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Abstract

Inertial cavitation has been implicated as the primary mechanism for a host of
emerging applications. In all these applications, the main concern is to induce cavitation
in perfectly controlled locations in the field; this means specifically to be able to achieve
cavitation threshold at the geometrical focus of the transducer without stimulating its near
field. In this study, we make use of dual-frequency methods to preferentially lower the
cavitation threshold at the focus relative to the rest of the field. One family of dual-
frequency driving waveforms is evaluated in a bubble model incorporating rectified
diffusion. Theoretical predictions based on Sokka's work (Sokka 2003a) are confirmed in
vitro using OptisonT, a commercially available contrast agent. The performance of the
rest of acoustic field in suppressing cavitation when cavitation is induced at the focus is
investigated theoretically and checked experimentally. This first part shows that dual-
frequency phased arrays could be used to precisely control cavitation. Cavitation
threshold is proved to be 1.2 times higher in the near field than at the focus.

One of the main limitations of the aforementioned protocol is that it is tightly
controlled. As an example, Optisonm has a mean bubble size of 2 - 4.5 pm, which means
that the initial bubble radii will fall in this range. Since cavitation threshold has been
proved to depend on this parameter, using ultrasound contrast agents allows for more
predictable results. Therefore, in the second half of this study, we propose a focused
ultrasound protocol that induces and monitors gas bubbles at the focus and allows for ex
vivo validation of the aforementioned theoretical results. The experiments involve fresh
rabbit tissue and a statistical analysis is performed over data collected from back muscle.
Moreover, the experimental apparatus is designed to be MRI-compatible to make future
in vivo assessments feasible. This second half of the study demonstrates that the
theoretical predictions made earlier can reliably be used to predict dual-frequency
cavitation thresholds. It also suggests that clinical use of dual-frequency excitations might
be a solution to the problem of spatial control of cavitation.

Thesis Advisor: Kullervo Hynynen, PhD
Title: Professor of Radiology, Harvard Medical School and Brigham and Women's
Hospital

3



4



ACKNOWLEDGMENTS

I would like to thank Professor Kullervo Hynynen for the opportunity to work on

this project and for providing an ideal environment for research. I would also like to

thank other members of the research group at the Brigham and Women's Hospital: Dr.

Greg Clement, Dr. Nathan McDannold, Jason White, Danish Khatri, Jose Juste, and Erich

Caulfield.

I would also like to thank all those people who facilitated my entrance in the

ultrasound world. I would especially like to thank Professor Mathias Fink, Dr. Mickael

Tanter, and Aline Criton.

Most importantly, I would like to thank my family for unconditional support and

love. Many thanks to my parents, papi et mamie Nini, my sister Marianne, and of course

my wife Marion. I would also like to dedicate this thesis to papi et mamie Arsene, as they

won't be able to attend the Commencement ceremony but would certainly be proud of

their little Tommy.

5



TABLE OF CONTENTS

L IST OF FIGURES................................................................................................... 8

L IST OF T ABLES..................................................................................................... 11

1 INTRODUCTION.......................................................................................... 12

1.1 B ackground...........................................................................12

1.1.1 Focused Ultrasound Surgery...........................................12

1.1.2 C avitation........................................................................................ 13

1.1.3 Cavitation in therapeutic ultrasound............................................. 16

1.2 Specific aim s........................................................................................ 18

1.2.1 Theoretical determination and experimental validation of
optimal acoustic field for cavitation-based therapy....................... 18

1.2.2 Ex vivo validation of a dual-frequency method for spatial control
of cavitation.................................................................................... 18

2 THEORETICAL AND EXPERIMENTAL VALIDATION OF A DUAL-FREQUENCY

EXCITATION METHOD FOR SPATIAL CONTROL OF CAVITATION...............20

2.1 Introduction........................................................................................... 20

2.2 Materials and methods........................................................................ 21

2.2.1 The bubble model...........................................................................21

2.2.2 Tested dual-frequency waveforms.................................................. 28

2.2.3 Experimental verification of theoretical results............................ 29

2.2.4 Acoustic field and cavitation field calculations............................. 32

2.2.5 Experimental determination of cavitation field.............................. 33

2.3 R esults................................................................................................. 35

2.3.1 Relative cavitation thresholds for the tested family ofpressure
w aveform s...................................................................................... 35

2.3.2 Experimental validation of relative cavitation
thresholds...................................................................................... 36

2.3.3 Cavitation fields generated from dual-frequency acoustic
fields............................................................................................... 37

2.3.4 Experimental validation of cavitation fields.................................. 40

6



3 SPATIAL CONTROL OF CAVITATION: EX VIVO VALIDATION OF A DUAL-
FREQUENCY METHOD................................................................................. 42

3.1 M otivation........................................................................................... 42

3.2 Materials and methods......................................................................... 43

3.2.1 Focused ultrasound therapy transducer.........................................43

3.2.2 Sonications.................................................................................... 44

3.2.3 Cavitation detector......................................................................... 45

3.2.4 Experimental protocol.................................................................... 47

3.2.4.1 Ex vivo experiment: determination of relative cavitation threshold
versus first harmonic phase.........................................................47

3.2.4.2 Ex vivo experiment: determination of cavitation field....................48

3.3 R esults.................................................................................................. 5 1

3.3.1 Ex vivo validation of relative cavitation thresholds at the
geometricalfocus of the therapeutic transducer........................... 51

3.3.2 Ex vivo validation of cavitation fields........................................... 53

4 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK..................55

4.1 Conclusions.....................................................................55

4.2 Recommendations for future work...................................................... 57

R EFEREN C ES..............................................................................................................56

7



List of figures

Figure 2-1.......................................................................26
Block diagram representing all the necessary steps in order to determine cavitation
thresholds

F igure 2-2................................................................................... 28
Family of curves calculated from Pc (0.5 cos(21rft) +0.5 cos(21r2ft +6)), where 0

is varied from 0 to 2;r

F igure 2-3 ...................................................................................... 29
Experimental setup for measuring cavitation threshold for dual-frequency
waveforms

F ig ure 2-4 ...................................................................................... 30
(a) Magnitude of the FFT of an acoustic signal without cavitating OptisonTm
microbubbles. The absence of broadband subharmonic emission indicates
that there is no inertial cavitation activity
(b) Magnitude of the FFT of an acoustic signal in the presence of cavitating
OptisonTm microbubbles. The presence of broadband subharmonic emission
indicates inertial cavitation activity

F igure 2-5 ..................................................................................... 31
Hydrophone recordings at the geometrical focus of the transducer for two
different first harmonic phase values
(a) 00
(b) 1800

F ig ure 2-6......................................................................................35
Relative cavitation threshold for the tested family of curves where equal
amplitude sinusoids of the fundamental and first harmonic are combined with the
first harmonic having a variable phase delay

F igure 2-7.....................................................................................36
Relative cavitation thresholds for dual-frequency equal amplitude excitation
where the phase of the second harmonic is varied for various values of Ro with the
data from experiments with OptisonTM overlaid

F ig ure 2-8 ...................................................................................... 37
Acoustic and cavitation fields of a dual-frequency equal amplitude ultrasound
exposure aimed at generating a lower cavitation threshold at the focus using a
waveform from the tested waveform family
(a) The acoustic field near the focus oriented with the transducer to the left

8



(b) The cavitation field along the x-axis in the focal plane
(c) The cavitation field along the transducer axis

F igure 2-9 ...................................................................................... 38
Nearfield to focal point cavitation threshold differential. The first harmonic
phase value was varied from 1500 to 2500

F igure 2-10.................................................................................. 39
Cavitation field along the transducer axis from equal amplitude
dual-frequency exposure optimized to generate a large nearfield to
focal point threshold differential

F igure 2-11.................................................................................. 40
Experimental cavitation field along the transducer. First harmonic phase angle is
equal to 225'

F igure 2-12.................................................................................. 41
Experimental cavitation field along the transducer. Control experiment
(the 8 sectors were sending in phase a 2.4-MHz CW (Continuous Wave) pulse)

F igure 3-1...................................................................................... 44
Hydrophone recordings at the geometrical focus of the transducer for two
different sets of input waveforms
(a) the 8 sectors of the transducer were sending in phase a 1.2-MHz 5-ps burst
(b) alternating sectors were sending 1.2-MHz and 2.4-MHz 5-ps bursts, the first
harmonic phase value being set to 1800

F igure 3-2 ...................................................................................... 45
(a) 1.2 MHz 5-ps burst captured by a Yokogawa 7100 storage oscilloscope

(b) 2.4 MHz 5-p-s burst captured by a Yokogawa 7100 storage oscilloscope

F igure 3-3 ...................................................................................... 47
Ex vivo experimental setup

F igure 3-4 ...................................................................................... 49
Digital signal processing scheme used to measure a cavitation field

F ig ure 3-5 ...................................................................................... 50
(a) Magnitude of the FFT of a backscattered acoustic signal coming from
the geometrical focus of the transducer. No inertial cavitation observable
(b) Magnitude of the FFT of a backscattered acoustic signal coming from
the geometrical focus of the transducer. Inertial cavitation observable

F igure 3-6.................................................................................... 51
Ex vivo validation of relative cavitation thresholds at the geometrical focus

9



F igure 3-7...................................................................................... 52
Control experiment: relative cavitation thresholds at the geometrical focus

F igure 3-8 ...................................................................................... 53
Ex vivo cavitation field (first harmonic phase angle = 225')

F ig ure 3-9 ...................................................................................... 54
Ex vivo experimental cavitation field along the transducer.
Control experiment (the 8 sectors were sending in phase a 2.4-MHz 5-ps burst)

10



List of tables

Table 2-1 ....................................................................................... 23
Constants used in the Keller-Miksis bubble model

11



1. Introduction

1.1. Background

1.1.1. Focused Ultrasound Surgery

Focused Ultrasound Surgery (FUS) is defined as the use of focused ultrasound to

coagulate tissue. It has been extensively investigated and found to provide an efficient

way to treat benign and cancerous tumors in several organs systems (Hynynen et al

1996a, Vallancien 1996).

