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Abstract

In this thesis, we present the framework for Rapid Protocol Engine Development
(RaPED). We implemented the framework in Bluespec, which is a high level hard-

ware language based on Term Rewriting Systems (TRSs). The framework is highly
parameterized and general, thus allowing designers to design any protocol engine in

a short period. Since protocol engines can be developed rapidly, designers can com-

pare different designs instead of freezing the design prematurely in the development
process.

We used the RaPED to implement a cache coherence protocol for Shen and

Arvind's Commit-Reconcile and Fences (CRF) memory model [1]. The CRF al-

lows scalable implementations of shared memory systems by decomposing memory

access operations into simpler instructions. However, the focus for Shen's Cachet

protocol for the CRF was adaptivity and correctness, it ignored some important im-

plementation issues such as cache-line replacement, efficient buffer management and

compatibility with multiword cache lines. In this thesis, we present a protocol called

the Multiword Base protocol, which avoids these limitations. We defined the Multi-

word CRF (MCRF) memory model to help us to prove the correctness of Multiword

Base. The MCRF is a specialization of the CRF with modifications that summarizes

the properties of multiword cache lines. We show that Multiword Base is a correct

implementation of the CRF by using the MCRF to simulate Multiword Base.

Apart from using multiword cache lines, many cache coherence protocols allow a

cache to get data directly from another cache. The caches having this property is

calling the snoopy caches. In this thesis, we present a CRF variant called the Snoopy

CRF (SCRF) memory model, which gives hints to incorporate snoopy caches to the

implementations of the CRF.

Thesis Supervisor: Arvind
Title: Johnson Professor
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Chapter 1

Introduction

In 1965, Gordon Moore observed that the number of transistors per integrated cir-

cuit had doubled every couple of years. Although it was a prediction, this trend has

lasted for nearly 40 years and is expected to hold true at least until the end of the

decade. With the number of transistors per integrated circuit doubling every couple

of years, computer architects have invented various techniques to use the extra tran-

sistors efficiently. These techniques include pipelining, instruction reordering, branch

prediction, instruction speculation, value speculation, caching, and super-scalar exe-

cution. All the techniques increase the computation speed by making the Computer

Processing Unit (CPU) execute more instructions simultaneously. However, these

techniques have been explored thoroughly and do not have much room for improve-

ment. For example, we cannot reorder too many instructions because reordering

requires complicated and large amount of hardware to hold the state of executing

instructions, which in turn may reduce performance.

A new technique called Chip Multi-Processor (CMP) has recently appeared in

commodity high-performance computing. It improves system performance by im-

plementing multiple processing cores in a single circuit chip. Each processing core

has all the functionalities of a single CPU. Therefore, a computer with a multi-core

processor is simply a shared memory multiprocessor system. IBM is among the pi-

oneers to apply this technique in their designs. Its POWER4 and POWER5 have

dual-core processors. Other corporations such as Intel and AMD will have their dual-
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core designs for both desktop and server applications in 2005. In the past, shared

memory multiprocessors systems required expensive networks to connect the proces-

sors and specialists for coding parallel programs. However, with the realization of

CMP, shared memory multiprocessor systems are no longer unaffordable and rare.

Therefore, efficient implementations of CMP are important for the future generations

of computers.

One major factor for an efficient CMP implementation is cache coherence pro-

tocols. Caching reduces the average latency of memory operations by replicating

frequently accessed data in storage units (caches) close to the processor. Caching

is transparent to programmers in uniprocessor systems since all the optimizations

of caching are designed not to affect the uniprocessor's memory model. However,

the same optimizations are problematic to shared memory multiprocessor systems

because they can produce different relaxed memory models for the multiprocessor

systems. Therefore, cache coherent protocols are needed to ensure that each proces-

sor can observe the semantic effect of memory access operations performed by another

processor in time.

We have developed the framework for Rapid Protocol Engine Development (RaPED)

to help designers to implement cache coherence protocol rapidly and efficiently. RaPED

distributes a cache coherence protocol engine into nodes and generalizes the imple-

mentation of the nodes. RaPED was implemented in the Bluespec language, which

is a high level hardware language based on Term Rewriting Systems (TRSs). In

1999, James Hoe and Arvind showed that TRSs can be used to synthesis hardware

circuit efficiently [2]. Bluespec was created based on this discovery. One advantage

of Bluespec is that it is a language for both hardware simulation and synthesis: In

traditional hardware design process, simulation and synthesis are written in different

languages. Normally, simulations are written in high level software languages like

C/C++ or Java; while hardware is done from RTL level hardware languages like Ver-

ilog or VHDL. Therefore, designers are required to write the code twice for a single

design. Moreover, the semantic gap between the simulation language and the synthe-

sis language makes it difficult for designers to prove that the two sources represent

14



the same design. Another advantage of Bluespec is that it accepts parameterized and

modular designs, which enhance the re-usability of the code.

We have used RaPED to implement the Multi-word Base Protocol, which is a pro-

tocol for the Commit-Reconcile Fences (CRF) memory model [1]. The CRF exposes

the notion of cache by decomposing memory operation into simpler instructions. In

the CRF model, a memory load operation is decomposed into a Reconcile instruction

followed by a Loadl instruction, and a memory store operation is decomposed into a

Storel instruction followed by a Commit instruction. The decomposition allows the

implementations of the CRF to be efficient and scalable. One reason is decomposed

memory operations allow longer period for the system to carry out the coherence

operations without affecting the semantics of the program. Another reason is the

decomposition helps to reduce the number of coherence operations by eliminating

unnecessary operations.

Multiword Base is different from other protocols for the CRF. It is the first CRF

protocol that supports cache lines containing more than one address (multiword cache

lines). Multiword Base is useful because multiword cache lines allows better usages

of the cache. To prove the correctness of Multiword Base, we derived a variant of the

CRF model: Multiword CRF (MCRF). The MCRF adds the properties of multiword

cache lines to the CRF. By proving that Multiword Base can be simulated by the

MCRF, we show that Multiword Base is a correct implementation of the CRF.

Snoopy cache is another common optimization for cache coherence protocols. It

allows a cache to provide its data to another cache to reduce the cache miss penalty.

We have derived another variant of the CRF model: Snoopy CRF (SCRF), which adds

the properties of snoopy cache to the CRF. The SCRF gives us hints to incorporate

snoopy caches to the implementation of the CRF.

This thesis is organized as follows: Following this introduction, Chapter 2 presents

the definition of the RaPED. Chapter 3 defines the MCRF. Chapter 4 presents the

Multiword Base protocol and presents the correctness proof for the protocol. Chapter

5 shows the implementation of Multiword Base in RaPED. Chapter 6 defines the

SCRF. Finally, Chapter 7 presents the summary and conclusions.

15
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Chapter 2

Framework for Rapid Protocol

Engine Development (RaPED)

This chapter presents the framework for Rapid Protocol Engine Development (RaPED).

Most protocol engine designs can be distributed into nodes. RaPED collects a bundle

of interfaces to define the functionalities of a node. These interfaces are implemented

in Bluespec. Since Bluespec allows parameterized and modular designs, RaPED pro-

vides a unique platform for designers to implement and evaluate their protocol engine

designs efficiently. This chapter is organized as follows: In the Section 2.1, we give

an overview of RaPED. In Section 2.2, Section 2.3 and Section 2.4, we describe each

module in RaPED in details. In Section 2.5, I show how to convert the interfaces of

RaPED into Bluespec implementation.

2.1 Overview

There are different designs for cache coherent multiprocessor systems. These designs

can vary in different aspects. For example, different designs can have different coher-

ence protocols, memory hierarchies and implementations of communication networks

and caches. Therefore, it is difficult to define a single framework that generalizes

all the cache coherence protocol engine designs. RaPED distributes a cache coher-

ence protocol engine into nodes and generalizes the designs of the node. Figure 2-1

17
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Figure 2-1: Overview of RaPED

shows the overview of RaPED. As can be seen, each node contains 5 modules: a data

memory (Data Memory), three network controllers (Network.,,, NetworkPe and

Network,,,,) and a protocol processor (Protocol Processor). Modules shown in

white are optional.

2.2 Data Memory

Data Memory stores the data and the book-keeping information (e.g. cache state)

of memory addresses. It acts as the storage agent of Protocol Processor: Protocol

Processor decides what data are stored in Data Memory, while Data Memory

decides how data are stored. Therefore, Protocol Processor does not need to know

every implementation details of Data Memory. For example, Protocol Processor

probably does not need to know the cache associativity if Data Memory is a level I

cache because cache associativity affects the performance instead of the functionality

of the cache. Separating Data Memory from Protocol Processor also enhances

18



DataReqMsg Cache a v
O Purge a
l Read a

l Update a v
DataResMsg CacheAck c a v

E PurgeAck
l ReadAck h v

J UpdateAck h

Figure 2-2: Definitions of DataReqMsg and DataResMsg

the implementation flexibility because different cache designs can be used with the

same Protocol Processor design. Moreover, this approach facilitates the verification

process of Protocol Processor because the irrelevant implementation details of

Data Memory are excluded.

There are four basic operations that Data Memory can perform: 1) Cache,

2) Purge, 3) Read and 4) Update. When Protocol Processor needs to access

Data Memory, the former sends a Data Request Message (DataReqMsg) to the

latter. Then, Data Memory answers the request with a Data Response Message

(DataResMsg). Figure 2-2 shows the definitions of DataReqMsg and DataResMsg.

The meanings of these messages are explained as follows.

2.2.1 DataReqMsg

There are four kinds of DataReqMsg. Each requests Data Memory to perform a

type of operation:

1. Cache a v: cache the address a with data v.

2. Purge a: purge the address a.

3. Read a: report the data of the address a if the address is cached.

4. Update a v: overwrite the data of the address a to v if the address is cached.

19



Received Message Current State Reply Message Next State
Cache a v (a,-) mem,no conflict CacheAck False - - (av) E mem

(a,-) mem, (a',v')Emem, CacheAck True a' v' (a,v) E mem,
a and a' conflict (a',-) ( mem

Purge a (a,-) Emem PurgeAck (a,-) ( mem

(a,-) mem PurgeAck (a,-) ( mem
Read a (av) Emem ReadAck True v (a,v) E mem

(a,-) mem ReadAck False - (a,-) V mem

Update a v (a,-) Emem WriteAck True (a,v) E mem

(a,-) mem WriteAck False (a,-) 7 mem

Figure 2-3: Operational Semantics of Data Memory

2.2.2 DataResMsg

There are also four kinds of DataResMsg, which response their corresponding DataRe-

qMsg:

1. CacheAck c a v: report the completion of the cache operation. c is a boolean

which is set if there is a cache replacement. If c is set, a is the replaced address

and v is the data of the address.

2. PurgeAck: report the completion of the purge operation.

3. ReadAck h v: return the result of the Read operation. h is a boolean which

is set if the address is stored in Data Memory. If h is set, v is the data of the

address.

4. UpdateAck h: report the completion of the Update operation. h is a boolean

which is set if the address is stored in Data Memory.

Clarifications for some special cases about the operations: 1) Purge has no effect

if the address is uncached and 2) Update has no effect if the address is uncached.

Figure 2-3 summarizes the operational semantics of Data Memory.
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2.3 Network Controllers

There are three network controllers in each node, which are responsible for message

passings between nodes:

1. Networku,: between the current node and the nodes at upper levels (towards

the processor).

2. Networkpeer: between the current node and the peer nodes at the same level.

3. Network,,: between the current node and the nodes at lower levels (towards

the shared memory).

Similar to Data Memory, the three network controllers are separated from the

main design to enhance the implementation flexibility. Most cache coherence protocol

engine designs do not require Protocol Processor to know every implementation

details of the network. These network controllers help Protocol Processor to send

messages to their destinations. This approach simplifies the design and verification

processes of Protocol Processor by avoiding the unnecessary complexity from the

implementations of these network controllers. RaPED allows Protocol Processor

to assume some properties for the network. For example, it can assume the network

is fair or delivers messages in order. The implementations of the network controllers

need to satisfy the assumptions made by Protocol Processor to guarantee the

correctness.

2.3.1 Message Definitions of Network Controllers

Figure 2-4 defines the messages of the network controllers. When Protocol Pro-

cessor is sending a message (OutMsg) to another node, it passes the message to the

network controller. The message includes the identification of the destination id and

the content out. On the other hand, when the network controller receives a message

(InMsg) from another node, it forwards the message, which includes identification of

the source id and the content in, to Protocol Processor.

21



Out Msgup (idUP, outup)
InMsgu, (idup, inup)
OutMsgpeer (idpeer, outpeer)
InMsgpeer (idpeer, inpeer)

Out Msglo, 2 (idlo,,, outlow )
InMsgj0W (idjon, injow)

Figure 2-4: Definitions of Network Controllers Messages

2.3.2 Operational Semantics of Network Controllers

We can model a network controller with two queues that buffer the communication

messages. One queue buffers the OutMsgs received from Protocol Processor. An-

other queue buffers the InMsgs received from the network. The main functionality of

a network controller is buffer managements, which decide when to reorder messages.

As mentioned, Protocol Processor can assume some properties to the message

passing network. If the network cannot guarantee these properties, the network con-

trollers can use buffer managements to assure the correctness. The following shows

an example usage of the buffer management:

A cache coherence protocol requires message passings to be in order if the messages

have the same destination and address. However, the message passing network used

in the system cannot guarantee this property because the implementation makes it

possible to reorder any message arbitrarily. To solve the problem, we can have a

buffer management in the OutMsg queue which disallows messages having the same

destination and address to enter the network simultaneously.

2.4 Protocol Processor

Protocol Processor connects with all other modules in the node. It gathers in-

formation from these modules and executes the corresponding coherence actions ac-

cording to the protocol specifications. The operational semantics of the Protocol

Processor are different for different protocols. However, Protocol Processor can

be implemented as a lookup table. Figure 2-5 summarizes the inputs and outputs of
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Lookup Table
Input: oldState, {cInMsgup}, {cInMsgPeer},

{EIInMsgjj, {c|DataResMsg}
Output: newState, {E I OutMsg.,}, f OutMsgpeer},

{E I OutMsgjI, f EDataReqMsg}

Figure 2-5: Abstracted Operational Semantics of Protocol Processor

the lookup table. The inputs include the internal state of the protocol processor as

well as the messages received from other modules. The outputs include the next state

of the protocol processor and the messages to be sent to the connecting modules.

