s = j->args.begin() ; s < j

->args.end() ; s++)
{

if(! hasbit(*ss)
{

}
if (

{

If (log-level & INIT)
cout << "Adding bit

" << *s << endl;
setbit (*s 0);

! hasbit (j->args [0]) I I
(j->args[1] I- "0" && j->

args[1] I= "1" &&
hasbit (j->args [1])))

cerr << "Error! Incorrect
arguments for "
<<"\" set bit , bit

I[01]\" at
instruction

<< i << endl;
return false ;

}

// CALL NAME
/7 Do nothing. We cannot know if

jump target exists without
/7 doing another pass.
else if (j->opcode == "call"

{

the

If (log-level & DEBUG)
cerr << "DBG processing

call " << i << endl

njumps++; //
increase jump count

}
77 RETURN
/7 Do nothing. We cannot know if

jump target exists without
7/ doing another pass.
else If(j->opcode == "return"
{

the

200

{

}
}

}

f

if (log-level & DEBUG)
cerr << "DBG processing

return " << i <<
endl;

njumps++;
increase jump count

//

}
// MSG args
// Do nothing.
else if(j->opcode == "msg"
{

if (log.level & DEBUG) cerr <<
DBG processing msg " << i
<< endl;

}
// HALT
// Do nothing.
else if(j->opcode == "halt"
{

if (log-level & DEBUG)
cerr << "DBG processed

halt " << i << endl

}
/7 UNKNOWN
else

If (log-level & DEBUG)
cerr << "DBG Warning!

Opcode " << j->
opcode

<< " unknown to Machine"
<< endl;

// Set the number of clock cycles
for the processed instruction

j->nticks = times [j->opcode];
I
7/ Check that the number of jumps or

labels in the parallel block
// isn 't greater than one.
If(njumps > 1 11 nlabels > 1)
{

cerr << " Error ! Multiple jumps or
labels at instruction
<< i << endl;

return false

return true;
}

7/ The log argument doesn 't do anything here
but does in other

7/ classes.
bool Machine::exec(Op& op, bool log)
{

vector<string >:: iterator i

if(op.opcode == "nop")

return true;

op.opcode == "if"

skip = false ;
for(i=op.args.begin(; i < op.args.end()

; i++)
if(getbit(*i) == 0)
{

skip = true;
break;

return true;

else If(op.opcode == "msg")

if (log-level & MESSAGE) cout << op <<
endl;

return true;

If(op.opcode == "jump" I
op.opcode == " call" I
op.opcode == "return"
op. opcode == "halt"

/7 handle jumps in run()
/7 handle halts in run() too
return true;

else If(op.opcode == " xor"

int f, s;
If(op.args[1] == "0") f = 0;
else if(op. args[1] == "1") f = 1;
else f = getbit (op. args [1]);
If(op. args [2] == "0") s 0;
else if(op. args[2] == "1") s = 1;
else s = getbit(op.args[2});
setbit (op. args [0] ,(f + s)%2);
return true;

}
else if(op.opcode == "and"

{
int fs;
If(op.args[1] == "0") f = 0;
else If(op.args[1] == "1") f = 1;
else f = getbit(op.args[1]);
if(op.args[2] == "0") s = 0;
else if(op.args[2] == "1") s = 1;
else s = getbit (op. args [2]);
setbit (op. args [0] ,f * s);
return true;

}
else if(op.opcode == "or"

{
int fs;
if(op.args[l] == "0") f = 0;
else if(op.args[1] == "1") f = 1;
else f = getbit(op.args[1]);
If(op. args [2} == "0") s = 0;
else if(op. args[2] =="1") s = 1;
else s = getbit (op. args [2]);
setbit (op.args[0], f I s);
return true;

}
else If(op.opcode == "set"

{
int f;
if(op.args[1] == "0") f = 0;
else if(op.args[1] == "1") f = 1;
else f = getbit(op.args [1]);
setbit(op.args[0],f);
return true;

}
else return false;
return true;

void Machine:: load(string filename)

unsigned long linecount = 0;

if (log-level & DEBUG)
cerr << "DBG load " << filename <<

endl;

ifstream infile (filename. c-str ())
if (infile == NULL)
{

cerr << " Critical Error ! Source file
does not appear to exist
<< "\nBailing Out!"
<< endl;

exit (1);
}
while (1 infile . eof()

vector<Op> vop;
infile >> vop;
if (log-level & DEBUG) cerr << "DBG got

: " << vop << endl;
If(vop.size () > 0) seq.push-back(vop);
linecount++;

If (log-level & DEBUG)
cerr << "DBC read " << linecount

-1 << " lines" << endl;

// Process the instruction we 've just read
if] process()
{

cerr << " Critical Error! Failed to
process instruction sequence"
<< endl;

throw Error:: Syntax-error ("" ,0);

}

void Machine :: run (void)
{

201

if
{

}
else

{

{

{I

unsigned int iptr = 0; // instruction
pointer

unsigned Int ticks = 0; // clock cycles
stack<unsigned long> callstack ; // stack of

pointers for calls

if (log.level & DEBUG)
cerr << "DBG run - " << seq.size()

<< " parallel steps" << endl;

// Run instructions in "seq" until the
instruction pointer points

// one instruction beyond the last.
// Each instruction in "seq " is a list of

operations to be executed
// "in parallel " in the sense that they

execute top-down and of all
// the operations that execute , only the

longest operations adds
/7 to the cumulative time for the

instruction .
while(iptr < seq.size())
{

vector<Op> tmp = seq [iptr]; //
parallel operations in this step

unsigned long next = iptr + 1; // the
next instruction location

int tickCount = 0; // clock
increment for this instruction

If (log-level & DEBUG) {
cerr << "DBG " << iptr <<"
cerr << tmp. size () << endl

}
7/ If we have not been instructed to

skip the next instruction
If(skip)
{

/7 Execute the list of operations
for(int i = 0; i < tmp.size(; i

{

/7 Execute each instruction
throwing a runtime error

/7 if the instruction couldn't
execute. This could

7/ happen if we execute a script
meant for another

/7 machine , since the
preprocessor only warns if

// instructions don't make sense

(and only does so
/7 in DEBUG (log-level = DEBUG)

mode).
if(!exec(tmp[i] true))
{

cerr << " Critical Error!
Invalid instruction
<< i < " " << tmp[i

] << endl;
throw Error:: Exec-error("");

}
7/ Use the longest operation

time as the instruction
time

if(tmp[i]. nticks > tickCount)
tickCount = tmp [i] . nticks

/7 Special handling: CALL,
RETURN, JUMP

// CALL: push the return target
if(tmp[i }. opcode == "call"
{

if (log-level & DEBUG)
cerr << "DBG pushed

" << iptr+1
<<" for call

return"

<< endl;
callstack . push(iptr+1);

// RETURN: pop off the return
target

if (tmp[i]. opcode == "return"

next = callstack .top(;
If (log-level & DEBUG)

cerr << "DBG return
popped " << next
<< endl;

callstack.pop();

}
// JUMP, CALL: get the jump

targe t
If(tmp[il.opcode == "jump" H

tmp [i.opcode =="c all")

{
lf(haslabel(tmp[i]. args [0])

{

}
else
{

}
el

{

}

next = getlabel (tmp[i].
args [0]);

if (log-level & DEBUG)
cerr << "DBG

jump target

\"" << tmp
{i].argsto)

<<"\" at " <<
next <<
endl;

// Ouch, no target!
cerr << " Critical Error

! No jump target
for jump "
<< i << endl;

throw Error : Exec..error
tmp[i]. args [0]) ;

}
}
/7 HALT: throw the Crash..error

exception , we died on
purpose

i f (tmp[i .opcode == "halt"
{

string msg = to._string (iptr
+ " " + to-string(

ticks);
throw Error :: Crash-error (msg

/7 END OF SPECIAL HANDLING
} // END OF INSTRUCTION LOOP

se // We have been instructed to skip
the next operation

77 The skip will be successful only
if we have skipped

/7 a significant instruction. Make
sure that the instruction

77 consists of more than just a
bunch of NOPs.

for(int i = 0; i < tmp.size(; i

i f(tmp [i].opcode != "nop")
skip = false;

itf (log-level & DEBUG)
cerr << "DBG instruction

skipped , skip is now
<< skip << endl;

/7 The instruction has now been executed

/7 Update the instruction pointer and
the clock.

iptr = next;
ticks += tickCount;
if (log-level & CLOCK)

If(tickCount) cout << "clock
<< (ticks -tickCount)

<< "" << ticks << endl;
if (log-level & DEBUG)

cerr << "DBG clock=" << ticks
<< " ; pointer=" << iptr
<< endl;

void Machine:: setbit(string name, int val)

if (log-level & INIT) {
if (hasbit (name))

cout << "set " << name <<
<< getbit (name)

<< " " << val << endl;
else

cout << "set " << name << " -

<< val << endl;
}

202

)

bits [name] = val;

bool Machine:: hasbit (string name)
{

map<string , int >:: iterator loc;
loc = bits .find (name) ;
if(loc != bits.end()) return true;
return false;

int Machine :: getbit (string name)
{

return bits [name];
I

bool Machine ::haslabel (string name)
{

map<string , unsigned long>:: iterator loc;
loc = labels. find (name);
if(loc != labels.end()) return true;
return false

void Machine:: setlabel(string name, unsigned
long line)

{
labels [name] = line;

}

unsigned long Machine:: getlabel (string name)
{

return labels [name];
}

C.2.6 Machine.hh
/7 Machine. hh
// Andrew Cross <awcross@mit. edu>
// Computing machine
7/ $Id : Machine. hh 6 2004 -07-16 03:48:34Z

awcross $

#ifndef -- Machine-.
#define -Machine-.

#include <iostream>
#include <fstream>
#include <map>
#include <vector>
#include <string>
#Include <stack>

#include "Op.hh"
#include " utilities. hh"

using narnespace std;

class Machine
{
protected:

vector<vector<Op> > seq; /7
instruction sequence

virtual bool exec(Op& op, bool log);
// execute an operation

virtual bool process (void) ; /7 process
"seq

7/ private functions
void setbit(string name, int val); /7 set a

bit
bool hasbit(string name); /7 check

if bit exists
Int getbit (string name); /get a

bit
bool haslabel(string name); /7 check

if label exists
void setlabel(string name, unsigned long

line) ; // set a label
unsigned long getlabel(string name);

// get a label
7/ private state
bool skip; /7 flag:

True to skip next instruction
map<string , unsigned long> labels; / jump

targets
map<string , Int> bits; / bit

names and values
map<string ,double> readParamFile(string

filename) ;

}

203

public:
map<string , int> times; // default

operation times
Machine(string fname);
Machine() ;
friend ostream& operator << (ostream& os

Machine& m) ;
virtual void layout(string filename);
void load (string filename);
void run(void);
virtual void save(void); // save before

run()
virtual void restore(void); // restore after

run()
};

ostream& operator << (ostream& os , Machine& m)

namespace Error
{

struct Syntax-error

{
string msg;
unsigned long lineno;
Syntax-error(string imsg, unsigned long

1)

msg = imsg; lineno = 1;

};

struct Exec-error

{
string msg;
Exec-error (string m) {msg = m;}

struct Crash-error

{
string msg;
Crash-error (string m) {msg = m;}

#endif

C.2.7 NoisyCGMachine.cc
// NoisyCGMachine. cxx
// $Id: NoisyCGMachine. cc

202 2004-10-02 00:00:47Z setso $
7/ Noisy Clifford group machine

#include "include /NoisyCGMachine. hh"
#include "include/globals .hh"
#include "include/loglevels .hh"

NoisyCGMachine:: NoisyCGMachine(string fname)
{

map<string ,double> params = readParamFile(
fname);

map<string ,double>::iterator sdi;

noisyFlag = true;
noiseType = DEPOL; // default noise

type = depolarization

_pfl = -1.0; -pf2 = -1.0; -pfm = -1.0;

for(sdi=params.begin(); sdi != params.end()
sdi++

string s = sdi->first
string t = Token(s,".");
if(t == "times"
{

times~s) = (int)sdi->second;
cout << "param times." << s <<

" << (nt)sdi->second <<
endl;

} else if(t == "failures"
{

if(s == "pfl"

cout << "param pfl " <<
sdi->second << endl

.pfl sdi->second;

lse

else

}I

else

if(s == " pf2")

cout << "param pf2 " <<
sdi->second << endl

-pf2 = sdi->second;

If(s == "pfm")

cout << "param pfm "<<
sdi->second << endl

-pfm = sdi->second;

cerr << "Warning! Cannot
understand

parameter ";
cerr << t << "." << s

<< " . Ignoring."
<< endl;

else
{f

cerr << "Warning! Cannot
understand parameter

cerr << t << "." << s <<".
Ignoring." << endl;

-pfl == -1.0 11 -pf2 == -1.0 11 -pfm
-1.0)

cerr << "Warning! Parameters
failures . pfl , failures . pf2

cerr << "and failures .pfrn are
mandatory." << endl;

exit (1) ;

NoisyCGMachine:: process (void)

long i ;
vector<Op>::iterator j;
vector<string >:: iterator s;

// First process using CGMachine
If(!CGMachine:: process()) return

for(i = 0; i < seq.size() ; i++)

false;

for(j = seq[i].begin(; j < seq[i].end
(); ++)

{
/7 NOISE [type]
If(j->opcode == "noise"

If(log-level & DEBUG
cerr << "DBG processing

noise" << endl;

If(j->args [0] != "on" &&
j->args [0] != "off" &&
j->args [0] != " bitflip" &&
j->args {0] 1= "

bitflip..nopropagate" &&
j->args [0] != "depolarize"

&&
j->args [0] != "phaseflip")

cerr << "Error! Incorrect
arguments for "
<< "\"noise [oni offI bitf

I phaseflip I depolari:
Ibitflip.nopropagat
\" at instruction

<< i << ": { noise "<< j
->args[0] << "}"

<< endl;
return false ;

// UNKNOWN
else

If(log-level & DEBUG)
cerr << "DBG Warning! opcode

" << j->opcode
<< " unknown to

NoisyCGMachine" <<
endl;

}
}
return true;

}

bool NoisyCGMachine:: exec (Op& op,
{

vector<Op> fop;
Op tmp;
vector<Op>:: iterator fit

if(op.opcode == "noise"
{

b

noisyFlag = false ;
default: turn off noise

If(op.args [0] == "on"){
on noise - default type

noisyFlag = true;
}
if (op. args [0] == " bitflip"){

on bitflip noise
noisyFlag = true;
noiseType = BITFLIP;

bitflip noise

aol log)

//

// turn

// turn

/7

}
if (op.args[0] == "bitflip-nopropagate"){

// turn on bitflip noise
noisyFlag = true;
noiseType = BITFLIP-NOPROPAGATE;

// bitflip noise

if (op.args[0] == "phaseflip"){ // t
on bitflip noise

noisyFlag = true;
noiseType = PHASEFLIP; 7/ phaseflip

noise

}
return true;

If(noisyFlag)
{

if(noiseType==DEPOL){ /
depolarization noise

If(op. opcode == "x" op.opcode ==y
| op.opcode == "z"

op. opcode == "h" | op. opcode ==s

tmp = depolarize (op. args [0] , _pfl
if(tmp.opcode != "nop") fop.

push-back (tmp) ;

else if(op. opcode "cnot" | op.
opcode == "cz")

fop = depolarize (op.args [0], op.args
[1] , _pf2);

else If (op. opcode == "measure"
{

tmp = depolarize (op. args [1] , -pfm);
if(tmp.opcode != "nop") fop.

push-back(tmp);

I
if (noiseType--BITFLIP) {

if(op. opcode == "x" op. opcode ==y"
II op.opcode == "z" II

op. opcode == "h" | op. opcode == "s"

{
tmp = bit flip (op. args [0] , .pfl);
if(tmp.opcode != "nop") fop.

push-back(tmp);
I
else If(op.opcode == "cnot" op.

opcode == "cz")
fop = bitflip (op. args [0], op.args

[1], -pf2);
else if (op. opcode == "measure"
{

tmp = bit fli p (op. args [1] ,pfm)
if(tmp.opcode != "nop") fop.

push-back(tmp);
}

204

}

if(

{

}
}

bool
{

{

}

}I

I

urn

{

}

lip
T

}I

I
if(noiseTypeB ITFLIP..NOPROPAGATE) I

if (op. opcode == " x" op. opcode y"
I op. opcode == z" I I

op. opcode "h" op. opcode ==s

tmp = bit flip-nopropagate (op. args
[0] , _pfl);

if(tmp.opcode != "nop") fop.
push-back (tmp);

else If(op.opcode == "cnot" Jj op.
opcode == "cz"

fop = bitflip-nopropagate (op. args
[0], op.args [1] , -pf2);

else i f (op. opcode == measure"
{

tmp = bitflip.nopropagate (op. args
[1] , -pfm) ;

if(tmp.opcode != "nop") fop.
push.back (tmp);

}

if (log)
{

if(! fop .empty()

if(log- level & ERRORS)

cout << " failure " <<
<< endl;

for(fit = fop.begin()
fit fop.end();
fit++)

cout << "error
<< *fit
<< endl;

op

else

if(log-level & GATES

if(op.opcode "x"
op.opcode == "y" ||

op.op pcode "z
op.opcode == "h

op.opcode == "s"
op. opcode
cnot"

op.opcode "

measure" op.
opcode == "cz"

cout << op <<
endl;

if(op .opcode == "subset" &&
log-level & ERRORS)) cout
<< op << endl;

if(op.opcode == "noise" &&
log-level & ERRORS)) cout
<< op << endl;

fop. pushback (op);
for(fi t = fop . begin() ; fit 1= fop .end()

fit++)
if(!CGMachine::exec(*fit , false)

return false
return true;

C.2.8 NoisyCGMachine.hh

// NoisyCCMachine. hh
// Andrew Cross <awcross Omit. edu>
// $Id: NoisyCGMachine. hh

128 2004-08-04 18:08:21Z setso $
// Noisy Clifford group machine

#include "CGMachine.hh"
#include "noise . hh"

#ifndef -- NoisyCGMachine.
#define __NoisyCGMachine__

{

// noisy by default
noisyFlag = true;
noiseType = DEPOL;

type = depolarization
// default noise

_pfl -1.0; .. pf2 = -1.0; .pfm = -1.0; _pft
= -1.0; .. pfs = -1.0;

for(sdi=params. begin(; sdi != params .end()
sdi++

{
string s = sdi->first
string t = Token(s,".");
if(t == "times"

} else

times[s] = (int)sdi->second;
if (log-level & 1)

cout << "param times."

<< s << " "
<< (int) sdi ->second

<< endl;
if(t == "failures"

if(s == "pfl"

{

I
else
{

}

if (log-level & 1)
cout << "param

pfl " <<
sdi->second
<< endi;

_pfl = sdi->second

if(s == "pf2")

if (log-level & 1)
cout << "param

pf2 " <<
sdi->second

<< end];
_pf2 = sdi->second;

205

class NoisyCGMachine : public CGMachine

protected:
bool noisyFlag;
enurn { DEPOL, BITFLIP, BITFLIP.NOPROPAGATE,

PHASEFLIP } noiseType;
double .pf 1;
double .pf2;
double -pfm;

bool process(void);
bool exec(Op& op, bool log);

public:
NoisyCGMachine(string fname);

};

#endif

C.2.9 NoisyITMachine.cc

// NoisyITMachine. cxx
// $Id: NoisyITMachine.ce

149 2004-08-17 13:44:11Z awcross $

#include "include/NoisylTMachine.hh"
#include "include/globals.hh"
#include "include/loglevels .hh"

// When calculating errors due to scattering,
the simulator will be blind

// to qubits greater than this distance from the
measured qubit.

#define MEASURE.CUTOFF 5

using namespace std;

NoisyITMachine:: NoisyITMachine(string fname)
{

map<string ,double> params = readParamFile(
fname) ;

map<string ,double>:: iterator sdi;

I

}I

else if(s == "pfm")
I

}s
else

else

I Ise
f

if (log-level & 1)
cout << "param

pfm " <<
sdi->second
<< endl;

..pfm = sdi->second;

If(s == "pft")

if (log-level & 1)
cout << "param

pft " <<
sdi->second
<< endl;

_pft = sdi->second;

if(s == " pfs")

if (log-level & 1)
cout << "param

pfs " <<
sdi->second
<< endl;

_pfs = sdi->second;

cerr << "Warning! Cannot
understand

parameter " ;
cerr << t << " . " << s

<< " . Ignoring."
<< endl;

}

else if (t == "heating"
{

heating-rates[s] = sdi->second;
If (log-level & 1)

cout << "param

heating-rates." <<
s < < "1 "
<< sdi->second <<

endl;
} else

{
cerr << "Warning! Cannot

understand parameter
cerr << t << " ." << s <<".