When used in the therapeutic frequencies range, 0.5 to 4 MHz, ultrasound can be

tightly focused (on the order of the wavelength) with very little power deposition in the

near field. As an example, a sinusoidal ultrasound wave at 1.0 MHz has a wavelength of

1.5 mm and a penetration depth of roughly 10 cm in soft tissue (Hynynen and Lulu

1990). In comparison, a microwave, which radiates at 2450 MHz has a wavelength of 1.8

cm and a penetration depth of only 1.7 cm in tissue (Johnson 1972). These specifications

therefore allow ultrasound transducers to be extracorporeal devices for noninvasive

treatment. Ultrasound can cause tissue necrosis via two methods: 1. energy absorption

resulting in temperature elevation and 2. the implosion of cavitating bubbles induced by

higher pressure ultrasound waves.

Up to now, researchers have tried to avoid cavitation and always used the thermal

mode in FUS treatments as it is better characterized and controlled, yielding lesion sizes

and shapes predicted by models (Carstensen et al 1981, Damianou et al 1995, Hill et al

1994, Lizzi and Ostromogilsky 1987). FUS thermal ablation is performed with constant

levels of ultrasound intensity well below the cavitation threshold for durations of 1-30

seconds ensuring that the temperature at the focus reaches levels that denature protein

causing tissue necrosis. In addition, therapy in the thermal regime can be carefully

monitored with thermometry techniques most notably MRI. MRI provides excellent soft

tissue contrast for diseased tissue segmentation. Moreover, temperature sensitive pulse

sequences can be used to measure relative temperature changes (Chung et al 1996,

Ishihara et al 1995, Samulski et al 1992). Several studies have shown the feasibility of

MRI-guided ultrasound surgery in vivo (Cline et al 1995, Hynynen et al 1996b, Hynynen
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et al 1993, McDannold et al 1998, Stepanow et al 1995). More recent work has shown

that MRI thermal dosimetry techniques can be used to accurately predict the extent of

thermal tissue damage (Chung et al 1999, Hazle et al 2002, McDannold et al 2001).

1.1.2. Cavitation

Acoustic cavitation is defined as any observable activity involving a gas bubble

stimulated into motion by an exposure to an acoustic field. It has been extensively studied

and is divided in two basic types: 1. stable and 2. inertial cavitation (Duck 1998). Stable

cavitation is the less violent event and refers to radial oscillations of gas bubbles without

collapse; these radial oscillations may be nonlinear (Leighton 1994). When entering

inertial or transient cavitation regime, bubbles can grow to twice their initial bubble size

(meaning that their radius grows to twice their initial value) and then have sufficient

energy in order to violently collapse. When cavitation is initiated in vivo, a series of

bioeffects can occur. For example, shock waves may be propagated, acoustic energy is

often converted to heat yielding high microscopic temperatures (1000-20,000 *K) (Flynn

1982). One very important feature of inertial cavitation is that it is a threshold

phenomenon. When sonicating in a specific medium, there will be a threshold ultrasound

intensity above which inertial cavitation will occur. This intensity threshold is not only

varying from a given tissue to another, but it is also frequency-dependent. Cavitation

thresholds in vivo have been studied yielding variable intensity values in different tissues

at different frequencies (Hynynen 1991, Lele 1977, Prat et al 1994, Sanghvi 1998). Many

intricate physical principles actually govern the dynamics of gas bubbles when stimulated

by an acoustic pressure field. A rigorous model of bubble inception, growth, and collapse

would require integrating all of them.

Inducing cavitation in a medium first requires bubbles to seed. In order to form a

cavity in a liquid, sufficient tension is required to pull apart the liquid (Leighton 1994).

When a liquid is sonicated by ultrasound, negative pressures, pressures below the

ambient pressure, can put the liquid in tension. Several different factors can essentially

seed bubbles and act to lower the tension required for bubble formation and cavitation.

Impurities in the liquid, the presence of dissolved gas, preexisting cavities, or crevices in
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the surfaces of the liquid container can all play such a role. Once the process of seeding is

achieved, these bubbles may dissolve, grow, collapse or oscillate in a pressure field. If the

bubbles are not insonified by an ultrasound field, they typically tend to dissolve due to

surface tension. This is especially true for smaller bubbles as surface tension varies

inversely with the radius of the bubble. When now in the presence of an acoustic field,

the behavior of these bubbles is completely modified. To model the behavior of a single

bubble in an acoustic pressure field, we may first assume this bubble to act as a driven

harmonic oscillator. In this model, the gas features would provide the stiffness while the

surrounding liquid would supply the inertia. A first refinement of this model could

consist in incorporating first-order viscous damping by adding a damping term. The

harmonic oscillator model is especially useful in order to describe stable cavitation. It is

also helpful to calculate resonance frequency given the initial bubble radius. This

frequency is known as the Minnaert resonance frequency. For air bubbles in water at 1

atmosphere, the resonance frequency simplifies to 3 m.s-'/R, where Ro is the equilibrium

or initial bubble radius. Since the bubble is essentially a nonlinear oscillator, the

harmonic oscillator model might just be useful to provide an initial guess of the

resonance frequency. Several researchers have built up nonlinear models which are better

suited to take care of the bubble's inherent nonlinear behavior. Most of these models are

based on the Rayleigh-Plesset equation which models a single bubble in an infinite

incompressible medium. Moreover, this equation assumes that the bubble motion is

spherically symmetric. The Rayleigh-Plesset equation is shown below with R as the time-

varying bubble radius, p as the density, o- as the surface tension, 17 as the shear viscosity,

ic as the polytropic index, Ro as the initial bubble radius, p, as the vapor pressure, po as the

ambient pressure, and P (t) as the time-varying pressure field at the bubble.

R +-R'2 = I 2a- RoV ( I + 2a 40 h
p0 R 0  R

Even though the Rayleigh-Plesset equation takes into account the inherent

nonlinear behavior of a bubble, it still has some serious limitations. First of all, it doesn't

incorporate liquid incompressibility. Therefore the model is not able to completely
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describe violent bubble collapse. Compressibility has been added to this model by

various mechanisms (Flynn 1964, Flynn 1975, Gilmore 1952, Keller and Miksis 1980,

Kirkwood and Bethe 1942, Prosperetti et al 1988), and associated results have been

validated by experiment (Gaitan et al 1992).

Even though these equations are not very representative of bubble activity in

tissue, they can still be used to make predictions of cavitation inception and cavitation

thresholds in vivo. In tissues, bubble activity involves bubble clouds and various bubble

stabilizing agents. In addition, the aforementioned models assume that the liquid is a

Newtonian fluid; unfortunately, tissue is generally non-Newtonian. These models also

closely depend on initial bubble radii and gas concentrations; in tissue environments,

these parameters are not easily accessible. Despite the above limitations, these bubble

models can be used to extract general trends on cavitation thresholds and bubble

responses to various acoustic pressures. One of these non-linear models was used to

predict cavitation thresholds in vivo; it has theoretically showed the dependence of

inertial cavitation threshold on frequency, initial bubble radii, and local gas concentration

(Apfel 1981). At a high enough temperature, bubbles acquire sufficient energy for violent

collapse. The gas temperature versus time can be computed from the time-varying bubble

radius with some assumptions on the nature of the gas, and therefore the pressures

required for cavitation can be predicted. As an alternative, Noltingk and Neppiras

R
proposed that transient or inertial cavitation threshold is reached when- =2 for

biomedical frequencies of ultrasound. This was later confirmed by Flynn (Flynn 1975).