2.5 Implementation of RaPED in Bluespec

It is trivial to convert the definitions of RaPED into Bluespec definitions. For each

module, there are two types of definitions: 1) Interface Definitions and 2) Message

Definitions. The former defines all the inputs and outputs of a module and the latter

defines the contents of these inputs and outputs. The following shows the conversion

of the message and interface definitions to Bluespec code using Data Memory as

an example:

Defining a Message in Bluespec

The following Bluespec expressions define the DataReqMsg in Figure 2-2:

Bluespec Code:

data DataReqMsg addr val = Cache addr val |

Purge addr

Read addr

Update addr val

deriving (Bits, Eq)

The first line of the code defines a new data type called DataReqMsg, which

requires two type variables addr and val to be set to actual types when it is used.
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For an example, we can set both of them to "Bit 32" if the target system uses 32-bit

addresses and 32-bit values. The next four lines defined the four possible values of

DataReqMsg. The final line makes DataReqMsg expressible by bits and comparable.

Other type of messages of RaPED can be defined similarly.

Defining an Interface in Bluespec

The following Bluespec expressions define the Data Memory interface:

Bluespec Code:

interface DataMemory addr val =

putDataReq:: (DataReqMsg addr val) -+ Action

getDataRes :: ActionValue (DataResMsg addr val)

The code creates a new interface called DataMemory. Similar to the definition of

DataReqMsg, this interface requires two variables addr and val to be set to actual

types when it is used. Two methods are defined for the interface: putDataReq and

getDataRes. The former takes an input of type "DataReqMsg addr val" and then

performs an action, which affects the internal state after execution. Meanwhile, the

latter outputs a message of type "DataResMsg addr val" and then performs an action.
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Chapter 3

Multiword CRF

In modern processor designs, a single cache line normally consists of multiple system

values. Figure 3 shows the cache line width of several commodity processors. As

can be seen, the cache lines are multiword wide, ranging from 64 bytes to 512 bytes.

Multiword cache lines can reduce the overhead of the cache tags, which means more

useful data can be stored in the cache. In general, programs have adequate spatial

locality to ensure that most data in a cache line are accessed by the processor.

Since multiword cache lines are popular in processor designs, it is very useful

to show that this optimization can be applied to the implementations of the CRF.

Therefore, we have derived a variant of the CRF model called the Multiword CRF

(MCRF). The MCRF is a specialization of the CRF which supports multiword cache

lines. All possible execution behaviors of the MCRF model can be simulated by

the CRF model. Therefore, a correct implementation of the MCRF automatically

converts to a correct implementation of the CRF. The MCRF will be used in Chapter

4 to prove the correctness of an CRF protocol: the Multiword Base Protocol.

An advantage of the MCRF and the CRF models comparing to other memory

is the possibility of avoiding the communication overhead of false sharings because

the two models explicitly separate the data synchronizations from other memory

operations. This allows the system to maintain copies of a cache line at different sites

at the same time even when they are modifying the data of different addresses of the

cache line.
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After presenting the MCRF, we prove that the MCRF can be simulated by the

original CRF.

Architecture cache line Width
Intel Pentium 4 [8] LI: 64 bytes, L2: 128 bytes
IBM Power4 [9] L1, L2: 128 bytes, L3: 512 bytes

Figure 3-1: cache line Width of Commercial Processors

3.1 MCRF Properties

The following two properties make the MCRF support multiword cache line while

maintaining the CRF semantics:

1. Each semantic cache line (sacheline) consists of the data of multiple consecutive

addresses. At any time, a site either has all the addresses belonging to the same

sacheline or has none of them.

2. Each sacheline maintains a cache state (CSTATE) for each address it contains.

Figure 3-2 gives an example showing the necessity of Property 2 to maintain

correctness in the presence of false sharings. In the example, a program consisting of

four CRF instructions is executed on two different CRF systems. "P1 Storel (a,v)"

means that Storel is executed by processor 1 at address a with value v. "P2 Commit

(a)" requires the address a to be committed by processor 2. The two systems have

identical configurations, except that each sacheline in system 1 contains the data

of one address while each sacheline in system 2 contains the data of two addresses.

Moreover, a sacheline of either system maintains only one dirty bit, which is set if any

address in the sacheline is updated (Storel). If there is a miss on Storel, data needed

to be brought from the memory to the sache before the system can proceed. On the

other hand, a dirty sacheline needs to be written back to the memory before Commit

instruction can be retired. For more details about the CRF definitions , please refer

to Appendix A. We can see that the two systems produce different results. System
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2 loses the update from processor 1. This happens because the dirty bit assumes all

addresses in the sacheline are overwritten by the processor 2. Therefore, Property 2

is necessary for the system to know the exact modified addresses.

Apart from the correctness issue, Property 2 also helps to avoid the communication

overhead of false sharing. It is because this property allows the system to know

whether different sites are accessing different addresses of the same sache line.

System 1 System 2
1: P1 Storel(0,5) Sache 1: addrO (dirty, 5) Sache 1: addrO&1 (dirty, (5, 0))

addrl (invalid,-)
Sache2: addr0 (invalid,-) Sache2: addrO&1 (invalid,-)

addrl (invalid,-)
Mem: addr0 (0) Mem: addr0 (0)

addrl (0) addr1 (0)
2: P2 Storel(1,6) Sache 1: addr0 (dirty, 5) Sache 1: addrO&1 (dirty, (5, 0))

addrl (invalid,-)
Sache2: addr0 (invalid,-) Sache2: addr0&1 (dirty, (0, 6))

addrl (dirty, 6)
Mem: addr0 (0) Mem: addr0 (0)

addrl (0) addr1 (0)
3: P1 Commit(0) Sache 1: addr0 (clean, 5) Sache 1: addr0&1 (clean, (5, 0))

addrl (invalid,-)
Sache2: addr0 (invalid,-) Sache2: addr0&1 (dirty, (0, 6))

addrl (dirty, 6)
Mem: addr0 (5) Mem: addr0 (5)

addrl (0) addr1 (0)
4: P2 Commit(1) Sache 1: addr0 (clean, 5) Sache 1: addrO&1 (clean, (5, 0))

addrl (invalid,-)
Sache2: addr0 (invalid,-) Sache2: addr0&1 (clean, (0, 6))

addrl (clean, 6)
Mem: addr0 (5) Mem: addr0 (0)

addrl (6) addr1 (6)

Figure 3-2: Correctness Issue of False Sharing

3.2 MCRF Instructions and System Configurations

Figure 3-3 presents the instructions and system configurations of the MCRF. The

instructions for the MCRF and the CRF are the same. There are eight instruc-
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tions: Loadl, Storel, Reconcile, Commit, Fencer,, Fencerw, Fencewr, Fenceww. In the

MCRF, a system contains a shared memory and a list of sites. Each site is composed

of a processor (proc), a processor-to-memory buffer (pmb), a memory-to-processor

buffer (mpb) and a semantic cache. The proc is responsible for sending the MCRF

instructions to the pmb. The pmb buffers the messages delivered from the proc to

the sache. Messages in pmb can be reordered unless there are data dependences or

memory fences. On the other hand, the mpb buffers the results delivered from the

sache to the proc. In contrast to pmb, messages in mpb can always be reordered

arbitrarily. Each site is connected to the shared memory where the memory is used

as the data rendezvous of the system. In the MCRF, the definitions of SITE and

CELL are different from those in the CRF. In the MCRF, the definition of SITE has

an extra parameter which specifies the width of the sachelines (CELL) in that site.

For example, if this parameter is set to 4, each sacheline in that site will contain

the data of four consecutive addresses which the first address is used to identify the

sacheline. The MCRF allows different sites to have different sacheline widths, but

sachelines within the same site must have the same width. The definition of CELL

ensures that addresses belonging to the same sacheline are cached together, which is

required by the MCRF Property 1. Moreover, each sacheline maintains a CSTATE

for each address in the sacheline, which satisfies the MCRF Property 2.

3.3 MCRF Rules

Same as the CRF, the MCRF has 2 sets of rules: The first set defines the operational

semantics of Loadl, Storel, Commit and Reconcile instructions and some background

rules that govern data propagations between semantic caches and memory. Mean-

while, the second set defines the semantics of instruction reorderings and memory

fences. The MCRF rules only differ from the CRF rules by the first set. The two

models have the same definitions for the second set. Therefore, we only present the

definitions of the first set of rules in this thesis. We also discuss how each rule in the

first set can be simulated by the original CRF rules. For reference, we have included
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MCRF Instructions

INST Loadl(a) D Storel(a,v)
Commit(a) P Reconcile(a)
Fencerr (a1, a2) J Fencer (al, a2)
Fencer,(al,a2) J Fencem,(al,a2)

MCRF System Configurations

m m or

Mu..0

Figure 3-3: Instructions and System Configurations of the MCRF
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pmb mpb

proc

pmb mpb

SYS E Sys(MEM, SITEs) System
SITEs SITE SITE I SITEs Set of Sites
SITE Site(n, SACHE, PMB, MPB, PROC) Site with cache of block size n
SACHE e J CELLI SACHE Semantic Cache
CELL Cell(a,vo,CSTATE,vi,CSTATE,..,vn_1,CSTATE) cell of block size n
CSTATE Clean P Dirty Cache State
PMB e 0 (t,INST);PMB Processor-to-Memory Buffer
MPB e 0 (t,REPLY)IMPB Memory-to-Processor Buffer
REPLY v Ack Reply

proc

I I



Term Definition
sys if cond --+ sys' the next configuration of sys can be sys'

if the conditions specified by cond is satisfied
a div b returns the integral of a divided by h

a mod b returns the remainder of a divided by h
V logical OR
A logical AND

Figure 3-4: Rewrite Rules Terminology

the definition of the original CRF model in Appendix A.

3.3.1 Terminology

Prior to the discussion of the MCRF rewrite rules, we show how a rule is defined. Ta-

ble 3-4 summarizes the terms used to describe the rewrite rules and their definitions.

The first row describes the format of a rewrite rule. In each rewrite rule, there are

3 parts: the part before "if' defines the current state; the part between "if' and the

right arrow defines the condition for the rule execution; and the part after the right

arrow defines the next state after the rule execution. The meaning of the rule can be

interpreted as "the current state can be transited to the next state if the execution

condition is satisfied". If several rewrite rules are applicable, the system will execute

one of the rules arbitrarily. The second and third rows describe two arithmetic func-

tions which return the integral and remainder of arithmetic division respectively. V

and A are "logical or" and "logical and" respectively.

Loadl and Storel Rules: A Loadl or Storel can be performed if the block

containing the address is cached in the sache. A Loadl returns the data of the

address to the processor through memory-to-processor buffer (mpb). A Storel

instruction updates the data of the address in the sache and then acknowledges the

processor through mpb.
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MCRF-Loadl Rule

Site(n, sache, (t, Loadl(a)); pmb, mpb, proc) if Cell(a', vo, -, vi, -,.., Vm, -,..) E sache

A (a div n) = (a' div n)

A m - (a mod n)

Site(n, sache, pmb, mpb|(t, vm), proc)

MCRF-Storel Rule

Site (n, Cell (a', vo, CO,7V IC 7i c.., VMI-,..)sache, (t, Storel (a, v' )); pmb , mpb, proc)

if (a div n) = (a' div n) A m (a mod n)

-> Site(n, Cell(a', vo, Co, v1 , ci,.., v , Dirty,..) sache, pmb, mpb|(t, Ack), proc)

Both MCRF-Loadl and MCRF-Storel can be simulated by CRF-Loadl and CRF-

Storel respectively because they have the same semantic meanings. The definitions

are different because the MCRF has a different mechanism, compared to the CRF, for

finding an address from the sache. In the MCRF, consecutive addresses are grouped

and stored together in a single sacheline. The sacheline is identified by the first

address of the group. Therefore, to access a particular address from the sache, the

MCRF first checks whether the sacheline containing the address is cached. Then, it

gets the required data at the corresponding position in the sacheline if it is cached.

The expression "(a div n) - (a' div n)" is used to find out the identifier of the

required sacheline, while the expression "im (a mod n)" calculates the position of

the requested address within the sacheline.

Commit and Reconcile Rules: A Commit can be completed if the sacheline

containing the address is uncached or the cache state of the address in the sacheline

is Clean. A Reconcile can be completed if the sacheline containing the address is

uncached or the cache state of the address in the sacheline is Dirty.
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MCRF-Commit Rule

Site(n,sache,(t,Commit(a));pmb,mpb,proc) if Cell(a',vo,-,V1,-,..,VmDirty,..) V sache

V (a div n) 0 (a' div n)

V mO(amodn)

Site(nsache,pmb,mpbl (t, Ack), proc)

MCRF-Reconcile Rule

Site(n,sache, (t,Reconcile(a));pmb,mpb,proc) if Cell(a',vo,-,V ,,. .,VmClean,..) V sache

V (a div n) 0 (a' div n)

V m 0 (a mod n)

Site(nsache,pmb,mpbI(t, Ack), proc)

Similar to MCRF-Loadl and MCRF-Storel rules, MCRF-Commit and MCRF-

Reconcile rules can also be simulated by the corresponding CRF-Commit and Commit-

Reconcile rules respectively because the definitions are different only at the mechanism

for finding an address from the sache.

Cache, Writeback and Purge Rules: A sache can obtain Clean copies of the

addresses belonging to the same sacheline from the memory, if the sacheline is not

cached at the time(thus no sache can contain more than one copy for the same

address). A sacheline can be purged from the sache only if all addresses in the

sacheline are Clean. A Dirty copy of an address in a sacheline can be written back

to the memory individually, after which the state of the address becomes Clean.

These three rules are also called the background rules, because their applications do

not depend on any instruction.

MCRF-Cache Rule

Sys(mem, Site(n, sache, pmb, mpb, proc) I sites) if (a mod n) = 0

A Cell(a,-,-,..) V sache

Sys(mem, Site(n, Cell(a,mem[a],Clean,mem[a + 1],Clean,..,mem[a + (n - 1)],Clean)

I sache, pmb, mpb, proc) sites)
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MCRF-Purge Rule

Site(n, Cell(a,-,Clean,-,Clean,...,-,Clean) sache, pmb, mpb, proc)

Site(n, sache, pmb, mpb, proc)

MCRF-Writeback Rule

Sys(mem, Site(n, Cell(a,vo,co,vi,ci,..,vm,Dirty,..) sache, pmb, mpb, proc) I sites)

Sys(mem[(a + m) := vm], Site(n,Cell(a,vo,co,vi,ci,..,vm,Clean,..) I sache, pmb, mpb,

proc) I sites)

Different from CRF-Cache which brings only a single address to the sache, MCRF-

Cache brings a group of consecutive addresses to the sache simultaneously. The group

forms a sacheline, which is identified by the first address. Therefore, by checking

the sacheline identifier, the system then knows all the addresses contained in the

sacheline. When the sacheline is brought to the sache, all addresses are set to Clean.

MCRF-Cache can be simulated by executing CRF-Cache rule on each address of the

sacheline.

MCRF-Purge allows the sache to purge the sacheline only if all addresses in the

sacheline are Clean. MCRF-Purge can be simulated by executing CRF-Purge rule

on each address of the sacheline. MCRF-Cache and MCRF-Purge together ensure

addresses belonging to the same sacheline are always brought to or purged from a site

together, which satisfies the MCRF Property 1.

