A Client-Server Software Application for

Statistical Analysis of fMRI Data
by
Vijay Singh Choudhary

Bachelor of Technology in Civil Engineering,
Indian Institute of Technology Bombay (2002)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2004
(© 2004 Massachusetts Institute of Technology. All rights reserved.

AUt hor . o g
D;:Partment of Civil ang Environmental Engineering

. May 7, 2004

Certified by.. e
v Randy Gollub

Affiliated Faculty of Harvard-MIT Division of Health Sciences and
Technology

— Thesis Supervisor

Certified by.. =7~ . S—r e
Steven R. Lerman

Director of Center for Educational Computing Initiatives and
Prpfessor of Ciyf} and Envjronmental Engineering

Thesis Supervisor

Accepted by..
v Heidi M. Nepf
Chairman, Committee for Graduate Students

[MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 07 2004

LIBRARIES

BARKER

A Client-Server Software Application for Statistical Analysis
of fMRI Data
by
Vijay Singh Choudhary

Submitted to the Department of Civil and Environmental Engineering
on May 7, 2004, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

Statistical analysis methods used for interrogating functional magnetic resonance
imaging (fMRI) data are complex and continually evolving. There exist a scarcity of
educational material for fMRI. Thus, an instructional based software application was
developed for teaching the fundamentals of statistical analysis in fMRI.

For wider accessibility, the application was designed with a client/server archi-
tecture. The Java client has a layered design for flexibility and a nice Graphical
User Interface (GUI) for user interaction. The application client can be deployed
to multiple platforms in heterogeneous and distributed network. The future possi-
bility of adding real-time data processing capabilities in the server led us to choose
CGI/Perl/C as server side technologies. The client and server communicates via a
simple protocol through the Apache Web Server. The application provides students
with opportunities for hands-on exploration of the key concepts using phantom data
as well as sample human fMRI data. The simulation allows students to control rele-
vant parameters and observe intermediate results for each step in the analysis stream
(spatial smoothing, motion correction, statistical model parameter selection etc.).
Eventually this software tool and the accompanying tutorial will be disseminated to
researchers across the globe via Biomedical Informatics Research Network (BIRN)
portal.

Thesis Supervisor: Randy Gollub
Title: Affiliated Faculty of Harvard-MIT Division of Health Sciences and Technology

Thesis Supervisor: Steven R. Lerman
Title: Director of Center for Educational Computing Initiatives and Professor of Civil
and Environmental Engineering

Acknowledgments

First and foremost, I would like to extend my sincerest thanks to my advisors, Randy
Gollub and Steven Lerman, for all their help and support during the project. This
work has been made possible only with their continual guidance and encouragement
over past one year. Randy helped me a lot in learning the fMRI and neuroscience
domain knowledge throughout the course of project. Regular counselling and sugges-
tions from Steve were of great help. I would also like to thank Rick Hoge, my project
co-advisor, who assisted me greatly with the implementation, specially on the server
side.

I would like to thank lan Lai, the predecessor of the project, who was always
available whenever I had technical difficulties in design or implementaion.

I sincerely thank all my colleagues and staff at Center for Educational Computing
Initiatives (CECI), MIT for providing me a very professional working environment.
Specially, I am grateful to Mesrob Ohannessian who helped me alot in understanding
image processing concepts and Jed Northridge for his help, whenever needed.

I would like to thank my friends for making my stay at MIT enjoyable as well as
my family, for their constant support. I must also thank Greg Llacer for assisting
with the administrative portions of the project.

Finally, I thank Harvard-MIT division of Health Sciences and Technology for sup-
porting this project through VaNTH educational initiative, with grants from National
Science Foundation (NSF).

Contents

1 Introduction

2

1.1
1.2
1.3
14

Motivationso
Aims and Objectives

Scope of the Work

Overview of the Thesis

Background on fMRI Data Acquisition and Analysis

2.1
2.2
2.3
2.4
2.5

2.6

Introduction: What is functional imaging of the brain?

Basicsof fMRI,
Applications of fMRI L.
Designing an fMRI Experiment
Analysis of fMRI experiments data
2.5.1 Pre-processing of fMRI Data
2.5.2 Statistical Analysis
Previous Work in teaching fMRI

2.6.1 Software packages for the analysis of fMRI data

2.6.2 Courses and workshops

Educational Goals and Challenges

3.1
3.2

3.3 Enhancements to tutorial motivated by learning theory

Introduction

HPL framework

10
10
11

12
12
13
14
15
16
16
17
19
19
20

4 Web-based Client-Server Application

4.1 Background
4.2 Client/Server Application
4.2.1 Requirements 0L
4.2.2 Architecture Lo
4.2.3 Platform technologies

5 Detailed Client Design

51 Design Goalso
5.2 User Interface
5.3 Data Abstractions. Lo
5.3.1 View Parameter
532 GraphData 0.
5.4 Layered Architecture L .
5.4.1 Graphical User Interface (GUI) Layer
5.4.2 Main Layer
5.4.3 Data Retrieval Layer
5.5 Package Structure

6 Detailed Server Design

6.1 Server Architecture L Lo
6.2 Precomputationof Data
6.3 Communications Protocol
6.3.1 Request Protocol
6.3.2 Response Protocol

7 Conclusions and Future work
7.1 Client-Server Application
7.2 Future Work

26
26
27
27
28
32

35
35
36
39
39
39
40
42
46
48
49

51
51
55
55
56
56

List of Figures

4-1

5-1

5-2

5-4

6-1

6-2

The How People Learn (HPL) environment; Source [30]
Client/Server application architecture

Screenshot of Web-based Java Client for fMRI Analysis of Phantom
data (3D View)
Screenshot of Web-based Java Client for fMRI Analysis of human brain
data (4D View)
Layered architecture of web bases Javaclient
A detailed view of the communications among layers in the Web-based
Java client. Interfaces are labelled as “<<interface>>, with their ac-
companying implementations in adjacent boxes. Method calls are rep-
resented by thin arrows; the one method which returns data, getData,
loops back to the caller (called as Dispatcher). The arrows between
the GUI Layer and the Main Layer represent the various MouseClicked
and update methods. See Section 5.4.1 for the list of methods. Utility
packages are labelled as “<<utility>>and are used by most of these

layers. e

The architecture of the Web-based fMRI Data Analysis Server. Boxes
with shadow represent a C executable and the rest are CGI/Perl scripts,
and each arrow indicates a call from one script to another.

A sample response from the fMRI Data Analysis server

36

37
41

42

List of Tables

5.1
5.2
5.3

6.1
6.2
6.3

Brain2dViewerGUIl methods 44
DesignMatrixViewerGUIl methods 44
The list of Java packages and their description for the Web-based client 49

A list of usage statements for MINCRead program 53
The keys and the valid corresponding values for the client request . . 55
The suffixes for keys specifying the different properties of graph/data

in the server response. Required keys are marked bold. 58

Chapter 1

Introduction

Functional Magnetic Resonance Imaging (fMRI) is a new medical imaging technology
providing functional, as opposed to anatomical, mapping of the human brain. Brain
activity indications in fMRI data is based on the observation that increased neural
activity leads to increases in localized cerebral blood flow, blood volume, and blood
oxygenation. In fMRI this is referred to as Blood Oxygen Level Dependent (BOLD)
contrast. FMRI can provide detailed images of localized brain activity with a spatial
accuracy of millimeters and a temporal resolution of seconds [1]. Thus, FMRI is cur-
rently one of the best techniques for studying the function of the brain regions that
underlie visual perception in humans. This relatively new research tool has found
widespread use in a variety of applications at the intersection of biomedical engi-
neering and neuroscience, for example, mapping the boundaries between functional
regions of the brain, identifying tumor margins prior to surgery, and investigating the
pathology underlying diseases such as schizophrenia [2].

In a typical fMRI experiment, the signal can be overshadowed by noise, making the
detection of activation-related signal changes difficult. Though, by applying statistical
analysis methods to the time series of signals from each voxel in the brain permits
optimal extraction of the signal of interest. This thesis describes the technical details
of a Web-based software application developed to help researchers in understanding

the fundamentals of statistical analysis of fMRI experiment data.

1.1 Motivations

While magnetic resonance imaging (MRI) was introduced for clinical use in the 1970s,
functional magnetic resonance imaging (fMRI) was discovered only in the early 1990s
[2]. Although the field of fMRI research is still relatively young, it has experienced
explosive growth; in the years 1999-2001 more than 900 abstracts were submitted to
the International Conferences on the Functional Mapping of the Human Brain [3].
While some investigators in the field have expertise concerning the details of fMRI
data analysis, others simply apply free or commercial software packages to their data.
These packages often include a multitude of parameters that can be optimized by an
fMRI expert, but are rarely adjusted by others [2]. Since the packages have preset
defaults that may not be appropriate for all situations, investigators lacking a proper
understanding of fMRI data analysis may draw false conclusions from their data if
they do not have a proper knowledge in data analysis.

Students and researchers wanting to learn more about fMRI data analysis have
limited resources available to them. The most widely available resources are a few
recently published textbooks [4, 5] and documentation that accompanies particular
software packages. There are also a number of courses and workshops on fMRI, but
these represent a limited resource that is not available to all researchers in the field.
Thus, there exist a need of educational material for learning about the steps and
assumptions underlying standard fMRI data analysis. Hence, we developed an on-
line, interactive software application which would help students and researchers to
acquire insights required to use existing software packages in an informed fashion and
adapt them to their own purposes. The focus of the application is on the fundamental
processing steps and parameters commonly used in fMRI data analysis. For these
reasons, this educational material will be invaluable to researchers working in domain
of fMRI.

The intended audience includes advanced undergraduate and graduate students,
as well as investigators who wish to use fMRI in their research but are not familiar

with the methods and techniques of fMRI data analysis. This module is intended to

be a standalone source for learning about fMRI data analysis, although it may also

be a useful adjunct to existing courses at various universities.

1.2 Aims and Objectives

The main objective was to develop an educational module (a software application
and accompanying tutorial) to assist advanced undergraduate and graduate students
in learning the fundamentals of statistical analysis of fMRI data. This module should
allows students to learn about each of the steps in fMRI data analysis, pre-processing,
signal to noise estimation, and statistical inference. The software application should
provide students with opportunities for hands-on exploration of key concepts for each
step in the analysis stream using phantom data, as well as sample human fMRI
data. The accompanying tutorial should provide appropriate background materials
and guidance, in order to promote exploration, understanding of key concepts and to
encourage constructive use of the interactive demonstration.