Another serious limitation of the discussed bubble models is to ignore another

important factor which can contribute to bubble growth in tissue. Termed rectified

diffusion, Harvey et al observed that in animals, bubbles in oscillation exhibit a steady

increase in Ro during a sustained insonation. The inward diffusion of gas arises from the

fall of internal bubble pressure during the bubble expansion phase setting up a pressure

gradient. Two specific mechanisms are known to increase the rectified diffusion capacity,

the area effect and the shell effect (Leighton 1994). In the area effect, the increased

bubble size during the expansion phase provides more surface area for gas diffusion.

With shell effect, the liquid shell around the gas bubble gets thinner during expansion
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increasing the diffusion gradient across the bubble wall. These effects have been

theoretically modeled (Crum 1980, Eller 1969, Lewin and Bjorno 1981). Church has the

most sophisticated model, in which, he computes the time varying bubble radius and then

uses this radius to predict the rectified diffusion rate. He then determines the minimum

pressure required to induce bubble growth by rectified diffusion, the rectified diffusion

threshold. Once the threshold is reached, the bubble grows larger during every negative

pressure cycle ultimately reaching a size when violent collapse can occur. Although he

concludes that rectified diffusion does not occur at ultrasound imaging frequencies and

pressures, pressure waveforms may be designed to reduce the rectified diffusion

threshold to induce rectified diffusion and subsequent cavitation.

At the present time, cavitation and its associated effects in vivo can't be fully

characterized. However, general trends in cavitation and its thresholds in vivo can be

extracted from currently used bubble models. These models could further be used to

design optimal cavitation therapies.

1.1.3. Cavitation in therapeutic ultrasound

The prospect of in vivo acoustic cavitation was first described in frogs in 1950

(Fry et al 1950). This work was soon followed by Lehmann (Lehmann and Herrich 1953)

who proved that in vivo cavitation was potentially the cause of observable blood vessel

damage at 1 MHz at some unknown high intensity. The use of focused ultrasound for

central nervous tissue destruction was further studied; moreover, the parameters need for

cavitation started to be studied and some suggested that cavitation could be the primary

cause of tissue damage (Fry et al 1970, Lele 1977). Cavitation damage was mostly

assessed by examining morphological changes after ultrasound exposure. Another

important observation was made: when inertial cavitation is induced in vivo, mechanical

tissue destruction close to blood vessels can result, and the generated bubbles can act as

ultrasound scatterers that block wave propagation and subsequent power deposition (Fry

et al 1970, Lele 1977). On the other hand, studies in simpler fluids revealed that when

acoustic cavitation occurs, two physical phenomena are detected: 1. significant local

temperature elevation and 2. emission of subharmonic or wide band acoustic noise
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(Coakley 1971, Eller and Flynn 1969). Lele further demonstrated that transient cavitation

in vivo produced both subharmonic and ultraharmonic wide band noise emission (Lele

1987). These observations could be used to provide a potentially simple in vivo cavitation

detection technique.

Focused ultrasound therapy can induce cavitation to mechanically destroy tissue

(Fry 1954, Lele 1987). However, the dominant opinion within the ultrasound therapy

community has been to avoid cavitation and induce more predictable and controllable

thermal damage with focused ultrasound (Fry et al 1970, Lele and Pierce 1972, Chapelon

et al 1996). Despite this prominent reluctance, generated gas bubbles have some

potentially useful properties. First, gas bubbles generated from cavitation yield extremely

high temperatures and concentrate acoustic energy at the cavitation site. Moreover,

theoretical models, extracorporeal, ex vivo, in vitro, and phantom experimental work have

shown that gas bubbles in a focused ultrasound field yield higher ultrasound absorption

and therefore higher bulk temperatures in a zone near the focus (Clarke and ter Haar

1997, Holt and Roy 2001, Hynynen 1991, Lele 1987). As a result, higher thermal doses

are delivered at the focus; such a gas bubble enhanced heating method could lead to more

efficient FUS treatment protocols (Sokka et al 2003b). Studies have also shown that the

heating effect during thermal mode exposures might be enhanced by occasional

cavitation and/or boiling (Bush et al 1993, Fry et al 1995). Moreover, cavitation activity

usually results in atypical lesion sizes and shapes (Sokka et al 2003b). To account for a

subset of these atypical lesions, thermal models with simple assumptions on bubble

distribution and their progression during a sonication have been developed (Chavrier et al

2000). In order to explain the enhanced heating effect from a bubble size perspective,

bubble kinetics models have also been developed (Holt and Roy 2001). In all of these

studies, the induction and timing of cavitation was unpredictable; the overall enhanced

heating effect was therefore neither predictable nor controllable (Sokka 2003a).
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1.2. Specific aims

1.2.1. Theoretical determination and experimental validation of
optimal acoustic field for cavitation-based therapy

Of critical importance in ultrasound induced cavitation is to precisely focus the

location of cavitation. Ectopic cavitation, that is cavitation outside of the target area, can

cause unwanted heating or lesions off focus. In addition, cavitation threshold may vary

from point to point in tissue; therefore, locations near the focal point may exhibit

cavitation yielding undesired lesions. Ideally, ectopic cavitation could be limited if the

cavitation threshold could be preferentially lowered at the transducer focus compared to

other areas in field. In this thesis, we tested and optimized dual-frequency methods

introduced by Sokka (Sokka 2003a) to preferentially lower the cavitation threshold at the

focus relative to the rest of the field. One family of dual-frequency driving waveforms

was evaluated in a bubble model incorporating rectified diffusion. Once the optimal

waveform shape at the focus was determined, the associated acoustic pressure field was

computed from the Rayleigh-Sommerfeld integral. A spherically-curved phased array

transducer which yields that waveform at the focus was simulated. The resulting field

was further analyzed to determine the relative cavitation threshold in terms of acoustic

pressure and intensity. In order to first validate these theoretical predictions in a

controlled environment, an in vitro experiment was designed and experimental criteria for

assessing cavitation activity were used.

1.2.2. Ex vivo validation of a dual-frequency method for spatial
control of cavitation

As mentioned earlier, our goal was to determine optimal acoustic fields for

cavitation-based therapy. We claimed that the combination of a given frequency with its

first harmonic would allow surpassing the cavitation threshold at the focus of the

transducer while leaving the near field inert. In the in vitro validation experiment, we

used Optison , a commercially available contrast agent. However, such a protocol was

tightly controlled. As an example, Optison m has a mean bubble size of 2 - 4.5 pm, which

means that the initial bubble radii will fall in this range. Since cavitation threshold has
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been proven to depend on this parameter, using ultrasound contrast agents allows for

more predictable results. Therefore, in the second part of this thesis, we proposed a

focused ultrasound protocol that induces and monitors gas bubbles at the focus and

allows for ex vivo validation of the theoretical results. The experiments involved fresh

rabbit tissue and a statistical analysis was performed over data collected from back

muscle. Moreover, the experimental apparatus was designed to be MRI-compatible in

order to make future in vivo assessments feasible. The study demonstrated that the

theoretical predictions made earlier could reliably be used to predict dual-frequency

cavitation thresholds. It also suggests that clinical use of dual-frequency excitations might

be a solution to the problem of spatial control of cavitation.
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2. Theoretical and experimental validation of a dual-

frequency excitation method for spatial control of

cavitation

2.1. Introduction

Inertial cavitation is a phenomenon which involves bubbles growing to twice their

initial size (meaning that their radius grows to twice their initial value) and then having

sufficient energy for violently collapse (Duck 1998). Among applications which involve

inertial cavitation, focal opening of the blood-brain barrier for drug delivery (Hynynen et

al 2001) is one of the most promising. Transfection into cells of gene therapy agents also

benefits from the presence of microbubbles when sonicated (Greenleaf et al 1998).

Injected microbubbles (Wu 1998, Miller and Geis 1998, Tran et al 2000) or ultrasound-

generated bubbles have also been used to enhance heating (Sokka et al 2003b) in ablation

scenarios. Acoustic cavitation can also activate chemicals and induce tissue damage,

which in turn can be enhanced by second-harmonic superimposition (Umemura and

Kawabata 1996). In all these techniques, the site of cavitation needs to be precisely

controlled in order to tightly localize the therapy. In an application making use of injected

microbubbles, such a control is crucial. Since bubbles are present throughout the tissue,

off-focal inertial cavitation is even more likely to occur.

In order to either suppress or enhance cavitation at the transducer focus, several

researchers have looked into acoustic waveform manipulation methods. Umemura et al

tackled the problem with a dual-frequency excitation scheme. They summed a

fundamental and its associated first harmonic at the focus of two confocal transducers to

study the sum's effect on sonodynamic therapy (each transducer was excited by a given

frequency). Such a method consists in injecting an anti-tumor agent, which is further

cavitated to treat tumors (Umemura and Kawabata 1996). The treatment effect was found

to be greatly enhanced by this dual-frequency approach. Chapelon et al studied the

sonoluminescence activity, the emission of light associated with cavitation, of

microbubbles insonified with pseudorandom phase-modulated signals. As a control
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experiment, they also sonicated the microbubbles with continuous wave (CW) single

frequency ultrasound (Chapelon et al 1996). The study demonstrated a significant

suppression of the cavitation activity with the proposed method. Bailey et al combined a

250-kHz continuous wave with 3-MHz pulses at either the positive or negative phase of

the lower frequency wave (Bailey et al 2002). Their results indicated that superimposing

the high frequency pulse on the positive phase yielded higher cavitation activity.