Ignoring." << endl;

If(-pfl == -1.0 [pf2 == -1.0 f[_pfm
-1.0

I pft == -1.0 || -pfs
-1.0)

cerr << "Warning! Parameters
failures . pfl , failures . pf2
, "1 ;

cerr << "and failures .pfm are
mandatory." << endl;

exit (1);

I

bool NoisylTMachine: process (void)

{

long i;
vector<Op>::iterator j;
vector<string >:: iterator s

// first process with ITMachine
if (! ITMachine:: process()) return

#lfdef TURBO
return true;

#else // not TURBO
for (i = 0; i < seq.size() ; i++)
f

false ;

for(j = seq[i].begin(; j < seq[i].end
0; i++)

// NOISE [type]
If(j->opcode == "noise"

if (log-level & DEBUG

cerr << "DBG processing
noise" << endl;

If(j->args [0] = "on" &&
j->args [0] = "off" &&
j->args [0] != "bitflip" &&
j->args [0] =-

bitflip-nopropagate" &&
j->args [0] = "depolarize"

&&
j->args [0] = phaseflip")

{
cerr << "Error! Incorrect

arguments for "
<< "\" noise [type]\" at

instruction "
<< i << ": { noise "<< j

->args[0] << "}"
<< endl;

return false;
}

}
// UNKNOWN
else

{
if (log-level & DEBUG)

cerr << "DBG Warning!
opcode " << j->
opcode
<< " unknown to

NoisyITMachine
" << endl;

return true;

#endif // TURBO
}

bool NoisyITMachine:: exec (Op& op, b

Op tmp;
vector<Op> fop;
vector<Op>:: iterator fit;

if(op.opcode == "noise"

noisyFlag = false;
default : turn off noise

if(op.args [0] == "on"){
on noise - default type

noisyFlag = true;
}
If (op.args[0] == "bitflip"){

on bitflip noise
noisyFlag = true;
noiseType = BITFLIP;

bitflip noise

aol log)

/7

7/ turn

// turn

//

}
if (op. args [0] == "bitflip.nopropagate"){

// turn on bitflip noise
noisyFlag = true;
noiseType = BITFLIPNOPROPAGATE;

7/ bitflip noise

if (op.args[0] == "phaseflip"){ // turn
on bitflip noise

noisyFlag = true;
noiseType = PHASEFLIP; // phaseflip

noise

return true;

if(noisyFlag)
{

if(noiseType==DEPOL){ /
depolarization noise

If(op.opcode == "move"
{

double pf = 1.0 - exp(-(double)op.
nticks * _pft);
If (log-level & DEBUG)

cerr << "DBG moving " << op.
nticks

<< " gives pf " << pf
<< endl;

tmp = depolarize (op. args [0] pf);
if(tmp.opcode != "nop") fop.

push-back(tmp);

206

{

}I

}

else if(op.opcode == "x" op.opcode
"y" II op.opcode == "z" I
op.opcode == "h" op.opcode

"s"")"

{
tmp = depolarize (op. args [0] , .pfl
if(tmp.opcode != "nop") fop.

push-back (tmp);
}
else if(op.opcode == "cnot" op.

opcode == "cz")
fop = depolarize (op. args [0], op. args

[1], -pf2);
else if(op. opcode == "measure"
{

vector<q.hentry *> qclose
int dist;
int myloc = P. getloc(op. args [1]);
tmp = depolarize (op. args [1] , _pfm);
if(tmp.opcode != "nop") fop.

push.back (tmp) ;
if (log-level & DEBUG)

cerr << "DBG measured qubit

location " << myloc << endl

qclose = P. get -all (op. args [1]
MEASURE.CLUTOFF);

for(Int i=0; i < qclose . size ; i

{
dist = P. distance (qclose [il->pos

->key, myloc);
if (log-level & DEBUG) {

cerr << "DBG scatter on

<< qclose[i]->key
<< " at " ;

cerr << qclose [i]->pos->
key << endl;

cerr << "DBG distance to
measured qubit = "

<< dist << endl;
cerr << "DBG

corresponding pf =
"
<< _p fs / (double)(

dist*dist) <<
endl;

}
/7 We will assume this relation

for failure probability
// due to scattering:
// p-f(d)

= pfs / d^2

tmp = depolarize (string (qclose [i
]->key) ,

-pfs / (double)
(dist *
dist))

if(tmp.opcode != "nop") fop.
push-back(tmp);

}
}

}
if(noiseType-BITFLIP){ // bitflip noise

if(op.opcode == "move"
{

}
else

double pf = 1.0 - exp(-(double)op.
nticks * _pft);
if (log-level & DEBUG)

cerr << "DBG moving " << op.
nt icks
<< " gives pf " << pf

<< endl;
tmp = bit flip (op. args [0] , pf);
lf(tmp.opcode 1= "nop") fop.

push-back (tmp) ;

if(op.opcode == "x" H op.opcode
= y" II op.opcode == "z" I
op.opcode == "h" | op.opcode

tmp = bitflip (op. args [0 , ..pfl)
lf(tmp.opcode != "nop") fop.

push-back (tmp) ;
}
else If (op.opcode == "cnot" op.

opcode == " cz")
fop = bitflip (op.args [0], op.args

[1], .pf2);
else If(op.opcode == "measure"

{

vector<q-hentry *> qclose;
Int dist ;
int myloc = P.getloc(op.args[1]);
tmp = bitflip (op. args [1] , pfm);
I f(tmp. opcode != "nop") fop.

push-back(tmp);
if (log-level & DEBUG)

cerr << "DBG measured qubit
location " << myloc << endl

qclose = P. get-all(op. args [1],
MEASURE&CUTOFF);

for(Int i=0; i < qclose.size(; i

{
dist = P. distance (qclose [i]->pos

->key, myloc);
if (log-level & DEBUG) {

cerr << "DBG scatter on
<< qclose[i]->key

<< " at " ;
cerr << qclose [i]->pos->

key << endl;
cerr << "DBG distance to

measured qubit = "
<< dist << endl;

cerr << "DBG
corresponding pf =

}
/
/7
//7

tmp

<< -pfs / (double)(
dist*dist) <<
endl ;

We will assume this relation
for failure probability

due to scattering:
p-f(d)

pfs / d^2
= bitflip (string (qclose [i]->

key) ,
-pfs / (double)

(dist *
dist));

if(tmp.opcode != "nop") fop.
push-back (tmp) ;

}
}

}
if(noiseType=PHASEFLIP){

phaseflip noise
if (op. opcode == "move"
{

//

double pf = 1.0 - exp(-(double)op.
nticks * .pft);
If (log-level & DEBUG)

cerr << "DBG moving " << op.
nticks
<< " gives pf " << pf

<< endl;
tmp = phaseflip (op. args [0], pf);
if(tmp.opcode != "nop") fop.

push.back (tmp);

}
else If(op.opcode == "x" op.opcode

== "y" II op.opcode == "z"
op.opcode == "h" H op.opcode

== "s")

tmp = phaseflip(op.args [0] , _pfl);
lf(tmp.opcode != "nop") fop.

push-back (tmp);
}
else if(op.opcode == "cnot" 11 op.

opcode == "cz")
fop = phaseflip(op.args[0], op.args

[1], -pf2);
else i f (op. opcode == "measure"
{

vector<q-hentry *> qclose;
Int dist;
Int myloc = P. getloc (op. args [1]);
tmp = phaseflip (op. args[1] , pfm);
If(tmp. opcode != "nop") fop.

push..back (tmp) ;
If (log-level & DEBUG)

cerr << "DBG measured qubit
location " << myloc << endl

qclose = P.get-all(op.args [1],
MEASURE.CUTOFF) ;

for (int i =0; i < qclose . size(; i

207

{f

{

I

dist = P. distance(qclose [i]->pos
->key , myloc) ;

If (log-level & DEBUG)
cerr << "DBG scatter on

<< qclose[i]->key
<< " at " ;

cerr << qclose [i]->pos->
key << endl;

cerr << "DBG distance to
measured qubit = "

<< dist << endl;
cerr << "DBG

corresponding pf =

<< -pfs / (double)(
dist * dist) <<
endl;

// We will assume this relation
for failure probability

// due to scattering:
// pf(d)

= pfs / d^2
tmp = phaseflip (string (qclose [i

]->key)
.pfs / (double)

(dist *
dist))

If(tmp.opcode != "nop") fop.
push-back (tmp) ;

if (1 fop.empty()
I

if (
I

log.level & ERRORS)

cout << "failure " << op
<< endl;

for(fit = fop.begin()
fit != fop.end()
fit +)

cout << "error
<<*fit
<< endl;

else

If(log-level & GATES
if(op.opcode == "x" op.

opcode == "y" I I
op.opcode == "z" op.

opcode == "h"
op.opcode == "s" op.

opcode == "cnot"
op. opcode == "measure"

.opcode == "cz")
cout << op << endl;

op

if(log-level & MOVE)
if(op. opcode == "move" op.

opcode == "cool")
cout << op << endl;

if (log-level & ERRORS)
if(op.opcode == "subset" [op.

opcode == "noise")
cout << op << endl;

fop. push-back(op);
for(fit = fop. begin (); fit != fop.end()

fit ++)
if(!ITMachine :: exec(* fit , false)

return false
return true;

C.2.10 NoisylTMachine.hh
// NoisylTMachine. hh
// Andrew Cross <awcross@mit. edu>
// $Id : NoisyITMachine. hh

128 2004-08-04 18:08:21Z setso $

#Ifndef .. NoisyITMachine-.

#define _NoisyITMachine_

#include <map>
#include <string>

#include "ITMachine.hh"
#Include "noise. hh"

using namespace std;

class NoisylTMachine : public ITMachine
{

protected:

bool noisyFlag;
enurn { DEPOL, BITFLIP, BITFLIP-NOPROPAGATE,

PHASEFLIP } noiseType;
bool process(void);
bool exec(Op& op, bool log);
double -pfl;
double -pf2;
double -pfm;
double .pft;
double _pfs

public:
NoisyITMachine(string fname);

};

#endif

C.2.11 NoisyPCGMachine.cc
// NoisyPCGMachine. cxx
// $Id: NoisyPCGMachine. cc

202 2004-10-02 00:00:47Z setso $
// Noisy Planar Clifford group machine

#include "include /NoisyPCGMachine. hh"
#include "include/globals .hh"
#Include "include/loglevels .hh"

using narnespace std;

NoisyPCGMachine:: NoisyPCGMachine(string fname)
{

map<string ,double> params = readParamFile(
fname);

map<string ,double>:: iterator sdi;

noisyFlag = true;
noiseType = DEPOL; // default noise

type = depolarization
_pfl = -1.0; -pf2 = -1.0; -pfm = -1.0; .pft

-1.0;

for(sdi=params. begin (; sdi != params.end()
sdi++)

string s = sdi->first
string t = Token(s,".");
If (t == "times"

times[s] = (int)sdi->second;
if (log-.level & 1)

cout << "param times."

<< S << " "
<< (int)sdi->second

<< endl;
else If(t == "failures"

if(s == "pfl")
{

}
else
{

If (log-level & 1)
cout << "param

pfl " <<
sdi->second
<< endl;

_pfl = sdi->second;

if(s == "pf2")

if (log-level & 1)
cout << "param

pf2 " <<
sdi->second
<< endl ;

208

}
}

I

f

}

I
else
{

}s
else
{

else
{

I

-pf2 = sdi->second;

if (s == "pfm")

if (log-level & 1)
cout << "param

pfm " <<
sdi->second
<< endl;

.pfm = sdi->second;

if(s == " pft")

if (log-level & 1)
cout << "param

pft " <<
sdi->second
<< endl;

_pft = sdi->second;

cerr << "Warning! Cannot
understand

parameter " ;
cerr << t << " ." << s

<< " . Ignoring."
<< endl;

else

cerr << "Warning! Cannot
understand parameter

cerr << t << "." << s <<".
Ignoring." << endl;

-pfl == -1.0 |1 -pf2 == -1.0 11 _pfm
-1.0 11 -pft == -1.0)

cerr << "Warning! Parameters
failures.pfl, failures.pf2

cerr << "and failures.pfm are
mandatory." << endl;

exit (1);

bool NoisyPCGMachine:: process (void)
{

long i;
vector<Op>:: iterator j;
vector<string >:: iterator s;
// first process with PCOMachine
if(!PCGMachine:: process()) return false;

#ifdef TURBO
return true;

#else // Not TURBO
for(i = 0; i < seq.sizeQ ; i±+)

{
for(j = seqg iJ.begin(; j < seq[i).end

0; j++)
{

// NOISE [type]
if(j->opcode == "noise"

If (log-level & DEBUG)
cerr << "DBG processing

noise" << endl;
If(j->args [0] '- "on" &&

j->args[0] I- "off" &&
j->args[0] '= "bitflip" &&
j->args (0]

bitflip-nopropagate" &&
j->args [0] != "depolarize"

&&
j->args [0] = - phaseflip"

{
cerr << "Error! Incorrect

arguments for "
<< " \"noise [type]\" at

instruction "
<< i << ": { noise "<<

->args[0] << ""
<< endl;

return false;

}
}
/7 UNKNOWN
else

{
if (log-level & DEBUG)
cerr << "DBC Warning! opcode

<< j->opcode
<< " unknown to

NoisyPCGMachine" <<
endl;

}

return true;
#endif // TURBO
I

bool NoisyPCGMachine: : exec (Op& op, bool log)
{

vector<Op> fop;
Op tmp;
vector<Op>:: iterator fit;

If (op. opcode == "noise"

noisyFlag = false; /
default: turn off noise

if (op. args [0] == "on"){ // turn
on noise - default type

noisyFlag = true;
I
if (op.args[0] = "bit flip"){ / turn

on bitflip noise
noisyFlag = true;
noiseType = BITFLIP; //

bitflip noise
}
if (op. args[0] == "bitflip-nopropagate"){

// turn on bitflip noise
noisyFlag = true;
noiseType = BITFLIP-NOPROPAGATE;

// bitflip noise
}
If (op.args[0] == "phaseflip"){ // turn

on bitflip noise
noisyFlag = true;
noiseType = PHASEFLIP; // phaseflip

noise
}
return true;

If (noisyFlag)
{

If (noiseType==DEPOL){ //
depolarization noise

if(op.opcode == "move")

double pf = 1.0 - exp(-(double)op.
nticks * .pft);
if (log-level & DEBUG)

cerr << "DBG moving " << op.
nticks
<< " gives pf " << pf

<< endl;
tmp = depolarize (op. args [0] pf);
lf(tmp.opcode != "nop") fop.

push-back (tmp) ;

}else If(op.opcode == "x" [op.opcode
"y" | I op.opcode == "z" [I
op.opcode == "h" [op.opcode

== " ")
{

tmp = depolarize (op. args [0] , .pfl);
if(tmp.opcode != "nop") fop.

push-back(tmp);

else if(op.opcode == "cnot" 11 op.
opcode == "cz")
fop = depolarize (op. args [0], op. args

[1], .pf2);
else if(op .opcode == "measure"
{

tmp = depolarize(op.args[1], -pfm);
lf(tmp.opcode != "nop") fop.

push.back(tmp);

}
if (noiseType=BITFLIP){

If(op.opcode == "move"

209

if(

{

f

I

double pf = 1.0 - exp(-(double)op.
nticks * pft);
If (log-level & DEBUG)

cerr << "DBG moving " << op.
nticks

<< " gives pf " << pf
<< endl;

tmp = bitflip (op. args [0] , pf);
if(tmp.opcode != "nop") fop.

push-back (tmp);
}
else If(op.opcode == "x" op.opcode

" Jy" I op.opcode == "z" |
op.opcode == "h" op.opcode

s")
{

tmp = bit fli p (op. args [0] , _pfl
if(tmp.opcode != "nop") fop.

push-back (tmp);
}
else If(op.opcode == "cnot" 11 op.

opcode == " cz")
fop = bitflip (op. args [0] , op. args

[11, - f)
else if(op. opcode == "measure"

tmp = b it fl ip (op. args [1] -pfm)
if(tmp.opcode !- "nop") fop.

push.back (tmp);

If (noiseType=PHASEFLIP){
If(op.opcode == "move"

double pf = 1.0 - exp(-(double)op.
nticks * _pft)-
if (log-level & DEBUG)

cerr << "DBG moving " << op.
nticks
<< " gives pf " << pf

<< endl;
tmp = phaseflip (op. args [0] , pf);
If(tmp.opcode != "nop") fop.

push-back (tmp);

else If(op.opcode == "x" | op.opcode
" y" I| op. opcode - " z" I I
op.opcode "h" | op.opcode

tmp = phaseflip (op. args [0] , -pfl);
if(tmp.opcode 1= "nop") fop.

push-back (tmp);

else If(op.opcode "cnot" 11 op.
opcode == "cz")

fop = phaseflip (op. args [0] , op. args
[1], -pf2);

else If (op. opcode == "measure"
{

tmp = phaseflip (op. args [1] , .pfm);
if(tmp.opcode != "nop") fop.

push-back (tmp);
}

}

If(! fop .empty()

f if(
I

else
I

log-level & ERRORS)

cout << "failure " <<
<< endl;

for(fit = fop.begin()
fit 1= fop .end()
fit++)

cout << " error
<< *fit
<< endl;

op

If(log-level & GATES
if(op.opcode == "x" || op.

opcode == "y" 11
op. opcode == "z" op.

opcode == "h"
op.opcode == "s" op.

opcode == " cnot " |

op. opcode == "measure" j op
.opcode == " cz")
cout << op << endl;

If(log-level & MOVE)
if(op.opcode == "move"

cout << op << endl;

if(log-level & ERRORS)
if(op.opcode == "subset" ||

opcode == "noise")
cout << op << endl;

I

op.

}
fop. push-back (op);
for(fit = fop.begin() ; fit != fop.end()

fit ++)
if(!PCGMachine:: exec(* fit false)

return false
return true;

C.2.12 NoisyPCGMachine.hh
/ NoisyPCGMachine. hh

Andrew Cross <awcross~mit. edu>
//$Id: NoisyPCGMachine. hh

128 2004-08-04 18:08:21Z setso $
// Noisy Planar Clifford group machine

#ifndef __NoisyPCGMachine__
#define -NoisyPCGMachine-.