Another objective was to modify the current tutorial being used in one of the labs
for the course “HST.583 Functional Magnetic Resonance Imaging: Data Acquisition
and Analysis” through the lens of How People Learn (HPL) framework. The HPL
framework and major learning objectives of this educational module are discussed in

detail in chapter 3.

1.3 Scope of the Work

The software tool and the tutorial covers the basic preprocessing steps and parameters
commonly used in analysis of fMRI data, as described in detail in section 5.2. Topics
such as fMRI experimental design, the physics of fMRI data acquisition, and advanced

methods for data processing and analysis are beyond the scope of this module.

10

1.4 Overview of the Thesis

Chapter 2, Background on fMRI Data Acquisition and Analysis, builds background
on basics of fMRI, fMRI experiment design, noise issues and statistical analysis of
data. Also, it presents a compiled report on available educational material for teaching
fMRI.

Chapter 3, Educational Goals and Challenges, describes the enhancements to the
tutorial motivated by How People Learn (HPL) framework, a strategy for designing
effective learning environment

Chapter 4, Web-based Client-Server Application, covers the overall requirements,
architecture and platform technologies chosen for the Web-based interactive software
application.

Chapter 5, Detailed Client Design, covers the details of the design decisions and
implementation of the complete client. Chapter describes some of the software de-
velopment concepts being used in the current web application such as modularity,
layered architecture and data abstraction.

Chapter 6, Detailed Server Design, covers the details of the server design and im-
plementation. In detail, it covers pre-processing of data, server architecture and
communication protocols being used with client.

Chapter 7, Conclusions and Future Work, summarizes some of the key points of
the client/server application. Also, it suggests future scope of improvements in the

application.

11

Chapter 2

Background on fMRI Data

Acquisition and Analysis

2.1 Introduction: What is functional imaging of

the brain?

Magnetic resonance (MR) imaging uses radio waves and a strong magnetic field to
provide clear and detailed pictures of internal organs and tissues. Functional magnetic
resonance imaging (fMRI) is a relatively new procedure that uses MR imaging to
measure metabolic changes that take place in an active part of the brain or as a
result of a stimulus. Physicians know the general areas of the brain responsible for
speech, sensation, memory, and other functions. However, the exact locations can
vary from individual to individual. Injuries and disease, such as stroke or brain
tumor, can even cause aforementioned functions to shift to a different part of the
brain. fMRI can help radiologists or physicians to determine precisely which part
of the brain is handling critical functions such as thought, speech, movement, and
sensation. This information can be critical to planning surgery, treatment for stroke,

or other interventions to treat brain disorders.

12

2.2 Basics of f/MRI

To understand the statistical issues inherent in fMRI, it is essential to first gain an
understanding of how the imaging process itself is thought to work. In this section,
author outlines the physics and biophysics underlying fMRI image acquisition.

As described by Ogawa, Lee et al. [6] “Atomic nuclei with an odd number of
protons or an odd number of neutrons are affected by magnetic fields. Exposing such
nuclei to a strong magnetic field will cause them to try to align themselves parallel
or anti-parallel to the field. The parallel orientation has a slightly lower energy than
does the anti-parallel orientation. This causes more nuclei to align themselves in
the parallel orientation, which, collectively, results in an overall magnetization of
the object in the field. The alignment of the nuclei isn’t perfect in either direction;
instead, the atoms precess about the field at a fixed frequency. “Precession” refers to
the revolution of the axis of rotation of the atoms. Frequency of precession varies for
each type of nucleus and is related linearly to the strength of the magnetic field. When
radiofrequency energy at the frequency of precession of the nuclei is injected into the
system, the level of energy increases temporarily, but then returns to equilibrium. The
energy emitted in the return to the starting state is at the frequency of precession.
Both the absorption and the emission of energy are therefore selective, in that only
nuclei that are near the appropriate precession frequencies will be affected. This is
the key aspect of resonance. It is the selective absorption and emission of energy that
produce the MR (magnetic resonance) signal. Magnetic resonance imaging (MRI)
involves gathering data on the precession of the atomic nuclei, resulting in high-
resolution images. The strength of the signal is proportional to the number of nuclei of
a specific type. Hence the method allows us to count nuclei with particular properties.
MR images are typically three-dimensional, representing volumes.” The images are
divided into volume elements, or voxels; the amplitude of the recorded signal at each
voxel in each image is the average nuclear density of the chosen element (usually
hydrogen).

With functional MRI, we use a series of MR images collected over time to gather in

13

formation about neuronal activation in the brain during the course of a scan. While
the scan is being performed, subjects may be asked to carry out various cognitive
processing tasks; the images will then convey information on which regions of the
brain were active and hence involved in the particular task under study. The con-
nection between neuronal activation and the MR images is believed to be as follows.
When resting brain neurons become active, the rate of blood flow to the neighbor-
hood of these neurons increases, as glucose is delivered to the regions in question.
This is known as the hemodynamic response. As the rate of firing increases for the
neurons, their metabolism also increases. The increase in metabolism results in an
influx of oxygenated blood to the affected region. Oxygen levels rise in the nearby
blood vessels, since active neurons do not consume much more oxygen than when
at rest. The magnetic properties of oxygenated and deoxygenated hemoglobin differ
(as demonstrated by Pauling in 1935), and this difference affects the measured MR
signal through what is called the Blood Oxygenation Level Dependent (or BOLD)
effect. Hence, the MR signal from the neighborhood of a neuron should change as
the concentration of oxygenated blood around the neuron changes. MR imaging is
sensitive enough to detect these functionally induced changes in blood oxygenation
in the human brain [6].

The idea that blood flow changes can be correlated to changes in brain function
is an old one, presented as early as the end of the last century by the British physiol-
ogists Roy and Sherrington (1890). They postulated the existence of an “automatic
mechanism” that regulated the blood supply to the brain in a manner dependent on
variations in activity [6]. Subsequent research has confirmed this hypothesis, although
the exact nature of the system is still unknown. Functional magnetic resonance imag-

ing (fMRI) is a step in the further understanding of this process.

2.3 Applications of fMRI

The range of applications of fMRI to neuroscience is growing rapidly. Here is the list

of the some of the research areas in which fMRI is proving to be an important tool

14

[4]:
1. Defining neurophysiological correlates of human behavior;
2. Defining ways in which brain functions can be modulated;
3. Establishing a ‘system-level’ description for the brain basis of learning;
4. Defining ‘networks’ for cognitive processing

Other than these, fMRI is also becoming common in clinical applications as well.

To list few of these general areas:
1. Mapping of the functional area in the damaged brain;

2. Providing state or trait markers (Whether underlying abnormalities are present
only during periods of illness, with return to normal between episodes, or persist

independent of clinical status can be addressed through fMRI studies [7]);

3. Defining mechanism of reorganization or compensation from injury.

2.4 Designing an fMRI Experiment

In a typical fMRI scanning sequence, over a hundred successive echo-planar images
(EPI) are taken at a rate of 1 every 2 to 6 seconds, which gives a total of 4 to
10 minutes for the functional part of the experiment. EPI is a type of magnetic
resonance imaging that uses only one nuclear spin excitation per image and therefore
can obtain images in a fraction of a second rather than the minutes required in
traditional MRI techniques. Since the FMRI measures the relative signal change over
time under different stimulus conditions, a control condition is necessary to determine
whether the change in the signal is due to the test stimulus condition. Because the
change in the MR signal lags behind the change in neural activity by a few seconds
(typically 5 sec), the duration of a condition should be in the range of 20 to 60 sec,
in which 5 to 15 scans would then take place. To provide maximum contrast between

the different stimulus conditions, the order of these conditions should be rotated

15

somewhat cyclically. Thus, the design of the stimulus should take these constraints
into account. Most importantly, the stimulus display must be synchronized with the

scanning sequence.

2.5 Analysis of fMRI experiments data

The goal of fMRI analysis is to detect, in a robust, sensitive, and valid way those parts
of the brain which show increased intensity at the points in time that stimulation was
applied. A single volume is made up of individual cuboid elements called voxels. An
fMRI dataset from a single session can either be thought of as ¢ volumes, one taken
every few seconds, or as v voxels, each with an associated time series of ¢ time points
[4].

The basic problem in analysis of functional imaging experiments is to identify
voxels that show signal change varying with the changing brain states of interest
across the serially acquired images. This becomes a challenging problem for fMRI
data because the signal changes are small and the number of voxels simultaneously
interrogated across the image is very large. One of the potentially most significant
artifacts for fMRI that distinguishes it from other functional imaging techniques is its
susceptibility to motion from the movements, either of the head or brain (e.g. with
the respiratory or cardiac cycle). So the idea is to address the ways in which the data
can be prepared to minimize artifacts and maximize sensitivity for the detection of
activation changes. The aim of fMRI analysis is to identify in which voxels’ time-
series the signal of interest is significantly greater than the noise level. For this, a 4D

dataset is initially pre-processed, i.e. prepared for statistical analysis.

2.5.1 Pre-processing of f{MRI Data

Once fMRI data has been acquired, the preprocessing starts by reconstructing the
raw ‘k-space’ data into images. The next step applied is slice-timing correction;
because each slice in each volume is acquired at slightly different times, it necessary

to adjust the data so that it appears that all voxels within one volume had been

16

acquired at exactly the same time. Each volume is now transformed (using rotation
and translation) so that image of the brain within each volume is aligned with that
in every other volume; this is known as motion correction.

After artifact removal two general approaches to maximizing the signal-to-noise
ratio for the time course data then are applied typically: spatial and temporal filtering
(smoothing). fMRI is being used to detect a signal change that lasts for only a
limited period of time and covers just a small region of the brain. A general result of
signal detection is that blurring of a signal (in this case both the dimensions of space
and time need to be considered) can enhance the signal-to-noise, hopefully without
significantly affecting the activation signal. Also, generally data have large number
of spuriously activated voxels that appear to be sites of significant brain activation
but are really just an artifact- these typically disappear with the spatial smoothing.
After this, each volume’s overall intensity level is adjusted so that all volumes have
the same mean intensity - this intensity normalization can help reduce the effects of
global changes in intensity over time and provide the means to compare images across
subjects and sessions. Reduction in low and high frequency noise is normally desired
as final step; each voxel’s time series is filtered by linear or non-linear tools in order
to achieve this [4].

In our software application, we have pre-processed several complete data sets in
advance so that we can have good speed of data exchange over the network. If we
do the processing of data in real time, it would just add latency to the response from
the server, often as much as 15 or 20 minutes. So for demonstrating the effects of
pre-processing of data, we do guide the user in a way that he/she understands the

basics of pre-processing, its effects and importance before doing statistical analysis.