Although MCRF caches and purges addresses in groups, it writes back data indi-

vidually, which allows the system to write back only the dirty addresses in a sacheline.

This approach avoids the correctness issue mentioned in Section 3.1. To allow ad-

dresses to be written back individually, a sacheline needs to maintain a cache state

for each address of the sacheline, which explains why MCRF Property 2 is needed.

MCRF-Writeback can be simulated by CRF-Writeback because they have the same

semantics.
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Processor Rules
Rule Nade Instruction Cstate Action Next Cstate

MCRF-Loadl Loadl(a) Cell(a',vO,cOte ,Vk,Clean,.., n_1,Cn_1)* retire Cell(a',vo,cO,..,k,Clean,..,Vn-1,Cn-)*
Cell(a',vo,co,..,vk,Dirty,..,v i-1,c -1)* retire Cell(a',vo,co,..,Vk, Dirty,.,vn_1,cn1)

MCRF-Storel Storel(a,vik) Cell(a',vo,co,.,vk,Clean,..,Vn__.1,c -1) retire Cell(a,vo,cO,.., Dirty,., - 1,Cn_1)
Cell(a',vo,co,..,vk,Dirty,..,v n1,cnl)* retire Ce1(a',vo,co,..,v ,Dirty,..,vn- 1 ,c 0 _ 1 )*

MCRF-Commit Commit(a) Cell(a',vo,co,..,vk,Clean,..,vnl1,cn_1)* retire Cell(a,v,co,.., Vk,Clean,..,v _. 1,c, . 1)*
a 0 sache retire a T s-ace

MCRF-Reconcile Reconcile(a) Cell(a',vo,co,..,vk,Dirty,.,vn_._1,cn_-)* retire Cell(a,vo,co,..,k,Dirty,..,vi-1,c.-1)*
a 0 sache retire a e sache

* a' s th addess dentfyin thesacheine hchcontins ddres a t th K~pstoa' is the address identiying the sacheline which contains address a at the k

Background Rules

Figure 3-5: Summary of the MCRF Rules

Summary of the MCRF Rules

Figure 3-5 summarizes the definitions of the MCRF rules. The rules are grouped into

two categories: the processor rules and the background rules. When an instruction

is completed (retired), it is removed from the processor-to-memory buffer and the

corresponding data or acknowledgement is sent to the memory-to-processor buffer.

3.4 Correctness Proof of the MCRF

This section proves that the MCRF model produces answers that can also be produced

by the CRF model by showing that all behaviors of the MCRF and be simulated by

the CRF. The CRF can simulate the MCRF because of the following reasons: 1) Both

memory models have the same set of instructions. 2) Both have the same set of rules

for instruction reorderings and memory fences. 3) For other MCRF rules, each of

them is proved to be simulated by the CRF rules, which the mapping is summarized

in Figure 3-6. As can be seen, five rules can be simulated by a single corresponding
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Rule Name Cstate Mstate Next Cstate Next Mstate
MCRF-Cache a 0 sache Cell(a,vo) Cell(a,v,co,..,v _ 1 ,c 0 _1 ) Cell(a,vo)

where a mod n = 0 Cell(ai,vi) where cO,c 1 ,..,cn- 1 =Clean Cell(ai,vi)

Cell(an- 1,vO 1 ) Cell(an_ 1 ,vn- 1 )
MCRF-Writeback Cell(a,vo,cO,..,vk,Dirty, Cell(a,vi) Cell(a,voco,.,vk, Clean, Cell(a,v')

.. ,Vn- 1,cn_1) Cell (ai,v'/ .. Vn_ 1,cn_1) Cell (ai,v')

Cell(ak,v'k) Cell(ak,vk)
Cell(ak+1,tvk+1) Cela+,k+1)

Cell(a,,-1,v' _)Cell (a. -1,vn-

MCRF-Purge Cell(a,v,co,--,vn-1,C 1) Cell(a,vo) a i sache Cell(a,vi)

where co,ci,..,cn_ 1 =Clean Cell(a 1,v') Cell(a,v')

Cell(a,_1,v _1) Cell(a, ,v _ )
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MCRF rule CRF rule
MCRF-Loadl (ak) CRF-Loadl (ak)
MCRF-Storel (ak) CRF-Storel (ak)
MCRF-Commit (ak) CRF-Commit (ak)
MCRF-Reconcile (ak) CRF-Reconcile (ak)
MCRF-Cache (a) CRF-Cache (a, a + 1,...,a + (n - 1))
MCRF-Purge (a) CRF-Purge (a, a + 1,...,a + (n - 1))
MCRF-Writeback (ak) CRF-Writeback (ak)
* a is the address identifying the sacheline

Figure 3-6: Mapping MCRF rules to CRF rules

CRF rules, while the two remaining rules can be simulated by executions of some

CRF rules on multiple addresses.
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Chapter 4

Multiword Base Protocol

In this chapter, we present the Multiword Base protocol, which is a protocol for

the CRF memory model. Its design is based on the Base protocol [1]. The main

advantage of Base is that it does not require the memory side to maintain any state.

However, the focus for Base was adaptivity and correctness, it ignored some important

implementation issues such as cache-line replacement, efficient buffer management

and compatibility with multiword cache lines. Therefore, Multiword Base is developed

to avoid these limitations. The remaining of the chapter is organized as follows:

In Section 4.1, we describe the features of the Multiword Base protocol. In Sec-

tion 4.2, we present the system configurations of Multiword Base, which show all

the components in Multiword Base. In Section 4.3, Section 4.4 and Section 5.3, we

discuss the functionalities of the components in the cache sites, the memory site and

the network respectively. The functionalities are described in rewriting rules, which

form a Term Rewriting System (TRS). In Section 4.6, we prove that Multiword Base

is a correct implementation of CRF by mapping the TRS of Multiword Base to the

TRS of the MCRF. Moreover, we show that the system always has forward progress.

4.1 Features

The design of Multiword Base avoids some of the limitations of the original Base

protocol. The followings are the features that only exist in Multiword Base:
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1. Multiword Cache Lines. Multiword Base is compatible with multiword cache

lines, which are common in commercial commodities. By maintaining a cache

state for each address in a cache line and supporting fine-grain write-backs,

Multiword Base is still a correct implementation of the CRF. This is proved by

mapping Multiword Base to the MCRF in Section 4.6.

2. Non-FIFO Message Passing Network. Multiword Base allows the net-

work to reorder messages arbitrarily. In contrast, the original Base requires the

network to allow only messages with different destinations or addresses to be

reordered (FIFO message passing). My approach gives more flexibility to the

implementation of the network, which enhances the scalability of the system.

Moreover, non-FIFO network adds the possibility of incorporating the negative

acknowledgement mechanism to the protocol, which can lead to simpler buffer

managements. Although Multiword Base supports non-FIFO network, it still

preserves the FIFO message passing property by preventing messages with the

same address, source and destination to enter the network at the same time.

3. Simple Buffer Managements. Multiword Base allows the incoming message

buffer to be implemented as an inexpensive First In First Out (FIFO) queue.

In contrast, the original Base requires the incoming message buffer to be able

to reorder arbitrarily the messages with different sources or addresses. I find

that this requirement is unnecessary because incoming messages in Base never

block each other.

4. Cache Replacement Policy. The original Base ignores the possibility of

cache conflicts. Therefore, it does not have any cache replacement policy. In

contrast, Multiword Base specifies additional rules for cache replacements. In

Section 4.6, we prove that these rules does not violate the CRF model because

they can be simulated by the MCRF.
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Cache Site Cache Site Cache Site

network

Figure 4-1: The System Configurations of Multiword Base

4.2 System Configurations

Figure 4-1 presents the system configurations of a Multiword Base system with four

processors. As can be seen, the system contains four cache sites, a memory site and

a network. Each cache site is identified by a unique identifier (id) and consists of a

processor (proc), a cache, a pend queue (pendQ), a stall queue (stallQ), an incoming

message buffer (imb), an outgoing message buffer (omb) and a cache-side protocol

processor (CPP). On the other hand, the memory site consists of an incoming message

buffer (imb), an outgoing message buffer (omb), the memory and a memory-side

protocol processor (MPP). There is a network which connects all the cache sites and

the memory sites together. The Multiword Base system executes the instruction set

shown in Figure 4-2, which contains all the CRF instructions. Figure 4-3 describes the

types of messages that are passed between the components. These messages contain

the necessary information for the system to operate.
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CRFInstr Loadl(a) d Storel(a,v)
0 Commit(a) d Reconcile(a)

D Fencer,(al,a2) l Fencer,(al,a2)
I Fencew(al,a2) l Fence,,(ai, a 2 )

Figure 4-2: CRF Instructions

Cache Site Messages
sender receiver message type description
proc CPP (Tag, CRInstr) tag, CR instruction (CRF excluding fences)
CPP proc (Tag, Result) tag, results
CPP cache (COp, Addr, CELL) cache operation, address, cache block
cache CPP (CAck, Addr, CELL) cache acknowledgement, address, cache block
CPP stallQ (SOp, (Tag, CRInstr)) stallQ operation, tag, CR instruction
stallQ CPP (SAck, (Tag, CRInstr)) stallQ acknowledgement, tag, CR instruction
CPP pendQ (POp, (Tag, CRInstr), CELL) pendQ operation, tag, CR instruction, cache block
pendQ CPP (PAck, (Tag, CRInstr), CELL) pendQ acknowledgement, tag, CR instruction,

cache block
CPP omb (MReq, Src, Dest, Addr, Data) request to memory site, source, destination,

address, data
imb CPP (MRpy, Src, Dest, Addr, Data) memory site reply, source, destination,

address, data

omb network (MReq, Src, Dest, Addr, Data) request to memory site, source, destination,
address, data

network imb (MRpy, Src, Dest, Addr, Data) memory site reply, source, destination,
_ _address, data

Memory Site Messages
sender receiver message type description
network imb (MReq, Src, Dest, Addr, Data) request to memory site, source, destination,

address, data
omb network (MRpy, Src, Dest, Addr, Data) memory site reply, source, destination,

address, data
imb MPP (MReq, Src, Dest, Addr, Data) request to memory site, source, destination,

address, data
MPP omb (MRpy, Src, Dest, Addr, Data) memory site reply, source, destination,

I address, data
MPP memory (MOp, Addr, MBlock) memory operation, address, memory block
memory MPP (MAck, Addr, MBlock) memory acknowledgement, address, memory block

Figure 4-3: The Messages of Multiword Base
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Brief Description of Multiword Base Operation Sequence

The follow describes the general operation sequence of the system:

1. The proc executes a stream of instructions. When it see a memory instruction,

it issues the request, which is identified by a tag, to the CPP..

2. The CPP accesses the cache to check the status of the target address of the

memory instruction. According to the protocol specification, it performs one of

the followings:

3. (a) The CPP sends the answer to the proc.

(b) The CPP needs to communicate with the memory site before it can answer

the proc. Therefore, it sends a request to the memory site. The CPP

answers the proc once it receives the reply from the memory site.

4.3 Definition of the Cache Site

In this Section, we explain the functionalities of the components of a cache site. As a

reminder, cache site consists of the followings components: 1) a processor, 2) a cache,

3) a pend queue, 4) a stall queue, 5) an ongoing message buffer, 6) an incoming

message buffer and 7) a cache-side protocol processor.

4.3.1 Processor

The processor (proc) is responsible for issuing memory instructions to the CPP. How-

ever, the proc does not issue Fences to CPP because they only enforce the ordering

of other non-Fence instructions. The proc simply completes a Fence instruction when

the Fence is ready to be issued.

Issuing Constraints of Proc

Multiword Base allows the proc to issue the memory instructions to the CPP out-

of-order as long as the constraints of both data dependences and memory fences are
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12 -> Loadl Storel Fencerr Fencer Fencer Fence,, Commit Reconcile
I1 4 (a') (a',v') (a',,a') (a,,a2) (a', ,a2) (a'1,a') (a') (a')
Loadl(a) true a $ a' a : a, a # a' true true true true
Storel(a,v) a Fa a 34a' true true true true a 5 a' true
Fencerr(al,a2) true true true true true true true a2 7 a'
Fencerw (ai,a2) true a2 j a' true true true true true true
Fence, (a1,a2) true true true true true true true a2 $ a'
Fence,, (ai,a2) true a2 5 a' true true true true true true
Commit(a) true true true true a A a, a :A a' true true
Reconcile(a) a $ a' true true true true true true true

Figure 4-4: Instruction Reordering Table

preserved. Figure 4-4 summarizes the conditions that the proc can issue two instruc-

tions out-of-order, where I, followed by I2 can only be reordered if their corresponding

entry in the table is evaluated "true". There is an important point needed to be clar-

ify: if the table shows that two instructions cannot be reordered, it does not mean

that the proc can issue I2 immediately after I,. Indeed, the proc can only issue 12

after the completion of I,. On the other hand, if an instruction want to be issued

ahead of multiple preceding instructions that are incomplete, the proc can only do

so if the instruction can be reordered with each of these instructions. Although the

implementation of a proc with out-of-order issuing looks complicated, we show that

it can achieved by using Reorder Buffer (ROB) in Chapter 5.

4.3.2 Cache

The cache backs up the useful data that are recently accessed by the CPP. Therefore,

the CPP can retrieve those data quickly when it needs to access them again. The CPP

controls the data that are stored in the cache. Figure 4-5 defines the four operations

that CPP can request the cache to perform. COPMSG defines the request messages

that are sent from the CPP to the cache; CACKMSG defines the messages that the

cache can reply to the CPP; CELL defines the data stored in a cache line. Each cache

line contains the data and the cache states of multiple (n in this case) consecutive

addresses. The cache state can either be " Clean", which indicates the address has not

been modified since it is stored in the cache, or "Dirty", which indicates the address

has been modified at least once since it is stored in the cache; CONFLICT is assigned

42



COPMSG (Cache, a,CELL)

D (Purge, a)
D (Read, a)
l (Update, a,CELL)

CACKMSG (CacheAck,CONFLICT, a,CELL)

D (PurgeAck)
0 (ReadAck,HIT,CELL)
l (UpdateAck,HIT)

CELL (vo,DB, vi,DB,.., Vn_1,DB)
DB Clean 8 Dirty
CONFLICT conflict 0 no conflict
HIT hit E miss

Figure 4-5: Definitions of the Cache Operations

to "conflict" when there is a cache replacement at performing "Cache" operation

and HIT is assigned to "hit" when there is a cache hit. Figure 4-6 summarizes the

operational semantics of the cache: 1) The "Cache" operation informs the cache to

store a cache line which addresses are not currently stored in the cache. If the cache

can store the cache line without replacing another cache line, it replies "no conflict"

to the CPP. Otherwise, it replies "conflict" to the CPP with the information of the

replaced cache line. 2) The "Purge" operation informs the cache to throw away the

cache line that contains a particular address. The cache acknowledges the CPP after

the completion of the request. 3) The "Read" operation informs the cache to provides

the data of the cache line that contains a particular address, the cache replies "hit"

with the data to the CPP if it has the cache line, otherwise, it replies "miss" if it does

not have the data. 4) The "Update" operation informs the cache to update the cache

line of a particular address. If the cache has the cache line, it overwrites the data and

replies "hit" to the CPP. Otherwise, it performs no action and replies "miss".