In this thesis, we use a dual-frequency method introduced by Sokka (Sokka

2003a). It allows preferentially lowering the cavitation threshold at the focus relative to

the rest of the field for precise control of the cavitation site. Off focal, or ectopic,

cavitation activity may thereby be suppressed. The rectified diffusion threshold pressure

is used as the cavitation threshold as suggested by earlier works (Umemura and

Kawabata 1996).
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2.2. Materials and methods

2.2.1. The bubble model

In this part, theoretical results are obtained using a code based on Sokka's work

(Sokka 2003a). Optimizations and algorithmic variations introduced here will not be

discussed as they do not contradict Sokka's predictions.

A two-step method based on Church's work with rectified diffusion was used

(Church 1988) in order to calculate the cavitation threshold (the rectified diffusion

threshold as discussed earlier) for a given driving waveform. The first step involved the

computation of the bubble radius-time curve using the Keller-Miksis bubble model. Once

the radius-time curve was determined, it was used as an input to the diffusion equation

solutions posed by Eller and Flynn (Eller and Flynn 1965, Keller and Miksis 1980). To

complete the second step of the method, the rectified diffusion threshold was derived.

The decoupling of these equations was allowed by assuming that rectified diffusion

occurs at a slow rate, and especially much slower than bubble oscillations. In other

words, Eller and Flynn assumed that negligible diffusion occurs during a single bubble

oscillation.

Even if most bubble models are based on the Rayleigh-Plesset equation which

models a single bubble in an infinite incompressible medium, the Keller-Miksis equation

was selected as it provides a more accurate model. When large range of initial radii and

acoustic pressure amplitudes are used as an input to a bubble model, it becomes crucial to

include the compressibility of the surrounding fluid. When large enough driving

pressures are used in the Rayleigh-Plesset equations, it might result in overestimation of

the cavitation threshold and/or convergence problems (Keller and Miksis 1980). On a

final note, the more sophisticated Gilmore equation could have provided another

refinement as it also includes time-varying thermal effects. However, since its use would

have resulted in significant additional computation time, we decided not to use it. Parlitz

et al provided a formulation of the Keller-Miksis equation (Parlitz et al 1990):
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I- h R-+ 3_ 2 I A =I- P(A,Rt) PR DP(,Rt) (1)
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with (2)
2a R + PV P 2a 4#A

P(k,R~t)= po -p,+ +p-P -a
R R

Table 2-1 summarizes the values of constants that were used (Lauterborn 1976).

Constant Description Value
Po Hydrostatic Pressure 100 kPa
PV Vapor Pressure 2330 Pa
c Sound Speed 1500 m/s
I Surface Tension 0.0725 N/m
M Shear Viscosity of Liquid 0.001 N-s/m2

p Liquid Density 998 kg/m3

K Polytropic Exponent 1.33

Table 2-1. Constants used in the Keller-Miksis bubble model

To come up with this equation, experiments involving a single bubble in an

acoustic field were conducted. As a result, the Keller-Miksis equation models the wall

motion R(t), of this bubble characterized by an initial radius Ro, when stimulated by an

acoustic driving pressure, Pa(t).

A couple of assumptions are incorporated in the model (Edson 2001). First of all,

the bubble is assumed to be surrounded by water, which is infinite in extent. The water is

also assumed to behave as a compressible liquid, which represents an improvement over

the Rayleigh-Plesset equation, and to be a Newtonian fluid (surface tension is included in

the analysis). Before any acoustic field is applied, there is a single bubble in the water,

which is characterized by its initial radius, R. This bubble exists in water at t=0~, and is

filled with a gas, which is assumed to obey the polytropic gas law. Moreover, both
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temperature and pressure have uniform spatial distribution within the bubble. When

insonified, this bubble may only undergo spherical oscillations and/or collapse, and mass

and heat transfer between the bubble and the liquid are neglected. Shear viscosity and

viscous dissipative effects are both included. On a final note, the forcing pressure field is

time-dependent, and the external ambient (or hydrostatic) pressure is assumed to be

constant.

It is important to notice that these assumptions are only accurate in a situation

where a single bubble cavitates in water. As described and discussed later in this thesis,

experiments did not involve a single bubble in an acoustic field, but rather a cloud of

bubbles, either injected (contrast agent microbubbles), or naturally present in tissue.

When cavitation occurs in biological tissue, the model described above may not account

for every single additional complexity inherent to the medium. First of all, tissue is

generally assumed to be non-Newtonian because of its viscoelastic properties. Besides,

cavitation in vivo is not necessarily initiated from a single bubble in a fluid which is

infinite in extent, as assumed in the Keller-Miksis model. In biological tissue, a more

common situation would consist in having multiple bubbles in compartmentalized

tissues. Even if experimental situations seem rather complicated as compared to

assumptions associated with the Keller-Miksis model, there are still ways to better fit the

model to real situations. We can first assume that in vivo cavitation is initiated from seed

bubbles. A value of Ro = 1 pm may be used to reflect the initial seed bubble radii in

tissue (Church 1988). Besides, these bubbles are generally located in areas that allow

them some room to oscillate whether it is in the interstitial space or blood vessels. Such a

variability in surrounding conditions will affect the bubble behavior but is beyond the

scope of this thesis.

In summary, differences between real experimental conditions and model's

assumptions may prevent us from predicting absolute cavitation threshold values in

tissue. However, it may still be used to compare the impact of different waveforms on

bubble dynamics and to estimate relative cavitation thresholds.

Another limitation of the Keller-Miksis bubble model is that mass transfer is not

accounted for. However, in the second step of the method, the calculation of cavitation
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thresholds itself makes use of the Eller and Flynn rectified diffusion equation, which

incorporates it.

In order to determine the rectified diffusion threshold, which will further be used

as the cavitation threshold, the gas flux into the bubble was calculated over multiple

acoustic cycles given a periodic solution to the bubble dynamics equation (Eller and

Flynn 1965). The time rate of change of the moles of gas n in the bubble is formulated

below:

dn=41ROD A + P B C/2 , C A (3)
dt iDt Cs B

With A =f -Wt, (4)
T7 O P0

1 R(5)
and B=- -Tb(R dt,

and Cn=CC 1+ 2a (6)

As in all equations listed in this thesis, RO is the equilibrium or initial radius of the

bubble, D is the diffusion constant, C is the concentration of dissolved gas in the liquid,

and CO is the saturation concentration of gas in the liquid. In order to represent an air

filled bubble, a gas saturation percentage value of CI/Co = 0.857 was used (Church 1988).

A and B were calculated from the solution to the Keller-Miksis equation given a forcing

waveform, P(t). In both A and B expressions, T is the period of bubble wall motion R(t)

in steady state. The period of the bubble wall motion is generally equal to a multiple of
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the period of the forcing function (or forcing waveform). In the case of a dual-frequency

waveform, this period is equal to the period associated with the highest frequency (the

first harmonic). A and B were computed for different multiples of this period, 1 to 5, in

successive time regions in steady state of the radius-time curve. The recursive

computation of A and B over the adjacent time regions was terminated as soon as the

calculated values were within 0.1 %. Those values of A and B were then used in the

calculation of the rectified diffusion threshold. By definition, the rectified diffusion

threshold is the minimum pressure at which there is a net flux of gas into the bubble. In

terms of calculations, this implies to determine the zero of Equation 3 (this was done for

different amplitudes of the forcing pressure waveform). The zero of Equation 3

corresponds to A/B = C/Cs,; therefore, the minimum pressure amplitude at which this

occurred was noted as the cavitation threshold.

The block diagram presented in Figure 2-1 summarizes all the necessary steps in

order to determine cavitation thresholds.

Input P() (forcig waveormd ) 0 Keller-Misis - Output R(Q) (radius-time curve)

Computation of A (eq 4) and B (eq)

If A/IB > C;/Can If A/B3 < q/Csn
Then Then

JP(t)| increased JP(tQJ lowered

When A/B within 0.1% of QCsn
Process terminated

Figure 2-1. Block diagram representing all the necessary steps in order to determine cavitation
thresholds
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In summary, the computation of the cavitation threshold associated with a given

waveform required several steps. The radius-time curve R(t) was first calculated making

use of the Keller-Miksis equation. At that point, an initial test pressure amplitude was

used as the input to this equation. In a second step, A and B were computed and further

compared to Ci/C,,. The value of A/B was then discussed; if it was greater than Ci/Cs., the

pressure amplitude was raised (above the initial test pressure amplitude value).