2.5.2 Statistical Analysis

After the pre-processing steps, statistical analysis is carried out to determine which
voxels are activated by the stimulation. This can be a simple correlation analysis
or more advanced modeling of the expected hemodynamic response to the stimula-

tion. Various possible statistical corrections can be included, such as correction for

17

smoothness of the measured time series at each voxel. The main output from this
step is a statistical map which indicates those points in the image where the brain
has activated in response to the stimulus. Mostly each voxel's time series is analyzed
independently (‘univariate analysis’) but there are also ‘multivariate’ methods. For
example, standard general linear model (GLM) analysis is univariate. It’s not in the
scope of this thesis to explain the complete GLM Analysis. There are many valid
ways of performing statistical comparisons between signals in images associated with
different brain states and their time courses of change. A common approach is to
generate a map of t statistics (the ratio of the mean signal intensity to its standard
error) on a voxel-by-voxel basis and use this to identify voxels with significance level
exceeding a chosen threshold (i.e. t > 3, which might correspond in a particular case
to p < 0.01).

In the current software application, we model the signal that we record from an
fMRI session as a linear combination of the actual signal and the noise. With GLM
analysis, we use the signal and noise as regressors, and solve for the coefficients for
the linear combination. The mathematical equation for the model isy = 8 x + e,
where y is the observed signal, x is the estimated signal, 3 is the parameter estimate
for x, and e is error term that corresponds to our noise. Our application users have
the option of choosing different signal and noise models for the analysis. Once analy-
sis parameters are selected, user can request the results by selecting statistical maps
(t-maps or p-maps) view in the module. In addition to seeing the default statistical
map that shows every voxel, user can also specify a threshold such that only the
activation is visible. Also, we have a module for representation of the regressors used
in the analysis with the design matrix and stimulus covariance matrix. The design
matrix is a visual representation of the regressors used in the analysis, and consists
of one or more columns. The first column represents the paradigm convolved with
the hemodynamic response function, and the subsequent columns represent polyno-
mials used in detrending. The stimulus covariance matrix is necessary when testing

contrasts involving multiple parameters under the general linear model.

18

2.6 Previous Work in teaching fMRI

Most of the currently available educational material for fMRI focuses on the physics
of image acquisition and experimental design, but few resources exist for fMRI data
analysis, and those that do focus primarily on theory or one specific software package
[8]. There are a few recent of text books (5, 6] that provide chapters on fMRI data
analysis and delve into detail about the theory behind the statistics of general linear
model (GLM) analysis. There also exist some journal and research publications on
statistical analysis, but all of them talk about new cutting edge methods. Several
researchers have posted online material on the Web to explain the basics of fMRI
with some detail [9] - [16], but they cover data analysis briefly and sometimes in the

context of software analysis packages [14, 16], such as SPM [17] or Brain Voyager [18].

2.6.1 Software packages for the analysis of fMRI data

This section describes some of the extensively used packages in the MRI and fMRI
community. AFNI (Analysis of Functional Neuroimages) [19] is a flexible package
that allows graphical display of image data and analysis using the correlation method,
developed by Bandettini et al, among others [20]. “Plug-in” modules are available to
help users customize their analyses and extensive documentation on these and other
aspects of the program can be found on the AFNI website maintained at National
Institute of Health (NIH) by Bob Cox, accessible from http://afni.nimh.nih.gov/afni/.

Statistical Parametric Mapping, or SPM [21], was originally developed for Positron
Emission Tomography, another imaging technique, and was extended to fMRI. The
approach used by this package is voxel based, assuming a parametric statistical model
at each voxel. General linear models describe the variability in the data in terms
of experimental and confounding effects and residual variability [22]. At each voxel,
hypotheses regarding the model parameters can be assessed and images can be created
based on the calculated test statistics. There is extensive documentation about SPM
at the site http://www fil.ion.bpmf.ac.uk/spm/.

Other free software analysis tools available are KHORFu and FIASCO (Func-

19

tional Imaging Analysis Software: Computational Olio). Other then these, there are
also some commercial software packages such as MEDx and AIR (Automated Image
Registration). But the interesting thing is that most of these software packages have
their own default parameters, and researchers just use them for analyzing their data
without actually understanding the importance of these. Most of them expect user
to know about the basics of fMRI and statistical analysis in advance, so they are
not suited for new researchers or students learning about this domain. Although,
we are making use of the SPM package for pre-processing of the data in advance for
our client-server application, we are incorporating experts’ knowledge in selecting the
parameters and will teach our audience about the same in the accompanying tutorial.

Another interactive educational tool that exists for fMRI is Dview, a Matlab
program developed by Richard Hoge at the MGH-NMR Center [23]. Dview was used
in the MIT Health Sciences and Technology (HST) course “Functional Magnetic
Resonance Imaging: Data Acquisition and Analysis,” or HST.583, in several of the
lab sessions [23]. It provides an image viewing tools that allows students to navigate
through brain volumes, and a statistical processing module that allows students to
perform some simple analyses. A lab manual with a self-paced tutorial accompanied
each lab session in the course, guiding students through using Dview to examine
and compare various data sets. The development of our web based client/server

application is guided from the ideas of this stand-alone tool.

2.6.2 Courses and workshops

There also exist semester-long courses on fMRI at various universities [8]. Courses
specifically covering fMRI at University of Michigan, University of Waterloo, Medi-
cal college of Wisconsin, UCLA, and the Harvard-MIT Division of Health Sciences
and Technology (HST) [24] include several lectures covering data analysis and the
statistics underlying the analyses.

Another source of fMRI education comes through 1 to 5 day long workshops
organized by different institutes. Some of them are like the one-day analysis session at

the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB)

20

[25] to a three day workshop at the Functional Imaging Research Center at the Medical
College of Wisconsin [26] with an hour of analysis lecture and a two-hour session using
AFNI. The Athinoula A. Martinos Center for Structural and Functional Biomedical
Imaging at Massachusetts General Hospital (MGH) holds a 4 day-long course offered
3 times per year that includes multiple lectures and hands on experimental design,
data acquisition and analysis (using their own DView Analysis tool) [27]. In addition,
conferences sponsored by the Organization Human Brain Mapping (OHBM) [28] and
the annual meeting of the International Society for Magnetic Resonance in Medicine
(ISMRM) [29] also feature tutorials in fMRI analysis.

While the educational opportunities for fMRI are growing as the courses and
workshops spread throughout the country, they have limits on the number of people
that can enroll or sign up, and often are quite expensive. The proposed software
application and tutorial, on the other hand, will be provided freely to the public, and

does not place a time constraint as the courses and workshops do on the attendees.

21

Chapter 3

Educational Goals and Challenges

3.1 Introduction

Education in any new emerging area offers a number of challenges to all the con-
stituents of the educational process - students, teachers and researchers. This chapter
talks about some of the educational challenges and goals in teaching fMRI through
the lens of the “How People Learn (HPL)” framework. New advances in learning sci-
ence and educational use of technology have provided frameworks for reexamination
of instructional paradigm in any domain. So the author makes an effort to explicitly
present the goals and motives behind the development of this software application and
accompanying tutorial. This development effort is one of the many initiatives taken
by the Vanderbilt-Northwestern-Texas-Harvard/MIT Engineering Research Center
(VaNTH/ERC) for Bioengineering Educational Technologies, with grants from the
National Science Foundation, aiming at improving the short- and long-term out-
comes of bioengineering education. The immediate use of this module and tutorial
is a semester long graduate course taught at MIT, named as “HST.583 Functional
Magnetic Resonance Imaging: Data Acquisition and Analysis”. Also, at the same
time the software module will be made available freely to entire biomedical imag-
ing community though the support of the BIRN (Biomedical Informatics Research

Network [40], www.nbirn.net).

22

3.2 HPL framework

Recent research in learning sciences and review of pedagogical methods have produced

many good frameworks for designing and creating an effective learning environment

[30, 31]. This innovative project is based on principles of learning within the How

People Learn model described in the National Academy of Sciences report “How

People Learn: Brain, Mind, Experience, and School” [30]. This framework says that

learning can be enhanced if the learning environments are grounded in four basic

principles. As described by Harris et al., “the learning environment is [31]:

(a)

(b)

(d)

learner-centered in the sense that it takes into account the knowledge, skills,

preconceptions, misconceptions, and learning styles of the students;

knowledge-centered in the sense that it helps students learn with under-
standing by organizing the knowledge around “key concepts” or “big ideas” of
the subject domain area, along with understanding the conditions under which

different aspects of the knowledge is applicable;

assessment-centered in the sense that it provides numerous opportunities
for students to obtain feedback on their understanding so that it can be refined
as needed, and numerous opportunities for a professor to obtain information
on students’ understanding of material so that teaching may be adjusted as

needed; and

community-centered in the sense that it fosters norms that encourage both

students and faculty to learn from one another.”

A diagram of these concepts is shown in Figure 3-1.

23

Figure 3-1: The How People Learn (HPL) environment; Source [30]

3.3 Enhancements to tutorial motivated by learn-
ing theory

Looking through the lens of HPL framework, we are redefining the accompanying
tutorial to make the effective usage of this software application in conveying the
fundamental concepts of fMRI data analysis. The use of simulation in educational
settings is most effective when students are working towards a clear goal, yet the as-
signed tasks are not too narrowly defined [32]. As a consequence, we are reorganizing
the tutorial literature used with the software simulator such that we first of all clearly
define the major learning objectives. We also describe detailed learning objectives
and key concepts of each of these major learning objectives.

To make a student understand concepts thoroughly, we walk them through guided
exploration of the software simulation and create situations where key concepts are
presented. Students examine the unprocessed image data, learning about the char-

acteristics of the fMRI signal and then sequentially move through the pre-processing

24

and statistical analysis steps that enable further exploration of the image data. This
is done for different data sets. Students are directed to make comparisons, with
emphasis on how processing choices affect the ultimate interpretation of data.

The four major learning objectives explicitly described in the tutorial for the

stand-alone version of the same application by Lai, Gollub et at. [2], are:

“Understanding temporal and spatial correlation in fMRI data;

e Understanding how to construct a statistical model for fMRI data;

Identifying sources of noise and how they affect fMRI signals; and

Understanding the effects of motion correction and spatial filtering on the out-

come of statistical analysis of fMRI data”.