4.3.3 Pend Queue

Sometimes, the CPP needs to communicate with the memory site about a cache line

before it can answer a proc's request. This action can take some amount of time.

During that period, it is possible that the CPP receives another request that accesses

the same cache line. If this happens, the CPP needs to suspend this request until the

43



Message from CPP Current State Reply to CPP Next State
(Cache, a, cell) (a,-) ( cache, no conflict (CacheAck,no conflict,-,-) (a, cell) E cache

(a,-) ( cache, (a', cell') E cache, (CacheAck,conflict, a', cell') (a, cell) E cache,
(a, cell) replaces (a', cell') (a',-) ( cache

(Purge, a) (a,-) E cache (PurgeAck) (a,-) ( cache

(a,-) V cache (PurgeAck) (a,-) ( cache
(Read, a) (a, cell) E cache (ReadAck,hit, cell) (a, cell) E cache

(a,-) V cache (ReadAck,miss,-) (a,-) V cache
(Update, a, cell) (a,-) E cache (WriteAck,hit) (a, cell) E cache

(a,-) V cache (WriteAck,miss) (a,-) V cache

Figure 4-6: Operation Semantics of the Cache

Request from CPP Current State Reply to CPP Next State
(Add, (t, instr), cell) (-, cell') V pendQ, pendQ not full ((t, instr), cell) E pendQ
(Del, ak) (-, cell") C pendQ (-, cell") V pendQ
(Get, ak) (-,cell") E pendQ pendQ(ak) = true (-,cell") E pendQ
(Get, ak) (-, cell") V pendQ pendQ(ak) = false (-, cell") V pendQ

pendQ full pendQFull = true pendQ full
pendQ not full pendQFull = false pendQ not full

* cell, cell' are cache lines containing the same addresses
* cell" contains the value of ak at the kth position

Figure 4-7: Operations of pendQ

CPP has finished the communication with the memory site about that cache line. In

this thesis, those cache lines about which the CPP is communicating with the memory

site are called the pending cache lines. A mechanism is needed for distinguishing the

pending cache lines from other cache lines so that instructions can be suspended

correctly. The pend queue (pendQ) serves for this purpose. It keeps all the pending

cache lines and the corresponding instructions that make those cache lines become

pending. Therefore, the number of entries in the pendQ determines the maximum

number of messages can be sent to the network at the same time.

Figure 4-7 summarizes the operations of pendQ: 1) The "add" operation inserts

a pending cache line and the instruction to the pendQ providing it is not full and it

has not yet had a cache line containing the same addresses. 2) The "del" operation

removes an entry, identified by the address, from the pendQ. 3) The "get" operation

requests pendQ to reports whether it has a cache line that contains a particular

address ak, and provides the data if it has the cache line. 4) The pendQ always tells
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Request from CPP Current State Reply to CPP Next State
(Add, (t, instr)) (t, instr) V stallQ, stallQ not full (t, instr) E stallQ
(top) oldest(stallQ) = (t, instr) (t, instr) (t, instr) V stallQ

stallQ full stallQFull = true stallQ full
stallQ not full stallQFull = false stallQ not full

Figure 4-8: Operations of stallQ

the CPP whether it has free spaces. Many of the functionalities of the pendQ and

the cache overlap. However, there are some major differences:

1. The pendQ is fully-associative while the cache may not be. Cache lines can

be stored at any slot in the pendQ as long as there is at least one free space

available.

2. The pendQ does not allow cache line to be added if it is full while the cache

performs a replacement at the same situation. Therefore, the pendQ is required

to tell the CPP whether it has free spaces all the time.

4.3.4 Stall Queue

As mentioned before, an instruction will be suspended if it is accessing a pending

cache line. Moreover, an instruction is also suspended if the instruction requires the

CPP to communicate with the memory when the pendQ is full, which indicates the

CPP cannot send any more message to the network. In Multiword Base, the stall

queue (stallQ) is used to keep all the suspended instructions.

Figure 4-8 summarizes the operations of the stallQ: 1) The "add" operation inserts

a suspended instruction to the stallQ. 2) The "pop" operation retrieves the oldest

instruction in the stallQ and then removes the instruction from the stallQ. 3) The

stallQ always tells the CPP whether it has free spaces.

When the stallQ is full, the CPP will not accept any further request from the proc

until it completes at least one suspended instruction from the stallQ. This approach

ensures that the CPP eventually deals with the suspended instructions. Moreover, it

also helps to make sure that enough resources are available for the ongoing instructions
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to avoid deadlock. The stallQ can be implemented as a simple FIFO queue. The

number of entries in the stallQ determines the upper bound of the number of ongoing

instructions the CPP can accepts. If the stallQ is eliminated, the design becomes

blocking, which allows the CPP to deal with only one instruction at a time.

4.3.5 Cache-side Incoming Message Buffer

The cache-side incoming message buffer (imb) temporarily stores the incoming re-

ply messages that are sent from the memory when the CPP cannot deal with the

incoming messages fast enough. The original Base protocol requires the imb to be

able to reorder the incoming messages with different sources or addresses to avoid

deadlocks. In contrast, the imb of Multiword Base does not reorder messages because

the incoming messages of this protocol never block each other. The imb should have

the same number of entries as pendQ to make sure the cache site never misses a reply

from the memory. Otherwise, the protocol should add a negative acknowledgement

mechanism to assure this property.

4.3.6 Cache-side Outgoing Message Buffer

The cache-side outgoing message buffer (omb) temporarily stores the CPP outgoing

request message when the network is not fast enough to deliver the messages to the

memory site. Similar to the imb, the omb does not reorder messages. The omb has

the same number of entries as pendQ because the network may not be able to send

a single message when the pendq is filled up.

4.3.7 Cache-side Protocol Processor

The Cache-side Protocol Processor (CPP) carries out the coherence actions of Mul-

tiword Base at cache site. Figure 4-9 and Figure 4-10 summarize the rules that the

CPP executes at different situations: each row in the table represents a rule which

means that the CPP will perform a particular action (Action) if it receives a message

(Message Received) from a component (Source) for a particular instruction (Instruc-
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Instruction Message Received Source Action
(t, (Loadl, atk)) (t, (Loadl, ak)) proc/stallQ (Read, a) -+ cache

(ReadAck,hit,(vo,-,..,vk,lean,..,v _1,-)) cache (t,vt) -' proc
(ReadAck,hit,(vo,-,.,vk,Dirty,.,Vn_1,-)) cache (t, t) -> proc
(ReadAck,miss,-) cacTe (CacheReq, a) - omb,
pendQFull = False and (Add, (t, (Loadl, ak)),-) -+ pendQ
pendQ(ak) = False
(ReadAck,miss,-) cache (Add, (t, (Loadl, ak))) - stallQ
pendQFull = True or
pendQ(ak) = True
(Cache,a,(vo,v1,..,n -1)) imb (t, Vk ) -> proc

(Cache, a, cell) -> cache
cell = (vo,Clean,..,vn-1,Clean)

(CacheAck,conflict,a',cell) cache (Wb, a, (vo,do,v,d,..,Vn_,dn1)) omb
cell = (vo,co,v1,ci,Vn-i,cni) if c; = Clean then di = IsClean
3i. ci = Dirty if ci = Dirty then di = IsDirty

(Del, (t, (Loadl, ak)),-) -+ pendQ
(Add, (-, (VoluntaryWB, a')),-) -+ pendQ

(CacheAck,conflict,a',cell) cache (Del, (t, (Loadl, ak)),-) -- pendQ
cell = (v,c,vj,ci,.,Vn_1,cni)
ABi. ci = Dirty
(CacheAck,no conflict,-,-) cache (Del, (t, (Loadl, ak)),-) -> pendQ
(WbAck, a') imb (Del, (-, (VoluntaryWB, a')),-) -> pendQ

(t, (Storel, ak, v')) (t, (Storel, ak, VO)) proc/stallQ (Read, a) -+ cache
(ReadAck,hit,(vo,co,vi,ci,,Vn_ 1,c,_ 1)) cache (t,-) - proc

(Update, a, cell) -+ cache
cell = (vo,co,..,v' ,Dirty,..,vn 1,cn- 1 )

(ReadAck,miss,-) cache (CacheReq, a) -' omb
pendQFull = False and (Add, (t, (Storel, ak, v')),-) -+ pendQ
pendQ(ak) = False
(ReadAck,miss,-) cache (Add, (t, (Storel, ak, vi))) -+ stallQ
pendQFull = True or
pendQ(ak) = True
(Cache,a,(vo,v1,.,vn1)) imb (t,-) -> proc

(Cache, a, cell) -+ cache
cell = (vo,Clean,..,v',Dirty,..,vn- 1 ,Clean)

(CacheAck,conflict,a',cell) cache (Wb, a, (vo,do,v1,dj,..,Vn_ ,dn- 1 )) -> omb
cell = (v,c,v1,ci.,vn1,cn-i) if ci = Clean then di = IsClean
3i. ci = Dirty if ci = Dirty then di = IsDirty

(Del, (t, (Storel, ak)),-) -+ pendQ
(Add, (-, (VoluntaryWB, a')),-) -+ pendQ

(CacheAck,conflict,a', cell) cache (Del, (t, (Storel, ak)),-) - pendQ
cell = (vo,co,v1,c,.., Vn_1,cn_1)
ABi. c; = Dirty
(CacheAck,no conflict,-,-) cache (Del, (t, (Storel, ak)),-) -' pendQ
(UpdateAck,hit) cache no action
(WbAck, a') imb (Del, (-, (VoluntaryWB, a')),-) -+ pendQ

* a s te adres idetifing he acheinethatconainstheaddrss t a
the k" position

Figure 4-9: CPP rules for Loadl and Storel

tion). The expression "(msg) -+ dest" means that the CPP sends the message "msg"

to the component "dest". To simply future references, each rule is assigned an iden-

tifier (e.g. CI). The following describes the execution sequences of the CPP for

completing each of the four kinds of instruction.

Execution Sequences for Loadl

First, the CPP reads the data from the cache after it has received the "Loadl" in-

struction from the proc or stallQ (Cl). There are three possible outcomes for the

read operation: 1) a "Clean" copy of the data is in the cache, 2) a "Dirty" copy of

the data is in the cache and 3) the cache does not have the data. For the first two

cases, the CPP replies to the proc with the data and completes the "Loadl" instruc-
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Instruction Message Received Source Action
(t, (Commit, ak)) (t, (Commit, ak)) proc/stallQ (Read, a) -+ cache

(ReadAck,hit,(vo,-,..,Vk,Clean,..,v,_1,-)) cache (t,-) -+ proc
(ReadAck,hit,(v,co,..,vk,irty,..,Vn_,c,-1)) cache (Wb, a, (vo,do,v,dj,..,vn _,dn_)) -- omb
pendQFull = False and if ci = Clean then di = IsClean
pendQ(ak) = False if ci = Dirty then di = IsDirty

(Add, (t, (Commit, ak)), cell) -+ pendQ
cell = (vo,co,vi,ci,.,Vn_1,c_1)
(Purge, a) -+ cache

(ReadAck,hit,(vo,-,..,vk,irty,..,Vn_ 1,-)) cache (Add, (t, (Commit, ak))) - stallQ
pendQFull = True or
pendQ(ak) = True
(ReadAck,miss,-) cache (t,-) -+ proc
pendQ(ak) = False
(ReadAck,miss,-) cache (Add, (t, (Commit, ak))) -> stallQ
pendQ(ak) = True
(WbAck, a) imb (t,-) -' proc

(Cache, a, cell) - cache
cell = (vo,Clean,vi,Clean,..,vn_

1 ,Clean)
((t, (Commit, ak)), cell') E pendQ
cell' = (vo,-,vi,-,..,Vn _1,-)

(CacheAck,conflict,a',cell) cache (Wb, a, (vo,do,vi,d,.,n _ ,dn -)) -- omb
cell = (v,c0,V,c1,,vn1,cn_1) if ci = Clean then di = IsClean
3i. ci = Dirty if ci = Dirty then di = IsDirty

(Del, (t, (Commit, ak)),-) - pendQ
(Add, (-, (VoluntaryWB, a')),-) -- pendQ

(CacheAck,conflict,a', cell) cache (Del, (t, (Commit, ak)),-) -> pendQ
cell = (v,c,vj,cj,..,v_1,cn1)
,Bi. c; = Dirty
(CacheAckno conflict,-,-) cache (Del, (t, (Commit, a)),-) - pendQ
(PurgeAck) cache no action
(WbAck, a') imb (Del, (-, (VoluntaryWB, a')),-) -- pendQ

(t, (Reconcile, ak)) (t, (Reconcile, ak)) proc/stallQ (Read, a) -+ cache
(ReadAck,hit, (V0,c0,Vi,ci,..Vn_- 1,cn _ 1)) -c-ache (Wb, a, (v0,d0,vj,dj,..Vn -1,dn-1)) - omb
ck = Clean if c = Clean then di IsClean
3i. c; = Dirty if ci = Dirty then di = IsDirty
pendQFull = False and (Add, (t, (Reconcile, ak)),-) -> pendQ
pendQ(ak) = False (Purge, a) - cache
(ReadAck,hit,(vo,co,v 1,c,..,Vn_ 1 ,cn _ 1 )) cache (Add, (t, (Commit, ak))) -> stallQ
ck = Clean
3i. ci = Dirty
pendQFull = True or
pendQ(ak) = True
(ReadAck,hit,(vo,co,vi,ci,.,VTL_1,cn-1)) cache (t,-) - proc
Vi.ci = Clean (Purge, a) -> cache
(ReadAck,hit, (vo,-,.., k, Dirty,..,Vn - 1 ,-,)) cache (t,-) -> proc
(ReadAck,miss,-) cache (t,-) -+ proc
pendQ(ak) = False
(ReadAck,miss,-) cache (Add, (t, (Commit, ak))) -> stallQ
pendQ(ak) = True
(WbAck, a) imb(t,-) -' proc

(Del, (-, (Reconcile, a)),-) -+ pendQ
(PurgeAck) cache no action

* a is the address identifying the cacheline that contains the address at at the kt" position

Figure 4-10: CPP rules for Commit and Reconcile

tion (C2, C3). For the third case, the CPP will suspend the instruction by sending

it to the stallQ if the pendQ is full or has already contained an entry regarding the

same cache line (C5). Otherwise, the CPP sends a "CacheReq" message to the omb

and adds an entry to the pendQ (C4). The message in the omb will later be sent to

the memory by the network. After the memory site completes the request, it replies

to the CPP with the missing cache line. The CPP retrieves the reply from the imb,

answers the proc and caches the data to the cache (C6). Again, three outcomes are

possible for the cache operation: 1) no cache line is replaced, 2) a cache line with

all addresses being "Clean" is replaced. 3) a cache line with at least on address be-

ing "Dirty" is replaced. For the first two cases, the CPP finished the execution for
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Rule Execution Sequence
C1- C2
C1- C3
C1- C5 -- C1-+ ...
C1- C4 -+ C6 -C8
CI -* C4 ->C6 C9
C1 - C4 -C6 -+C7 -+ C10

Figure 4-11: CPP Execution Sequences for Loadl

Loadl by deleting the entry from the pendQ (C9, C8). For the third case, the CPP

writes back the cache line to the memory site and replaces the entry in the pendQ by

a "VoluntaryWB" entry with the replaced cache line (C7). When the memory site

completes the write-back, the CPP finish the execution by discarding the cache line

and deleting the "VoluntaryWB" entry from the pendQ (CIO). Figure 4-11 summa-

rizes all the possible execution sequences for the "Loadl" instruction. The expression

"rulel -+ rule2" means "rulel" happens after "rule2", where "rulel" and "rule2" are

the identifiers in Figure 4-9 and Figure 4-10.