Otherwise if A/B was less than Cj/Ci,, the pressure amplitude was then lowered (below

the initial test pressure amplitude value). The process was terminated when A/B was

found to be within 0.1 % of C1!Cs.. The pressure amplitude used to achieve such a result

represented the cavitation threshold associated with the tested waveform.
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2.2.2. Tested dual-frequency waveforms

The cavitation thresholds for a family of driving waveforms were calculated. The

set of waveforms consisted of the sum of two equal amplitude but different frequency

cosines, P (0.5cos(2,rft)+0.5cos(2ir2ft+6)), where 6 was varied from 0 to 2r.

Figure 2-2 shows the waveform shapes for a subset of this family for five different values

of 0.
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Figure 2-2. Family of curves calculated from P (0.5 cos(27rft) + 0.5 cos(27r2ft + 6)), where

0is varied from 0 to 27c
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2.2.3. Experimental verification of theoretical results

Spectrum

Analyzer

Ultrasound

Driving

System

3D Positioner

Transducer

Water Tank

Outflow

Optison TM

Syringe

Cylindrical
Vial

Cavitation
Detector

(9 f element)

Figure 2-3. Experimental setup for measuring cavitation threshold for dual-frequency
waveforms

The threshold variation observed in simulation was verified experimentally.

Figure 2-3 shows the experimental setup (designed by Gauthier and Sokka) for measuring

cavitation threshold for different dual frequency waveforms. An eight-sector, focused,

piezocomposite transducer array (10 cm diameter, 8 cm radius of curvature,

manufactured by Imasonic, France), driven by a multi-channel broadband ultrasound

driving system designed in house (Sokka et al 2003c), was used to generate the dual-

frequency field in a water tank. A 2.5 cm diameter by 2.5 cm long cylindrical vial was

filled with a mixture of degassed water and OptisonTM (Mallinckrodt Medical, St. Louis,

MO), a commercial microbubble contrast agent. The focus of the transducer was

positioned to be in the center of this vial. The plastic cylindrical vial was capped on both

ends with Mylar membranes to allow the passage of the ultrasound beam through the

chamber. A concentration of 0.015 ml of OptisonTM per ml of water was maintained in

the vial. In order to ensure that no large air bubbles were trapped in the chamber, the

microbubble mixture was circulated into the vial until liquid was observed on the outflow
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line. Prior to sonication, the cylindrical vial was slightly agitated to keep microbubbles in

suspension. During insonation, the transducer's center circular element (diameter = 2 cm)

was connected to a spectrum analyzer (Hewlett-Packard 8590A) and used as a passive

cavitation detector. Similar to earlier in vivo experiments (Lele 1977, Hynynen 1991), the

presence of broadband subharmonic emission was used to assess inertial cavitation.

Below are two figures, which are representative of: 1. the acoustic signal coming

back from the vial wherein OptisonTm microbubbles are not cavitating (Figure 2-4(a)) and

2. the acoustic signal coming back from the vial wherein OptisonTm microbubbles are

cavitating (Figure 2-4(b)).

-20
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-50

-60-

-70-

0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 3

a Frequency [MHz] b Frequency [MHZ]

Figure 2-4. (a) Magnitude of the FFT of an acoustic signal without cavitating Optisonm
microbubbles. The absence of broadband subharmonic emission indicates that there is no inertial
cavitation activity. (b) Magnitude of the FFT of an acoustic signal in the presence of cavitating
Optisons microbubbles. The presence of broadband subharmonic emission indicates inertial
cavitation activity

Here is the methodology that we followed when measuring the cavitation

threshold at the geometrical focus of the transducer. The situation where the vial was

moved along the transducer axis in order to measure the cavitation threshold at different

locations along the transducer axis is discussed in the upcoming section. For each tested

waveform, that is, for each tested value of , the input voltage was raised until inertial

cavitation was observed at the geometrical focus of the transducer. Since the driving

voltage is linearly proportional to the driving pressure, the voltage level at which inertial
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cavitation occurred was recorded as the corresponding cavitation threshold. On a final

note, OptisonTm has a mean bubble diameter of 2-4.5 pm, so the results from experiment

were compared with simulation results with 2RO in this range.

The phase control capabilities of the multi-channel broadband ultrasound driving

system designed in house were assessed by recording the pressure at the focus using a

0.075 mm needle hydrophone. Several first harmonic phase values were tested in order to

make sure that the ultrasound driving system could reliably generate dual-frequency

fields. Below are two figures representing hydrophone recordings for two different first

harmonic phase values: 00 (Figure 2-5(a)), and 1800 (Figure 2-5(b)).
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Figure 2-5. Hydrophone recordings at the
first harmonic phase values. (a) 00 (b) 1800
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geometrical focus of the transducer for two different
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2.2.4. Acoustic field and cavitation field calculations

In a former study, Sokka introduced the concept of cavitation field (Sokka 2003a).

He defined the cavitation field as the relative cavitation threshold in space for a given

acoustic field. Given the acoustic field, the pressure waveform at each point in space is

known. This pressure waveform can then be used as an input in order to compute the

cavitation threshold using the model described earlier. When the acoustic field is a single-

frequency field, one may expect that all points in space will be stimulated by similar

waveforms varying only by phase. Therefore the cavitation field is expected to be

constant, providing that the CW (Continuous Wave) mode is used. If now the field is

multi-frequency in nature, different waveforms will stimulate different points in space.

As a result, different cavitation thresholds will result in space as well. Two parameters

come therefore into play to shape the cavitation field: 1. the transducer geometry and 2.

the specific excitation of the transducer (the driving signal to each element of the

transducer). For this study, we computed the cavitation field for an 8-sector array with

dual-frequency excitations. For all dual-frequency fields, alternating elements were

driven at the two different frequencies. The Rayleigh-Sommerfeld integral (Zemanek

1971) was used to calculate the acoustic field for the transducer. The pressure field from

an ultrasound element through a lossy substrate can be modeled as:

ipck e-ik(r-r) e-pdu
p(r)= - , dA

2zc A r-r

where po is the tissue density, c is the speed of sound, k is the wave number (2w/A), A is

the ultrasonic wavelength, r is the coordinate vector (x,y,z) of the pressure point, r' is the

coordinate vector of the incremental source area of the complete transducer area A, A is

the attenuation coefficient in the lossy material (absorption and scattering), d is the ray

distance in the lossy material between the source point and the location of the desired

pressure point, and u is the complex surface velocity of that source (magnitude and

phase). If now one considers an array made of N elements, the pressure at a given point m

corresponding to a location (xm, yi, zm) is given by:
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N * i krmn pd

PM pck e eu", dA (8)
n=1 21r rm

where subscript n corresponds to the driving signal of the nth element of the array. In this

model, temperature, non-linear, refraction, and scattering effects on pressure calculation

are neglected. Besides, the attenuation term is also neglected for our purposes. The

aforementioned integral computes the complex pressure for a single frequency field.

Therefore, two separate arrays were used to model the 8-sector array for dual-frequency

excitations. The resulting fields were then summed in the time domain

using P cos (2rft + 01 ) + Pcos(21f2t + 2), where P and 01 are the magnitude and angle

of the complex pressure at f, and P 2 and 92 are magnitude and angle of the complex

pressure at f2. Given the time-varying field in space, the cavitation threshold at various

points may then be computed using the model described earlier.

2.2.5. Experimental determination of cavitation field

The same experimental setup as described before can be used here to confirm the

simulation results. In previous experiments, the focus of the transducer was positioned to

be in the center of the cylindrical vial and then the only varying parameter was the phase

between the fundamental and the first harmonic frequency components. Here the

situation was slightly different. Since we wanted to determine the cavitation threshold

along the transducer axis, we had to move the vial along its axis while keeping the

transducer still. For each given position of the vial, the input voltage was raised until

inertial cavitation was observed. The acoustic pressure corresponding to the input voltage

for which inertial cavitation was observed was then recorded by replacing the vial by a

hydrophone. For each given location, the cavitation threshold was finally calculated by

dividing the recorded input voltage by the corresponding acoustic pressure, which was

the recorded hydrophone voltage.
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As a control experiment, we sonicated the vial with only one of the two

aforementioned frequencies. That is all the 8 sectors were sending in phase a 2.4-MHz

CW (Continuous Wave) pulse.
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2.3. Results

2.3.1. Relative cavitation thresholds for various families of
pressure waveforms

The relative cavitation thresholds obtained with the set of tested waveforms is

shown in Figure 2-6. Each curve corresponds to a different fundamental frequency.

Fundamental frequencies equal to 1.2, 2.4, 3.0, and 3.6 MHz were tested. For lower

fundamental frequencies, 1.2 and 2.4 MHz, the waveforms showed a differential in the

cavitation threshold with a first harmonic phase in the 180-2200 range showing the lowest

threshold. This waveform family may be useful to create a differential cavitation field as

the equal amplitude sinusoids combined at various phases in the field will create a widely

varying acoustic field.