#Include <math.h>
#include "PCGMachine.hh"
#include "noise.hh"

class NoisyPCGMachine : public PCGMachine

protected:

bool noisyFlag;
enum { DEPOL, BITFLIP, BITFLIP.NOPROPAGATE,

PHASEFLIP } noiseType;
bool process (void);
bool exec(Op& op, bool log);
double .pfl ;
double .pf2;
double .pfm;
double .pft

public:
NoisyPCGMachine(string fname);

#endif

C.2.13 Op-cc
// Op. cxX
// $Id: Op. cc 84 2004-07-20 16:29:33Z awcross $
// Simple operation

#include "include/Op.hh"

using namespace std;

Op::Op()
{

opcode = "nop";
nticks = 0;

I

Op::Op(string o)

opcode = o;
nticks = 0;

ostream& operator << (ostream& os Op& op)
{

vector<string >:: iterator i
os << op. opcode << " " ;
for(i = op. args . begin() ; i < op. args. end

; i ++)
os << i <<

210

I

}I

return os;

ostream& operator << (ostream& os , vector<Op>&
vop)

vector<Op>:: iterator i;
for(i = vop.begin(; i < vop.end(); i

os << *i <<"
return os;

}

istream& operator >> (istream& is , vector<Op>&
vop)

{
int SIZE = 32768/2;
char inp (SIZE);
// clear our operation vector
vop. erase (vop. begin () vop.end())
is . getline (inp , SIZE);
string input(inp);
/ won 't compile without static cast
/720- Jul -04 AWC reintroduce lower-

casing of everything
/------------- made appropriate

changes to QState. cxx

//------------- stringToRow() function
and the log parsers

//--------------in ./av/ - quickly
tested - 3bit_1 . arq works.

transform (input. begin() input.end()
input.begin(),static.cast<int (*)
int) >(std :: tolower)

Trim(input);

/7 20-Jul-04 ILC remove trailing comment

if any

size-t idx = input. find-first.of("#")
if (idx < input.size(){

#ifdef DEBUG

#endif

#ifdef DEBUC

#endif

bool

bool

cout << " [Op] Found comment in
<< input << " '\n" ;

input = input . substr (0 , idx);

cout << " [Op] input modified to
<< input << " ' ;

}
}

while(input. size () > 0 && input [0] 1=

{
string sop = Token(input ,"
string arg; Op op;
op.opcode = Token(sop," \t");
while(sop. size() > 0

arg = Token(sop," ,");
op. args . push-back (arg);

}
vop. pushback (op);

return is;

operator < (const Op& opl , const Op& opr)

return (opl . opcode < opr. opcode);

operator > (const Op& opl , const Op& opr)

return (opl . opcode > opr. opcode) ;

C.2.14 Op.hh

// Op. hh
// Andrew Cross < awcross(Omit. edu>
// Simple operation
// $Id: Op. hh 10 2004-07-16 06:37:13Z awcross $

#ifndef -- Op-
#define -- Op--

#include <vector>
#include <string>
#include <algorithm>
#include <cctype>

#include " utilities .hh"

using narnespace std;

class Op
{
public:

string opcode;
Int nticks ;
vector<string > args;

Op();
Op(string o);

ostream& operator << (ostream& os Op& op)
ostream& operator << (ostream& os vector<Op>&

vop) ;
istream& operator >> (istream& is vector<Op>&

vop) ;
bool operator < (const Op& opl, const Op& opr);
bool operator > (const Op& opl, const Op& opr);

#endif

C.2.15 PCGMachine.cc

// PCGMachine. cxx
7/ $Id: PCGMachine.cc 223 2004-12-08 00:52:51Z

awcross $

#include "include /PCGMachine. hh"
#include "include/ globals . hh"
#include "include/ loglevels . hh"

using namespace std;

void PCGMachine:: save (void)

CGMachine:: save ()
}

void PCGMachine:: restore (void)

CGMachine :: restore () ;

PCGMachine: : PCGMachine ()
{

PCGMachine: : PCGMachine (s t r i n g
(fname)

fname) : CGMachine

/7 Return true if qubits a and b are next to
each other

bool PCGMachine:: nnqubits (string& a, string& b)

int 10 = P.getloc(a);
Int 11 = P.getloc(b);
//cout << P. getloc (a) << ", " P.

getloc (b) << endl;
if(10-11 == xseparator | 10-11 == -

xseparator 11
10-11 == 1 | 10-11 == -1) return

true;
return false ;

bool PCGMachine:: process (void)

long i;
vector<Op>::iterator j;
vector<string >:: iterator s

// First , process "seq " using CGMachine

211

{

}

{

if(! CGMachine:: process ()) return false ;

// If that didn 't fail , go ahead and do our
work.

for(i = 0; i < seq.size() i++)

for(j = seq[i].begin(; j < seq[i].end
0 i++)

{
7/ INIT qubit , location-integer
// FIX check args . size ()
if(j->opcode == " init"
{

if (log.level & DEBUG)
cerr << "DBG processing

init" << end1;
if(!hasqubit(j->args [0]) 11

!isInteger(j->args [1]))
{

cerr << "Error! Incorrect
arguments for "
<< "\" init qubit oc \"

at instruction
<< i << endl;

return false
}

int location-integer = str2int (j
->args [1]);

P. init (j->args [0]
location-integer);

if (log-level & MOVE) {
Int y = location-integer

% xseparator;
int x = (

location.integer -
y) / xseparator;

cout << "place " << j->
args[0] << " ;

cout <<x " " << y
<< endl;

}
if (log-level & DEBUG)

cerr << "DBG place qubit
" << j->args [0]

<< << i << endl

j->opcode = "nop";
}
// MOVE QUBIT, DIR, STEPS
// FIX check args . size ()
else if(j->opcode == "move"
{

if (log.level & DEBUG)
cerr << "DBG processing

move" << endl;
If(! hasqubit(j->args [0]) 1

(j->args[1] "n" && j->
args[1] I= "e" &&

j->args[1] I- "s" && j->
args [1] != "w") I

!islnteger (j->args [2])
{

cerr << "Error ! Incorrect
arguments for "
<< "\"move qubit ,[nesw

],steps\" at
instruction

<< i << endl;
return false;

}
j->nticks = str2int(j->args[2]);
if(j->nticks == 0)
{

cerr << "Error ! Moving qubit
0 steps at instruction"

<< i << endl;
return false ;

continue; // don't set the
ticks again

// UNKNOWN
else

clock

If (log-level & DEBUG)
cerr << "DBG Warning!

Opcode " << j->
opcode

<< " unknown to
PCGMachine"
<< endl;

continue; // don't set the
number of clock cycles

j->nticks = times [j->opcode];

}
return true;

}

bool PCGMachine::exec(Op& op, bool log)

if(op.opcode == " init"
{

int

if (

location-integer = str2int (op.args

[I]);
log && log-level & MOVE)

int y = location.integer %
xseparator;

int x = (location-integer - y)
/ xseparator;

cout << "place " << op. args
[0] << " ;

cout << x << " " << y << endl;
}
P. init (op. args [0] ,location-integer)
op.opcode = "nop";

}
else i f (op. opcode == "move"

If(log && log-level & MOVE) cout << op
<< endl;

P. moveq(op. args [0] , toupper (op. args
[1][]) , str2int (op. args [2]));

else If (op. opcode == " cnot"

If(nnqubits (op. args [0] , op. args [1])
return CGMachine::exec(op, log);

else

cerr << " Error ! cnot applied to
distant qubits . " ;

cerr << "Surely you didn 't
intend this . Check your
code."

cerr << endl;
return false

//7
/7
/*

els

{
FIX

e if(op.opcode == "cz")

- this is also broken!
if(nnqubits(op.args[O],op.args[1]))
return CGMachine::exec(op, log);
else

cerr << "Error! cz applied to
distant qubits.";

cerr << "Surely you didn 't
intend this . Check your
code.";

cerr << endl;
return false;

}s

else return CGMachine::exec(op,log);

return true;

}
void PCGMachine::layout(string filename)
{

ifstream Layout (filename . c.-str () ios : : In)
int location;

7/ FIX - careful layout file parsing?
If (log-level & DEBUG)

cerr << "DBG load layout " <<
filename << endl;

while(Layout >> location) P.add(location);

212

}

}

}

C.2.16 PCGMachine.hh
77 PCGMachine. hh
77 $Id: PCGMachine.hh 6 2004-07-16 03:48:34Z

awcross $
/7 Hash table internals by Darshan Thaker <

ddthaker@ucdavis . edu>
77 Tzvetan Metodiev <tsmetodiev~ucdavis .edu>

7/ Andrew Cross <awcrossOmit . edu>

#ifndef -PCGMachine--
#define .. PCGMachine--

#include "CGMachine.hh"
#Include "Planar.hh"

using namespace std;

class PCGMachine : public CGMachine
I

protected:
Planar P;

static const Int xseparator = 1000;
bool process(vold);
bool exec(Op& op,bool log);

bool nnqubits(string& a, string& b); /7
test if a and b are near

public:
PCGMachine(;
PCGMachine(string fname)
void layout(string filename);
void save(void);
void restore(void);

#endif

C.2.17 Planar.cc
// Planar. cxx
77 $Id: Planar.cc 142 2004-08-15 04:59:44Z

awcross $
77 Implements the ion-trap layout instructions.

#include "include/Planar.hh"

using narnespace std;

// Constructor: Create hash tables of a given
size

Planar ::Planar(Int ts)

if(!ts) TAB-SIZE = 2048;
else TAB-SIZE = ts ;
ptab = create.p-table(TAB-SIZE);
qtab = create-q-t able (TAB-SIZE);

// taxicab distance from location 11
12,

/7 where both are given by 1000*x+y
Int Planar:: distance (int 11 , int 12)

Int x1, yl, x2, y2;
int d;
y1 = 11 % 1000;
y2 = 12 % 1000;
x1 = (11 - yl)/1000;
x2 = (12 - y2)/1000;
d = (x2>x1)?x2-x1:x1-x2;
d += (y2>y1)?y2-y1:y1-y2;
return d;

to location

// Call the Hash table move function.
void Planar::moveq(string name, char dir, int

steps

move(name. c-str() , dir , steps , ptab, qtab
0);

// Get a qubit 's location

int Planar:: getloc (string name)

int cell = getloc (name. c-str (),ptab ,qtab)
return cell;

7/ Return the qubit object sitting at some
location

string Planar:: getqid(int loc)

string name = get-name(loc ,ptab);
return name;

7/ Return the qubit object with the given name
q.hentry * Planar:: get-qobj (string name)

I
q.hentry *q;

q = findlin-qhtable (name. c.str() , qtab);
return q;

// Return the physical qubit object with the
given location

p.hentry * Planar::get-pobj (int loc)

p.hentry *p;
If((p = find-in-phtable(loc , ptab)) != NULL

}
return p;

// Return the adjacent qubit if it exists and is
// located in the specified direction ("N","S","

E", "W")
/7 NULL if there are no adjacent qubits or if

electrode is adjacent
q.hentry * Planar:: get-qadj (string name, char

dir)
{

q.hentry *q;
q = get-adj (name. c-str () dir , ptab , qtab)
return q;

}

7/ Return the nearest qubit to our qubit in any
of

// of the four cardinal directions. Returns NULL
7/ if we run into an electrode (i.e. out of

legal qubit locs).
q-hentry * Planar:: get-qnear (string name, char

dir)

q-hentry *q;
q = get-near(name.c-str() , dir , ptab, qtab)

return q;

// Return the qubit a distance d from the name-
qubit

/is some prespecified direction.
//
7/ Return NULL if nothing there or we hit an

electrode.
q-hentry * Planar:: get-qdist (string name, char

dir , Int d)

q-hentry *q;
q = get.dist (name. c-str() , dir , d, ptab,

qtab);
return q;

// Get all ion-qubits a distance d from the
input qubit.

// Returns a vector container with qubit
pointers.

// If the returned vector is empty, then there
are no ions a

// distance d from the input qubit in any
direction.

/
/ d = 1 if you want all adjacent qubits in all

directions .
vector < q.hentry * > Planar ::get-all (string name

int d)

213

vector< q-hentry * > qubits;
q..hentry *tmp;

string dirs = "NSEW";
string :: const -iterator il = dirs .begin ()
char dir
int i;

while (il 1= dirs.end()

dir = *il;
for (i = d; i > 0; i--)
{

tmp = get-cqdist (name,*il , i);
if (tmp 1= NULL)
{I

qubits . push-back (tmp) ;

I
return qubits;

// Return TRUE if a set of Qubits Q are a chain
and FALSE otherwise.

bool Planar::is-chain(vector< string > Q)
{

vector < string >:: const-iterator itrl = Q.
begin ();

vector < q-hentry* > adj.qubits;
Int samecount;

while (itrl != Q.end()

samecount = 0;
adj-qubits = get.all(*itrl 1);
// if no adj qubits are part of Q, then

Q is not a chain.
If (adjqubits.size() == 0) return FALSE

for(int i = 0; i < adj.qubits. size (); i

for
{

(int j = 0; j < Q. size (); i++)

If (Q[j] == adj.-qubits [i)->key)

-samecount++;

}

If (samecount == 0) return FALSE;
++itrl

return TRUE;

C.2.18 Planar.hh

// Planar.hh
// $Id: Planar. hh 6 2004-07-16 03:48:34Z awcross

$
// Hash table internals by Darshan Thaker <

ddthakergucdavis. edu>
// Tzvetan Metodiev <tsmetodiev@ucdavis.edu>
// Andrew Cross <awcrossmit. edu>
//
// Implements planar layout and movement.

#ifndef -- Planar--.
#define -- Planar-_-

#include <iostream>
#include <fstream>
#include <stdio .h>
#Include <stdlib.h>
#include <map>
#include <vector>
#include <string>

#include "Op.hh"
#include "utilities .hh"

extern "C"
{
#include "planarops .h"

I

using narnespace std;

class Planar

f

private:
Int TAB-SIZE; // size of the table
p.htable *ptab; // pointer to a

physical locations hash table
q.htable *qtab; // pointer to a hash

table of ions by name

//

//

p-htable * getPtable (void) { return ptab
; }

q.htable * getQtable (void) { return qtab
; }

qchentry * get-qobj (string);
p.hentry * getpobj (int);
q.hentry * get-qadj (string , char)
q.hentry * get-qnear (string , char);
q.hentry * get-qdist (string, char, int);

public:

void add(int loc) { add-loc(loc ,ptab)
void init (string id , int pos)

{ init -position (id . c-str () ,pos , ptab
qtab); }

void moveq(string , char, int);
Int get loc (string);
string getqid (int);
bool is-chain (vector< string >);
Int distance(Int 11 , Int 12);
// perhaps hide more later
vector<q-hentry*> get-all (string, int);

Planar(Int ts = 0);
void loadLayout (string filename);

#endif

C.2.19 QState.cc

//
//
//
//

QState. cxx
Derived from Scott Aaronson's CHP simulator
Andrew Cross < awcross Omit. edu>
$Id: QState. cc 152 2004-08-20 18:34:08Z setso

$
7/ Quantum state (or subspace) given by a set
// of stabilizer generators in the binary
7/ representation.

#Include "include /QState . hh"

// Return the number of qubits
long QState::size (void)

return n;

// Test if a subset of qubits of this QState
equals the given

/7 stabilizer state.
77 The vector glist tells what qubits map from

left to right to each
// of the generators elements.
// WARNING: I don 't check to make sure qlist and

sgens are valid vectors
/7 of strings.
bool QState : : subset (vector<int > qlist , vector<

string > sgens
{

QState sstate(sgens.size());
QState temp = (*this); 7/ make a copy of

this
vector<pair<int ,Int > > plist;
vector<pair<Int ,Int > >:: iterator pit
Int endnum = qlist . size ()Int bounce;

// reorder temp
for (int j = 0; j < qlist .size () ; j++

// imagine pairs (glist [j], j) --

214

}

++11 ;

{

{

// if glist [j]>j permute those
columns and add this pair

7/ to p list ; if qlist [j]==j do
nothing ; if glist [kj<j

// then we may have already
moved the qubit at glist[k]

/7 somewhere else , so search
plist from the beginning
and

// replace glist[k] to apply the
transpositions

if(qlist [j] > i)
{

temp.swapcol(qlist [j] ,j)

}
{

plist . push-back (pair<int
,int>(qlist[j],j));

else If(qlist [j] <)

bounce = qlist [j];
for(pit = plist . begin()

; pit != plist end
(); pit++)

if(bounce ==
pit->second

bounce
pit->

first
if(bounce 1= j)

temp. swapcol (
bounce ,j);

plist . push-back(
pair<int ,
Int >(bounce
, j)) ;

{

// remove extra qubits in temp
for(long j = endnum; j < n; j++) temp.

remove (endnum) ;
// Build up the QState corresponding to

sgens
for(long i = 0; i < sstate.k; i++)

sst at e . stringToRow (sgens [i ,i+
sstate .k);

// Now check if they are equivalent
bool eq = (temp == sst ate)
return eq;

}

//7
//7
//*****+***********END SUBSET

****** ********************//7

// SUBSETKET:
// Print the ket of a given subset of qubits

Should be
/non-destructive.
string QState :subset-ket (vector<int> qlist
{

QState temp = (*this); // make a copy of
this

vector<pair<int , int > > plist
vector<pair<int ,int > >:: iterator pit
Int endnum = qlist . size ()
Int bounce;

// reorder temp (identical as the
routine is subset.

for(int j = 0; j < qlist.size(; j++)
{

if(qlist [j] > j)

temp.swapcol(qist [j] ,j)

plist .push-back(pair<int
,Int>(qlist [j] ,j);

} else if(qlist [j] < j
{

bounce = qlist [j
for(pit = plist .begin()

; pit != plist end
() ; pit++)

If(bounce ==
pit->second

bounce
= pit->

first
if(bounce I= j)
{

I

temp. swapcol(
bounce , j);

plist .push-back(
pair<int ,
Int >(bounce
, j)) ;

}

// remove extra qubits in temp
for(long j = endnum; j < n; j±+) temp.

remove (endnum) ;
return temp. destructiveKet ()

//
/
//******************END SUBSETKET

void QState ::stringToRow(string s , long row)
{

r[row] = 0;
if(s[0 =='

//7
//7
//7
//7
//7
//7
//7
//7

r [row] += 2;
s . erase (0,1);

I
comment this part of the phase out so that
lowercase generators are not ambiguous ...
if "i" needed, make changes here and below.

if(s[0] == 'i ')

{
r [row] += 1;
s.erase(0,1);

I

for(int j = 0; j < s.size() ; j++)
{

int word = j >> 5;
Int pwj = pw[j%32];
int npwj = OxFFFFFFFF ^ pwj;
switch (s [j])
{
case 'x':

x[row][word] 1= pwj;
z[row][word] &= npwj;
break;

case 'y':
x[row] [word] 1= pwj;
z [row] [word] pwj;
break;

case 'Z',:
x [row] [word] &= npwj;
z [row] [word] 1= pwj;
break;

case 'i':
x[row][word] &= npwj;
z[row)[word] &= npwj;
break;

default:
break;

}

// copy constructor
QState:: QState (const QState& q)

{
S= q.n;

k . k
= f

lf(
{

n > 0 && k > 0

x = new unsigned long *[2*k+1];
z = new unsigned long *[2sk+1];
r = new Int [2*k+l;
over32 = (n>>5) + 1;
pw[0] = 1;
for(Int i = 1; i < 32; i+-)

pw[i] = 2*pw[i-1];
for(int i = 0; i < 2*k + 1; i++)
{

x[i] = new unsigned
z[i] = new unsigned
for(Int j = 0; j <
{

long [over32]
long [over32]
over32 ; j++)

x[i] [j] = q.x[ij[j];
z[i][j] = q.z[i][j];

215

r[i] = q.r[i];

else

x = NULL;
z = NULL;
r = NULL;
over32 = 0;

}

// assignment
QState& QState operator=(const QState& q)
{

if(sthis == q) return * this;

// not efficient
sfree () ;
n = q.n;
k = q.k;
x = new unsigned long *[2*k+1];
z = new unsigned long *[2*k+1];
r = new int [2*k+1];
over32 = (n>>5) + 1;
pw[iO = 1;
for(Int i = 1; i < 32; i++

pw[i] = 2*pw[i -1];
for(int i = 0; i < 2*k + 1; i++
{

x[i] = new unsigned long[over32];
z [i] = new unsigned long [over32];
for (int j 0; j < over32; i++)

{
x[i][j] = q.x[i][j];
z[i][j] = q.z[i][j];

r[i] = q.r[i];

return *this;

// compare
// two states can be equal even if their tableau

are different
bool QState:: operator==(const QState& rhs)
{

if(k != rhs.k 11 n != rhs.n) return false;

7/ Work with copies since GE and GJ can
destroy the

// commutation relations between stabilizer
and destabilizer

QState tlhs = (*this) ; 7/ use copy
constructors

QState trhs = rhs

tlhs gaussjordan()
trhs gaussjordan()

// only compare stabilizer generators
for(int j = trhs.k; j < 2*trhs.k; j+±)

// we can assume the words are zero
padded because it is

// ensured in the constructors
for(Int 1 =0; 1 < trhs.over32; ++)
{

if (tlhs xfj] [1 = trhs x[j)ll]
return false

if(tlhs.z[j][1] 1= trhs.z[j][1]
return false;

if(tlhs.r[j] != trhs.r[j]) return
false

return true;

I

// returns true if row i commutes with row j
bool QState :: rowcommutes (long i , long

{
int w = 0;
for(int I = 0; 1 < over32; I++)

w += weight(x[i][1] & z[j]1]) + weight(

Zli]{1] & x~j][1]);
If(w%2 == 0) return true;
return false

// calculate the hamming weight of w

int QState:: weight (unsigned long w)

Int i=O;
unsigned long j=1;
do

if(w & j) i++;
j += 2;

} while(j I= 0x80000000
if(w & j) i++;
return i;

// Print the raw tableau
string QState::raw(vold)

string result
long i , j , m, p;

result = "cgraw + to-string(k)+" "+
to-string (n)+" "

+to.string(over32)+"\n";

result += "cgraw Z\n";
for(i = 0; i < (k>O?(2*k + 1):0) ; i++
{

result += "cgraw + tnostring(r{i]) +"1 ;
for(j = 0; j < over32; j++)
{

if (j == over32 - 1) p = (n-1)%32;
else p = 31;
for (m = 0; m <= p; m++)
{

int bit = ((z[i][j] >> m) & 1);
result += to-string (bit);

}
if(over32 > 1 && j < over32 - 1)

result += "\ncgraw

result }= "\n"

result += "cgraw X\n"
for(i = 0; i < (k>0?(2*k + 1):0); i++
{

result += "cgraw " + to-string(rti]) +"1 ;
for(j =0; j < over32; j++)

{

}
if(

if (j == over32 - 1) p = (n-1)%32;
else p = 31;
for(m = 0; m<=p; m++)
{

Int bit = ((x[i][j] >> m) & 1);
result += to.string (bit);

if(over32 > 1 && j < over32 - 1)
result += "\ncgraw

i < 2*k) result += "\n"

}

return result

// CNOT from control b to
void QState::cnot(long b,

long i;
long b5;
long c5;
unsigned long pwb;
unsigned long pwc;

target c
long c)

b5 = b>>5;
c5 = c>>5;
pwb = pw[b&31];
pwc = pw[c&31];
for (i = 0; i < 2*k; i++)

if (x i][b5]&pwb) x[i [c5] ^=pwc;
if (z[i][c5]&pwc) z[i][b5] =pwb;
if ((x[i}[b5]&pwb) && (z i][c5]&pwc) &&