Execution Sequences for Storel

First, the CPP reads the data from the cache after it has received the "Storel" in-

struction from the proc or stallQ (C11). There are three possible outcomes for the

read operation: 1) a "Clean" copy of the data is in the cache, 2) a "Dirty" copy of the

data is in the cache and 3) the cache does not have the data. For the first two cases,

the CPP completes the "Storel" instruction by updating the data in the cache and

sending an acknowledgement to the proc (C12 - C19). For the third case, the CPP

will suspend the instruction by sending it to the stallQ if the pendQ is full or has

already contained an entry regarding the same cache line (C14). Otherwise, the CPP

sends a " CacheReq" message to the omb and adds an entry to the pendQ (C13). The

message in the omb will later be sent to the memory by the network. After the mem-

ory site completes the request, it replies to the CPP with the missing cache line. The

CPP retrieves the reply from the imb, answers the proc and caches the cache line with
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Rule Execution Sequence
C11 -> C12 - C19
C11 C14 -+C11 - .
C11 -+ C13 - C15 -+ C17
C11 - C13 -+ C15 -> C18
C11 -C13 ->C15 -C16 --+ C20

Figure 4-12: CPP Execution Sequences for Storel

updated data (C15). Again, three outcomes are possible for the cache operation: 1)

no cache line is replaced, 2) a cache line with all addresses being " Clean" is replaced.

3) a cache line with at least on address being "Dirty" is replaced. For the first two

cases, the CPP finished the execution for Loadl by deleting the entry from the pendQ

(C18, C17). For the third case, the CPP writes back the cache line to the memory

site and replaces the entry in the pendQ by a "VoluntaryWB" entry with the replaced

cache line (C16). When the memory site completes the write-back, the CPP finish

the execution by discarding the cache line and deleting the "VoluntaryWB" entry

from the pendQ (C20). Figure 4-12 summarizes all the possible execution sequences

for the "Storel" instruction.

Execution Sequences for Commit

First, the CPP read the data from the cache after it has received the "Commit"

instruction from the proc or stallQ (C21). There are three possible outcomes for the

read operation: 1) a "Clean" copy of the data is in the cache, 2) a "Dirty" copy

of the data is in the cache and 3) the cache does not have the data. For the first

case, the CPP sends an acknowledgement to the proc and completes the "Commit"

instruction (C22). For the third case, the CPP will suspend the instruction by sending

it to the stallQ if the pendQ has already contained an entry regarding the same cache

line (C26). Otherwise, the CPP completes the "Commit" instruction by sending an

acknowledgement to the proc (C25). For the second case, the CPP needs to write

back the cache line. It suspends the instruction if the pendQ is full (C24). Otherwise,

it sends a "Wb" message to the omb and migrates the cache line to the pendQ (C23
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Rule Execution Sequence
C21 ->C22
C21 -+C25
C21 -+C26 ->C21 -.
C21 ->C24 ->C21 -.
C21 -C23 ->C31 --+C27 -C29
C21 -C23 ->C31 -C27 - C30
C21 -C23 -C31 -+C27 ->C28 - C32

Figure 4-13: CPP Execution Sequences for Commit

-> C31). The message in the omb will later be sent to the memory by the network.

After the memory site completes the write-back, it acknowledges the CPP. The CPP

retrieves the reply from the imb, answers the proc and migrates the cache line back to

the cache (C27). Again, three outcomes are possible for the migrate (cache) operation:

1) no cache line is replaced, 2) a cache line with all addresses being " Clean" is replaced.

3) a cache line with at least on address being "Dirty" is replaced. For the first two

cases, the CPP finished the execution for Loadl by deleting the entry from the pendQ

(C30, C29). For the third case, the CPP writes back the cache line to the memory

site and replaces the entry in the pendQ by a "VoluntaryWB" entry with the replaced

cache line (C28). When the memory site completes the write-back, the CPP finish

the execution by discarding the cache line and deleting the "VoluntaryWB" entry

from the pendQ (C32). Figure 4-13 summarizes all the possible execution sequences

for the "Commit" instruction.

Execution Sequences for Reconcile

First, the CPP reads the data from the cache after it has received the "Reconcile"

instruction from the proc or stallQ (C33). There are four possible outcomes for the

read operation: 1) a "Clean" copy of the data is in the cache and other addresses in

the same cache line are also " Clean", 2) a " Clean" copy of the data is in the cache and

at least one address in the same cache line is "Dirty", 3) a "Dirty" copy of the data

is in the cache and 4) the cache does not have the data. For the first case, the CPP

completes the "Reconcile" instruction by purging the cache line and acknowledging
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Rule Execution Sequence
C33 -+ C37
C33 -+ C38
C33 -> C36 -+ C41
C33 ->C35 -C33-+ ...
C33 -C39 -C33-+ ...
C33 -+ C34 -* C41 -> C40

Figure 4-14: CPP Execution Sequences for Reconcile

the proc (C36 -- C41). The third case is similar to the first case, except that the

CPP needs not purge the cache line (C37). For the forth case, the CPP will suspend

the instruction if the pendQ has already contained an entry regarding the same cache

line (C39). Otherwise, the CPP completes the "Commit" instruction by sending an

acknowledgement to the proc (C38). For the second case, the CPP needs to write

back the cache line. It suspends the instruction if the pendQ is full (C24). Otherwise,

it sends a "Wb" message to the omb and migrates the cache line to the pendQ (C34

-> C41). The message in the omb will later be sent to the memory by the network.

After the memory site completes the write-back, it acknowledges the CPP. The CPP

retrieves the reply from the imb, answers the proc and discards the cache line in the

pendQ (C40). Figure 4-14 summarizes all the possible execution sequences for the

"Reconcile" instruction.

4.4 Definition of the Memory Site

In this section, we explain the functionalities of the components in the memory site.

In Multiword Base, the memory site models a non-distributed shared memory. Non-

distributed shared memories are common in Chip Multi-Processor (CMP) designs.

However, for other parallel systems, distributed shared memories are more practical.

RaPED allows the memory site to be replaced by a distributed shared memory with

minimal modifications to the designs because the system allows messages to be de-

livered in arbitrary order. Figure 4.4 shows the components of the memory site: 1) a

memory, 2) an imb, 3) an omb and 4) a MPP.
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Figure 4-15: Components of the Memory Site

4.4.1 Memory

The memory stores the data of all addresses of the system. It is primarily accessed

by the Memory-side Protocol Processor (MPP), which controls the data stored in

the memory. Figure 4-16 defines the messages delivered between the MPP and the

memory. There are two types of messages: MOPMSG and MACKMSG.

MOPMSG defines the messages delivered from the MPP to the memory. The

message contains the operation that the memory is required to perform. Meanwhile,

MACKMSG defines the acknowledgement messages of that the memory can reply

to the MPP. Every kind of MACKMSG does not include the information about the

request address because we assume the memory has fixed latency. If the assumption is

not true, this information must be included in order to make Multiword Base function

properly.

There are two types of operations that the memory can perform: 1) " Read" and 2)

"Update". The "Read" operation returns the data of a memory row (MCELL), which

contains the data of n consecutive addresses, while the "Write" operation updates the
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MOPMSG (Read, a)
D (Update, a,MCELL)

MACKMSG (ReadAck,MCELL)
0 (UpdateAck)

MCELL (vo, vi, .., vn_1)

Figure 4-16: Definitions of the Memory Operations

data of a MCELL.

4.4.2 Memory-side Incoming Message Buffer

The memory-side incoming message buffer (imb) temporarily stores the incoming re-

quests from the cache sites when the MPP is not fast enough to deal with these

requests. The original Base protocol requires the imb to be able to reorder incoming

messages with different sources or addresses arbitrarily. In contrast, the imb of Mul-

tiword Base does not reorder messages because incoming messages from the cache

sites of this protocol never block each other. The imb of the memory has the same

number of entries as the sum of the entries in the imbs of all cache sites because this

is the maximum number of messages that the MPP can receive. Since the size of the

imb increases linearly with the number of processors, this approach can be expensive.

A solution is to incorporates the Negative Acknowledgement (NACK) mechanism to

the protocol, which requires a resend of the message when the receiver's imb does

not have space. However, NACK can cause correctness issue in the original Base

protocol because NACK can reorder messages with the same address, source and des-

tination even the network passes messages in order. In contrast, NACK is compatible

with Multiword Base because it always allows messages in the network to be reorder

arbitrarily.

4.4.3 Memory-side Outgoing Message Buffer

The memory-side outgoing message buffer (omb) temporarily stores the MPP out-

going messages when the network cannot deliver messages to their destinations fast

enough. Similar to the imb, the omb does not reorder messages. The number of en-
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tries in the omb can be arbitrary. If the omb is full, the MPP stalls and then resumes

after the network has sent an outgoing message from the omb.

4.4.4 Memory-side Protocol Processor

The Memory-side Protocol Processor (MPP) is responsible for handling the protocol

at memory side. Figure 4-17 summarizes the operational semantics of the MPP. To

simplify future reference, each row is assigned an identifier (e.g. M1). There are two

types of request messages: 1) "CacheReq" messages and 2) "Wb" messages.

A cache site sends a " CacheReq" message to the MPP requesting for the data of a

cache line when it has a cache miss. The message also comes with the cache site's id

and the address of the cache line. When the MPP receives the "CacheReq" message,

it gets the data from the memory. After getting the data, the MPP replies to the

cache site with a "Cache" message which includes the data of the cache line.

A cache site sends a "Wb" message to the MPP to write back a cache line. The

message also comes with the cache site's id, the address of the cache line and the

write-back data. To support fine-grain write-backs, the write-back data include dirty

bits, which gives the exact addresses to be updated. When the MPP receives the

"Wb" message, it first gets the memory copy of the data. After getting the data from

the memory, the MPP forms a new copy of the data by merging the memory copy

and the write-back copy based on the dirty bits. After that, the MPP replaces the

old copy in the memory by the new copy and then replies to the cache site with a

"WbAck" message.

Similar to the CPP, incoming requests for the MPP never block each other because

they do not require the MPP to communicate with other cache sites before the MPP

returns the answer.

4.5 Definition of the Network

The network provides two communication channels between the cache sites and the

memory site. One channel is responsible for delivering messages from the cache sites
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Processing Message Sender Action
(CacheReq,a) (CacheReq,a) id (Read a) -- mem

(ReadAck,a,vo,..,v 3 ) mem (Cache,a,vo..,v 3 ) --id
(Wb,a,vOdo,..,v',d 3) (Wb,a,vo,do,..,v3,d 3) id (Read a) -*mem

(ReadAck,a,vo,..,v 3) mem (WbAck,a) -+id
(Update,a,ve'.,v' -imemn

if d, then v' = v' else v" =v,

(UpdateAck,a) mem no action

Ml
M2
M3

M4
M5

Figure 4-17: MPP Rules Summary

to the memory site. Another channel is responsible for message delivery for the

opposition direction. There are two requirements for the network: 1) the network is

fair so that each cache site has its opportunity to deliver a message to the memory

site. 2) Any message in the network can eventually reach its destination.

4.6 Correctness Proof of Multiword Base

A correct protocol for CRF should satisfies two properties: 1) soundness and 2)

liveness. The former guarantees that the system does not perform any action that vi-

olates the semantics of the CRF model, while the latter assures that the system always

makes forward progress. The following proves Multiword Base has both properties.

4.6.1 Soundness Proof of Multiword Base

Multiword Base is a correct protocol for the CRF because it can be simulated by the

MCRF, which itself can be simulated by the CRF. The proof is done in the following

steps: First, we define a mapping which maps every state in Multiword Base to

a corresponding state in the MCRF. Then, we prove that each state transition of

Multiword Base can be simulated by the MCRF.

Mapping Multiword Base Terms to the MCRF Terms

It is straightforward to map the terms of Multiword Base to MCRF when there is

no outstanding instruction in Multiword Base (an outstanding instruction is an in-
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struction that a processor has issued a request to the CPP but not yet received the

reply). However, it is more difficult to map the Multiword Base with outstanding

instructions to the MCRF because the two models have different mechanisms to deal

with the outstanding instructions. The solution is to rewind (backward draining) or

fast-forward (forward draining) the executions of outstanding instructions in Multi-

word Base until every outstanding instruction gets to a state which is either before

the issuing or after the completion. Therefore, all states in Multiword Base can be

mapped to a state in MCRF with the help of drainings.

Two kinds of draining are needed to make the process confluent. For example, if

several rules lead to the same state, the backward draining cannot be used because the

system does not know which rules was execute before to get to this state. Figure 4-18

depicts this scenario. On the other hand, the forward draining cannot be used when

different orders of the rule executions can lead to different states. This can happen

in Multiword Base when multiple cache sites trying to write back the same cache

line to the memory. Since no absolute order of these write backs is guaranteed, the

memory can end up with different values for the cache line. This scenario is depicted

in Figure 4-19.