The interactivity of any teaching environment is a very important feature of learn-
ing. Interactivity makes it easy for students to revisit specific parts of the environment
to explore them more fully and to test ideas, take some decisions and receive feed-
back. In this case, students can see how different statistical analysis models have
different effects on data. Non-interactive environments are much less effective for
creating contexts that students can explore and reexamine, both individually and
collaboratively. Most of the stand-alone software being used in pre-processing does
not provide immediate feedback, because it takes considerable amount of time to
process the data. In this tools environment, the user can go back to change the

parameters and immediately see the effects on outcomes.

25

Chapter 4

Web-based Client-Server
Application

4.1 Background

The standalone prototype of the fMRI data analysis application, which was developed
by Lai, et. al. [2] in fall of 2002, had some limitations which led to the development of
this web based application. The primary goal was to port the tutorial to a platform
that would allow the learning tool to be available to the wider scientific community
through the World Wide Web. Some of the limitations which became motivations for

this development are listed here:

e The standalone demo application required a Matlab license and access to image

files

e Since the Matlab based standalone demo uses the image data located in the
Athena locker, it could only be accessed through Athena to users with a valid

MIT account

e Interactivity of the demo was limited by the size of the image data and the fact
that many of the processing steps were actually accomplished “on the fly” by
the tutorial software analysis capabilities. So, latency in the data retrieval was

an issue

26

With these issues in mind, Lai [8] started (under the supervision of Dr. Randy Gollub
and Dr. Rick Hoge) developing an initial version of the client/server application
which could be made accessible to “everyone from anywhere”. The first version of
the application used the Matlab scripts and Matlab web server on the server side
and Java GUI based client on the front end. But the prototype application didn’t
really solve the problem of the latency in data communication between front-end
and backend. It was later determined that the Matlab web server was not efficient,
specifically for this application, in handling multiple client requests and processing
the requests on the fly for real-time communication. In addition, issues related to
licensing of the Matlab software on the server machine created obstacles to broader
access. Limitations of the Matlab web server and additional cost due to licensing
of the same, forced the author to look for alternative server technologies and web
server which could solve these problems and still achieve the goals of the application.
Author explains the modified architecture and selection of particular set of platform

technologies in this chapter.

4.2 Client/Server Application

4.2.1 Requirements

The client/server solution should be able to address most of the problems and meet
several of the requirements. It should be sufficiently interactive such that users do not
experience undue delays when examining and exploring the brain data. The graphical
user interface (GUI) of the application should be user-friendly and should display the
brain slices/data in a manner that is consistent with standards used in the medical
imaging community. The client should be able to run on all platforms such as Linux,
Windows, Macintosh, and others. Improvements in the data set selection for the
tutorial should be such that there is sufficient contrast in the stimulation and noise
sources (such as body motion) so that fMRI data analysis concepts could be taught

better.

27

An interactive application with least latency would require pre-processing of the
data and carrying out statistical computations in advance on the server side. It
should be the goal to shift as much of visualization work to the client as possible for
better performance. For example, constructing the image (of brain slices) from raw
data and implementing the autocorrelation function can be done at the client. So the
work load of image construction on the server could easily be moved to client with
the use of Java imaging technologies [33].

The software application should be made available to majority of researchers across
the globe who are interested in learning fMRI. To make the application freely available
to public, the selection of technologies should be such that it does not require users
to buy a license for using it. For this reason only, the distribution of the standalone
Matlab based software was not considered as it requires that the user purchase a

Matlab license.

4.2.2 Architecture

Various options for selection of architecture were considered before deciding upon
a client/server design. One option was to convert the Matlab based prototype to
a standalone application which is easy to distribute. Matlab does offer a Runtime
Server that allows Matlab programs to be converted to standalone applications [34],
but that still does not solve the issue of requiring users to download an enormous
quantity of data in the case of standalone prototype. Though, applications developed
for use with the Matlab Runtime Server can take advantage of any of the math,
language, and visualization features in Matlab and the Matlab toolboxes [34], the
solution was not found in consistent with our requirement of not requiring user to
buy a license to run the application. Thus it could be desirable to keep data and the
GUTI interface on separate computers.

Another choice was to develop a powerful, robust, portable, extensible, and open-
source Java (v 1.4) application (applet) comparable to a 3D image visualization ap-
plication developed by Chris et al. [35], but for a different scientific need. The

convenient way to visualize 4D medical imaging data set is as three 2D slices through

28

the same voxel location in the volume and a time series showing the intensity value of
the selected voxel. In order to provide remote data access with a level of performance
comparable to traditional stand alone applications, the issue of file loading (“I/O”),
which is significantly slower, needs to be addressed. In practice, the performance of
regular Internet connections is unpredictable; moreover, the transfer rate can vary by
up to three orders of magnitude (1000x) among different types of network connections
[35]. So, we had two options with respect to how and when to download the 4D image

data:

1. All up-front: all of the data is downloaded and stored in client’s memory
before the user can view and interact with any of it. This guarantees the best
interactive response of the viewer; however, the user has to wait for all the
data to download before the client could work, which can be impractical in low

bandwidth situation.

2. On demand: download slice image data only when and if the user wants to
view that particular slice. This minimizes the data downloads (and the amount
of memory required by the applet/application), but the interactive response

time is highly dependent on the server and on the network speed.

Given that we do not expect user to have accessibility to store the huge data-sets
required for this application (complete data sets with all pre-computation could re-
quire as much as 20- 30 gigabytes),the all up-front option was found to be impractical.
Also, as we expect the request/response communication over the network to be light
weight (i.e. data transferred per call are small in size) for our application, the second
option of on demand supply of data to the client found more viable and attractive.

Given that data and interface should be decoupled, a client/server model would
serve a reasonably good architecture. So author chose to build an application based on
client/server architecture: the data reside on the server machine, and a GUI interface
on the client side communicates with the server to retrieve appropriate data (brain
slices, time series data etc) for the user. How much of the processing should be done

on either side was decided based on several constraints and on the goal of maximizing

29

Client request
cal over HTTP POST

Application

Executing C executables or APaChB
1 BIph e WebServer
Server Response Workstations
Response Java based client running either as
d:(l)a ? stand-alone Application or an Applet
in Web Browser
Server Client

Figure 4-1: Client/Server application architecture

the efficiency of the system. Other reasons which make the Client /Server architecture

(as shown in Figure 4-1) appropriate for this application are listed below:

1. As the application requires the user to navigate through multiple data sets (each
one of approximately 30 megabytes in size), it is not reasonable to transfer a
complete data set to the client. Rather it was decided to store all these large
data sets at one common server which could be used by different and /or multiple
clients. Also, in a networked environment, shared data should be stored on the
servers, rather than on all computers in the system. This makes it easier and

more efficient to manage access.

2. Clients would not be responsible for performing any data processing. Clients
can concentrate on requesting input from users, requesting desired data from the
server, and then analyzing and presenting this data using the display capabilities

of the client workstation or the terminal.

30

3. Substantial Computational Requirements: Even if the data all reside on the
server, the amount of disk space and memory required for computation may
be too large to expect of the client computer. Also, interactivity might not be
good if the bandwidth between the server and client is low; transmitting the
data from the server to client would take too much time, given that each brain
volume data takes 30 megabytes. Hence computation should be done on the
server side for whatever possible client requests. So a dedicated server is needed

for substantial computing requirement to process client requests.

4. Client can be designed with no dependence on the physical location of the data.
If the data is moved or distributed to other database servers (or file servers) the

application continues to function with little or no modification.

In the current architecture we expect the server to perform all computations as
desired by the user via the client, and that the server transmits to the client the end
result of computations. Here also a similar problem could arise that the server sends
the client the entire result which could be anywhere in size from a simple line graph
to a four-dimensional brain volume data. Assuming that the user could only see part
of the data at a time, because of 2-D presentation of the results in GUI, it is sufficient
to keep the result on the server side, and for the client to request the portion that user
is interested in viewing from the server. So, the objective is to transfer only as much
of data as is needed by the client. A similar approach was also adopted in the Dview
[23] (standalone prototype) for displaying its 3- and 4- dimensional brain data, except
instead of having the data transmitted over the network from server to client as in
this case, it was transmitted from disk to memory. Dview was not loading the huge
data set directly into memory, but rather just the portion displayed to user. Thus,
the client/server architecture fits with our requirements for location of computation

and location of results to be at server and visualization work at client side.

31

Web Server Selection

As discussed earlier, because of the problems with the Matlab web server in terms of
efficiency and interactivity in the previous version of this application, we evaluated
other available web server options. The Apache web server was found to be best suited
to our application requirements. However, the Apache configuration was modified to
our needs. Apache is considered as one of the most popular web servers since April

1996 [36], as it is robust, could be deployed easily and is available for free.

4.2.3 Platform technologies
Server Side

Many options were considered for the server platform before finally deciding upon
one. One option was to keep server as a complete Matlab based solution for both
computation and Web-serving. This approach would allow much of the old standalone
demo code to be readily used, but would require modification of the output data into
a form the client accepts. The major disadvantages of this option include limitations
of the Matlab Web Server and dangers of code reuse because of few unknown bugs
in the final version. In the environment of Matlab Web Server, input variables are
submitted to the server though URL-encoded form data through the HTTP POST
request, and the server then computes the output and sends back the output HTML
document as the result [37]. This is much the same way any standard web server,
such as Apache, handles client requests. An option similar to this one was adopted
by Lai [8] in the prototype version except that some of the data was pre-preprocessed
and pre-computed. Another major issue with this option was getting a license for
running Matlab on the server machine.

Another option was to move completely away from Matlab and to use another
programming language, both for computation and serving the data to the client. The
major advantage of this approach is that code could cleanly be built from scratch
and that it provides an opportunity to get rid off some of the bugs in standalone

prototype code. The language of choice could be required to have basic toolboxes for

32

building simple web server or it should be able to provide web serving functionality
by using standard web server, such as Apache, invoking CGI script to execute the
server programs. The major limitation of this option was that common languages
such as Java and C do not have Matlab‘s matrix-manipulation facilities, which would
have to be written before server can function, and would take a fair amount time to
develop. Also, the standalone version was taking advantage of libraries for reading
and processing data files in the common MINC (Medical Image NetCDF, is a file
format for medical imaging data) format, which according to MINC documentation
does not exist for languages other than Matlab, C, and Fortran [38], and conversion
routines would still have to be written to bridge the gap from the MINC library
output to a format that a C library would accept.