(x[i]c5l&pwc) && (z i] b5&pwb))
r[i] (r[i]+2)%4;

if ((x[i][b5]&pwb) && (z[i]c5]&pwc) &&
!(x[i] [c5]&pwc) && !(z [i] [b5]&pwb))
r il = (r{i]+2)%4;

216

)

)

// Hadamard on b
void QState::h(long b)
{

long i;
unsigned long tmp;
long b5;
unsigned long pwt;

b5 b>>5;
pwt = pw[b&31];
for (i = 0; i < 2*k; i++)

tmp = x
x[i][b5
z(i [b5
if ((x[

i]

[I] [b5 ;
(x[i I[b5] z i][b5]) & pwt;
(z[i][b5] tmp) & pwt;

i]b5]&pwt) && (z[i {b5]&pwt)) r[
= (r[i]+2)%4;

// Phase gate on b
void QState::s(long b)

long i;
long b5;
unsigned long pwt;

b5 = b>>5;
pwt pw[b&31];
for (i = 0; i < 2*k; i++)

if ((x[i][b5]&pwt) && (z[i
i] = (r[i}+2)%4;

z [i][{b5] ^= x [ij][b5]&pwt ;

][b5]&pwt)) r[

// Sets row i equal to row m
void QState rowcopy(long i , long m)
{

long j;

for (j = 0; j < over32; j++)

x[i 3[j] = x[m]Ii];
z[i][i = z[m] I;

}
r[i] = r[m];

}

// Sets raw i equal to the bth observable (Xfl
,... Xn,Z-1,... , Zn)

void QState :: rowset (long i
{

long j;
long b5;
unsigned long b3l;

for (j = 0; j < over32;
{

x(i][il = 0;
z[i] [i = 0;

}
r[i] = 0;
if (b < n)
{

long b)

i++)

b5 b>>5;
b31 = b&31;
x[i][b5] = pw[b31];

else

b5 = (b -n)>>5;
b31 = (b - n)&31;
z(i][b5] =pwb31];

Return the phase (0,1,2,3) when row i is LEFT
-multiplied by row m
QState:: clifford(long i , long m)

//7

int
{f

long j ;
long 1;
unsigned long pwt;
long e=0; // Power to

for (j = 0; j < over32;
for (1 = 0; 1 < 32;
{

pwt = pw[l];

which i is raised

j++)
l++)

if

If

if

{

}

((x[m][j]&pwt) && (!(z[m][j]&pwt)
// X

if ((x[i[j]&pwt) && (z[[j]&
pwt)) e++; // XY=iZ

If ((!(x[i][j]&pwt)) && (z[i][j
]&pwt)) e--;// XZ=-iY

((x[m][j]&pwt) && (z[m][j]&pwt))
// Y

If ((!(x[i][j]&pwt)) && (z[i][j
]&pwt)) e++;// YZ=iX

if ((x[i] (j]&pwt) && (!(z[i][j]&
pwt))) e--;// YX=-iZ

((!(x[m] [j]&pwt)) && (z[m][j]&pwt
))// Z

if ((x[i][j]&pwt) && (!(z[i][j]&
pwt))) e++; // ZX=iY

If ((x[i] [j]&pwt) && (z[i [j]&
pwt)) e--; // ZY=-iX

}

e = (Cer[i]+r[m])%4;
If (e>=0) return e;
else return e+4;

}

// Swap rows i and k
void QState:: rowswap (long i , long n)

rowcopy(2*n, m); rowcopy(m, i); rowcopy(i
, 2*n);

}

// Left-multiply row i by row m
void QState :: rowmult (long i , long m)
{

long j;

r [i clifford (i ,m)
for (j = 0; j < over32; j++)
{

x[i [j] ^= x[] [j];
z[i] [j] ^= z[] Ii];

}

// Free the memory associated
void QState :: sfree (void)

long i;

if (n > 0)
{

for(i = 0; i < 2*k +
{

delete [] x[i];
delete [I z[i];

with the state

1; i++)

}
delete [] ;
delete []
delete [x;
r = NULL;
z = NULL;
x = NULL;
n = k = 0;
over32 = 0;
pw[O] = 1;
for (i = 1; i < 32; i++)

pw[i] = 2spw[i -1];

// Create an n-qubit 10> state
void QState::sInit(long ni)
{

long I;
long j;

n = ni;
k = ni ;
x = new unsigned long *[2*k + 1];
z = new unsigned long s[2*k + 1];
r = new Int [2*k + 1];
over32 = (n>>5) + 1;
pw[0J = 1;
for (i = 1; i < 32; i++)

pw[i] = 2*pw[i-1];

217

}

}I

{

}

}
}

for (i 0; i < 2*n + 1; i++)
{

x[i] = new unsigned long [over32];
z [i] = new unsigned long [over32];
// zero the words
for (j = 0; j < over32; j++)
{

x[i][j] = 0;
z[i }[[i = 0;

if (i < n)
x[iJ[i>>5] =pw[i&31];

else if (i < 2+n)

{
j = i-n;
z[i][j>>5] = pw[j&31];

}
r[i] = 0;

}
}

7/ remove the ith generator and its
corresponding

// destabilizer , note that i is >= 0 and < q->k
void QState:: removerow (long i)
{

unsigned long j , m;

If(k == 1
{

sfree ()
return;

}

7/ shift the ith destabilizer through all
the

7/ destabilizers and stabilizers , into the 2
k - 1 position

for(j=i+1; j<2*k; j++) rowswap(j-1,j);

7/ shift the k+i-1 generator (the ith
generator, now shifted

/7 from the prior rowswaps) through all the
elements and into

/7 the 2*k - 1 position.
for(j=k+i; j<2*k; j±+) rowswap(j-1,j);

// Free the last two generators
delete [] x[2+k];
delete [] z[2*k];
delete [] x[2*k-1];
delete [] z[2*k-1];

/7 adjust the pointer arrays , etc , to two
fewer locations

7/ by setting q->k to q->k - 1 and
reallocating

k = k - 1;

// Allocate and copy while we free the old
space

unsigned long **tx = new unsigned long *[2*k

+1];
unsigned long **tz = new unsigned long *[2*k

+1];
int *tr new int [2*k+11;
for(m = 0; m < 2*k + 1; m++
{

tx [im] = new unsigned long [over32];
t z [in] = new unsigned long [over32 ;
for(j = 0; j < over32 ; j++
{

tx[m] [j) = x[m]j];
tz [im[j[] = z[im][j;

tr[m] = r[m];
delete [I x1m]
delete [] z [m];

}
delete [] X;
delete []z;
delete [] ;
// Ok, copied and deleted. Point to the copy

x = tx;
z = tz
r = tr

// put new identity generators on the end of the
stabilizer

// and desta bilize r list

void QState::addrow(void)

unsigned long j;

/7 grow the tableau by two rows, creating
new space

// while freeing the old space
k = k + 1;
unsigned long ** tx = new unsigned long * [2*

k+1};
unsigned long **tz = new unsigned long * [2*

k+1];
Int *tr = new int [2*k+1];
for(long i = 0; i < 2*k + 1; i++
{

tx[i] = new unsigned long [over32];
tz [i] = new unsigned long [over32];
for(long j = 0; j < over32 ; ++
{

if(i < 2*k - 1)
{

tx[i][j] = x[i][j];
tz[i][j]= z[i][j];

}
}
If(i < 2*k - 1)
{

delete [x
delete []
tr [i]=c r [i]

}
}
delete [] x;
delete [] z;
delete [] r;

x = tx;

z = tz
r = tr
x[2*k-1] = new unsigned long [over32];
x[2*k] = new unsigned long [over32];
z[2*k-1] = new unsigned long [over32];
z[2*k] = new unsigned long [over32];

// set these new rows to zero
for (j = 0; j < over32; j++)

x[2*k-1][j] = 0;
z[2*k-1][j] = 0;
x[2*k][j] = 0;
z[2*k][j] = 0;

}
r[2*k-1] = 0;
r[2sk] = 0;

// swap the new 2*k - 1 generator (last
before scratch) up

7/ to the k-1 position , shifting all the
stabilizer

// generators down one row.
for(j = 2*k - 1; j >= k; j--) rowswap(j-1,

}

/7 remove the jth column from every generator in
q

7/ does not modify the phase
7/ j >= 0 and j <= q->n
void QState removecol (long j
{

unsigned long FFFF = OxFFFFFFFF; //
2-32 - 1 = 4294967295

unsigned long jword = j >>5; // the word
containing the jth bit

unsigned long lefti = FFFF << ((j&31) + 1);
// left mask

unsigned long rightj = (FFFF ^ leftj) pw[j
&31]; // right mask

unsigned long i , m;

/7 a generator with enumerated terms
1 2 3 ... n

/7 is organized in memory like this

// 32 31 ... 1 | 64 63 ... 33 | ..
/7 where the vertical bars separate words.

// FFFF << 32 == FFFF, so we have to correct
that here

if((j&31) == 31)
{

leftj = 0;

218

rightj = (FFFF ^ leftj) pw[j&31];
}

/7 iterate over all generators
for(m = 0; m < 2*k +1; m++
{

// start at the word containing the jth
bit

for(i = jword; i < over32; i++)

{
if(I == jword)

// if this is the word
containing the jth bit

/7 right shift the part to the
left of the jth bit

x[m] [i] = ((x[m][i] & leftj)>>1)

(x [in]] i] & rightj
z[m] [i] = ((z[m] [I] & leftj)>>1)

(z[m][i] & righti);
} else {

// otherwise , just shift the
word right one

// to make up for the missing
bit

xm][I] = x[m] [i] >> 1;
z Wn][iI = z[m][i] >> 1;

// if there are still more words to
the right

// take the right-most bit of the
next word

// and place it at the left-most bit
of this word

If(I < over32 - 1
{

x[m][i] 1= ((xlm}[+it1] & 1)
<< 31);

z[m][i] 1= ((z[m][i+1] & 1)
<< 31);

// release some memory?
n = n - 1;
if(((n>>5) + 1) < over32)
{

// we need fewer words to represent each
row

over32 = (n>>5) + 1;
for(i=0; i< 2*k + 1; i++
{

unsigned long * tx = new unsigned
long [over32];

unsigned long * tz = new unsigned
long [over32];

for (m=0; n < over32; m+)

tx[M] = x[i][M];
tz [n] = z []

delete [] x[1];
delete [] z[i ;
x[i] = tx;
z[i] = tz;

}

// add a column to the end of every generator in
q.

// does not modify the phase.
void QState:: addcol(void)
{

unsigned long i , j

n = n + 1;
// should another word be allocated ?
If ((n>>5) + 1 > over32
{

over32++;
for(i=0; I < 2sk + 1; i++)
{

unsigned long *tx = new unsigned
long [over32];

unsigned long *tz = new unsigned
long [over32];

for (j=0; j < over32; j++)
{

if(j == over32
{

tx[j] = 0;
tz[j] = 0;

}
else
{

1)

tx[j] = X[i I I];
tz[j] = z[i]{];

delete [] x[i];
delete [] z[I I;
x[i] = tx;
z[i] = tz;

I

// swap columns i and j (qubit relabel)
void QState swapcol (long i , long j)
{

long n;
long 15 = i >> 5;
long j5 = j >> 5;
unsigned long pwi = pw[i&31];
unsigned long pwj = pw[j&31];
unsigned long xi , zi;

for(in = 0; m < 2*k; m++)
{

xi = x[n][i5]&pwi; // copy column i
zi = z[m}[i5]&pwi;
x [m] 15 J= pwi; // set column i
z[m][15] 1= pwi;
// flip column i if column j not set
If(!(x[m][j5]&pwj)) x[im][] ^= pwi;
If(!(z[m][j5)&pwj)) z[m][i5] ^= pwi;
x(][j5] J= pwj; // set column j
z[mn][j5] 1= pwj;
// flip column j if column i not set
If(lxi) x[]n[j5] ^= pwj;
If(zi) z[n [j5} ^= pwj;

}

/Return a string containing the stabilizer
destabilizer

7/ for a state q in row-reduced form
string QState reducedState (void)
{

QState tinp = (*this);
tinp. gaussjordan () ;
return tmp. state ();

}

and

/7 Return a string containing the stabilizer and
destabilizer

// for state q
string QState::state(void)
{

long i;
long j;
long j5;
unsigned long pwt;

string result ;

for (i = 0; i < 2*k; i++)
{

If (i == k)

result += "\ncgstate
for (j = 0; j < n+1; j++)

result +=

if (i > 0
{

if (r[i]==2) result += "\ncgstate
+ to-string(i) + " ";

else result += "\ncgstate +
to-string (i) +

else

{

}
for

If (r[i]==2) result += "\ncgstate
+ to-string (i) + " "

else result += "\ncgstate " +
to-string(i) +"+";

(j = 0; j < n; j++)

219

}
}

}

j5 = >5;
pwt = pw[j&31];
If ((!(x[i][j5]&pwt)) && (M(z[i][j5

]&pwt))) result += " I";
If ((x[i][j5]&pwt) && (!(z[i][j5]&

pwt))) result += "X";
if ((x i][j5}&pwt) && (z[i][j5]&pwt)

) result += "Y";
If ((!(x[i I[j5]&pwt)) && (z[i] j5]&

pwt)) result += "Z"

}
}
return r es ult ;

// Measure qub
// Return
//
//7

was chosen
//

it b
0 if
1 if
2 if

outcome would always be 0
outcome would always be 1
outcome was random and 0

3 if outcome was random and 1
was chosen

sup. 1 if determinate measurement results
should be

suppressed , 0 otherwise
QState ::measure(long b, int sup)

int ran = 0;
long I;
long p; // pivot row in stabilizer
long m; /7 pivot row in destabilizer
long b5;
unsigned long pwt;

b5 = b>>5;
pwt = pw[b&31];
for (p = 0; p < k; p++)

over stabilizer generators

//7
if

If

I/
If

// loop

If (x[p+kl[b5l&pwt) ran = 1;
// if a Zbar does NOT commute with
Z-b (the

if (ran) break;
7/ operator

being measured) , then outcome is
random

If outcome is indeterminate
(ran)

rowcopy(p, p + k);
// Set Xbar-p := Zbar-p

rowset(p + k, b + k);
// Set Zbar-p := Z-b

r[p + k] = 2*(rand ()%2);
// moment of quantum

randomness
for (i = 0; i < 2*k; i++)

// Now update the Xbar's
and Zbar's that don't commute with
if ((i!=p) && (x[i I [b5]&pwt))

// Zb
rowmult (i , p) ;

if (r[p + k]) return 3;
else return 2;

If outcome is determinate
((!ran) && (!sup))

for (m = 0; m < k; m++)
// Before we were checking

if stabilizer generators commute
if (x[m][b5]&pwt) break;

// with Zb; now we 're
checking destabilizer
generators

rowcopy(2*k, m + k);
for (i =m+1; i < k; i++)

If (x[i][b5]&pwt)
rowmult(2*k, i + k);

If (r[2*k]) return 1;
else return 0;
/* for (i = m+1; i < n; i++)

if (xzi][b5]&pw)

{
rowmult(m + n, i + n);
rowmult(i , m);

return (int)r[m + n];*/

I

}

return 0;

7/ Gauss-Jordan elimination to put the
stabilizer generators into

// a unique form.
// (Return value = number of such generators =

log_2 of number of nonzero basis states)
long QState gaussiordan (void)
{

long j ,m;
long 1, 15;
unsigned long pwt;
long row, g;

g = gaussian(;

// jordan reduction

/7 find the first row from the bottom
an X

7/ (if it doesn 't exist then row = n
for(m = 2*k - 1; m > k - 1; m--

{
for(1 = 0; 1 < n; I++)

15 = 1 >> 5;
pwt = pw[l&31];
If(x[m][15]&pwt) break;

If(I < n) break;
}

7/ printf("first search for X: row = %ld
col = %ld\n",m, 1);

row = m;

// for all of the Z rows
for(m = 2*k-1; m > row; m--)

7/ find the first Z from the left
/7 (one should always exist)
for(I = 0; 1 < n; 1++)

15 = 1 >> 5;
pwt = pw[l&31];
if(z[m][15]&pwt) break;

7/ printf("found z at row = %ld col =

ld\n",m, 1);

// for all generators above with a Z
/7 in the 1 position , reduce
for(j = m - 1; j > k - 1; j--)

if(z[j][15]&pwt)
{

// printf("z reducing row = %ld\
n",j);

rowmult (j ,m)
rowmult (j-n,-n)

left

I
}

}

/7 for all of the X rows
for (m = row; m > k - 1; n--
{

77 find the first X from the
/7 (one should always exist)
for(1 = 0; 1 < n; I++)

15 = 1 >> 5;
pwt = pw[l&31];
if(x[m][15]&pwt) break;

/7 printf ("found x at row = %ld col =
ld\n",m, 1);

/7 for all generators above with an X
/7 in the I position , reduce
for(j =m - 1; j > k - 1; j--)

if(x[j][15]&pwt

7/ printf("z reducing row = %ld\
n", j) ;

220

/

//
int
{I

with

- 1)

rowmult (j m) ;
rowmult (j-n,n-k--n)

}
}

return g;
}

// Do Gaussian elimination to put the stabilizer
generators in the following form:

// At the top , a minimal set of generators
containing X's and Y's, in "quasi-upper-
triangular" form.

7/ (Return value = number of such generators
log-2 of number of nonzero basis states)

// At the bottom , generators containing Z's only
in quasi-upper-triangular form.

long QState:: gaussian (void)
{

long i = k;
long m;
long m2;
long j;
long j5;
long g; // Return value
unsigned long pwt;

for (j = 0; j < n; j++)
{f

j5 = j>>5;
pwt = pw[j&31;
for (m = i ; m < 2*k; mn++)

a generator containing X
column
if (x[m][j5]&pwt) break;

if (m < 2*k)
{

}
g

rowswap (i , m);
rowswap(i-k, rn-k);
for (m2 = i+1; m2 < 2*k;

if (x[m2][j5]&pwt)

rowmult (m2, i)
// Gaussian

step
rowmult(i-k, m2-

}
i ++;

}

for (i = 0; j < n; j++)
{

j5 = j>>5;
pwt = pw[j&31];
for (m = i; m < 2*k; n++)

a generator containing Z
column
If (z [m][j5]&pwt) break;

If (m < 2*k)

// Find
in jth

m2++)

elimination

k);

7/ Find
in jth

rowswap(i , M);
rowswap(i-k, m-k);
for (m2 = i+1; m2 < 2*k; m2++)

if (z[m2][j5]&pwt)
{

rowmult (m2, i)
rowmult(i-k, m2-k);

return g;
}

// append a new qubit to
void QState ::add(void)

if(n > 0
{

q in state z+

addcol ()
addrow()
// initialize the new generators
x [k-1][(n-1)>>5] = pw[(n-1)&31];
z[2*k -1][(n-1)>>5] = pw[(n-1)&31];
r [k-1] = 0;
r[2*k-1] = 0;

else sInit (1) ;

// remove the bth qubit of q
void QState : :remove(long b)

long j , m;
long b5 = b>>5;
unsigned long pwt = pw[b&31];

measure(b,1); // measure the bth qubit
neglecting outcome

/find the first stabilizer generator with
a Z in the bth term.