1.--------------------------------------- -------- 3.I I - - ----- - -4

0 50 100 150 200 250 300 350

Figure 2-6. Relative cavitation threshold for the tested family of curves where equal amplitude
sinusoids of the fuindamental and first harmonic are combined with the first harmonic having a
variable phase delay
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2.3.2. Experimental validation of relative cavitation thresholds

x m w siearon
I I -2

tr e im e Optisondss

0 so 1:0 IS 20 5 0 5

~~ Degrees

Figure 2-7. Relative cavitation thresholds for dual-frequency equal amplitude excitation where
the phase of the second harmonic is varied for various values of R with the data from
experiments with Optisonr overlaid

To verify the reliability of Sokka's cavitation threshold model, the results from

experiments with Optisond were compared with predictions from the simulations. For

the in vitro experiments, the OptisonTma sample was insonifed with the focal pressure

profile generated from the tested waveform family, that is the combination of equal

amplitude sinusoids with the phase delay of the first haronic varied. Figure 2-7 shows

the results of both the in vitro experiment and simulations from bubble diameters of I to

4 4um. As noted earlier, such a diameter range is representative since the mean diameter of

the Optisonm microbubbles is between 2 and 4.5 flm. The experimental data follows the

model results from the 3 and 4 pm bubble very closely. The trends were consistent and

the minimum and maximum relative cavitation thresholds were almost identical. The

predictions from the model correlated very well with the results from the controlled in

vitro experiment.
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2.3.3. Cavitation fields generated from dual-frequency acoustic
fields
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Figure 2-8. Acoustic and cavitation fields of a dual-frequency equal amplitude ultrasound
exposure aimed at generating a lower cavitation threshold at the focus using a waveform from the
tested waveform family

(a) The acoustic field near the focus oriented with the transducer to the left

(b) The cavitation field along the x-axis in the focal plane

(c) The cavitation field along the transducer axis

The graphs shown in Figure 2-8 are the field patterns resulting from combining

two equal amplitude sinusoids with the first harmonic signal having a phase of 2100 at the

focus. This phase angle exhibited the lowest cavitation threshold among the tested

waveforms. The focal size as measured from Figure 2-8(a) is 0.9 mm x 4.4 mm. Figure 2-

8(b) shows larger threshold maxima surrounding the focus with a maximum threshold
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value 50 % larger than at the focus. Figure 2-8(c) shows similarly high maxima along the

axis of the transducer. In addition, a higher threshold in the nearfield than at the focus

was observed for the entire nearfield region shown in the plot and continues beyond. To

cavitate in the nearfield, pressures ranging from 110 % to 150 % of the pressure at the

focus were needed.

To see if greater differentials could be achieved, other waveforms from the same

family were evaluated. This time, we tried specifically to lower the focal cavitation

threshold relative to nearfield cavitation thresholds. To do so, we evaluated the impact of

different first harmonic phases and tried to maximize the cavitation threshold differential

between the nearfield and the focus. Five control points located in the nearfield were

chosen and the resulting average cavitation threshold was compared with the focal

cavitation threshold. The first harmonic phase value was incremented by 50 steps between

1500 and 2500. Figure 2-9 summarizes the results. Cavitation threshold differentials

obtained for different values of the first harmonic phase were normalized by the

maximum cavitation threshold differential value that we found.

1.05-

1 -

0.95-

0.9-

0.85-

0.8-
150 160 170 180 190 200 210 220 230 240 250

First harmonic phase angle [degrees]

Figure 2-9. Nearfield to focal point cavitation threshold differential. The first harmonic phase
value was varied from 1500 to 2500
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Among the best nearfield to focal point threshold differentials resulted from the

pattern with first harmonic phase angle of 2250. The focus from this field has similar

dimensions to the one exhibited in Figure 2-8. Moreover, the x-axis cavitation field was

also not remarkably different. However, the cavitation field along the transducer axis

presented in Figure 2-10 shows significant improvement over the previous field.

1 .8 I I I I I I I I
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1.6
E

1.5-

1.3 -
CL

12 - -
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Figure 2-10. Cavitation field along the transducer axis from equal amplitude dual-frequency
exposure optimized to generate a large nearfield to focal point threshold differential

The cavitation threshold in the nearfield ranges from 117 % to 153 % of the

threshold at the focus with a space-averaged threshold of nearly 122 % of the threshold at

the focus. This differential is a significant improvement over a single-frequency field,

which exhibits a uniform cavitation field.

In summary, when a bubble is sonicated with a dual-frequency field characterized

by a first harmonic phase angle of 2250, initiating cavitation in the nearfield requires 48

% higher intensities (intensity and power vary as pressure squared) than that found at the

focus.

As mentioned earlier, the model used here to determine relative cavitation

thresholds assumed a homogeneous medium (Sokka 2003a). Even if tissue is not

homogeneous, significant tissue factors that lower the threshold in the nearfield would be

needed to overcome this higher threshold barrier.
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2.3.4. Experimental validation of cavitation fields

Again, the reliability of Sokka's cavitation model was assessed by running an

experiment with OptisonTM and comparing the results with predictions from simulations.

As described in the Materials and Methods section, the dual-frequency cavitation field

generated with a first harmonic phase angle of 2250 was measured and is displayed in

Figure 2-11. The experimental cavitation threshold in the nearfield ranges from 116 % to

135 % of the threshold at the focus. These results show a significant improvement over a

single-frequency sonication, which led to a relatively uniform cavitation threshold field,

as displayed in Figure 2-12. In both sets of experiments, presented in Figure 2-11 and

Figure 2-12, measurements were repeated 5 times; the displayed curves represent average

measurement results.

In vitro cavitation field

1.6-

1.5-

1.4-

1.3-
-+- Optison
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1

-4 -3 --2 -1 0 1 2 3 4

Distance along the transducer axis (focus =0) [mm]

Figure 2-11. Experimental cavitation field along the transducer. First harmonic phase angle is
equal to 225*.
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In vitro cavitation field
Control experiment
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Figure 2-12. Experimental cavitation field along the transducer. Control experiment
(the 8 sectors were sending in phase a 2.4-MHz CW (Continuous Wave))
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3. Spatial control of cavitation: ex vivo validation of a
dual-frequency method

3.1. Motivation

As emphasized in the first part of this thesis, the combination of a given frequency

with its first harmonic would allow surpassing the cavitation threshold at the focus of the

transducer while leaving the near field inert. In the first part of this thesis, we used

Optisonm, a commercially available contrast agent, to design an in vitro experiment, which

confirmed the theoretical predictions initially made by Sokka (Sokka 2003a) and refined

here. However, such a protocol is tightly controlled. As an example, Optisonli has a mean

bubble diameter of 2-4.5 pm, which means that the initial bubble diameters will fall in this

range. Since cavitation threshold has been proven to depend on this parameter, using

ultrasound contrast agents allows for more predictable results. In the second part of this

thesis, we propose a focused ultrasound protocol that induces and monitors gas bubbles at

the focus and allows for ex vivo validation of the aforementioned theoretical results. The

experiments involved fresh rabbit tissue and a statistical analysis was performed over data

collected from back muscle. Moreover, the experimental apparatus was designed to be

MRI-compatible to make future in vivo assessments feasible. The study demonstrates that

the experimental results can reliably be used to predict dual-frequency cavitation

thresholds. It also suggests that clinical use of dual-frequency excitations might be a

solution to the problem of spatial control of cavitation.
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3.2. Materials and methods

3.2.1. Focused ultrasound therapy transducer

The same eight-sector transducer as described in Chapter 2 of this thesis was used

in the experiments. In all experiments, half of the sectors were driven with an identical

radio frequency (RF) signal while the other half was driven with another RF signal. The

first RF signal had a frequency of 1.2 MHz and was generated by a Hewlett Packard

33120A arbitrary waveform generator and amplified by an ENI 2100L RF power

amplifier, which could provide a 50dB gain in the frequency range 10 kHz-12 MHz. The

other RF signal had a frequency of 2.4 MHz and was generated by an Agilent 33250A

arbitrary waveform generator and amplified by another similar ENI 2100L RF power

amplifier. A total electrical power of 400 W was available. A preliminary experiment

consisted in driving only half of the sectors, either the 1.2 MHz- or 2.4 MHz-driven ones,

so as to measure the resulting acoustic pressure at the geometrical focus of the transducer.