The third option considered includes complete pre-processing and computation for
statistical analysis of the data in advance. To achieve that, Matlab/Perl scripts or al-
ready existing software packages could be used. And then, the main effort would con-
sist of writing the actual server code in Java or some other language. This approach
could preserve the Matlab computational facilities and the advantage of building the
server from scratch with no bugs. Depending on the format of output file generated
after running Matlab scripts or another fMRI data analysis software package on the
data, this option would require additional libraries for reading the pre-computed data
for the client request. The one disadvantage of this approach is that it would gen-
erate at least an order of magnitude more data than used in standalone prototype
where many of the computations were done on request in real-time. Given enough
disk space on the server this might not necessarily be a problem. The fact that there
were no written libraries in existence for Java to read the pre-computed data, and it
was not possible to write these libraries in the given time frame, the choice was made
to choose another language to replace Java in this option.

Ultimately, the author chose to use a hybrid of the second and third options.
Keeping the interactivity of the client in mind, most of the data for time-consuming
processing steps and statistical analysis were pre-computed. The Apache Web Server

dispatches CGI/Perl scripts to fetch the pre-computed data by running some of the

33

conversion routines written in C and Perl, performs any necessary minor computation
such as coordinate transformation etc, and returns the output to the client. More

detailed design of the server is presented in Chapter 6.

Client Side

Some of the options in selecting client side technologies for the application were
being discussed by Lai in his report [8]. Author summarizes some of his thoughts
and presents additional ideas for the final selection of Java 2 Platform. Initially,
standard HTML forms supplemented with some JavaScripts were considered adequate
for the client. It was originally believed by the author that interaction between user
and program does not go far beyond viewing static images and plots. However, we
subsequently recognized the need for a very interactive client where the user could
navigate through time-series brain data with the ability to click on the time-series
plot and/or the three ordinal views of the brain (transverse, sagittal, coronal). An
intermediate solution of having a Java applet specifically for displaying interactive
plots was explored by Ian [8] where the server would transmit the data required for
the plot, and the applet would take care of plotting the data on client side. But the
communication between the applet and the HTML forms containing the processing
steps and brain images was found to be too cumbersome. This is because, at present,
Java and HTML can be a difficult combination due to limitations in how Java can
interact with the Web browser [39]. Ultimately, it was decided that having entire
client written in Java would offer more power, robustness, flexibility, and modularity
in development. Finally, the client will be distributed or deployed either as a Java
Applet or a regular Java Application. Since the client is expected to be used long
term, the latest version of Java platform (Java 2 Platform, standard edition 1.4) was

chosen, with the assumption that most Web browsers would support it soon.

34

Chapter 5

Detailed Client Design

The client of the Web-based application is markedly different from the stand-alone
prototype in the user interface and design. This chapter covers details of the user
interface of the client, the main data abstractions used, the architecture, and the
package structure. The final client architecture and interface has evolved from a
prototype version developed by Lai [8] to a fully functional robust application which

can be deployed to multiple platforms in heterogeneous, distributed networks.

5.1 Design Goals

The design requirements of the programming language for the client were driven by
the nature of the computing environments in which this software application would
be deployed. We expect our users to run this application on multiple platforms, so
Java was the obvious choice of development language for its reasonable performance
and portability for a GUI intensive application like this. Other design goals for the

client development were:

o Applications should be designed to offer more interactive and responsive user

interfaces than HTML clients running inside a web browser.

e Developing the application under the umbrella of layered architecture for its

flexibility to future changes.

35

Figure 5-1: Screenshot of Web-based Java Client for fMRI Analysis of Phantom data
(3D View)

5.2 User Interface

The user interface for the Web-based fMRI Data Analysis client is based on that
of the standalone prototype, with some important differences. First, the final client
integrates the viewer and the panel of processing parameters so that the user does
not have to switch his attention between windows. Some of the features in the final
GUI of the application are just extension to the basic features implemented in the
prototype application developed by Ian [8]. Additional features such as color map
legend for images, zoomed and mosaic view of individual cross sectional slices are
implemented from scratch in the final client. Screenshots of the integrated interface

are shown in Figure 5-1 and Figure 5-2 with different data sets.

36

Bagittal

Coronal

| 4007

8007

2007

0 s 1100 173
+ Iopus Data
i

[——————————

(tmap 3
kbl

emset e el

|Faise Positve Rate ¥

Figure 5-2: Screenshot of Web-based Java Client for fMRI Analysis of human brain

data (4D View)

37

The viewer has a large panel to the right of the transverse, sagittal, and coronal
cross-sectional slices, in which it displays either a zoomed slice of the image or the
time series values for the selected voxel in 4-dimensional data or the autocorrelation
function of a selected voxel. However, in addition to integrating the viewer and
the panel, the final client also displays the design matrix and the motion correction
parameters in the same window. When the user requests a plot or the design matrix,
the image data is replaced by a panel displaying the requested data.

In the standalone prototype, the processing parameters control the computations
performed on the data, and the various View and Plot buttons at different stages of
processing display the data as processed up to that particular stage [8]. However,
since nearly all of the data in the Web-based application is pre-computed, the need
for the user to press a button to view the data after changing parameters was found
unnecessary, instead the response should be close to immediate. Also, the user should
be able to enable or disable a processing step or alter its parameters, and see that
the data is changed automatically. Therefore, in the final client, the View and Plot

buttons have been removed, and replaced by a list of different views to choose from:

e Time Series Data (raw, fitted, or hemodynamic response)
e Zoom View (Zoomed view of either of the slice in large panel area)
e Motion correction parameters (6 parameters: 3 translational and 3 rotational)

e Autocorrelation function (autocorrelation function estimated from the time se-

ries data of a selected voxel)
e Statistical properties (t-value maps or standard deviation map)

e Design matrices (displays design matrix and a stimulus covariance matrix for a

given experiment paradigm)

Since each view may require certain processing steps to be turned on, the view
selection defaults to raw data if turning off a processing step causes the view to

become unavailable. For instance, if statistical modelling is turned off, the statistical

38

properties are no longer relevant; if the statistical properties were previously selected,

the display changes to show raw data instead.

5.3 Data Abstractions

Data abstraction groups the pieces of data that describes some entity (in this case
processing/view parameters), so that programmers can manipulate that data as a
unit. It helps programmer to cope with the complexity of the data as it hides the
details. This section talks about the data abstractions used in the current application

because of its importance in flexibility to construct or change a piece of software.

5.3.1 View Parameter

ViewParameters class represents parameters chosen for viewing data in the client.
The ViewParameters object represents whether a processing step is enabled, which
processing parameters are selected (if a processing step is enabled), and which view is
currently requested by the user. It has matching get and set methods for each of the
parameter. Also, it has methods for toggling and indicating whether each processing

step is enabled or not.

5.3.2 Graph Data

A utility package of graph data abstractions provides a mechanism for communicating
the details of various graph data sent from the server to the client. For simplicity’s
sake, each of the graph data objects is immutable (an immutable object is an object
which has a state that never changes after creation). An important reason for using
an immutable object is that other objects can trust its content to not unexpectedly
change.

The abstract GraphData object represents an arbitrary n-dimensional graph
with axes and an optional title. Each Axis spans a predefined Range and can have

an optional label. The optional tick marks and labels of each axis can be specified

39

in the server response or automatically computed using an implemented algorithm.
In the current implementation, we chose not to print tick marks and labels on slices
because it creates more space for actual image to display, though we have used them
for plots. Since the plots used in the client are all two-dimensional, the objects
representing them all derive from Graph2DData, which specifies a horizontal and
a vertical axis.

PlotData represents a line graph with one or more data series plotted on the
same axes. Each DataSeries encapsulates a list of GraphPoint objects, an optional
GraphStyle specifying the color, and an optional label that may be used for a legend.

MapData represents a two-dimensional image map. An ImageMap object spec-
ifies the actual image and its dimensions, and is translated on the graph to a specified
point.

The BrainPoint object represents a point in brain volume data, with or without
a time dimension. Basically it represents x, y, z or/and t coordinates of the selected

voxel in brain volume data depending upon if it is 3D or 4D data.

5.4 Layered Architecture

The user’s selection of different processing steps and navigation of brain data is gen-
eralized to a set of parameters (implemented as ViewParameters). The client sends
these parameters to the server as a request for data. After receiving a response from
the server, the client then displays the data in a manner appropriate to the data
returned. This view of the client’s responsibilities suggests an architecture consisting
of layers of interaction between the user and the server. Though, more centralized
architectures were also considered for the client, but the layered architecture seems
to give the most flexibility for future to the user interface and server.

The client consists of three different layers, the Graphical User Interface (GUI)
Layer, the Main Layer, and the Data Retrieval Layer, as shown in Figure 5-3. Figure
5-4 shows a detailed view of the communications between layers of the client and can

be used for reference.

40

Input

User

Display

Graphical User Interface Layer

Viewing Parameters Changed

Update Image/Graph Data

Main Layer

Create Request for Image/Graph Data

Image/Graph Data Response

Data Retrieval Layer

Request for Data \L

/[\ Server Response

Server

Figure 5-3: Layered architecture of web bases Java client

41

5.4.1 Graphical User Interface (GUI) Layer

As the main interface to the user, the GUI Layer displays two-dimensional brain
slices and plots based on the user selected parameters. Major functions of GUI layer
include providing mapping between Ul (AWT/SWING) objects and more convenient
data object, processing Ul events, updating display and interacting with next layer
down. To make the user interface easily modifiable, the GUI Layer is decoupled from

the Main Layer via several Java interfaces.

Interfaces

The Main Layer communicates with the GUI Layer via update methods that instruct
the user interface to refresh its data. To receive notification that the user has clicked
on a plot or changed a parameter, the Main Layer registers itself as a listener of events
caused by the GUI Layer.

Each interface of the GUI Layer can register and un-register listeners that are
interested in its events via the addListener and remowveListener methods, and return
a listing of listeners via the getname-of-interfaceListeners method. The finishUpdates
method informs the GUI Layer that the updates for that interface are completed, and
that the given listener is ready for events again.

The alternative to having an interface for each of the possible viewers is to have
a single monolithic interface for the entire GUI Layer, consolidating all of the update
methods. While this approach is not altogether undesirable, the division of the inter-
faces into separate types of viewer seems logical because of modularity and flexibility
for future development.