// guaranteed to find one, because we
measured Z..b.

for(j = k; j < 2*k; j++)
if(z[iJ[b5J&pwt) break;

// multiply all generators with weight in
the bth term

7/ by the generator we just found.
for(m = k; m < 2*k; m++)

if(z[m][b5]&pwt &&m m= j)
rowmult (m,)

if(n > 1

removerow (j -k)
removecol(b)

else sfree ()

/7 return a string containing the basis state
corresponding to

// applying the scratch space generator to the
zero ket.

string QState :: basisstate (void)

long j;
long j5;
unsigned long pwt;
int e = r[2*k];

string result ;

for (j 0; j < n; j++)

j5 =j>>5;
pwt = pw[j&31];
if ((x[2*k][j5]&pwt) &&

// Pauli operator is "Y"
e = (e+1)%4;

}
if (e==O) result += " +1";
if (e==1) result += "+l
if (e==2) result += " -|";
if (e==3) result += "--i I";

for (j = 0; j < n; j++)

{

(z[2*k][j5]&pwt)

5 j>>
5

;
pwt = pw[j&31];
if (x[2*k][j5]&pwt) result += "1";
else result+= "0"

result += ">";

return result
}

/7 Finds a Pauli operator P such that the basis
state P10...O> occurs with nonzero
amplitude in q, and

// writes P to the scratch space of q. For this
to work , Gaussian elimination must already
have been

/7 performed on q. g is the return value from
gaussian (q) .

void QState:: seed(long g)

long i;
long j;
long j5;

unsigned long pwt;
int f;
long min;

221

}

{I

}

// the last row of q is scratch space
r[2*k] = 0;
for (j =0; j < over32; j++)
I

x[2*k]{ j = 0;
scratch space clean

z[2*k][j] = 0;

// Wipe the

(i = 2*k - 1; i >= k + g; i--)

f = r[i]
for (j = n - 1; j >= 0; j--)

j5 = j>>5;
pwt = pw[j&31];
if (z[i][j5]&pwt)

min = j
if (x[2*k][j5]&pwt) f =(f+2)%4;

}
}if (f==2)

j5 = min>>5;
pwt = pw[min&3 1];
x[2*k][j5] ^= pwt; / Make

the seed consistent with the
ith equation

7/ returns a string containing the ket
representation of q

string QState::ket(vold)

QState tmp = (+this);
return tmp. destructiveKet ()

/7 returns a string containing the ket
representation of q

// can invalidate the commutation relations
between

// stabilizer and destabilizer
string QState:: destructiveKet(void)

long g;
nonzero basis

unsigned long t;
unsigned long t2;
long i ;

string result

// log_2 of number of
states

if(n == 0)

return "ket
}
g = gaussian(;
if (g > 31)

result = "ket too large";
return result

seed(g);
result += "ket
result += basisstate ()
for (t = 0; t < pw[g]-1; t++)

t2 = t
for i

if

result

(t+1);
= 0; i < g; i++)
(t2 & pw[i])
rowmult (2*k , k + i);

+= basisstate ();

return result

QState :: QState ()

Int i;
// initialize the state to empty
n = k 0;
x = z = NULL;
r = NULL;
over32 = 0;
pw[0] = 1;
for (i = 1; i < 32; i++)

pw[i] = 2+pw[i -1];

C.2.20 QState.hh

//
//
//
//

QState. hh
Derived from Scott Aaronson's CHP simulator
Andrew Cross < awcross@mit. edu>
$Id: QState.hh 152 2004-08-20 18:34:08Z setso

// Quantum state (or subspace) given by a set
/7 of stabilizer generators in the binary
// representation .

#include <cstdlib>
#include <string>
#include <vector>

#include " utilities .hh"

using namespace std;

#ifndef .. QState.
#define __QState--

class QState

private:
long n; // # of qubits
long k; 77 # of generators
unsigned long ssx; 7/ (2k+1)+n matrix; x

bits
unsigned long s* z; // z bits
int *r; // phase: 0 for

+1, 1 for i, 2 for -1, ...
unsigned long pw[32]; /7 pw[iJ = 2^i
long over32 // floor(n/8)

+ 1
7/ state creation
void sinit (long n);
void sfree(void);
// basic row operations
void rowcopy(long i, long m);
void rowswap(long i, long m);
void rowset(long i, long b);
void rowmult(long i, long m);
bool rowcommutes (long i, long j);
void removerow (long i);
void addrow (void) ;
// basic column operations
void removecol (long j);
void addcol(void);
void swapcol(long i, long j);
// other operations
int clifford(long i, long m);
string basisstate (void);
long gaussjordan(void);
long gaussian (void);
void seed(long g);
int weight(unsigned long w);
void stringToRow(string s, long row);
string destructiveKet (void);

public:
QState()
QState(long n) { sInit(n); }
~QState() { sfree (); }
QState(const QState& q);
QState& operator=(const QState& q)
bool operator==(const QState& rhs);

inline void reseed(unsigned int seed) {
srand (seed) ; }

void cnot(long b, long c);
void h(long b);
void s(long b);
inline void gx(long b) { h(b); s(b); s(b); h

(b); }
inline void gy(long b) { gz(b); gx(b); }
inline void gz (long b) s (b) ; s (b); }
int measure(long b, int sup);
string reducedState (void);
string state(void);
string ket (void);
string subsetket (vector<int > qlist
string raw (void);
void add(void);
void remove(long b);
long size(void);
bool subset(vector<int > qlist , vector<string

> sgens);

222

}
for
I

I

}

}

I
I

#endif

C.2.21 arq.cc

/7 arq. cxx
// Andrew Cross < awcross@mit. edu>
// Architecture Research Quantum Simulator
/7 $Id: arq.cc 149 2004-08-17 13:44:11Z awcross

/7 Copyright (c) 2004 Scott Aaronson, Andrew
Cross, Tzvetan Metodiev, Darshan Thaker

// Contact <awcrosstmit. edu>

/7 arq is free software; you can redistribute it
and/or modify

// it under the terms of the GNU General Public
License as published by

/7 the Free Software Foundation; either version
2 of the License , or

// (at your option) any later version.

// arq is distributed in the hope that it will
be useful ,

/7 but WITHOUT ANY WARRANTY; without even the
implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the

// GNU General Public License for more details.

// You should have received a copy of the GNU
General Public License

77 along with arq; if not , write to the Free
Software

// Foundation , Inc. , 59 Temple Place , Suite
330, Boston , MA 02111 -1307 USA

const char * cvsdate = "SVN $Id : arq . cc
149 2004 -08 -17 13:44:11Z awcross $'

const char * version = " 0.12 alpha"

#include <iostream>
#include <sys/time.h>
#include <time.h>

#include <cstdlib>
#include <fstream>

#include "include/utilities .hh" // for
parseCmdLine ()

#Include "include/Machine.hh"
#include "include/CGMachine. hh"
#include "include/PCGMachine. hh"
#include "include/ITMachine.hh"
#include " include /NoisyCGMachine . hh"
#include " include /NoisyPCGMachine . hh"
#include "include /NoisylTMachine. hh"
#include "include/commandLine.hh"
#include "include/interactive.hh"
#include "include/loglevels .hh"

using namespace std;
using std :: ofstream;
Int log-level;

main(int argc , char *argv[])

// Time-keeping variables
clock-t tick..count = clock();
clock-t tick.count2
double thetime ;

/7 Reseed the random number
from the clock

time-t seedO = time(0);
srand (seedO) ;

int nsamples = 1;
double start , end;
string machineName;
Machine *m;
struct commandLine cmdLine;

Int nFail;
int nPass;

generator

if (I parseCmdLine (cmdLine , argc , argv)
| cmdLineDependencies (cmdLine)

cout << " ** Quantum Computer
Architecture Simulator" <<
endl;

cout << "** " << cvsdate << endl

cout << "** " << version << endl

#ifdef TURBO

#endif // TURBO

cout << " ** Compiled with -
DIURBO" << endI ;

cout << "\nATTENTION: arqsample
can be used to collect
statistics !\n"

cout << endl;
cout << "Use: arq param=value

param=value , . . . " << endl;
cout << " arq -- interactive"

<< endl;
cout << endl;
cout << "parameter

value
default)" << endl;

cout << "
<< endl;

cout << "machine (-m)
cc ,cg ,pcg cit

ntg,npcg,ncit (ncg)" <<
endl ;

cout << "source (-s)
filename

required)" << endl;
cout << "layout (-1)

filename (\"\"
<< endl;

cout << " parameters (-p)
filename (required)

<< endl;
cout << "samples (-n)

integer (1)" <<
endl;

cout << "verbosity (-v)
integer (1, use

127 with arqview)" << endl

cout << "datafile (-f)
filename (\"

default . data\")" << endl;
return 1;

}

/7 Start the interactive mode if
requested

if(cmdLine. interactive)
f

InteractivePrompt i
return i . start () ;

it was

nsamples = cmdLine. samples;
log-level = cmdLine. verbosity;

// Open the Data File for writing
ofstream dataFile (cmdLine. datafile.

c.str() , ios ::out);

/7 The Machine 's constructor should
/7 dump the parameter file in the format

/7 parameter name value
If (log-level & STARTUP) cout <<

machine " << machineToString(
cmdLine. machine) << endl;

If(cmdLine. machine == CC) m = new
Machine (cmdLine. parameters) ;

else If (cmdLine. machine == CG) m = new
CGMachine(cmdLine. parameters);

else If (cmdLine . machine == PCC) m
new PCGMachine(cmdLine. parameters);

else If(cmdLine. machine == CIT) m =
new ITMachine (cmdLine. parameters)

else if(cmdLine. machine == NCG) m =
new NoisyCGMachine (cmdLine.
parameters) ;

else If(cmdLine.machine == NPCG) m =
new NoisyPCGMachine (cmdLine.

223

Int
I

I

parameters);
else if(cmdLine. machine == NCIT) m =

new NoisyITMachine (cmdLine.
parameters)

else

cerr << "Internal Error! No
machine!
<<"Check the command line

parser ." << endl;
return 1;

If (log-level & STARTUP) {
cout << "parameterfile " <<

cmdLine. parameters << endl;
coot << " sourcefile " << cmdLine

.source << endl;

7/ This is defined for all machines - it
's ok to call

// even if the particular machine doesn
t have a layout

m->layout (cmdLine. layout);

7/ Load the source file and do all of
the relevant

7/ preprocessing. This will completely
initialize

7/ the Machine.
try { m-->load (cmdLine. source); }
catch(Error:: Syntax-error e)

cerr << "Syntax Error! Quitting"
<< endl;

return 1;

/7 This is the main sampling loop . We
will execute the source

/7 "nsamples" times and write the
simulation results to

/7 standard out.
for (long i = 0; i < nsamples ; i)

tick.count2 = clocko;
bool fail = false ;

if(log-level & STARTUP) coot
<< " trial " << (i+1) <<
<< nsamples << endl;

/Save the volatile state
information of the

77 machine before executing
source on the machine.

m->save () ;

// Execute the source
try { m->run(); }
catch (Error Exec-error e)

the

cerr << " Execution Error
Quitting" << endl

return 1;

catch(Error:: Crash-error e)

If(log-level & ERRORS
cout << "halt "
<< e.msg << endl;

fail = true;

7/ Restore the volatile elements
of the machine state

m->restore ();

If(log.level & STARTUP) coot
<< "result " << (fail?"F":

"P") << endl;
dataFile << (fail?"F":"P") << "\

dataFile << double(clock() -
tick.count2) /
CLOCKS-PERLSEC << endl;

}
thetime = double(clock() - tick-count)

/ CLOCKS-PER.SEC;
cout << " wallseconds " << thetime <<

endl;
cout << "sampleseconds " << double(clock

() - tick-count2) / CLOCKS-PER.SEC

<< endl;
return 0;

}

C.2.22 commandLine.cc
// commandLine. cxx
// Command line parser , default setter

dependency checker
/7 $Id: arq. cxx 6 2004-07-16 03:48:34Z awcross $

#include "include/ utilities .hh"
#include "include /commandLine. hh"

using namespace std;

machineToString(mType m)

switch (m)
I

case CC: return string("
classical");

case CC: return string("clifford
"1) .

case PCG: return string(" planar"

case CIT: return string(" iontrap
11) ;

case NCG: return string (" noisy
clifford");

case NPCG: return string("noisy
planar");

case NCIT: return string("noisy
iontrap");

default: return string(" internal
error") ;

string

{

/7 Set default values for the command line
/7 If the user just runs ARQ this is what will
7/ happen (probably nothing).
commandLine : : commandLine ()
{

// set defaults
machine = NCG;
source -

layout =

parameters =
samples = 1;
verbosity = 1;
datafile = "default . data"
interactive = false;

// Check that we have enough information to run
the simulation.

bool cmdLineDependencies (struct commandLine& cmd

{
if(
{

!cmd.interactive)

// Source file required
if(cmd.source.size() =0)

return false ;
// Layout file required for

planar simulations
If((cmd.machine == PCG IF cmd.

machine == CIT II
cmd. machine == NPCG | cmd.

machine NCIT) &&
cmd. layout . size () == 0)

return false;
7/ Require a parameter file for

now, but we can FIX
7/ this later by writing a

default parameter file.
If(cmd. parameters. size() == 0)

return false ;

return true;

7/ Read the command line arguments into the
commandLine structure ,

7/ returning false if the command line doesn 't
look right.

bool parseCmdLine(struct commandLine& cmd, Int
argc , char *argv [])

224

Int loc = 1;
if(argc == 2)
{

string line(argv[1})
if(line == "--interactive"

cmd. interactive true;
else cmd. interactive false;

}
while(loc < argc && !cmd. interactive
{

string line(argv[loc])
string s = Token(line ,
If((s == "machine") | (s

"-in))

{
if(line == "cc") cmd.

machine = CC;
else If(line == "cg"

cmd. machine CG;
else If(line == pcg"

cmd. machine = PCG;
else If (line == cit"

cmd.machine = CIT;
else If(line == "ncg"

cmd. machine = NCG;
else if(line == npcg"

) cmd. machine =
NPCG;

else if(line == "ncit"
) cmd. machine =

NCIT;
else return false

} else if((s == "source"
(s == "-s)) cmd.

source = line ;
else if((s =="layout") |I (s

- "-1")) cmd. layout =
line ;

else if(s "parameters")

I (s -p")) cmd.
parameters = line ;

else If((s == "datafile") |
s == "-f)) cmd. datafile
= line;

else if((s verbosity") |

s == "-v")
{

}
else

{

if(isInteger (line)
return false ;

cmd. verbosity = str2int(
line);

if((s == "samples") I| (s

if(isInteger(line))
return false ;

cmd.samples = str2int(
line);

}
else return false;
loc++;

}
return true;

C.2.23 commandLine.hh
// commandLine. hh
// Command line parser, default setter

dependency checker
// $Id: arq. cxx 6 2004--07-16 03:48:34Z awcross $

#include <string>
#include " utilities .hh"

using namespace std;

#ifndef _COMMANDLINE-
#define _COMMANDLINE-

// Valid machine types that we can simulate
typedef enum { CC,CG, PCG, CIT, NCG, NPCG, NCIT

} mType;

// Structure to hold the parameters that ARQ
needs to

// run
struct

{

a simulation.
commandLine

mType machine;
string source;
string layout ;
string parameters
Int samples;
string datafile
int verbosity ;
bool interactive;
commandLine () ;

// Check that we have enough information to run
the simulation.

bool cmdLineDependencies(struct commandLine& cmd

/7 Read the command line arguments into the
commandLine structure ,

// returning false if the command line doesn 't
look right.

bool parseCmdLine(struct commandLine& cmd, int
argc , char *argv []) ;

string machineToString(mType m)

#endif

C.2.24 globals.hh

/* globals.hh
Contains all the variables that have to be

accesse by multiple
files.
ddthaker@ucdavis. edu
7/119104

*7

extern int log-level;

C.2.25 htable.c

Hash table for the perfect hash functions.

Created May 2004.
Thaker thaker~cs . ucdavis . edu

Darshan

SId : htable . c 6 2004 -07-16 03:.48:34Z awcross $

*/

#1 f n d e f STANDARD
#Include "include/standard.h"
#endif
#1 fn d e f HTABLE
#include "include/htable.h"
#endif

This function creates a hash table
and returns a pointer to

the table . Null if not successful.

for qbits

Parameter passed is num, which is the number
of entries expected to be

stored in the table . Table size if power of
2 greater than or equal

to num.
*/
q.htable * q.htable.create (Int num)
{

int e , table-size entry-size
q..htable *htable;

/* Size of table has to be in power of
2. So we calulate the

power of two greater than or equal to
num of entries *7

for (e=1; e<num; e<<=1);

225

{

entry-size = (e-1) * sizeof (q.hentry);
table-size = sizeof (q-htable);
table-size += entry-size;
htable = (q.htable a) calloc (1

table-size);

if (htable == NULL) {
printf("Can't get enough space

for q.htable\n");
return NULL;

htable->size = e;

return htable;

q-hentry *q-htablefind (q.htable *htable, ubi *
key , ub4 klen)

int index;
q.hentry *hentry;

index = phash(key,klen);

/* Look in chain if more than one key
hashes to the same index */

for (hentry = htable->table [index];
hentry ; hentry = hentry->next) {

if (memcmp(hentry->key, key
, klen) == 0)

break;

return hentry;

q-hentry* q.htable-add (q.htable *htable , ubi *
key , ub4 klen)

{
int index;
char a[2] = "XX";
q.hentry *hentry, *tmp;

index = phash(key,klen);
hentry = htable->table [index];

tmp = (q-hentry *) malloc (sizeof
q.hentry));

memset(tmp, 0 ,sizeof(q.hentry));
if (tmp==NULL) {

printf("Can't allocate men
new entry\n")

return NULL;

strncpy(tmp->key, key, klen);
tmp->next = htable ->table[index];
htable->table[index] = tmp;
return tmp;

for

void q-htable-print (qhtable *t)

int i;
q.hentry *hentry;

for (i=0; i< t->size ; i-+)
printf(" Entry: %d\n" ,i
for (hentry=t->table[i]; hentry

hentry=hentry->next)
printf(" %s " hentry->

key);
printf(" \n"

p-htable sp.htable-create (int num)

{
Int e , table-size , entry-size
p-htable * htable ;

/* Size of table has to be in power of
2. So we calulate the

power of two greater than or equal to
num of entries s/

for (e=1; e<num; e<<=1);

entry-size = (e-1) * sizeof (p-hentry);
table-size = sizeof (pjhtable);
table-size += entry-size;
htable = (p-htable a) calloc (1

table-size);

if (htable ==NULL) {
printf("Can't get enough space

for p-htable\n"
return NULL;

}

htable->size = e;

return htable;
I

p-hentry * p-htable-find (p-htable * htable , ub4
key)

{
int index;
p-hentry *hentry;

index = phash-i(key);
index += 2;

/* Look in chain if more than one key
hashes to the same index */

for (hentry = htable->table [index];
hentry; hentry = hentry->next) {

//if (memcmp(hentry->key,
key , klen) == 0)

if(hentry->key == key)
break;

return hentry

p-hentry * p-htable-add (p-htable * htable ub4
key)

{
int index;
char a[2] ="XX"
p.hentry *hentry, *tmp;

/* First do a lookup s/
index = phash-i(key);
index +=2;
hentry = htable->table [index];

//printf(" Index %d, key %s\n",indez , key

for (hentry = htable->table[index];
hentry; hentry = hentry->next) {

if((ub4)hentry->key == key) {
printf(" Duplicate key \n

");
return hentry

}

/* No duplicates found so insert.
hentry should be NULL */

if (hentry == NULL) {
/*XXX need a better malloc here -- this

is resource intensive.*/
tmp = (p-hentry *)malloc(sizeof

(p-hentry));
memset(tmp, 0 , sizeof(p-hentry))

if (tmp == NULL) {
printf("Can't allocate

mem for new entry\n
"1);

return NULL;

tmp->key = key;

226

}I

tmp->next = htable->table [index

I ;
htable->table [index] = tmp;
return tmp;

void p-htable-print (p-htable *t)
{

Int i;
p-hentry *hentry;

for (i=0; i< t->size ; i++) {
printf("Entry: %d\n" ,i);
for (hentry=t->table [i]; hentry

hentry=hentry->next)
printf(" %d -> " hentry

->key);
printf("\n");

}

C.2.26 htable.h

structs and functions related to hash tables.

Created - May 2004. Darshan Thaker
thakerOcs . ucdavis . edu

$Id : htable . h 6 2004-07-16 03:48:34Z aweross $

The Hash table for both qbits and physical
locations have table entries

that are of type " q.hentry " and " p.hentry"
respectively .

A qbit entry contains a pointer to its physical
location. This pointer

is of type p-hentry . This allows us to move a
qbit by simply

changing pointers.
*/7

#include "standard.h"

struct qbit-hentry
{

/* ubl * key; Key is the qbit name
char key[1O];
ub4 len ; /* Length of the key s/
ub4 hash; /* generated hash s/

struct phy.hentry *pos;
struct qbit-hentry *next; /* Next

hentry . Unused when the hash
function

is a perfect
hash s/

};

struct qbit-htable
{

struct qbit-hentry *table [1];
table */

ub4 size ;
of the table s/

struct qbit.hentry *free;
entries */

};

struct

{

7*

/*

Hash

size

Used

phy-hentry

ub4 key; /* Key is the qbit name
*/7

ub4 len ; /* Length of the key */
ub4 hash; /* generated hash */
int occupied ; /* anything here ??

occupied = 1 if qbit
present */

struct qbit-hentry * bit ;
struct phy-hentry * next ; /* Next hentry

Unused when the hash function
is a perfect

hash */

} ;

struct

};

phy.htable

struct phy-hentry * table [1]; /* Hash
table */

ub4 size; /* size of the
table */

ub4 free ; /* Used entries

*/

typedef struct qbit-hentry q.hentry;
typedef struct phy-hentry p-hentry;
typedef struct qbit-htable q.htable;
typedef struct phy-htable p.htable;

q.htable * q.htable.create ()
q.hentry * q.htable-find ()
q-hentry * q.htable-add ()
p.htable * p-htable-create ()
void q.htable-print () ;

C.2.27 interactive.cc

// interactive. cxx
//ARQ's interactive mode
// Essentially a standalone interface to

Cxx
// $Id: $

#include "include/interactive.hh"

using namespace std;

bool InteractivePrompt hasId(string id)

{
map<string , QState* >:: iterator 1
1 = states . find(id);
if(1 != states.end()) return true;
return false;

}

InteractivePrompt InteractivePrompt ()
{
}

void InteractivePrompt::help (string op)

if(
{

op. size () == 0)

cout << "Help topics : exit add rm new Is
ket sgt rrt eoe gsf" << endl;

cout << " cnot cz h s x y z"
<< endl;

}
If(op == "quit"

cout << "Use: quit I exit" << endl << endl

cout << "The commands quit and exit
return you to the shell." << endl;

else If(op == "add"

cout << "Use: add <state-name>" << endl
<< endl;

cout << "This appends a new qubit to the
quantum state named" << endl;

cout << "state-name . The new qubit is
initialized to 10>." << endl;

else If(op == "rm"
{

cout << "Use: rm <state-name> <
qubit-location>" << endl << endl;

cout << "This deletes the qubit in
location qubit-location" << endl;

cout << "from the quantum state named
state-name. If that qubit is" <<
endl;

cout << "entangled with the reset of the
system , then it is measured" <<

endl;
cout << " prior to removal . The outcome

might not be deterministic ." <<
endl;

227

QState.