A 0.075 mm needle hydrophone recorded the pressure at the focus, which is proportional

to the hydrophone voltage, and allowed for calibration of the driving signals. The

amplitude of the two driving electrical signals was adjusted so that the resulting focal

pressure amplitudes were equal. As in Chapter 2 of this thesis, we also checked the phase

control capabilities of the waveform generators. Below are two figures representing

hydrophone recordings for two different sets of input waveforms. In the first set, the 8

sectors of the transducer were sending in phase a 1.2-MHz 5-ps burst (Figure 3-1(a)). In

the second set, alternating sectors were sending 1.2-MHz and 2.4-MHz 5-ps bursts, the

first harmonic phase value being set to 1800 (Figure 3-1(b)).
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Figure 3-1. Hydrophone recordings at the geometrical focus of the transducer for two different
sets of input waveforms. (a) the 8 sectors of the transducer were sending in phase a 1.2-Mz 5-ps
burst (b) alternating sectors were sending 1.2-MHz and 2.4-MHz 5-ps bursts, the first harmonic
phase value being set to 1800

3.2.2. Sonications

In this experiment, the same set of waveforms as previously used in the first part

of this thesis was evaluated. They were the sum of two equal amplitude but different

frequency cosines. Figure 2-2 shows the waveform shapes for a subset of this family for

five different values of 6. Since the phase between the two waveforms had to be

precisely adjusted, both arbitrary waveform generators were used in triggered burst

phase-lock mode. In the triggered burst mode, phase-lock signals can be synchronized

using an external trigger. A second Hewlett Packard 33120A arbitrary waveform

generator was used as an external trigger and synchronized the two arbitrary waveform

generators.

Single burst duration, 5 ps, was tested. Below are graphical representations of the

two bursts (one at 1.2 MHz, Figure 3-2(a); the other at 2.4 MHz, Figure 3-2(b)). Both

bursts were acquired with a Yokogawa 7100 storage oscilloscope at a sampling frequency

of 50 MHz.
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Figure 3-2. (a) 1.2 MHz 5-ps burst captured by a Yokogawa 7100 storage oscilloscope. (b) 2.4

MHz 5-ps burst captured by a Yokogawa 7100 storage oscilloscope

In order to measure the cavitation threshold at the focus, the same methodology as

described in Chapter 2 of this thesis was used. The input voltage was raised until

cavitation was observed. The driving voltage being linearly proportional to the driving

pressure, the voltage level at which cavitation is observed is proportional to the threshold

pressure. As a control, the same protocol was repeated with OptisonTm, a commercially

available contrast agent, whose response to dual-frequency sonications has already been

studied (Sokka 2003a).

3.2.3. Cavitation detector

In order to detect gas bubble activity, the transducer's center circular element, the

9th element, was used. The detected signal was buffered and filtered by a LeCroy

DA1820A differential amplifier (Chestnut Ridge, NY) with 10 Mb input impedance and

a band pass filter range of 10 kHz - 3 MHz. The signal was then captured over a 50 ps

window by a Yokogawa 7100 storage oscilloscope (Tokyo, Japan) at a sampling rate of

50 MHz. The captured signals were transferred to a computer and their Fast Fourier

Transforms were computed. The resulting spectrums were then inspected for

subharmonic acoustic emission, which is a characteristic of bubble oscillation (Lele 1977,
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Hynynen 1991). A broadband noise in the subharmonic region denoted bubble collapse,

also known as inertial cavitation.
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3.2.4. Experimental protocol

After unrelated experiments, New Zealand white rabbits (male, approximately 4

kg) were sacrificed as a part of that study. Back muscle was then harvested and samples

were used right after. They were approximately 1.5 cm thick, 3 by 3 cm samples of back

muscle.

3.2.4.1. Ex vivo experiment: determination of relative cavitation threshold

versus first harmonic phase

Absorbing
rubber layer

Direction of Rabbit

Ultrasound beam back uscle sample

Focal plane

We first studiedthe relationsh k bewe aitaintrshltnhirthroi

Agilent 33250A
arbitrary waveform generator ewemn

phaseFata gen 2oat in mthi Ttsducer 
EN 121 OOL

RF pwer mpliier matching

__Hewlett Packard 33120A
arbitrary waveform generato~r LeCroy DA1820A

differential amplifier

Yokogawa
7100 Oscilloscope

Personal Computer

Figure 3-3. Ex vivo experimental setup

We first studied the relationship between cavitation threshold and first harmonic

phase at a given location in the field. The geometrical focus of the transducer was used.

Figure 3-3 shows the experimental setup used to determine relative cavitation threshold

in ex vivo conditions. A control experiment consisted in replacing the rabbit sample by

the same vial filled with degassed water and OptisonTm that Sokka et al used. The
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Optisonr concentration as well as the corresponding experimental protocol was strictly

followed. Since the driving voltage is linearly proportional to the driving pressure, we

were able to directly measure the cavitation threshold as being the voltage level at which

inertial cavitation started.

3.2.4.2. Ex vivo experiment: determination of cavitation field

In this section, we present a new method for assessing the cavitation field, that is,

in this case, the cavitation threshold along the transducer axis. With the experimental

setup described in Figure 3-3, it was impossible to move the rabbit sample along the

transducer axis and simply raise the input voltage until inertial cavitation was observed.

We then decided to substitute a digital signal processing scheme to this mechanical

method. It is described in Figure 3-4 and consists of several steps:

- a time window of 50 ps was uploaded from the Yokogawa 7100 storage

oscilloscope to a Personal Computer (once again, a 50-MHz sampling rate was

used throughout this part)

- this time window was further subdivided into smaller overlapping time intervals

of approximately 5 ps

- each time interval was filtered by a Hanning window. This step allowed us to get

rid of possible spurious frequency components while performing the upcoming

FFT analysis. In practice, we noticed that bypassing this extra filtering step did

not prevent us from correctly assessing inertial cavitation activity. For each time

interval, the corresponding 256-point FFT was computed and then inspected for

cavitation. As mentioned earlier, a broadband noise in the subharmonic region

denoted inertial cavitation

- for each time interval, that is, for each depth along the transducer axis, the

minimum input voltage at which inertial cavitation occurred was measured. In

order to calculate the corresponding cavitation threshold, the minimum input

voltage at which inertial cavitation occurred was divided by the relative acoustic

pressure at the location of concern. This relative acoustic pressure was determined

from hydrophone measurements made earlier in Part 2.2.5. A relative cavitation
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threshold versus depth curve was then computed by dividing every cavitation

threshold by the minimum recorded cavitation threshold. Results are presented in

Figure 3-8.

50-pts signal

Yokogawauploaded

7100 Oscilloscope Personal Computer

5-s sub segment j 5-s sub segment --

[5-p~s sub segmn 5-p~s sub segmen---

Hanning windowing

FFT

Inspection for cavitation

Figure 3-4. Digital signal processing scheme used to measure a cavitation field

The cavitation field which resulted from a sonication characterized by a first

harmonic phase angle of 2250 was measured. Such a phase angle value was determined to

lead to an optimal cavitation threshold differential along the transducer axis, which is a

low focal cavitation threshold as compared to near field values. In such conditions, it

becomes possible to surpass the cavitation threshold at the focus of the transducer while

being sub-threshold in the near field. As a control experiment, we sonicated rabbit back

muscle samples with only one of the two aforementioned frequencies. That is all the 8

sectors were sending in phase a 2.4-MHz 5-ps burst. The resulting cavitation fields could

then be compared and beneficial effects of dual-frequency excitation assessed.
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Below is an example of acoustic signals that were processed as explained in

Figure 3-4. In figure 3-5(a), the backscattered acoustic signal did not show any sign of

inertial cavitation. In figure 3-5(b) though, the backscattered acoustic signal (and more

precisely the magnitude of its FFT) exhibited broadband subharmonic emission, which

indicates inertial cavitation.

-20 -20

-30 .30

-40 -40
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Figure 3-5. (a) Magnitude of the FFT of a backscattered acoustic signal coming from the
geometrical focus of the transducer. No inertial cavitation observable. (b) Magnitude of the FFT
of a backscattered acoustic signal coming from the geometrical focus of the transducer. Inertial
cavitation observable
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3.3. Results

3.3.1. Ex vivo validation of relative cavitation thresholds at the
geometrical focus of the therapeutic transducer

Ex vivo validation of relative cavitation thresholds at
the geometrical focus

+- Rabbit Back Muscle (5 samples)
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1.5-

1.4-

1.3-

1.2-

1.1-

1-

0.9
0 45 90 180 225 270 315 360
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Figure 3-6. Ex vivo validation of relative cavitation thresholds at the geometrical focus

Relative cavitation thresholds were measured at the geometrical focus of the

therapeutic transducer. They are presented in Figure 3-6. To perform a reliable statistical

study, five different rabbit samples were used. The results of the control experiment,

which consisted in sonicating a vial filled with a mixture of degassed water and

OptisonTM, are presented in Figure 3-7. By comparing these two plots, we noticed that the

general trend is preserved and the cavitation threshold differential is almost the same for

both experiments between a phase of 0 and roughly 2000. Such an observation allows us

to predict that inertial cavitation seems controllable when the sonication consists of a

dual-frequency excitation.
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Figure 3-7. Control experiment: relative cavitation thresholds at the geometrical focus
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3.3.2. Ex vivo validation of cavitation fields

Ex vivo cavitation field (5 p-ts-pulse)

Rabbit Back Muscle (5 samples)
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Figure 3-8. Ex vivo cavitation field (first harmonic phase angle = 225)

The cavitation field which resulted from a sonication characterized by a first

harmonic phase angle of 2250 was thought to be optimal according to simulation results,

in the sense that it provides the best near field cavitation suppression while allowing

inertial cavitation at the focus. Ex vivo cavitation field is presented in Figure 3-8. Since

there is not much focused energy in the far field, that is, deeper than the geometrical

focus, little attention should be directed towards cavitation threshold values in this region

whereas inertial cavitation events in the near field, that is, closer to the transducer surface

than the geometrical focus, are more likely to occur as there is more acoustic energy

deposited in the propagation medium. Here it is important to notice that dual-frequency

excitation manages to lower cavitation threshold in the focal region while the required

acoustic pressure to induce inertial cavitation in the near field is raised by 17 % to 25 %

of the focal cavitation threshold.