Simulate Multiword Base with the MCRF

Figure 4-20 maps all the possible transition sequences of Multiword Base to a cor-

responding MCRF sequences with the same semantic effects. In the figure, the ex-

pression "R1 - R2" means the transition "R2" is followed by the transition "Ri",

where "R1" and "R2" are the corresponding identifiers in Figure 4-9, Figure 4-10

and Figure 4-17. Each transition sequence has a break point. Transitions before the

break point use backward draining, while transitions after the break point use forward

draining. A transition sequence has more than one break points when the sequence

requires the CPP to contact with the memory more than once. We separate this kind

of sequences to two sequences with the first sequence marked "start VMB" in the

table and the second sequence starts with the same identifier as the last identifier of

the first sequence. In Multiword Base, this only happens to sequences which write
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*r1

r2

Figure 4-18: Limitation of Backward Draining (Convergence of Rules)

rr2

r1

Figure 4-19: Limitation of Forward Draining (Divergence of Rules)
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Instruction Backward Draining Forward Draining Equivalent MCRF Semantics
Loadl a C1 - C2 Loadl a

C1- C3 Loadl a
C1 -> C5 -+ C1 (loop) no effect
C1 -C4 -> M1 -M2 -C6 -+ C8 Cache a -Loadl a --+ Purge a'
C1 -C4 - M1 -M2 -C6 -+ C9 Cache a -Loadl a
C1 -C4 - M1 -M2 -C6 -C7 (start VWB) Cache a -Loadl a
C7 -+ M3 -+ M4 -- M5 - C10 Writeback a' -+ Purge a'

Storel a C11 -+ C12 -- C19 Storel a
C11 -+ C14 -+ C11 (loop) no effect
C11 -C13-+ M1 -M2 -C15 -C17 Cache a - Storel a - Purge a'
C11 -+C13-> M1 M2 -C15 -C18 Cache a -Storel a
C11 -> C13 -+ M1 -* M2 -+ C15 -+ C16 (start VMB) Cache a -+ Storel a
C16 -> M3 -+ M4 -- M5 -+ C20 Writeback a' -+ Purge a'

Commit a C21 - C22 Commit a
C21 -+ C25 Commit a
C21 -> C26 - C21 (loop) no effect
C21 -+ C24 -* C21 (loop) no effect
C21 C23 - C31 M3 M4 M5 -C27 -C29 Writeback a -Commit a

Purge a'
C21 -+ C23 -+ C31 -+ M3 -- M4 -4 M5 -+ C27 -+ C30 Writeback a -4 Commit a
C21 C23 - C31 M3 M4 M5 C27 Writeback a Commit a

C28 (start VMB)
C28 -+ M3 -+ M4 -+ M5 - C32 Writeback a' -> Purge a'

Reconcile a C33 -+ C37 Reconcile a
C33 -+ C38 Reconcile a
C33 -+ C36 -+ C41 Purge a -+ Reconcile a
C33 -+ C35 -> C33 (loop) no effect
C33 -+ C39 -+ C33 (loop) no effect
C33 C34- C41 M3 -+ M4 - M5 - C40 Writeback a - Purge a

Reconcile a

Figure 4-20: Mapping From Multiword Base to MCRF

backs a replaced cache line where the second sequence can always be simulated by

the MCRF write-back rule.

4.6.2 Liveness Proof of Multiword Base

Multiword Base always makes forward progress if all instructions in the system can

eventually be completed (i.e. a processor always gets an answer from the CPP after

it has issued an instruction). We prove this happens because all transition sequences

in Figure 4-20 eventually sends an answer to the CPP ((t, ans) --+ proc). It is obvious

that the claim is true for those sequences with no network message passing and no

loop. For those sequences with messages passing to the memory site, forward progress

is assured because the network is fair. Meanwhile, for those sequences with loops,

they also have forward progress because the ROB processor is required to commit

instructions in-order. Since the ROB can be filled up if the CPP fails to execute a
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stalled instruction, the processor eventually cannot send any instruction to the CPP,

which forces the CPP to execute the stalled instruction.
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Chapter 5

Implementation of Multiword Base

in RaPED

This chapter presents the implementation of the Multiword Base in RaPED. Figure 5-

1 gives an overview to the implementation of the Multiword Base system. Multiword

Base is implemented by two kinds of RaPED nodes (Processor Node and Memory

Node) with a network connecting all the nodes. The processor node implements a

Multiword Base's cache site and the memory node implements a Multiword Base's

memory site. The following describes the implementation of each node and the net-

work.

5.1 Processor Node

The Processor Node uses four modules of the RaPED node to implement a cache site:

1) Networks,, 2) Protocol Processor, 3) Data Memory and 4) Network,,.

Figure 5-2 and Figure 5-3 summarizes the mapping of cache site components to the

modules of the processor node and the definitions of the messages delivered between

the modules. The implementation of each module is presented as follows:
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- -- ~ -m----~ -----

Processor Processor Processor Processor
Node Node Node Node

Network

Figure 5-1: Multiword Base in RaPED

+ I
connecting with network

Figure 5-2: Mapping Cache Site Components to the Modules of the Processor Node

62



Message Type Sender Receiver Message Content

InMsgs, Networks, Protocol Processor (Tag, CRInstr)
OutMsg", Protocol Processor Networks, (Tag, Result)
DataReqMsg Protocol Processor Data Memory COPMSG
DataResMsg Data Memory Protocol Processor CACKMSG
InMsgl,0  Networki,. Protocol Processor (MRpy, Src, Dest, Addr, Data)
OutMsgi. Protocol Processor Networki0 . (MReq, Src, Dest, Addr, Data)

Figure 5-3: Definitions of the Messages of the Processor Node

5.1.1 Networkup

Networkup implements the proc of the cache site. As mentioned, Multiword Base

allows the proc to issue memory instructions to the CPP out-of-order as long as the

constraints of data dependences and memory fences are preserved. The implementa-

tion of the proc achieves this by having a reorder buffer (ROB). The ROB keeps all

the non-committed instructions. Instructions in ROB can be in one of the following

states: 1) " Not Ready", 2) " Ready To Issue", 3) " Issued" and 4) " Completed". Every

instruction added to the ROB is initially marked as "Not Ready", which indicates

that the proc cannot issue the instruction yet. When the ROB detects that the in-

struction is ready to be issued according to the Instruction Reordering Table shown

in Figure 4-4, it transits the instruction to "Ready To Issue". The proc arbitrarily

issues one of the "Ready To Issue" instructions and then marks the instruction as

"Issued" for non-Fence instruction (or "Complete" for Fences). An "Issued" instruc-

tion becomes "Completed" when the proc receives the answer of the instruction from

the CPP. "Completed" instructions are then committed in-order.

The implementation of the ROB processor in Bluespec is not presented in this

thesis because Nirav Dave has already shown how to do so in his paper [7]. His

processor design can be used in Multiword Base.

5.1.2 Network,,,

Network1, implements the imb and the omb of the cache site. Each component is

implemented by a simple FIFO queue because Multiword Base does not require the

messages in either component to be reordered. It is easy to implement a FIFO queue
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in Bluespec because it provides the FIFO library. The following shows how the imb

is implemented as a FIFO queue, which buffers message of "InMsgLow" type with

n number of of entries, in Bluespec. Other components that have FIFO queues can

also be implemented in a similar way.

Bluespec Code:

imb:: FIFO InMsgLow

imb <- mkSizedFIFO n

5.1.3 Data Memory

Data Memory implements the cache of the cache site. The cache is 16KB and

4-way set-associative with a single cycle latency. It has a single port for both read

accesses and write accesses. The implementation of the cache is not discussed in

this thesis because there are cache generators that generate Verilog code for different

cache designs [12]. Bluespec programs can include components that are written in

Verilog. The following example shows how to map a Verilog module to a Bluespec

interface.

Bluespec Code:

interface Counter =

up ::PrimAction

preset :: Bit 4 -- PrimAction

value:: Bit 4

vCount:: Module Counter

vCount = module verilog "count4" "clk" {
up = "enable";

preset = "inp" "set";

value = "outp";

}
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The name of the Verilog module is "count4" and it is clocked by the port "clk".

Moreover, its input ports: "enable", "inp" and "set" and the output port: "outp"

are mapped to the Bluespec interface ("Counter") accordingly.

5.1.4 Protocol Processor

Protocol Processor contains the stallQ, the pendQ and the CPP. Their implemen-

tations are explained as follows:

PendQ

Figure 5-4 presents the implementation of the pendQ. As can be seen, there are two

components in the pendQ: 1) the Freelist and 2) the Pending Slots. The Freelist keeps

the pointers that point to the empty slots. Therefore, the CPP knows the pendQ is

full if there is no pointer left in the Freelist. The Freelist is implemented by a simple

FIFO queue. A pointer is removed (deq) from the Freelist when the CPP requests to

add (enq, enq-data) an entry to the pendQ. Then, the entry is added to the Pending

Slot that is pointed by that pointer. A pointer is added (enq, enq-data) back to the

Freelist when the CPP removes (deq, deq-addr) a data from the pendQ. On the other

hand, the Pending Slots are fully-associative. The Pending Slots and the Freelist

needs to have the same number of entries. In Bluespec, the Freelist and the Pending

Slots are implemented by a FIFO module and a ListN module respectively. ListN

defines an abstract data type and operations for lists of a specific length. The follow

presents the code for making the pendingSlots. The first line defines the pendingSlots

to be a list of five elements. And Each element contains a register which holds a valid

bit, an instruction message from the proc and the data of a cache line. The second

line instantiates all the registers in the list with their valid bits initialized to false.

Bluespec Code:

pendingSlots:: ListN 5 (Reg (Valid, (Tag, CRInstr), CELL))

pendingSlots +- mapM (\c -+ mkReg (False,-,-)) genList
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.nqrdy enq enqdata deq deqaddr getaddr data

Figure 5-4: Pending Queue Implementation

StallQ

Similar to the imb and the omb, the stallQ is also implemented as a FIFO queue.

However, the stallQ needs to tell the CPP whether it is full which requires the imple-

mentation of the FIFO queue to provide this information. Bluespec provides another

library called FIFOF to do this. The following shows its usage which implements an

n entries FIFOF:

Bluespec Code:

stallQ:: FIFOF (Tag, CRInstr)

stallQ +- mkSizedFIFOF n

CPP

The CPP consists of combinational logics that control the protocol actions at cache-

side, which are summarized in Figure 4-9 and Figure 4-10. It is trivial to implement
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the CPP rules from these figures in Bluespec. The following example shows how

Bluespec expresses C2 from Figure 4-9. The C2 specifies that if the instruction

is Loadl and the response from the cache shows that the target address is cached

"Clean", then the CPP can returns the address value together with the tag to the

proc.

Bluespec Code:

when (instr == Loadl) &&

(dm.getDataRes == (ReadAck Hit -)) &&

((getCState addr (getCELL dm.getDataRes)) == Clean) =->

action nup.putOutMsgUp (tag, (getVal addr (getCELL dm.getDataRes))

In the example, "dm" is the Data Memory which implements cache and "nup"

is the Networku, which implements proc. Moreover, "getCELL", "getState" and

"getCState" are predefined functions which extract the required information from

the response message "dm.getDataRes". Bluespec defines a rule in the format of

"when c == a" where c is the execution condition and a is the action to be exe-

cuted. The rule in this example can be fired when the CPP gets a read hit from

the cache ("dm.getDataRes == (ReadAck Hit -)") and finds out that the cache state of

the target address is Clean ("getCState addr (getCELL dm.getDataRes)) == Clean"). If

the rule is executed, the action that will be performed is to send the result to the proc

("nup.putOutMsgUp (tag, (getVal addr (getCELL dm.getDataRes))"). All other rules of

the CPP can be translated in a similar way.

5.2 Memory Node

The Memory Node uses three modules of the RaPED node to implement a memory site:

1) the Networkp,, 2) the Protocol Processor and 3) the Data Memory. Figure 5-5

and Figure 5-6 summarizes the mapping of memory site components to the modules of

the memory node and the definitions of the messages delivered between the modules. The

implementation of each module of the Memory Node is presented as follows:
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Memory Nodeconnecting with network

memory S C mPP

Figure 5-5: Mapping Memory Site Components to the Modules of the Memory Node

Message Type Sender Receiver Message Content
InMsgs, Network., Protocol Processor (MReq, Src, Dest, Addr, Data)
OutMsg", Protocol Processor Network., (MRpy, Src, Dest, Addr, Data)
DataReqMsg Protocol Processor Data Memory MOPMSG
DataResMsg Data Memory Protocol Processor 1 MACKMSG

Figure 5-6: Definitions of the Messages of the Memory Node
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5.2.1 Data Memory

Data Memory implements the shared memory of the memory site. A magic memory

is implemented for Multiword Base, which pretends to have the data of all addresses by

allowing multiple addresses mapped to the same entry. The memory has a fixed latency of

ten cycles and is non-pipelined. The memory is 256KB with 16K rows. Each row contains

128 bits of data, which is equivalent to data of four addresses (same width as a cache line).

The memory is implemented as an array of data in Bluespec. The following shows the

Bluespec code that implements the magic memory:

Bluespec Code:

memory :: Array (Bit 14) (Bit 128)

memory <- mkArrayFull

The code defines the memory to be an array that has 214 (16K) rows of 128-bit data.

In Bluespec, an array provides two methods for user to retrieve (sub) or update (upd) its

data respectively. Therefore, the array can answer the MPP's "Read" or "Update" request

by calling the appropriate method. Since the magic memory only has 16K rows, it uses 14

bits (15th-28th bits of the 32-bit address) to index to the array.

5.2.2 Networks,

Networku, implements the imb and the omb of the memory site. These components are

implemented as FIFO queues. They are defined in Bluespec the same way as the imb and

the omb of the cache site.

5.2.3 Protocol Processor

Protocol Processor implements the MPP. The MPP consists of combinational logics that

control the protocol actions at memory-side, which are summarized in Figure 4-17. This

figure can be converted to Bluespec rules the same way as the CPP.
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5.3 Implementation of the Network

The network provides two communication channels between the cache sites and the memory

site. One channel is responsible for delivering messages from the cache sites to the memory

site. Another channel is responsible for message delivery for the opposition direction. Each

channel is implemented as a simple 4-way switch. However, their operations are slightly

different. Since there are multiple cache sites, the former channel needs to ensure fairness so

that each cache site has chance to deliver its messages. This is achieved by an arbitrator ,

which gives priority to each cache site in turns to deliver its messages. The followings are the

operations of the channel: 1) When the memory site is ready to accept a request, it checks

which cache sites want to send a request. 2) If only one cache site has a request, it connects

to that cache site and retrieves the message. 3) If more than one cache sites have requests, it

connects to the cache site with the highest priority according to the arbitrator. In contrast,

the other channel does not have fairness issue because there is only one memory site. The

switch just connects the memory site to the destination cache site when the memory site is

sending a message. Similar to the CPP and the MPP, the semantics of the network can be

converted to Bluespec rules.
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Chapter 6

Snoopy CRF

It is known that systems with snoopy caches [3] allow caches to get data from other caches

(a.k.a. cache intervention) to reduce the miss penalty. In the original CRF, cache interven-

tions are not allowed. Since snoopy caches are popular in system designs, it is useful if we

can prove that snoopy caches can be applied to the implementation of the CRF. Therefore,

we present another variant of the CRF model in this chapter: the Snoopy CRF (SCRF)

model, which is the CRF model with cache interventions.