The list of interfaces for the GUI Layer is described below, along with the interface-

specific update methods and the methods used to notify their listeners of events.

e Brain2DViewerGUI — The Brain2DViewerGUI represents a user interface
for a standard brain viewer, using two-dimensional cross-sectional slices as the
main navigational tool. In addition, it should be able to display a time series

for a four-dimensional brain data set. It must implement the update methods

42

[Constructimage Package

N

«interface»

getData()

<utility»
[Grapher Package
GUI Layer
“mtertace> «interface» «interface» «interface»
Brain2DViewerGUI D ViewerGUI PlotViewerGUI ParameterSelectorGUI
*MouseClicked() MouseClicked() *MouseClicked() *MouseClicked()
Update*() Update*() Update*() Update*()
«interface» «interface» interface» P 1 s«ilmet’ fac(eiLIL‘sla r
Brain2DViewerGUiListener DesignMatrixViewer-GUIListener PlotViewerGUILIstener arameterSelector istene
BrainViewer DesignMatrixViewer Plotviewer
getBrainData() | L-IUDGSISBD() Main Layer L_.
M lupdale4D() updataMTrices Dispatcher updatePlots()
«utility»

wutility»
[GraphData Package

DataRetriever

Data Retrieval Layer

HTTP POST Request

Server Response

Server

Figure 5-4: A detailed view of the communications among layers in the Web-based

Java client.

Interfaces are labelled as “<<interface>>, with their accompanying

implementations in adjacent boxes. Method calls are represented by thin arrows;
the one method which returns data, getData, loops back to the caller (called as
Dispatcher). The arrows between the GUI Layer and the Main Layer represent the
various MouseClicked and update methods. See Section 5.4.1 for the list of methods.
Utility packages are labelled as “<<utility>>and are used by most of these layers.

43

Method Description

updateSlice Instructs the brain viewer to dis-
play/update the given slice with the new
data

update TimeSeries Instructs the brain viewer to display the
given time series data of the voxel under
cursor

updateMosaic Instructs the brain viewer to display a
given mosaic of brain slices

update ColorMap Instructs the color map viewer to display
the dynamic range color map for the brain
slices

updateZoom View Instruct the large panel to display the

zoom view of last slice clicked

mosaicViewRequested

Invoked when the user requests a mosaic
view of the given cross sectional view. The
type of view - sagittal, coronal, or trans-
verse - should be provided

sliceMouseClicked

Invoked when the user clicks on a cross
section to move the cursor in space. The
coordinates for the point clicked should be
provided

timeSeriesMouseClicked

Invoked when the user clicks on the time
series plot to move the cursor in time. The
coordinates for the point clicked should be
provided

Table 5.1: Brain2dViewerGUI methods

and required to call the corresponding methods of its registered listeners on
the listed conditions (methods details are listed in Table 5.1). For each of the
methods that require the point clicked, the point corresponding to the axes of

the graph displayed should be returned, rather than the physical screen pixel

coordinates.

DesignMatrixViewerGUI — The DesignMatrixViewerGUI represents a user
interface that displays a design matrix and a stimulus covariance matrix for a
given fMRI experimental paradigm. As described in chapter 2, the design matrix
is a visual representation of the regressors used in the statistical analysis. It

must implement the update methods and methods of their listeners on the listed

44

Method Description

updateDesignMatriz Instructs the design matrix viewer to dis-
play the given design matrix

updateRegressor Instructs the design matrix viewer to dis-
play the given regressor

updateStimCovMatrix Instructs the design matrix viewer to dis-

play the given stimulus covariance matrix

designMatrizMouseClicked

Invoked when the user clicks on the de-
sign matrix to request the display of the
regressor corresponding to the vertical col-
umn of the matrix

sliceMouseClicked

Invoked when the user clicks on the regres-
sor

stimCovMatrizMouseClicked

Invoked when the user clicks on the stim-
ulus covariance matrix

Table 5.2: DesignMatrixViewerGUI methods

conditions (methods details are listed in Table 5.2).

¢ PlotViewerGUI — The PlotViewerGUI represents a user interface for dis-

playing one or more two-dimensional line graphs. PlotViewerGUI is being used

to display time-series data, motion corrected parameters and the autocorrela-

tion function. When the user clicks on a plot, the PlotViewerGUI is required

to call the mouseClicked method of its listeners, providing the coordinates of

the point clicked and which plot the user clicked on. It must implement the

following update methods:

— updatePlot: Instructs the plot viewer to display the given plot with data

series

— updatePlots: Instructs the plot viewer to display the given list of plots in

some appropriate visual arrangement

e ParameterSelectorGUI — The ParameterSelectorGUI represents a user in-

terface for selecting view parameters. It must implement the updateParameters

method, which instructs the parameter selector to change its display to reflect

45

that the given view parameters. When the user has changed the view parame-
ters, the ParameterSelectorGUI must call the viewParametersChanged method

of its registered listeners (which is mainly Dispatcher in this case).

Implementation of Viewer Interfaces

The implementation of each of the viewer interfaces simply consist of standard Swing
panels, with different graphers (described in the next section) tiled to display the
brain slices and plot data. A StandardGUI object provides a frame divided into
two parts, an area where appropriate viewer for the user-selected view is displayed,
and the area for the parameter selector, which simply comprises a collection of menus

and buttons (Java swing objects) for the different view parameters.

Grapher Utility Package

A package of graphing tools was developed to simplify the implementation of the
viewer interfaces. The packages consists of a LineGrapher, which plots line graphs,
such as the times series of brain data and the motion correction parameters, and a
MapGrapher, which plots image maps, such as the cross sections of the brain and
the design matrix. Each grapher can optionally display a cursor within the axes, and
uses the standard Swing event mechanism for notification of user input. The graphers
accept the graph data objects described in Section 5.3.2. Because of its generality,
the grapher package can be readily utilized by any other user interface designed to sit
in the GUI Layer. An abstract superclass AxisGrapher is also provided for creating
any other grapher that plots on a set of horizontal and vertical axes. Another utility
package, called ConstructImage, was developed to build images from the array of

pixel data using Java imaging and foundation classes.

5.4.2 Main Layer

The Main Layer constitutes the center of the client as it holds the state of the client,

communicates with the GUI Layer to update the display, and sends data requests to

46

the Data Retrieval Layer. Major functions of main layer includes providing methods
for interacting with the server object, mapping between basic data object and ob-
jects to be sent to/from server and interaction with the Data Retrieval Layer. The
Dispatcher, Brain2DViewer, PlotViewer, and DesignMatrixViewer are main
components of the Main Layer. Main Layer holds the core of the client logic, and
is capable of serving and communicating with different implementations of the GUI
and Data Retrieval Layers. Main layer can be think of as middleware component in

a 3-tier architecture which drives the application in both directions.

e Dispatcher — The Dispatcher serves as the main control of the application.
It keeps track of its contacts in the Data Retrieval Layer and the GUI Layer,
as well as the viewing parameters chosen by the user. This is the key class
which is being called whenever any of the Viewers need some data from the
server. Dispatcher communicates the request to Data retrieval layer by launch-
ing a separate thread for each request call. An alternative design considered
for current Dispatcher was to keep the back-end for the parameter selector into
a separate entity, which would have the exclusive channel of communication
with ParameterSelectorGUI and would communicate parameter changes back
to the Dispatcher. Since the view parameters are an integral part of the state
of the client and are also necessary for the Dispatcher’s retrieving data on the
Brain2DViewer and PlotViewer’s behalf, it seemed the Dispatcher should sim-
ply assume the role of the back-end. Also, at the same time, Dispatcher can
maintain central control of the view parameter information and communicate

it to upper layers.

e Brain2DViewer — The Brain2Dviewer is corresponding back-end in Main
Layer to the Brain2DViewerGUI in GUI Layer. It keeps track of the current
position of the cursor in the brain, and passes requests for brain data to the
Dispatcher when the user navigates through the brain slices or time series data.
Finally, when the server response returns with the data, the Brain2DViewer

calls appropriate update methods to refresh the Brain2DViewerGUI.

47

e DesignMatrixViewer — The DesignMatrixViewer, serving as the back-end to
the DesignMatrixViewerGUI, keeps track of the design and stimulus covariance
matrices (used in the experiment paradigm) being viewed and the regressors
used in fitting the statistical model. It notifies the GUI to switch to a different
interface when the user requests the design matrix view. When the user clicks on
the design matrix, the DesignMatrixViewer fetches the regressor corresponding

to the column that the user clicked, and instructs the GUI to display it.

e PlotViewer — As the back-end to the PlotViewerGUI, the PlotViewer keeps
track of the current plots requested by the user, and passes the plots (after
building them from raw data from the server using several of utility packages)

to the PlotViewerGUI for display.

5.4.3 Data Retrieval Layer

The Data Retrieval Layer is client’s interface to the server to handle all the commu-
nication between them. It sends the data request to the remote server using HTTP
POST and returns with the response data from the server. So, the major function
of Data Retrieval layer includes managing connection with the server, providing I/0
from/to the server through the connection and finally to read the data from input
stream in a desired manner.

DataRetriever, is the main interface of this layer. The one method, getData,
accepts a data request in the form of a DataRequest object, and returns the re-
sponse from the server in the form of a DataResponse object. Depending on the
type of data returned, the DataResponse could either be a BrainDataResponse, a
DesignMatrixDataResponse, or a PlotResponse. An alternative DataRetriever
interface that was considered consisted of multiple methods for getting different types
of data, instead of having a single getData method. But since view parameters con-
tain all of the information needed for a request, it was decided that one method would
be sufficient, and would offer more flexibility the case if more data types arise in the

future.

48

RemoteDataRetriever (the current implementation of the data retriever), con-
verts the provided DataRequest from the Main Layer into an HTTP POST request
and sends it to the remote server. It extracts the response data from the server reply,
of content-type: application/x-www-form-urlencoded, and builds plot/image from the
corresponding key-value pairs and raw byte data for image. The appropriate type of
DataResponse is created and returned for the graph data received. It makes use
of the ConstructImage (see section on utility package) module for constructing the
cross-sectional slice images and dynamically changing color map from the raw byte
data.

As this layer is decoupled from the Main Layer via a simple interface, different
versions of the Data Retrieval Layer can be used for different types of servers (separate

implementation for access to local and remote servers).

5.5 Package Structure

The client takes advantage of Java packages to divide the classes and interfaces into
logical groupings. Table 5.3 enumerates the packages in the client and gives a de-

scription for each package.