}I

{

I f (op == "new"

cout << "Use: new
<< endl;

cout << "Create a
object named

If (op == " ls")

cout << "Use: Is"
cout << " List all

quantum state

If(op == "ket")

<state-name>" << endl

new quantum state
state-name." << endl;

<< endl << endl;
of the names of the
objects." << endl;

If(op == "sgt")

if(op == " rrt")

I f(op == "eoe"

If(op " gsf")

I f(op == "cnot")

If(op "cz")

If(p == "")

If(op "s")

if(op == x" i p == "y" I I op == " z

InteractivePrompt :: start (voId)

vector<Op> cmd;
vector<Op>::iterator ci;

quit = false

while (! quit
{

cout << "arq>
cin >> cmd;

for(ci = cmd. begin() ci cmd.end()
ci++)

if(ci->opcode "help")
{

vector<string >:: iterator i
if(ci->args.empty())

help(" ;
else

for (i = ci->args . begin () ;i
ci ->args end i

++) help(*i);

}
else If (ci->opcode == "new"
{

lf(ci->args . size () > 0)
{

ceut << ">> Creating a new
stabilizer state named
" << ci->args [0] <<
endl;

If(hasId(ci->args [0])
ceut << ">> This name is

already in use ,
too bad." << endl;

else
states [ci->args [0]] =

new QState(;

else If(ci->opcode -- "

map<string ,QState*>::iterator mi

else
{

}
else
{

else

I

}
else

else
e Is

else{

else

lse

else

else

else

{

else

}
}
else If(ci->opcode == "exit"
{

quit = true;
cout << ">> Quitting" << end];
break;

}
else if (ci->opcode == " ket"
{

if (ci->args . size() > 0 && hasId
(ci->args [0]))

{
cout << ">> Displaying the

state \"" << ci->args
[0]
<< " \ as a ket" <<

endl;
cout << states {ci->args

[0]->ket() << endl;
}

}
else If (ci->opcode == " sgt"
{

If (ci->args . size() > 0 && hasId
(ci->args [0]))

{
cout << ">> Displaying the

state \"" << ci->args
[0]
<< " as a tableau of

generators" <<
endl;

cout << states [ci->args
[0]->state() << endl;

}
}
else If(ci->opcode == "rrt"
{

If (ci->args. size() > 0 && hasId
(ci->args [0]))

228

cout << ">> Listing quantum
state labels" << endl;

for (mi = states .begin () mi
states .end() ; mi++

cout << mi->first << " with
<< mi->second->size ()

<< " qubits" << endl;
}
else if(ci->opcode == "add"
{

If(ci->args . size() > 0 && hasId
(ci->args [0])

{
states [ci->args[0]]->add(;
cant << ">> Added a new

qubit to \"" << ci->
args [0]
<< "\" in state 10>"

<< endl;

}
else If(ci->opcode == "del"
{

If(ci->args.size () > 1)
If(hasId(ci->args [0]) &&

isInteger (ci->args [1]))
{

long loc = str2int(ci->
args [1]);

If(loc < 1 || loc >
states [ci->args
[0]]->size ())

cout << ">> The
index isn't in
range" << endl;

}
else

states [ci->args
[0]) - >remove(
loc -1);

cout << ">> Deleted

qubit at
location " <<
loc
<< " in \"" <<

ci->args
[0] < < " \"
" << endl;

int
{

f

{
cout << ">> Displaying the

state \"" << ci->args

[0]
<< " \ as a row reduced

tableau" << endl;
cout << states[ci->args

[0]] - > reducedState ()
<< endl;

}
}
else if(ci->opcode == "eoe"

cout << ">> Entropy of
entanglement" << endl;

cout << ">> 0_------------ fruit
by the foot" << endl;

}
else If(ci->opcode == "gsf")
{

cout << ">> Displaying graph
state form of stabilizer
generators" << endl;

cout << ">><O((< fish" << endl;
}
else if(ci->opcode == "h"
{

if(ci->args.size() > 1)
{

if(hasId(ci->args [0]) &&
isInteger (ci->args [1]))

{
long loc = str2int (ci->

args [1]);
if(loc < 1 |] loc >

states [ci->args
[0]]->size ())

cout << ">> The
index isn't in

range" << endl;
}
else

states [ci->args

[0]] - >h(loc -1);
cout << ">> Applying

Hadamard to
qubit "
<< loc << " of

state \""
<< ci->
args [0]

<<\"" << endl

}

else if(ci->opcode == "cnot"

cout << ">> Applying controlled-
NOT to qubit " << endl;

else if(ci->opcode == "cz")

cout << ">> Apply controlled-Z
to qubit " << endl;

else If(ci->opcode == "s")

if(ci->args.size() > 1)
if(hasId(ci->args [0]) &&

isInteger(ci->args[1]))

long loc = str2int(ci->
args [1]);

If(loc < 1 || loc >
states [ci->args

[0]] ->size ()
{

cout << ">> The
index isn't in
range" << endl;

else
{

states [ci->args
[0]] - >s(loc -1);

cout << ">> Applying
pi/4 gate to

qubit "

<< loc << " of
state \" "

<< ci->
args [0]

<<"\"" << endl

}
}

}
else if(ci->opcode == "x"
{

If(ci->args. size () > 1)
If(hasd(ci->args [0]) &&

isInteger(ci->args[1]))
{

long loc = str2int(ci->
args [1]);

If(loc < 1 | loc >
states [ci->args
[0]]->size())

{
cout << ">> The

index isn't in
range" << endl;

}
else
{

states [ci->args
[0]] - >gx(loc -1)

cout << ">> Applying
Pauli X gate

to qubit "
<< loc << " of

state \""

<< ci->
args[0]

<<"\"" << endl

}
}

}
else If(ci->opcode ==y
{

if(ci->args. size() > 1)
if(hasId(ci->args [0]) &&

isInteger(ci->args[1]))
{

long loc = str2int(ci->
args [1]);

if(loc < 1 || loc >
states [ci->args
[0]]->size())

{
cout << ">> The

index isn't in
range" << endl;

}
else
{

states [ci->args
[0]] - >gy(loc -1)

cout << ">> Applying
Pauli Y gate

to qubit "
<< loc << " of

state \""
<< ci->
args [0]

<<\"" << endl

I;
}

}
else If(ci->opcode == "Z"
{

if(ci->args.size () > 1)
if(hasld(ci->args [0]) &&

isInteger(ci->args{1]))
{

long loc = str2int (ci->
args [1]);

If(loc < 1 [I loc >
states [ci->args
[0]] ->size ())

{
cout << ">> The

index isn't in
range" << endl;

}
else

229

{
states [ci->args

[0]]-> gz (lnc-i)

cout << ">> Applying
Pauli Z gate

to qubit "
<< loc << " of

state \""

<< ci->
args [0]

<<"\"" << endl

}

return 0;

C.2.28 interactive.hh
// interactive.hh
// interactive mode
// $Id : $

#ifndef _INTERACTIVE--
#define -INTERACTIVE_-

#include <algorithm>
#include <string>
#include <map>

#include " utilities .hh"
#include " QState . hh"
#include "Op.hh"

using narnespace std;

class InteractivePrompt
I
private:

map<string , QState* > states;
bool quit ;

bool hasld(string id);
void help(string op);

public:
InteractivePrompt ()
int start(void);

#endif

C.2.29 loglevels.hh
// loglevels.h
// Darshan Thaker and Andrew Cross

#define STARTUP 1
#define MESSAGE 2
#define CLOCK 4
#define GATES 8
#define MOVE 1
#define ERRORS 3
#define INIT 6
#define DEBUG 1

6
2
4
28

/* This file describes how the verbosity
parameter of arq works.

Verbosity: 0 1 1 1 1 1 1 1 1

Bit 0 -> Startup information.
Bit 1 -> Message commands.
Bit 2 -> Clock
Bit 3 -> Gate Instructions (including

measurement)
Bit 4 -> Move Instructions
Bit 5 -> Inst. Errors
Bit 6 -> Initialize instructions.
Bit 7 -> Debug info.

Each bit functions as a toggle. If the bit value
is 0, the

function is turned off , and if it is 1 , that log
function is

turned on.

For example
Verbosity = 7 : Startup , Message and Clock
Verbosity = 120 : Only Instructions related logs

Verbosity = 128 : Only Debug
Verbosity = 255 : Everything.

Default value (verbosity = 57) */

C.2.30 lookupa.c

lookupa. c , by Bob Jenkins , December 1 996. Same
as lookup2.c

Use this code however you wish. Public Domain.
No warranty.

Source is http://burtleburtle.net/bob/c/lookupa.
c

$Id: lookupa. c 6 2004-07-16 03:48:34Z awcross $

#i f n d e f STANDARD
#include "include/standard.h"
#endif
#ifndef LOOKUPA
#include "include/lookupa.h"
#endif

mix -- mix 3 32- bit values reversibly.
For every delta with one or two bit set , and the

deltas of all three
high bits or all three low bits , whether the

original value of a,b,c
is almost all zero or is uniformly distributed

+ If mix() is run forward or backward , at least
32 bits in a,b,c

have at least 1/4 probability of changing.
* If mix() is run forward , every bit of c will

change between 1/3 and
2/3 of the time. (Well, 22/100 and 78/100 for

some 2- bit deltas.)
mix() was built out of 36 single-cycle latency

instructions in a
structure that could supported 2x parallelism

like so:
a- b;
a =c; x= (c>>13);
b -= c; a ^= x;
b -=a; x (a<<8);
c -= a; b ^= x;
c b; x= (b>>13);

Unfortunately, superscalar Pentiums and Sparcs
can't take advantage

of that parallelism. They 've also turned some
of those single -cycle

latency instructions into multi-cycle latency
instructions. Still ,

this is the fastest good hash I could find.
There were about 2^^68

to choose from. I only looked at a billion or
so .

#define mix(a,b,c) \

a b;a c; a
b c; b a; b
c a; c b; c
a b; a c; a
b c; b a; b
c a; c b; c
a b; a c; a
b c b a; b
c a; c b; c

}

7*
lookup() -- hash a variable -length key into a

32- bit value
k : the key (the unaligned variable -length

array of bytes)

230

(c>>13); \
(a<<8); \
(b>>13); \
(c>>12);
(a<<16); \
(b>>5);
(c>>3); \
(a<<10); \
(b>>15); \

}
}

}

}

len : the length of the key , counting by
bytes

level : can be any 4-byte value
Returns a 32- bit value . Every bit of the key

affects every bit of
the return value. Every 1- bit and 2- bit delta

achieves avalanche.
About 6 len +35 instructions

The best hash table sizes are powers of 2.

There is no need to do
mod a prime (mod is sooo slow!). If you need

less than 32 bits ,
use a bitmask. For example , if you need only

10 bits , do
h = (h & hashmask(10));

In which case , the hash table should have
hashsize (10) elements.

If you are hashing n strings (ubi **)k, do it
like this:

for (i=0, h=O; i<n; ++i) h = lookup(k[i], len
[i], h);

By Bob Jenkins , 1 996. bob-jenkins@burtleburtle
net . You may use this

code any way you wish, private , educational , or
commercial.

See http :// burtleburtle . net/bob/hash/evahash.
html

Use for hash table lookup , or anything where one
collision in 2^32 is

acceptable. Do NOT use for cryptographic
purposes.

*7

ub4 lookup(k, length , level)
register ubi *k; /* the key +/
register ub4 length; /* the length of the key

register ub4 level; /* the previous hash, or
an arbitrary value */

register ub4 a,b,c,len;

/* Set up the internal state +/
len = length;

a = b = 0x9e3779b9; /* the golden ratio ; an
arbitrary value */

c = level ; /* the previous hash
value */

/* handle most of the key *7
while (len >= 12)

a += (k[0] +((ub4)k[l]<<8) +((ub4)k
[2]<<16) +((ub4)k[3]<<24));

b += (k[4] +((ub4)k[5]<<8) +((ub4)k
[6]<<16) +((ub4)k[7[<<24));

c += (k[8] +((ub4)k[9]<<8) +((ub4)k
[10] <<16)+((ub4)k[11]<<24));

mix(a,b,c);
k += 12; len -= 12;

/* handle the last 11 bytes */
c += length;
switch(len) /* all the case

statements fall through */
{
case 11: c+=((ub4)k[10]<<24);
case 10: c+=((ub4)k[9]<<16);
case 9 : c+=((ub4)k[8]<<8);

/* the first byte of c is reserved for the
length */

case 8 :b+=((ub4)k[7]<<24);
case 7 : b+=((ub4)k[6] < <16);
case 6 : b+=((ub4)k[5]<<8);
case 5 :b+=k[4;
case 4 : a+=((ub4)k[3] <<24);
case 3 : a+=((ub4)k[2] <<16);
case 2 a+=((ub4)k[1]<<8);
case 1 :a+=k[];

/* case 0: nothing left to add */
I
mix(a,b,c);
/* report the result */
return c;

}

/*
mixc -- mixc 8 4- bit values as quickly and

thoroughly as possible.
Repeating mix() three times achieves avalanche.
Repeating mix() four times eliminates all

funnels and all
characteristics stronger than 2^{ -11}.

*/
#define ixc(a,b,cd,e,f ,g,h) \

a^=b<<l1; d+=a; b+=c; \
b^=c>>2; e+=b; c+=d; \
c^=d<<8; f+=c; d+=e; \
d^=e>>16; g+=d; e+=f; \
e^=f <<10; h+=e; f+=g; \
f^=g>>4; a+=f; g+=h; \
g^=h<<8; b+=g; h+=a; \
h^=a>>9; c+=h; a+=b; \

}

/*
checksum() -- hash a variable-length key into a

256- bit value
k : the key (the unaligned variable-length

array of bytes)
len : the length of the key , counting by

bytes
state : an array of CHECKSTATE4-byte values

(256 bits)
The state is the checksum. Every bit of the key

affects every bit of
the state . There are no funnels . About

112+6.875ten instructions.

If you are hashing n strings (ubi **)k, do it
like this:

for (i=0; i<8; ++i) state [i] = 0x9e3779b9;
for (i=0, h=0; i<n; ++i) checksum(k[i], len[i

J, state);

(c) Bob Jenkins, 1996. bob-jenkins@burtleburtle
.net. You may use this

code any way you wish , private , educational , or
commercial , as long

as this whole comment accompanies it

See http ://burtleburtle . net/bob/hash/evahash.
html

Use to detect changes between revisions of
documents , assuming nobody

is trying to cause collisions . Do NOT use for
cryptography.

*/
void checksum(k, len , state)
register ubi *k;
register ub4 len;
register ub4 *state;
{

register ub4 a,b,cd ef , g,h,length;

/* Use the length and level; add in the
golden ratio . */

length = len;
a=state [0]; b=state [1]; c=state [2]; d=state

[3];
e=state [4]; f=state [5]; g=state [6]; h=state

[7];

/* handle most of the key */
while (len >= 32)
{

a += (k[O] +(k[1]<<8) +(k[2]<<16) +(k
[3] <<24)) ;

b += (k[4] +(k[5]<<8) +(k[6]<<16) +(k
[7] <<24));

c += (k[8] +(k[9]<<8) +(k[10]<<16)+(k
[11]<<24));

d += (k{12]+(k[13]< <8)+(k[14] < <16)+(k
[15] < <24)) ;

e += (k[16]+(k[17]<<8)+(k{18]<<16)+(k
[19] <<24));

f +=(k[20]+(k[21]<<8)+(k{22]<<16)+(k
[23] <<24));

g += (k[24]+(k[25]<<8)+(k[26]<<16)+(k
[27] <<24));

h += (k[28]+(k[29]<<8)+(k[30]<<16)+(k
[31] <<24));

mixc (a b, c d, e, f ,g,h);
mixc (a b, c ,de, f , g , h);
mixc(a,b,c,d,e,f ,g,h);
mixc (a ,b, c , d e, f , g ,h)
k += 32; len -= 32;

231

}

/* handle the last 31 bytes *7
h += length;
switch(len)
{
case 3 1: h+=(k[30] <<24);
case 30: h+=(k[29]<<16);
case 29: h+=(k[28] <<8);
case 28: g+=(k[27}<<24);
case 27: g+=(k[26]<<16);
case 26: g+=(k[25] <<8);
case 25: g+=k[24];
case 24: f+=(k[23]<<24);
case 23: f+=(k[22]<<16);
case 22: f+=(k[21]<<8);
case 21: f+=k[20];
case 20: e+=(k[19]<<24);
case 19: e+=(k[18]<<16);
case 18: e+=(k[17]<<8);
case 17: e+=k[16];
case 16: d+=(k[15]<<24);
case 15: d+=(k[14]<<16);
case 14: d+=(k[13]<<8);
case 13: d+=k[12];
case 12: c+=(k[11]<<24);
case 11: c+=(k[10]<<16);
case 10: c+=(k[9] <<8);
case 9 : c+=k[8];
case 8 : b+=(k[7] <<24);
case 7 : b+=(k[6] <<16);
case 6 : b+=(k[5] <<8) ;
case 5 :]b=k [4];
case 4 : a+=(k[3] <<24);
case 3 :a+=(k[2]<<16)
case 2 : a+=(k[1]<<8)
case 1 : a+=k{0};

}
mixc(a,b,c,d,e, f ,g,h);
mixc(a,b,c,d,e, f ,g,h);
mixc(a,b,c ,d,e,f ,g,h);
mixc(a,b,c ,d,e, f ,g,h);

/* report the result */
state[0]=a; state[1]=b;

d;
state[4]=e; state[5]=f;

h;

state[2]=c; state[3]=

state[6]=g; state[7]=

I

C.2.31 lookupa.h

By Bob Jenkins , September 1996.
lookupa.h, a hash function for table lookup

same function as lookup.c.
Use this code in any way you wish. Public

Domain. It has no warranty.
Source is http://burtleburtle.net/bob/c/lookupa.

h
$Id : lookupa.h 6 2004-07-16 03:48:34Z aucross $

#ifndef STANDARD
#include "standard.h"
#endif

#ifndef LOOKUPA
#define LOOKUPA

#define CHECKSTATE 8
#define hashsize(n) ((ub4)1<<(n))
#define hashmask(n) (hashsize(n)-1)

ub4 lookup(/*- ubi *k, ub4 length, ub4 level -

void checksum(/*- ubi *k, ub4 length, ub4 * state

#endif /* LOOKUPA */

C.2.32 noise.cc
/7 noise . cxx

$/ $Id: noise. cc 43 2004-07-19 08:59:55Z ike $

77 Helper functions for depolarizing noise,
bitflip noise , and

77 phase flip noise. These can be replaced later
by the noise

77 implementation in ./temp/ when more general
noise is needed.