The SCRF allows cache interventions by adding several rules and maintaining some

book-keeping information. The book-keeping information helps to decompose the Clean

state into two types: Cleanync and Cleannonsync. When an address is Cleanvnc, it indicates

that the copy in the sache has the same value as the copy in the memory. Therefore, if

another sache needs the data, either the sache or the memory can provide the data. On the

other hand, the SCRF always allows a sache to provide the data if it has a Dirty copy.

This chapter is organized as followed: In Section 6.1, we discuss the instructions and

the system configurations of the SCRF. In Section 6.2, we define the rules of the SCRF.

Finally, in Section 6.3, we prove that the SCRF can be simulated by the CRF, which means

that a protocol for the SCRF automatically converts to a protocol for the CRF.

6.1 SCRF Instructions and System Configurations

Figure 6-1 presents the instructions and system configurations of the SCRF. The SCRF

and the CRF share the same set of instructions: Loadl, Storel, Reconcile, Commit, Fencerr,
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Fencerw, Fencewr, Fence. In the SCRF, a system contains a shared memory and a list of

sites. Each site is composed of a processor (proc), a processor-to-memory buffer (pmb), a

memory-to-processor buffer (mpb) and a semantic cache (sache). The proc is responsible for

sending SCRF instructions to the pmb. The pmb buffers the messages delivered from the

proc to the sache. Messages in pmb can be reordered unless there are data dependences or

memory fences. On the other hand, the mpb buffers the results of the memory operations

delivered from the sache to the proc. In contrast to the pmb, messages in the mpb can

always be reordered arbitrarily. Each site is connected to the shared memory where the

memory is used as the data rendezvous of the system. As seen in the figure, there is a

communication channel connecting all the saches together. This channel is used for cache

snoops. We can also see the definition of CSTATE has two types of Clean state: Cleansyni,

Cleannonsync. The former means that the value in the sacheline is the same as that in the

memory. The latter indicates the opposite. This classification allows cache interventions if

the sache has a updated clean copy.

6.2 Rewrite Rules of the SCRF

Same as the CRF, the SCRF has 2 sets of rules: The first set defines the operational

semantics of Loadl, Storel, Commit and Reconcile instructions together with background

rules that govern data propagation between saches and the memory. Meanwhile, the second

set defines the semantics of instruction reorderings and memory fences. The SCRF rules

only differ from the CRF rules by the first set. The two models share the same definition

for the second set. Therefore, we only present the definitions of the first set of rules in this

thesis. We also discuss how each rule in the first set can be simulated by the original CRF

rules. For reference, we have included the definition of the original CRF model in Appendix

A.

Loadl and Storel Rules: A Loadl or Storel can be performed if the cell containing the

address is cached in the sache. A Loadl instruction returns the value in the cell to the

processor through memory processor buffer (mpb). A Storel instruction updates the value

in the cell accordingly and then acknowledges the processor through mpb.
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SCRF Instructions

INST Loadl(a) 5 Storel(a,v)
Commit(a) 5 Reconcile(a)
Fencerr (al, a2) J Fencerw (al, a2)
Fencewr (al,a2) 0 Fence.,(al, a2)

SCRF System Configurations

proc proc proc

mp b

SYS Sys(MEM, SITEs) System
SITEs SITE J SITE I SITEs Set of Sites
SITE Site(SACHE, PMB, MPB, PROC) Site
SACHE c Cell(a,v,CSTATE) I SACHE Semantic Cache
CSTATE Clean,,,, 0 Cleannonsync Dirty Cache State

PMB 0 (t,INST);PMB Processor-to-Memory Buffer

MPB E E 0 (t,REPLY) I PMB Memory-to-Processor Buffer
REPLY v 0 Ack Reply

Figure 6-1: Instructions and System Configurations of the SCRF
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SCRF-Loadl Rule

Site(sache, (t, Loadl(a)); pmb, mpb, proc) if Cell(a, v,-) E sache

Site(sache, pmb, mpb|(t, v), proc)

SCRF-Storel Rule

Site(Cell(a,-,-)I sache, (t, Storel(a, v)); pmb, mpb, proc)

Site(n, Cell(a,v,Dirty) Isache, pmb, mpbI(t, Ack), proc)

The SCRF-Loadl and the SCRF-Storel can be simulated by the CRF-Loadl and the

CRF-Storel respectively because they have the same definitions.

Commit and Reconcile Rules: A Commit can be completed if the address is uncached

or the cache state of the address is Clean. A Reconcile can be completed if the address is

uncached or the cache state of the address is Dirty.

SCRF-Commit Rule

Site(sache, (t,Commit(a));pmb, mpb, proc) if Cell(a,v,Dirty) V sache

-> Site(sache, pmb, mpb(t, Ack), proc)

SCRF-Reconcile Rule

Site(sache, (t,Reconcile(a));pmb, mpb, proc) if Cell(a,v,Clean) V sache

-+ Site(sache, pmb, mpbI(t, Ack), proc)

Similar to the SCRF-Loadl and the SCRF-Storel , the SCRF-Commit and the SCRF-

Reconcile have the same semantics as the corresponding rules of the CRF.

Cache, Writeback and Purge Rules: A sache can obtain a Cleansyne copy of an

address from the memory, if the address has not yet been cached. A Dirty copy of an

address can be written back to the memory, after which the sache state of that address in

the sacheline becomes Cleanync. An address can be purged from the sache if its cache

state is Cleanync or Cleannonsync.

SCRF-Cache Rule

Sys(mem, Site(sache, pmb, mpb, proc) sites) if Cell(a,-,-) V sache

-+ Sys(mem, Site(Cell(a,mem[a],Cleanyn) I sache, pmb, mpb, proc) I sites)
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SCRF-Writeback Rule

Sys(mem, Site(Cell(a,v,Dirty) I sache, pmb, mpb, proc) I sites)

Sys(mem[a := v], Site(Cell(a,v,Clean,,,) Isache, pmb, mpb, proc) I sites')

where sites's sites with all Cell(a,-,Cleanync) in it changed to Cell(a,-,Cleannonync)

SCRF-Purge Rule

Site(Cell(a,-,cstate)I sache, pmb, mpb, proc) if cstate Cleanync

V cstate Cleannonsync

-+ Site(sache, pmb, mpb, proc)

The SCRF-Cache brings an uncached address to the site from the memory. The cache

state of the address is set as Cleanync because the data of the address is up-to-date with

the copy in the memory. The SCRF-Cache and the CRF-Cache are different because the

SCRF needs to maintain extra book-keeping information. However the information affects

only the performance but not the results of the SCRF. Therefore, the SCRF-Cache can be

simulated by the CRF-Cache.

The SCRF-Writeback allows a site to update a dirty copy of an address to the memory.

After the writeback, the SCRF sets the cache state to Cleansyne because the sache and the

memory now have the same data for the address. The rule also notices all other sites about

the writeback, so that they can change the cache state from Cleansync to Cleannonsync.

The SCRF-Writeback is nearly identical to the CRF-Writeback except the SCRF needs to

inform other sites about the writeback. Similar to the SCRF-Cache, the notifications does

not affect the results of the SCRF. Therefore, the SCRF-Writeback can be simulated by

the CRF-Writeback.

The SCRF-Purge has the same semantic as the CRF-Purge, which allows a site to purge

a copy if the copy is in one of the Clean states (either Cleanync or Cleannonsync.

Clean-Intervention and Dirty-Intervention Rules: A sache can provide the address

to another sache if the address is cached at Cleansync or Dirty state. The latter also

requires the sache to writeback the address to the memory.
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SCRF-Clean-Intervention Rule

Sys(mem, Site(sache, pmb, mpb, proc) I Site(sache', pmb', mpb', proc') I sites)

if Cell(a,-,-) V sache A Cell(a,v,Cleansync)E sache'

Sys(mem, Site(Cell(a,v,Cleansync)I sache, pmb, mpb, proc)|

Site(sache', pmb', mpb', proc') I sites)

SCRF-Dirty-Intervention Rule

Sys(mem, Site(sache, pmb, mpb, proc)|

Site(Cell(a,v,Dirty) I sache', pmb', mpb', proc') I sites)

if Cell(a,-,-) V sache

Sys(mem[a:= v], Site(Cell(a,v,Cleanyn) I sache, pmb, mpb, proc)

Site(Cell(a,v,Cleanync) sache', pmb', mpb', proc') I sites')

where sites'= sites with all Cell(a,v',Cleansync) in it changed to Cell(a,v',Cleannn8 ync)

The SCRF has two additional rules related to Intervention: SCRF-Clean-Intervention

and SCRF-Dirty-Intervention. The SCRF-Clean-Intervention allows a sache to provide the

data of an address to another sache if the address is cached at Cleansync state. This rule

can be simulated by the CRF-Cache rule because the Clean,,,, value of the copy in the

sache and the value of the copy are the same (implied by Cleansync). After the operation,

the cache state of the address at the destination is set to Cleansync.

The SCRF-Dirty-Intervention allows a sache to provide an address to another sache if

the address is cached at Dirty state. The rule also requires the sache to write back the

address value to the memory. This rule can be simulated by the CRF-Writeback followed

by the CRF-Cache.

SCRF Rules Summary

Figure 6-2 summarizes the definitions of the SCRF rules. The rules are grouped into two

categories: the processor rules and the background rules. When an instruction is completed

(retired), it is removed from the processor-to-memory buffer and the corresponding data or

acknowledgement is sent to the memory-to-processor buffer.
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Processor Rules
Rule Name Instruction Cstate Action Next Cstate
SCRF-Loadl Loadl(a) Cell(a,v,Cleansync) retire Cell(a,v,Clean,.,,)

Ce7l1a,v,Cleannonsync) retire Cell(a,v,Cleannonsync)
Cell(a,v,Dirty) retire Cell(a,v,Dirty)

SCRF-Storel Storel(a,v) Cell(a,-,Cleanyn,) retire Cell(a,v,Dirty)
Cell(a,-,Cleannonsync) retire Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Cell(a,v,Dirty)

SCRF-Commit Commit(a) Cell(a,v,Cleansvn,) retire Cell(a,v,Cleanync)
Cell a,v,Cleannonsync) retire Cell(a,v,Cleannonsyn,)
a sache retire a V sache

SCRF-Reconcile Reconcile(a) Cell(a,v,Dirty) retire Cell(a,v,Dirty)
a sache retire a ( sache

Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
SCRF-Cache a sache Cell(a,v) Cell(a,v,Cleansync) Cell(a,v)
SCRF-Writeback local: Cell(a,v,Dirty) Cell(a,v') local: Cell(a,v,Cleanync) Cell(a,v)

remote: Cell(a,v',Cleansync) remote: Cell(a,v',Cleannonsync)
SCRF-Purge Cell(a,-,Cleansync) Cell(a,v) a sache Cell(a,v)

Cell(a,-,Cleannonsync) Cell(a,v) a V sache Cell(a,v)
SCRF-Clean- local: a V sache Cell(a,v) local: Cell(a,v,Cleansync) Cell(a,v)
Intervention remote: Cell(a,v,Cleansync) remote: Cell(a,v,Cleansync)
SCRF-Dirty- local: a V sache Cell(a,v') local: Cell(a,v,Cleansync) Cell(a,v)
Intervention remote: Cell(a,v,Dirty) remote: Cell(a,v,Cleansvnc)

remote: Cell(a,v',Cleansync) I remote: Cell(a,v',Cleannonsnc)_

Figure 6-2: Summary of the SCRF Rules

6.3 Proof of the Correctness of the SCRF model

This section proves that the SCRF model produces answers that can also be produced

by the CRF model by showing that all behaviors of the SCRF can be simulated by the

CRF. The CRF can simulate the CRF because of the following reasons: 1) Both memory

models have the same set of instructions. 2) Both share the same set of rules for instruction

reorderings and memory fences. 3) For other SCRF rules, they are each proved to be able

to be simulated by some combination of the CRF, which are summarized by Figure 6-3.

As can be seen, seven rules of SCRF can be simulated by the corresponding CRF rules.

On the other hand, the CRF can also simulate the two additional intervention rules: the

SCRF-Clean-Intervention and the SCRF-Dirty-Intervention. The former can be simulated

by the CRF-Cache and the latter can be simulated by CRF-Writeback followed by the

CRF-Cache.
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SCRF rule CRF rule
SCRF-Loadl (a) CRF-Loadl (a)
SCRF-Storel (a) CRF-Storel (a)
SCRF-Commit (a) CRF-Commit (a)
SCRF-Reconcile (a) CRF-Reconcile (a)
SCRF-Cache (a) CRF-Cache (a)
SCRF-Purge (a) CRF-Purge (a)
SCRF-Writeback (a) CRF-Writeback (a)
SCRF-Clean-Intervention (a) CRF-Cache (a)
SCRF-Dirty-Intervention (a) CRF-Writeback (a) then CRF-Cache(a)

Figure 6-3: Mapping SCRF rules to CRF rules
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Chapter 7

Summary and Conclusions

Framework for Rapid Protocol Engine Development

In this thesis, we first present the framework for Rapid Protocol Engine Development

(RaPED). The RaPED distributes the implementation of a cache coherence protocol engine

into nodes and generalizes the design of the node. The RaPED allows designs to be highly

modular, which enhances the flexibility of implementation of different designs. Figure 7-1

presents the overview of a RaPED node. As can be seen, each node can be divided into

five modules. Each module is responsible for a distinct functionality: 1) Data Memory

is responsible for storing data, 2) Protocol Processor is responsible for carrying out the

coherence actions according to the protocol specification, 3) Networkup is responsible for

communication with the nodes towards the processor, 4) Network,,, is responsible for com-

munication with the nodes toward the shared memory and 5) Networkpeer is responsible for

communication with the nodes at the same level.

Multiword CRF

In the second part of the thesis, we present a variant of the Commit-Reconcile Fences

(CRF) memory model called Multiword CRF (MCRF). The MCRF is optimized for CRF

implementations with multiword wide cache lines. All possible execution behaviors of the

MCRF model can be simulated by the CRF model. Therefore, a correct implementation

of the MCRF automatically converts to a correct implementation of the CRF. There are

two main modifications in the MCRF so that it is compatible with multiword cache lines
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Figure 7-1: Overview of RaPED

without violating the semantics of the CRF model: 1) Addresses belonging to the same

cache line are cached and purged in group. 2) Each cache line maintains a cache state for

each address in the cache line, which allows the system to write back dirty address in the

cache line individually. Figure 7-2 summarizes the definitions of the MCRF rules. As can be

seen, most MCRF rules except the MCRF-Cache and the MCRF-Purge can be simulated

by the corresponding CRF rules. While the remaining two rules can be simulated by

executing the corresponding CRF rule once for each address a the cache line. This mapping

is summarized by Figure 7-3. The MCRF is used to prove the correctness of Multiword

Base Protocol introduced in the third part of the thesis.