49

Package

Description

edu.mit.hst583.fdad

edu.mit.hst583.fdad.client

edu.mit.hst583.fdad.client.gui

edu.mit.hst583.fdad.client.gui.standard
edu.mit.hst583.fdad.client.gui.grapher
edu.mit.hst583.fdad.client.main
edu.mit.hst583.fdad.client.data

edu.mit.hst583.fdad.lib

edu.mit.hst583.fdad.lib.data

edu.mit.hst583.fdad.lib.graph

Main package for fMRI Data Analysis
client

Package for client application

Package for client Graphical User Inter-
face (GUI) layer

Standard implementation of client GUI
Grapher utility package

Package for client Main Layer

Client Data Layer

Package for shared data structures be-
tween client and server

Package for client/server communications
objects (requests and responses)

Package for graph data objects

Table 5.3: The list of Java packages and their description for the Web-based client

50

Chapter 6

Detailed Server Design

The server of the Web-based application was completely redesigned and implemented
from scratch with the aim to improve performance over the prototype version running
with Matlab server. The final server consists of C executables and CGI/Perl scripts
invoked by the Apache Web server running on server machine. The server architec-

ture, pre-processing and communication protocol are described in this chapter.

6.1 Server Architecture

The FMRIDataAnalysisDemoServer script serves as the interface to the client.
It calls the request parser to extract the parameters from the input, then calls the
coordinate transformer to change client coordinates (x, y, z, t) to brain volume coor-
dinates (row, column, slice and frame), dispatches the corresponding data generator
to compute or process pre-computed data, and passes it to the response generator
to output the reply to the client in the proper format. A diagram of the server ar-
chitecture is shown in Figure 6-1.The subsequent sections detail each of the steps

above.

Data

As discussed earlier, all the data used for teaching through this tutorial are pre-

processed in advance and are stored in a UNIX file system based database on the

51

server. MINC is used as the medical imaging file format for all the data used in this
application. MINC, stands for Medical Image Net CDF, is a medical imaging oriented
extension of the NetCDF (Network Common Data Form) file format which is widely
used in many areas of scientific data storage. The main advantages of MINC are its
support for coordinate systems, extensibility, self-description, and portability across
different computer platforms. With a few simple tools, it is extremely easy to read
in both the data and descriptive information about the data. So, we have written a
C program, know as MINCRead, which outputs desired data from these MINC files

for the client requests.

Request Parser

The script GetRequestParameters checks the validity of the client input and generates
a perl structure containing the parameters as requested by the client. As the Apache
Web Server, with CGL.pm module installed, automatically creates a structure for
input variables, in the implementation the parser does a relatively simple conversion
between fields in the input structure and fields in the parameter structure. CGILpm,
a perl 5 library, provides a simple interface for parsing and interpreting query strings
passed to CGI scripts. These extracted parameters from the client request are used

to produce the filename to be used for data generation for the client.

Coordinate Transformer

The script XYZTtoRCSF converts the X, y, z, and t coordinates from client request
to the coordinate system used in the MINC data file. Each pixel on a 2D client GUI
can be mapped to a voxel in 3D brain volume data by knowing the corresponding
row, column and slice number in the data. The script uses a binary called mincinfo
for getting information about the image data file such as step sizes, orientation of

image etc, required for the coordinate transformation.

52

fMRIDataAnalysisDemoServer

p Coordinate
Request Parser Response Generator Transformer
GetRequestParameters XYZTtoRCSF

MINCReader MINCINFO

File System based Database of Brain Volume data in .mnc format

Figure 6-1: The architecture of the Web-based fMRI Data Analysis Server. Boxes

with shadow represent a C executable and the rest are CGI/Perl scripts, and each
arrow indicates a call from one script to another.

53

Output Command Syntax

Whole series to stdout MINCRead file.mnc

One slice MINCRead -slice <index> -frame
<index> file.mnc

One cross-section along row MINCRead -row <index> -frame

<index> file.mnc
One cross-section along column | MINCRead -column <index> -frame
<index> file.mnc

Signal at specified indices MINCRead -row <index> -column
<index> -slice <«slice> -frame <index>
file.mnc

Table 6.1: A list of usage statements for MINCRead program

Response Generator

Response Generator is a collection of perl scripts and subroutines to create a response
object for the client. Depending on the type of view request from client, it generates
the data, by executing MINCReader and other programs, in a format which the client
expects. For instance, if “Time Series Data” view is requested then the response
generator calls the corresponding subroutines responsible for producing the data for

3 slices (transverse, sagittal, and coronal) and the time course for the selected voxel.

MINCReader

MINCRead is a C program capable of generating raw byte data for brain image slices
(cross-sections of transverse, sagittal, and coronal) and the time series values of any
selected voxel in the brain. MINCReader is called from different Response Generator
scripts with different parameters as arguments depending upon the view requested.
This program basically opens the MINC file specified on the command line and writes
bytes containing either an image or signal to standard output. The usage statements

of the program are described in the Table 6.1.

54

6.2 Precomputation of Data

As discussed earlier, in the interest of increasing interactivity, most of the data that
was computed on the fly in the prototype is pre-computed for the server. This includes
not only the motion-corrected and spatially filtered data, as was the case with the
prototype, but also the standard deviation maps, a number of fitted statistical models,
and the corresponding statistical maps. Data that can be trivially computed either
at the client side or by Perl scripts on the server, such as the autocorrelation, and
plots that can be extracted readily from three-dimensional brain data, such as the
histogram of t-values, were not considered for pre-computation.

The amount of pre-computed data generated as a result of numerous parameters
(signal model and different noise models, each with multiple options to chose from)
does not really pose a problem. This is because the three dimensional maps lack the
time component, and the fitted models only require at most the time data between
successive stimulations in the experiments [8]. Also, given declining storage costs,
we don’t see data storage a problem on server machine, so interactivity was given a
priority over the size of the data sets generated by pre-computation.

Since most of the data on the server side was pre-computed, it removed the need
for Matlab on the server side for computation. Thus, pre-computation allowed us to

shift to a server solution completely independent of Matlab.

6.3 Communications Protocol

As the client-server application requires transfer of document and other data from
server/client to client/server, HTTP was chosen as the base protocol for communica-
tion and Apache as the HT'TP Web server. The Apache Web Server can handle input
in URL-encoded form data in an HTTP request using the POST method, and can
return the output in a desired format [40]; the modules for communication between

the client and server were designed keeping these things in mind.

55

Key Possible Value

data_set resting, phantom, exp 1, exp 2, exp 3
motion_correction true, false
mc_cost_function wls (stands for weighted list squares)

mc_reference_point | first time point

spatial filtering true, false
sf filter_type gaussian
sf_filter_width 2,4,6

statistical_modelling | true, false

stat_signal model gamma, FIR

stat_noise_model white, AR1

dt_function det (stands for discrete cosine transform)
dt_dct_set 16 sec, 32 sec, 64 sec,128 sec, 256 sec, Inf
view viewZoom, raw, autocorr, hdr, fitted, std

dev map, t map, p map, t histogram, mec
params, matrices

Table 6.2: The keys and the valid corresponding values for the client request

6.3.1 Request Protocol

Since the client request is submitted in the form of URL-encoded form data, it consists
of a set of keys and values corresponding to the view parameters desired by the client.
Table 6.2 lists the different keys and their possible values. Some of the these keys
have only single option, so the interesting question is why to have them at all. The
reason is to keep the request protocol as much generic as possible so that it can be
extended in future easily. All of the keys must be present, and all keys must have
legitimate values, for the request to be considered valid by the server; otherwise the

server will respond that the request is invalid.

6.3.2 Response Protocol

The response as returned by the Apache Web Server is in the form of a document

comprising a mixture of text data and raw byte data for image/graph. For simplicity,

56

the server response first has plain-text data consisting of key-value pairs that represent
the image/graph data, then followed by actual data for the image to be displayed by

the client. Figure 6-2 shows a sample response from the server.

Syntax and semantics of server response

The body of the server response consists of lines with a key-value pair, separated by
an equals sign (=), and the raw image/graph byte data for image or graph to be built
from at the client side. The key-value corresponding to dimension of the image data
(for e.g. transverse-image-dim = 64 64) specifies the number of bytes to be read from
the response for a particular type of image or graph.

A key consists of a string of alphanumeric characters or hyphens (-). Keys are
case-sensitive. A value consists of a list of strings or numbers, separated by white
space; a string is delimited by double quotation marks ("), with the backslash as the
escape character. Each server response should have the key data-type, which specifies
the type of data included in the response. The current possible values are brain-4d (for
time series and autocorrelation views) and brain-3d (for t maps, standard deviation
etc) for four- and three-dimensional brain data; matrices, for the design and stimulus
covariance matrix; and plot, for one or more two-dimensional line plots. The client
should ignore any keys that it does not recognize.

The key-value pairs that specify each graph (line plot or image map) have keys
with the name of the image/graph as the prefix, with the suffixes in Table 6.3 ex-
pressing the different properties of the graph. For instance, if the server is returning
image data called transverse, the title would have the key transverse-title, and the
vertical /horizontal range would have the key transverse-vert-range/transverse-horz-

range.

Required Data

For brain-3d, the server is required to return the raw image data of transverse, sagittal,
and coronal for the cross sections. In addition, the cursor coordinates of last click

should be returned with the keys x-coord, y-coord, and z-coord. In the case of brain-

57

Content-type: application/x-www-form-urlencoded
<!l-- START FMRIDATAANALYSISDEMO DATA -->
data-type = brain-4d

transverse-image-dim = 64 64

sagittal-image-dim = 64 21

coronal-image-dim = 64 21

time-series-points = 180

transverse-horz-image-range = 0 252
transverse-vert-image-range = 0 252

<!-- TRANSVERSE IMAGE DATA -->

.... raw image data bytes are written here...
.<!-- SAGITTAL IMAGE DATA -->

.<!-- CORONAL IMAGE DATA -->

.<!-- TIME SERIES DATA -->

<!-- STOP FMRIDATAANALYSISDEMO DATA -->

Figure 6-2: A sample response from the fMRI Data Analysis server

58

Key Suffix Value Description
Graph Specifications

-title a string containing the title of the plot

-horz-range the range of the horizontal axis (low value
and high value)

-vert-range the range of the vertical axis (low value
and high value)

-horz-axis-label a string containing the label for the hori-
zontal axis

-vert-axis-label a string containing the label for the verti-
cal axis

-horz-tick-values the list of values along the horizontal axis
where tick marks should be drawn

-vert-tick-values same as -horz-tick-values, but for the ver-
tical axis

-vert-tick-labels same as -horz-tick-labels, but for the ver-
tical axis

Data Series (in a Line Plot)

-horz-data-n the list of values along the horizontal axis
in the nth data series

-vert-data-n the list of values along the vertical axis in
the nth data series

-color-n the color for the nth data series

Image Map

-image-dim the dimensions (width and height) of the
image (required for number of pixels to be
read)

-image an array of raw data (short integers) for
the image

-horz-image-range the coordinates along the horizontal axis
for the left and right edge of the map

-vert-image-range the coordinates along the vertical axis for

the bottom and top edge of the map

Table 6.3: The suffixes for keys specifying the different properties of graph/data in
the server response. Required keys are marked bold.