#include "include/noise.hh"

//
Op
{

Depolarize qubit named q with probability p
depolarize (string q, double p)

Op o;
double r = ((double)rand())/((double)

RANDMAX);

if(r < (1.0-p)
{ 77 no error

}
else

else{

else
{

If(r < 1.0 - 2.0 * p/3.0

o.opcode ="x";
o. args. push-back(q);

if(r < 1.0 - p / 3.0

o.opcode ="y";
o. args. push-back(q);

o.opcode = "z";
o. args. push-back(q);

return 0;
}

vector<Op> depolarize (string qi, string q2,
double p)

{
vector<Op> o;
Op op;
double r = ((double)rand())/((double)

RAND.MAX) ;

If(r < (1.0-p)
{ 77 no error

else
{

else

else

else

else

else

else
else

if(r < 1.0 - 14.0 * p/15.0

op. opcode = "x" ; // IX
op.args.push-back(qi);
o. push-back (op);

if(r < 1.0 - 13.0 * p/15.0

op.opcodle ="y" ; 77 IY
op. args . push-back (qi
o.push-back(op);

if(r < 1.0 - 12.0 * p/1
5

.
0

op.opcode = "z"; // IZ
op. args . push-back (qi)
o. push-.back (op)

if(r < 1.0 - 11.0 * p/15.0

op.opcode "x"; // XI
op. args . push-back(q2);
o. push-back (op) ;

if(r < 1.0 - 10.0 * p/15.0

op.opcode = "x" ; // XX
op.args .pushback(q);
o. push.back(op);
op. args . pop-back (
op. args .push-back(q2);
o. push-back (op) ;

if(r < 1.0 - 9.0 * p/15.0

op. opcode "y" ; // XY
op.args.push-back(qi);
o. push-back (op) ;
op.opcode = "x";
op. args.pop-back>
op.args.push-back(q2);
o. push-back (op) ;

if(r < 1.0 - 8.0 * p/15.0

232

{

else

}
else

{

}
else

}

else
{

else

{

else
{

else

return o;

bitf lip error

bitflip(string q, double p)

Op o;
double r = ((double)rand()) /((double)

RANDJMAX);

If(r < (1.0-p)
{ // no error

}
e lse
{

o. opcode = "x";
o. args . push-back (q);

}
return o;

I

vector<Op> bitflip(string q1, string q2, double
P)

{
vector<Op> o;
Op op;
double r = ((double)rand()) /((double)

RANDMAX) ;

if (r < (1.0-p)
{ // no error

else If(r < 1.0 - 2.0 * p/3.0

op.opcode = "z"; // XZ
op. args . push-back (ql);
o. push..back(op);
op.opcode = "x";
op. args .pop-back()
op. args .push-back(q2);
o. push-back(op);

If(r < 1.0 - 7.0 * p/15.0)

op. opcode = "y"; // YI
op. args . push-back(q2);
o.push-back(op);

If(r < 1.0 - 6.0 * p/15.0)

op. opcode = "x"; // YX
op. args . push-back (qi);
o.push-back(op);
op.opcode = "y";
op. args .pop-back()
op. args . push-back (q2);
o.push-back(op);

if(r < 1.0 - 5.0 * p/15.0

op.opcode = "y"; // YY
op. args . push-back(ql);
o. push-back(op);
op. args .pop-back()
op. args .push-back (q2);
o.push-back(op);

if(r < 1.0 - 4.0 * p/15.0

op.opcode ="z"; // YZ
op. args . push-back(ql);
o.push-back(op);
op.opcode = "y";
op. args .pop-back()
op. args .push-back (q2);
o.push-back(op);

if(r < 1.0 - 3.0 * p/15.0

op.opcode = "z"; // ZI
op. args . push-back (q2);
o.push-back(op);

if(r < 1.0 - 2.0 * p/15.0

op.opcode ="x"; // ZX
op. args . push-back (ql);
o.push-back(op);
op.opcode = "z";
op. args .pop-back()
op. args . push-back(q2);
o.push-back(op);

if(r < 1.0 - p/15.0

op.opcode = "y";// ZY
op. args . push-back(ql);
o.push-back(op);
op.opcode = "z";
op. args .pop-back()
op.args .push-back(q2);
o.push-back(op);

op.opcode = "z"; // ZZ
op. args . push-back (ql);
o.push-back(op);
op. args .pop.back()
op. args . push-back (q2);
o. push-back (op);

I
retur

op.opcode = "x"; // IX
op. args . push-back(ql);
o.push-back(op);

if(r < 1.0 - p/3.0

op.opcode = "x";/ XI
op. args . push-back(q2);
o.push-back(op);

op.opcode = "x"; // XX
op. args . push-back (ql)
o.push-back(op);
op.args.pop-back()
op. args .push-back(q2);
o. push-back(op);

n o;

// phaseflip error

Op
{

phaseflip (string q, double p)

Op o;
double r = ((double)rand())/((double)

RAND-NMAX) ;

if(r < (1.0-p)
{ // no error (nop)

}
else

o.opcode = "z";
o. args. push-back (q);

I
return o;

I

vector<Op> phaseflip(string q1, string q2,
double p)

vector<Op> o;
Op op;
double r = ((double)rand())/((double)

RAND..MAX) ;

If(r < (1.0-p)
{ // no error

}
else
{

}
else
{

else
{

If(r < 1.0 - 2.0 * p/3.0

op .opcode ="z"; // IZ
op. args . push-back (q);
o.push-back(op);

If(r < 1.0 - p/3.0

op.opcode = "z"; // ZI
op. args . push-back(q2);
o.push-back(op);

op .opcode = "z"; // ZZ
op. args . push-back (ql)
o. push-back(op);
op.args.pop-back()

233

I
else
{

}
else
{

}

//7

Op
{

op. args.push..back(q2);
o. push-back (op)

return o;
}

// bitflip error with no pre-computed
propagation through gates

Op bitflip.nopropagate (string q, double p)
{

Op o;
double r = ((double)rand())/((double)

RANDMAX) ;

if(r < (1.0-p))
{ 7/ no error

}
else

o. opcode ="x";
o.args.push-back(q);

return o;

vector<Op> bitflip.nopropagate (string
q2, double p)

{
vector<Op> o;
Op op;

q1 , string

op = bitflip-nopropagate (qlp)
o.push-back(op);

op = bitflip..nopropagate (q2 ,p)
o.push-back(op);
return o;

}

C.2.33 noise.hh
// noise . hh
// SId : noise. hh 43 2004-07-19 08:59:55Z ike $
// Helper functions for depolarizing noise

bitflip noise , and
// phase flip noise. These can be replaced later

by the noise
7/ implementation in ./temp/ when more general

noise is needed.

#ifndef -- NOISE--
#define -NOISE--

#Include <vector>
#include <string>
#include <cstdlib>
#include "Op.hh"

Op depolarize(string q, double p);

vector<Op> depolarize (string q1 , string q2,
double p);

Op bitflip(string q, double p);
vector<Op> bitflip(string q1, string q2, double

p) ;

Op bitflip.nopropagate (string q, double p);
vector<Op> bitflip-nopropagate (string q1, string

q2, double p);

Op phaseflip (string q, double p);
vector<Op> phaseflip (string q1, string q2,

double p);

#endif

C.2.34 phash.c
/* Generated file . Please do NOT edit. Refer to

perfect.c. --
ddthaker@ucdavis. edu

*/

/* table for the mapping for the perfect hash */
#Ifndef STANDARD
#include "include /standard . h"
#endif /* STANDARD */
#ifndef PHASH
#Include "include/phash.h"
#endif /* PHASH */
#ifndef LOOKUPA
#include "include /lookupa. h"
#endif /* LOOKUPA */

/* small adjustments to a- to make values
distinct */

ubi tab [] = {
0,235,113,0,0,0,113,113,0,0,0,88,0,124,0,0,
113,183,0,0,0,0,0,220,82,113,0,220,40,0,125,0,
0 ,116 ,0 ,183 ,22,0 ,0 ,125 ,42 ,229 ,183 ,0 ,87,0 ,0 ,0 ,
0,0,235,125,183,183,235,116,165,183,113,0,120,
131,253,87,27,183,125,0,235,85,113,235,214,125,
60,0,214,0,124,131,87,124,235,89,183,7,131,131,
11,214,0,135,0,125,0,113,0,0,7,69,214,7,183,146,
237,145,0,183,235,184,0,232,0,87,128,87,132,146,
0,240,131,148,111,0,0,40,148,154,
I;

/* The hash function */
ub4 phash(key, len)
char *key;
Int len;

{
ub4 rsl , val = lookup(key , len, 0x9e3779b9)
rsl = ((val>>25)^tab[val&0x7f]);
return rsl

I

/* Generated file . Please do
perfect.c.

ddthakercucdavis .edu

*/

/* table for the mapping for
#1 f n d e f STANDARD
#Include "standard .h"

#endif /* STANDARD */
#Ifndef PHASH
#Include " phash . h"
#endif /* PHASH *
f n d ef LOOKUPA
#Include "lookupa.h"
#endif /* LOOKUPA */

NOT edit. Refer to

the perfect hash s/

/+ small adjustments to -a- to make values
distinct s

ubi tab.i [] ={
0 0 0 0 0 135 27 145 51 0 113 125 7 85 183 124,
11 ,22 0 40 11 ,146 32 17 148 132 ,0 ,0 0 ,0 ,0 0 ,
0,113,125,7,85,131,22,82,40,0,220,116,27,125,
85,22,87,124,131,40,74,32,0,0,0,87,120,42,26,
113,125,131,40,0,7,124,11,27,183,125,87,113,
124,27,74,32,61,142,69,131,146,135,145,111,60,
148,132,0,113,85,120,32,45,111,60,165,0,0,0,113,
92,142,97,131,40,88,11,146,26,159,152,55,183,8,
73,74,111,142,112,70,137,110,79,102,0,0,
I1;

/* The hash function s/
ub4 phash.i(val)
ub4 val;

ub4 a, b, rsl;

b = (val & Ox7f);
a = ((val << 18) >> 25);
rsl = (a-tab[b])-
return rsl

C.2.35 phash.h

/* Generated file . Please do NOT edit. Refer to
perfect.c. -- thakerfcs.

ucdavis . edu

/* Perfect hash definitions */

234

#ifndef STANDARD
#include "standard.h"
#endif /* STANDARD */
#ifndef PHASH
#define PHASH

extern ubl tab[];
#define PHASHLEN Ox80 /* length of hash mapping

table */
#define PHASHNKEYS 200 /* How many keys were

hashed */
#define PHASHRANGE 256 /* Range any input might

map to */
#define PHASHSALT 0x9e3779b9 /* internal

initialize normal hash +/

ub4 phash();

#endif /* PHASH */

/* Generated file . Please do NOT edit . Refer
perfect.c. -- thaker~cs.

ucdavis . edu

to

/* Perfect hash definitions */

#ifndef STANDARD
#include "standard .h"
#endif /* STANDARD *7
#ifndef PHASHI
#define PHASH-I

extern ubi tab.i[];
#define PHASHLENI 0x80 /* length of hash

mapping table */
#define PHASHNKEYSJ 162 /* How many keys were

hashed */
#define PHASHRANGEJ 256 /* Range any input

might map to */
#define PHASHSALTI 0x9e3779b9 /* internal

initialize normal hash */

ub4 phash-i;();

#endif /* PHASH */

C.2.36 planarops.h

Reads layout and move instructions
qbits.

Created May 2004.
ddthaker~ucdavis . edu

$Id: planarops.h 6 2004-07-16
$

and moves

03:48:34Z awcross

//#define DEBUG

#i fn d e f STANDARD
#include "standard .h"
#endif

#ifndef HTABLE
#include "htable.h"
#endif

p-htable * create-p-table (int);
q.htable * create-q-table (int);

void init-position (const char *, Int , p.htable
, q.htable);

void add-loc(Int read, p.htable *ptab);

// movement
void move-step (const char *, char, Int

p-htable* , q-htable*);
void move (const char * , char, int , p.htable*

q-htable*, int);

77 operations
q.hentry * find-in-qhtable(const char *

q.htable*);
p-hentry * find-in-phtable(int , p.htable*);
Int get-loc (const char * , p-htable *, q.htable *)

char * get-name (Int , p.htable*);

q-hentry * get-adj (const char * , char, p-htable
, q.htable);

q.hentry * get-near (const char * , char , p-htable
, q.htable);

q.hentry *getdist (const char * , char, Int
p-htable , q-htable*);

C.2.37 planarops.c

// File: planarops.c
7/ $Id : planarops. c 6 2004-07-16 03:48:34Z

awcross $

#ifndef PLANAROPS
#include "include/planarops .h"
#endif

p-htable * create.p.table (int TAB-SIZE)

p-htable *ptab;
ptab = (p-htable *) p-htable-create(

TAB-SIZE);
If (ptab == NULL) {

fprintf (stderr ,"P-Hash table
is NULL\n")

exit (1)
}
return ptab;

}

ptr

q-htable * create-q-table (int TAB-SIZE)

q-htable *qtab;
qtab = (q.htable s) q.htable.create(

TAB-SIZE);
if (qtab ==NULL) {

fprintf(stderr,"Q-Hash table ptr
is NULL\n");

exit (1)

return qtab;

void add-loc(int read , p.htable *ptab)

p.hentry * pitem;
If((p-item = (p-hentry *)p-htable-add

ptab , read)) == NULL)

fprintf(stderr "Error inserting
. key %d\n" ,read);

exit (1) ;

// Return the qubit object with the given name
q-hentry * find-in-qhtable(const char *name,

q.htable *qtab)
{

q..hentry *q;
Int len;
len = (ub4)strlen((const char *)name);
if((q = q-htable-find (qtab,(ubl *)name

,len)) == NULL) {
fprintf (stderr "Error Finding

key %s\n" (ubl *)name);
exit (1)

}
return q;

77 Return the qubit object at the given location
p-hentry * find.in-phtable (Int loc , phtable *

ptab)

235

(

}
}

{
p.hentry * p;
if((p = (p-hentry a) p.htable-find(ptab,

oc)) == NULL) {
fprintf(stderr ,"Error finding

the physical position\n");
exit (1);

}
if (p->occupied == 1) return p;
else return NULL;

}

Set the initial position of a gbit.

Before this function is called , all physical
locations

should have been initialized . But this is the
first

time that a qbit is actually linked with its
physical position.

void init..position(const char *name, Int xy,
p.htable *ptab , q.htable *qtab)

{
qhentry *q;
p.hentry *p;
int len;
ubl *key;

len = (ub4)strlen((char *)name);
key = (ubi *)name;

if((q = q.htable-add (qtab ,key, len))
NULL) {
printf(" Error inserting. key %s\

n" ,key);
exit (1);

}

if((p = (p.hentry a) p.htable-find(ptab,
xy)) ==NULL) {

fpri ntf (stderr ," Error finding
the physical position\n");

exit (1);
}
q->pos = p
p->bit = q;
p->occupied = 1;

}

//
//
// Move a qbit 'steps ' positions in 'dir

Direction

void

{I

move-step (const char *name, char dir,
steps , p.htable *ptab , q.htable *qtab)

Int

q.hentry *q;
p.hentry *p;
int len , cur-xy , new-xy;
Int cur.x , cur-y;
ubi akey;

len = (ub4)stren((char a)name);
key = (ubi *)name;

if((q= q.htable-find (qtab,keylen))
==NULL) {

fpri ntf (stderr ,"Error Finding
key %s\n" ,key);

exit (1);

cur-xy = q->pos->key; // get current
position

switch(dir) {
case 'N': new-xy = cur-xy +

steps ;
break;

case 'S': new.xy = cur-xy -
steps;

break;

case 'W': cur.y = cur-xy%1000;
cur-x = cur-xy/1000;

new-xy = ((curx-steps
)*1000) + cur-y;;

break;

case 'E': cur-y = cur.xy%1000;
cur-x = cur-xy/1000;
new.xy = ((cur-x+steps

)*1000) + cur-y;;
break;

default : fprintf(stderr ,"ERR:
Incorrect Direction\n")

break;
}

p = (p-hentry *) p-htable-find (ptab
new.xy);

If (p->occupied != 1) {
// Ok to move.

q->pos->bit = NULL; // remove
from old location

q->pos->occupied = 0;

// Put in new location
p->occupied = 1;
q->pos = p;
p->bit = q;

//calculate-err(q);
} else {

fprintf (stderr "FATAL : Moving %
s to an already full
location\n" name)

exit (1)

//printf ("Moved %s %c one step\n",name,
dir);

//
// Depending on the DEBUG flag , the function

moves a qbit
// either 1 step at a time, or jumps to the new

location

void move (const char *name, char dir int steps
p.htable *ptab , q.htable *qtab int Debug

{
int i , debug-step

if (Debug) {
// If debug ON then move one

position at a time
debug-step = 1;
for (i=1; i<=steps; i++) {

move-step (name, dir
debug-step , ptab,
qtab);

fprintf(stderr, "Moved %s
%c by 1 step\n"

name, dir);

}
}
else{

}

//
// GETLOC
// Return the

PRHTABLE
/
int

{

// Else jump
move.step (name, dir , steps

ptab, qtab);
//fprintf(stderr "Moved %s %c

%d steps\n",name, dir,
steps);

by

Current Location of a Qubit in
format (i.e. integer).

get-loc (const char *name, p-htable *ptab,
qhtable *qtab)

q.hentry *q;
Int len = (ub4)strlen ((char *)name);

236

}

}

if((q = q.htable-find (qtab,(ubl*)name,
len)) ==NULL)

{
fprintf (stderr ,"Error Finding

key %s\n" ,(ubl*)name);

exit (1
}
return q->pos->key ; // return position

/
77 GET-NAME
77 Return the Name of a Qubit at some location

//
char s get.name (int loc , p-htable *ptab)
{

p-hentry *p;
q.hentry *q;
if((p = (p-hentry *) p.htable-find (ptab

loc)) ==NULL)
{

fprint f (stderr ,"Error Finding
location %d\n" ,oc);

return NULL;

if (p->occupied == 1) return p->bit->key

else return "no-qubit";

}

//7
// GETADJ
/7 Return the adjacent qubit if it exists and is
// located in the specified direction ("N","S"

E","W")
//7
// Note:
// returns the qubit itself if

there is an empty space
// in the specified direction.

q.hentry *get.adj (const char *name, char dir
p-htable sptab , q-htable *qtab)

{
q.hentry *q, * q-adj;
p-hentry *p;

int
ub4

ubi

len;
loc-xy , adj-loc
the qubit

* key;

// location of

len = (ub4)strlen ((char *)name);
key = (ubi *)name;

if ((q= q-htable-find (qtab ,key, len))
== NULL) {

fprintf (stderr " Error Finding
key %s\n" ,key);

exit (1);

loc-xy = q->pos->key; // get qubit 's
position

switch(dir)
{

case 'N': adj.loc = loc-xy + 1;
break;

case 'S': adj loc = loc..xy - 1;
break;

case 'W': adj..loc = (((loc-xy
/1000)-1)*1000) + (loc.xy
% 1000);

break;

case 'E': adj-loc =
loc-xy/1000)+1)*1000) +
loc.xy % 1000);

break;

default : fprintf(stderr,"
ERR: Incorrect Direction\n"

break;
I

if((p = (p-hentry *) p.htable..find (ptab
adj.loc)) ==NULL) {

// Adjacent Location doesn't
exist

//fprintf (stderr," Error Finding
adj. Location %d\n", adj-toc

return NULL;

else if (p->occupied == 1) {
q.adj = p->bit;
return q-adj

I
return NULL;

//
// GETNEAR
// Return the nearest qubit in a straight line

if it exits
/and pointing to the specified direction ('N

', s ', 'E ', 'W')
/

// Note:
/7 It doesn 't fly over electrodes , so it

only checks
// each direction until it runs out of

empty spaces.
//
q.hentry * get-near (const char *name, char dir

p-htable * ptab, q-htable *qtab)
{

q.hentry *q, * q.near;
p-hentry *p;

Int len;
ubi *key;
Int loc-xy , next-loc;

len = (ub4)strlen ((char *)name);
key = (ubi *)name;

if((q= q.htable-find (qtabkeylen))
==NULL) {

fprintf (stderr ,"Error Finding
key %s\n" key);

exit (1);

loc-xy = q->pos->key; // get qubit 's
position

next-loc = loc-xy

while (1)
{

// Figure out the next
to check.

switch(dir)
{

location

case 'N': next-loc =
next.loc + 1;

break;
case 'S': next-loc =

next-loc - 1;
break;

case 'E' : next.loc = (((
next-loc/1000)+1)
*1000) + (next-loc
%1000);

break;
case 'W' : nextloc =

next-loc/1000)-1)
*1000) + (next-loc
%1000);

break;
default:

fprintf(stderr,"
ERR:
Incorrect
Direction\n
");

break;
}
if((p = (p-hentry *)

p-htable-find (ptab
next-loc)) == NULL) {

// next location doesn 't
exist

return NULL;
}
else if (p->occupied == 1) {

237

}I

}

I

q..near = p->bit;
return q.near;

// Should Never Get Here !!
return NULL;

} // END GET-NEAR

// GET-DIST:
// Retrurn the qubit a distance d from the name-

qubit.
// Return NULL if nothing there or we hit an

electrode.

q.hentry *get.dist (const char *name, char dir,
Int d, p.htable* ptab, q.htable *qtab)