Multiword Base Protocol

In the third part of the thesis, we use the RaPED to implement the Multiword Base Pro-

tocol, which is an implementation of the MCRF. Since the MCRF itself can be simulated

by the CRF, the implementation is also a correct implementation of the CRF. The Mul-

tiword Base Protocol is based on the Base protocol [1]. However, the focus for Base was

adaptivity and correctness, it ignored some important implementation issues such as cache-
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Processor Rules
Rule Name Instruction Cstate Action Next Cstate
MCRF-Loadl Loadl(a) Cell(a',vo,co,..,ok,Clean,..,Vn_1,cn-l)* retire Cell(a',VO,CO,..,Vk,Clean,..,Vn_1,cn_-1)

Cell(a',vo,co,..,k,Dirty,.,vn_ ,cnl)* retire Cell(a',vO,co,..,vk, Dirty,..,Vn_ 1 ,cn_ 1 )*
MCRF-Storel Storel(a,v ) Cell(a',vo,co,,k,Clean,,vn,cfl1)* retire Cell(a',vo,co,..,vf,Dirty,..,vn-1,c_)*

Cell(a',vo,co,Vk,Dirty,, vn1,cn_1), retire Cell(a',vo,co,..,v ,Dirty,..,vn_ 1,cn_ 1)*
MCRF-Commit Commit(a) Cell(af,vo,co,.., ok,Clean,..,Vn_1,cn_1)* retire ICell(a " , VO,CO,..,*k,Clean,..,Vnl,cn_1)*

a 0 sache retire a i sache
MCRF-Reconcile Reconcile(a) Cell(a,vo,co,..,k,Dirty,..,vn-,c_)* retire Cell(a',vo,co,..,vk,Dirty,..,v,cn_-)*

a ( sache retire a E sache
*- '_ 1- if i3 h h ti h dh k

Figure 7-2: Summary of the MCRF Rules

MCRF rule CRF rule
MCRF-Loadl (ak) CRF-Loadl (ak)
MCRF-Storel (ak) CRF-Storel (ak)
MCRF-Commit (ak) CRF-Commit (ak)
MCRF-Reconcile (ak) CRF-Reconcile (ak)
MCRF-Cache (a) CRF-Cache (a, a + 1,...,a + (n - 1))
MCRF-Purge (a) CRF-Purge (a, a + 1,...,a + (n - 1))
MCRF-Writeback (ak) CRF-Writeback (ak)
* a is the address identifying the sacheline

Figure 7-3: Mapping MCRF rules to CRF rules
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Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
MCRF-Cache a 0 sache Cell(a,vo) Cell(a,vo,co,..,v,_,cn_1) Cell(a,vo)

where a mod n = 0 Cell(ai,v 1 ) where co,ci,..,cn-i=Clean Cell(ai,vi)

Cell(a.-_ ,v.-_ ) Cell(an -1,v. - )
MCRF-Writeback Cell(a,vo,co,..,vk,Dirty, Cell(a,v') Cell(a,vo,co,..,vk,Clean, Cell(a,v')

.. , Vn-1,Cn_1) Cell(ai,v' .va c-) Cell(al,v')

Cell(ak,v ) Cell(akvk)
Cell(ak+l,vk+l) Cell(ak+l1'kk+1)

Cell(a-1,v'_ 1 ) Cell(a_ 1 ,v 1)
MCRF-Purge Cell(a,v,c,..,v_ 1 ,cn- 1 ) Cell(a,v;) a V sache Cell(a,v;)

where co,cl,..,cn_ 1=Clean Cell(ai ,v') Cell(ai,v')

Cell(a. 1 ,vl_1 ) Cell(ani ,vn _ 1)

a is the address dn g scen w ccna a rsaa e pos ton
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Figure 7-4: The Overview of the Implementation of Multiword Base

line replacement, efficient buffer management and compatibility with multiword cache lines.

Therefore, Multiword Base is developed to avoid these limitations.

Figure 7-4 gives an overview of the implementation of Multiword Base. It shows all

the components in Multiword Base. We prove that Multiword Base can be simulated by

the MCRF. Since the MCRF itself can be simulated the CRF, Multiword Base is also a

correct implementation of the CRF. Moreover, we prove that the Multiword Base always

has forward progress.

Snoopy CRF

In the final part of the thesis, we present another variant of the Commit-Reconcile Fences

(CRF) memory model called Snoopy CRF (SCRF). The SCRF is optimized for CRF imple-

mentations with multiword wide cache lines. All possible execution behaviors of the SCRF

model can be simulated by the CRF model. Therefore, a correct implementation of the

SCRF automatically converts to a correct implementation of the CRF. The SCRF adds

some rules and some extra book keepings to allow cache interventions. The book keeping
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Processor Rules
Rule Name Instruction Cstate Action Next Cstate
SCRF-Loadl Loadl(a) Cell(a,v,Cleansnc) retire Cell(a,v,Cleansync)

Cell11aoCleannonsync) retire Cell(a,vCleannonync)
Cell(a,v,Dirty) retire Cell(a,v,Dirty)

SCRF-Storel Storel(a,v) Cell(a,-,Cleansync) retire Cell(a,v,Dirty)
Cell(a,-,Cleannonsync) retire Cell(a,v,Dirty)
Cell(a,-,Dirty) retire Cell(a,v,Dirty)

SCRF-Commit Commit(a) Cell(a,v,Cleansync) retire Cell(a,v,Cleansync)
Cell(a,v,Cleannonsync) retire Cell(a,v,Cleannonsync)
a sache retire a sache

SCRF-Reconcile Reconcile(a) Cell(a,v,Dirty) retire Cell(a,v,Dirty)
a sache retire a - sache

Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
SCRF-Cache a sache Cell(a,v) Cell(a,v,Cleansync) Cell(a,v)

SCRF-Writeback local: Cell(a,v,Dirty) Cell(a,v') local: Cell(a,v,Clean.,yn) Cell(a,v)
remote: Cell(a,v'lCleansync) remote: Cell(a,', Cleannonsync)

SCRF-Purge Cell(a,-,Cleansync) Cell(a,v) a sache Cell(a,v)
Cell(a,-,Cleannonsync) Cell(a,v) a sache Cell(a,v)

SCRF-Clean- local: a sache Cell(a,v) local: Cell(a,v,Cleansync) Cell(a,v)
Intervention remote: Cell(a,v,Cleansync) remote: Cell(a,v,Cleansync)
SCRF-Dirty- local: a sache Cell(a,v') local: Cell(a,v,Cleanyn,) Cell(a,v)
Intervention remote: Cell(a,v,Dirty) remote: Cell(a,v,Clean,,yn)

remote: Cell(a,v',Clean8 ync) I remote: Cell(a,v', Cleannon sync)

Figure 7-5: Summary of the SCRF Rules

SCRF rule CRF rule
SCRF-Loadl (a) CRF-Loadl (a)
SCRF-Storel (a) CRF-Storel (a)
SCRF-Commit (a) CRF-Commit (a)
SCRF-Reconcile (a) CRF-Reconcile (a)
SCRF-Cache (a) CRF-Cache (a)
SCRF-Purge (a) CRF-Purge (a)
SCRF-Writeback (a) CRF-Writeback (a)
SCRF-Clean-Intervention (a) CRF-Cache (a)
SCRF-Dirty-Intervention (a) CRF-Writeback (a) then CRF-Cache(a)

Figure 7-6: Mapping SCRF rules to CRF rules
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information allows the SCRF to classify the Clean state into two categories: Cleanync and

Cleannonsync. When an address cached in the sache is in Cleanync, it indicates that the

copy in the sache has the same value as the copy in the memory. Therefore, if another

sache needs the data, it shows no difference between providing data from the sache and

providing from the memory. On the other hand, the SCRF always allows a sache to provide

the data if it has a Dirty copy. Figure 7-5 summarizes the definitions of the SCRF rules. As

can be seen, there are two additional rules explicitly for cache intervention. Other SCRF

rules are nearly identical to their corresponding CRF rules except the SCRF rules have

some extra book keeping actions. Since these book keepings do not affect the results of

the SCRF execution, these SCRF rules can be simulated by the corresponding CRF rules.

Figure 7-6 shows how each SCRF rule can be simulated by CRF rules. As can be seen, the

two intervention rules can also be simulated by the CRF.

7.1 Future Work

More Implementations with RaPED

It is worth testing the designs of the RaPED by using it to implement other cache coherence

protocol designs. This helps to improve the framework. For example, the data memory

interface assumes the module has fixed latency. However, non-uniform cache architectures

(NUCA) [10, 11], which have different latencies at accessing different locations of the cache,

are getting popular in the computer designs. Therefore, we may need to modify the RaPED

so that NUCA cache can be implemented by the data memory.

Combination of MCRF and SCRF

The thesis only discusses how multiword cache lines and snoopy caches can be implemented

on the CRF systems individually. However, it is common for commodity products to have

both optimizations. Therefore, it is worth combining the MCRF and the SCRF models and

having implementations supporting both optimization.
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CRF Translator

The Multiword Base protocol implemented in this project uses its own instruction set, which

uses synthetic benchmark to test the correctness. This limit the research possibilities of the

protocol. Since Shen has shown that most of the commodity products' memory models

can be translated to the CRF [1], it is possible to implement a translator to translate the

memory instructions from other instruction set to the CRF instruction. The translator

needs to be able to translate the instructions efficiently and accurately in real time. Once

the translator is implemented, the effectiveness of different CRF protocols can be compared

with other cache coherence protocols.
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Appendix A

Definitions of The CRF Model

This chapter presents the original CRF model introduced in Xiaowei Shen's Ph.D. Disser-

tation [1]. The MCRF and the SCRF are derived from this model.

A.1 CRF Configurations

Figure A-1 defines the CRF's instruction and its system configuration. As can be seen, the

CRF instructions include load-local (Loadl), store-local (Storel), commit, reconcile and four

types of memory fences. The CRF system contains a memory (MEM) and a set of sites

(SITEs). Each site (SITE) has a semantic sache (SACHE), a processor (PROC), processor-

to-memory buffer (PMB) and memory-to-processor buffer (MPB). The two buffers are used

to buffer the communication message delivered between the SACHE and the PROC. Each

SACHE contains a set of data cells, which backups the data recently accessed by the PROC.

A.2 CRF Rules

The CRF has 2 sets of rules: The first set defines the semantics of Loadl, Storel, Commit and

Reconcile instructions. It also includes background rules that govern the data propagation

between the semantic caches and the memory. The first set is also known as the Commit-

Reconcile (CR) model, because this set of rules itself defines a memory model which is the

same as the CRF model but with instructions executed strictly in order; the second set of

rules defines the semantics of the instruction reorderings and the memory fences. In the
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CRF Instructions

INST Loadl(a) 5 Storel(a,v)
Commit(a) 5 Reconcile(a)
Fencerr(al,a 2 ) J Fencer (al,a2)
Fencew (al,a2) J Fence,,(al, a2)

CRF System Configurations

a a..

SYS Sys(MEM, SITEs) System
SITEs SITE J SITE I SITEs Set of Sites
SITE Site(SACHE, PMB, MPB, PROC) Site
SACHE fe J Cell(a,v,CSTATE) I SACHE Semantic Cache
CSTATE Clean J Dirty Cache State
PMB e 9 (t,INST);PMB Processor-to-Memory Buffer
MPB e (t,REPLY)IMPB Memory-to-Processor Buffer
REPLY v 0 Ack Reply

Figure A-1: Instructions and System Configurations of CRF
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remaining of the section, I first present the definitions of the CR model and then present

the definitions of the second set of the rules.

A.2.1 CR Model

Loadl and Storel Rules: A Loadl or Storel can be completed if the address is cached in

the sache. A Loadl returns the value of the address to the processor and a Storel updates

the value of the address in the sache.

CRF-Loadl Rule

Site(sache, (t,Loadl(a));pmb, mpb, proc) if Cell(a, v, -) E sache

-+ Site(sache, pmb, mpbj(t,vm), proc)

CRF-Storel Rule

Site(Cell(a,-,-) I sache, (t, Storel(a, v));pmb, mpb, proc)

Site(Cell(a,v,Dirty) I sache, pmb, mpbj(t,Ack), proc)

Commit and Reconcile Rules: A Commit can be completed if the address is uncached

or the cache state of the address is Clean. A Reconcile can be completed if the address is

uncached or the cache state of the address is Dirty.

CRF-Commit Rule

Site(sache, (t,Commit(a));pmb, mpb, proc) if Cell(a,-,Dirty) V sache

Site(sache, pmb, mpbj(t,Ack), proc)

CRF-Reconcile Rule

Site(sache, (t,Reconcile(a));pmb, mpb, proc) if Cell(a,v,Clean) V sache

-+ Site(sache, pmb, mpbj(t,Ack), proc)

Cache, Writeback and Purge Rules: A sache can obtain a Clean copy of an address

from the memory provided that the address is not cached in the sache. A Dirty copy of an

address can be written back to the memory, after which the cache state of that address

becomes Clean. A Clean copy of an address can be purged from the sache at any time.
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12 -> Loadl Storel Fencerr Fencerw Fencer Fenceww Commit Reconcile
I1 4 (a') (a',v') (a' ,a') (a' ,a') (a5 ,a) (a,,a) (a') (a')
Loadl(a) true a $ a' a $ a, a i a' true true true true
Storel(a,v) -a #5a' - a' true true true true a : a' true
Fencerr(al,a2) true true true true true true true a2 $ a'
FencerW(al,a2) true a2 $ a' true true true true true true
Fencer (ai,a2) true true true true true true true a2 0 a'
Fenceww (ai,a2) true a2 : a' true true true true true true
Commit(a) true true true true a :A a', a 0 a' true true
Reconcile(a) a # a' true true true true true true true

Figure A-2: Instruction Reordering Table

CRF-Cache Rule

Sys(mem, Site(sache, pmb, mpb, proc) I sites) if a V sache

Sys(mem, Site( Cell(a,mem[a],Clean) sache, pmb, mpb, proc) sites)

CRF-Writeback Rule

Sys(mem, Site(Cell(a,v,Dirty) sache, pmb, mpb, proc) I sites)

Sys(mem[a:= v], Site(Cell(a,v,Clean) I sache, pmb, mpb, proc) sites)

CRF-Purge Rule

Site(Cell(a,-,Clean) I sache, pmb, mpb, proc)

Site(sache, pmb, mpb, proc)

A.3 Rules for Instruction Reorderings and Mem-

ory Fences

Figure A-2 summarizes the conditions that two instructions can be reordered (Instruction

Il followed by instruction I2 can only be reordered if their corresponding entry in the table

is evaluated "true"). It is trivial to derive the rules of instruction reorderings from this

table: For each entry in the table that returns true, add a rule to allow the two instructions

to be reordered in the processor-to-memory buffer (PMB).
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