As a conclusion, these ex vivo results showed a significant improvement over a

single-frequency sonication. When a single-frequency excitation was used, as displayed in

Figure 3-9, an essential feature of the dual-frequency situation did not show up. There was
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no cavitation threshold bump right before the geometrical focus in the control experiment,

which means that the immediate near field was more likely to be stimulated as well.

Moreover, in a single-frequency situation, one may expect all points in space to be

stimulated with similar waveforms varying only by phase. In the in vitro experiments, we

observed a virtually constant relative cavitation threshold value along the transducer axis.

However, in that situation, microbubbles were sonicated in CW (Continuous Wave) mode.

Here, in ex vivo experiments, pulses were only 5 ps long and therefore the CW assumption

did not apply. As a consequence, timing issues might have come into play and accounted

for the non-flat ex vivo control cavitation field displayed in Figure 3-9. We noticed that

focal relative cavitation threshold was still the lowest in the field but however, the

cavitation threshold differential was not as significant as in a dual-frequency situation. On a

final note, the determination of this control cavitation field also made use of in vitro

acoustic pressure measurements as described in Section 2.2.5. A refinement could consist

in taking absorption in tissue into account in order to use more suitable acoustic pressure

values.

Ex vivo cavitation field
Control experiment

-+- Rabbit Back Muscle (5 samples)

1.3

1.2-

1.1-

1-

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Distance along the transducer axis (focus = 0) [mm]

Figure 3-9. Ex vivo experimental cavitation field along the transducer. Control experiment
(the 8 sectors were sending in phase a 2.4-MHz 5-us burst)
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4. Conclusions and recommendations for future work

4.1. Conclusions

Throughout the history of therapeutic ultrasound, there has always been a long-

standing debate on relative efficiency of thermal and cavitation based techniques for in vivo

therapy. Recently, thermal techniques have been used almost exclusively in clinical

therapy. This is due to their predictability, controllability, and relative safety. Even if

cavitation based ultrasound therapies such as targeted drug delivery and gene therapy might

be extensively used in the future, there is still a poor control over bubble activity in tissue.

This is primarily because of this lack of control that clinical development of cavitation-

based therapies is limited.

The goal of this thesis was to continue a study initiated by Sokka (Sokka 2003a).

First, we deepened the analysis of dual-frequency techniques that selectively lower the

cavitation threshold at the focus relative to other locations. This consisted in optimizing

algorithms developed by Sokka (Sokka 2003a) and checking predictions in in vitro

conditions. The second half of this thesis consisted in designing and implementing an ex

vivo experiment which also confirmed theoretical predictions. This part specifically

involved the development of signal processing based methods, which were substituted to

mechanical methods developed in the first part of this thesis. Moreover, the experimental

setup was specifically designed to be MRI-compatible and therefore to allow further in vivo

investigations.

Results from Chapter 3 of this thesis correlate very well with theoretical predictions

and in vitro results. Even if we did not use CW mode but a burst mode instead, resulting

cavitation fields were very similar to those measured in vitro. Moreover, the results from a

control experiment which are presented in Figure 3-9 highlighted potentially useful timing

effects. Since pulses were only 5-ps long, the CW assumption did not apply. As a

consequence, the non-flat ex vivo control cavitation field might be accounted for by

additional timing effects, which did not come into play in the in vitro setup. In other words,

when pulses are short enough, they only superimpose perfectly at the geometrical focus of

the transducer. Anywhere else in the field, and especially along the transducer axis, this
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perfect superimposition does not occur any longer and therefore, less acoustic energy is

delivered to those locations. In summary, such a timing effect could potentially enable us to

even better control cavitation than by just shaping the acoustic field through the use of

dual-frequency waveforms.
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4.2. Recommendations for future work

In the first chapter of this thesis, a method to evaluate the cavitation field of an

ultrasound transducer with a known excitation pattern was tested experimentally. The

technique involved two basic steps: first, the acoustic field for a given transducer with

known excitation pattern was either theoretically calculated or experimentally measured.

Then the cavitation threshold was calculated in space using the time-domain acoustic field

as the input pressure excitation to a bubble model incorporating rectified diffusion. In this

study, the Rayleigh-Sommerfeld integral was used to calculate the theoretical acoustic field

and the Keller-Miksis bubble model with Flynn's rectified diffusion equation was used to

predict cavitation threshold. According to Sokka, these equations combine to provide an

excellent first order representation of the cavitation field. However, there are clear

limitations to the theory that a sole set of in vitro experiments does not necessarily

highlight. First, the cavitation field that was calculated assumes a fixed initial bubble radius

for the entire field, that is, the seeding bubble size was assumed to be 1 pm throughout the

field. In reality, bubbles of various sizes might be present in the field especially if

vasculature and tissue interfaces are present. However, trends within one waveform family

for various bubble radii showed that the relative cavitation field is relatively invariant to

different bubble radii despite the variability of the absolute pressure threshold. In addition,

the constant bubble radius assumption is an accurate representation of therapy techniques

with injected bubbles as the bubble radii fit a tight distribution. Second, multi-bubble

effects as well as the effects of gas saturation were not modeled. Third, our model assumes

a homogeneous medium, water, which is clearly not representative of inhomogeneous

tissue. However, Keller-Miksis equation has been verified to make reasonable predictions

of bubble activity in tissue-mimicking materials for large amplitude ultrasound excitations

(Holt and Roy 2001). Lastly, the acoustic wave propagation was assumed to be linear, so

phase aberration effects in the field as well as the generation of harmonics were neglected.

Despite these limitations, Sokka's model of the cavitation field correlates well with

controlled in vitro experiments presented in this thesis. Therefore, in vitro results may be

used to predict the magnitude of the relative cavitation threshold as well as the general

trend for one waveform family.
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Sokka's model was used to test the cavitation control capabilities of a basic 8-sector

transducer. Dual-frequency excitations with this transducer were investigated to develop

ultrasound excitation profiles that would preferentially lower the cavitation threshold at the

focus relative to other regions in space, specifically the axial nearfield of the transducer.

We successfully showed that with this simple phased array, dual-frequency excitations

could be used to generate fields where the average cavitation threshold pressure in the

nearfield is more than 20 % greater than at the focus. The cavitation field obtained

experimentally could be used to tightly control the site of cavitation near tissue interfaces,

blood vessels, or fat which might exhibit lower thresholds and induce unwanted cavitation

in the nearfield of the transducer.

The experimental results of this first part showed that the threshold of ultrasound

induced inertial cavitation could be controlled as a function of space in an ultrasound field.

This control would further allow increased targeting beyond the geometric focusing of the

beam and may be useful for many clinical applications of focused ultrasound.

Even if the ex vivo experiment already incorporates tissue inhomogeneities, there

are still relevant factors, which are not taken into account. For example, ex vivo conditions

do not include perfusion effects. In order to fully characterize and validate dual-frequency

methods, several in vivo experiments should be carried out. In a first set of experiments, we

may want to reproduce plots such as Figure 2-7 and 3-6 to observe cavitation differentials

in vivo. In a second set of experiments, we may want to correlate subharmonic emission

with hot spots on temperature maps obtained with MR imaging. As emphasized by Sokka

in his PhD thesis (Sokka 2003a), cavitation activity may generate different temperature

spots' shapes; bubble may also act as barrier causing the absence of spots in the far field for

example.

Other ways to ensure a proper spatial control of cavitation may also be investigated.

In the second part of this thesis, we noticed that when pulses are short enough, timing

issues come into play and might be helpful in order to tightly control the cavitation. In such

a situation, signals generated from multiple elements only add up perfectly at the
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geometrical focus of the transducer and therefore cavitation becomes much likely to occur

at the focus while leaving the nearfield inert.
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