{
q-hentry *q, * dist-q;
p-hentry *p;

int len;
ubi *key;
Int loc-xy , new-loc;

len = (ub4)strlen((char *)name);
key = (ubl *)name;

if((q = q.htable-find (qtab,key,len))
=NULL) {

fprintf (stderr ,"Error Finding
key %s\n" key);

exit (1)

loc-xy = q->pos->key;
switch (dir)
{

case 'N': new-loc = loc-xy + d;
break;

case 'S': newiloc = loc.xy - d;
break;

case 'E' : new-loc = (((oc.xy
/1000)+d)*1000) + (loc-xy
%1000);

break;
case 'W' : new-loc = (((Ioc-xy

/1000)-d)*1000) + (loc-xy
%1000);

break;
default:

fprintf(stderr ,"ERR:
Incorrect Direction

break;

7/ See if the new location exists.
if((p = (p-hentry *)p.htable-find (ptab

, new-loc)) == NULL) return NULL;

else if (p->occupied == 1)

dist-q = p->bit;
return dist-q;

return NULL;

C.2.38 standard.h

7*
Standard definitions and types Bob Jenkins
*/
#ifndef STANDARD
define STANDARD
ifndef STDIO
include <stdio .h>
define STDIO
endif
ifndef STDDEF
include <stddef.h>
define STDDEF

endif
typedef unsigned long long ub8;
#define UB8M1AXVAL lxfffffffffffffffffLL
#define UB8BITS 64
typedef signed long long sb8;
#define SB8MAXVAL Ox7fffffffffffffffLL
typedef unsigned long Int ub4; /* unsigned

4- byte quantities */
#define UB4MAXVAL 0 x f f f f f f f f
typedef signed long int sb4;
#define UB4BITS 32
#define SB4MAXVAL 0 x7fffffff
typedef unsigned short int ub2;
#define UB2MAXVAL Oxffff
#define UB2BITS 16
typedef signed short Int sb2;
#define SB2MAXVAL 0 x7fff
typedef unsigned char ubi;
#define UB1MAXVAL 0xff
#define UB1BITS 8
typedef signed char sbl; /* signed 1-

byte quantities */
#define SB1MAXVAL Ox7f
typedef int word; /* fastest

type available */

#define bis(target mask) ((target) 1= (mask))
#define bic(target mask) ((target) &= ~(mask))
#define bit(target , mask) ((target) & (mask))
#ifndef min
define min(a,b) (((a)<(b)) ? (a) (b))
#endif /* min *
#ifndef max
define max(a,b) (((a)<(b)) ? (b) (a))
#endif /* max */
#ifndef align
define align(a) (((ub4)a+(sizeof(void *)-1))

&(~(sizeof(void *)-1)))
#endif /* align +/
#ifndef abs
define abs(a) (((a)>O) ? (a) -(a))
#endif

#define TRUE 1
#define FALSE 0
#define SUCCESS 0 /* 1 on VAX */

#endif /* STANDARD */

C.2.39 utilities-cc

// utilities. cxx
77 $Id: utilities .cc 16 2004-07-16 19:15:46Z

awcross $
// Andrew Cross < aweross Omit. edu>
77 useful utility functions

#include "include/utilities .hh"

using namespace std;

void Trim(std:: string& str , const std ::string&
ChrsToTrim, Int TrimDir)

{
sizet startIndex = str. find-first.not-of(

ChrsToTrim);
if (startIndex == std string ::npos){str.

erase(); return;}
if (TrimDir < 2) str = str . substr (start Index

str. size ()-startIndex);
if (TrimDir!=1) str = str .substr(0, str.

find-last-not-of(ChrsToTrim) + 1);
}

inline void TrimRight(std :: string& str , const
std :: string& ChrsToTrim)

Trim(str , ChrsToTrim, 2) ;

inline void TrimLeft(std :: string& str , const std
string& ChrsToTrim)

{
Trim(str , ChrsToTrim, 1)

I

std :: string Token(std :: string& str , const std
string& Chrs)

{

238

I

{

}

string token;
string:: size-type pos = str find-first.of

Chrs ,0) ;
if (pos == string npos

{
token = str;
str = ;
return token;

}
token = str.substr(0,pos);
token. erase (pos ,1);
str . erase (O,pos+l);
Trim(token)
Trim(str);
return token;

// Get the integer number representing the
string name

long int str2int (std:: string name)

long int number = 0;
int tmp;
double j = 0. 0;
for (Int i=(name. lengt(h -1); i >= 0; i--)
{

tmp = static-cast<int>(name[i]) - 48;
number = number + (tmp * static-cast<

long Int >(pow(10.0 ,j)));
j++;

}
return number;

}

// Check if s represents a non-negative integer

bool islnteger (std ::string s)
{

string nums = "0123456789";
for(int i=O; i < s. size () ; i++

if (nums. find (s [i] 0) == string npos
return false;

return true;
}

/
string date2str(void)
{

time.t It = time(NULL);
struct tm * timeptr;
string tmpltmp2, date;

timeptr = localtime(<
tmpl = asctime(timeptr);

// Put current Date in tmp2 but
7/ with : in the middle.
for (int i = 0; i <= 4; i++)

{
string t = Token(tmpl," ");

tmp2. append (t);
}
for (int i = 0; i < 3; i++)
{

string t = Token(tmp2,":");
date . append (t);

return date

}

inline void TrimRight(std :: string& str , const
std :: string & ChrsToTrim = " \ t\n\r");

Inline void TrimLeft (std:: string& str const std
:: string & ChrsToTrim = " \t\n\r"

std string Token(std string& str , const std:
string & Chrs = ");

template< class type>
Inline std: string to-string (const

std ostringstream sout
sout << value;
return sout.str ();

long Int str2int (std string name);
boo] isInteger (std ::string s)
std:: string date2str (void)

#endif

type & value

C.2.40 utilities.hh
// utilities.hh
/7 Andrew Cross < awcrossmit. edu>
/7 useful utility functions
// $Id: utilities.hh 6 2004-07-16 03:48:34Z

awcross $

#include <string>
#Include <iostream>
#include <sstream>
#Include <math.h>
#include <time.h>

#Ifndef -- utilities-.
#define - - ut i Iit ie s...

void Trim(std:: string & str , const std string &
ChrsToTrim = " \t\n\r" , int TrimDir = 0);

239

240

Bibliography

[AB096] D. Aharonov and M. Ben-Or. Polynomial simulations of decohered quan-
tum computers. Proceedings of 37th Annual FOCS, 1996.

[AB099] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with
constant error rate. Submitted to SIAM journal of computation, 1999.

[AG04] S. Aaronson and D. Gottesman. Improved simulation of stabilizer cir-
cuits. To appear in Phys. Rev. A, 2004.

[Art9l] M. Artin. Algebra. Prentice Hall, 1991.

[BCSO3] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for
quantum programming. Eur. Phys. Jour. D, 25(2), 181-200, 2003.

[BDS+03] M. D. Barrett, B. DeMarco, T. Schaetz, D. Leibfried, J. Britton, J. Chi-
averini, W. M. Itano, B. Jelenkovic, J. D. Jost, C. Langer, T. Rosenband,
and D. J. Wineland. Sympathetic cooling of 9Be+ and 2 4Mg+ for quan-
tum logic. Phys. Rev. A, 68(4), 42302, 2003.

[Bla04] R. Blatt. Trapped-ion quantum information processing. Talk presented
at the MIT Quantum Information Processing Seminar, 2004. November
29th.

[CDB+95] C.Monroe, D.M.Meekhof, B.E.King, W.M.Itano, and D.J. Wineland.
Demonstration of a fundamental quantum logic gate. Physical Review
Letters, 75(25), 4714-4717, 1995.

[COI+03] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. Chong,
I. Chuang, and J. Kubiatowicz. Toward a scalable, silicon-based quan-
tum computing architecture. Journal of Selected Topics in Quantum
Electronics, 9(6), 1552-1569, 2003.

[CS96] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes
exist. Phys. Rev. A, 54(2), 1098-1106, 1996.

[CSB+04] M. Barrett J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D.
Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland.
Deterministic quantum teleportation of atomic qubits. Nature, 429,
2004.

241

[CZ95]

[DAKJ+01]

J. 1. Cirac and P. Zoller. Quantum computations with cold trapped ions.
Phys. Rev. Let., 74(20), 1995.

D.Kielpinski, A.Ben-Kish, J.Britton, V.Meyer, M.A.Rowe, C.A.Sackett,
W.M.Itano, C.Monroe, and D.J.Wineland. Recent results in trapped-ion
quantum computing at nist. Experimental Implementation of Quantum
Computation (Sydney, 2001), 2001.

[DDV+03] D.Leibfried, B. DeMarco, V.Meyer, D.Lucas, M.Barrett, J.Britton,
W.M.Itano, B.Jelenkovic, C.Langer, T. Rosenband, and D.J.Wineland.
Experimental demonstration of a robust, high-fidelity geometric two ion-
qubit phase gate. Nature, 422, 412-415, 2003.

[DivO0]

[DM03]

[DMW+98]

D. Divincenzo. The physical implementation of quantum computation.
Fortschr. Phys., 48, 771-783, 2000.

J. Dehaene and B. De Moor. The clifford group, stabilizer states, and
linear and quadratic operations over gf(2). Phys. Rev. A, 68, 42318,
2003.

D.J.Wineland, C. Monroe, W.M.Itano, D. Liebfried, B.E. King, and
D.M.Meekhof. Experimental issues in coherent quantum-state manip-
ulation of trapped atomic ions. Journal of Research of the National
Institute of Standards and Technology, 103(3), 259-328, 1998.

[GBP97] M. Grassl, T. Beth, and T. Pellizzari. Codes for the quantum erasure
channel. Phys. Rev. A, 56(1), 33-38, 1997.

Gnu compiler collection.
http://gcc.gnu.org.

Free Software Foundation, 2004.

D. Gottesman. Stabilizer codes and quantum error correction.
dissertation, Caltech, 1997. arXive e-print quant-ph/9705052.

PhD

[Got98a] D. Gottesman. The heisenberg representation of quantum computers.
Unpublished, 1998.

[Got98b] D. Gottesman. A theory of fault-tolerant quantum computation. Phys.
Rev. A, 57(1), 127-137, 1998.

[GotOO] D. Gottesman. Fault-tolerant quantum computation with local gates. J.
Mod. Optics, 47, 333-345, 2000.

[Got02] D. Gottesman. Beyond the divincenzo criteria: Requirements and
desiderata for fault-tolerance. Talk presented at NANO2002 Workshop
II: IPAM Workshop on quantum computing, 2002.

[Gro97] L. K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Let., 79, 325, 1997.

242

[gcc04]

[Got97]

S. Hallgren. Polynomial-time quantum algorithms for pell's equation

and the principal ideal problem. In Proceedings of the Thirty-Fourth

Annual ACM Symposium on Theory of Computing, pp. 653-658, 2002.

[HRC02] A. Harrow, B. Recht, and I. Chuang. Efficient discrete approximations
of quantum gates. J. Math. Phys., 43, 4445, 2002.

[HRTS03] S. Hallgren, A. Russell, and A. Ta-Shma. The hidden subgroup prob-
lem and quantum compuation using group representations. SIAM J.
Comput., 32(4), 916-934, 2003.

[Hua85]

[Imp03]

[KKM+00]

[KL96]

S. Huang. Height-balanced trees of order (#, y, 6). ACM Transactions
on Database Systems, 10(2), 261-284, June 1985.

F. Impens. Fine-Grained Fault-Tolerance. SM thesis, Massachusetts
Institute of Technology, 2003.

D. Kielpinski, B. King, C. Myatt, C. Sackett, Q. Turchette, W. Itano,
C. Monroe, and D. Wineland. Sympathetic cooling of trapped ions for
quantum logic. Phys. Rev. A, 61(3), 32310, 2000.

E. Knill and R. Laflamme. Assumptions for fault-tolerant quantum
computing. report LAUR-96-2718, LANL, 1996.

[KLZ98] E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation:
Error models and thresholds. Science, 279(5349), 1998.

[KMW02] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-
scale ion-trap quantum computer. Nature, 417, 709-711, 2002.

[Kni04]

[KWM+98]

[Lin68]

[LMBK+04]

E. Knill. Quantum computing with very noisy devices. Unpublished,
2004.

B. King, C. Wood, C. Myatt, Q. Turchette, D. Leibfried, W. Itano,
C. Monroe, and D. Wineland. Cooling the collective motion of trapped
ions to initialize a quantum register. Physical Review Letters, 81, 1525-
1528, 1998.

A. Lindenmayer. Mathematical models for cellular interaction in devel-
opment. Journal of Theoretical Biology, 18, 280-315, 1968.

D. Leibfried, M.D.Barrett, A. Ben-Kish, J. Britton, J. Chiaverini,
B. DeMarco, W.M.Itano, B. Jelenkovic, J.D.Jost, C.Langer, D.Lucas,
V.Meter, T.Rosenband, M.A.Rowe, T. Schaetz, and D.J.Wineland.
Building blocks for a scalable quantum information processor based on
trapped ions. In Laser spectroscopy: proceedings of the XVI Interna-
tional Conference, Palm Cove, Queensland, Australia, 13-18 July, 2003,
2004.

243

[Hal02]

[MCT+04]

[MTC+05a]

[MTC+05b]

[MWD+04]

[NC97]

[NCOO]

T. Metodiev, A. Cross, D. Thaker, K. Brown, D. Copsey, F. Chong, and
I. Chuang. Preliminary results on simulating a scalable fault-tolerant
ion-trap system for quantum computation. Presented at the 3rd work-
shop on non-silicon computing, 2004.

T. Metodiev, D. Thaker, A. Cross, F. Chong, and I. Chuang. A gen-
eral purpose architectural layout for arbitrary quantum computations.
Submitted to the 2005 SPIE Defense and Security Symposium, 2005.

T. Metodiev, D. Thaker, A. Cross, F. Chong, and I. Chuang. A quantum
fpga architecture: building scalable, fault-tolerant quantum computing
with near-term technologies. Submitted to the 32nd Annual International
Symposium on Computer Architecture, 2005.

M.J. Madsen, W.K.Hensinger, D.Stick, J.A.Rabchuk, and C.Monroe.
Planar ion trap geometry for microfabrication. Applied Physics B-Lasers
and Optics, 78(5), 639-651, 2004.

M. A. Nielsen and I. L. Chuang. Programmable quantum gate arrays.
Physical Review Letters, 79(2), 321-324, 1997.

M. Nielsen and I. Chuang. Quantum computation and quantum infor-
mation. Cambridge University Press, Cambridge, England, 2000.

[NDR+99] H. C. Nagerl, D.Leibfried, H. Rohde, G. Thalhammer, J.Eschner,
F. Schmidt-Kaler, and R. Blatt. Laser addressing of individual ions
in a linear ion trap. Physical Review A, 60(1), 1999.

[PH98] D. Patterson and J. Hennessy. Computer organization and design. Mor-
gan Kaufmann, 1998.

[Pre0l] J. Preskill. Fault-tolerant quantum computation. In H. Lo, S. Popescu,
and T. Spiller, editors, Introduction to quantum computation and in-
formation. World Scientific Publishing Company, 2001. arXive e-print
quant-ph/9712048.

[pyt04] Python. Python Software Foundation, 2004. http://www.python.org.

[RBKD+02]

[Rei04]

M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Liebfried, V. Meyer, J. Beall,
J. Britton, J. Hughes, W.M.Itano, B. Jelenkovic, C.Langer, T. Rosen-
band, and D.J.Wineland. Transport of quantum states and separation
of ions in a dual rf ion trap. Quantum Information and Computation,
2(4), 2002.

B. Reichardt. Improved ancilla preparation scheme increases fault-
tolerant threshold. Unpublished, 2004.

244

[RHR+04] M. Riebe, H. Haffner, C.F. Roos, W. Hansel, J. Benhelm, G.P.T. Lan-
caster, T.W. Korber, C. Becher, F. Schmidt-Kaler, D.F.V. James, and
R. Blatt. Deterministic quantum teleportation with atoms. Nature,
429(6993), 734-737, 2004.

[RLR+04] C. Roos, G. Lancaster, M. Riebe, H. Haffner, W. Hansel, S. Gulde,
C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt. Bell states
of atoms with ultralong lifetimes and their tomographic state analysis.
Physical Review Letters, 92(22), 220402, 2004.

[SB02] M. Sasura and V. Buzek. Cold trapped ions as quantum information
processors. Journal of Modern Optics, 49(10), 2002.

[SCA+04] K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov. Toward a software
architecture for quantum computing design tools. In Proc. Quant. Prog.
Lang., pp. 145-162, 2004.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, Proceedings, pp. 124-134. IEEE, IEEE Press, 1994.

[Sho95] P. W. Shor. Scheme for reducing decoherence in quantum computer
memory. Physical Review A, 52(4), 2493-2496, 1995.

[Sho96] P. Shor. Fault-tolerant quantum computation. In 37th Annual Sym-
posium on Foundations of Computer Science, Proceedings, pp. 56-65,
1996. arXive e-print quant-ph/9605011.

[SKHG+03] F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G.P.T. Lancaster,
T. Deuschle, C. Becher, W. Hansel, J. Eschner, C.F. Roos, and R. Blatt.
How to realize a universal quantum gate with trapped ions. Applied
Physics B-Lasers and Optics, 77(8), 789-796, 2003.

[SKHR+03] F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G.P.T. Lancaster,
T. Deuschle, C. Becher, C.F. Roos, J. Eschner, and R. Blatt. Realization
of the cirac-zoller controlled-not quantum gate. Nature, 422(6930), 408-
411, 2003.

[SM99] A. Sorensen and K. Molmer. Quantum computation with ions in thermal
motion. Physical Review Letters, 82(9), 1971-1974, 1999.

[SMOOI A. Sorensen and K. Molmer. Entanglement and quantum computation
with ions in thermal motion. Physical Review A, 62(2), 2000.

[STD04] K. Svore, B. Terhal, and D. DiVincenzo. Local fault-tolerant quantum
computation. Unpublished, 2004.

245

[Ste96] A. Steane. Multiple particle interference and quantum error correction.
In Proceedings of the Royal Society of London Series A-Mathematical
Physical and Engineering Sciences, Volume 452, pp. 2551-2577, 1996.
arXive e-print quant-ph/9601029.

[Ste97] A. Steane. Active stabilization, quantum computation and quantum
state synthesis. Physical Review Letters, 78, 2252-2255, 1997.

[Ste98] A. Steane. Space, time, parallelism, and noise requirements for reliable
quantum computing. Fortschritte der Physik, 46, 443-458, 1998.

[Ste99] A. Steane. Efficient fault-tolerant quantum computing. Nature,
399(6732), 124-126, 1999.

[Ste02] A. Steane. Quantum computer architecture for fast entropy extraction.
Quantum Information and Computation, 2(4), 2002.

[Ste03a] A. Steane. Realistic fast quantum gates with hot trapped ions. Phys.
Rev. A, 67, 62318, 2003.

[Ste03b] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum
error correction. Unpublished, 2003.

[Ste04] A. Steane. How to build a 300 bit, 1 gop quantum computer. Unpub-
lished, 2004.

[TB04] B. Terhal and G. Burkard. Fault-tolerant quantum computation for local
non-markovian noise. Unpublished, 2004.

[VHPO4] S. Virmani, S. Huelga, and M. Plenio. Classical simulatability, entan-
glement breaking, and quantum computation thresholds. Unpublished,
2004.

[Vid03] G. Vidal. Efficient classical simulation of slightly entangled quantum
computations. Physical Review Letters, 91(14), 147902, 2003.

[von56] J. von Neumann. Probabilistic logics and the synthesis of reliable or-
ganisms from unreliable components. In Automata Studies, pp. 328-378.
Princeton University Press, 1956.

[WC63] S. Winograd and J. D. Cowan. Reliable computation in the presence of
noise. MIT Press, 1963.

[WDM+04] W.K.Hensinger, D.Stick, M.J.Madsen, M.Acton, D.Hucul, R.Kohn,
K.Schwab, J.A.Schwab, J.A.Rabchuk, and C.Monroe. Scal-
able semiconductor ion traps and trap geometries for com-
plex shuttling operations. Poster presented at the Workshop
on Trapped-Ion Quantum Computing at U. Michigan, 2004.
http://monroelab2.physics.lsa.umich.edu/TIQCworkshop/.

246

[WHOO] D. Wineland and T. Heinrichs. Ion trap approaches to quantum infor-
mation processing and quantum computing. A Quantum Information

Science and Technology Roadmap, 2000.

[Wig03] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and
Chaos. Springer-Verlag, 2003.

[ZLCOO] X. Zhou, D. Leung, and I. Chuang. Methodology for quantum logic gate
construction. Physical Review A, 62(5), 2000.

[Zur8l] W. Zurek. Pointer basis of quantum apparatus: Into what mixture does
the wave packet collapse? Physical Review D, 24(6), 1516-1525, 1981.

[Zur82] W. Zurek. Environment-induced superselection rules. Physical Review
D, 26(8), 1862-1880, 1982.

247