59

4d, the line plot time-series-plot is also required, and the time coordinate should be
returned with t-coord. For the data type matrices, the server is required to return the
image maps of design-matrix and stim-cov-matrix. Also required are the regressors
corresponding to each column n of the design matrix, regressor-plot-n. For plot, the

server should return the plots plot-n for however many plots the client should display.

Alternative options considered

The author also considered returning the response which is just text based, containing
the temporary location URLs for cross section images, rather than sending the actual
raw data. This requires fair amount of work on server side to construct the image.
But the abovementioned option was not pursued for two reasons: the server would
have to do more work and that could lead to latency in the response, (why do that
when the same functionality could be achieved at client side using advanced Java
imaging technologies), and,the client would have to make multiple calls to server,

once for constructing it and another to fetch the image.

60

Chapter 7

Conclusions and Future work

7.1 Client-Server Application

This web-based client/server software application was implemented using the design
and technologies described in the previous chapters. The application is operational
with most of the features fully functional, including navigation through 3 and 4-
dimensional brain volume data, display of statistical maps, and client side auto-
correlation function. One of the observations made about the performance of the
application is its increased interactivity after switching to a non-Matlab based server

solution. Some interesting points to note about the application are:

e The layered architecture based design of the Java Client will allow for easy

future development and integration of additional features in the GUI

e The minimal dependency in the design of server and client for each other allows
complete replacement of any of these, if needed. Also, each of them can easily

be expanded to provide greater functionality

We expect the Java client to run successfully on multiple platforms as an applet
as well as a stand-alone application. Author will test the application in the month of
June 2004 by measuring latency and other matrices of performance on MIT Athena

work stations, on LINUX, Windows and Macintosh systems, etc. Also, author will

61

work with Biomedical Informatics Research Network (BIRN) portal [41] collabora-
tors to seek their feedback on improving performance and easy deployment. The
accompanying tutorial will also be updated before distributing the application over

the web.

7.2 Future Work

Several additional features can be implemented in a straight forward manner, such
as keeping a parameter history, navigating through the brain by specifying the co-
ordinates, and adding a mosaic view. Other features, requiring more effort, include
allowing users to upload their own raw data, and the capability for users to play with
their uploaded data in the software application, after some automated scripts at the
server finish the pre-processing and pre-computation steps.

The accompanying tutorial could be expanded so that it does not presume much
knowledge and could be useful to all the researchers interested in learning statisti-
cal analysis of fMRI. Suitable material which is not covered in the tutorial should
be referenced via appropriate links to external web sites. The effectiveness of this
tutorial should be re-examined and improved by applying the “How People Learn”
(HPL) framework [30]-[32], a strategy for designing effective learning environments as
explained in chapter 3. This application could serve as a model prototype for creating
many more of such educational tools in the future.

An eventual goal of this project is to disseminate the fMRI Data Analysis Soft-
ware Application and the accompanying tutorial to researchers across the globe via
Biomedical Informatics Research Network (BIRN) [41]. The application source code
has already been moved to the BIRN, and the application will be made accessible to
the wider biomedical community through the BIRN portal after its testing is done.
As described earlier, BIRN brings together the computational resources and the data

online in order to serve biomedical researcher scientists through the internet.

62

Bibliography

[1]

2l

3]

[4]

(5]

(7l

(8]
[9]

A. Harner, An Introduction to Functional Magnetic Resonance Imaging (FMRI)

for Studying Visual Perception, PS 822 Final Project, Jan. 13, 1997.

I. Lai, R. Gollub, R. Hoge, D. Greve, M. Vangel, R. Poldrack, J. E. Greenberg,
Teaching statistical analysis of fMRI Data

R. L. Savoy, History and Future Directions of Human Brain Mapping and Func-
tional Neuroimaging Acta Psychologica 107 (2001): 9-42

P.Jezzard , P. M. Matthews, and S. M. Smith, Eds., Functional MRI: An Intro-
duction to Methods, Oxford University Press, Oxford, UK, (2001).

R. Ed. Buxton, Introduction to Functional Magnetic Resonance Imaging: Prin-

ciples and Techniques, Cambridge University Press,Cambridge, UK (2001).

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance
imaging with contrast dependent on blood oxygenation, Proceedings of the Na-

tional Academy of Science of the United States of America 87, 9868-9872, (1990).

G. D. Pearlson,T. E. Schlaepfer, Brain Imaging in Mood Disorders, [Online doc-
ument], Available HTTP: http://www.acnp.org/g4/GN401000100/CH098.html

1. Lai, A Web-Based Tutorial for Statistical Analysis of fMRI Data

J. P. Hornak, The Basics of MRI, [Online document|, Available HTTP:
http://www.cis.rit.edu/htbooks/mri/

63

[10] FIDAP Basics Home Page: Spatial Smoothing, [Online document], Available
HTTP: http://lbc.nimh.nih.gov/fidap/spatialsmooth.html

[11] D. C.Noll, A Primer on MRI and Functional MRI, [Online document], Available
HTTP: http://www.bme.umich.edu/ dnoll/primer2.pdf

[12] J. Culham, fMRI for Dummies, [Online document], Available HTTP:
http://defiant.ssc.uwo.ca/Jody_web/fmriddummies.htm

[13] S. Clare, Functional MRI: Methods and Applications, [Online document], Avail-
able HTTP: http://www.fmrib.ox.ac.uk/ stuart/thesis/

[14] M. Brett, Cambridge Imagers: Tutorials, [Online document|, Available HTTP:

http://www.mrc-cbu.cam.ac.uk /Imaging/tutorials. html

[15] Introduction to FMRI, [Online document], Available HTTP:

http://www.fmrib.ox.ac.uk/fmri_intro/

[16] S. Smith, FEAT: FMRI Expert Analysis Tool User Guide, [Online document],
Available HTTP: http://www.fmrib.ox.ac.uk/

[17] Wellcome Department of Cognitive Neurology, Statistical Paramteric Mapping,
[Online document), Available HTTP:http://www fil.ion.ucl.ac.uk/spm/

(18] B. V., BrainVoyager: a product from Brain Innovation, [Online document],

Available HTTP: http://www.brainvoyager.com/

[19] R. W. Cox, AFNI: Software for analysis and visualization of functional magnetic

resonance neuroimages, Computers and Biomedical Research 29, pp. 162 - 173,

(1996).

[20] P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde, Processing strate-
gies for time-course data sets in functional MRI of the human brain, Magnetic

Resonance in Medicine 30, 161 - 173, (1993).

64

[21] K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak, Comparing func-
tional (PET) images: The assessment of significant change, Journal of Cerebral

Blood Flow and Metabolism 11, 690 - 699, (1991).

[22] A. L. Nicole, F. E. William, R. G. Christopher, J. Welling, Statistical Issues in
fMRI for Brain Imaging, July 13, 1999.

(23] R. Hoge, fMRI Data Acquisition Lab [Online document|, Available HTTP:
http: //www.nmr.mgh.harvard.edu/ rhoge/HST583/doc/HST583-Labl.html

[24] R. Gollub, HST-583 Functional Magnetic Resonance Imaging: Data Acquisi-
tion and Analysis Fall 2002 Home Page, [Online document), Available HTTP:
http://web.mit.edu/hst.583 /www/

[25] S. Smith, FMRIB MEDz FMRI Analysis Course, [Online document), Available
HTTP: http://www.frrib.ox.ac.uk/internal /medx/course/

[26] Functional Magnetic Resonance Imaging: An Introductory Course, [Online doc-

ument|, Available HTTP: http://www.firc.mcw.edu/course/

[27] M. Vangel, D. Greve, The MGH/MIT/HMS Martinos Center for Medical
Imaging Announcing a short course in fMRI statistics, Available HTTP:
http://www.nmr.mgh.harvard.edu/NewFiles/short_course.html

[28] fMRI Course, Human Brain Mapping 2001, 10 June 2001, [Online document],
Available HTTP:http://www.hbm2001.ucl.org.uk/register/course10.html

[29) T. Nichols and S. Smith, ISMRM Morning Categorical:
fMRI Data Analysis, [Online document], Available HTTP:
http://www.ismrm.org/02/morningcat2(’02).htm

[30] J. D. Bransford, A. L. Brown, and R. R. Cocking, Eds., How People Learn: Brain,
Mind, Experience, and School, Washington, DC: National Academy Press, 1999.
Available: http://www.nap.edu/openbook/0309065577 /html/index.html

65

[31] T. R. Harris, J. D. Bransford, and S. P. Brophy, Roles for learning sciences
and learning technologies in biomedical engineering education: A review of re-
cent advances, Annu. Rev. Biomed. Eng., vol. 4, pp. 29-48, 2002. Available:
http://129.59.92.138 /docs/Harris_001.pdf

[32] D. Laurillard, Learning through collaborative computer simulations, British Jour-

nal of Educational Technology, 23(3) pp. 164-171 (1992).

[33] Sun Microsystems, What is Java Advanced Imaging (JAI)?, [Online document],
Available HTTP: http://java.sun.com/products/java-media/jai/whatis.html

[34] The Mathworks: MATLAB Runtime Server [Online document|, Available HTTP:

http://www.mathworks.com/products/runtime/

[35] C. A. Cocosco and A. C. Evans, Java Internet Viewer: a WWW
Tool for Remote 3D Medical Image Data Visualization and Comparison,

http://www.bic.mni.mecgill.ca/users/crisco/jiv/

(36] Wikipedia, Apache HTTP Server, [Online document], Available HTTP:
http://en.wikipedia.org/wiki/Apache HTTP Server

(37] The Mathworks: MATLAB Web Server, [Online document], Available HTTP:

http://www.mathworks.com /products/webserver/

[38] Introduction to Minc, [Online document], Available HTTP:

http://www.bic.mni.mcgill.ca/software/minc/minc.html

[39] A. Rhyno, Java in Context, [Online document], Available HTTP:
http://www.mgmt.dal.ca/slis/etig/itcolumn /itjava.htm

[40] The Apache Software Foundation, [Online document], Available HTTP:
http://www.apache.org/

[41] University of California, San Diego, Biomedical Informatics Research Net-

work,[Online document], Available HTTP: http://www.nbirn.net/

66

